
www.allitebooks.com

http://www.allitebooks.org

Instant Messaging
in Java

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Instant Messaging
in Java

The Jabber Protocols

IAIN SHIGEOKA

M A N N I N G

Greenwich
(74° w. long.)
www.allitebooks.com

http://www.allitebooks.org

For electronic information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2002 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Lois Patterson
209 Bruce Park Avenue Typesetter: Shan Young
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-46-4

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 - VHG 05 04 03 02
www.allitebooks.com

http://www.allitebooks.org

 This book is dedicated to the Jabber community:
innovation, insight and fun. Who could ask for anything more?

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

contents

preface xiii
about this book xv
author online xxi
acknowledgments xxii
about the cover illustration xxiii

PART I INSTANT MESSAGING PRIMER 1

1 Introduction to IM concepts 3
1.1 Background on messaging 4

A brief history of Jabber 11 ■ Goals of the Jabber project 12
1.2 What is Jabber? 13

Jabber’s XML-based data formats 14 ■ Jabber’s simple
architecture 18 ■ Jabber’s four core concepts 21

1.3 Benefits of the Jabber protocols 27

1.4 Drawbacks of the Jabber protocols 28

1.5 Conclusion 29
www.allitebooks.com

http://www.allitebooks.org

viii

contents

2 Jabber technical fundamentals 31
2.1 The Jabber messaging model 32

Benefits 35 ■ Drawbacks 36 ■ Relying on distributed
servers 38 ■ How Jabber packet routing works 39
Step-by-step: a message’s path through Jabber 44

2.2 The core Jabber protocols 45
Message: Delivering data 45 ■ Presence: updating user
online status 45 ■ Info/Query: handling everything else 45

2.3 Jabber session example 47

2.4 Conclusions 56

PART II PROTOCOLS, CODE, AND ADVANCED IM 57

3 IM concepts and Jabber protocols 59
3.1 A basic Java Jabber server 60

Goals for our server 60 ■ Our server software 61
The basic server design 62

3.2 The session pool maintains client connections 63
The Session class represents a connection 64
The SessionIndex class provides session lookup 66

3.3 XML parsing subsystem 69
Representing Jabber packets 69 ■ The PacketQueue class as
server focal point 77 ■ SAX parsing in Java 80

3.4 Packet handling and server threads 87
Packet handling in QueueThread 90 ■ Parsing XML in the
ProcessThread 95 ■ The main application Server class 97

3.5 Testing the server 98

3.6 Conclusion 100
www.allitebooks.com

http://www.allitebooks.org

contents

ix

4 The Jabber message protocols 101
4.1 Messaging is the heart of IM 102

4.2 The message protocol 103
Normal messages 104 ■ Chat messages 105
Groupchat messages 106 ■ Headline messages 108
Error messages 109 ■ Out-of-band messages 110 ■ Reality check:
one message, many user interfaces 112

4.3 Java Jabber client 113
Goals 114 ■ The client design 115 ■ The client
model 116 ■ Using the client model 123 ■ Results 131

4.4 Conclusions 132

5 The presence protocols 133
5.1 The need for presence 134

5.2 The presence protocol 134

5.3 Adding groupchat support 138
Groupchat protocols 138 ■ Server modifications 144
Client modifications 157

5.4 Shortcomings of our server and basic groupchat 161

5.5 Conclusions 162

6 Info/Query and client registration 163
6.1 Info/Query: the catch-all protocol 164

The IQ protocol 165 ■ IQ extensions 167
6.2 Registration creates and manages accounts 169

User accounts 170 ■ The register protocol 171
6.3 The Jabber server modifications 175

Adding user accounts 175 ■ Adding registration support 183
6.4 Conclusions 186
www.allitebooks.com

http://www.allitebooks.org

x

contents

7 Client authentication 189
7.1 Authentication controls account access 190

The authentication protocol 191
7.2 The Jabber server modifications 199

7.3 The Jabber client modifications 205
Modifying the JabberModel 206 ■ The client IQ packet
handlers 211

7.4 Conclusions 215

8 Roster and user presence 217
8.1 Roster protocol: presence’s missing piece 218

The roster protocol 221
8.2 The Jabber server modifications 224

Representing user presence 224 ■ Adding a roster
subsystem 226 ■ The roster packet handlers 233

8.3 The Jabber client modifications 236
Adding minimal roster support 236 ■ Testing the server 238

8.4 Conclusions 241

9 Creating a complete Jabber system 243
9.1 Creating Jabber-compliant implementations 244

Setting standards: the Jabber Software Foundation 245
Enforcing standards: Jabber Powered applications 245
Organizing standards: Jabber environments 246
Today’s options for achieving server compliance 247

9.2 Server missing pieces 248
Server-to-server communications: federating Jabber domains 248
Dialback authentication: S2S security 250 ■ Transports:
integrating with other IM systems 257 ■ Deployment of Jabber servers
and components 260 ■ Server security: creating protected Jabber
services 262 ■ Jabber server management 264 ■ Adding reliability
and availability 265

9.3 Client missing pieces 266

contents

xi

9.4 User agent clients 266
Enhancing existing applications 268 ■ Chatbots:
creating IM services 268

9.5 Conclusions 270

10 Enterprise Jabber 271
10.1 What is needed to support enterprise messaging 273

Enhancing Jabber security 273 ■ Guaranteed quality
of service 278 ■ Creating system administration tools
an techniques 279

10.2 The promise of MOM 280
Jabber as middleware 281 ■ Jabber and the J2EE Java
Messaging Service 282 ■ Jabber, .NET, and SOAP 290

10.3 Examples of Jabber applications 292
Jabber groupware 292 ■ Jabber network
services 293 ■ Applications enhanced by Jabber 293

10.4 Distributed application alternatives to Jabbers 296
RPCs: oldies but goodies 296 ■ P2P systems:
the new challenger 298 ■ Hybrid systems:
a better compromise 299

10.5 Conclusions 300

Jabber reference 301
references 369
index 373

preface

My original background is in robotics and computer-integrated manufacturing. In
both, my interests centered on solving communication problems in mission-criti-
cal systems. At the beginning, that meant assembly and C programming as well as
direct participation in the lowest levels of networking protocols. Forget TCP/IP
and Ethernet—we were generating packets by hand on ArcNET networks.

 Networks quickly evolved and the problem shifted to an increasing need to
integrate the computerized factory floor into large-scale enterprise systems.
Unfortunately, manufacturing systems are horribly heterogeneous, with each
machine running completely proprietary software (often with one of a kind oper-
ating systems and programming languages). In addition, it is common for manu-
facturing machines to be kept in service for 20–30 years or longer. Long
equipment life-spans result in a surprising number of shops still using tape drives,
punch cards, and other ancient computer technology.

 On systems where you have a full Java 2 Standard Edition (J2SE) or better envi-
ronment, Java Jini (http://www.jini.org) provides a perfect framework for gluing
the various bits together. In addition, it provides a common integration environ-
ment (Java) and elegant, distributed computing facilities, such as self-healing
properties and distributed transactions. As J2SE begins to find its way onto more
and more devices, Jini becomes an increasingly attractive technology for system
integration and coordination.
xiii

xiv preface
 Unfortunately, J2SE isn’t everywhere. The J2SE requirement for Java Jini proves
to be a significant obstacle on proprietary or limited platforms. We needed a
lightweight, flexible communication system to extend into these environments.

 Jabber first came to my attention in late 2000. Peer-to-peer frameworks like
Gnutella and JXTA were hot but lacked the robustness and predictability needed.
Instant Messaging (IM) seemed like a much more promising solution.

 Despite strong developer interest in IM technologies, there really wasn’t much
out there.1 The largest IM systems are highly proprietary and unusable for systems
where you may need to implement, extend, or control the servers. After some
searching, it looked like a dead end. It appeared simpler and less expensive to cre-
ate our own lightweight communication protocol from scratch.

 Then I came across Jabber. It is open source, and exploits the very best fea-
tures of XML, another hot technology. I was familiar with XML and understood
the fundamental benefits driving its hype but had yet to see a compelling reason
to use XML in my software. Jabber appeared to be that application.

 Digging deeper into Jabber revealed a design that was simple and flexible. I’m
a firm believer in the KISS philosophy2 so the appeal only grew. I decided to start
playing with the technology.

 What finally converted me into a Jabber evangelist was the active and enthusi-
astic Jabber development community. Jabber is a young technology being shaped
on a daily basis by corporate, student, and hobbyist contributors. Although the
core of Jabber is relatively stable, many important related technologies such as
Jabber security are still under active development.

 You have the opportunity to make crucial decisions that shape the future of
Jabber IM technology even while Fortune 500 companies are using Jabber today
for critical services. In addition, the Microsoft-driven hype behind SOAP and
other XML-related technologies has ignited interest from various parties in using
Jabber as a way to plug into the web services world without having to become
Microsoft shops. Developers like you and me are making decisions today that will
determine how Jabber grows to meet tomorrow’s challenges. These challenges
and their potential rewards are truly exciting. Come and join us!

1 Today there still aren’t many IM options available to developers. Jabber remains the strongest option
for people who wish to have complete access to the software and protocols, as well as control over
deployment.

2 Keep It Simple Silly. Of course, there are more colorful words that are often used for that last ‘S’!

about this book
This book leads the reader in building an IM system using the Java programming
language. I believe that the best way of showing how something like instant mes-
saging is done in general is to illustrate how it is done with a particular example.
Our IM system uses the Jabber protocols and architecture and we’ll cover both in
depth as we build our software. Once you understand how the Jabber protocols
work to create an IM system, I hope that you will be able to extrapolate your expe-
rience to build other IM systems based on Jabber or other protocols if necessary.

 I am also a firm believer in code as a method of communication. You can
describe an algorithm to people and there will as many different interpretations
of that algorithm as there are people. However, a well-written, compliable, execut-
able piece of code removes all doubt. As a consequence, this book contains a
great deal of Java source code to explain concepts with detail and rigor not
included in the text discussion.

Who should read this book

This book is targeted primarily at intermediate developers, Jabber enthusiasts,
and technical managers. Non-technical people who need to know about IM in
general or Jabber in particular will gain the most insight from the first part of the
book. The latter parts of the book contain many technical details and Java source
code that you may find of lesser use if you are not a programmer.

 The code examples contained within this book were written assuming an inter-
mediate programming skill level. Server and network software require some inter-
xv

xvi about this book
mediate Java programming features such as threading and sockets that may be
unfamiliar to beginning programmers. These issues have been de-emphasized in
the book but remain potential stumbling blocks to the unprepared.

 In addition, I use several design patterns within the code examples. If you’re
familiar with design patterns, these examples will be easy, allowing you to under-
stand the basic solution and concentrate on the Jabber-specific aspects of the
solution. If you are not familiar with design patterns, many code examples will
simply appear more complex and require more work to understand. I highly sug-
gest that developers familiarize themselves with design patterns starting with the
seminal book on the topic: Design Patterns: Elements of Reusable Object-Oriented Soft-
ware, by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addi-
son-Wesley, 1994).

 You don’t necessarily need to know Java in order to understand the code
examples in this book. Java is a simple language similar enough to many other
languages that even those unfamiliar with it can read the code and understand
the basic operations being undertaken. However, Java developers will gain the
most from the code examples.

Contents of this book

This book is split into three parts. Part 1 introduces IM and Jabber technologies
and describes the basic architecture of all Jabber-based systems. In part 2, we dig
into the gritty details of the core Jabber protocols and develop Java server and cli-
ent software. Finally, in appendix A, I’ve included a condensed reference to the
Jabber protocols as they stand at the time of this writing. The Jabber protocols are
continuing to evolve so you should check the Jabber website (www.jabber.org) for
announcements and the book’s website (www.manning.com/shigeoka) for
updated versions of the reference section.

Part 1—Overview

Chapter 1—Introduction to IM concepts. A non-technical introduction to IM and
Jabber technologies. This is a general overview that helps us to establish a com-
mon vocabulary and introduce basic concepts. If you’re familiar with Jabber IM
you can skip this section.

about this book xvii
 Chapter 2—Jabber technical fundamentals. A technical overview of the Jabber
architecture and protocols. We also examine the raw communication stream
between the Jabber server and client to illustrate what “raw” Jabber looks like.

Part 2—Building Jabber

Chapter 3—IM concepts and Jabber protocols Examines the details of Jabber streams
and packets. In addition, we write the basic Jabber server that we’ll expand
throughout the book. This chapter is essential for understanding the software we
build in the book.

 Chapter 4—The Jabber message protocols. Covers the Jabber message protocol
and implements support for basic messaging in the server. In addition, we
develop a “test Jabber client” to test our evolving Jabber server.

 Chapter 5—The presence protocols. Covers the Jabber presence protocols and
shows how they are used in the Jabber groupchat messaging protocol. We imple-
ment a groupchat manager as part of the Jabber server and expand the test client.

 Chapter 6—Info/query and client registration. Covers the final core Jabber proto-
col, info/query, used for all protocols not covered by messaging and presence. In
this chapter, we examine its use in the account registration process.

 Chapter 7—Client authentication. Covers the Jabber authentication info/query
protocols. The discussion and software cover all aspects of standard Jabber
authentication including the proposed zero-knowledge authentication protocol.

 Chapter 8—Roster and user presence. With user accounts firmly established in
chapters 6 and 7, we’re ready to discuss the roster info/query protocol and the
user presence protocols. A user’s roster stores the “buddy list” of subscribers inter-
ested in their presence status. The user presence protocols update the user’s pres-
ence and subscribe users to other users’ rosters.

 Chapter 9—Creating a complete Jabber system. Ties up the loose ends for part 2.
There is no way to complete a fully featured or “production ready” server or client
within the book. This chapter describes what remains to be done and suggests ways to
tackle each problem.

 Chapter 10—Enterprise Jabber. We end part 2 with a look at advanced forms of
Jabber systems. This includes Jabber as enterprise middleware and how Jabber fits
into the “alphabet soup” of J2EE, JMS, SOAP and .NET. We’ll also look at some exam-
ples of advanced Jabber applications and alternatives to Jabber technology.

xviii about this book
Appendix—Jabber reference

We end the book with the Jabber reference. The reference does not attempt to
document every aspect of any particular protocol. Instead, I provide a condensed
reference that will let you quickly look up the most important information about
a protocol without wading through each standard. For example, you can use the
reference to look up error codes for the <error> packet, or the suggested sub-
packets in a “normal” <message>.

How to use this book

I would suggest that you read chapters 1–3 in order to get a firm grasp of Jabber
and the software that we build throughout the book. Chapters 4–8 build upon
each other. If you are completely unfamiliar with the Jabber protocols it may be a
good idea to read through them in the order presented. If you only want to learn
the protocols, you can read the first section of each of those chapters as source
code is presented at the end of the chapter.

 If you want to know what you need to do to create a production-ready Jabber
server or client, you may want to skip ahead to chapter 9. Considering that you
are creating a significant server application, I don’t think the remaining tasks are
exceptionally difficult. However, you may wish to judge for yourself before getting
too deep into the book’s source code.

 Finally, I imagine that many developers will like to skip ahead to chapter 10 for
inspiration. I placed it at the end of the book so that you’d have the technical
background to understand what would be involved in creating each system. How-
ever, you may want to skim it first to let the big ideas sink in. You can then learn
about Jabber in more detail by reading chapters 3–9, and return to chapter 10 to
fully appreciate the potential of the technology.

Conventions

The following typographical conventions appear throughout the book:

■ Technical terms are introduced in italic font.

■ Code examples and fragments appear in a fixed-width font.

■ Method names are followed by two parentheses “()” to differentiate them
from member variables.

■ XML namespaces and attributes, as well as literal values for attributes, also
appear in a fixed-width font.

about this book xix
■ XML elements are surrounded by angle brackets “<>”.

■ Sections of code that are of special significance appear in a bold fixed-
width font. Typically, these sections highlight changes made to code when
compared with a previous example.

■ Many sections of code have annotations which appear in the right margin.

■ Some advanced topics are discussed that will not be of interest to beginning
programmers. These advanced discussions have a gray background and a
black diamond in the margin. Beginners can skip these sections.

The source code

I have presented most but not all of the Java source code needed to build the Java
server and client covered in this book. Most of the omitted source code repre-
sents simple modifications of software covered earlier in the book. In addition, to
make the source easier to read, I have omitted much of the error checking and
prevention code that I would normally include in software. Keep this in mind
when reviewing the code. If you decide to try and put this code into production,
you’ll need to add the error checking code.

Getting the source code

The full source code for this book is available online from the Manning website at
www.manning.com/shigeoka. The source is contained in a zip archive that
includes instructions on building and running the included software. All of the
source code is released under a modified Apache (BSD) license. This means that
you’re free to do almost anything with the code, including selling it or building
proprietary applications without any obligations.3

 The online source differs slightly from the source shown in the book. The
most visible difference is that the online source contains a logging class called Log
and I have placed logging statements throughout the code to make it easier to fol-
low what it is doing. To save space I have omitted these logging statements from
the book. You can change the logging level of the Log class by changing the log-
ging level constant set in the Log class (see source for more information).

Tools: a Java development environment

Building the Java software covered in this book requires four tools. I’ve tried to
keep the requirements to a minimum. The following table shows you what tools

3 Technically, you do have some obligations. You can’t hold me responsible for anything the software does
or doesn’t do, or use my name to advertise the product. See the license.html file in the distribution for
exact details.

xx about this book
you need and where to obtain them. You can learn more about each of these tools
from their respective websites.

To set up your development environment, first obtain and install the JDK. There
should be several examples included with your JDK and you should compile and
run some of them to ensure that the JDK is properly installed.

 The second step is to obtain the Ant build tool from the Jakarta Apache web-
site. Unpack and install the Ant tool according to the Ant installation documenta-
tion provided both on the Ant website and in the Ant binary distribution. Make
sure to also obtain the extra Ant task jar (optional.jar) provided as an optional
part of the Ant distribution. My source code uses JUnit tests driven by an Ant task
included in that jar file. Ant includes the Xerces XML parsing library

 Finally, download and install the JUnit test tool. You will need to modify your Ant
batch file or shell script to include the JUnit jar file in the Ant classpath. JUnit tests
will be run as part of the Ant build process to ensure the software is built properly.

Building the source in this book

All of the source examples can be built using the appropriate Ant build file. To
build a particular example:

■ Unpack the book’s source code (available at www.manning.com/shigeoka)

■ Open up a terminal window or console window

■ Change to the chapter directory

■ Type “ant” (If your Ant batch file or shell script is not your executable
path you may need to specify its full name including path. See your Ant
documentation.)

The completed jar files will be created in the out/dist directory.

The required development tools.

 Tool Source Description

 JDK 1.3.1 http://java.sun.com or
3rd party vendor

 The Java Development Kit

 Ant 1.4.1 http://jakarta.apache.org A Java build tool

 JUnit 3.7 http://www.junit.org A Java testing tool

 Xerces2 2.0.0 Included with Ant A Java XML parsing library

author online
Free access to a private Internet forum, Author Online, is included with the pur-
chase of this book. Visit the website for detailed rules about the forum, to sub-
scribe to and access the forum, to retrieve the code for each chapter and section,
and to view updates and corrections to the material in the book. Make comments,
good or bad, about the book; ask technical questions, and receive help from the
author and other Jabber programmers. The forum is available at the book’s web-
site at www.manning.com/shigeoka.

 Instant messaging, Java, and the Jabber protocols cover a lot of ground and I
can’t claim expertise in too much of it. In addition, I am certainly a student when
it comes to writing technical books. In order for me to continue to learn and grow
I need your feedback! In addition to comments and criticisms, I would love to
hear about your experience with the software and technology and how you’re
using it. Or simply drop by to chat about Jabber, Java, IM, or just about anything
else.

 Manning’s commitment to readers is to provide a venue where a meaningful
dialog among individual readers and among readers and the author can take
place. It is not a commitment to any specific amount of participation on the part
of the author, whose contribution remains voluntary (and unpaid).

 I can also be contacted directly at iainshigeoka@yahoo.com or through my
website at www.metamech.com.
xxi

acknowledgments
I’d like to first thank my parents, Clifford and Blanche, who have been extremely
supportive in the production of this book. From room and board to pats on the
back, they’ve been essential to the book’s completion. In addition, my brother
Orin and sister Cassie have made sure to “encourage” me in their own unique
ways. Thanks guys.

 I’d also like to thank the Manning crew for their unflagging assistance and
advice on this book. The schedule was tight but things went unexpectedly smoothly
thanks to Susan Capparelle, Alex Garret, Ted Kennedy, Elizabeth Martin, Dottie
Marsico, Mary Piergies, and Shan Young. I’d like to extend an especially warm
thanks to Marjan Bace who was willing to take a chance on yet another book and
who responded so enthusiastically to this one. In addition, Lois Patterson deserves
special thanks for her help in turning my spotty writing into a professional quality
manuscript and doing so under incredible time pressures.

 The book also benefited from the reviews of several technical experts. Many of
the best, most accurate, and most insightful bits are due to these reviewers. The
remaining errors are entirely my fault. Thanks to Bill Abbas, Chris Chen, Ryan
Eatmon, David Falck, Harold Gottschalk, Gregory Graham, Julian Missig, Jim
Schultz, Max Metral, and Thomas Muldowney.

 Finally, I’d like to thank the Jabber community for creating and fueling this
exciting Jabber phenomenon. It’s been a great ride so far and the future looks
bright indeed.
xxii

about the cover illustration
The figure on the cover of this book is a “Gobenador de la Abisinia,” the governor
of Abyssinia, today called Ethiopia. While the exact meaning of his office and
responsibilities is for us lost in historical fog, there is no doubt that we are facing a
man of authority and power. The illustration is taken from a Spanish compen-
dium of regional dress customs first published in Madrid in 1799. The book’s title
page states:

Coleccion general de los Trages que usan actualmente todas las Nacionas del Mundo
desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R. Obra muy
util y en special para los que tienen la del viajero universal

Which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known world,
designed and printed with great exactitude by R.M.V.A.R. This work is very useful
especially for those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who colored
this illustration by hand, the “exactitude” of their execution is evident in this
drawing. The “Gobenador de la Abisinia” is just one of many figures in this color-
ful collection. Their diversity speaks vividly of the uniqueness and individuality of
the world’s towns and regions just 200 years ago. This was a time when the dress
codes of two regions separated by a few dozen miles identified people uniquely as
xxiii

xxiv about the cover illustration
belonging to one or the other. The collection brings to life a sense of isolation
and distance of that period and of every other historic period except our own
hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life of
two centuries ago brought back to life by the pictures from this collection.

Part I

Instant messaging primer

Chapters 1 and 2 present an overview of instant messaging using
the Jabber protocols from a general and technical perspective. When
you’ve read these two chapters, you should know the basics of how Java
instant messaging using the Jabber protocols works. We will also explore
the potential of Java IM systems and the problems facing us in building
them. This introduction will get us ready to dive into the technical details
of the Jabber protocols in part II.

 1Introduction
to IM concepts
In this chapter
■ The benefits of instant messaging

technology for Java developers
■ How the Jabber instant messaging

protocols work
■ The core concepts of instant messaging

in Jabber
■ The benefits and drawbacks of the

Jabber protocols

3

4 CHAPTER 1

Introduction to IM concepts
Instant messaging (IM) systems using the Java programming language are poised
to become a major part of both consumer and enterprise networking, and will
play a core communication role similar to email.

 Messaging of course has always been a core feature of the Internet. For exam-
ple, one of the first and still most pervasive Internet technologies is email. It
remains an Internet killer app. However, we all know that Internet communica-
tion can be even more interesting and powerful than “plain old email.” We should
be able to better exploit it as an inexpensive medium for transferring data almost
instantaneously. And that is the aim of this book.

 Most of the examples and IM issues discussed here are from the point of view
of an enterprise developer interested in creating systems for medium or large
businesses. This is primarily a bias on my part, as my projects tend to fall into this
category. However, the same issues that face enterprises also will be important to
any other developer who wants to create reliable, secure systems.

 To make the discussion concrete, we’ll implement an IM system in Java that
complies with the Jabber protocols (which you can find at www.jabber.org). By
examining the Jabber protocols in particular, we’ll get a real sense for what makes
a working IM system tick and why I think they may very well be the best ones to
implement in the fragmented field of IM. Finally, the Jabber protocols have suf-
fered from a lack of documentation that I hope this book begins to address.

 In this chapter, we’ll examine IM systems in general and Jabber in particular.
The discussion will be largely nontechnical so we can concentrate on why and
where we need IM. Discussion of the technical aspects of the Jabber protocols will
occupy the remainder of the book and explain the how of Jabber. We will develop
a basic Jabber server and client in Java throughout chapters 3–8 to help make the
concepts concrete. The chapter closes with a look at the benefits and drawbacks
associated with Jabber IM.

1.1 Background on messaging

The idea of instant messaging has been around for a long time. All of the visible
IM features like one-on-one chat and group chats existed in other Internet appli-
cations long before IM entered the scene. For example, the classic Unix talk
application allowed users to chat over the network years before IM ever appeared,
and group chats have been carried out on Internet Relay Chat (IRC) systems
almost as long as talk has been around.

Background on messaging 5
 The innovation in today’s IM systems is the packaging of these separate systems
into a managed messaging platform. Jabber takes this further and establishes a
universal messaging address and the concept of presence that can be applied to that
address for an even simpler communication experience. A common address and
presence are relatively simple technologies that have existed in other forms. How-
ever, it’s the packaging of the concepts into a single, easy to use, cohesive messag-
ing system that has really caught on. The need for ease of use has increased as
more people (many of whom have less technical knowledge or inclination than
earlier Internet users) join the network community.

 IM addresses are an extension of the well-established email addresses almost
everyone has today. However, your email address can be used only to receive
email. In contrast, IM ties many message types together using a single IM address
(figure 1.1). In an IM system, you can receive a message, chat, or groupchat1 with
a person using one IM address.

Figure 1.1 IM addresses serve as universal communication destinations. They aggregate
many different messaging sources into a single user message endpoint.

Chat and group chat are conversational, and require you to be online at the same
time as the person you are chatting with. To make the online rendezvous simple,
your IM presence will constantly inform other users when you are online and
available for chatting (figure 1.2). IM presence makes communication through IM

1 IM messages are like memos or emails and tend to be complete like a letter. Chat and groupchat allows
you to quickly exchange short text messages in a conversation. Each individual chat or groupchat mes-
sage is like a sentence taken out of a telephone conversation; it doesn’t make sense unless you know
what has been said before. The difference between chat and groupchat is that chat is a one-on-one con-
versation while groupchat is a chat among more than two people.

IM Address

email
IM application

chat

IM applicationgroup chat
www.allitebooks.com

http://www.allitebooks.org

6 CHAPTER 1

Introduction to IM concepts
systems similar to striking up conversations around the water cooler. You can eas-
ily see who is available to talk, and casually start conversations.

Older chat systems like Unix talk work similarly to the phone system in the sense
that they lack presence. When attempting to chat, you have to make blind calls to
the person with whom you want to converse, hoping he or she is available to
answer the call. Unlike the phone system, though, most people are not available
to talk online as much as they are with the phone so the chance of finding some-
one “at home” online is greatly reduced.

 The simplicity and integration of IM systems first caught on with the consumer
market. The most successful of these consumer systems is AIM (AOL Instant Mes-
senger) that introduced IM to the mainstream consumer and encouraged its large
membership to embrace the technology. The consumer market for IM continues
to grow and many opportunities exist for the enterprising developer.

 Despite the large consumer market for IM, most of the development commu-
nity is interested in the opportunities for applying IM technologies in the enter-
prise (table 1.1). First, enterprises live or die by their ability to communicate
within the company and with partners and customers. IM provides new communi-
cation channels that are well-suited to many messaging tasks.

IM address

Presence:
available

IM address

Presence:
available

IM address

Presence:
sleeping

IM address

Presence:
unavailable

zzz Figure 1.2
Presence shows at a
glance who you can
communicate with, and the
best type of messaging to
use (chat, messages, etc).

Background on messaging 7
Table 1.1 An IDC report’s projections for IM usage in the enterprise and consumer markets.2

One of the most promising applications of IM in the enterprise is in the area of
customer relationship management (CRM) or customer service. First, IM provides
yet another way for a company to communicate with its customers. In addition, IM
allows you to plug in to the customer’s experience to provide better support.

 Imagine a computer customer whose software application has just crashed.
They start the Help utility that came with the application. The utility is actually a
customized IM client. The client joins a chat group dedicated to users of the appli-
cation. The user can ask anyone online for help. If there is no one available, the
client contacts an automated chatbot3 on the IM system. The chatbot can ask basic
questions about the problem and use that information to route the user to the best
technical support expert at the company.

 Notice how the customer is instantly connected to support resources once a
problem emerges. In addition, IM allows you to provide guided assistance starting
with free online user groups. Automated chatbots can monitor the customer’s
progress, make suggestions, and eventually lead them to a company employee that
can help. The filtering of simple problems by the free user group can eliminate
many customer service incidents that drain profits and reduce customer satisfac-
tion. Since IM is worldwide, your user community has a global reach that is very
handy when customers want help outside of your business hours.

 In addition to the added communication capabilities, IM provides an enter-
prise. It provides cost savings. Jabber Inc., a commercial vendor of Jabber software
and services, reports significant savings when an IM system is properly integrated
into the enterprise.4

2 Jennifer DiSabatino, “Win XP to Include Instant Messaging,” Computer World, June 11, 2001.

Year
Enterprise IM

(messages/year)
Consumer IM

(messages/year)

2001 145 262

2003 626 409

2005 1.2B 800

3 Chatbots are special IM client applications that are completely automated. They typically provide ser-
vices to IM users such as logging conversations, telling you the time, or providing online help. We’ll in-
vestigate the full spectrum what you can do with chatbots in chapter 10.

4 See Jabber.com Inc. promotional materials available at www.jabber.com/downloads.

8 CHAPTER 1

Introduction to IM concepts
 Messaging between individuals is not the only benefit IM can provide to an
enterprise. Businesses must also allow computers to communicate with each
other. This is true whether the computers are internal to the company such as
when accounting applications access customer service databases, or when the
computer communication is between business partners in business-to-business
(B2B) exchanges (figure 1.3).

Figure 1.3 IM systems are being used for B2B data exchange including the heavily
hyped web services initiatives such as Microsoft .NET.

Using messaging frameworks for computer communication is not a new idea.
Products like IBM MQSeries, Micosoft MSMQ, TIBCO Rendezvous, Open Horizon
Ambrosia, and Modulus InterAgent have been in enterprise use for years. The
benefits of messaging in the enterprise have been well-demonstrated.

 In fact, the Java 2 Enterprise Edition (J2EE) includes the Java Message Ser-
vice(JMS) standard libraries to provide a standard Java interface to messaging sys-
tems for enterprise computing. The power and flexibility of Java and enterprise
messaging-oriented middleware(MOM) have made the adoption of JMS happen
quickly. Most enterprise messaging system vendors support JMS.

 For example, imagine you are a telecom company providing local telephone ser-
vices to residences. You want to create a computer system that will help you handle
service problems. Let’s consider the scenario where a telephone line has been cut.
An IM-based system can log the problem as an IM message and route it to a trouble
desk. The trouble desk operator receives the message and knows that she must dis-
patch a work crew to the site. She can check the IM presence of the work crews, find
one that’s available, and send a trouble ticket to repair the line.

 We can also add expert system functionality to the system by modifying an
existing expert system so that it acts as an IM client and receives copies of incom-
ing trouble desk IM messages. It recognizes that a “line down” problem activates

Supplier

B2B IM
address

IM messages

Retailer

B2B IM
address

Orders
database

Orders
database

Background on messaging 9
several service level agreement (SLA) contracts. In addition, there are several
alternate phone lines that service the same area, and traffic can be switched to
these if the problem will last longer than a few hours. The expert system sends
more trouble tickets to the trouble desk operator alerting her to other actions she
needs to take and offering suggestions on solutions. In most cases, the suggestions
are routine and she can simply approve the expert system’s suggestions allowing it
to follow proper procedures.

 This example is not far-fetched. Telecom companies spend millions every year
developing and maintaining systems with these capabilities. A few innovative com-
panies are experimenting with messaging technologies as the basis for next-gener-
ation versions of these systems that are more capable, and less expensive to create
and maintain.

 If the industry’s predictions for the growth of IM in the enterprise prove true,
it is obvious that IM systems will become a fundamental part of any enterprise sys-
tem, just as web, database, and email servers are today. There are many opportu-
nities for IM systems to expand out of simple messaging to meet enterprise needs,
perhaps filling in the roles currently filled by JMS systems. Alternatively, existing
enterprise messaging systems may wish to expand their capabilities to include IM.
The question facing organizations that need to meet the IM needs of today and in
the future is: What IM system should they use?

 Jabber is a compelling IM solution that is well-suited to meet today’s and
tomorrow’s IM needs. Jabber is not a particular piece of software. Instead, it is an
open, freely available set of protocols for building IM systems. Existing messaging
systems can implement the Jabber protocols to add IM to their list of features.
Alternatively, new systems are being built from the ground up to support the Jab-
ber protocols and prepare for the rapidly expanding responsibilities being
assigned to IM systems.

 Alternatively, you can use the existing Jabber network supported by standard
Jabber servers as a foundation on which you can build specialized applications
(figure 1.4). Jabber takes care of the details of messaging, leaving you free to con-
centrate on your application. An excellent example of this is the next generation
of file-sharing applications5 and games being built on top of existing IM systems.

5 One of the most popular, next-generation file sharing systems is Madster (www.madster.com) which op-
erates on top of AIM. You may be more familiar with its previous name: Aimster. These IM-based systems
are picking up where Napster left off.

10 CHAPTER 1

Introduction to IM concepts

For example, imagine creating a massive online game where thousands of people
participate in a single game universe. Ordinarily, you would create both game cli-
ents and a game server. The game server would be hosted on an online game
hosting service. All communications between the clients and the game server
would be proprietary and would require you to design and implement the various
parts from the ground up.

 However, if you use an IM system, your game clients can create proprietary
data, but wrap them inside normal IM messages. The game can send these mes-
sages over existing IM networks like Jabber, to other players. Your game network
can host an almost unlimited number of players because it is being hosted by
the almost unlimited capacity of the underlying IM network. In addition, your
game network avoids the expense and hassle of creating and maintaining cus-
tom game servers.

 Your server is now another special IM client called a chatbot that maintains the
state of the game universe. You don’t have to worry about inventing a messaging
or routing system, nor does your server have to do anything to support the mas-
sive number of connections that IM systems give you for free. You can concentrate
on writing your game, leaving the network issues to the IM system.

 Sound like something you’re interested in? With all of the power that IM sys-
tems give you, it may be hard to believe that Jabber is a free, open system, whose
inventors want you to use it for your own purposes. Let’s take a look at how Jabber
became the system it is today.

Jabber “Application”

IM
address

IM messages

data

IM message

data

wrap

send

IM network

Jabber “Application”

IM
address

data

IM message

data

unwrap

receive

Figure 1.4
Jabber IM systems can
serve as a generic
messaging network
for distributed or
collaborative
applications.

Background on messaging 11
1.1.1 A brief history of Jabber
The Jabber project began in early 1998 as the brainchild of Jeremie Miller.
The project quickly grew and evolved. It garnered wide public attention when
it was discussed on the popular developer discussion website Slashdot
(www.Slashdot.org) in January 1999.

 The core Jabber protocols matured and the 1.0 release of the open source ref-
erence Jabber server was released in May 2000. The core Jabber protocols that
were implemented in the 1.0 release of the reference server have remained rela-
tively unchanged to this day.

 From its beginnings, the Jabber development community has tried to create
IM standards and encourage interoperability between IM systems. These cooper-
ative efforts are in direct contrast to the behavior of other popular IM providers
that actively work to keep their systems proprietary and isolated from other IM
networks.

 As part of the Jabber IM standards effort, in June 2000 the Jabber community
submitted the Jabber protocols as a Request for Comments (RFC) to the Inter-
net Engineering Task Force (IETF)6 as part of its Instant Messaging and Pres-
ence Protocol (IMPP) standard. The IETF maintains some of the most important
Internet standards including those for email and Internet addresses. Unfortu-
nately, the IMPP effort bogged down and as of this writing appears to be going
nowhere fast. Jabber has also tried to participate in other standardization efforts
like IMUnified (www.imunified.org) and the Presence and Availability Manage-
ment Forum (www.pamforum.org) with varying degrees of success.7

 In May 2001 the Jabber community (www.jabber.org) and Jabber Inc. (www.jab-
ber.com) created the Jabber Software Foundation (foundation.jabber.org).8 The
Jabber Software Foundation is an organization similar to the successful Apache
Foundation. Its charter clearly shows the Jabber community’s dedication to open
standards and interoperability.

6 The IETF website is at www.ietf.org.
7 Jabber’s success at creating Internet standards for IM have mirrored that of the IM community in gen-

eral, which is to say its success has been “zero.” I’m not sure if this is an indication of the immaturity and
proprietary nature of IM today or a factor inherent to the IM community or its technology. I would haz-
ard a guess that it’s the former, but a cynic would claim the latter. In any case, standards are desperately
needed and work continues within the Jabber community to promote and push for standardization.

12 CHAPTER 1

Introduction to IM concepts
JABBER SOFTWARE FOUNDATION CHARTER
The Jabber Software Foundation shall provide direct organizational assistance
and indirect technical assistance to the Jabber Community in carrying out its mis-
sion. Direct organizational assistance will include brand management, logistical
support, legal assistance, press relations, and communication facilities. Indirect
technical assistance will include project management, protocol specification,
standards activities, documentation support, and site development. The Jabber
Software Foundation will not make technical decisions for Jabber but will help
the Jabber Community to make technical decisions more effectively. All activities
and proceedings will be openly accessible and published. Jabber Software Foun-
dation Announcement: http://jabber.org/?oid=1309.

The Jabber Software Foundation is still in its infancy but I have great expectations
for it. I’m particularly interested in using the Foundation to clarify and formalize
the existing Jabber standards into a form that will allow Jabber technology to be
rapidly adopted by the wider development community. This book is an effort
toward that goal. This book at least begins to address the need for better docu-
mentation.

 As Jabber moves forward, much work remains to be done. Further standard-
ization work is still under way. In addition, new standards are being proposed to
extend the Jabber protocols beyond simple IM to meet the wider needs for elec-
tronic messaging of all forms. These changes include better security, and sup-
port for enterprise requirements such as transactions, quality of service, and
delivery guarantees.

1.1.2 Goals of the Jabber project
In many ways, the Jabber project’s goal is simply to build a better IM system sup-
porting real-time presence and messaging. From my discussions with other Jabber
developers, the underlying goals seem to really be about defining what “better”
means. For most Jabber developers, better means:

8 There is a tight link between the Jabber community and Jabber Inc. (usually called Jabber.com or jc).
Jabber Inc. employs most of the “core” members of the Jabber community and developers including
Jeremie Miller, the creator of Jabber. However Jabber Inc. has been earnest in its efforts to keep the
Jabber community and Jabber standards open. The Foundation is primarily an effort to formalize Jab-
ber Inc.’s commitment to open Jabber standards and provide a legal entity to represent the Jabber com-
munity’s interests (especially when they don’t necessarily match that of Jabber Inc.). Many of the board
members of the Foundation are Jabber Inc. employees; however there are enough outsiders on the
board to keep Jabber commercial interests balanced against that of the community.

◆

What is Jabber? 13
■ A completely open system and standards—Unlike other systems, Jabber will be
completely open, thus allowing anyone to create Jabber implementations at
no cost and with no strings attached.

■ Open, XML-based technology—Extensible Markup Language (XML is an
enabling technology with many benefits with respect to flexibility, availabil-
ity, and ease of use. The use of XML helps to “future proof” the Jabber pro-
tocols. At the same time, XML is a well-known technology that people are
interested in using. There is also an extremely wide selection of tools for
modeling, analyzing, programming, and authoring XML.

■ Interoperability with other IM systems—The value of a communication system
increases with the number of people with whom you can communicate.
Optimally, a user of an IM system should be able to IM with any other user
regardless of the underlying IM system. Jabber will maximize its value by
working with as many other IM systems as possible.

■ Simple protocols—Simple protocols are easier to design and implement. In
addition, for most Jabber developers, simple things have an inherent appeal
that we strive for constantly.

■ Simplifying the responsibilities of clients whenever possible—There will be many
clients and few servers in any Jabber system. It makes sense to design the
Jabber system so that writing clients is as simple as possible. In addition, cli-
ents may run on resource-constrained systems so reducing their needs
increases the possible types of clients.

■ Control over the system—No organization, group, or service provider should
be able to control the system. Jabber’s design allows anyone to create a Jab-
ber server and run their own Jabber network as they see fit.

These unwritten goals seem to be commonly held among Jabber community
members. They represent an open, self-reliant community that sees the benefits
in sharing technology and knowledge whether you are an open-source or com-
mercial developer. From these basic goals, the Jabber community has produced a
feature-rich IM framework.

1.2 What is Jabber?

Jabber IM means different things to different people. End users typically associate
Jabber with the Jabber IM system as a whole, just as they consider the Web to mean
the entire web system including web servers, web clients and the protocols and data
structures that power the World Wide Web. Developers often confuse the Jabber

14 CHAPTER 1

Introduction to IM concepts
open source reference implementation of a Jabber server called jabberd9 for the
Jabber protocols that it supports. For the purposes of this book, we’ll restrict the dis-
cussion of Jabber IM to the Jabber protocols and messaging model.

 One of Jabber’s most discussed advantages is its truly open nature. The Jab-
ber protocols and data formats are all documented either directly in the Jab-
ber standards documents or as source code in the freely available Jabber
reference server. This is in stark contrast to all other major IM systems that use
proprietary standards.

 Jabber’s advantages don’t end there. Its use of XML-based data formats
exploits the popularity and extensibility of XML. In addition, Jabber uses a simple,
distributed client/server architecture. The combination of the simplicity of the
basic client/server communication model with the scalability of distributed serv-
ers makes it well-suited to the dynamic environments that IM systems will be used
in the future.

 Let’s break down Jabber technology to get an overview of how it works.

1.2.1 Jabber’s XML-based data formats
If Jabber’s open standards are its primary political and business advantage, its use
of XML as its standard data format is its crucial technical advantage. XML is a
World Wide Web Consortium (W3C) standard that defines a standard, generic
data format for documents. Its primary technical advantages are its simplicity,
extensibility, and a compromise between easy human and machine readability.

 All Jabber communications involve the exchange of Jabber packets, each being
a well-formed XML fragment. These XML fragments can be considered XML sub-
documents within the Jabber communication stream. For example, to send a mes-
sage to iain@shigeoka.com, you would send a Jabber packet that looks like this:

<message to='iain@shigeoka.com'>
 <subject>How are you today?</subject>
 <body>Just thought I'd drop a line and see what you're up to.</body>
</message>

Even if you don’t know anything about XML you can probably figure out what
each part of this XML fragment does.10 If you are XML-savvy, Jabber defines all its
packets in standard XML Document Type Definitions (DTD) and uses XML
namespaces extensively to define both its own standard packets, and provide

9 The Jabberd reference server development is continuing along two separate paths. Jabberd will con-
tinue to improve and expand for the foreseeable future. It provides the definitive reference implemen-
tation of the current Jabber protocols that we'll cover in this book. A revised set of Jabber protocols,
referred to as Jabber Next Generation (JNG), is in development. A new reference server named Jab-
berd will be written to implement these protocols when they are settled upon.

What is Jabber? 15
mechanisms for you to easily extend Jabber to accommodate your own custom
packets while staying Jabber-compliant.

XML NAMESPACES AND JABBER

XML namespaces are designed to isolate XML document tag definitions. As the
name implies, a namespace defines a separate space where names are unique.
Thus, I can create two namespaces like baking and money that use the same tag
<bread>.11 The tag <bread> means different things within the two XML
namespaces but there is no confusion between the reuse of the name because each
is defined in the context of its namespace. You can fully qualify a particular name
by prefixing the normal local tag name with the namespace. So we might use
<money:bread> to buy <baking:bread>.

In the hierarchical XML data model, you can create default namespaces that
apply to all child elements by using the xmlns attribute. An XML document for
our bread example may look like the following:

<MyStuff>
 <item xmlns='money'>

<bread>10</bread>
 <currency>dollar</currency>

 </item>
 <item xmlns='baking'>
 <bread>rye</bread>
 <size>loaf</size>

 </item>
</MyStuff>

As it is being parsed, the document creates a stream of data that can be loosely
translated as:

■ You’ve got some stuff.
■ In your stuff, you’ve got an “item” entity. All its children will be in the money

namespace.
■ You have a “bread” entity. Its value is 10. Done with “currency.”
■ You’ve got a “currency” entity and its value is “dollar.”
■ Done with “item.” You have left the money namespace.

10 If you aren’t familiar with XML, I highly recommend getting a basic understanding of it. You don’t
need to know anything about XML in particular to program Jabber clients or servers. However, knowl-
edge of XML and its basic vocabulary will make it easier to understand discussions of the Jabber packet
formats. A good place to start is XML Family of Specifications by Danny Vint (Manning) or Java & XML
by Brett McLaughlin (O’Reilly).

11 Bread is a slang term for money.

◆

16 CHAPTER 1

Introduction to IM concepts
■ You’ve got another “item” entity. Its children will be in the “baking” namespace.
■ You have a “bread” entity. Its value is “rye.” Done with “bread.”
■ You have a “size” entity and its value is “loaf.” Done with “size.”
■ Done with “item.”
■ That’s all the stuff you have.

Notice how namespaces avoid confusion between the uses of the <bread> tag. In
addition, you can define the data format for <mystuff> as simply containing zero
or more <item> entities. You don’t need to know anything about the item
namespaces or what they will contain.

Jabber cleverly plays with namespaces to create an extremely flexible protocol. It
defines the basics of the Jabber protocol in three namespaces (stream, jabber:cli-
ent, and jabber:server) containing only a handful of standard entities. However
each of the core entities are extended by defining new namespaces. This lets the
foundations of the Jabber protocols remain stable and well-defined, yet allows the
community to constantly add new namespace extensions including custom
namespaces that don’t break the Jabber protocols.

In our example, we might define a “my stuff” standard that allows you to send
me a list of your stuff. It will always start with <mystuff> and contain one or more
<item> packets. I know about the money and baking namespaces so I can under-
stand what is inside of those items. However, we may decide to add a
playstation2games namespace in the future. If I get such a packet and don’t
know about the playstation2games namespace I just ignore whatever is inside of
the <item> packet; nothing breaks. I know it is an <item>, but I don’t know what it
is (other than it’s a playstation2games). However I can still properly handle it like
an <item>.

This feature is especially important for Jabber servers who may relay packets
with contents they don’t understand. Clients are free to invent their own protocols,
protect them with custom namespaces, and still send them over generic Jabber net-
works. XML namespaces also provide freedom to the Jabber community to improve
the Jabber protocols while preserving the integrity of the Jabber network.

Unless you’ve been sleeping for the past year or two, I’m sure I don’t need to tell
you that XML is one of the current hot technologies. It is a core web standard and
is being adopted by enterprise programmers as the lingua franca of corporate
data exchange. As with all hot technologies, XML is heavily buzzword-compliant.

What is Jabber? 17
In the case of XML, the most touted XML buzzwords are:

■ Open—As a W3C standard, XML is on track to replace HTML on the web and
will be used extensively in future web standards such as messaging (SOAP—
Simple Object Access Protocol), and graphics (SVG—Scalable Vector
Graphics). The open XML standard meshes well with the open design and
philosophy of Jabber.

■ Simple—One of XML’s primary design goals is to maximize the simplicity of
creating and reading (parsing) XML formatted data. This simplicity trans-
lates into simpler software making it easier to build and support software
that uses XML data formats. Jabber exploits XML’s simplicity to make it eas-
ier to write Jabber software. XML also allows the Jabber protocols to target a
wider variety of platforms such as embedded systems.

■ Flexible—XML is a generic data formatting language. It provides mecha-
nisms like schemas, DTDs, and namespaces to allow users to create custom-
ized definitions of XML documents for their own uses. Jabber heavily
exploits DTDs and namespaces to harness this flexibility as well as preserve
flexibility so users can further extend Jabber while staying compliant.

■ Portable—XML documents are simple, marked-up text files that can be sent
over the network and read on pretty much any platform. XML support tran-
scends programming languages and operating systems. Most common pro-
gramming environments such as Java, C/C++, Delphi/Pascal, Perl, and so
forth support XML with standard libraries.

This book focuses on Java Jabber programming. It is logical to ask if Java and XML
are a good combination. The answer is a resounding “Yes!” In fact, a common joke
among Java enthusiasts is that “XML gives Java something to do,” referring to the
fact that before XML many considered Java a solution in search of a problem.

 Sun Microsystems (www.sun.com)is aware of the use of Java and XML and cre-
ated a standard Java XML library package with all Java XML technologies pack-
aged together for easy use. XML parsing support is being added to the standard
Java libraries in the 1.4 release of the Java Development Kit (JDK).

 In fact, the buzz surrounding XML and Java is a stronger advantage for Jabber
and its XML protocols than many of its other advantages. As with many software-
related technologies, building a critical mass in the development community is
more important than the technical merits of the technology itself. XML and Java is
a perfect example of this.

18 CHAPTER 1

Introduction to IM concepts
 The strong interest in XML and Java has created a huge market of tools, books,
programming libraries, and third-party experts (consultants, contract program-
ming firms, etc.). This market legitimizes both XML and Java, and helps to ensure
that anything based on Java and XML will be compatible with future technologies.
It appears that we’ll be using XML for all sorts of programming problems for a
some time to come. However, even if it doesn’t work out that way, enough people
are committed to XML that new technologies will almost certainly continue to
offer XML support or conversion tools.

 The use of XML in the Jabber protocols is an excellent start in creating an
accessible, flexible IM system. However XML alone is not enough to make Jabber
truly interesting. The complementary breakthrough with Jabber is its simple, scal-
able architecture.

1.2.2 Jabber’s simple architecture
The Jabber messaging model follows the well-understood client/server architec-
ture. Jabber clients only communicate with Jabber servers in their Jabber
domain.12 Jabber domains break the entire IM universe into separate zones of
control, each supported and managed by a separate Jabber server. This is in con-
trast with most IM systems that use one centralized server for the whole IM sys-
tem.13 In Jabber, messages pass from the sender’s client, to the sender’s server, to
the recipient’s server,14 to the recipient’s client.

Jabber is client/server
The basic Jabber communication model follows the simple and well-understood
client/server architecture model. In client/server systems, the client displays
information to the end user and handles user requests. Information is passed
from the client to a server that offers well-defined services (figure 1.5).

12 This statement is an over-simplification. Normal Jabber messaging occurs through the server. However,
clients are always free to send data directly to each other through any means at their disposal. How to
do so, though, is not covered by the Jabber standards. Jabber does provide an out-of-band packet to
help clients arrange for these direct, client-to-client communications. However the client-to-client ex-
change does not occur within the Jabber system.

13 A central server is the IM system architecture for services like AIM, Microsoft Messenger, and Yahoo!
Messenger.

14 If the sender and receiver both use the same Jabber server, this step is not necessary.

What is Jabber? 19

In Jabber, the client/server model is heavily weighted to favor the creation of sim-
ple clients. Most of the processing and IM logic is carried out on the server. Mini-
mal Jabber client responsibilities give Jabber client developers the most flexibility
in creating Jabber IM clients that fit the needs of users. Embedded and other lim-
ited resource environments can support simple Jabber clients. Heavyweight Jab-
ber clients can concentrate on the user interface and ease of use issues. Finally,
the simplicity of creating Jabber clients encourages people to write more clients
on different platforms using different programming languages, helping to spread
Jabber access far and wide.

 Unlike distributed systems, such as those based on peer-to-peer technology,15

the simple Jabber client/server architecture provides an excellent opportunity to
implement centralized control of Jabber domains and provides opportunities for
enforcing quality of service guarantees. This is especially important for enterprises
that may need to enforce corporate communication policies. In addition, as IM sys-
tems are used for mission-critical messaging beyond direct user communication, it
will become increasingly important to ensure certain levels of quality of service can
be met.

Jabber distributed servers build the Jabber network
Just as the current email system allows separate, distributed email servers to manage
email domains, Jabber servers manage a Jabber domain. Like email, Jabber
domains are defined by an Internet domain name. So a Jabber server that manages

15 Peer-to-peer describes a family of technologies that allows network systems to be created without the
use of a central server.

Jabber server

Jabber client

Jabber client

Jabber client

Figure 1.5
Jabber client/server
architecture: clients use one
connection and only
communicate directly with
their server.

20 CHAPTER 1

Introduction to IM concepts
the shigeoka.com Jabber domain will handle all outgoing and incoming messages
for Jabber users in that domain. Jabber addresses, known as Jabber IDs, specify the
user’s Jabber domain following an ‘@’ character just as email addresses do.

 This hub-and-spoke distributed server architecture (figure 1.6) is quite com-
mon in messaging systems. Email systems use this architecture. In addition, this is
a standard architecture for enterprise messaging servers including the most popu-
lar ones that implement the JMS standard.

Figure 1.6 Distributed Jabber servers define and control Jabber domains in a hub and spoke
architecture. Jabber servers that exchange messages with other Jabber servers create federated
domains and expand their Jabber network. Here we see two Jabber servers (shigeoka.com and
manning.com) federated to form a Jabber network encompassing both domains.

Creating a distributed Jabber server architecture limits a Jabber server’s responsi-
bilities to only handling messaging with its own users and other Jabber servers. A
small Jabber server can support a single user and consume minimal resources
while large Jabber servers may support hundreds of thousands of users and
require large data centers.

 Breaking up the server responsibilities so that each server is only in charge of
its own Jabber domain helps the Jabber network to grow without requiring mas-
sive resources from any particular Jabber server or Jabber domain. As each Jabber
domain adds more users, it is in charge of adding its own capacity for handling
the increased traffic from those users. You can limit a Jabber server’s resource
requirements simply by limiting the number of users in its Jabber domain.

 This divide-and-conquer strategy helps to level the playing field for Jabber par-
ticipants. You don’t need to be AOL or Microsoft to host your own Jabber system.
In addition, it gives each Jabber domain control and autonomy over its own little
corner of the Jabber IM network while encouraging interoperability so that your

manning.com
Domain

manning.com
Jabber server

Jabber client

Jabber client

Jabber clientshigeoka.com
Jabber server

Jabber client

Jabber client

Jabber client

shigeoka.com
Domain

What is Jabber? 21
users can communicate with other Jabber servers. These same advantages have
been the primary reasons why the current Internet email system is so pervasive
and maintains such a high degree of cohesiveness.

 In many ways, Jabber’s simple, client/server architecture with distributed serv-
ers is old technology. There is nothing really innovative about Jabber’s messaging
model. In my opinion, this is a major strength rather than a weakness. IM’s major
innovation is the addition of presence to communication systems. Jabber’s inno-
vation is the use of an open XML data format for the data being sent in the com-
munication system. Adding any more innovations at the same time would have
probably resulted in a much less elegant and easy to build system.

1.2.3 Jabber’s four core concepts
Four central Jabber concepts form the basis for Jabber systems. Before we can
look at the Jabber protocols, we must understand these concepts as they exist in
Jabber. They’re straightforward but it is important for us all to be working with
the same set of messaging concepts before setting off into Jabber’s details. These
four central concepts are:

■ Jabber domains
■ Users and resources
■ Jabber IDs
■ Presence

Jabber systems organized into networks and domains
The Jabber universe is broken down into several logical sets and subsets of enti-
ties. From the largest to the smallest, we have a Jabber:

■ Network—All Jabber domains that exchange messages. A network must con-
tain at least one domain.

■ Domain—A subset of the network containing all entities that handle or
belong to a domain. Jabber domains provide local control over parts of the
Jabber network while still communicating with users outside of the Jabber
domain. A domain is defined by:
■ A valid Internet domain name address.
■ The server that handles connections to that address.

■ Server—A logical entity that manages a Jabber domain.
■ User—An entity representing a logical message delivery endpoint. Jabber

data packets are usually addressed to users, but are always delivered to a
resource. Users are managed on the server with user accounts.

22 CHAPTER 1

Introduction to IM concepts
■ Resource—An entity representing a particular message delivery endpoint for
a user. All Jabber data packets are delivered to resources. Jabber clients play
the role of Jabber resources.

A minimal Jabber network is composed of a single Jabber server handling one
Jabber domain, and the Jabber clients that use that server, as shown in figure
1.7. Jabber servers can exchange messages using the jabber:server protocols.
When servers do this, they are federating their Jabber domains to expand the
Jabber network.16

Server federations are the primary method for Jabber networks to grow. Many
Jabber servers are configured to federate with any other Jabber server on Inter-
net. This essentially creates a single Internet Jabber network containing thou-
sands of users.

 It is also possible to bridge Jabber systems by using the client protocols to
exchange messages between domains as shown in figure 1.8. I’ll refer to this pro-
cess as bridging to differentiate it from the privileged server-side access that server
federation requires.

16 Jabber servers find each other by opening connections to the domain name address of other servers
(see chapter 9 for more details). Jabber server administrators can play some “DNS tricks” such as allow-
ing multiple physical machines to act as the same logical Jabber server. This trick, commonly referred
to as round-robin DNS, creates server farms in advanced Jabber installations. Jabber servers are also free
to develop their own proprietary server-to-server connections in addition to (or as a replacement for)
support for standard Jabber server-to-server connections if needs demand.

shigeoka.com
Jabber server

Jabber client

Jabber client

Jabber client

shigeoka.com
Domain

Jabber network

Figure 1.7
A minimal Jabber network
with a single domain
managed by a Jabber server
and zero or more clients.

What is Jabber? 23
 In jabberd, the Jabber server reference implementation written in C, a hybrid
bridging solution is provided by server components known as transports. They
have privileged Jabber server access but typically use client protocols to access for-
eign systems.

 For example, one of the most popular and most controversial is an AIM trans-
port. The AIM transport lets Jabber users transparently send messages to AIM
users and track AIM users presence, an important capability when most IM users
are currently using AIM. However you should be careful about creating transports
or bridges as it may violate the usage policies for foreign services. AOL in particu-
lar has been resistant to AIM transports.

Figure 1.8 Jabber clients or server components known as transports can bridge IM systems by serving
as bridges. Here a Jabber AIM bridge acts on behalf of Jabber users to deliver AOL AIM messages.

For example, imagine you have a small business with an intranet local-area net-
work (LAN) that is isolated from the Internet. If you set up a Jabber server on
that network and use Jabber clients on your workstations, you have created a
companywide Jabber network. You can also create isolated Jabber networks on
the Internet or other large networks by preventing your Jabber server from con-
necting to other Jabber servers. Your clients will only connect with your server,
and your server can’t connect with any other Jabber servers, creating a separate
Jabber network.

shigeoka.com
Jabber server

Jabber client

Jabber client
protocols

shigeoka.com
Domain

Jabber network

AOL AIM
server

AIM client

AIM client
protocols

AIM client

AOL AIM system

Jabber AIM “bridge”

convert messages

Jabber client

24 CHAPTER 1

Introduction to IM concepts
Jabber entities: users and resources
Each Jabber domain hosts zero or more Jabber users. A Jabber user is a logical
messaging endpoint usually representing a person or user account. However, Jab-
ber users can be anything to which you would want to send a Jabber message.
Users can include automated services and gateways to other messaging systems. A
Jabber user is addressed by their username. Jabber usernames follow the email
guidelines for email usernames.17

 In the common case where a Jabber user represents a person, it is possible for
a single user to be simultaneously using separate clients to access their Jabber
server. For example, a user may log in to the server using their PC at work to
check messages. When they’re away from their desk, they may use their mobile
phone to check messages while their PC remains logged in.

 This situation is not handled by explicitly by email. Instead, email clients must
decide how to trick the server into supporting their simultaneous access. This is
usually accomplished by leaving messages on the server so each client receives a
copy. It is not an entirely satisfying or successful strategy as anyone that uses multi-
ple computers to access a single email account can verify.

 Jabber’s designers recognized this shortcoming and provided explicit support
for multiple client access. To do this, they introduced the concept of Jabber
resources. A Jabber resource represents particular messaging endpoint for each
Jabber user as shown in figure 1.9.

17 In general, usernames are alphanumeric names that can contain a few special characters like dots, un-
derscores, and dashes, but must avoid other characters like quotes and the @ symbol.

Jabber client
Resource: mobile
iain@shigeoka.com /mobile

Jabber client
Resource: work
iain @shigeoka.com /work

Jabber server
shigeoka.com

Jabber user
Name: iain
iain @shigeoka.com

Figure 1.9
A user has two clients logged into
the “iain” user account on the
Jabber server shigeoka.com. They
are represented in the Jabber
network by two resources,
creating three distinct messaging
endpoints for the same user: the
generic iain@shigeoka.com and
the client endpoints
iain@shigeoka.com/mobile, and
iain@shigeoka.com/work.

What is Jabber? 25
In most cases, you send packets to users. Packets are always received at resources.
The Jabber server takes care of properly routing packets sent to a user, to the best
resource available for that user.

 For example, I want to send a packet to the user “iain” in the Jabber domain
shigeoka.com. I don’t care how the packet gets to “iain.” The server receives the
packet, sees that it is addressed to user “iain” and checks to see what clients, if any,
are connected. If none are, the packet is stored for later delivery. For this exam-
ple, imagine that I have two clients connected to the server and logged into my
Jabber user account. The clients use different resource names: mobile and work.
The server detects this, determines that “mobile” is my preferred resource if avail-
able, and sends the packet to that client.

 I can override the server’s routing by addressing the packet to user “iain” at
resource “work” using the address iain@shigeoka.com/work. This allows me to
chat with user “iain” at the “work” resource even though the packet should go to
the “mobile” resource by default. If the “work” resource becomes unavailable the
server will automatically route the packet as if it were addressed to the user. In
most cases, clients should accept the default packet routing provided by the
server rather than specifying resource addresses.18

JABBER IMPLICIT ADDRESSING

The Jabber protocols make certain assumptions about addresses depending on the
protocol and the context of a Jabber packet exchange. The server will often over-
ride any address you use in packets and replace it with these implicit addresses.

For example, when your client connects with a server, it establishes a Jabber ses-
sion. This session sets up certain implicit addresses. First, the user’s account
becomes the default address for all packets sent from the client. If you don’t specify
a packet recipient, the server will assume that the implicit recipient is the user’s
account. Second, when a client authenticates with the server as a user and sets its
resource, that user and resource are used as the implicit sender address of all pack-
ets originating from that connection.

Most Jabber servers will automatically set the sender address of packets to the
session’s sender address overriding anything the client may have set. This helps the
server to prevent clients from sending messages with bad or purposefully wrong
sender addresses. If you aren’t aware of these implicit addresses you can run into
unexpected behavior or errors.

18 Obviously, there will be many cases where default packet routing is not the behavior you want. For ex-
ample, if you are chatting with someone, you will want to send all messages in the conversation to the
same resource regardless of their normal server packet delivery settings.

◆

www.allitebooks.com

http://www.allitebooks.org

26 CHAPTER 1

Introduction to IM concepts
Jabber addressing using Jabber identifiers
As the earlier sections have shown, Jabber addressing involves properly specifying
the Jabber domain, and optionally a username and resource. The Jabber proto-
cols use a standard Jabber identifier, often referred to as a Jabber ID or JID, to for-
mat this information into a single, easy-to-use address: user@domain/resource.

 For example, if I have a user “iain” on Jabber domain shigeoka.com with the
resource “work” then a full URL would be: iain@shigeoka.com/work.

 Both the user and resource components of the Jabber ID are optional. The
most common form is to simply omit the resource: iain@shigeoka.com. This form
is easy to remember and resembles the ubiquitous email address. In fact, I have a
feeling that many Jabber systems will simply reuse email accounts so that users can
have the same Jabber ID and email address.

 There is an assumed anonymous Jabber user associated with the server
address. You can address messages to a Jabber server by simply specifying the
server name (the empty user part of the Jabber ID implies delivery to this anony-
mous server user): shigeoka.com.

 The most common usage of server addresses is to send packets to Jabber serv-
ers outside of your own Jabber domain. To deliver packets from a client to its own
server, it’s more efficient to not specify the recipient address. The server knows
that any unaddressed packets have the user’s account as their implicit address.
The server will handle these packets on behalf of the user, routing or processing
them according to the Jabber protocols.

 It is possible to send packets to a resource at the server: shigeoka.com/admin.
This form is fairly rare, though, as most server messages are sent from clients to
servers without regard for resources.

 The compact and familiar format of the Jabber ID makes it easy to remember
and use Jabber addresses. The only real danger in its format is the possibility of
confusion between Jabber IDs and email addresses. Jabber domain administrators
can reduce this confusion by simply using the same address for both so that Jab-
ber messages or emails sent to a particular address will both go to the same user. It
is also possible to bridge the two messaging systems so that users can use a single
Jabber client to handle both Jabber messages and email, thus further reducing
the chance for problems.

 The final core Jabber concept is the IM concept of presence.

Jabber awareness using presence
IM systems frequently rely on the “instant” delivery of messages and real-time
interaction between clients. These real-time interactions can be simple text chats,

Benefits of the Jabber protocols 27
or they can be complex collaborative applications such as groupware and mas-
sively multiplayer, online games. Both features require the server and clients to be
able to determine who is currently available to receive messages.

 Jabber provides standard IM support of presence to indicate each user’s online
status. In most cases, the simple “available/unavailable” status is enough. However,
Jabber allows users to customize their presence status to indicate any presence sta-
tus such as “away to lunch” or “gone fishing.” These custom presence states aren’t as
useful for automated tools, but they help users to interact in rich and flexible ways.

 Jabber also allows you to create rosters, often referred to as buddy lists. This
feature lets you maintain a list of other users and their current presence status.
Jabber rosters are stored and maintained on the server so your rosters will always
be available when you log into the Jabber system.

 Finally, the Jabber presence protocols allow you to approve or disapprove pres-
ence subscription requests from other users. This feature allows you to protect your
privacy and determine who has permission to see your presence status. You can also
revoke previously approved presence permissions if you change your mind.

 Jabber’s presence system is flexible enough to apply to a variety of applications
outside of simple user presence management. For example, imagine using a
motion detector from a home automation kit to send Jabber updates indicating
the “presence” of a car in a particular parking space. You can then write a simple
Jabber client to watch for the “car in space” presence update and send you a mes-
sage if your Jabber presence is set to “chat.” That way, if you’re Jabbering with
your friends on the job and your boss arrives you’ll be warned to get back to work,
but it won’t bother you if you’re really working.

 Now that we have a basic understanding of the core Jabber concepts, let’s dis-
cuss the benefits and drawbacks of using Jabber for our Java IM system.

1.3 Benefits of the Jabber protocols

The Jabber protocols offer a wide variety of benefits to developers. One of the
most important is its open nature where sharing, experimentation, and coopera-
tion are always encouraged. This has led to the rapid growth of Jabber’s user and
developer communities. Developers have an amazing level of access to both the
major creators of Jabber software, as well the option to influence the creation and
evolution of Jabber standards.

 From a technical standpoint, Jabber’s simple XML packet format provides a
nice compromise between a conversational, human readable format, and some-
thing that machines can easily interpret. It is easy to hack and explore the Jabber
protocols by reading and typing in raw XML using simple tools like telnet. If Jab-

28 CHAPTER 1

Introduction to IM concepts
ber had used binary data formats, special tools would be necessary to both read
and send valid messages.

 Jabber’s XML design also permits the routing of any information that can be
expressed as XML.19 With the growing number of XML technologies being brought
to fore, especially in advanced business systems, this places Jabber in an interesting
position to become a core part of future XML messaging systems that goes beyond
simple IM.

 Jabber’s XML protocols have also been designed to transparently accommo-
date extensions. Developers can use these extensions to support new applications
on top of Jabber such as games and collaborative groupware. Work is already
under way in the Jabber community to bridge Jabber systems to other communi-
cation systems like pagers and Short Message Service (SMS).

 Finally, as we’ll see in this book, the Jabber protocols are simple. A small team
of developers using a modern language like Java can create a Jabber system in a
very short time. This simplicity lets you concentrate on features beyond IM.
Whether your goals are to create applications on top of Jabber, integrate Jabber
into your current software, or create massively scalable Jabber software, the Jabber
protocols won’t get in your way.

1.4 Drawbacks of the Jabber protocols

Unfortunately, Jabber is not trouble-free. There are problems with the Jabber
standards that you must be willing to accommodate in order to use the technol-
ogy. The most glaring problem is the relative immaturity of the Jabber standards.
In many cases, official documentation for Jabber standards and protocols are
incomplete or outdated and the only definitive answer to protocol questions is to
check the behavior of the Jabber open source reference server.

 The Jabber community is working on addressing this shortcoming. The Jabber
Software Foundation (foundation.jabber.org) has recently been formed to help
manage the Jabber standards process. It is hoped that before the end of 2002, new
Jabber standards under the guidance of the Jabber Software Foundation will pro-
vide definitive documentation for Jabber standards.

 The Jabber protocols suffer from inefficiencies directly related to its conversa-
tional, XML-based nature. Binary data formats can greatly reduce the bandwidth

19 In particular, the Jabber-As-Middleware and jabber-rpc working groups in the Jabber community
(www.jabber.org) are looking into these very issues. The former is concentrating on what is needed to
make Jabber enterprise ready, while the latter is specifically looking at transport bindings for XML-RPC
over Jabber.

Conclusion 29
required by a system, as well as provide other features such as error detection and
correction. However, the Jabber designers decided that gaining the XML-related
benefits mentioned earlier outweigh the resulting inefficiencies. I agree that this
was a good decision. However, if this overhead is unacceptable to your applica-
tion, you may need to search for an alternative.

 Another drawback with the Jabber system is its underdog status in a frag-
mented IM market. The current market leader by a long shot is AOL that controls
both AIM and ICQ. Other large IM providers like Microsoft and Yahoo! also have
much large user populations than Jabber. These IM leaders have also been resis-
tant to interoperability and open IM standards that could jeopardize their control
over their captive IM user communities.

 Jabber has been fighting this problem by both pushing standards efforts and
reverse-engineering the proprietary IM protocols to create transports20 to bridge
Jabber networks to these networks. Unfortunately, these standards efforts have
not been very productive to date.

 Jabber’s strategy of creating unauthorized transports to bridge Jabber net-
works to other IM networks may also meet with problems in the future. Until
recently Jabber has been a relatively small effort. However as the technology
moves forward and larger organizations begin to use it, there may be legal and
business problems with bridging to these networks without permission from their
operators. Companies interested in using transports should thoroughly investi-
gate the legal aspects of transports before adding them to their Jabber servers.

 Finally, the Jabber protocols lack standard enterprise features like transactions
and quality of service support. It will be impossible to build mission-critical appli-
cations on top of Jabber without adding these features. Fortunately, there is a
working group in the Jabber community called Jabber-As-Middleware (JAM) look-
ing into these issues. If you’re interested in using Jabber for mission-critical appli-
cations, I highly encourage you to join the JAM working group, hosted by the
Jabber Software Foundation, and help define these standards.

1.5 Conclusion

Despite some drawbacks, Jabber is one of the best ways for Java developers to
build IM systems. Creating IM systems in Java is important as IM is poised to be the
next great Internet communication revolution for both consumers and enterprise
users. In the next chapter, we’ll take a look at Jabber from a technical standpoint
and examine how the Jabber protocols work.

20 We’ll discuss transports in more detail in chapter 9.

 2Jabber technical
fundamentals
In this chapter
■ A detailed look at the Jabber messaging

model
■ How Jabber messaging routing works
■ An overview of the core Jabber protocols
■ An examination of a Jabber instant messaging

session
31

32 CHAPTER 2

Jabber technical fundamentals
Our tour of the Jabber protocols begins with a technical discussion of the Jabber
messaging model followed by a discussion of the three core Jabber protocols: mes-
sage, presence, and info/query. The chapter ends with a walkthrough of an anno-
tated Jabber session showing a full Jabber protocol exchange between a client and
server. Getting to know what Jabber looks like under the covers removes the mys-
tery associated with the Jabber protocols and illustrates how simple and powerful
they truly are.

2.1 The Jabber messaging model

It is important that we understand the Jabber messaging model before we begin
writing Jabber software. There are four important participants in any Jabber mes-
sage exchange, as shown in figure 2.1:

■ Server—The Jabber server participates in and manages all Jabber communi-
cation. Its primary responsibility is to provide Jabber services to clients. The
most important services it offers to clients are packet routing and user
account management.

■ Client—Jabber clients typically act as user agents displaying information
(such as messages) to the end user, and responding to user inputs. Jabber
clients may also offer services autonomously to the Jabber network. When
acting as a service provider, clients are referred to as chatbots.

■ Streams—The network connection between the client and server is concep-
tualized as a pair of one-way streams. From an XML standpoint, the Jabber
stream is a streaming XML document enclosed in <stream:stream> tags.

Jabber client

Jabber client

Jabber server

XML packets

XML stream

Figure 2.1
The Jabber messaging model is composed of four
main elements: XML packets containing marked-up
data, XML streams used to transport XML packets,
and Jabber clients and servers that exchange XML
packets over an XML stream.

The Jabber messaging model 33
From a logical standpoint, the stream forms a session with associated context
metainformation about the stream such as the client’s full Jabber ID, the
server’s Jabber ID, a unique stream ID, and a stream state.

■ Packets—XML fragments sent through the streams between client and server
are called packets. Each packet is a self-contained, valid XML subdocument.
The Jabber protocols specify the format of these packets, and the proper
procedures for exchanging them.

A Jabber server, like other server applications, is started on a machine and listens
for connection requests from clients. The Jabber standard establishes port 5222 as
the standard port for Jabber servers. Secure client/server connections can be
made over SSL (Secure Sockets Layer) by connecting to the Jabber server on
port 5223. Jabber servers may accept connections on either port (or both)
depending on the wishes of the server administrator.

 Alternative ports may be used. However, most Jabber clients will assume Jabber
servers are on ports 5222 and 5223 and the clients will need to be configured in
an implementation-specific manner in order to connect to alternative ports.

 A Jabber client creates a stream by connecting with the server and sending an
opening <stream:stream> XML tag. The opening stream tag identifies the name
of the server domain to which the client is attempting to connect. This is impor-
tant even though a client used the server’s domain as its address when it was mak-
ing the connection. The reason this is important is that a single server may be
acting as the Jabber server for multiple Jabber domains.

 For example, I have two Jabber domains: shigeoka.com and manning.com
(figure2.2). I can configure the domain name server (DNS) so that both Internet
domain names map to the same IP address 10.0.0.1. A client wishing to join
the shigeoka.com Jabber domain uses DNS to look up the appropriate Jabber
server. It gets the IP address 10.0.0.1 and makes a connection to the machine
there. Another client wishing to join the manning.com Jabber domain uses DNS to
look up the server and also receives the 10.0.0.1 IP address and connects to it.

34 CHAPTER 2

Jabber technical fundamentals
The Jabber server at IP address 10.0.0.1 knows it is a virtual server handling both
shigeoka.com and manning.com. Unfortunately, as the server accepts connections
to port 5222 it does not know to which domain the client is trying to connect.
However, when the first client sends its opening <stream:stream> tag, it indicates
that the intended server is shigeoka.com while the second client indicates it is
connecting to manning.com. The server can associate this information with the
connection so that it knows the domain to which each client belongs.

 When a Jabber server accepts a client connection, it will respond to the client’s
<stream:stream> tag with its own <stream:stream> tag confirming the server’s
domain, and also assigning a random session ID to the stream. Both the client and
server must keep track of the session ID associated with the stream as that infor-
mation is used in other Jabber protocols. An error in the process will result in the
server sending a <stream:error> packet explaining the problem followed imme-
diately by the server closing the connection.

 Once the streams have been opened between client and server, they can
exchange Jabber packets according to the various Jabber protocols. In most cases,
the server will only allow clients to participate in a restricted subset of the Jabber
protocols until the client has authenticated itself with the server. Client authenti-
cation allows the server to verify that the client has permission to act on behalf of
a user as a particular resource.

Jabber client
(shigeoka.com)

Jabber
server

shigeoka.com domain

shigeoka.com
virtual server

manning.com domain

manning.com
virtual server

Jabber client
(manning.com)

shigeoka.com
XML stream

manning.com
XML stream

Figure 2.2
This figure shows a single Jabber
server acting as two virtual Jabber
servers. Each client’s XML stream
must identify the domain to which it
belongs.

The Jabber messaging model 35
 The Jabber standards do not specify what protocols should be available prior
to authentication. At a minimum, most servers will allow clients to use the Jabber
registration and authentication protocols.

 Either the client or the server can close the stream at any time by sending a clos-
ing </stream:stream> tag. At that time, either can close the connection and end the
Jabber session. It is polite but not necessary to allow the other entity to finish the
transmission of any incomplete packet before shutting down the connection.

 For clients, this boils down to a pretty straightforward messaging algorithm:

1 Connect with the Jabber server on port 5222.

2 Send an opening <stream:stream> tag containing the server address.

3 Wait for the server’s <stream:stream> reply and record the stream’s
session ID.

4 Use the Jabber authentication protocol to log in to a user account as
a resource.

5 Send Jabber packets to the server according to the Jabber protocols. The
Jabber server routes the packets to appropriate recipients.

6 Send a closing </stream:stream> tag to close the stream.

7 Close the network connection.

In this messaging model, clients need only one network connection with their
server. The connection is kept open as long as the client wishes to send or receive
packets. To send a packet, the client addresses the packet to a recipient, and sends
it to the server over their mutual XML stream. The server is in charge of properly
routing the packet to its ultimate destination.

 This simple client/server messaging model has several benefits and drawbacks.

2.1.1 Benefits
Jabber’s distributed client/server messaging model has many benefits. Most impor-
tantly, it is a simple-to-use and well-understood model for network communication.
Email uses an identical messaging model so the costs and benefits have been thor-
oughly explored and refined for best overall performance. This model has only two
communication scenarios, client/server and server-server. For all the Jabber servers
that do not interact with other servers and all Jabber clients, the distributed client/
server messaging model reduces to a single set of simple, client/server protocols.

 Client privacy and security are much improved because clients only talk to
their server. Attackers on the network don’t have any information about the cli-
ent’s location. In addition, the client never accepts connections like a server.

36 CHAPTER 2

Jabber technical fundamentals
Eliminating the need for clients to act as a server avoids problems with clients
behind firewalls and prevents a whole family of attacks that can occur against serv-
ers. Limiting the client’s security exposure is a significant advantage of Jabber’s
client/server architecture when compared with peer-to-peer networks like Gnu-
tella (figure 2.3).

Jabber’s messaging model also benefits developers because it greatly simplifies the
task of writing Jabber client software. Simpler clients mean that client applications
can be brought to market more quickly and at a lower cost. In addition, minimiz-
ing the amount of IM code on the client allows client developers to concentrate
on other aspects of the client such as the user interface, integration with other
applications, ease of maintenance, and ease of deployment.

 Finally, Jabber servers allow you to readily exert centralized control over a Jab-
ber domain. You can create policies and enforce them on the server without hav-
ing to modify clients or try to exert control over independent peers in a peer-to-
peer network. For example, if you want to restrict the amount of data each user
can send or receive in a 24-hour period, it is easy to track and limit usage on the
server. Or alternatively, you might allow messaging to certain domains during
business hours for most users, but allow certain users to still communicate with
off-domain users, and lift those restrictions for all users during lunch and after
business hours.

2.1.2 Drawbacks
Ironically, many of the benefits of Jabber’s simple client/server messaging model
also create drawbacks. For example, in most cases, server-managed privacy and
security is convenient and efficient. However, if you cannot trust your server, a cen-
tralized, all-powerful server can be a major problem. There is nothing preventing

gnutella
client

gnutella
client

gnutella
client

gnutella
client

gnutella
client

Figure 2.3
A Gnutella peer-to-peer network
requires clients to connect directly with
other clients.

The Jabber messaging model 37
someone with access to the server from recording and reading your messages with-
out your permission (figure 2.4).

Jabber users are not entirely at the mercy of the Jabber server. You can send
encrypted versions of your messages inside a normal Jabber message. Several
commonly available encryption algorithms1 can protect data from prying eyes
and prevent integrity attacks such as unauthorized editing of messages. In addi-
tion, several Jabber protocols are designed to help protect you from server secu-
rity problems. The zero-knowledge authentication Jabber protocol is a good
example of this.

 The possibility of server security exploits points to the greater problem of
reduced user control in client/server architectures. The server is the ultimate
authority on all things and the loss of control on the client can cause a lot of user
dissatisfaction. In the earlier example of centralized server control, we saw that it
is trivial for servers to restrict message delivery and place arbitrary restrictions on
the number of types of messages sent through the server. These types of arbitrary
restrictions are what make alternative architectures such as peer-to-peer so attrac-
tive to users.

 Restrictive server control is a potential problem in the Jabber messaging model.
The problem is more social than technical in nature. However, Jabber’s model
lends itself to certain types of problems that simply don’t exist on other systems.

 The server doesn’t only represent a single point of control for a Jabber
domain. It is also a single point of failure and a likely bottleneck for Jabber net-
works. A server failure disables an entire server domain so you must treat it like a

1 Many of these algorithms are already implemented in the standard Java libraries in the java.security.*
packages.

Jabber
client

Jabber
client

Jabber
client

Jabber
client

Jabber
client

Jabber
server

Figure 2.4
Jabber’s centralized hub-and-spoke
client/server architecture is both a
benefit and drawback.

38 CHAPTER 2

Jabber technical fundamentals
mission-critical server. Building reliable, highly scalable software is a difficult but
achievable goal so this problem is not as serious as several others presented here.

 All of the other major IM systems use a simple client/server messaging model
so they suffer the same drawbacks as Jabber. However, Jabber doesn’t settle for
these simple trade-offs, but seeks to alleviate the drawbacks. It goes a step further
than simple client/server messaging by introducing distributed servers to the
messaging model in order to create a distributed client/server architecture. This
architecture provides more flexibility in selecting a better middle ground between
simple client/server and completely decentralized architectures.

2.1.3 Relying on distributed servers
Distributed servers address many of the drawbacks of the basic client/server mes-
saging model. Rather than use a single Jabber server, Jabber explicitly provides for
multiple Jabber servers in the same Jabber network using Jabber domains and
server-to-server(S2S) communication. Packets bound for users in different
domains are sent from the sender’s server to the recipient’s server using the jab-
ber:server protocols, which are commonly known as the S2S protocols.

 The S2S protocols are essentially a mirror of the jabber:client protocols (fig-
ure 2.5). A server wishing to open an S2S connection connects to a server using a
single network connection and establishes a Jabber stream. The “sender server”
that makes the connection acts as a client on behalf of all its users sending mes-
sages to the “recipient server” for delivery to users in that domain. If the recipient
server wishes to send messages to users on the sender server, it must open its own
S2S connection in the opposite direction.2

Figure 2.5 Jabber client/server streams follow the jabber:client protocols
while server-server streams follow the jabber:server protocols.

2 The S2S protocol is discussed in more detail in chapter 9 and covered in the Jabber reference section
in appendix A.

The Jabber messaging model 39
Breaking the Jabber network into domains controlled by a separate server allows
you to select how centralized the server will be, with all of the benefits and draw-
backs associated with that centralization. On one extreme, you can have millions
of users on a single Jabber server essentially creating a pure client/server system,
thus maximizing the benefits and drawbacks of the client/server model.

 On the other hand, you are free to completely decentralize the Jabber system,
going to the far extreme of running a Jabber server for every client. This would con-
vert Jabber into a peer-to-peer system with none of the benefits or drawbacks of the
client/server model. Of course, as with most things, the best solution is usually a
compromise between the extremes: federations of modest Jabber servers handling
midsized domains. This compromise offers enough autonomy and control for users
while still reaping the benefits of centralized management and control.

 Distributed servers also allow the Jabber network to grow extremely large with-
out requiring a high-capacity server installation like the one powering AIM.
Instead, many inexpensive Jabber server nodes host the network. In addition, the
cost of supporting the network is spread much more evenly with Internet Service
Providers (ISPs) supporting their users, companies supporting their employees,
and so forth.

 With all these clients and servers, it is can be easy to lose sight of the actual
simplicity and efficiency of the complete Jabber messaging model. This is best
demonstrated by examining how packets travel through the Jabber network. Serv-
ers and their packet routing algorithms handle the entire process.

2.1.4 How Jabber packet routing works
The key to understanding Jabber’s routing scheme is realizing that IM delivery
is primarily between users, not client-to-client or computer-to-computer. In
other words, an IM message is sent to a logical user, not to a particular machine
or network location. It is the responsibility of the IM routing system to ensure
that the packet reaches the user whenever and wherever the user happens to
be on the network.

 It is important to realize that instant messaging occurs across space and time.
Messaging across space means packets travel across the network with the IM rout-
ing system determining where to deliver the packets and how to get it there.

 Messaging across time means packets are sent at one moment in time, and
arrive at its destination as soon as possible following that. Ideally the time is mini-
mal, resulting in “instant” messaging. However, IM systems realize that users can’t
always be online to receive packets. The IM routing system transparently holds
packets for delivery when recipients do become available online.

40 CHAPTER 2

Jabber technical fundamentals
 The routing process begins with the Jabber ID. Packets are addressed to recipi-
ents by setting the to attribute of the packet to the recipient’s Jabber ID. The Jab-
ber ID contains all the information the server needs to make its routing decisions.

 Recall from chapter 1 that the Jabber ID contains the recipient’s Jabber
domain and can optionally include the recipient’s user name and resource. A full
Jabber ID takes the form user@domain/resource. From a software standpoint, the
most difficult thing about dealing with Jabber IDs is parsing them. Rather than
describe in words the Jabber ID parsing process, let’s take a look at Java source
code that does it.3 Listing 2.1 shows a Java class that represents a Jabber ID.

public class JabberID{

 String user;
 public String getUser() { return user; }
 public void setUser(String name){ user = name; }

 String domain;
 public String getServer() { return domain; }
 public void setServer(String name){ domain = name; }
 public String getDomain() { return domain; }
 public void setDomain(String name){ domain = name; }

 String resource;
 public String getResource() { return resource; }
 public void setResource(String value){ resource = value; }

The class begins with a simple set of member variables that store the user, domain,
and resource for the Jabber ID. Appropriate set/get methods have been added to
provide access. The member variables can then be used to provide a wide variety
of equality tests, as shown in listing 2.2.

public boolean equalsDomain(String domain){
 if (this.domain == null ^ domain == null) {
 return false;
 }

Listing 2.1 The JabberID class members and access methods

3 The full source code to everything presented in this book is freely available online. See the book preface
for information on obtaining the source. To save space I’ve omitted many Java “extras” that are required
by Java, but are not relevant to the discussion (e.g., import statements, package names, etc.). The full
source contains all of these details.

Listing 2.2 The JabberID class equality methods

The Jabber messaging model 41
 return this.domain.equalsIgnoreCase(domain);
 }

 public boolean equalsDomain(JabberID testJid){
 return equalsDomain(testJid.domain);
 }

 public boolean equalsUser(String user){
 if (this.user == null ^ user == null) {
 return false;
 }
 return this.user.equalsIgnoreCase(user);
 }

 public boolean equalsUser(JabberID testJid){
 return equalsUser(testJid.user);
 }

 public boolean equalsResource(JabberID test){
 return equalsResource(test.resource);
 }

 public boolean equalsResource(String test){
 if (resource == null ^ test == null) {
 return false;
 }
 return resource.equalsIgnoreCase(test);
 }

 public boolean equalsUser(String user, String resource){
 return equalsUser(user) && resource.equals(resource);
 }

 public boolean equals(JabberID jid){
 return equalsUser(jid) && equalsDomain(jid) && equalsResource(jid);
 }

 public boolean equals(String jid){
 return equals(new JabberID(jid));
 }

The equality tests are fairly straightforward. There is some extra testing involved
because any of the values except domain can be null, indicating no value has been
set. The server software will use the equality tests extensively when matching
recipients to resources.

42 CHAPTER 2

Jabber technical fundamentals
 As mentioned earlier, the real work occurs in parsing Jabber ID strings to
locate its user, domain, and resource components. This functionality is encapsu-
lated in the setJID() method, as shown in listing 2.3.

public void setJID(String jid){
 if (jid == null){
 user = null;
 domain = null;
 resource = null;
 return;
 }
 int atLoc = jid.indexOf("@");
 if (atLoc == -1){
 user = null;
 } else {
 user = jid.substring(0, atLoc).toLowerCase();
 jid = jid.substring(atLoc + 1);
 }

 atLoc = jid.indexOf("/");
 if (atLoc == -1) {
 resource = null;
 domain = jid.toLowerCase();
 } else {
 domain = jid.substring(0, atLoc).toLowerCase();
 resource = jid.substring(atLoc + 1).toLowerCase();
 }
 }

The setJID() method is used in the JabberID constructor. In addition, we see the
opposite process used in the toString() method to recreate a JabberID as a sim-
ple string. (Listing 2.4)

public JabberID(String user, String domain, String resource){
 setUser(user);
 setDomain(domain);
 setResource(resource);
 }

 public JabberID(String jid){
 setJID(jid);
 }

 public String toString(){
 StringBuffer jid = new StringBuffer();
 if (user != null){

Listing 2.3 The JabberID class Jabber ID parsing method setJID()

Listing 2.4 The JabberID class constructor and toString() method.

The Jabber messaging model 43
 jid.append(user);
 jid.append("@");
 }
 jid.append(domain);
 if (resource != null){
 jid.append("/");
 jid.append(resource);
 }
 return jid.toString();
 }
}

So how is the Jabber ID used by the Jabber routing system? The process begins
with the client (playing the role of a Jabber resource) generating a packet and set-
ting its to attribute to the recipient’s Jabber ID.4 The client sends the packet to
the server, where the packet is then forwarded from the sender’s server to the
recipient’s server. The packet is then delivered to a recipient resource when one
is available.

 Unfortunately, the process is not always as straightforward. Complications arise
when a user has more than one resource available to receive messages. In these
cases, the server must select which resource to direct messages. The situation is
simple when the recipient Jabber ID matches a specific resource Jabber ID. How-
ever if the resource is not available, or the recipient Jabber ID specifies the user
but no resource, the server must choose the best resource to receive the message.

 Since there is no way for the server to automatically detect which resource the
user prefers, the user must tell the server its delivery preferences. This is done
using the presence protocols and the <priority> element.5 (figure 2.6). Essen-
tially, the presence protocol lets each resource (user client) indicate its messag-
ing status (available or unavailable) and priority (numbers starting at 0 and
going up) to the server. The server uses this information to deliver messages
addressed to the user to the resource with the highest priority that is available for
receiving messages.

4 If the client omits the to attribute, the server’s Jabber ID is used as an implicit recipient address for the
packet.

5 We’ll cover in detail how presence interacts with message routing in chapter 8.

44 CHAPTER 2

Jabber technical fundamentals
Figure 2.6 The Jabber server routes user addressed packets to the highest priority resources. In
this case, the mobile resource has the highest priority and will receive all packets addressed to
iain@shigeoka.com and all other iain@shigeoka.com resource addresses including iain@shigeoka
.com/mobile. Only packets sent to iain@shigeoka.com/work will be sent to the work resource.
Priorities are set using the Jabber presence protocols.

2.1.5 Step-by-step: a message’s path through Jabber
Imagine we are a Jabber client playing the role of a resource with Jabber ID big-
wig@manning.com/work. We want to send a <message> packet to user “iain” in
the shigeoka.com Jabber domain. The packet might look like:

<message to='iain@shigeoka.com'/>

Next, we send the packet to our manning.com server. The server examines the
recipient Jabber ID, adds the implicit sender address in a from attribute, and for-
wards the packet to the shigeoka.com Jabber server:

<message to='iain@shigeoka.com' from='bigwig@manning.com/work'/>

The shigeoka.com server reads the iain@shigeoka.com address and sees that the
packet is addressed to user “iain.” If there are no resources logged into the “iain”
account, the message is stored for later delivery. When a resource is available, the
shigeoka.com server can deliver the final <message> packet to the resource. The
following packet is what would be received:

<message from='bigwig@manning.com/work'/>

Notice that the recipient address has been stripped off. In this case, the client will
assume that the message was addressed to itself. Jabber servers don’t have to strip
off the recipient address so clients should be able to handle packets with or with-
out recipient addresses.

Jabber client
iain @shigeoka.com/mobile
priority: 2

Jabber client
iain @shigeoka.com/work
priority: 1

Jabber
server

Packet
to: iain @shigeoka.com

The core Jabber protocols 45
2.2 The core Jabber protocols

The Jabber protocols define a set of data structures and conventions for exchang-
ing them to carry out IM-related tasks. The Jabber protocols are simple and flexible,
giving systems that use them a great deal of power and flexibility. They build upon
other standard Internet technologies such as TCP/IP, Universal Resource Identifiers
(URI), and the XML so the learning curve for developers is greatly reduced.

 There are only three core Jabber protocols:

■ Message
■ Presence
■ Info/Query

Each of these protocols fills a crucial niche in the Jabber system. Let’s take a brief
look at each of them to get a feel for what they offer us.

2.2.1 Message: Delivering data
The message protocol is the simplest of the Jabber protocols. In most cases, the
majority of packet traffic on the Jabber network falls under the message proto-
col, so its simplicity and ease of use pays off in better messaging. This simplicity
follows the common design philosophy of making common things easy and rare
things possible.

 As you can probably guess, the message protocols are used to send human-
readable messages between users. These messages can resemble full-scale email
messages or form the line-by-line messages in chat sessions.

 The message protocol uses the <message> packet and is covered in depth in
chapter 4.

2.2.2 Presence: updating user online status
The other frequently used core Jabber protocol is the presence protocol. This
protocol governs the subscription, approval, and update of presence information
in the Jabber system. As with the focused message protocol the presence protocol
is designed for simple, efficient Jabber presence management.

 The presence protocol uses the <presence> packet and is covered in depth in
chapters 5 and 8.

2.2.3 Info/Query: handling everything else
The Info/Query (IQ) protocol is the last core Jabber protocol and serves as the
catch-all Jabber protocol. If a protocol is not sending a message, or managing
presence, it is an IQ protocol. IQ is a generic request-response protocol with low
overhead. It is designed to be easily extensible with IQ extension protocols.

46 CHAPTER 2

Jabber technical fundamentals
 The general format of an IQ packet contains an <iq> “envelope” that generi-
cally describes what type of IQ protocol will take place and the query recipient,
often called the IQ handler. Within the <iq> envelope are zero or more <query>
packets. The <query> packets establish a default namespace, and each
<query>packet can contain its own namespace-specific subpackets. The namespace
keeps the <query> packet contents from clashing with any Jabber element names
and provides an easy way to identify what IQ extension protocol is being used.

 For example, if a client wishes to conduct an IQ get query using the jabber:
iq:auth IQ extension protocol, the packet may look like the following:

<iq type='get' to='handlerJID'>
 <query xmlns='jabber:iq:auth'>
 <username>iain</username>
 </query>
</iq>

There are over twenty standard or proposed standard IQ extension protocols.
These protocols cover everything from Jabber account registration and authenti-
cation to querying the local time or software version of a client or server. In addi-
tion, developers are free to create their own IQ extension protocols as long as they
don’t use the same namespaces as the standard IQ extension protocols.6

 This simple extension mechanism allows developers the freedom to extend the
Jabber system quickly and easily. In addition, because the query’s contents are pro-
tected in an XML namespace and Jabber routing information such as the packet
recipient is contained in the outer <iq> envelope, custom IQ extension packets can
be sent over the Jabber system without any need for modifications of the rest of the
Jabber software. Only the sender and recipient/handler need to understand the IQ
extension protocol. Clients or servers that don’t support a given IQ extension proto-
col simply send an error to the sender indicating the lack of support.

 For example, imagine we create a new IQ extension protocol http://
shigeoka.com/game/character for a Jabber online game that describes the
user’s game character to other users in the game. A client may send the fol-
lowing IQ packet to the server:

<iq type='set' to='evilwizard@shigeoka.com'>
<query xmlns='http://shigeoka.com/game/character'>

 <name>Mario</name>
 <sex>male</sex>
 <occupation>plumber</occupation>
 <lives>3</lives>

6 The jabber:iq:* namespace is reserved for Jabber standard IQ extensions. It is recommend that you
use a URL format for private or proprietary IQ extensions. For example, if your company has a regis-
tered domain name shigeoka.com and you are creating a new time IQ extension, a good namespace
would be http://shigeoka.com/time.

Jabber session example 47
 <level>5</level>
 <score>4200</score>
 </query>
</iq>

The completely unmodified Jabber server receives this packet and forwards it to
the shigeoka.com server. The unmodified shigeoka.com server delivers it to its
“evilwizard” user. The “evilwizard” user’s client receives the packet and updates its
game display. Neither of the servers used to transport the custom IQ packet knows
anything about the http://shigeoka.com/game/character IQ extension but both
can properly deliver the packet.

 The potential for new Jabber applications built upon protocol extensions is an
exciting area of exploration for Jabber developers.

 Now that we have reviewed how Jabber works from a technical standpoint, let’s
take a look at a real Jabber communication session to get a solid feel for the system.

2.3 Jabber session example

Although we only know the basics of how the Jabber protocols work, it is enough
to understand any Jabber communication session from a high level. The best way
to truly understand what is happening is to take a look at the raw Jabber protocols
being passed across the network.

 Jabber’s XML-based packet format makes the examination of “raw” Jabber data
simple. Unlike protocols that rely on binary data formats, XML uses simple,
marked-up text that looks familiar to anyone who’s seen HTML. You don’t need spe-
cial tools to decode incoming data into some human readable format, nor do you
need to have special tools to generate outgoing data. We can manually act as a Jab-
ber client and connect to any Jabber server using the ubiquitous telnet application,
reading raw XML as it arrives, and typing raw XML using a standard keyboard. In
this section, we’ll step through a heavily annotated, sample Jabber session.

 To begin, start your telnet program. On some platforms, your telnet program
may be a nice graphical application started on the desktop. However, every oper-
ating system that I’m aware of has a simple text telnet program that you can access
by simply typing “telnet server port” at a command prompt (Windows) or termi-
nal window (Unix and MacOS X). You have to replace “server” and “port” with the
Jabber server’s address and port. For example, you may use the open shi-
geoka.com server by typing: telnet shigeoka.com 5222

 The telnet program will respond with some opening information then wait for
you to type something.

 In the telnet example session included in this section, what I type is in bold
with the responses in normal font. I’ve reformatted the XML data to be a little eas-
ier to read. I suggest if you’re trying to do this on your own, that you type your

48 CHAPTER 2

Jabber technical fundamentals
packets into a text editor and then paste them into the telnet session.7 Doing this
will allow you to reuse your packets and avoid mistakes.

 In this example, we’ll go through a simple Jabber authentication and message
sending exercise. To send and receive messages, we’ll use two client sessions,
logged into two different user accounts. By doing so, we can see messages being
sent between users. The procedure is as follows:

Basic telnet actions for exploring the Jabber protocols

The two sequences, steps 1–4 and steps 5–8, are almost identical. We’ll take a look
at how steps 1–4 are carried out for logging into the “iain” account. We want both

7 Telnet doesn’t send what you type until you press Enter. Each packet should be followed by pressing
Enter in order to send it to the server.

1. Connect with the Jabber server shigeoka.com.
2. Open a Jabber stream.
3. Create user account “iain,” password “secret” on domain

shigeoka.com.
4. Authenticate with the server as user “iain,” password “secret” on

domain shigeoka.com with resource “test.”

5. Connect with the Jabber server shigeoka.com.
6. Open a Jabber stream.
7. Create user account “smirk,” password “secret” on

domain shigeoka.com.
8. Authenticate with the server as user “smirk,” password

“secret” on domain jabber.org with resource “test.”

9. Send a message to user “smirk.”
10. Update presence status to “available.”

11. Update presence status update to “available.”
12. Receive message from “iain.”
13. Send message to “iain.”

14. Receive message from “smirk.”
15. Close stream.

16. Close stream.

Iain Smirk

Jabber session example 49
client connections to be active simultaneously so once you complete steps 1–4,
you then repeat them with 5–8 so that you end up with two connections.

 The first step is to connect with the Jabber server using telnet.

Step 1: Connecting to the Jabber server using telnet

To begin speaking with the server, we need to open a Jabber XML stream. The
<stream> element is defined in the http://etherx.jabber.org/streams
namespace and must be declared for every valid Jabber stream. We are also using
the client/server protocols, so we must define the jabber:client default
namespace for elements within <stream>. In addition, to support virtual Jabber
servers, the opening <stream> tag contains a to attribute specifying the name of
the server with which we are expecting to connect.

Step 2: Opening the Jabber XML stream

“Raw” telnet screen What is happening

% telnet shigeoka.com 5222 Start a telnet connection to the server.

Trying shigeoka.com... Telnet application information.

Connected to shigeoka.com. Extra text may vary.

Escape character is '^]'.

“Raw” telnet screen What is happening

<?xml version='1.0'?> XML version (optional).

<stream:stream Opening stream element.

 xmlns:stream=
'http://etherx.jabber.org/streams'

<stream> namespace.

 xmlns='jabber:client' Default namespace for <stream>.

 to='shigeoka.com'> Tell server connection domain requested.

<?xml version='1.0'?> XML version (optional).

<stream:stream Opening stream element.

 xmlns:stream=
'http://etherx.jabber.org/streams'

<stream> namespace.

id='3C0FB738' The random “session ID” for this connec-
tion.

 xmlns='jabber:client' Default namespace for <stream>.

 from='shigeoka.com'> Tell client connection granted.

50 CHAPTER 2

Jabber technical fundamentals
Once we have established the session, it is time to create a user account on the
server. In most cases, your account will already exist on the server. In fact, only
open Jabber servers like the one at jabber.org will allow you to create new
accounts using the jabber:iq:register IQ extension protocol we’ll see here.
Other Jabber servers will have other procedures for creating user accounts just
like there are many ways to create email accounts. If you already have a Jabber
account set up on the server, you can skip this step.

Step 3: Creating a user account on the server

Now that you have a user account on the server, we can authenticate with it
using the jabber:iq:auth IQ extension protocol. There are several authentica-
tion protocols available. In this example, we’ll use the simplest: the “plain
authentication” protocol.

Step 4: Authenticating with the server

“Raw” iain client session What is happening

<iq type='set' Account registration is an IQ set protocol.

 id='reg_id'> We use a unique ID to track this query.

 <query xmlns='jabber:iq:register'> jabber:iq:register IQ extension protocol.

 <username>iain</username> The user name for the account.

 <password>secret</password> The password for the account.

 </query>

</iq>

 <iq type='result' Empty result indicates success.

 id='reg_id'/> Match queries and results using ID.

“Raw” iain client session What is happening

<iq type='set' Authentication is an IQ set protocol.

 id='auth_id'> We use a unique ID to track this query.

 <query xmlns='jabber:iq:auth'> This is a jabber:iq:auth IQ extension protocol.

 <username>iain</username> The user name for the account.

Jabber session example 51

Step 4: Authenticating with the server (continued)
That was pretty easy wasn’t it? Now we repeat the same steps in a second telnet
window so we have two Jabber sessions logged into the “iain” and “smirk”
accounts. Other than the large amount of typing you have to do, opening a Jabber
session and authenticating with the server is a fast, straightforward procedure. I’ll
show the raw telnet session for steps 5–8 without comments:

Step 5-8: The “smirk” client authenticating with the server

“Raw” iain client session What is happening

 <password>secret</password> The password for the account.

 <resource>test</resource> The resource for this client.

 </query>

</iq>

<iq type='result' Empty result indicates success.

 id='auth_id'/> The packet ID tells us what IQ query was successful.

“Raw” smirk client session

% telnet shigeoka.com 5222

Trying shigeoka.com...

Connected to shigeoka.com.

Escape character is '^]'.

<?xml version='1.0'?>

<stream:stream xmlns:stream='http://etherx.jabber.org/streams'

xmlns='jabber:client'

to='shigeoka.com'>

<?xml version='1.0'?>

<stream:stream xmlns:stream='http://etherx.jabber.org/streams'

id='3C0FB73C'

xmlns='jabber:client'

52 CHAPTER 2

Jabber technical fundamentals

Step 5-8: The “smirk” client authenticating with the server (continued)

Now that we’re authenticated with the Jabber server, we can send messages. We’ll
begin by using the “iain” client to send a message to the “smirk” client using the
Jabber message protocol, as shown in step 9.

Step 9: The “iain” client sends a message to the “smirk” client

What we are doing is instant messaging so we should expect that the message is
delivered immediately to the “smirk” client. Look at the smirk client session. Was

“Raw” smirk client session

from='shigeoka.com'>

<iq type='set'>

<query xmlns='jabber:iq:register'>

<username>smirk</username>

<password>secret</password>

</query>

</iq>

<iq type='result'/>

<iq type='set'>

<query xmlns='jabber:iq:auth'>

<username>smirk</username>

<password>secret</password>

<resource>work</resource>

</query>

</iq>

<iq type='result'
id='pthsock_client_auth_ID'/>

“Raw” iain client session What is happening

<message to='smirk@shigeoka.com'> A message packet addressed to “smirk.”

 <subject>Hello</subject> The “subject” for this message.

 <body>This is the message text</body> the “body” of the message.

</message>

Jabber session example 53
the message packet delivered? There should be no message. The message was not
delivered. Why not?

 The answer lies in Jabber presence. Recall that presence tells the server if a cli-
ent is available to receive messages. When a client first logs in, the session’s pres-
ence status is set to unavailable. We have to set our presence status to available
in order to receive messages.

 Let’s update our presence status to available for both clients beginning with
the “iain” client, as shown in step 10.

Step 10: The “iain” client updates its presence status to available

As soon as the “iain” client becomes available, the server delivers a message to the
client. The message is from the server and displays “welcome information.” Jab-
ber servers will often send a message to users as they log in to update them on
news, or server status. This is optional so your server may not send any message.

 This particular message example also shows a jabber:X:delay X extension.
This is a packet added by the server to messages to let clients know that a message
has been delayed. In this case, the server has delivered a message to the client as
soon as authentication occurred. However, the message could not be delivered
because the client was unavailable. The delay X extension is not a mandatory fea-
ture of the Jabber protocols so your Jabber server may not include these packets
in delayed messages.

“Raw” iain client session What is happening

<presence type='available'/> Presence update.

<message from='shigeoka.com' Server message.

 to='iain@shigeoka.com'> Addressed to “iain” client.

 <subject>Welcome!</subject> The message’s “subject.”

 <body>Welcome to Jabber! </body> The message’s “body.”

 <x xmlns='jabber:x:delay' Optional server delay “X extension.”

 from='iain@shigeoka.com' Indicates account where message delayed.

 stamp='20011206T18:22:09'> The time the message was sent/received.

 Offline Storage Message explaining the delay.

 </x>

</message>

54 CHAPTER 2

Jabber technical fundamentals
 Check your “smirk” client. telnet session. Notice that nothing has changed
there. Its presence is still unavailable so the server won’t send messages to it.
Let’s update its presence to unavailable and see what happens. The process fol-
lows what we just did on the “iain” client session. However, let’s use a shortcut.
The <presence> packet default type is unavailable so we can omit it to save band-
width (and typing). These actions are shown in steps 11 and 12.

Steps 11 and 12: The “smirk” session updates its presence to available and receives two
messages. One is from the server, the other is the message we sent from the “iain” session

“Raw” smirk client session What is happening

<presence/> Presence update (available is default).

<message from=' shigeoka.com' Server message.

 to=’smirk@shigeoka.com'> Addressed to “smirk” client.

 <subject>Welcome!</subject> The message’s “subject.”

 <body>Welcome to Jabber! </body> The message’s “body.”

 <x xmlns='jabber:x:delay' Optional server delay “X extension.”

 from='smirk@shigeoka.com' Indicates the account message delayed at…

 stamp='20011206T18:22:38'> The time the message was sent/received.

 Offline Storage Message explaining the delay.

 </x>

</message>

<message to='smirk@shigeoka.com' Message to “smirk.”

 from='iain@shigeoka.com/test'> from iain’s “test” resource.

 <subject>Hello</subject> The message’s “subject.”

 <body>message text.</body> The message’s “body.”

 <x xmlns='jabber:x:delay' Optional server delay “X extension.”

 from='smirk@shigeoka.com' Indicates the account message delayed at…

 stamp='20011206T18:23:54'> The time the message was sent/received.

 Offline Storage Message explaining the delay.

 </x>

</message>

Jabber session example 55
As we expected, once the “smirk” client became available, we received the mes-
sages waiting for it. In this case, the server’s “welcome” message, and the message
we sent to “smirk” from “iain” in step 9. Once again, the server has added a delay
X extension to the message. You server may not have done so.

 Look back at the “iain” session. No new packets should have appeared. As you
can see, neither the message or presence protocols have a server reply. The IQ
protocols on the other hand will send replies to each request. The assumption is
that once a <message> or <presence> packet has been sent from the client to the
server, the server guarantees its delivery. No reply means success.8 Failures will
result in the server sending an error packet back to the sender.

 It has been nice to see that messages will eventually be delivered to clients
when they become available. However, this is instant messaging so let’s see what
happens when we send a message to someone that is available. We’ll use the
“smirk” session to send a message to “iain,” as shown in step 13.

Step 13: The “smirk” session sends a message to “iain.”

We don’t expect a reply for the <message> packet so nothing should appear when
you send the message. However, if you look at the “iain” session, you should
“instantly” see the packet as shown in step 14.

Step 14: The “iain” session receives a message from “smirk.”

8 The proposed “event” Jabber protocol allows senders to request delivery confirmation for packets.

“Raw” smirk client session What is happening

<message to='iain@localhost'> A new message to “iain.”

 <body>I love messages</body> The message’s “body.”

</message>

“Raw” iain client session What is happening

<message to='iain@shigeoka.com' A new message to “iain.”

 from='smirk@localhost/test' The sender is “smirk” on resource “test.”

 <body>I love messages</body> The message’s “body.”

</message>

56 CHAPTER 2

Jabber technical fundamentals
Notice that the packet is missing the delay X extension because there was no
server delay for the message. You can play around with sending messages between
the two sessions. When you’re finished, close the stream on both the “iain” and
“smirk” sessions. Once you close the stream, the server will automatically close
down the telnet connection, as shown in steps 15 and 16.

Steps 15 and 16: Closing the Jabber XML stream.

Despite the fact that we know nothing of the Jabber protocol details, the basics of
the core Jabber protocols and the various Jabber packets are pretty intuitive. The
structured, but still human-friendly nature of XML makes the Jabber sessions easy
to follow along even with our limited knowledge of Jabber details.

2.4 Conclusions

The Jabber system is technically simple, flexible, and surprisingly intuitive. Look-
ing at the XML data that is passed between client and server, we can easily under-
stand, analyze, and debug the Jabber protocols. These developer-friendly
properties come from the clever use of XML by Jabber.

 In the next part of this book, we’ll look at the Jabber protocols in greater
depth; building the detailed knowledge we need to implement these protocols in
software. Along the way, we’ll develop Java software that can understand, analyze
and exploit the Jabber protocols. The end result will be a thorough coverage of
the core Jabber protocols, and a few important IQ extension protocols. In addi-
tion, we’ll create a Java client and Java server. You can use that software to explore
Jabber and expand it for your own Jabber software needs.

“Raw” client session What is happening

</stream:stream> Close the stream.

Connection closed by foreign host. Telnet application information: server has closed
connection.

% Command prompt.

Part II

Protocols, code,
and advanced IM

I n this part of the book, we cover the core Jabber protocols in
enough detail that you can implement Jabber-compliant software.
We’ll build a Jabber server and client in Java to clearly illustrate the Jab-
ber protocols and we’ll examine the tradeoffs facing Jabber develop-
ers. The part ends by examining advanced Jabber features not
included in the current Jabber standards. We’ll also explore how you
can build applications that exploit these enterprise instant messaging
frameworks to create next-generation, IM-based systems.

 3IM concepts and
Jabber protocols
In this chapter
■ The basic design of a Java Jabber server
■ Source code for a complete, basic

Jabber server
■ Implementing Jabber sessions, XML parsing,

and packet handling
■ The Java Jabber server’s threading model
■ Manually testing a Jabber server

using telnet

59

60 CHAPTER 3

IM concepts and Jabber protocols
The foundation for the Jabber software that we’ll continue to develop through
the remaining chapters begin here. We will start with the development of a basic
Jabber server. Using the code developed here as a framework, each subsequent
chapter will add more Jabber capabilities.

3.1 A basic Java Jabber server

If you have ever written code for a server, the basic design of a Jabber server will be
very familiar to you. If not, don’t worry. Server software, in its basic form, is surpris-
ingly simple. Most of the cost, complexity, and work that goes into large-scale server
software lies in adding extra features that allow the server to handle large numbers
of users simultaneously and to do so in a secure, reliable manner.

 The Jabber server in this book is designed to be as simple as possible while
implementing the Jabber protocols. This simplicity makes it easy to understand
and modify-—two features that for our purposes (learning) are more important
than the typical server features that interest programmers. Once you understand
the Jabber software, you can easily modify it to add features as you need them.

 Our simple Jabber server does three things:

■ Handles network connections with Jabber clients
■ Reads and writes Jabber XML streams
■ Reacts to input from Jabber clients

Surprisingly, we can create a server to do these things in just a few Java classes. In
this section, we’ll create a basic Jabber server that carries out all three tasks.

3.1.1 Goals for our server
Before writing a piece of software, it helps to have a clear set of project goals.
Goals provide general guidelines that drive design and implementation decisions.
For the Jabber server we’ll use the following design goals:

■ Simple—Simple things appeal from a purely aesthetic point of view. In addi-
tion, simple software tends to be more robust, easier to understand, and eas-
ier to modify. The latter two are also project goals we’ll cover later. By keeping
things simple, we have a head start on meeting our other goals as well.

■ Standards compliant—We’re developing the Jabber server software to explain
and illustrate the Jabber protocols. Obviously we want to make sure that it
implements the Jabber protocols correctly or it loses its educational value.
In addition, compliant servers will be interoperable with the significant
amount of Jabber software available today.

A basic Java Jabber server 61
■ Easy to understand—The software must be easy to understand. It is difficult
to learn from confusing software and it is even harder to explain it well. The
clearer the software the less work both of us have to do.

■ Easy to modify—Although this software is an educational tool, hopefully
some of you will want to use it in the real world. In most cases, you will need
to modify it to meet your needs (its present form is severely limited in capa-
bility). We should make it as easy as possible to modify while still meeting
our other goals.

It is also vital that we establish what the server is not trying to do. The Jabber
server software in this book is not intended to be secure, scalable, manageable,
robust (transactional), efficient, or fast. On a reasonably fast machine the server
should be able to provide non-mission-critical IM to about 20 users: perfect for a
small workgroup but not enough for most small- to medium-sized businesses.

3.1.2 Our server software
The server software in this chapter will accept and handle incoming client con-
nections, parse an XML stream over that connection, and react to Jabber com-
mands sent over the XML stream. The software will be extremely limited to start,
but as we cover new Jabber protocols code supporting them will be added to the
server, expanding the server’s features and capabilities.

 All of the software in this book is available for download from the book’s web
site at Manning Publications (www.manning.com/shigeoka). I’m releasing the
software under a modified Apache (BSD) license. The license permits you to do
almost anything you want with the software including copying it, selling it, or
incorporating it into commercial products. Send a note through the book’s web-
site, letting me know what you’re doing with the software.

 There are several interesting directions that you can take the software includ-
ing implementing the advanced Jabber features. Covered in chapter 10, they
include implementing server security, embedding Jabber functionality into exist-
ing applications, or integrating it into other enterprise resources.1 In addition,
the server is useful as a normal Jabber server for small workgroups. You may want
to work on optimizations in I/O (input/output), threading, parsing, distributed
processing, management/administration, transactions/journaling, size, space, or

1 These bridges to enterprise resources are often referred to as middleware, and Jabber’s use in this area
would fall under the topic of MOM.

62 CHAPTER 3

IM concepts and Jabber protocols
memory consumption. The last three optimizations are very important when Jab-
ber is used in small, resource-constrained, embedded systems.2

3.1.3 The basic server design
My Jabber server is broken up into three basic functional modules:

■ Session pool—A collection of Jabber client/server sessions. Each session
manages a java.net.Socket connection and metainformation such as the
associated session ID and Jabber ID. A session index allows other server
modules to locate a session by Jabber ID.

■ XML parser—The XML parsing classes handle the incoming Jabber XML data
and transform it into Java packet objects that can be used by the Jabber
server. The XML parsing classes rely on the Simple API for XML (SAX)
parser in the Xerces XML Java library.

■ Packet handlers—The server reacts to incoming packets. In most cases, the
server simply routes packets to a particular delivery endpoint. However
many packets must be processed by the server, generating one or more
reply packets.

The modules are joined together by a PacketQueue that holds Jabber Packet
objects:

■ PacketQueue—This class is a basic queue data structure for Packet java
objects.3 The PacketQueue joins the packet handlers to the XML parser
module by allowing the XML parser to deposit Packet objects into the
PacketQueue. The packet handlers remove Packet objects from the
PacketQueue and handles them. The PacketQueue is designed to be
thread-safe allowing separate server threads to work with the Packet-
Queue simultaneously.

■ Jabber packets—The Packet class stores information about the Jabber XML
data packets that are sent between a Jabber client and server.

The general architecture is shown in figure 3.1.

2 Who would run a Java Jabber server in an embedded system? There is a whole category of embedded
systems called “home gateways” or “digital hubs” that manage home networks, primarily for automation
and entertainment. Many run Java and could benefit from embedded Jabber servers for communica-
tion and presence.

3 A queue is a basic first-in, first-out (FIFO) list. Items placed into the queue are taken from it in the order
they entered.

The session pool maintains client connections 63
Figure 3.1 The basic server modules joined by the PacketQueue

The basic server operation begins when a client connects to the Jabber server.
The server will create a session object for the connection and start an XML parser
reading incoming XML. The XML parser generates Java Packet objects that are
pushed onto the packet queue. A set of packet handlers takes packets from the
queue, processes them as necessary, generates XML for outgoing packets, uses the
session index to find the correct Session object’s outgoing XML stream, and
writes the outgoing XML to that stream.

 The session pool, XML parser, and packet queue work together to support pro-
cessing Jabber packets. We will implement the various Jabber protocols in the packet
handler classes. For now we will provide rudimentary routing for all incoming
packets. As we cover new Jabber protocols we’ll add more packet handlers.

3.2 The session pool maintains client connections

A typical Jabber server will maintain many simultaneous, long-lived connections
with clients. Each of these sessions defines a context for the packets being passed
between the client and server. The session’s context must remain associated with
each connection. It includes information such as:

■ The Jabber ID associated with the session
■ The Stream ID associated with the session
■ The java.net.Socket and corresponding java.io.Reader/Writer objects

used by this session
■ The status of the session (disconnected, connected, streaming, authenticated)

Jabber
client

Incoming XML
stream

Outgoing
stream

Jabber server
Session pool

XML parserSession

Session index

XML

Packet handlers

Packet handler

Packet queue

Packets

XML

64 CHAPTER 3

IM concepts and Jabber protocols
This collection of a connection and its metainformation is encapsulated in a Ses-
sion object. In addition, with all of the sessions active in a server, it is easy to lose
track of where a Packet came from, and where it is going. We’ll develop a central-
ized SessionIndex class to keep track of our active sessions, and provide a way to
find a Session given its Jabber ID.

 Let’s first take a look at the Session class.

3.2.1 The Session class represents a connection
The Session class provides a convenient way of grouping session context informa-
tion together (listing 3.1). The class begins with two constructors and basic data
fields and their access methods. We’ll also provide two convenience methods to
produce Writer/Readers for the Session’s Socket object. Most of the time, a Ses-
sion object is used to get a java.io.Writer in order to write information to the
Session Socket’s OutputStream, or a java.io.Reader to read information. By cre-
ating and saving a Reader and Writer, users of the class won’t have to get the
Socket, get the Input/OutputStreams, and create a Reader/Writer themselves.

public class Session{

 public Session(Socket socket) { setSocket(socket); }
 public Session() { setStatus(DISCONNECTED); }

 JabberID jid;
 public JabberID getJID() { return jid; }
 public void setJID(JabberID newID) { jid = newID; }

 String sid;
 public String getStreamID() { return sid; }
 public void setStreamID(String streamID) { sid = streamID; }

 Socket sock;
 public Socket getSocket() { return sock; }
 public void setSocket(Socket socket) {
 sock = socket;
 setStatus(CONNECTED);
 }

 Writer out;
 public Writer getWriter() throws IOException {
 if (out == null){
 out = new BufferedWriter(new OutputStreamWriter(sock.getOutputStream()));
 }
 return out;
 }

Listing 3.1 The Session class

The session pool maintains client connections 65
Reader in;
 public Reader getReader() throws IOException {
 if (in == null){
 in = new BufferedReader(new InputStreamReader(sock.getInputStream()));
 }
 return in;
 }

The most interesting part of the Session class is its status management code.
There will be several classes that will want to know the status of a Session as well
as to take action when the status changes. This is especially true of client software
that we will develop in the next chapter. To support this, we’ll use a session status
event model similar to that found in the Swing classes.

 In the event model (listing 3.2), listeners register themselves for event notifica-
tion. When an event is triggered (in our case by changing the status using the
setStatus() method), the Session will notify its registered listeners of the event.
The process can be a bit confusing the first time you see it, but it is a great way to
solve the problem of having many objects watch a variable on another object.

LinkedList statusListeners = new LinkedList();

 public boolean addStatusListener(StatusListener listener){
 return statusListeners.add(listener);
 }

 public boolean removeStatusListener(StatusListener listener){
 return statusListeners.remove(listener);
 }

 public static final int DISCONNECTED = 1;
 public static final int CONNECTED = 2;
 public static final int STREAMING = 3;
 public static final int AUTHENTICATED = 4;

 int status;
 public int getStatus() { return status; }

 public synchronized void setStatus(int newStatus){
 status = newStatus;
 ListIterator iter = statusListeners.listIterator();
 while (iter.hasNext()){
 StatusListener listener = (StatusListener)iter.next();
 listener.notify(status);

Listing 3.2 The Session class status event code

66 CHAPTER 3

IM concepts and Jabber protocols
 }
 }
}

A java.util.LinkedList class is used to maintain a list of listeners for the Ses-
sion. This makes adding and removing status listeners simple. All status event lis-
teners must implement the StatusListener interface:

The StatusListener interface
public interface StatusListener {
 public void notify(int status);
}

This simple interface has a single notify() method that is used in the setStatus()
method to send the event information to the listeners. For consistency, I also defined
some standard values for the four status states that I anticipate for the Session class.

 The Session class represents a single network connection and Jabber session
between a client and server. The server will need to handle many simultaneous
Sessions and provide a mechanism for organizing them and locating Sessions by
their Jabber ID. The SessionIndex class handles these responsibilities.

3.2.3 The SessionIndex class provides session lookup
The primary responsibility of the SessionIndex class is to look up Session objects
by Jabber ID. Locating the correct Session object by Jabber ID is important for
the server because the majority of incoming Jabber packets will be addressed to
Jabber users. The server must locate the Session corresponding to the recipient’s
Jabber ID and deliver the packet to that client.

 To accomplish this, the SessionIndex class maintains two java.util.Hash-
table objects: userIndex and jidIndex.. The userIndex Hashtable maintains
a mapping between the Session’s user name and the Session object. The jid-
Index maintains a mapping between the Session’s full Jabber ID string, and
the Session object.

 This allows the SessionIndex to conduct Session lookups using the following
algorithm:

■ Check if the recipient Jabber ID is in the jidIndex. The comparison uses an
exact match allowing clients to send messages to other specific clients.

■ If there is no matching Jabber ID in the jidIndex, then see if the Jabber
ID’s user name is in the userIndex.4

■ If no match is found, return a null object.

The session pool maintains client connections 67
Using this algorithm the server will display a reasonable message routing behavior.
For example, imagine that a client with the Jabber ID iain@shigeoka.com/home is
connected to the server. A message is sent to iain@shigeoka.com/home. The Ses-
sionIndex will look up the Jabber ID, find it in the jidIndex, and return the correct
Session. Now imagine the message is addressed to iain@shigeoka.com. The Ses-
sionIndex class will search the jidIndex and not find a match. However when the
SessionIndex looks in the userIndex, it will find a match for “iain” and return the
Session connected to iain@shigeoka.com/home.

 Finally, consider a message addressed to iain@shigeoka.com/work. The Session-
Index class will fail to find it in the jidIndex, but will find the matching “iain” entry in
the userIndex and return the Session attached to iain@shigeoka.com/home. Thus,
the message is delivered to the correct user but at an alternate resource. This behavior
is consistent with the Jabber message routing standard.

 The implementation of the class (listing 3.3) is a fairly straightforward man-
agement of these mappings.

public class SessionIndex {

Hashtable userIndex = new Hashtable();
 Hashtable jidIndex = new Hashtable();

 public Session getSession(String jabberID){
 return getSession(new JabberID(jabberID));
 }

 public Session getSession(JabberID jabberID){
 String jidString = jabberID.toString();
 Session session = (Session)jidIndex.get(jidString);
 if (session == null){
 LinkedList resources = (LinkedList)userIndex.get(jabberID.getUser());

if (resources == null){
 return null;
 }
 session = (Session)resources.getFirst();
 }

4 I also assume messages are always sent to clients at this server so I can ignore the server part of
the Jabber ID.

Listing 3.3 The SessionIndex class

Username
to Session
mapping

Full Jabber ID
string to Ses-
sion mapping

User offline (not
connected to server)

68 CHAPTER 3

IM concepts and Jabber protocols
 return session;
 }

 public void removeSession(Session session){

 String jidString = session.getJID().toString();
 String user = session.getJID().getUser();

 if (jidIndex.containsKey(jidString)){
 jidIndex.remove(jidString);
 }
 LinkedList resources = (LinkedList)userIndex.get(user);
 if (resources == null){
 return;
 }
 if (resources.size() <= 1){
 userIndex.remove(user);
 return;
 }
 resources.remove(session);
 }

 public void addSession(Session session){
 jidIndex.put(session.getJID().toString(),session);
 String user = session.getJID().getUser();
 LinkedList resources = (LinkedList)userIndex.get(user);
 if (resources == null){
 resources = new LinkedList();
 userIndex.put(user,resources);
 }
 resources.addLast(session);
 }
}

As you can see by my use of a LinkedList of Sessions for each username in the
userIndex, messages are routed to users on a first-come first-served basis. In other
words, if I connect the following clients in this order:

iain@shigeoka.com/home
iain@shigeoka.com/work
iain@shigeoka.com/laptop

a message sent to iain@shigeoka.com will be delivered to iain@shigeoka.com/
home. If iain@shigeoka.com/home disconnects (the server calls removeSession()
on the SessionIndex), then messages sent to iain@shigeoka.com will be delivered to
iain@shigeoka.com/work.5 This is not standard Jabber routing behavior but it is the
best we can do until chapter 8 when we add user accounts, user presence, and sup-
porting protocols. When we have the user presence protocol support in place, we’ll
implement the more sophisticated, priority-based Jabber routing scheme that is speci-

XML parsing subsystem 69
fied by the Jabber standards. The primary user of the SessionIndex is the packet-han-
dling classes associated with the QueueThread class.

3.3 XML parsing subsystem

XML parsing is the most complicated task that the Jabber server does at this
point. However, for Java coders, the task is child’s play because we will rely on the
standard Java SAX parsing library to do the actual work of XML parsing. We only
need to react in the form of event handler methods to the XML data that the
parser finds.

 The job of the server’s XML parsing classes is to take streaming XML informa-
tion, convert it to Packet objects, and store those packets in the PacketQueue as
shown in figure 3.2. We’ll start our coverage of the XML parsing process with the
Packet and PacketQueue classes.

Figure 3.2 The server’s XML parsing classes act like a transformation filter, taking in an XML text
stream and producing a stream of Packet objects to be pushed into the PacketQueue.

3.3.1 Representing Jabber packets
The Jabber protocols involve the exchange of XML fragments between the client
and server. We’ll refer to these XML fragments as Jabber packets. We will repre-
sent them as Java objects which are easier to work with than XML strings. Using
Java objects enables us to exploit Java’s many object-oriented features such as
strong type checking, inheritance, and object polymorphism.6

 A quick glance at the Jabber protocol specification shows that there are only
three “core” Jabber packets to worry about:

5 In chapter 6, we’ll see how authenticated users can override this behavior to prioritize the delivery of
messages to alternative resources.

6 Polymorphism means many forms and refers to the ability of Java objects to act as different classes
through the use of class inheritance and the implementation of Java interfaces.

XML parser
(JabberInputHandler)

XML stream push(Packet)

pull()PacketQueue

70 CHAPTER 3

IM concepts and Jabber protocols
■ <message></message>—A standard Jabber message packet. I’ll cover the mes-
sage packet and protocols in detail in chapter 4.

■ <presence></presence>—A standard Jabber presence packet. I’ll cover pres-
ence packet and protocols in detail in chapter 5.

■ <iq></iq>—A standard Jabber IQ packet. The IQ protocols cover all Jabber
tasks that are neither messaging nor presence. The IQ protocols include
authentication, account management, and configuration. I’ll cover the
these packet and protocols in detail in chapter 6.

In addition, we must recognize and react to the opening and closing stream tags
and the stream error packet:7

■ <stream:stream>—The opening XML stream tag. This signals the start of a
Jabber XML session. I have to react to the tag immediately so it gets full
packet status in the server.

■ <stream:error></stream:error>—A Jabber stream error packet. This packet is
used to indicate a problem with a stream (usually indicating an improperly
formatted stream).

■ </stream:stream>—The closing XML stream tag. This signals the conclusion
of a Jabber XML session. As with the opening stream tag, I have to react to
the closing tag so it gets full packet status as well.

Supporting these packets and tags at the most basic level is quite simple. By the
end of this chapter, our Jabber server will be able to recognize and handle them
all. The first step in supporting Jabber packets is to recognize the common traits
of all packets and encapsulate them in a Java class.

 Jabber packets are XML fragments that can be thought of as “mini” XML docu-
ments. There are many ways to represent XML documents in Java. One of the
most popular is to follow the W3C Document Object Model(DOM) standard. Most
Java XML parsing libraries include standardized Java classes to support W3C DOM.
In DOM, the XML document is represented in a tree-like data structure.

 Our needs for XML representation aren’t as generic as that provided by the
DOM standards. We know what kinds of XML documents we’ll be receiving and we
can specialize our Java objects accordingly. In addition, avoiding DOM will free
our code from dependencies on DOM libraries and lower the amount of code

7 The stream protocol is defined in the jabber:stream namespace while message, presence, and iq
are defined in the jabber:client and jabber:server namespaces.

XML parsing subsystem 71
needed to build our server. Finally, our Packet class must do more than represent
the XML fragment’s information. The Packet class must fill two primary roles:

■ Packet store—The Packet class is primarily a data storage class. The informa-
tion can be set up using standard Java method calls. We’ll store Packets in a
tree-like data structure just like that used in the W3C DOM.8

■ XML writer—The Packet class knows how to create its own XML string repre-
sentation. This feature allows other classes to generically convert Packet
objects from Java objects to their XML String representation.

A separate XML parsing class covered later in this chapter will build Packet
objects from incoming XML strings. The data structure for a Packet class mirrors
the structure of XML fragments. For example, consider an XML packet:

<message to='recipient'>
 <subject>hello</subject>
 <body>How are you doing?</body>
</message>

We can organize it into three packets, arranged in a tree:

Packet: message (attribute to='recipient)
 Packet: subject
 String (value "hello")
 Packet: body
 String (value "How are you doing?");

In such a data structure, we can see that a Packet has an “element name,” zero or
more attribute name/value pairs, and zero or more children. A Packet object’s
children are either Strings, or other Packet objects. In addition, each Packet has
an associated namespace.

 As a Java class, we can store the list of a Packet’s children in a simple
java.util.List, its attributes in a java.util.Hashtable, and its other values as
Strings. To aid in navigation, the Packet class also keeps track of its parent
Packet. If the Packet has no parent, the Packet’s parent variable is set to null.

 The class begins with three constructors:

The Packet class constructors
public class Packet {

 public Packet(String element){
 setElement(element);
 }

8 Our Packet class closely resembles the DOM Node class (rather than the Document class).

72 CHAPTER 3

IM concepts and Jabber protocols
 public Packet(String element, String value){
 setElement(element);
 children.add(value);
 }

 public Packet(Packet parent,
 String element,

String namespace,
Attributes atts){

 setElement(element);
 setNamespace(namespace);
 setParent(parent);

//Copy attributes into hashtable
 for (int i = 0; i < atts.getLength(); i++){
 attributes.put(atts.getQName(i), atts.getValue(i));
 }
 }

The parent and children member variables maintain the tree structure of Pack-
ets and their children. We’ll use the java.util.LinkedList class to store child
Packets and Strings. In addition, the namespace and element name for the
packet must be stored as Strings.

String namespace;
 public void setNamespace(String name) { namespace = name; }
 public String getNamespace() { return namespace; }

 String element;
 public void setElement(String element) { this.element = element; }
 public String getElement() { return element; }

 Packet parent;
 public Packet getParent() { return parent; }
 public void setParent(Packet parent){
 this.parent = parent;
 if (parent != null){
 parent.children.add(this);
 }
 }

 LinkedList children = new LinkedList();

 public LinkedList getChildren() {return children;}

The Packet class provides several convenience methods for working with the
Packet data. Imagine we have an XML packet that looks like the following:

XML parsing subsystem 73
<item>
 ItemValue
 <sub-item>sub-item value</sub-item>
 <sub-item>another value</sub-item>
</item>

The Packet class provides several convenience methods for working with the
Packet data. Imagine we have an XML packet that looks like the following:

<item>
 ItemValue
 <sub-item>sub-item value</sub-item>
 <sub-item>another value</sub-item>
</item>

There are three typical tasks that other classes will need to carry out on the
Packet:

■ Obtaining the first child Packet with a given element name (the Packet
representing the sub-packet <sub-item>sub-item value</sub-item>).

■ Obtaining the first string value for the Packet (the String “ItemValue”).
■ Obtaining the String value associated with the first child Packet with a

given element name (the String “sub-item value”).

The first convenience method locates the first child Packet of a given element
name. This is implemented in the getFirstChild() method. For example, con-
sider our earlier <item> XML packet. You can call getFirstChild(“sub-item”)on
the <item> packet object in order to find the first subpacket with an element
name of sub-item.

public Packet getFirstChild(String subelement){
 Iterator childIterator = children.iterator();
 while (childIterator.hasNext()){
 Object child = childIterator.next();
 if (child instanceof Packet){
 Packet childPacket = (Packet)child;
 if (childPacket.getElement().equals(subelement)) {
 return childPacket;
 }
 }
 }
 return null;
 }

Another common task is to obtain the String value associated with an element.
For example, when we receive the <sub-item> sub-Packet, we will want to know its
value ("sub-item value"). You can get this by calling the getValue() method on the
<sub-item> Packet object.

74 CHAPTER 3

IM concepts and Jabber protocols
public String getValue(){
 StringBuffer value = new StringBuffer();
 Iterator childIterator = children.iterator();
 while (childIterator.hasNext()){
 Object valueChild = childIterator.next();
 if (valueChild instanceof String){
 value.append((String)valueChild);
 }
 }
 return value.toString().trim();
 }

Even more likely is the scenario where we want to know the value of the String
child of a sub-Packet. In the previous examples, we obtained the value of the first
<sub-item> sub-Packet by calling getFirstChild(“sub-item”) to obtain the sub-
Packet and then calling getValue() to get its string value. Since these are conve-
nience methods, let’s make it more convenient by combining the steps into a sin-
gle getChildValue() method.

public String getChildValue(String subelement){
 Packet child = getFirstChild(subelement);
 if (child == null){
 return null;
 }
 return child.getValue();
 }

Incoming Packets often rely on their session context for routing and other behav-
ior. Each client/server connection in our Jabber server will have an associated
Session object to track this session context. The Packet stores a reference to this
Session object.

Session session;
 public void setSession(Session session) { this.session = session; }

 public Session getSession() {
 if (session != null){
 return session;
 }
 if (parent != null){
 return parent.getSession();
 }
 return null;
 }

Many of the Jabber protocols rely on Packet attributes (key/value pairs) for vital
information regarding the Packet and its behavior. The Packet class stores the
attributes in a java.util.Hashtable. In addition, it supplies several convenience
methods for accessing the most common Packet attributes:

XML parsing subsystem 75
■ to—The packet’s recipient.
■ from—The packet’s sender.
■ id—The packet ID uniquely identifying the packet.
■ type—The packet’s type. The meaning depends on the protocol.

Hashtable attributes = new Hashtable();

 public String getAttribute(String attribute) {
 return (String)attributes.get(attribute);
 }

 public void setAttribute(String attribute, String value) {
 if (value == null){
 removeAttribute(attribute);
 } else {
 attributes.put(attribute,value);
 }
 }

 public void removeAttribute(String attribute){
 attributes.remove(attribute);
 }

 public void clearAttributes(){
 attributes.clear();
 }

 public String getTo() { return (String)attributes.get("to"); }
 public void setTo(String recipient) { setAttribute("to",recipient); }

 public String getFrom() { return (String)attributes.get("from"); }
 public void setFrom(String sender){ setAttribute("from",sender); }

 public String getType() { return (String)attributes.get("type"); }
 public void setType(String type){ setAttribute("type",type); }

 public String getID() { return (String)attributes.get("id"); }
 public void setID(String ID) { setAttribute("id",ID); }
}

Finally, the Packet class will write itself to a java.io.Writer as an XML string.
The process of creating an XML representation involves the methodical traversal of
the Packet tree, outputting the appropriate elements, attributes, and children.

public void writeXML() throws IOException {
 writeXML(session.getWriter());
 }

 public void writeXML(Writer out) throws IOException{
www.allitebooks.com

http://www.allitebooks.org

76 CHAPTER 3

IM concepts and Jabber protocols
 out.write("<");
 out.write(element);

//Output the attributes for the element
 Enumeration keys = attributes.keys();
 while (keys.hasMoreElements()){
 String key = (String)keys.nextElement();
 out.write(" ");
 out.write(key);
 out.write("='");
 out.write((String)attributes.get(key));
 out.write("'");
 }

//Empty element
 if (children.size() == 0){
 out.write("/>");
 out.flush();
 return;
 }

 out.write(">");
//Iterate over each child

 Iterator childIterator = children.iterator();
 while (childIterator.hasNext()){
 Object child = childIterator.next();

//Send value to Writer
 if (child instanceof String){
 out.write((String)child);

//Or recursively write its children's XML
 } else {
 ((Packet)child).writeXML(out);
 }
 }
 out.write("</");
 out.write(element);
 out.write(">");
 out.flush();
 }

 public String toString(){
 try {
 StringWriter reply = new StringWriter();
 writeXML(reply);
 return reply.toString();
 } catch (Exception ex){
 }
 return "<" + element + ">";
 }
}

Packets are placed into, and retrieved from, a single, serverwide packet queue.

XML parsing subsystem 77
3.3.2 The PacketQueue class as server focal point
The PacketQueue class is a basic data structure class with a limited set of responsi-
bilities. However, it serves as a focal point for the flow of information in the
server. Packets from the server’s many clients fan in to the PacketQueue. The
Packets are then fanned out to the packet handlers according to the packet’s ele-
ment name. Many threads of operation will be active at once in the server and all
of them synchronize on the PacketQueue and the packets within it.

COMMAND PROCESSOR DESIGN PATTERN
For those familiar with design patterns, our packet handling system is a minor
variation on the Command Processor design pattern.9

“The Command Processor design pattern separates the request for a service
from its execution. A command processor component manages requests as
separate objects, schedules their execution, and provides additional services
such as the storing of request objects for later undo.”

In our Jabber server, the XML parser acts as the command controller accepting
requests (our XML stream) and converting them into commands (our Packet
objects). The QueueThread acts as the command processor taking the packets and
scheduling their execution. Unlike the command processor design pattern how-
ever, the Packets don’t handle their own execution. Instead our packet handler
classes act as dual-function command processor suppliers and command proces-
sors to provide the entire Packet processing functionality.

 The benefits of the command processor pattern apply to our design as well,
and they are:

■ Flexibility in the way requests are activated—Supporting alternative activation meth-
ods makes it easier to bridge our Jabber server to other messaging systems.

■ Flexibility in the number and functionality of requests—Especially important with
the rapidly changing Jabber protocols.

■ Programming execution-related services—In particular, we can easily log pack-
ets and replay Jabber sessions by making minor modifications to the
QueueThread.

9 Buschmann et al, Pattern-oriented Software Architecture: a System of Patterns (John Wiley & Sons, 1996),
p. 277. The Command Processor pattern is also covered in Design Patterns: Elements of Reusable Object-
Oriented Software (Addison-Wesley, 1994), by Gamma et al, and is referred to in that text as the Com-
mand pattern.

◆

78 CHAPTER 3

IM concepts and Jabber protocols
■ Testability at application level—The QueueThread is an excellent point of
entry into the system for testing the XML parsing as well as packet han-
dling parts of the server. Once again, the ability to log and replay sessions
can be a big help.

■ Concurrency—Packets and their handling is a relatively isolated computa-
tion. The QueueThread can easily distribute processing by handling packets
in parallel threads of execution.

The commander processor pattern has some liabilities, however:

■ Efficiency loss—Converting data formats and providing intermediate process-
ing steps requires additional computation time and storage.

■ Potential for excessive number of command classes—We avoid this issue for the
most part by representing all packets with a single, generic Packet class. We
pay for the simplicity in reduced efficiency of the general representation. In
addition, a generic Packet class can represent an infinite number of packet
classes. Our server has to create extra logic to resolve which packet we’re
dealing with (a <message> packet, <presence> packet, etc.)

The PacketQueue (figure 3.3) must:

■ Store Packets—Accept Packet objects pushed onto the back of the Packet-
Queue, maintaining the order of items pushed.

■ Retrieve Packets—Allow Packet objects to be pulled off the front of the Pack-
etQueue, removing the item.

■ Be thread-safe—Allow multiple threads of execution to push and pull Packets
from the PacketQueue without problems.

■ Provide thread synchronization—If the PacketQueue is empty, attempting to
pull Packets from the front will cause the caller to wait (block) until a new
Packet is pushed onto the back of the queue or the thread is interrupted.
Threads can use this feature to synchronize their actions and conserve
server resources.

Threads that operate on Packet objects can do so efficiently by pulling Packet
objects from the PacketQueue in an infinite loop. The PacketQueue itself will
make sure that these worker threads only execute when there are available Pack-
ets in the PacketQueue

XML parsing subsystem 79
The implementation of the PacketQueue is extremely simple. A java.util
.LinkedList object is used to store the Packets10 and a sprinkling of Java thread
primitives is added to support the server’s multithreaded environment.

 In listing 3.4 I have highlighted the thread support code in bold. Notice that
the methods push() and pull() are synchronized to protect them from being
executed by overlapping threads. Every push() method call causes notify-
All()to wake up any threads waiting on a pull() method call. The pull()
method blocks on its internal wait() method call while the queue is empty.

public class PacketQueue {
//Actual storage is handled by a java.util.LinkedList

 LinkedList queue = new LinkedList();

 public synchronized void push(Packet packet){
 queue.add(packet);
 notifyAll();
 }

 public synchronized Packet pull(){
 try {
 while (queue.isEmpty()) {

10 The Java library contains many excellent classes that will save you from reinventing the wheel. It is well
worth your time to familiarize yourself with it.

Listing 3.4 The PacketQueue class

p

p

p

p

p

Figure 3.3
The PacketQueue accepts
packets from parallel XML
parsing streams, and feeds
parallel packet handlers.

80 CHAPTER 3

IM concepts and Jabber protocols
 wait();
 }
 } catch (InterruptedException e){
 return null;
 }
 return (Packet)queue.remove(0);
 }
}

The loop is necessary because push() calls notifyAll(), waking up all threads
waiting on pull(). If only one Packet is pushed onto the queue, the first thread to
execute will remove the Packet from the queue. All the other waiting threads will
then run (they won’t run simultaneously because pull() is synchronized), the
queue will be empty, and they will have to block on the wait() call again until the
next Packet arrives.

 If you don’t understand Java threading code you can trust that this works, write
some test code to verify it, or learn more about Java threads. I have tried to keep
the amount of threading code to a minimum in the book’s source code but server
code tends to be heavily threaded. If you wish to learn more about threads, there
are several excellent books about Java threads. In addition, the JavaSoft online
documentation (java.sun.com) provides a free tutorial on using Java threads.

 Now that we’re ready to take care of XML parsing using the JabberIn-
putHandler class.

3.3.5 SAX parsing in Java
The JabberInputHandler XML parsing class coordinates the three main XML
parsing entities: the Packet class under construction, the Java SAX parser, and the
PacketQueue. Of the three, only the parser remains to be tackled.

 SAX parsing is a standard programming interface to XML parsers. SAX hides
the details of XML parsing. Instead, interesting XML data is reported to the pro-
grammer using XML content events. SAX programmers simply write a SAX con-
tent handler class that responds to these content events. For Jabber parsing, we
only need to handle the content events that correspond to the beginning and
end of an element, and to character data within the element.

XML parsing subsystem 81
Figure 3.4 A SAX parser reads XML text, and issues corresponding SAX content events
for handlers to process.

The JabberInputHandler is a SAX content handler class. Its primary task is coordi-
nating the building of packet objects from the SAX events generated by the Xerces
SAX parser. The JabberInputHandler accomplishes this in a fairly generic way by
watching the depth of embedded elements within an XML document.

 In order to build our Packet classes into a tree structure we will track the
depth of a particular element within the XML document tree. The depth
increases by one with every start element and decreases by one for each end ele-
ment. This depth-first ordering of element tags makes tracking your current posi-
tion in the tree relatively simple.

 The actions for each SAX event are summarized here:11

■ startElement()—For the start of each new element, add one to the depth
counter and if:
■ [depth == 0]—The element should be a <stream:stream> tag. Instantiate

a special open stream Packet with name stream:stream. It doesn’t need
an end element to be completed. Instead, it is immediately pushed onto
the PacketQueue. This is the root of the Jabber stream.

11 Note: SAX gurus will notice that my parser ignores processor instructions and does not validate the Jab-
ber XML against the Jabber DTDs. Processing instructions are not used in Jabber XML streams and
validation is too resource-intensive to use in most Jabber servers.

<message>
 <body>Hello there</body>
</message> SAX parser

start: message

start: body

char: Hello there

end: body

end: message

XML SAX events

82 CHAPTER 3

IM concepts and Jabber protocols
■ [depth == 1]—Create a parentless Packet object. When we complete this
packet, we’ll push it onto the PacketQueue. The packet becomes the
active packet under construction.

■ [depth > 1]—Create a Packet object and set its parent to the active packet.
The new packet becomes the active packet under construction.

■ characters()—Add the given String as a child to the active packet.
■ endElement()—Subtract one from the depth counter and if:

■ [depth == 0]—The active packet should be a </stream:stream> tag
ending the Jabber XML stream. Instantiate a special close stream
Packet with element name /stream:stream and push it onto the
PacketQueue.

■ [depth == 1]—The active Jabber Packet is complete. Push the completed
Packet onto the PacketQueue.

■ [depth > 1]—The active packet’s parent Packet is still being built. Set the
active packet to the current active packet’s parent.

To process the XML stream, the JabberInputHandler needs to carry out the fol-
lowing configuration steps:

■ Create SAX parser—We need to instantiate a parser object. You can do this in
a generic way using a SAX parser factory class or directly by specifying a par-
ticular parser implementation class. The advantage of using the factory
class is that you can easily plug in different SAX parser implementations
(e.g., replace Xerces) without changing code by simply setting system prop-
erties. I directly create the Xerces SAX parser because I must set it up for
XML streaming.

■ Set up the parser—In this case, the parser is the JabberInputHandler class. We
also have to install a new reader factory into the Xerces parser so that it will
incrementally parse the incoming XML.

■ Parse—Parsing is a simple matter of calling the parser’s parse() method,
handing it an InputSource. The SAX parser will parse the entire XML
stream, calling content handler methods as necessary, before returning
from parse() method. The parse() call only returns when the stream has
been closed or an uncaught exception is thrown.

XML parsing subsystem 83
PARSING XML STREAMS WITH SAX
Not all SAX XML parsers are created equal. Most assume you have a complete
XML document resulting in parsers that buffer incoming XML for greater effi-
ciency. Unfortunately for us, these parsers refuse to parse XML stream data as it
arrives: resulting in a “stuck” Jabber server.

The Xerces SAX parser allows us to override its buffering data reader with a
streaming reader by creating and installing a custom reader factory. This factory
produces reader objects that Xerces uses to read the XML.

NOTE If you are using another SAX parsing library you need to find out if it
supports streaming (often called incremental XML parsing) and turn
the feature on.

There is no standard way of telling a SAX parser you want to handle streaming data
so you must consult your SAX library documentation for details. For Xerces, the fol-
lowing class is all you need:

public class StreamingCharFactory
 extends DefaultReaderFactory {

 public XMLEntityHandler.EntityReader createCharReader(
 XMLEntityHandler entityHandler,
 XMLErrorReporter errorReporter,
 boolean sendCharDataAsCharArray,
 Reader reader,
 StringPool stringPool)
 throws Exception {
 return new StreamingCharReader(entityHandler,
 errorReporter,
 sendCharDataAsCharArray,
 reader,
 stringPool);
 }

 public XMLEntityHandler.EntityReader createUTF8Reader(
 XMLEntityHandler entityHandler,
 XMLErrorReporter errorReporter,
 boolean sendCharDataAsCharArray,
 InputStream data,
 StringPool stringPool)
 throws Exception {
 XMLEntityHandler.EntityReader reader;
 reader = new StreamingCharReader(entityHandler,
 errorReporter,
 sendCharDataAsCharArray,
 new InputStreamReader(
 data,
 "UTF8"),

◆

84 CHAPTER 3

IM concepts and Jabber protocols
 stringPool);
 return reader;
}

}

Although the process of configuring the SAX parser may sound a bit complicated
for a simple XML parser, it isn’t. In fact, I think the code speaks for itself. Let’s
start by examining the constructor for the JabberInputHandler class.

The JabberInputHandler Constructor
public class JabberInputHandler extends DefaultHandler {

 PacketQueue packetQ;
 Session session;

 public JabberInputHandler(PacketQueue packetQueue) {
 packetQ = packetQueue;
 }

The constructor allows us to set the PacketQueue once for the handler. I did this
in anticipation of reusing JabberInputHandlers objects to process different XML
streams. The current server doesn’t take advantage of this.

 Now for creating the parser, configuring it, and parsing our XML stream.

The JabberInputHandler process method starts the parsing work
public void process(Session session)
 throws IOException, SAXException {

//Directly create a Xerces SAXParser
 SAXParser parser = new SAXParser();

//Content handler for the SAX parser
 parser.setContentHandler(this);

//Handle streaming XML
 parser.setReaderFactory(new StreamingCharFactory());

//Save the session
 this.session = session;

//Start the SAX parser parsing
 parser.parse(new InputSource(session.getReader()));
 }

The process() method is the launch pad for starting the parsing process. There
are two nonstandard things going on here. First, we create a Xerces SAXParser
class directly12 rather than using the SAX parser factory, and we customize the

XML parsing subsystem 85
SAXParser with our custom reader factory to support XML streaming. Second, we
use the Session object to obtain a java.io.Reader object for the XML stream. By
hiding the details of how the reader is created in the Session object, we provide a
lot of flexibility for future changes without having to modify the JabberIn-
putHandler class.

SERVER OPTIMIZATION
The JabberInputHandler is not designed for efficiency. Resources such as object
instances are relatively expensive to create, store in memory, and garbage-collect.
If you have a large-scale server, you may need to handle thousands of XML
streams at once. Rather than create a JabberInputHandler for each connection,
you can share them between streams, only processing XML as it becomes avail-
able. The JabberInputHandler unfortunately creates a new SAXParser every
time it calls the process method. If you do plan on reusing the JabberIn-
putHandler in high capacity servers, you should consider methods for reusing ex-
pensive resources like SAXParser instances.

Now the only remaining part of the JabberInputHandler class is the event han-
dlers. They are pretty straightforward now that you know how the PacketQueue
and Packet classes work.

Packet packet;
 int depth = 0;

 public void startElement(String namespaceURI,
 String localName,
 String qName,
 Attributes atts)
 throws SAXException{

 switch (depth++){

 case 0:
 if (qName.equals("stream:stream")){
 Packet openPacket = new Packet(null,qName,namespaceURI,atts);
 openPacket.setSession(session);
 packetQ.push(openPacket);
 return;
 }
 throw new SAXException("Root element must be <stream:stream>");

12 SAXParser is imported with import org.apache.xerces.parsers.SAXParser to force the use of the
Xerces parser.

Listing 3.5 JabberInputHandler event handler methods

◆

Active packet
being built XML element

tree depth

Only a
<stream:stream>

packet is allowed,
throw exception

otherwise

86 CHAPTER 3

IM concepts and Jabber protocols
case 1:
 packet = new Packet(null,qName,namespaceURI,atts);
 packet.setSession(session);
 break;

 default:
 Packet child = new Packet(packet,qName,namespaceURI,atts);
 packet = child;
 }
 }

 public void characters(char[] ch,
 int start,
 int length)
 throws SAXException{

 if (depth > 1){
 packet.getChildren().add(new String(ch,start,length));
 }
 }

 public void endElement(java.lang.String uri,
 java.lang.String localName,
 java.lang.String qName)
 throws SAXException {

 switch(--depth){

 case 0:
 Packet closePacket = new Packet("/stream:stream");
 closePacket.setSession(session);
 packetQ.push(closePacket);
 break;

 case 1:
 packetQ.push(packet);
 break;

 default:
 packet = packet.getParent();
 }
 }
}

As you can see, event handling is so very simple with the help of other classes. I
must emphasize, however, that this is not the quickest, or most efficient, way of
handling XML parsing.

Only a new message,
presence, or <iq>
packet is allowed

Add a child
Packet

We’re done;
this should be a
closing stream
packet

Active packet done;
push it onto the
PacketQueue

Move back
up the tree

Packet handling and server threads 87
 For example, the majority of message packets enter the Jabber server and are
immediately sent out to a Jabber client or server. There is no reason for the Jab-
ber server to process the message contents, and no advantage for creating a Java
object to represent that message. In fact, these short-lived Java objects can
become a huge performance problem as we create and destroy thousands of
these objects and the garbage collector struggles to keep up.

 I took this approach because it is simple, and easier to understand. Once
you start optimizing for performance, robustness, or scalability, you will be
forced to add complexity and shortcuts that are hard to follow. I will leave
these improvements to you as you experiment with and expand the Jabber
server for your own uses.

3.4 Packet handling and server threads

The final Jabber server subsystem I need to cover is the server’s packet handling
classes and the threads that run the server. The packet handlers are simply classes
that implement the PacketListener Java interface and process Packet objects.
We’ll use the packet handler classes to implement each of the Jabber protocols as
we cover them.

 In this chapter, we’ll create three packet handler classes:

■ An OpenStreamHandler class to create a Session object for each connection
when the opening <stream:stream> tag is sent.

■ A simple MessageHandler class that implements a crude version of Jabber
packet routing.

■ A CloseStreamHandler class to shut down the connection when the client
sends its closing <stream:stream> tag.

The server’s threading system is composed of three classes, each of which repre-
sents a separate thread of execution:

■ Server—The main application class and main execution thread. This class
creates the Jabber server socket and accepts new Jabber client connections.

■ ProcessThread—This thread class handles connections accepted by the server.
It creates a JabberInputHandler and processes the incoming XML stream. A
separate ProcessThread thread handles each connection.

■ QueueThread—This thread class takes Packets from the PacketQueue and
hands them to the appropriate packet handler class. There is only one
QueueThread object active in the Jabber server.

88 CHAPTER 3

IM concepts and Jabber protocols
Figure 3.5 The server consists of one server, one PacketQueue, one QueueThread,
and many ProcessThreads (one for each connected Jabber client).

The Jabber server may have many threads running at the same time. However, there are
only three types of threads to worry about, and only the ProcessThread will have more
than one instance running in the server. To better understand how the server works,
look at the sequence diagram in figure 3.6, which shows what is happening in the server
over time.13

 We see that the Server main application class starts first. Its first task is to cre-
ate a QueueThread class. The new QueueThread immediately calls pull() to receive
a Packet from PacketQueue. QueueThread blocks because there are no packets in
the queue. The Server then waits for incoming connections by calling
java.net.ServerSocket.accept().

13 Sequence diagrams show the interaction between objects or threads over time. Time increases as you
go down the diagram with vertical bars representing a particular entity (object or thread). You can
learn more about sequence diagrams by reading a UML book (they’re also called Booch interaction
diagrams). However, I think you’ll find them pretty intuitive.

XML
stream

ProcessThread

JabberInputHandler

PacketQueue

Server
Incoming

connections

create new
ProcessThread

for each connection

XML
stream

ProcessThread

JabberInputHandler

QueueThread

P
acketH

andler

P
acketH

andler

P
acketH

andler

session

session

session

Packet handling and server threads 89
Figure 3.6 Sequence diagram of the server thread operations

A client connects to the server. This causes the Server to create a ProcessThread.
The ProcessThread begins parsing incoming XML from the stream using the SAX
parser and our JabberInputHandler class. As the client sends XML packets to the
server, the ProcessThread’s parser classes create Packet objects and calls push()
to append them to the PacketQueue.

 New Packets in the PacketQueue wake up the QueueThread (the pull() call
returns). The QueueThread determines the Packet it has pulled from the queue,
and processes it with the correct Packet handling class. The Packet handlers send
any outgoing XML packets back to the connected clients.

 Note that there is only one Server thread accepting connections, and one
QueueThread processing Packet objects from the PacketQueue. However, there is
one ProcessThread active for every connected client. There are ways to share
threads of execution for handling the incoming client connections. In addition,
servers with a lot of packets to process should probably run more than one
QueueThread. However, in our server, we’ll avoid these complications in order to
keep the operation of the server as simple as possible.

 Since the Server main class creates the QueueThread and ProcessThread, let’s
look at these two helper thread classes first, before examining the main Server
class. The QueueThread is the more complicated so we’ll begin there.

Server
(main thread)User/Client

Queue-
Thread

Process-
Thread

Packet-
Queue

Create
new QueueThread

pull()

Connect Create
new ProcessThread Parse XML

send XML
packet

push() Java
Packet

send reply
XML packet

accept()

90 CHAPTER 3

IM concepts and Jabber protocols
3.4.1 Packet handling in QueueThread
The QueueThread operates like a separate program. The Server starts one
QueueThread at the very beginning of the program, and then lets it work indepen-
dently. The QueueThread’s sole job is to pull Packets from the PacketQueue and
handle them.

 There are a large number of things you may want to do with a packet to handle
it. In fact, there are probably situations where you may want multiple handlers to
have a chance to process a particular packet. For example, you may want to log
each packet that passes through the server in addition to handling it in a normal
manner. Or you may want to filter the messages to provide higher priority to cer-
tain users or types of traffic.

 The situation is similar to the status update design problem facing the Session
class. Like the status event model, a Packet event model will also work well here.
To make this work, I need a PacketListener interface:

The PacketListener interface
public interface PacketListener {
 public void notify(Packet packet);
}

The single event notify() method passes the Packet as the event parameter.
This makes it very simple for PacketListener implementation classes to handle
the Packet without worrying about how to use the PacketQueue or what the
QueueThread is doing. The QueueThread manages the event model in a very
familiar manner.

 There is one trick with the design of the QueueThread packet event listener
code. When you register a PacketListener, you indicate the element name of
Packet classes you are interested in handling. When a Packet arrives in the Pack-
etQueue, the QueueThread calls the pull() method to obtain the Packet object
from the PacketQueue and then goes through its list of PacketListeners. The
QueueThread checks to see if the Packet’s element name matches the interests of
any registered PacketListener (see code in bold in listing 3.6). Only interested
listeners will be passed the Packet in their notify() methods.

public class QueueThread extends Thread {

 PacketQueue packetQueue;

Listing 3.6 The QueueThread class

Packet handling and server threads 91
 public QueueThread(PacketQueue queue) {
 packetQueue = queue;
 }

 HashMap packetListeners = new HashMap();
 public boolean addPacketListener(PacketListener listener, String element){
 if (listener == null || element == null){
 return false;
 }
 packetListeners.put(listener,element);
 return true;
 }

 public boolean removePacketListener(PacketListener listener){
 packetListeners.remove(listener);
 return true;
 }

 public void run(){

 for(Packet packet = packetQueue.pull();
 packet != null;
 packet = packetQueue.pull()) {

 try {
 synchronized(packetListeners){
 Iterator iter = packetListeners.keySet().iterator();
 while (iter.hasNext()){
 PacketListener listener = (PacketListener)iter.next();
 String element = (String)packetListeners.get(listener);

//An empty string "" indicates match anything
 if (element.equals(packet.getElement())
 || element.length() == 0){
 listener.notify(packet);
 }
 }
 }

//Continue to process packets no matter what happens
 } catch (Exception ex){ }
 }
 }
 }
}

The QueueThread class is simple, but manages the very complex problem of rout-
ing packets to their proper processing handlers. Next, let’s take a look at the
three Packet handling classes (listings 3.7, 3.8, and 3.9) in the basic server.

92 CHAPTER 3

IM concepts and Jabber protocols
 For the server, we are interested in doing three things for the three major
types of packets it knows about:

■ <stream:stream> our special open stream packet, should result in the server
returning an opening stream tag and assigning a stream ID to the Session.
Once the stream is established, the Session should be added to the server’s
SessionIndex.

■ </stream:stream> the special close stream packet, should result in the
server returning a closing stream tag, closing down the Session, and remov-
ing it from the server’s SessionIndex.

■ All other Jabber packets (message, presence, and iq) will be delivered to its
recipient. If the server doesn’t know how to deliver the packet, it is simply
dropped.

The OpenStreamHandler class implements PacketListener and handles open
stream packets. It has three primary responsibilities:

■ Verify the open stream tag has the correct contents. The only requirement
for now is a valid from address. We’ll use the from address to specify the
Jabber ID for the Session. Assigning a Jabber ID to the Session based on
the opening stream tag is a workaround until we add user accounts and
client authentication in chapter 6. Standard Jabber servers should reject
client streams containing a from address so this workaround must be very
temporary.

■ Update the SessionIndex.
■ Create a return open stream tag to return to the client. This involves switch-

ing the from and to addresses of the packet and assigning a unique stream
ID to the packet.

public class OpenStreamHandler implements PacketListener{

 static int streamID = 0;
 SessionIndex sessionIndex;

 public OpenStreamHandler(SessionIndex index) {
 sessionIndex = index;
 }

 public void notify(Packet packet){

 try {
 Session session = packet.getSession();

Listing 3.7 The OpenStreamHandler class

Packet handling and server threads 93
 String from = packet.getFrom();
 if (from == null){
 session.getSocket().close();
 return;
 }

 session.setJID(new JabberID(from));
 session.setStatus(Session.STREAMING);
 session.setStreamID(Integer.toHexString(streamID++));
 sessionIndex.addSession(session);

 packet.setTo(packet.getFrom());
 packet.setFrom(Server.SERVER_NAME);
 packet.setID(session.getStreamID());
 packet.writeXML();

 } catch (Exception ex){
 ex.printStackTrace();
 }
 }
}

Notice that the generation of a unique stream ID is a simple matter of assign-
ing an increasing integer value to the stream for each connection. The
stream ID is used in some of the authentication protocols for added security.
Servers that support those authentication protocols will need to generate
stream ID values in a random manner to prevent hackers from breaking
authentication security.14

 Closing the stream is simpler than opening it. All the CloseStreamHandler
packet handler must do is:

■ Send a reply close stream tag </stream:stream>. This is optional and the
reference Jabber server does not do this.

■ Close the Session’s Socket.
■ Remove the Session from the Server’s SessionIndex.

14 We’ll discuss the issue in more depth in chapter 6.

Verify the packet
contains valid
Jabber ID

Update
SessionIndex

Send response
OpenStreamPacket
to client

94 CHAPTER 3

IM concepts and Jabber protocols
The code is shown in listing 3.8.

public class CloseStreamHandler implements PacketListener {

 SessionIndex sessionIndex;

 public CloseStreamHandler(SessionIndex index) {
 sessionIndex = index;
 }

 public void notify(Packet packet){
 try {
 packet.writeXML();

 Session session = packet.getSession();
 session.getSocket().close();

 sessionIndex.removeSession(session);

 } catch (Exception ex){
 sessionIndex.removeSession(packet.getSession());
 }
 }
}

The final packet handling class is DeliveryHandler. This class simply sends pack-
ets to their recipients. It uses the SessionIndex to match the recipient Jabber ID
with a Session for sending the packet. The resulting routing behavior was already
explained in the SessionIndex class discussion. The majority of the routing work
is done in the SessionIndex class so the DeliveryHandler is short and simple.
(Listing 3.9)

public class DeliveryHandler implements PacketListener {

 SessionIndex sessionIndex;

 public DeliveryHandler(SessionIndex index) {
 sessionIndex = index;
 }

 public void notify(Packet packet){
 String recipient = packet.getTo();

Listing 3.8 The CloseStreamHandler class

Listing 3.9 The DeliveryHandler class

Packet handling and server threads 95
//Messages sent to the server are ignored
 if (recipient.equalsIgnoreCase(Server.SERVER_NAME))
 return;
 }

 try {
 Session session = sessionIndex.getSession(recipient);

 if (session != null){
//Deliver the packet

 packet.writeXML(session.getWriter());
//Recipients that are not online are dropped

 } else {
 return;
 }
 } catch (Exception ex){
 ex.printStackTrace();
 }
 }
}

The event-driven design of the QueueThread will let us make small changes to the
various packet handling classes to add new Jabber features without affecting other
parts of the server. This is going to be especially important for the DeliveryHan-
dler class. We will be adding new delivery options to the Jabber server through-
out the rest of the book.

 For now, this simple QueueThread and its packet handling classes will let us
explore the Jabber message protocols in the next chapter. Next, we will discuss
the ProcessThread class that works in coordination with the QueueThread through
the PacketQueue.

3.4.2 Parsing XML in the ProcessThread
If the PacketQueue is emptied by the QueueThread, it must be filled by another
thread. We already know that the JabberInputHandler XML parser puts Packets
into the PacketQueue given a Session object. Unfortunately, it can only handle
one incoming XML stream at a time. In addition, it doesn’t complete its process-
ing until the stream it is working on is closed. To support multiple simultaneous
connections, we need to create a separate thread of execution for each client/
server connection. This is the task of the ProcessThread class (listing 3.10).

96 CHAPTER 3

IM concepts and Jabber protocols
 The server will create a ProcessThread for each client connection. The Pro-
cessThread is then started and processes the incoming XML stream using a Jab-
berInputHandler.

public class ProcessThread extends Thread {

 Session session;
 PacketQueue packetQueue;

 public ProcessThread(PacketQueue queue, Session session){
 packetQueue = queue;
 this.session = session;
 }

 public void run(){
 try {
 JabberInputHandler handler = new JabberInputHandler(packetQueue);
 handler.process(session);
 } catch (Exception ex){
 ex.printStackTrace();
 }
 }
}

Notice that the thread calls process() and then exits, and that there is no loop-
ing. Recall from section 3.3.3 that the JabberInputHandler reads data from the
Session’s Reader until the connection is closed. Once the connection is closed,
the process() method call returns and we don’t need this thread any more (the
client has left).

THREAD POOLS
Large-scale server programmers are always looking to recycle and share valuable re-
sources, a technique often called resource pooling. Valuable resources for servers are
network connections, threads of execution, and live objects (memory). The Pro-
cessThread contains all three. Yet we use a separate ProcessThread instance
with all its valuable resources for each client connection. Our goal of supporting a
small workgroup of clients makes this design acceptable. However, if you need to
support thousands of users you will need to rethink the ProcessThread and
come up with ways to reduce its resource consumption.

Listing 3.10 The ProcessThread class

◆

Packet handling and server threads 97
3.4.3 The main application Server class
The Server class launches the Jabber server and creates all of its threads and
objects. The other threads and classes we have discussed are pretty intelligent so
the Server is relatively simple. It has a limited number of tasks:

■ Creating a PacketQueue that all threads share.
■ Creating a QueueThread, configuring it with packet handlers, and starting it.
■ Going into an infinite loop accepting new network connections and creat-

ing ProcessThreads to handle them.

The code that accomplishes these tasks contains no surprises so I’ll let it speak for
itself (listing 3.11).

//Hardcoded info should be in configuration files
final static public int JABBER_PORT = 5222;

 final static public String SERVER_NAME = "127.0.0.1";

 static public void main(String [] args){

 System.out.println("Jabber Server -- " + JABBER_PORT);

//The shared PacketQueue
 PacketQueue packetQueue = new PacketQueue();

//Creating and starting QueueThread
 QueueThread qThread = new QueueThread(packetQueue);

//Daemon threads don't keep an application running;
//We rely on the main thread to do that

 qThread.setDaemon(true);

//Register the packet handler classes with the QueueThread
 qThread.addPacketListener(new OpenStreamHandler(index),
 "stream:stream");
 qThread.addPacketListener(new CloseStreamHandler(index),
 "/stream:stream");
 qThread.addPacketListener(new DeliveryHandler(index),
 "");

 qThread.start();

 ServerSocket serverSocket;

 try {

//Begin listening on Jabber port
 serverSocket = new ServerSocket(JABBER_PORT);

 } catch (IOException ex){
//If port not available, server shuts down

 ex.printStackTrace();

Listing 3.11 The Server class

98 CHAPTER 3

IM concepts and Jabber protocols
 return;
 }

 while (true){
 try {

//Accept new connections forever
 Socket newSock = serverSocket.accept();
 Session session = new Session(newSock);

//Create and start a thread to handle new connection
 ProcessThread processor = new ProcessThread(packetQueue,
 session);
 processor.start();
 } catch (IOException ie){
 ie.printStackTrace();
 }
 }
 }
}

The Server class performs basic application setup then accepts incoming client
connections. Notice that the class contains hard-coded application settings for the
server’s domain name and port. One of the first things you may want to play with is
storing these settings in a configuration file so that it is easier to change the server’s
settings. In addition, there is no way to stop or restart the server once it is started.15

Another glaring omission is the lack of test and logging code in the server.
 You will need to obtain the full server source online (www.manning.com/shi-

geoka) and follow the instructions to unpack, compile, and run the server. Once
you have the server installed and running, you can begin manually testing the
server using telnet.

3.5 Testing the server

One of the simplest ways (if not the most tedious) to test the server is to use tel-
net.16 First start the server. I have included a simple Windows batch file named
server.bat with the online source code to start the server on Windows. I’ve also
included a simple Unix shell script that will do the same on Unix17 and MacOS X.

15 You can stop the server by terminating the Java Virtual Machine (JVM): usually this can be done by
pressing CTRL+C.

16 Telnet is a simple networking tool that should be included as part of any complete TCP/IP stack. It is
available as part of all of the Windows OSs, as well as MacOS X, and all Unix versions.

Testing the server 99
The server should start and print its banner “Jabber Server -- ####” where #### is
the port number it is using. By convention, the port number for Jabber is 5222.

 To test the server, open a console/terminal window and type: “telnet host-
name port” where “hostname” is the Internet domain name or network address of
the computer the server is running on and “port” is the port number that the Jab-
ber server reported in its startup banner. If you’re running the server and telnet
on a computer without a network you can use 127.0.0.1 as the host name (e.g.,
“telnet 127.0.0.1 5222” without the quotes).

 Telnet will connect with the Jabber server and wait for you to type something.
Type in the opening stream tag:18

<stream:stream from='user@server/resource' to='server'>

The server will respond with its stream tag, including a stream ID. Now close the
stream by typing:

</stream:stream>

The server will respond with its closing stream then close the connection. Telnet
will exit and you’ll be back at the prompt. A typical session should look something
like the following:

Telnet testing the server
% telnet 127.0.0.1 5222
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
Send: <stream:stream
Send: from='iain@shigeoka.com/work'
Send: to='shigeoka.com'
Send: xmlns='jabber:client'
Send: xmlns:stream='http://etherx.jabber.org/streams'>
Recv: <stream:stream
Recv: from='shigeoka.com'
Recv: to='iain@shigeoka.com/work'
Recv: xmlns='jabber:client'
Recv: xmlns:stream='http://etherx.jabber.org/streams'
Recv: id='0'>
Send: </stream:stream>
Recv: </stream:stream>
Connection closed by foreign host.

17 I include Linux and the BSDs like FreeBSD in the Unix category.
18 Our server does not check for the stream namespace attribute: xmlns='http://etherx.jabber.org/

streams' although it should. It is required by the Jabber protocols. The open source reference Jabber
server rejects streams without this namespace.

100 CHAPTER 3

IM concepts and Jabber protocols
Now try the same thing with two telnet sessions in two console/terminal windows
at the same time with different “from” Jabber ID’s to make sure the server can
handle more than one connection at a time. Experiment by sending message
packets addressed to the other telnet session to see how the server routes mes-
sages. A message packet is typically of the form shown here:19

Sample Message Packet
<message from='iain@shigeoka.com/work' to='iain@shigeoka.com/home'>
 <body>
 This is the message
 </body>
</message>

The server provides a good starting point for future explorations into the Jab-
ber protocols. Now that we have a basic Jabber server, we need a basic Jabber cli-
ent. Having both a client and server will allow us to test them against each other
rather than debugging them using telnet.20 We’ll develop a Jabber client in the
next chapter.

3.6 Conclusion

The code for a basic Jabber server introduced in this chapter can handle Jabber
packets and valid Jabber XML streams. Throughout the rest of the book, we will
add to this server to support other parts of the Jabber protocols.

 The code demonstrates how simple—and powerful—the Jabber platform is. It
allows us to quickly build Jabber software and embed it into all sorts of devices
and applications. Using Jabber IM we can concentrate on building software sys-
tems to do what we want without wasting time and resources on basic messaging
infrastructure.

 To show just how simple and fun Jabber can be, the next chapter introduces
the most important and useful Jabber core protocol: message.

19 We’ll look at the message packet in detail in the next chapter.
20 Testing with telnet is a bit crude but shows the advantage of using XML rather than binary data formats.

We sacrifice network bandwidth efficiency but gain the ability to directly play with the protocols without
any tools beyond telnet. Rather than type XML packets directly into telnet, though, I find it much eas-
ier to type into a text editor and then cut and paste into the telnet window. That way I can edit the
packets and reuse them.

 4The Jabber
message protocols
In this chapter
■ The Jabber message protocol and how

it works
■ The basic design of a Java Jabber client
■ Source code for implementing a

Java Jabber client
■ Creating clients for testing our Jabber

server’s message protocol support

101

102 CHAPTER 4

The Jabber message protocols
Messaging is the heart and soul of every IM system. The Jabber <message> protocols pro-
vide a simple yet powerful framework for sending and receiving messages. In this chap-
ter, we will discuss the Jabber message protocol and how it works. To demonstrate, we
will create a basic Jabber client that can send and receive messages through the Jabber
server we developed in the last chapter.

4.1 Messaging is the heart of IM

Sending messages is the primary responsibility of the Jabber system. Jabber sup-
ports six primary types of <message> packets: normal, chat, groupchat (confer-
ences), headline, error, and out-of-band messages. Each uses a different model of
communication and is best suited for different situations. The following table
summarizes the various message options.

Table 4.1 Jabber message types and messaging model.

The first five message types fall within the Jabber <message> protocol. Each sends its
contents within the <message> element. These are the most common types of mes-
sages sent in Jabber systems. In this chapter, we’ll build a client that supports them.

 Out-of-band messages provide a mechanism for clients to directly exchange
data (typically files). The out-of-band protocol uses the Jabber server to exchange
information about how the clients will talk to each other (usually by sending a
web URL for downloading the file).

 You can send out-of-band tags as either an X extension within a <message> element,
or as an Info/Query packet1. We’ll briefly cover the X extension version of the out-of-
band message in this chapter. The IQ protocol is explained in detail in chapter 6, and
the exact usage of the out-of-band IQ extension is detailed in appendix A.

Message Style Type Model Typical interface

Normal normal Email-like messages (default) Message editor

Chat chat One-on-one online chat Line by line chat

Groupchat groupchat Online chatroom Line by line chat

Headline headline Scrolling marquee message “Stock Ticker”

Error error Message error occurred Alert dialog box

Out-of-Band X Extension
jabber:x:oob

Direct client to client file
exchange. Defined in an X exten-
sion in <message> element.

Napster/FTP

1 X Extensions are simple Jabber packets in an <x> element. They provide an extension mechanism for
adding custom content to standard Jabber packets. I’ll discuss this in more detail later in the chapter.

The message protocol 103
4.2 The message protocol

The message protocol is extremely simple: message packets are sent from a
sender to a recipient. By default, there is no acknowledgement when the recipient
receives the message. If a message is sent and the recipient is not reachable, the
server is obliged to store the message and deliver it when the recipient becomes
available,2 a process referred to in messaging systems as store and forward.

 A basic message packet consists of a <message> element with the typical Jabber
from, to, and id packet attributes. The message packet supports four standard
subelements3 shown in table 4.2.

Table 4.2 The sub-packets allowed within a <message> packet.

Let’s take a look at the XML for a complete message packet. This message is being
sent from “iain” to “smirk.” Most message packets do not contain an id attribute
(it is optional).

Sample message packet
<message from='iain@shigeoka.com/work'
 to='smirk@jabber.org/home'
 id='messageid1'>
 <thread>threadid_01</thread>
 <subject>The message's subject</subject>
 <body>The text in the message body</body>
</message>

2 In the Jabber server developed in the previous chapter, I cheated a little and we simply dropped mes-
sages addressed to someone that is offline. This flaw will be fixed in chapter 7 when we create user ac-
counts on the server.

3 There are several X extensions that are also supported within a <message> packet. I’ll cover what an X
extension is and show an example when I discuss the out-of-band X extension later in this chapter.

Sub-Packet Description

<subject> Indicates the subject of the message similar to the subject field in an email message.

<thread> A client generated identifier to help track messages belonging to a single “thread”
of conversation.

<body> The message body is enclosed in this element.

<error> If an error occurred, the standard Jabber error packet is enclosed in the message.

104 CHAPTER 4

The Jabber message protocols
The <thread> packet is used to keep different threads of messages together.4 In
this example, our thread ID is threadid_01. All messages sent between clients with
the same thread ID will be displayed together5. In most graphical user interfaces
(GUIs) this would be shown in a line-by-line chat interface. This allows you to chat
with several people at once and keep each conversation separate.

 When clients send messages to servers, the sender is implied to be the client’s
Jabber ID, and the recipient is assumed to be the server if no recipient is specified.
Some Jabber servers may not allow you to send messages with a sender address
that does not match the sender’s session address. A perfectly valid (and typical)
message sent to the server is:

<message to='smirk@jabber.org'>
 <body>howdy</body>
</message>

The server fills in implied fields for final delivery as shown in this example:

<message from='iain@shigeoka.com/work'
 to='smirk@jabber.org'>
 <body>Howdy</body>
</message>

4.2.1 Normal messages
The default message type is a normal message. These messages are typically created
and displayed using interfaces similar to that used in email applications
(figure 4.1). Like email, normal messages are sent to Jabber users who aren’t nec-
essarily online. These messages tend to be longer than other message types and
resemble letters or memos.6

 Message packets that do not contain a type attribute are considered normal
messages (figure 4.1). In addition, you can explicitly indicate a message is a normal
message by setting the type attribute to normal as shown in the following example.7

4 The <thread> packet is an aid to the Jabber client for correctly displaying related messages. It is not re-
quired, however, and clients should be able to display messages missing the <thread> packet.

5 The id attribute indicating the packet ID is also used to link related packets. However, the packet ID
links request packets to response packets, or any packet and its associated error messages. The Info/
Query protocols covered in chapter 6 rely heavily on the packet ID for its request-response process.

6 Typically, normal messages contain static content intended for offline delivery or more formal commu-
nications. Chat messages (covered in the next section) are intended for short messages where the user
may or may not be online (all message types will be stored offline and delivered later). Think of normal
messages as letters, while chat messages are Post-It notes.

The message protocol 105
Sample normal message packet
<message from='iain@shigeoka.com/work'
 to='smirk@jabber.org/home'
 id='messageid2'
 type='normal'>
 <thread>threadid_02</thread>
 <subject>The message's subject</subject>
 <body>The text in the message body</body>
</message>

It is typical for Jabber client applications to offer users the ability to start chatting
with the sender of a normal message.

4.2.2 Chat messages
Jabber users send chat messages back and forth to other users who are online at
the same time they are. These messages tend to be short and conversational, like
the type of communication you do over a telephone. Chat messages are typically
displayed in a line-by-line interface.8 When you write a chat line-by-line interface,
you must place a copy of the messages you send into the chat window so the user
can see both sides of the conversation.

 Chat messages (figure 4.2) must have their type attribute set to chat. In
addition, the message should contain a <thread> subelement. Jabber clients
link messages into a threaded conversation using the <thread> ID. All chat mes-
sages that belong to a single conversation should use the same <thread> ID. It is
common for the <subject> to be omitted in chat messages.

7 There are few good reasons to force the normal message type. If you’re sending a normal message, leave
the type attribute out. It’s more efficient. The only reason I can see to force it is if your software is not
flexible enough to send packets without a type attribute.

8 There are many innovative ways of displaying chat messages. Some clients display them as “thought bub-
bles” above animated cartoon characters, while others may use virtual reality or text-to-speech software
to enhance the chat experience.

Figure 4.1
A typical normal message being
displayed in the JabberFOX client
(jabberfox.sourceforge.net).

106 CHAPTER 4

The Jabber message protocols
Sample chat message packet
<message from='iain@shigeoka.com/work'
 to='smirk@jabber.org/home'
 id='messageid3'
 type='chat'>
 <thread>threadid_03</thread>
 <body>The text in the message body</body>
</message>

Chat is useful for conducting one-on-one online conversations. When you need to
converse with many people at once, you need to use groupchat messages.

4.2.3 Groupchat messages
Groupchat messages are similar to chat messages but they are designed to support
online conversations within groups. Instead of a one-on-one conversation like
chat, groupchat allows many users to send and receive messages from an entire
group of people.9 Everyone participating in the group, including the sender,
receives a copy of the message.

 When creating your groupchat user interface (figure 4.3), your interface
should send groupchat messages to the group and update the groupchat inter-
face with incoming messages. Groupchat servers automatically send groupchat
messages to participants (including the sender). This feature relieves you from
manually copying your outgoing messages to the groupchat window.10

 A groupchat server manages groupchat conversations. In most Jabber servers,
the groupchat server will be built into the Jabber server although it is possible to
design a separate Jabber server that functions solely as a groupchat server.
Groupchat conferences may be enhanced, supplemented, or replaced in the future

9 Jabber groupchats are often called conferences, chatrooms, or forums.
10 In chat message interfaces you must manually copy your outgoing messages into the chat window so

the user sees both sides of the conversation. The server will not send you a copy of your own messages
like it does in groupchat messaging.

Figure 4.2
A typical chat message being displayed
and edited in the Jabber Instant
Messager client (www.jabber.com).

The message protocol 107
by conferences using the jabber:iq:conference IQ extension protocol. I expect
that the two will coexist in future Jabber servers. See the jabber:iq:conference IQ
extension specification in this book located in appendix A.

Groupchat message packets are like chat packets except the type attribute is set to
groupchat. Notice that you are sending messages to the groupchat server and not
directly to another Jabber user. Groupchat groups use special Jabber IDs. The
standard format for a groupchat group address is: [group name]@[groupchat
server]/[user nickname]

 Users can choose an arbitrary groupchat nickname for each group they join.
It doesn’t necessarily have anything to do with their regular Jabber user name.
For example, we have a user name of “iain,” with a Jabber ID of “iain@shi-
geoka.com/work.” We want to send a message to the groupchat group named
“java-users” on the groupchat server conference.shigeoka.com. We’ve
already joined the group using the nickname “hacker.” Our client sends a <mes-
sage> packet to the group (java-users@conferences.shigeoka.com) that looks
like the following:

Sample groupchat message outgoing packet
<message from='iain@ shigeoka.com/work'
 to='java-users@conference.shigeoka.com'
 id='messageid4'
 type='groupchat'>
 <thread>threadid_04</thread>
 <body>The text in the message body</body>
</message>

The groupchat server receives the message and sends it to all members of the java-
users group including our Jabber client.

Figure 4.3
A typical chat message being displayed
and edited in the Jabber Instant
Messager client (www.jabber.com).
Notice that the presence of
participants is shown on the right.

108 CHAPTER 4

The Jabber message protocols
Sample groupchat message incoming packet
<message from='java-users@conference.shigeoka.com/hacker'
 to='iain@shigeoka.com/work'
 id='messageid4'
 type='groupchat'>
 <thread>threadid_04</thread>
 <body>The text in the message body</body>
</message>

One of the great things about this design is that the other members of the group
never see my real Jabber ID. The only information they know is that the messages
are coming from java-users@conference.shigeoka.com/hacker. This prevents peo-
ple from hanging out on the groupchat server and scraping Jabber IDs from the
groups for spam lists or stalking users outside of the conference.

 There is something missing from the groupchat message protocol, though. If
you were paying close attention to the outgoing groupchat packet example, you’ll
notice that there is no information in it telling the server that I’m using the nick-
name “hacker.” Nor can the conference server determine who is in the confer-
ence just from the message itself.

 Mapping Jabber IDs to nicknames, managing conference membership, and
other administrative issues concerning Jabber groupchat groups are handled
using the Jabber presence protocols.11 An advanced form of groupchat called
conferencing is being proposed and uses the IQ protocols.12

4.2.4 Headline messages
Headline messages are Jabber messages designed for display in scrolling mar-
quees, status bars, or other client interfaces designed for streaming information.
It is common for automated chatbot services to generate headline messages con-
cerning current events and news such as weather reports, severe weather alerts,
and stock quotes.

 Headline messages use a type attribute of headline and typically don’t require
a <thread> or <subject> subelement.13

11 Presence protocols are discussed in chapter 5 where we’ll implement support for basic groupchat.
12 Info/Query protocols are discussed in chapter 6. The conferencing protocol is included in appendix A.
13 There is an exception to the lack of <subject> tags in headline messages. When creating streaming

news services, it is common to use the <subject> for a news subject line, <body> for the news article
itself, and the oob X extension to provide a URL for more information. This is similar to RDF Site Sum-
mary (RSS) functionality (purl.org/rss/1.0/spec).

The message protocol 109
Sample headline message packet
<message from='quote-bot@stockbroker.com'
 to='iain@ shigeoka.com/work'
 id='messageid5'
 type='headline'>
 <body>SUNW 10</body>
</message>

The last message type that is supported by the <message> packet is the standard
Jabber error message.

4.2.5 Error messages
When you send a message, there is always a chance that something will go wrong
or the recipient will refuse the message. The error message type is used to notify
the sender that the message they sent has encountered problems. The error
packet shown in listing 4.1 is the standard Jabber error packet that we covered in
the last chapter.

Send: <message from='iain@shigeoka.com/home'
Send: to='hotbabe@ shigeoka.com'
Send: id='messageid6'
Send: type='normal'>
Send: <subject>Doing anything tonight?</subject>
Send: <body>Hi, how about a date!</body>
Send: </message>
Recv: <message from='hotbabe@shigeoka.com/jacuzzi'
Recv: to='iain@shigeoka.com/home'
Recv: id='messageid6'
Recv: type='error'>
Recv: <error code='400'>
Recv: Go away!
Recv: </error>
Recv: </message>

Notice that the message id attribute (messageid6 in this example) is preserved
from the original message to the error message. This allows the client to match up
the message it sent with the error message it received. Remember that messages
are normally sent one-way so you may have sent many other messages before
receiving an error message response.

Listing 4.1 Sample error message packet

110 CHAPTER 4

The Jabber message protocols
NOTE Error messages don’t necessarily refer to the last message you sent
You must match error messages to their cause by examining the
packet ID.

4.2.2 Out-of-band messages
The last type of standard Jabber message, an out-of-band message, isn’t really a
Jabber message at all. Instead, it is a message X extension that is sent inside of a
standard Jabber <message> packet (usually a message of type normal).

 An out-of-band message contains information, typically a URL, that clients can
use to conduct a direct client-to-client data transfer that bypasses the normal cli-
ent-server-client Jabber message routing. Jabber clients will typically implement
this by running a web server or FTP server either separately or as part of the Jab-
ber client. The out-of-band message then tells the downloading client what URL
to use to hit the web/FTP server and download the file.

 Out-of-band messages are typically used to arrange sending large files that
would cause severe server bandwidth shortages were routed through the server.
For example, you may want to add music trading to your Jabber client application.
The chat and song searching functions can occur over the Jabber server, but
transferring multimegabyte MP3 files through the server would quickly bring your
server to its knees. Ideally these high bandwidth transfers can be done directly
between the clients resulting in:

■ Reduced server load
■ Possibly faster transfers
■ Support for streaming network broadcasts

OUT-OF-BAND SECURITY RISKS
Note that the advantages of out-of-band messaging don’t come without a cost.
Since clients must directly communicate with each other, the client’s security and
privacy can be violated in ways that are impossible when all communication occurs
through the Jabber server. In addition, network issues such as getting through fire-
walls and proxy servers are multiplied when clients must act as file servers.

These issues lie beyond the Jabber standards so Jabber client developers are of-
ten left on their own when trying to create robust and secure out-of-band systems.
In addition, your solution may not work with other Jabber clients unless everyone
agrees on how the out-of-band transfers will take place. Out-of-band messaging is
an area of great interest and debate in the Jabber community. Hopefully in the fu-
ture, the protocols for carrying out an out-of-band transfer will be standardized and
added to the Jabber standards.

◆

The message protocol 111
 Two protocols are involved in carrying out an out-of-band transfer. The first
uses the oob X extension for exchanging URLs used for the transfer, the second
uses the oob IQ protocol for initiating the transfer.

 Two protocols are involved in carrying out an out-of-band transfer. The first
uses the oob X extension for exchanging URLs used for the transfer, the second
uses the oob IQ protocol for initiating the transfer. We’ll cover the Info/Query
protocol in chapter 6. Let’s take a look at the X extension technique here. In
order to understand how the out-of-band X extension works, we first need to
understand X extensions in general.

X extensions
The Jabber designers know that although the Jabber packets can handle the
majority of IM tasks, there will always be additional features that people would like
to support. To keep the protocol extension process under control, the Jabber
core protocols support X extensions.

 An X extension is simply an <x> packet within the core Jabber packet types:
<message>, <presence>, and <iq>. By making <x> packets a valid subelement of the
core packets, you can comply with the Jabber DTD and create a valid Jabber
packet that contains this mysterious <x> packet.

 The <x> packet has no default sub-elements.14 To create an X extension, you
must define a new namespace within the <x> packet, and then insert any XML infor-
mation you want in the packet. The XML namespace ensures that you won’t violate
the validity of the resulting XML fragment. Sometimes it is easier to show an exam-
ple than to try to explain. So let’s take a look at the out-of-band X extension.

The out-of-band X extension
The out-of-band (oob) X extension is a standard Jabber X extension that allows
you to specify an out-of-band transfer mechanism. Think of it as a URL passer.15 It
resides in the jabber:x:oob namespace and contains two subelements:

■ <url>—The URL describing the out-of-band transfer.
■ <desc>—A text description of the data to be transferred.

14 For XML gurus, the <x> packet is defined in the parent packet DTDs so that it is a valid subpacket that
conforms to the Jabber DTDs. However the <x> packet itself has no default subpackets allowing you to
define its contents independently using an XML namespace.

15 The actual file exchange is initiated using the out-of-band IQ protocol jabber:iq:oob. You can learn
more about the Info/Query protocol in chapter 6 and the specifics of the jabber:iq:oob protocol in
appendix A.

112 CHAPTER 4

The Jabber message protocols
The out-of-band X extension tells the receiving client where to get the file
(figure 4.4). It does not actually contain the file (otherwise it would have passed
through the server). In general, out-of-band transfers are an advanced feature
typically found in only the more sophisticated Jabber clients

An out-of-band X extension in a message packet might be presented in a Jabber
client with an email with attachments interface.

A message packet with out-of-band X extension
<message from='iain@shigeoka.com/work'
 to='iain@shigeoka.com/home'
 id='messageid8'
 type='normal'>
 <subject>Work files</subject>
 <body>Attached are some work files I may need</body>
 <x xmlns='jabber:x:oob'>
 <url>http://workserver/book.zip</url>
 <desc>Archive of my book</desc>
 </x>
</message>

In the interest of focusing on core Jabber protocols, we’ll end our discussion of
X extensions here. Although they are important parts of the Jabber protocols, X
extensions are not essential for IM. By reading the reference section on the
existing X extensions at the end of this book, it should easy to determine what X
extensions are important for your project.

 The client software we develop in this book will not support out-of-band transfers.

4.2.3 Reality check: one message, many user interfaces
The six messages types covered here represent the full range of messaging
options available in a standard Jabber server. From this limited selection of mes-
sage types, rich communication experiences have been created. In fact, from a

Jabber
client

Jabber
server

Jabber
client

Web
server

Send oob
message

Deliver oob
message

Request
oob data

Return oob data

Figure 4.4
Out-of-band data is sent as an
oob message through the
Jabber server. The recipient
must request the actual oob
data directly from the
sending client using some
other protocol such as HTTP
or FTP (here a web server and
HTTP is used).

Java Jabber client 113
packet and protocol standpoint, the messages are all similar and it is perfectly
valid to consider them all the same packet from a software standpoint.

 The real difference in the Jabber message types lies not in the packet structure
or protocols but in the interface that Jabber clients provide for the user to inter-
act with the different message types. In fact, I believe that Jabber clients and the
Jabber IM experience are driven by the user interface, not the quality of the tech-
nical implementation of the protocols.

 The Jabber protocols are simple. The real challenge facing Jabber developers
is to create friendly, enjoyable, exciting, and productive Jabber user experiences
using them. To help you explore these issues, we’ll create a bare-bones Jabber cli-
ent that you can use for your own user interface experiments.

4.3 Java Jabber client

Jabber servers have a fairly well-defined role handling Jabber connections and
properly responding to requests. Jabber clients on the other hand can appear in a
bewildering variety of forms. The most common is a stand alone IM client that
operates similarly to well-known IM clients such as AIM or ICQ.

 Jabber clients don’t have to be written that way, though. You can add Jabber
client capabilities to your existing application offering your users built-in IM or
simple chat features. Alternatively, many people are writing chatbots, Jabber cli-
ent programs that act as servers in their own right, offering services on top of the
Jabber system.

 For example, you could write a chatbot that looks like another Jabber user on
the Jabber server. If you send an IM to the chatbot, it might respond by telling you
the local weather forecast or your bank account balance. The Jabber services pro-
vided by chatbots are similar to the heavily hyped web services programming
model that uses XML over the Internet for similar purposes. Chatbots and other
advanced uses for Jabber clients are covered in more depth in chapter 10.

Table 4.3 Typical types of Jabber client applications. Most users are familiar with the graphical user
agent clients they use on their desktop. However, developers will probably find the most opportunities in
developing chatbots and test clients.

Client type
Relationship with

human “user”
Example applications

User agent Tool for using Jabber IM messaging application, chat feature in games

Chatbot Provides “services” via
Jabber IM

A weather service, a stock quote service

Test client None Standards compliance, stress testing,
benchmarking

114 CHAPTER 4

The Jabber message protocols
This section will show you the code for a basic test client. Throughout the rest of
the book we’ll use the client to test the Jabber server and to demonstrate client
features of the Jabber protocols. In addition, you can use the Jabber client soft-
ware developed here in your own Jabber client software projects.

4.3.1 Goals
As with the Jabber server software, we want the client to be simple, standards-com-
pliant, easy to understand, and easy to modify. In addition to these goals, the cli-
ent code is designed to be easily usable both in applications where it has a user
interface, and those where it does not. Although most people’s initial fascination
with IM software lies in creating IM clients, I believe a few players will come to
dominate this market just as they do for web and email clients. I anticipate that
the real market for most developers of IM software is implementing Jabber func-
tionality inside of other applications, in embedded systems, and offering Jabber
chatbot services over the IM network.

 The Jabber client developed in this book will not be particularly useful as a
user-friendly IM client. The reason is practical. There simply is not enough room
in this book to cover the source code needed to build a full-featured user inter-
face with features such as extensive error checking, user customization, and help
files that should be part of any user application.

 User applications contain a bewildering amount of minor user interface
details that are straightforward to implement, but are composed of a large quan-
tity of mundane, tedious code. It would be a waste of paper to print the source
code for all of that. In addition, it is exactly these details that will differentiate
your Jabber client from another one. If you need a fully functional Jabber client
to use with the Jabber server created in this book, you can either expand the Jab-
ber client code to create a GUI, or simply download one of the many free Jabber
clients that are available (see www.jabber.org to get started).

 Although a full-blown user agent program is beyond the scope of this book,
you should be able to create one from the source in this book. To keep things
manageable, the client in this book will only support the Jabber features that I
cover in detail in this book:

■ Messaging—Sending and receiving Jabber IM.
■ Presence—Sending and receiving presence information.
■ Info/Query—Basic information exchange between Jabber entities. This is

a broad area and I’ll restrict myself to three protocols from the full set
IQ protocols:

Java Jabber client 115
■ Roster Management—Subscribing and maintaining your online presence
status.

■ Registration—Creating user accounts on open Jabber servers.
■ Authentication—Logging in to a Jabber server.

4.3.2 The client design
Our Jabber client is an extremely simple piece of software. Right now, it needs to
complete the following basic tasks:

■ Connect to a Jabber server.
■ Send an opening <stream:stream> tag.
■ Send <message> packets.
■ Receive and display <message> packets.
■ Send a closing </stream:stream> tag.
■ Exit.

To aid us in debugging and to let the user know what is happening, we also want the
client software to indicate to the user what the status is of the Jabber session, and to
provide a listing of all the raw data being sent between the client and server.

 We will use the Model-View-Controller (MVC) design pattern (figure 4.5) to
facilitate the use of the client software with graphical user interfaces (GUI) as well
as in applications with a limited or absent user interface. The MVC design pattern
is described by Buschmann et al16 as follows:

Figure 4.5 The Model-View-Controller design pattern separates the user’s display (View), from
interpretation of user inputs (controller), and the data and functionality of interest (Model).

16 Buschmann et al, Pattern-oriented Software Architecture: a System of Patterns (John Wiley & Sons, 1996),
p. 125.

user input

Model events

Update view
User

View Controller

Model

update
model

116 CHAPTER 4

The Jabber message protocols
The Model-View-Controller architectural pattern (MVC) divides an interactive
application into three components. The model contains the core functionality and
data. Views display information to the user. Controllers handle user input. Views and
controllers together comprise the user interface. A change-propagation mechanism
ensures consistency between the user interface and the model.

 In this book, we will focus on discussing the client model classes from the MVC
pattern. In this chapter, the client model must manage the Jabber connection,
keep a status model, and log the Jabber XML stream. The client model will reuse
most of the server code covered in the previous chapter so this is not as much
work as it sounds.

 We’ll create a rudimentary test harness around the model to show how to use
it, and to drive our client/server tests. I don’t want to place too much emphasis
on the user interface aspects of the client code so the client won’t have one. User
interfaces are something I leave to you to design for your own needs and tastes.

 I hope that you will be able to use this book’s source code to create your own
user interfaces and attach them to our client model. You can therefore build and
control the look and feel of your Jabber client, while using the book code to
manipulate Jabber functionality and data. In addition, if you don’t need a user
interface, you can build an application that directly manipulates the client model
we build here.

 With that said, let’s take a look at the client model source code.

4.3.3 The client model
The client model classes will handle all of the Jabber responsibilities of the client.
Recall that for this chapter, we want to open a Jabber stream, send messages,
receive messages, and close the stream. We have already developed software that
does these things as part of the server in chapter 3. We can simply reuse that code
here to create a client model, as shown in figure 4.6.

Figure 4.6 The client follows a similar architecture to the server, and reuses many
of the server’s classes.

Jabber
server

Incoming XML
stream

Outgoing XML
stream

Jabber client

SAX parser
JabberInputHandlerSession

XML

Packet handlers

Packet handler

Packet queue

Packets
XML

TestThread

Java Jabber client 117
We are not just reusing the server’s design. Many of the main server classes,
like the JabberInputHandler and ProcessThread are directly reused from
the server. This makes the client-specific code compact enough that we can
easily package it into a single model class, the JabberModel.

 The JabberModel’s primary job is to make Jabber related tasks simple. Packet
handling is carried out by a combination of TestThread actions and packet han-
dling classes similar to that on the server. The JabberModel’s basic operations are
outlined in the sequence diagram shown in figure 4.7.

Figure 4.7 The TestThread (replacing the server’s QueueThread) uses the JabberModel to
create a ProcessThread and its associated packet handling classes. The TestThread operates by
sending packets using the JabberModel and pulling responses from the PacketQueue. The
TestThread also hands Packets to packet handling classes for special handling.

The JabberModel class constructor
public class JabberModel {

 JabberModel(TestThread qThread) {
 packetQueue = qThread.getQueue();
 qThread.addListener(new OpenStreamHandler(),"stream:stream");
 qThread.addListener(new CloseStreamHandler(),"/stream:stream");
 qThread.addListener(new MessageHandler(),"message");
 }

 Session session = new Session();
 PacketQueue packetQueue;

The JabberModel constructor should look familiar. We saw similar code in the
Server class from chapter 3 to set up the QueueThread with PacketListeners. The
JabberModel similarly configures the TestThread with PacketListeners to handle

JabberModel
Jabber-
server

Test-
thread

Process-
thread

Packet-
queue

pull()

Connect Create
new ProcessThread

Parse XML

XML packet
push()
Java packet

XML packet

pull()
Java packet

118 CHAPTER 4

The Jabber message protocols
incoming packets. The packet-handling interface to the TestThread is closely mod-
eled on the QueueThread. The client uses different versions of the PacketListener
classes than the server because we want it to exhibit different behavior when pack-
ets arrive. We’ll cover the new PacketListener classes later in this chapter.

 Even without seeing them, you know from this constructor that I’m registering:

■ An OpenStreamHandler class to handle the special <stream:stream> opening
tag.

■ A CloseStreamHandler class to handle the special </stream:stream>
closing tag.

■ A MessageHandler class to handle <message> Packets.

The TestThread will drop all other incoming packets because it does not have any
PacketListeners to handle them.

 The JabberModel contains a few member data fields and their access methods.
These fields are a convenience for setting up default values throughout the client
application. A real client application would have a separate user options object
and store these options in configuration files.

The JabberModel class data fields and access methods
String jabberVersion = "v. 1.0 - ch. 4";
public String getVersion(){ return jabberVersion; }

 String sName;
 public String getServerName() {return sName;}
 public void setServerName(String name) {sName = name;}

 String sAddress;
 public String getServerAddress() {return sAddress;}
 public void setServerAddress(String addr) {sAddress = addr;}
 String sPort;
 public String getPort() {return sPort;}
 public void setPort(String port) {sPort = port;}

 String user;
 public String getUser() {return user;}
 public void setUser(String usr) {user = usr; }

 String resource;
 public String getResource() {return resource;}
 public void setResource(String res) {resource = res;}

 public void addStatusListener(StatusListener listener){
 session.addStatusListener(listener);
 }

 public void removeStatusListener(StatusListener listener){

Java Jabber client 119
 session.removeStatusListener(listener);
 }

 public int getSessionStatus() {
 return session.getStatus();
 }

There are two interesting features of the code. The first is that there are
some convenience methods for registering StatusListeners with the Jabber-
Model’s Session object and obtaining the Session’s status. These conve-
nience methods allow us to keep the Session object completely encapsulated
within the JabberModel and prevents any outside classes from directly manip-
ulating the Session.

 The second thing to note is that we have a separate serverName and serv-
erAddress field. In normal clients you will only need a server’s name (e.g., “shi-
geoka.com”). The Socket class automatically figures out the server’s address
(e.g., “217.13.31.1”) using DNS lookup. However, I tend to develop on isolated
development machines and offline laptops. By providing both a server name
and a server address, I can have the client act as if it is talking with a server shi-
geoka.com while connecting to a hardcoded address that may not have any real
DNS name.

 In this case, I can use the loopback address 127.0.0.1 so that I am able to
run the client and server on the same machine without any network connec-
tion at all.17 The client and ser ver both think that the ser ver is at shi-
geoka.com, allowing me to use Jabber IDs like iain@shigeoka.com/work rather
than iain@127.0.0.1/work.

 Next, the JabberModel implements the three remaining tasks that the client
model must fulfill: connecting, sending messages, and disconnecting. The most
code-intensive is the connect() method shown in listing 4.2.

public void connect(String server,
 int port,
 String serverName,
 String user,
 String resource)

 throws IOException {

17 The loopback address is a logical network address available to all TCP/IP clients. The address always
points to the localhost: the machine you are currently working on. Thus the address provides a virtual
loopback connection to yourself.

Listing 4.2 The JabberModel class connect method

120 CHAPTER 4

The Jabber message protocols
 session.setSocket(new Socket(server,port));
 session.setStatus(Session.CONNECTED);

 (new ProcessThread(packetQueue,session)).start();

 String senderJabID = user + "@" + sName + "/" + resource;

 Writer out = session.getWriter();
 session.setJID(new JabberID(user,sName,resource));
 out.write("<?xml version='1.0' encoding='UTF-8' ?>");
 out.write("<stream:stream to='");
 out.write(sName);
 out.write("' from=');
 out.write(senderJabID);
 out.write("' xmlns='jabber:client' ");|
 out.write("xmlns:stream='http://etherx.jabber.org/streams'>");
 out.flush();
 }

Connecting to the Jabber server is relatively simple and resembles the creation
of a Jabber session in the server. We can even reuse the ProcessThread class
from the server to parse the incoming Jabber XML and place Packet classes into
the PacketQueue.

 Disconnecting and sending messages are supported by even simpler methods
as shown in listing 4.3:

 public void disconnect() throws IOException {
 session.getWriter().write("</stream:stream> ");
 session.getWriter().flush();
 }

 public void sendMessage(String recipient,
 String subject,
 String thread,
 String type,
 String id,
 String body) throws IOException {

 Packet packet = new Packet("message");

 if (recipient != null){
 packet.setTo(recipient);
 }
 if (id != null){
 packet.setID(id);

Listing 4.3 The JabberModel class disconnect and sendMessage methods

Create a
socket for
the session

Session
connected as
soon as we
open the
Socket

Start JabberIput
Handler in the
ProcessThread

Send opening
<stream:stream>

tag

Java Jabber client 121
 }
 if (type != null){
 packet.setType(type);
 }
 if (subject != null){
 packet.getChildren().add(new Packet("subject",subject));
 }
 if (thread != null){
 packet.getChildren().add(new Packet("thread",thread));
 }
 if (body != null){
 packet.getChildren().add(new Packet("body",body));
 }
 packet.writeXML(session.getWriter());
 }
}

The disconnect() method simply sends the closing </stream> tag. It does not
have to close the socket because the server will automatically close it when it
receives the client’s closing stream tag.

 The sendMessage()method creates a Packet object and fills it with the infor-
mation it needs to generate the correct XML for a Jabber <message> packet. The
sendMessage() method is a convenient way of sending Jabber messages from
within Java code.

 Now that we know which Packet classes we must handle, the final step in build-
ing the client model is constructing the client packet handler classes. The client
packet handling classes straddle the line between the model and view because
they must know how to deal with the Jabber Packet classes (part of the model) as
well as how to update the user interface (part of the view). Our test client has
almost no user interface so these classes remain extremely simple.

The client OpenStreamHandler class
The first packet we should react to is the open stream packet that the server
sends us.

The client OpenStreamHandler class
public class OpenStreamHandler implements PacketListener{

 public void notify(Packet packet){
 Session session = packet.getSession();
 session.setStreamID(packet.getID());
 session.setJID(new JabberID(packet.getTo()));
 session.setStatus(Session.STREAMING);
 }
}

122 CHAPTER 4

The Jabber message protocols
Recall that the client initializes the stream so we have already sent the
<stream:stream>tag to the server. When we receive the server’s return opening
stream tag, we just need to extract the stream ID from it, and update the session
with its new status and information.

 Unlike the server, we don’t need a CloseStreamHandler class in the client. Once
we send a closing stream tag using disconnect(), the server will close the Socket at
its earliest opportunity. We will likely never see a closing </stream:stream> tag.
Notice that if the stream closes without sending a closing </stream:stream> tag, the
XML document will not be valid and the SAXparser will generate a SAXException.
We must be ready to receive this error and ignore it. (We expect it to happen).

 The most important packet handler is the message handler class, which is dis-
cussed next.

The Client MessageHandler Class
The client handles all <message> packet types::

■ Chat
■ Normal
■ Groupchat
■ Headline
■ Error

■ Jabber:x:oob (out-of-band X extensiton)

In clients with a user interface, most of your time will be spent making the display
of these messages intuitive and fun for the user. Our simple test client, on the
other hand, uses incoming messages for different purposes.

 For example, if we wanted to measure the server’s message throughput, a test
client only needs to count how many messages sent and received during the test.
Similarly, a messaging latency test can be conducted by a client sending a message
to itself and measuring the time it takes for the message to make its round trip
through the server.

 In our client, we only need to know that packets are being properly routed
to their destination. We can see this by looking at the raw XML passed over the
connection. The task can be made easier by simply printing the message when
we get a <message> packet.

Java Jabber client 123
The client MessageHandler class
public class MessageHandler implements PacketListener {

 public void notify(Packet packet){
 String type = packet.getType() == null ? "normal" : packet.getType();
 System.out.println("Received " + type + " message: "
 + packet.getChildValue("body"));
 System.out.println(" To: " + packet.getTo());
 System.out.println(" From: " + packet.getFrom());
 }

We could make the message simpler or more verbose, log the message to a file or
database, or myriad other possibilities. For now though, this implementation will
meet our needs.

 The last step in creating our test client is driving the JabberModel. We’ll
accomplish this with the TestThread and SimpleMessageClient class.

4.3.4 Using the client model
The JabberModel class deals with all the details of Jabber communications. How-
ever, by itself, it won’t do anything. Like all models in the MVC design pattern, the
JabberModel is a passive class that reacts to inputs. We must write a class that plays
the role of the user as well as the view and controller from the MVC design pat-
tern. The TestThread class fulfills this role.

 Our TestThread class will pull packets from the PacketQueue as shown in fig-
ure 4.8. However, unlike the QueueThread, we know what packets to expect on the
PacketQueue so we can dispatch the packets with more intelligence. In addition,
the TestThread is aware of both incoming and outgoing packets. This gives us the
opportunity to send and receive packets in an expected order. Deviations from
the expected order of outgoing or incoming packets signal a failure of the test.
This turns our client programming model into a pseudo blocking method call sys-
tem rather than the server’s event based model.

 In blocking systems, you send a packet by calling a method. The method
returns with the appropriate response or when the protocol enters its next state.
For example, a blocking call to JabberModel.connect() would only return when
we receive a success result (a failure would throw an exception). The blocking
method call system eliminates the entire event-handling model we’ve been using
so far.

124 CHAPTER 4

The Jabber message protocols
Figure 4.8 The TestThread class replaces the QueueThread. It intelligently routes packets and
triggers tests by sending packets in response to incoming packets and its current state.

It is easier to program networked clients by blocking rather than using events.
This is true with Jabber clients as well as those that support common network pro-
tocols like NNTP (Usenet news) and POP (email). The tradeoff is relatively
straightforward. Event-based systems are easy to make multithreaded, easy to
make responsive by running them in multiple threads, and easy to scale by using
multiple processors or multiple machines to handle events.

 All of these factors make event-based systems ideal for servers. Most of the Jab-
ber server’s interactions only require “local” information that is often present in
the packet being processed or contained in the session context. You can design
most of its actions as a simple, one-packet response.

 Clients, on the other hand, usually use protocols in long, complex sessions
where the context of events is just as important as the event itself.18 For example,
a client may wish to send a message. This simple goal ends up requiring a number
of steps that must be carried out in the correct order. We know that we can’t send
a message without being authenticated. In addition, we can be authenticated
without having established a Jabber XML stream with the server and having an
account on the server. Finally, we can’t establish a Jabber XML stream without
being connected with the server.

18 It can be complex enough that it may become worth the effort to use state-machines to carry out client
tasks. In fact, I would recommend that designers of fully featured clients invest the effort to write or
purchase a state-machine framework. Your client code will become easier to manage. In addition, it
provides the groundwork for easy extensibility via scripting languages or plug-ins and allows you to au-
tomate Jabber clients. State-machines are a standard computer science model of computing systems.
To learn more about state-machines, consult an introductory computer science textbook.

PacketQueue

XML
stream

ProcessThread

JabberInputHandler

TestThread

P
acketH

andler

P
acketH

andler

P
acketH

andler

session

Java Jabber client 125
 The client has little need for multitasking within its packet handling system. It
will typically participate in one conversation at a time. Finally, clients usually don’t
need to be designed to be scalable. They are almost always limited by the abilities
of the user to create input events and understand incoming information.

 Our protocol tests will be carried out in a simple blocking style by sending a
packet and waiting for the correct reply packet. This is similar to the approach we
take when interacting with the server using telnet:

1 Send a packet.

2 Wait for a result.

3 See if it matches what we expect.

4 If so, go to the next step in the conversation.

For our first version, the client connects, sends a message, and disconnects. We
need to carry out the two sides of the conversations in different threads so they
can occur in parallel. Hence, the TestThread is a java.lang.Thread child class to
allow more than one to run simultaneously.

 The TestThread class is actually a base class of the test-specific classes we’ll use
in each chapter. It provides the basic packet-handling features we’ve seen in the
QueueThread. In addition, we’ll add a helper method that will allow the
TestThread subclasses to wait for packets.

 The TestThread class (listing 4.4) begins just like the QueueThread. The sole
exception is the empty run() method and a simple way of assigning a Jabber-
Model to the TestThread using the setModel() method. Subclasses will override
the run() method to provide test specific code.

public class TestThread extends Thread {

 public void run(){
 }

 JabberModel model;
 public void setModel(JabberModel newModel){
 model = newModel;
 }

 PacketQueue packetQueue = new PacketQueue();
 public PacketQueue getQueue() { return packetQueue; }

 HashMap packetListeners = new HashMap();

Listing 4.4 The TestThread class packet handling code

126 CHAPTER 4

The Jabber message protocols
 public boolean addListener(PacketListener listener, String element){
 if (listener == null || element == null){
 return false;
 }
 packetListeners.put(listener,element);
 return true;
 }

 public boolean removeListener(PacketListener listener){
 packetListeners.remove(listener);
 return true;
 }

The packet listener management code is essentially the same as that in the
QueueThread.19 We can copy the code from the QueueThread’s run() method into
a notifyHandler() method to provide the same treatment of packet handlers in
the TestThread.

The TestThread class notifyHandler method sends packets to registered handlers
void notifyHandlers(Packet packet){
 try {
 Packet child;
 String matchString = packet.getElement();;

 synchronized(packetListeners){
 Iterator iter = packetListeners.keySet().iterator();
 while (iter.hasNext()){
 PacketListener listener = (PacketListener)iter.next();
 String listenerString = (String)packetListeners.get(listener);
 if (listenerString.equals(matchString)){
 listener.notify(packet);
 }
 }
 }
 } catch (Exception ex){
 Log.error("TestThread: ", ex);
 }
}

As mentioned earlier, subclasses will conduct tests by sending packets out, and
then wait for the correct packet to arrive. We can create a convenience method
that makes waiting for specific packets simpler:

19 The similarities suggest a good opportunity for creating a common base class for TestThread and
QueueThread.

Java Jabber client 127
The TestThread class waitFor method waits for the ”correct” packet
Packet waitFor(String element, String type){
 for(Packet packet = packetQueue.pull();
 packet != null;
 packet = packetQueue.pull()) {
 notifyHandlers(packet);
 if (packet.getElement().equals(element)){
 if (type != null){
 if (packet.getType().equals(type)){
 return packet;
 }
 } else {
 return packet;
 }
 }
 }
 return null;
 }

The waitFor() method uses the packet’s element name, and optionally a particu-
lar type attribute to filter out the packet we’re looking for. All other packets are
sent to their packet handlers using the notifyHandlers() method. The wait-
For() method returns the first matching packet it finds.

 We’ll create two TestThread subclasses as inner classes of the Simple Mes-
sageClient class shown in listing 4.5. The SimpleMessageClient class is a
main application class that can be launched as a Java application. We provide
the standard main() method for that purpose. The constructor takes care of
most of the work, setting up the two test threads and models.

class SimpleMessageClient {

 public static void main(String[] args){
 Client client = new Client();
 }

 public SimpleMessageClient(){
 String server = System.getProperty("jab.server.name", "localhost");
 String address = System.getProperty("jab.server.address","127.0.0.1");
 String port = System.getProperty("jab.server.port", "5222");

 BuffyTestThread buffyTT = new BuffyTestThread();
 JabberModel buffyModel = new JabberModel(iainTT);
 AngelTestThread angelTT = new AngelTestThread();
 JabberModel angelModel = new JabberModel(angelTT);

Listing 4.5 The SimpleMessageClient class

The client application
simply Creates Client
object

Extract
settings from

system
properties

128 CHAPTER 4

The Jabber message protocols
 buffyModel.setServerName(server);
 buffyModel.setServerAddress(address);
 buffyModel.setPort(port);

 buffyModel.setUser("buffy");
 buffyModel.setResource("dev");

 angelModel.setServerName(server);
 angelModel.setServerAddress(address);
 angelModel.setPort(port);

 angelModel.setUser("angel");
 angelModel.setResource("dev");

 buffyTT.setModel(buffyModel);
 buffyTT.start();

 angelTT.setModel(angelModel);
 angelTT.start();
 }

The actual tests are conducted in the two inner classes, BuffyTestThread and
AngelTestThread, shown in listings 4.6 and 4.7. We’ll simulate a short conversa-
tion between “buffy” and “angel.” Buffy will start by sending a message and wait-
ing for a reply. Angel will receive Buffy’s message and reply. Angel doesn’t need to
wait for a reply so the AngelTestThread will disconnect as soon as it sends the
reply message.

public class BuffyTestThread extends TestThread {

 public void run(){
 try {
 model.connect();
 waitFor("stream:stream",null);
 model.sendMessage("angel@" + model.getServerName(),
 "Want to patrol?",
 "thread_id",
 "normal",
 "msg_id_buffy",
 "Hey, do you wanted to patrol with me tonight?");
 waitFor("message",null);
 model.disconnect();

Listing 4.6 The BuffyTestThread inner class

Start two test
threads

Java Jabber client 129
 } catch (Exception ex){
 ex.printStackTrace();
 }
 }
 }

Our blocking style of programming is well-suited to client interactions where we
typically need to do one thing at a time. This is in contrast to the event-based
model used by the server’s QueueThread where we expect many things to be
happening in parallel. The AngelTestThread provides the other side of the
Jabber conversation.

public class AngelTestThread extends TestThread {

 public void run(){
 try {
 model.connect();
 for (Packet packet = waitFor("message",null);
 packet.getFrom().startsWith("buffy");
 packet = waitFor("message",null)){
 }
 model.sendMessage("buffy@" + model.getServerName(),
 "Re: Want to patrol?",
 "thread_id",
 "normal",
 "msg_id_angel",
 "Sure, I'd love to go.");
 model.disconnect();

 } catch (Exception ex){
 ex.printStackTrace();
 }
 }
 }
}

Notice that the AngelTestThread uses an empty for loop to ensure that it waits for
a message from “buffy” before sending a reply. Many Jabber servers send a wel-
come message to clients when they log on so we want to make sure we don’t react
to that. Of course, a normal Jabber server will require you to authenticate and
indicate that you are available to receive messages before any are sent. However,

Listing 4.7 The AngelTestThread inner class

130 CHAPTER 4

The Jabber message protocols
our client is testing our server which lacks these features so we can skip these
authentication steps until we add these features in future chapters.

EXPLOITING THE STATUS EVENT MODEL
Every GUI application is riddled with little bits of minutiae that can drive you crazy.
One of them is the need to maintain a consistent application state at all times. In
large applications, code scattered all over your application can change the state of
your application at any time. The rest of the application classes, and most impor-
tantly the GUI, must be updated appropriately.
Session status is just one of many situations where we must continuously

maintain a consistent application state. In this situation, a user-friendly applica-
tion should be updating the appearance and the enabled status of menu items,
buttons, and windows according to the Session’s status. We can use the status
event notification feature we designed in the Session class to help automate the
state update process.

As your application grows, you will be forced to decide whether to perform all
status updates in one StatusListener class or to split the role among many
smaller StatusListener implementation classes. Typically code will naturally
evolve as a single large StatusListener class. Unfortunately, throwing “every-
thing but the kitchen sink” into one class is usually not a good idea.

To eliminate the need for one StatusListener class, a Swing-based GUI client
might use a specialized javax.swing.JButton that implements the Status-
Listener interface. The code might look like this:

 class StreamEnabledButton extends JButton
implements StatusListener{

 public void notify(int status){

 switch(status){

 case Session.DISCONNECTED:
 setEnabled(false);
 break;

 case Session.STREAMING:
 setEnabled(true);
 break;
 }
 }

}

You can then add the StreamEnabledButton as a StatusListener to the
JabberModel and it will automatically enable and disable itself when appropriate.

◆

Java Jabber client 131
All buttons that you want to enable when the Session object is in the streaming
state can use this class rather than JButton.
In addition, there are many Jabber features that Jabber servers will not allow un-

less you are authenticated.20 These features can use a similar customized Status-
Listener implementation and a new Session status for AUTHENTICATED to
automatically enable and disable these features as well.

4.3.8 Results
Does it seem possible that in two short chapters we have created a Jabber client
and server that can support basic IM? Well, try it out for yourself. Start the server
from chapter 3, and then launch our Jabber client.

 The SimpleMessageClient uses java.lang.System properties for many of its
settings. You can set these properties on the command line using JVM options. For
standard JVMs the –D option is used to pass these values. For example, I want to
start the client so that it uses the server address 10.0.0.5:

java –Djab.server.addess=10.0.0.5 SimpleMessageClient

A shell script or batch file can reduce the amount of typing you need to do, and
help to launch the clients sequentially or simultaneously. Does the client send
messages to itself as we would expect?

 Try creating two BuffyTestThreads in the client with the different resource
names. Where does Angel’s reply message go? Messages should be delivered on a
first-come, first-served basis. Are they? Is the server’s message delivery behavior
consistent with the server packet routing behavior we implemented in chapter 3?
If you have two or even three computers on a network, it is even more impressive
to create separate client applications that you can run on separate machines.

 Congratulations! You’re Jabbering!

NOTE Client Is a Work in Progress Be careful using the client “as-is”. It lacks
some critical “spit and polish” to make it safe for heavy use. For exam-
ple, try sending a message with the ‘<’ or ‘>’ characters in the message
body. It will crash the parser. Our client does not “normalize” the text
before placing it into the Packet. Normalizing XML text changes the ‘<’
character to the string “>” which is then safe to transport inside of
XML character data.

20 Authentication is covered in chapter 7.

132 CHAPTER 4

The Jabber message protocols
4.4 Conclusions

The simplicity of the Jabber protocols and the power of Java have allowed us to
create a miniature IM system in only two chapters. Playing with the current client
and server will reveal how powerful even this simple Jabber system is. In fact, just a
little user interface customization can make this system perfect for a lightweight
communication system in a small home or office LAN.

 The crucial IM feature missing from the software is support for presence. Pres-
ence lets us know who is online and if they are willing to communicate with us.
This critical protocol enables features like chat to meet their full potential and is
essential before we can conduct groupchat conferences. We’ll dive into the Jabber
presence protocols, and add groupchat conference support to the server and cli-
ent in the next chapter.

 5The presence protocols
In this chapter
■ The Jabber presence protocol and how

it works
■ How the Jabber presence and groupchat

message protocols work together
■ Jabber server source code for implementing

groupchat support
■ Jabber client source code for testing

groupchat support

133

134 CHAPTER 5

The presence protocols
Instant messaging is differentiated from email by its instant delivery and the ability for
users to project and detect each other’s online presence. In the online world, the need
for presence information is vital. You can’t stick your head over the cubicle and
see if someone is present when he is halfway across the world.

5.1 The need for presence

I once worked in a place that had a big white pegboard hanging on one wall. The
board was split into rows labeled with each employee’s name and columns with
labels like “In the Office,” “In the Warehouse,” “In Meeting,” “On Job Site,” “Out
of Town,” and so forth. Each person would move the cardboard marker into the
column that best matched his or her status. At a glance, people would know who
was where, and what they were doing.

 That big white pegboard was a manual method of managing employee pres-
ence. IM is a way to keep track in the online world.

 Enabling users to keep track of each other’s presence is especially troublesome
for IM systems. We want to send instant messages, collaborate, and chat with peo-
ple. In order to do that, we need to know who is online. In addition, because IM is
always on, IM can become a problem if everyone you know is constantly sending
you instant messages. It is important not only to know that someone is online, but
also whether they are available to IM or are busy working.

 Finally, if IM systems provide presence information, there is a danger that the
information will fall into the wrong hands. For example, we don’t want everyone in
the world to know when we are at lunch or out of town. IM presence systems must
provide a way for us to determine who is given permission to see our presence.

 Jabber provides all of these features in its presence protocols. As you’ll see in
this chapter, the presence protocols, like all the Jabber protocols, are simple, flex-
ible, and easy to use.

5.2 The presence protocol

The basic presence protocol is used in two primary contexts:

■ Presence update—Informs people of your current presence state.
■ Presence subscription management—Allows people to subscribe to another user’s

presence update packets and control who has access to their own presence.

In both cases, the Jabber server acts as an arbitrator between the presence infor-
mation generator and the presence recipients. The server does not have the free-
dom to passively route presence packets. It must actively participate in the
presence protocols to ensure their proper operation.

The presence protocol 135
Figure 5.1 The Jabber server is an arbitrator in all presence exchanges.

The presence update protocol uses a simple, one-way message. A client sends the
presence update packet to the server. The server forwards copies of the packet to
every interested party on the user’s presence subscription list. These subscription
lists are called rosters in Jabber, but are more commonly referred to as buddy lists
from their name in AIM.1 The intent of the protocol’s design is to keep the cli-
ent’s responsibilities to a minimum, offloading the difficult tasks like packet for-
warding and maintaining rosters on to the server.

 Maintaining user rosters on the server is handled using the second form of the
presence protocol.2 In this version of the presence protocol, the client sends and
receives “subscribe” and “unsubscribe” requests and responses. From the client per-
spective, these requests and responses are handled like messages. The server
appears to be passively passing the information between the sender and recipient.
In reality, the server must snoop into these packets and use them to update the
user’s roster. We’ll need to add similar server presence snooping in this chapter as
we implement presence support for the groupchat protocols.3

 The presence packet uses the <presence> element with the standard Jabber to,
from, and type attributes for addressing the packet and determining its type. The
presence types are summarized in table 5.1.

1 Rosters and roster management is discussed in detail in chapter 8.
2 Metainformation about rosters (chapter 8) is managed using the IQ protocol (chapter 6). However,

presence management of rosters is handled by the presence protocol.
3 We’ll put off the serious use of presence and rosters until chapter 8.

ServerSender

Recipient

Recipient

Recipient

136 CHAPTER 5

The presence protocols

.

Table 5.1 Presence packet types and the presence protocols in which they are used.

aThe probe presence type is not part of the Jabber client/server protocols. We’ll discuss it
in chapter 8.

In addition to the presence packet’s attributes, the presence protocols allow four
subelements in the <presence> packet:

■ <status>—A free-form, text description of the user’s status (“Away to lunch,”
“Gone fishing”)

■ <priority>—The numerical delivery priority of this resource. Higher num-
bers have higher priority. Only non-negative (zero or greater) integer num-
bers are allowed. Messages are routed to the resource that has the highest
priority and is available.

■ <error>—The standard Jabber error packet.
■ <show>—One of four standard states that clients can use to modify the

available presence state.4 Clients will typically use the show state to display
standard presence icons, sound alerts, and so forth. If a <show> state is not
indicated, the user is in a normal or online state.5 The standard states for
<show> are:
■ chat—The user is actively seeking to chat.
■ away—The user is away from their Jabber client for a short period of time.

Presence type Protocol type Comment

available Update User is able to receive messages (default).

unavailable Update User is unable to receive messages.

subscribe Management Request Request a subscription to a user’s presence.

unsubscribe Management Request Request removal of an existing presence subscription.

subscribed Management Response Subscription to the sender’s presence has been
accepted.

unsubscribed Management Response Subscription to the sender’s presence has been removed

error Standard Jabber Error The standard Jabber Error packet for presence problems.

probea Server-to-Server Request Sends all presence information from one server to
another (servers only).

4 The show state modifier applies only to users with an available presence state. If you are unavail-
able, you can’t modify your presence state with <show>.

5 Technically that makes five states: normal (no <show>), chat, away, xa, and dnd.

The presence protocol 137
■ xa—(extended away) The user is away from their Jabber client for a long
period of time.

■ dnd—(do not disturb) The user does not wish to receive any messages.

A sample presence update packet is shown in listing 5.1.

<presence from='iain@shigeoka.com/home'
 to='shigeoka.com'
 type='available'>
 <status>I'm bored out of my mind, talk to me</status>
 <priority>10</priority>
 <show>chat</show>
</presence>

I normally put all of the optional fields in a packet to make the example clearer.
Presence packets, though, thrive on context and minimal size. Presence packets
from a client to the server often rely on the implied sender and recipient
addresses associated with the session and the default presence type of available.
A perfectly legal and useful presence update is simply: <presence/>. You are essen-
tially saying, “I (the sender) am present!” A more typical presence packet that a
client sends to the server may look like the following:

Compact update presence packet

<presence>
 <status>I'm bored out of my mind</status>
 <show>chat</show>
</presence>

The server would look up its internal roster of users that are subscribed to my
presence and send the presence packet, slightly modified, to them. For example,
if my friend Hieu were subscribed to my presence, he would receive:

Server update presence packet

<presence from='iain@shigeoka.com/work'
 to='hieu@vanillanet.com'>
 <status>I'm bored out of my mind</status>
 <show>chat</show>
</presence>

Presence subscription management packets use a request-response protocol. Here’s what
my client would see when successfully subscribing to the presence of my friend Hieu:

Listing 5.1 Sample update presence packet

138 CHAPTER 5

The presence protocols
Subscription request and response packets

Send: <presence from='iain@shigeoka.com/work'
Send: to='hieu@vanillanet.com'
Send: type='subscribe'/>
Recv: <presence from='hieu@vanillanet.com/notebook'
Recv: to='iain@shigeoka.com/work'
Recv: type='subscribed'/>

A lot of time can pass between sending the subscribe request and receiving the
subscribed reply. If Hieu were offline, he may not see the request until a day or
more has passed. When he finally logs in, his client will show him the presence
request and ask him whether it should grant permission to allow me to subscribe
to his presence. If he agrees, it will send the subscribed response shown above. If
he refused, his client would send an unsubscribed response. It is also common for
clients to ask the user if they would like to subscribe to the requestor at the same
time to form a mutual presence subscription.

 Presence is used throughout the Jabber system for a variety of purposes, of
which the most visible and important is maintaining user presence to let other
Jabber users know when you are available for chatting. Jabber user presence
involves the IQ protocols and user accounts, which are topics that we haven’t cov-
ered yet. We’ll defer discussion of user presence until chapter 8 when we will have
all the protocols in place.

 Luckily for us, the basic groupchat messaging protocol uses presence in a simple
way. This protocol is a great introduction to using presence. Let’s take a look at how
presence and groupchat messages work together to create group chats (chatrooms)
and then add groupchat support to the Jabber server and client software.

5.3 Adding groupchat support

Our discussion in chapter 4 explained the format for groupchat <message> pack-
ets, but did not explain how groupchats groups are formed, how to join them,
and how to leave them. The reason is these groupchat housekeeping chores are
all performing using the Jabber presence update protocol. Now that we know how
Jabber presence operates and have a working Packet class, let’s take a look at how
you join a groupchat group.

5.3.1 Groupchat protocols
There are four critical things we need to be able to do in groupchat:

■ Join the group—Send an available <presence> to the groupchat group Jabber ID.
■ Send messages to everyone in the group (broadcast messages)—Send a groupchat

<message> to the groupchat group Jabber ID.

Adding groupchat support 139
■ Send messages to one person in the group (private messages)—Send a groupchat
<message> to the person’s group Jabber ID using their group nickname.
Sending private groupchat messages is often called "whispering".

■ Leave the group—Send an unavailable <presence> to the groupchat group
Jabber ID.

As you can see, two tasks use the presence update protocol, the other two the
groupchat message protocol.

 Groupchat groups are organized using a clever naming scheme. A normal user
Jabber ID is of the form:

[user name]@[Jabber server]/[resource]

The groupchat protocol discussed here is groupchat 1.0 or more commonly
referred to as basic groupchat. (The conference protocols are being developed as
an advanced groupchat protocol that replaces basic groupchat. However, servers
will probably support basic groupchat for a long time to come.)

 A groupchat group Jabber ID takes the form:

[group name]@[groupchat server]/[nickname]

To join a group, use the presence update protocol to send an available presence
to the groupchat group, specifying your desired nickname. For example,
figure 5.2 shows a sequence diagram of the group joining process. In order to sub-
scribe to the “java-users” group on the groupchat server groups.shigeoka.com using
the nickname “smirk,” I would send:

<presence to='java-users@groups.shigeoka.com/smirk'
 from='iain@shigeoka.com/work'/>

Figure 5.2 The user “iain” joins a group named “group” on the “host” Jabber server by sending a
<presence> packet with the desired group nickname of “smirk.” The server responds with a confirming
<presence> from the new group nickname and a welcome message.

iain@host/work
smirk

<presence>
to:group@host/smirk

groupchat
server

hieu@host/work
RunningMan

<presence>
from:group@host/smirk

<message> “smirk joined”
from:group@host

140 CHAPTER 5

The presence protocols
The groupchat server associates my Jabber ID with the nickname “smirk” in its
own internal group list. It then propagates the presence status of all group mem-
bers to all group members. Since I’m now a group member the server will send
me this update:

<presence to='iain@shigeoka.com/work'
 from='java-users@groups.shigeoka.com/smirk'/>

The server will typically also send a welcome message to the group:

<message to='iain@shigeoka.com/work'
 from='java-users@groups.shigeoka.com'
 type='groupchat'>
 <body>smirk has joined java-users</body>
</message>

Notice that the sender is the groupchat server, not a groupchat participant.
 Now let’s say my friend Hieu also joins java-users (figure 5.3) by sending:

<presence from='hieu@vanillanet.com/work'
 to='java-users@groups.shigeoka.com/RunningMan'/>

Figure 5.3 The user "hieu" joins the group named "group" with the nickname "RunningMan." The server
must ensure that both "hieu" and "iain" are informed of the new list member "RunningMan." In addition,
"hieu" is sent a <presence> packet from list member "smirk" so he is aware of the presence of all list
members. Notice all <presence> and <message> packets are from groupchat addresses.

Hieu receives from the server:

<presence to='hieu@vanillanet.com/work'
 from='java-users@groups.shigeoka.com/smirk'/>
<presence to='hieu@vanillanet.com/work'
 from='java-users@groups.shigeoka.com/RunningMan'/>

<message to=’hieu@vanillanet.com/work'

iain@host/work
smirk

<presence>
to:group@host/RunningMan

groupchat
Server

hieu@host/work
RunningMan

<presence>
from:group@host/RunningMan

<message> “ RunningMan joined”
from:group@host

<presence>
from:group@host/RunningMan

<message> “ RunningMan joined”
from:group@host

<presence>
from:group@host/smirk

Adding groupchat support 141
 from='java-users@groups.shigeoka.com'
 type='groupchat'>
 <body>RunningMan has joined java-users</body>
</message>

I also receive the presence update (my status doesn’t change so the server doesn’t
have to update my presence):
<presence to='iain@shigeoka.com/work'
 from='java-users@groups.shigeoka.com/RunningMan'/>

<message to='iain@shigeoka.com/work'
 from='java-users@groups.shigeoka.com'
 type='groupchat'>
 <body>RunningMan has joined java-users</body>
</message>

I don’t know RunningMan is Hieu, nor does Hieu know that I’m smirk. The groupchat
server keeps track of the group member nicknames and hides our real identities. I can
send messages directly to RunningMan without knowing Hieu’s real Jabber ID:
<message to='java-users@groups.shigeoka.com/RunningMan'
 from='iain@shigeoka.com/work'
 type='groupchat'>
 <body>Hi RunningMan!</body>
</message>

The message goes to the groupchat server (figure 5.4) The server looks up the
“RunningMan” nickname to find Hieu’s Jabber ID and my Jabber ID to find the
“smirk” nickname. The server rewrites the addresses in the message packet and
sends it to Hieu. Hieu receives:

<message to='hieu@vanillanet.com/work'
 from='java-users@groups.shigeoka.com/smirk'
 type='groupchat'>
 <body>Hi RunningMan!</body>
</message>

Figure 5.4 User "iain" sends a private groupchat message to list member "RunningMan." Notice how
the groupchat server adjusts the sender and recipient addresses of the message.

iain@host/work
smirk

groupchat
Server

hieu@host/work
RunningMan

<message> “Hi RunningMan!”

from: iain@host/work
to: group@host/RunningMan

<message> “Hi RunningMan!”

from: group@host/smirk
to: hieu@host/work

142 CHAPTER 5

The presence protocols
Hieu can send a message to the entire group (figure 5.5) by addressing it to the
group’s Jabber ID:

<message to='java-users@groups.shigeoka.com'
 from='hieu@vanillanet.com/work'
 type='groupchat'>
 <body>Anyone there?</body>
</message>

Figure 5.5 User "hieu" sends a groupchat message to all group members. Once again, notice how the
groupchat server adjusts sender and recipient addresses of the message.

The server will forward the message to everyone in the group, rewriting the
sender address to use Hieu’s group nickname. Hieu is part of the group so he will
receive the response:

<message to='hieu@vanillanet.com/work'
 from='java-users@groups.shigeoka.com/RunningMan'
 type='groupchat'>
 <body>Anyone there?</body>
</message>

I’m also in the group so I get a copy:

<message to='iain@shigeoka.com/work'
 from='java-users@groups.shigeoka.com/RunningMan'
 type='groupchat'>
 <body>Anyone there?</body>
</message>

Hieu realizes this is a boring group with only one other person in it and decides to
leave (figure 5.6). To leave a group, the user’s presence is changed to unavailable.
Hieu can do this by sending the following packet:

iain@host/work
smirk

groupchat
Server

hieu@host/work
RunningMan

<message> “Anyone there?”

from: group@host/RunningMan
to: iain@host/work

<message> “Anyone there?”

from: hieu@host/work
to: group@host

<message> “Anyone there?”

from: group@host/RunningMan
to: hieu@host/work

Adding groupchat support 143
<presence to='java-users@groups.shigeoka.com/RunningMan'
 from='hieu@vanillanet.com/work'
 type='unavailable'/>

Figure 5.6 User "hieu" leaves the group by sending an "unavailable" <presence> packet to the
groupchat server. The server updates all list members with the change in presence, and sends a
"goodbye" message to remaining list members.

Hieu receives a confirmation from the groupchat server:

<presence to='hieu@vanillanet.com/work'
 from='java-users@groups.shigeoka.com/RunningMan'
 type='unavailable'/>

I receive the presence update packet and a message packet from the groupchat
server:

<presence to='iain@shigeoka.com/work'
 from='java-users@groups.shigeoka.com/RunningMan'
 type='unavailable'/>

<message to='iain@shigeoka.com/work'
 from='java-users@groups.shigeoka.com'
 <body>RunningMan has left</body>
</message>

Knowing how Jabber message routing works, there are ways to implement a
groupchat server as a client chatbot application with minimal help from the
server. The approach is very attractive for creating a Jabber server that runs on
different machines, distributed across a network. However, to keep things simple
and efficient,6 we’ll modify our server to support groupchat. Embedding
groupchat on the server is the most common approach for adding groupchat sup-
port to a server.

iain@host/work
smirk

groupchat
Server

hieu@host/work
RunningMan

<presence> “unavailable”
from: group@host/RunningMan

<presence> “unavailable”
to: group@host/RunningMan

<presence> “unavailable”
from: group@host/ RunningMan<message> “ RunningMan left.”

from: group@host

144 CHAPTER 5

The presence protocols
5.3.2 Server modifications
To support groupchat and presence, we will create a message packet handler to
replace the generic PacketHandler class from chapter 3. This class must route
normal message packets, but send groupchat messages to a new groupchat man-
ager. In addition, we must add a new presence packet handler for presence pack-
ets, and create a groupchat manager to manage groupchat sessions. These
modifications are summarized in table 5.2.

Table 5.2 Server modifications to support groupchat.

We’ll start with the packet handler classes.

The new packet handlers
In our original server, all packets were routed as best as possible by the Pack-
etHandler class. Now that our server is becoming more sophisticated, we need to
start differentiating between the incoming Jabber packets and begin server-side
processing of packets.

 The first thing to change is the way packets are handled. First, we need to dis-
card the old DeliveryHandler class. Its behavior of blindly forwarding all packets
to their recipient will cause problems now that groupchat message packets must
be diverted to a new GroupChatManager class. We’ll replace the DeliveryHandler
class with the MessageHandler class that will be able to recognize groupchat mes-
sages and handle them appropriately.

6 Servers with monolithic designs (implemented as a single, tightly integrated application) are more effi-
cient for processing messages than distributed designs with external chatbots. To support an external
chatbot, messages travel from the client to the server, are parsed in the server, reserialized as XML pack-
ets, sent to the chatbot, parsed in the chatbot, processed in the chatbot, reserialized as XML packets,
sent to the server, parsed in the server, reserialized as XML packets, and sent to the client. That’s two
extra serialization and parsing steps that are eliminated when the chatbot functionality is implemented
directly in the server. However, monolithic designs can only handle larger loads by running them on
faster hardware which gets expensive. Distributed designs allow you to spread processing across multi-
ple, less expensive machines. This is important when your Jabber server must handle hundreds of thou-
sands of users.

Module affected Modification

New packet handler classes Create a new PresenceHandler and a MessageHandler class.

Remove Delivery Handler DeliveryHandler will be replaced by MessageHandler.

New Groupchat subsystem Create a GroupChatManager class to coordinate and handle
groupchat server responsibilities.

Adding groupchat support 145
 You may be wondering, “Why not cover the GroupChatManager first?” My
answer is, “I don’t know what it needs to do yet.” We know that it will manage
groupchat messages, but what the interfaces should look like is still a mystery.
Once we see what the handler classes require from the GroupChatManager and
what they can provide we’ll have a better idea of what should be built into the
GroupChatManager. With that in mind, let’s take a look at the new MessageHan-
dler class.

 The MessageHandler class shown in listing 5.2 receives incoming <message>
packets from the QueueThread. Handling them ends up being relatively simple. If
the message’s type is groupchat we send it to the GroupChatManager. If not, it is
delivered to its recipient.7

public class MessageHandler implements PacketListener {

 static SessionIndex sessionIndex;
 GroupChatManager chatMan = GroupChatManager.getManager();
 public MessageHandler(SessionIndex index) { sessionIndex = index; }

 public void notify(Packet packet){
 String recipient = packet.getTo();
 if (recipient.equalsIgnoreCase(Server.SERVER_NAME)){

//Packet dropped
 return;
 }

 if (packet.getType().equals("groupchat")){
 if (chatMan.isChatPacket(packet)){
 chatMan.handleChatMessage((MessagePacket)packet);
 } else {
 }

return;
 }

 deliverPacket(packet);
 }

 static public void deliverPacket(Packet packet){
 try {
 Session session = sessionIndex.getSession(packet.getTo());
 if (session != null){
 packet.writeXML(session.getWriter());

7 Messages are still dropped if the recipient is offline. This flaw will be addressed in the next chapter when
we add user account support to the server.

Listing 5.2 The MessageHandler class

146 CHAPTER 5

The presence protocols
 } else {
 }
 } catch (Exception ex){
 Log.error("MessageHandler: " + ex.getMessage());
 }
 }
}

The implementation is straightfor ward and follows closely from the old
DeliveryHandler class. The major modification is the handling of groupchat
messages, and the addition of a static deliverPacket() method for delivering
packets to recipients. Other classes like the new GroupChatManager will use deliv-
erPacket() for consistent and generic packet delivery.

 The PresenceHandler class (listing 5.3) similar in design to the Message Han-
dler except it sends all incoming <presence> Packets to the GroupChatMan-
ager. We don’t need to distinguish between Packet types yet because all
<presence> Packets should be groupchat-related.

public class PresenceHandler implements PacketListener {

 SessionIndex sessionIndex;
 GroupChatManager chatMan = GroupChatManager.getManager();
 public PresenceHandler(SessionIndex index) { sessionIndex = index; }

 public void notify(Packet packet){
 if (chatMan.isChatPacket(packet)){
 chatMan.handleChatPresence((PresencePacket)packet);
 } else {

//Packet dropped
 }
 }
}

Once again, you can see how we rely on the GroupChatManager to know what to
do with this packet. Now that we’ve seen that the external interface to
GroupChatManager should be handlerChatMessage(), let’s take a look at this
mysterious GroupChatManager class.

Listing 5.3 The PresenceHandler class

Adding groupchat support 147
The groupchat manager
The GroupChatManager receives all of the server’s <message> packets of type
groupchat, and all <presence> packets. We know from the groupchat protocol dis-
cussed in section 5.3.1 that it must do a few basic things:

■ Receive presence packets from new users. These packets allow users to join
a group. Upon accepting the new user, the server:
■ Updates all group members with member presence.
■ Sends a welcome server message to all group members.

■ Receive presence packets from existing users and
■ Update all group members with presence.
■ If the user presence is of type unavailable:

■ Remove member from group.
■ Send an exit server message to all remaining members.

■ Receive groupchat group message packets and forward it to all group members.
■ Receive groupchat group nickname message packets and forward it to

that member.

 To enable this behavior, the GroupChatManager must:

■ Maintain a list of groups. For each group:
■ Maintain a mapping of user Jabber ID’s to group nicknames.
■ Maintain a mapping of group nicknames to user Jabber ID’s.
■ Maintain a mapping of user Jabber ID’s to user group presence status.
■ Determine if a user is a member of the group.
■ Add users to the group.
■ Remove users from the group.

■ Create groups if needed.
■ Remove groups if needed.
■ Use the incoming packets to manage the groups and their membership.

The list of requirements may seem large but our existing Jabber classes and the
standard Java classes help a lot. Let’s take a look at the GroupChatManager class,
beginning with the constructor and its one data field.

148 CHAPTER 5

The presence protocols
The GroupChatManager class constructor, and data field

public class GroupChatManager {

 private GroupChatManager(){}

 static GroupChatManager man;

 static public GroupChatManager getManager(){
 if (man == null){
 man = new GroupChatManager();
 }
 return man;
 }

 Hashtable groups = new Hashtable();

We created an empty, private constructor to prevent anything from creating an
instance of GroupChatManager except for the class itself. If you need an instance of
the class, you use getManager(). The getManager() method enforces a Singleton
design pattern: only one instance of the GroupChatManager will exist in the server.
We don’t want different modules to be working with different GroupChatManagers.
The single instance of GroupChatManager must be a single point of groupchat infor-
mation for the entire server.

 The GroupChatManager manages a set of groupchat groups. Each in turn man-
ages its members and their presence. To handle this, we use a java.util.Hash-
table of groups called “groups.” The group Hashtable maps the full name of
each group to a Group object (listing 5.4).

class Group {
 String jid;
 Group(String jabberID){ jid = jabberID; }

 String getJabberID() {return jid;}

 Hashtable nick2jid = new Hashtable();
 Hashtable jid2presence = new Hashtable();
 Hashtable jid2nick = new Hashtable();
 }

 Group getGroup(String name){
 if (groups.containsKey(name)){
 return (Group)groups.get(name);
 } else {

//Create group
 Group activeGroup = new Group(name + "@" + Server.SERVER_NAME);

Listing 5.4 The GroupChatManager class Group inner-class and group access method

Adding groupchat support 149
 groups.put(name,activeGroup);
 return activeGroup;
 }
 }

Each Group object contains the Jabber ID for the group and three Hashtables. The
three Hashtables are described in the table 5.3:

Table 5.3 The Group class’s Hashtable fields.

I decided to expose the three Hashtables directly to GroupChatManager rather
than provide access methods. My reasoning is twofold. First, there is a tight cou-
pling between GroupChatManager and its Group objects and I can’t think of any
immediate benefits that would result from isolating them from each other. Sec-
ond, only the GroupChatManager will ever work with Group objects.

GROUPCHATMANAGER AND GROUP DESIGN
Object design purists will note that much of the GroupChatManager code should
be moved to the Group inner class. I would agree. As an exercise, try refactoring8

the class to see if the class is cleaner, simpler, or easier to understand. Was it worth
the effort?

The server needs to be able to tell if a Jabber ID is a group address or a user
address. Presence packets sent to groupchat addresses create or act on the group;
presence packets sent to user addresses update your user presence status.

Table Key Value Comment

Nick2jid Member nickname Member Jabber ID Used to convert group
nicknames to
real Jabber IDs.

Jid2nick Member Jabber ID Member nickname Used to convert real
Jabber ID’s to group
nicknames.

Jid2presence Member Jabber ID Presence Packet The list of each group
member’s current pres-
ence (as a Presence-
Packet).

8 Refactoring describes a process of systematically reorganizing and rewriting source code. The goal of re-
factoring is to maintain a clean, understandable, and well-designed code base despite code modifica-
tions, changes, or additions.

◆

150 CHAPTER 5

The presence protocols
 Normally Jabber servers use a different server name for groupchat groups to
make this differentiation. For example, users have accounts on jabber.org and
groupchats are carried out on conference.jabber.org. You can configure a DNS
server to point both server names to the same server machine. In such setups, one
server application will handle both server names but use the packet addresses to
differentiate user traffic from chatbot traffic.

 I have found this configuration is difficult to support in smaller networks, a sit-
uation where the server will probably be used. Instead of different server names, I
use a naming convention for usernames to tell user and group addresses apart. In
the server, usernames that end in .group indicate a group address. So groups on
my server have addresses of the form9:

[group name].group@[server name]/[nickname]

We can create a method in GroupChatManager to detect group addresses:

The GroupChatManager class isChatPacket() method

 public boolean isChatPacket(Packet packet){
 JabberID recipient = new JabberID(packet.getTo());
 return recipient.getUser().endsWith(".group")
 && recipient.equalsDomain(Server.SERVER_NAME);
 }

The isChatPacket() method is used in the handleChatPresence() method to
make sure the presence update is being used for groupchat. The remainder of
handleChatPresence() decides how to treat incoming presence Packets. The
handleChatPresence() method (listing 5.5) is called from the server’s Presence-
Handler class.

public void handleChatPresence(PresencePacket packet){
 JabberID recipient = new JabberID(packet.getTo());
 if (!isChatPacket(packet)){
 return;
 }

 Group group = getGroup(recipient.getUser());
 String nick = recipient.getResource();

//The nickname exists for the group
 if (group.jid2nick.containsKey(nick)){

//The nickname matches the sender's Jabber ID
 if (group.nick2jid.get(nick).equals(packet.getFrom())){

9 A majority of Jabber servers use this format: [group name]@conferences.[server name]/nickname.

Listing 5.5 The GroupChatManager class handleChatPresence() method

Adding groupchat support 151
 updatePresence(group, packet);
 } else {
 sendConflictingNicknameError(packet);
 }
 } else {
 joinGroup(group,packet);
 }
 }

Groupchat <presence> packets are used for two things: updating a group mem-
ber’s presence or joining a group. If the nickname doesn’t exist in the group,
the packet is being used to join the group and handleChatPresence() calls
joinGroup() shown in listing 5.6.

 void joinGroup(Group group, PresencePacket packet){

//The packet is sent to the group/nickname
 JabberID gid = new JabberID(packet.getTo());

//The nickname will be registered to the sender’s Jabber ID
 String sender = packet.getFrom();

//Update the group Hashtables
 group.jid2nick.put(sender,gid.getResource());
 group.nick2jid.put(gid.getResource(),sender);

//Update the presence for all group members (also updates
//jid2presence Hashtable)

 updatePresence(group,packet);

//Send the new member presence updates for all other members of the group
 Iterator presencePackets = group.jid2presence.values().iterator();
 while (presencePackets.hasNext()){
 Packet p = (Packet)presencePackets.next();
 p.setTo(packet.getFrom());
 MessageHandler.deliverPacket(p);
 }

//Send a server welcome message
 serverMessage(group, gid.getResource() + " has joined the group");
 }

The joinGroup() method adds a user to the group by:

■ Updating all of the group’s Hashtables
■ Updating the user’s presence in the group using updatePresence()

Listing 5.6 The GroupChatManager class joinGroup() method

152 CHAPTER 5

The presence protocols
■ Sending the joining member the presence of all existing group members in
the group’s jid2presence table

■ Delivering a welcome server message

The process is primarily group membership housekeeping.
 The updatePresence() method is called from joinGroup() or from han-

dlePacket(). The handlePacket() method uses updatePresence() when an
incoming <presence> packet updates a nickname that exists in the group and
the sender is already a member of the group (the sender’s Jabber ID matches
the one registered with the nickname in nick2jid).

 Updating presence involves changing the sender address to their group/nickname
address, and forwarding the packet to all group members.

void updatePresence(Group group, PresencePacket packet){

 String sender = packet.getFrom();

//Convert sender address to group/nickname
 packet.setFrom(group.getJabberID()
 + "/"
 + (String)group.jid2nick.get(packet.getFrom()));

//Deliver packet to all group members
 deliverToGroup(group,packet);

//Update their presence record
 group.jid2presence.put(sender,packet);

//If an unavailable packet, remove the user from the group
 if (packet.getType() == null){
 return;
 }

 if (packet.getType().equals("unavailable")){
 removeUser(group,sender);
 }
 }

The sendConflictingNicknameError() method is the last major presence-han-
dling method of GroupChatManager. The handlePacket() method calls send-
ConflictingNicknameError()if the incoming <presence> packet nickname exists
in the group, but doesn’t match the member who joined under that nickname.
In this case, we have to assume that the <presence> packet sender is a new user
trying to join under a nickname already in use. If this is the case, we send a
<presence> packet error using the sendConflictingNicknameError() method.

Adding groupchat support 153
The GroupChatManager class sendConflictingNicknameError(method

void sendConflictingNicknameError(Packet packet){
 try {
 Writer out = packet.getSession().getWriter();
 ErrorPacket ePacket = new ErrorPacket(packet.getSession());
 out.write("<presence to='");
 out.write(packet.getFrom());
 out.write("' from='");
 out.write(packet.getTo());
 out.write("'>");
 ePacket.setCode(409);
 ePacket.setMessage("Conflict: nickname taken");
 ePacket.writeXML();
 out.write("</presence>");
 }catch (Exception ex){
 Log.error("GroupChatManager: " + ex.getMessage());
 }
 }

The method is a bit crude as we generate the error packet manually10 rather than
use the presence Packet object.

 As you can see, handling incoming presence Packets is primarily an exercise in
membership bookkeeping. Handling groupchat message Packets is simpler. The
server’s MessageHandler class calls the handleChatMesasge() method (listing 5.7)
on the GroupChatManager for all groupchat messages:

public void handleChatMessage(MessagePacket packet) {

 JabberID recipient = new JabberID(packet.getTo());
 Group group = getGroup(recipient.getUser());

//Convert sender address to group/nickname
 packet.setFrom(group.getJabberID()
 + "/"
 + (String)group.jid2nick.get(packet.getFrom()));

//Addressed to entire group
 if (recipient.getResource() == null){
 deliverToGroup(group,packet);
 } else {

//Addressed to group member

10 In a refactoring pass through the code, a Packet object should be used to generate the XML.

Listing 5.7 The GroupChatManager class handleChatMessage() method

154 CHAPTER 5

The presence protocols
 packet.setTo((String)group.nick2jid.get(recipient.getResource()));
 MessageHandler.deliverPacket(packet);
 }
 }

The handleChatMessage() method converts the sender’s address to their group/
nickname address, and sends the message. If the message was addressed to the
group, the message is sent to each member using the deliverToGroup() method
(listing 5.8), otherwise, it is sent only to the intended recipient.11

 GroupChatManager has four utility methods that you have already seen used
in the handleChat*() methods. The first set (listing 5.8) deals with delivering
group messages: serverMessage() sends messages from the ser ver, while
deliverToGroup() forwards packets to all group members.

void serverMessage(Group group, String msg){
 MessagePacket packet = new MessagePacket(null);
 packet.setFrom(group.getJabberID());
 packet.setType("groupchat");
 packet.setBody(msg);
 deliverToGroup(group,packet);
 }

 void deliverToGroup(Group group, Packet packet){

 Enumeration members = group.jid2nick.keys();
 while(members.hasMoreElements()){
 packet.setTo((String)members.nextElement());
 MessageHandler.deliverPacket(packet);
 }
 }

The second set of convenience methods allows you to easily remove users from
groups. The basic procedure involves cleaning up the group Hashtables and
sending a ser ver message to all remaining group members. The second
removeUser() method shown in listing 5.9 allows you to remove a user from all

11 There is one critical shortcoming in my implementation. The handleChatMessage() method does
not check whether the sender is a member of the group. Although this is not a requirement of the stan-
dard, I think that only group members should be able to send groupchat messages to the group or
group members. I will leave the task of adding this feature to you if you feel it is important.

Listing 5.8 The GroupChatManager class message sending convenience methods

Adding groupchat support 155
groups. The server packet handling CloseStreamHandler class removes a discon-
nected user from all groupchatgroups using this method.

public void removeUser(Group group, String jabberID){

 String nick = (String)group.jid2nick.get(jabberID);

//Can’t remove a user that doesn’t exist
 if (nick == null){
 return;
 }

//Clean up the group Hashtables
 group.jid2nick.remove(jabberID);
 group.jid2presence.remove(jabberID);
 group.nick2jid.remove(nick);

//Remove group if it has no members left
 if (group.jid2nick.size() == 0){
 groups.remove(group.getJabberID());

//Otherwise, send server message to remaining members
 } else {
 serverMessage(group,nick + " has left");
 }
 }

 public void removeUser(String jabberID){
 Iterator grps = groups.values().iterator();
 while (grps.hasNext()){
 removeUser((Group)grps.next(),jabberID);
 }
 }
}

Let’s take a look at the CloseStreamHandler to see the GroupChatManager
.removeUser() method in action.

The modified CloseStreamHandler class
The CloseStreamHandler requires a minor modification in order to ensure
groupchat membership is cleaned up when a user leaves. I have highlighted the
change in bold.

Listing 5.9 The GroupChatManager removeUser() method

156 CHAPTER 5

The presence protocols
The modified CloseStreamHandler class

public class CloseStreamHandler implements PacketListener {

 SessionIndex sessionIndex;
 public CloseStreamHandler(SessionIndex index) { sessionIndex = index; }

 public void notify(Packet packet){
 try {
 Session session = packet.getSession();

GroupChatManager.getManager().removeUser(
 packet.getSession().getJID().toString());
 session.getSocket().close();
 sessionIndex.removeSession(session);

 } catch (Exception ex){
 sessionIndex.removeSession(packet.getSession());
 }
 }
}

The final change we need is to modify the Server class to install the new packet
handler classes in the QueueThread.

The modified Server class
The modifications to the Server class are isolated to the configuration of the
QueueThread’s packet handlers. We can move the QueueThread creation proce-
dure to a separate method, createQueueThread() shown in listing 5.10. The
method will be called at the beginning of the Server class’s constructor.

void createQueueThread(){

 QueueThread qThread = new QueueThread(packetQueue);
 qThread.setDaemon(true);
 qThread.addPacketListener(new OpenStreamHandler(index),
 "stream:stream");
 qThread.addPacketListener(new CloseStreamHandler(index),
 "/stream:stream");
 qThread.addPacketListener(new MessageHandler(index),
 "message");
 qThread.addPacketListener(new PresenceHandler(index),
 "presence");
 qThread.start();
 }

Listing 5.10 The modified Server class createQueueThread() method

Adding groupchat support 157
These changes wrap up the server support for basic presence and groupchat in
the server. Now we need to modify the Jabber client to exercise these features so
we can test both the client and server.

5.3.3 Client modifications

We need to build a new test client to test the groupchat capabilities of our server.
We can reuse our basic test client classes with minor modifications to create our
new client. The client modifications involve three changes:

■ Add a <presence> packet sending support to the JabberModel.
■ Add a <presence> packet handler class.
■ Modify the client to test groupchat.

These changes begin with the JabberModel. The only new Jabber client feature
the server supports is sending and receiving <presence> packets. In order to send
<presence> packets we can add a sendPresence() method that mimics our exist-
ing sendMessage() method.

The modified JabberModel class sendPresence() method
public void sendPresence(String recipient,
 String type,
 String show,
 String status,
 String priority) throws IOException {

 Packet packet = new Packet("presence");

 if (recipient != null){
 packet.setTo(recipient);
 }
 if (type != null){
 packet.setType(type);
 }
 if (show != null){
 packet.getChildren().add(new Packet("show",show));
 }
 if (status != null){
 packet.getChildren().add(new Packet("status",status));
 }
 if (priority != null){
 packet.getChildren().add(new Packet("priority",priority));
 }
 packet.writeXML(session.getWriter());
 }

158 CHAPTER 5

The presence protocols
As you can see, sendPresence() is really a convenience method to protect Jab-
berModel users from the internal details of the Packet class and the <presence>
packet structure. High-performance clients such as automated chatbots will prob-
ably need to optimize JabberModel convenience methods like sendPresence()
and sendMessage() for better efficiency and resource usage.12

 Our client will respond to <presence> packets just as we did to <message> pack-
ets: we will print a short summary of the packet information. For <presence>
packets, we’re interested in the packet’s addresses and the type of presence sent.

The Client PresenceHandler Class
public class PresenceHandler implements PacketListener {

 public void notify(Packet packet){
 System.out.println("Received presence: " + packet.getType());
 System.out.println(" To: " + packet.getTo());
 System.out.println(" From: " + packet.getFrom());
 }

The PresenceHandler class is registered with the QueueThread as a handler of <pres-
ence> packets in the JabberModel’s constructor. Now we’ll be able to see what <pres-
ence> and <message> packets are received on the client, and in what order.

 The final order of business is to test groupchat on the server using our client.
We’ll do this by implementing the conversation example we used earlier to
explain how groupchat works. The conversation proceeds as follows:

Table 5.4 The test client’s groupchat conversation

12 For example, JabberModel.sendPresence() creates many temporary objects that are used once and
discarded. If this method is called frequently, it is more efficient to reuse these objects.

“Iain” client “Hieu” client

Connect and create Jabber stream Connect and create Jabber stream

Send presence
type=available
to=java-users.group@server/smirk

Send presence
type=available
to=java-users.group@server/RunningMan

Send “private” message “Hi RunningMan!”
type=groupchat
to=java-users.group@server/RunningMan

Adding groupchat support 159

Table 5.4 The test client’s groupchat conversation (continued)
We can simulate the groupchat conversation using two TestThread subclasses like
we did in chapter 4. In this example, we’ll use a GroupChatClient class to initialize
the TestThread subclasses in the same manner as SimpleMessageClient so I won’t
repeat the code here. The actual test is carried out in the new TestThread sub-
classes IainTestThread (listing 5.11) and HieuTestThread (listing 5.12).

public class IainTestThread extends TestThread {

 public void run(){
 try {
 model.connect();
 waitFor("stream:stream",null);
 String groupName = "java-users.group@" + model.getServerName();

 model.sendPresence(groupName + "/smirk",
null,
null,
null,
null);

 for (Packet packet = waitFor("presence",null);
 !packet.getFrom().endsWith("RunningMan");
 packet = waitFor("presence",null)){
 }
 model.sendMessage(groupName + "/RunningMan",

 null,
 null,
 "groupchat",
 null,
 "Hi RunningMan!");

Send group message “Anyone there?”
type=groupchat
to=java-users.group@server

Send presence
type=unavailable
to=java-users.groups@server/RunningMan

Disconnect Disconnect

Listing 5.11 The IainTestThread inner-class of GroupChatClient

Group nickname

Type Show

Status Priority

Group nickname

Subject Thread

Type Packet ID

Body

160 CHAPTER 5

The presence protocols
 waitFor("presence","unavailable");
 model.disconnect();
 } catch (Exception ex){
 ex.printStackTrace();
 }
 }
 }

We implement the HieuTestThread class in the same way as the IainTestThread.

public class HieuTestThread extends TestThread {

 public void run(){
 try {
 model.connect();
 waitFor("stream:stream",null);
 String groupName = "java-users.group@" + model.getServerName();
 model.sendPresence(groupName + "/RunningMan",
 null,
 null,
 null,
 null);
 for (Packet packet = waitFor("message",null);
 packet.getFrom().endsWith("smirk");
 packet = waitFor("message",null)){
 model.sendMessage(groupName,
 null,
 null,
 "groupchat",
 null,
 "Anyone there?");
 sleep(1000)
 model.sendPresence(groupName + "/RunningMan",
 "unavailable",
 null,
 null,
 null);
 sleep(1000);
 model.disconnect();
 } catch (Exception ex){
 ex.printStackTrace();
 }
 }
 }
}

Listing 5.12 The HieuTestThread inner-class of GroupChatClient

Group nickname
Type Show

Status Priority

Group JId

Subject Thread

Type Packet ID

Body

Group nickname
Type Show

Status Priority

Shortcomings of our server and basic groupchat 161
Watch the packets printed by the client’s packet handlers to follow the conversa-
tion. Normally a user will be watching incoming packets as lines on their line-by-
line groupchat display. They will see server messages welcoming new members,
and be able to respond to other group members’ messages with their own. Prop-
erly simulating this conversational flow in a test client can be difficult. However,
when you’re testing your software, these automated test clients ease the burden of
repeatedly running the same client-side tests. If tests are easier to run they will be
run more often, increasing the quality of your code.

 Robust protocol implementations relying on user input can be the most diffi-
cult pieces of software to write. I personally find it is hard to force myself to auto-
mate software when a manual method of running tests is available. It is very
tempting to fall back to the “user agent client” with its nice GUI rather than writ-
ing test software. However automated tests pay off with big dividends in software
quality and faster development as the project grows. So stick with it!

5.4 Shortcomings of our server and basic groupchat

There are several serious shortcomings to the groupchat support software pre-
sented here. First, there is only a limited amount of error-checking in both the
client and server. In just a few minutes of testing the server with telnet I’m sure
you can uncover many situations where the server fails to properly respond to
errors in packets sent to it. In most cases, the results are to drop the packet or
close the connection. However, there are several situations where its behavior is
unpredictable. (Try logging in with multiple clients using the same username
and resource.)

 Error checking and error handling are crucial elements of all good software.
In these examples, a lot of standard error checking code has been omitted to
make the examples compact and easier to read. For example, in many places, ref-
erences should be checked for null values and default values provided. This is a
crucial difference in software designed for explanation versus software designed
for use. If you intend to use this software in the real world, please revisit it and add
error-checking code as needed.

 Finally, groupchat provides very little control over group membership. Typi-
cal chatroom functionality such as restricting membership to invited members,
kicking people off a group, and so forth, is simply not present with basic
groupchat. Advanced groupchat, referred to as conferencing in Jabber, is han-
dled through additional standards in the jabber:iq:conference IQ exten-
sion protocol.13

162 CHAPTER 5

The presence protocols
5.5 Conclusions

Presence is a powerful IM tool that is used with all of the Jabber protocols to man-
age the online presence status of a client. In this chapter we have seen how it is
used with the message protocol to support groupchat. The minimal amount of
code needed to support groupchat presence, and the power of such a feature, is
clearly demonstrated by our simple server and client.

 The IQ protocols provide access to all Jabber functionality that is neither mes-
saging nor presence updates. This functionality includes Jabber rosters, another
IQ extension protocol. Rosters enable us to finish the Jabber presence support
that we began to add in this chapter. With rosters, and complete presence sup-
port, we’ll have a fully functional IM system.

13 You can read about the jabber:iq:conference protocol in appendix A. The conference protocols are
under development and their implementation is fragmentary in servers and clients. When the specifi-
cation settles down, I expect most servers and clients to add conference support. However, most clients
today only support plain groupchat.

 6Info/Query and
client registration
In this chapter
■ The Jabber IQ protocol and

how it works
■ The Jabber account registration protocol

and how it works
■ Jabber server source code for implementing

IQ and registration support
■ Jabber client source code for testing IQ

and registration support
163

164 CHAPTER 6

Info/Query and client registration
For many applications, the simple foundation of Jabber messaging and chat is
adequate. However, a full-featured instant messaging system must add one more
crucial feature to the mix: the concept of a user.

 A Jabber user represents one person. Clients act on behalf of a user and a par-
ticular user may have multiple clients active at any time. As discussed in chapter 2,
clients and other entities acting on behalf of a user are called resources and are
indicated by a resource identifier at the end of a Jabber ID.

 A user is represented in the Jabber system by a user account stored and main-
tained on the user’s Jabber server. Clients authenticate (i.e., login) with the user’s
Jabber server using the user’s authentication information. Once authenticated,
the client can download and update user account information stored on the Jab-
ber server; such as the user’s registered email address, and act on the user’s behalf
(typically by sending messages for the user).

 This chapter focuses on the protocols and procedures required to create and
manage a user account on a Jabber server. All administrative protocols rely on the
last core Jabber protocol: Info/Query1.

6.1 Info/Query: the catch-all protocol

Although the majority of Jabber IM traffic is composed of message and presence
packets, most of the work in implementing an IM client or server lies in support-
ing a variety of administrative and management protocols that support messaging
and presence. Jabber has exposed all of these features using a generic query pro-
tocol called IQ (Figure 6.1).

IQ is a simple, extensible request-response protocol that allows participants to
probe,2 query, or set data using a generic basic protocol. IQ itself is a basic
framework for conducting these query operations while allowing IQ extension

1 There are only three core Jabber protocols: <message>, <presence>, and <iq>. We’ve covered <message>
and <presence> and will tackle <iq> here. Implementing these core Jabber protocols allows you to oper-
ate in Jabber networks in a standard way. Many recommended Jabber protocols exist to guide developers
in enhancing Jabber systems by building on top of the core protocols. In particular, the majority of stan-
dard recommended Jabber protocols are IQ extension protocols that extend the IQ core protocol.

IQ Query
originator

IQ Query
handler

request

response

Figure 6.1
Info/Query is a simple request-
response protocol carried out
between a query originator and
a query handler.

Info/Query: the catch-all protocol 165
protocols to specify exactly what data is exchanged according to their particular
needs. This allows the basic IQ query mechanism to remain relatively static,
while supporting a diverse and rapidly evolving set of services.

 The IQ protocol exploits the extensible namespace feature of the XML.3 XML
namespaces allow designers to create valid, independent XML subdocuments
within a larger XML document. Namespaces allow new XML tag sets to be devel-
oped independently without worrying about clashing element names.

 The IQ protocol relies on each IQ extension protocol to define a new
namespace. A Jabber server and client that support an IQ extension will han-
dle the XML in each namespace according to the rules spelled out in the IQ
extension protocol.

 The majority of IQ queries are conducted between a client and server. How-
ever, there are several IQ protocols that are carried out strictly between clients,
such as the client version query protocol. Jabber servers must decode IQ requests,
and respond to server IQ extensions while passing client-to-client IQ queries to
the appropriate client.

 To understand the IQ protocol, let’s examine the details of the IQ protocol, and
then show example code used in standard Jabber IQ extension protocols.

6.1.1 The IQ protocol
The IQ protocol has two primary participants: a query originator and a query
handler. In most situations, the originator is a Jabber client.4 The query handler
can be either a client or a server.

 The protocol begins with a query originator sending an IQ query packet to the
query handler. The IQ query packet travels between the query originator and the
query handler using normal Jabber packet relaying. In other words, the packet is
sent to the originator’s Jabber server. The server then handles the query if it is the
recipient, or delivers it to its recipient as it would a Jabber message.

 Unlike a Jabber message, the IQ packet is not stored for later delivery if the
recipient is unreachable. In addition, the IQ packet must be addressed to a spe-
cific recipient. You can’t address an IQ packet to a user like iain@shigeoka.com. It

2 I use the term “probe” to indicate the exploration of client/server capabilities while “querying” is using
a particular capability to obtain specific information. For example, I may probe a server to see if it sup-
ports a directory service. I can then query the directory service to get information on a particular user.

3 See http://www.w3c.org/xml for more information on the XML namespace specification.
4 The most common exception to this rule is a roster push generated in the server and sent to clients in

response to presence updates. We’ll cover roster pushes in chapter 8.

166 CHAPTER 6

Info/Query and client registration
must be sent to a resource like iain@shigekoa.com/work. The one exception is IQ
packets sent to the server where you can omit the recipient Jabber ID entirely.

 IQ query packets will either set or get data from the query handler. The query
handler either successfully handles the IQ query and generates an IQ result
packet, or fails and generates an IQ error packet. The IQ result or error packet is
then relayed back to the query originator.

 A basic IQ packet follows the format shown in listing 6.1

<iq type='set|get|result|error'
 to='handler_jid'
 from='originator_jid'
 id='unique'>
 <query xmlns='iq extension namespace'>
 <query_field1/>
 <query_field2/>
 </query>
</iq>

The IQ “type” attribute indicates the type of query packet(s) being sent. These are
detailed in table 6.1.

Table 6.1 The IQ packet types and their usage.

a. Occasionally IQ set queries are sent from handler to originator when many replies to a
single query are batched. The series of set queries is terminated by a final result <iq>
packet. Results of a jabber:iq:search protocol (see appendix) query may return several set
replies containing results, and a final result reply to mark the end of the search.

Despite the fact that multiple <query> packets can occur within a single <iq>
packet, there can only be a single logical query occurring at once.5 Multiple
<query> packets are normally used to return multiple matching results, similar to
the return of multiple records in an SQL result.

Listing 6.1 Basic format of an IQ packet.

IQ type Message sent from Description

get originator–to–handler Originator wishes to obtain information from handler.

set originator–to–handler a Originator wishes to update information maintained by handler.

result handler–to–originator Handler returns the results of the originator’s get/set request.

error handler–to–originator Handler encountered an error carrying out get/set request.

5 In other words, all <query> packets must use the same namespace and must relate to the same logical query.

Info/Query: the catch-all protocol 167
 It is also important to point out that the <iq> packet doesn’t have to contain a
<query> subpacket. Result <iq> packets often don’t contain any subpackets. In
addition, the <iq> packet can contain other subpackets like <vCard>. We won’t be
covering any of the <iq> protocols that use subpackets other than <query> but you
can learn more about them in appendix A.

 IQ query originators do not have to wait for a reply before sending other IQ
query packets, nor should they expect the order of IQ results or errors to come in
the same order as they sent them. In order for query originators to match an IQ
query to an IQ result each should contain the standard Jabber id attribute. This is
a query-originator generated identifier that the IQ query handler will copy into its
IQ result or error packet. The query originator can inspect the id on IQ results
and errors to match responses to queries.

 As you can see from the example, the <iq> element itself is a simple wrapper tag
that contains one or more <query> tags (figure 6.2). This design allows Jabber serv-
ers to generically handle IQ packets without inspecting or having any knowledge
about the specific queries being performed. This is important: nonstandard queries
in standard IQ packets can be sent between clients without compromising Jabber
standards compliance. This opens up an entire world of extensibility to Jabber sys-
tems while relying on a single, standard Jabber messaging infrastructure.

Since the IQ packet and protocols don’t define anything beyond a generic enve-
lope the details of specific IQ protocols must be handled somewhere else. These
details are defined as IQ extensions.

6.1.2 IQ extensions
The <query> packet(s) within an <iq> packet establish a default XML namespace using
the xmlns attribute. Each namespace defines an IQ extension with its own tags and pro-
tocol to handle them. The namespace keeps query-specific tags from clashing with
other tags in other Jabber protocols. In addition, the IQ extension protocol name is

IQ packet “envelope”
 Delivery addresses
 Query type

Query “payload”
Figure 6.2
IQ packets act as generic “envelopes” decorated with
delivery addresses and the type of query it contains. The
actual query is carried out in an “opaque” query payload.

168 CHAPTER 6

Info/Query and client registration
defined by its namespace. In other words, if the IQ extension is defined as tags in the
jabber:iq:foobar namespace, then the corresponding protocol is formally referred
to as the jabber:iq:foobar protocol. In order to participate in that query, you must
follow the protocol established for that namespace.

 Typically the <query> packet contains simple child elements representing fields
of data. In queries with a type attribute of get, a populated field is used as a
matching key, and an empty field element indicates data that the client is request-
ing (or a wildcard).

 For example, I have an imaginary query defined in the my:query: namespace
IQ extension protocol. The query is designed to query people’s contact informa-
tion. Here is an example of a query to find all users with the first name of “Bob”
and return their last name and email address:

Example name IQ query
<iq type='get' to='directory@manning.com' from='me@manning.com'>
 <query xmlns="my:query:namespace">
 <name-first>Bob</name-first>
 <name-last/>
 <email/>
 </query>
</iq>

The IQ handler might reply with two different users named Bob.

Example name IQ result
<iq type='result' to='me@manning.com' from='directory@manning.com'>
 <query xmlns='my:query:namespace'>
 <name-first>Bob</name-first>
 <name-last>Smith</name-last>
 <email>bob.smith@manning.com</email>
 </query>
 <query xmlns='my:query:namespace'>
 <name-first>Bob</name-first>
 <name-last>Doe</name-last>
 <email>bob.doe@manning.com</email>
 </query>
</iq>

Most IQ extensions follow this basic request-response pattern. The main difference
between most IQ extension protocols is the expected query fields and their mean-
ing to the query originator and handler. The Jabber protocols organize the IQ
extension protocols functionally according to application-specific needs.

 The IQ protocol design allows you quickly and efficiently to add your own cus-
tom IQ protocols. As long as both the originator and handler understand the cus-
tom IQ extension protocol, they can operate in standardized Jabber networks

Registration creates and manages accounts 169
without disrupting any other Jabber entity. Customizing the Jabber IQ protocol
through IQ extensions exploits the existing Jabber network as a high-level XML
transport system for your IQ requests and results.

 There are ten standard Jabber IQ extensions and approximately ten other
proposed extensions on their way to becoming standards. The exact status of
the extension protocols will probably change between the time I’m writing this
and the time you read this. The Jabber community is working toward reorganiz-
ing the standards and adopting the proposed extensions as standard parts of the
Jabber protocol.

 This state of flux can be disconcerting for people used to standards with more
stability. However, the design of the IQ protocols and the ease of using XML allow
these changes to be easily incorporated into both clients and servers as they
occur. The best way to stay abreast of the state of Jabber is to monitor the Jabber
Software Foundation website (foundation.jabber.org) or the Jabber mailing lists.

6.2 Registration creates and manages accounts

The first step in supporting user accounts is to enable people to create them on a
Jabber server. The first Jabber IQ extension protocol I will cover in this book is the
jabber:iq:register, commonly referred to as the register protocol. In general,
the register protocol is used in three scenarios:

■ Creating new user accounts
■ Updating user account information, usually by changing:

■ authentication credentials
■ account contact information

■ Removing user accounts

The protocol is especially useful on open Jabber servers that provide Jabber IM to
the public. Obviously, there are many situations where a Jabber server administra-
tor will not want to allow people to create accounts on the server without explicit
permission. The situation is analogous to the creation of email accounts on email
servers. In some cases, you want to allow anyone to create an account on the
server as is done with popular open email services like Yahoo! Mail.

 However, the majority of mail servers require you to have the server administra-
tor create an account on the server, or pay a fee before an account is created. In a
situation where controlling who can create an account on the server is important,
you should make sure that you disable user account creation capabilities in the reg-
ister protocol. You will still need to support the register protocol for authenticated

170 CHAPTER 6

Info/Query and client registration
users if you want them to update their own account information, such as their pass-
words. In some cases, even this task must be controlled by the Jabber administrator
and you can remove support for the register protocol entirely.

6.2.1 User accounts
In its purest form, a Jabber user account simply stores the authentication creden-
tials (a username and password) that clients and other user resources employ to
authenticate with the server. Beyond this basic requirement, most Jabber servers
will associate other data with a user account. This information may include email
addresses, a user’s real name, and other information the server wishes to track
about the user.

 In addition, the server will usually store other Jabber support information as
part of the user’s account. For example, most Jabber servers allow you to attach
XML vCards to a user account. vCards are like business cards, in XML format, that
contain contact information about a person. Jabber client applications may also
store configuration information on the Jabber server rather than local files or sys-
tem registries. Application settings will follow users around as they use clients on
different devices.

 There are many ways for a Jabber server to store user account information.
The details of how you implement user accounts on the server and the storage of
these user accounts is beyond the scope of the Jabber standards. A common
method is to employ user account files. For example, the reference Jabber server
implementation (jabberd) uses XML files to store user information in a spool
directory. Other implementations may wish to use a directory service or database
to store user account information.

 If the server does not support the account creation feature of the register pro-
tocol, custom tools must be developed to create and manage user accounts. Cus-
tom administration tools will almost certainly rely on directly manipulating the
server’s user account storage system. For example, with jabberd’s XML user files,
to create a user account, you can copy an empty XML user template file, edit its
information using a normal text editor, and copy it into the spool directory.

 We’ll take the simplest approach and store user accounts as Java objects in
java.util.Hashtable. User accounts are lost when the server shuts down.
Accounts must be created every time the server is started. You can easily extend
the implementation to save the Hashtable to a file, and load it when the server
restarts or serialize it to XML files like those used in jabberd.

 Although the implementation of user accounts can vary widely and involves com-
plicated programming, the register protocol itself is simple and straightforward.

Registration creates and manages accounts 171
6.2.2 The register protocol
The register protocol, defined in the jabber:iq:register namespace, is carried
out directly between the client and its Jabber server. The register protocol is often
the only protocol that Jabber servers allow a client to conduct before they are
authenticated.6 If you disable the register protocol’s ability to create new accounts,
you will only be able to use the register protocol after you are authenticated.

 In general, the register protocol involves sending a register get query to probe
the server’s capabilities and then setting registration information using a set
query.7 Figure 6.3 shows a sequence diagram of this process. Probing the server
prior to setting is not required but will let you know what registration fields the
server supports. The result of sending unsupported fields to the server is not spec-
ified by the register protocol.

The server will usually either drop the unsupported fields or store them without
using them. In the former case, the client is wasting bandwidth, in the latter,
there is another IQ extension protocol, jabber:iq:private,8 that is specifically

6 For example, the message and presence packets are almost never accepted from an unauthenticated
client.

7 One of the toughest aspects of discussing jabber is making sure everyone is using a common vocabulary.
In this case, we are talking about a groupchat message packes that is written in XML code as: <message
type="groupchat">message content</message>.

8 See appendix A for more information about this protocol.

user/client Server

Probe
<iq> type=“get”

Response
Valid fields

Register
<iq> type=“set”

Response
success/error

Figure 6.3
The register protocol typically
involves probing the server for
register support followed by account
creation/update using a set
packet.

172 CHAPTER 6

Info/Query and client registration
designed to store arbitrary client data on the server. For these reasons it is rec-
ommended that you probe the server for register protocol support prior to using
the protocol.

 A register probe involves sending an empty register get query packet to
the server:

<iq type='get' id='register_get_id'>
 <query xmlns='jabber:iq:register'/>
</iq>

Notice the lack of sender or recipient addresses in the <iq> packet. Prior to
authentication, you may only address messages to the server so setting a recipient
address is irrelevant. In addition, the client has no authenticated Jabber ID. This
makes it incorrect to set either the to or from attributes of the <iq> packet. Since
the <query> tag contains no subpackets, the server treats the query as a probe of its
register protocol support to see what registration fields it handles.

 The server responds with an IQ result query containing the empty fields it sup-
ports, or an IQ error indicating that the register protocol is not supported.9 The
typical response looks like the following:

<iq type='result' id='register_get_id'>
 <query xmlns='jabber:iq:register'>
 <username/>
 <password/>
 <hash/>

<email/>
 <phone/>
</query>
</iq>

The server can indicate zero or more valid Jabber registration fields representing
name, address, phone number, email address, and so forth (see the jabber:iq:register
reference page in the appendix for valid fields). Clients will typically create a form
with a text field next to a label containing the name of the field. For example, in
response to the probe example shown earlier the typical client would present a form
that looks like:

Username:
Password (hidden):
E-mail:
Phone number:

9 You’ll typically encounter this behavior if you try to register using an unauthenticated client on a server
that does not allow you to use register to create new user accounts. However the error may also indicate
that register is entirely unsupported on the server.

Registration creates and manages accounts 173
Notice that three of the fields, <username>, <password>, and <hash>, are not handled
as generic registration fields. Clients should recognize them as standard Jabber
register protocol fields that have special significance as shown in table 6.2.

Table 6.2 Standard register fields and their significance.

I’ll cover the authentication protocols in the next chapter so we’ll skip the details
of how they work. The only thing you need to be aware of is that users must select
a username and password to register a new account.10 The client will use the pass-
word to generate the authentication credentials that go into the <password>,
<hash>, <sequence>, and <token>.

 The client obtains the user’s registration information, fills in the appropriate
register fields, and sends them in a set query to the server. There are two basic
types of set register queries depending on whether the client and server will be
using plain/digest or zero-knowledge authentication.11 In the case of plain or
digest authentication, the register set query sends the password as plain text in
the <password> field:

<iq type='set' id='register_set_id'>
 <query xmlns='jabber:iq:register'>

Field Meaning

username Will be used as the “user” part of the Jabber ID associated with this account. In
addition, “username” identifies the account to authenticate with (see chapter 7
on authentication).

password Used as the “password” credential in plain and digest authentication. The presence
of the password element indicates that the server supports either plain or digest
authentication (see chapter 7 on authentication).

hash Used as the “hash” credential in zero-knowledge authentication. The presence of
the hash element indicates the server supports zero-knowledge authentication.
The server expects register packets to contain <hash>, <sequence>, and
<token> fields in a “set” register query when setting up zero-knowledge
authentication credentials.

10 Modifying or removing accounts requires the client to be authenticated. In this case, the username and
password need to be sent only if they are being modified. Normally, usernames are not changeable but
there is nothing in the standards restricting you from doing this.

11 The server will indicate to the client which register authentication methods it supports by sending
either a <password/>, <hash/>, or both in the register probe result packet. Plain, digest, and zero-
knowledge are the three authentication protocols supported by the Jabber standards. We’ll discuss
them in depth in chapter 7.

174 CHAPTER 6

Info/Query and client registration
 <username>myName</username>
 <password>myPassword</password>

<email>myName@server.com</email>
 <phone>760-555-1234</phone>
</query>
</iq>

User names are case-insensitive.
 In the case of zero-knowledge authentication support in the register proto-

col, the client must generate the zero-knowledge authentication credentials
<hash>, <sequence>, and <token> from the user’s password. Usernames are case-insen-
sitive. Once the client generates these credentials, it sends them in the register
set query.12

<iq type='set' id='register_set_id'>
 <query xmlns='jabber:iq:register'>

<username>myName</username>
 <hash>23ea323be3231</hash>
 <sequence>100</sequence>
 <token>9823cd2323fa</token>

<email>myName@server.com</email>
 <phone>760-555-1234</phone>

</query>
</iq>

Successfully setting the user account values with the register protocol will result in
the server returning an empty result packet:

<iq type='result' id='register_set_id'/>

Otherwise the server returns a normal IQ error packet indicating why the register
set query failed. Typically, this is due to the username being taken in the case of
new user registration, or the client needing to be authenticated to change an
existing user account.

 Finally, if your server allows it, the register protocol supports the automatic
removal of accounts. In order to do so, authenticate with the server and send a
register removal packet:

<iq type='set' id='register_remove_id'>
 <query xmlns='jabber:iq:register'>
 <remove/>
 </query>
</iq>

12 One of the main benefits of zero-knowledge authentication is that the client never shares the
user’s password with the server. This eliminates the possibility that an attacker can intercept the
password when it is being sent across the network, and prevents server break-ins from compro-
mising a user’s password.

The Jabber server modifications 175
The server will respond with either an empty result packet indicating success, or
an error packet explaining what is wrong. As with automatic account creation,
automatic removal is a feature that administrators should carefully consider
before they enable it on their servers.

 Now that we’ve covered the register protocol used to support user accounts,
let’s take a look at the code modifications to the Jabber server and client needed
to support them.

6.3 The Jabber server modifications

This chapter introduces user accounts to the server. This is a major departure
from our previous design where we only kept track of the active sessions on the
server. User accounts signal the first of many server-managed responsibilities that
should be supported by a complete Jabber server.

 Once we add user account support to the server, we’ll be ready to implement
the register protocol. Following our packet-handling pattern, we’ll create a
RegisterHandler class. Let’s begin by looking at the new user accounts.

6.3.1 Adding user accounts
Server-managed user accounts represent the start of the server’s role as a central-
ized, domain repository for Jabber information (figure 6.4). User account man-
agement involves keeping information for each user, and associating sessions
(Jabber resources) with each account. In addition, accounts must store other data
such as “store and forward” messages for user accounts with no active sessions.

We’ll create a User class to represent each user account on the server.

The User class
Each user account has one or more credentials (e.g., a password or a combination
of sequence, token, and hash)13 used to authenticate the user. In addition, each

Jabber server

User account

Figure 6.4
The server maintains a set of user accounts.

176 CHAPTER 6

Info/Query and client registration
user account keeps track of the active sessions for that user. In this way, the User
class fills part of the role of the old SessionIndex class (figure 6.5).

Figure 6.5 The User class represents a user account on the server. It maintains account information
such as authentication credentials, stores messages for later delivery, and tracks Session objects that
have authenticated with this user account.

Each user account is identified by a unique username and stores authentication
credentials.

 We will store password, hash, sequence, and token authentication credentials
in the user account as simple strings as shown in listing 6.2. Certain types of
authentication require different credentials. By storing all four, we can cover all of
the standard Jabber authentication standards. In many cases, a server will only
support one type of authentication and you can remove the unnecessary authenti-
cation credentials for each user account.

public class User {

 String username;
 public User(String name) { username = name; }

 String pass;
 public void setPassword(String password){ pass = password; }
 public String getPassword(){ return pass;}

13 The type of authentication credential associated with a user account depends on what the server sup-
ports. The standard Jabber client/server authentication protocols will require either a password, or a
combination of sequence, token, and hash values. The meaning and usage of these credentials will be
explained in chapter 7.

Listing 6.2 The User class constructor, member variables, and access methods

USER: <username >
Authentication
Credentials

Message store

Session table

Store & Forward
Packets

Sessions

The Jabber server modifications 177
 String hash;
 public void setHash(String value) { hash = value; }
 public String getHash() { return hash; }

 String sequence;
 public void setSequence(String value) { sequence = value;}
 public String getSequence() { return sequence; }

 String token;
 public void setToken(String value){ token = value;}
 public String getToken() {return token;}

Each user account can receive messages while no active sessions exist (no
resources are available). The User class stores these messages in a simple java
.util.LinkedList. Two methods, storeMessage() and deliverMessages()
shown in listing 6.3, are provided to store messages for later delivery and deliver
them respectively.

LinkedList messageStore = new LinkedList();

 public void storeMessage(Packet msg) {
 messageStore.add(msg);
 }

 public void deliverMessages(){
 while (messageStore.size() > 0){
 Packet storedMsg = (Packet)messageStore.removeFirst();
 storedMsg.setSession(activeSession);
 storedMsg.setTo(null);
 MessageHandler.deliverPacket(storedMsg);
 }
 }

When a client authenticates with the server, it adds a session to the user account.
At that point, all stored messages should be sent to that client. The deliverMes-
sages() method allows us to send all messages in the messageStore to the
activeSession for the user account. The deliver Messages() method is called in
the addSession() method covered next.

Listing 6.3 The User class “store and forward” message store

178 CHAPTER 6

Info/Query and client registration
 User sessions are stored in a simple java.util.Hashtable object. Unlike the first
come, first served SessionIndex method for selecting the default session for user
packet routing, we’ll use a simple integer to indicate the priority of each Session. The
Session with the highest priority is the primary or default session. I’ll keep track of
this primary session in the activeSession member variable (listing 6.4).

Session activeSession;

 Hashtable resources = new Hashtable();

 public Iterator getSessions(){
 return resources.values().iterator();
 }

 public void changePriority(Session session){
 if (activeSession.getPriority() < session.getPriority()){
 activeSession = session;
 }
 }

 public void addSession(Session session){
 resources.put(session.getJID().getResource(),session);
 if (activeSession == null){
 activeSession = session;
 } else if (activeSession.getPriority() < session.getPriority()){
 activeSession = session;
 }
 deliverMessages();
 }

 public void removeSession(Session session){
 resources.remove(session.getJID().getResource());
 activeSession = null;

 Iterator sessionIterator = resources.values().iterator();
 if (sessionIterator.hasNext()){
 activeSession = (Session)sessionIterator.next();
 while (sessionIterator.hasNext()){
 Session sess = (Session)sessionIterator.next();
 if (sess.getPriority() > activeSession.getPriority()){
 activeSession = sess;
 }
 }
 }
 }

Listing 6.4 The User class Session management methods

Primary
Session

key:resource (String), value:Session

Check on active
Session

Check on
delivery

The Jabber server modifications 179
The most complex part of managing the Sessions is properly updating the
activeSession when removing Sessions in the removeSession() method.
Although it is possible to store the Sessions in an ordered list, this simple way of
tracking the highest-ranking session works well. In addition, most user accounts
will have zero or one session at any time. Even users with multiple simultaneous
resources will usually have only two or three sessions. In all cases, the manual
search of the list on each session removal is usually trivial.

 The primary reason for maintaining the list of resources for a particular user is
to deliver packets to the correct client (Jabber resource). Since the Packet class
can write itself to a java.io.Writer object, all we need is a way of getting the cor-
rect Writer given a resource name. Passing a null resource to getWriter() gives
you the Writer for the primary Session.

The User class getWriter() method
public Writer getWriter(String resource) throws IOException

 Session session;
 if (resource == null){
 session = activeSession;
 } else if (resource.length() == 0){
 session = activeSession;
 } else {
 session = (Session)resources.get(resource);
 }
 if (session == null){
 return null;
 }
 return session.getWriter();
 }
}

The User class only manages the sessions that have authenticated with that
account. The server needs to be able to locate user accounts based on the user’s
name. A new UserIndex class fills that role.

The UserIndex replaces SessionIndex
The new UserIndex class replaces SessionIndex. It fills the SessionIndex’s pri-
mary role of managing sessions as shown in figure 6.6. In addition, it provides a
simple way for the Server to locate Writer objects for servers based on a user-
name and resource. The UserIndex also adds a capability of looking up a user
account for a given Session.

180 CHAPTER 6

Info/Query and client registration
Two Hashtable objects are used to store the class’s indexing information. We pro-
vide the normal set of access methods to add, get, and remove users from the
UserIndex as shown in listing 6.5.

public class UserIndex {

//User table, key: username (String), value: User
 Hashtable userIndex = new Hashtable();

//Session table, key: Session, value: User
 Hashtable sessionIndex = new Hashtable();

 public User addUser(String name){
 User user = getUser(name);
 if (user == null){
 user = new User(name);
 }
 userIndex.put(name,user);
 return user;
 }

 public User getUser(String name){
 return (User)userIndex.get(name);
 }

 public User getUser(Session session){
 return (User)sessionIndex.get(session);
 }

 public void removeUser(String name){
 userIndex.remove(name);
 }

Listing 6.5 The UserIndex member variables and user management methods

USERINDEX

Hashtables

userIndex
 username

sessionIndex
 Session

User

User

Figure 6.6
The UserIndex provides server objects a
central table for looking up User objects by
username or Session.

The Jabber server modifications 181
The Server typically uses the UserIndex to locate a Writer object (listing 6.6) with
a given Jabber ID. Two convenience methods make locating Writers by Jabber ID
simple by conducting the user and session writer lookup in one step.

The UserIndex getWriter() convenience methods
public Writer getWriter(String jabberID) throws IOException {

 return getWriter(new JabberID(jabberID));
 }

 public Writer getWriter(JabberID jabberID) throws IOException {
 return getUser(jabberID.getUser()).getWriter(jabberID.getResource());
 }

The UserIndex manages sessions as well as users (listing 6.7). Fortunately all the
work is done in the User class. So the UserIndex methods only need to do some
basic error checking.

The UserIndex session management methods
public void addSession(Session session){

 User user = getUser(session.getJID().getUser());
 user.addSession(session);
 sessionIndex.put(session,user);
 }

 public void removeSession(Session session){
 sessionIndex.remove(session);
 if (session.getJID() == null){
 return;
 }
 getUser(session.getJID().getUser()).removeSession(session);
 }
}

I’ll skip showing the very minor changes to other classes needed to support the new
user account system. These include changes to the Session class to support session
priorities and changes to the OpenStreamHandler and CloseStreamHandler
classes that must now use the UserIndex rather than the SessionIndex to obtain
session Writer objects for packet delivery. These minor changes are straightfor-
ward and included in the full source code available online.

 The one interesting helper class change is the new MessageHandler class.

A user-aware MessageHandler class
The MessageHandler class must be modified to use the new UserIndex instead of
the SessionIndex. In addition, its packet delivery algorithm is changed in two
important ways. First, I have added a method deliverPacketToAll() (listing 6.6)
that delivers a packet to every session for a user. This is important for packets that
alert all clients to user account updates. In addition, the normal deliverPacket()

182 CHAPTER 6

Info/Query and client registration
method has been updated to store messages in user accounts when no resources
are available.

static public void deliverPacketToAll(String username, Packet packet){
packet.setTo(null);

 User user = userIndex.getUser(username);
 Iterator sessions = user.getSessions();
 while (sessions.hasNext()){
 Session session = (Session)sessions.next();
 if (session.getPriority() >= 0){
 packet.setSession(session);
 deliverPacket(packet);
 }
 }
 }

 static public void deliverPacket(Packet packet){
 try {
 String recipient = packet.getTo();
 Writer out;

 if (recipient == null){
 out = packet.getSession().getWriter();
 if (out == null){
 Log.info("Undeliverable packet " + packet.toString());

//
 return;
 }
 } else {
 out = userIndex.getWriter(recipient);
 }
 if (out != null){
 packet.writeXML(out);
 } else {

//Store messages for offline users
 User user = userIndex.getUser(new JabberID(recipient).getUser());
 user.storeMessage(packet);
 }
 } catch (Exception ex){
 }
 }
}

Listing 6.6 The MessageHandler class delivery methods

Clear
recipients

Undeliverable
packet

Use the
UserIndex

The Jabber server modifications 183
 REFACTORING MESSAGEHANDLER
The expanding responsibilities of MessageHandler are typical of software that
grows as it accommodates new features. In our early server code developed in chap-
ter 3, MessageHandler only delivered packets it received. The deliverPack-
et() method was a simple, logical way of breaking the delivery logic out of the main
event handler method. In chapter 5, we made deliverPacket() static so that any
class could use it to send packets.

In this latest incarnation, the deliverPacket() has been expanded to use
User and UserIndex. We’ve added deliverPacket ToAll() to handle situa-
tions where packets must be delivered to all resources logged into a user account.
The new deliverPacketToAll() and deliverPacket() methods have taken
over the MessageHandler class and aren’t necessarily related to its original pur-
pose of handling incoming <message> packets. Developers often refer to this situa-
tion as lava flows or spaghetti code (and they often use more colorful terms when the
situation is discussed over beers or when writing source code comments).

The solution is refactoring. Refactoring is the methodical reorganization of source
to maintain a simple, clean, and well-designed codebase. This is especially important
in developing and maintaining code that must change or evolve rapidly.

Refactoring begins with identifying “ugly” code, redesigning it, making appropri-
ate changes, and testing the changes to ensure proper code operation. In the case of
MessageHandler, we have seen that the deliverPacket* methods really belong
in a separate utility class. To refactor MessageHandler, we could create a Packet-
Deliverer class, and move the two deliver methods to that class. The real work would
then be in locating all uses of the MessageHandler.deliverPacket* methods
and replacing them with the new PacketDeliverer.deliver* methods.

It is important to maintain the same functionality of the code while refactoring. In
addition, many refactoring efforts stall or are ineffective because developers are re-
luctant to change code with many dependencies. This is especially critical because re-
factoring commonly used code often bestows the greatest benefits. This is true with
the deliverPacket* methods as they are scattered throughout our codebase.

Fortunately there are refactoring tools to avoid the tedium of search and replace
when moving methods and classes. In addition, automated unit testing using tools
like JUnit (www.junit.org) or JTest (www.parasoft.com) can help you to ensure that
your program continues to function the same between refactoring changes. For ex-
ample, the latest version of JBuilder from Borland adds a lot of refactoring tools.

Refactoring is a valuable process that will help you keep your source code healthy
and your developers happy.

With user account support in place, we’re ready to add our implementation of the
register protocol.

6.3.7 Adding registration support
As discussed earlier, the Jabber registration protocol allows users to create user
accounts on open servers and modify existing user accounts when authenticated.

◆

184 CHAPTER 6

Info/Query and client registration
Our server will be an open server allowing anyone to create accounts on the
server. This makes supporting the registration protocol primarily a matter of user
account bookkeeping.

The RegisterHandler class
The RegisterHandler class handles all registration IQ packets. The simple nature
of the registration protocol allows us to implement the entire registration proto-
col within the notify() event handler method. The class needs just a little prepa-
ration work in its constructor.

The RegisterHandler class constructor
public class RegisterHandler implements PacketListener {

 static UserIndex userIndex;
 Packet required;

 public RegisterHandler(UserIndex index) {
 userIndex = index;
 required = new Packet("iq");
 required.setFrom(Server.SERVER_NAME);
 required.setType("result");
 new Packet("username").setParent(required);
 new Packet("password").setParent(required);
 new Packet("hash").setParent(required);
 }

The constructor saves a reference to the server’s UserIndex and creates a prefab-
ricated IQ result packet to send to clients that are probing the server’s registration
protocol support. This is used in the notify() packet handler method during get
IQ queries (listing 6.7).

public void notify(Packet packet){

 String type = packet.getType();
 Packet query = packet.getFirstChild("query");

 if (type.equals("get")){
 required.setSession(packet.getSession());
 required.setID(packet.getID());
 MessageHandler.deliverPacket(required);
 return;

Set IQ queries will create or update a user account. The first thing to do with a set
query is to extract the query’s <username> field and obtain the server’s User object
for that user account. There are three possible situations to handle:

Listing 6.7 The RegisterHandler class notify() packet handling method

The Jabber server modifications 185
■ The user account exists and we’re authenticated: we update the account
■ The user account exists and we’re not authenticated: send an error
■ The user account doesn’t exist: create account

The code to handle set queries is shown in listing 6.8.

} else if (type.equals("set")) {
 String username = query.getChildValue("username");
 User user = userIndex.getUser(username);
 if (user != null){
 if (packet.getSession().getStatus() != Session.AUTHENTICATED ||
 !username.equals(packet.getSession().getJID().getUser())){
 Packet iq = new Packet("iq");
 iq.setSession(packet.getSession());
 iq.setID(packet.getID());
 ErrorTool.setError(iq,401,"User account already exists");
 MessageHandler.deliverPacket(iq);
 return;
 }
 } else {
 user = userIndex.addUser(username);
 }

Once we have the user account, we simply update it with the values from the regis-
ter query packet and send an empty result IQ packet to the sender indicating suc-
cess. There are two small complications to the basic update process to support
one of the standard Jabber authentication algorithms known as zero-knowledge
authentication.

 Zero-knowledge authentication requires a sequence number that is decre-
mented on every successful login attempt. The server stores the password corre-
sponding to the current sequence number. However, the server must ask the
client send it the password corresponding to the next lower sequence number
(sequence – 1). To make this simple, our server will store the (sequence – 1)
value rather than the sequence number itself so it easier for us to generate
authentication get query results.

user.setPassword(query.getChildValue("password"));

 int setSequence = Integer.parseInt(query.getChildValue("sequence"));
 user.setHash(query.getChildValue("hash"));

//Ready for next get request
 user.setSequence(Integer.toString(setSequence - 1));
 user.setToken(query.getChildValue("token"));

Listing 6.8 The RegisterHandler class notify() packet handling method (continued)

186 CHAPTER 6

Info/Query and client registration
 Packet iq = new Packet("iq");
 iq.setSession(packet.getSession());
 iq.setID(packet.getID());

//Success
 iq.setType("result");
 MessageHandler.deliverPacket(iq);

//Drop the packet, it’s of unknown type (not set or get)
 } else {
 }
 }
}

The RegisterHandler packet handling class adds register protocol support to our
server. To complete the upgrade, add these packet handler classes as QueueThread
packet listeners and restart the server. With register support, our server is able to
handle the normal client startup procedure of connecting, streaming, optionally
registering, and messaging.

 We’ll defer modifying the client until the next chapter when we have com-
pleted support for user accounts by adding account authentication to the server.
For now, use telnet to test our Java Jabber server. Create user accounts and make
sure the server responds with the proper error messages when you attempt to cre-
ate accounts that already exist.

6.4 Conclusions

The Jabber IQ protocol provides a general mechanism for us to interact with Jab-
ber servers and clients. It is specialized for particular situations by using the
<query> nested element and the Jabber IQ extension protocols. This design allows
the generic handling of Jabber IQ messages, while providing targeted standards
and flexibility in defining new queries in the future.

 Although the protocol is most commonly used for simple configuration and
information retrieval, the IQ protocol can be applied to practically any task. I
anticipate that many exciting uses of IM will emerge from the creation of custom
IQ extension protocols to enable Jabber clients and servers to provide many ser-
vices beyond simple IM.

 One important thing is missing from the implementation of user accounts in
the User class and their management in UserIndex. User accounts are never saved
to a file, nor are they ever read in from a file. This means that the server always
starts with no user accounts. When the server is shut down, it loses all of its user
account information.

 Obviously this result is not acceptable for most servers. The reference Jabber
server stores user account information in simple XML files. Other developers have
modified that server to attach to databases or directory servers to store and
retrieve account information. Expanding our Java server to support some form of

Conclusions 187
user account storage will probably be essential for anyone wishing to use the Java
server for serious applications.

 “Do-it-yourself” Jabber user account creation, supported by the register pro-
tocol, is an important but optional feature of Jabber servers. However, the most
important feature of user accounts is in client authentication. We can’t com-
plete our support for user accounts until we get to chapter 7 where we’ll add
authentication support.

 7Client authentication
In this chapter
■ The Jabber authentication protocol and

how it works

■ The three standard Jabber client
authentication algorithms

■ Jabber server source code for implementing
client authentication support

■ Jabber client source code for testing client
authentication support
189

190 CHAPTER 7

Client authentication
In the previous chapter we introduced the general-purpose IQ protocols and
added support for user account registration to the server. We are missing support
for one of the primary features of the user account: client authentication to regu-
late access to resources.

 In this chapter, we’ll add support for the standard Jabber authentication proto-
cols and put those authentication credentials to work. Authentication is the first
line of Jabber security1 so it’s important that we understand how Jabber authenti-
cation works, what it does for us, and, just as importantly, what it can’t do for us.

7.1 Authentication controls account access

The Jabber authentication protocol is an IQ extension protocol. It is currently the
only Jabber standard that addresses security.2 The Jabber authentication protocol
allows clients to prove to the server that they are who they claim to be. The client
normally has no similar assurance that the server is who it claims to be.3

 The Jabber authentication and access model is simple: unauthenticated users
have a certain set of rights (usually permission to use the registration and authen-
tication protocols) and authenticated users have full access to the Jabber system.
This is handy because security often adds complexity that is difficult to under-
stand and implement.

 Unfortunately, this simplistic authentication model is also very limiting. There
is no standard way of restricting access to groups of users, creating finer grained
access levels, or communicating these security models to Jabber clients. For exam-
ple, as a server administrator, you may want to restrict messaging to certain Jabber
domains, and limit the amount of data sent, the size of messages, and so forth
through the Jabber server. Creating these sophisticated Jabber security systems
are beyond the scope of the current Jabber standards.

 Jabber authentication is tied directly to a user account. You authenticate yourself
as a Jabber user and log into a user account. Your security authorization to act on
the system is directly linked to your user account. User authorization essentially
makes authentication and authorization equivalent in Jabber systems. Most security
systems separate the concepts so that you can authenticate as a user, and are given
authorization based on that authentication. For example, I may authenticate as user

1 We’ll discuss Jabber security beyond authentication in chapter 10.
2 Work is underway in the Jabber community to craft a complete security system for Jabber. See the secu-

rity Jabber Interest Group (JIG) at foundation.jabber.org.
3 This limitation can be easily overcome (see “Security through SSL” in chapter 10).

Authentication controls account access 191
"iain" but should be authorized to act as the user iain as well as the user administra-
tor in order to carry out my duties.

 The limited nature of Jabber security makes it difficult to create more sophisti-
cated access models. For example, we may wish to create a guest account with basic
messaging rights that users without accounts can use for limited messaging (e.g.,
only sending messages to a “sponsor feedback” address). In addition, a superuser
account should perhaps allow you to use the register protocol to change any other
user account, not just the superuser’s. Normal user accounts have full messaging
rights, but can only edit their own account information using the register protocol.

 Despite these minor drawbacks, the Jabber authentication protocol provides
sufficient access control for most IM tasks. It accomplishes this with three differ-
ent algorithms for client authentication: plain, digest, and zero-knowledge. Each
offers a tradeoff in ease of implementation versus authentication safety. Plain
authentication is the simplest and least secure, and zero-knowledge is the most
complex and provides the highest level of security.

7.1.1 The authentication protocol
The Jabber authentication protocol, defined in the jabber:iq:auth
namespace, consists of two phases shown in figure 7.1. The first is a probe phase
to determine the authentication methods supported on the server. In addition,
the probe will return essential authentication data used in the zero-knowledge
authentication method if it is supported. The second phase is to attempt authenti-
cation by sending an authentication set query containing the proper authentica-
tion credentials.

user/client server

Probe
<iq> type=“get”

Response

Valid fields

Authenticate
<iq> type=“set”

Response
success/error

Figure 7.1
Authentication usually requires two steps:
probe and authenticate. Probing is required
by zero-knowledge authentication in order
to obtain the current authentication tokens
for the user.

192 CHAPTER 7

Client authentication
Authentication probing uses an authentication get query. You must specify the
username for the Jabber user account you wish to authenticate in a <username>
field of the get query. The server will return the supported authentication meth-
ods and authentication information for that particular user. Most Jabber servers
do not support multiple types of authentication based on user accounts so the
results of the probe will typically be the same.

<iq type='get' id='auth_get_id'>
 <query xmlns='jabber:iq:auth'>
 <username>iain</username>
 </query>
</iq>

The server responds with the authentication fields it requires. The presence or
absence of some of the fields indicates the authentication methods supported:

<iq type='result' id='auth_get_id'>
 <query xmlns='jabber:iq:auth'>
 <username>iain</username>
 <resource/>
 <password/>
 <digest/>
 <token>33ab323</token>
 <sequence>99</sequence>
 </query>
</iq>

The presence of a <password> field indicates that plain authentication is sup-
ported. The <digest> field indicates that the server supports digest authentica-
tion. Finally, if the <token> and <sequence> fields are present, they contain the
token and sequence values for use in zero-knowledge authentication with the
server. It is possible to receive a result that includes none of these fields. These
servers may only support anonymous authentication or may use an authentication
technique not covered by the Jabber standard protocols.

 Once your client knows the authentication capabilities of the Jabber server, it
must select an authentication method to use. It is important that you send the
authentication credentials for only one authentication method in your set query.
The results of sending multiple credentials (like plain and zero-knowledge cre-
dentials) in the same authentication packet are not specified by the Jabber stan-
dard. The authentication protocols allow you to log in to the server, but don’t
provide a method for logging out. To log out of a Jabber server, you must end the
Jabber session using the closing XML stream tag </stream:stream>.

 The simplest but least commonly used method is anonymous authentication.

Authentication controls account access 193
Anonymous authentication
The simplest authentication technique, anonymous, allows you to log into a
server without a user account. There is no way to detect anonymous authentica-
tion from an authentication probe so the client has to try an anonymous authenti-
cation and watch the response for success or failure.

 To anonymously authenticate (figure 7.2), simply send an empty set query:

<iq type='set' id='auth_set_id'>
 <query xmlns='jabber:iq:auth'/>

 </iq>

The server will respond with an error if it does not support anonymous authenti-
cation. If it does support anonymous authentication, it will return a result query
containing your assigned resource:

<iq type='result' id='auth_set_id'>
 <query xmlns='jabber:iq:auth'>
 <resource>randomResourceName</resource>
 </query>
</iq>

Your client may now send and receive messages using a Jabber ID of the form
server.name/resource where “server.name” is the name of the Jabber server
domain, and “resource” is the resource returned in the result packet. It is
extremely rare to find Jabber servers that allow anonymous authentication.

Plain authentication
Plain is the first authentication method that provides some level of security. Its pri-
mary advantage is the extreme simplicity of implementing it. Plain authentication
works by sending a plain text copy of the user’s password to the server in the
authentication set query:

user/client server

Empty “ auth”
type=‘set’

Response
success (resource)/error

Figure 7.2
Anonymous authentication occurs when
the client sends an empty set
authentication query. The server will
respond with a resource for the anonymous
connection if successful, or a standard IQ
error packet.

194 CHAPTER 7

Client authentication
<iq type='set' id='auth_set_id'>
 <query xmlns='jabber:iq:auth'>
 <username>iain</username>
 <resource>work</resource>
 <password>myPass</password>
 </query>
</iq>

The server directly compares the password to the one stored in the user’s account
(figure 7.3). If they match, the server sends the client an empty result query
packet indicating the client has been authenticated with the server. If it doesn’t
match, the server sends a standard error IQ packet.

Figure 7.3 Plain authentication simply compares the client’s password with the server’s password for
a given username. Success results in authentication and the server accepting the client’s chosen
resource name for the session.

The primary problem with plain authentication is that the password is sent in the
open to the server. It is easy for eavesdroppers to watch the data on the network
going to the Jabber server and steal users’ passwords as they’re being sent. For this
reason, it is highly recommended that clients avoid using plain authentication if
at all possible.

Digest authentication
To avoid sending passwords as plain text, the digest authentication adds an
extra step to the process (figure 7.4). Recall from chapter 3 that all Jabber
protocols occur within an XML stream. The server starts its stream using the
<stream:stream>packet containing a random session ID string in the packet’s
id attribute.

user/client Server

password
username
resource

Response
success/error

Knows Knows
password
username

password
username
resource

resource

Authenticate

Authentication controls account access 195
Figure 7.4 Digest authentication uses the <stream:stream> packet’s session ID and user password
to generate a digest. The digest is generated on both client and server and compared during the
authentication process.

To generate a digest authentication credential, you take the session ID from the
server’s initial <stream:stream> tag and concatenate it with the user’s password.
The resulting string is then hashed using the SHA-1 message digest algorithm. The
lowercase hexadecimal text (UTF-8/ASCII) representation of the resulting hash is
then sent in the <digest> field of the authentication set query:

<iq type='set' id='auth_set_id'>
 <query xmlns='jabber:iq:auth'>
 <username>iain</username>
 <resource>work</resource>
 <digest>139ab93c13f31</digest>
 </query>
</iq>

Java makes compliance with the Jabber authentication algorithm simple to imple-
ment using the java.security.MessageDigest class. The code that does this is
shown later in this chapter.

 The drawback to digest authentication is that the user’s password must be sent
to the server during the register protocol as plain text (discussed in chapter 6). In
addition, the server must store the user’s password as plain text. A compromise of
the server’s security could compromise all of its users’ passwords. The zero-knowl-
edge authentication method was developed to eliminate these problems.

user/client Server

<stream:stream>

<stream:stream>
session ID

Authenticate
<iq> type=“set”

Response
success/error

Knows
password
username

resource

Knows
password
username
resource

session ID

digest

session ID

digest

196 CHAPTER 7

Client authentication
Zero-knowledge authentication
The most secure, and most complex method supported by the Jabber protocols is
zero-knowledge authentication, often written as “0k.” The zero-knowledge
authentication method is complex and its adoption in servers and clients has
been slow because of this.

 Zero-knowledge authentication removes the requirement for servers to store the
user’s password. In fact, the authentication information the server stores is a throw-
away credential that can be used to authenticate the user only once. Successful zero-
knowledge authentications generate a new, one-time use, authentication credential.

 The technique uses four pieces of information:

■ User’s password—Used by the client along with a token to generate valid
zero-knowledge keys. The password is stored on the client (or entered by
the user) and never sent to the server. A zero-knowledge key set is defined
by the combination of password and token.

■ Token—A randomly generated piece of information used to create a set of
zero-knowledge keys. The token is stored on the server. Splitting the pass-
word and token between client and server respectively makes the key set
created from them unique to the client/server pair.

■ Sequence—A constantly decrementing number indicating which key in the
key set is being used.

■ Hash—A particular key in the key set identified by sequence number.

Initially the client must generate all of these pieces of information for use in the
register protocol. To do this, the client:

1 Creates an SHA-1 message digest of the user’s password to create hashA. The
digest (a series of bytes) is then converted to the lower-case hexadecimal
text (UTF-8/ASCII) representation of the digest we’ll call hashAasciihex.

2 Generates a random token string.

3 Creates a digest of the concatenation of hashAasciihex and the token string
to create hash0. The hash0 digest is converted to its lower-case hexadeci-
mal text representation hash0asciihex.

4 Selects an arbitrary sequence number M (e.g., 500).

5 Digests hashnasciihex to create hashn+1 and converts it to a hexadecimal
text representation hashn+1asciihex until it generates hashmasciihex where M
is the sequence number from the previous step.

Authentication controls account access 197
The client sends the token, sequence (M), and hash (hashmasciihex) to the
server in the register protocol if it support zero-knowledge authentication.4
To authenticate, the client follows a two-step authentication process shown in
figure 7.5. In the first step, the client sends an authentication probe query and
the server will return the token, and sequence number minus one (M-1). The
server’s reply tells the client, “Take this token, and this sequence number, and gen-
erate a new hash.” The client follows the same procedures as described previously
except it uses the given token and sequence numbers to generate hashm-1asciihex. It
sends this value to the server in the authentication set query:

Figure 7.5 Zero-knowledge authentication begins with the client probing (auth get query) the server
for the user’s token and sequence number. The client uses these to generate hashn-1. It authenticates
(auth set query) by sending the username, resource, and hash. The server uses hashn-1 and the token
to generate hashn-1 which it compares with its stored hashn. If authentication is successful, the server
replaces hashn with the new hashn-1 and decrements the sequence number.

<iq type=m'set' id='auth_set_id'>
 <query xmlns='jabber:iq:auth'>
 <username>iain</username>
 <resource>work</resource>
 <hash>139ab93c13f31ee97</hash>
 </query>
</iq>

The server takes hashm-1asciihex and generates hashmasciihex from it by simply hash-
ing it once using the SHA-1 message digest. It compares this new hashmasciihex to
the one the client sent during the register protocol. If they don’t match, the client
failed to properly authenticate and the server sends a standard IQ error response.

4 If a client uses the register protocol to register with a server that supports zero-knowledge authentica-
tion, the server can generate the token, sequence, and hash values from the password just like the client
does here. However, the server must keep the password as well so it can support the client if it authen-
ticates using plain or digest authentication.

user/client Server

Probe

Response
 token

 sequence(n-1)
Authenticate
 username
 resource
 hash n-1

Response
success/error

Knows
username

C
om

pa
re

hash n-1

Knows
password
username
resource

sequence

hashn-1

hash n

hash n

token
sequence(n)

username

token

resource

198 CHAPTER 7

Client authentication
 If they do match, the client is authenticated. The server then decrements the
user account’s sequence number to M-1 and stores hashm-1asciihex. The next time a
client authenticates, the server will send the token and M-2 to the client. The pro-
cess can continue until the sequence number reaches zero. The client must use the
register protocol before the sequence number reaches zero to reset the zero-
knowledge credentials using a new token and sequence number.

 Notice that the server cannot predict what hashn-1asciihex is from hashnasciihex.
It truly is a one-time use key. If an eavesdropper steals a copy of hashnasciihex and
sees that it was successfully used (so it knows it has a valid hashnasciihex) the cre-
dential it has just stolen has instantly become obsolete and useless.

 The zero-knowledge authentication technique has several advantages:

■ Passwords are never transferred over the network.

■ Passwords are never stored on the server.

■ Passwords stolen during authentication packet exchanges become useless as
soon as they are used.

■ The majority of processing load is transferred to the client aiding Jabber
server scalability.

The one significant security vulnerability with zero-knowledge authentication is
supporting the reset of the token, sequence, and hash values before the sequence
number reaches zero. The reset process occurs using the register protocol (cov-
ered in chapter 6) and should only be allowed by authenticated clients.

 I strongly suggest that only clients on secure Jabber connections (see
chapter 9) be allowed to access the register protocols and reset the zero-knowl-
edge authentication credentials. If you do not, an attacker can execute a man in
the middle attack, relaying information between the client and server while they
authenticate with each other. Once the client is authenticated, the attacker can
send a reset with new authentication credentials to the server, effectively hijacking
the account. A secure connection prevents these attacks.

 As you can see, the extra work is well worth the effort for most clients and serv-
ers to support. Zero-knowledge authentication is a relatively new Jabber standard
so support for it is not as pervasive as for other techniques. However, I believe that
soon the majority of Jabber clients and servers will support zero-knowledge
authentication.

 Now let’s take a look at the code modifications to the Jabber server and client
needed to support user authentication protocols.

The Jabber server modifications 199
7.2 The Jabber server modifications

Authentication involves adding two important classes to the server. The first is the
Authenticator class. It implements the Jabber authentication algorithms and will
be used in the server and client for authentication tasks. In addition, we will need
an AuthHandler class to handle IQ jabber:iq:auth queries.

 The real authentication work is conducted in the Authenticator class.

The Authenticator class
The Authenticator5 class implements the digest and zero-knowledge authenti-
cation algorithms. In addition, it provides a method for generating random
numbers. Random number generation is an important tool for most crypto-
graphic algorithms. We’ll use the java.security.SecureRandom6 class and the
SHA1PRNG algorithm7 to generate these numbers (listing 7.1).

public class Authenticator {

 static SecureRandom random;
 static {
 try {
 random = SecureRandom.getInstance("SHA1PRNG");
 } catch (Exception ex){
 Log.error("Could not create SecureRandom ", ex);
 System.exit(-1);
 }
 }

 static public String randomToken(){
 return Integer.toHexString(random.nextInt());
 }

5 You need to be careful when using this class. There is another Authenticator class in java.net. If you
must import both java.net.Authenticator (usually when you do an import java.net.*) and this
Authenticator class, you will need to specify the full class name including package name to differen-
tiate the two for the compiler.

6 Initiating SecureRandom can take a long time resulting in significant startup delays. The class runs
through some computationally intensive operations in order to generate a well-behaved pseudo-ran-
dom number. On my computer it adds about a 3–5 second startup delay. I have heard of extreme cases
where it takes 30–60 seconds. If you don’t need the level of security provided by SecureRandom (for
example during testing or on some clients), you can switch to a less expensive random number gener-
ator or random number algorithm.

Listing 7.1 The Authenticator class and its random number generator

7 The SHA1PRNG random number algorithm ships as a standard part of the Sun Java libraries. It is secure
but computationally intensive algorithm.

200 CHAPTER 7

Client authentication
We only need one instance of SecureRandom for the application so it is best to create
a static instance of it for the entire class. Random numbers are generated and con-
verted into text tokens using the randomToken() method. The method is static so
anyone can generate a random token by calling Authenticator.randomToken().

 On the other hand, each time we create an Authenticator object, we
need a separate SHA-1 message digest. Message digests generate a unique, repro-
ducible digest for a set of data. We can’t share a message digest between authen-
ticators because the data we send to each must be hashed separately. The
java.security.MessageDigest takes care of all the details of the SHA-1
digest algorithm.

The Authenticator class constructor
MessageDigest sha;

 public Authenticator() {
 try {
 sha = MessageDigest.getInstance("SHA");
 } catch (Exception ex){
 Log.error("Could not create SHA MessageDigest ", ex);
 System.exit(-1);
 }
 }

The Authenticator can create Jabber digests using the Jabber digest authentica-
tion algorithm. It must have a stream ID and password in order to generate the
digest (listing 7.2).

public String getDigest(String streamID, String password){
 sha.update(streamID.getBytes());
 return HexString.toString(sha.digest(password.getBytes()));
 }

 public boolean isDigestAuthenticated(String streamID,
 String password,
 String digest) {
 return digest.equals(getDigest(streamID,password));
 }

The isDigestAuthenticated() method checks a digest against a given stream ID
and password by creating a digest for the stream ID and password and then check-
ing it against the given digest.

Listing 7.2 The Authenticator class digest algorithms

The Jabber server modifications 201
 It is important to note that the comparison is between lowercase hexadecimal
string representations of the digest. The HexString class used in getDigest()
generates such a representation given any byte array. It is a common mistake to
have the correct hexadecimal value for the digest but to use uppercase hexademi-
cal numbers (e.g., characters A-F) rather than lowercase. Since the Jabber refer-
ence server is case-sensitive, all other compliant Jabber servers and clients should
use lowercase only.

 Despite the apparent complexity of the zero-knowledge authentication algo-
rithm, it is very simple when implemented in Java as shown in listing 7.3.

public String getZeroKHash(int sequence, byte[] token, byte[] password){

//Running hash is hash(A)
 byte[] runningHash = sha.digest(password);

//Running hash is hash0
 sha.update(HexString.toString(runningHash).getBytes());
 runningHash = sha.digest(token);

//Increment (sequence - 1) times to get hash(sequence)
 for (int i = 0; i < sequence; i++) {

//Make sure to hash lower case, hexadecimal string
 String hashI = HexString.toString(runningHash).getBytes();
 runningHash = sha.digest();
 }
 return HexString.toString(runningHash);
 }

 public boolean isHashAuthenticated(String userHash, String testHash){
 testHash = HexString.toString(sha.digest(testHash.getBytes()));
 return testHash.equals(userHash);
 }
}

It is easy to see how much more computationally intensive getZeroKHash() is than
isHashAuthenticated(), especially for large sequence numbers. Fortunately for
Jabber system scalability, getZeroKHash() is called on the client, while isHashAu-
thenticated() is used on the server. This puts the burden of zero-knowledge
authentication on the client. Clients only need to authenticate once per session so
the one-time cost of conducting zero-knowledge is not an issue in most situations.

 Our Jabber server uses the Authenticator class to handle authentication pack-
ets in the AuthHandler class.

Listing 7.3 The Authenticator class zero-knowledge authentication algorithms

202 CHAPTER 7

Client authentication
The AuthHandler class
The AuthHandler class is responsible for handling two authentication requests.
The first is a get IQ query requesting authentication information for a particular
user. The second is a set IQ query attempting to authenticate a client (Jabber
resource) with a user account.

 In both cases, the incoming packet will identify the user account we’re dealing
with in the <username> field of the query. To organize the class, we’ll split the han-
dling of both scenarios into a set of helper methods. Each method will need to
access a common set of information about the query. This information is stored as
class member variables.

The AuthHandler class constructor and member variables
static UserIndex userIndex;
 public AuthHandler(UserIndex index) { userIndex = index; }

 Packet iq = new Packet("iq");
 User user;
 String username;
 String resource;
 Session session;
 Authenticator auth = new Authenticator();

The names of the member variables should be self-explanatory. Their initial val-
ues are set up in the notify() method. In addition, the notify() method shown
in listing 7.4 implements the basic authentication-handling logic.

public void notify(Packet packet){

 String type = packet.getType();
 Packet query = packet.getFirstChild("query");

 username = query.getChildValue("username");

 iq.setID(packet.getID());
 iq.setSession(packet.getSession());
 iq.getChildren().clear();
 iq.setType("result");

 user = userIndex.getUser(username);
 if (user == null){
 sendErrorPacket(404,"User not found");
 return;
 }

Listing 7.4 The AuthHandler class notify() packet handling method

Set up reply
IQ packet

Probably
be a result

Invalid user

The Jabber server modifications 203
 if (type.equals("get")){
 sendGetPacket();
 return;
 } else if (type.equals("set")){
 session = packet.getSession();
 resource = query.getChildValue("resource");
 if (resource == null){
 sendErrorPacket(400,"You must send a resource");
 return;
 }
 handleSetPacket(query);
 } else {
 }
 }

The real meat of the class lies in its handleSetPacket() and send*Packet()
methods. The send*Packet() methods are simpler so let’s take a look at them first.

The AuthHandler class send*Packet() methods
void sendErrorPacket(int code, String msg){

 ErrorTool.setError(iq,code,msg);
 MessageHandler.deliverPacket(iq);
 }

 void sendGetPacket () {
 Packet reply = new Packet("query");
 reply.setAttribute("xmlns","jabber:iq:auth");
 reply.setParent(iq);
 new Packet("username",username).setParent(reply);
 new Packet("resource").setParent(reply);
 new Packet("password").setParent(reply);
 new Packet("digest").setParent(reply);
 new Packet("sequence",user.getSequence()).setParent(reply);
 new Packet("token",user.getToken()).setParent(reply);
 MessageHandler.deliverPacket(iq);
 }

The sendErrorPacket() method is a convenience method for sending an error mes-
sage back to the client. The sendGetPacket() method creates a standardized get
query response and sends it back to the sender. The information in the response is
obtained from the user account we looked up in the notify() method.

Dropping
packet

204 CHAPTER 7

Client authentication
 The handleSetPacket() method (listing 7.5) is where the authentication of
clients takes place.

void handleSetPacket(Packet query){

 String password = query.getChildValue("password");
 String digest = query.getChildValue("digest");
 String hash = query.getChildValue("hash");

 if (password != null){
 if (user.getPassword().equals(password)){
 authenticated();
 return;
 }
 } else if (digest != null){
 if (auth.isDigestAuthenticated(session.getStreamID(),password,digest)){
 authenticated();
 return;
 }
 } else if (hash != null){
 if (auth.isHashAuthenticated(user.getHash(),hash)){
 user.setHash(hash);
 int newSeq = Integer.parseInt(user.getSequence()) – 1;
 user.setSequence(Integer.toString(newSeq));
 authenticated();
 return;
 }
 }
 sendErrorPacket(401,"Bad user name or password");
 }

The authentication method is determined by the presence of a <password>,
<digest> or <hash> field. In each case, we use the Authenticator object auth to
verify the authentication credentials in the set query. If the authentication
passes we call the authenticated() method and return. Otherwise, we use
sendErrorPacket() to inform the client they sent a bad user name or pass-
word.8 Notice that we must update the user account with a new sequence and
hash value when using zero-knowledge authentication.

 Once a client is authenticated, we use the authenticated() method to send
the empty result IQ response indicating success, and set up the session with its
authenticated Jabber ID and set its status to Session.AUTHENTICATED. Finally, the
session is added to the UserIndex.

Listing 7.5 The AuthHandler class handleSetPacket() method

8 A production server should also make sure the resource is not already in use.

The Jabber client modifications 205
The AuthHandler class authenticated() method
void authenticated(){

 MessageHandler.deliverPacket(iq);
 session.setJID(new JabberID(username,Server.SERVER_NAME,resource));
 session.setStatus(Session.AUTHENTICATED);
 userIndex.addSession(session);
 }
}

The relatively complex authentication features are implemented by a small
amount of code. Most of the work is being carried out in our helper classes like
User, UserIndex, Authenticator, and MessageHandler. Isn’t it good to see
that hard work pay off? By encapsulating functionality into our core classes, logic
classes like our packet handlers remain clean. This allows us to concentrate on
the logic processes in the packet handlers without worrying about the details of
data formatting or account management.

 To complete the upgrade, add AuthHandler to the QueueThread packet listen-
ers and restart the server. With register and authentication support, our server is
now able to handle the normal client startup procedure of connecting, streaming,
optionally registering, authenticating, and messaging.

 The most significant consequence of our server modifications to support
authentication is that you can start using normal Jabber clients to test the server.
Try downloading a Jabber client from the web (start with the ones at www.jab-
ber.org) and see how well the server can handle third-party Jabber clients.
Remember that many Jabber clients are themselves under heavy development so
you may get better results by using the more stable Jabber clients such as those
being used for commercial purposes.9

7.3 The Jabber client modifications

Adding IQ, register, and authentication support to Jabber clients is far simpler
than for servers. For starters, clients don’t have to maintain user account informa-
tion beyond storing their own user’s authentication credentials. In addition, the
client must register or authenticate only once when it first connects with the
server. From that point forward, it need no longer worry about further authenti-
cation or registration needs.

9 I suggest using the Jabber Instant Messenger client from Jabber Inc. (www.jabber.com) or the Disney
Instant Messenger client from the Disney Go Network (www.go.com)

206 CHAPTER 7

Client authentication
 On the other hand, clients have their own unique bookkeeping responsibili-
ties, especially with the IQ protocols. Recall that in the server, we can create IQ
handlers that respond to IQ extension protocols by looking at the namespace of
the <query> packets within it. However, IQ responses, especially the successful IQ
result packet, lack this information. Here is a typical response packet:

<iq type='result' id='iq_id'/>

There is no way to tell what IQ extension protocol the result packet belongs to.
This is where packet IDs come into play. When you send a packet, you can set the
ID to any value. The Jabber server always returns its replies with the same ID. The
client can examine the ID on response packets to determine what IQ conversation
the result belongs to.

 Implementing this in the client’s JabberModel class is not as difficult as it may
seem.

7.3.1 Modifying the JabberModel
The JabberModel class must be modified to handle the new IQ extensions intro-
duced in this chapter. These changes are centered on three functional areas:

■ Registering the new client packet handler classes

■ Matching IQ responses to IQ requests using packet IDs

■ Adding methods for sending registration and authentication packets to the
server

The modifications begin in the constructor where the QueueThread has its new
packet handlers registered. Changes are indicated in bold in listing 7.6.

public class JabberModel {

 JabberModel(TestThread qThread) {
 PacketQueue = qThread.getQueue();
 qThread.addListener(new OpenStreamHandler(),"stream:stream");
 qThread.addListener(new CloseStreamHandler(),"/stream:stream");
 qThread.addListener(new MessageHandler(),"message");

//Registers as an iq extension
 qThread.addListener(authHandler,"jabber:iq:auth");
 qThread.addListener(new IQHandler(),"iq");
 }

 Authenticator authenticator = new Authenticator();

//plain, digest, or 0k
 String auth;

Listing 7.6 The JabberModel class constructor and new member variables

The Jabber client modifications 207
 public String getAuthMode() {return auth;}
 public void setAuthMode(String mode) { auth = mode; }

 String password;
 public String getPassword() {return password;}
 public void setPassword(String pass) {password = pass;}

A significant new development is the registration of the AuthHandler packet han-
dler to handle the jabber:iq:auth packet type. Previously both the QueueThread
and TestThread classes only match a packet registration to the packet element
name. However, for IQ packets, we’ll look at the namespace of the <query> subele-
ment of any <iq> packet to determine appropriate packet handlers. The code
fragment that follows will do the trick in both the QueueThread and
TestThread classes:

TestThread and QueueThread now match IQ extension names for <iq> packets
String matchString;
 if (packet.getElement().equals("iq")){
 child = packet.getFirstChild("query");
 if (child == null){
 matchString = "iq";
 } else {
 matchString = child.getNamespace();
 }
 } else {
 matchString = packet.getElement();
 }

This minor change allows us to add packet handlers for the large number of IQ
extensions that a fully featured Jabber server will support.

 In order to matching incoming packets to ongoing IQ conversations, we’ll cre-
ate a java.util.Hashtable containing packet handler classes indexed by packet
ID as shown in figure 7.6. The IQHandler will look up packet IDs in this Hashtable
and send the packet to the correct packet handler:

JABBERMODEL

IQ response hashtable

resultHandlers
 id packet handler

Figure 7.6
Hashtable is used to temporarily match IQ
packet IDs to appropriate packet handlers.

208 CHAPTER 7

Client authentication
The JabberModel class IQ packet handler support methods and variables
PacketListener authHandler = new AuthHandler();

 Hashtable resultHandlers = new Hashtable();

 public void addResultHandler(String id_code,PacketListener listener){
 resultHandlers.put(id_code,listener);
 }

 public PacketListener removeResultHandler(String id_code){
 return (PacketListener)resultHandlers.remove(id_code);
 }

The last modifications to JabberModel involve the new register and authentica-
tion protocols. To keep things general, JabberModel has two general purpose
methods, register() and authenticate(). These start the registration or authen-
tication process respectively. Each method uses the system parameter
jab.user.auth stored in member variable auth to determine whether it should
use zero-knowledge (0k), digest (digest), or plain authentication. The register
methods are shown in listing 7.7.

public void register() throws IOException {
 if (auth.equals("0k")){
 register0k();
 } else {
 registerPlain();
 }
 }

 void registerPlain() throws IOException {
 Writer out = session.getWriter();
 out.write("<iq type='set' id='reg_id'><query xmlns='jabber:iq:register'>");
 out.write("<username>");
 out.write(this.user);
 out.write("</username><password>");
 out.write(this.password);
 out.write("</password></query></iq>");
 out.flush();
 addResultHandler("reg_id",new RegisterHandler());
 }

 void register0k() throws IOException {
 String token = authenticator.randomToken();
 String hash = authenticator.getZeroKHash(100,
 token.getBytes(),
 password.getBytes());
 Writer out = session.getWriter();
 out.write("<iq type='set' id='reg_id'><query xmlns='jabber:iq:register'>");

Listing 7.7 The JabberModel class register() methods

The Jabber client modifications 209
 out.write("<username>");
 out.write(this.user);
 out.write("</username><sequence>");
 out.write("100");
 out.write("</sequence><token>");
 out.write(token);
 out.write("</token><hash>");
 out.write(hash);
 out.write("</hash></query></iq>");
 out.flush();
 addResultHandler("reg_id",new RegisterHandler());
 }

The registration methods send hard-coded IQ packets to the server. In addi-
tion, each uses the IQ packet handler support methods to register the client’s
RegisterHandler class to receive responses with the same packet ID as it
has sent.

 Authentication support follows the same basic pattern as registration (listing 7.8).

//Used to generate auth ids
int counter;

 public void authenticate() throws IOException {
 if (auth.equals("0k")){
 authenticate0k();
 } else if (auth.equals("digest")){
 authenticateDigest();
 } else {
 authenticatePlain();
 }
 }

 void authenticatePlain() throws IOException {
 addResultHandler("plain_auth_" + Integer.toString(counter),authHandler);
 Writer out = session.getWriter();
 out.write("<iq type='set' id='plain_auth_");
 out.write(Integer.toString(counter++));
 out.write("'><query xmlns='jabber:iq:auth'><username>");
 out.write(this.user);
 out.write("</username><resource>");
 out.write(this.resource);
 out.write("</resource><password>");
 out.write(this.password);
 out.write("</password></query></iq>");
 out.flush();
 }

Listing 7.8 The JabberModel class authenticate() methods

210 CHAPTER 7

Client authentication
 void authenticateDigest() throws IOException {
 addResultHandler("digest_auth_" + Integer.toString(counter),authHandler);
 Writer out = session.getWriter();
 out.write("<iq type='set' id='digest_auth_");
 out.write(Integer.toString(counter++));
 out.write("'><query xmlns='jabber:iq:auth'><username>");
 out.write(this.user);
 out.write("</username><resource>");
 out.write(this.resource);
 out.write("</resource><digest>");
 out.write(authenticator.getDigest(session.getStreamID(),password));
 out.write("</digest></query></iq>");
 out.flush();
 }

The exception to the client’s normal IQ pattern of registering an IQ result han-
dler and sending a packet is found in our implementation of client zero-knowl-
edge authentication. To begin authentication following the zero-knowledge
protocol, we have to ask the server for the current sequence and token using a
get query. The client then uses the Authenticator to generate the appropriate
hash value.

The JabberModel class authenticate0k() method
void authenticate0k() throws IOException {
 Writer out = session.getWriter();
 out.write("<iq type='get' id='auth_get_");
 out.write(Integer.toString(counter++));
 out.write("'><query xmlns='jabber:iq:auth'><username>");
 out.write(this.user);
 out.write("</username></query></iq>");
 out.flush();
 }
}

The glaring change is the lack of a call to addResultHandler(). Recall from our
earlier discussions of the authentication protocol, that a get IQ authentication
query results in a response containing a <query> element filled with the user’s
<token> and <sequence> for zero-knowledge. Since the result will contain a <query>
element with a corresponding jabber:iq:auth namespace, we can use the normal
QueueThread packet listener registration to handle these packets.

 As with our earlier versions of the client code, the real protocol implementa-
tion occurs in the packet handler classes.

The Jabber client modifications 211
7.3.9 The client IQ packet handlers
There are three new client packet handler classes to add support for IQ, register,
and authentication. Although we added support for server IQ handling in
chapter 6, our client does not yet support IQ packets. However, we can reuse
much of the server code from chapter 6 in the client. Let’s begin with the simplest
of our new client packet handlers, the IQHandler class, that adds generic support
for IQ result packets.

The IQHandler class
The TestThread in JabberModel has an IQHandler class registered as a packet
handler instead of the RegisterHandler. The IQHandler will use the IQ packet
handling support features of our new JabberModel to properly route IQ result
packets to their final handlers. The sequence diagram showing how the IQHan-
dler uses the JabberModel’s ResultHandler when it receives Packet objects from
the TestThread is shown in figure 7.7.

Figure 7.7 The IQHandler uses the JabberModel’s new result handler Hashtable to
map incoming <iq> packet IDs to appropriate packet handler objects.

For each incoming IQ packet, the IQHandler (listing 7.9) attempts to locate the
IQ result handler for the packet using the packet’s ID. If the IQHandler finds a
registered PacketListener, IQHandler calls its PacketListener.notify() method
with the Packet. If a result handler is not found, the packet is silently dropped.

public class IQHandler implements PacketListener {

 JabberModel jabberModel;

 public void notify(Packet packet) {
 if (jabberModel == null){

Listing 7.9 The IQHandler class

IQHandler JabberModel Packet HandlerTestThread

addResultHandler ()
(id,packethandler)

notify()
iqPacket removeResultHandler ()

(id,packethandler)

packetHandler.notify ()
iqPacket

212 CHAPTER 7

Client authentication
 jabberModel = JabberModel.getModel();
 }
 if (packet.getID() != null){
 PacketListener listener =
 jabberModel.removeResultHandler(packet.getID());
 if (listener != null){
 listener.notify(packet);
 return;
 }
 }
 }
}

The IQHandler is used to route all register IQ responses to the Register Handler class.

The RegisterHandler class
The RegisterHandler class responds to register result packets. Only two rather
trivial results are possible:

■ Success—The client will attempt to automatically authenticate after registra-
tion.

■ Failure—The result will contain the server’s error message.

The RegisterHandler class
public class RegisterHandler implements PacketListener {

 public void notify(Packet packet){
 try {
 if (packet.getType().equals("result")){
 JabberModel.getModel().authenticate();
 } else {
 String message = "Failed to register";
 if (packet.getType().equals("error")){
 message = message + ": " + packet.getChildValue("error");
 }
 System.err.println(message);
 }
 } catch (Exception ex){
 ex.printStackTrace();
 }
 }
}

The AuthHandler class is a bit more complex than RegisterHandler.

The Jabber client modifications 213
The AuthHandler class
The AuthHandler class (listing 7.10) resembles a combination of the authenticate
methods of the JabberModel class and the result handler of the RegisterHandler
class. The JabberModel authenticate0k() method causes this dual nature
because it must use an authentication get query to get user information in order
to carry out zero-knowledge authentication. If we get a response from this get
query, we need to send the authentication set query.

public class AuthHandler implements PacketListener {

 JabberModel jabberModel;
 Authenticator auth = new Authenticator();
 int counter;

 public void notify(Packet packet) {
 if (jabberModel == null){
 jabberModel = JabberModel.getModel();
 }
 try {
 if (packet.getID().startsWith("auth_get")){

 Packet query = packet.getFirstChild("query");
 String token = query.getChildValue("token");
 int sequence = Integer.parseInt(query.getChildValue("sequence"));
 String hash = auth.getZeroKHash(sequence,
 token.getBytes(),
 jabberModel.getPassword().getBytes());

 jabberModel.addResultHandler("0k_auth_"

+ Integer.toString(counter),
this);

 Writer out = packet.getSession().getWriter();
 out.write("<iq type='set' id='0k_auth_");
 out.write(Integer.toString(counter++));
 out.write("'><query xmlns='jabber:iq:auth'><username>");
 out.write(jabberModel.getUser());
 out.write("</username><resource>");
 out.write(jabberModel.getResource());
 out.write("</resource><hash>");
 out.write(hash);
 out.write("</hash></query></iq>");
 out.flush();

Listing 7.10 The AuthHandler class notify () method (zero-knowledge)

214 CHAPTER 7

Client authentication
Notice that this time, the zero-knowledge authentication query is registered as a
result handler. We could have avoided the dual nature of the AuthHandler class
by using a separate authenticate result handler class as the result handler. I would
certainly consider doing so in a future refactoring of the client. The reduced imple-
mentation complexity may be worth the increased design complexity.

 If the incoming packet is not the result of a get request, it’s the final authenti-
cation result from the server. Once again, this is either a successful result or an
error. If we successfully authenticate with the server, we’ll change the session sta-
tus to Session.AUTHENTICATED.

The AuthHandler class notify() method (continued)

} else if (packet.getType().equals("result")){
 packet.getSession().setStatus(Session.AUTHENTICATED);
 } else if (packet.getType().equals("error")){
 System.err.println("Failed to authenticate: "
 + packet.getChildValue("error"));
 } else {
 System.err.println("Unknown auth result: " + packet.toString());
 }
 } catch (Exception ex){
 ex.printStackTrace();
 }
 }
}

With the help of the Authenticator class, implementing authentication and regis-
tration support in the client is a relatively trivial exercise.

 We don’t need to do much to support authentication in our Java client. We
simply call JabberModel.authenticate() after making a connection.10 For example,
we can modify the SimpleMessageClient from chapter 4 to wait for a session sta-
tus change to Session.AUTHENTICATED instead of detecting the opening
<stream:stream> packet as shown in the following code fragment.

do {
 notifyHandlers(packetQueue.pull());
} while (model.getSessionStatus() != Session.AUTHENTICATED);

Rerun the client against the server to see how both work together. Try using the
client to register and authenticate against other Jabber servers.

10 Optionally, you may call JabberModel.register() prior to authenticate() to create a user ac-
count.

Conclusions 215
7.4 Conclusions

Client authentication allows the server to protect server resources. If you relied
on the honor system, sooner or later the IM equivalent to email spam would start
to overwhelm your server. In addition, spoofing IM messages would be trivial.

 Spoofing involves sending messages as if you were another user. This can be a
costly problem. For example, imagine the damage a disgruntled employee could
do by sending messages that claimed to be from the boss that said, “You’re fired!”
Jabber authentication provides you with some assurances that a message was sent
by the user in the from attribute of the packet.11

 Finally, now that you have authentication to link users to user accounts, you
can start to explore more advanced Jabber server features that aren’t part of the
Jabber standard but provide great benefits to customers. For example, many com-
panies are required by internal policy or the law to keep records of all communi-
cations, including email and instant messages. Your custom Java Jabber server can
log packets that it sends and receives to the company auditing system and can ver-
ify that they were sent using a given user account.

 In addition, Jabber authentication is the first step in creating advanced secu-
rity systems based on IM. We’ll cover advanced security features in chapter 10 that
can fill out security within Jabber. In addition to these security features, however,
sophisticated users and administrators will demand greater control over access.
Your next-generation servers can add these without violating the Jabber authenti-
cation standards.

 For example, imagine that your business is using IM as a main communication
tool. You may wish to allow users to have full IM access. However when IM abuse is
detected, those particular users can be restricted from sending instant messages
outside of the company’s Jabber domain during business hours. A similar policy
may be in place to restrict users from sending instant messages to certain
addresses during work time, or limit bandwidth usage during the busiest times of
the day.

 In chapter 5 we covered the basics of presence and how it applied to
groupchat. However we couldn’t discuss user presence properly because we had
not yet covered user accounts. In addition, user presence works closely with
another IM concept, the roster (also called the buddy list).

11 This is actually enforced by the server when it forces the sender to address to be the same as the Ses-
sion’s authenticated user name.

216 CHAPTER 7

Client authentication
 Rosters rely on a combination of the presence protocols and the roster IQ
extension protocol defined in the namespace jabber:iq:roster. In the next
chapter, we’ll cover the roster protocol and explain how presence and rosters
work together to form the Jabber framework for user presence, the last major
piece of the Jabber puzzle.

 8Roster and user presence
In this chapter
■ The Jabber roster protocol and how

it works
■ How to implement user presence with the

roster and presence protocols
■ Jabber server source code for implementing

roster and user presence support
■ Jabber client source code for testing roster

and user presence support
217

218 CHAPTER 8

Roster and user presence
The last major protocols for our Jabber IM system are rosters and user presence.
Our tour begins by describing what rosters are, and how they work with the pres-
ence protocols to maintain a systemwide user presence. We’ll cover the roster pro-
tocol in detail and finish with the modified Java Jabber server and client software
that supports rosters and user presence.

8.1 Roster protocol: presence’s missing piece

The story of the Jabber roster began in chapter 5 with the presence protocols. The
presence protocols allow us to do two things: update a user’s presence status and
manage presence subscriptions. Presence updates are straightforward, and they are
covered in chapter 5 where presence is used to manage groupchat group member-
ship. Presence updates can also be used to update the user’s presence status.

 The major difference in updating a user’s presence status versus groupchat is
controlling where the presence updates go. In groupchat, presence updates are
sent to the groupchat server, and from there, to group members.

 It is possible for every user to send their presence to all other users. However, if
we sent the presence updates between every user on the Jabber system, servers
and clients would quickly be swamped, leaving no resources for messaging! In
addition, users need to control access to their presence updates for privacy and
ease of use.

 To address these issues, Jabber has a concept of a presence subscription. As the
name implies, a presence subscription determines the subscribers who wish to
receive presence updates from presence publishers. Subscribers must request a
subscription from the publisher, and the publisher has the option of accepting or
refusing a subscription. Each user must manage both their publisher and sub-
scriber presence relationships.

 To organize and manage subscriptions for each user, Jabber has defined a stan-
dard data structure known as the Jabber roster. The Jabber roster1 is a list of other
users identified by their Jabber ID. We’ll call these users roster subscribers even
though their presence subscription relationship can be as presence subscribers,
publishers, or both for the roster owner. Storing all subscription information for
each user in their roster helps to simplify the job of the client developer and in
some cases the server developer.

 For the client developer, having every subscription relationship described in
the roster provides them with a single, authoritative source of presence informa-
tion. For the server developer, when carrying out presence related tasks, you only

1 The Jabber roster is better known by its AOL name, the “buddy list.”

Roster protocol: presence’s missing piece 219
need to work with the presence publisher’s roster in order to properly deliver
presence packets. The cost of this system is a slightly more complicated roster
management task for the server, and the duplication of presence subscription
information in different user’s rosters.

 However, since the Jabber architecture uses distributed servers operating dif-
ferent Jabber domains, synchronizing presence subscription information between
user accounts is a task that needs to be carried out by a standard Jabber protocol.
The Jabber presence subscription protocols allow users to subscribe to the pres-
ence of other users even those in other Jabber domains. Servers use the presence
subscription protocol support to synchronize rosters for users both inside and
outside of their own Jabber domain. We’ll see how this is done in our Java server
later in this chapter.

 The particular type of subscription relationship is tracked in the roster and cat-
egorized by subscription types summarized in table 8.1.

Table 8.1 Presence subscription relationships.

In addition to basic subscription information, the roster allows the user to store
standard user interface information about each subscriber as (figure 8.1). This
information includes a user-friendly roster nickname to display instead of the Jab-
ber ID, and group tags that will allow the client to display subscribers by groups
(typically in a tree or tab sheet display).

Subscription Description

to The user is interested in receiving presence updates from the subscriber.

from The subscriber is interested in receiving presence updates from the user.

both The user and subscriber have a mutual interest in each other’s presence.

none The user and subscriber have no interest in each other’s presence.

Roster

Subscribers

subscriber JID
 nickname
 status
 group(s)

group 2
group 1

Figure 8.1
A Jabber roster contains a list of subscriber items. Each
subscriber is identified by a Jabber ID, and can have an
optional nickname and status. User client applications
can also add optional groups to the subscriber item to
aid in grouping roster items for user display.

220 CHAPTER 8

Roster and user presence
The interesting Jabber twist on rosters is that all of this information is stored and
managed by the server. This greatly simplifies the client implementation and
allows the roster information to automatically be used whenever a user logs in to
their same account. A change made to the roster in one client will be automati-
cally pushed to other clients logged into the same account. The roster protocols
were developed to allow clients to manage these server-side rosters.

 Despite the close relationship between the roster and presence, the roster is a
separate concept from presence. I like to think of the roster as one of those walls
of letter-sized holes often used in hotels to store keys and messages for guests. Just
as a hotel’s box holes have room numbers on them, each hole in the Jabber roster
represents a subscription and has a user’s Jabber ID underneath it.

 Using the roster protocols, we can put nickname labels over each hole so they
are easier to work with. In addition, we can add different lights to each hole indi-
cating a group. That way, if we want to see holes for a group, we simply turn on
the light for that group, making it even easier to find subscriber holes. Finally,
each hole represents a certain type of Jabber subscription. This is akin to how a
hotel’s boxes have different types according to the types of rooms the hotel has:
smoking, nonsmoking, deluxe suite, and so forth. Different actions will be taken
depending on what type of box is being accessed (if someone checks out of a
smoking room, a new set of matches is thrown into his room box, while a non-
smoking room gets a fresh flower).

 In this analogy, the roster protocols are used to manage this set of boxes. You can
change the group lights and manipulate the nickname labels for each hole. How-
ever, managing the boxes is separate from determining what goes into the boxes.

 For rosters, each subscription hole is used by the presence protocols. So for
example, sending a presence update to the server causes the server to look at the
user’s roster, find all items that are of subscription type both or from, and send a
copy of the presence packet to them. This is just like sending a box of ashtrays to
the front desk, and having the attendant automatically place the ashtrays into
holes if they are for smoking rooms.

 The versatility of the roster and presence protocols can lead to confusion. Don’t
let it. At the most important level, both roster and presence are simple to master.

 The basic client algorithm for roster management and display is to begin by
obtaining the server roster using a roster reset (empty get query). The client dis-
plays the returned roster. If the user wishes to make changes to the roster (nick-
names or groups), the client sends a roster update (set query). However, the client
does not directly update the displayed roster. Instead, the client sends the update
information to the server and waits for a roster push from the server.

 A roster push is simply an asynchronous roster set query sent from the server to
all of a user’s authenticated, available clients whenever a roster change is made.

Roster protocol: presence’s missing piece 221
Changes to the roster can occur at any time so clients must always be ready to receive
a roster push from the server and update their displays. Roster pushes occur when:

■ A roster update (set query) changes decorations for the roster (e.g., nick-
names and groups).

■ A presence subscription exchange causes:
■ A roster entry to be created.
■ The subscription type of a roster entry to change.
■ A roster entry to be removed.

As you can see, the presence subscription protocols described in chapter 5 have
a huge effect on the roster and the two protocols work together to manage a
user’s presence.

 The server is in charge of managing the roster and its subscriptions. Clients
can only set the roster nicknames and group settings using the roster protocol. In
addition, they can indirectly affect the roster via presence subscriptions. However,
it is important to note, that it is the server that reads presence subscription pack-
ets and roster updates and manages the roster.

 The design of Jabber presence subscriptions and rosters greatly eases the cli-
ent’s job. Most importantly, clients can send presence updates to the server with-
out worrying about who must be notified. The server will automatically forward
the presence update to presence subscribers using the roster. The server also
makes sure that when a client is disconnected, all presence recipients receive an
unavailable presence update.

 Clients are still free to send presence updates directly to subscribers in order to
send different presence updates to different subscribers. However, if you do this,
the client must make sure to manually update all of its subscribers, as the server
will not manage presence packets with recipient addresses.

 The presence protocol and packets are described in chapter 5 so we only need
to cover the roster protocol to complete the Jabber protocols needed to support
user presence.

8.1.1 The roster protocol
The roster protocol is an IQ extension protocol defined in the jabber:iq: roster
namespace. There are three basic roster protocols:

■ Roster reset—Used by clients to obtain a copy of the roster stored on the server.
■ Roster update—Used by clients to update the roster stored on the server.

■ Roster push—Asynchronous roster updates sent from the server to clients.

222 CHAPTER 8

Roster and user presence
We’ll cover all three in the following sections beginning with roster reset.

Roster reset
A roster reset allows a client to obtain a complete copy of the roster. You obtain a
roster reset by sending an empty get query:

<iq type='get' id='roster_get_id'>
 <query xmlns='jabber:iq:roster'/>
</iq>

The roster replies with a complete copy of the roster:

<iq type='result' id='roster_get_id'>
 <query xmlns='jabber:iq:roster'>
 <item jid='sub1ID' name='nickname1' subscription='both'>
 <group>Personal</group>
 <group>Backpacking</group>
 </item>
 <item jid='sub2ID' name='nickname2' subscription='from'>
 <group>Work</group>
 <group>Marketing</group>
 <group>Company Softball</group>
 </item>
 </query>
</iq>

Notice that the roster <query> packet can contain zero or more <item> packets.
Each <item> packet represents a single subscriber entry with zero or more <group>
fields. The item attributes are outlined in table 8.2.

Table 8.2 Roster <item> packet attributes.

Attribute Required Meaning

jid Yes The subscriber’s Jabber ID.

name Optional The subscriber’s roster nickname.

subscription Yes Indicates the subscription relationship the user has with this subscriber.
Can be:
• “none” (no subscription)
• “to” (user has subscription with subscriber)
• “from” (subscriber has subscription with user)
• “both” (user and subscriber have a mutual subscription)

ask Optional Indicates the subscription status if a change request is pending. Can be:
• “subscribe” (request to subscribe)
• “unsubscribe” (request to unsubscribe)

Roster protocol: presence’s missing piece 223
Roster update
Clients can perform a roster update by sending a roster set query containing the
<item> packet with updated information. Roster updates cannot change the sub-
scription or the value of the ask attribute of the roster item and the server ignores
their values if they are set.

<iq type='set' id='roster_set_id'>
 <query xmlns='jabber:iq:roster'>
 <item jid='sub1ID' name='shandy'>
 <group>Personal</group>
 <group>Backpacking</group>
 <group>Bicycling</group>
 </item>
 </query>
</iq>

The server responds with either an empty result packet indicating success or a
standard IQ error packet. The server will send the roster changes to all authenti-
cated clients using a roster push.

Roster push
The roster push is simply a server-initiated roster set query containing the com-
plete <item> packet(s) for any roster item that has changed. Roster pushes are one-
way from the server to clients so the client should not send an IQ result packet back
to the server. A roster push for the previous update example would look like:

<iq type='set'>
 <query xmlns='jabber:iq:roster'>
 <item jid='sub1ID' name='shandy' subscription='both'>
 <group>Personal</group>
 <group>Backpacking</group>
 <group>Bicycling</group>
 </item>
 </query>
</iq>

If a client unsubscribes from a roster using the presence subscription protocol, the
roster item for that subscription will be removed on the server. The server will send
a roster push to all clients to indicate this by using a subscription attribute set to the
value remove. The client would then remove that item from its roster display.

 For example, if I unsubscribed from sub1ID and they unsubscribed from me
(no subscriptions),2 I would get the following roster push from the server:

2 Unsubscribing from another user’s presence only removes your subscriber subscription to them (a sub-
scription of type to). If you wish to remove their subscription to you (a subscription of type from) you
must send a presence packet with type set to unsubscribed in order to forcibly unsubscribe them.

224 CHAPTER 8

Roster and user presence
<iq type='set'>
 <query xmlns='jabber:iq:roster'>
 <item jid='sub1ID' subscription='remove'/>
 </query>
</iq>

User presence is primarily handled by the Jabber server. Let’s take a look at the
work needed to support it in our Java Jabber server.

8.2 The Jabber server modifications

Jabber roster and presence protocols create a user presence system for Jabber IM.
Jabber relies on user presence for determining the message routing and “store
and forward” delivery of packets. For the server, roster and presence support are
aspects of the server’s overall user account support.

 We began to create the user account subsystem of the server in the previous
chapter beginning with the User class. This class stores authentication credentials
for the account and manages the Session objects belonging to that account. In
this chapter, we need to add presence support to the User class.

8.2.1 Representing user presence
User presence is a two-faced beast. Presence describes the state of a resource and
is associated with a Session on the server. Roster describes the presence subscrip-
tions for the user and is associated with the user account. Thus, a user has one ros-
ter, but can have as many presences as authenticated sessions (figure 8.2).

Things are complicated because the Jabber messaging model tries to hide the
details of multiple sessions from other users. In other words, you may have multi-
ple clients attached to the server at the same time, say one for your cell phone
and another on your PC. However, other users should only see you as a single user
entity, and send messages to your user address.

User

Roster

SessionIndex

Presence
Session

Presence
Session Figure 8.2

A user account has one roster, but many
sessions, each with its own presence status.

The Jabber server modifications 225
 Unfortunately, each client has its own presence (your PC may be unavailable
while your cell phone is available). Other users will see that you are available
and unavailable at the same time. Clients can hide these details by displaying
the most available presence. In general, this is the most satisfying solution. Most
users only care if they can send a message to another; as long as there is an avail-
able resource, they can send messages and they are happy.3

 To reflect the dual nature of user presence, we’ll create two classes: Presence and
Roster. The Presence class keeps track of the presence status for a Session, and the
Roster class tracks the user’s roster. The Presence class (see listing 8.1) is simple to
implement, as it is primarily a data structure class.

public class Presence {

 boolean available;
 public boolean isAvailable(){return available;}
 public void setAvailable(boolean isAvailable){ available = isAvailable;}

 static public final String SHOW_CHAT = "chat";
 static public final String SHOW_AWAY = "away";
 static public final String SHOW_XA = "xa";
 static public final String SHOW_DND = "dnd";

 String show;
 public String getShow() { return show; }
 public void setShow(String newShow) { show = newShow; }

 String status;
 public String getStatus() { return status; }
 public void setStatus(String newStatus) { status = newStatus; }

 String priority;
 public String getPriority() { return priority; }
 public void setPriority(String newPriority) { priority = newPriority; }
}

Our Session class has a Presence member variable to track the presence status for
each session. Our packet routing classes like MessageHandler will use the Presence
object of the Session class to determine packet delivery behavior.

3 Sophisticated users, may have different preferences. They may want to know as much about other user’s
resources as possible or may want information regarding specific resources. For example, users may
want to know when you are at your PC because they need to chat about a document they placed on a
file server accessible from your PC. They don’t care about your presence on other resources.

Listing 8.1 The Presence class

226 CHAPTER 8

Roster and user presence
 Rosters are a little more complicated to manage.

8.2.2 Adding a roster subsystem
Supporting rosters on the server requires a moderate amount of work. From the
server’s perspective, roster management is an exercise in bookkeeping. We need
to maintain the roster data structure on the server, and update it using incoming
IQ roster packets and <presence> packets. Since both IQ roster and <presence>
packets will influence the roster, we’ll need to make sure that the packet handling
classes are modified to support the roster subsystem.

 Rosters are tightly linked to their corresponding user account (figure 8.3).
Each user account contains one roster, even if the roster itself is empty. A user
account can have multiple sessions representing simultaneous resources, but the
account shares one global roster.

In our Java server, the User class represents a user account. We will add a Roster
class to the User class to represent a user’s roster. The Roster class in turn stores a
list of subscriber items as shown in figure 8.4 (each item acts as one of the slots in
the hotel key box analogy).

Subscriber items are mainly data classes storing the subscription type (from, to,
both, or none), and optional ask status of the subscription. The ask status is present
when the subscriber is in the process of asking for a change in subscription status.
For example, imagine a situation where “iain” and “hieu” don’t have a subscription.
Iain sends a presence packet requesting permission to subscribe to hieu’s presence:

<presence to='hieu@server' type='subscribe'/>

User

Roster
Figure 8.3
Each user account has one, and only one, roster.

User

Roster

subscriber(s)

Figure 8.4
Each roster contains zero or more roster subscriber items.

The Jabber server modifications 227
Iain’s roster subscription item after this reaches the server will be:

<item jid='hieu@server' type='none' ask='subscribe'/>

The server will send a roster push containing the updated roster item to all
resources connected to the server. On the other hand, the roster for “hieu” will be
empty. Hieu only receives the <presence> subscription request. Hieu’s client can
approve the subscription request by sending

<presence to='iain@server' type='subscribed'/>

Hieu’s roster is updated by his server to contain the following roster subscriber item:

<item jid='iain@server' type='from'/>

Iain’s roster is updated by his server to contain the following roster subscriber
item:

<item jid='hieu@server' type='to'/>

The clients can then update their roster entry, assigning a nickname and adding
one or more groups to the item using the roster IQ extension protocol. The server
only cares about each subscriber item’s subscription Jabber ID, the type of subscrip-
tion, and the optional ask status of the item. The roster entry’s nickname and
optional group subitems are information the server must store for clients to use.

 Since the server must only store roster metainformation like groups without
understanding it, we can simplify the server by only storing the information we
need to understand (e.g., type and ask status) in a Subscriber class, and storing a
separate raw text copy of the packet containing the full contents of the item (fig-
ure 8.5). When the server is manipulating the roster, it only looks at the Subscriber
information. When the server needs to send a copy of a roster item to a client, it
can send the raw packet text without worrying about what it contains.

Subscriber is an inner class of the Roster class. The Roster class will use it internally.

Roster

subscribers (Hashtable)
Jabber ID

Jabber ID Packet
items (Hashtable)

Subscriber
 type
 ask status

Figure 8.5
The Roster’s subscriber items are stored in two
Hashtables, indexed by the subscriber item’s Jabber
ID. The subscribers Hashtable maps
subscriber objects storing information the server
needs to maintain the roster and to properly route user
presence updates. The items Hashtable maps
subscribers Packets storing the raw roster item
Packet object that can be sent to clients during
roster pushes.

228 CHAPTER 8

Roster and user presence
The Roster constructor, subscriber Hashtables, Subscriber Inner-class
public class Roster {

//User’s username used for presence updates
 String user;
 public Roster(String username) { user = username; }

 Hashtable items = new Hashtable();

//The Subscriber inner-class
 Hashtable subscribers = new Hashtable();

 class Subscriber {
 String subscription;
 String ask;
 }

//Simplify delivery by maintaining list of current presence subscribers
 LinkedList presenceRecipients = new LinkedList();

The most common task that the Roster will face is forwarding copies of presence
update packets to presence subscribers. With this in mind, we’ll use a separate
java.util.LinkedList to maintain a copy of presence subscribers so that we can
quickly forward updates without working our way through the Hashtables looking
for to or both subscribers. The slight overhead in maintaining a redundant list of
subscribers pays off in more efficient presence updates. The two Hashtables and
one LinkedList are really all that the Roster class must manage.

 Handling <presence> updates is the most involved part of roster management.
The difficulty is not in any complexity in the presence packets. Unfortunately, like
many programming tasks, handling presence updates is simply tedious work.
Every incoming presence packet4 requires us to examine the packet and deter-
mine what to do with it. This process is handled in the updatePresence() method
shown in listing 8.2.

public void updatePresence(Packet presence){
 String type = presence.getType();
 Session session = presence.getSession();
 Presence sessionPresence = session.getPresence();
 String recipient = presence.getTo();
 JabberID recipientID;
 boolean isUserSent;
 if (recipient == null){

4 Every presence packet except those addressed to the groupchat server is handled by calling this method.

Listing 8.2 The Roster class UpdatePresence(): packet examination

The Jabber server modifications 229
 recipientID = new JabberID(Server.SERVER_NAME);
 isUserSent = true;
 } else {
 recipientID = new JabberID(recipient);
 if (user.equals(recipientID.getUser())){
 isUserSent = false;
 } else {
 isUserSent = true;
 }
 }
 String sender = presence.getFrom();
 JabberID senderID;
 if (sender == null){
 senderID = session.getJID();
 } else {
 senderID = new JabberID(sender);
 }
 String subscriber = isUserSent ? recipientID.toString() :
 senderID.toString();

 if (type == null) {
 type = "available";
 }

In the first part of update we unpack the Packet filling in any implied fields that
were left blank. We also begin the sorting process by determining if the packet is
user-managed or server-managed. User-managed presence packets are addressed to
another Jabber user. The server forwards these directly to their recipient.

 The server does not automatically update the user’s other presence subscribers.
That is reserved for server-managed updates. Server-managed presence updates are
addressed to the server or have no recipient (to) address. The server automatically
forwards these updates to all of the user’s presence subscribers.

 In both cases, we can determine if a packet is a presence update if its type is
available or unavailable (listing 8.3).

if (type.equals("available") || type.equals("unavailable")){

//User-managed presence updates are delivered untouched
 if (!isUserSent){
 MessageHandler.deliverPacket(presence);
 return;
 }

//Server-managed presence updates are forwarded to all subscribers

Listing 8.3 The Roster class UpdatePresence(): presence updates

230 CHAPTER 8

Roster and user presence
//Update the Session’s presence status
 sessionPresence.setAvailable(type.equals("available"));
 sessionPresence.setShow(presence.getChildValue("show"));
 sessionPresence.setStatus(presence.getChildValue("status");
 String priority = presence.getChildValue("priority");
 sessionPresence.setPriority(priority);
 if (priority != null){
 session.setPriority(Integer.parseInt(priority));
 }

//Deliver to all user’s presence subscribers
 updateSubscribers(presence);
 return;
 }

The presence update handling part of updatePresence() relies on the MessageHan-
dler to deliver user managed packets directly to a recipient. For server-managed
updates, the method updateSubscribers() is used to send the presence update to
all of the user’s presence subscribers. In addition, we must update the Presence
object in the sender’s session.

 Normally, presence updates originate from the client. However, servers will
sometimes need to know the presence status of users on other servers and can’t
wait for an update. Servers can request the presence of another user using a
<presence> packet with type set to the value probe. We won’t handle these packets
in our Jabber server but we’ll check for these probe packets and drop them:

The Roster class updatePresence() method: handling presence probes
if (type.equals("probe")) {

 System.out.println("Roster: We don't handle probes yet " +
 presence.toString());
 return;
 }

The last set of presence packets we handle are those with types of subscribe,
unsubscribe, subscribed, and unsubscribed. The subscribe and unsubscribe pack-
ets create a roster item (if one doesn’t exist) and set the subscription ask status
appropriately.

 A subscribed or unsubscribed packet is sent to confirm the subscription request.
When we get a subscription packet, we clear the ask status for the subscription
item and change the subscription type appropriately (listing 8.4).

The Jabber server modifications 231
Subscriber sub = (Subscriber)subscribers.get(subscriber);
 if (sub == null){
 sub = new Subscriber();
 sub.subscription = "none";
 subscribers.put(recipient,sub);
 }
 if (type.equals("subscribe") || type.equals("unsubscribe")){
 sub.ask = type;
 } else if (type.equals("subscribed")){
 sub.ask = null;
 if (isUserSent){
 if (sub.subscription.equals("from")){
 sub.subscription = "both";
 } else if (sub.subscription.equals("none")){
 sub.subscription = "to";
 }
 } else {
 if (sub.subscription.equals("to")){
 sub.subscription = "both";
 } else if (sub.subscription.equals("none")){
 sub.subscription = "from";
 }
 }
 } else if (type.equals("unsubscribed")){
 sub.ask = null;
 if (isUserSent){
 if (sub.subscription.equals("from")){
 sub.subscription = "none";
 } else if (sub.subscription.equals("both")){
 sub.subscription = "to";
 }
 } else {
 if (sub.subscription.equals("to")){
 sub.subscription = "none";
 } else if (sub.subscription.equals("both")){
 sub.subscription = "from";
 }
 }
 }
 Packet item = (Packet)items.get(subscriber);
 if (item != null){
 item.setAttribute("subscription",sub.subscription);
 item.setAttribute("ask",sub.ask);
 Packet iq = new Packet("iq");
 iq.setType("set");
 Packet query = new Packet("query");
 query.setAttribute("xmlns","jabber:iq:roster");

query.setParent(iq);
 item.setParent(query);

Listing 8.4 Roster class UpdatePresence(): presence subscription

Create
subscription
item

Set up subscription
request status

Subscription
accepted

Subscription
revoked/refused

Update for
roster push

232 CHAPTER 8

Roster and user presence
 MessageHandler.deliverPacketToAll(user,iq);
 }

MessageHandler.deliverPacket(presence);
 }

 void updateSubscribers(Packet packet){
 Enumeration subs = subscribers.keys();
 while (subs.hasMoreElements()){
 packet.setTo((String)subs.nextElement());
 MessageHandler.deliverPacket(packet);
 }
 }

Handling presence updates is the most difficult part of roster management.
The easiest is responding to a roster reset (roster get IQ query). A roster reset
simply is a request from a client for the server to send a copy of the complete
roster. Clients usually send roster resets and then authenticate with the server
in to generate their roster user displays. Since the roster items are stored as
Packet objects in the items Hashtable sending a Roster snapshot is as easy as
iterating through the table and attaching the roster item Packets to a parent
<query> packet.

The Roster class getPacket() method
public Packet getPacket(){

 Packet packet = new Packet("query");
 packet.setAttribute("xmlns","jabber:iq:roster");
 Iterator itemIterator = items.values().iterator();
 while (itemIterator.hasNext()){
 ((Packet)itemIterator.next()).setParent(packet);
 }
 return packet;
 }

Roster updates (roster set IQ queries) are only slightly more complex. To han-
dle the update, we need to store a copy of the new item in our items Hashtable
and send a roster push to all resources currently logged in to that user account.

public void updateRoster(Packet packet){

//Extract the query packet
 Packet rosterQuery = packet.getFirstChild("query");
 rosterQuery.setAttribute("xmlns","jabber:iq:roster");
 Iterator rosterItems = rosterQuery.getChildren().iterator();
 while (rosterItems.hasNext()){

Listing 8.5 The Roster class updateRoster() method

Forward the
subscription
packet to
recipient

Send updated
presence to
subscribers

The Jabber server modifications 233
//For each <item> packet in the query
 Object child = rosterItems.next();
 if (child instanceof Packet){
 Packet itemPacket = (Packet)child;

 String subJID = itemPacket.getAttribute("jid");
//Create Subscriber object for <item> if needed

 Subscriber sub = (Subscriber)subscribers.get(subJID);
 if (sub == null){
 sub = new Subscriber();
 sub.subscription = "none";
 sub.ask = null;
 subscribers.put(subJID,sub);
 }

//Update <item> with subscriber info for roster push
 itemPacket.setAttribute("subscription",sub.subscription);
 itemPacket.setAttribute("ask",sub.ask);

//Store updated <item> packet
 items.put(subJID,itemPacket);
 }
 }

//Roster push
 packet.setType("set");
 MessageHandler.deliverPacketToAll(packet);
 }

It is ironic that when managing the roster, the roster protocols are easy to handle
and the presence protocols require the most work.5 Now that we see how the Ros-
ter class manages the roster, let’s take a look at the server’s packet handlers that
will route the roster-related packets to the Roster class.

8.2.6 The roster packet handlers
Two packet handlers will handle roster-related packets: RosterHandler and Pres-
enceHandler. From their names, it is obvious that the RosterHandler class handles
IQ packets belonging to the jabber:iq:roster namespace, while our existing Pres-
enceHandler will continue to handle <presence> packets but is now roster-aware.

5 I would have preferred if the presence subscription protocols were moved into the roster protocols to
keep presence out of roster management. This arrangement seems cleaner. However, it makes sense to
keep all presence-related tasks together in the presence protocols and that is the case for Jabber’s stan-
dard user presence protocols. In addition, with this division of labor, roster becomes an exclusively cli-
ent/server protocol, leaving presence to handle anything that must pass through intervening servers.

234 CHAPTER 8

Roster and user presence
 The PresenceHandler class must differentiate between groupchat packets and
user presence packets. The former are routed to the GroupchatManager discussed in
chapter 5, while the latter are resent to the Roster member of the appropriate
User object.

The PresenceHandler class
public class PresenceHandler implements PacketListener {

 UserIndex userIndex;
 GroupChatManager chatMan = GroupChatManager.getManager();
 public PresenceHandler(UserIndex index) { userIndex = index; }

 public void notify(Packet packet){
 if (packet.getSession().getStatus() != Session.AUTHENTICATED){

 packet.setTo(null);
 packet.setFrom(null);
 ErrorTool.setError(packet,401,
 "Authentication required to send presence");
 MessageHandler.deliverPacket(packet);

 } else if (chatMan.isChatPacket(packet)){
 chatMan.handleChatPresence(packet);

 } else {
 User user = userIndex.getUser(packet.getSession().getJID().getUser());
 user.getRoster().updatePresence(packet);
 }
 }
}

The RosterHandler class is even simpler since it routes all packets directly to the
appropriate User class’s Roster object.

The RosterHandler class
public class RosterHandler implements PacketListener {

 UserIndex userIndex;
 public RosterHandler(UserIndex index) { userIndex = index; }

 public void notify(Packet packet) {
 packet.setTo(null);
 packet.setFrom(null);

 if (packet.getSession().getStatus() != Session.AUTHENTICATED){

 ErrorTool.setError(packet,401,
 "Authentication required to send roster updates");
 MessageHandler.deliverPacket(packet);
 return;

The Jabber server modifications 235
 }

 User user = userIndex.getUser(packet.getSession());
 if (packet.getType().equals("set")){
 user.getRoster().updateRoster(packet);
 return;
 }

 if (packet.getType().equals("get")){

 packet.setType("result");
 packet.getChildren().clear();
 user.getRoster().getPacket().setParent(packet);
 MessageHandler.deliverPacket(packet);
 return;
 }

 ErrorTool.setError(packet,400,"What kind of IQ is this?");
 MessageHandler.deliverPacket(packet);
 }
}

The packet handling classes finish up the last significant addition to the Jabber
server we’ll cover in this book. The server now supports the core Jabber protocols
and provides a fully functional, basic IM platform.

 There are a few minor code changes not shown here that are required to
support these new classes. They’re scattered about and relatively minor, so I’ll
leave it to you to read the server code itself if you want the full details. These
changes include:

■ Registering the two new packet handlers with the QueueThread object in the
Server’s constructor.

■ Sending a <presence> update with a type of unavailable when a client closes
its XML streams.

■ Limiting delivery of <message> packets to available resources.6

We’ve seen these changes done in previous chapters to support new server fea-
tures so we won’t cover the subject again.

 As our Jabber server is now relatively complete, you can freely test it with any
Jabber client to ensure that presence, rosters, and messaging support are func-
tioning correctly. Try adding other users to your roster, changing your presence,

6 Our original server code delivers messages when clients are authenticated. We need to add an AVAIL-
ABLE session status so that MessageHandler can deliver messages or store them for later delivery.

236 CHAPTER 8

Roster and user presence
and sending messages. Testing the server using different clients is very useful in
ensuring that the server behaves as expected.

 Manual testing, especially when relying on other people’s Jabber clients, can
be tedious. Let’s expand our Jabber client code to test user presence and rosters.

8.3 The Jabber client modifications

There is little to add to our Jabber client to test the server’s new user presence and
roster support. The client’s JabberModel class already allows us to send <presence>
packets. We only need to add the ability to send roster updates to the server using
the JabberModel. In addition, we will need to create a RosterHandler class to handle
incoming roster packets, and modify the Client class to test our new features.

8.3.1 Adding minimal roster support
The client’s roster support requires a simple way to send roster updates using the
JabberModel class, and handling incoming roster packets using a RosterHandler class.
Both tasks are straightforward. Let’s begin with the JabberModel modifications.

 In order to make Jabber interactions simple for the client, we’ll add three new
methods to the JabberModel:

■ sendRosterGet()—Sends a roster reset packet (get query) to the server,
requesting a full roster snapshot be sent.

■ sendRosterSet()—Sends a roster update packet (set query) to the server to
modify a roster item.

■ sendRosterRemove()—Sends a roster update packet (set query) to the server
to remove a roster item.

In these three methods shown in listing 8.6, we create a roster packet and send it
to the server. As with most <iq> protocols, the server will respond to roster queries
with an empty successful result packet. Clients should assign unique packet IDs to
the requests so they can match it to responses.

public void sendRosterGet()
 throws IOException {
 Packet packet = new Packet("iq");
 packet.setType("get");
 packet.setID("roster_get");
 Packet query = new Packet("query");
 query.setAttribute("xmlns","jabber:iq:roster");
 query.setParent(packet);
 packet.writeXML(session.getWriter());

Listing 8.6 The JabberModel class roster methods

The Jabber client modifications 237
 }

 public void sendRosterRemove(String jid)
 throws IOException {
 Packet packet = new Packet("iq");
 packet.setType("set");
 packet.setID("roster_remove");
 Packet query = new Packet("query");
 query.setAttribute("xmlns","jabber:iq:roster");
 query.setParent(packet);
 Packet item = new Packet("item");
 item.setAttribute("subscription","remove");
 item.setAttribute("jid",jid);
 item.setParent(query);
 packet.writeXML(session.getWriter());
 }

 public void sendRosterSet(String jid,
 String name,
 Iterator groups)
 throws IOException {
 Packet packet = new Packet("iq");
 packet.setType("set");
 packet.setID("roster_set");
 Packet query = new Packet("query");
 query.setAttribute("xmlns","jabber:iq:roster");
 query.setParent(packet);
 Packet item = new Packet("item");
 item.setAttribute("jid",jid);
 item.setAttribute("name",name);
 item.setParent(query);
 while (groups.hasNext()){
 new Packet("group",(String)groups.next()).setParent(item);
 }
 packet.writeXML(session.getWriter());
 }

The server will send the client roster pushes. A Jabber user agent client with a GUI
would use these roster pushes to update the roster display. Our test client has no
such display. We will simply print out the roster push to standard output (Sys-
tem.out). As your test client needs become more sophisticated, you may want to
examine the roster push contents and keep statistics on your roster’s behavior.

The RosterHandler class
public class RosterHandler implements PacketListener {

 public void notify(Packet packet) {
 System.out.print("roster: ");
 System.out.println(packet.toString());
 }
}

238 CHAPTER 8

Roster and user presence
With the basics of roster handling now in place, it’s time to update the client
application to test the server’s new user presence and roster capabilities.

8.3.7 Testing the server
To test user presence support, we will first use the presence protocols to subscribe
to a user’s presence updates, approve the subscription of another client, and
update the presence of our client. Since our tests run best if we test presence
between two users, we have two options for creating our test client. The first is to
automate one side of the conversation and use a standard Jabber client for the
other. That way we know that other Jabber clients, interacting through the server
with our client, behave properly. This is important for ensuring interoperability
when communicating with users employing other Jabber clients.

 Our main concern is testing our server, which brings us to the second option.
To make testing simple, automated, and more controllable, we will once again
run two client sessions within our Jabber client (figure 8.6).

With this in mind, let’s create an IainTestThread and HieuTestThread class within a
new RosterClient class. The TestThread subclasses will each conduct a server test of
user presence support by carrying out the steps listed in table 8.3.

Table 8.3 The sequence of tasks carried out by the two test threads in our client application.

IainTestThread HieuTestThread

Connect to the server.
Authenticate with the server as user “iain.”
Send presence “available”.

Connect to the server.
Authenticate with the server as user “hieu.”
Send presence “available”.

Subscribe to the presence of user “hieu.”

Accept subscription from user “iain.”

Update roster to place hieu in group “friends”
with the nickname “RunningMan.”

Send presence “unavailable”.

Disconnect. Disconnect.

Client
TestThread
User “iain”

TestThread
User “hieu”

Figure 8.6
The client contains two TestThreads that control two
separate client sessions.

The Jabber client modifications 239
Let’s begin by examining the code for IainTestThread (listing 8.7).

public class IainTestThread extends TestThread {

 public void run(){
 try {
 model.connect();
 model.authenticate();
 do {

notifyHandlers(packetQueue.pull());
 } while (model.getSessionStatus() != Session.AUTHENTICATED);

 model.sendPresence(null,null,null,null,null);

 String hieuName = "hieu@" + model.getServerName();
 model.sendPresence(hieuName,
 "subscribe",
 null,
 null,
 null);

 waitFor("presence","subscribed");

 LinkedList groups = new LinkedList();
 groups.add("friends");
 model.sendRosterSet(hieuName,
 "RunningMan",
 groups.iterator());

 waitFor("iq","set");

 model.sendPresence(null,
 "unavailable",
 null,
 null,
 null);
 model.disconnect();
 } catch (Exception ex){
 ex.printStackTrace();
 }
 }
 }

It’s pretty amazing what we can do with our simple TestThread class in just a few
lines of code. I’ve noticed that the JabberModel.sendPresence() method typically
uses the recipient and type parameters and ignores the others. This would signal
to me that we should add some convenience methods to the JabberModel to make

Listing 8.7 The IainTestThread class

Wait until
authenticated

Set “available”
presence

Subscribe to
“hieu”

Wait for
confirmation

Update
roster

Roster
push

Signal
“unavailable”
presence

240 CHAPTER 8

Roster and user presence
working with presence simpler. Overall, the design of the JabberModel and its use
in the TestThread subclasses makes for a pleasant client coding experience.

 The HieuTestThread in listing 8.8 also extends the TestThread and carries out
the other side of the roster test.

public class HieuTestThread extends TestThread {

 public void run(){
 try {
 model.connect();
 model.authenticate();
 do {
 notifyHandlers(packetQueue.pull());
 } while (model.getSessionStatus() != Session.AUTHENTICATED);
 model.sendPresence(null,null,null,null,null);

 waitFor("presense","subscribe");
 String iainName = "iain@" + model.getServerName();
 model.sendPresence(iainName,
 "subscribed",
 null,
 null,
 null);
 waitFor("presence","unavailable");
 model.disconnect();
 } catch (Exception ex){
 ex.printStackTrace();
 }
 }
 }
}

Try running the test on our Java Jabber server to see how it behaves. Notice how
the presence subscription request and approval cause spontaneous server roster
pushes. Is the server’s behavior what you expect? Try running the test against
another Jabber server (e.g., the open source reference Jabber server). Is the test
behavior the same between our server and others?

Listing 8.8 The HieuTestThread class

Conclusions 241
8.4 Conclusions

The Jabber user presence and roster protocols round out the core Jabber proto-
cols, creating a basic, functional IM system. User presence and rosters are what set
IM apart from other Internet communication systems and it’s taken us three chap-
ters to cover it. As we’ve seen, both user presence and roster rely on other systems
that need to be in place before we could properly address them.

 Although user presence and roster support are the most complex parts of the
server, supporting user presence and the Jabber roster is primarily a bookkeeping
implementation exercise. Sophisticated Jabber systems will inevitably use a data-
base and other data management tools to allow these user-account-related opera-
tions to scale smoothly to large numbers of users and provide reliable service.

 The Java server we’ve been working on is now capable of supporting most Jab-
ber IM clients. In addition, our client software has all the features you need to
turn it into a graphical user agent or automated chatbot. Next we examine where
we can take the software, and what you would need to do to turn it into commer-
cial-grade products.

 9Creating a complete Jabber system
In this chapter
■ What the Jabber standards specify
■ How to create standards-compliant

Jabber software
■ How to create commercial-quality Jabber

client and server software
■ Suggested features that can differentiate

your Jabber software from the crowd
243

244 CHAPTER 9

Creating a complete Jabber system
The chapter provides an overview of the significant tasks facing anyone wishing to
create a complete Jabber server or client. These problems exist whether you are
extending the server and client software developed in this book or writing your
own from scratch. To focus the discussion on the generic issues facing developers,
we’ll skip looking at more source code and concentrate on the problems and pos-
sible solutions available.

 To begin, we’ll take a generic look at additional protocol issues that we have
not yet covered. From a technical standpoint, supporting the remaining stan-
dard Jabber protocols in our Java Jabber server and client is a straightforward
exercise in adding more packet handlers that follow the specification. The real
difficulty lies in selecting which protocols you should implement. The first part
of this chapter will discuss these issues and provide guidance in this decision-
making process.

9.1 Creating Jabber-compliant implementations

In the previous chapters, we’ve taken a look at the core Jabber protocols which
protocols are fundamental to building a complete IM system. Using this knowl-
edge, we have implemented a Jabber client and server in Java that provides the IM
capabilities found in all Jabber systems. A scan through appendix A of this will
show that there are many other support protocols and other features available as
part of the Jabber specification.

 In most cases, these additional protocols are straightforward to understand and
to implement. Even if you have an unlimited budget (or no deadlines), there may
be some support protocols defined in the Jabber protocols that you don’t want to
implement for business, security, or policy reasons.

 Suppose your company wants to implement a small Jabber client that will run
on a wireless personal digital assistant (PDA) like a Palm Pilot. Sending messages
and simple presence is all you want this client to do. Other protocols won’t
increase the value of the client software and can lead to poor performance and
excessive memory consumption on these limited devices.

 These issues bring to light the problem of defining a coherent, interoperable
Jabber standard while providing developers the flexibility to target Jabber tech-
nology in a variety of applications.

 Jabber is attacking this problem on three fronts:

■ Formal standards
■ Powered by Jabber logo campaign
■ Jabber environments

Creating Jabber-compliant implementations 245
9.1.1 Setting standards: the Jabber Software Foundation
The first steps in controlling the Jabber standards have been taken by the Jabber
Software Foundation. The Foundation is primarily funded and administered by
Jabber.com Inc., a commercial company composed of most of the open source
Jabber project’s original developers including Jeremie Miller, the Jabber inventor.
The Foundation is modeled after the popular and Apache Software Foundation
and is tasked with maintaining the Jabber community and creating Jabber stan-
dards. It is split into a number of Jabber Interest Groups(JIGs), each forming a
committee focused on a particular area of Jabber technology.

 One of the main goals of JIGs is to produce next-generation Jabber standards
to replace the original ones, never a primary source of information concerning
the Jabber protocols. They are inconsistent and incomplete and cannot be used,
by themselves, to create a “clean room” implementation of the Jabber standards.
Instead, you are forced to examine the behavior of the Jabber server reference
implementation (jabberd) to obtain the definitive behavior of the Jabber proto-
cols. This is not an unusual situation for standards being developed in parallel
with an implementation.

 However, the Jabber standards are maturing enough that a more formal stan-
dards process can be put into place to define them. This process is under way and I
hope that by the time you read this some of the Jabber Software Foundation stan-
dards are in place. In the meantime, I have provided my own reference to the exist-
ing Jabber standards in the appendix of this book. I anticipate that the eventual
Foundation standards should closely follow the existing Jabber standards outlined
in this book.

9.1.2 Enforcing standards: Jabber Powered applications
The Jabber standards are important because they enable any Jabber-compliant cli-
ent to reliably communicate with a Jabber-compliant server. If client and server
developers begin to implement their own versions of the Jabber standards, we’ll
run into problems where only certain features work on certain clients or servers
and isolated “Jabber islands” will begin to form within the Jabber network. Similar
problems plagued the web during the “browser wars” when web browsers started
implementing custom tags and you had to have a particular web browser
(Netscape or Internet Explorer) in order to view a web page.

 To encourage standards compliance and spread the news about Jabber,
the Jabber Software Foundation has begun a Jabber Powered logo cam-
paign (www.jabberpowered.org). This effort allows clients or servers that
use Jabber technology to advertise the fact using a Jabber Powered logo
(figure 9.1) maintained by the Jabber Software Foundation. Java developers will

246 CHAPTER 9

Creating a complete Jabber system
be familiar with this tactic as Sun has used a similar program to promote pure
Java programming with their 100% Pure Java logo campaign. The requirements
for using the Jabber Powered logo are extremely limited at this time.

When the formal Jabber Software Foundation standards are released clients and
servers may be required to pass standards compliance tests prior to being able
to display the logo (figure 9.1). This will be a major breakthrough because at
this point, there are no Jabber compliance tests or formal techniques for deter-
mining what does and what does not follow the standards.

9.1.3 Organizing standards: Jabber environments
Finally, like Java, the Jabber community recognizes that one standard cannot fit all
situations. The Java community has addressed this issue by creating Java configura-
tions and profiles, beginning with Java 2 Micro Edition (J2ME). In the Java system,
configurations are used to define the basic computing resources of a particular
device such as its basic computing capabilities, RAM and storage, user interfaces,
and so forth.

 For example, the Java Connected Limited Device Configuration (CLDC)
defines a configuration for small embedded devices such as cell phones and
PDAs with very minimal computing resources. The Connected Device Configura-
tion(CDC) defines the next step up in computing power and covers slightly big-
ger devices such as set top boxes, Internet appliances, and so forth.

 The Java system then defines profiles for each configuration that tailors Java
technology (primarily the Java libraries available) to specific applications. So
there is a Mobile Information Device Profile (MIDP) that defines additional librar-
ies on the CLDC foundation for PDAs. A TV Profile is being proposed for CDC
devices to support generic TV controls such as electronic programming guides
and channel selection.

 Jabber standards are facing the same problems as the Java standards had: one
solution will not fit every problem domain. Resource-limited environments have
very different requirements from enterprise servers. There is currently a proposal
in the Jabber Software Foundation to create a similar set of configurations and
profiles for the Jabber standards. The idea is to establish a limited set of Jabber
environments that define subsets of the Jabber standards that must be imple-
mented for a Jabber server or client to meet a particular environment’s standards

Figure 9.1
The Jabber Powered logo.

Creating Jabber-compliant implementations 247
compliance (figure 9.2). This helps to identify which Jabber protocols should be
present on either clients or servers and helps to enforce a more uniform user
experience with Jabber.

Although this effort is in its infancy, it addresses a fundamental problem facing
the formalization of the Jabber standards. I hope we’ll see big advances in this
area as the Jabber standards mature.

9.1.4 Today’s options for achieving server compliance
Unfortunately, most of these options for formalization of standards are under
development and may not be available for some time. Today, there is no formal
method for selecting the right Jabber standards to implement. You are left to your
own judgment in determining how much of the Jabber standard to support.

 The first option is to implement all existing and proposed standards. There
are not that many of them so this can be a reasonable approach for systems that
aren’t restricted by code size, memory limits, and so forth. The majority of servers
and mainstream desktop clients follow this approach.

 The other option is to define your own subset depending on your needs. I
have chosen this approach with the source code in this book, implementing only
the core protocols I consider fundamental to Jabber IM. Specialized clients, like
chatbots, will use this approach, as they don’t need the full functionality offered
by some of the more specialized Jabber protocols. In addition, resource-con-
strained clients, like PDAs, are often forced to make tradeoffs in capability to min-
imize the resources consumed by the application.

 Specialized applications may find that only a small fraction of the standard Jab-
ber protocols combined with their own specialized protocol extensions are
needed. For example, you may have a home automation system that uses Jabber
as its underlying framework. You use the basic presence and message protocols

Core

<stream>
<message>
 normal
 chat
<presence>
jabber: iq:auth
 plain
jabber: iq:roster
 roster push

Basic

<message>
 groupchat

jabber: iq:auth
 digest
jabber: iq:roster
 all

Workstation

jabber: iq:auth
 0-knowledge
jabber: iq:*

Figure 9.2
There are many possible Jabber
environments (e.g., Core, Basic,
and Workstation) and each
would specify the protocols
required for compliance with
each environment.

248 CHAPTER 9

Creating a complete Jabber system
for communication, and a set of custom IQ extension protocols for controlling
devices. Many commonly supported IM protocols like roster (jabber:iq:roster)
and groupchat are unnecessary in such a system.

 For the present time, selecting what parts of the Jabber standard to implement
is a judgment call on the part of the specification, design, and implementation
team. The important thing to consider is what you want to use Jabber for. The bet-
ter your system’s Jabber compatibility and the more standard features you imple-
ment, the greater your chances of successfully interoperating with other Jabber
software. In addition, standards compliance ensures the ability to send your Jab-
ber messages across the rest of the Jabber network to any other Jabber-compliant
client. This may not be an issue if your system is closed and proprietary. However,
if you want to exploit the Internetwide Jabber network and reach its many users,
Jabber standards compliance is a necessity.

9.2 Server missing pieces

The Java Jabber server software developed to this point in the book works well as a
stand-alone IM server. However, there are a few missing pieces that most Jabber
servers should consider implementing to create a finished product. These missing
pieces fall into five main categories:

■ Server to server communications
■ Transports
■ Server deployment
■ Server maintenance
■ Reliability and Availability

Addressing each of these problems will create significant advantages for your Jab-
ber server.

9.2.1 Server-to-server communications:
federating Jabber domains
The first and most glaring omission from the book’s server is support for S2S com-
munication with other Jabber servers. This results in users on the server only
being able to communicate with other users on the same server. This is perfect for
isolated workgroups where communication with the wider world may not be possi-
ble or desirable.

 However, one of the great powers of Jabber systems is their ability to tie
together various Jabber servers to create a much larger network. This works just

Server missing pieces 249
like the email system where users may have accounts on any email server, but can
communicate with any other user on any other email server on the Internet.

 Jabber supports S2S communication using the protocols defined in the jab-
ber:server namespace. Recall that normal client-to-server (C2S) communication
uses the jabber:client namespace established in the opening <stream:steam>
tag. The jabber:server protocols work almost identically to the equivalent jab-
ber:client protocols covered in this book. The connections in a typical Jabber
network is shown in figure 9.3.

Figure 9.3 Servers federate Jabber domains using the jabber:server protocols.

There are two critical differences between the protocols. The first is that an S2S
connection is considered to be one-way. Although a full bidirectional network
socket is created, S2S connections only allow the initiator of the S2S connection to
send packets. The receiving server only sends its XML stream packets and error
packets back. If the servers need to send packets in both directions, two connec-
tions must be made.

 The second critical difference is the single jabber:server XML stream carries
packets for all of the server’s users. You can think of the jabber:server connection
as if it were made of a virtual collection of streams, one for each user on the server.

 Since the connection is shared, the receiving server can’t make any assump-
tions about the sender or recipient of a packet. As a consequence, jabber:server
packets are almost always fully addressed. In other words, both the to and from
attributes of packets are completely specified. The user’s server fills in the correct
packet addresses before sending them over the S2S connection, protecting the cli-
ent from these differences. All the client must do is specify the recipient’s Jabber
server in the recipient server part of their Jabber ID.

 For example, suppose Bob on Jabber server A.com wants to send a normal
message packet to Sally on Jabber server B.com. The packet Bob’s client sends to
server A.com would look like:

ss

250 CHAPTER 9

Creating a complete Jabber system
<message to='sally@b.com'>
 <body>howdy</body>
</message>

Server A.com receives the message, edits it to add Bob’s sender ID from the con-
nection’s session, and sends this modified message to server B.com:

<message to='sally@b.com' from='bob@a.com/work'>
 <body>howdy</body>
</message>

Server B.com receives the message, finds that Sally is online, modifies the message
to remove the recipient address, and sends the message to Sally’s client:

<message from='bob@a.com/work'>
 <body>howdy</body>
</message>

It is up to the server whether it removes the recipient address field (as in my
example above), changes it to match Sally’s client’s actual address (for example
sally@b.com/meeting), or leaves it unchanged. Sally’s client should ignore the
recipient part of incoming messages because it is up to the Jabber server to ensure
that messages are properly delivered. The incoming message itself implies it was
addressed to the client. In most cases, it is best for the server to strip the extra
information. This strategy saves the network bandwidth that would be consumed
by the unnecessary addressing overhead.

 Since a Jabber server acts on behalf of all its users over an S2S connection, secur-
ing the connection is an important security problem. Misbehaving or malicious
servers can swamp a legitimate Jabber server with packets, send spam messages, and
cause mischief and havoc. In addition, if a computer can fool a Jabber server into
thinking it is another legitimate Jabber server, it can act as if it were any of that Jab-
ber server’s users. This level of access could allow you to send messages that claim to
come from these users, change server and client settings, and so on.

 There obviously needs to be an authentication protocol to properly identify
S2S connection participants. This authentication protocol is known as dialback.

9.2.2 Dialback authentication: S2S security
Authentication for S2S is more complicated than in C2S. In C2S authentication,
clients have user accounts on the server with authentication credentials. Only cli-
ents with user accounts can access the server. However in the case of S2S, Jabber
servers may need to connect to other Jabber servers that they’ve had no prior con-
tact with. In addition, because the number of Jabber servers can be potentially

Server missing pieces 251
quite large, it is impractical for servers to create or maintain a server account for
each possible server connection.

 The dialback protocol is an attempt to create a simple authentication mecha-
nism for ensuring that a server is who it claims to be without any knowledge about
the server. It accomplishes this by simply reconnecting (dialing back) to the
server using a separate connection and asking for it to verify that it is in fact open-
ing a connection.

 An analogy would be authenticating a person’s official identity in real life. For
example, say a person dressed as a police officer comes up to you and wants to act as
a police officer (acting on behalf of the police organization). Using that person’s
radio to verify the purported officer’s identity won’t work because they may have an
accomplice on the other end of the radio. However, if you use your own phone to
call the police station using the phone number in the phone book, you can be rela-
tively assured that the person is a police officer sent from the police station.

 In the dialback process shown in figure 9.4, the original connection will con-
tain a randomly generated key sent from the initiator of the connection. The
receiving authentication server connects back to the server using that server’s
host name, and verifies that it is opening a connection using that key. The weak-
ness of the protocol is in the dialback itself.

Figure 9.4 Dialback S2S authentication involves three servers. The authentication server assures the
destination server that the source server is a legitimate controller for its Jabber domain by dialing back
to find the authentication server and verifying the source server’s key.

In our earlier analogy of the authenticating a police officer, we rely on the
phone book to have a valid phone number for the real police station. If the per-
son posing as a police officer can change the numbers in the phone book, he
can cause you to dial the wrong number where their accomplice can falsely ver-
ify the person.

Source
server

Destination
server

Authentication
server

1. Key

2. Verify 3. Authenticate

4. Authenticate

252 CHAPTER 9

Creating a complete Jabber system
 In dialback, we rely on the DNS to properly resolve the server’s host name to
the correct machine. As anyone in computer security will tell you, DNS is not
secure and determined hackers can easily overcome authentication schemes
based on DNS.

 Dialback’s reliance on DNS is a known weakness of Jabber’s dialback authen-
tication. Unfortunately, there is no standard replacement for dialback at this
time. In order for Jabber servers to support S2S connections in a standard man-
ner (and so connect with a maximum number of Jabber servers), they will need
to support dialback. I strongly suggest that people with strong S2S security need
to get involved in the Jabber Software Foundation’s security JIG to help establish
a more secure alternative to dialback. For the time being, though, dialback is
the best we have.

 There are three logical entities involved in the dialback authentication protocol:

■ A source server—The source server is attempting to create an S2S connection
so that it may send packets to the destination server.

■ A destination server—The destination server is attempting to authenticate the
source server so it can decide whether to accept packets from the connection.

■ A source authentication server—This server will help the destination server
authenticate the source server.

DIALBACK AND SERVER FARMS
The dialback source and source authentication servers may be implemented by
one server application. However, dialback is designed to support Jabber where
multiple server machines work together as a single logical Jabber server. Incom-
ing client connections will look up the Jabber server name to find its network ad-
dress and special round-robin DNS setups will send the client to one of the
machines in the farm.

Unfortunately, if one of the machines in the server wishes to create an S2S con-
nection, dialback probably won’t send the destination server to the right source au-
thentication server. To overcome this, dialback makes no assumptions that the
source server and the source authentication server are the same server on a single
machine. In fact, the only requirement is that both servers must be able to share a
secret (the dialback authentication key) and that the source authentication server
receives authentication connections.

The basic procedure for dialback begins with the source server forming the pri-
mary connection to the destination server. To stress the logically separate entities
involved, let’s imagine the source server has a domain name of sender.source.com.
It is sending packets from users in the logical Jabber domain source.com to users at
the destination server destination.com. The destination server sees that the con-

◆

Server missing pieces 253
nection is for users in the domain source.com. So the destination server will
attempt to connect to a source authentication server at source.com. The source
server (sender.source.com) sends the opening stream tag to the destination server
(destination.com):

<stream:stream xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 to='destination.com'
 from='source.com'
 xmlns:db='jabber:server:dialback'>

The packet uses the same stream namespace http://etherx.jabber.org/
streams but the default namespace inside of the stream element is set to jab-
ber:server rather than jabber:client. The to and from attributes identify the
destination and source server’s names. The source server’s name (source.com)
does not need to match its actual domain name address (sender.source.com).
The source server’s name is the Jabber domain it will be operating on behalf of.
The source server’s name is used by the destination server to connect to the
source authentication server. Finally, the xmlns:db namespace attributes indicate
that the source server hopes to use dialback authentication.

 The destination server responds with its opening stream tag:

<stream:stream xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 to='source.com'
 from='destination.com'
 xmlns:db='jabber:server:dialback'
 id='4208ab093e'>

Like the server stream in the C2S protocol, the destination server’s opening
stream tag contains a session ID. Since the destination server indicates that it also
supports dialback, the source server can send its dialback authentication key in a
<db:result> packet:

<db:result to='destination.com' from='source.com'>0283cd322312</db:result>

The key is a disposable authentication credential generated by the source for one-
time use with its authentication server. With this key the destination server is
ready to authenticate, so it opens an authentication connection with the source
authentication server source.com and sends its opening stream tag:

<stream:stream xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 to='source.com'
 from='destination.com'
 xmlns:db='jabber:server:dialback'>

254 CHAPTER 9

Creating a complete Jabber system
The source authentication server supports dialback so it will respond with its open-
ing stream tag that contains the session ID for the authentication connection:

<stream:stream xmlns:stream='http://etherx.jabber.org/streams'
 xmlns='jabber:server'
 to='destination.com'
 from='source.com'
 xmlns:db='jabber:server:dialback'
 id='403a33b093e'>

The destination server now sends the key it received from the source server in a
<db:verify> packet. Notice that a packet ID is set so that destination server can
match authentication server responses to the original query.

<db:verify to='source.com'
 from='destination.com'
 id='5423ef'>
 0283cd322312
</db:verify>

The source authentication server examines the key and determines if there is a
primary connection being opened between the source and destination server,
and if the dialback key is valid for that connection. It is entirely up to the source
and source authentication server how this verification is done. The destination
server does not assign any meaning to the key.

 The key and its format are not specified by the Jabber specifications. The refer-
ence Jabber server uses an SHA-1 digest of parts of the server names to generate
and verify the key but the server implementer is free to choose any mechanism
they wish.

 A valid key will result in the source authentication server sending a valid dial-
back result to the destination server over the authentication connection:

<db:result to='destination.com' from='source.com' type='valid' id='5423ef'/>

Upon a successful authentication, the destination server switches back to the pri-
mary connection with the source server and sends its own <db:result> packet:

<db:result to='source.com' from='destination.com' type='valid'/>

Packets can now be sent from the source to destination server. Prior to sending
the valid <db:result> packet, the destination server will drop all packets coming
from the source server.

 If the authentication fails, the authentication server will send:

<db:result to='destination.com' from='source.com' type='invalid' id='5423ef'/>

Server missing pieces 255
The destination server will switch to the primary connection with the source
server and send:

<db:result to='source.com' from='destination.com' type='invalid'/>

The source server can try again using another <db:result> packet and key, or quit.

BIDIRECTIONAL S2S CONNECTIONS
It is very common for servers to need bidirectional S2S connections. If a user is
sending messages from one server to another, chances are high that the recipient
will be sending messages back. To make sending messages easier, dialback allows
the destination server to reuse the authentication connection as its own primary
S2S connection with the source server.

The protocol support for this is trivial. At any time, the destination server (now
acting as a source server) is free to send its own <db:result> packet over the au-
thentication connection containing a dialback key. The authentication server then
acts as the destination server and opens a new authentication connection with the
destination server’s source authentication server. The bidirectional dialback proto-
col creates the need for three connections as shown below.

Protocol overview for creating a bidirectional S2S connection.

Source Primary Connection
Source Authentication/

Destination Primary
Connection

Destination Authentication
Connection

Source Destination Destination
Source

Authentication
Source

Authentication
Destination

Authentication

<stream:
stream>

<stream:
stream>

<db:result>
skey

Create connection

<stream:
stream>

<stream:
stream>

<db:verify>
skey

<db:result>
valid

Continued on next page

◆

256 CHAPTER 9

Creating a complete Jabber system
Servers must be careful in implementing S2S support. Beyond the weaknesses of
the DNS-based dialback authentication, S2S opens the Jabber server up to many
other attacks. Once authenticated, the Jabber server can be granted almost com-
plete access to your Jabber server. Such a policy enables very powerful systems of
Jabber servers to be built, but also opens them up to exploitation.

 To limit these abuses, servers should be very careful to monitor and control
their S2S connections. Reasonable safeguards might include limiting the rate and
number of packets that can be sent, limiting the types of packets that can be sent,

Protocol overview for creating a bidirectional S2S connection. (continued)

Source Primary Connection
Source Authentication/

Destination Primary
Connection

Destination Authentication
Connection

Source Destination Destination
Source

Authentication
Source

Authentication
Destination

Authentication

<db:result>
valid

Sends S2S
packets

<db:result>
dkey

Create
connection

<stream:
stream>

<stream:
stream>

<db:verify>
dkey

<db:result>
valid

<db:result>
valid

Sends S2S
packets

</
stream:stream
>

</
stream:stream
>

Close connection

Server missing pieces 257
and filtering packets by their destinations or senders. On advanced servers, it may
be prudent to be able to adjust these settings based on the server address. This
would allow you create white lists of servers that are highly trusted, and black lists
of servers that have severe restrictions placed on them for bad behavior.

 Despite these potential problems S2S enables Jabber servers to join together to
form a much larger Jabber network. If it is true that the value of a network
increases geometrically with the number of users, the motivation for connecting
and exchanging packets with other Jabber servers is clear.

 Jabber’s design does not limit S2S connections to other Jabber servers. One of
Jabber’s claims to fame is its ability to connect with non-Jabber IM systems.

9.2.3 Transports: integrating with other IM systems
Due to Jabber’s open, packet-based design, Jabber systems are well-suited for use
as a generic transportation system for IM messages. This simple design has been
exploited in the Jabber open source server to connect Jabber servers to non-Jab-
ber IM systems such as AIM, MSN Messenger, and Yahoo! Messenger systems.

 The Jabber server reference implementation uses server modules called trans-
ports that provide a bridge between the Jabber and these foreign messaging sys-
tems (figure 9.5). Transports treat each proprietary IM system as a Jabber IM
domain with its own user names creating unique Jabber IDs. Sending a Jabber
message to one of these special Jabber IDs causes it to be handled by a transport
module. Transports connect with the foreign message systems and act as a client
or server on that system in order to relay the messages and presence updates (if
supported) between the two systems.

Figure 9.5 Jabber transports act as Jabber server plug-ins, translating packets
between two IM systems in order to provide seamless access to both.

shigeoka.com
Jabber server

Jabber client

Jabber transport

shigeoka.com
Domain

Jabber network

AOL AIM
server

AIM client

AIM client
protocols

AIM client

AOL AIM System

Jabber AIM “transport”

convert messages

Jabber client

258 CHAPTER 9

Creating a complete Jabber system
For example, if we send a message to screen-name@aol.server.com, the server
will recognize that aol.server.com users are really AIM users and let the AIM trans-
port handle the packet. The AIM transport logs into the AIM network and sends
the message to the indicated AIM screen name. Each transport must keep track
of the mapping between Jabber ID and the third-party IM ID system.1 All packets
that travel between the two systems must be converted between Jabber packets
and the native format for messages, presence updates, and so forth in the third-
party IM system.

 In cases where the IM system is well-documented (such as IRC, creating and
maintaining transports is simple and straightforward. On the other hand, many
proprietary IM systems (especially AOL) actively change their protocols in order
to prevent IM systems such as Jabber from interoperating with them. Supporting
these transports becomes an “arms race” between the Jabber transport developers
and the proprietary IM system’s engineers.2

 It would be nice to add transports to our Java server. Unfortunately, it is diffi-
cult to reuse the existing C language transports to add bridging capabilities to
your Java server. In order to do so, you are faced with two options. First, you can
use the Java Native Interface (JNI) to access the native C implementations of the
existing Jabber transports. Although using JNI is not that difficult, the Jabber
transports use some global data structures and a different, C language representa-
tion of a Jabber packet that will be hard to emulate. For starters, you’ll need to
spend a significant amount of time to translate Java Packet classes into C versions
that the transports will understand.

 The other option is to create your own Java server plug-in architecture and
port the C transports to Java. Luckily, there is already a standard server plug-in API
for Java: the Java Servlet APIs. Java servlets aren’t just for web servers. They are
actually a generic server extension architecture that is ideal for adding transports
to a Java Jabber server.3

1 See the jabber:iq:gateway protocol in appendix A.
2 There are also serious legal implications to accessing proprietary IM systems without permission. You

should check with legal experts before accessing foreign services without permission.
3 If you don’t want the hassle of supporting the Java Servlet, you can also cobble together your own cus-

tom interface. Our PacketListener interface is the perfect example of this approach. However, fol-
lowing the Java Servlet standard provides the advantage of providing a well-designed, well-documented
interface. It should also be easy to find programmers familiar with servlet programming, a serious con-
sideration for commercial implementations. Another alternative is to create a message-driven Enter-
prise JavaBean container that complies with the J2EE standard. This is more work but offers an even
more flexible and robust solution to server extension.

Server missing pieces 259
 In fact, if you examine our server’s packet handler classes, you’ll notice that
they could easily be rewritten to comply with the Servlet interface. The modular-
ization and quick development cycle afforded by using the servlet development
model is well-documented for web development. You’ll find the same benefits
come in using them to customize the behavior of a Jabber server.

 The knowledge of other IM systems protocols and how to translate between
their data formats and Jabber packets is freely shared in the Jabber development
community. Server developers that wish to add transport capabilities to their serv-
ers should join the Jabber development community to learn and share transport
information.

 So let’s take a quick trip through the process of creating a Java server trans-
port. First, implement a servlet-compliant server interface. This is simpler than it
sounds. First, look at your servlet development kit or your (IDE) JavaDoc for the
javax.servlet classes. There aren’t many integrated development environ-
ment’s. You’ll want to concentrate on the Servlet, ServletConfig, and Servlet-
Context interfaces as well as the ServletInputStream and ServletOutputStream
classes. These are the ones you’ll need to override or plug in to your Java server.
Many people prefer to start with the GenericServlet helper class rather than do
the work of overriding the interfaces themselves.

 Alternatively, start with an existing servlet engine. There are several free ones
that a good web search will reveal.4 You can use an existing servlet engine as the
basis for your Jabber server extension features. You may also find it easier to adapt
the Jabber classes developed in this book to become part of the existing servlet
engine. The process will involve replacing the servlet engine’s existing http-spe-
cific code with our Jabber code rather than trying to wedge the servlet engine
into the Jabber server.

 Second, create a pattern for Jabber IDs that your transport will handle. For
example, let’s say you are writing an email transport that sends emails using the
SMTP (Simple Mail Transfer Protocol) protocol. Jabber addresses for email users
might be emailName%mailserver.com@email.jabberserver.com5.

4 I’d suggest Tomcat (Jakarta.apache.org) for serious Jabber server efforts. However, Tomcat is a large,
high-performance servlet engine and much of its code is complex. If you don’t have much Java experi-
ence, you may find a smaller servlet engine easier to modify.

5 This example is typical for existing Jabber transports. However, it violates the standard for Jabber user
names because it contains the ‘%’ character. Try to use a different standard compliant pattern for trans-
port Jabber IDs but expect to have to deal with noncompliant Jabber IDs like this one.

260 CHAPTER 9

Creating a complete Jabber system
 Third, modify the QueueThread to detect these Jabber IDs and send them to
the appropriate transport-servlet using its service() method.6 This dispatch pro-
cess is identical to our existing notification of PacketListener classes.

 Finally, create a transport-servlet by creating a subclass of Servlet that over-
rides the service() method. In the service() method, convert the message
from Jabber packet format to a foreign message format and send it using the for-
eign system’s protocols.

 In our email example, <message> packets will have their <body> text placed into
the email body, and the <subject> text placed in the email’s Subject: line. The
email’s To: address is converted from the special transport Jabber ID into a stan-
dard email address (e.g., emailName@mailserver.com). The From: address can
use Jabber user’s registered email address.7 The transport then uses SMTP to send
the email message through normal email.8

 At first creating transports can sound like some arcane, magical process. How-
ever, you’ll find that in most cases, it is almost embarrassingly easy. This is espe-
cially true if you have a well-designed plug-in architecture and access to
documentation of the foreign messaging system’s protocols. The process could be
made even simpler if one of the many interoperability standards mentioned in
chapter 1 is ever adopted. For now, you’ll need to create transports on a case-by-
case basis for each foreign messaging system you want to access.

 Although communicating with other servers via jabber:server or transports
adds valuable features to your Jabber server, there are two other practical issues
that are essential to creating a finished server: server deployment and manage-
ment. I consider these issues more important than S2S communication. If you
can’t install and administer your server, your users will not care if the server can
talk to other systems.

9.2.4 Deployment of Jabber servers and components
Deployment is the first thing that your server’s operator will encounter when
dealing you’re your server. It involves:

■ Provisioning—Packing up the resources required by the server and installing
them in proper locations.

6 It is a good idea to follow the servlet pattern of specifying what servlets handle which URLs in a separate
file or through an administration interface. See how the Tomcat servlet engine does for an example.

7 You might also consider addressing it to the Jabber server using a special email address. The Jabber server
can then check for incoming emails to the special address and convert them into Jabber messages.

8 See the JavaMail standard Java extension (java.sun.com) for an easy to use Java library for accessing
email and news systems.

Server missing pieces 261
■ Configuring—Setting up the server’s settings, and its environment.
■ Launching—Getting the server up and running.

In most cases, provisioning and launching server software is a fairly straightfor-
ward process. There are many tools that can help you in this process. In the case
of Java servers, be sure to remember the Java Runtime Environment (JRE) is part
of the resources needed. Not ensuring that a JRE is available, properly installed,
and in the correct version can often ruin the best-laid plans.

 Configuring the Jabber server is often the most challenging aspect of deploy-
ing Jabber servers. In general, configuring the server itself is straightforward and
can be done via configuration files. For example, the Jabber open source server
uses a simple XML file that works fairly well. The difficulty really begins when try-
ing to configure the server’s network environment for maximum performance
and security.

 In general, the major problems usually center on server names and network
security. The simpler is server domain name configuration. As we have seen, cli-
ents and servers connect to Jabber servers based on their human-friendly, host
domain name. The standard Internet technology for mapping host names to
machine addresses is the DNS.

 There are a wide variety of tricks you can play with DNS to create pretty much
any mapping you like between various host names and machine addresses. For
example, I’ve already mentioned using round-robin DNS to map the same host
name to multiple machines in a server farm. This allows multiple machines to
share the load of supporting a large number of clients as shown in figure 9.6.

Figure 9.6 A round-robin DNS server directs clients looking up the same domain name to different
servers in a Jabber server farm. Redirecting incoming connections allows the DNS server to spread the
processing load between servers or “fail-over” to backup servers when primary servers in the farm crash.

Jabber “server farm“

server

Round-robin
DNS
Server

Jabber
client

server server

Jabber
client

262 CHAPTER 9

Creating a complete Jabber system
In addition, you may wish to have the Jabber server running on a machine with
one host name, but have Jabber connections bound for one machine routed to
another when connecting to the Jabber port. For example, I may want to run my
server on my Jabber machine with the name jabber.shigeoka.com. However, I’d
like to have my Jabber IDs use user@shigeoka.com. Logically my Jabber server is
shigeoka.com even if it is hosted on jabber.shigeoka.com.

 Based on the server name of the Jabber ID, clients will try to connect to shi-
geoka.com on port 5222 to access my Jabber server. I can configure my router to
detect these connections and redirect it to jabber.shigeoka.com on port 5222.
All other requests (for example, webpage requests on port 80) go to the real shi-
geoka.com machine, which is my web server.

 These are common server configuration issues that are faced by network
administrators. It is well worth hiring a network engineering consultant or read-
ing up on networking technologies and techniques in order to ensure that you
have properly set up your Jabber network environment.

 Once you have your network configured to create the connections you want,
you need to configure the network to protect you from connections you don’t
want. These issues fall under the broad umbrella of network security.

9.2.5 Server security: creating protected Jabber services
Jabber servers are like all other Internet servers when it comes to vulnerability to
attack. They provide valuable resource that people will try to exploit or destroy.
Network engineers have come up with several standard tools for controlling these
security risks. One of the most common is the firewall.

 Firewalls typically allow connections to be made relatively freely in one direc-
tion (out onto the Internet) but are highly restrictive in the connections they
allow in the other direction (from the Internet to behind the firewall). A firewall
limits the parts of your network that people outside of the firewall can attack.

 Firewalls can increase security by only allowing connections to port 5222 of the
Jabber server machine (figure 9.7). In addition, it is a good idea to run the Jabber
server on a dedicated machine. All other Internet servers and services should be
shut down to prevent malicious attacks through telnet, web servers, FTP servers,
and so forth. Notice that this firewall setup exposes the Jabber server on port 5222
to direct connections from the Internet.

Server missing pieces 263
This is a necessary risk, as you must allow clients to directly connect to the Jabber
server. One of the most valuable services that Jabber servers offer clients is that it
allows two clients to exchange messages while both remain safely behind their
own firewall. This would be impossible if the clients needed to connect directly
with each other. Overcoming firewalls for direct C2C communications is one of
the major obstacles to creating practical implementations of the out-of-band pro-
tocol in chapter 4.9

 Firewalls are just the beginning of the tools you can use to protect your Jabber
server from electronic attacks. Once again, if you are planning on running a com-
mercial Jabber server, an investment in the services of a network security engineer
will be money well spent. There is also a wide variety of excellent books on network
security that address the generic issues facing servers on the Internet. A good place
to start is Practical Unix & Internet Security by Garfinkle and Spafford and Building
Internet Firewalls by Chapman and Zwicky (both by O’Reilly & Associates).

 Deploying a Jabber server tends to get more difficult as the number of users and
potential attackers increase. On the one extreme is a server that is connected
directly to the Internet and services users from anywhere on the Internet. However,
many of these issues are not significant if your network is small and well-protected.

 For example, the Java server presented in this book can be deployed as a stan-
dard Java application on a protected small-business (20-person) LAN without the
need for firewalls, fancy DNS setups, or routers. It is unlikely that your employees
will try to hack into your Jabber server, and the number of users on your system
will probably never exceed the capabilities of your server’s machine. In addition,

9 The jabber:iq:pass (PASS – Proxy Accept Socket Service) is a proposed Jabber standard to allow the
server to assist clients in transferring out-of-band data between clients behind firewalls.

Firewall

Jabber
client

Jabber
server

Internet

port 5222

Intranet

Figure 9.7
A firewall blocks all Internet traffic except
through port 5222. This restriction protects the
Jabber server while still allowing clients to
access it.

264 CHAPTER 9

Creating a complete Jabber system
the cost of a failure of the Jabber server will probably be minimal. If the server
goes down for a few minutes, someone in the office can go over to the machine
and restart it.

 Large installations face more sources of attack (including from within the
organization). In addition, the cost of server failures can become quite large. Any
downtime can cost large amounts of money. In such systems, deployment and net-
work security isn’t the only important problem facing your server. Managing the
server and its users can often loom as a much greater problem.

9.2.6 Jabber server management
Like deployment, server management needs often depend on the type of server
and the number of users you are supporting. In small networks, simply knowing
the server is running rudimentary user management and that is often sufficient.
Larger servers will have larger management needs. In general, Jabber servers
should consider mechanisms for managing:

■ Users and their accounts—Creating, removing, reviewing, editing (resetting
passwords), and so forth.

■ Resource consumption—Network “throttling” to control bandwidth usage,
database connections, memory usage, and so forth.

■ Software “health” and updates—Memory leaks, versioning, uptime, and
so forth.

■ Audit trails—Logging, errors, resource accesses, security violations, alerting,
reporting, and so forth.

■ Usage policies—Authorization based on user accounts, time of day, message
content, and so forth.

■ Server connections and transports—Limiting connections, updating con-
nections, closing connections, upgrading/downgrading connections,
and so forth.

In addition, in large corporate environments, organizations often have estab-
lished, standard software and network management tools. Integration with these
tools can greatly increase the benefits and appeal of your Jabber server. Java pro-
grammers have many excellent options for adding these features. The best is
probably using the Java Management Extensions (JMX), a standard Java manage-
ment extension standard available from java.sun.com.

Server missing pieces 265
9.2.7 Adding reliability and availability
Servers are often mission-critical parts of businesses. They are expected to offer
continuous services without errors. These qualities are usually expressed as the
reliability and availability of a server.

 Reliability measures the correctness of a server’s operation. In other words, how
often does the server make mistakes and are the mistakes repairable? Reliability is
measured in a percentage with the state of the art server measuring five nines, or
99.999-percent reliability.

 Availability measures how long the server can provide continuous service. Unlike
reliability that indicates errors, availability includes expected service interruptions. For
example, servers often must be taken offline in order to upgrade, back up, or maintain
them. Availability is typically measured in downtime with state of the art server avail-
ability being measured in minutes of downtime over a year.

 In order to create high-reliability, high-availability servers, engineers have
developed a variety of techniques and tools. The most prominent are:

■ Transactions—Operations are conducted so they pass the ACID test. This
helps to increase the reliability of a server.
■ [A]tomic—An operation consisting of multiple steps is carried out as an

atomic operation (completely or not at all).
■ [C]onsistent—Whether an operation is successful or fails, it will leave the

system in a well-defined and consistent state.
■ [I]solation—Operations are carried out in isolation. Parallel operations

do not affect other operations.
■ [D]urability—The results of the operation should become persistent

when the transaction completes.
■ Fail-over—Clusters of servers work together as a single server, or run as mir-

rors of a master server. When a particular server fails, other servers
“instantly” and seamlessly take its place and the service “fails-over” to the
other machines. Fail-over helps to increase the availability of the server.

■ Multithreading—Servers use multiple threads of execution to create more
responsive and higher-capability applications. Ensuring that multiple threads
of execution are thread-safe can be tricky. The failure to create thread-safe
applications is often a large source of server reliability problems.

None of these advanced server features are straightforward or simple to implement.
However, Java provides several features and standard extension libraries that can
help. Most of these are covered in the Java 2 Enterprise Edition (J2EE) APIs.

266 CHAPTER 9

Creating a complete Jabber system
 In addition, I suggest that users investigate the use of Java Jini (www.jini.org
and /java.sun.com/products/jini), another standard Java technology. Jini pro-
vides a distributed computing framework complete with transaction support and
a simple programming model for creating mission-critical Java servers.

 Our Jabber server is half of the Jabber equation. Our Java Jabber client soft-
ware is also important for creating a Jabber IM system. Like our server, the client
code is also missing some useful features that should be considered when using it
to build full-featured Jabber clients.

9.3 Client missing pieces

Our Jabber client software provides basic IM functionality and is designed for test-
ing Jabber servers. However, creating simple testing clients is just the beginning of
what you can do using the Jabber protocols and custom Java client software. In
order to increase the value of the client developed in this book, you may wish to
pursue one or more avenues for further client development.

 Our client only implements the core Jabber protocols and three IQ extension
protocols. There are many other useful Jabber protocols, especially standard IQ
extension protocols. Clients will be able to offer users more functionality by com-
pleting the implementation of as many Jabber protocols as possible. In addition,
our client software does a minimal amount of probing to query a server’s capabil-
ities before trying to use them. You can make the client more robust by probing
for capabilities and intelligently handling errors and other server responses.

 Beyond implementing the Jabber protocols, client developers can extend our
client software to address other Jabber client needs. The most interesting is creat-
ing graphical user agent clients, enhancing existing applications, and developing
innovative chatbots that offer “IM services.”

 Let’s examine these in more detail by discussing the most visible Jabber client
software development area: user agent clients.

9.3.1 User agent clients
User agent clients are software applications that act on behalf of the user (hence
the name user agent). In order to do this, these client applications must have
some way to interact with the user. The most common design is to use a GUI, pre-
senting the client’s functionality in windows, buttons, and menus.

 The Java development environment makes it simple to create GUI applications
using the AWT or Swing libraries. Both are designed to use the MVC design pat-
tern introduced in chapter 3. Our Jabber client software implements the Model of

Client missing pieces 267
the MVC pattern, leaving you to implement the user interface to provide the View
and Controller.10

 Our JabberModel class is especially easy to hook up to Swing GUIs using our
event-based packet handling design. In most cases, packet events delivered by the
QueueThread can be used to trigger GUI changes such as displaying incoming mes-
sages or updating the roster with presence updates and roster pushes. The user
provides inputs in reaction to these GUI changes.

 GUI user agents aren’t the only useful design in Jabber. The pervasive nature
of IM encourages the development of alternative user interfaces including:

■ Embedded devices—“Small” IM clients in devices like pagers, mobile phones,
and PDAs like the Palm Pilot. The J2ME is becoming increasingly popular
among developers because it extends Java into these smaller devices. Unlike
desktops, smaller devices require completely different user interface
designs, often sacrificing features for ease of use.

■ Command-line clients—Simple, scriptable clients can often fill a diverse set of
needs where a graphical client would be overkill. In addition, there are situ-
ations where a simple text-based interface is all that you can access (for
example, in a telnet session to a server).

■ Voice-activated applications—Voice recognition and speech synthesis software
is becoming increasingly powerful and accessible. Imagine providing a Jab-
ber IM client you could access over any telephone and control with your
voice. Voice-based systems are also useful when the device has a highly con-
strained user interface or no visual interface at all.

■ 3D systems—The 2D interface provided by the typical desktop GUI is useful.
Adding a third dimension allows you to create innovative clients that can
display large amounts of complex information.

These are just some examples of user agent Jabber clients. These features can dif-
ferentiate your client from the crowd and enhance the user experience. I look
forward to seeing what you decide to do with your Jabber client software.

 In many cases, IM will not be the primary feature of your application. Jabber
can provide useful capabilities to your application. Adding Jabber support to your
existing application is relatively simple using our client software.

10 I personally like to use IDEs such as Borland’s JBuilder (www.Borland.com) to create a GUI.
Later, I hook up the GUI to the Model in a normal programming editor.

268 CHAPTER 9

Creating a complete Jabber system
9.3.2 Enhancing existing applications
Many of today’s applications would benefit significantly from integrated commu-
nication capabilities. We have already seen this trend with email. Most of today’s
best user applications have facilities to send information using email. For exam-
ple, most spreadsheet programs allow you to email the spreadsheet you’re work-
ing on from within the spreadsheet program rather than having to use an
external email user agent.11

 The same is true for IM capabilities. Imagine wanting to ask a simple question
of a coworker regarding the spreadsheet. If you had a Jabber client built into the
spreadsheet program, you could check your coworker’s presence status, and if
they’re available, start a chat with them.

 In addition, IM opens the door for other collaborative features. Imagine that
same spreadsheet program except now you can start a group spreadsheet where
a single spreadsheet is shared among users. As users make changes to the
spreadsheet, the changes are sent as specially formatted IM messages to the
other users in the group, perhaps using the groupchat protocol. Collaboration
features in such a spreadsheet application allows a group of people to edit the
same spreadsheet while chatting using normal Jabber messaging.

 Creating our own IM system to support this would be difficult. However, our
Jabber client and server are more than adequate for the task. Once again, the
JabberModel class provides an easy to use way to access Jabber functionality on the
client-side with a minimum amount of work.

 The extensibility of the client, server and the IQ protocols opens up the possi-
bility of creating your own IQ extension protocols to provide advanced, applica-
tion specific features. The possibilities are endless and I expect a large amount of
future IM development to be directed in this direction.

 Embedded IM in applications is not the only brave new world for IM systems.
They also provide a framework for providing the next wave of Internet services
using automated chatbots.

9.3.3 Chatbots: creating IM services
The chatbot is an application that autonomously behaves like another IM user on
the Jabber system. When you send messages to the chatbot, the chatbot applica-
tion automatically generates its own responses. People develop chatbots to fill a
variety of needs. Some are purely whimsical, like automatic poetry generators, or
chatbots that tell you jokes.

11 Java developers can use the JavaMail standard Java extension.

Client missing pieces 269
 However, chatbots can provide useful services. For example, they can provide
weather reports when you ask it and automatically send you an IM to alert you of
dangerous weather advisories for your area. Another useful chatbot service is
machine translations of foreign languages. Imagine chatting with someone who
speaks a language like Japanese, you don’t understand. You could send their mes-
sages to a Japanese-to-English interpret chatbot to translate it.

 Chatbot applications of Jabber IM technology can greatly enhance the value of
a Jabber system without having to make changes to Jabber servers or other Jabber
clients. All you need to do is write a separate Jabber chatbot client application that
understands incoming IM messages and responds to them.

 Chatbots most closely resemble the test client code we’ve been using through-
out this book. In general, they have no user interface and they communicate
exclusively via Jabber packets. The possible applications for chatbots are virtually
unlimited. A few examples:

■ Customer support—Chatbots can answer frequently asked questions and
intelligently route more difficult problems to the appropriate support
personnel. Many Jabber servers will run a chatbot specifically to provide
online help for users.

■ Information services—Chatbots can provide information on demand, or as
Internet updates occur. Possible information services include weather
reports/alerts, stock prices, sport scores, advertising alerts, security alerts,
news services, and time updates.

■ Lookup services—Unlike information services that push information to a
user, lookup services allow the user to search for information. These go
beyond the capabilities that would be provided by a typical web search
engine. Phone books, corporate databases, dictionaries, translators, library
card catalogs, article searches, and so forth are excellent candidates for
chatbot lookup services.

■ Companion/Guides—The Internet is a big place and sometimes it is nice to
have a companion or guide with you. Chatbots can monitor your actions
and send suggestions and guidance. Artificial intelligence (AI) techniques
will be extremely useful in developing these chatbots. In general, initial sys-
tems will probably be highly targeted. For example, a retirement guide chat-
bot could help employees discover their company’s retirement programs,
research which option is best for them, and step them through the applica-
tion process.

In many ways, creating chatbots is a new frontier where creatively meeting customer
needs can provide huge rewards for users and developers. The idea behind chat-
bots as Internet services is a key part of many advanced Jabber-based systems. We’ll
take a look at these advanced Jabber applications in the next chapter.

270 CHAPTER 9

Creating a complete Jabber system
9.4 Conclusions

Although we’ve created a fully functional Jabber IM system, there remain many
finishing touches that can be added to our Jabber client and server software. In
particular, you should consider the many additional error checking, usability, and
robustness improvements that will take the software from an educational toy to a
production-ready tool.

 In many cases, these changes can result in significantly extending the Jabber
system beyond simple IM. This is especially true in the case of specialized Jabber
clients such as embedded application clients and chatbots. One of the most excit-
ing aspects of Jabber is the ability to either extend the basic protocols, or to build
systems on top of Jabber to tackle a wide variety of important serious problems
facing enterprises today.

 In the next chapter, we’ll take a look at these potential enterprise Jabber sys-
tems and the tools we have available to build them.

 10Enterprise Jabber
In this chapter
■ The benefits of creating Jabber systems for

small and large businesses
■ The enterprise features missing from the

Jabber standards and how to create them
■ How Jabber can serve as messaging

oriented middleware
■ Sample Jabber applications
■ Alternative messaging technologies and

how Jabber compares
271

272 CHAPTER 10

Enterprise Jabber
There is more to instant messaging systems than instant messaging. To explain
this seemingly contradictory statement, we need to take a step back from our dis-
cussions of Java IM and Jabber to look at the big picture:

■ IM does not exist in a vacuum—there is a lot of Internet infrastructure and IM
systems will need to “play nicely” in order to find its place in the main-
stream. Deploying into existing networked systems requires consideration
for concerns outside of IM such as working with standard system manage-
ment tools, integrating with auditing systems, and accessing existing ser-
vices such as directory servers.

■ IM can do more than messaging—If IM is only useful for simple text messaging,
it’s an interesting technology. However, IM systems are being used for more
than simple messaging. Microsoft is betting its future on systems that rely
heavily on IM technologies and dragging the rest of the computing industry
along for the ride. AOL is creating IM-based consumer systems that may
transform how a large percentage of online users interact on the Internet.
This future market environment makes IM an essential technology for
tomorrow’s developer. It is vital to keep our eyes on a prize greater than
messaging. IM could become a new standard layer of network abstraction
on top of TCP/IP.

Chapter 9 covered an alphabet soup of standard Java technologies such as JMX
and others that can be used to create a complete Java Jabber server that fits into
existing enterprise Java infrastructures. In fact, simply creating Jabber systems in
Java is the foot in the door that we need for getting IM into serious deployments.

 In this chapter, we’ll examine enterprise messaging features that corporate
developers will expect, but which are missing from the standard Jabber IM system.
Overcoming these shortfalls will enable Jabber to serve in capacities far exceeding
normal IM.

 One of the most interesting enterprise uses of Jabber is MOM, where messag-
ing systems are used as frameworks for building larger enterprise applications.
We’ll take a look at how Jabber can serve in these systems.

 We’ll also spend a good amount of time on the JMS API. It is the closest Java
standard to Jabber IM and provides several interesting options to the Java Jabber
developer. We’ll examine the differences and similarities between the two tech-
nologies that would be important in either creating Jabber functionality in JMS
servers or building JMS compatibility into Jabber servers.

 Once we have grounded ourselves in the details of enterprise Jabber, we can
let our imaginations run free to explore the possibilities offered by enterprise-
ready IM technology.

What is needed to support enterprise messaging 273
 Finally, we’ll examine alternatives to Jabber and how Jabber stacks up to them.
As with most software paradigms, Jabber is not a silver bullet that will solve all of
your problems. It is important to know what the alternatives are. As engineers, we
are professionally obligated to use the best technology for the problem at hand
and not get stuck in fads and hype. There is a common saying, “When all you have
is a hammer, everything looks like a nail.” We need to make sure our toolboxes
contain more than just a hammer so that we can meet tomorrow’s challenges
effectively. However, we’ll also see that Jabber may be one of our most useful tools
that we will want to return to time and time again.

 Let’s kick things off by examining the crucial enterprise messaging features
that are missing from the Jabber standard.

10.1 What is needed to support enterprise messaging

Jabber was originally designed as an IM system for consumer communication.
This had a strong influence on its architecture and protocols. This legacy has had
some benefits including an approachable and easily understood design. Unfortu-
nately, Jabber also lacks features that are considered essential for its use in mis-
sion-critical applications, thus relegating it to toy or hobbyist status in many
enterprise developers’ minds.

 The Jabber community is aware of this problem and is very interested in
extending Jabber to plug these holes. In this section, we’ll examine the three
major issues I consider the most essential for preparing Jabber for serious enter-
prise use: security, quality of service, and administration.

10.1.1 Enhancing Jabber security

The most unfortunate and understandable shortcoming with the current Jabber
system is the lack of industrial-strength security. This is unfortunate because secu-
rity will likely be the first thing enterprise shops will examine, and is most likely to
be the reason for Jabber’s immediate elimination as a candidate technology. The
lack of heavy-duty security is understandable; Jabber was designed as a consumer
IM system where the need for security is limited.

 Other than the need for protecting privacy and restricting access to server
resources, consumers are typically willing to accept little to no security for communi-
cation systems. An excellent example of consumers’ indifference to inadequate secu-
rity is the security of email. Email security is weaker than Jabber’s, but is considered
adequate for most users and is even used for important business communication.

 However, consider how mission-critical enterprise systems are built on top of
standard email relatively few, and the problems that arise when it is used in that

274 CHAPTER 10

Enterprise Jabber
capacity. Most of the large-scale problems that cause so much damage to busi-
nesses are email viruses exploiting flaws in the less than stellar security of enter-
prise email systems.1

 Now you may be wondering, “What about the Jabber authentication protocols?
Don’t they provide Jabber security?” In order to understand the role of Jabber
authentication, it is important to first understand what enterprises expect from
security and where Jabber authentication fits into that overall picture.

 Computer security is concerned with creating and enforcing several important
properties:

 From table 10.1, it is easy to see that there are several security holes to be
plugged to create a secure Jabber system. Fortunately for Jabber, most IM users
today are not highly concerned with security as IM is still primarily used for social
and entertainment communication. However, as IM is rapidly being adopted in
commercial settings, security will become an important part of the IM formula.

Table 10.1 Computer security properties compared with Jabber’s present capabilities.

1 This is especially true of the enterprise email system implementation of a particular Redmond vendor
(that shall remain nameless).

Security Property Description Existing Technology Jabber Support

Authentication Ensures an entity is
who it claims to be.

JAAS a, Kerebosb,
Microsoft Passport

a. Java Authentication and Authorization Service (JAAS), a standard Java extension and soon to be
a part of the Java Standard Edition (anticipated in Sun’s upcoming JDK 1.4).

b. Kerebos is a widely supported authentication service built into many operating systems including
most Unix OS’s and Microsoft Windows 2000 and later. It is supported by JAAS and Microsoft
Passport.

Jabber authentication

protocol c

c. The Jabber authentication protocol does not use an existing authentication technology.

Authorization Determines what an
entity has permissions
for accessing (data)
or controlling
(resources).

JAAS, access
control lists

Binary authorization.
Unauthenticated users
are granted certain
rights, and authenti-
cated users others.

Integrity Ensures data has not
been tampered with.

Message digests None

Nonrepudiation Ensures that the author
of data can always be
identified.

Digital signatures None

Confidentiality Ensures data can be
read only by authorized
entities.

Encryption Limited client/server
eavesdropping confi-
dentiality using SSL.

What is needed to support enterprise messaging 275
There are a few ways to beef up Jabber security, including conducting communi-
cations over SSL and implementing your own, ad hoc security system on top of
Jabber. We’ll examine these options next.

Security through SSL
As we saw in chapter 3, the most common technique for communicating with a Jab-
ber server is to connect a network socket to port 5222 of the Jabber server. Unfortu-
nately the connection is vulnerable to eavesdropping (not confidential) and the
connection itself relies on the client locating and connecting to the correct Jabber
server. The former is a weakness of sending unencrypted data across the network, and
the latter is a consequence of the insecure nature of DNS and the lack of any server
authentication with a client.

 You can overcome both of these problems in one step by using SSL.2 Part of
the SSL connection negotiation process requires the server to present its SSL cre-
dentials (typically a certificate signed by a well-known certificate authority ser-
vice). The client can check to make sure the certificate is valid and matches the
server to which it is connected. SSL also encrypts all information sent over the SSL
socket so eavesdroppers on the network cannot read any of the data passing
between client and server. Jabber servers that support SSL connections should lis-
ten on the standard Jabber SSL port 5223.

 Although the information between client and server is encrypted by SSL, and
therefore confidential, the data loses its confidentiality and integrity once it
reaches the server. Clients may not be able to trust the server with their mes-
sages or with how the server delivers the messages to recipients.

 For example, imagine you want to send a nasty message about the Jabber
server administrator Bob to his supervisor. Bob could set up the Jabber server so
any messages sent to his supervisor containing his name will be held for his
approval. He can then edit the message or erase it before it reaches his supervisor.

 Unfortunately, Jabber clients and servers do not commonly use SSL because
SSL is computationally expensive. Both sender and receiver must encrypt and
decrypt all of the information passing over the connection. This is fine for a lim-
ited information exchange such as sending small amounts of financial or other
sensitive information to a web server (SSL’s intended use). However, this much
overhead is not practical for the vast majority of IM traffic.

 Ideally, clients should be able to create messages and send them through inse-
cure servers while always maintaining the message’s confidentiality. There are no

2 Secure socket connections are supported natively in the 1.4 version of the Java Standard Edition and
can be added as a standard extension library to previous Java runtime environments.

276 CHAPTER 10

Enterprise Jabber
standard ways to accomplish this using the existing Jabber standards. However,
you can add these features on top of the existing Jabber system using your own ad
hoc security system.

Ad hoc security
You can easily add a custom security system without requiring changes to the Jabber
standards, protocols, or the Jabber server. All you have to do is add the support for your
security extensions to your “secure messaging” Jabber clients. Recall from chapter 4, Jab-
ber provides the <x> extension protocol to allow you to extend any of the core Jabber
protocols. For example, an <x> packet in a <message> packet can enclose a standard
encrypted XML subdocument containing encrypted data. Such a message packet might
look something like the following:

<message from=’senderJID’ to=’recipientJID’>
 <x xmlns=’custom:security’>
 xml encrypted document here
 </x>
</message>

In this case, you are using the <message> packet as a simple envelope to send the
encrypted data through the Jabber system. Your custom encryption system’s sepa-
rate algorithms and protocols, not Jabber, ensure the security of the message.
Notice that the encrypted document can be anything you wish as long as it is valid
XML. This gives you the freedom to design your own security system or use an
existing standard encryption system such as W3C’s proposed XML encryption
standard (www.w3c.org).

 In addition, you are free to add new IQ extensions in your own <query>
namespaces to facilitate things like key exchange and other security support fea-
tures. Obviously, if you want the server to help support any of the custom exten-
sions, you will have to modify the server.

 However the beauty of the Jabber’s easily extensible design is that you can
work entirely within the Jabber standards while still making these modifications.
Sticking with the Jabber standards is a huge advantage. For example, this gives
you the option of using off-the-shelf Jabber servers or your own customized serv-
ers depending on your needs. In addition, standard Jabber packets will be routed
over standard Jabber servers allowing you to only customize the parts of the Jab-
ber network that best suit your needs.

The future of Jabber security
The Jabber community is well aware of the security shortcomings of the current
Jabber system. In many ways these security holes have resulted from the evolution
of Jabber from its simple IM roots. In addition, one of Jabber’s primary goals is to

What is needed to support enterprise messaging 277
make the creation of Jabber clients simple. Security tends to be difficult to imple-
ment well. Making a robust security system a required core part of the Jabber stan-
dard may not meet with Jabber’s design goals.

 To address these concerns and perhaps establish a new security framework for
Jabber, the Jabber Software Foundation has formed a security JIG. If you have seri-
ous security needs, you should monitor this JIG closely or join in to help shape the
future of Jabber security.

 Jabber security will need to address all five aspects of computer security
discussed earlier:

■ Authentication
■ Authorization
■ Confidentiality
■ Integrity
■ Nonrepudiation

In addition, there should be standard ways to integrate Jabber security with
existing systems.

 The design of Java’s inherent security mechanisms and the additional security
standards that are part of the Java 2 Enterprise Edition is a good example of how
the security of an environment like J2EE can be integrated with the security sys-
tems of existing applications like databases and messaging servers. Java security
standards provide standard mechanisms for connecting to and accessing existing
security systems such as authentication services. For example, single sign-on fea-
tures are possible using existing Kerebos3 authentication systems through the Java
Authentication and Authorization Services(JAAS). A user signs onto her com-
puter using Kerebos and that sign-on automatically authenticates her with any
other JAAS enabled system.

 Single sign-on authentication is a hot topic with Microsoft pushing its Passport
.NET single sign-on service (www.microsoft.com). Many other vendors have
banded together to form an open alternative called the Liberty Alliance(www.lib-
ertyalliance.com).4 The Microsoft Passport system is proprietary, available now,

3 Kerebos is a standard Unix authentication service also found (in a mutated form) in Windows NT/
2000/XP.

4 Sun Microsystems, creator of Java, is a key founder of the group.

278 CHAPTER 10

Enterprise Jabber
and easy to use,5 but it has suffered from the typical problems Microsoft seems to
have with security.

 The Liberty Alliance, on the other hand, has not yet produced any standards
or software. It is beginning to look more and more like a purely defensive market-
ing move. The resulting uncertainty is confusing and has most developers taking a
wait-and-see strategy. The Jabber community is closely monitoring both systems
and promises support for both if possible.

 Next, let’s take a look at the quality of service issues facing advanced
Jabber systems.

10.1.2 Guaranteed quality of service

Quality of service (QoS) describes traits of a system that guarantee a certain level
of performance. The Jabber standards do not specify any QoS requirements on
Jabber clients or servers, leaving it up to implementers to create their own QoS
guarantees and marketing language.6 Typical messaging QoS guarantees cover:

■ Delivery timing—In some applications, the time between a message being
sent and received can greatly affect the application’s behavior. For example,
a nuclear power plant controller must control the amount of coolant going
into the reactor to prevent a meltdown. A command must be sent from the
controller to the coolant valves within one second or the reactor could melt
down. Being able to guarantee that messages will be received within one
second is vital. This certainty is required for real-time behavior. A less dra-
matic and more common example is multimedia where broadcasts must be
sent at a certain rate to avoid transmissions from breaking up.

■ Delivery ordering—If you can guarantee the ordering of message deliv-
ery, your application can display certain behaviors that are difficult to
produce otherwise.

■ Delivery priorities—Some messages are more important than others. For
example, nuclear reactor control messages should be sent through the sys-
tem as quickly as possible while worker’s chat messages can be delayed for
half a second without causing any problems. This is especially important in
systems experiencing heavy loads.

5 Easy using Microsoft tools on Windows… It remains to be seen how easy the system is to access from
non-Microsoft platforms.

6 In my opinion, it is just as important for a standard to establish standardized marketing language as it
is to provide technical standards. By enforcing a uniform marketing nomenclature, end users can make
informed purchasing decisions by comparing “oranges to oranges” rather than the all-too-typical “ap-
ples to oranges” comparisons that confuse and frustrate buyers.

What is needed to support enterprise messaging 279
■ Delivery transaction—It is essential to ensure that a message is delivered to
a recipient once and only once. For example, a message may represent an
order for parts. When the order is sent the sender must be able to rely on
the system to deliver the message. In addition, the system can’t acciden-
tally deliver the same message twice as it would cause a double order to be
placed. Transactions also strictly define who is responsible for ensuring
the delivery of the message, the states of the system before and after the
transaction, and the precise behavior of the system in the event of success
or failure.

There are no standard ways of specifying these QoS constraints or requirements
within the Jabber protocols. Servers and clients are free to extend the basic Jabber
protocols using <x> or <iq> extensions to add these features. However, since they
are not standard, you cannot rely on them to be enforced or supported through-
out the Jabber network.

 This may or may not be a problem depending on your needs. For example, in
many situations you must ensure message delivery QoS within your own organiza-
tion and with other partner companies. Collectively, you can establish a set of
standard <x> or <iq> QoS extensions and require their support from all partici-
pants. On the other hand, this will prevent you from extending your application
beyond this group of Jabber domains. For example, if you must send messages to
a new partner company, you can’t ensure QoS with them without their supporting
your proprietary QoS extensions.

 The obvious solution to these issues is to create standard QoS Jabber exten-
sions. This is not as difficult as it may sound. The Jabber Software Foundation is
always open to new standards efforts and now provides a structured process for
passing new Jabber standards. As Jabber begins to be used in advanced systems, I
anticipate standard Jabber QoS extensions to become an area of great interest.
The beauty of the Jabber protocols is that you can forge ahead and add features to
meet your immediate needs without breaking standards compliance. In addition,
when you are ready or see the need, you have clear processes in place for creating
new Jabber standards.

 The last major problem facing advanced Jabber systems is administration.

10.1.3 Creating system administration tools an techniques

Ironically, system administration is often the most overlooked component of a
server-based system. This can be a showstopper in advanced systems where the
capability to integrate management features with other systems is critical. For
example, many large IT shops rely on centralized directory services to store and

280 CHAPTER 10

Enterprise Jabber
manage all user account information. Systems that can’t be integrated with direc-
tory services are simply not worth the trouble to support.

 The Jabber standards do not support any management or administration-
related protocols. It is left to the implementer to create these as they see fit. Java
provides many libraries and other tools to ensure that our software is administra-
ble and manageable. These include:

■ JMX (Java Management Extensions)—Exposes standard administration inter-
faces that allow existing system management tools to monitor and manage
the application.

■ JAAS (Java Authentication and Authorization Service)—Integrates Java security
with existing authentication and authorization services.

■ JNDI (Java Naming and Directory Interface)—Allows Java applications to gener-
ically search and manipulate naming and directory services.

It is understandable that Jabber does not specify administration or management
interfaces to Jabber systems. This gives implementers the largest degree of flexi-
bility in creating best of breed clients and servers that differentiate themselves
from others. Java developers have a distinct advantage in creating administrable
and manageable Jabber systems. I hope to see second-generation Jabber servers
written in Java that will take Jabber to the next level of power and performance.

 There are strong reasons for elevating Jabber to such high levels of per-
formance and reliability. The most prominent is the possibility of using Jab-
ber in MOM.

10.2 The promise of MOM

As mentioned in chapter 1, MOM has long been a fundamental part of enterprise
systems. Like databases and other enterprise information systems, MOMs serve as
generic tools that intelligent middleware uses to create applications. In the case of
databases, they provide basic storage and retrieval services for middleware. In the
case of Jabber and other MOMs, they provide reliable delivery of messages
between applications.

 There are many advantages in large, distributed systems for reliable message
delivery. These include:

■ Loose coupling—The messages in the MOM allows a very loose coupling
between applications. Rather than directly calling methods or remote
objects, or relying on tight coordination between distributed processes,
messages break applications into distinct and independent parts. Messages
also link those separate applications allowing them to carry out complex

The promise of MOM 281
tasks. Loose coupling eases the integration of disparate systems and pre-
vents failures in one application from bringing the entire system down.

■ Communication over space and time—Messages can travel over space and
time. We know how Jabber transports messages over space using its net-
work protocols and standard Internet networking connections. Less obvi-
ous is Jabber’s ability to deliver messages over time. Senders can dispatch
messages to recipients that aren’t available. The message will automati-
cally be delivered at a later time when the recipient becomes available.
The sender and recipient are essentially communicating across time with
the aid of MOM.

■ Scalable—The loose coupling of MOM systems provides many opportunities
for creating scalable systems including load balancing across multiple
machines in server farms.

■ Flexibility through an extra layer of abstraction—The message represents a
layer of abstraction between the sender and receiver. As long as the mes-
sage stays the same, the sender and recipient can change in dramatic ways
without affecting each other. This flexibility reduces interdependence
between parts of the system making development, upgrades, and code
maintenance easier.

The benefits of MOM systems were strong enough to have Sun make the means to
access them a standard J2EE API under the JMS standard. The standard is backed
by all of the major vendors of MOM systems showing the strong market for MOMs
in Java enterprise solutions. Jabber fits well into the MOM landscape as an alterna-
tive to the traditional MOMs.

10.2.1 Jabber as middleware
In the midst of giants like IBM and Tibco, Jabber might seem like an unlikely com-
petitor for MOM market share. However, Jabber systems have their own benefits
that can provide significant competitive advantages over other large-scale MOM
systems. These benefits include:

■ Inexpensive—Compared with other MOM systems, today’s Jabber servers are
inexpensive. Cash-strapped enterprises will see Jabber as a possible replace-
ment for the more expensive MOM systems. This is especially true for non-
mission-critical applications, proof of concepts, and other systems where
the expensive MOM QoS guarantees are unnecessary.

■ XML based—XML continues to make strides as the common data exchange
format for all enterprise systems. Jabber’s XML roots make it a perfect part

282 CHAPTER 10

Enterprise Jabber
of an XML-based infrastructure. In addition, accessing other enterprise ser-
vices via XML is simple using Jabber.

■ Open—The Jabber protocols and a lot of Jabber software is open. The bene-
fits of open software and standards are well-documented. See www.open-
source.org for more information.

■ Simple—Large and small enterprises can easily understand and use Jabber
with little training. In addition, developers can implement their own Jabber
clients and servers with a minimum of effort.

■ Lightweight—Jabber’s lack of built-in enterprise features such as QoS guaran-
tees makes the protocols extremely lightweight. As a consequence, the soft-
ware that runs the Jabber network is also compact and efficient. Expensive
enterprise features can be added or removed to suit a customer’s needs
resulting in a much more customizable MOM solution.

The idea of Jabber as MOM is an active area of discussion in the Jabber commu-
nity. Two user groups have been started at www.jabber.org: JAM and Jabber RPC.
Both groups are interested in the application of Jabber technologies as middle-
ware. JAM tends to have a more general discussion on the topic while Jabber RPC
concentrates on specific bridges to existing XML RPC efforts such as SOAP.

 As Java developers, our interests in JAM probably fall along similar lines. In par-
ticular, we’re likely to be interested in Jabber and how it relates and integrates
with JMS. In addition, Microsoft .NET and XML-based web services initiative will
require J2EE Java servers to offer XML access to their services. Jabber may serve as
a perfect lightweight bridge between J2EE and XML-based systems. We’ll cover
both next starting with Jabber and the JMS.

10.2.2 Jabber and the J2EE Java Messaging Service

As with other J2EE APIs, the JMS is a standard Java interface to messaging systems.7

It allows Java developers to access and use messaging systems with a generic Java
API, protecting them from the details of any particular one. This gives Java devel-
opers the ability to choose best-of-breed messaging systems and switch between
them at any time without rewriting any of their own Java code. JMS vendors differ-
entiate themselves by providing JMS-compatible messaging systems with different
strengths to match different customer needs.

7 There are many excellent sources of information on JMS including the Sun Java website (java.sun.com)
and practically all J2EE books. A good place to start is the book Java Message Service by Monson-Haefel,
et al (O’Reilly & Associates).

The promise of MOM 283
 JMS offers two interesting options. First, for organizations that already have
JMS servers, developers can modify servers to offer Jabber services. This lets you
build upon an existing enterprise server and simply add Jabber functionality. Your
JMS Jabber server will also be able to leverage the built-in enterprise features of
the JMS server including its security system and quality of service features.

 Extending a JMS server to support Jabber is accomplished by writing JMS cli-
ents that handle the Jabber connections and parse/produce XML packets. Essen-
tially the JMS system replaces the PacketQueue and QueueThread classes on our
Java server with JMS queues and channels. Jabber groupchat servers and other
embedded Jabber services can be built as additional JMS clients. Alternatively,
some JMS systems will support the use of message-driven Enterprise JavaBeans
(EJB). In those cases, the services can be implemented as EJBs.8

 JMS offers a second option to existing Jabber servers. JMS provides an API that
you can implement to expand your market into the established Java messaging
marketplace. The benefits of doing this are numerous. The Jabber server sud-
denly becomes another standard JMS option that enterprise Java developers can
immediately integrate into existing JMS-based systems. In addition, by complying
with the JMS standard, the Jabber server will be forced to address most of the miss-
ing advanced Jabber features such as security and QoS mentioned earlier.

 To become a JMS server, the Jabber server must support JMS clients by creating
a JMS driver. The JMS API only specifies the interface between JMS clients and this
JMS driver. What goes on behind the scenes between the JMS driver and server is
hidden from the JMS client. This gives implementers several standard options
when creating a JMS driver including: direct Java Remote Method Invocation
(RMI) server access drivers, smart drivers, or protocol adapter drivers.

 In a direct RMI server access driver, the driver contains RMI stubs that allow the
driver to transparently manipulate remote server objects as if they were local to
the client (figure 10.1). The design requires both the driver and server to be writ-
ten in Java (or have Java access). In those cases where Java is present on both the
client and server, a direct RMI connection can be the simplest way of creating a
JMS driver.

8 EJBs are often thought of as being synonymous with J2EE. Almost every J2EE book I’ve read has covered
EJBs in depth. Programming both EJBs and JMS clients is beyond the scope of this book and I refer you
to the vast library of J2EE programming books.

284 CHAPTER 10

Enterprise Jabber
A smart driver implements the JMS system within the driver itself as shown in fig-
ure 10.2. This is a common approach in distributed JMS systems that use peer-to-
peer technologies to communicate directly between JMS clients. Distributed JMS
systems are relatively rare. In addition, this design provides no method for inte-
gration with a Jabber server.

Finally, a protocol adapter driver converts JMS calls to the native messaging net-
work format for the MOM (figure 10.3.) In our case, we would convert JMS calls to
Jabber packets and send them over a normal Jabber client connection. The
advantage of this approach is we don’t need to change the server to support the
driver and the server does not have to be written in Java.

JMS
client

JMS
server

JMS driver

RMI “Stub“ Java
objects

RMIJRMP
Protocol

Figure 10.1
A direct RMI server access JMS driver
uses RMI to access remote Java
objects on the server.

JMS
client

JMS
client

JMS driver

JMS system

JMS driver

JMS systemCustom
protocol

Figure 10.2
A smart driver creates the JMS system
within the JMS driver. There is no room for
Jabber integration in this design, making
it uninteresting for Jabber developers.

JMS
client

Jabber
server

JMS driver

JMS -> Jabber Jabber
protocol

Figure 10.3
A protocol adapter JMS driver converts JMS
calls to the messaging system’s native
protocols. In our case, converting JMS calls to
Jabber packets. This type of driver requires no
server modifications.

The promise of MOM 285
Unfortunately, as we’ll see later, the JMS protocols are a superset of the Jabber
protocols making it impossible to support a protocol adapter driver using stan-
dard Jabber protocols. However, we can always add new Jabber extension proto-
cols to fill in the missing gaps.

 There are many challenges to creating a JMS-compliant Java Jabber server.
Let’s look at the major obstacles facing such a project.

Differences
There are several significant differences between what the JMS standard requires and
what the Jabber standards provide. Each of these must be overcome to provide JMS
interfaces to Jabber servers:

■ Data typing—JMS is based on Java with its strong data typing. Jabber, on the
other hand, uses XML where text is the only recognized data type. Jabber
JMS systems must be able to preserve typing in Jabber messages. There are
XML standards being developed as part of the XML RPC efforts to provide
XML typing.9 These may be adapted to provide Jabber message typing.

■ Messaging guarantees—The JMS standard provides standard methods and
expectations for QoS. As we’ve discussed earlier, Jabber does not provide
these QoS features by default.10

■ Message expiry—JMS provides for message expiry as opposed to Jabber where
messages are stored indefinitely until forwarded to the proper recipient.
There are proposed Jabber standards for adding this feature to Jabber. For
now though, there are no guarantees for a compliant Jabber server to
honor message expiry.

■ Messaging model separate from architecture—The JMS messaging model has JMS
clients sending messages through the JMS system to other JMS clients. The
routing of the messages and guarantee of QoS is handled by the JMS system.
However, the architecture of the JMS system is transparent to JMS clients.
This means the JMS implementation can be a centralized JMS server, a com-
pletely decentralized, peer-to-peer system, or some combination. Jabber
defines the messaging model as well as architecture, forming a subset of
possible JMS systems.

9 See www.w3c.org for more on XML typing.
10 Message delivery is assumed to be guaranteed in Jabber. Unfortunately, in the real world, nothing is

fail-proof. Jabber does not specify standard behavior in the case of delivery failure and the conditions
where failure is possible.

286 CHAPTER 10

Enterprise Jabber
■ Message targets are server entities, not client endpoints—In JMS, messages are sent
to server-managed queues. Clients retrieve messages from these queues or
are notified via events when new messages arrive. Jabber on the other hand,
delivers messages directly to endpoints identified by a Jabber ID. These end-
points are assumed to be on the client with a point-to-point delivery mecha-
nism. This difference is perhaps the most difficult to overcome.

In addition to these pervasive differences, there are specific differences between
the Jabber messaging model and JMS messaging model. Let’s look at the major
model differences with respect to the two JMS messaging modes: publish-sub-
scribe and point-to-point.

Publish-subscribe
The JMS publish-subscribe messaging mode, often called pub-sub, allows publish-
ers to send a JMS message to a pub-sub queue. The queue’s subscribers each get a
copy of the messages in the queue. This messaging model closely resembles the
behavior of Jabber presence and groupchat.

 In both cases, messages are pushed to clients as they are sent by the publisher.
Message delivery is a one-to-many model, sending copies of the original message
to each subscriber. Additional subscribers can be added at any time, allowing the
message’s audience to be expanded dynamically.

 However, the JMS standard requires additional features that aren’t universally
supported by the Jabber presence and groupchat protocols. Table 10.2 summa-
rizes the JMS differences with Jabber protocols.

Table 10.2 Differences between JMS requirements for pub-sub messaging and built-in Jabber support
for groupchat and presence.

JMS requirement Groupchat support Presence support

Multiple publishers to same
topic.

Yes, each groupchat participant
is automatically a publisher.

No, only one publisher is possi-
ble for any particular presence.

Publishers can be added at any
time.

Yes, new groupchat group mem-
bers can be added at any time.

No, only one publisher is possi-
ble for any particular presence.

Durable subscriptions No, users must manually rejoin
groupchat groups to receive
groupchat messages.

Yes, presence subscriptions
persist until canceled.

Delivery of “stored” messages
to durable subscriptions
(except expired messages)

No, durable subscriptions not
possible.

No, presence updates are never
stored for later delivery.

The promise of MOM 287
These differences create a superset of pub-sub features required by JMS. This
makes it easier to build a Jabber system from a JMS system than the other way
around. This is especially true when considering the second JMS messaging
model: point-to-point messaging.

Point-to-point messaging
JMS’s point-to-point(P2P or PTP) messaging model follows the one-to-one mes-
sage delivery process found in the normal Jabber <message> protocol. In both
cases, messages are sent one-way from producer (sender) to consumer (recipi-
ent). Messages are stored and forwarded if no consumer is available to accept
the message.

 JMS’s PTP model differs from Jabber’s message protocol in several important ways:

■ Delivery targets are queues—As mentioned before, JMS delivery targets are
server-managed queues, not clients or users as in Jabber.

■ One copy of message to a queue consumer rather than an endpoint—Unlike Jabber,
unrelated clients can subscribe to a PTP queue. This is similar to the way
multiple Jabber resources can be ready to accept messages sent to a Jabber
user. However, in JMS you can specify that messages are distributed to wait-
ing consumers in a variety of ways including strict priority (as with Jabber)
or round-robin.11

■ Message delivery is strictly ordered—JMS requires that messages are sent to con-
sumers in the order they are sent by message producers.

■ Message acknowledgement is required12—In order to ensure a message is deliv-
ered JMS requires clients acknowledge message receipt. The JMS system will
attempt to resend unacknowledged messages. JMS specifies three different
types of delivery acknowledgement modes.

■ Multiple producers on each PTP queue—JMS allows multiple producers to send
messages to the same queue. This is similar to the ability of multiple clients

11 Round-Robin describes a basic way of evenly distributing messages between consumers. Typically, a
round-robin distribution is done by putting the consumers into a circular list and iteratively giving the
next message to the next consumer in the list.

12 JMS acknowledgements are similar to Jabber event messages, part of the proposed Jabber event X ex-
tension standard. See the jabber:x:event protocol reference in appendix A. In the Jabber model,
clients must watch for delivery event packets in order to ensure that a message is delivered. If it is not,
the client is responsible for resending the message. Finally, there is a significant difference between the
Jabber event indicating the server has successfully sent a message to the recipient, and JMS where the
client acknowledges the receipt of the message.

288 CHAPTER 10

Enterprise Jabber
to send messages to the same user or resource in Jabber. However, the deliv-
ery target is a queue and not a user changing the model in subtle ways.

■ Messages can be persistent or transient—JMS messages can be stored indefinitely
for later delivery like Jabber. However, you can also specify message expiry
times to avoid dead messages from clogging up the server. There is no
expiry time limit so messages can be sent that expire immediately eliminat-
ing the store and forward feature entirely.

The idea of a JMS server side queue as a messaging target is a subtle difference
from Jabber’s user/resource delivery system. Server messaging handling has
interesting effects on the ease of implementing QoS guarantees and controlling
message flow. Once again, these features make it a bit simpler to move from a JMS
server implementation to a Jabber server than the other way around simply
because JMS is almost a superset of Jabber functionality. In other words, if you
were to buy one or the other, purchase a JMS server and customize it to comply
with the Jabber specification rather than the other way around.

 However, if you are starting from scratch, Jabber is a much smaller and easier
to implement specification. You can then expand the Jabber server to meet JMS
requirements, as they are needed. In many cases, you will not need all JMS fea-
tures and can avoid a lot of work by only implementing what you need.

 The most difficult part of the JMS specification is advanced MOM features that
are completely lacking in the Jabber standard.

Advanced JMS features
JMS requires several advanced messaging features such as message acknowledge-
ment and server resending mentioned earlier. Most of these advanced features
are provided in order to ensure that messages are delivered reliably and in a pre-
dictable and controllable manner. In general, casual messaging such as provided
by Jabber is reliable and you may only experience dropped messages and other
delivery failures once per hundred thousand or million messages delivered. How-
ever, in mission-critical enterprise systems that dropped message may cost your
business millions of dollars!

 The most useful advanced JMS feature used to increase reliability are transac-
tions. Transactions help the server to guarantee the ACID properties covered in
chapter 9. In JMS, transactions are automatically linked to a transaction session
allowing you to specify messages sent in that session to be delivered under stan-
dard transaction semantics.13

13 JMS transactions follow a basic transaction process where the sending of messages prepares the transac-
tion. JMS clients are then free to commit or rollback the transaction. The traditional two-phase commit
transaction is also available via the Java Transaction API and the transaction-related interfaces to JMS
sessions.

The promise of MOM 289
 As Java programmers starting with our Java Jabber server we can add transac-
tions in many ways. One of the most straightforward is to implement the Java
Transaction APIs, a standard Java extension. In addition, if you use a JDBC data-
base for message storage, you can link your server’s message delivery transac-
tions to JDBC transactions. This lets the database do most of the work of
implementing transactions.

 Transactions are recognition of the fact that in any real-world system there will
be errors delivering messages. Although it is not part of the JMS specification,
most JMS servers provide other tools for dealing with delivery problems. One of
the most common and useful of these are dead message queues for holding mes-
sages that have expired or are undeliverable. Dead message queues give you an
opportunity to write a special JMS client that handles these dead messages.14

Jabber as JMS challenges
Creating a JMS-compliant Jabber server does not stop at simply implementing the
JMS specification. JMS is part of the J2EE platform that requires you also to inte-
grate with the entire J2EE environment. This poses additional challenges that
have nothing to do with messaging including:

■ Security model—J2EE requires an interoperable security model. This allows
J2EE developers to use one security system across their J2EE infrastructure.
This can be a benefit to Java Jabber servers as the J2EE security system is
well-documented and designed, filling a gap left in the Jabber standards.

■ Deployment model—J2EE deployment follows a well-defined process. Your
Jabber server will need to support this model. Once again, this fills a gap
left in the Jabber standard so may actually help rather than hurt a Jabber
server project.

■ JNDI access—JMS, as with all J2EE technologies, relies on JNDI for customi-
zation and implementation-specific tasks (such as finding the JMS driver).
Again, this fills a gap in the Jabber standards and fills a critical need for
any server.

Although there is a lot of work involved in supporting JMS in a Jabber server,
there are just as many benefits as drawbacks. In many ways, JMS provides guid-
ance in the features required of a mission-critical Jabber server. Following the
JMS design may feel like “chasing tail lights.” However, I like to think of it as
avoiding reinventing the wheel. I’d rather innovate in messaging specific areas

14 These clients usually log the dead messages to a file and alert system administrators of possible problems.

290 CHAPTER 10

Enterprise Jabber
or applications built upon the messaging infrastructure instead of recreating yet
another server configuration system to replace JNDI.

 One of these hot areas of messaging innovation is occurring in the area of
XML messaging. This movement has been primarily motivated by the deep inter-
est in XML by the World Wide Web Consortium (SOAP) and Microsoft (.NET).

10.2.3 Jabber, .NET, and SOAP
XML is shaping up to become one of the most fundamental Internet technologies
of the future. Not only is it a key W3C standard15 but also Microsoft, one of the
most influential software companies, has decided to make XML the foundation
for many of its future technologies. This trend holds interesting possibilities for
future uses of Jabber systems, which are f-based.

 In this section, we’ll look at the Microsoft .NET system and its reliance on XML.
We’ll then examine the W3C’s SOAP standard for sending XML information across
the network and what this means for Jabber.

Microsoft .NET platform and Jabber
Microsoft’s next-generation computing framework is collectively known as .NET. It
is a collection of existing and new Microsoft technologies that replace the some-
what fragmented current generation of Microsoft technologies such as DCOM,
back-office servers, ActiveX, and so forth.

 For Java developers, it is easiest to understand .NET as the Microsoft version of
J2EE. .NET relies on a development environment composed of a virtual machine
called the Common Language Runtime (CLR) and libraries similar to Java’s JVM,
 and class libraries. The development environment is programmed by developers

through a new version of the venerable Microsoft Visual Studio tools with .NET
versions of Visual C++, Visual Basic, and the new Visual C#. The most significant
change to Microsoft’s strategy is a reliance on open standards XML for informa-
tion exchange between .NET web services.

 The .NET vision is to allow developers to easily create web services that allow
both client/server and server-server communication and resource sharing. Users
access web services in order to carry out every imaginable task from communica-
tion to paying bills to searching databases.

 For Jabber developers, one of the most interesting things about .NET is its use
of IM technologies for many features. For example, .NET uses a single sign-on sys-
tem called Passport based on the IM authentication system. In addition, .NET web
services will use XML to transport all data between .NET components.

15 The Word Wide Web Consortium (W3C) is the official standards body of WWW technology.

The promise of MOM 291
 As part of Microsoft’s efforts to be a standards advocate, it has submitted many of
the .NET technologies to standards bodies. For Jabber, the most interesting is the
SOAP standard being developed by the W3C for transporting XML messages.

Jabber as SOAP transport
The SOAP standard establishes a standard method for exchanging information
across networks. The SOAP specification describes it as:16

A lightweight protocol for exchange of information in a decentralized, distrib-
uted environment. It is an XML-based protocol that consists of four parts: an en-
velope that defines a framework for describing what is in a message and how to
process it, a transport-binding framework for exchanging messages using an un-
derlying protocol, a set of encoding rules for expressing instances of applica-
tion-defined data types and a convention for representing remote procedure
calls and responses.

Its primary design goals are simplicity and extensibility. SOAP avoids common RPC
features that are useful but lead to complexity of implementation including:

■ Distributed garbage collection
■ Boxcarring or batching of messages
■ Objects-by-reference (which requires distributed garbage collection)
■ Activation (which requires objects-by-reference)

Reading the SOAP specification is almost a repeat of our earlier discussion of
issues we need to tackle as part of a JAM effort. In particular, SOAP is already pro-
viding standard ways for representing data types and remote procedure calls, two
big problems facing a Jabber middleware solution.

 SOAP currently defines an HTTP transport binding that provides a standard
method for sending SOAP packets via standard web servers. Jabber is already XML-
based and contains built-in packet delivery mechanisms. This makes it an excel-
lent SOAP transport candidate. An exciting possibility exists to define a Jabber
transport binding and use Jabber networks as SOAP systems.

 .NET and web services are still largely hype and potential at this point. How-
ever, Microsoft is aggressively pushing forward with .NET components and there is
a strong possibility that the future of network computing may rely on SOAP infra-
structures. A Jabber entrepreneur is in an excellent position to grab a part of that
multibillion dollar market.

16 SOAP specification, version 1.2. (www.w3c.org)

292 CHAPTER 10

Enterprise Jabber
 JAM isn’t the only exciting application of Jabber technology. There are a wide
variety of other Jabber applications that hold a great deal of promise.

10.3 Examples of Jabber applications

If Jabber were only useful for basic IM communication, there would be plenty to
get excited about. This initial market represents a large part of network usage that
will probably rival email in the near future. However, there are many other appli-
cations that can be built with or on Jabber that have even more potential! In this
section, we’ll take a whirlwind tour of these possibilities. I hope one of them will
inspire you to create the next generation of Jabber applications.

10.3.1 Jabber groupware
One of the biggest advantages of the Internet is the ability to efficiently communi-
cate between people. We can exploit this communication channel to collaborate
on projects in exciting new ways. Software that allows network collaboration is
often referred to as groupware. Jabber provides a new communication channel
that can be exploited to create new or improved groupware applications.

 These new groupware applications can include:

■ Conferencing—Meetings can be one of the necessary evils of working in
groups. A lot of time is wasted in meetings, not to mention the overhead
time spent in traveling to meeting locations (even if it’s just down the hall),
maintaining meeting rooms, and so forth. Jabber groupchats can provide
interesting alternatives to the traditional meeting.

■ Collaborative editing (aka white-boarding)—There are many situations where a
common document must be created, edited, or discussed. The popular IBM
Domino system clearly shows the market for such systems. Jabber provides an
excellent framework for creating next-generation collaboration tools.

■ Calendaring—Coordinating people’s calendars, setting up meetings, and
managing schedules are common problems facing people today. Net-
worked calendaring systems have existed from the beginning of network-
ing including the iCal standard and the ubiquitous (if security-
challenged) Microsoft Outlook. Jabber provides interesting possibilities
for creating next-generation calendaring systems that can exploit Jabber’s
concept of presence.

■ File sharing—Sharing files is an important application that has many uses
beyond Napster-like music trading. Advanced file sharing can incorporate
data backups, versioning, annotations, and other features.

Examples of Jabber applications 293
This is just a short list of possible groupware applications that can benefit from Jab-
ber. I’m sure there are many others waiting to be created. On the other end of the
spectrum from large, monolithic applications are lightweight network services.

10.3.2 Jabber network services
There are many small but useful services that can be exposed via Jabber networks.
Network services are small network tools for providing specialized information
and services. These can either be in the form of chatbots or .NET style web ser-
vices, depending on whether a user or computer interacts with them. Possible net-
work services include:

■ Time—Providing the current date time is a valuable service. Jabber’s IM fea-
tures can also add alarms and alerts as well as date sensitive information
such as horoscopes.

■ Weather—Another classic information service. Asynchronous messaging
allows you to send severe weather alerts.

■ Movie/show times—Interesting possibilities exist for advanced features when
combined with other Jabber applications such as calendaring groupware.

■ Network storage—We’re already seeing web-based file storage services like
Yahoo! Briefcase. It is logical to extend this to Jabber systems, especially
when using file sharing systems.

■ Security (authentication)—Single sign-on IM systems are a key strategy tool for
many vendors.

■ Directory services—There is a classic need for storing and accessing directory
information (such as names and phone numbers). XML database access
(native or through drivers) is becoming increasingly common. Jabber sys-
tems can easily extend these services to the IM world.

As Jabber systems become popular on the Internet, I expect to see a wide variety
of network services emerge. Many will likely rely on custom IQ extension proto-
cols. The easy extensibility of the Jabber protocols makes this an exciting area of
development.

10.3.3 Applications enhanced by Jabber
Jabber is a perfect network communication infrastructure because it is simple and
flexible. As a basic piece of infrastructure Jabber may remain hidden from the
end user in many applications. In fact, some of the most practical Jabber projects
under development hide much of the IM origins of their Jabber infrastructure.

294 CHAPTER 10

Enterprise Jabber
 Possible Jabber applications include:

■ Games—The computer game industry is rapidly growing to become one of
the largest entertainment industries. Online multiplayer features are
increasingly becoming required for game success. Jabber provides an excel-
lent, portable, low overhead, free technology for creating online games.
Several games under development use Jabber for everything from in-game
chat to supporting all game network communication.

■ Home/Factory automation—Home and factory automation is a nascent mar-
ket that looks to be finally on the verge of a breakthrough into the main-
stream. Automation systems become truly powerful when you can access
them via any network. Jabber provides a nice mechanism for interfacing
often-proprietary automation networks with the Internet through standard
or custom desktop clients.

■ E-commerce—Both customer-to-business and business-to-business e-com-
merce are extremely important parts of the Internet economy. It is possible
to create secure ordering and fulfillment tracking systems on top of Jabber.
Many .NET/SOAP web services are focusing on this market. Jabber is an
interesting tool in realizing this vision.

■ Customer service—Companies spend millions of dollars a year on customer
service. Jabber systems offer an interesting way of tackling this difficult
problem. Automated chatbots can attempt to help customers without
human intervention. If they can’t help, they can intelligently route the cus-
tomer to a human representative. In addition, communicating over IM can
be extremely efficient. Unlike a telephone conversation, a single person
can carry on several IM chat sessions at the same time, exchange files, and
even bring up groupware whiteboards to sketch on (as they say, a picture is
often worth a thousand words). If other systems and network services are
also Jabber-enabled, the customer service representative could automati-
cally access customer databases, issue refunds, and conduct other business
with the customer in real time.

■ B2B exchanges—Businesses often need to exchange critical information. The
information may require special handling including real-time delivery, high
security, access to specialized network services, or the capability to handle
large amounts of message traffic. Jabber provides an ideal platform for
delivering these capabilities in a standardized manner.

■ Process management (aka workflow)—Business processes often must follow
complex business logic. For example, in order to be reimbursed for travel
expenses, an employee may need to fill out a specific form and submit it to

Examples of Jabber applications 295
a superior. The superior can approve the expense, reject it, or send it back
for clarification or changes. Once approved, the form must be submitted to
the accounting department where it is approved, rejected, or returned for
changes by a project account manager. Finally, it goes to the paymaster who
issues the reimbursement check. This entire workflow can be managed by
Jabber-based applications. In addition, the employee can be automatically
informed about where the form is in the approval process and open a Jab-
ber chat with the appropriate person if the form gets stuck somewhere
along the way.

■ Expert systems—Many AI applications such as expert systems are extremely
useful tools for businesses. Unfortunately, the difficulty accessing them and
integrating them into the rest of the enterprise computing systems has
severely hampered their use in the enterprise. Jabber provides an interest-
ing platform for creating developer and user-friendly network service inter-
faces to these systems bringing them into the mainstream.

■ Training—Jabber chatbots can serve as automated guides that help users
operate and explore complex systems or learn a wide variety of subjects.
There are many exciting possibilities for innovative Jabber-based training
systems, perhaps with the ability to chat with human instructors when the
automated system fails to provide useful results.

As you can see, the potential for Jabber as an enabling technology is quite large.
The most compelling applications exploit the communication and instant mes-
saging features of Jabber while extending them in innovative and task specific
ways. The value of your Jabber network is greatly influenced by the number of
people on the network and the number of network services and applications you
can offer. As we’ve seen, the extensibility of Jabber and the simplicity of creating
Jabber clients and servers make a heavily populated Jabber network a likely and
fascinating possibility.

 Jabber isn’t the only communication framework available to developers today.
There is a danger when exploring a new and exciting technology to fall into the
trap of thinking it can be used to solve every problem out there. The reality is
that Jabber and other IM solutions are only one of several useful networking
technologies that you should consider when faced with a challenging networked
problem. In the next section we’ll take a look at some of these alternatives and
how Jabber compares.

296 CHAPTER 10

Enterprise Jabber
10.4 Distributed application alternatives to Jabbers

Jabber faces several competing technologies for accomplishing the same basic
task of allowing users and applications to communicate. Within the IM arena
there are many proprietary systems with varying strengths and weaknesses, from
small, domain focused IM systems to large hosted systems like AIM.

 We discussed Jabber’s place in the IM world in chapter 1. Now we’ll look at the
competing technologies that can fill many of the communication roles that we’ve
been discussing for advanced Jabber applications. These competing distributing
computing technologies fall into three main categories: remote procedure call
(RPC) systems, peer-to-peer systems, and hybrid systems.

 We’ll begin with RPC systems.

10.4.1 RPCs: oldies but goodies
As long as there have been networks there have been RPC systems designed to
allow applications to communicate with each other across them. Microsoft is
betting its future on the XML-based .NET RPC system using SOAP. We’ve
already discussed these technologies and how Jabber can be used as a part of
the .NET future.

 Java offers developers three main RPC alternatives: CORBA, Java Remote
Method Invocation (RMI), and Java Jini. CORBA, the common object request bro-
ker architecture, is a platform-neutral, language-neutral RPC framework in use in
many enterprises. It saw its heyday in the 1990s as a way to bridge new C++ systems
to legacy systems built with older technologies.

 When Java emerged in the mid-’90s Java CORBA interfaces were quickly added
to the core libraries. However, CORBA suffers from a large amount of complexity
needed to support a language-neutral RPC system. This includes its own interface
definition language (IDL) for describing how RPC is carried out between CORBA
systems.

 The functionality of CORBA was necessary for Java systems but the complexity
made using it expensive and error prone. It is now used only when accessing
older applications that already have existing CORBA interfaces.

 Java RMI was created as a simplified RPC system.17 The designers made RMI
Java-specific, allowing Java to take care of much of the complexities found in
CORBA. For example, RMI uses native Java data types and interfaces, eliminating
the need for an IDL.

17 Many CORBA lessons were incorporated into RMI’s design. This was natural since many RMI designers
were part of the original CORBA effort.

Distributed application alternatives to Jabbers 297
 The simplicity and power of RMI has lowered the bar in creating distributed
systems. When the J2EE standards were being developed, RMI was designated as
the standard RPC technology to be used between all J2EE components. Distrib-
uted Java systems are almost always built with RMI.18

 The core RMI team, after working on distributed systems for so long, noticed sev-
eral common problems that continued to plague RPC systems. Their solution was
the Java Jini system (java.sun.com and www.jini.org). Jini is a lightweight framework
built on top of an RPC system (the default is Java RMI). Jini provides lookup ser-
vices, spontaneous and self-healing networking, mobile objects, distributed transac-
tions, distributed events, and other advanced distributed system features.

 RPC systems do not specify a particular architecture for components. However,
basic client/server architectures are the most common. In the case of Jini, the
line between clients and servers is often blurred producing a distributed server or
even peer-to-peer (P2P) architecture.

 The key difference between Jabber and RPC systems is the degree of coupling
between communicating applications. In RPC, applications communicate directly
with each other. A failure in one application will often cause both to fail.19 In
addition, changes to the interface on one application require all other applica-
tions to be updated producing maintenance nightmares.

 Jabber and other messaging systems provide a much looser coupling between
applications.20 The Jabber server acts as a buffer between the communicating
applications preventing failures in one from affecting the other. In addition, mes-
sages serve as the interface between applications in Jabber MOM systems. Applica-
tions are free to change independently as long as they continue to use the same
message format.

 The looser coupling does come at a price. Jabber systems have higher commu-
nication overheads than RPC based ones. The Jabber server, and the steps
required to create, send, and read Jabber messages can often be eliminated in
RPC systems. In most cases, developers will sacrifice some performance for the
development benefits of looser coupling. This will tip the scales in the favor of
Jabber for many systems.

 If the overhead of the server is significant, P2P often provide an interesting
alternative.

18 CORBA is still widely used to connect to legacy systems.
19 Jini systems expect this failure and are designed to automatically recover from them.
20 The Jini standard includes the JavaSpace Service. It serves as a shared object repository and helps Jini

systems achieve the same degree of loose coupling found in MOM systems.

298 CHAPTER 10

Enterprise Jabber
10.4.2 P2P systems: the new challenger
P2P systems are designed to allow communication directly between clients or
applications without a server. Two of the most interesting P2P systems are JXTA
(www.jxta.org) and Gnutella (www.gnutella.co.uk). These systems offer many ben-
efits over traditional server-based systems like Jabber:

■ No server—There is no server to install, manage or maintain. This also elimi-
nates the server as a weak link in the architecture. In addition, removing
the server distributes the control over the network to the clients and
removes the server as a target for attack (legal or otherwise).

■ Anonymous—Most P2P systems are designed to allow anonymous use of the
network, although it is usually easy to add the ability to identify yourself if
needed. Anonymity has been a traditionally important feature of P2P sys-
tems as many began as file-sharing systems.21

■ Efficient/scalable network—The Jabber network is limited by the number of
sessions the Jabber server can handle. A P2P system moves computing to the
edges of the network, thus helping to distribute the load.22

■ Faster/direct transfers—Since communication is conducted directly between
the sender and receiver, information is transferred without overhead from
intermediate components. Some P2P systems distribute data across the net-
work in an attempt to cache it close to consumers in order to further
increase transfer speed and efficiency.

Unfortunately, P2P systems are not a panacea. There are many dangers and pit-
falls associated with P2P. These include:

■ Security and privacy—P2P clients must communicate directly with other cli-
ents. This results in their being exposed to the same security and privacy
concerns that face a server operator. For example, it is difficult to operate
P2P clients behind firewalls, as other clients must be able to open connec-
tions to them. In addition, it is possible for someone to trace who you are by
watching your P2P packets. The Jabber server serves as a trusted intermedi-
ary that can hide your true identity and protect you from direct attacks.

■ No centralized control—Without a central server controlling the network,
there is no way to exert centralized control over a P2P system. This is an

21 File-sharing systems are often used to share copyrighted material illegally and both server operators
and users have been pursued through the legal system.

22 Several prominent P2P systems have failed to scale as anticipated creating some doubt as to the limits
of this claim.

Distributed application alternatives to Jabbers 299
important feature for some applications such as anonymous file sharing.
However, businesses must often exert centralized control to enforce policies
and control usage. The Jabber server serves as a central administration
point for a Jabber system.

■ Quality of service—P2P systems rely on clients for all communication tasks.
This makes it difficult to consistently provide QoS guarantees to users.

■ Anonymous—Businesses often want (or are required) to audit all their
activities. The anonymous nature of many P2P systems can make this diffi-
cult or impossible.

P2P systems are well-suited to many applications where the overhead or vulnerabil-
ity of a server is not desired. However, most enterprise systems will find the lack of
security and control major obstacles to using P2P. Jabber systems allow users to
balance the need for distributed yet centralized communication systems.

 Of course, as engineers we know that sometimes a compromise between
extremes is the best solution. Hybrid systems often provide that needed balance.

10.4.3 Hybrid systems: a better compromise
Hybrid systems combine techniques and technologies from P2P systems with clas-
sic client/server designs. The most famous hybrid system is Napster (www.nap-
ster.com). Napster uses a classic client/server IM infrastructure for chat and file
searching. File transfers were handled using direct P2P connections. This balances
the need for centralized control and fast, comprehensive file searches, with the
efficiencies of using P2P to transfer large amounts of data.

 The hybrid system approach is often used as a fallback alternative in otherwise
pure client/server or P2P systems. For example, the JXTA P2P system first attempts
to use a multicast protocol to discover other JXTA peers. However it will fall back
to using well-known rendezvous servers that operate as pseudocentralized lookup
services to help bootstrap the P2P network.

 Jabber is designed to be a hybrid system. Its distributed server design allows
you to break down the Jabber network into arbitrarily sized Jabber domains.
These domains can be as small as a single Jabber client forming a P2P-like net-
work. On the other end of the spectrum, a single, isolated Jabber server can han-
dle thousands of users forming a classic, client/server architecture. In addition,
the out-of-band protocol we briefly covered in chapter 4 can provide a simple
method of adding Napster-like P2P file transfers in an otherwise Jabber client/
server IM network.

300 CHAPTER 10

Enterprise Jabber
10.5 Conclusions

We have seen where Java IM systems like Jabber can take us given the proper
enterprise enhancements. These possibilities include MOM systems, groupware,
network services and distributed applications. In addition, exciting new develop-
ments like SOAP and web services opens up whole new domains for IM developers
to explore.

 The Jabber design proves to have a nice balance of power, simplicity and flex-
ibility. It can be easily adapted to large client/server systems as well as P2P sys-
tems and all points in between. Exactly where Jabber will find its best
application remains to be seen. Get excited. Get involved. Join us in the messag-
ing revolution!

 AJabber reference

In this appendix
■ Core standards

■ Info/Query extension standards

■ X extension standards

302 APPENDIX A

Jabber reference
This appendix is meant to serve as a quick reference. It provides rapid access to
the most significant aspects of each Jabber protocol and packet. Once you under-
stand the basics of each protocol, this reference will provide relevant details for
later review.

Core standards

Info/Query extensions

Core standards Namespace Standard Page

Jabber Identifiers n/a Yes R-1

Jabber Addressing and Implicit
Addresses

n/a Yes R-2

<stream:stream>, <stream:error> http://etherx.jabber.org/streams Yes R-3

<error> n/a Yes R-4

<message> jabber:client, jabber:server Yes R-5

Groupchat Protocol n/a Yes R-6

<presence> jabber:client, jabber:server Yes R-7

<iq> jabber:client, jabber:server Yes R-8

<vCard> jabber:client, jabber:server Yes R-9

<xhtml> jabber:client, jabber:server No R-10

Server-to-Server Authentication:
Dialback Protocol

jabber:server, jabber:server:dialback No R-11

Info/Query
extensions

Description Namcspace Standard Page

agent Obtain information on
server services

jabber:iq:agent Yes

agents Obtain list of service
services

jabber:iq:agents Yes

auth User authentication
(client-to-server)

jabber:iq:auth Yes

autoupdate Automatic software update
notification

jabber:iq:autoupdate Yes

oob Out of band data transfer
initiation protocol

jabber:iq:oob Yes

register User account registration and
update protocol

jabber:iq:register Yes

roster Roster management
protocol

jabber:iq:roster Yes

303

Info/Query extensions (continued)

x extensions
X extensions

(continued on next page)

search Search the server-
managed Jabber User
Directory

jabber:iq:search Yes

time Obtain local time on query
handler

jabber:iq:time Yes

version Obtain version of query
handler

jabber:iq:version Yes

browse Advanced service browsing
(replace agent/agents)

jabber:iq:browse No

conference Advanced groupchat
conferencing (replace
groupchat)

jabber:iq:conference No

gateway Creating and resolution of
gateway user addresses

jabber:iq:gateway No

last Obtain “last time” of query
handler

jabber:iq:last No

pass Proxy Accept Socket Service
(oob helper protocol)

jabber:iq:pass No

private Server-side storage of
arbitrary XML data

jabber:iq:private No

rpc Jabber transport binding for
XML-RPC packets

jabber:iq:rpc No

X extensions Description Namespace Standard Page

autoupdate Automatic software
update notification

jabber:x:autoupdate Yes

delay Annotations of message
delivery delays

jabber:x:delay Yes

oob Out of band data transfer
information

jabber:x:oob Yes

roster Exchanging roster items jabber:x:roster Yes

conference Invite users to advanced
Jabber groupchat
conferences

jabber:x:conference No

envelope Advanced <message>
delivery information

jabber:x:envelope No

event <message> delivery
event protocol

jabber:x:event No

Info/Query
extensions

Description Namcspace Standard Page

304 APPENDIX A

Jabber reference

X extensions (continued)
Note
This appendix uses information from a wide variety of sources. I have tried to
indicate what documents were used for each entry so that you can look for further
details there. However, there are plans to make changes to the website (www.jab-
ber.org) where Jabber documents are stored. Due to these changes, any specific
links to these documents will probably be broken by the time you read this. To
overcome this, I will be keeping an up to date list of links to Jabber standards doc-
umentation at this book's website: www.manning.com/shigeoka.

(continued on next page)

expire <message> expiry
annotation

jabber:x:expire No

signed <message> signature
(Public Key Infrastruc-
ture support)

jabber:x:signed No

encrypted <message> encryption
(Public Key Infrastruc-
ture support)

jabber:x:encrypted No

sxpm Streaming XPM (collabo-
rative whiteboarding)

jabber:x:sxpm No

X extensions Description Namespace Standard Page

Jabber Identifier Standard 305
Jabber Identifier Standard

Jabber Identifier Standard

Type Platform
Namespace All
Summary Jabber addresses identifying a Jabber entity or delivery end point

[user@]jabberDomain[/resource]

Example
iain@shigeoka.com User “iain” within jabber domain shigeoka.com
iain@shigeoka.com/work User iain@shigeoka.com with resource “work”

Notes
None

Source
Jabber Identifiers, www.jabber.org.

Component Optional Format Description

User yes Valid email user name A particular "user" or "node" in the Jabber
network.

jabberDomain no Internet domain name A Jabber domain controlled by a Jabber
server.

Resource yes Valid URI path name A particular delivery end point for a user/
node.

306 APPENDIX A

Jabber reference
Jabber Addressing and Implicit Address Standard

Type Platform
Namespace All
Summary The automatic creation and assignment of addresses to packets

In general, all top-level packets sent through the Jabber system will have four stan-
dard attributes (or omit them for default values). These attributes will often need
to be assigned values by different entities along the delivery path as described in
the table below.

Attributes Sender Sender Server Recipient Server Recipient

from OPTIONAL MUSTa

a. Servers should override from value to avoid spoofing. Exception: some protocols use the from
value and server MUST COPY .

MUST MUST

to MUST MUST OPTIONAL b

b. Servers may omit recipient address.

OPTIONAL

id OPTIONAL SHOULD COPY SHOULD COPY COPY

type OPTIONAL c

c. Omitting the type attribute is common and will have different default values depending on the
protocol/packet.

MUST COPY MUST COPY COPY

Jabber Identifier Standard 307Jabber Addressing and Implicit Address Standard
An example <message> packet traveling through the system would result in the
following address behavior.

Scenario: Users "al@a.com" and "bob@b.org" chat

"al" client a.com server b.org server "bob" client

<message type='chat'
to='bob@b.org'>
<thread>cid_01</
thread>
<body>Howdy</body>
</message>

<message type='chat'
to='bob@b.org'
from='al@a.org'>
<thread>cid_01</
thread>
<body>Howdy</body>
</message>

<message type='chat'
from='al@a.org'>
<thread>cid_01</
thread>
<body>Howdy</body>
</message>

<message type='chat'
from='al@a.org'>
<thread>cid_01</
thread>
<body>Howdy</body>
</message>

<message type='chat'
from='bob@b.org'>
<thread>cid_01</
thread>
<body>What's up?</
body>
</message>

<message type='chat'
from='bob@b.org'>
<thread>cid_01</
thread>
<body>What's up?</
body>
</message>

<message type='chat'
from='bob@b.org'
to='al@a.com'>
<thread>cid_01</
thread>
<body>What's up?</
body>
</message>

<message type='chat'
to='al@a.com'>
<thread>cid_01</
thread>
<body>What's up?</
body>
</message>

<message type='chat'
to='bob@b.org'>
<thread>cid_01</
thread>
<body>Not much.</
body>
</message>

<message type='chat'
to='bob@b.org'
from='al@a.org'>
<thread>cid_01</
thread>
<body>Not much.</
body>
</message>

<message type='chat'
from='al@a.org'>
<thread>cid_01</
thread>
<body>Not much.</
body>
</message>

<message type='chat'
from='al@a.org'>
<thread>cid_01</
thread>
<body>Not mch.</
body>
</message>

308 APPENDIX A

Jabber reference
Stream Protocol

Type Platform
Namespace http://etherx.jabber.org/streams

Summary The underlying Jabber XML stream (root element of Jabber XML
“document”)

Packet <stream:stream>

Packet <stream:error>

■ Identical to the standard Jabber <error> packet but defined in the http://
etherx.jabber.org/streams namespace. (See <error> reference page.)

■ Indicates a failure in the streams protocol (and imminent closing of the stream).

Example
Client-server:

<stream:stream to='jabber.org'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'>

Server-client:

<stream:stream from='jabber.org'
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 id='23AC323'>

Notes
See <error> reference for format of <stream:error>.

Source
Jabber Protocol Overview v. 1.4, Peter Saint-Andre, www.jabber.org.

Attributes Client-to-Server Server-to-Client Server-to-Server

to Server name MAY Server name

from MAY Server name Server name

id MAY Stream ID Stream ID

xmlns jabber:client jabber:client jabber:server

xmlns:stream http://etherx.jab-
ber.org/streams

http://etherx.jab-
ber.org/streams

http://etherx.jabber.org/
streams

Error Packet 309
Error Packet

Error Packet

Type Platform
Namespace jabber:client, jabber:server

Summary Standard Jabber <error> subpacket and codes. Can appear within any
core protocol packet.

Packet <error>
MUST contain a single code attribute indicating error type. Optional text within
the <error> packet contains a freeform text error message.

Example

<message type='error' from='jabber.org'>
 <error code='503'>Nobody is home, go away</error>
</message>

Code Description

302 Redirect

400 Bad Request

401 Unauthorized

402 Payment Required

403 Forbidden

404 Not Found

405 Not Allowed

406 Not Acceptable

407 Registration Required

408 Request Timeout

409 Conflict a

a. Not found in the Info/Query protocol documentation.

500 Internal Server Error

501 Not Implemented

502 Remote Server Error

503 Service Unavailable

504 Remote Server Timeout

310 APPENDIX A

Jabber reference
Notes
None

Source
Jabber Protocol Overview v. 1.4, Peter Saint-Andre, www.jabber.org.

Info/Query (Protocol Document), Jabber Software Foundation, www.jabber.org

Jabber 1.2 Technical White Paper, Peter Saint-Andre, www.jabber.com.

Message Protocol 311
Message Protocol

Message Protocol

Type CORE
Namespace jabber:client, jabber:server

Summary Sends XML data between users (typically text messages).

Packet <message>

Subpacket

Recommended subpacket usage

Type Description

normal (Default) A normal text message used in email like interfaces

chat A typically short text message used in line-by-line chat interfaces

groupchat A chat message sent to a groupchat server for group chats

headline A text message to be displayed in scrolling marquee displays

error Standard Jabber error packet indicating messaging error

Subpackets Description

<subject> Short description of message contents

<thread> A unique identifier for a sequence of messages (used in chat protocol)

<body> The main message contents

<x> Any Jabber X extension (see X extensions)

<error> The standard Jabber error code and descriptive message (see <error> documentation)

<html> Rich text markup (styled messages). Proposed standard.

 Message packet type

Subpacket normal chat groupchat headline error

<subject> SHOULD SHOULD NOT SHOULD NOT SHOULD NOT SHOULD NOT

<thread> OPTIONAL SHOULD OPTIONAL OPTIONAL SHOULD NOT

<body> SHOULD SHOULD SHOULD SHOULD SHOULD NOT

<x> OPTIONAL OPTIONAL OPTIONAL OPTIONAL SHOULD NOT

<error> MUST NOT MUST NOT MUST NOT MUST NOT MUST

312 APPENDIX A

Jabber reference
Example

<message to='recipientJID@jabber.org'>
 <subject>How are you?</subject>
 <body>Hey there, just wondering how you were doing today.</body>
</message>

Notes

■ For groupchat messages, see the groupchat protocol.

■ For HTML-formatted messages, see the XHTML proposed packet standard.

Source
Message (Protocol Document), www.jabber.org.

Groupchat Protocol 313
Groupchat Protocol

Groupchat Protocol

Type Message subprotocol
Namespace jabber:client, jabber:server

Summary Multiparticipant chat protocol supported by a groupchat server

Groupchat Jabber ID
The groupchat protocol uses a specially formatted Jabber ID of the form:

groupName@ServerName[/NickName]

Participation
Groupchat participation is managed by the groupchat server. Clients join and
leave groups using <presence>. Join/Leave a groupchat group using the empty
<presence> packet with following attributes:

Messaging

■ All messages are sent to the groupchat server. The server resends the mes-
sage to groupchat participants.

■ Jabber IDs are manipulated by the groupchat server to maintain the illusion
of groupchat users sending messages.

■ Broadcast message—messages sent to the group will be sent to all participants

■ Private message—messages sent to a particular groupchat nickname will
only be sent to that participant

Component Description

groupName The name of the groupchat group you wish to participate in

ServerName The Jabber Domain for the groupchat server (valid Internet
domain name)

NickName The nickname for participants in a particular group.

Attribute Value Description

type available/unavailable Indicates you wish to join/leave
the group

to Groupchat Jabber ID Group you wish to join/leave and
requested nickname

314 APPENDIX A

Jabber reference
 This table shows the groupchat participants’ effects on the value of groupchat
<message> packets to and from attributes.

Notes
Advanced groupchat management and participation is provided by the jabber:
iq:conference protocol.

Source
Message (Protocol Document), www.jabber.org.

The Jabber Programmer's Guide (1.0.3 2000), Thomas “temas” Muldowney, Eliot
“e-t” Landrum, Peter Millard, and Max “Fingolfin” Horn, www.jabber.org.

Jabber ID Sender Sender's server groupchat server group member

to groupchat JID groupchat JID groupchat JID groupchat JID

from SHOULD NOT user JID groupchat JID groupchat JID

Presence Protocol 315
Presence Protocol

Presence Protocol

Type CORE
Namespace jabber:client, jabber:server

Summary Update user presence or manage presence subscriptions

Packet <presence>

Subpackets

Type Category Description

available Update (Default) Indicates the user is available to receive messages

unavailable Update The user is unavailable to receive messages

subscribe Subscribe Request subscription to recipient's presence

subscribed Subscribe Grant subscription to sender's presence

unsubscribe Subscribe Request removal of subscription to recipient's presence

unsubscribed Subscribe Grant removal of subscription to sender's presence

probe server only Allows servers to request presence information from
other servers

error Any This presence packet contains an error message

Subpacket Description

<status> Free-form text describing user's presence (i.e., gone fishing)

<priority> Numerical priority of the sender's resource. Highest resource priority is default
recipient of user packets.

<show> Contains one of four presence "modes": chat, away, xa (extended away), dnd (do
not disturb).

<x> Any Jabber X extension (see X extensions)

<error> The standard Jabber error code and descriptive message (see <error>
documentation)

316 APPENDIX A

Jabber reference
Recommended subelements for each <presence> type

Example
Send presence update notifying subscribers that user is available

<presence>

An unavailable presence update with status message

<presence type=’unavailable’>
 <status>Gone on Vacation</status>
</presence>

Notes
None

Source
Presence (Protocol Document), www.jabber.org.

Presence packet type

Subpacket update subscribe probe error

<status> OPTIONAL OPTIONAL MUST NOT SHOULD NOT

<priority> OPTIONAL MUST NOT MUST NOT SHOULD NOT

<show> OPTIONAL MUST NOT MUST NOT SHOULD NOT

<x> OPTIONAL MUST NOT OPTIONAL SHOULD NOT

<error> MUST NOT MUST NOT MUST NOT MUST

Info/Query (IQ) Protocol 317
Info/Query (IQ) Protocol

Info/Query (IQ) Protocol

Type CORE
Namespace jabber:client, jabber:server

Summary Exchange information and perform queries using a request-
response protocol.

Packet <iq>

Subpackets

Notes
vCard follows the temporary vCard protocol (see vCard protocol).

Source
Info/Query (Protocol Document), www.jabber.org.

Type Description

get (Default) Request information from recipient

set Override information/setting on recipient

result Results of a query (query information or empty to indicate success).

error Standard Jabber error packet indicating IQ error

Subpacket Description

<query> The envelope for IQ extension protocols (see IQ extensions)

<vcard> A vCard XML document (temporary draft standard)

<x> Any Jabber X extension (see X extensions)

<error> The standard Jabber error code and descriptive message (see
<error> documentation)

318 APPENDIX A

Jabber reference
Temporary vCard Protocol

Type IQ subpacket
Namespace jabber:client, jabber:server

Summary Support for the exchange of XML vCards electronic business cards

Packet <vCard>

Subpackets
Jabber vCard subpackets must comply with v2.0 (March 21, 2000) of the vCard
specification.

Notes

■ You can obtain a copy of the vCard DTD at:
http://protocol.jabber.org/vcard-temp/vCard-XML-DTD-v2-20000321.txt

■ Proposed Jabber Profiles standard (Jabber Enhancement Proposal JEP-
0006) presents a replacement for vCard. See http://foundation.jabber.org
for more.

Source
vCard (protocol document), www.jabber.org.

Profiles, Adam Theo; Michael Hearn; and Eric Murphy, foundation.jabber.org
(JEP-0006).

Attributes Value Description

version "3.0" Temporary vCard version

prodid "-//HandGen//NONSGML vGen v1.0//EN" The generator product id

xmlns vcard-temp The temporary namespace for
Jabber vCard

XHTML-Basic Packet 319
XHTML-Basic Packet [PROPOSED STANDARD]

XHTML-Basic Packet

Type Message subpacket
Namespace http://www.w3.org/1999/xhtml

Summary An optional rich-text presentation of message information

Packet <html>

Subpackets
Subpackets follow the XHTML W3C standard.

Styles

Example

<message to='recipientJID@jabber.org'>
 <body>hi</body>
 <html xmlns='http://www.w3.org/1999/xhtml'>
 <body style='color:red;background-color:green;font-size:large'>
 <p>hi</p>
 </body>
 </html>
</message>

Attribute Value Description

xmlns http://www.w3.org/1999/xhtml The packet namespace

Required <body>,<blockquote>,
,<div>,,<h1>-
<h6>,<p>,<q>,,<a>,,<code>,,

Optional <address>,<abbr>,<acro-
nym>,<cite>,<dfn>,<kbd>,<pre>,<samp>,<var>,<dl>,<dt>,<dd>

Not supported <table> (all table elements), <form> (all form elements),
<title>,<head>,,<meta>,<link>,<base>

Required font-size, color, background-color

Recommended text-decoration, font-family

Optional text-align, background-image

320 APPENDIX A

Jabber reference
Notes
See the XHTML-Basic standard for specific information on element markup
(http://www.w3.org/1999/xhtml).

Source
Message Formatting (XHTML-Basic), Julian Missig and Jeremie Miller,
www.jabber.org.

Server-to-Server Dialback Protocol 321
Server-to-Server Dialback Protocol [PROPOSED STANDARD]

Server-to-Server Dialback Protocol

Type Platform
Namespace jabber:server

Summary Lightweight server-to-server authentication protocol

Packet <stream:stream>

Subpackets

Subpacket <db:result>

Attributes Value Description

to JID The name of the server connecting to

from JID The name of the server connecting from

id Random Value Stream ID sent only by receiving server (see
Participants)

xmlns jabber:server Server-to-server connections follow the
jabber:server protocols

xmlns:stream http://etherx.jabber.org/
streams

The stream namespace

xmlns:db jabber:server:dialback Dialback will be used to authenticate this s2s
connection

Subpacket Description

<db:result> Contains the result of a verification attempt (see type attribute) or used to
exchange keys

<db:verify> Requests that the recipient verify the contained key

Type Description

valid The key was valid, the s2s connection is authenticated

invalid There was a problem verify the key, the s2s connection should be closed as soon
as possible.

322 APPENDIX A

Jabber reference
Participants

Protocol

Abbreviation Role Description

[O] Originating server Attempting to establish
connection

[R] Receiving server Server that will service the orig-
inating server's connection

[O Auth] Originator authoritative server Server that authenticates origi-
nating server (can be the same
as the originating server)

[R Auth] Receiving authoritative server Server that authenticates
receiving server (only used if bi-
directional connection needed)

Action Packet

[O] connects to [R] and both establish Jabber
streams.

<stream:stream id='stream01'>

[O] sends <db:result> to [R] containing "key" <db:result to='R' from='O'>key3233</
db:result>

[R] connects to [O Auth] and both establish Jab-
ber streams.

<stream:stream id='stream02'>

[R] sends "key" and stream ID to [O Auth] for
verification

<db:verify to='O' from='R'
id='stream01'>key3233</db:verify>

[O Auth] sends success/failure to [R] <db:result to='R' from='O' type='valid'
id='stream01'/>

[R] sends success/failure to [O] <db:result to='O' from='R' type='valid'/>

If a bi-directional connection needed:

[R] sends <db:result> to [O Auth] containing
"key2"

<db:result to='O' from='R'>key0942</
db:result>

[O Auth] connects to [R Auth] and both establish
Jabber streams

<stream:stream id='stream03'>

[O Auth] sends "key2" and stream ID to [R Auth]
for verification

<db:verify to='R' from='O'
id='stream03'>key0942</db:verify>

[R Auth] sends success/failure to [O Auth] <db:result to='O' from='R' type='valid'
id='stream03'/>

[O Auth] sends success/failure to [R] <db:result to='R' from='O' type='valid'/>

Server-to-Server Dialback Protocol 323
Notes

■ S2S connections are unidirectional (packets travel from originating to
receiving server).

■ You must use two S2S connections to send information both ways.

■ Introduced in the 1.2 version of the Jabberd reference server but not
enforced.

■ Relies on DNS for security (relatively weak).

■ <stream:error> supported in S2S connections (see the Stream Protocol
reference page.).

■ Authentication keys are best if generated randomly and never reused.

■ Jabberd reference server (1.2 and 1.4) uses a SHA-1 hash of the server
names and session ID to generate key.

Source
Server Dialback, Jeremie Miller and David Waite, www.jabber.org.

324 APPENDIX A

Jabber reference
Agent Protocol

Agent Protocol

Type IQ Extension
Namespace jabber:iq:agent

Summary Probe/set the properties of a particular “server agent” (typically a transport).

Packet <agent>

Subpackets

Standard Jabber <service> types

Attribute Description

jid The Jabber ID that can be used to communicate with the agent.

Subpacket Description

<name> Free-form text name of the agent (for display in user agent clients)

<description> Free-form text description of the agent (for display in user agent clients)

<transport> Presence of this tag indicates the agent is a Jabber transport. Contains
transport ID.

<service> Presence of this tag indicates the agent is a Jabber service. Contains
service type.

<register> Presence of this tag indicates clients must register using the jabber:iq:
register protocol

Service Description

yahoo Yahoo! transport

msn MSN transport

aim AOL AIM transport

icq AOL ICQ transport

irc IRC chat transport

groupchat Jabber Groupchat service

gc Jabber Groupchat service

oobproxy Jabber Out-of-band proxy service (for users
behind firewalls)

jud Jabber User Directory service

Agent Protocol 325
Example
<iq from='jabber.org' type='result'>
 <query xmlns='jabber:iq:agent'>
 <agent jid='groups@jabber.org'>
 <name>Jabber Groupchat service</name>
 <description>The Jabber Groupchat Server</description>
 <service>groupchat</service>
 </agent>
 </query>
</iq>

Notes
None

Source
Agent Properties (protocol document), www.jabber.org.

326 APPENDIX A

Jabber reference
Agents Protocol

Agents Protocol

Type IQ Extension
Namespace jabber:iq:agents

Summary Probe the properties of all “server agents” (typically transports) on
the service.

Packet <agents>

Subpackets

Standard Jabber <service> types

Attribute Description

jid The Jabber ID that can be used to communicate with the agent.

Subpacket Description

<name> Free-form text name of the agent (for display in user agent clients)

<description> Free-form text description of the agent (for display in user agent clients)

<transport> Presence of this tag indicates the agent is a Jabber transport. Contains
transport ID.

<service> Presence of this tag indicates the agent is a Jabber service. Contains service type.

<register> Presence of this tag indicates clients must register using the jabber:iq:
register protocol

Service Description

yahoo! Yahoo! transport

msn MSN transport

aim AOL AIM transport

icq AOL ICQ transport

irc IRC chat transport

groupchat Jabber Groupchat service

gc Jabber Groupchat service

oobproxy Jabber Out-of-band proxy service (for users behind
firewalls)

jud Jabber User Directory service

Agents Protocol 327
Example

<iq from='jabber.org' type='result'>
 <query xmlns='jabber:iq:agents'>
 <agent jid='groups@jabber.org'>
 <name>Jabber Groupchat service</name>
 <description>The Jabber Groupchat Server</description>
 <service>groupchat</service>
 </agent>
 <agent jid='aim.jabber.org'>
 <name>AIM Transport</name>
 <description>The AOL AIM Transport Service</description>
 <transport>AIM Screen Name</transport>
 <service>aim</service>
 <register/>
 </agent>
 </query>
</iq>

Notes
None

Source
Available Agents List (protocol document), www.jabber.org.

328 APPENDIX A

Jabber reference
Authentication Protocol

Type IQ Extension
Namespace jabber:iq:auth

Summary Jabber authentication between clients and servers

Packets

Plain Authentication Algorithm
Reset

■ When authenticated, client sends set IQ query with <username> and <pass-
word> containing new values.

Auth

■ Client sends set IQ query with <username>, <password>, and <resource>

■ Password is any XML-legal character data (case sensitive)

Digest Authentication Algorithm
Reset

■ When authenticated, client sends set IQ query with <username> and <pass-
word> containing new values

Auth

■ Java snippet:
java.security.MessageDigest sha = MessageDigest("SHA");
sha.update(SessionID);
String digest = bytes2HexLowerCaseASCII(sha.digest(password));

Packet Description

<username> The user account name for authentication attempt

<resource> The resource for the session

<password> The plain-text password (used in plain and digest authentication
algorithm)

<digest> The SHA-1 message digest (used in digest authentication algorithm)

<hash> The hash (used in proposed zero-knowledge authentication algorithm)

<token> The token (used in proposed zero-knowledge authentication algorithm)

<sequence> The sequence number (used in proposed zero-knowledge auhtentica-
tion algorithm)

Agents Protocol 329Authentication Protocol
■ Client sends set IQ query with <username>, <digest>, and <resource>

■ Digest is lower-case hexadecimal representation of the SHA-1 digest of the
Session ID and password

■ Session ID is the id attribute of the server's <stream:stream> tag.

Zero-Knowledge Authentication Algorithmm [PROPOSED STANDARD]
Reset

■ When authenticated, client sends set IQ query with <username>, <hash>
containing hashN, <token> and <sequence> (N)

Auth

■ Client sends get IQ query with <username> containing user's username.

■ Server sends result IQ reply containing <username>, <token>, and
<sequence> (N -1)

■ Java snippet:
java.security.MessageDigest sha = MessageDigest("SHA");
sha.update(token);
String hash0 = bytes2HexLowerCaseASCII(sha.digest(password));
String hashN=hash0;
for (int i = 0; i < sequence; i++){
 hashN = bytes2HexLowerCaseASCII(sha.digest(hashN))

}

■ Client sends set IQ query with <username>, <hash> (containing hashN-1,
and <resource>

■ Server takes hashN-1

■ Java snippet:
hashN = bytes2HexLowerCaseASCII(sha.digest(hashN));

■ Compare given hashN with hashN
■ On success, server sends empty result IQ reply, store hashN-1 as <hash>,

and decrement <sequence> (N-1)

Example
<iq type='set' id='auth_01'>
 <query xmlns='jabber:iq:auth'>
 <username>iain</username>
 <resource>work</resource>
 <password>mypass</password>
 </query>
</iq>

330 APPENDIX A

Jabber reference
Notes

■ A set query without a <username> and <password> indicates an anonymous
login attempt. A successful anonymous login causes the server to send a
result IQ reply with a <username> subpacket containing an anonymous JID
(server.com/resource) for use during session

■ A get query with only <username> specified runs an “authentication probe.”

Source
Simple Client Authentication, www.jabber.org.

Zero-Knowledge Authentication, Jeremie Miller, www.jabber.org.

Autoupdate Protocol 331
Autoupdate Protocol

Autoupdate Protocol

Type IQ Extension
Namespace jabber:iq:autoupdate

Summary Automating software updates

Packets

Protocol

JID: [client]@[server]/[version]

<presence to='winjab@update.server/0.1.0'/>

Updates available server sends

<message to='user@jabber.org'>

 <body>Update JavaJab now!</body>

 <x xmlns='jabber:x:autoupdate'>javjab@javjab.server</x>

</message>

Client requests update information

<iq type='get' to='javjab@javjab.server'>

 <query xmlns='jabber:iq:autoupdate'/>

</iq>

Server sends update information

<iq type='result' from='javjab@javjab.server'>

 <query xmlns='jabber:iq:autoupdate'>

 <release priority='optional'>

 <ver>1.0.1</ver>

 <url>http://javjab.server/javjab/javjab_beta.zip</url>

 </release>

 </query>

 <query xmlns='jabber:iq:autoupdate'>

 <release priority='recommended'>

 <ver>1.0.0</ver>

 <desc>The Final Candidate Release of Java Jabber Client</desc>

 <url>http://javjab.server/javjab/javjab_release.zip</url>

 </release>

 </query>

</iq>

Attribute Value Description

xmlns jabber:iq:autoupdate Namespace for the packet

332 APPENDIX A

Jabber reference
Notes
See jabber:x:autoupdate reference page.
Update information in jabber:iq:autoupdate <query> is application specific

Source
The Jabber Programmer's Guide (1.0.3 2000), Thomas “temas” Muldowney, Eliot
“e-t” Landrum, Peter Millard, and Max “Fingolfin” Horn, www.jabber.org.

 Jabber 1.2 Technical White Paper, Peter Saint-Andre, www.jabber.com.

Out-of-Band File Transfer Protocol 333
Out-of-Band File Transfer Protocol

Out-of-Band File Transfer Protocol

Type IQ Extension
Namespace jabber:iq:oob

Summary Coordinates the client-to-client (out-of-band) transfer of data

Packets

Example

<iq to='recipientJID@jabber.org' type='set' id='oob_01'>
 <query xmlns='jabber:iq:oob'>
 <url>http://server.com/file.zip</url>
 <desc>That file you wanted</desc>
 </query>
</iq>

Notes
None

Source
Out of Band Data (file transfers, other binary streams/transfers), www.jabber.org.

Packet Description

<url> The URL for the file (typically http:)

<desc> A free-form text description of the file (for display to the user)

334 APPENDIX A

Jabber reference
Registration Protocol

Type IQ Extension
Namespace jabber:iq:register

Summary Negotiate user registration with Jabber services

Packets

Example
Client requests registration form

<iq type='get' id='reg_01'>

 <query xmlns='jabber:iq:register'/>

</iq>

Packet Description

<instructions> Text describing to the user how to fill out the form

<username> The user account username

<password> The password (to used with plain and digest authentication
(see jabber:iq:auth))

<hash> The hash (to be used with zero-knowledge authentication
(see jabber:iq:auth))

<token> The token (to be used with zero-knowledge authentication
(see jabber:iq:auth))

<sequence> The sequence (to be used with zero-knowledge authentication
(see jabber:iq:auth))

<name> The user's name

<first> The user's first name

<last> The user's last name

<email> The user's email

<address> The user's street address

<city> The user's city

<state> The user's state

<zip> The user's ZIP code

<phone> The user's telephone number

<url> The user's website

<date> The date the registration took place

<misc> Other miscellaneous information to associate with the account

<text> Textual information to associate with the account

<remove> Empty flag to remove account

Out-of-Band File Transfer Protocol 335Registration Protocol
Server sends empty form. The server supports plain/digest (<password>) and
zero-knowledge (<hash>) authentication.

<iq type='result' id='reg_01'>
 <query xmlns='jabber:iq:register'>
 <instructions>Fill out the form carefully</instructions>
 <username/>
 <password/>
 <hash/>
 <email/>
</iq>

Client registers using plain/digest password

<iq type='set' id='reg_02'>
 <query xmlns='jabber:iq:register'>
 <username>iain</username>
 <password>mypass</password>
 <email>iain@shigeoka.com</email>
</iq>

Notes
Client sends an empty get IQ query to obtain a blank registration form.

Source
Registration Requests (protocol document), www.jabber.org.

336 APPENDIX A

Jabber reference
Roster Protocol

Type IQ Extension
Namespace jabber:iq:roster

Summary Send and update the server managed presence subscription roster

Packet <item>
Roster queries can contain zero or more <item> packets describing roster items

Subpackets

Example

<iq type='set' id='roster_01'>
 <query xmlns='jabber:iq:roster'>
 <item jid='bob@jabber.org' name='Bob Smith' subscription='both'>
 <group>friends</group>
 <group>Bowling Team</group>
 </item>
 <item jid='bossman@jabber.org' name='Big Cheese' subscription='to'>
 <group>work</group>
 </item>
 </query>
</iq>

Attribute Description

jid The Jabber ID of the presence subscriber for this item

subscription The subscription type: none, both, to (user subscribes to item's JID), from
(JID subscribes to user)

ask (Optional) Pending request status: subscribe, unsubscribe

name (Optional) A nickname for the roster item

Subpackets Description

<group> Zero or more groups that the item belongs to (used by clients to organize/present
roster items)

Out-of-Band File Transfer Protocol 337Roster Protocol
Notes

■ Client sends an empty get IQ query to obtain a full copy of the server-man-
aged roster.

■ Client sends set IQ query to update items. To change subscription, jid, or
ask values, you must use the presence protocol.

■ Server sends set IQ queries asynchronously (server roster pushes) as roster
changes.

Source
Roster Management (protocol document), www.jabber.org.

338 APPENDIX A

Jabber reference
Search Protocol

Type IQ Extension
Namespace jabber:iq:search

Summary Jabber User database searching

Packets

Example
Client requests search form

<iq type='get' to='users.jabber.org' id='search01'>
 <query xmlns='jabber:iq:search'/>
</iq>

Packet Description

<instructions> Instructions for filling out the search form

<key> A randomly generated key to identify this particular search session

<item> Single jid attribute contains JID for user in result (subelements with other
fields filled in)

<name> The user's name

<first> The user's first name

<last> The user's last name

<email> The user's email

<address> The user's street address

<city> The user's city

<state> The user's state

<zip> The user's ZIP code

<phone> The user's telephone number

<url> The user's website

<date> The date the registration took place

<misc> Other miscellaneous information associated with the account

<text> Textual information associated with the account

Out-of-Band File Transfer Protocol 339Search Protocol
Server sends form

<iq type='result' from='users.jabber.org' id='search01'>
 <query xmlns='jabber:iq:search'>
 <name/>
 <email/>
 </query>
</iq>

Client starts search

<iq type='get' to='users.jabber.org' id='search02'>
 <query xmlns='jabber:iq:search'>
 <name>iain</name>
 </query>
</iq>

Server sends results
<iq type='result' from='users.jabber.org' id='search02'>
 <query xmlns='jabber:iq:search'>
 <item jid='iain@jabber.org'>
 <name>Iain Shigeoka</name>
 <email>iain@shigeoka.com</email>
 </item>
 <item jid='mcdowell@jabber.org'>
 <name>Iain McDowell</name>
 <email>mcdowell@jabber.org</email>
 </item>
 </query>
</iq>

Notes
None

Source
Jabber 1.2 Technical White Paper, Nov. 2000, Peter Saint-Andre, www.jabber.com.

340 APPENDIX A

Jabber reference
Time Protocol

Type IQ Extension
Namespace jabber:iq:time

Summary Exchange local time

Packets

Example

<iq type='get' id='time_01' to='iain@jabber.org'>
 <query xmlns='jabber:iq:time'/>
</iq>
<iq type='result' id='time_01' to='requesterJID@jabber.org'>
 <query xmlns='jabber:iq:time'>
 <utc>20020130T15:32:02</utc>
 <tz>Pacific Standard Time</tz>
 <display>01/30/02 3:32:02 PM</display>
 </query>
</iq>

Notes
None

Source
Client Time (protocol document), www.jabber.org

Packets Description

<utc> The UTC (GMT) time in Jabber time format: YYYYMMDDThh:mm:ss

<tz> The local time zone

<display> A human friendly string of the local time

Version Protocol 341
Version Protocol

Version Protocol

Type IQ Extension
Namespace jabber:iq:version

Summary Query the version of a client/server’s software

Packets

Example

<iq type='get' id='ver_01' to='iain@jabber.org'>
 <query xmlns='jabber:iq:version'/>
</iq>
<iq type='result' id='ver_01' to='requesterJID@jabber.org'>
 <query xmlns='jabber:iq:version'>
 <name>Java Jab Client</name>
 <version>1.0.0</version>
 <os>Mac OS X 10.1.2</os>
 </query>
</iq>

Notes
None

Source
Client Version (protocol document), www.jabber.org

Packet Description

<name> The name of the application

<version> A version number (typically dot separate numbers)

<os> The operating system running the application

342 APPENDIX A

Jabber reference
Browsing Protocol [PROPOSED STANDARD]

Type IQ Extension
Namespace jabber:iq:browse

Summary Advanced service browsing (i.e., directory service).

Packets
Packet element names define the primary JID-type for a browse item. They con-
tain the following attributes:

Special Packets

Jabber ID Types (JID-Type)

Attribute Description

jid Jabber Identifier for the entity/service

type (Optional) The subtype for the entity/service. Use type="remove" in set <iq>
queries to remove items.

name (Optional) The user friendly name of the entity/service

Packet Description

<ns> Zero or more protocols (namespaces) supported by a particular entity/service

<item> A placeholder packet used to organize entities/services into an easily browsed
hierarchy

Type Subtypes

service jabber, icq, aim, msn, yahoo, irco, smtp, pager, jud (Jabber user directory)

conference irc, url, list

user client, forward, device, inbox, voice

application calender, editor, game, fileserver, bot

headline rss (RDF site summary), stock, logger, notice

render en2fr (english to french), jive, tts (text to speech), grammer, spell

keyword dictionary, thesaurus, faq, web, software, dns, whois

Version Protocol 343Browsing Protocol
Example
Client requests browse info for user "iain@jabber.org"

<iq type='get' id='browse_01'>

 <query xmlns='jabber:iq:browse'>

 <user jid='iain@jabber.org'/>

 </query>

</iq>

Server responds with info: Iain has one user account with two clients (Work/
Home Desktop Client) and one online game (Iain’s Java Chess).

<iq type='result' id='browse_01' to='requesterJID@jabber.org'>

 <query xmlns='jabber:iq:browse'>

 <user jid='iain@jabber.org' name='Iain Shigeoka'>

 <user jid='iain@jabber.org/work'

 type='client' name='Work Desktop Client’/>

 <user jid='iain@jabber.org/home'

 type='client' name='Home Desktop Client'/>

 <application jid='iain@jabber.org/chess'

 type='game' name='Iain’s Java Chess'/>

 </user>

 </query>

</iq>

Client requests details of client "iain@jabber.org/work"

<iq type='get' id='browse_02'>

 <query xmlns='jabber:iq:browse'>

 <user jid='iain@jabber.org/work'/>

 </query>

</iq>

Server responds with info: supports out-of-band transfers, time queries, and
Jabber events

<iq type='result' id='browse_02' to='requesterJID@jabber.org'>

 <query xmlns='jabber:iq:browse'>

 <user jid='iain@jabber.org/work' type='client' name='Work Desktop'/>

 <ns>jabber:iq:oob</ns>

<ns>jabber:iq:time</ns>

 <ns>jabber:x:event</ns>

 </user>

 </query>

</iq>

344 APPENDIX A

Jabber reference
Notes

■ Intended to replace the jabber:iq:agent and jabber:iq:agents protocols.

■ JID-types are like MIME-types and are referred to by “type/subtype” (e.g.,
service/jabber).

■ For efficiency, send only one level of one branch of the browse tree for each
request.

■ Browsers manually drill-down into the tree by requesting browse informa-
tion on current leaf nodes.

■ True leaf nodes have no browse subpackets and are either empty or contain
only <ns> subpackets.

■ Browser set packets can be asynchronously sent from the server to the cli-
ent as as browser pushes in the same manner as roster pushes

■ All browser JID entries should be presented with standard GUI options
depending on their type:

■ All: message/chat and browse

■ Domains (servers): time, vcard, last, version

■ Users: vcard, last

■ User resources (clients): time, version, oob

Source
Jabber Browsing, Jeremie Miller, www.jabber.org

Conferencing Protocol 345
Conferencing Protocol [PROPOSED STANDARD]

Conferencing Protocol

Type IQ Extension
Namespace jabber:iq:conference

Summary Advanced groupchat protocol

SubPackets

Protocol

Joining Conferences

1 Use jabber:iq:browse protocol to find conference rooms (JID-type
"conference/*").

2 Client sends available <presence> to conference JID. This does not
cause you to join!

3 Client sends get <iq> query, conference server sends result <iq> reply
containing required fields

4 Client sends set <iq> query with required information.

5 Conference server sends result <iq> reply containing your conference
nickname and a JID for use in the conference.

6 Conference server will push browse packets indicating group participants

7 Conference server interaction follows normal groupchat protocols

Creating Conferences

1 Client sends get <iq> query to conference room JID:

■ If conference does not exist and:

–can be created, server replies with "404 Not Found" error

Subpacket Description

<nick> (Optional) A nickname to use in the group (maybe server assigned). Send
multiple as alternatives if first is taken.

<secret> (Optional) Groups may require a password to join/browse.

<name> (Optional) Name of group (used in browsing)

<privacy/> (Optional) Flags the server to hide your real JID and only relay <message>
packets.

<id> (server-only) The conference server assigned JID (only send in result <iq>
replies to successful join requests)

346 APPENDIX A

Jabber reference
–cannot be created, server replies with "405 Not Allowed" error

2 Client sends set <iq> query to conference room JID:

■ <secret> sets a password for the conference

■ <nick> sets your nickname (you're joining and creating at the same time

■ <privacy> sending this empty packet allows privacy mode for
the conference

■ <name> sets the name for the conference.

Example

<iq type='get' id='browse_01' to='conferences.jabber.org'>

 <query xmlns='jabber:iq:browse'/>

</iq>

<iq type='result' id='browse_01' to='requesterJID@jabber.org'>

 <query xmlns='jabber:iq:browse'>

 <conference jid='java@conferences.jabber.org'

 type='public' name='Java Users'>

 <conference jid='baking@conferences.jabber.org'

 type='public' name='Bakers Corner'>

 </user>

 </query>

</iq>

<iq type='get' id='conf_01' to='java@conferences.jabber.org'>

 <query xmlns='jabber:iq:conference'/>

</iq>

<iq type='result' id='conf_01' to='requesterJID@jabber.org'>

 <query xmlns='jabber:iq:conference'>

 <nick/><secret/>

 </query>

</iq>

<presence to='java@conferences.jabber.org'/>

<iq type='set' id='conf_02' to='java@conferences.jabber.org'>

 <query xmlns='jabber:iq:conference'>

 <nick>Smirk</nick>

 <nick>BigSmirk</nick>

 <secret>roompass</secret>

 </query>

</iq>

<iq type='result' id='conf_02' to='requesterJID@jabber.org'>

 <query xmlns='jabber:iq:conference'>

 <nick>Smirk</nick>

 <id>java@conferences.jabber.org/3th3</id>

 </query>

</iq>

Conferencing Protocol 347
Notes

■ Intended to replace basic groupchat messaging.

■ Relies on proposed jabber:iq:browse protocols (see reference page).

■ Use proposed jabber:x:conference standard for inviting others within
<message> packets (see reference page).

■ Addresses are rewritten and messages relayed by the conference server in
the same manner as groupchat.

■ A Jabber Enhancement Proposal (JEP-0007) is underway to improve and
expand the conferencing standard.

Source
Generic Conferencing, Jeremie Miller, www.jabber.org.
Conferencing JIG, David Waite, foundation.jabber.org (JEP-0007).

348 APPENDIX A

Jabber reference
Gateway Standard [PROPOSED STANDARD]

Gateway Standard

Type IQ Extension
Namespace jabber:iq:gateway

Summary Creating and resolution of gateway (transport) user addresses

Packets

Example
Client requests the form

<iq type='get' id='gate_01' to='aim.jabber.org'>

 <query xmlns='jabber:iq:gateway'/>

</iq>

Server sends form

<iq type='result' id='gate_01' to='requesterJID@jabber.org'>

 <query xmlns='jabber:iq:gateway'>

 <desc>Please enter name of the person you wish to contact</desc>

 <prompt>AOL Screen Name</prompt>

 </query>

</iq>

Client sends completed form

<iq type='set' id='gate_02' to='aim.jabber.org'>

 <query xmlns='jabber:iq:gateway'>

 <prompt>smirk123</prompt>

 </query>

</iq>

Server sends Jabber ID for gateway address

<iq type='result' id='gate_02' to='requesterJID@jabber.org'>

 <query xmlns='jabber:iq:gateway'>

 <jid>smirk123@aim.jabber.org</jid>

 </query>

</iq>

Packet Description

<desc> Free form text describing how to fill out the form.

<prompt> The prompt for user information

<jid> The Jabber Identifier to use when communicating with the gateway user

Gateway Standard 349
Notes

■ Aids in the process of mapping Jabber addresses to gateway addresses.

■ Each transport/gateway uses its own address mapping so clients must be
able to negotiate these mappings.

Source
Gateway User Address Creation/Resolution, Jeremie Miller, www.jabber.org.

350 APPENDIX A

Jabber reference
Last Time Protocol [PROPOSED STANDARD]

Last Time Protocol

Type IQ Extension
Namespace jabber:iq:last

Summary The “last time” for Jabber entities (uptime, last online, and so forth)

Packet <query>

Last Time Measurement

Example

<iq type='get' id='last_01' to='iain@jabber.org'>
 <query xmlns='jabber:iq:last'/>
</iq>
<iq type='result' id='last_01' to='requesterJID@jabber.org'>
 <query xmlns='jabber:iq:last' seconds='9398'>
 Gone fishin'
 </query>
</iq>

Notes
None

Source
Last Time Request, Jeremie Miller, www.jabber.org.

Attributes Description

seconds The number of seconds for last time. (time depends on context)

Packet
Recipient

Handled By Last Time
Measures

Description

Server Server Uptime Time server has been available.

User Server Offline Time since user last logged out. Text is last
unavailable status message.

Client Client Idle The number of seconds since last user activity
(as measured by client)

Last Time Protocol 351Proxy Accept Socket Service
Proxy Accept Socket Service [PROPOSED STANDARD]

Type IQ Extension
Namespace jabber:iq:pass

Summary Allow client-to-client file transfers (oob) with clients behind firewalls

Packets

Protocol

1 A source client requests a PASS proxy on the PASS server.

2 PASS server sends confirmation to source client and listens for connec-
tions on a <server> port until time expires or connection made.

3 On connection by consumer client, the PASS server pushes a PASS update
to the source client describing both ends of the PASS proxy.

4 The source client connects to the <proxy> port and sends data.

5 PASS server copies data sent to it on the <proxy> port to the <client> con-
nection.

6 Data copy continues until an error occurs or either connection
is closed.

Example
Client requests a pass proxy

<iq type='set' id='pass_01' to='pass.jabber.org'>

 <query xmlns='jabber:iq:pass'>

 <expire>600</expire>

 </query>

</iq>

Packet Description

<expire> The number of seconds for the request to last (sent in set <iq> queries).

<server> The server IP address (with a port attribute) if a PASS is granted (used in
result <iq> queries).

<client> The client end of the proxy. Shows the client's address using the proxy.

<proxy> The port the PASS requester should connect to and send data to reach
the <client>

352 APPENDIX A

Jabber reference
Server responds with proxy port to use. Client can use this address in Jabber:x:
oob messages.

<iq type='result' id='pass_01' to='requesterJID@jabber.org'>
 <query xmlns='jabber:iq:pass'>
 <server port='32342'>32.10.38.10</server>
 </query>
</iq>

Server push when someone connects to <server> port

<iq type='set' to='requesterJID@jabber.org'>
 <query xmlns='jabber:iq:pass'>
 <client port='3233' xmlns='jabber:iq:pass'>42.200.43.3</client>
 <proxy port='32342'>32.10.38.10</proxy>
 </query>
</iq>

Notes
Implementations should be very careful about limiting bandwidth and usage to
avoid abuse.

Source
PASS—Proxy Accept Socket Service, Jeremie Miller, foundation.jabber.org
(JEP-0003).

Last Time Protocol 353Private Storage Protocol
Private Storage Protocol [PROPOSED STANDARD]

Type IQ Extension
Namespace jabber:iq:private

Summary Server-side storage of arbitrary XML data

Packet <query>

■ Store/retrieve arbitrary XML data on the server by sending a set/get IQ
query to a user’s account.

■ All XML data inside of the enclosed <query> packet is stored as is.

■ A <query> packet with a jabber:iq:private namespace indicates private
storage.

■ A <query> packet in any other namespace indicates public storage.

Access permissions
Set (write) permission and get (read) permission depends on the storage type
and the user accessing the account (owner or others).

Example
Store data in “iain” private area

<iq type='set' id='store_01' to='iain@jabber.org'>

 <query xmlns='jabber:iq:private'>

 <stuff x='200' y='423'>Window title: Iain Rocks!</stuff>

 <stuff x='100' y='323'>

 <toolbox>Drawing tools</toolbox>

 </stuff>

 </query>

</iq>

Store data in "iain" public area

<iq type='set' id='store_02' to='iain@jabber.org'>

 <query xmlns='links:awesome:programming'>

 <url>http://www.manning.com/</url>

 <url>http://java.sun.com</url>

 </query>

</iq>

Storage type owner other users

public set/get get

private set/get no access

354 APPENDIX A

Jabber reference
Notes
Commonly used to store client preferences on the server.

Source
Generic XML Namespace Storage, Jeremie Miller, www.jabber.org.

XML-RPC Protocol 355
XML-RPC Protocol [PROPOSED STANDARD]

XML-RPC Protocol

Type IQ Extension
Namespace jabber:iq:rpc

Summary Binding XML-RPC to the Jabber transport

Packets <query>

■ Any packets conform to standard XML-RPC standards (see http://www.xml-
rpc.com/spec).

■ Requests are made using set IQ queries and results sent in result IQ replies.

Example
Call a remote procedure on the rpc server

<iq type='set' id='rpc_01' to='rpc@jabber.org'>
 <query xmlns='jabber:iq:rpc'>
 <methodCall>
 <methodName>phonebook.getLastName</methodName>
 <params>
 <value><string>iain</string></value>
 </params>
 </methodCall>
 </query>
</iq>

Obtain the result

<iq type='result' id='rpc_01' to='requesterJID@jabber.org'>
 <query xmlns='jabber:iq:rpc'>
 <methodResponse>
 <params>
 <value><string>Shigeoka</string></value>
 </params>
 </methodCall>
 </query>
 </query>
</iq>

Notes
Provides a transport binding to XML-RPC (www.xml-rpc.com).

Source
Transporting XML-RPC over Jabber, D. J. Adams, foundation.jabber.org (JEP-0009).

356 APPENDIX A

Jabber reference
Autoupdate Packet

Type X Extension
Namespace jabber:x:autoupdate

Summary Allow applications to notify users of updates

Packet <x>

Usage
Use within:<message>

Example

<message to="recipent@jabber.org">
 <x xmlns='jabber:x:autoupdate'>
 A new version of the Java Jabber Client is available,
 see http://www.manning.com
 </x>
</message>

Notes

■ The packet contains information about available updates (typically link
information).

■ See the jabber:iq:autoupdate reference page for full documentation.

Source
Jabber 1.2 Technical White Paper, Peter Saint-Andre, www.jabber.com.

Attribute Value Description

xmlns jabber:x:autoupdate The namespace for the packet

Delay Packet 357
Delay Packet

Delay Packet

Type X Extension
Namespace jabber:x:delay

Summary Tracks/logs packet delivery delays (typically server annotations of
presence packets

Packet <x>

Usage
 Use within: <presence>, <message>, <iq> (all core protocol packets)

Example

<presence type='unavailable'>
 <x xmlns='jabber:x:delay' from='server.com' stamp='20020129T19:33:02'>
 Temporarily unreachable.
 </x>
</presence>

Notes
<x> text content can contain an optional message indicating the reason for delay.

Source
Delay Logging/Tracking (protocol document), www.jabber.org.

Attributes Value Description

from Jabber ID The entity (usually the server) indicating
the delay.

stamp YYYYMMDDThh:mm:ss Time stamp in Jabber time format of
delay event

xmlns jabber:x:delay The protocol namespace

358 APPENDIX A

Jabber reference
Out of Band Packet

Out of Band Packet

Type X Extension
Namespace jabber:x:oob

Summary Facilitates peer-to-peer file exchange by providing a URI where data is
available

Packets

Usage
Use within:<message>

Example

<message to="recipent@jabber.org">
 <x xmlns='jabber:x:oob'>
 <url>http://www.myserver.com/report2001q1.zip</url>
 <desc>2002 Spring Quarterly Report</desc>
 </x>
 <subject>Give me your thoughts…</subject>
 <body>Please comment on my Q1 report before I submit it</body>
</message>

Notes

■ You can send multiple jabber:x:oob packets with the same <message>.

■ See also IQ extension jabber:iq:oob.

Source
Out of Band Data (File Transfers) (protocol document), www.jabber.org.

Packet Description

<url> The URL for the file.

<desc> Free-form text description of the file (for display in user
agent clients)

Roster Packet 359
Roster Packet

Roster Packet

Type X Extension
Namespace jabber:x:roster

Summary Sends roster items to another user (exchange contact information)

Packet <item>

Subpackets

Usage
Use within: <message>

Example

<message to="recipent@jabber.org">
 <x xmlns='jabber:x:roster'>
 <item jid='friendJID@jabber.org'>
 <group>friends</group>
 <group>bowling team</group>
 </item>
 <item jid='bossJID@jabber.org'>
 <group>work</group>
 </item>
 </x>
</message>

Notes
See also IQ extension jabber:iq:roster.

Source
Embedded Roster Items (protocol document), www.jabber.org.

Attribute Description

jid The Jabber ID for roster item.

name A nickname for the item.

Subpacket Description

<group> Contains a group name used to organize roster items.

<description> Free-form text description of the agent (for display in user
agent clients)

360 APPENDIX A

Jabber reference
Conference Packet [PROPOSED STANDARD]

Conference Packet

Type X Extension
Namespace jabber:x:conference

Summary Invite users to join a Jabber Conference (advanced groupchat)

Packet <x>

Usage
Use within: <message>

Example

<message to='recipientJID@jabber.org'>
 <body>How about joining us for a discussion on Java!</body>
 <x xmlns='jabber:x:conference' jid='java-group@group.server.com'/>
</message>

Notes

■ See groupchat message core protocol.

■ See jabber:iq:conference protocol.

Source
Generic Conferencing, Jeremie Miller, www.jabber.org.

Attributes Value Description

jid Jabber ID The Jabber ID for the groupchat group to join

xmlns jabber:x:conference The protocol namespace

Envelope Packet 361
Envelope Packet [PROPOSED STANDARD]

Envelope Packet

Type X Extension
Namespace jabber:x:envelope

Summary A client-side tool for advanced message delivery

Packets

All envelope packets have a single jid attribute specifying the Jabber ID for each
address. Their text content is a freeform text description of the address.

Usage
Use within:<message>

Example

<message to='dilbert@company.com' from='pointyhairedboss@company.com'>

 <body>You're Fired!</body>

 <x xmlns='jabber:x:envelope'>

 <to jid='dilbert@company.com'>Poor Worker</to>

 <cc jid='humanResources@company.com'>Catbert</cc>

 <replyto jid='humanResources@company.com'/>

 <from jid='pointyhairedboss@company.com'>All Mighty Leader</from>

 </x>

</message>

Notes

■ The server ignores the content of jabber:x:envelope packets.

■ Enforcing the meaning of jabber:x:envelope is entirely up to clients.

Source
Message Envelope Information Extension, Jeremie Miller, www.jabber.org.

Packet Description

<to> The primary recipient of the message

<cc> Recipients to receive carbon copies of the message

<replyto> The address to send replies to

<from> The message sender

<forwardedby> The user (if any) that forwarded this message on behalf of the sender

362 APPENDIX A

Jabber reference
Event Protocol [PROPOSED STANDARD]

Event Protocol

Type X Extension
Namespace jabber:x:event

Summary Messaging event framework for tracking message creation and delivery

Packets

Events are generated by the recipient server and recipient client.

Usage
Use within:<message>

Example
Send message requesting events offline and displayed

<message to='recipientJID@jabber.org' id='msg_01'>

 <body>How's it going?</body>

 <x xmlns='jabber:x:event'><offline/><displayed/></x>

</message>

Recipient sends code displayed events

<message to='senderJID@jabber.org' from='recipientJID@jabber.org'>

 <x xmlns='jabber:x:event'><displayed/><id>msg_01</id></x>

</message>

Notes

■ Events should only be generated for clients that support it.

■ Indicate support for events by sending an empty event packet.

Packet Event Generator Description

<offline> recipient server The packet has been stored offline.

<delivered> recipient client The packet has been received on the client.

<displayed> recipient client The message has been displayed to the user.

<composing> recipient client The reply is being composed by the recipient.

<id> n/a The message ID to which the event refers.

Event Protocol 363
■ Composing events are generated as the user types.

■ If composed messages are not sent or are idle for too long, send an empty
event packet to clear composing status.

Source
Message Events, Jeremie Miller, www.jabber.org.

364 APPENDIX A

Jabber reference
Expire Packet [PROPOSED STANDARD]

Expire Packet

Type X Extension
Namespace jabber:x:expire

Summary Indicates an expiry time for messages

Packet <x>

Usage
Use within:<message>

Example

<message to='recipientJID@jabber.org'>
 <body>How about joining us for a discussion on Java!</body>
 <x xmlns='jabber:x:conference' jid='java-group@group.server.com'/>
 <x xmlns='jabber:x:expire' seconds='3600'/>
</message>

Notes

■ Servers that support the expire protocol will time out messages when stor-
ing them offline.

■ Servers should decrement the seconds attribute when delivering messages
that were stored offline.

■ Clients that support the expire protocol should remove messages after tim-
eout if they have been received but not displayed.

Source
Jabber X Expire (protocol document), www.jabber.org.

Attributes Value Description

seconds Number of seconds The time for the message to expire (from time message
was received)

xmlns jabber:x:expire The protocol namespace

Signed Packet 365
Signed Packet [PROPOSED STANDARD]

Signed Packet

Type X Extension
Namespace jabber:x:signed

Summary A cryptographic signature of a packet’s contents

Packet <x>

The text of the <x> tag contains the PGP/GPG signature for the contents of:

■ <status> for <presence> packets

■ <body> for <message> packets

Usage
Use within:<message>, <presence>

Example

<message to='recmipientJID@jabber.org'>
 <body>How about joining us for a discussion on Java!</body>
 <x xmlns='jabber:x:signed'>iOen23snthr2THeETHL3093TH30</x>
</message>

Notes
■ New namespaces will be used for other encryption algorithms.

■ <presence> can only be signed when broadcast (server managed presence
updates).

Source
PKI/Crypto support for Messaging and Presence, Thomas Muldowney; Peter
Millard; and Jeremie Miller, www.jabber.org.

Attributes Value Description

xmlns jabber:x:signed The protocol namespace

366 APPENDIX A

Jabber reference
Encrypted Packet [PROPOSED STANDARD]

Encrypted Packet

Type X Extension
Namespace jabber:x:encrypted

Summary A cryptographic encryption of a packet's contents

Packet <x>

The text of the <x> tag contains the PGP/GPG encryption of the contents of:

■ <status> - for <presence> packets

■ <body> - for <message> packets

Usage
Use within:<message>, <presence>

Example

<message to='recipientJID@jabber.org'>
 <body>How about joining us for a discussion on Java!</body>
 <x xmlns='jabber:x:encrypted'>iOen23snthr2THeETHL30eou09309anthNETH0390</x>
</message>

Notes

■ New namespaces will be used for other encryption algorithms.

■ <presence> can only be encrypted when targeted (presence updates directly
addressed to another user).

Source
PKI/Crypto support for Messaging and Presence, Thomas Muldowney; Peter
Millard; and Jeremie Miller, www.jabber.org.

Attributes Value Description

xmlns jabber:x:encrypted The protocol namespace

Encrypted Packet 367SXPM Whiteboarding Protocol
SXPM Whiteboarding Protocol [PROPOSED STANDARD]

Type X Extension
Namespace jabber:x:sxpm

Summary A cryptographic encryption of a packet’s contents

Packets

Data is compressed and streamed back and forth within a <message> packet or set
of packets.

Usage
Use within: <message>

Example
A 10x10 board with erase character ‘#’ and a 3x3 region of data.

<message to='recipientJID@jabber.org'>
 <x xmlns='jabber:x:sxpm'>
 <board height='10' width='10'/>
 <map char='#'/>
 <map char=' ' c='#FFFFFF'/>
 <map char='a' c='#000000'/>
 <map char='b' c='#FF0000'/>
 <data x='2' y='2' width='3'>5a2b2 </data>
 <cursor x='2' y='2'/>
</message>

Notes

■ Variation on XPM, http://www-sop.inria.fr/koala/lehors/xpm.html.

■ Maximum of 17 colors (transparent and 16 user defined pen colors).

Packet Attributes Description

<board> height, width Empty packet describing dimensions of the
whiteboard.

<map> char, c Empty packet with character and color value
[hexadecimal RGB (#RRGGBB)].

<data> x, y, width A compressed data bitmap of a region to
paint. Uses <map> info.

<cursor> x, y The position of a cursor (used to show where
someone is drawing).

368 APPENDIX A

Jabber reference
■ Compression involves simple run length encoding of <data> bitmaps.

■ Data contains update information for a part of the whole whiteboard by
sending a rectangle of information with a given width and (x, y) offset.

■ Mapping a char (typically ‘#’) without a ‘c’ attribute causes it to erase pixels
and set to background color (white).

■ Server support usually requires streaming <message> packet content.

■ Work underway in Jabber Software Foundation (http://foundation.jab-
ber.org) to improve sxpm.

Source
Collaborative Imaging (Whiteboarding via Streaming XPM), Ryan Eaton; Thomas
Muldowney; and Jeremie Miller, www.jabber.org.

 references
This appendix lists additional sources of information about Jabber, related stan-
dards, and other related product and programming sites. The Internet sites listed
here are valid as of March 1, 2002.

Bibliography

Alhir, Sinan Si. UML in a Nutshell. Sebastapol, CA: O’Reilly & Associates, 2001.
Buschmann, Frank et al. Pattern-oriented Software Architecture: a System of

Patterns. New York: John Wiley & Sons, 1996.
Gamma, Erich et al. Design Patterns: Elements of Reusable Object-Oriented

Software. Menlo Park: Addison-Wesley, 1994.
Garfinkle, Simson and Gene Spafford. Practical Unix & Internet Security.

Sebastapol, CA: O’Reilly & Associates, 1996.
McLaughlin, Brett. Java & XML. Sebastapol, CA: O’Reilly & Associates, 2001.
Monson-Haefel, Richard et al. Java Messege Service. Sebastapol, CA: O’Reilly &

Associates, 2001.
Schneier, Bruce. Applied Cryptography, Second Edition. New York: John Wiley & Sons,

1996.
Vint, Danny. XML Family of Specifications. Greenwich, CT: Manning

Publications, 2002.
Zwicky, Elizabeth D. et al. Building Internet Firewalls, Second Edition.

Sebastapol, CA: O’Reilly & Associates, 2000.
369

370 references
Online resources

Jabber
 Instant Messaging in Java: the Jabber protocols—www.manning.com/shigeoka
 Jabber Community—www.jabber.org
 Jabber Projects—www.jabberstudio.org
 Jabber Inc.—www.jabber.com
 Jabber Software Foundation—foundation.jabber.org
 Jabber Software Foundation announcement—www.jabber.org?oid=1309
 Jabber Powered—www.jabberpowered.org

Related Standards
 W3C SOAP Specification—www.w3c.org/2002/ws
 Liberty Alliance—www.projectliberty.org
 Internet Engineering Task Force (IETF)—www.ietf.org
 IETF Instant Messaging and Presence Protocol working group—www.ietf.org/

html.charters/impp-charter.html
 World Wide Web Consortium (W3C)—www.w3c.org
 W3C XML standards—www.w3c.org/xml
 Short Message Service (SMS)—www.wheatstone.net/whatwedo/Portal/

Standards/ sms.htm
 RSS (RDF Site Summary)—www.purl.org/rss/1.0/spec
 SAX (Simple API for XML parsing)—www.saxproject.org

Messaging Products
 Microsoft Messenger—messenger.msn.com
 AOL Instant Messenger—www.aim.com
 Yahoo! Instant Messenger—messenger.yahoo.com
 Yahoo! Mail—mail.yahoo.com
 Disney (Go) Instant Messenger—im.go.com
 AOL ICQ (an instant messenger)—www.icq.com
 IBM MQSeries—www.software.ibm.com/ts/mqseries
 Microsoft MSMQ—www.microsoft.com/msmq/
 TIBCO Rendezvous—www.tibco.com

references 371
Java APIs
 JavaMail—java.sun.com/products/javamail/
 Sun Microsystems Java website—java.sun.com
 Java Jini—www.sun.com/jini
 JavaSpaces—www.jini.org
 Java Software Development Kit (JDK)—java.sun.com
 Java 2 Micro Edition (J2ME)—java.sun.com/j2me
 Java 2 Enterprise Edition (J2EE)—java.sun.com/j2ee
 Java Message Service (JMS)—java.sun.com/products/jms
 Java Authentication and Authorization Service (JAAS)—java.sun.com/

products/jaas
 Java XML technologies—java.sun.com/products/xml
 Java Management Extensions (JMX)—java.sun.com/products/

JavaManagement
 Java Naming and Directory Interface (JNDI)—java.sun.com/products/jndi
 Java Transactions (JTA)—java.sun.com/products/jta
 Java Remote Method Invocation (RMI)—java.sun.com/products/jdk/rmi
 Java Security—java.sun.com/security
 Java Secure Socket Extension (JSSE) —java.sun.com/products/jsse

Jabber alternatives
 Napster—www.napster.com
 Common Object Request Broker Architecture (CORBA)—www.corba.org
 Java CORBA (RMI over IIOP)—java.sun.com/products/rmi-iiop
 Gnutella (P2P, IM, and file sharing)—www.gnutella.co.uk
 JXTA (p2p, IM and file sharing)—www.jxta.org
 Aimster (file sharing)—See Madster
 Madster (file sharing)—www.madster.com

Miscellaneous
 Apache Software Foundation—www.apache.org
 Apache Java software (Xerces and Ant)—jakarta.apache.org
 JUnit testing software—www.junit.org
 Manning Publications—www.manning.com
 Sun Microsystems—www.sun.com
 Slashdot (news for nerds)—www.slashdot.org
 Palm Pilot (Personal Digital Assistant)—www.palm.com
 Borland (Jbuilder)—www.borland.com

372 references
 Microsoft (.NET and Passport)—www.microsoft.com
 Buffy the Vampire Slayer (used in example)—www.buffyupn.com
 Angel (TV, used in example)—www.thewb.com

indexindex
A

access model 190
ACID 265, 288
ActiveX 290
ad hoc security 276
addressing 25–26, 40, 104, 107, 249
administration 279
AIM. See AOL AIM
AngelTestThread class 129
anonymous authentication.

See authentication, anonymous
AOL AIM 6, 23, 29, 257, 296
Apache Software Foundation 245
auditing 215, 264
authentication 35, 48, 93, 131, 169, 173, 190, 274

anonymous 192
dialback 250
digest 194, 200
form 192
probe 191, 197
protocol 191
tradeoff 191
zero-knowledge 37, 185, 196, 201

Authenticator class 199
AuthHandler class 202, 213
authorization 274

B

bandwidth 171
bidirectional S2S connections 255
blocking systems 123
bottleneck 37
boxcarring 291
buddy lists. See roster

BuffyTestThread class 128
Business-to-Business exchanges 294

C

certificate authority service 275
chatbot 143–144, 158

See also client, chatbot
chatroom. See groupchat
client 113

architecture 116
chatbot 113, 268
goals 114
IQ handlers 206
user agent 266, 237

CloseStreamHandler class 87, 155
collaborative editing 292
command processor 77
Common Object Request

Broker Architecture 296
compliance 245
conferences. See groupchat
confidentiality 274–275
configuration information 170
Connected Device Configuration 246
Connected Limited Device Configuration 246
content handler. See SAX content handler
CORBA. See Common Object Request Broker

Architecture
CRM. See customer relationship management
customer relationship management 7

D

DCOM 290
deliverToGroup() 154
373

374 index
delivery ordering 278
DeliveryHandler class 144, 146
dialback 250
digest authentication. See authentication, digest
disconnect() 120
dnd. See presence, dnd
DNS. See Domain Name Server
do not disturb. See presence, dnd
Document Object Model 70
domain name 33
Domain Name Server 43
DOM. See Document Object Model
DTD 17

E

embedded devices 267
encryption 37
endElement() 82
expert systems 295
extended away. See presence, xa
Extensible Markup Language. See XML

F

federation. See server federation
fields 168
file sharing 9
firewalls 36
FTP 110

G

Gnutella 36, 298
goals 22, 70, 124,
Group class 148
groupchat 102, 218, 268

address 107
addresses 139, 149
addressing 150
leave 139, 155
manager 144
message 139
nickname 107, 141
presence 138
protocol 108, 138

GroupChatClient class 159
GroupChatManager class 147
groupchat, presence 138
groupware 27, 292

H

handleChatPresence() 150
hexadecimal 195
HieuTestThread class 160, 240
hub and spoke 20

I

IainTestThread class 159, 238
ICQ 29
identifier. See Jabber identifier
implied addresses 104
IMUnified 11
info/query 164

extensions 46
protocol 45
query 168
result 168
types 166

Instant Messaging and Presence Protocol 11
integrity 274
interface definition language 296
Internet Engineering Task Force 11
Internet Relay Chat 258
IQ extension 165

authentication. See authentication
namespace 167
roster 167

IQ extension. See info/query extensions
IQHandler class 211
IRC. See Internet Relay Chat
isChatPacket() 150
IETF. See Internet Engineering Task Force

J

J2EE 8
security 289

JAAS. See Java Authentication and Authorization
Services

jab.user.auth 208
Jabber 13

addressing. See addressing
administration 279
architecture 18, 32
benefits 27, 35, 281
domain 19, 33, 38
drawbacks 28, 36
Software Foundation 28, 245, 279
goals 12

index 375
jabber (continued)
groupware 292
identifier 26, 40, 66
Jabber Powered 245
middleware 29
network 21
port 33, 47, 99
protocols 244
resource. See resource
roster. See roster
routing. See routing
server 21, 32, 60
session. See session
standards 11, 244
standards compliance 245

jabber
client 49
iq

auth 50, 191, 207
delay 53
gateway 258
register 50, 169
roster 221
server 249, 253
x-oob 111

Jabber As Middleware.
See Jabber, middleware

Jabber environments 246
Jabber Inc. 7
Jabber Interest Groups 245
jabberd 170, 245
JabberInputHandler class 80–81
JabberModel class 130, 157, 206, 213, 267
JAM. See Jabber, middleware
Java 2 Enterprise Edition. See J2EE
Java 2 Micro Edition 246
Java Authentication and

Authorization Service 274, 277, 280
Java Jini 296
Java management extensions 264, 280
Java Message Service 8

acknowledgement 288
driver 283
Jabber differences 285–286
point-to-point 287
publishers 286
publish-subscribe 286
pub-sub 286
queue 287
subscribers 286

Java Naming and Directory Interface 280

Java Naming and Directory Service 289
Java RMI 296
Java Transaction API 289
java.net.Authenticator 199
Java Virtual Machine 290
JDBC 289
JID. See Jabber, identifier
JIG. See Jabber Interest Groups
Jini 266, 296
JMS. See Java Message Service
JMS driver 283
JMX. See Java management extensions
JNDI. See Java Naming and Directory Interface
joinGroup() 151
JUnit 183
JVM. See Java Virtual Machine
JXTA 298

K

Kerebos 274, 277

L

lava flows 183
Liberty Alliance 277
logging 215
loopback address 119
loose coupling 297

M

message 102
acknowledgment 288
chat 105
error 109
groupchat 102, 106
headline 108
normal 104
out of band (oob) 102, 110
protocol 45, 103
sub-packets 103
types 102

MessageDigest class 195
MessageHandler class 87, 145, 181, 122
message oriented middleware 8
messaging model. See Jabber, architecture
Microsoft Messenger 29, 257
Microsoft Passport 277
middleware 280
Miller, Jeremie 11

376 index
Mobile Information Device Profile 246
Model-View-Controller 115
MOM. See message oriented middleware
MP3 110
MVC. See Model-View-Controller

N

.NET 277, 290, 296
Napster 299
network services 299
nickname. See groupchat, nickname and roster,

nickname
nonrepudiation 274

O

open Jabber servers 169
OpenStreamHandler class 87, 92, 121
out-of-band. See message, out of band

P

P2P. See Java Message Service
point-to-point

packet 33, 62, 69
attributes 74
element name 71, 77
handlers 62, 211
IQ query 165
IQ result 166
logging 215
namespace 71, 167
routing. See routing
tree 71, 81

Packet class 69
PacketHandler class 144
PacketListener class 117
PacketListener interface 90
PacketQueue class 62, 77, 123
Passport 277, 290
PASS. See Proxy Accept Socket Service
peer-to-peer 36–37, 39
persistent messages 288
point-to-point 287
powered 255
presence 26, 43, 53, 134, 218

away 136
chat 136
dnd 137
groupchat. See groupchat, presence
probe 230

protocol 45
sub-packets 136
subscription 134, 137, 218, 221
subscription types 219
types 135
user vs. server managed 229
xa 137

Presence class 225
PresenceHandler class 146, 158, 234
probe 164
process management 294
process() 96
ProcessThread class 87, 95, 120
Proxy Accept Socket Service 263
PTP. See Java Message Service

point-to-point
publishers 218, 286
publish-subscribe 286
pub-sub 286

Q

QoS. See quality of service
quality of service 278, 299
query handler 165
query originator 165
queue. See Java Message Service
QueueThread 158
QueueThread class 87, 90, 117, 126, 156

R

random number generation 199
real-time 278
refactoring 149, 183
register

form 172
probe 171
protocol 169
special fields 173

RegisterHandler class 184, 209, 212–213
registration 35
remote procedure call 296
rendezvous servers 299
request-response 164
resource 22, 24
roster 27, 162, 218

item attributes 222
nickname 219, 227
protocol 221
push 220, 223
remove 223

index 377
roster (continued)
reset 222, 232
subsystem 226
update 221, 223

Roster class 227
RosterClient class 238
RosterHandler class 234, 237
round robin DNS 252, 261
routing 39, 43, 67–68, 110, 131, 143

priority 68

S

S2S protocols 38
S2S. See server-to-server
SAX 69, 122

content handler 80
parsing 80

SAXException 122
SAXParser class 84
Secure Sockets Layer 33, 275
SecureRandom 199
security 35–36, 190, 215

ad hoc 276
advanced 273
Jabber Interest Group 277
properties 274
server-to-server 250

sendMessage() 121
server

architecture 62, 88
availability 265
configuring 261
deployment 260
farms 252
goals 60
launching 261
management 264
optimization 85
provisioning 260
reliability 265
welcome message. See

welcome message
Server class 97, 156
Server Farms 252
server federation 22
server managed presence 229
server-to-server 38

bidirectional connections 255
dialback authentication 250
differences 249

service level agreement 9
session 25, 47

AUTHENTICATED 131, 204, 214
ID 34, 194, 253
lookup 66
multiple simultaneous 226
pool 62–63
status updates 65, 130

Session class 64, 68, 93, 119, 179, 224–225
SessionIndex class 66, 92–94, 176, 178
SHA-1 196, 200
SHA1PRNG 199
simple message service 28
SimpleMessageClient class 127
Singleton design pattern 148
Slashdot 11
SLA. See service level agreement
SMS. See simple message service
SOAP 290, 296
SOAP standard 291
spaghetti code 183
spoofing 215
SSL. See Secure Sockets Layer
standards

compliance 245
subsets 246

StatusListener interface 66, 130
stream ID 93
Subscriber class 227
subscriber list 228
subscribers 218, 286
subscription. See presence,

subscription
Swing 65, 130, 266

T

telnet 47, 98
TestThread class 117, 123, 125
text-based interface 267
threads 78, 87

notifyAll() 79
pools 96
synchronize 77, 79

training 295
transactions 288
transient messages 288
transport 23, 257

378 index
U

Universal Resource Identifiers 45
URL 110
user 24

 accounts 204
presence 218, 224

user agent. See client, user agent
User class 176, 224
user managed presence 229
UserIndex class 179, 204

V

vCards 170
voice activation 267

W

web services 290
welcome message 129
white-boarding 292
World Wide Web Consortium 14

X

X extension 102, 102, 276
xa. See presence, xa
Xerces 81–82, 84

parsing streams 83
XML 14

normalize 14
parsing 17, 62, 69
stream 83, 100
encryption 276

x-oob. See message, out of band

Y

Yahoo! Mail 169
Yahoo! Messenger 29, 257

Z

zero-knowledge authentication.
See authentication, zero-knowledge

	Instant Messaging in Java
	The Jabber Protocols
	contents
	preface
	about this book
	Who should read this book
	Contents of this book
	Part 1—Overview
	Part 2—Building Jabber
	Appendix—Jabber reference
	How to use this book
	Conventions

	The source code
	Getting the source code
	Tools: a Java development environment
	Building the source in this book

	author online
	acknowledgments
	about the cover illustration

	Instant messaging primer
	Introduction to IM concepts
	1.1 Background on messaging
	1.1.1 A brief history of Jabber
	1.1.2 Goals of the Jabber project

	1.2 What is Jabber?
	1.2.1 Jabber’s XML-based data formats
	1.2.2 Jabber’s simple architecture
	1.2.3 Jabber’s four core concepts

	1.3 Benefits of the Jabber protocols
	1.4 Drawbacks of the Jabber protocols
	1.5 Conclusion

	Jabber technical fundamentals
	2.1 The Jabber messaging model
	2.1.1 Benefits
	2.1.2 Drawbacks
	2.1.3 Relying on distributed servers
	2.1.4 How Jabber packet routing works
	2.1.5 Step-by-step: a message’s path through Jabber

	2.2 The core Jabber protocols
	2.2.1 Message: Delivering data
	2.2.2 Presence: updating user online status
	2.2.3 Info/Query: handling everything else

	2.3 Jabber session example
	2.4 Conclusions

	Protocols, code, and advanced IM
	IM concepts and Jabber protocols
	3.1 A basic Java Jabber server
	3.1.1 Goals for our server
	3.1.2 Our server software
	3.1.3 The basic server design

	3.2 The session pool maintains client connections
	3.2.1 The Session class represents a connection
	3.2.3 The SessionIndex class provides session lookup

	3.3 XML parsing subsystem
	3.3.1 Representing Jabber packets
	3.3.2 The PacketQueue class as server focal point
	3.3.5 SAX parsing in Java

	3.4 Packet handling and server threads
	3.4.1 Packet handling in QueueThread
	3.4.2 Parsing XML in the ProcessThread
	3.4.3 The main application Server class

	3.5 Testing the server
	3.6 Conclusion

	The Jabber message protocols
	4.1 Messaging is the heart of IM
	4.2 The message protocol
	4.2.1 Normal messages
	4.2.2 Chat messages
	4.2.3 Groupchat messages
	4.2.4 Headline messages
	4.2.5 Error messages
	4.2.2 Out-of-band messages
	4.2.3 Reality check: one message, many user interfaces

	4.3 Java Jabber client
	4.3.1 Goals
	4.3.2 The client design
	4.3.3 The client model
	4.3.4 Using the client model
	4.3.8 Results

	4.4 Conclusions

	The presence protocols
	5.1 The need for presence
	5.2 The presence protocol
	5.3 Adding groupchat support
	5.3.1 Groupchat protocols
	5.3.2 Server modifications
	5.3.3 Client modifications

	5.4 Shortcomings of our server and basic groupchat
	5.5 Conclusions

	Info/Query and client registration
	6.1 Info/Query: the catch-all protocol
	6.1.1 The IQ protocol
	6.1.2 IQ extensions

	6.2 Registration creates and manages accounts
	6.2.1 User accounts
	6.2.2 The register protocol

	6.3 The Jabber server modifications
	6.3.1 Adding user accounts
	6.3.7 Adding registration support

	6.4 Conclusions

	Client authentication
	7.1 Authentication controls account access
	7.1.1 The authentication protocol

	7.2 The Jabber server modifications
	7.3 The Jabber client modifications
	7.3.1 Modifying the JabberModel
	7.3.9 The client IQ packet handlers

	7.4 Conclusions

	Roster and user presence
	8.1 Roster protocol: presence’s missing piece
	8.1.1 The roster protocol

	8.2 The Jabber server modifications
	8.2.1 Representing user presence
	8.2.2 Adding a roster subsystem
	8.2.6 The roster packet handlers

	8.3 The Jabber client modifications
	8.3.1 Adding minimal roster support
	8.3.7 Testing the server

	8.4 Conclusions

	Creating a complete Jabber system
	9.1 Creating Jabber-compliant implementations
	9.1.1 Setting standards: the Jabber Software Foundation
	9.1.2 Enforcing standards: Jabber Powered applications
	9.1.3 Organizing standards: Jabber environments
	9.1.4 Today’s options for achieving server compliance

	9.2 Server missing pieces
	9.2.1 Server-to-server communications: federating Jabber domains
	9.2.2 Dialback authentication: S2S security
	9.2.3 Transports: integrating with other IM systems
	9.2.4 Deployment of Jabber servers and components
	9.2.5 Server security: creating protected Jabber services
	9.2.6 Jabber server management
	9.2.7 Adding reliability and availability

	9.3 Client missing pieces
	9.3.1 User agent clients
	9.3.2 Enhancing existing applications
	9.3.3 Chatbots: creating IM services

	9.4 Conclusions

	Enterprise Jabber
	10.1 What is needed to support enterprise messaging
	10.1.1 Enhancing Jabber security
	10.1.2 Guaranteed quality of service
	10.1.3 Creating system administration tools an techniques

	10.2 The promise of MOM
	10.2.1 Jabber as middleware
	10.2.2 Jabber and the J2EE Java Messaging Service
	10.2.3 Jabber, .NET, and SOAP

	10.3 Examples of Jabber applications
	10.3.1 Jabber groupware
	10.3.2 Jabber network services
	10.3.3 Applications enhanced by Jabber

	10.4 Distributed application alternatives to Jabbers
	10.4.1 RPCs: oldies but goodies
	10.4.2 P2P systems: the new challenger
	10.4.3 Hybrid systems: a better compromise

	10.5 Conclusions

	Jabber reference
	Core standards
	Jabber Identifier Standard
	Jabber Identifier Standard
	Jabber Addressing and Implicit Address Standard
	Stream Protocol
	Error Packet
	Error Packet
	Message Protocol
	Message Protocol�
	Groupchat Protocol
	Groupchat Protocol�
	Groupchat Jabber ID

	Presence Protocol
	Presence Protocol
	Info/Query (IQ) Protocol
	Info/Query (IQ) Protocol
	Temporary vCard Protocol
	XHTML-Basic Packet [PROPOSED STANDARD]
	XHTML-Basic Packet
	Server-to-Server Dialback Protocol [PROPOSED STANDARD]
	Server-to-Server Dialback Protocol
	Agent Protocol
	Agent Protocol
	Agents Protocol
	Agents Protocol
	Authentication Protocol
	Autoupdate Protocol
	Autoupdate Protocol
	Out-of-Band File Transfer Protocol
	Out-of-Band File Transfer Protocol
	Registration Protocol
	Roster Protocol
	Search Protocol
	Time Protocol
	Version Protocol
	Version Protocol
	Browsing Protocol [PROPOSED STANDARD]
	Conferencing Protocol [PROPOSED STANDARD]
	Conferencing Protocol
	Gateway Standard [PROPOSED STANDARD]
	Gateway Standard
	Last Time Protocol [PROPOSED STANDARD]
	Last Time Protocol
	Proxy Accept Socket Service [PROPOSED STANDARD]
	Private Storage Protocol [PROPOSED STANDARD]
	XML-RPC Protocol [PROPOSED STANDARD]
	XML-RPC Protocol
	Autoupdate Packet
	Delay Packet
	Delay Packet
	Out of Band Packet
	Out of Band Packet
	Roster Packet
	Roster Packet
	Conference Packet [PROPOSED STANDARD]�
	Conference Packet
	Envelope Packet [PROPOSED STANDARD]�
	Envelope Packet
	Event Protocol [PROPOSED STANDARD]
	Event Protocol
	Expire Packet [PROPOSED STANDARD]�
	Expire Packet
	Signed Packet [PROPOSED STANDARD]�
	Signed Packet
	Encrypted Packet [PROPOSED STANDARD]
	Encrypted Packet
	SXPM Whiteboarding Protocol [PROPOSED STANDARD]

	references
	Bibliography
	Online resources
	Jabber
	Related Standards
	Messaging Products
	Java APIs
	Jabber alternatives
	Miscellaneous

	index
	A
	access model�190
	ACID�265, 288
	ActiveX�290
	ad hoc security�276
	addressing�25–26, 40, 104, 107, 249
	administration�279
	AIM. See AOL AIM
	AngelTestThread class�129
	anonymous authentication. See authentication, anonymous�
	AOL AIM�6, 23, 29, 257, 296
	Apache Software Foundation�245
	auditing�215, 264
	authentication�35, 48, 93, 131, 169, 173, 190, 274
	anonymous�192
	dialback�250
	digest�194, 200
	form�192
	probe�191, 197
	protocol�191
	tradeoff�191
	zero-knowledge�37, 185, 196, 201
	Authenticator class�199
	AuthHandler class�202, 213
	authorization�274

	B
	bandwidth�171
	bidirectional S2S connections�255
	blocking systems�123
	bottleneck�37
	boxcarring�291
	buddy lists. See roster�
	BuffyTestThread class�128
	Business-to-Business exchanges�294

	C
	certificate authority service�275
	chatbot�143–144,�158 See also client, chatbot�
	chatroom. See groupchat�
	client�113
	architecture�116
	chatbot�113, 268
	goals�114
	IQ handlers�206
	user agent�266,�237
	CloseStreamHandler class�87, 155
	collaborative editing�292
	command processor�77
	Common Object Request Broker Architecture�296
	compliance�245
	conferences. See groupchat�
	confidentiality�274–275
	configuration information�170
	Connected Device Configuration�246
	Connected Limited Device Configuration�246
	content handler. See SAX content handler�
	CORBA. See Common Object Request Broker Architecture
	CRM. See customer relationship management
	customer relationship management 7

	D
	DCOM�290
	deliverToGroup()�154
	delivery ordering�278
	DeliveryHandler class�144, 146
	dialback�250
	digest authentication. See authentication, digest�
	disconnect()�120
	dnd. See presence, dnd�
	DNS. See Domain Name Server
	do not disturb. See presence, dnd
	Document Object Model�70
	domain name�33
	Domain Name Server�43
	DOM. See Document Object Model
	DTD�17

	E
	embedded devices�267
	encryption�37
	endElement()�82
	expert systems�295
	extended away. See presence, xa
	Extensible Markup Language. See XML

	F
	federation. See server federation�
	fields�168
	file sharing�9
	firewalls�36
	FTP�110

	G
	Gnutella�36, 298
	goals 22, 70, 124,
	Group class�148
	groupchat�102, 218, 268
	address�107
	addresses�139, 149
	addressing�150
	leave�139, 155
	manager�144
	message�139
	nickname�107, 141
	presence�138
	protocol�108, 138
	GroupChatClient class�159
	GroupChatManager class�147
	groupchat, presence�138
	groupware�27, 292

	H
	handleChatPresence()�150
	hexadecimal�195
	HieuTestThread class�160, 240
	hub and spoke�20

	I
	IainTestThread class�159, 238
	ICQ�29
	identifier. See Jabber identifier
	implied addresses�104
	IMUnified�11
	info/query�164
	extensions�46
	protocol�45
	query�168
	result�168
	types�166
	Instant Messaging and Presence Protocol�11
	integrity�274
	interface definition language�296
	Internet Engineering Task Force�11
	Internet Relay Chat�258
	IQ extension�165
	authentication. See authentication
	namespace�167
	roster�167
	IQ extension. See info/query extensions
	IQHandler class�211
	IRC. See Internet Relay Chat
	isChatPacket()�150
	IETF. See Internet Engineering Task Force

	J
	J2EE�8
	security�289
	JAAS. See Java Authentication and Authorization Services
	jab.user.auth�208
	Jabber�13
	addressing. See addressing
	administration�279
	architecture�18, 32
	benefits�27, 35, 281
	domain�19, 33, 38
	drawbacks�28, 36
	Software Foundation�28, 245, 279
	goals�12
	jabber (continued)
	groupware�292
	identifier�26, 40, 66
	Jabber Powered�245
	middleware�29
	network�21
	port�33, 47, 99
	protocols�244
	resource. See resource
	roster. See roster
	routing. See routing
	server�21, 32, 60
	session. See session
	standards�11,�244
	standards compliance�245
	jabber
	client�49
	iq
	server�249, 253
	Jabber As Middleware. See Jabber, middleware
	Jabber environments�246
	Jabber Inc.�7
	Jabber Interest Groups�245
	jabberd�170, 245
	JabberInputHandler class�80–81
	JabberModel class�130, 157, 206, 213, 267
	JAM. See Jabber, middleware
	Java 2 Enterprise Edition. See J2EE
	Java 2 Micro Edition�246
	Java Authentication and Authorization Service�274, �277, 280
	Java Jini�296
	Java management extensions�264, 280
	Java Message Service�8
	acknowledgement�288
	driver�283
	Jabber differences�285–286
	point-to-point�287
	publishers�286
	publish-subscribe�286
	pub-sub�286
	queue�287
	subscribers�286
	Java Naming and Directory Interface�280
	Java Naming and Directory Service�289
	Java RMI�296
	Java Transaction API�289
	java.net.Authenticator�199
	Java Virtual Machine�290
	JDBC�289
	JID. See Jabber, identifier
	JIG. See Jabber Interest Groups
	Jini�266, 296
	JMS.�See Java Message Service
	JMS driver�283
	JMX. See Java management extensions
	JNDI. See Java Naming and Directory Interface
	joinGroup()�151
	JUnit�183
	JVM. See Java Virtual Machine
	JXTA�298

	K
	Kerebos�274, 277

	L
	lava flows�183
	Liberty Alliance�277
	logging�215
	loopback address�119
	loose coupling�297

	M
	message�102
	acknowledgment�288
	chat�105
	error�109
	groupchat �102,�106
	headline�108
	normal �104
	out of band (oob)�102, 110
	protocol �45, 103
	sub-packets�103
	types�102
	MessageDigest class�195
	MessageHandler class�87, 145, 181,�122
	message oriented middleware�8
	messaging model. See Jabber, architecture
	Microsoft Messenger�29, 257
	Microsoft Passport�277
	middleware�280
	Miller, Jeremie�11
	Mobile Information Device Profile�246
	Model-View-Controller�115
	MOM.�See message oriented middleware
	MP3�110
	MVC. See Model-View-Controller

	N
	.NET�277, 290, 296
	Napster�299
	network services�299
	nickname. See groupchat, nickname and roster, nickname
	nonrepudiation�274

	O
	open Jabber servers�169
	OpenStreamHandler class �87, 92,�121
	out-of-band. See message, out of band

	P
	P2P. See Java Message Service
	point-to-point�
	packet�33, 62, 69
	attributes�74
	element name�71, 77
	handlers�62, 211
	IQ query�165
	IQ result�166
	logging�215
	namespace�71, 167
	routing. See routing
	tree �71, 81
	Packet class�69
	PacketHandler class�144
	PacketListener class�117
	PacketListener interface�90
	PacketQueue class�62, 77, 123
	Passport�277, 290
	PASS. See Proxy Accept Socket Service
	peer-to-peer�36–37, 39
	persistent messages�288
	point-to-point�287
	powered�255
	presence�26,�43, 53, 134, 218
	away�136
	chat�136
	dnd�137
	groupchat. See groupchat, presence
	probe�230
	protocol�45
	sub-packets�136
	subscription�134, 137, 218, 221
	subscription types�219
	types�135
	user vs. server managed�229
	xa�137
	Presence class�225
	PresenceHandler class�146, 158, 234
	probe�164
	process management�294
	process()�96
	ProcessThread class�87, 95, 120
	Proxy Accept Socket Service�263
	PTP. See Java Message Service
	point-to-point
	publishers�218, 286
	publish-subscribe�286
	pub-sub�286

	Q
	QoS. See quality of service
	quality of service�278, 299
	query handler�165
	query originator�165
	queue. See Java Message Service
	QueueThread�158
	QueueThread class�87, 90, 117, 126, 156

	R
	random number generation�199
	real-time�278
	refactoring��149, 183
	register
	form�172
	probe�171
	protocol�169
	special fields�173
	RegisterHandler class�184, 209, 212–213
	registration�35
	remote procedure call�296
	rendezvous servers�299
	request-response�164
	resource�22, 24
	roster�27, 162, 218
	item attributes�222
	nickname�219, 227
	protocol�221
	push�220, 223
	remove�223
	roster (continued)
	reset�222, 232
	subsystem�226
	update�221, 223
	Roster class�227
	RosterClient class�238
	RosterHandler class�234, 237
	round robin DNS�252, 261
	routing�39, 43, 67–68, 110, 131, 143
	priority�68

	S
	S2S protocols�38
	S2S. See server-to-server
	SAX�69, 122
	content handler�80
	parsing�80
	SAXException�122
	SAXParser class�84
	Secure Sockets Layer�33, 275
	SecureRandom�199
	security�35–36, 190, 215
	ad hoc�276
	advanced�273
	Jabber Interest Group�277
	properties�274
	server-to-server�250
	sendMessage()�121
	server
	architecture�62, 88
	availability�265
	configuring�261
	deployment�260
	farms�252
	goals�60
	launching�261
	management�264
	optimization�85
	provisioning�260
	reliability�265
	welcome message. See welcome message
	Server class�97, 156
	Server Farms�252
	server federation�22
	server managed presence�229
	server-to-server�38
	bidirectional connections�255
	dialback authentication�250
	differences�249
	service level agreement�9
	session�25, 47
	AUTHENTICATED�131, 204, 214
	ID�34, 194, 253
	lookup�66
	multiple simultaneous�226
	pool�62–63
	status updates�65, 130
	Session class�64, 68, 93, 119, 179, 224–225
	SessionIndex class�66, 92–94, 176, 178
	SHA-1�196, 200
	SHA1PRNG�199
	simple message service�28
	SimpleMessageClient class�127
	Singleton design pattern�148
	Slashdot�11
	SLA. See service level agreement
	SMS. See simple message service
	SOAP�290, 296
	SOAP standard�291
	spaghetti code�183
	spoofing�215
	SSL. See Secure Sockets Layer
	standards
	compliance�245
	subsets�246
	StatusListener interface�66, 130
	stream ID�93
	Subscriber class�227
	subscriber list�228
	subscribers�218, 286
	subscription. See presence, subscription
	Swing�65, 130, 266

	T
	telnet�47, 98
	TestThread class�117, 123, 125
	text-based interface�267
	threads�78, 87
	notifyAll()�79
	pools�96
	synchronize�77,�79
	training�295
	transactions�288
	transient messages�288
	transport�23, 257

	U
	Universal Resource Identifiers�45
	URL�110
	user�24 accounts�204 presence�218, 224
	user agent. See client, user agent
	User class�176, 224
	user managed presence�229
	UserIndex class�179, 204

	V
	vCards�170
	voice activation�267

	W
	web services�290
	welcome message�129
	white-boarding�292
	World Wide Web Consortium�14

	X
	X extension�102, 102, 276
	xa. See presence, xa
	Xerces�81–82, 84
	parsing streams�83
	XML�14
	normalize�14
	parsing�17, 62, 69
	stream�83, 100
	encryption�276
	x-oob. See message, out of band

	Y
	Yahoo! Mail�169
	Yahoo! Messenger�29, 257

	Z
	zero-knowledge authentication. See authentication, zero-knowledge

