
www.allitebooks.com

http://www.allitebooks.org

Internet of Things with Python

Interact with the world and rapidly prototype IoT
applications using Python

Gastón C. Hillar

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Internet of Things with Python

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2016

Production reference: 1170516

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-138-1

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Gastón C. Hillar

Reviewer
Navin Bhaskar

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Reshma Raman

Content Development Editor
Divij Kotian

Technical Editor
Nirant Carvalho

Copy Editor
Sneha Singh

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Gastón C. Hillar

Jason Monteiro

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Gastón C. Hillar is Italian and has been working with computers since he was
eight. He began programming with the legendary Texas TI-99/4A and Commodore
64 home computers in the early 80s. He has a bachelor's degree in computer science,
in which he graduated with honors, and an MBA, in which he graduated with an
outstanding thesis. At present, Gastón is an independent IT consultant and freelance
author who is always looking for new adventures around the world.

He has been a senior contributing editor at Dr. Dobb's and has written more than a
hundred articles on software development topics. Gaston was also a Microsoft MVP
in technical computing. He has received the prestigious Intel® Black Belt Software
Developer award seven times.

He is a guest blogger at Intel® Software Network (http://software.intel.com).
You can reach him at gastonhillar@hotmail.com and follow him on Twitter at
http://twitter.com/gastonhillar.

His blog is http://csharpmulticore.blogspot.com.

He lives with his wife, Vanesa, and his two sons, Kevin and Brandon.

www.allitebooks.com

http://software.intel.com
http://twitter.com/gastonhillar
http://csharpmulticore.blogspot.com
http://www.allitebooks.org

Acknowledgments

At the time of writing this book, I was fortunate to work with an excellent team
at Packt Publishing Ltd, whose contributions vastly improved the presentation of
this book. Reshma Raman allowed me to provide her with ideas to develop this
book and I jumped into the exciting project of teaching how to combine electronic
components, sensors, actuators, the Intel Galileo Gen 2 board, and Python to create
exciting Internet of Things projects. Divij Kotian helped me realize my vision for
this book and provided many sensible suggestions regarding the text, the format,
and the flow. The reader will notice his great work. It was great working with Divij
in another book. I would like to thank my technical reviewers and proofreaders for
their thorough reviews and insightful comments. I was able to incorporate some of
the knowledge and wisdom they have gained in their many years in the software
development industry. This book was possible because they gave valuable feedback.

Special thanks go to my father, José C. Hillar, who introduced me to electronics
before I started speaking. I grew up among transistors, resistors, and soldering irons.
His clear vision of the evolution of electronic components, microcontrollers, and
microprocessors made it possible for me to learn everything that was necessary to
build Internet of Things projects. He worked with me while testing all the sample
projects included in the book.

The interaction with a huge number of experts at Intel Developer Zone made it
possible for me to become extremely familiar with the Intel Galileo and Intel Edison
platforms, and start running Python code on them. My visits to Intel Developer
Forum 2013, 2014 and 2015 made me understand all the things that developers
must know in order to successfully create modern IoT projects. Special thanks go to
Kathy Farrel and Aaron Tersteeg. Many conversations with them in San Francisco,
California, kicked off my idea of writing this book.

The entire process of writing a book requires a huge number of lonely hours. I
wouldn't have been able to write an entire book without dedicating some time to
playing soccer with my sons, Kevin and Brandon, and my nephew, Nicolas. Of
course, I never won a match. However, I did score a few goals.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Navin Bhaskar has over 4 years of experience in embedded systems, having
written code ranging from device drivers to firmware for smart cards. He won the
Distinctive Excellence award in the mbed design challenge for his Reconfigurable
Computing for Embedded System project and the third prize for his EvoMouse in the
OpenWorld contest. You can find his blog at https://navinbhaskar.wordpress.
com/, where you can find tutorials on IoT and related topics.

www.allitebooks.com

https://navinbhaskar.wordpress.com/
https://navinbhaskar.wordpress.com/
http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

To my sons, Kevin and Brandon, and my wife, Vanesa

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Understanding and Setting up the Base IoT Hardware 1

Understanding the Intel Galileo Gen 2 board and its components 2
Recognizing the Input/Output and the Arduino 1.0 pinout 8
Recognizing additional expansion and connectivity capabilities 12
Understanding the buttons and the LEDs 17
Checking and upgrading the board's firmware 20
Test your knowledge 25
Summary 26

Chapter 2: Working with Python on Intel Galileo Gen 2 27
Setting up the board to work with Python as the
programming language 27
Retrieving the board's assigned IP address 34
Connecting to the board's operating system 39
Installing and upgrading the necessary libraries to interact
with the board 44
Installing pip and additional libraries 50
Invoking the Python interpreter 52
Test your knowledge 53
Summary 54

Chapter 3: Interacting with Digital Outputs with Python 55
Turning on and off an onboard component 55
Prototyping with breadboards 62
Working with schematics to wire digital outputs 65
Counting from 1 to 9 with LEDs, Python code and the mraa library 73
Taking advantage of object-oriented code to control digital outputs 78
Improving our object-oriented code to provide new features 81

Table of Contents

[ii]

Isolating the pin numbers to improve wirings 82
Controlling digital outputs with the wiring-x86 library 87
Test your knowledge 89
Summary 90

Chapter 4: Working with a RESTful API and Pulse
Width Modulation 91

Printing numbers in LEDs with a RESTful API 91
Composing and sending HTTP requests 98
Wiring pins with PWM capabilities 103
Using PWM to generate analog values 107
Generating analog values via HTTP requests 114
Preparing the RESTful API for Web application requirements 117
Using PWM plus a RESTful API to set colors for an RGB LED 119
Controlling PWM with the wiring-x86 library 124
Test your knowledge 126
Summary 127

Chapter 5: Working with Digital Inputs, Polling and Interrupts 129
Understanding pushbuttons and pullup resistors 130
Wiring digital input pins with pushbuttons 135
Reading pushbutton statuses with digital inputs and the mraa library 138
Reading pushbutton statuses and running a RESTful API 142
Reading digital inputs with the wiring-x86 library 148
Using interrupts to detect pressed pushbuttons 151
Test your knowledge 159
Summary 160

Chapter 6: Working with Analog Inputs and Local Storage 161
Understanding the analog inputs 161
Wiring an analog input pin with a voltage source 163
Measuring voltage with analog inputs and the mraa library 166
Wiring a photoresistor to an analog input pin 167
Determining the darkness level with analog inputs and the
mraa library 171
Firing actions when the environment light changes 174
Controlling analog inputs with the wiring-x86 library 180
Logging to files in the local storage 183
Working with USB attached storage 186
Test your knowledge 190
Summary 191

Table of Contents

[iii]

Chapter 7: Retrieving Data from the Real World with Sensors 193
Understanding sensors and their connection types 194
Working with accelerometers 199
Wiring an analog accelerometer to the analog input pins 200
Measuring three axis acceleration with an analog accelerometer 203
Wiring a digital accelerometer to the I2C bus 207
Measuring three axis acceleration with a digital accelerometer 211
Using the I2C bus to control a digital accelerometer with the
mraa library 214
Wiring an analog temperature sensor 221
Measuring ambient temperature with an analog sensor 224
Wiring a digital temperature and humidity sensor to the I2C bus 226
Measuring temperature and humidity with a digital sensor 229
Test your knowledge 232
Summary 233

Chapter 8: Displaying Information and Performing Actions 235
Understanding LCD displays and their connection types 235
Wiring an LCD RGB backlight to the I2C bus 238
Displaying text on an LCD display 241
Wiring an OLED dot matrix to the I2C bus 246
Displaying text on an OLED display 249
Wiring a servo motor 252
Positioning a shaft to indicate a value with a servo motor 256
Test your knowledge 259
Summary 260

Chapter 9: Working with the Cloud 261
Publishing data to the cloud with dweepy 261
Building a web-based dashboard with Freeboard 269
Sending and receiving data in real-time through Internet with PubNub 275
Publishing messages with commands through the PubNub cloud 283
Working with bi-directional communications 289
Publishing messages to the cloud with a Python PubNub client 296
Using MQTT with Mosquitto and Eclipse Paho 303
Publishing messages to a Mosquitto broker with a Python client 311
Test your knowledge 316
Summary 317

Table of Contents

[iv]

Chapter 10: Analyzing Huge Amounts of Data with
Cloud-based IoT Analytics 319

Understanding the relationship between Internet of Things
and Big Data 319
Understanding the Intel IoT Analytics structure 321
Setting up devices in Intel IoT Analytics 324
Setting up components in Intel IoT Analytics 328
Collecting sensor data with Intel IoT Analytics 336
Analyzing sensor data with Intel IoT Analytics 344
Triggering alerts with rules in Intel IoT Analytics 349
Test your knowledge 354
Summary 355

Appendix: Exercise Answers 357
Index 361

[v]

Preface
Internet of Things, also known as IoT, is changing the way we live and represents
one of the biggest challenges in the IT industry. Developers are creating low-
cost devices that collect huge amounts of data, interact with each other, and take
advantage of cloud services and cloud-based storage. Makers all over the world are
working on fascinating projects that transform everyday objects into smart devices
with sensors and actuators.

A coffee cup is not a simple object anymore—it can send a message to your
smartwatch indicating that the liquid inside has the right temperature so that you
can drink it without worrying about checking whether it is too hot. In case you move
the coffee cup before you receive the message, your wearable vibrates to indicate that
you don't have to drink it yet.

You can check the coffee level of the coffee dispenser in your smartphone, and
you won't have to worry about ordering more coffee: the coffee dispenser will
automatically place an online order to request coffee when the coffee level is not
enough to cover the rest of the day. You just need to approve the online order that
the coffee dispenser suggests from your smartwatch. Based on certain statistical
algorithms, the coffee dispenser will know the appropriate time to make the order.

What happens when more usual visitors arrive at the office? Their smartwatches
or smartphones will communicate with the coffee dispensers and they will place
orders in case the probable consumption of decaffeinated coffee increases too much.
We have smart coffee cups, smart coffee dispensers, smartwatches, smartphones,
and wearables. All of them take advantage of the cloud to create a smart ecosystem
capable of providing us with all the different types of coffees we need for our day.

Preface

[vi]

The Intel Galileo Gen 2 board is an extremely powerful and versatile minicomputer
board for IoT projects. We can boot a Linux version and easily execute Python scripts
that can interact with the different components included on the board. This book will
teach you to develop IoT prototypes, from selecting the hardware to all the necessary
stacks with Python 2.7.3, its libraries, and tools. In case you need a smaller board or
an alternative, all the examples included in the book are compatible with Intel Edison
boards, and therefore, you can switch to this board in case you need to.

Python is one of the most popular programming languages. It is open source,
multiplatform, and you can use it to develop any kind of application, from websites
to extremely complex scientific computing applications. There is always a Python
package that makes things easier for us in order to avoid reinventing the wheel and
solve problems faster. Python is an ideal choice for developing a complete IoT stack.
This book covers all the things you need to know to transform everyday objects into
IoT projects.

This book will allow you to prototype and develop IoT solutions from scratch with
Python as the programming language. You will leverage your existing Python
knowledge to capture data from the real world, interact with physical objects,
develop APIs, and use different IoT protocols. You will use specific libraries to easily
work with low-level hardware, sensors, actuators, buses, and displays. You will learn
how to take advantage of all the Python packages with the Intel Galileo Gen 2 board.
You will be ready to become a maker and to be a part of the exciting IoT world.

What this book covers
Chapter 1, Understanding and Setting up the Base IoT Hardware, start us off on our
journey towards Internet of Things (IoT) with Python and the Intel Galileo Gen 2
board. We will learn the different features offered by this board and visualize its
different components. We will understand the meaning of the different pins, LEDs,
and connectors. We will learn to check the board's firmware version and to update
if necessary.

Chapter 2, Working with Python on Intel Galileo Gen 2, leads us through many
procedures that make it possible to work with Python as the main programming
language to create IoT projects with our Intel Galileo Gen 2 board. We will write a
Linux Yocto image to a microSD card, configure the board to make it boot this image,
update many libraries to use their latest versions, and launch the Python interpreter.

Preface

[vii]

Chapter 3, Interacting with Digital Outputs with Python, teaches us how to work with
two different libraries to control digital outputs in Python: mraa and wiring-x86. We
will connect LEDs and resistors to a breadboard and write code to turn on between
0 to 9 LEDs. Then, we will improve our Python code to take advantage of Python's
object-oriented features, and we will prepare the code to make it easy to build an API
that will allow us to print numbers with LEDs with a REST API.

Chapter 4, Working with a RESTful API and Pulse Width Modulation, has us working
with Tornado Web Server, Python, the HTTPie command-line HTTP client, and the
mraa and wiring-x86 libraries. We will generate many versions of RESTful APIs that
will allow us to interact with the board in computers and devices connected to the
LAN. We will be able to compose and send HTTP requests that print numbers in
LEDs, change the brightness levels for three LEDs, and generate millions of colors
with an RGB LED.

Chapter 5, Working with Digital Inputs, Polling and Interrupts, explains the difference
between reading pushbutton statuses with polling and working with interrupts and
interrupt handlers. We will write code that will allow the user to perform the same
actions with either pushbuttons in the breadboard or HTTP requests. We will combine
code that reacts to changes in the statuses of the pushbuttons with a RESTful API built
with Tornado Web Server. We will create classes to encapsulate pushbuttons and the
necessary configurations with the mraa and wiring-x86 libraries.

Chapter 6, Working with Analog Inputs and Local Storage, explains how to work with
analog inputs to measure voltage values. We will measure voltages with an analog
pin and both the mraa and the wiring-x86 libraries. We will be able to transform a
variable resistor into a voltage source and make it possible to measure the darkness
level with an analog input, a photoresistor, and a voltage divider. We will fire actions
when the environment light changes, and we will work with both analog inputs and
outputs. We will register events by taking advantage of the logging features included
in the Python standard library and the USB 2.0 connector included in the Intel
Galileo Gen 2 board.

Chapter 7, Retrieving Data From the Real World with Sensors, has us working with a
variety of sensors to retrieve data from the real world. We will take advantage of
the modules and classes included in the upm library that will make it easy for us
to start working with analog and digital sensors. We will learn the importance of
considering units of measurement because sensors always provide values measured
in a specific unit, which we must consider. We will measure the magnitude and
direction of proper acceleration or g-force, ambient temperature, and humidity.

Preface

[viii]

Chapter 8, Displaying Information and Performing Actions, teaches us about different
displays the we can connect to our board through the I2C bus. We will work with an
LCD display with an RGB backlight, and we will then replace it with an OLED dot
matrix. We will write code that takes advantage of the modules and classes included
in the upm library to work with LCD and OLED displays and show text on them.
We will also write code that interacts with an analog servo. We will control the shaft
to allow us to create a gauge chart to display the temperature value retrieved with a
sensor. Our Python code will make things move.

Chapter 9, Working with the Cloud, teaches you how to combine many cloud-based
services that will allow us to easily publish data collected from sensors and visualize
it in a web-based dashboard. We will work with the MQTT protocol and its
publish/subscribe model to process commands in our board and indicate when the
commands are successfully processed through messages. First, we will work with the
PubNub cloud that works with the MQTT protocol under the hood. Then, we will
develop the same example with Mosquitto and Eclipse Paho. We will be able to write
applications that can establish bidirectional communications with our IoT devices.

Chapter 10, Analyzing Huge Amounts of Data with Cloud-based IoT Analytics, explains
the close relationship between IoT and Big Data. We will work with Intel IoT
Analytics, a cloud-based service that allows us to organize huge amounts of data
collected by multiple IoT devices and their sensors. We will use the requests package
to write a few lines of Python code to interact with the Intel IoT Analytics REST API.
We will learn about the different options that Intel IoT Analytics offers us to analyze
huge amounts of data, and we will define rules to trigger alerts.

What you need for this book
In order to work with the different tools required to connect to the Intel Galileo Gen
2 board and launch the Python samples, you will need any computer with an Intel
Core i3 or higher CPU and at least 4 GB of RAM. You can work with any of the
following operating systems:

• Windows 7 or higher (Windows 8, Windows 8.1, or Windows 10)
• Mac OS X Mountain Lion or higher
• Any Linux version capable of running Python 2.7.x
• Any modern browser with JavaScript support.

You will also need an Intel Galileo Gen 2 board and a breadboard with 830 tie points
(holes for connections) and 2 power lanes.

Preface

[ix]

In addition, you will need different electronic components and breakout boards to
build the examples included in many chapters.

Who this book is for
This book is ideal for Python programmers who want to explore the tools available
in the Python ecosystem in order to build their own IoT web stack and IoT-related
projects. People from creative and designing backgrounds will also find this book
equally useful.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
" By default, the pip package management system that makes it easy to install and
manage software packages written in Python isn't installed."

A block of code is set as follows:

if __name__ == "__main__":
 print ("Mraa library version: {0}".format(mraa.getVersion()))
 print ("Mraa detected platform name: {0}".format(mraa.
getPlatformName()))

 number_in_leds = NumberInLeds()
 # Count from 0 to 9
 for i in range(0, 10):
 number_in_leds.print_number(i)
 time.sleep(3)

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

class NumberInLeds:
 def __init__(self):
 self.leds = []
 for i in range(9, 0, -1):
 led = Led(i, 10 - i)
 self.leds.append(led)

Preface

[x]

 def print_number(self, number):
 print("==== Turning on {0} LEDs ====".format(number))
 for j in range(0, number):
 self.leds[j].turn_on()
 for k in range(number, 9):
 self.leds[k].turn_off()

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "The next
time you have to upload a file to the board, you don't need to set up a new site in the
Site Manager dialog box in order to establish an SFTP connection."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[xi]

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Internet-of-Things-with-Python. We also have other code
bundles from our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/InternetofThingswithPython_
ColorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Internet-of-Things-with-Python
https://github.com/PacktPublishing/Internet-of-Things-with-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/InternetofThingswithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/InternetofThingswithPython_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/InternetofThingswithPython_ColorImages.pdf

Preface

[xii]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Understanding and Setting
up the Base IoT Hardware

In this chapter, we will start our journey towards Internet of Things (IoT) with
Python and the Intel Galileo Gen 2 board. Python is one of the most popular and
versatile programming languages. You can use Python to create multiplatform
desktops and Web, mobile, and scientific applications. You can work with huge
amounts of data and develop the complex algorithms that are popular in Big Data
scenarios with Python. There are thousands of Python packages, which allow you
to extend Python capabilities to any kind of domain you can imagine.

We can leverage our existing knowledge of Python and all of its packages to code
the different pieces of our IoT ecosystem. We can use the object-oriented features,
which we love from Python. in code that interacts with the Intel Galileo Gen 2 board
and the electronic components connected to it. We can use the different packages
that make it possible for us to easily run a Web server and provide a RESTful API.
We can use all the packages that we already know to interact with databases, Web
services, and different APIs. Python makes it easy for us to jump into the IoT world.
We don't need to learn another programming language, we can use the one we
already know and love.

Understanding and Setting up the Base IoT Hardware

[2]

First, we will learn about the features included in the Intel Galileo Gen 2 board.
We will:

• Understand the Intel Galileo Gen 2 board and its components
• Recognize the Input/Output and the Arduino 1.0 pinout
• Learn about the additional expansion and connectivity capabilities
• Understand the buttons and the LEDs found in the board
• Check and upgrade the board's firmware

Understanding the Intel Galileo Gen 2
board and its components
We want to bring our ideas to life, easily. We want to be able to display a happy
birthday message on a screen when we clap our hands. We want to collect huge
amounts of data from the real world. We want to create wearables that keep track
of all our activities during an entire day. We want to use the data to perform actions
and interact with real-world elements. We want to use our mobile devices to control
robots. We want to be able to determine whether the weather is hot or cold based on
the data retrieved from a temperature sensor. We want to make decisions based on
the values collected from a humidity sensor.

We want to measure how much of our favorite beverage is there in the cup and
display the information on an LCD dot matrix display. We want to analyze all the
data collected by things that are connected to the Internet. We want to become
makers in the Internet of Things era by leveraging our existing Python
programming skills.

We will use Python as the main programming language to control the different
components connected to an Intel Galileo Gen 2 board, specifically Python 2.7.3.
However, before we can become makers, it is necessary to understand some of this
board's features.

Chapter 1

[3]

After we unbox an Intel Galileo Gen 2, we will find the following elements:

• The Intel Galileo Gen 2 board
• A 12 VDC (Volts direct current), 1.5 A (Amperes) power supply

The following image shows the front view for an unboxed Intel Galileo Gen 2 board:

Let's have a look at the front view of the board for a few minutes. We will notice
many familiar elements, such as an Ethernet jack, host USB port, and many labeled
pins. In case we have previous experience with an Arduino UNO R3 board, we will
easily realize that many elements are in the same locations as in that board. In case
we have previous experience with embedded systems and electronics, we will easily
realize that the board provides the necessary pins (SCL and SDA) to talk with the
devices that support the I2C bus. In case we don't have any previous experience,
we will learn what we can do with all these pins in the examples included in the
forthcoming chapters.

Understanding and Setting up the Base IoT Hardware

[4]

The next image shows the graphical representation of the Intel Galileo Gen 2 board
in the Fritzing open source and free software. As you might notice, the graphical
representation includes only the important pieces of the board and all the things
we can wire and connect, with the necessary labels to help recognize them easily.
We will use the Fritzing diagrams to illustrate all the wirings that we must do in
order to complete each sample project through the book.

You can download the latest version of Fritzing from http://
fritzing.org/download/. Fritzing runs on Windows, Mac OS X and
Linux. You will find the Fritzing sketches for all the examples included
throughout the book in files with an FZZ extension (*.fzz) as a part of
the code files that you can download for this book. The files are saved
with Fritzing 0.92. Thus, you can open the sketches in Fritzing, check the
breadboard view, and make any changes to it based on your needs.

The next image shows the electronic schematic representation of the Intel Galileo
Gen 2 board, that is, the symbolic representation of the board to make it easy to
understand the interconnections of the electronic circuits related to the board.
The electronic schematic is also known as circuit diagram or electrical diagram.
The symbol includes all the pins provided by the board shown as connectors. We
can easily recognize the many labels that appear on the board as labels for each
connector in the symbol. Fritzing allows us to work with both the breadboard and
the electronic schematic representation.

http://fritzing.org/download/
http://fritzing.org/download/

Chapter 1

[5]

When you open the Fritzing file for each sample included in the book, you
will be able to easily switch from the breadboard view to the schematic
view by clicking on either the Breadboard or the Schematic buttons
located at the top of the main Fritzing window.

Understanding and Setting up the Base IoT Hardware

[6]

The next image shows the system block diagram for the Intel Galileo Gen 2 board.
The diagram is a part of the content included in the Intel Galileo Gen 2 design
document: http://www.intel.com/content/dam/www/public/us/en/documents/
guides/galileo-g2-schematic.pdf.

The Intel Galileo Gen 2 board is an Arduino certified embedded computer that
we will use to develop and prototype our IoT projects. The board is based on Intel
architecture and uses an Intel Quark SoC X1000 system on a chip, known as SoC
or application processor. The SoC is a single-core and single-threaded application
processor that is compatible with the Intel Pentium 32-bit instruction set architecture
(ISA). Its operating speed is up to 400 MHz. The following image shows the SoC,
located approximately at the center of the board. The following page provides
detailed information about the Intel Quark SoC X1000: http://ark.intel.com/
products/79084/Intel-Quark-SoC-X1000-16K-Cache-400-MHz

http://www.intel.com/content/dam/www/public/us/en/documents/guides/galileo-g2-schematic.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/guides/galileo-g2-schematic.pdf
http://ark.intel.com/products/79084/Intel-Quark-SoC-X1000-16K-Cache-400-MHz
http://ark.intel.com/products/79084/Intel-Quark-SoC-X1000-16K-Cache-400-MHz

Chapter 1

[7]

On the right-hand side of the CPU, the board has two integrated circuits that provide
256 MB of DDR3 RAM (short for Random Access Memory) memory. The operating
system and Python will be able to work with this RAM memory. As it happens in
any computer, RAM memory loses its information after we turn off the board. Thus,
we say that RAM is volatile, as the data stored in it is lost when the memory isn't
powered. The following image shows the DDR3 memory chips.

www.allitebooks.com

http://www.allitebooks.org

Understanding and Setting up the Base IoT Hardware

[8]

In addition, the board provides access to the following onboard memories:

• 512 KB embedded SRAM (short for Static Random Access Memory).
• 8 MB Legacy SPI NOR Flash, non-volatile memory. Its goal is to store the

board's firmware and sketches.
• 11 KB EEPROM (short for Electrically Erasable Programmable Read-Only

Memory). It is non-volatile and we can store data in it for our own purposes.

Recognizing the Input/Output and the
Arduino 1.0 pinout
The board provides the following I/O pins:

• 14 digital I/O pins
• Six PWM (short for Pulse Width Modulation) output pins
• Six analog input pins

The board is hardware and software pin-compatible with Arduino shields designed
for the Arduino Uno R3. The 14 digital I/O pins numbered from 0 to 13 are located
in the upper-right corner of the board and they also include the adjacent AREF
and GND pins, as in the Arduino Uno R3. The pins configuration is also known as
Arduino 1.0 pinout.

Shields are boards that we can plug on top of the Intel Galileo Gen 2
board to extend its capabilities. For example, you can plug a shield
that provides two high current motor controllers or a shield that adds
an LED matrix.

As it happens in the Arduino Uno R3, we can use six of these digital I/O pins as
PWM (Pulse Width Modulation) output pins. Specifically, the pins labeled with a
tilde symbol (~) as a prefix to the number have this capability: pins ~11, ~10, ~9, ~6,
~5 and ~3. The following are the pins that compose the header from left to right:

• SCL
• SDA
• AREF
• GND
• 13
• 12

Chapter 1

[9]

• ~11
• ~10
• ~9
• 8
• 7
• ~6
• ~5
• 4
• ~3
• 2
• TX->1
• RX<-0

The next image shows the 14 digital I/O pins and the six PWM output pins labeled
with a tilde symbol (~) as a prefix for the number. The first two pins, starting from
the left are for the two I2C bus lines: SCL (Serial CLock) and SDA (Serial DAta). The
last two pins, starting from the left, labeled TX->1 and RX<-0 are the UART 0 port
pins. A UART port stands for Universal Asynchronous Receiver/Transmitter.

Understanding and Setting up the Base IoT Hardware

[10]

The six analogous input pins numbered from A0 to A5 are located in the lower-right
corner of the board, as in the Arduino Uno R3. On the left-hand side of the analog
input pins, we can see the following power pins that compose the power header:

• POWER
• IOREF
• RESET
• 3.3V
• 5V
• GND
• GND
• VIN

The VIN pin in the power header provides the input voltage that is supplied to the
board through its power jack. The power supply included in the box provides 12V.
However, the board can operate with an input voltage ranging from 7V to 15V. The
board also provides support to Power over Ethernet, also known as PoE, this passes
the electrical power to the board along with data on the Ethernet cable.

The following screenshot shows the power pins, also known as power headers, and
the six analog input pins:

Chapter 1

[11]

The board includes a jumper labeled IOREF that allows us to select between a 3.3V
or 5V shield operation and provides voltage-level translation to all the I/O pins.
Based on the jumper position, the board can work with either a 3.3V or 5V Arduino
shield. By default, the IOREF jumper is set to the 5V position, and therefore, the
initial setting allows us to work with 5V shields. The following screenshot shows
the IOREF jumper set to the 5V position.

The IOREF pin in the power header provides the operational voltage
reference based on the IOREF jumper position. Thus, based on the IOREF
jumper position, the voltage reference in the IOREF pin can be either 5V
or 3.3V.

Understanding and Setting up the Base IoT Hardware

[12]

On the right-hand side of the board, there is a 6 pin, specifically 2x3 pin, ICSP
(In-Circuit Serial Programming) header, labeled ICSP. The location of this header
is also compatible with the Arduino 1.0 pinout. The following screenshot shows
the ICSP header:

Recognizing additional expansion and
connectivity capabilities
The power jack is located on the left-hand side of the board and it is labeled PWR.
Below the power jack, there is a microSD card connector, labeled SDIO. The
microSD card connector supports microSD cards with a maximum support capacity
of 32 GB. We will use the microSD card as our main storage to store the operating
system, Python, and the necessary libraries. The board can boot from the microSD
card. Thus, we can think of the microSD card as our main hard drive to work with
IoT projects. The following screenshot shows the power jack with the power supply
connected to it and the microSD card connector with an 8 GB microSD card being
connected to it.

Chapter 1

[13]

The Ethernet jack is located in the upper-left corner of the board, labeled 10/100
LAN, above the power jack. The Ethernet port supports both the Ethernet and Fast
Ethernet standards, and therefore, it can work with either 10 Mbps or 100 Mbps
nominal throughput rates. The Ethernet port is extremely useful to connect the board
to our LAN and access it through an IP address. There is an adhesive label with the
MAC (Media Access Control) address for the Ethernet onboard network interface
card. The MAC address is also known as physical address.

Understanding and Setting up the Base IoT Hardware

[14]

The following screenshot shows this adhesive label on the Ethernet jacket and a cable
plugged in it. The MAC address for the board shown in the image is A1B2C3D4E5F6.
If we use the convention that expresses a MAC address as six groups of two
hexadecimal digits separated by colons (:), the MAC address will be expressed as
A1:B2:C3:D4:E5:F6. The MAC address is extremely useful to identify the board in
our LAN DHCP client list. For security reasons, the original MAC address has been
erased and we use a fake MAC address for our example.

Chapter 1

[15]

A six pin, 3.3V USB TTL UART header is located next to the Ethernet jack,
specifically UART 1, the second UART port in the board. The six pin,
3.3V USB TTL UART header has the following labels on the right-hand side:

• CTS
• TXO
• RXI
• No label (empty)
• RTS
• GND

Next to the Ethernet jack and the UART header, there is a micro USB Type B
connection, labeled USB CLIENT. We can use this connection to connect the
computer to the board, in order to perform firmware updates or transfer sketches.

However, it is important to know that you cannot power the board off
USB. In addition to it, never connect a cable to the micro USB Type B
connection before you connect the power supply to the board.

Next to the micro USB connection, there is a USB 2.0 host connector, labeled USB
HOST. The connector supports a maximum of 128 USB endpoint devices. We can
use this connector to plug a USB thumb drive for additional storage, USB keyboard,
USB mouse, or any other USB device that we might need. However, we must
consider the necessary drivers and their compatibility with the Linux distribution
that we will be using with the board, before we plug any device.

The following image shows the UART header, micro USB connector, and the USB 2.0
port, from left to right, next to the Ethernet jack.

Understanding and Setting up the Base IoT Hardware

[16]

The following image shows the side view with all the connectors and jacks. From
left to right, the USB 2.0 port, the micro USB connector, the UART header, and the
Ethernet jack with the green (SPEED) and yellow (LINK) LEDs.

The back of the board provides a mini PCI Express slot, also known as the mPICe
slot, compliant with PCIe 2.0 features, labeled PCIE. The slot is compatible with both
full size and half size mPCIe modules that we can connect to the board to expand its
capabilities. The half size mPCIe module requires an adapter to be connected to the
slot on the board.

It is possible to add another USB host port via the mPCIe slot. The mPCIe
slot is extremely useful to provide WiFi, Bluetooth, and other types of
connectivity that aren't included as onboard features.

Next to the mPCIe slot, there is a 10-pin JTAG (Joint Test Action Group) header,
labeled JTAG. It is possible to use the JTAG interface for debugging purposes in
combination with debugging software that supports the Intel Quark SoC X1000
application processor, such as the free and open source on-chip debugging
software OpenOCD.

Chapter 1

[17]

The next image shows the back-view for the board with mPCIe slot and the
JTAG header.

Understanding the buttons and the LEDs
The front of the board provides two buttons located at the bottom labeled REBOOT
and RESET. The following image shows these two buttons:

The button labeled REBOOT resets the Intel Quark SoC X1000 application processor.
The button labeled RESET resets the sketch and any shield attached to the board.
In this book, we won't be working with the Arduino sketches but we might need to
reset a shield.

Understanding and Setting up the Base IoT Hardware

[18]

There are five rectangular LEDs located next to the USB 2.0 host connector: two
LEDs on the left-hand side of the connector and three LEDs on the right-hand side.
The following are the labels and the meaning of the LEDs:

• OC: The LED signals over-current when the board is powered through the
micro USB connector. However, this feature is not enabled on Intel Galileo
Gen 2 boards, and therefore, we just have the LED turned off. If the LED
turns on, it means that the board is not working OK or the power supply
is failing. This LED usually turns on when the board is bricked. We say a
board is bricked when it doesn't work anymore and is technologically as
useful as a brick.

• USB: It is the micro USB ready LED. The LED turns on after the board has
finished the boot process and allows us to connect the micro USB cable to
the micro USB connection labeled USB CLIENT. We should never connect a
cable to the micro USB connection before this LED turns on because we can
damage the board.

• L: The LED is connected to pin 13 of the digital I/O pins, and therefore, a
high level sent to pin 13 will turn on this LED and a low level will turn it off.

• ON: It is a power LED and indicates that the board is connected to the
power supply.

• SD: The LED indicates I/O activity with the microSD card connector, labeled
SDIO, and therefore, this LED will blink whenever the board is reading or
writing on the microSD card.

The following image shows the OC and USB LEDs on the left-hand side of the USB
2.0 host connector and the L, ON and SD LEDs on its right-hand side.

Chapter 1

[19]

The board includes an integrated real-time clock, known as RTC. It is possible to
connect a 3V coin-cell battery to keep the RTC operation between turn-on cycles.
Unluckily, the battery is not included in the box. The two RTC coin-cell connector
pins are located in the lower-left corner of the Intel Quark SoC X1000 application
processor, labeled COIN and with a battery icon. The next image shows the two
RTC coin-cell connector pins.

Understanding and Setting up the Base IoT Hardware

[20]

Checking and upgrading the board's
firmware
Sometimes, the original firmware included in the board is the latest one available for
Intel Galileo Gen 2. However, in some cases, we might need a firmware update, and
therefore it is always convenient to make sure that we are working with the latest
available version for the onboard firmware.

Firmware updates solve bugs and compatibility issues. Thus, it is always
convenient to work with the latest firmware. However, in case you
don't feel sure about following the procedure to update the firmware,
it is convenient to keep the version that came with the board. A wrong
procedure while updating the firmware or a power loss during the
process might damage the board, that is, it might transform the board into
a bricked one. You definitely don't want this to happen to your board.

If you want to check the current firmware version and check whether it is necessary
to upgrade the board's firmware, you must follow the following steps:

Go to the Intel Galileo Firmware and Drivers download page at http://
downloadcenter.intel.com/download/24748/Intel-Galileo-Firmware-and-
Drivers-1-0-4. The URL is for the latest firmware version at the time this book
has been written: 1.0.4. However, always make sure that you are downloading the
latest available version from Intel Drivers & Software Download Center. In case
the version is higher than 1.0.4, the procedure will be the same but you just need to
replace 1.0.4 with the new version numbers.

The Web browser will display the available downloads for the supported operating
systems. The Web page doesn't detect the operating system you are using, and
therefore, it offers the downloads for all the supported operating systems: Windows,
Mac OS X, and Linux. The following image shows the contents for the Web page:

http://downloadcenter.intel.com/download/24748/Intel-Galileo-Firmware-and-Drivers-1-0-4
http://downloadcenter.intel.com/download/24748/Intel-Galileo-Firmware-and-Drivers-1-0-4
http://downloadcenter.intel.com/download/24748/Intel-Galileo-Firmware-and-Drivers-1-0-4

Chapter 1

[21]

You will find a PDF user guide under OS Independent: IntelGalileoFirmwa
reUpdaterUserGuide-1.0.4.pdf. Click on the button, read and accept the Intel
Software License Agreement, and read the Intel Galileo Firmware Updater Tool
documentation. The documentation includes all the necessary steps to install the
drivers in Windows and Linux. The Mac OS X doesn't require any driver installation.

Before you install the drivers or start the process to check the firmware version in
your board, remove all the connections from the board, such as the microUSB cable
and any USB device plugged into the USB 2.0 host connector. Remove any sketches
and also the microSD card. Your Intel Galileo Gen 2 board should be empty just as
when you unboxed it.

Understanding and Setting up the Base IoT Hardware

[22]

Connect the power supply to the board and wait a few seconds until the rectangular
LED labeled USB turns on. Once this LED is turned on, the boot process has already
finished and it is safe to connect a USB Type A to Micro-B USB cable from your
computer to the micro USB connector labeled USB CLIENT in the board. Unluckily,
the cable isn't included within the board's box. The following image shows an Intel
Galileo Gen 2 board with the connections done and the firmware updater tool
running on Mac OS X.

In case you are working with either Windows or Linux, follow the procedure to
install the necessary drivers as explained in the IntelGalileoFirmwareUpdaterUserG
uide-1.0.4.pdf document.

Chapter 1

[23]

You already have the board connected to your computer, and therefore,
you can skip this step in the document. In fact, many versions of this
document didn't explain that you had to wait for the USB LED to turn on
before you can connect the board to a computer through the micro USB
connector and that caused many boards to have unexpected problems.

Once you have the drivers installed in your computer and your board is connected to
it, you can download and execute the ZIP file of the Intel Galileo Firmware Updater
for your operating system. For Windows, the file is IntelGalileoFirmwareUpdater-
1.0.4-Windows.zip. For Mac OS X, the file is IntelGalileoFirmwareUpdater-1.0.4-
OSX.zip. You usually have to scroll down the Web page to find the appropriate file
for your operating system. Once you click on the desired file button, it is necessary to
read and accept the Intel Software License Agreement before you can download the
zip file.

In Windows, download the IntelGalileoFirmwareUpdater-1.0.4-Windows.zip file,
open it, and execute the firmware-updater-1.0.4.exe application included in the
zip file. The Intel Galileo Firmware Updater Tool window will appear and it will
automatically select the virtual COM port number, such as COM3, generated by the
previously installed driver in the Port dropdown. The application will communicate
with the board and then display the firmware version included with the tool in
Update Firmware Version and the current board's firmware version in Current
Board Firmware.

The following image shows the Intel Galileo Firmware Updater Tool running on
Windows 10. In this case, the tool has the newest version for the firmware because it
offers version 1.0.4 and the current board's firmware is 1.0.2.

Understanding and Setting up the Base IoT Hardware

[24]

In Mac OS X, download the IntelGalileoFirmwareUpdater-1.0.4- OSX.zip file and
then execute the downloaded Firmware Updater application. Take into account
that you might need to authorize the operating system to run the application based
on your security settings and your OS X version. The Intel Galileo Firmware
Updater Tool window will appear and it will automatically select the generated USB
modem device for the connected board, such as /dev/cu.usbmodem1411, in the Port
dropdown. The application will communicate with the board and then it will display
the firmware version included with the tool in Update Firmware Version and the
current board's firmware version in Current Board Firmware.

The following image shows the Intel Galileo Firmware Updater Tool running on OS
X El Capitan. In this case, the tool has the newest version for the firmware because it
offers version 1.0.4 and the current board's firmware is 1.0.2, as it happened with the
Windows version.

In case you decide that you need and want to update the firmware, considering the
previously explained risks, you just need to click on the Update Firmware button
and wait for the tool to indicate that the process has finished. The procedure is the
same for either Windows or Mac OS X.

Chapter 1

[25]

Don't unplug the USB cable from your computer connected to the board,
don't disconnect the power supply from the board, and don't close the
application until the tool indicates that the firmware update has finished.
The safest way to perform a firmware update is to plug the power supply
to a UPS (Uninterruptible Power Supply) to protect it from a power
failure during the firmware update process.

Once the firmware update process has finished and the tool displays that you have
the same firmware version on the board that the firmware version that the tool offers,
you can close the application and disconnect the USB cable from your computer and
the board. Make sure that you don't leave the USB cable connected to your board and
then unplug the power supply.

Test your knowledge
1. The Intel Galileo Gen 2 board includes:

1. WiFi connectivity onboard with three antennas.
2. Ethernet connectivity onboard.
3. Bluetooth connectivity onboard.

2. The Intel Galileo Gen 2 board is hardware and pin compatible with a wide
range of:

1. Arduino Uno R3 shields.
2. Arduino Pi shields.
3. Raspberry Pi shields.

3. The jumper labeled IOREF allows us to:
1. Select between 3.5V or 7V shield operation and provide voltage-level

translation to all the I/O pins.
2. Select between 3.3V or 5V shield operation and provide voltage-level

translation to all the I/O pins.
3. Reset the board.

Understanding and Setting up the Base IoT Hardware

[26]

4. The LED labeled L is connected to the following pins of the digital I/O pins:
1. 11.
2. 12.
3. 13.

5. The back of the board provides the following slot:

1. Mini PCI Express.
2. PCMCIA.
3. Thunderbolt.

Summary
In this chapter, we learnt the different features offered by the Intel Galileo Gen 2
board. We visualized the different components of the board and we understood the
meaning of the different pins, LEDs, and connectors. We also learned to check the
board's firmware version and to update it in case it is necessary to do so.

Now that we recognize the different components of the board, we have to prepare
it to work with Python as our main programming language, which is what we are
going to discuss in the next chapter.

[27]

Working with Python on Intel
Galileo Gen 2

In this chapter, we will start our journey towards Internet of Things (IoT) with
Python and the Intel Galileo Gen 2 board. We shall:

• Set up the environment to start working with Python as the main
programming language

• Retrieve the board's assigned IP address after it boots a Yocto
Linux distribution

• Connect to the board's operating system and run commands on it
• Install and upgrade the necessary libraries to interact with the board's

component with Python
• Run our first lines of Python code in the board

Setting up the board to work with Python
as the programming language
There is some work to be done in order to start working with Python as the main
programming language to control this board. We need the following additional
elements that aren't included in the board's box:

• A microSD card of at least 4 GB with a maximum supported capacity of 32
GB. It is convenient to use a speed class 4 or a faster microSD card. Note that
you will lose all the contents of the microSD card.

• A microSD to SD memory card adapter. The adapter is usually included
within a microSD card's package.

www.allitebooks.com

http://www.allitebooks.org

Working with Python on Intel Galileo Gen 2

[28]

• A computer with an SD memory card reader. Most modern laptops and
desktop computers include SD mermory card readers. However, in case you
don't have one, you can buy a USB SD memory card reader and plug it to a
free USB port in your computer. SD memory card readers are in fact read/
write devices, and therefore, we can use them to write to a microSD card via
the microSD to SD memory card adapter.

• An Ethernet cable.
• An Ethernet switch or a WiFi router with a free Ethernet port. You will

connect the Intel Galileo Gen 2 board to your LAN.

In case you do not have access to your LAN's switch, you will have
to ask your network administrator for advice.

The next picture shows an 8 GB speed class 4 microSD card labeled SDC4/8GB (left)
and a microSD to SD memory card adapter (right).

We have to download the latest version of the Yocto Linux meta distribution boot
image from the Intel IoT Development Kit Images Repository website. Open http://
iotdk.intel.com/images/ in your Web browser and download the iot-devkit-
latest-mmcblkp0.direct.bz2 compressed file with the boot image listed on the
Web page. You can also download it by entering the full URL in your Web browser:
http://iotdk.intel.com/images/iot-devkit-latest-mmcblkp0.direct.bz2.

http://iotdk.intel.com/images/
http://iotdk.intel.com/images/
http://iotdk.intel.com/images/iot-devkit-latest-mmcblkp0.direct.bz2

Chapter 2

[29]

We will use the devkit-latest-mmcblkp0.direct.bz2 file, last
modified on July 2, 2015. Make sure that you don't download any version
releases sooner than this date because there are many differences in the
package names used in previous releases that aren't compatible with the
instructions provided later on in this chapter.

Once you have downloaded the file, it is necessary to decompress the downloaded
image file and write the extracted image to the microSD card. The procedure is
different in Windows and Mac OS X.

In Windows, you can use 7-Zip to extract the contents from the downloaded
.bz2 file. 7-Zip is a free and open source software that you can download from
http://www.7-zip.org.

Once you extract the Yocto Linux meta distribution boot image iot-devkit-
latest-mmcblkp0.direct from the .bz2 file, you have to write this image to the
microSD card. Insert the microSD card into the microSD to SD memory card adapter
and insert the adapter into the computer's SD memory card reader.

The Win32 Disk Imager tool is an image writer for Windows that allows us to write
images to USB sticks or SD/CF cards. You can use this free software to write the
image to the microSD card. You can download it from http://sourceforge.net/
projects/win32diskimager/files/Archive. The installer for the latest version is
the Win32DiskImager-0.9.5-install.exe file. Once you install the software, take
into account that you must execute the application as an administrator in Windows.
You can right-click on the application's icon and select Run as administrator.

Click on the icon on the right-hand side of the Image File textbox and change the
files filter from Disk Images (*.img *.IMG) to *.* so that you can select the Yocto
Linux boot image with a direct extension.

Select the drive letter that Windows assigned to the microSD card in the
Device dropdown.

Make sure that you select the right drive letter because all the contents for
the drive will be erased and overwritten with the boot image. If you select
the incorrect drive letter, you will lose the contents of the entire drive.

http://www.7-zip.org
http://sourceforge.net/projects/win32diskimager/files/Archive
http://sourceforge.net/projects/win32diskimager/files/Archive

Working with Python on Intel Galileo Gen 2

[30]

Click on Write and then click on Yes in the confirm overwrite dialog box. Now,
wait until the tool finishes writing the contents to the microSD card. The following
screenshot shows the Win32 Disk Imager tool displaying the progress while it writes
the image to the microSD card in Windows 10.

It will take a few minutes until the tool finishes writing the image to the microSD
card. Once the writing process has finished, the tool will display a Complete dialog
box with a Write successful message. Click on OK to close the dialog box and close
the Win32 Disk Imager window.

Eject the microSD card in Windows and then remove the SD memory card adapter
from the SD card reader.

In Mac OS X and Linux, you can use bunzip2 to extract the contents from the
downloaded bz2 file, diskutil to unmount the microSD card, and dd to write the
image to the microSD card. It is also possible to open a Terminal and unzip the
downloadeded bz2 file by running the following command in the folder in which
you downloaded the file:

bunzip -c iot-devkit-latest-mmcblkp0.direct

You need to be very careful with the commands to avoid erasing a wrong
device such as a partition of your hard drive.

It is also possible to unzip the downloaded bz2 file by double-clicking on it on
Finder. However, we will be running more commands in the Terminal window,
and therefore, it is easier to start unzipping the file with a command.

Chapter 2

[31]

Once you extract the Yocto Linux boot image iot-devkit-latest-mmcblkp0.
direct from the bz2 file, you have to write this image to the microSD card. Insert
the microSD card into the microSD to SD memory card adapter and then insert
the adapter into the computer's SD memory card reader. Launch the Disk Utility
application and check the details for the media connected to the card reader. For
example, in any MacBook laptop, you will find the info by clicking on APPLE SD
Card Reader Media and then on the Info button. Check the name listed in Device
name or BSD device node. We will use this name in a command that will write
the boot image to the microSD card. The following picture shows the Disk Utility
application and the information for a microSD card whose device name is disk2. We
just need to add /dev/ as a prefix to the gathered device name, and therefore, in this
sample case, the complete name is /dev/disk2.

Working with Python on Intel Galileo Gen 2

[32]

It is also possible to gather the information by running the diskutil command to list
all the devices and find out the device name assigned to the microSD card. However,
the information provided by this command is a bit difficult to read and the Disk
Utility application makes it easy to understand which is the device name for the
memory card reader. The following command lists all the devices:

diskutil list

The following is the sample output generated by this command. The highlighted
lines show the device name for the microSD card: /dev/disk2.

/dev/disk0 (internal, physical):
 #: TYPE NAME SIZE
IDENTIFIER
 0: GUID_partition_scheme *121.3 GB
disk0
 1: EFI EFI 209.7 MB
disk0s1
 2: Apple_CoreStorage Macintosh HD 120.5 GB
disk0s2
 3: Apple_Boot Recovery HD 650.0 MB
disk0s3
/dev/disk1 (internal, virtual):
 #: TYPE NAME SIZE
IDENTIFIER
 0: Apple_HFS Macintosh HD +120.1 GB
disk1
 Logical Volume on disk0s2
 4BADDDC3-442C-4E75-B8DC-82E38D8909AD
 Unencrypted
/dev/disk2 (internal, physical):
 #: TYPE NAME SIZE
IDENTIFIER
 0: FDisk_partition_scheme *7.7 GB
disk2
 1: Linux 53.5 MB
disk2s1
 2: Linux 1.4 GB
disk2s2

Make sure that you take note of the right device name because all the
contents for the drive will be erased and overwritten with the boot image.
If you specify a wrong device name, you will lose the contents of the
entire drive.

Chapter 2

[33]

Unmount the microSD card with the following command. You need to replace /dev/
devicename with /dev/disk2 in case the device name you gathered was disk2. If
not, replace it with the appropriate device name.

sudo diskutil unmountDisk /dev/devicename

The Terminal will ask for your password and will unmount the microSD card. Run
the following dd command to write the image in the input file named iot-devkit-
latest-mmcblkp0.direct to the microSD card in the device name you gathered
in the previous step. You need to replace of=/dev/devicename with of=/dev/
disk2 in case the device name you gathered was disk2. If not, replace it with the
appropriate device name. The command doesn't include a device name so that you
don't overwrite any of your disks by accident.

sudo dd if=iot-devkit-latest-mmcblkp0.direct of=/dev/devicename bs=8m

Then, it will take some time to write the image to the microSD card. Wait until
the command finishes and the Terminal displays the prompt again. Notice that it
usually takes a few minutes and there is no output with any progress indication
until the write process finishes. You will see the following output after the
command finishes:

169+1 records in
169+1 records out
1417675776 bytes transferred in 1175.097452 secs (1206433 bytes/sec)

Now, unmount the microSD card with the following command. You need to replace
/dev/devicename with /dev/disk2 in case the device name you gathered was
disk2. If not, replace it with the appropriate device name.

sudo diskutil unmountDisk /dev/devicename

Close the terminal window and then remove the SD memory card adapter from the
SD card reader.

Now, we have a microSD card with a Yocto Linux distribution that includes Python
2.7.3 and many useful libraries and utilities. It is time to make the Intel Galileo Gen 2
board boot from the Yocto image written to the microSD card.

Working with Python on Intel Galileo Gen 2

[34]

Make sure that the board is unplugged and place the microSD card with the Yocto
image in the microSD card slot on the board, labeled SDIO. The following picture
shows a microSD card inserted in the slot on the board.

Then, connect the board to your LAN with the Ethernet cable and plug the
board's power supply to turn on the board and start it up. You will notice that the
rectangular onboard LED labeled SD indicates that there is activity with the microSD
card. Wait for approximately 30 seconds to make sure that the board finishes the
boot process. You will notice that the LED labeled SD stops blinking after the boot
process finishes.

Retrieving the board's assigned IP
address
The board has finished the boot process with the Yocto Linux microSD card and is
connected to our LAN throught the Ethernet port. The DHCP server has assigned
the board an IP address and we need to know it in order to run commands on a
Yocto Linux console. There are many ways for us to retrieve the board's assigned
IP address. We will explore the different options and you can choose the most
convenient one based on your LAN configuration.

Chapter 2

[35]

If the board is connected to one of the Ethernet ports of a Wireless router and we
have access to the router's Web interface, we can easily know the IP address assigned
to the board. Some router's Web interfaces display the wired clients list. As our board
is connected through an Ethernet wire, it will be listed as one of the wired clients and
the device MAC address will match the MAC address printer in the adhesive label
on the board's Ethernet jacket. The following picture shows the Wired-clients list in
a router's Web interface and the list includes a device named galileo with A1-B2-
C3-D4-E5-F6 as the MAC address that matches the MAC address printed without
hyphens (-) in the board: A1B2C3D4E5F6. The IP address assigned to the board is
192.168.1.104. For security reasons, the original MAC address has been erased and
we are using a fake MAC address for our example.

Working with Python on Intel Galileo Gen 2

[36]

Sometimes, the router's Web interface doesn't provide an option that displays the
wired clients list. If this is the case for our router, we will always be able to retrieve
the DHCP client list that provides all the IP addresses assigned to either the wireless
or wired devices connected to the LAN. We just need to find the device that has the
MAC address for the board. The following picture shows the DHCP Client List in
a router's Web interface and the list includes a device named galileo with A1-B2-
C3-D4-E5-F6 as the MAC address that matches the MAC address printed without
hyphens (-) in the board: A1B2C3D4E5F6. The IP address assigned to the board is
192.168.1.104.

Another option is to install a Bonjour Browser to discover the board and its
services on the LAN automatically through this zero-configuration networking
implementation, without knowing the IP assigned to the board.

Chapter 2

[37]

In Windows, download, install, and launch the free Bonjour Browser for Windows
from http://hobbyistsoftware.com/bonjourbrowser. The application will
display many available Bonjour services with galileo as their name. The following
screenshot shows the _ssh._tcp service type with galileo as its name selected with
the details. The IP Adresses section shows the IP address and the port number for
the SSH service: 192.168.1.105:22. We can use the IP address with any SSH client to
connect to the board. In addition, the Bonjour browser lets us know that the board
has an SFTP service that will make it easy for us to transfer files from and to the
Yocto Linux running on the board.

http://hobbyistsoftware.com/bonjourbrowser

Working with Python on Intel Galileo Gen 2

[38]

In OS X, download and run the free Bonjour Browser from http://www.tildesoft.
com. You can click on Reload Services to refresh the discovered devices and their
services. The following picture shows a board and its services listed in the Bonjour
Browser. You have to click on each right-arrow to expand the details for each listed
service. In this case, all the services are provided by the same device named galileo.
Once you expand the device, the application displays the IPv4 and IPv6 addresses.
The SSH (_ssh._tcp.) service type lists a device with galileo as its name and with
192.168.1.105:22 as the IPv4 address and the port number. We can use the IP address
with any SSH client to connect to the board. The Bonjour Browser also displays the
details for the SFTP service.

http://www.tildesoft.com
http://www.tildesoft.com

Chapter 2

[39]

SSH stands for Secure Shell Protocol and its default port is 22. Yocto
Linux runs the SSH server in the default port, and therefore, there is no
need to specify the port in SSH clients, we can just specify the discovered
IP address.

Connecting to the board's operating
system
Now, we need to use an SSH client to connect to the Yocto Linux running on
the board and update some libraries that we will use to interact with the board's
components and features. Both OS X and Linux include the ssh command in the
Terminal. However, Windows doesn't include an ssh command and we have to
install an SSH client.

In Windows, we can use the free and open source PuTTY SSH and telnet client.
However, if you have any other preference for an SSH client in Windows, you can
use any other software. The commands we execute in the terminal will be the same
no matter what SSH client we use.

We can download and install PuTTY in Windows from http://www.putty.org or
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html. Once
you install it, launch it and make sure you allow Windows firewall or any other
installed firewall to open the necessary ports to make the connections. You will
see warnings popping up depending on the firewall software that is running
on Windows.

http://www.putty.org
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Working with Python on Intel Galileo Gen 2

[40]

After you launch PuTTY, the application will display the PuTTY Configuration
dialog box. Enter the IP address assigned to your board in the Host Name (or IP
address) textbox and leave the Port value to its default 22 value. The following
picture shows the dialog box with the settings to connect to the board whose
assigned IP is 192.168.1.105. You can leave the default settings. However, you should
definitely change the Window | Appearance settings to change the default font.

Chapter 2

[41]

Click on Open and the first time you want to establish a connection; PuTTY will
display a security alert because the server's host key is not cached in the registry. You
trust your board and the Yocto Linux that is running on it, and therefore, just click on
Yes. The following picture shows the security alert.

PuTTY will display a new window, specifically a terminal window, with the IP
address included in the title. You will see the following message asking you to
enter the login user.

login as:

Enter root and press Enter. You will login as the root user that doesn't require a
password in the Yocto Linux default configuration. Now, you can run any shell
commands. For example, you can enter the following command to check the
installed python version:

python --version

Working with Python on Intel Galileo Gen 2

[42]

The following picture shows a PuTTY terminal window with the results of logging in
as root and running a few commands:

In OS X and Linux, you can open a Terminal and run the ssh command to connect
to the Yocto Linux running on the board. You have to enter ssh followed by a space,
the user name, an arrow (@), and the IP. In this case, we want to connect with root
as the user name, and therefore, we will enter ssh followed by a space, root@, and
then the IP address. The following command works with the board that is running
the SSH server in the 192.168.1.105 IP address and port number 22. You have to
replace 192.168.1.105 with the IP address you retrieved.

ssh root@192.168.1.105

The first time you want to establish a connection, the ssh command will display
a security alert because the authenticity of the host can't be established. You trust
your board and the Yocto Linux that is running on it, and therefore, answer yes to a
question that will be similar to the following one and press Enter.

The authenticity of host '192.168.1.105 (192.168.1.105)' can't be
established.
ECDSA key fingerprint is SHA256:Ln7j/g1Np4igsgaUP0ujFC2PPcb1pnkLD8Pk0
AK+Vow.
Are you sure you want to continue connecting (yes/no)?

Chapter 2

[43]

The ssh command will display a message similar to the following line after you
answer yes and press Enter:

Warning: Permanently added '192.168.1.105' (ECDSA) to the list of
known hosts.

You will log in as the root user that does not require a password in the Yocto Linux
default configuration. Now, you can run any shell command. For example, you can
enter the following command to check the installed Python version.

python --version

Notice that while you see the following prompt root@galileo:~#, it means that all
your commands are running on the Yocto Linux on the board and not on your OS
X Terminal or your Linux Terminal. The following picture shows an OS X Terminal
window with the results of logging in as root and running a few commands:

The Yocto Linux that the board has booted includes
Python 2.7.3 pre-installed.

Working with Python on Intel Galileo Gen 2

[44]

We can also run any SSH client in a mobile device such as a tablet or smartphone.
There are many SSH clients developed for iOS and Android. It is possible to work
with a tablet and a Bluetooth keyboard linked to it and easily run the commands in
the SSH client.

Installing and upgrading the necessary
libraries to interact with the board
Now, we will run many commands in the SSH client. Make sure that your SSH client
is connected to the Yocto Linux SSH server running on the board as explained in the
preceding section before running the commands. Specially, if you are working with
either OS X or Linux, you have to make sure that you don't run the commands on
your computer instead of doing this on the remote shell. Its simple, just make sure
you always see the prompt root@galileo:~# before running any command.

Your board should be connected to a LAN with Internet access because
we will download content from the Internet.

We will use the opkg utility to download and install the updated version of both
the mraa and upm libraries. The mraa library, also known as libmraa, is a low level
C/C++ library with bindings to Python that allows us to interface with the I/O
features on the Intel Galileo Gen 2 board and other supported platforms. The upm
library provides high-level interfaces for sensors and actuators that we can plug to
the platforms supported by the mraa library. The upm library simplifies working with
sensors and actuators and includes bindings to Python. We will be working with
both libraries in the forthcoming chapters, and therefore, we want to have their latest
versions installed.

The opkg utility is a lightweight package manager that allows us to easily download
and install OpenWrt packages. OpenWrt is a Linux distribution for embedded
devices. First, we will check both the mraa and upm installed versions by using
the opkg utility.

Run the following command to check the installed mraa version:

opkg info mraa

Chapter 2

[45]

The following lines show the output with the version and dependencies for the mraa
package. In this case, the output shows that the installed version for mraa is 0.7.2-r0.

Package: mraa
Version: 0.7.2-r0
Depends: libgcc1 (>= 4.9.1), python-core, libpython2.7-1.0 (>= 2.7.3),
libstdc++6 (>= 4.9.1), libc6 (>= 2.20)
Status: install user installed
Architecture: i586
Installed-Time: 1434860546

Run the following command to check the installed upm version:

opkg info upm

The following lines show the output with the version and dependencies for the upm
package. In this case, the output shows that the installed version for upm is 0.3.1-r0.

Package: upm
Version: 0.3.1-r0
Depends: libgcc1 (>= 4.9.1), libpython2.7-1.0 (>= 2.7.3), libc6 (>=
2.20), python-core, libstdc++6 (>= 4.9.1), mraa (>= 0.7.2)
Status: install user installed
Architecture: i586
Installed-Time: 1434860596

Run the following command to check the repository configuration for both the mraa
and upm libraries.

cat /etc/opkg/mraa-upm.conf

If you see the following line as a response, it means that the repository is configured
to work with the 1.5 version and we need to change its configuration to make it
possible to update both the mraa and upm libraries to their latest versions.

src mraa-upm http://iotdk.intel.com/repos/1.5/intelgalactic

Run the following command to configure the repository for both the mraa and upm
libraries to work with version 2.0 instead of 1.5:

echo "src mraa-upm http://iotdk.intel.com/repos/2.0/intelgalactic" > /
etc/opkg/mraa-upm.conf

Working with Python on Intel Galileo Gen 2

[46]

Now, run the following command to check the repository configuration for both the
mraa and upm libraries and you will notice that 1.5 has been replaced by 2.0 in
the output.

cat /etc/opkg/mraa-upm.conf

You should see the results shown in the next line:

src mraa-upm http://iotdk.intel.com/repos/2.0/intelgalactic

We will use the opkg utility to update packages from the previously configured
repository located on the Internet. Run the following command to make the opkg
utility update the list of available packages after we changed the configuration of the
repositories for both the mraa and upm libraries.

opkg update

The previous command will generate the following output that indicates the list of
available packages that have been updated. Notice that the last lines of the output
indicate that the command has been downloaded from http://iotdk.intel.com/
repos/2.0/intelgalactic/Packages and saved the available packages in /var/
lib/opkg/mraa-upm.

Downloading http://iotdk.intel.com/repos/1.5/iotdk/all/Packages.
Updated list of available packages in /var/lib/opkg/iotdk-all.
Downloading http://iotdk.intel.com/repos/1.5/iotdk/i586/Packages.
Updated list of available packages in /var/lib/opkg/iotdk-i586.
Downloading http://iotdk.intel.com/repos/1.5/iotdk/quark/Packages.
Updated list of available packages in /var/lib/opkg/iotdk-quark.
Downloading http://iotdk.intel.com/repos/1.5/iotdk/x86/Packages.
Updated list of available packages in /var/lib/opkg/iotdk-x86.
Downloading http://iotdk.intel.com/repos/2.0/intelgalactic/Packages.
Updated list of available packages in /var/lib/opkg/mraa-upm.

Run the following command to check the versions for both the mraa and upm
libraries stored in /var/lib/opkg/mraa-upm.

cat /var/lib/opkg/mraa-upm

The following lines show the results. Notice that the version numbers might vary
because both the mraa and upm libraries are very active projects and they are
frequently updated. Thus, the version numbers might be higher when you run the
previous command.

Package: mraa
Version: 0.9.0
Provides: mraa-dev, mraa-dbg, mraa-doc

Chapter 2

[47]

Replaces: mraa-dev, mraa-dbg, mraa-doc, libmraa, libmraa-dev, libmraa-
doc
Conflicts: mraa-dev, mraa-dbg, mraa-doc
Section: libs
Architecture: i586
Maintainer: Intel IoT-Devkit
MD5Sum: b92167f26a0dc0dba4d485b7bedcfb47
Size: 442236
Filename: mraa_0.9.0_i586.ipk
Source: https://github.com/intel-iot-devkit/mraa
Description: mraa built using CMake
Priority: optional

Package: upm
Version: 0.4.1
Depends: mraa (>= 0.8.0)
Provides: upm-dev, upm-dbg, upm-doc
Replaces: upm-dev, upm-dbg, upm-doc
Conflicts: upm-dev, upm-dbg, upm-doc
Section: libs
Architecture: i586
Maintainer: Intel IoT-Devkit
MD5Sum: 13a0782e478f2ed1e65b33249be41424
Size: 16487850
Filename: upm_0.4.1_i586.ipk
Source: https://github.com/intel-iot-devkit/upm
Description: upm built using CMake
Priority: optional

In this case, we have mraa version 0.9.0 and upm version 0.4.1. The version numbers
are higher than the initially installed ones. We definitely want to upgrade mraa 0.7.2-
r0 to 0.9.0 and upm 0.3.1-r0 to 0.4.1. As shown in the preceding lines, upm depends
on mraa version 0.8.0 or greater, and therefore, we will upgrade mraa first.

Run the following command to install the latest available version of the mraa library:

opkg install mraa

The following lines show the results:

Upgrading mraa from 0.7.2-r0 to 0.9.0 on root.
Downloading http://iotdk.intel.com/repos/2.0/intelgalactic/mraa_0.9.0_
i586.ipk.
Removing package mraa-dev from root...

Working with Python on Intel Galileo Gen 2

[48]

Removing package mraa-doc from root...
Removing obsolete file /usr/lib/libmraa.so.0.7.2.
Removing obsolete file /usr/bin/mraa-gpio.
Configuring mraa.

Run the following command to install the latest available version of the upm library:

opkg install upm

The following lines show some lines with the results and the final line. Note that the
package installation removes an important number of obsolete files:

Upgrading upm from 0.3.1-r0 to 0.4.1 on root.
Downloading http://iotdk.intel.com/repos/2.0/intelgalactic/upm_0.4.1_
i586.ipk.
Removing package upm-dev from root...
Removing obsolete file /usr/lib/libupm-wt5001.so.0.3.1.
Removing obsolete file /usr/lib/libupm-adc121c021.so.0.3.1.
Removing obsolete file /usr/lib/libupm-joystick12.so.0.3.1.
Removing obsolete file /usr/lib/libupm-grove.so.0.3.1.
Removing obsolete file /usr/lib/libupm-tm1637.so.0.3.1.
…
Removing obsolete file /usr/lib/libupm-groveloudness.so.0.3.1.
Configuring upm.

Now, run the following command to check the installed mraa version:

opkg info mraa

The following lines show the output with the version and dependencies for the mraa
package. The first lines show that mraa version 0.7.2-r0 is not installed anymore and
the highlighted lines show that mraa version 0.9.0 is installed.

Package: mraa
Version: 0.7.2-r0
Depends: libgcc1 (>= 4.9.1), python-core, libpython2.7-1.0 (>= 2.7.3),
libstdc++6 (>= 4.9.1), libc6 (>= 2.20)
Status: unknown ok not-installed
Section: libs
Architecture: i586
Maintainer: Intel IoT Devkit team <meta-intel@yoctoproject.org>
MD5Sum: b877585652e4bc34c5d8b0497de04c4f
Size: 462242
Filename: mraa_0.7.2-r0_i586.ipk
Source: git://github.com/intel-iot-devkit/mraa.git;protocol=git;rev=29
9bf5ab27191e60ea0280627da2161525fc8990

Chapter 2

[49]

Description: Low Level Skeleton Library for Communication on Intel
platforms Low
 Level Skeleton Library for Communication on Intel platforms.

Package: mraa
Version: 0.9.0
Provides: mraa-dev, mraa-dbg, mraa-doc
Replaces: mraa-dev, mraa-dbg, mraa-doc, libmraa, libmraa-dev, libmraa-
doc
Conflicts: mraa-dev, mraa-dbg, mraa-doc
Status: install user installed
Section: libs
Architecture: i586
Maintainer: Intel IoT-Devkit
MD5Sum: b92167f26a0dc0dba4d485b7bedcfb47
Size: 442236
Filename: mraa_0.9.0_i586.ipk
Source: https://github.com/intel-iot-devkit/mraa
Description: mraa built using CMake
Installed-Time: 1452800349

Run the following command to check the installed upm version:

opkg info upm

The following lines give the output with the version and dependencies for the upm
package. The first lines display that upm version 0.3.1-r0 is not installed anymore
and the highlighted lines show that upm version 0.4.1 is installed.

Package: upm
Version: 0.3.1-r0
Depends: libgcc1 (>= 4.9.1), libpython2.7-1.0 (>= 2.7.3), libc6 (>=
2.20), python-core, libstdc++6 (>= 4.9.1), mraa (>= 0.7.2)
Status: unknown ok not-installed
Section: libs
Architecture: i586
Maintainer: Intel IoT Devkit team <meta-intel@yoctoproject.org>
MD5Sum: 9c38c6a23db13fbeb8c687336d473200
Size: 10344826
Filename: upm_0.3.1-r0_i586.ipk
Source: git://github.com/intel-iot-devkit/upm.git;protocol=git;rev=3
d453811fb7760e14da1a3461e05bfba1893c2bd file://0001-adafruitms1438-
CMakeLists.txt-stop-RPATH-being-added.patch
Description: Sensor/Actuator repository for Mraa Sensor/Actuator
repository for Mraa.

Working with Python on Intel Galileo Gen 2

[50]

Package: upm
Version: 0.4.1
Depends: mraa (>= 0.8.0)
Provides: upm-dev, upm-dbg, upm-doc
Replaces: upm-dev, upm-dbg, upm-doc
Conflicts: upm-dev, upm-dbg, upm-doc
Status: install user installed
Section: libs
Architecture: i586
Maintainer: Intel IoT-Devkit
MD5Sum: 13a0782e478f2ed1e65b33249be41424
Size: 16487850
Filename: upm_0.4.1_i586.ipk
Source: https://github.com/intel-iot-devkit/upm
Description: upm built using CMake
Installed-Time: 1452800568

Now, we have the latest versions of both the mraa and upm libraries installed and
we will be able to use them from any Python program.

Installing pip and additional libraries
By default, the pip package management system that makes it easy to install and
manage software packages written in Python isn't installed. We are going to use
Python as our main programming language, and therefore, we will definitely
benefit from installing pip.

Enter the following curl command to download the get-pip.py file from
https://bootstrap.pypa.io, into the current folder.

curl -L "https://bootstrap.pypa.io/get-pip.py" > get-pip.py

You will see an output similar to the following lines that will indicate the
download progress:

 % Total % Received % Xferd Average Speed Time Time Time
Current
 Dload Upload Total Spent Left
Speed
100 1379k 100 1379k 0 0 243k 0 0:00:05 0:00:05 --:--
:-- 411k

Chapter 2

[51]

Once the download has finished, run python with get-pip.py as an argument.

python get-pip.py

You will see an ouput similar to the following lines that will indicate the
installation progress and a few warnings related to the SSLContext. Don't
worry about the warnings.

Collecting pip
/tmp/tmpe2ukgP/pip.zip/pip/_vendor/requests/packages/urllib3/util/
ssl_.py:90: InsecurePlatformWarning: A true SSLContext object
is not available. This prevents urllib3 from configuring SSL
appropriately and may cause certain SSL connections to fail. For more
information, see https://urllib3.readthedocs.org/en/latest/security.
html#insecureplatformwarning.
 Downloading pip-7.1.2-py2.py3-none-any.whl (1.1MB)
 100% |################################| 1.1MB 11kB/s
Collecting wheel
 Downloading wheel-0.26.0-py2.py3-none-any.whl (63kB)
 100% |################################| 65kB 124kB/s
Installing collected packages: pip, wheel
Successfully installed pip-7.1.2 wheel-0.26.0
/tmp/tmpe2ukgP/pip.zip/pip/_vendor/requests/packages/urllib3/util/
ssl_.py:90: InsecurePlatformWarning: A true SSLContext object
is not available. This prevents urllib3 from configuring SSL
appropriately and may cause certain SSL connections to fail. For more
information, see https://urllib3.readthedocs.org/en/latest/security.
html#insecureplatformwarning.

Now, we can use the pip installer to easily install additional Python 2.7.3 packages.
We will use the pip installer to get the wiring-x86 package from PyPI, the Python
Package Index, and install it. The wiring-x86 package is a Python module that
provides a simple API similar to the WiringPi module to use the general purpose
I/O pins on the Intel Galileo Gen 2 board and other supported platforms. We just
need to run the following command to install the package:

pip install wiring-x86

The last lines for the ouput will indicate that the wiring-x86 package has been
successfully installed. Don't worry about the error messages related to building a
wheel for wiring-x86.

Installing collected packages: wiring-x86
 Running setup.py install for wiring-x86
Successfully installed wiring-x86-1.0.0

Working with Python on Intel Galileo Gen 2

[52]

Invoking the Python interpreter
We have installed the most updated versions of the most important libraries we
required to interact with the features included in the Intel Galileo Gen 2 board.
Now, we can invoke the Python interpreter by typing the classic command:

python

Now, enter the following two lines of Python code:

import mraa
mraa.getVersion()

The Python interpreter will display the following output:

'v0.9.0'

We imported the mraa library and called the mraa.getVersion method to check
whether Python is able to retrieve the installed version of the mraa library. The result
of calling the method displays the version we installed for the mraa library, and
therefore, we know that Python is going to work with the version we expect. Note
that the Python code is running on the Yocto Linux on the Intel Galileo Gen 2 board.

Now, enter the following line to check whether the mraa library has successfully
detected the board type:

mraa.getPlatformName()

The Python interpreter will display the following output:

'Intel Galileo Gen 2'

We called the mraa.getPlatformName method and the result of calling the method
displays our board's name: Intel Galileo Gen 2. The following screenshot shows the
results of calling the previous methods:

Chapter 2

[53]

Now, open a Web browser in any computer or device connected to your LAN
and enter the board's assigned IP address. For example, in case the IP address is
192.168.1.104, enter it as the URL to browse. The following screenshot shows the
content you will see on your Web browser: It works!

The board is working as a Web server and it returns the contents of the /www/pages/
index.html file to the Web browser request.

Test your knowledge
1. We can access Python 2.7.x on the Intel Galileo Gen 2 board:

1. After booting the pre-installed SPI image from the flash memory.
2. After booting a Yocto Linux from the microSD card, specifically,

the IoT Devkit image.
3. After booting the pre-installed SPI image and pressing the reboot

button three times.

2. Once an Intel Galileo Gen 2 board is connected to our LAN, we can
access its shell with any utility that allows us to use the following
interface and protocol:

1. SSH.
2. Telnet.
3. X.25.

Working with Python on Intel Galileo Gen 2

[54]

3. Which of the following libraries has bindings to Python and allows us to
work with the I/O on Intel Galileo Gen 2:

1. IotGalileoGen2.
2. Mraa.
3. Mupm.

4. Which of the following packages is a Python module that provides an API
similar to the WiringPi module to use general purpose I/O pins on the Intel
Galieo Gen 2:

1. wiring-py-galileo.
2. galileo-gen2-x86.
3. wiring-x86.

5. Which of the following methods return the board that the mraa library
automatically detects:

1. mraa.getPlatformName().
2. mraa.getBoardName().
3. mraa.getGalileoBoardName().

Summary
In this chapter, we followed many procedures to make is possible to work with
Python as the main programming language to create IoT projects with our Intel
Galileo Gen 2 board. We wrote a Linux Yocto image to a microSD card and we
configured the board to make it boot this image, so that we can access Python and
other useful libraries to interact with the board. We updated many libraries to use
their latest versions and we launched the Python interpreter.

Now that our board is ready to be coded with Python, we can start wiring electronic
components to the board and work with Python and the libraries to write digital
values, which is the topic of the next chapter.

[55]

Interacting with Digital
Outputs with Python

In this chapter, we will work with digital inputs with Python and two libraries:
mraa and wiring-x86. We shall:

• Wire our first connections between an Intel Galileo Gen 2 and a breadboard
with electronic components

• Write a first version of a Python script that turns on and off electronic
components connected to the board

• Transfer Python code to the Yocto Linux running on the board
• Execute Python scripts that interact with the board
• Learn to take advantage of Python's object-oriented features to improve the

code and make it easier to understand
• Prepare the code to make it easy to build an API that will allow us to interact

with the IoT device

Turning on and off an onboard
component
First, we will take advantage of an onboard LED (Light Emitting Diode) to write our
first Python lines that interact with the digital output capabilities included in the
Intel Galileo Gen 2 board. The simple example will allow us to understand how the
mraa library allows us to easily turn on and off one of the onboard components with
Python code.

Interacting with Digital Outputs with Python

[56]

In the previous chapter, we recognized the different elements included in the Intel
Galileo Gen 2 board. We know that there are three rectangular LEDs located at the
right hand side of the USB 2.0 host connector. The first LED, labeled L is connected
to pin 13 of the digital I/O pins, and therefore, a high level sent to pin 13 will turn on
this LED and a low level will turn it off.

We will write a few lines of Python code that will use the mraa library to make
the onboard LED labeled L to repeat the following loop until the Python program
is interrupted:

• Turn on
• Stay turned on for 3 seconds
• Turn off
• Stay turned off for 2 seconds.

The following lines show the Python code that performs the previously explained
actions. The code file for the sample is iot_python_chapter_03_01.py.

import mraa
import time

if __name__ == "__main__":
 print ("Mraa library version: {0}".format(mraa.getVersion()))
 print ("Mraa detected platform name: {0}".format(mraa.
getPlatformName()))

 # Configure GPIO pin #13 to be an output pin
 onboard_led = mraa.Gpio(13)
 onboard_led.dir(mraa.DIR_OUT)

 while True:
 # Turn on the onboard LED
 onboard_led.write(1)
 print("I've turned on the onboard LED.")
 # Sleep 3 seconds
 time.sleep(3)
 # Turn off the onboard LED
 onboard_led.write(0)
 print("I've turned off the onboard LED.")
 time.sleep(2)

Chapter 3

[57]

Detailed steps to download the code bundle are mentioned in the Preface
of this book. Please have a look.
The code bundle for the book is also hosted on GitHub at https://
github.com/PacktPublishing/Internet-of-Things-with-
Python. We also have other code bundles from our rich catalog of books
and videos available at https://github.com/PacktPublishing/.
Check them out!

In the previous chapter, we learned that the Yocto Linux running on the board
provided both SSH and SFTP (short for SSH File Transfer Protocol or Secure File
Transfer Protocol) services by running a Bonjour browser. We can use any SFTP
client to connect to the board and transfer the file that we created in any computer
or mobile device. Of course, we can also use any Linux editor, such as vi, in the SSH
terminal, or just enter the code in the Python interpreter. However, it is usually more
convenient to use our favorite editor or IDE in our computer or mobile device and
then transfer the file to the board with any SFTP client.

Some Python IDEs have remote development capabilities and allow us
to easily transfer the necessary files and launch their execution on the
board. An example is the paid Professional Edition of JetBrains PyCharm.
Unluckily, the Community Edition doesn't include this feature.

We don't want the process to be linked to a specific IDE, and therefore, we will
transfer the file with an SFTP client. FileZilla Client is a free, open source and
multiplatform FTP client that supports SFTP. You can download and install it here:
http://filezilla-project.org.

Once you have installed and executed FileZilla Client, you must follow the next steps
to add the SFTP server running on the board in with the application's Site Manager:

1. Select File | Site Manager.
2. Click New Site on the Site Manager dialog box. Enter the desired name,

such as IntelGalileo2 to easily identify the board's SFTP service.
3. Enter the board's IP address in Host. You don't need to enter any value in

Port because the SFTP server uses the default SFTP port, that is, the same
port in which the SSH daemon listens: port 22.

4. Select SFTP - SSH File Transfer Protocol in the Protocol dropdown.
5. Select Normal in the Logon Type dropdown.

https://github.com/PacktPublishing/Internet-of-Things-with-Python
https://github.com/PacktPublishing/Internet-of-Things-with-Python
https://github.com/PacktPublishing/Internet-of-Things-with-Python
https://github.com/PacktPublishing/
http://filezilla-project.org

Interacting with Digital Outputs with Python

[58]

6. Enter root in User. The next screenshots shows the configuration values for a
board that has 192.168.1.107 as its assigned IP address.

7. Click Connect. FileZilla will display an Unknown host key dialog box,
indicating that the server's host key is unknown. It is similar to the
information provided when you established the first connection to the board
with an SSH client. The details include the host and the fingerprint. Activate
the Always trust this host, add this key to the cache checkbox and click OK.

8. FileZilla will display the /home/root folder for the Yocto Linux running on
the board at the right-hand side of the window, under Remote Site.

9. Navigate to the folder in which you saved the Python files you want to
transfer in your local computer under Local site.

10. Select the file you want to transfer and press Enter to transfer the file to the
/home/root folder on the board. Another way is to right-click on the desired
file and select Upload. FileZilla will display the uploaded file in the /home/
root folder under Remote Site. This way, you will be able to access the
Python file in the default location that Yocto Linux uses when you login
with an SSH terminal, that is, in your home folder for your root user. The
following picture shows many Python files uploaded to the /home/root
folder with FileZilla and listed in the contents of the /home/root folder.

Chapter 3

[59]

As you work with additional projects, you will want to create new
folders under /home/root to provide a better organization for
your Python code in the Yocto Linux filesystem.

The next time you have to upload a file to the board, you don't need to setup a new
site in the Site Manager dialog box in order to establish an SFTP connection. You
just need to select File | Site Manager, select the site name under Select Entry and
click Connect.

If you run the following command in the SSH terminal after you login, Linux will
print your current folder or directory:

pwd

The result of the previous command will be the same folder in which we uploaded
the Python code file.

/home/root

Interacting with Digital Outputs with Python

[60]

Once we transfer the file to the board, we can run the previous code with the
following command on the board's SSH terminal:

python iot_python_chapter_03_01.py

The previous code is extremely simple. We have used many print statements to make
it easy for us to understand what is going on with messages on the console. The
following lines show the generated output after we run the code for a few seconds:

Mraa library version: v0.9.0
Mraa detected platform name: Intel Galileo Gen 2
Setting GPIO Pin #13 to dir DIR_OUT
I've turned on the onboard LED.
I've turned off the onboard LED.
I've turned on the onboard LED.
I've turned off the onboard LED.

The first lines print the mraa library version and the detected platform name. This
way, we have information about the mraa library version that Python is using and
we make sure that the mraa library has been able to initialize itself and detect the
right platform: Intel Galileo Gen 2. In case we have a specific issue, we can use this
information to check about specific problems related to the mraa library and the
detected platform.

The next line creates an instance of the mraa.Gpio class. GPIO stands for General
Purpose Input/Output and an instance of the mraa.Gpio class represents a general
purpose Input/Output pin on the board. In this case, we pass 13 as an argument
for the pin parameter, and therefore, we are creating an instance of the mraa.Gpio
class that represents the pin number 13 of the GPIO pins in the board. We named the
instance onboard_led to make it easy to understand that the instance allows us to
control the status of the onboard LED.

onboard_led = mraa.Gpio(13)

We just need to specify the value for the pin parameter to initialize an
instance of the mraa.Gpio class. There are two additional optional
parameters (owner and raw), but we should leave them with the default
values. By default, whenever we create an instance of the mraa.Gpio
class, we own the pin and the mraa library will close it on destruct.

Chapter 3

[61]

As we might guess from its name, an instance of the mraa.Gpio class allows us to
work with pins as either Input or Output. Thus, it is necessary to specify the desired
direction for our mraa.Gpio instance. In this case, we want to use pin 13 as an output
pin. The following line calls the dir method to configure the pin to be an output pin,
that is, to set is direction to the mraa.DIR_OUT value.

onboard_led.dir(mraa.DIR_OUT)

Then, the code runs a loop forever, that is, until you interrupt the execution by
pressing Ctrl + C or the button to stop the process in case you are using a Python
IDE with remote development features to run the code in your board.

The first line within the while loop calls the write method for the mraa.Gpio
instance, onboard_led, with 1 as an argument for the value required parameter.
This way, we send a high value (1) to the pin 13 configured for digital output.
Because the pin 13 has the onboard LED connected to it, the result of a high
value in pin 13 is that the onboard LED turns on.

onboard_led.write(1)

After we turn on the LED, a line of code uses the print statement to print a message
to the console output, so that we know the LED should be turned on. A call to time.
sleep with 3 as the value for the seconds argument delays the execution for three
seconds. Because we didn't change the status of pin 13, the LED will stay turned on
during this delay.

time.sleep(3)

The next line calls the write method for the mraa.Gpio instance, onboard_led, but
this time with 0 as an argument for the value required parameter. This way, we send
a low value (0) to the pin 13 configured for digital output. Because the pin 13 has the
onboard LED connected to it, the result of a low value in pin 13 is that the onboard
LED turns off.

onboard_led.write(0)

After we turn off the LED, a line of code uses the print statement to print a message
to the console output, so that we know the LED should be turned off. A call to
time.sleep with 2 as the value for the seconds argument delays the execution for 2
seconds. Because we didn't change the status of pin 13, the LED will stay turned off
during this delay. Then, the loop starts over again.

Interacting with Digital Outputs with Python

[62]

As we can use any ssh client to run the Python code, we can see the
results of the print statements in the console output and they are
extremely useful for us to understand what should be happening with
the digital outputs. We will take advantage of more advanced logging
features included in Python for more complex scenarios later.

As we could learn from the previous example, the mraa library encapsulates all the
necessary methods to work with the GPIO pins in the mraa.Gpio class. The previous
code didn't take advantage of Python's object-oriented features, it just interacted
with one of the classes included in the mraa library. We will take advatange of many
Python features in the forthcoming examples. In addition, once we start working
with more complex examples, we will make the board interact through the network.

Prototyping with breadboards
In the previous example, we interacted with the onboard LED, and therefore,
we didn't wire any additional electronic component to the board. Now, it is time
to move to more complex samples in which we will have to start working with
additional components and tools.

We don't want to create a new printed circuit board (PCB) and solder electronic
components to the board each time we want to wire some electronic components
to the board. We will be prototyping many electronics projects throught the book
and we will also continue prototyping after we learn each lesson towards our IoT
adventure. Thus, we will use a solderless breadboard as our construction base for
our electronic prototypes.

Solderless breadboards are also known as breadboards, solderless plug-in
breadboards or prototype boards. We will call them with their shortests
name: breadboards.

We will use an 830 tie points (holes for connections) with 2 power lanes breadboard
for all our prototypes that require electronic components wired to the board. The
following picture shows this kind of breadboard that consists of a chunk of plastic of
approximately 6.5" x 2.1" with a bunch number of holes.

Chapter 3

[63]

The next picture shows the internal connections for an 830 tie points with 2 power
lanes breadboard. There are metal strips inside the breadboard that connect the holes
as shown in this picture.

The breadboard provides two power lanes, bus strips or horizontal buses at the top
and at the bottom of the board. These power lanes connect all the holes within the
row. Each column has five row holes connected.

Interacting with Digital Outputs with Python

[64]

However, we must be careful because there are similar breadboards that break the
power lanes or horizontal buses in the middle, and therefore, the power lanes don't
connect all the holes within the row. The following picture shows the connections for
these kinds of breadboards.

In case you decide to work with this kind of breadboard, you have to make the
following connections to the buses. This way, you will mimic the wires shown
for the first breadboard.

We can stick wire ends without insulation into the breadboard holes in order to wire
elements. It is convenient to prepare jumper wires with different lengths and using
cables with diverse colors. The following picture shows many cables of different
lengths without their insulation that will work as jumper wires.

Chapter 3

[65]

In case we don't want to spend time building our own jumper wires, we can buy
prebuilt male to male solderless flexible breadboard jumper wires with tiny plugs
attached to the wire ends.

You can use any of the previously explained options to make the
necessary connections for each of the examples in which we will be
working throught this book. In case you decide to use male to male
breadboard jumper wires, make sure they are high quality ones.

Working with schematics to wire digital
outputs
Now, it is time to take advantage of the prototyping capabilities of the breadboard
and start working on a more complex example. We will turn on and off 9 LEDs by
using 9 digital outputs of the Intel Galileo Gen 2 board. Each digital output is going
to control whether an LED is turned on or turned off.

After we finish the necessary wirings, we will write Python code that counts from
1 to 9 by controlling the digital output to turn on the necessary number of LEDs. In
this case, our first approach won't be the best one. However, after we learn many
things, we will create new versions and we will improve both the initial prototype
and the Python code.

We need the following parts to work with this example:

• Three red ultrabright 5mm LEDs
• Three white ultrabright 5mm LEDs
• Three green ultrabright 5mm LEDs
• Nine 270Ω resistors with 5% tolerance (red violet brown gold)

Interacting with Digital Outputs with Python

[66]

The following diagram shows the components connected to the breadboard,
the necessary wirings and the wirings from the Intel Galileo Gen 2 board to the
breadboard. The Fritzing file for the sample is iot_fritzing_chapter_03_02.fzz
and the following picture is the breadboard view.

Chapter 3

[67]

In this case, we decided to match the GPIO pin number with the LED number. This
way, whenever we want to turn on LED 1, we write a high (1) value to GPIO pin
number 1, whenever we want to turn on LED 2, we write a high (1) value to GPIO
pin number 2, and so on. Later, we will realize it is not the best decision because the
wiring becomes a bit more complex than expected due to the positions of the pins
in the board. However, we will analyze this situation later and we will create a new
version of this example with improvements based on everything we learned from the
first version.

The following picture shows the schematic with the electronic components
represented as symbols. The schematic makes it easier to understand the connections
between the Intel Galileo Gen 2 board GPIO pins and the electronic components.
Clearly, the schematic benefits from the fact that the GPIO pin number matches the
LED number and it will be easy to write our first version of the code.

Interacting with Digital Outputs with Python

[68]

As seen in the previous schematic, each GPIO pin labeled from D1 to D9 in the
board's symbol is connected to a 270Ω resistor, wired to an LED's anode, and each
LED's cathode is connected to ground. This way, whenever we write a high (1) value
to any of the GPIO pins, the board will put 5V on the pin and the LED will turn on.
Whenever we write a low (0) value to any of the GPIO pins, the board will put 0V on
the pin and the LED will turn off.

As we left the jumper labeled IOREF in its default 5V position, the board
will be operating with 5V for its GPIO pins. Thus, a GPIO pin will have
5V when we write a high value to it. If we change the position of this
jumper to 3.3V, a GPIO pin will have 3.3V when we write a high value to
it. Unless specified otherwise, we are using the default position for this
jumper in all the examples.

Now, it is time to insert the components in the breadboard and make all the
necessary wirings.

Always shutdown the Yocto Linux, wait for all the onboard LEDs to turn
off, and unplug the power supply from the Intel Galileo Gen 2 board
before adding or removing any wire from the board's pins. Do the same
before plugging or unplugging any shield.

In order to shutdown the Yocto Linux, enter the following command in your
ssh terminal. Make sure you have exited the Python interpreter when you enter
the command.

shutdown

As a result of the previous command, you will see the time at which the shutdown
process is going to begin. The message will be similar to the following output but
with different dates and times.

Shutdown scheduled for Mon 2016-01-25 23:50:04 UTC, use 'shutdown -c'
to cancel.
root@galileo:~#
Broadcast message from root@galileo (Mon 2016-01-25 23:49:04 UTC):

The system is going down for power-off at Mon 2016-01-25 23:50:04 UTC!

Then, wait around 1 minute until the operating system closes down and all the
onboard LEDs turn off. At this time, you can safely remove the power supply
from the board.

Chapter 3

[69]

We have to pay special attention when inserting the LEDs in the breadboard. As we
can notice in the schematic, the resistor is wired to an LED's anode, and each LED's
cathode is connected to ground.

We can easily identify the LED's anode, that is, its positive lead, because its lead is
slightly longer than the other lead. The LED's cathode, that is, its negative lead is
shorter than the other lead. In the following picture, the LED's cathode, that is, its
negative lead is the lead located at the left-hand side (the shorter lead). The LED's
anode, that is, its positive lead, is the lead located at the right-hand side (the slightly
longer lead). You can also notice that the metal piece inside the LED connected to the
LED's anode, that is, its positive lead, is smaller than the metail piece inside the LED
connected to the LED's cathode, that is, its negative lead.

Interacting with Digital Outputs with Python

[70]

The LED in the picture is located in the same position than the LEDs are connected in
the previously shown breadboard picture. Thus, we have to connect the shorter lead
at the left and the larger lead at the right in the breadboard. The next picture shows
the LED representation in the breadboard picture with its cathode and anode.

The following picture shows the schematic electronic symbol for the LED with the
same positions for the cathode and anode than in the previous picture that showed
the breadboard picture.

The following picture shows all the LEDs connected to the breadboard. You can
check the cathode and the anode based on the metal parts that you can see through
the LED's plastic.

Chapter 3

[71]

The following picture shows all the LEDs connected to the breadboard where you
can check that the LEDs are connected as we have seen in the breadboard view for
the Fritzing diagram.

Resistors are the same forward and backwards, and therefore, it doesn't matter
which way you use them in the breadboard. The following picture shows a 270Ω
axial-lead resistor with 5% tolerance. Notice that the color bands from left to right are
red, violet, brown and gold. The color bands allow us to know the resistance in ohms
and their tolerance value without having to measure the resistor.

Interacting with Digital Outputs with Python

[72]

The following picture shows the components connected to the breadboard,
the necessary wirings and the wirings from the Intel Galileo Gen 2 board to
the breadboard.

Chapter 3

[73]

Counting from 1 to 9 with LEDs, Python
code and the mraa library
Once we finish the wirings and we make sure that all the components and the wires
are in the right place, we can write our first version of the Python code to count from
1 to 9 with the LEDs, transfer it to the board via SFTP and execute it.

We will write a few lines of Python code that will use the mraa library to run the
following steps to count from 1 to 9, with a 3 seconds pause between each step:

• Turn on LED1
• Turn on LED1 and LED2
• Turn on LED1, LED2 and LED3
• Turn on LED1, LED2, LED3 and LED4
• Turn on LED1, LED2, LED3, LED4 and LED5
• Turn on LED1, LED2, LED3, LED4, LED5 and LED6
• Turn on LED1, LED2, LED3, LED4, LED5, LED6 and LED7
• Turn on LED1, LED2, LED3, LED4, LED5, LED6, LED7 and LED8
• Turn on LED1, LED2, LED3, LED4, LED5, LED6, LED7, LED8 and LED9

The following lines show the Python code that performs the previously explained
actions. The code file for the sample is iot_python_chapter_03_02.py.

import mraa
import time

if __name__ == "__main__":
 print ("Mraa library version: {0}".format(mraa.getVersion()))
 print ("Mraa detected platform name: {0}".format(mraa.
getPlatformName()))

 # Configure GPIO pins #1 to 9 to be output pins
 output = []
 for i in range(1, 10):
 gpio = mraa.Gpio(i)
 gpio.dir(mraa.DIR_OUT)
 output.append(gpio)

Interacting with Digital Outputs with Python

[74]

 # Count from 1 to 9
 for i in range(1, 10):
 print("==== Turning on {0} LEDs ====".format(i))
 for j in range(0, i):
 output[j].write(1)
 print("I've turned on the LED connected to GPIO Pin
#{0}.".format(j + 1))
 time.sleep(3)

Once we transfer the file to the board, we can run the previous code with the
following command on the board's SSH terminal:

python iot_python_chapter_03_02.py

We have used many print statements to make it easy for us to understand what
is going on with messages on the console. The following lines show the generated
output after we run the code:

Mraa library version: v0.9.0
Mraa detected platform name: Intel Galileo Gen 2
Setting GPIO Pin #1 to dir DIR_OUT
Setting GPIO Pin #2 to dir DIR_OUT
Setting GPIO Pin #3 to dir DIR_OUT
Setting GPIO Pin #4 to dir DIR_OUT
Setting GPIO Pin #5 to dir DIR_OUT
Setting GPIO Pin #6 to dir DIR_OUT
Setting GPIO Pin #7 to dir DIR_OUT
Setting GPIO Pin #8 to dir DIR_OUT
Setting GPIO Pin #9 to dir DIR_OUT
==== Turning on 1 LEDs ====
I've turned on the LED connected to GPIO Pin #1.
==== Turning on 2 LEDs ====
I've turned on the LED connected to GPIO Pin #1.
I've turned on the LED connected to GPIO Pin #2.
==== Turning on 3 LEDs ====
I've turned on the LED connected to GPIO Pin #1.
I've turned on the LED connected to GPIO Pin #2.
I've turned on the LED connected to GPIO Pin #3.
==== Turning on 4 LEDs ====
I've turned on the LED connected to GPIO Pin #1.
I've turned on the LED connected to GPIO Pin #2.
I've turned on the LED connected to GPIO Pin #3.
I've turned on the LED connected to GPIO Pin #4.
==== Turning on 5 LEDs ====

Chapter 3

[75]

I've turned on the LED connected to GPIO Pin #1.
I've turned on the LED connected to GPIO Pin #2.
I've turned on the LED connected to GPIO Pin #3.
I've turned on the LED connected to GPIO Pin #4.
I've turned on the LED connected to GPIO Pin #5.
==== Turning on 6 LEDs ====
I've turned on the LED connected to GPIO Pin #1.
I've turned on the LED connected to GPIO Pin #2.
I've turned on the LED connected to GPIO Pin #3.
I've turned on the LED connected to GPIO Pin #4.
I've turned on the LED connected to GPIO Pin #5.
I've turned on the LED connected to GPIO Pin #6.
==== Turning on 7 LEDs ====
I've turned on the LED connected to GPIO Pin #1.
I've turned on the LED connected to GPIO Pin #2.
I've turned on the LED connected to GPIO Pin #3.
I've turned on the LED connected to GPIO Pin #4.
I've turned on the LED connected to GPIO Pin #5.
I've turned on the LED connected to GPIO Pin #6.
I've turned on the LED connected to GPIO Pin #7.
==== Turning on 8 LEDs ====
I've turned on the LED connected to GPIO Pin #1.
I've turned on the LED connected to GPIO Pin #2.
I've turned on the LED connected to GPIO Pin #3.
I've turned on the LED connected to GPIO Pin #4.
I've turned on the LED connected to GPIO Pin #5.
I've turned on the LED connected to GPIO Pin #6.
I've turned on the LED connected to GPIO Pin #7.
I've turned on the LED connected to GPIO Pin #8.
==== Turning on 9 LEDs ====
I've turned on the LED connected to GPIO Pin #1.
I've turned on the LED connected to GPIO Pin #2.
I've turned on the LED connected to GPIO Pin #3.
I've turned on the LED connected to GPIO Pin #4.
I've turned on the LED connected to GPIO Pin #5.
I've turned on the LED connected to GPIO Pin #6.
I've turned on the LED connected to GPIO Pin #7.
I've turned on the LED connected to GPIO Pin #8.
I've turned on the LED connected to GPIO Pin #9.

Interacting with Digital Outputs with Python

[76]

The following nine pictures show the sequence of LEDs that are turned on in the
breadboard by executing the Python code.

First, the code declares an empty list named output. Then, a for loop creates nine
instances of the mraa.Gpio class and each of them represent a general purpose
Input/Output pin on the board. We pass i as an argument for the pin parameter,
and therefore, each instance represents the pin number equal to i of the GPIO pins
in the board. After we create the instance, we call the dir method to configure the
pin to be an output pin, that is, to set is direction to the mraa.DIR_OUT value. Then
we call the append method for the output list to add the mraa.Gpio instance (gpio)
to the output list. It is important to understand that range(1, 10) generates the
following list: [1, 2, 3, 4, 5, 6, 7, 8, 9]. Thus, our for loop will start with i
equal to 1 and its last iteration will be with i equal to 9.

output = []
for i in range(1, 10):
 gpio = mraa.Gpio(i)
 gpio.dir(mraa.DIR_OUT)
 output.append(gpio)

Another for loop determines the number of LEDs to be turned on. We use range(1,
10) to generate the same list than in the previous loop. The first line within the for
loop calls a print method to display the number of LEDs that we are going to turn
on in the iteration. A loop within the loop uses range(0, i) to generate the list of
indexes of the elements in the output list that we have to turn on for the iteration of
the main for loop (i).

The inner loop uses j as its variable and the code within this inner loop just calls the
write method for each mraa.Gpio instance, output[j], with 1 as an argument for
the value required parameter. This way, we send a high value (1) to the pin that is
equal to j + 1, configured for digital output. If j is equal to 0, the first element of
the output list is the mraa.Gpio instance that is configured for pin 1 (j + 1). Because
each pin from 1 to 9 has an LED connected to it, the result of a high value in one or
more pins are LEDs turned on. Then, the code prints a message indicating the LED
number that has been turned on.

Chapter 3

[77]

Once the inner loop finishes, a call to time.sleep with 3 as the value for the seconds
argument delays the execution for three seconds. This way, the LED or LEDs stay
turned on during this delay before the outer loop performs another iteration.

for i in range(1, 10):
 print("==== Turning on {0} LEDs ====".format(i))
 for j in range(0, i):
 output[j].write(1)
 print("I've turned on the LED connected to GPIO Pin
#{0}.".format(j + 1))
 time.sleep(3)

The following picture shows the console output printed on an SSH terminal in
a laptop, the 9 LEDs turned on in the protoboard connected to the board that is
running Python code.

www.allitebooks.com

http://www.allitebooks.org

Interacting with Digital Outputs with Python

[78]

Taking advantage of object-oriented code
to control digital outputs
The previous example just turns on the LEDs. Thus, in case we want to count in a
reverse order, that is, from 9 to 1, the results are not going to be as expected. After
the code turns on 9 LEDs, the code will turn on 8 LEDs but there are still going to be
9 LEDs turned. The problem is that we never turn off the LEDs that we don't need to
be turned on, and therefore the 9 LEDs will stay on until the edited loop finishes
its execution.

We are always talking about LEDs turning on and turning off LEDs. However, we
have been using just instanced of the mraa.Gpio class and called the write method.
Python is an object-oriented programming language, and therefore, we can definitely
take advantage of its object-oriented features to write reusable, easier to understand
and simpler to maintain code. For example, in this case, it makes a lot of sense to
create an Led class to represent an LED connected to our board.

The following lines show the code for the new Led class. The code file for the sample
is iot_python_chapter_03_03.py.

import mraa
import time

class Led:
 def __init__(self, pin):
 self.gpio = mraa.Gpio(pin)
 self.gpio.dir(mraa.DIR_OUT)

 def turn_on(self):
 self.gpio.write(1)
 print("I've turned on the LED connected to GPIO Pin
#{0}.".format(self.gpio.getPin()))

 def turn_off(self):
 self.gpio.write(0)
 print("I've turned off the LED connected to GPIO Pin
#{0}.".format(self.gpio.getPin()))

We have to specify the pin number to which the LED is connected when we create
an instance of the Led class in the pin required argument. The constructor, that is,
the __init__ method, creates a new mraa.Gpio instance with the received pin as
its pin argument, saves its reference in the gpio attribute and calls its dir method to
configure the pin to be an output pin.

Chapter 3

[79]

The class defines the following two methods:

• turn_on: Calls the write method for the related mraa.Gpio instance to send
a high value (1) to the pin and turn on the LED connected to this pin. Then,
it prints a message with details about the performed action.

• turn_off: Calls the write method for the related mraa.Gpio instance to send
a low value (0) to the pin and turn off the LED connected to this pin. Then,
it prints a message with details about the performed action.

Now, we can write code that uses the new Led class to create the necessary instances
based on the number of LEDs we want to control and the pins to which they are
connected. The following lines show an improved version of the code that uses the
new Led class to count from 1 to 9 with the LEDs. The code file for the sample is
iot_python_chapter_03_03.py.

if __name__ == "__main__":
 print ("Mraa library version: {0}".format(mraa.getVersion()))
 print ("Mraa detected platform name: {0}".format(mraa.
getPlatformName()))

 # Configure GPIO pins #1 to 9 to be output pins
 leds = []
 for i in range(1, 10):
 led = Led(i)
 leds.append(led)

 # Count from 1 to 9
 for i in range(1, 10):
 print("==== Turning on {0} LEDs ====".format(i))
 for j in range(0, i):
 leds[j].turn_on()
 for k in range(i, 9):
 leds[k].turn_off()
 time.sleep(3)

First, the code declares an empty list named leds. Then, a for loop creates nine
instances of the Led class and each of them represent an LED connected to a GPIO
pin on the board. We pass i as an argument for the pin parameter. Then, we call the
append method for the leds list to add the Led instance (led) to the leds list. Our
for loop will start with i equal to 1 and its last iteration will be with i equal to 9.

Another for loop determines the number of LEDs to be turned on. We use range(1,
10) to generate the same list than in the previous loop. The first line within the for
loop calls a print method to display the number of LEDs that we are going to be
turned on in the iteration.

Interacting with Digital Outputs with Python

[80]

An inner loop within the loop uses range(0, i) to generate the list of indexes of
the elements in the leds list that we have to turn on for the iteration of the main for
loop (i). The inner loop uses j as its variable and the code within this inner loop just
calls the turn_on method for each Led instance.

Another inner loop wihin the loop uses range(i, 9) to generate the list of indexes
of the elements in the leds list that we have to turn off for the iteration of the main
for loop (i). The inner loop uses k as its variable and the code within this inner loop
just calls the turn_off method for each Led instance.

The code is easier to understand than the previous version and the Led
class handles everything related to an LED. We can easily understand
that the line that calls the turn_on method for leds[j] is turning on an
LED. We definitely know that an LED is being turned off in the line that
calls the turn_off method for leds[k].

As the new code turns off the LEDs that don't have be turned on, we can easily create
a new version that counts from 9 to 1 by changing one line. The following lines show
the new version of the code that works with the Led class to count from 9 to 1 with
the LEDs. The only line that had to be edited is the highlighted one. The code file for
the sample is iot_python_chapter_03_04.py.

if __name__ == "__main__":
 print ("Mraa library version: {0}".format(mraa.getVersion()))
 print ("Mraa detected platform name: {0}".format(mraa.
getPlatformName()))

 # Configure GPIO pins #1 to 9 to be output pins
 leds = []
 for i in range(1, 10):
 led = Led(i)
 leds.append(led)

 # Count from 9 to 1
 for i in range(9, 0, -1):
 print("==== Turning on {0} LEDs ====".format(i))
 for j in range(0, i):
 leds[j].turn_on()
 for k in range(i, 9):
 leds[k].turn_off()
 time.sleep(3)

Chapter 3

[81]

Improving our object-oriented code to
provide new features
Now that we have our counter working with the LEDs connected to the board, we
want to add new features. We want to be able to easily transform a number between
1 and 9 into its representation in LEDs connected to the board.

The following lines show the code for the new NumberInLeds class. The code file for
the sample is iot_python_chapter_03_05.py.

class NumberInLeds:
 def __init__(self):
 self.leds = []
 for i in range(1, 10):
 led = Led(i)
 self.leds.append(led)

 def print_number(self, number):
 print("==== Turning on {0} LEDs ====".format(number))
 for j in range(0, number):
 self.leds[j].turn_on()
 for k in range(number, 9):
 self.leds[k].turn_off()

The constructor, that is, the __init__ method, declares an empty list attribute
named leds (self.leds). Then, a for loop creates nine instances of the Led class
and each of them represent an LED connected to a GPIO pin on the board. We pass
i as an argument for the pin parameter. Then, we call the append method for the
self.leds list to add the Led instance (led) to the self.leds list. Our for loop will
start with i equal to 1 and its last iteration will be with i equal to 9.

The class defines a print_number method that requires the number that we want
to represent with LEDs turned on in the number argument. The method uses a for
loop with j as its variable to turn on the necessary LEDs by accesing the appropriate
members of the self.leds list and calling the turn_on method. Then, the method
uses another for loop with k as its variable to turn off the remaining LEDs by
accesing the appropriate members of the self.leds list and calling the turn_off
method. This way, the method makes sure that only the LEDs that have to be turned
on are really turned on and the rest of them are turned off.

Interacting with Digital Outputs with Python

[82]

Now, we can write code that uses the new NumberInLeds class to count from 0 to 9
with the LEDs. In this case, we start with 0 because the new class is able to turn off
all the LEDs that shouldn't be turned on to represent a specific number. The code file
for the sample is iot_python_chapter_03_05.py.

if __name__ == "__main__":
 print ("Mraa library version: {0}".format(mraa.getVersion()))
 print ("Mraa detected platform name: {0}".format(mraa.
getPlatformName()))

 number_in_leds = NumberInLeds()
 # Count from 0 to 9
 for i in range(0, 10):
 number_in_leds.print_number(i)
 time.sleep(3)

The code is very easy to understand, we just create an instance of the NumberInLeds
class, named number_in_leds, and then we call its print_number method with i as
its argument within the for loop.

We took advantage of Python's object-oriented features to create classes
that represent the LEDs and the generation of numbers with LEDs. This
way, we wrote higher level code that is easier to understand because we
don't just read code that writes 0s and 1s to specific pin numbers, we can
read code that prints numbers in LEDs, turns on and turns off LEDs.

Isolating the pin numbers to improve
wirings
Obviously, it is easy to turn on the LED that represents number 1 when it is
connected to GPIO pin number 1. In our previous wiring, the LED that represented
each number was connected to the same GPIO pin number. The schema was also
very easy to understand with the connections where the LED number matched the
pin number.

Chapter 3

[83]

However, the wirings between the board and the breadboard were a bit complicated
because the GPIO pins in the board go from 13 down to 1, from left to right. The
breadboard has the LEDs in the opposite direction, that is, from 1 to 9, left to right.
Thus, the wire that connect the GPIO pin number 1 with LED number 1 has to go
from right to left and crosses the other jumper wires. We will change the jumper
wires to improve our wiring and then we will make the necessary changes to our
object-oriented Python code to isolate the pin numbers and make it possible to have
a nicer wiring. Don't forget to shutdown the operating system and unplug the power
supply from the board before you make changes to the wirings.

The following diagram shows the components connected to the breadboard and the
new wirings from the Intel Galileo Gen 2 board to the breadboard. The Fritzing file
for the sample is iot_fritzing_chapter_03_06.fzz and the following picture is
the breadboard view.

Interacting with Digital Outputs with Python

[84]

Now, whenever we want to turn on LED 1, we must write a high (1) value to GPIO
pin number 9, whenever we want to turn on LED 2, we write a high (1) value to
GPIO pin number 8, and so on. Because we changed the wirings, the schematic with
the electronic components represented as symbols also changed. The following
picture shows the new version of the schematic.

The following lines show the new code for the Led class. The code file for the sample
is iot_python_chapter_03_06.py.

import mraa
import time

class Led:
 def __init__(self, pin, position):
 self.position = position

Chapter 3

[85]

 self.gpio = mraa.Gpio(pin)
 self.gpio.dir(mraa.DIR_OUT)

 def turn_on(self):
 self.gpio.write(1)
 print("I've turned on the LED connected to GPIO Pin #{0}, in
position {1}.".format(self.gpio.getPin(), self.position))

 def turn_off(self):
 self.gpio.write(0)
 print("I've turned off the LED connected to GPIO Pin #{0}, in
position {1}.".format(self.gpio.getPin(), self.position))

Now, we have to specify an additional parameter when we create an instance
of the Led class: the position in the breadboard, that is the LED number in the
breadboard. The constructor, that is, the __init__ method, saves the position
value in an attribute with the same name. Both the turn_on and turn_off methods
use the self.position attribute value to print a message indicating the position
of the LED that has been turned on or off. As the position doesn't match the pin
anymore, the message had to be improved to specify the position.

The following lines show the code for the new version of the NumberInLeds class.
The code file for the sample is iot_python_chapter_03_06.py.

class NumberInLeds:
 def __init__(self):
 self.leds = []
 for i in range(9, 0, -1):
 led = Led(i, 10 - i)
 self.leds.append(led)

 def print_number(self, number):
 print("==== Turning on {0} LEDs ====".format(number))
 for j in range(0, number):
 self.leds[j].turn_on()
 for k in range(number, 9):
 self.leds[k].turn_off()

It was necessary to make changes to the highlighted lines in the constructor, that is,
the __init__ method. The for loop that creates the nine instances of the Led class
now starts with i equal to 9 and its last itearation will be with i equal to 1. We pass
i as an argument for the pin parameter and 10 – i as an argument for the position
parameter. This way, the first Led instance in the self.leds list will be the one with
pin equal to 9 and position equal to 1.

Interacting with Digital Outputs with Python

[86]

The code that uses the new version of the NumberInLeds class to count from 0 to 9
with the LEDs is the same than the previous code. The code file for the sample is
iot_python_chapter_03_06.py.

if __name__ == "__main__":
 print ("Mraa library version: {0}".format(mraa.getVersion()))
 print ("Mraa detected platform name: {0}".format(mraa.
getPlatformName()))

 number_in_leds = NumberInLeds()
 # Count from 0 to 9
 for i in range(0, 10):
 number_in_leds.print_number(i)
 time.sleep(3)

We just needed to make a few changes in the class that encapsulates a LED (Led)
and in the class that encapsulates a number represented with LEDs (NumberInLeds).
The following picture shows the 9 LEDs turned on in the breadboard with the new
wirings connected between the breadboard and the board that is running the new
Python code running.

Chapter 3

[87]

We can easily build an API and provide a REST API to allow any client that has
connection to the board to be able to print numbers through HTTP. Our REST API
just needs to create an instance of the NumberInLeds class and call the print_number
method with the specified number to be printed with LEDs. We will build this REST
API in the next chapter.

Controlling digital outputs with the
wiring-x86 library
One of the great advantages of working with Python as our programming language
to interact with the board is that we have plenty of packages available for Python.
We have been using the mraa library to interact with the digital outputs. However, in
the previous chapter, we also installed the wiring-x86 library. We can change just a
few lines of our object-oriented code to replace the mraa library with the wiring-x86
one to turn on and off the LEDs.

The following lines shows the code for a Board class followed by the new version of
the Led class that works with the wiring-x86 library instead of using mraa. The code
file for the sample is iot_python_chapter_03_07.py.

from wiringx86 import GPIOGalileoGen2 as GPIO
import time

class Board:
 gpio = GPIO(debug=False)

class Led:
 def __init__(self, pin, position):
 self.pin = pin
 self.position = position
 self.gpio = Board.gpio
 self.gpio.pinMode(pin, self.gpio.OUTPUT)

 def turn_on(self):
 self.gpio.digitalWrite(self.pin, self.gpio.HIGH)
 print("I've turned on the LED connected to GPIO Pin #{0}, in
position {1}.".format(self.pin, self.position))

 def turn_off(self):
 self.gpio.digitalWrite(self.pin, self.gpio.LOW)
 print("I've turned off the LED connected to GPIO Pin #{0}, in
position {1}.".format(self.pin, self.position))

Interacting with Digital Outputs with Python

[88]

The wiring-x86 library doesn't include automatic detection of the board,
and therefore, it is necessary to use the class that represents our board. The
GPIOGalileoGen2 represents the Intel Galileo Gen 2 board, and therefore, the
first line of code uses an import statement to import it as GPIO from wiringx86.
This way, whenever we reference GPIO, we will be really using wiringx86.
GPIOGalileoGen2. Notice that the library name is wiring-x86 but the module
name is wiringx86.

When we create an instance of the Led class, we have to specify the GPIO digital pin
to which the LED is connected and the position in the breadboard, that is the LED
number in the breadboard. The constructor, that is, the __init__ method, saves
a reference to the Board.gpio class attribute in self.gpio and calls its pinMode
method with the received pin as its pin argument and self.gpio.OUTPUT as its mode
argument. This way, we configure the pin to be an output pin. All the Led instances
will save a reference to the same Board.gpio class attribute that created an instance
of the GPIO class, specifically, the wiringx86.GPIOGalileoGen2 class with its debug
argument set to False to avoid unnecessary debug information for the low-level
communications.

The turn_on method calls the digitalWrite method for the GPIO instance to send
a high value (self.GPIO.HIGH) to the pin specified by the self.pin attribute value
and prints a message about the performed action.

The turn_off method calls the digitalWrite method for the GPIO instance to send
a low value (self.GPIO.LOW) to the pin specified by the self.pin attribute value
and prints a message about the performed action.

The code for the NumberInLeds class remains the same one that we have used for
the previous example. There is no need to make changes to this class because it
will automatically work with the new Led class and there were no changes in the
arguments for its constructor or its two methods. We just need to replace the lines
that printed information about the mraa library in the __main__ method because we
aren't using the mraa library anymore.

The following lines shows the code for the NumberInLeds class and the __main__
method. The code file for the sample is iot_python_chapter_03_07.py.

class NumberInLeds:
 def __init__(self):
 self.leds = []
 for i in range(9, 0, -1):
 led = Led(i, 10 - i)
 self.leds.append(led)

Chapter 3

[89]

 def print_number(self, number):
 print("==== Turning on {0} LEDs ====".format(number))
 for j in range(0, number):
 self.leds[j].turn_on()
 for k in range(number, 9):
 self.leds[k].turn_off()

if __name__ == "__main__":
 print ("Working with wiring-x86 on Intel Galileo Gen 2")

 number_in_leds = NumberInLeds()
 # Count from 0 to 9
 for i in range(0, 10):
 number_in_leds.print_number(i)
 time.sleep(3)

We just needed to change a few lines of code and we can see how the Python code
makes LEDs in the breadboard count from 0 to 9 using the wiring-x86 library. The
way in which we work with the GPIO pins for digital output with this library is a bit
different from the mechanism used in the mraa library. However, we could easily
encapsulate the changes by taking advantage of Python's object-oriented features.
We can decide which library is more convenient for our projects based on our
preferences and needs. It is always a nice idea to have more than just one option.

Test your knowledge
1. When we send a high value (1) to a GPIO pin configured as output, the GPIO

pin will have:
1. 0 V.
2. 6 V.
3. The voltage specified in the position in which the IOREF jumper

is located.

2. An instance of the mraa.Gpio class represents:
1. A single GPIO pin in the board.
2. All the I/O pins in the board.
3. Two GPIO pins in the board.

Interacting with Digital Outputs with Python

[90]

3. When we create an instance of the mraa.Gpio class, we must specify:
1. The pin number as an argument.
2. The specific board and a pin number as arguments.
3. The pin number and the desired direction: mraa.DIR_OUT or mraa.

DIR_IN.

4. Which of the following lines write a high value to the GPIO pin configured as
output with the instance of mraa.Gpio named gpio10:

1. gpio10.write(0)

2. gpio10.write(1)

3. gpio10.write(mraa.HIGH_VALUE)

5. Which of the following lines configure the instance of mraa.Gpio named
gpio10 for digital output:

1. gpio10.dir(mraa.DIR_DIGITAL).out()

2. gpio10.dir(mraa.DIR_OUT)

3. gpio10.dir(mraa.DIR_OUT, mraa.DIGITAL)

Summary
In this chapter, we worked with Python with two different libraries: mraa and
wiring-x86. We connected LEDs and resistors to a breadboard and we wrote code
to turn on from 0 to 9 LEDs. We improved our Python code to take advantage of
Python's object-oriented features and we prepared the code to make it easy to
build an API that will allow us to print numbers with LEDs with a REST API.

Now that we finished our first wirings and we started controlling the board with
Python, we can start working with additional outputs and combine them with a
REST API, which is the topic of the next chapter.

[91]

Working with a RESTful API
and Pulse Width Modulation

In this chapter, we will interact with the board with HTTP requests and we will use
pulse width modulation to generate different output voltages. We shall:

• Work with the Tornado web server to build a RESTful API in Python
• Compose and send HTTP requests to print numbers in LEDs
• Work with pulse width modulation to control the output voltage in pins
• Fade in and fade out LEDs connected to the board
• Use different tools to compose and send HTTP requests that interact

with the board
• Build a RESTful API to mix red, green and blue and generate millions of

colors with an RGB LED
• Use the mraa and wiring-x86 libraries to control pulse width modulation

Printing numbers in LEDs with a RESTful
API
Tornado is a Python web framework and asynchronous networking library. It is well
known for providing great scalability due to its non-blocking network I/O. We will
take advantage of the fact that Tornado makes it really easy to build a RESTful API
and make it possible for any client to consume this API and print numbers in LEDs
connected to the board. The following is the web page for the Tornado web server:
http://www.tornadoweb.org.

http://www.tornadoweb.org

Working with a RESTful API and Pulse Width Modulation

[92]

In Chapter 1, Understanding and Setting up the Base IoT Hardware, we installed the pip
installer to easily install additional Python 2.7.3 packages in the Yocto Linux that we
are running on the board. Now, we will use a pip installer to install Tornado 4.3. We
just need to run the following command in the SSH terminal to install the package.

pip install tornado

The last lines for the output will indicate that the tornado package has been
successfully installed. Don't worry about the error messages related to building
wheel and the insecure platform warning.

Collecting tornado
/usr/lib/python2.7/site-packages/pip/_vendor/requests/packages/
urllib3/util/ssl_.py:90: InsecurePlatformWarning: A true SSLContext
object is not available. This prevents urllib3 from configuring SSL
appropriately and may cause certain SSL connections to fail. For more
information, see https://urllib3.readthedocs.org/en/latest/security.
html#insecureplatformwarning.
 InsecurePlatformWarning
 Downloading tornado-4.3.tar.gz (450kB)
 100% |################################| 454kB 25kB/s
Collecting backports.ssl-match-hostname (from tornado)
 Downloading backports.ssl_match_hostname-3.5.0.1.tar.gz
Collecting singledispatch (from tornado)
 Downloading singledispatch-3.4.0.3-py2.py3-none-any.whl
Collecting certifi (from tornado)
 Downloading certifi-2015.11.20.1-py2.py3-none-any.whl (368kB)
 100% |################################| 372kB 31kB/s
Collecting backports-abc>=0.4 (from tornado)
 Downloading backports_abc-0.4-py2.py3-none-any.whl
Collecting six (from singledispatch->tornado)
 Downloading six-1.10.0-py2.py3-none-any.whl
...
Installing collected packages: backports.ssl-match-hostname, six,
singledispatch, certifi, backports-abc, tornado
 Running setup.py install for backports.ssl-match-hostname
 Running setup.py install for tornado
Successfully installed backports-abc-0.4 backports.ssl-match-
hostname-3.5.0.1 certifi-2015.11.20.1 singledispatch-3.4.0.3 six-
1.10.0 tornado-4.3

Chapter 4

[93]

Now, we will install HTTPie, a command-line HTTP client written in Python that
makes it easy to send HTTP requests and uses a syntax that is easier than curl (also
known as cURL). HTTPie displays colorized output and will make it easy for us
to send HTTP requests to test our RESTful API. We just need to run the following
command in the SSH terminal to install the package.

pip install --upgrade httpie

The last lines for the output will indicate that the httpie package has been
successfully installed. Don't worry about the insecure platform warning.

Collecting httpie
/usr/lib/python2.7/site-packages/pip/_vendor/requests/packages/
urllib3/util/ssl_.py:90: InsecurePlatformWarning: A true SSLContext
object is not available. This prevents urllib3 from configuring SSL
appropriately and may cause certain SSL connections to fail. For more
information, see https://urllib3.readthedocs.org/en/latest/security.
html#insecureplatformwarning.
 InsecurePlatformWarning
 Downloading httpie-0.9.3-py2.py3-none-any.whl (66kB)
 100% |################################| 69kB 117kB/s
Collecting Pygments>=1.5 (from httpie)
 Downloading Pygments-2.0.2-py2-none-any.whl (672kB)
 100% |################################| 675kB 17kB/s
Collecting requests>=2.3.0 (from httpie)
 Downloading requests-2.9.1-py2.py3-none-any.whl (501kB)
 100% |################################| 503kB 23kB/s
Installing collected packages: Pygments, requests, httpie
Successfully installed Pygments-2.0.2 httpie-0.9.3 requests-2.9.1

Now, we can use an http command to easily send HTTP requests to localhost and
test the RESTful API built with Tornado. Obviously, after we test that the RESTful
API is working OK locally, we want to send HTTP requests from a computer or
device connected to our LAN. You can install HTTPie in your computer or use any
other application that allows you to compose and send HTTP requests, such as
the previously mentioned curl utility (http://curl.haxx.se) or Telerik Fiddler
(http://www.telerik.com/fiddler) in case you are working on Windows. Telerik
Fiddler is a free web debugging proxy with a GUI but it only runs on Windows. You
can even use apps that can compose and send HTTP requests from mobile devices
and test the RESTful API by using them.

http://curl.haxx.se
http://www.telerik.com/fiddler

Working with a RESTful API and Pulse Width Modulation

[94]

If you are working on either OS X or Linux, you can open a Terminal and
start using curl from the command line. If you are working on Windows,
you can easily install curl from the Cygwin package installation option,
and execute it from the Cygwin terminal.

In order to build a RESTful API with Tornado, first we have to create subclasses of
the tornado.web.RequestHandler class and override the necessary methods to
handle the HTTP requests to the URL. For example, if we want to handle an HTTP
GET request with a synchronous operation, we must create a new subclass of the
tornado.web.RequestHandler class and define the get method with the required
arguments, if any. If we want to handle an HTTP PUT request, we just need to define
the put method with the required arguments. Then, we have to map the URL pattern
in an instance of the tornado.web.Application class.

The following lines show the new classes that we must add to our existing code with
either the mraa or the wiring-x86 libraries that made it possible to print numbers
in LEDs in the previous chapter. We already had the Led and NumberInLeds classes
and the code adds the following classes: BoardInteraction, VersionHandler,
PutNumberInLedsHandler, GetCurrentNumberHandler. The code file for the
sample is iot_python_chapter_04_01.py.

import mraa
from datetime import date
import tornado.escape
import tornado.ioloop
import tornado.web

class BoardInteraction:
 number_in_leds = NumberInLeds()
 current_number = 0

class VersionHandler(tornado.web.RequestHandler):
 def get(self):
 response = {'version': '1.0',
 'last_build': date.today().isoformat()}
 self.write(response)

class PutNumberInLedsHandler(tornado.web.RequestHandler):
 def put(self, number):
 int_number = int(number)

Chapter 4

[95]

 BoardInteraction.number_in_leds.print_number(int_number)
 BoardInteraction.current_number = int_number
 response = {'number': int_number}
 self.write(response)

class GetCurrentNumberHandler(tornado.web.RequestHandler):
 def get(self):
 response = {'number': BoardInteraction.current_number}
 self.write(response)

The BoardInteraction class declares two class attributes: number_in_leds
and current_number. The other classes define methods that work with these
class attributes, to access a common NumberInLeds instance, saved in number_in_
leds, and the current number that is being displayed with LEDs, saved in
current_number.

The code declares the following three subclasses of tornado.web.RequestHandler:

• VersionHandler: Defines the parameter less get method that returns a
response with the version number and the last build date.

• PutNumberInLedsHandler: Defines the put method that requires a number
argument that specifies the number that has to be printed with LEDs. The
method calls the print_number method for the NumberInLeds instance
stored in the BoardInteraction.number_in_leds class attribute with the
desired number of LEDs to be turned on specified in the number attribute.
Then, the code saves the number that is being printed with LEDs in the
BoardInteraction.current_number class attribute and returns a response
with the printed number.

• GetCurrentNumberHandler: Defines the parameter less get method that
returns a response with the value of the BoardInteraction.current_
number class attribute, that is, the number that is being printed with LEDs.

The following lines use the previously declared subclasses of tornado.web.
RequestHandler to make up the web application with Tornado that represents
the RESTful API and the new __main__ method. The code file for the sample is
iot_python_chapter_04_01.py.

application = tornado.web.Application([
 (r"/putnumberinleds/([0-9])", PutNumberInLedsHandler),
 (r"/getcurrentnumber", GetCurrentNumberHandler),
 (r"/version", VersionHandler)])

Working with a RESTful API and Pulse Width Modulation

[96]

if __name__ == "__main__":
 print("Listening at port 8888")
 BoardInteraction.number_in_leds.print_number(0)
 application.listen(8888)
 tornado.ioloop.IOLoop.instance().start()

First, the code creates an instance of the tornado.web.Application class named
application with the list of request handlers that make up the web application.
The code passes a list of tuples to the Application constructor. The list is composed
of a regular expression (regexp) and a subclass of tornado.web.RequestHandler
(request_class).

The __main__ method prints a message indicating the port number in which
the HTTP server is listening and uses the NumberInLeds instance saved in
BoardInteraction.number_in_leds to print number 0, that is, to turn off the nine
LEDs. The next line calls the application.listen method to build an HTTP server
for the application with the defined rules on the specified port. The code passes 8888
for the port argument, that is, the default port value for the Tornado HTTP server.

Then, the call to tornado.ioloop.IOLoop.instance().start() starts the server
created with application.listen. This way, whenever the web application
receives a request, Tornado iterates over the list of request handlers that make up the
web application and creates an instance of the first tornado.web.RequestHandler
subclass whose associated regular expression matches the request path. Then,
Tornado calls one of the following methods the corresponding parameters for the
new instance based on the HTTP request:

• head

• get

• post

• delete

• patch

• put

• options

The following table shows some HTTP requests that match the regular expressions
defined in the preceding code. In this case, the HTTP requests use localhost because
they are executed locally on the Yocto Linux running on the board. If we replace
localhost with the board's assigned IP address, we can make the HTTP requests
from any computer or device connected to our LAN.

Chapter 4

[97]

HTTP verb and request URL Tuple (regexp, request_class)
that matches the request path

RequestHandler subclass and
method that is called

GET http://localhost:8888/version (r"/version",
VersionHandler)])

VersionHandler.get()

PUT http://localhost:8888/
putnumberinleds/5

(r"/putnumberinleds/
([0-9])",
PutNumberInLedsHandler)

PutNumberInLedsHandler.put(5)

PUT http://localhost:8888/
putnumberinleds/8

(r"/putnumberinleds/
([0-9])",
PutNumberInLedsHandler)

PutNumberInLedsHandler.put(8)

GET http://localhost:8888/
getcurrentnumber

(r"/getcurrentnumber",
GetCurrentNumberHandler)

GetCurrentNumberHandler.get()

The RequestHandler class declares a SUPPORTED_METHODS class attribute with the
following code. In this case, we haven't overridden the class attribute, and therefore,
we inherit superclass declaration:

SUPPORTED_METHODS = ("GET", "HEAD", "POST", "DELETE", "PATCH", "PUT",
"OPTIONS")

The default code declared in the superclass for the get, head, post, delete, patch,
put, and options methods is a single line that raises an HTTPError. For example, the
following line shows the code for the get method defined in the RequestHandler
class.

def get(self, *args, **kwargs):
 raise HTTPError(405)

Whenever the web application receives a request and matches the URL pattern,
Tornado performs the following actions:

1. Create a new instance of the RequestHandler subclass that has been mapped
to the URL pattern.

2. Call the initialize method with the keyword arguments specified in the
application configuration. We can override the initialize method to save
the arguments into member variables.

3. No matter which is the HTTP request, call the prepare method. If we call
either finish or send_error, Tornado won't call any additional methods.
We can override the prepare method to execute code that is necessary for
any HTTP request and then write the specific code in the get, head, post,
delete, patch, put or options methods.

Working with a RESTful API and Pulse Width Modulation

[98]

4. Call the method according to the HTTP request with the arguments based on
the URL regular expression that captured the different groups. As previously
explained, we must override the methods we want our RequestHandler
subclass to be able to process. For example, if there was an HTTP GET
request, Tornado will call the get method with the different arguments.

5. In this case, we are working with synchronous handlers, and therefore,
Tornado calls on_finish after the previous method called according to the
HTTP request returned. We can override the on_finish method to perform
cleanup or logging. It is very important to understand that Tornado calls
on_finish after it sent the response to the client.

The following line will start the HTTP server and our RESTful API in the Yocto
Linux running on the board. Don't forget that you need to transfer the Python source
code file to the Yocto Linux with an SFTP client, as explained in the previous chapter.

python iot_python_chapter_04_01.py

After we start the HTTP server, we will see the following output and all the LEDs on
the board are going to be turned off.

Listening at port 8888
==== Turning on 0 LEDs ====
I've turned off the LED connected to GPIO Pin #9, in position 1.
I've turned off the LED connected to GPIO Pin #8, in position 2.
I've turned off the LED connected to GPIO Pin #7, in position 3.
I've turned off the LED connected to GPIO Pin #6, in position 4.
I've turned off the LED connected to GPIO Pin #5, in position 5.
I've turned off the LED connected to GPIO Pin #4, in position 6.
I've turned off the LED connected to GPIO Pin #3, in position 7.
I've turned off the LED connected to GPIO Pin #2, in position 8.
I've turned off the LED connected to GPIO Pin #1, in position 9.

Composing and sending HTTP requests
The HTTP server is running in Yocto Linux and waiting for our HTTP requests
to control the LEDs on connected to the Intel Galileo Gen 2 board. Now, we will
compose and send HTTP requests locally in Yocto Linux and then from other
computer or devices connected to our LAN.

HTTPie supports curl-like shorthands for localhost. For example, :8888 is a
shorthand that expands to http://localhost:8888. We already have an SSH
terminal running the HTTP server, and therefore, we can run the following
command in another SSH terminal.

http GET :8888/version

Chapter 4

[99]

The previous command will compose and send the following HTTP request:
GET http://localhost:8888/version. The request is the simplest case in our
RESTful API because it will match and run the VersionHandler.get method that
just receives self as a parameter because the URL pattern doesn't include any
parameters. The method creates a response dictionary and then calls the self.write
method with response as a parameter. The self.write method writes the received
chunk to the output buffer. Because the chunk (response) is a dictionary, self.
write writes it as JSON and sets the Content-Type of the response to application/
json. The following lines show an example response for the HTTP request, including
the response headers:

HTTP/1.1 200 OK
Content-Length: 46
Content-Type: application/json; charset=UTF-8
Date: Thu, 28 Jan 2016 03:15:21 GMT
Etag: "fb066668a345b0637fdc112ac0ddc37c318d8709"
Server: TornadoServer/4.3

{
 "last_build": "2016-01-28",
 "version": "1.0"
}

We can execute HTTPie with the -b option in case we don't want to include the
header in the response. For example, the following line performs the same HTTP
request but doesn't display the header in the response output.

http –b GET :8888/version

Once we know that our request is running OK, we can open a new terminal,
command-line or the GUI tool that we want to use to compose and send HTTP
requests from a computer or any device connected to the LAN. We just need to
use the IP address assigned to the board instead of localhost in our request
URLs. Don't forget to replace 192.168.1.107 with your board's IP address in
the next requests.

Now, we can run the following HTTPie command in a computer or device to use the
RESTful API to make the board turn on the five LEDs. After you enter the command,
you will notice the SSH terminal that displays the output for the Python code will
display a message indicating that it is turning on 5 LEDs and the additional messages
indicating the LEDs that are being turned on and off. In addition, you will see 5
LEDs turned on.

http -b PUT 192.168.1.107:8888/putnumberinleds/5

Working with a RESTful API and Pulse Width Modulation

[100]

The previous command will compose and send the following HTTP request: PUT
http://192.168.1.107:8888/putnumberinleds/5. The request will match and run
the PutNumberInLedsHandler.put method that receives 5 in its number parameter.
The following lines show the response from the HTTP server with the number that
has been printed in LEDs, that is, the number of LEDs that have been turned on:

{
 "number": 5
}

The following image shows two Terminal windows side-by-side on OS X. The
Terminal window at the left-hand side is running on a computer that is generating
the HTTP requests and the Terminal window at the right-hand side is the SSH
terminal that is running the Tornado HTTP server in Yocto Linux and displays the
output for our Python code. It is a good idea to use a similar configuration to check
the output while we compose and send the HTTP requests.

In Fiddler, click Composer or press F9, select PUT in the dropdown menu in the
Parsed tab, and enter 192.168.1.107:8888/putnumberinleds/5 in the textbox
at the right-hand side of the dropdown (don't forget to replace the IP with your
board's IP). Then, click Execute and double-click on the 200 result that appears on the
capture log. If you want to see the raw response, just click on the Raw button below
the Request Headers panel.

Chapter 4

[101]

The following image shows a Fiddler window side-by-side with a Putty terminal
window on Windows. The Fiddler window at the left-hand side is running on a
computer that is generating the HTTP requests and the Putty terminal window at
the right-hand side is the SSH terminal that is running the Tornado HTTP server in
Yocto Linux and displays the output for our Python code.

Working with a RESTful API and Pulse Width Modulation

[102]

We can run the following HTTPie command in a computer or device to use the
RESTful API to tell us how many LEDs are turned on.

http -b GET 192.168.1.107:8888/getcurrentnumber

The previous command will compose and send the following HTTP request: GET
http://192.168.1.107:8888/getcurrentnumber. The request will match and run
the GetCurrentNumber.get method. The following lines show the response from the
HTTP server with the number that has been printed in LEDs, that is, the number of
LEDs that have been turned on with the last API call:

{
 "number": 5
}

If we take a look again at the list of request handlers that make up the web
application, we will notice that the entry for putnumberinleds specifies a regular
expression that accepts numbers from 0 to 9 as its parameters:

(r"/putnumberinleds/([0-9])", PutNumberInLedsHandler)

If we run the following HTTPie command in a computer or device to use the RESTful
API to make the board turn on twelve LEDs, the request won't match any regular
expression in the list of request handlers.

http -b PUT 192.168.1.107:8888/putnumberinleds/12

Thus, Tornado will return a 404: Not found error as a result.

<html><title>404: Not Found</title><body>404: Not Found</body></html>

The same will happen if we run the following HTTPie command in a computer or
device because x isn't a number between 0 and 9.

http -b PUT 192.168.1.107:8888/putnumberinleds/x

The following HTTPie command will turn on 8 LEDs.

http -b PUT 192.168.1.107:8888/putnumberinleds/8

Chapter 4

[103]

The previous command will compose and send the following HTTP request: PUT
http://192.168.1.107:8888/putnumberinleds/8. The request will match and run
the PutNumberInLedsHandler.put method that receives 8 in its number parameter.
The following lines show the response from the HTTP server with the number that
has been printed in LEDs, that is, the number of LEDs that have been turned on:

{
 "number": 8
}

The number of LEDs that are turned on changed from 5 to 8, and therefore, we can
run the following HTTPie command in a computer or device to use the RESTful API
to tell us how many LEDs are turned on.

http -b GET 192.168.1.107:8888/getcurrentnumber

The following lines show the response from the HTTP server with the number that
has been printed in LEDs:

{
 "number": 8
}

We created a very simple RESTful API that allows us to turn on LEDs and check
which is the number that is currently printed in LEDs. Of course, we should
add authentication and overall security to the RESTful API in order to make it
complete. Our RESTful API makes it possible for us to print numbers in LEDs
with any application, mobile app or web application that can compose and send
HTTP requests.

Wiring pins with PWM capabilities
We want to control the output voltage to make it possible to fade in and fade out
three LEDs of three different colors: red, green and blue. The lower the output
voltage, the lower the brightness level for the LEDs. The higher the output voltage,
the higher the brightness level for the LEDs. Thus, as the output voltage is nearer to
0V, the brightness for the LEDs is lower and when the output voltage is nearer the
IOREF voltage, that is, 5V in our actual configuration, the brightness is higher for
the LEDs. Specifically, we want to be able to set 256 brightness levels for each LED,
from 0 to 255. In this case, we will use three LEDs but we will move to a single RGB
LED capable of mixing the three colors in a single electronic component later in
this chapter.

Working with a RESTful API and Pulse Width Modulation

[104]

When we worked with GPIO pins configured as digital outputs, we could set an
output voltage of 0V (low value) or the IOREF voltage, that is, 5V in our actual
configuration (high value). Thus, we could just turn off or turn on the LED with its
maximum brightness level (without burning it).

If we connect our red, green and blue LEDs to three GPIO pins and we configure
them as digital outputs, we won't be able to set 256 brightness levels. We have to
connect the three LEDs to three of the digital I/O pins that we can use as PWM
(short for Pulse Width Modulation) output pins. In Chapter 1, Understanding and
Setting up the Base IoT Hardware, when we learned about the I/O pins included in the
Intel Galileo Gen 2 board, we learned that the pins labeled with a tilde symbol (~)
as a prefix for the number can be used as PWM output pins. Thus, we can use the
following pins to connect the three LEDs:

• Pin ~6 to connect the red LED
• Pin ~5 to connect the green LED
• Pin ~3 to connect the blue LED

After we finish the necessary wirings, we will write Python code to create another
RESTful API that will allow us to set the brightness for each of the three LEDs.
We need the following parts to work with this example:

• One red ultrabright 5mm LED
• One green ultrabright 5mm LED
• One blue ultrabright 5mm LED
• Three 270Ω resistors with 5% tolerance (red violet brown gold)

The following diagram shows the components connected to the breadboard,
the necessary wirings and the wirings from the Intel Galileo Gen 2 board to the
breadboard. The Fritzing file for the sample is iot_fritzing_chapter_04_02.fzz
and the following image is the breadboard view:

Chapter 4

[105]

In this case, we wanted the three LEDs to be close to each other. This way, the three
LEDs can project their light to a black surface and we can see how the intersection
of the three colors generates a color that will be similar to a color selected in a color
picker we will use later.

Working with a RESTful API and Pulse Width Modulation

[106]

The following image shows the schematic with the electronic components
represented as symbols.

As seen in the previous schematic, three PWM capable GPIO pins labeled D3 PWM,
D5 PWM and D6 PWM in the board's symbol is connected to a 270Ω resistor, wired
to an LED's anode, and each LED's cathode is connected to ground.

Now, it is time to insert the components in the breadboard and make all the
necessary wirings. Don't forget to shutdown the Yocto Linux, wait for all the
onboard LEDs to turn off, and unplug the power supply from the Intel Galileo
Gen 2 board before adding or removing any wire from the board's pins.

Chapter 4

[107]

Using PWM to generate analog values
Pulse width modulation, known as PWM, is a technique that makes it possible to
generate an analog result with digital means through the usage of a digital on-off
pattern. The pins that provide PWM capabilities use a digital control to create a
square wave and it can simulate voltages between the configured IOREF voltage
(5V in the default board configuration) and 0V by controlling the amount of time that
the signal spends in the ON status (IOREF voltage) and the time the signal spends
in the OFF status (0V). The pulse width is the duration of the signal in the ON status
(IOREF voltage), and therefore, pulse width modulation means changing the pulse
width to get perceived analog values.

When you repeat the signal in the ON status and the signal in the OFF status
hundreds of times per second with a LED connected to the PWM pin, we can
generate the same result as if the signal is a steady voltage between 0V and the
IOREF voltage to control the LED's brightness level.

We can write floating point values from 0 to 1 to the PWM enabled pins configured
as analog output, that is, from 0% duty cycle (always signal in the OFF status)
to 100% duty cycle (always signal in the ON status). We want to represent 256
brightness values (from 0 to 255 inclusive), and therefore, the following graph shows
the brightness values in the abscissa axis (x-axis) and the corresponding floating
point values that have to be written to the pin in the ordinate axis (y-axis).

The equation for the previous graph is the following: y = x / 255, specifically
value = brightness / 255. We can run the following code in our Python
interpreter to see the output with all the values that will be written for each
brightness level from 0 to 255 inclusive.

for brightness in range(0, 256):
 print(brightness / 255.0)

Working with a RESTful API and Pulse Width Modulation

[108]

We can multiply the floating point values by 5 to calculate the voltage value for
each brightness level. As we are working with the default settings for the board, the
IOREF jumper is set to 5V, and therefore, a 1.0 value in the output means 5V (1.0
x 5 = 5). A value of 0.5 in the output means 2.5V (0.5 x 5 = 2.5). The following
graph shows the brightness values in the abscissa axis (x-axis) and the corresponding
voltage values in the output that will generate the corresponding brightness value in
the LEDs in the ordinate axis (y-axis).

The equation for the previous graph is the following: y = x / 255 * 5, specifically
voltage = brightness / 255 * 5. We can run the following code in our Python
interpreter to see the output with all the voltages that will be generated for each
brightness level from 0 to 255 inclusive.

for brightness in range(0, 256):
 print(brightness / 255.0 * 5)

We will create a new AnalogLed class to represent an LED connected to our board
that can have a brightness level from 0 to 255 inclusive. The following lines show
the code for the new AnalogLed class. The code file for the sample is iot_python_
chapter_04_02.py.

import mraa
from datetime import date
import tornado.escape
import tornado.ioloop

Chapter 4

[109]

import tornado.web

class AnalogLed:
 def __init__(self, pin, name):
 self.pin = pin
 self.name = name
 self.pwm = mraa.Pwm(pin)
 self.pwm.period_us(700)
 self.pwm.enable(True)
 self.brightness_value = 0
 self.set_bightness(0)

 def set_brightness(self, value):
 brightness_value = value
 if brightness_value > 255:
 brightness_value = 255
 elif brightness_value < 0:
 brightness_value = 0
 led_value = brightness_value / 255.0
 self.pwm.write(led_value)
 self.brightness_value = brightness_value
 print("{0} LED connected to PWM Pin #{1} set to brightness
{2}.".format(self.name, self.pin, brightness_value))

We have to specify the pin number to which the LED is connected when we create
an instance of the AnalogLed class in the pin required argument, and a name for the
LED in the name required argument. The constructor, that is, the __init__ method,
creates a new mraa.Pwm instance with the received pin as its pin argument, saves its
reference in the pwm attribute and calls its period_us method to configure the PWM
period in 700 microseconds (700 µs). Thus, the output duty cycle will determine
the percentage of the 700 microsecond period during which the signal is in the ON
status. For example, a 0.5 (50%) output duty cycle means that the signal will be ON
during 350 microseconds of the 700 microseconds period (700 * 0.5 = 350).

Then, the the code calls the pwm.enable method with True as a parameter to set
the enable status of the PWM pin and allow us to start setting the output duty-cycle
percentage for the PWM pin with calls to the pwm.write method.

The next line creates a brightness_value attribute initialized with 0 that will allow
us to easily retrieve the last brightness value set to the LED connected to the pin.
Finally, the constructor calls the set_brightness method with 0 as the value for the
value argument to set the brightness level for the LED connected to the configured
pin to 0.

Working with a RESTful API and Pulse Width Modulation

[110]

The class defines a set_brightness method that receives a brightness level value in
the value argument. The first lines of code make sure that we always set a brightness
level between 0 and 255 (inclusive). In case the value argument has a value that isn't
included in that range, the code assigns the lower-level (0) or upper-level value (255)
to the brightness_value variable.

Then, the code calculates the necessary output duty-cycle percentage for the PWM
pin to represent the brightness level as a floating point value between 1.0f (100%)
and 0.0f (0%). The code saves the value in the led_value variable and then calls the
self.pwm.write method with this variable for the percentage argument to set the
output duty-cycle for the pin configured as PWM output to led_value. The next line
saves the valid brightness level to the brightness_value attribute.

Finally, the code prints details about the LED name, the pin number and the
brightness level that has been set. This way, the method translates a brightness level
from 0 to 255 (inclusive) into the appropriate output duty-cycle value for the pin and
writes the output to control the connected LED's brightness level.

Now, we can write code that uses the new AnalogLed class to create one instance for
each of the three LEDs and easily control their brightness levels. The following lines
show the code for the BoardInteraction class. The code file for the sample is
iot_python_chapter_04_02.py.

class BoardInteraction:
 # The Red LED is connected to pin ~6
 red_led = AnalogLed(6, 'Red')
 # The Green LED is connected to Pin ~5
 green_led = AnalogLed(5, 'Green')
 # The Blue LED is connected to Pin ~3
 blue_led = AnalogLed(3, 'Blue')

The BoardInteraction class just declares three class attributes: red_led, green_led
and blue_led. The three class attributes save new instances of the previously created
AnalogLed class and represent the red, green and blue LEDs connected to pins ~6, ~5
and ~3. Now, we will create other classes that define methods that work with these
class attributes to access common AnalogLed instances.

The next lines show the code that adds the following classes: VersionHandler,
PutRedBrightnessHandler, PutGreenBrightnessHandler and
PutBlueBrightnessHandler. The code file for the sample is
iot_python_chapter_04_02.py.

class VersionHandler(tornado.web.RequestHandler):
 def get(self):
 response = {'version': '1.0',

Chapter 4

[111]

 'last_build': date.today().isoformat()}
 self.write(response)

class PutRedBrightnessHandler(tornado.web.RequestHandler):
 def put(self, value):
 int_value = int(value)
 BoardInteraction.red_led.set_brightness(int_value)
 response = {'red': BoardInteraction.red_led.brightness_value}
 self.write(response)

class PutGreenBrightnessHandler(tornado.web.RequestHandler):
 def put(self, value):
 int_value = int(value)
 BoardInteraction.green_led.set_brightness(int_value)
 response = {'green': BoardInteraction.green_led.brightness_
value}
 self.write(response)

class PutBlueBrightnessHandler(tornado.web.RequestHandler):
 def put(self, value):
 int_value = int(value)
 BoardInteraction.blue_led.set_brightness(int_value)
 response = {'blue': BoardInteraction.blue_led.brightness_
value}
 self.write(response)

The code declares the following four subclasses of tornado.web.RequestHandler:

• VersionHandler: Defines the parameter less get method that returns a
response with the version number and the last build date.

• PutRedBrightnessHandler: Defines the put method that requires a value
argument that specifies the desired brightness level for the red LED. The
method calls the set_brightness method for the AnalogNumber instance
stored in the BoardInteraction.red_led class attribute with the desired
brightness level specified in the value argument. Then, the code returns a
response with the brightness level that has been translated to an output duty
cycle percentage in the PWM pin to which the red LED is connected to.

Working with a RESTful API and Pulse Width Modulation

[112]

• PutGreenBrightnessHandler: Defines the put method to set the
desired brightness level for the green LED. It works as the previously
described PutRedBrightnessHandler method but instead of using
the BoardInteraction.red_led class attribute, the code uses
BoardInteraction.green_led class attribute to control the
brightness level for the green LED.

• PutBlueBrightnessHandler: Defines the put method to set the
desired brightness level for the blue LED. It works as the previously
described PutRedBrightnessHandler method but instead of using
the BoardInteraction.red_led class attribute, the code uses
BoardInteraction.blue_led class attribute to control the
brightness level for the blue LED.

The next lines show the code that adds the following classes:
GetRedBrightnessHandler, GetGreenBrightnessHandler and
GetBlueBrightnessHandler. The code file for the sample is
iot_python_chapter_04_02.py.

class GetRedBrightnessHandler(tornado.web.RequestHandler):
 def get(self):
 response = {'red': BoardInteraction.red_led.brightness_value}
 self.write(response)

class GetGreenBrightnessHandler(tornado.web.RequestHandler):
 def get(self):
 response = {'green': BoardInteraction.green_led.brightness_
value}
 self.write(response)

class GetBlueBrightnessHandler(tornado.web.RequestHandler):
 def get(self):
 response = {'blue': BoardInteraction.blue_led.brightness_
value}
 self.write(response)

Chapter 4

[113]

The code declares the following three subclasses of tornado.web.RequestHandler:

• GetRedBrightnessHandler: Defines the parameter less get method that
returns a response with the value of the BoardInteraction.red_led.
brightness_value attribute, that is, the brightness value set to the red LED

• GetGREENBrightnessHandler: Defines the parameter less get method that
returns a response with the value of the BoardInteraction.green_led.
brightness_value attribute, that is, the brightness value set to the
green LED

• GetBlueBrightnessHandler: Defines the parameter less get method that
returns a response with the value of the BoardInteraction.blue_led.
brightness_value attribute, that is, the brightness value set to the blue LED

The following lines use the previously declared subclasses of tornado.web.
RequestHandler to make up the web application with Tornado that represents a
new RESTful API and the new __main__ method. The code file for the sample is
iot_python_chapter_04_02.py.

application = tornado.web.Application([
 (r"/putredbrightness/([0-9]+)", PutRedBrightnessHandler),
 (r"/putgreenbrightness/([0-9]+)", PutGreenBrightnessHandler),
 (r"/putbluebrightness/([0-9]+)", PutBlueBrightnessHandler),
 (r"/getredbrightness", GetRedBrightnessHandler),
 (r"/getgreenbrightness", GetGreenBrightnessHandler),
 (r"/getbluebrightness", GetBlueBrightnessHandler),
 (r"/version", VersionHandler)])

if __name__ == "__main__":
 print("Listening at port 8888")
 application.listen(8888)
 tornado.ioloop.IOLoop.instance().start()

As happened in our previous example, the code creates an instance of the tornado.
web.Application class named application with the list of request handlers that
make up the web application, that is, the tuples of regular expressions and subclasses
of tornado.web.RequestHandler.

Working with a RESTful API and Pulse Width Modulation

[114]

The following table shows some HTTP requests that match the regular expressions
defined in the preceding code. In this case, the HTTP requests use 192.168.1.107
because they are executed from a computer connected to our LAN. Don't forget to
replace 192.168.1.107 with your board's IP address in the next requests.

HTTP verb and request URL Tuple (regexp, request_class)
that matches the request path

RequestHandler subclass and method
that is called

PUT http:// 192.168.1.107:8888/
putredbrightness/30

(r"/putredbrightness/
([0-9]+)",
PutRedBrightnessHandler)

PutRedBrightnessHandler.
put(30)

PUT http:// 192.168.1.107:8888/
putgreenbrightness/128

(r"/putgreenbrightness/
([0-9]+)",
PutGreenBrightnessHandler)

PutGreenBrightnessHandler.
put(128)

PUT http:// 192.168.1.107:8888/
putbluebrightness/255

(r"/putbluebrightness/
([0-9]+)",
PutBlueBrightnessHandler)

PutGreenBrightnessHandler.
put(255)

GET http:// 192.168.1.107:8888/
getredbrightness

(r"/getredbrightness",
GetRedBrightnessHandler)

GetRedBrightnessHandler.get()

GET http:// 192.168.1.107:8888/
getgreenbrightness

(r"/getgreenbrightness",
GetGreenBrightnessHandler)

GetGreenBrightnessHandler.
get()

GET http:// 192.168.1.107:8888/
getbluebrightness

(r"/getbluebrightness",
GetBlueBrightnessHandler)

GetBlueBrightnessHandler.get()

The following line will start the HTTP server and our RESTful API that allows us to
control the brightness level for red, green and blue LEDs in the Yocto Linux running
on the board. Don't forget that you need to transfer the Python source code file to the
Yocto Linux with an SFTP client, as explained in the previous chapter.

python iot_python_chapter_04_02.py

After we start the HTTP server, we will see the following output and all the red,
green and blue LEDs are going to be turned off.

Red LED connected to PWM Pin #6 set to brightness 0.
Green LED connected to PWM Pin #5 set to brightness 0.
Blue LED connected to PWM Pin #3 set to brightness 0.
Listening at port 8888

Generating analog values via HTTP
requests
The HTTP server is running in Yocto Linux and waiting for our HTTP requests
to control the LEDs on connected to the Intel Galileo Gen 2 board. Now, we will
compose and send HTTP requests from other computer or devices connected to our
LAN and we will control the brightness levels for the red, green and blue LEDs.

Chapter 4

[115]

Open a new terminal, command-line or the GUI tool that we want to use to compose
and send HTTP requests from a computer or any device connected to the LAN. Don't
forget to replace 192.168.1.107 with your board's IP address in the next requests.

Run the following HTTPie command in a computer or device to use the RESTful API
to make the board set the brightness level for the red LED to 30. After you enter the
command, you will notice the SSH terminal that displays the output for the Python
code will display the following message: Red LED connected to PWM Pin #6 set
to brightness 30. In addition, you will see the red LED turned on with a very low
brightness level.

http -b PUT 192.168.1.107:8888/putredbrightness/30

The previous command will compose and send the following HTTP request: PUT
http://192.168.1.107:8888/putredbrightness/30. The request will match
and run the PutRedBrightnessHandler.put method that receives 30 in its value
parameter. The following lines show the response from the HTTP server with the
brightness level that has been set for the red LED by taking advantage of PWM:

{
 "red": 30
}

We can run the following HTTPie command in a computer or device to use the
RESTful API to tell us the current brightness level for the red LED.

http -b GET 192.168.1.107:8888/getredbrightness

The previous command will compose and send the following HTTP request: GET
http://192.168.1.107:8888/getredbrightness. The request will match and run
the GetRedBrightnessHandler.get method. The following lines show the response
from the HTTP server with the brightness level that has been previously set for the
red LED with the API call:

{
 "red": 30
}

Now, run the following HTTPie command in a computer or device to use the
RESTful API to make the board set the brightness level for the green LED to 128.
After you enter the command, you will notice the SSH terminal that displays
the output for the Python code will display the following message: Green LED
connected to PWM Pin #5 set to brightness 128. In addition, you will see the green
LED turned on with a very low brightness level.

http -b PUT 192.168.1.107:8888/putredbrightness/128

Working with a RESTful API and Pulse Width Modulation

[116]

The previous command will compose and send the following HTTP request: PUT
http://192.168.1.107:8888/putgreenbrightness/128. The request will match
and run the PutGreenBrightnessHandler.put method that receives 128 in its
value parameter. The following lines show the response from the HTTP server
with the brightness level that has been set for the green LED:

{
 "green": 128
}

Finally, we run the following HTTPie command in a computer or device to use the
RESTful API to make the board set the brightness level for the blue LED to 255, that
is, its highest brightness level. After you enter the command, you will notice the
SSH terminal that displays the output for the Python code will display the following
message: Blue LED connected to PWM Pin #3 set to brightness 255. In addition,
you will see the blue LED turned on with its highest brightness level.

http -b PUT 192.168.1.107:8888/putbluebrightness/255

The previous command will compose and send the following HTTP request: PUT
http://192.168.1.107:8888/putbluebrightness/255. The request will match
and run the PutBlueBrightnessHandler.put method that receives 255 in its value
parameter. The following lines show the response from the HTTP server with the
brightness level that has been set for the blue LED:

{
 "blue": 255
}

Now, we can run the following two HTTPie commands to use the RESTful API to tell
us the current brightness levels for the green and blue LEDs.

http -b GET 192.168.1.107:8888/getgreenbrightness
http -b GET 192.168.1.107:8888/getbluebrightness

The following lines show the two responses from the HTTP server with the
brightness levels that had been set for the green and blue LEDs:

{
 "green": 128
}

{
 "blue": 255
}

Chapter 4

[117]

We created a very simple RESTful API that allows us to set the desired brightness
for red, green and blue LEDs, and check their current brightness levels. Our RESTful
API makes it possible for us to generate different colors with the intersections of the
three color and their different brightness levels with any application, mobile app or
web application that can compose and send HTTP requests.

Preparing the RESTful API for Web
application requirements
We want to develop a simple web application that displays a color picker to allow
the user to choose a color. Once the user picks a color, we can obtain the red, green
and blue components from 0 to 255 inclusive. We want to set the brightness level for
the red, green and blue LEDs on the board based on the red, green and blue values
for the selected color. Based on this requirement, it is convenient to add a new PUT
method to our RESTful API to allow us to change the brightness levels for the three
LEDs in single API call.

The next lines show the code that adds a new PutRGBBrightnessHandler class.
The code file for the sample is iot_python_chapter_04_03.py.

class PutRGBBrightnessHandler(tornado.web.RequestHandler):
 def put(self, red, green, blue):
 int_red = int(red)
 int_green = int(green)
 int_blue = int(blue)
 BoardInteraction.red_led.set_brightness(int_red)
 BoardInteraction.green_led.set_brightness(int_green)
 BoardInteraction.blue_led.set_brightness(int_blue)
 response = dict(
 red=BoardInteraction.red_led.brightness_value,
 green=BoardInteraction.green_led.brightness_value,
 blue=BoardInteraction.blue_led.brightness_value)
 self.write(response)

The code declares a new subclass of tornado.web.RequestHandler named
PutRGBBrightnessHandler. The class defines the put method that requires three
arguments that specify the desired brightness for each of the three LEDs: red, green
and blue. The method calls the set_brightness method for the AnalogNumber
instances stored in the BoardInteraction.red_led, BoardInteraction.green_led
and BoardInteraction.blue_led class attributes with the desired brightness levels
specified in the arguments. Then, the code returns a response with the brightness
levels that have been translated to output duty cycle percentages in the PWM pins to
which the red, green and blue LEDs are connected to.

Working with a RESTful API and Pulse Width Modulation

[118]

Now, it is necessary to add the highlighted lines to the code that creates an instance
of the tornado.web.Application class named application with the list of request
handlers that make up the web application, that is, the tuples of regular expressions
and subclasses of tornado.web.RequestHandler. The code file for the sample is
iot_python_chapter_04_03.py.

application = tornado.web.Application([
 (r"/putredbrightness/([0-9]+)", PutRedBrightnessHandler),
 (r"/putgreenbrightness/([0-9]+)", PutGreenBrightnessHandler),
 (r"/putbluebrightness/([0-9]+)", PutBlueBrightnessHandler),
 (r"/putrgbbrightness/r([0-9]+)g([0-9]+)b([0-9]+)",
 PutRGBBrightnessHandler),
 (r"/getredbrightness", GetRedBrightnessHandler),
 (r"/getgreenbrightness", GetGreenBrightnessHandler),
 (r"/getbluebrightness", GetBlueBrightnessHandler),
 (r"/version", VersionHandler)])

The following line will start the HTTP server and our new version of the RESTful
API that allows us to control the brightness level for red, green and blue LEDs with
a single API call in the Yocto Linux running on the board. Don't forget that you need
to transfer the Python source code file to the Yocto Linux with an SFTP client,
as explained in the previous chapter.

python iot_python_chapter_04_03.py

After we start the HTTP server, we will see the following output and all the red,
green and blue LEDs are going to be turned off.

Red LED connected to PWM Pin #6 set to brightness 0.
Green LED connected to PWM Pin #5 set to brightness 0.
Blue LED connected to PWM Pin #3 set to brightness 0.
Listening at port 8888

With the new RESTful API we can compose the following HTTP verb and
request URL:

PUT http://192.168.1.107:8888/putrgbbrightness/r30g128b255

The previous request path will match the previously added tuple (regexp,
request_class) (r"/putrgbbrightness/r([0-9]+)g([0-9]+)b([0-9]+)",
PutRGBBrightnessHandler) and Tornado will call the PutRGBBrightnessHandler.
put method with the values for red, green and blue, specifically
PutRGBBrightnessHandler.put(30, 128, 255).

Chapter 4

[119]

Run the following HTTPie command in a computer or device to use the RESTful API
to make the board set the brightness level for the three LEDs with the previously
analyzed request path.

http -b PUT 192.168.1.107:8888/putrgbbrightness/r30g128b255

After you enter the command, you will notice the SSH terminal that displays the
output for the Python code will display the following three messages:

• Red LED connected to PWM Pin #6 set to brightness 30
• Green LED connected to PWM Pin #5 set to brightness 128
• Blue LED connected to PWM Pin #3 set to brightness 255

In addition, you will see the three LEDs turned on with their different brightness
levels. The following lines show the response from the HTTP server with the
brightness levels that have been set for the three LEDs:

{
 "blue": 255,
 "green": 128,
 "red": 30
}

Using PWM plus a RESTful API to set
colors for an RGB LED
Now, we will use the same source code to make it possible to change the color of
an RGB LED, specifically, a common cathode RGB LED. This electronic component
provides a common cathode and three anodes, that is, an anode for each of the three
colors: red, green and blue. We can use our code to pulse width modulate the three
colors and make the LED produce the mixed colors. We don't need to use a black
surface to see the intersection of the three colors because the RGB LED mixes the
three colors for us.

Working with a RESTful API and Pulse Width Modulation

[120]

The following image shows a common cathode RGB LED with one of the most
common configurations for the pins, where the common cathode is the second pin
and the longest one.

The following table shows the pin configuration for the previous RGB LED, from left
to right. However, always make sure that you check the datasheet for your RGB LED
to check the right pins for the common cathode and the anode for each color.

Pin number Description
1 Anode pin for red LED
2 Common cathode pin
3 Anode pin for green LED
4 Anode pin for blue LED

Based on the previous table, we will connect the three anode pins to three of the
digital I/O pins that we can use as PWM (short for Pulse Width Modulation) output
pins. We will use the same PWM output pins that we used in our previous example:

• Pin ~6 to connect the anode pin for red LED
• Pin ~5 to connect the anode pin for green LED
• Pin ~3 to connect the anode pin for blue LED.

After we finish the necessary wirings, we will use the same Python code to run our
RESTful API and mix colors by changing the brightness levels for red, green and
blue. We need the following parts to work with this example:

• One common cathode 5mm RGB LED
• Three 270Ω resistors with 5% tolerance (red violet brown gold)

Chapter 4

[121]

The following diagram shows the components connected to the breadboard,
the necessary wirings and the wirings from the Intel Galileo Gen 2 board to the
breadboard. The Fritzing file for the sample is iot_python_chapter_04_03.fzz
and the following image is the breadboard view:

Working with a RESTful API and Pulse Width Modulation

[122]

The following image shows the schematic with the electronic components
represented as symbols:

As seen in the previous schematic, three PWM capable GPIO pins labeled D3 PWM,
D5 PWM and D6 PWM in the board's symbol is connected to a 270Ω resistor, wired
to an anode pin for each LED color, and the common cathode is connected to ground.

Now, it is time to insert the components in the breadboard and make all the
necessary wirings. Don't forget to shutdown the Yocto Linux, wait for all the
onboard LEDs to turn off, and unplug the power supply from the Intel Galileo
Gen 2 board before adding or removing any wire from the board's pins.

After the board boots Yocto Linux, we have to start the HTTP server with our latest
version of the RESTful API that allows us to control the brightness level for red,
green and blue LEDs with a single API call.

python iot_python_chapter_04_03.py

Chapter 4

[123]

Run the following HTTPie command in a computer or device to use the RESTful API
to make the board set the brightness level for the colors included in the RGB LED.

http -b PUT 192.168.1.107:8888/putrgbbrightness/r255g255b0

After you enter the command, you will notice the RGB LED displays a yellow light
because we set both red and green to its maximum brightness level while we turned
off the blue component. The following lines show the response from the HTTP server
with the brightness levels that have been set for the three colors:

{
 "blue": 0,
 "green": 255,
 "red": 255
}

Now, run the following HTTPie command.

http -b PUT 192.168.1.107:8888/putrgbbrightness/r255g0b128

After you enter the command, you will notice the RGB LED displays a pink or light
magenta light because we set green to its maximum brightness level and blue to
half its maximum brightness level while we turned off the green component. The
following lines show the response from the HTTP server with the brightness levels
that have been set for the three colors:

{
 "blue": 128,
 "green": 0,
 "red": 255
}

Now, run the following HTTPie command:

http -b PUT 192.168.1.107:8888/putrgbbrightness/r0g255b255

After you enter the command, you will notice the RGB LED displays a cyan light
because we set both green and blue to its maximum brightness level while we turned
off the red component. The following lines show the response from the HTTP server
with the brightness levels that have been set for the three colors:

{
 "blue": 255,
 "green": 255,
 "red": 0
}

Working with a RESTful API and Pulse Width Modulation

[124]

We can generate 256 * 256 * 256 different colors, which is 16,777,216 colors (more
than 16 million colors) for the light generated by the RGB LED. We just need to use
our RESTful API and change the values for the red, green and blue components.

Controlling PWM with the wiring-x86
library
So far, we have been using the mraa library to work with PWM and change the
brightness level for the different LEDs and colors within an RGB LED. However, in
the first chapter, we also installed the wiring-x86 library. We can change just a few
lines of our object-oriented code to replace the mraa library with the wiring-x86 one
to change the brightness levels for the red, green and blue components.

There is an important difference between the mraa library and the wiring-x86
library when working with PWM. The former works with floating point values from
0.0f to 1.0f to set the output duty cycle percentage, but the latter works with values
from 0 to 255 inclusive to set this value. Thus, when working with the wiring-x86
library, we don't need to translate the desired brightness level to an output duty
cycle percentage and we can use the brightness level value to specify the value for
PWM. As a result, the code is simpler in this case.

The following lines shows the code for a Board class followed by the new version of
the AnalogLed class that works with the wiring-x86 library instead of using mraa.
The code file for the sample is iot_python_chapter_04_04.py.

from wiringx86 import GPIOGalileoGen2 as GPIO

class Board:
 gpio = GPIO(debug=False)

class AnalogLed:
 def __init__(self, pin, name):
 self.pin = pin
 self.name = name
 self.gpio = Board.gpio
 self.gpio.pinMode(pin, self.gpio.PWM)
 self.brightness_value = 0
 self.set_brightness(0)

 def set_brightness(self, value):
 brightness_value = value

Chapter 4

[125]

 if brightness_value > 255:
 brightness_value = 255
 elif brightness_value < 0:
 brightness_value = 0
 self.gpio.analogWrite(self.pin, brightness_value)
 self.brightness_value = brightness_value
 print("{0} LED connected to PWM Pin #{1} set to brightness
{2}.".format(self.name, self.pin, brightness_value))

We just needed to change a few lines from the previous code of the AnalogLed
class. The new lines that interact with the wiring-x86 library are highlighted in
the previous code. The constructor, that is, the __init__ method, saves a reference
to the Board.gpio class attribute in self.gpio and calls its pinMode method with
the received pin as its pin argument and self.gpio.PWM as its mode argument.
This way, we configure the pin to be an output PWM pin. All the Led instances will
save a reference to the same Board.gpio class attribute that created an instance of
the GPIO class, specifically, the wiringx86.GPIOGalileoGen2 class with its debug
argument set to False to avoid unnecessary debug information for the low-level
communications.

The set_brightness method calls the analogWrite method for the GPIO instance
(self.gpio) to set the output duty-cycle for the pin configured as PWM output
to brightness_value. The self.pin attribute specifies the pin value for the
analogWrite method call. Because brightness_value is already a value
between 0 and 255 (inclusive), it is valid value for the analogWrite method.

The rest of the code for our RESTful API remains the same one that we have used for
the previous example. There is no need to make changes to this class because it will
automatically work with the new AnalogLed class and there were no changes in the
arguments for its constructor or its set_brightness methods.

The following line will start the HTTP server and our new version of the RESTful
API that works with the wiring-x86 library. Don't forget that you need to transfer
the Python source code file to the Yocto Linux with an SFTP client, as explained in
the previous chapter.

python iot_python_chapter_04_04.py

We can make the same HTTP requests we made in our previous
example to check that we can achieve exactly the same results with
the wiring-x86 library.

Working with a RESTful API and Pulse Width Modulation

[126]

Test your knowledge
1. PWM stands for:

1. Pin Work Mode.
2. Pulse Weight Modulation.
3. Pulse Width Modulation.

2. In the Intel Galileo Gen 2 board, the pins labeled with the following symbol
as a prefix for the number can be used as PWM output pins:

1. Hash sign (#).
2. Dollar sign ($).
3. Tilde symbol (~).

3. A 100% duty cycle (always signal in the ON status) in a PWM pin will
generate a steady voltage equal to:

1. 0 V.
2. The voltage specified in the position in which the IOREF jumper

is located.
3. 6 V.

4. A 0% duty cycle (always signal in the OFF status) in a PWM pin will generate
a steady voltage equal to:

1. 0 V.
2. The voltage specified in the position in which the IOREF jumper

is located.
3. 6 V.

5. A 50% duty cycle in a PWM pin with a LED connected to it will generate the
same result as a steady voltage equal to:

1. 0 V.
2. Half the voltage specified in the position in which the IOREF jumper

is located.
3. 6 V * 0.5 = 3 V.

Chapter 4

[127]

Summary
In this chapter, we worked with Tornado web server, Python, the HTTPie
command-line HTTP client, and the mraa and wiring-x86 libraries. As in the
previous chapters, we took advantage of Python's object-oriented features and we
generated many versions of RESTful APIs that allowed us to interact with the board
in computers and devices connected to the LAN.

We could compose and send HTTP requests that printed number in LEDs,
changed the brightness levels for three LEDs and generated millions of colors
with an RGB LED.

Now that we created our first RESTful APIs that made is possible for computers and
devices to interact with our IoT device, we can take advantage of additional features
that allow us to read digital inputs and analog values, which is the topic of the
next chapter.

[129]

Working with Digital Inputs,
Polling and Interrupts

In this chapter, we will use digital inputs to make it possible for users to interact with
the board while we process the HTTP requests. We will:

• Understand the difference between pull-up and pull-down resistors to
connect pushbuttons

• Wire digital input pins with pushbuttons
• Use polling to check the pushbutton status with the mraa and

wiring-x86 libraries
• Combine polling to read digital inputs while running a RESTful API
• Write code that maintains consistency when we provide shared features with

electronic components and APIs
• Use interrupts and the mraa library to detect pressed pushbuttons
• Understand the differences, advantages, and trade-offs between polling and

interrupts to detect changes in digital inputs

Working with Digital Inputs, Polling and Interrupts

[130]

Understanding pushbuttons and pullup
resistors
We controlled the brightness levels for red, green, and blue LEDs with a RESTful
API. Then, we replaced the three LEDs with a single RGB LED and generated lights
of different colors with the same RESTful API. Now, we want to make it possible
for the users to change the brightness level for the three components with two
pushbuttons added to the breadboard:

• A pushbutton to turn off all the colors, that is, to set all the colors to a
brightness level equal to 0

• A pushbutton to set all the colors to their maximum brightness levels, that is,
to set all the colors to a brightness level equal to 255

When the user presses the pushbutton, also known as a microswitch, it acts
like a wire, and therefore, it lets the current flow through the circuit in which
it is incorporated. When the pushbutton isn't pressed, the circuit in which it is
incorporated is interrupted. Thus, whenever the user releases the pushbutton,
the circuit is interrupted. Obviously, we don't want to short circuit the connection
whenever the user presses a pushbutton, and therefore, we will analyze the different
possible ways to safely connect a pushbutton to an Intel Galileo Gen 2 board.

The following picture shows one of the ways in which we can connect a pushbutton
to an Intel Galileo Gen 2 board and uses the GPIO pin number 0 as an input to
determine whether the pushbutton is pressed or not. The Fritzing file for the
sample is iot_fritzing_chapter_05_01.fzz and the following picture is the
breadboard view:

Chapter 5

[131]

Working with Digital Inputs, Polling and Interrupts

[132]

The following picture shows the schematic with the electronic components
represented as symbols:

As seen in the previous schematic, the GPIO pin labeled D0/RX, in the board's
symbol, is connected to a 120Ω resistor with 5% tolerance (brown red brown gold),
and wired to the IOREF pin. We already know that the pin labeled IOREF provides
us the IOREF voltage, that is, 5V in our actual configuration. As we might want to
work with other voltage configuration in the future, we can always work with the
IOREF pin instead of specifically using the 5V or the 3V3 pins. The GPIO pin labeled
D0/RX in the board's symbol is also connected to the S1 pushbutton, wired to the
120Ω resistor and GND (ground).

The configuration is known as a voltage divider and the 120Ω resistor is
called a pull-up resistor.

The pull-up resistor limits the electric current when we press the S1 pushbutton. As
an effect of the pull-up resistor, if we press the S1 pushbutton, we will read a low
value (0V) in the GPIO pin labeled D0/RX. When we release the S1 pushbutton, we
will read a high value, that is, the IOREF voltage (5V in our actual configuration).

Chapter 5

[133]

The situation might be confusing because we read a low value when the button in
pressed. However, we can write object-oriented code to encapsulate the behavior for
a pushbutton and work with easier to understand states that isolate the way in which
the pull-up resistor works.

It is also possible to work with a pull-down resistor. We can connect the 120Ω
resistor to ground and transform it from a pull-up resistor into a pull-down resistor.
The following picture shows how we can connect a pushbutton to an Intel Galileo
Gen 2 board with a pull-down resistor and use the GPIO pin number 0 as an
input to determine whether the pushbutton is pressed or not. The Fritzing file for
the sample is iot_fritzing_chapter_05_02.fzz and the following picture is the
breadboard view:

Working with Digital Inputs, Polling and Interrupts

[134]

The following picture shows the schematic with the electronic components
represented as symbols:

As seen in the previous schematic, in this case, the GPIO pin labeled D0/RX in the
board's symbol is connected to the S1 pushbutton and the IOREF pin. The other
connector of the S1 pushbutton is wired to the 120Ω resistor and this resistor is
wired to GND (ground).

In this configuration, the 120Ω resistor is called a
pull-down resistor.

Chapter 5

[135]

The pull-down resistor limits the electric current when we press the S1 pushbutton.
As an effect of the pull-down resistor, if we press the S1 pushbutton, we will read a
high value, that is, the IOREF voltage (5V in our actual configuration) in the GPIO
pin labeled D0/RX. When we release the S1 pushbutton, we will read a low value
(0V). Thus, the pull-down resistor works with the inverse values we read when we
use a pull-up resistor.

Wiring digital input pins with
pushbuttons
Now, we will use the following pins to connect the two pushbuttons and we will
work with pull-up resistors:

• Pin 1 (labeled D1/TX) to connect the pushbutton that turns off the
three colors

• Pin 0 (labeled D0/RX) to connect the pushbutton that sets the three colors to
their maximum brightness levels

After we finish the necessary wirings, we will write the Python code to check
whether each pushbutton was pressed while keeping our RESTful API working as
expected. This way, we will make it possible for the user to interact with the RGB
LED with the pushbuttons and also with the RESTful API. We need the following
additional parts to work with this example:

• Two pushbuttons with two pins
• Two 120Ω resistors with 5% tolerance (brown red brown gold)

Working with Digital Inputs, Polling and Interrupts

[136]

The following diagram shows the components connected to the breadboard,
the necessary wirings and the wirings from the Intel Galileo Gen 2 board to the
breadboard. The Fritzing file for the sample is iot_fritzing_chapter_05_03.fzz
and the following picture is the breadboard view:

Chapter 5

[137]

The following picture shows the schematic with the electronic components
represented as symbols.

As seen in the previous schematic, we added two pushbuttons (S1 and S2) and
two 120Ω pull-up resistors (R4 and R5). The GPIO pin labeled D0/RX in the
board's symbol is connected to the S2 pushbutton and the R4 resistor is its pull-up
resistor. The GPIO pin labeled D1/TX in the board's symbol is connected to the S1
pushbutton and the R5 resistor is its pull-up resistor. This way, GPIO pin number 0
will be low when the S2 pushbutton is pressed and GPIO pin number 1 will be low
when the S1 pushbutton is pressed. The S1 pushbutton is located at the left-hand
side in the breadboard while the S2 pushbutton is located at the right-hand side.

Now, it is time to insert the components in the breadboard and make all the
necessary wirings. Don't forget to shutdown the Yocto Linux, wait for all the
onboard LEDs to turn off, and unplug the power supply from the Intel Galileo
Gen 2 board before adding or removing any wire from the board's pins.

Working with Digital Inputs, Polling and Interrupts

[138]

Reading pushbutton statuses with digital
inputs and the mraa library
We will create a new PushButton class to represent a pushbutton connected to our
board that can use either a pull-up or a pull-down resistor. The following lines show
the code for the new PushButton class that works with the mraa library. The code file
for the sample is iot_python_chapter_05_01.py.

import mraa
import time
from datetime import date

class PushButton:
 def __init__(self, pin, pull_up=True):
 self.pin = pin
 self.pull_up = pull_up
 self.gpio = mraa.Gpio(pin)
 self.gpio.dir(mraa.DIR_IN)

 @property
 def is_pressed(self):
 push_button_status = self.gpio.read()
 if self.pull_up:
 # Pull-up resistor connected
 return push_button_status == 0
 else:
 # Pull-down resistor connected
 return push_button_status == 1

 @property
 def is_released(self):
 return not self.is_pressed

We have to specify the pin number to which the pushbutton is connected when we
create an instance of the PushButton class in the pin required argument. In case we
don't specify additional values, the optional pull_up argument will be True and the
instance will work as if the pushbutton were connected with a pull-up resistor. If we
work with a pull-down resistor, we must pass False in the pull_up argument. The
constructor, that is, the __init__ method, creates a new mraa.Gpio instance with
the received pin as its pin argument, saves its reference in the gpio attribute and
calls its dir method to configure the pin to be an input pin (mraa.DIR_IN).

Chapter 5

[139]

The class defines the following two properties:

• is_pressed: Calls the read method for the related mraa.Gpio instance to
retrieve the value from the pin and saved it in the push_button_status
variable. If the pushbutton is connected with a pull-up resistor (self.
pull_up is True), the code will return True, indicating that the pushbutton
is pressed if the value in push_button_status is 0 (low value). If the
pushbutton is connected with a pull-down resistor (self.pull_up is False),
the code will return True, indicating that the pushbutton is pressed if the
value in push_button_status is 1 (high value).

• is_released: Returns the inverted result of the is_pressed property.

Now, we can write code that uses the new PushButton class to create one instance
for each of the two pushbuttons and easily check whether they are pressed or not.
The new class handles whether the pushbuttons are connected with pull-up or
pull-down resistors, and therefore, we just need to check the value of the
is_pressed or is_released properties without worrying about the
specific details about their connection.

We will integrate the code that considers the statuses of the two pushbuttons in our
RESTful API later. First, we will isolate the two pushbuttons in a simple example to
understand how we can read their statuses. In this case, we will use polling, that is,
a loop that will check whether the pushbuttons are pressed or not. If a pushbutton
is pressed, we want the code to print a message in the console output indicating the
specific pushbutton that is being pressed.

The following lines show the Python code that performs the previously explained
actions. The code file for the sample is iot_python_chapter_05_01.py.

if __name__ == "__main__":
 s1_push_button = PushButton(1)
 s2_push_button = PushButton(0)
 while True:
 # Check whether the S1 pushbutton is pressed
 if s1_push_button.is_pressed:
 print("You are pressing S1.")
 # Check whether the S2 pushbutton is pressed
 if s2_push_button.is_pressed:
 print("You are pressing S2.")
 # Sleep 500 milliseconds (0.5 seconds)
 time.sleep(0.5)

Working with Digital Inputs, Polling and Interrupts

[140]

The first two lines create two instances of the previously coded PushButton class.
The S1 pushbutton is connected to GPIO pin number 1 and the S2 pushbutton is
connected to GPIO pin number 0. In both cases, the code doesn't specify a value for
the pull_up argument. Thus, the constructor, that is, the __init__ method, will use
the default value for this argument, True, and the instance will be configured for a
pushbutton connected with a pull-up resistor. We need to worry about this when we
create the two instances, and then, we work with the names of the variables that hold
the instances: s1_push_button and s2_push_button.

Then, the code runs in a loop forever, that is, until you interrupt the execution by
pressing Ctrl + C or the button to stop the process, in case you are using a Python
IDE with remote development features to run the code in your board.

The first line within the while loop checks the value of the is_pressed property for
the PushButton instance named s1_push_button is True. A True value means that
the pushbutton is pressed at this time, and therefore, the code prints a message to
the console output indicating that the S1 pushbutton is being pressed. The next lines
within the while loop follow the same procedure for the PushButton instance named
s2_push_button.

After we check the statuses for both the pushbuttons, a call to time.sleep with 0.5
as the value for the second argument delays the execution for 500 milliseconds, that
is, 0.5 seconds.

The following line will start the example; don't forget that you need to transfer the
Python source code file to the Yocto Linux with an SFTP client:

python iot_python_chapter_05_01.py

After you run the example, perform the following actions:

• Press the S1 pushbutton for 1 second
• Press the S2 pushbutton for 1 second
• Press both the S1 and S2 pushbuttons for one second

As a result of the previous actions, you will see the following output:

You are pressing S1.
You are pressing S2.
You are pressing S1.
You are pressing S2.

Chapter 5

[141]

In this case, we are reading digital inputs with polling. The mraa library also allows
us to work with interrupts and declare interrupt handlers with Python. This way,
whenever a user presses a button, the event generates an interrupt and the mraa
library calls the specified interrupt handler. If you have ever worked with event-
based programming, you can think about events and event handlers instead of
interrupts and interrupt handlers and you will easily understand how things work.

The interrupt handlers run in a different thread, and the code you can write for them
has many limitations. For example, you cannot use the basic types within interrupt
handlers. Thus, in this case, it doesn't make sense to work with interrupts and
polling makes things easier for us due to the tasks that we have to execute when the
user presses any of the two buttons.

Reading digital inputs with polling as in the previous example has the following
advantages compared with the usage of interrupts for the same task:

• The code is easy to understand and read
• The flow is easy to understand and we don't have to worry about code

running in callbacks
• We can write all the necessary code to perform actions when the button

is pressed without worrying about specific limitations related to
interrupt callbacks

• We don't have to worry about code running in multiple threads

However, reading digital inputs with polling has the following disadvantages
compared with the usage of interrupts for the same task:

• If we don't keep the pushbutton pressed for a specific amount of time,
the code might not detect that the pushbutton has been pressed.

• If we keep the pushbutton pressed for a long time, the code will behave as
if the pushbutton was pressed many times. Sometimes, we don't want this
situation to happen.

• The loop consumes more resources that we can require for other tasks
compared with an interrupt triggered event.

In this case, we want users to keep any of the two buttons pressed for at least half a
second, and therefore, we don't need the advantages of interrupts. However, we will
use interrupts later in this chapter.

Working with Digital Inputs, Polling and Interrupts

[142]

Reading pushbutton statuses and
running a RESTful API
Now, we will integrate the code that checks the statuses of the two pushbuttons in
our RESTful API. We want to be able to make HTTP requests to the RESTful API and
we also want to be able to use the two buttons we have added to the breadboard.

We have to make Tornado run a periodic callback and write the code that checks the
statuses of the two pushbuttons in this callback. We will take the code we wrote in
the previous chapter when we created the last version of our RESTful API with the
mraa library and we will use this code as a baseline to add the new features.
The code file for the sample was iot_python_chapter_04_03.py.

We will add two class attributes and three class methods to the existing
BoardInteraction class. The code file for the sample is iot_python_
chapter_05_02.py.

class BoardInteraction:
 # The Red LED is connected to pin ~6
 red_led = AnalogLed(6, 'Red')
 # The Green LED is connected to Pin ~5
 green_led = AnalogLed(5, 'Green')
 # The Blue LED is connected to Pin ~3
 blue_led = AnalogLed(3, 'Blue')
 # The push button to reset colors
 reset_push_button = PushButton(1)
 # The push button to set colors to their maximum brightness
 max_brightness_push_button = PushButton(0)

 @classmethod
 def set_min_brightness(cls):
 cls.red_led.set_brightness(0)
 cls.green_led.set_brightness(0)
 cls.blue_led.set_brightness(0)

 @classmethod
 def set_max_brightness(cls):
 cls.red_led.set_brightness(255)
 cls.green_led.set_brightness(255)
 cls.blue_led.set_brightness(255)

 @classmethod
 def check_push_buttons_callback(cls):
 # Check whether the reset push button is pressed

Chapter 5

[143]

 if cls.reset_push_button.is_pressed:
 print("You are pressing the reset pushbutton.")
 cls.set_min_brightness()

 # Check whether the maximum brightness push button is pressed
 if cls.max_brightness_push_button.is_pressed:
 print("You are pressing the maximum brightness
pushbutton.")
 cls.set_max_brightness()

The previous code adds two class attributes to the BoardInteraction class: reset_
push_button and max_brightness_push_button. The reset_push_button class
attribute is an instance of PushButton with its pin attribute set to 1. This way, the
instance can check the status of the pushbutton connected to GPIO pin number 1.
The max_brightness_push_button class attribute is an instance of PushButton
with its pin attribute set to 0, and therefore, this instance can check the status of the
pushbutton connected to GPIO pin number 0. In addition, the previous code adds
the following class methods to the BoardInteraction class:

• set_min_brightness: Calls the set_brightness method with 0 as an
argument for the three AnalogLed instances saved in the red_led, green_
led and blue_led class attributes. This way, the three components of the
RGB LED will be turned off.

• set_max_brightness: Calls the set_brightness method with 255 as an
argument for the three AnalogLed instances saved in the red_led, green_
led and blue_led class attributes. This way, the three components of the
RGB LED will be turned on with their maximum brightness levels.

• check_push_buttons_callback: First, checks whether the reset pushbutton
is pressed by evaluating the value of the is_pressed property for the
PushButton instance that represents the reset pushbutton, that is, cls.
reset_push_button. In case the value for the property is True, the code
prints a message indicating that you are pressing the reset pushbutton
and calls the previously described cls.set_min_brightness class
method to turn off the three components of the RGB LED. Then, the
code checks whether the maximum brightness pushbutton is pressed
by evaluating the value of the is_pressed property for the PushButton
instance that represents the maximum brightness pushbutton, that is, cls.
max_brightness_push_button. In case the value for the property is True,
the code prints a message indicating that you are pressing the maximum
brightness pushbutton and calls the previously described cls.set_max_
brightness class method to turn on the three components of the RGB LED
with their maximum brightness levels.

Working with Digital Inputs, Polling and Interrupts

[144]

It is necessary to add the @classmethod decorator before the class
method header to declare class methods in Python. Instance methods
receive self as the first argument, but class methods receive the current
class as the first argument and the parameter name is usually called
cls. In the previous code, we have been using cls to access the class
attributes and class methods for the BoardInteraction class.

The following lines show the new classes that we must add to our existing code
to make it possible to set the minimum and maximum brightness with HTTP
requests. We want to be able to have the same features we can command with
pushbuttons available in our RESTful API. The code adds the following two classes:
PutMinBrightnessHandler and PutMaxBrightnessHandler. The code file for the
sample is iot_python_chapter_05_02.py.

class PutMinBrightnessHandler(tornado.web.RequestHandler):
 def put(self):
 BoardInteraction.set_min_brightness()
 response = dict(
 red=BoardInteraction.red_led.brightness_value,
 green=BoardInteraction.green_led.brightness_value,
 blue=BoardInteraction.blue_led.brightness_value)
 self.write(response)

class PutMaxBrightnessHandler(tornado.web.RequestHandler):
 def put(self):
 BoardInteraction.set_max_brightness()
 response = dict(
 red=BoardInteraction.red_led.brightness_value,
 green=BoardInteraction.green_led.brightness_value,
 blue=BoardInteraction.blue_led.brightness_value)
 self.write(response)

The code declares the following two subclasses of tornado.web.RequestHandler:

• PutMinBrightnessHandler: Defines the put method that calls the set_
min_brightness class method for the BoardInteraction class. Then, the
code returns a response with the minimum brightness levels that have been
translated to output duty cycle percentages in the PWM pins to which the
red, green and blue anodes of the RGB LED are connected to.

Chapter 5

[145]

• PutMaxBrightnessHandler: Defines the put method that calls the set_
max_brightness class method for the BoardInteraction class. Then, the
code returns a response with the maximum brightness levels that have been
translated to output duty cycle percentages in the PWM pins to which the
red, green and blue anodes of the RGB LED are connected to.

Now, it is necessary to add the highlighted lines to the code that creates an instance
of the tornado.web.Application class named application with the list of request
handlers that make up the Web application, that is, the tuples of regular expressions
and subclasses of tornado.web.RequestHandler. The code file for the sample is
iot_python_chapter_05_02.py.

application = tornado.web.Application([
 (r"/putredbrightness/([0-9]+)", PutRedBrightnessHandler),
 (r"/putgreenbrightness/([0-9]+)", PutGreenBrightnessHandler),
 (r"/putbluebrightness/([0-9]+)", PutBlueBrightnessHandler),
 (r"/putrgbbrightness/r([0-9]+)g([0-9]+)b([0-9]+)",
 PutRGBBrightnessHandler),
 (r"/putminbrightness", PutMinBrightnessHandler),
 (r"/putmaxbrightness", PutMaxBrightnessHandler),
 (r"/getredbrightness", GetRedBrightnessHandler),
 (r"/getgreenbrightness", GetGreenBrightnessHandler),
 (r"/getbluebrightness", GetBlueBrightnessHandler),
 (r"/version", VersionHandler)])

As shown in our previous example, the code creates an instance of the tornado.web.
Application class named application with the list of request handlers that make
up the Web application, that is, the tuples of regular expressions and subclasses of
tornado.web.RequestHandler.

Finally, it is necessary to replace the __main__ method with a new one because we
want to run a periodic callback to check whether any of the two pushbuttons was
pressed. The code file for the sample is iot_python_chapter_05_02.py.

if __name__ == "__main__":
 print("Listening at port 8888")
 application.listen(8888)
 ioloop = tornado.ioloop.IOLoop.instance()
 periodic_callback = tornado.ioloop.PeriodicCallback(BoardInteracti
on.check_push_buttons_callback, 500, ioloop)
 periodic_callback.start()
 ioloop.start()

Working with Digital Inputs, Polling and Interrupts

[146]

As happened in the previous examples, the __main__ method calls the
application.listen method to build an HTTP server for the application with the
defined rules on the port number 8888. Then, the code retrieves the global IOLoop
instance and saves it in the ioloop local variable. We have to use the instance as one
of the arguments to create a tornado.ioloop.PeriodicCallback instance named
periodic_callback.

The PeriodicCallback instance allows us to schedule a specified callback to
be called periodically. In this case, we specify the BoardInteraction.check_
push_buttons_callback class method as the callback that will be called every
500 milliseconds. This way, we instruct Tornado to run the BoardInteraction.
check_push_buttons_callback class method every 500 milliseconds. In case the
method takes more than 500 milliseconds to complete its execution, Tornado will
skip subsequent invocations to get back on schedule. After the code creates the
PeriodicCallback instance, the next line calls its start method.

Finally, the call to ioloop.start() starts the server created with application.
listen. This way, the Web application will process the received requests and will
also run a callback to check whether the buttons are pressed.

The following line will start the HTTP server and our new version of the RESTful
API. Don't forget that you need to transfer the Python source code file to the Yocto
Linux with an SFTP client.

python iot_python_chapter_05_02.py

After you run the example, press the pushbutton that sets the colors to their
maximum brightness for one second. The RGB LED will display a white light
and you will see the following output:

You are pressing the maximum brightness pushbutton.
Red LED connected to PWM Pin #6 set to brightness 255.
Green LED connected to PWM Pin #5 set to brightness 255.
Blue LED connected to PWM Pin #3 set to brightness 255.

Now, press the pushbutton that sets the colors to their minimum brightness for one
second. The RGB LED will turn off and you will see the following output:

You are pressing the reset pushbutton.
Red LED connected to PWM Pin #6 set to brightness 0.
Green LED connected to PWM Pin #5 set to brightness 0.
Blue LED connected to PWM Pin #3 set to brightness 0.

Chapter 5

[147]

With the new RESTful API we can compose the following HTTP verb and
request URL:

PUT http://192.168.1.107:8888/putmaxbrightness

The previous request path will match the previously added tuple (regexp, request_
class) (r"/putmaxbrightness", PutMaxBrightnessHandler) and Tornado will
call the PutMaxBrightnessHandler.put method. The RGB LED will display a white
light, as happened when you pressed the maximum brightness button. The following
lines show the response from the HTTP server with the brightness levels that have
been set for the three LEDs:

{
 "blue": 255,
 "green": 255,
 "red": 255
}

The following HTTP verb and request URL will turn off the RGB LED, as happened
when we pressed the pushbutton that sets the colors to their minimum brightness:

PUT http://192.168.1.107:8888/putminbrightness

The following lines show the response from the HTTP server with the brightness
levels that have been set for the three LEDs:

{
 "blue": 0,
 "green": 0,
 "red": 0
}

Now, press the pushbutton that sets the colors to their maximum brightness for one
second. The RGB LED will display a white light. Then, the following three HTTP
verbs and request URLs will retrieve the brightness level for each of the colors. All
the requests will return 255 as the current value. We set the brightness level with
the pushbutton, but the code has the same effect as if we were making API calls to
change the colors. We kept the consistency for our application.

GET http://192.168.1.107:8888/getredbrightness
GET http://192.168.1.107:8888/getgreenbrightness
GET http://192.168.1.107:8888/getbluebrightness

Working with Digital Inputs, Polling and Interrupts

[148]

If we work with HTTPie, the following commands will do the job:

http –b GET http://192.168.1.107:8888/getredbrightness
http –b GET http://192.168.1.107:8888/getgreenbrightness
http –b GET http://192.168.1.107:8888/getbluebrightness

The following lines show the responses from the three requests:

{
 "red": 255
}
{
 "green": 255
}
{
 "blue": 255
}

We created methods that we could use in both an API call and when the user presses
the pushbuttons. We can process HTTP requests and run actions when the user
presses pushbuttons. As we build our RESTful API with Tornado, we had to create
and configure a PeriodicCallback instance to make it possible to check whether the
pushbuttons are pressed every 500 milliseconds.

It is very important to take into account consistency when we add
features that we can control with pushbuttons or other electronic
components that interact with the board. In this case, we made sure
that when the user pressed the pushbuttons and changed the brightness
values for the three colors, the brightness values read with API calls were
exactly the values set. We worked with object-oriented code and with the
same methods, and therefore, it was easy to keep consistency.

Reading digital inputs with the wiring-x86
library
So far, we have been using the mraa library to read digital inputs. However, in the
first chapter, we also installed the wiring-x86 library. We can change just a few lines
of our object-oriented code to replace the mraa library with the wiring-x86 one to
check whether the pushbuttons were pressed.

Chapter 5

[149]

We will take the code we wrote in the previous chapter when we created the last
version of our RESTful API with the wiring-x86 library and we will use this code
as a baseline to add the new features. The code file for the sample was iot_python_
chapter_04_04.py.

First, we will create a new version of the PushButton class to represent a pushbutton
connected to our board that can use either a pull-up or a pull-down resistor. The
following lines show the code for the new PushButton class that works with the
wiring-x86 library. The code file for the sample is iot_python_chapter_05_03.py.

from wiringx86 import GPIOGalileoGen2 as GPIO

class PushButton:
 def __init__(self, pin, pull_up=True):
 self.pin = pin
 self.pull_up = pull_up
 self.gpio = Board.gpio
 pin_mode = self.gpio.INPUT_PULLUP if pull_up else self.gpio.
INPUT_PULLDOWN
 self.gpio.pinMode(pin, pin_mode)

 @property
 def is_pressed(self):
 push_button_status = self.gpio.digitalRead(self.pin)
 if self.pull_up:
 # Pull-up resistor connected
 return push_button_status == 0
 else:
 # Pull-down resistor connected
 return push_button_status == 1

 @property
 def is_released(self):
 return not self.is_pressed

Working with Digital Inputs, Polling and Interrupts

[150]

We just needed to change a few lines from the previous code of the PushButton
class, that is, the version that worked with the mraa library. The new lines that
interact with the wiring-x86 library are highlighted in the previous code. The
constructor, that is, the __init__ method receives the same argument as the
PushButton class that worked with the mraa library. In this case, this method
saves a reference to the Board.gpio class attribute in self.gpio. Then, the code
determines the value of the pin_mode local variable based on the value of the
pull_up parameter. If pull_up is true, the value will be self.gpio.INPUT_PULLUP
and self.gpio.INPUT_PULLDOWN otherwise. Finally, the constructor calls the self.
gpio.pinMode method with the received pin as its pin argument and pin_mode as
its mode argument. This way, we configure the pin to be a digital input pin with
the appropriate pull-up or pull-down resistor. All the PushButton instances will
save a reference to the same Board.gpio class attribute that created an instance of
the GPIO class, specifically, the wiringx86.GPIOGalileoGen2 class with its debug
argument set to False to avoid unnecessary debug information for the low-level
communications.

The is_pressed property calls the digitalRead method for the GPIO instance
(self.gpio) to set retrieve the digital value for the pin configured as a digital input.
The self.pin attribute specifies the pin value for the analogRead method call. The
rest of the code for the is_pressed property and the PushButton class remains the
same as the version that works with the mraa library.

Then, it is necessary to make the same edits we made in the previous
example to create the new version of the BoardInteraction class, add the
PutMinBrightnessHandler and PutMaxBrightnessHandler classes, create the
tornado.web.Application instance and the new version of the __main__ method
that created and configured the PeriodicCallback instance. Thus, the rest of the
code for our RESTful API remains the same one that we have used for the previous
example. There is no need to make changes to the rest of the code because it will
automatically work with the new PushButton class and there were no changes
in the arguments for its constructor or its properties.

Chapter 5

[151]

The following line will start the HTTP server and our new version of the RESTful
API that works with the wiring-x86 library. Don't forget that you need to transfer
the Python source code file to the Yocto Linux with an SFTP client, as explained in
the previous chapter.

python iot_python_chapter_05_03.py

We can press the pushbuttons and then make the same HTTP
requests we made in our previous example to check that we can
achieve exactly the same results with the wiring-x86 library.

Using interrupts to detect pressed
pushbuttons
Previously, we analyzed the advantages of disadvantages of reading digital inputs
with polling as in the previous examples compared with the usage of interrupts for
the same task. If we keep any of the pushbuttons pressed for a long time, the code
behaves as if the pushbutton was pressed many times. Now, we don't want this
situation to happen, and therefore, we will use interrupts instead of polling to
detect when the pushbuttons are pressed.

Before we start editing our code, it is necessary to make changes to our existing
wirings. The problem is that not all the GPIO pins support interrupts. In fact, pins
number 0 and 1 don't support interrupts and we have our pushbuttons connected
to them. In Chapter 1, Understanding and Setting up the Base IoT Hardware when we
learned about the I/O pins included in the Intel Galileo Gen 2 board, we understood
that the pins labeled with a tilde symbol (~) as a prefix for the number can be used as
PWM output pins. The fact is that the pins labeled with a tilde symbol (~) as a prefix
for the number also supports interrupts.

Thus, we can move the wire that connects the reset pushbutton that turns off the
three colors from pin 1 to pin ~11, and move the wire that connects the pushbutton
that sets the three colors to their maximum brightness from pin 0 to pin ~10.

Working with Digital Inputs, Polling and Interrupts

[152]

The following diagram shows the components connected to the breadboard,
the necessary wirings and the wirings from the Intel Galileo Gen 2 board to the
breadboard. The Fritzing file for the sample is iot_fritzing_chapter_05_04.fzz
and the following picture is the breadboard view:

Chapter 5

[153]

The following picture shows the schematic with the electronic components
represented as symbols:

The GPIO pin labeled D10 PWM/SS in the board's symbol is connected to the S2
pushbutton and the R4 resistor is its pull-up resistor. The GPIO pin labeled D11
PWM/MOSI in the board's symbol is connected to the S1 pushbutton and the R5
resistor is its pull-up resistor. This way, GPIO pin number 10 will be low when
the S2 pushbutton is pressed and GPIO pin number 11 will be low when the S1
pushbutton is pressed.

The signal will fall from high to low when the pushbutton is pressed, and
therefore, we are interested in the interrupt that is generated when the
signal falls because it indicates that the pushbutton has been pressed. If
the user keeps the pushbutton pressed, the signal won't fall many times,
and the GPIO pin will stay in the low level. Thus, only one interrupt will
be fired when we are observing the fall from high to low and we won't
have multiple calls to the interrupt handler code even if the user keeps the
button pressed for a long time.

Working with Digital Inputs, Polling and Interrupts

[154]

Remember that the S1 pushbutton is located at the left-hand side in the breadboard
while the S2 pushbutton is located at the right-hand side. Now, it is time to make
the changes to the wirings. Don't forget to shutdown the Yocto Linux, wait for all the
onboard LEDs to turn off, and unplug the power supply from the Intel Galileo Gen
2 board before removing any wire from the board's pins. After we finish the changes
in the wirings, we will write the Python code to detect when the user presses the
pushbuttons with interrupts instead of working with polling.

We will take the code we wrote in the previous example when we created the last
version of our RESTful API with the mraa library and we will use this code as a
baseline to add the new features. The code file for the sample was iot_python_
chapter_05_02.py.

We will create a new PushButtonWithInterrupt class to represent a pushbutton
connected to our board that can use either a pull-up or a pull-down resistor and
will specify the callback that needs to be called when the button is pressed, that is,
the interrupt handler. When the button is pressed, an interrupt will occur and the
specified callback will be executed as the interrupt handler. The following lines show
the code for the new PushButtonWithInterrupt class that works with the mraa
library. The code file for the sample is iot_python_chapter_05_04.py.

import mraa
import time
from datetime import date

class PushButtonWithInterrupt:
 def __init__(self, pin, pyfunc, args, pull_up=True):
 self.pin = pin
 self.pull_up = pull_up
 self.gpio = mraa.Gpio(pin)
 self.gpio.dir(mraa.DIR_IN)
 mode = mraa.EDGE_FALLING if pull_up else mraa.EDGE_RISING
 result = self.gpio.isr(mode, pyfunc, args)
 if result != mraa.SUCCESS:
 raise Exception("I could not configure ISR on pin {0}".
format(pin))

 def __del__(self):
 self.gpio.isrExit()

Chapter 5

[155]

We have to specify the following arguments when we create an instance of the
PushButtonWithInterrupt class:

• The pin number to which the pushbutton is connected in the pin argument
• The function that will be called when the interrupt is triggered, that is,

the interrupt handler function, in the pyfunc argument
• The arguments that will be passed to the interrupt handler function, in the

args argument

In case we don't specify additional values, the optional pull_up argument will
be True and the instance will work as if the pushbutton were connected with a
pull-up resistor. If we work with a pull-down resistor, we must pass False in the
pull_up argument.

The constructor, that is, the __init__ method, creates a new mraa.Gpio instance
with the received pin as its pin argument, saves its reference in the gpio attribute
and calls its dir method to configure the pin to be an input pin (mraa.DIR_IN). Then,
the code determines the value of the mode local variable based on the value of the
pull_up parameter. If pull_up is true, the value will be mraa.EDGE_FALLING and
mraa.EDGE_RISING otherwise. The mode local variable holds the edge mode that
will trigger the interrupt. When we work with pull-up resistors and the user presses
a pushbutton, the signal will fall from high to low, and therefore, we want an edge
falling scenario to trigger the interrupt that indicates the button has been pressed.

Then, the code calls the self.gpio.isr method with the received pin as its pin
argument, the local mode variable as its mode argument, and the received pyfunc and
args as its pyfunc and args arguments. This way, we set the callback to be called
when the pin value changes because a pushbutton was pressed. As we determined
the appropriate value for the mode local variable before, we will configure the
appropriate edge mode that will trigger an interrupt when the button is pressed
based on the usage of pull-up or pull-down resistors. As previously explained,
not all the GPIO pins support interrupts, and therefore, it is necessary to check
the results of calling the self.gpio.isr method. In case an interrupt handler has
already been set to the pin with a previous call to the self.gpio.isr method
wouldn't return an mraa.SUCCESS value.

The PushButtonWithInterrupt class also declares a __del__ method that will
be called before Python removes an instance of this class from memory, that is,
when the object becomes inaccessible and gets deleted by the garbage-collection
mechanism. The method just calls the self.gpio.isrExit method to remove the
interrupt handler associated to the pin.

Working with Digital Inputs, Polling and Interrupts

[156]

We will replace the two class attributes in the existing BoardInteraction
class. Instead of working with PushButton instances, we will work with
PushButtonWithInterrupt instances. The class methods declared in the class
remain the same as in the code we are using as a baseline but they aren't included
in the next lines. The code file for the sample is iot_python_chapter_05_04.py.

class BoardInteraction:
 # The Red LED is connected to pin ~6
 red_led = AnalogLed(6, 'Red')
 # The Green LED is connected to Pin ~5
 green_led = AnalogLed(5, 'Green')
 # The Blue LED is connected to Pin ~3
 blue_led = AnalogLed(3, 'Blue')
 # The push button to reset colors
 reset_push_button = PushButtonWithInterrupt(11,
 set_min_brightness_callback, set_min_brightness_callback)
 # The push button to set colors to their maximum brightness
 max_brightness_push_button = PushButtonWithInterrupt(10,
 set_max_brightness_callback, set_max_brightness_callback)

The highlighted lines of code declare two class attributes for the BoardInteraction
class: reset_push_button and max_brightness_push_button. The reset_
push_button class attribute is an instance of PushButtonWithInterrupt
with its pin attribute set to 11 and its interrupt handler set to the set_min_
brightness_callback function that we will declare later. This way, the instance
will make all the necessary configurations to call the set_min_brightness_
callback function when the user presses the pushbutton connected to GPIO pin
number 11. The max_brightness_push_button class attribute is an instance of
PushButtonWithInterrupt with its pin attribute set to 10, and therefore, will make
all the necessary configurations to call the set_max_brightness_callback function
when the user presses the pushbutton connected to GPIO pin number 10.

Now, it is necessary to declare the functions that will be called when the interrupts
are triggered: set_min_brightness_callback and set_max_brightness_
callback. Notice that the functions are declared as functions and they aren't
methods of any class.

def set_max_brightness_callback(args):
 print("You have pressed the maximum brightness pushbutton.")
 BoardInteraction.set_max_brightness()

def set_min_brightness_callback(args):
 print("You have pressed the reset pushbutton.")
 BoardInteraction.set_min_brightness()

Chapter 5

[157]

Both functions declared in the previous code print a message indicating that a
specific button has been pressed and call either the BoardInteraction.set_max_
brightness or the BoardInteraction.set_min_brightness class method. We
already know these class methods from our previous examples and we didn't have
to make any changes to them.

Finally, it is necessary to replace the __main__ method with a new one because we
don't need to run a periodic callback anymore. Now, our PushButtonWithInterrupt
instances configure the interrupt handlers that will be called whenever a pushbutton
is pressed. The code file for the sample is iot_python_chapter_05_04.py.

if __name__ == "__main__":
 print("Listening at port 8888")
 application.listen(8888)
 ioloop = tornado.ioloop.IOLoop.instance()
 ioloop.start()

When the __main__ method starts running, the BoardInteraction class already
executed the code that creates the two PushButtonWithInterrupt instances,
and therefore, the interrupt handlers will run whenever we press a pushbutton.
The __main__ method just builds and starts the HTTP server.

The following line will start the HTTP server and our new version of the RESTful
API. Don't forget that you need to transfer the Python source code file to the Yocto
Linux with an SFTP client.

python iot_python_chapter_05_04.py

After you run the example, press the pushbutton that sets the colors to their
maximum brightness for 5 seconds. The RGB LED will display a white light
and you will see the following output:

You are pressing the maximum brightness pushbutton.
Red LED connected to PWM Pin #6 set to brightness 255.
Green LED connected to PWM Pin #5 set to brightness 255.
Blue LED connected to PWM Pin #3 set to brightness 255.

You were pressing the pushbutton for 5 seconds but the output displayed the
messages indicating that you were pressing the button just once. The GPIO pin
number 10 signal went from high to low once when you pressed the button, and
therefore, the mraa.EDGE_FALLING interrupt was fired and the configured interrupt
handler (set_max_brightness_callback) was executed. You kept the pushbutton
pressed, but the signal stayed in the low value, and therefore, the interrupt wasn't
triggered again.

Working with Digital Inputs, Polling and Interrupts

[158]

Obviously, when you want to run code just once when a pushbutton is
pressed even for a long time, the usage of interrupt handlers provides the
necessary precision that polling makes more complex to achieve.

Now, press the pushbutton that sets the colors to their minimum brightness for
10 seconds. The RGB LED will turn off and you will see the following output:

You are pressing the reset pushbutton.
Red LED connected to PWM Pin #6 set to brightness 0.
Green LED connected to PWM Pin #5 set to brightness 0.
Blue LED connected to PWM Pin #3 set to brightness 0.

As happened with the other pushbutton, you were pressing the pushbutton for
many seconds but the output displayed the messages indicating that you were
pressing the button just once. The GPIO pin number 11 signal went from high to low
once when you pressed the button, and therefore, the mraa.EDGE_FALLING interrupt
was fired and the configured interrupt handler (set_min_brightness_callback)
was executed.

We can make the same HTTP requests we made in our previous examples
to check that we can achieve exactly the same results with the new code
that works with interrupt handlers while running the HTTP server.

We can process HTTP requests and run interrupt handlers when the user presses
pushbuttons. We improved accuracy compared with the previous version in which
the code acted as if the pushbuttons were pressed many times when the user kept the
pushbuttons for a long time. In addition, we removed the periodic callback.

Whenever we have to read digital inputs, we can decide between working
with polling or interrupt handlers based on the specific requirements we
have for our projects. Sometimes, interrupt handlers are the best solution
but in other cases polling is more suitable. It is very important to know
that the wiring-x86 library doesn't allow us to work with interrupt
handlers for digital inputs, and therefore, in case we decide to use them,
we have to work with the mraa library.

Chapter 5

[159]

Test your knowledge
1. As an effect of using a pull-up resistor with a pushbutton, we will read the

following value when the pushbutton is pressed in the GPIO pin to which it
is connected:

1. A low value (0V).
2. A high value, that is, the IOREF voltage.
3. A value between 1V and 3.3V.

2. As an effect of using a pull-up resistor with a pushbutton, we will read the
following value when the pushbutton is released in the GPIO pin to which it
is connected:

1. A low value (0V).
2. A high value, that is, the IOREF voltage.
3. A value between 1V and 3.3V.

3. If we check a pushbutton status by reading the GPIO pin value to which it is
connected with polling, the loop runs every 0.5 seconds and the user keeps
the pushbutton pressed for 3 seconds:

1. The code will behave as if the pushbutton was pressed more
than once.

2. The code will behave as if the pushbutton was pressed just once.
3. The code will behave as if the pushbutton was never pressed.

4. We have an interrupt handler for a pushbutton with the interrupt edge mode
set to mraa.EDGE_FALLING, and the pushbutton is connected with a pull-up
resistor. If the user keeps the pushbutton pressed for 3 seconds:

1. The code will behave as if the pushbutton was pressed more
than once.

2. The code will behave as if the pushbutton was pressed just once.
3. The code will behave as if the pushbutton was never pressed.

5. In the Intel Galileo Gen 2 board, the pins labeled with the following symbol
as a prefix for the number can be configured with interrupt handlers for
digital inputs in the mraa library:

1. Hash sign (#).
2. Dollar sign ($).
3. Tilde symbol (~).

Working with Digital Inputs, Polling and Interrupts

[160]

Summary
In this chapter, we understood the difference between pull-up and pull-down
resistors to wire pushbuttons and read their status with the mraa and wiring-x86
libraries. We understood the difference between reading the pushbutton statuses
with polling and working with interrupts and interrupt handlers.

We created consistent code that allowed the user to perform the same actions with
either pushbuttons in the breadboard or HTTP request. We combined code that
reacts to changes in the statuses of the pushbuttons with a RESTful API built with
Tornado Web server. As in the previous chapters, we took advantage of Python's
object-oriented features and we created classes to encapsulate pushbuttons and the
necessary configurations with the mraa and wiring-x86 libraries. Our code is easy
to read and understand and we can easily switch the underlying low-level library.

Now that we were able to read digital inputs in different ways and configurations
that made is possible for users to interact with our IoT device while it processed
HTTP requests, we can work with more complex communications capabilities
included in the board and take advantage of its storage, which are the topics of
the next chapter.

[161]

Working with Analog Inputs
and Local Storage

In this chapter, we will work with analog inputs to transform quantitative values
retrieved from the real environment into qualitative values that we will use to fire
actions. We will:

• Understand how analog inputs work
• Learn about the impact of the resolution of analog to digital converters
• Measure a voltage with an analog pin and the mraa library
• Include a photoresistor in a voltage divider and wire an analog input pin

with a voltage source
• Transform a variable resistor into a voltage source
• Determine the darkness level with analog input and the mraa library
• Fire actions when the environment light changes
• Control analog inputs with the wiring-x86 library
• Work with different local storage options to log events

Understanding the analog inputs
In Chapter 1, Understanding and Setting up the Base IoT Hardware, we learned that the
Intel Galileo Gen 2 board provides six analog input pins numbered from A0 to A5
and located in the lower-right corner of the front-side of the board. It is possible to
measure from 0V (ground) to the value configured with the IOREF jumper position
(5V by default) and the board provides 12 bits of resolution for the analog to digital
converter. Thus, we can detect 4096 different values (212 = 4096), or 4096 units,
with values ranging from zero to 4095 (inclusive), where 0 represents 0V and
4095 means 5V.

Working with Analog Inputs and Local Storage

[162]

In case you have an experience with other Arduino boards, you must
take into account that the Intel Galileo Gen 2 board does not use the
pin labeled AREF. In other Arduino boards, you can use this pin to
set the analog reference voltage for the analog to digital conversion
process. When we work with the Intel Galileo Gen 2 board, the
maximum value for the analog pins is always going to be controlled
by the IOREF jumper position (5V or 3.3V) and it is not possible to
use any external reference for an analog input. In all our examples,
we will work with the default position for the IOREF jumper, and
therefore, the maximum value will be always 5V.

We just need to apply a linear function to convert the raw values read from the
analog pin and map them to the input voltage values. If we use 12 bits of resolution,
the detected values will have a minimum difference or step of 5V / 4095 =
0.001220012 V, approximately 1.22 mV (milliVolts) or 1.22E-03 V. We just need to
multiply the raw value read from the analog pin by five and divide it by 4095.

The following graph shows the read values from an analog pin in the abscissa axis
(x-axis) and the corresponding floating-point voltage value that it represents in the
ordinate axis (y-axis).

Chapter 6

[163]

The equation for the previous graph is y = x / 4095 * 5, specifically voltage_
value = analog_pin_read_value / 4095 * 5. We can run the following code
in our Python interpreter to see the output with all the voltage values that can be
generated with the formula for each raw value read from the analog pin from 0 to
4095 (inclusive).

for analog_pin_read_value in range(0, 4096):
 print(analog_pin_read_value / 4095.0 * 5.0)

We can also work with a lower resolution, such as 10 bits of resolution
and we would be able to detect less different values, specifically 1024
different values (210 = 1024), or 1024 units, from 0 to 1023 (inclusive). In
this case, the values will have a minimum difference or step of 5V / 1023
= 0.004887585V, approximately 4.89mV (milliVolts) or 4.89E-03 V. In case
we decide to work with this lower resolution, we just need to multiply the
raw value read from the analog pin by five and divide it by 1023.

Wiring an analog input pin with a voltage
source
The easiest way to understand how to read the values from analog pins and map
these values back to voltage values is to work with a very simple example. We will
connect a power source to one of the analog input pins, specifically a pack with two
AA or AAA 1.25 V rechargeable batteries in series. It is also possible to use AA or
AAA 1.5 V standard batteries in series. Note that the maximum voltage with the two
rechargeable batteries in series will be 2.5 V (1.25 V * 2), while the maximum voltage
with the two standard batteries in series will be 3 V (1.5 V * 2).

We will use the analog pin labeled A0 to connect to the positive side (+) of the
battery pack. Don't forget that the positive side (+) of the batter pack is connected to
the battery's nipple. After we finish the necessary wirings, we will write Python code
to measure the batteries pack voltage. This way, we will read the result of converting
an analog value to its digital representation and we will map it to the voltage value.
We need the following parts to work with this example:

• Two AA or AAA 1.25 V rechargeable batteries or two AA or AAA 1.5 V
standard batteries.

• An appropriate battery holder to plug the two selected batteries in series and
simplify wirings. For example, in case you use two AA 1.25 rechargeable
batteries, you will need a 2 x AA battery holder.

• A 2200Ω (2k2Ω) resistor with 5% tolerance (red red red gold).

Working with Analog Inputs and Local Storage

[164]

The following image shows the battery holder, the resistor connected to the
breadboard, the necessary wirings, and the wirings from the Intel Galileo Gen
2 board to the breadboard. The Fritzing file for the sample is iot_fritzing_
chapter_06_01.fzz and the following image is the breadboard view:

Chapter 6

[165]

The following schematic shows the schematic with the electronic components
represented as symbols:

As seen in the previous schematic, the analog input pin labeled A0 in the board's
symbol, is connected to the positive terminal of the power source through the
resistor. The negative terminal of the power source is connected to the ground.

Working with Analog Inputs and Local Storage

[166]

Now, it's time to make all the necessary wirings. Don't forget to shutdown the
Yocto Linux, wait for all the onboard LEDs to turn off, and unplug the power
supply from the Intel Galileo Gen 2 board before adding or removing any wire
from the board's pins.

Measuring voltage with analog inputs
and the mraa library
We will create a new VoltageInput class to represent a voltage source connected to
our board, specifically, to an analog input pin. The following lines show the code for
the new VoltageInput class that works with the mraa library. The code file for the
sample is iot_python_chapter_06_01.py.

import mraa
import time

class VoltageInput:
 def __init__(self, analog_pin):
 self.analog_pin = analog_pin
 self.aio = mraa.Aio(analog_pin)
 # Configure ADC resolution to 12 bits (0 to 4095)
 self.aio.setBit(12)

 @property
 def voltage(self):
 raw_value = self.aio.read()
 return raw_value / 4095.0 * 5.0

We have to specify the analog pin number to which the voltage source is connected
when we create an instance of the VoltageInput class in the analog_pin required
argument. The constructor, that is, the __init__ method, creates a new mraa.Aio
instance with the received analog_pin as its pin argument, saves its reference in the
aio attribute and calls its setBit method to configure the analog to digital converter
resolution to be of 12 bits, that is, to provide 4096 possible values to represent from 0
to 5V.

The class defines a voltage property that calls the read method for the related
mraa.Aio instance (self.aio) to retrieve the raw value from the analog pin and
saves it in the raw_value variable. Then, the code returns the result of dividing
raw_value by 4095 and multiplying it by 5. This way, the property returns the
voltage value, converted from the raw value returned by the read function.

Chapter 6

[167]

Now, we can write code that uses the new VoltageInput class to create an instance
for the battery pack and easily retrieve the voltage value. The new class makes the
necessary calculations to map the read value into a voltage value, and therefore, we
just need to check the value of the voltage property without worrying about the
specific details about the analog to digital converter and its resolution.

Now, we will write a loop that will retrieve the voltage value every second. The code
file for the sample is iot_python_chapter_06_01.py.

if __name__ == "__main__":
 v0 = VoltageInput(0)
 while True:
 print("Voltage at pin A0: {0}".format(v0.voltage))
 # Sleep 1 second
 time.sleep(2)

The first line creates an instance of the previously coded VoltageInput class with 0
as the value of the analog_pin argument. This way, the instance will read the analog
values from the pin labeled A0, that is connected to the positive terminal of the
power source through the resistor.

Then, the code runs a loop forever, that is, until you interrupt the execution by
pressing Ctrl + C or the button to stop the process in case you are using a Python IDE
with remote development features to run the code in your board. The loop prints
the voltage value at pin A0 every two seconds. The following lines show a sample
output line generated when the code is executed with two rechargeable batteries that
have lost a bit of their charge:

Voltage at pin A0: 2.47130647131

Wiring a photoresistor to an analog input
pin
Now, we will use a photoresistor, that is, a light sensor, specifically, an electronic
component that provides a variable resistor that changes the resistor value based on
the incident light intensity. As the incident light intensity increases, the resistance of
the photoresistor decreases, and vice versa.

Working with Analog Inputs and Local Storage

[168]

A photoresistor is also known as an LDR (short for Light-Dependent
Resistor) or photocell. Bear in mind that pohotoresistors are not the
best components to sense light with great accuracy. However, they
are extremely useful to easily determine whether we are in a dark
environment when we don't have problems with latencies that can
reach one second.

We cannot measure a resistance value with our board. However, we can read voltage
values, and therefore, we will use a voltage divider configuration that will include
the photoresistor as one of its two resistors. The voltage divider will output a high
voltage value when the photoresistor receives a high amount of light and it will
output a low voltage value when the photoresistor is in a dark zone, that is, when it
receives little or no light at all.

We learned how to read values from analog pins and map these values back to
voltage values in the previous examples. We will use this knowledge to determine
when it becomes dark using the photoresistor. Once we understand how the sensor
works, we will react to the changes in the light conditions and we will log data about
specific scenarios.

We will use the analog pin labeled A0 to connect the positive side (+) of the voltage
divider that includes a photoresistor. After we finish the necessary wirings, we will
write Python code to determine whether we are in a dark environment or not. This
way, we will read the result of converting a resistance value into a voltage, and then
converting this analog value into its digital representation. As we learned in our
previous example, we will map the read digital value to a voltage value and then we
will map this voltage value to a darkness measurement value. It sounds like a big
mess, but it is really easier than it sounds. We need the following parts to work with
this example:

• A photoresistor
• A 10,000Ω (10kΩ) resistor with 5% tolerance (brown black orange gold)

Chapter 6

[169]

The following diagram shows the photoresistor and the resistor connected to the
breadboard, the necessary wirings and the wirings from the Intel Galileo Gen
2 board to the breadboard. The Fritzing file for the sample is iot_fritzing_
chapter_06_02.fzz and the following picture is the breadboard view:

Working with Analog Inputs and Local Storage

[170]

The following picture shows the schematic with the electronic components
represented as symbols:

As seen in the previous schematic, the GPIO pin labeled A0 in the board's symbol
is connected to the voltage divider built with the photoresistor named LDR1 and a
10kΩ resistor with 5% tolerance named R1. The LDR1 photoresistor is wired to the
IOREF pin. We already know that the pin labeled IOREF provides us the IOREF
voltage, that is, 5V in our actual configuration. The R1 resistor is wired to
GND (ground).

Now, it is time make all the necessary wirings. Don't forget to shutdown the Yocto
Linux, wait for all the onboard LEDs to turn off, and unplug the power supply
from the Intel Galileo Gen 2 board before adding or removing any wire from the
board's pins.

Chapter 6

[171]

Determining the darkness level with
analog inputs and the mraa library
We will create a new DarknessSensor class to represent the photoresistor included
in the voltage divider and connected to our board, specifically, to an analog input
pin. As we already wrote code to read and transform an analog input, we will use
the previously created VoltageInput class. The following lines show the code for
the new DarknessSensor class that works with the mraa library. The code file for the
sample is iot_python_chapter_06_02.py.

import mraa
import time

class DarknessSensor:
 # Light level descriptions
 light_extremely_dark = "extremely dark"
 light_very_dark = "very dark"
 light_dark = "just dark"
 light_no_need_for_a_flashlight = \
 "there is no need for a flashlight"
 # Maximum voltages that determine the light level
 extremely_dark_max_voltage = 2.0
 very_dark_max_voltage = 3.0
 dark_max_voltage = 4.0

 def __init__(self, analog_pin):
 self.voltage_input = VoltageInput(analog_pin)
 self.voltage = 0.0
 self.ambient_light = self.__class__.light_extremely_dark
 self.measure_light()

 def measure_light(self):
 self.voltage = self.voltage_input.voltage
 if self.voltage < self.__class__.extremely_dark_max_voltage:
 self.ambient_light = self.__class__.light_extremely_dark
 elif self.voltage < self.__class__.very_dark_max_voltage:
 self.ambient_light = self.__class__.light_very_dark
 elif self.voltage < self.__class__.dark_max_voltage:
 self.ambient_light = self.__class__.light_dark
 else:
 self.ambient_light = self.__class__.light_no_need_for_a_
flashlight

Working with Analog Inputs and Local Storage

[172]

We have to specify the analog pin number to which the voltage divider, which
includes the photoresistor, is connected when we create an instance of the
DarknessSensor class in the analog_pin required argument. The constructor, that
is, the __init__ method, creates a new VoltageInput instance with the received
analog_pin as its analog_pin argument and saves its reference in the voltage_
input attribute. Then, the constructor creates and initializes two attributes: voltage
and ambient_light. Finally, the constructor calls the measure_light method.

The class defines a measure_light method that saves the voltage value retrieved
by checking the self.voltage_input.voltage property in the voltage attribute
(self.voltage). This way, the code can check whether the value stored in the
voltage attribute is lower than the three maximum voltage values that determine the
light level and sets the appropriate value for the ambient_light attribute (self.
ambient_light).

The class defines the following three class attributes that determine the maximum
voltage values that determine each light level:

• extremely_dark_max_voltage: If the retrieved voltage is lower than 2V,
it means that the environment is extremely dark

• very_dark_max_voltage: If the retrieved voltage is lower than 3V, it means
that the environment is very dark

• dark_max_voltage. If the retrieved voltage is lower than 4V, it means that
the environment is just dark

The values are configured for a specific photoresistor and environment
conditions. You might need to set different values based on the voltage
values retrieved with the photoresistor included in the voltage divider.
Once you run the sample, you can check the voltage values and make
the necessary adjustments to the voltage values stored in the previously
explained class attributes. Remember that the voltage value will be
higher, that is, closer to 5V, when the incident light increases. Thus, the
darkest environment, the lower the measured voltage.

Chapter 6

[173]

Our goal is to convert a quantitative value, specifically, a voltage value, into
a qualitative value, that is, a value that explains the real situation in a real
environment. The class defines the following four class attributes that specify the
light level descriptions and determine one of the four light levels in which a voltage
value will be converted after we call the measure_light method:

• light_extremely_dark

• light_very_dark

• light_dark

• light_no_need_for_a_flashlight

Now, we can write the code that uses the new DarkSensor class to create an instance
for the photoresistor included in the voltage divider and easily print a description
of the light conditions. The new class uses the previously created VoltageInput
class to make the necessary calculations to map the read value into a voltage value,
and then, transforms it into a qualitative value that provides us with a description
of the light conditions. Now, we will write a loop that will check whether the light
conditions changed every two seconds. The code file for the sample is iot_python_
chapter_06_02.py.

if __name__ == "__main__":
 darkness_sensor = DarknessSensor(0)
 last_ambient_light = ""
 while True:
 darkness_sensor.measure_light()
 new_ambient_light = darkness_sensor.ambient_light
 if new_ambient_light != last_ambient_light:
 # The ambient light value changed
 last_ambient_light = new_ambient_light
 print("Darkness level: {0}".format(new_ambient_light))
 # Sleep 2 seconds
 time.sleep(2)

The first line creates an instance of the previously coded DarknessSensor class
with 0 as the value of the analog_pin argument and saves the instance in the
darkness_sensor local variable. This way, the instance will use an instance of the
VoltageInput class to read the analog values from the pin labeled A0. Then, the
code initializes the last_ambient_light local variable with an empty string.

Working with Analog Inputs and Local Storage

[174]

Then, the code runs a loop forever, that is, until you interrupt the execution by
pressing Ctrl + C or the button to stop the process in case you are using a Python
IDE with remote development features to run the code in your board. The loop
calls the darkness_sensor.measure_light method to retrieve the current light
conditions and saves the updated darkness_sensor.ambient_light value in
the new_ambient_light local variable. Then, the code checks whether the
new_ambient_light value is different from last_ambient_light. In case they are
different, it means that the ambient light has changed, and therefore, it sets the value
for last_ambient_light equal to new_ambient_light, and prints the ambient light
description stored in new_ambient_light.

The loop prints the ambient light description only when it changes from the last
printed value, and checks the ambient light every two seconds. The following line
will start the example. Don't forget that you need to transfer the Python source code
file to the Yocto Linux with an SFTP client.

python iot_python_chapter_06_02.py

After you run the example, perform the following actions:

• Use a smartphone or a flashlight to induce light over the photoresistor
• Use your hand to generate a shadow over the photoresistor
• Reduce the light in the environment, but not the minimum, just make

it a bit dark
• Reduce the light in the environment to the minimum, a complete dark

environment with no light at all

As a result of the previous actions, you should see the following output:

Darkness level: there is no need for a flashlight
Darkness level: just dark
Darkness level: very dark
Darkness level: extremely dark

Firing actions when the environment
light changes
In previous examples, we worked with PWM to set the brightness level for the red,
green, and blue components of an RGB LED. Now, we will add an RGB LED and
we will set the brightness level for its three components based on the ambient light
detected with the photoresistor. We will wire the RGB LED as we did in the example
in which we worked with this component in Chapter 4, Working with a RESTful API
and Pulse Width Modulation. We will use the following PWM output pins:

Chapter 6

[175]

• Pin ~6 to connect the anode pin for red LED
• Pin ~5 to connect the anode pin for green LED
• Pin ~3 to connect the anode pin for blue LED.

We need the following additional parts to work with this example:

• One common cathode 5mm RGB LED
• Three 270Ω resistors with 5% tolerance (red violet brown gold)

The following diagram shows the components connected to the breadboard,
the necessary wirings and the wirings from the Intel Galileo Gen 2 board to the
breadboard. The Fritzing file for the sample is iot_fritzing_chapter_06_03.fzz
and the following picture is the breadboard view:

Working with Analog Inputs and Local Storage

[176]

The following picture shows the schematic with the electronic components
represented as symbols:

As seen in the previous schematic, three PWM capable GPIO pins labeled D3 PWM,
D5 PWM, and D6 PWM in the board's symbol is connected to a 270Ω resistor, wired
to an anode pin for each LED color, and the common cathode is connected to ground.

Now, it is time to insert the components in the breadboard and make all the
necessary wirings. Don't forget to shutdown the Yocto Linux, wait for all the
onboard LEDs to turn off, and unplug the power supply from the Intel Galileo
Gen 2 board before adding or removing any wire from the board's pins.

We will add the code for the AnalogLed class that represent an LED connected to our
board that can have a brightness level from 0 to 255 inclusive. We created this class
in Chapter 4, Working with a RESTful API and Pulse Width Modulation and the code file
for the sample was iot_python_chapter_04_02.py.

Chapter 6

[177]

We will create a new BoardInteraction class to create an instance of our
DarknessSensor class and one instance for each component of the RGB LED
and easily control their brightness levels. The following lines show the code
for the BoardInteraction class. The code file for the sample is iot_python_
chapter_06_03.py:

class BoardInteraction:
 # The photoresistor included in the voltage divider
 # is connected to analog PIN A0
 darkness_sensor = DarknessSensor(0)
 # The Red LED is connected to GPIO pin ~6
 red_led = AnalogLed(6, 'Red')
 # The Green LED is connected to GPIO Pin ~5
 green_led = AnalogLed(5, 'Green')
 # The Blue LED is connected to GPIO Pin ~3
 blue_led = AnalogLed(3, 'Blue')

 @classmethod
 def set_rgb_led_brightness(cls, brightness_level):
 cls.red_led.set_brightness(brightness_level)
 cls.green_led.set_brightness(brightness_level)
 cls.blue_led.set_brightness(brightness_level)

 @classmethod
 def update_leds_brightness(cls):
 if cls.darkness_sensor.ambient_light == DarknessSensor.light_
extremely_dark:
 cls.set_rgb_led_brightness(255)
 elif cls.darkness_sensor.ambient_light == DarknessSensor.
light_very_dark:
 cls.set_rgb_led_brightness(128)
 elif cls.darkness_sensor.ambient_light == DarknessSensor.
light_dark:
 cls.set_rgb_led_brightness(64)
 else:
 cls.set_rgb_led_brightness(0)

Working with Analog Inputs and Local Storage

[178]

The BoardInteraction class declares four class attributes: darkness_sensor,
red_led, green_led and blue_led. The first class attribute saves a new instance of
the DarknessSensor class and the last three class attributes save new instances of the
previously imported AnalogLed class and represent the red, green, and blue LEDs
connected to pins ~6, ~5, and ~3. Then, the BoardInteraction class declares the
following two class methods:

• set_rgb_led_brightness: Sets the same brightness level received in the
brightness_level argument to the three components of the RGB LED.

• update_leds_brightness: Sets the brightness level for the three
components of the RGB LED based on the ambient_light value of the
DarknessSensor instance (cls.darkness_sensor). If it is extremely dark, the
brightness level will be 255. If it is very dark, the brightness level will be 128.
If it is dark, the brightness level will be 64. Otherwise, the RGB LED will be
completely turned off.

Now, we can write a code that uses the new BoardInteraction class to measure the
ambient light and set the brightness for the RGB LED based on the retrieved value.
As in our previous example, we will only make changes when the ambient light
value changes from the current value. We will write a loop that will check whether
the light conditions changed every two seconds. The code file for the sample is
iot_python_chapter_06_03.py.

 last_ambient_light = ""
 while True:
 BoardInteraction.darkness_sensor.measure_light()
 new_ambient_light = BoardInteraction.darkness_sensor.ambient_
light
 if new_ambient_light != last_ambient_light:
 # The ambient light value changed
 last_ambient_light = new_ambient_light
 print("Darkness level: {0}".format(new_ambient_light))
 BoardInteraction.update_leds_brightness()
 # Sleep 2 seconds
 time.sleep(2)

Chapter 6

[179]

The first line initializes the last_ambient_light local variable with an empty string.
Then, the code runs a loop forever, that is, until you interrupt the execution. The loop
calls the BoardInteraction.darkness_sensor.measure_light method to retrieve
the current light conditions and saves the updated BoardInteraction.darkness_
sensor.ambient_light value in the new_ambient_light local variable. Then, the
code checks whether the new_ambient_light value is different from last_ambient_
light. In case they are different, it means that the ambient light has changed, and
therefore, it sets the value for last_ambient_light equal to new_ambient_light,
prints the ambient light description stored in new_ambient_light and calls the
BoardInteraction.update_leds_brightness method to set the brightness
for the RGB LED based on the ambient light.

The following line will start the example. Don't forget that you need to transfer the
Python source code file to the Yocto Linux with an SFTP client.

python iot_python_chapter_06_03.py

After you run the example, perform the following actions, and you will see the RGB
LED changing its brightness level as explained:

• Use a smartphone or a flashlight to induce light over the photoresistor.
The RGB LED will stay turned off.

• Use your hand to generate a shadow over the photoresistor. The RGB LED
will turn on with a dimmed light.

• Reduce the light in the environment, but not the minimum, just make it a bit
dark. The RGB LED will increase its brightness.

• Reduce the light in the environment to the minimum, a complete dark
environment with no light at all. The RBG LED will increase its brightness
to the maximum level.

• Use a smartphone or a flashlight to induce light over the photoresistor,
again. The RGB LED will turn off.

Working with Analog Inputs and Local Storage

[180]

As a result of the previous actions, you should see the following output:

Darkness level: there is no need for a flashlight
Red LED connected to PWM Pin #6 set to brightness 0.
Green LED connected to PWM Pin #5 set to brightness 0.
Blue LED connected to PWM Pin #3 set to brightness 0.
Darkness level: just dark
Red LED connected to PWM Pin #6 set to brightness 64.
Green LED connected to PWM Pin #5 set to brightness 64.
Blue LED connected to PWM Pin #3 set to brightness 64.
Darkness level: very dark
Red LED connected to PWM Pin #6 set to brightness 128.
Green LED connected to PWM Pin #5 set to brightness 128.
Blue LED connected to PWM Pin #3 set to brightness 128.
Darkness level: extremely dark
Red LED connected to PWM Pin #6 set to brightness 255.
Green LED connected to PWM Pin #5 set to brightness 255.
Blue LED connected to PWM Pin #3 set to brightness 255.
Darkness level: there is no need for a flashlight
Red LED connected to PWM Pin #6 set to brightness 0.
Green LED connected to PWM Pin #5 set to brightness 0.
Blue LED connected to PWM Pin #3 set to brightness 0.

We wrote object-oriented Python code that is easy to read and understand. With
the help of the mraa library, we could easily fire actions when the environment light
changes. We could control the brightness for an RGB LED when the ambient light
changed. We worked with an analog input to determine the ambient light level
and we used PWM to generate an analog output and control the RGB LED
brightness level.

Controlling analog inputs with the
wiring-x86 library
So far, we have been using the mraa library to work with analog inputs and
retrieve the ambient light level. However, we have also been working with the
wiring-x86 library in our previous examples. We can change just a few lines
of our object-oriented code to replace the mraa library with the wiring-x86
one to read analog values.

Chapter 6

[181]

First, we have to replace the code for the AnalogLed class with the version that
works with the wiring-x86 library. We created this version in Chapter 4, Working
with a RESTful API and Pulse Width Modulation, and the code file for the sample was
iot_python_chapter_04_04.py. When we grab the code for the AnalogLed class,
we will also have the Board class.

The following lines shows the new version of the VoltageInput class that works
with the wiring-x86 library instead of using mraa. The code file for the sample is
iot_python_chapter_06_04.py.

from wiringx86 import GPIOGalileoGen2 as GPIO

class VoltageInput:
 initial_analog_pin_number = 14

 def __init__(self, analog_pin):
 self.analog_pin = analog_pin
 self.gpio = Board.gpio
 self.gpio.pinMode(
 analog_pin + self.__class__.initial_analog_pin_number,
 self.gpio.ANALOG_INPUT)

 @property
 def voltage(self):
 raw_value = self.gpio.analogRead(
 self.analog_pin +
 self.__class__.initial_analog_pin_number)
 return raw_value / 1023.0 * 5.0

We created a new version of the VoltageInput class that declares an initial_
analog_pin_number class attribute set to 14. The wiring-x86 library uses Arduino
compatible numbers to reference the analog input pins or ADC pins. Thus, analog
input pin 0 is known as 14, analog input pin 1 as 15, and so on. As we don't want to
make changes to the rest of our code, we use a class attribute to specify the number
that we must sum to the received analog_pin value to convert it to a wiring-x86
analog pin number.

Working with Analog Inputs and Local Storage

[182]

The constructor, that is, the __init__ method, saves a reference to the Board.gpio
class attribute in self.gpio and calls its pinMode method with the received analog_
pin and the value specified in initial_analog_pin_number class attribute as its
pin argument, and self.gpio.ANALOG_INPUT as its mode argument. This way, we
configure the pin to be an analog input pin converting the analog input pin number
into a wiring-x86 compatible analog input pin number. The wiring-x86 library
doesn't make a difference between GPIO and analog I/O pins, and we can manage
all of them through the Board.gpio class attribute.

All the VoltageInput instances will save a reference to the same Board.gpio class
attribute that created an instance of the GPIO class, specifically, the wiringx86.
GPIOGalileoGen2 class with its debug argument set to False to avoid unnecessary
debug information for the low-level communications.

The class defines a voltage property that calls the analogRead method for the GPIO
instance (self.gpio) to retrieve the raw value from the analog pin and saves it in
the raw_value variable. The result of the self.analog_pin attribute plus the value
specified in initial_analog_pin_number class attribute specifies the pin value for
the analogRead method call. Then, the code returns the result of dividing raw_value
by 1023 and multiplying it by 5. This way, the property returns the voltage value,
converted from the raw value returned by the analogRead function.

Unluckily, the wiring-x86 library doesn't support 12 bit of resolution
for the analog to digital converter. The library works with a fixed 10 bit of
resolution, and therefore, we are only able to detect 1024 different values
(210 = 1024), or 1024 units, with values ranging from 0 to 1023 (inclusive),
where 0 represents 0V and 1023 means 5V. For this reason, we have to
divide raw_value by 1023 instead of 4095 within the voltage property.

The rest of the code remains the same one that we have used for the previous
example. There is no need to make changes to the DarknessSensor class, the
BoardInteraction class or the main loop because they will automatically work
with the new VoltageInput class and there were no changes in the arguments
for its constructor or its voltage property.

Chapter 6

[183]

The following line will start the new version of the example that works with the
wiring-x86 library:

python iot_python_chapter_06_04.py

We can make the same changes in the incident light over the
photoresistor that we made in our previous example to check that we
can achieve exactly the same results with the wiring-x86 library. The
only difference will be in the precision of the voltage values retrieved
because we are working with 10 bits of resolution in the analog to digital
converter in this case.

Logging to files in the local storage
Python provides a powerful and flexible logging API provided by a standard library
module. We can use the logging module to track events that happen when our IoT
applications run on the board and save them on a log file by taking advantage of the
local storage options.

Now, we will make changes to our last version of our previous example that worked
with the mraa library to log the voltage values read from the ambient light sensor.
We only want to log the new voltage value when the ambient light changes, that is,
when the value for BoardInteraction.darkness_sensor.ambient_light mutates.
We will use the previous code as a baseline to add the new logging features.
The code file for the sample was iot_python_chapter_06_03.py.

We will replace the __main__ method. The following lines show the new version that
adds logging capabilities. The new lines of code are highlighted and the code file for
the sample is iot_python_chapter_06_05.py.

import logging

if __name__ == "__main__":
 logging.basicConfig(
 filename="iot_python_chapter_06_05.log",
 level=logging.INFO,
 format="%(asctime)s %(message)s",
 datefmt="%m/%d/%Y %I:%M:%S %p")
 logging.info("Application started")

Working with Analog Inputs and Local Storage

[184]

 last_ambient_light = ""
 last_voltage = 0.0
 while True:
 BoardInteraction.darkness_sensor.measure_light()
 new_ambient_light = BoardInteraction.darkness_sensor.ambient_
light
 if new_ambient_light != last_ambient_light:
 # The ambient light value changed
 logging.info(
 "Ambient light value changed from {0} to {1}".format(
 last_voltage, BoardInteraction.darkness_sensor.
voltage))
 last_ambient_light = new_ambient_light
 last_voltage = BoardInteraction.darkness_sensor.voltage
 print("Darkness level: {0}".format(new_ambient_light))
 BoardInteraction.update_leds_brightness()
 # Sleep 2 seconds
 time.sleep(2)

The first line calls the logging.basicConfig method to do the basic configuration
for the logging system. The fileName argument specifies "iot_python_
chapter_06_05.log" as the file name we want to use for logging. As we don't
specify a value for the fileMode argument, the default 'a' mode is used and the
messages from successive runs will be appended to the specified log file name, that
is, the file will never be overwritten.

We didn't specify any path in the fileName argument, and therefore,
the log file will be created in the same folder in which the Python
script runs, that is, the /home/root folder. In this case, the log file
will be using the storage space available in the microSD card that
boots the Yocto Linux distribution.

The format argument specifies "%(asctime)s %(message)s" because we want
to store the date and time followed by a message. The datefmt argument specifies
"%m/%d/%Y %I:%M:%S %p" as the date and time format we want to use for the date
and time that will be included as a prefix for all the lines appended to the log. We
want a short date (month/date/year) followed by a short time (hours/minutes/
seconds AM/PM). We just want to log the information logs to the file, and therefore,
the level argument specifies logging.INFO to set the root logger level to this value.

Chapter 6

[185]

The next line calls the logging.info method to log the first event: the application
that has started its execution. Before entering into the loop, the code declared a new
last_voltage local variable and initializes it to 0.0. We want to log the previous
voltage and the new voltage whenever the ambient light changes, and therefore, it is
necessary to save the last voltage in a new variable. When the ambient light changes,
a call to the logging.info method logs the transition from the previous voltage to
the new voltage value. However, it is very important to notice that the first time
this method is called, the previous voltage will be equal to 0.0. The next line
saves the value for the BoardInteraction.darkness_sensor.voltage in the
last_voltage variable.

The following line will start the new version of the example that will create the
iot_python_chapter_06_05.log file:

python iot_python_chapter_06_05.py

Keep the Python script running for a few minutes and make many changes in the
incident light over the photoresistor. This way, you will generate many lines in the
log file. Then, you can use your favorite SFTP client to download the log file from
/home/root and read it.

The following lines show some sample lines generated in the log file after executing
the application:

03/08/2016 04:54:46 PM Application started
03/08/2016 04:54:46 PM Ambient light value changed from 0.0 to
4.01953601954
03/08/2016 04:55:20 PM Ambient light value changed from 4.01953601954
to 3.91208791209
03/08/2016 04:55:26 PM Ambient light value changed from 3.91208791209
to 2.49572649573
03/08/2016 04:55:30 PM Ambient light value changed from 2.49572649573
to 3.40903540904
03/08/2016 04:55:34 PM Ambient light value changed from 3.40903540904
to 2.19291819292
03/08/2016 04:55:38 PM Ambient light value changed from 2.19291819292
to 3.83394383394
03/08/2016 04:55:42 PM Ambient light value changed from 3.83394383394
to 4.0
03/08/2016 04:55:48 PM Ambient light value changed from 4.0 to
3.40903540904

Working with Analog Inputs and Local Storage

[186]

03/08/2016 04:55:50 PM Ambient light value changed from 3.40903540904
to 2.89133089133
03/08/2016 04:55:56 PM Ambient light value changed from 2.89133089133
to 3.88278388278
03/08/2016 04:55:58 PM Ambient light value changed from 3.88278388278
to 4.69841269841
03/08/2016 04:56:00 PM Ambient light value changed from 4.69841269841
to 3.93650793651

Working with USB attached storage
Log files that record events related to sensors can grow really fast, and therefore,
storing log files in the the microSD storage space might become a problem. We
can work with microSD cards up to 32 GB. Thus, one option is to create the Yocto
Linux image on a bigger microSD card and continue working with a single storage.
This would require us to expand the partition from the default image. The other
option is to take advantage of the cloud and just keep a constrained log in our local
storage. However, we will work with this option later. Now, we want to explore the
additional options we have to use local storage.

As we learned in Chapter 1, Understanding and Setting up the Base IoT Hardware,
The Intel Galileo Gen 2 board provides a USB 2.0 host connector, labeled USB
HOST. We can use this connector to plug a USB thumb drive for additional
storage and save the log file in this new storage.

Before you plug any USB thumb drive, run the following command in the SSH
terminal to list the partition tables:

fdisk -l

The following lines show an example of the output generated by the previous
command. Your output might be different because it depends on the microSD
card that you are using to boot Yocto Linux. Notice that the /dev/mmcblk0 disk
identifies the microSD card and you have two partitions: /dev/mmcblk0p1 and
/dev/mmcblk0p2.

Disk /dev/mmcblk0: 7.2 GiB, 7746879488 bytes, 15130624 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x000a69e4

Device Boot Start End Blocks Id System
/dev/mmcblk0p1 * 2048 106495 52224 83 Linux
/dev/mmcblk0p2 106496 2768895 1331200 83 Linux

Chapter 6

[187]

Now, we will plug a USB thumb drive to the board's USB 2.0 host connector, we will
run the necessary commands to mount it, and then we will make change to the code
to save the log in a folder within the USB thumb drive. You will need a preformatted
USB thumb drive compatible with USB 2.0 to run this example.

The following picture shows a USB thumb drive plugged to the board's USB 2.0
host connector, labeled USB HOST. Wait a few seconds after you plug the USB
thumb drive.

Yocto Linux will add a new block device to the /dev folder. Run the following
command in the SSH terminal to list the partition tables:

fdisk -l

Working with Analog Inputs and Local Storage

[188]

The following lines show an example of the output generated by the previous
command. Your output might be different because it depends on the USB drive and
also on the microSD card that you are using. Compare the output with the output
generated when you executed the same command before you plugged the USB
thumb drive. The additional lines provide information about the USB thumb drive,
its disk name, and its partitions. The highlighted lines show the partition details
for the USB thumb, identified as the /dev/sda disk and with a FAT32 partition
/dev/sda1. We will use this partition name for one of our next steps.

Disk /dev/mmcblk0: 7.2 GiB, 7746879488 bytes, 15130624 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x000a69e4

Device Boot Start End Blocks Id System
/dev/mmcblk0p1 * 2048 106495 52224 83 Linux
/dev/mmcblk0p2 106496 2768895 1331200 83 Linux

Disk /dev/sda: 3.8 GiB, 4026531840 bytes, 7864320 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x02bb0a1a

Device Boot Start End Blocks Id System
/dev/sda1 * 64 7864319 3932128 b W95 FAT32

Now, it is necessary to create a mount point. We have to create a new sub-folder in
the /media folder. We will use usb as the name for the sub-folder, and therefore,
the folder in which we will mount the drive will be /media/usb. Run the following
command to create the folder:

mkdir /media/usb

Run the following command to mount the partition in the recently created /media/
usb folder. In the previous steps we retrieved the partition name and it was named
/dev/sda1. Your partition name might be different, and therefore, you just need
to replace /dev/sda1 with your partition name listed when you executed the fdisk
command that listed the disks and their partitions.

mount /dev/sda1 /media/usb

Chapter 6

[189]

Now, we can access the contents of the USB thumb drive through the /media/usb
folder, that is, whenever we create a folder or file in this folder, we are writing to the
USB thumb drive partition.

Run the following command to create a new /media/usb/log folder in which we
will store the log for our IoT application:

mkdir /media/usb/log

Now, we will change the value we pass to the filename argument when we call
the logging.basicConfig method within the __main__ method. We want to save
the log file within the /media/usb/log folder. This way, we will store it in the
USB thumb drive, in the log folder. We will use the previous code as a baseline to
change the log file name and its path. The code file for the sample was iot_python_
chapter_06_05.py.

The following lines show the new code that calls the logging.basicConfig method
and the code file for the sample is iot_python_chapter_06_06.py. The rest of the
code remains the same we have used in our previous example.

import logging

if __name__ == "__main__":
 logging.basicConfig(
 filename="/media/usb/log/iot_python_chapter_06_06.log",
 level=logging.INFO,
 format="%(asctime)s %(message)s",
 datefmt="%m/%d/%Y %I:%M:%S %p")

The following line will start the new version of the example that will create the
iot_python_chapter_06_06.log file in the /media/usb/log folder:

python iot_python_chapter_06_06.py

Keep the Python script running for a few minutes and make many changes in the
incident light over the photoresistor. This way, you will generate many lines in the
log file. Then, you can use your favorite SFTP client to download the log file from
/media/usb/log and read it. However, don't forget to go back to the home/root
folder in your SFTP client because this is the folder in which you upload the
Python scripts.

Working with Analog Inputs and Local Storage

[190]

If you need to unplug the USB thumb drive to plug it on another computer or device,
first you must interrupt the execution of the Python script, and then, you must run
the following command to unmount the partition. In the previous steps we retrieved
the partition name and it was named /dev/sda1. Your partition name might be
different, and therefore, you just need to replace /dev/sda1 with your partition
name listed when you executed the fdisk command that listed the disks and their
partitions. Be careful and make sure you run this command on the terminal that
is running the shell on the Yocto Linux. Make sure you see the root@galileo:~#
prompt before you execute it. If you run the command in a computer that runs
Linux or OS X, you might unmount one of your drives.

umount /dev/sda1

Now, you can remove the USB thumb drive from the USB 2.0 host connector.

Test your knowledge
1. The Intel Galileo Gen 2 board provides the following resolution for the

analog to digital converter:
1. 32 bits.
2. 64 bits.
3. 12 bits.

2. The analog pins allow us to detect a maximum of:
1. 4,096 different values, with values ranging from 0 to 4095 (inclusive).
2. 16,384 different values, with values ranging from

0 to 16,383 (inclusive).
3. 256 different values, with values ranging from 0 to 255 (inclusive).

3. We can configure the number of bits we want to use as the resolution by
calling the following method of an mraa.Aio instance:

1. setADCResolution.
2. setBit.
3. setResolutionBits.

Chapter 6

[191]

4. A call to the read method for a mraa.Aio instance returns:
1. A raw number of units based on the number of the resolution bits

configured for the instance.
2. A voltage value automatically converted from the raw number

of units.
3. A resistance value measured in Ohms (Ω).

5. We can use analog pins to read:

1. Resistance values.
2. Current values.
3. Voltage values.

Summary
In this chapter, we learned how to work with analog inputs to measure voltage
values. We understood the impact of the different bits of resolution for the
analog to digital converter and we wrote code that converted the raw units
read into voltage values.

We measure voltages with an analog pin and both the mraa and the wiring-x86
library. We were able to transform a variable resistor into a voltage source and make
it possible to measure the darkness level with an analog input, a photoresistor and a
voltage divider.

As in the previous chapters, we continued taking advantage of Python's
object-oriented features and created classes to encapsulate voltage inputs,
darkness sensors, and the necessary configurations with the mraa and wiring-x86
libraries. Our code is easy to read and understand and we can easily switch the
underlying low-level library.

We fired actions when the environment light changed and we were able to work
with both analog inputs and analog outputs. Finally, we registered events by taking
advantage of the logging features included in the Python standard library. We also
learned to take advantage of the USB 2.0 host connector included in the Intel Galileo
Gen 2 board to plug a USB thumb and use it as an additional storage.

Now that we were able to read the analog inputs in different ways and
configurations that made it possible for our IoT device to read analog values
generated by changed in the environment, we can work with a wider variety of
sensors to retrieve data from the real world, which is the topic of the next chapter.

[193]

Retrieving Data from the Real
World with Sensors

In this chapter, we will work with a variety of sensors to retrieve data from the real
world. We will cover the following topics:

• Understanding sensors and their connection types
• Learn the most important things we must consider when choosing sensors
• Take advantage of the upm library with many different sensors
• Measure the magnitude and direction of proper acceleration or g-force with

an accelerometer
• Work with a three axis analog accelerometer
• Use a digital accelerometer that works with the I2C bus
• Work with the mraa library and the I2C bus to control a digital accelerometer
• Measure ambient temperature with an analog sensor
• Use a digital temperature and humidity sensor that works with the I2C bus

Retrieving Data from the Real World with Sensors

[194]

Understanding sensors and their
connection types
In Chapter 6, Working with Analog Inputs and Local Storage, we used a photoresistor
that is included in a voltage divider and we connected it to an analog input pin. We
were able to measure the ambient light and we determined different darkness levels
and change the brightness levels of an RGB LED. The photoresistor, also known as
LDR (short for Light-Dependent Resistor) or photocell, is a sensor. We just needed
to include it in a voltage divider to make the changes in the resistance value of the
photoresistor via the ambient light. These variations in the resistance value will
generate changes in the voltage value in our analog pin. Thus, we worked with a
configuration of electronic components that generated an analog sensor, capable of
transforming changes in the environment light into voltage values.

There are a huge number of sensors that allow us to retrieve data from the real world
and convert it into analog or digital values that we can collect with the different
communications ports included in the Intel Galileo Gen 2 board and process with
Python and different libraries. When we worked with the photoresistor to measure
the environment light, we wired the configuration to an analog pin and we worked
with the mraa library and then the wiring-x86 library to take advantage of the
analog to digital converter to retrieve the values.

In Chapter 2, Working with Python on Intel Galileo Gen 2, we installed the latest
available version of the upm library. This library provides high level interfaces for
sensors and actuators. Whenever we work with a sensor, it is usually convenient to
check whether the upm library includes support for it because the high level interface
can save us a lot of time and make it easier for us to start retrieving the values from
the sensor and perform the necessary conversions to the different measuring units.

In this chapter, we will take advantage of the upm library with many different
sensors. However, we must take into account that sometimes the features included
in the upm library for a specific sensor might not be enough and we might need to
write our own low level code to interact with the sensor with either the mraa or the
wiring-x86 library. As we will analyze later, depending on the connection type,
only the mraa will provide us with all the necessary features when the sensor is not
supported in the upm library.

Chapter 7

[195]

Obviously, the first thing that we must consider when selecting a sensor is what
we want to measure, for example, temperature. However, that is not the only thing
we have to consider to select a specific sensor. When we select sensors, we must
take into account their features, their measurement range, their precision and their
connection types, among other things. The following list enumerates the most
important things we must consider and their explanation:

• Compatibility with Intel Galileo Gen 2 board and the voltage supply that
we are using (5V or 3.3V): Sometimes, we have to wire more than one sensor
to the board, and therefore, it is important to check whether all the sensors
we are selecting can work with the voltage configuration we have for the
board. Some sensors are only capable to work with the board if we have a
specific setting.

• Power consumption: We must take into account that some sensors
have different working modes. For example, some sensors have a high
performance mode that requires more power than a normal mode. As
we might work with more than one sensor wired to the board, it is also
important to consider the overall power consumption with all the sensors
connected to the board and in the modes in which we will use them. In
addition, some sensors switch to power saving modes when we don't
use them.

• Connection type: We need to answer a few questions in order to decide the
most convenient connection type. Do we have the necessary connections,
communications or interface ports? Are they available? Do the connection
type and the distance we need have any impact on the accuracy for the
measured values? In addition, when we select the first sensor for our board,
all the connections might be available, but the situation changes as we add
more sensors and it can force the decision to select a sensor with a different
connection type. Let's consider the following situation, we are already
measuring ambient light in 6 different positions. We have 6 photoresistors
connected with 6 voltage divider configurations and wired to the 6 available
analog input pins, and therefore, we don't have additional analog pins
available. If we have to add a temperature sensor, we cannot add an analog
sensor that requires an analog input pin because all of them are wired to the
light sensors. In this case, we have to use a digital temperature sensor that we
can wire to either the I2C or the SPI buses. Another option is to use a digital
temperature sensor that we can wire to the UART port. We will dive deep on
the different connection types for the sensors later.

Retrieving Data from the Real World with Sensors

[196]

• Measurement ranges: The specifications for the sensors indicate their
measurement ranges. For example, a temperature sensor measuring ambient
temperature can have a measurement range of -40ºF to 185ºF (equivalent
to -40ºC to 85ºC). In case we need to measure ambient temperatures that
can reach 90ºC, we have to select a temperature sensor with a higher upper
range. For example, another sensor that measuring ambient temperature
provides a measurement range of -40ºF to 257ºF (equivalent to -40ºC to
125ºC) will be suitable for this job.

• Sensitivity and precision: Each sensor is sensitive and might offer different
configurable precision levels. We have to make sure the accuracy provided
by the sensor is compatible with our needs. As the measured value changes,
it is important to consider the sensitivity, also known as measurement
resolution. For example, if we have to measure temperature and we must be
able to determine changes of at least 2ºF or 1ºC based on the unit of measure
we are using, we have to make sure that the sensor is capable providing the
required sensitivity.

When we start the process of selecting the appropriate sensor, it is
very important to pay attention to the units of measure when we
analyze measurement ranges, sensitivity and precision. A typical
example is a temperature sensor that can express the values in
either degrees Celsius (ºC) or degrees Fahrenheit (ºF).

• Latency: It is very important to determine how much can we wait for the
sensor to gather a new value and whether it is capable of providing us with
a real new value in this amount of time. When the measure value changes
in the real environment or object that we are measuring, the sensor takes
some time to be able to provide us with the new measured value. Sometimes,
they are microseconds but in other cases, they can be milliseconds or even
seconds. It depends on the sensor and we have to take it into account when
selecting the appropriate sensor for our project. For example, we might
need a temperature sensor to allow us to measure 2 temperature values per
second, and therefore, we must work with a sensor with a latency lower
than 500 milliseconds (0.5 seconds) to achieve our goal. Specifically, we can
select a temperature sensor with a latency of 200 milliseconds. Unluckily,
sometimes we have to dive deep on the datasheets to check the latency value
for some sensors and the electronic components that it uses.

Chapter 7

[197]

• Operating range and special environment requirements: It is very
important to consider the operating range for the sensor. Sometimes, the
sensors have to work in specific environment conditions that might not be
suitable for all of the available sensors. The following are some examples of
rough environment requirements: high shock survivability, water resistance,
extremely high temperatures, and very high humidity levels.

• Dimensions: Sensors come with different dimensions. Sometimes only
specific dimensions are suitable for our project.

• Protocol, support in the upm library and Python bindings: We will end
up processing the data retrieved from the sensor with Python code, and
therefore, it is very important to make sure that we can work with the sensor
in Python. In some cases, we don't want to write low-level code and we
want to make sure that the sensor is supported in the upm library. In other
cases, we have to make sure that we have the necessary Python libraries to
work with the protocols that some digital sensors use. For example, many
temperature sensors that work with the UART port use the MODBUS serial
communications protocol. If they aren't supported in the upm library, we
have to work with specific Python libraries to establish communications
using the MODBUS serial communications protocol and it might require
additional work on our side in case we don't have previous experience with
this protocol.

• Cost: Obviously, we have to take into account the sensor's cost. Perhaps the
best sensor that complies with all our requirements is extremely expensive
and we might decide to use another sensor with less features or less precision
but with a lower cost. We have a huge number of cheap sensors with
impressive features that are compatible with the Intel Galileo Gen 2 board.
However, we always have to take into account how much each sensor costs
to select it according to our needs and our budget.

The sensors or modules that include sensors that we can wire to an Intel Galileo
Gen 2 board can use the following connection types. The list enumerates the
acronym that manufacturers usually use to describe the connection type for the
modules and their explanation:

• AIO: The module requires one or more analog input pins. The sensors that
require analog input pins are known as analog sensors.

• GPIO: The module requires one or more GPIO pins.
• I2C: The module requires two wires to connect to the two I2C bus lines: SCL

(short for Serial CLock) and SDA (short for Serial DAta). We can connect
many devices to this bus as long as each of them have a different I2C address.

Retrieving Data from the Real World with Sensors

[198]

• SPI: The module requires three wires to connect to the three SPI bus lines:
MISO (short for Master In Slave Out), MOSI (short for Master Out Slave
In) and SCK (short for Serial Clock).

• UART: The module works with a serial connection (RX/TX), and therefore,
requires two wires to connect to the two pins for the UART port: TX->1
and RX<-0. An UART port stands for Universal Asynchronous Receiver/
Transmitter.

The modules that work with the I2C bus, the SPI bus or an UART port are known as
digital sensors because they use a digital interface. Some modules combine one of
the buses or an UART port with GPIO pins.

We already worked with analog inputs and the analog to digital converter with both
the mraa and wiring-x86 libraries. We also worked with GPIO pins configured as
input pins with these libraries. However, we still didn't work with the I2C bus,
the SPI bus or the UART ports.

The mraa library provides the following classes that allow us to work with the
previously mentioned serial buses and the UART ports:

• mraa.I2c: The class represents an I2C bus master device (the board) that can
talk to multiple I2C bus slave devices by selecting their address. It is possible
to create many instances of this class to interact with many slave devices. The
class allows us to write data to and read data from slave devices connected to
the I2C bus.

• Mraa.Spi: The class represents an SPI bus and its chip select. The class allows
us to write data to and read data from devices connected to the SPI bus.

• mraa.UART: The class represents an UART port and allow us to configure,
send data to and receive data from an UART port.

We can use the previously explained classes provided by the mraa
library to interact with any of the digital modules. However, this would
require us to spend some time reading the datasheets for the modules,
understanding their working modes, writing code that writes data to
and reads data from the appropriate bus or UART port. Each module
has its own API and we have to compose requests and process responses
through the serial buses or the UART port.

Chapter 7

[199]

First, we will take advantage of the upm library for each of the modules. In a few
cases, we will also use the appropriate classes in the mraa library to understand how
to interact with the sensors with a lower level interface. This way, in case we have
to work with a module that isn't supported in the upm library, we can analyze the
information provided in the datasheets and write code to interact with the module.

Working with accelerometers
An accelerometer allows us to measure the magnitude and direction of proper
acceleration or g-force. Tablets and smartphones use accelerometers to automatically
switch between portrait and landscape modes depending on the direction in which
we hold the device. In addition, the built-in accelerometer allows us to control
apps by making small movements of different intensity with the device in the
different directions.

An accelerometer allows us to detect how an object is oriented with respect to
the Earth's surface by measuring acceleration due to gravity. In addition, an
accelerometer is extremely useful when we want to detect when an object starts or
stops moving. Accelerometers are also capable of detecting vibration and when an
object is falling down.

Accelerometers usually measure proper acceleration in g-force,
abbreviated with a g. It is important to avoid the confusion generated by
the force word included in the name of the unit of measure because we
are measuring proper acceleration and not a force. Some accelerometers
use meters per second squared (m/s2) as their unit of measure instead of
g-force.

Nowadays, most accelerometers are capable of measuring acceleration in three
axes and are known as 3-axis accelerometers or triple axis accelerometers. A 3-axis
accelerometer can measure acceleration for the x, y and z axis. If we want to measure
small accelerations or vibrations, it will be more convenient to work with a small
range 3-axis accelerometer because they provide the necessary sensitivity.

Retrieving Data from the Real World with Sensors

[200]

Wiring an analog accelerometer to the
analog input pins
The easiest way to understand how an accelerometer works is to use it in a simple
example. Now, we will work with an analog 3-axis accelerometer with a full sensing
range from -3g to +3g. This kind of accelerometer requires three analog input pins,
one for each measured axes. The accelerometer supplies voltage levels based on the
measured acceleration for each axes.

We will use the three analog pins labeled A0, A1 and A2 to connect the positive
voltage outputs of an analog accelerometer breakout board. After we finish
the necessary wirings, we will write Python code to measure and display the
acceleration for the three axis: x, y and z. This way, we will read the result of
converting an analog value to its digital representation and we will map it to the
acceleration value.

We need a SparkFun triple axis accelerometer breakout ADXL335 to work with this
example. The following URL provides detailed information about this breakout
board: https://www.sparkfun.com/products/9269. The breakout board
incorporates the ADXL335 accelerometer sensor from Analog Devices.

The power supplied to the breakout board should be between 1.8VDC
and 3.6VDC, and therefore, we will use the power pin labeled 3V3 as the
power supply to make sure we supply 3.3V and we never supply 5V to
the breakout board.

It is also possible to use a Seeedstudio Grove 3-axis analog accelerometer to
work with this example. The following URL provides detailed information about
this module: http://www.seeedstudio.com/depot/Grove-3Axis-Analog-
Accelerometer-p-1086.html. If you use this module, you can use either the power
pin labeled 3V3 or 5V as the power supply because the breakout board is capable
of working with voltage supplies from 3V to 5V. The full sensing range is the same
than the SparkFun breakout board and both use the same accelerometer sensor.
The wirings are compatible for both modules.

https://www.sparkfun.com/products/9269
http://www.seeedstudio.com/depot/Grove-3Axis-Analog-Accelerometer-p-1086.html
http://www.seeedstudio.com/depot/Grove-3Axis-Analog-Accelerometer-p-1086.html

Chapter 7

[201]

The following diagram shows a SparkFun triple axis accelerometer breakout
ADXL335, the necessary wirings and the wirings from the Intel Galileo Gen
2 board to the breadboard. The Fritzing file for the sample is iot_fritzing_
chapter_07_01.fzz and the following picture is the breadboard view:

Retrieving Data from the Real World with Sensors

[202]

The following picture shows the schematic with the electronic components
represented as symbols:

As seen in the previous schematic, we have the following connections:

• The analog input pin labeled A0 is connected to the accelerometer output pin
labeled X (XOUT in the breakout board's symbol)

• The analog input pin labeled A1 is connected to the accelerometer output pin
labeled Y (YOUT in the breakout board's symbol)

• The analog input pin labeled A2 is connected to the accelerometer output pin
labeled Z (ZOUT in the breakout board's symbol)

• The power pin labeled 3V3 is connected to the accelerometer power pin
labeled VCC

• The ground pin labeled GND is connected to the accelerometer ground pin
labeled GND

Chapter 7

[203]

Now, it is time make all the necessary wirings. Don't forget to shutdown the Yocto
Linux, wait for all the onboard LEDs to turn off, and unplug the power supply
from the Intel Galileo Gen 2 board before adding or removing any wire from the
board's pins. Make sure you use large wires to allow you to move the accelerometer
breakout board in different directions without accidentally unplugging cables.

Measuring three axis acceleration with an
analog accelerometer
The upm library includes support for the three axis analog accelerometer breakout
board in the pyupm_adxl335 module. The ADXL335 class declared in this module
represents a three axis analog accelerometer connected to our board. The class makes
it easy to calibrate the accelerometer and convert the raw values read from the
analog inputs into values expressed in the g unit.

We will create a new Accelerometer class to represent the accelerometer and make
it easier for us to retrieve the acceleration values without worrying about type
conversion that are necessary when working with an instance of the ADXL335 class.
We will use the ADXL335 class to interact with the accelerometer. The following lines
show the code for the new Accelerometer class that works with the upm library,
specifically with the pyupm_adxl335 module. The code file for the sample is
iot_python_chapter_07_01.py.

import pyupm_adxl335 as upmAdxl335
import time

class Accelerometer:
 def __init__(self, pinX, pinY, pinZ):
 self.accelerometer = upmAdxl335.ADXL335(
 pinX, pinY, pinZ)
 self.accelerometer.calibrate()
 self.x_acceleration_fp = upmAdxl335.new_floatPointer()
 self.y_acceleration_fp = upmAdxl335.new_floatPointer()
 self.z_acceleration_fp = upmAdxl335.new_floatPointer()
 self.x_acceleration = 0.0
 self.y_acceleration = 0.0
 self.z_acceleration = 0.0

 def calibrate(self):
 self.accelerometer.calibrate()

Retrieving Data from the Real World with Sensors

[204]

 def measure_acceleration(self):
 # Retrieve the acceleration values for the three axis
 self.accelerometer.acceleration(
 self.x_acceleration_fp,
 self.y_acceleration_fp,
 self.z_acceleration_fp)
 self.x_acceleration = upmAdxl335.floatPointer_value(
 self.x_acceleration_fp)
 self.y_acceleration = upmAdxl335.floatPointer_value(
 self.y_acceleration_fp)
 self.z_acceleration = upmAdxl335.floatPointer_value(
 self.z_acceleration_fp)

We have to specify the analog pin numbers to which each axes pin is connected
when we create an instance of the Accelerometer class in the pinX, pinY, and pinZ
required arguments. The constructor, that is, the __init__ method, creates a new
upmAdxl335.ADXL335 instance with the received pinX, pinY, and pinZ arguments
and saves its reference in the accelerometer attribute.

The upmAdxl335.ADXL335 instance requires working with floating point pointers
to retrieve the acceleration values for the three axis. Thus, the constructor saves the
three objects of type float * (float pointers) in the following three attributes by
calling upmAdxl335.new_floatPointer().

• x_acceleration_fp

• y_acceleration_fp

• z_acceleration_fp

Finally, the constructor creates and initializes three attributes with 0.0: x_
acceleration, y_acceleration and z_acceleration. After the constructor is
executed, we must calibrate the accelerometer and then, we will be ready to retrieve
acceleration values for the three axis: x, y and z.

The class defines the following two methods:

• calibrate: Calls the calibrate method for self.accelerometer to calibrate
the analog accelerometer.

Chapter 7

[205]

• measure_acceleration: Retrieves the acceleration values for the three
axis and saves them in the following three attributes: x_acceleration, y_
acceleration and z_acceleration. The acceleration values are expressed
in g-force (g). First, the code calls the acceleration method for self.
accelerometer with the three objects of type float * as arguments. The
method reads the raw values retrieved from the three analog pins, converts
them to the appropriate values in g-force (g) and changes the floating point
values for the objects of type float* received as arguments with the updated
values. Then, the code calls the upmAdxl335.floatPointer_value method
to retrieve the floating point values from the objects of type float* and
update the three attributes: x_acceleration, y_acceleration and
z_acceleration.

Now, we will write a loop that will run a calibration, retrieve and display
the acceleration values for the three axis expressed in g-force (g) every
500 milliseconds, that is, twice per second. The code file for the sample is
iot_python_chapter_07_01.py.

if __name__ == "__main__":
 # The accelerometer is connected to analog pins A0, A1 and A2
 # A0 -> x
 # A1 -> y
 # A2 -> z
 accelerometer = Accelerometer(0, 1, 2)
 # Calibrate the accelerometer
 accelerometer.calibrate()

 while True:
 accelerometer.measure_acceleration()
 print("Acceleration for x:
 {0}g".format(accelerometer.x_acceleration))
 print("Acceleration for y:
 {0}g".format(accelerometer.y_acceleration))
 print("Acceleration for z:
 {0}g".format(accelerometer.z_acceleration))
 # Sleep 0.5 seconds (500 milliseconds)
 time.sleep(0.5)

Retrieving Data from the Real World with Sensors

[206]

The first line creates an instance of the previously coded Accelerometer class
with 0, 1 and 2 as the values of the pinX, pinY and pinZ arguments. This way, the
instance will read the analog values from the pins labeled A0, A1 and A2. Then, the
code calls the calibrate method for the Accelerometer instance to calibrate the
analog accelerometer.

The calibration measures the x, y and z axis values while the sensor is
still, and then, the sensor uses these values as the zero values, that is, as a
baseline. The default sensitivity for this analog sensor is 0.25V/g.

Then, the code runs a loop forever, that is, until you interrupt the execution by
pressing Ctrl + C or the button to stop the process, in case you are using a Python
IDE with remote development features to run the code in your board. The loop calls
the measure_acceleration method to update the acceleration values and then
prints them, expressed in g-force (g).

The following line will start the example. Don't forget that you need to transfer the
Python source code file to the Yocto Linux with an SFTP client. Before you start
the example, make sure that the accelerometer breakout board is located on stable
surface that doesn't vibrate. This way, the calibration will work OK.

python iot_python_chapter_07_01.py

After you run the example, perform the following actions:

• Make small movements to the accelerometer breakout board in
different directions

• Make large movements to the accelerometer breakout board in
specific directions

• Leave the accelerometer breakout board on a stable surface that
doesn't vibrate

As a result of the previous actions, you will see the different acceleration values
measured for the three axis. The following lines show some sample output lines
generated when we make large movements with the breakout board:

Acceleration for x: 0.0g
Acceleration for y: 0.4296875g
Acceleration for z: 0.0g
Acceleration for x: 0.0g

Chapter 7

[207]

Acceleration for y: 0.52734375g
Acceleration for z: 0.0g
Acceleration for x: 0.0g
Acceleration for y: 0.60546875g
Acceleration for z: 0.0g
Acceleration for x: 0.01953125g
Acceleration for y: 0.68359375g
Acceleration for z: 0.0g

Wiring a digital accelerometer to the
I2C bus
Digital accelerometers usually provide a better precision, higher resolution and
more sensitivity than analog accelerometers. Now, we will work with a digital
3-axis accelerometer with a full sensing range from -16g to +16g. We will use a
breakout board that uses the I2C bus to allow the board to communicate with
the accelerometer.

We will use the two pins labeled SDA and SCL to connect the data and clock lines
of the I2C bus to the corresponding pins in the digital accelerometer breakout board.
After we finish the necessary wirings, we will write Python code to measure and
display the acceleration for the three axis: x, y and z. This way, we will read the
result of sending commands to the accelerometer through the I2C bus, reading the
responses and decoding them into the appropriate acceleration values expressed in
g-force (g).

We need a SparkFun triple axis accelerometer breakout ADXL345 to work with this
example. The following URL provides detailed information about this breakout
board: https://www.sparkfun.com/products/9836. The breakout board
incorporates the ADXL345 digital accelerometer sensor from Analog Devices and
provides support for both the SPI and I2C buses. In this case, we will only use the
I2C bus.

The power supplied to the breakout board should be between 2.0VDC
and 3.6VDC, and therefore, we must use the power pin labeled 3V3 as the
power supply to make sure we supply 3.3V and we never supply 5V to
the breakout board.

https://www.sparkfun.com/products/9836

Retrieving Data from the Real World with Sensors

[208]

It is also possible to use a Seeedstudio Grove 3-axis digital accelerometer to work
with this example. The following URL provides detailed information about
this module: http://www.seeedstudio.com/depot/Grove-3Axis-Digital-
Accelerometer16g-p-1156.html. If you use this module, you can use either the
power pin labeled 3V3 or 5V as the power supply because the breakout board is
capable of working with voltage supplies from 3V to 5V. The full sensing range is the
same than the SparkFun breakout board and both use the same accelerometer sensor.
The wirings are compatible for both modules.

The Seeedstudio Grove 3-axis digital accelerometer is prepared to use
cables to plug it into a Grove base shield. The Grove base shield is a board
that you can plug in your Intel Galileo Gen 2 board and provides digital,
analog and I2C ports that you can use with the appropriate cables to easily
wire Grove sensors to the underlying Intel Galileo Gen 2 board. In our
examples, we won't be using the Grove base shield and we will continue
to use wirings to connect each different sensor. However, you will achieve
the same results if you decide to use the Grove base shield in combination
with Grove sensors. Other Grove sensors that we will use in the next
examples will also be prepared to work with the Grove base shield. The
latest version of the Grove base shield is V2 and you can gather more
information about it in the following URL: http://www.seeedstudio.
com/depot/Base-Shield-V2-p-1378.html

The following diagram shows a Seeedstudio Grove 3-axis digital accelerometer
breakout ADXL345, the necessary wirings and the wirings from the Intel Galileo
Gen 2 board to the breadboard. The Fritzing file for the sample is iot_fritzing_
chapter_07_02.fzz and the following picture is the breadboard view.

http://www.seeedstudio.com/depot/Grove-3Axis-Digital-Accelerometer16g-p-1156.html
http://www.seeedstudio.com/depot/Grove-3Axis-Digital-Accelerometer16g-p-1156.html
http://www.seeedstudio.com/depot/Base-Shield-V2-p-1378.html
http://www.seeedstudio.com/depot/Base-Shield-V2-p-1378.html

Chapter 7

[209]

Retrieving Data from the Real World with Sensors

[210]

The following picture shows the schematic with the electronic components
represented as symbols.

As seen in the previous schematic, we have the following connections:

• The SDA pin is connected to the accelerometer pin labeled SDA. This way,
we connect the digital accelerometer to the serial data line for the I2C bus.
The SDA pin in the Intel Galileo Gen 2 board is connected to the analog
input pin labeled A4, and therefore, the board's symbol uses the A4/SDA
label. The pin labeled SDA is in a different location than the pin labeled A4,
but they are internally connected.

Chapter 7

[211]

• The SCL pin is connected to the accelerometer pin labeled SCL. This way, we
connect the digital accelerometer to the serial clock line for the I2C bus. The
SCL pin in the Intel Galileo Gen 2 board is connected to the analog input pin
labeled A5, and therefore, the board's symbol uses the A5/SCL label. The pin
labeled SCL is in a different location than the pin labeled A5, but they are
internally connected.

• The power pin labeled 5V is connected to the accelerometer power pin
labeled VCC. In case you work with the SparkFun triple axis accelerometer
breakout ADXL345, the power pin labeled 3V3 is connected to the
accelerometer power pin labeled VCC.

• The ground pin labeled GND is connected to the accelerometer ground pin
labeled GND.

Now, it is time make all the necessary wirings. Don't forget to shutdown the Yocto
Linux, wait for all the onboard LEDs to turn off, and unplug the power supply from
the Intel Galileo Gen 2 board before adding or removing any wire from the board's
pins. As you did with the analog accelerometer, make sure you use large wires to
allow you to move the accelerometer breakout board in different directions without
accidentally unplugging cables.

Measuring three axis acceleration with a
digital accelerometer
The upm library includes support for the three axis digital accelerometer breakout
board ADXL345 in the pyupm_adxl345 module. The Adxl345 class declared in this
module represents a three axis digital accelerometer based on the ADXL345 sensor,
connected to our board. The class makes it easy to initialize the sensor, update and
retrieve the acceleration values for the three axis through the I2C bus. The class works
with the mraa.I2c class under the hoods to talk with the sensor, that is, to write data
to and read data from the ADXL345 sensor that acts as a slave device connected to
the I2C bus.

Unluckily, each module in the upm library doesn't follow the same
naming conventions we should expect for Python code. For example, in
our previous example, that class name was ADXL335, with capital letters,
while in this example the class name is Adxl345.

Retrieving Data from the Real World with Sensors

[212]

We will create a new version of the Accelerometer class to represent the
accelerometer and make it easier for us to retrieve the acceleration values without
worrying about specific methods and arrays when working with an instance of the
Adxl345 class. We will use the Adxl345 class to interact with the accelerometer. The
following lines show the code for the new Accelerometer class that works with
the upm library, specifically with the pyupm_adxl345 module. The code file for the
sample is iot_python_chapter_07_02.py.

import pyupm_adxl345 as upmAdxl345
import time

class Accelerometer:
 def __init__(self, bus):
 self.accelerometer = upmAdxl345.Adxl345(bus)
 self.x_acceleration = 0.0
 self.y_acceleration = 0.0
 self.z_acceleration = 0.0

 def measure_acceleration(self):
 # Update the acceleration values for the three axis
 self.accelerometer.update()
 # Retrieve the acceleration values for the three axis
 acceleration_array = \
 self.accelerometer.getAcceleration()
 self.x_acceleration = acceleration_array[0]
 self.y_acceleration = acceleration_array[1]
 self.z_acceleration = acceleration_array[2]

We have to specify the I2C bus number to which the digital accelerometer
is wired when we create an instance of the Accelerometer class in the bus
required argument. The constructor, that is, the __init__ method, creates a new
upmAdxl345.Adxl345 instance with the received bus argument and saves its
reference in the accelerometer attribute.

The upmAdxl345.Adxl345 instance requires working with an array of floating point
pointers to retrieve the acceleration values for the three axis. We want to work with
easy to understand attributes, and therefore, the constructor creates and initializes
three attributes with 0.0: x_acceleration, y_acceleration, and z_acceleration.
After the constructor is executed, we have an initialized digital accelerometer ready
to retrieve acceleration values for the three axis: x, y and z.

Chapter 7

[213]

The class defines a measure_acceleration method that updates the acceleration
values for the three axes in the sensor, retrieves these acceleration values from the
sensor, and finally saves them in the following three attributes: x_acceleration,
y_acceleration and z_acceleration. The acceleration values are expressed in
g-force (g).

First, the code within the measure_acceleration method calls the update
method for self.accelerometer to request the sensor to update the read values.
Then, the code calls the getAcceleration method for self.accelerometer to
retrieve the acceleration values for the three axis and saves the returned array
in the acceleration_array local variable. The first element in the array has the
acceleration value for x, the second for y and the third for z. Thus, the code updates
the following three attributes with the values in the acceleration_array array:
x_acceleration, y_acceleration, and z_acceleration. This way, we can easily
access each acceleration value by accessing the appropriate attribute instead of
working with elements of an array that might lead to confusion.

Now, we will write a loop that will run a calibration, retrieve and display
the acceleration values for the three axis expressed in g-force (g) every
500 milliseconds, that is, twice per second. The code file for the sample is
iot_python_chapter_07_02.py.

if __name__ == "__main__":
 accelerometer = Accelerometer(0)
 while True:
 accelerometer.measure_acceleration()
 print("Acceleration for x: {:5.2f}g".
 format(accelerometer.x_acceleration))
 print("Acceleration for y: {:5.2f}g".
 format(accelerometer.y_acceleration))
 print("Acceleration for z: {:5.2f}g".
 format(accelerometer.z_acceleration))
 # Sleep 0.5 seconds (500 milliseconds)
 time.sleep(0.5)

The first line creates an instance of the previously coded Accelerometer class with 0
as the values of the bus argument. The mraa.I2c class identifies the I2C bus to which
we wired the accelerometer with number 0. This way, the instance will establish a
communication with the digital accelerometer through the I2C bus. The Intel Galileo
Gen 2 board is the master in the bus and the digital accelerometer, as any other
device connected to this bus, acts as a slave.

Retrieving Data from the Real World with Sensors

[214]

Then, the code runs a loop forever that calls measure_acceleration method to
update the acceleration values and then prints them, expressed in g-force (g).

The following line will start the example:

python iot_python_chapter_07_02.py

After you run the example, perform the same actions done with the previous
example. As a result of these actions, you will see the different acceleration values
measured for the three axis. The following lines show some sample output lines
generated when we make small movements with the breakout board:

Acceleration for x: 0.000g
Acceleration for y: 0.056g
Acceleration for z: 0.000g
Acceleration for x: 0.000g
Acceleration for y: 0.088g
Acceleration for z: 0.000g
Acceleration for x: 0.000g
Acceleration for y: 0.872g
Acceleration for z: 0.056g

Using the I2C bus to control a digital
accelerometer with the mraa library
Sometimes, the features included in the upm library for a specific sensor do not
include all of its possible usages and configurations. An example of this situation
is the upmAdxl345.Adxl345 class that we used in our previous example. This class
doesn't allow us to configure the desired scale for the accelerometer while the sensor
supports the following four selectable measurement ranges: ±2g, ±4g, ±8g and ±16g.
If we want to use specific features that aren't included in the upm module, we can
use the appropriate mraa class to interact with the sensor, in this case, we can use
mraa.I2c to control the digital accelerometer through the I2C bus.

We will use the C++ source code for the upm module as a baseline to write our own
Python code that controls the accelerometer through the I2C bus using the mraa.I2c
class. The C++ source code file is adxl1345.cxx and it can be found in the following
GitHub URL: http://github.com/intel-iot-devkit/upm/blob/master/src/
adxl345/adxl345.cxx. As we use the C++ source code as a baseline, we will use the
same naming convention (capital letters) for the constants declared with #define,
but we will convert them into class attributes.

http://github.com/intel-iot-devkit/upm/blob/master/src/adxl345/adxl345.cxx
http://github.com/intel-iot-devkit/upm/blob/master/src/adxl345/adxl345.cxx

Chapter 7

[215]

The following lines show the code for the new Adxl1345 class that works with an
instance of the mraa.I2c class to communicate with the digital accelerometer.
The code file for the sample is iot_python_chapter_07_03.py.

class Adxl345:
 # Read buffer length
 READ_BUFFER_LENGTH = 6
 # I2C address for the ADXL345 accelerometer
 ADXL345_I2C_ADDR = 0x53
 ADXL345_ID = 0x00
 # Control registers
 ADXL345_OFSX = 0x1E
 ADXL345_OFSY = 0x1F
 ADXL345_OFSZ = 0x20
 ADXL345_TAP_THRESH = 0x1D
 ADXL345_TAP_DUR = 0x21
 ADXL345_TAP_LATENCY = 0x22
 ADXL345_ACT_THRESH = 0x24
 ADXL345_INACT_THRESH = 0x25
 ADXL345_INACT_TIME = 0x26
 ADXL345_INACT_ACT_CTL = 0x27
 ADXL345_FALL_THRESH = 0x28
 ADXL345_FALL_TIME = 0x29
 ADXL345_TAP_AXES = 0x2A
 ADXL345_ACT_TAP_STATUS = 0x2B
 # Interrupt registers
 ADXL345_INT_ENABLE = 0x2E
 ADXL345_INT_MAP = 0x2F
 ADXL345_INT_SOURCE = 0x30
 # Data registers (read only)
 ADXL345_XOUT_L = 0x32
 ADXL345_XOUT_H = 0x33
 ADXL345_YOUT_L = 0x34
 ADXL345_YOUT_H = 0x35
 ADXL345_ZOUT_L = 0x36
 ADXL345_ZOUT_H = 0x37
 DATA_REG_SIZE = 6
 # Data and power management
 ADXL345_BW_RATE = 0x2C
 ADXL345_POWER_CTL = 0x2D
 ADXL345_DATA_FORMAT = 0x31
 ADXL345_FIFO_CTL = 0x38
 ADXL345_FIFO_STATUS = 0x39
 # Useful values

Retrieving Data from the Real World with Sensors

[216]

 ADXL345_POWER_ON = 0x08
 ADXL345_AUTO_SLP = 0x30
 ADXL345_STANDBY = 0x00
 # Scales and resolution
 ADXL345_FULL_RES = 0x08
 ADXL345_10BIT = 0x00
 ADXL345_2G = 0x00
 ADXL345_4G = 0x01
 ADXL345_8G = 0x02
 ADXL345_16G = 0x03

 def __init__(self, bus):
 # Init bus and reset chip
 self.i2c = mraa.I2c(bus)
 # Set the slave to talk to
 if self.i2c.address(self.__class__.ADXL345_I2C_ADDR) != mraa.
SUCCESS:
 raise Exception("i2c.address() failed")
 message = bytearray(
 [self.__class__.ADXL345_POWER_CTL,
 self.__class__.ADXL345_POWER_ON])
 if self.i2c.write(message) != mraa.SUCCESS:
 raise Exception("i2c.write() control register failed")
 if self.i2c.address(self.__class__.ADXL345_I2C_ADDR) != mraa.
SUCCESS:
 raise Exception("i2c.address() failed")
 message = bytearray(
 [self.__class__.ADXL345_DATA_FORMAT,
 self.__class__.ADXL345_16G | self.__class__.ADXL345_FULL_
RES])
 if self.i2c.write(message) != mraa.SUCCESS:
 raise Exception("i2c.write() mode register failed")
 # 2.5V sensitivity is 256 LSB/g = 0.00390625 g/bit
 # 3.3V x and y sensitivity is 265 LSB/g = 0.003773584 g/bit, z
is the same
 self.x_offset = 0.003773584
 self.y_offset = 0.003773584
 self.z_offset = 0.00390625
 self.x_acceleration = 0.0
 self.y_acceleration = 0.0
 self.z_acceleration = 0.0
 self.update()

Chapter 7

[217]

 def update(self):
 # Set the slave to talk to
 self.i2c.address(self.__class__.ADXL345_I2C_ADDR)
 self.i2c.writeByte(self.__class__.ADXL345_XOUT_L)
 self.i2c.address(self.__class__.ADXL345_I2C_ADDR)
 xyz_raw_acceleration = self.i2c.read(self.__class__.DATA_REG_
SIZE)
 x_raw_acceleration = (xyz_raw_acceleration[1] << 8) |
 xyz_raw_acceleration[0]
 y_raw_acceleration = (xyz_raw_acceleration[3] << 8) |
 xyz_raw_acceleration[2]
 z_raw_acceleration = (xyz_raw_acceleration[5] << 8) |
 xyz_raw_acceleration[4]
 self.x_acceleration = x_raw_acceleration * self.x_offset
 self.y_acceleration = y_raw_acceleration * self.y_offset
 self.z_acceleration = z_raw_acceleration * self.z_offset

First, the class declares many constants that make it easier for us to understand the
code that interacts with the accelerometer through the I2C bus. For example, the
ADXL345_I2C_ADDR constant specifies the address for the ADXL345 accelerometer in
the I2C bus, which is 53 in hexadecimal (0x53). If we just see a 0x53 within the code,
we don't understand that it is an I2C bus address for the sensor. We imported all the
constants defined in the C++ version so that we have all the necessary values in case
we want to add additional features not included in the initial version. The datasheet
provided by the manufacturer provides the necessary details to know the addresses
for each register and the way in which the commands work in the I2C bus.

We have to specify the I2C bus number to which the digital accelerometer is wired
when we create an instance of the Adxl345 class in the bus required argument. The
constructor, that is, the __init__ method, creates a new mraa.I2c instance with the
received bus argument and saves its reference in the i2c attribute.

self.i2c = mraa.I2c(bus)

Before performing any read or write operation in the I2C bus, it is a good practice
to call the address method for the mraa.I2c instance to indicate the slave device to
which we want to talk to. In this case, the address for the slave device is specified in
the ADXL345_I2C_ADDR constant.

if self.i2c.address(self.__class__.ADXL345_I2C_ADDR) != mraa.SUCCESS:
 raise Exception("i2c.address() failed")

Retrieving Data from the Real World with Sensors

[218]

Then, the code builds a message by creating a bytearray with the two hexadecimal
values that we want to write to the slave: ADXL345_POWER_CTL and ADXL345_POWER_
ON. We can read the message as write turn on to the power control register.
The call to the write method for the mraa.I2c instance with this message will turn
on the accelerometer.

message = bytearray(
 [self.__class__.ADXL345_POWER_CTL,
 self.__class__.ADXL345_POWER_ON])
if self.i2c.write(message) != mraa.SUCCESS:
 raise Exception("i2c.write() control register failed")

We declared the following constants related to resolutions:

• ADXL345_FULL_RES: Work with full resolution, where resolution increases
with the g range up to 13-bit resolution

• ADXL345_10BIT: Work with a fixed 10-bit resolution

We declared the following constants related to scales:

• ADXL345_2G: Sets the g range to ±2g
• ADXL345_4G: Sets the g range to ±4g
• ADXL345_8G: Sets the g range to ±8g
• ADXL345_16G: Sets the g range to ±16g

The code makes another call to the address method for the mraa.I2c instance before
it makes another write to configure the desired resolution and scale for the sensor.
The code builds another message by creating a bytearray with the two hexadecimal
values that we want to write to the slave: ADXL345_DATA_FORMAT and the result of
applying a bitwise or operator (|) for ADXL345_16G and ADXL345_FULL_RES. We
can read the message as write ±16g + full resolution to the data format
register. It is necessary to combine the desired resolution and the range in a single
byte value, and therefore, we have to use the bitwise or operator (|).

if self.i2c.address(self.__class__.ADXL345_I2C_ADDR) != mraa.SUCCESS:
 raise Exception("i2c.address() failed")
message = bytearray(
 [self.__class__.ADXL345_DATA_FORMAT,
 self.__class__.ADXL345_16G | self.__class__.ADXL345_FULL_RES])
if self.i2c.write(message) != mraa.SUCCESS:
 raise Exception("i2c.write() mode register failed")

Chapter 7

[219]

The call to the write method for the mraa.I2c instance with this message will
configure the accelerometer to work with a ±16g range for g and with the full
resolution. As we have access to this call, we can make changes to the code to change
the desired resolution or the scale for our acceleration measures. For example, the
following lines that compose the message will change the configuration to make the
accelerometer work with a g range of ±4g:

message = bytearray(
 [self.__class__.ADXL345_DATA_FORMAT,
 self.__class__.ADXL345_4G | self.__class__.ADXL345_FULL_RES])

Then, the code declares offset attributes for x, y, and z that is necessary to convert
the raw acceleration values retrieved from the accelerometer into the appropriate
values expressed in g. We want to work with easy to understand attributes instead,
and therefore, the constructor creates and initializes three attributes with 0.0: x_
acceleration, y_acceleration, and z_acceleration. Finally, the constructor calls
the update method to retrieve the first values from the accelerometer.

The update method makes a call to the address method for the mraa.I2c instance
and then calls its writeByte method with ADXL345_XOUT_L as its argument, that is,
the first data register that we want to read.

self.i2c.address(self.__class__.ADXL345_I2C_ADDR)
self.i2c.writeByte(self.__class__.ADXL345_XOUT_L)

The accelerometer values are stored in six data registers. There are two bytes
per axis: the low byte (eight least significant bits) and the high byte (eight most
significant bits), and therefore, we can read the six bytes with a single I2C read
operation, starting with the address of the first byte for the x axis. Then, we have to
compose each pair of bytes into a single value. The call to the read method for the
mraa.I2c instance passes the DATA_REG_SIZE constant as an argument to indicate
that we want to read six bytes and the code saves the resulting bytearray in the
xyz_raw_acceleration local variable.

self.i2c.address(self.__class__.ADXL345_I2C_ADDR)
xyz_raw_acceleration = self.i2c.read(self.__class__.DATA_REG_SIZE)

Then, the code combines the low bytes and the high bytes to compose a single value
for each raw acceleration pair of bytes retrieved from the accelerometer and saves
them in three local variables: x_raw_acceleration, y_raw_acceleration, and z_
raw_acceleration. The code uses the binary left shift (<<) bitwise operator to move
the high byte (the eight most significant bits) to the left by 8 places and make the new
bits on the right-hand side zeros. Then, it applies a binary or (|) to build the entire
word (two bytes). The x_raw_acceleration value is the result of joining the high
byte and the low byte to compose a word of two bytes.

Retrieving Data from the Real World with Sensors

[220]

The first element in the xyz_raw_acceleration array (xyz_raw_acceleration[0])
includes the low byte for the x raw acceleration and the second element in the xyz_
raw_acceleration array (xyz_raw_acceleration[1]) includes the high byte for
the x raw acceleration. Thus, it is necessary to add 8 binary zeros to the high byte
(xyz_raw_acceleration[1]) and replace those eight zeros with the low byte
(xyz_raw_acceleration[0]). The same has to be done for the y and z raw
acceleration bytes.

x_raw_acceleration = (xyz_raw_acceleration[1] << 8) | xyz_raw_
acceleration[0]
y_raw_acceleration = (xyz_raw_acceleration[3] << 8) | xyz_raw_
acceleration[2]
z_raw_acceleration = (xyz_raw_acceleration[5] << 8) | xyz_raw_
acceleration[4]

Finally, it is necessary to multiply each value by the offsets defined in the constructor
to obtain the appropriate values for x, y, and z expressed in g and save them in the
three attributes: x_acceleration, y_acceleration, and z_acceleration.

self.x_acceleration = x_raw_acceleration * self.x_offset
self.y_acceleration = y_raw_acceleration * self.y_offset
self.z_acceleration = z_raw_acceleration * self.z_offset

Now, we have a class that represents the ADXL345 accelerometer entirely written in
Python and we can make any necessary changes to make different configurations for
the accelerometer.

We just need to create a new version of the Accelerometer class to use the recently
created Adxl345 class instead of the pyupm_adxl345.Adxl345 class. The following
lines show the code for the new Accelerometer class. The code file for the sample is
iot_python_chapter_07_03.py.

class Accelerometer:
 def __init__(self, bus):
 self.accelerometer = Adxl345(bus)
 self.x_acceleration = 0.0
 self.y_acceleration = 0.0
 self.z_acceleration = 0.0

 def measure_acceleration(self):
 # Update the acceleration values for the three axis
 self.accelerometer.update()

Chapter 7

[221]

 self.x_acceleration = self.accelerometer.x_acceleration
 self.y_acceleration = self.accelerometer.y_acceleration
 self.z_acceleration = self.accelerometer.z_acceleration

Now, we can use the same code that we have in the previous example for the
__main__ method and perform the same operations to check the values retrieved
from the accelerometer.

Writing code that interacts with the I2C bus and a specific
sensor requires a big effort because we have to read the detailed
specifications from the manufacturer's datasheet. Sometimes, we
won't be able to use all the features included in a sensor if we
don't write our own code. In other cases, the features included in
the upm library will be enough for our projects.

Wiring an analog temperature sensor
In Chapter 6, Working with Analog Inputs and Local Storage, we used a photoresistor
included in a voltage divider and we connected it to an analog input pin. We can use
a similar configuration and replace the photoresistor with a thermistor to measure
ambient temperature. A thermistor changes its resistance value with temperature,
and therefore, we can convert resistance changes into voltage value changes.

We can also work with an analog sensor breakout board that includes a thermistor
in the necessary configuration to provide us with voltage levels to an analog pin that
represent temperature values. In this case, we will work with an analog temperature
sensor supported in the upm library to measure ambient temperature.

We will use the the analog pin labeled A0 to connect the voltage output of an
analog accelerometer breakout board. After we finish the necessary wirings, we
will write Python code to measure and display the ambient temperature in both
degrees Celsius (ºC) and degrees Fahrenheit (ºF). This way, we will read the result
of converting an analog value to its digital representation and we will map it to the
temperature value in the appropriate measurement unit.

Retrieving Data from the Real World with Sensors

[222]

We need a Seeedstudio Grove temperature sensor to work with this example. The
following URL provides detailed information about this module: http://www.
seeedstudio.com/depot/Grove-Temperature-Sensor-p-774.html. The following
diagram shows the sensor breakout board, the necessary wirings, and the wirings
from the Intel Galileo Gen 2 board to the breadboard. The Fritzing file for the sample
is iot_fritzing_chapter_07_04.fzz and the following picture is the breadboard
view. Don't forget that you can also decide to use the Grove base shield to plug this
sensor to the Intel Galileo Gen 2 board.

http://www.seeedstudio.com/depot/Grove-Temperature-Sensor-p-774.html
http://www.seeedstudio.com/depot/Grove-Temperature-Sensor-p-774.html

Chapter 7

[223]

The following picture shows the schematic with the electronic components
represented as symbols:

As seen in the previous schematic, we have the following connections:

• The analog input pin labeled A0 is connected to the temperature output pin
labeled SIG (0 in the breakout board's symbol)

• The power pin labeled 3V3 is connected to the temperature sensor power pin
labeled VCC

• The ground pin labeled GND is connected to the temperature sensor ground
pin labeled GND

Retrieving Data from the Real World with Sensors

[224]

Now, it is time make all the necessary wirings. Don't forget to shutdown the Yocto
Linux, wait for all the onboard LEDs to turn off, and unplug the power supply
from the Intel Galileo Gen 2 board before adding or removing any wire from the
board's pins.

Measuring ambient temperature with an
analog sensor
The upm library includes support for the Grove analog temperature sensor breakout
board in the pyupm_grove module. The GroveTemp class declared in this module
represents the analog temperature sensor connected to our board. The class makes it
easy to retrieve the raw values read from the analog input into values expressed in
degrees Celsius (ºC).

We will create a new TemperatureSensor class to represent the temperature
sensor and make it easier for us to retrieve the ambient temperature values
without worrying about unit conversions that are necessary when working with
an instance of the GroveTemp class. We will use the GroveTemp class to interact
with the analog temperature sensor. The following lines show the code for the new
TemperatureSensor class that works with the upm library, specifically with the pyupm_
grove module. The code file for the sample is iot_python_chapter_07_04.py.

import pyupm_grove as upmGrove
import time

class TemperatureSensor:
 def __init__(self, analog_pin):
 self.temperature_sensor = upmGrove.GroveTemp(analog_pin)
 self.temperature_celsius = 0.0
 self.temperature_fahrenheit = 0.0

 def measure_temperature(self):
 # Retrieve the temperature expressed in Celsius degrees
 temperature_celsius = self.temperature_sensor.value()
 self.temperature_celsius = temperature_celsius
 self.temperature_fahrenheit = \
 (temperature_celsius * 9.0 / 5.0) + 32.0

Chapter 7

[225]

We have to specify the analog pin to which the sensor is connected when we
create an instance of the TemperatureSensor class in the analog_pin required
arguments. The constructor, that is, the __init__ method, creates a new upmGrove.
GroveTemp instance with the received analog_pin argument and saves its reference
in the temperature_sensor attribute. Finally, the constructor instance creates and
initializes two attributes with 0.0: temperature_celsius, and temperature_
fahrenheit.

The class defines the measure_temperature method that retrieves the current
ambient temperature measured in degrees Celsius (ºC) by calling the value method
for self.temperature_sensor and saves the value in the temperature_celsius
local variable. The next line assigns the value to the temperature_celsius attribute.
Finally, the code assigns the result of converting the the temperature measured
in degrees Celsius (ºC) to the equivalent value in degrees Fahrenheit (ºF). The
formula is easy to read because it is just necessary to multiply the temperature
measured in degrees Celsius (ºC) by 9, divide the result by 5 and sum 32. This way
the TemperatureSensor class updates two attributes with the ambient temperature
measured by the sensor in degrees Celsius (ºC) and degrees Fahrenheit (ºF).

Now, we will write a loop that will retrieve and display the ambient temperature in
degrees Celsius (ºC) and degrees Fahrenheit (ºF), every 10 seconds. The code file for
the sample is iot_python_chapter_07_04.py.

if __name__ == "__main__":
 # The temperature sensor is connected to analog pin A0
 temperature_sensor = TemperatureSensor(0)

 while True:
 temperature_sensor.measure_temperature()
 print("Ambient temperature in degrees Celsius: {0}".
 format(temperature_sensor.temperature_celsius))
 print("Ambient temperature in degrees Fahrenheit: {0}".
 format(temperature_sensor.temperature_fahrenheit))
 # Sleep 10 seconds (10000 milliseconds)
 time.sleep(10)

The first line creates an instance of the previously coded TemperatureSensor class
with 0 as the values of the analog_pin argument. This way, the instance will read
the analog values from the pin labeled A0. Then, the code runs a loop forever that
calls the measure_temperature method to update the ambient temperature values
and then prints them, expressed in degrees Celsius (ºC) and degrees Fahrenheit (ºF).

Retrieving Data from the Real World with Sensors

[226]

The following line will start the example:

python iot_python_chapter_07_04.py

After you run the example, turn on an air conditioner or a heating system to
generate a change in the ambient temperature and you will see how the measured
temperature changes after a few minutes. The following lines show some a
sample output:

Ambient temperature in degrees Celsius: 13
Ambient temperature in degrees Fahrenheit: 55.4
Ambient temperature in degrees Celsius: 14
Ambient temperature in degrees Fahrenheit: 57.2
Ambient temperature in degrees Celsius: 15
Ambient temperature in degrees Fahrenheit: 59
Ambient temperature in degrees Celsius: 16
Ambient temperature in degrees Fahrenheit: 60.8

Wiring a digital temperature and humidity
sensor to the I2C bus
Now, we will use a multifunctional digital sensor that will provide us with
temperature and relative humidity information. We will use a breakout board
that uses the I2C bus to allow the Intel Galileo Gen 2 board to communicate with
the sensor. The sensor is useful when we don't need to measure temperature and
humidity in extreme conditions. We cannot use this sensor at the top of Mount Etna,
just in case we work in a research project related to volcanoes.

We will use the two pins labeled SDA and SCL to connect the data and clock lines
of the I2C bus to the corresponding pins in the digital temperature and humidity
breakout board. After we finish the necessary wirings, we will write a Python code to
measure, display the ambient temperature, and the relative humidity. This way, we
will read the result of sending commands to the sensor through the I2C bus, reading
the responses, and decoding them into the ambient temperature and the relative
humidity expressed in the appropriate units.

We need a SeeedStudio Grove temperature & humidity sensor (high-accuracy &
mini) breakout to work with this example. The following URL provides detailed
information about this breakout board: http://www.seeedstudio.com/depot/
Grove-TemperatureHumidity-Sensor-HighAccuracy-Mini-p-1921.html. The
breakout board incorporates the TH02 digital humidity and temperature sensor and
provides support for both the I2C bus.

http://www.seeedstudio.com/depot/Grove-TemperatureHumidity-Sensor-HighAccuracy-Mini-p-1921.html
http://www.seeedstudio.com/depot/Grove-TemperatureHumidity-Sensor-HighAccuracy-Mini-p-1921.html

Chapter 7

[227]

The following diagram shows the digital temperature, humidity breakout, the
necessary wirings, and the wirings from the Intel Galileo Gen 2 board to the
breadboard. The Fritzing file for the sample is iot_fritzing_chapter_07_05.fzz
and the following picture is the breadboard view:

Retrieving Data from the Real World with Sensors

[228]

The following picture shows the schematic with the electronic components
represented as symbols:

As seen in the previous schematic, we have the following connections:

• The SDA pin is connected to the breakout board pin labeled SDA. This way,
we connect the digital temperature and humidity sensor to the serial data
line for the I2C bus.

• The SCL pin is connected to the breakout board pin labeled SCL. This way,
we connect the digital temperature and humidity sensor to the serial clock
line for the I2C bus.

Chapter 7

[229]

• The power pin labeled 3V3 is connected to the breakout board power pin
labeled VCC.

• The ground pin labeled GND is connected to the breakout board ground pin
labeled GND.

Now, it is time make all the necessary wirings. Don't forget to shutdown the
Yocto Linux, wait for all the onboard LEDs to turn off, and unplug the power
supply from the Intel Galileo Gen 2 board before adding or removing any wire
from the board's pins.

Measuring temperature and humidity
with a digital sensor
The upm library includes support for the digital temperature and humidity breakout
board that uses the TH02 sensor in the pyupm_th02 module. The TH02 class declared
in this module represents a digital temperature and humidity sensor that uses
the TH02 sensor, connected to our board. The class makes it easy to initialize the
sensor and retrieve the temperature and humidity values through the I2C bus. The
class works with the mraa.I2c class under the hoods to talk with the sensor, that
is, to write data to and read data from the TH02 sensor that acts as a slave device
connected to the I2C bus.

We will create a new TemperatureAndHumiditySensor class to represent
the temperature and humidity sensor and make it easier for us to retrieve the
temperature and humidity values in the appropriate units working with an instance
of the TH02 class. We will use the TH02 class to interact with the sensor. The
following lines show the code for the new TemperatureSensor class that works
with the upm library, specifically with the pyupm_th02 module. The code file for the
sample is iot_python_chapter_07_05.py.

import pyupm_th02 as upmTh02
import time

class TemperatureAndHumiditySensor:
 def __init__(self, bus):
 self.th02_sensor = upmTh02.TH02(bus)
 self.temperature_celsius = 0.0
 self.temperature_fahrenheit = 0.0
 self.humidity = 0.0

Retrieving Data from the Real World with Sensors

[230]

 def measure_temperature_and_humidity(self):
 # Retrieve the temperature expressed in Celsius degrees
 temperature_celsius = self.th02_sensor.getTemperature()
 self.temperature_celsius = temperature_celsius
 self.temperature_fahrenheit = \
 (temperature_celsius * 9.0 / 5.0) + 32.0
 # Retrieve the humidity
 self.humidity = self.th02_sensor.getHumidity()

We have to specify the I2C bus number to which the digital temperature
and humidity sensor is wired when we create an instance of the
TemperatureAndHumiditySensor class in the bus required argument. The
constructor, that is, the __init__ method, creates a new upmTh02.TH02 instance
with the received bus argument and saves its reference in the th02_sensor attribute.

The datasheet for the TH02 sensor specifies a formula to convert the raw
read temperature to degrees Celsius (ºC), and therefore, by reading the
datasheet we might think the upmTh02.TH02 instance will provide us
a value in degrees Fahrenheit (ºF). However, this is not what happens.
The upmTh02.TH02 instance performs the conversion from degrees
Fahrenheit (ºF) to degrees Celsius (ºC) and provides us a value in the
latter unit of measure. Thus, if we want to display the value in degrees
Fahrenheit (ºF), we must perform the conversion from degrees Celsius
(ºC) to degrees Fahrenheit (ºF). Unluckily, the only way of realizing about
this situation is by looking at the C++ source code for the upm module
because there is no documentation about the unit of measure that the
code uses to return the temperature value.

We want to work with easy to understand attributes, and therefore, the constructor
creates and initializes three attributes with 0.0: temperature_celsius,
temperature_fahrenheit, and humidity. After the constructor is executed, we
have an initialized digital temperature and humidity sensor ready to retrieve values.

The class defines a measure_temperature_and_humidity method that updates
the ambient temperature and humidity values in the sensor, retrieves these values,
and finally saves them in the following three attributes: temperature_celsius,
temperature_fahrenheit, and humidity.

Chapter 7

[231]

First, the code within the measure_temperature_and_humidity method calls the
getTemperature method for self.th02_sensor to request the sensor to retrieve the
temperature value. The method returns the read value converted to degrees Celsius
(ºC) and the code saves it in the temperature_celsius local variable. The code
saves the value in the attribute with the same name and saves the value converted
to degrees Fahrenheit (ºF) in the temperature_fahrenheit attribute. Finally, the
code calls the getHumidity method for self.th02_sensor to request the sensor to
retrieve the humidity value and saves it in the humidity attribute.

Now, we will write a loop that will retrieve and display the temperature values
expressed in degrees Celsius (ºC) and degrees Fahrenheit, and the humidity value,
every 10 seconds. The code file for the sample is iot_python_chapter_07_05.py.

if __name__ == "__main__":
 temperature_and_humidity_sensor = \
 TemperatureAndHumiditySensor(0)

 while True:
 temperature_and_humidity_sensor.\
 measure_temperature_and_humidity()
 print("Ambient temperature in degrees Celsius: {0}".
 format(temperature_and_humidity_sensor.temperature_
celsius))
 print("Ambient temperature in degrees Fahrenheit: {0}".
 format(temperature_and_humidity_sensor.temperature_
fahrenheit))
 print("Ambient humidity: {0}%".
 format(temperature_and_humidity_sensor.humidity))
 # Sleep 10 seconds (10000 milliseconds)
 time.sleep(10)

The first line creates an instance of the previously coded
TemperatureAndHumiditySensor class with 0 as the value of the bus argument.
This way, the instance will establish a communication with the digital accelerometer
through the I2C bus. As happened in our previous example with a sensor connected
to the I2C bus, the Intel Galileo Gen 2 board is the master in the bus and the digital
temperature and humidity sensor, acts as a slave.

Then, the code runs a loop forever that calls the measure_temperature_and_
humidity method to update the temperature values expressed in two units
and the humidity.

Retrieving Data from the Real World with Sensors

[232]

The following line will start the example:

python iot_python_chapter_07_05.py

After you run the example, turn on an air conditioner or a heating system, to
generate a change in the ambient temperature and humidity.

Ambient temperature in degrees Celsius: 24
Ambient temperature in degrees Fahrenheit: 73.4
Ambient humidity: 48%

Test your knowledge
1. Which of the following sensors allows us to measure the magnitude and

direction of proper acceleration?
1. A temperature sensor.
2. An accelerometer.
3. A light sensor.

2. Which of the following acronym that defines a connection type for a module
with a sensor is analog:

1. AIO.
2. I2C.
3. UART.

3. How many wires do we need to connect a device to the I2C bus:
1. 1.
2. 2.
3. 3.

4. How many wires do we need to connect a device to the SPI bus:
1. 1.
2. 2.
3. 3.

5. Which of the following is not a connection of the I2C bus:

1. MISO.
2. SDA.
3. SCL.

Chapter 7

[233]

Summary
In this chapter, we learned about sensors and their connection types. We understood
that it is necessary to consider many important things when choosing sensors and
that they make it easy for us to measure different variables from the real world. We
learned the importance of considering the units of measure because sensors always
provide values measured in a specific unit that we must consider.

We wrote code that took advantage of the modules and classes included in the upm
library that made it easier for us to start working with analog and digital sensors. In
addition, we wrote code that interacted with a digital accelerometer through the I2C
bus because we wanted to be able to take advantage of additional features provided
by the sensor but not included in the upm library module.

We measured the magnitude and direction of proper acceleration or g-force, ambient
temperature and humidity. As in the previous chapters, we continued taking
advantage of Python's object-oriented features and we created classes to encapsulate
sensors and the necessary configurations with the upm and mraa libraries. Our code is
easy to read and understand and we can easily hide the low-level details.

Now that we are able to retrieve data from the real world with sensors, we will make
our IoT device perform actions with different actuators and shields, which is the
topic of the next chapter.

[235]

Displaying Information and
Performing Actions

In this chapter, we will work with a variety of breakout boards and an actuator to
display data and perform actions by writing a Python code. We shall:

• Understand LCD displays and their connection types
• Learn the most important things we must consider when choosing

LCD displays
• Take advantage of the upm library with LCD displays and actuators
• Use an LCD display with an RGB backlight that works with the I2C bus
• Display and update text in a 16x2 LCD screen
• Use an OLED display that works with the I2C bus
• Display and update text on a 96-by-96 dot matrix OLED display
• Wire a standard servo motor to be controlled with PWM
• Display a value with a servo motor and a shaft

Understanding LCD displays and their
connection types
Sometimes, our IoT device has to provide information to the user with any device
connected to an Intel Galileo Gen 2 board. We can use different kinds of electronic
components, shields, or breakout boards to achieve this goal.

Displaying Information and Performing Actions

[236]

For example, we can use simple LEDs to provide information that we can represent
with colors. For example, a red LED that turns on can indicate that our temperature
sensor connected to the board has detected that the ambient temperature is higher
than 80 degrees Fahrenheit (ºF) or 26.66 degrees Celsius (ºC). A blue LED that
turns on can indicate that our temperature sensor had detected that the ambient
temperature is lower than 40 degrees Fahrenheit (ºF) or 4.44 degrees Celsius (ºC).
A red LED turned on can indicate that the temperature is between these two values.
These three LEDs allow us to provide valuable information to the user.

We can also achieve the same goal using a single RGB LED and work with pulse
width modulation (PWM) to change its color based on the measured ambient
temperature value, as we learned in Chapter 4, Working with a RESTful API and
Pulse Width Modulation.

However, sometimes colors aren't enough to provide a detailed and accurate
information to the user. For example, sometimes we want to display the humidity
level with a percentage value and a few LEDs aren't enough to represent numbers
from 0 to 100%. If we want to be able to display a 1% step, we would require 100
LEDs. We don't have 100 GPIO pins, and therefore, we would require a shield or
breakout board with 100 LEDs and a digital interface such as an I2C bus to allow us
to send commands indicating the number of LEDs that we want to be turned on.

In these cases, an LCD screen that allows us to print a specific number of characters
might be an appropriate solution. For example, on an LCD screen that allows us to
display 16 characters per line, with 2 lines of 16 characters, known as a 16x2 LCD
module, we can display the temperature in the first line and the humidity level in the
second line. The following table shows an example of each line with the text and the
values considering that we have 16 columns and 2 rows for the characters.

T e m p . 4 0 . 2 F
H u m i d i t y 8 0 %

The 16x2 LCD module provides a clear description for each value, a floating point
value and a unit of measure. Thus, we will use a 16x2 LCD module for our example.
The following picture shows an example of the location of each character in a 16x2
LCD screen:

Chapter 8

[237]

There are LCD modules with different features and we must consider a lot of the
things we learned when we analyzed sensors in Chapter 7, Retrieving Data from the
Real World with Sensors. The following list enumerates the most important things
that we must consider when we select an LCD module and their description. As we
analyzed many of these things when we learned about sensors, we won't repeat the
descriptions for the common items.

• Compatibility with Intel Galileo Gen 2 board and the voltage supply that
we are using (5V or 3.3V).

• Power consumption.
• Connection type: Some LCD displays consume too many pins, and therefore,

it is very important to check all the pins that they require. The most common
connection types for LCD displays are the I2C bus, the SPI bus, and the UART
port. However, some LCD displays require a bus or port combined with
additional GPIO pins.

• Operating range and special environment requirements.
• Dimensions: LCD displays come with different dimensions. Sometimes only

specific dimensions are suitable for our project.
• Number of columns and rows: Based on the text we have to display, we will

select the LCD display with the appropriate number of columns and rows
that can display the characters.

Displaying Information and Performing Actions

[238]

• Response time: It is very important to determine how much we can wait for
the LCD display to show the new content that replaces the text that is being
displayed or to clear the display.

• Protocol, support in the upm library and Python bindings.
• Supported character set and built-in fonts: Some LCD displays support

user-defined characters, and therefore, they allow us to configure and display
custom characters. It is also important to check whether the LCD display
supports characters for the languages in which we have to display the text.

• Backlight color, text color and contrast level: Some LCD displays allow us
to change the backlight color while others have a fixed backlight color. An
RGB backlight makes it possible to combine red, green, and blue components
to determine the desired backlight color. In addition, it is always important
to take into account whether the contrast level is appropriate for the light
conditions in which you will need to display information.

• Cost.

Wiring an LCD RGB backlight to the I2C
bus
In our last example in Chapter 7, Retrieving Data from the Real World with Sensors, we
worked with a multifunctional digital sensor that provided us with the temperature
and relative humidity information. We worked with a breakout board that uses the
I2C bus to allow the Intel Galileo Gen 2 board to communicate with the sensor. Now,
we will add a breakout board with a 16x2 LCD RGB backlight to allow us to display
the measured temperature and humidity values with text and numbers.

The LCD RGB backlight breakout board will also be connected to the same I2C bus
to which the temperature and humidity digital sensor is connected. We can connect
many slaves to the I2C bus in the Intel Galileo Gen 2 board as long as their have
different I2C addresses. In fact, the LCD RGB backlight breakout board has two I2C
addresses: one for the LCD display and the other for the backlight.

We need the following parts to work with this example:

• A SeeedStudio Grove temperature and humidity sensor (high-accuracy
and mini) breakout. The following URL provides detailed information
about this breakout board: http://www.seeedstudio.com/depot/Grove-
TemperatureHumidity-Sensor-HighAccuracy-Mini-p-1921.html.

http://www.seeedstudio.com/depot/Grove-TemperatureHumidity-Sensor-HighAccuracy-Mini-p-1921.html
http://www.seeedstudio.com/depot/Grove-TemperatureHumidity-Sensor-HighAccuracy-Mini-p-1921.html

Chapter 8

[239]

• A SeeedStudio Grove LCD RGB backlight breakout. The following URL
provides detailed information about this breakout board: http://www.
seeedstudio.com/depot/Grove-LCD-RGB-Backlight-p-1643.html.

The following diagram shows the digital temperature and humidity breakout, the
LCD RGB backlight breakout, the necessary wirings, and the wirings from the Intel
Galileo Gen 2 board to the breadboard. The Fritzing file for the sample is iot_
fritzing_chapter_08_01.fzz and the following image is the breadboard view:

http://www.seeedstudio.com/depot/Grove-LCD-RGB-Backlight-p-1643.html
http://www.seeedstudio.com/depot/Grove-LCD-RGB-Backlight-p-1643.html

Displaying Information and Performing Actions

[240]

The following image shows the schematic with the electronic components
represented as symbols:

Chapter 8

[241]

As seen in the previous schematic, we have the following connections:

• The SDA pin is connected to both the breakout board pins labeled SDA.
This way, we connect both the digital temperature and humidity sensor
and the LCD backlight to the serial data line for the I2C bus.

• The SCL pin is connected to both the breakout board pins labeled SCL. This
way, we can connect both the digital temperature and humidity sensor and
the LCD backlight to the serial clock line for the I2C bus.

• The power pin labeled 3V3 is connected to the digital temperature and
humidity sensor breakout board power pin labeled VCC.

• The power pin labeled 5V is connected to the LCD backlight breakout board
power pin labeled VCC.

• The ground pin labeled GND is connected to both the breakout board pins
labeled GND.

Now, it is time make all the necessary wirings. Don't forget to shut down the
Yocto Linux, wait for all the onboard LEDs to turn off and unplug the power supply
from the Intel Galileo Gen 2 board before adding or removing any wire from the
board's pins.

Displaying text on an LCD display
The upm library includes support for the 16x2 LCD RGB backlight breakout board in
the pyupm_i2clcd module. The Jhd1313m1 class declared in this module represents
a 16x2 LCD display and its RGB backlight, connected to our board. The class makes
it easy to set the color components for the RGB backlight, clear the LCD display,
specify the cursor location, and write text through the I2C bus. The class works
with the mraa.I2c class under the hoods to talk with the RGB backlight and the
LCD display. These two devices act as slave devices connected to the I2C bus, and
therefore, each of them have a specific address in this bus.

We will take the code we wrote in the previous chapter when we read temperature
and humidity values from the sensor and we will use this code as a baseline to add
the new features. The code file for the sample was iot_python_chapter_07_05.py.

Displaying Information and Performing Actions

[242]

We will create an Lcd class to represent the 16x2 LCD RGB backlight and make
it easier for us to set the background color and write the text in two lines without
worrying about the specific methods when working with an instance of the
Jhd1313m1 class. We will use the Jhd1313m1 class to interact with the LCD and its
RGB backlight. The following lines show the code for the new Lcd class that works
with the upm library, specifically with the pyupm_i2clcd module. The code file for
the sample is iot_python_chapter_08_01.py.

import pyupm_th02 as upmTh02
import pyupm_i2clcd as upmLcd
import time

class Lcd:
 # The I2C address for the LCD display
 lcd_i2c_address = 0x3E
 # The I2C address for the RBG backlight
 rgb_i2c_address = 0x62

 def __init__(self, bus, red, green, blue):
 self.lcd = upmLcd.Jhd1313m1(
 bus,
 self.__class__.lcd_i2c_address,
 self.__class__.rgb_i2c_address)
 self.lcd.clear()
 self.set_background_color(red, green, blue)

 def set_background_color(self, red, green, blue):
 self.lcd.setColor(red, green, blue)

 def print_line_1(self, message):
 self.lcd.setCursor(0, 0)
 self.lcd.write(message)

 def print_line_2(self, message):
 self.lcd.setCursor(1, 0)
 self.lcd.write(message)

Chapter 8

[243]

The Lcd class declares two class attributes: lcd_i2c_address and rgb_i2c_
address. The first class attribute defines the I2C address for the LCD display, that is,
the address that will process the commands that locate the cursor and write text once
the cursor is located in a specific row and column. The address is 3E in hexadecimal
(0x3E). If we just see a 0x3E within the code, we don't understand that it is an I2C
bus address for the LCD display. The second class attribute defines the I2C address
for the RGB backlight, that is, the address that will process the commands that set
the red, green, and blue components for the backlight color. The address is 62 in
hexadecimal (0x62). If we just see a 0x62 within the code, we don't understand that
it is an I2C bus address for the RGB backlight. These class attributes make it easier to
read the code.

We have to specify the I2C bus number to which the both the 16x2 LCD and the RGB
backlight are wired when we create an instance of the Lcd class in the bus required
argument. In addition, it is necessary to specify the values for the red, green and
blue color components to configure the background color for the RGB backlight.
The constructor, that is, the __init__ method, creates a new upmLcd.Jhd1313m1
instance with the received bus argument followed by the lcd_i2c_address and
rgb_i2c_address class attributes and saves the reference for the new instance in the
lcd attribute. Then, the code calls the clear method for the new instance to clear the
LCD screen. Finally, the code calls the set_background_color method with the red,
green, and blue values received as arguments to configure the background color for
the RGB backlight.

The class declares the set_background_color method that calls the lcd.setColor
method with the red, green and blue values received as arguments. Under the
hoods, the upmLcd.Jhd1313m1 instance will write data to the slave device whose
address is equal to the rgb_i2c_address class attribute through the I2C bus to
specify the desired value for each color component. We just create a specific method
to follow Python naming conventions and make our final code that uses our class
easier to read.

The class defines the following two additional methods to make it easy to print text
on the first and the second row of the LCD display:

• print_line_1

• print_line_2

Displaying Information and Performing Actions

[244]

The print_line_1 method calls the setCursor method for the upmLcd.Jhd1313m1
instance (self.lcd), with 0 as the value for both the row and the column argument,
to locate the cursor in the first row and the first column. Then, a call to the write
method for the the upmLcd.Jhd1313m1 instance (self.lcd) with the message
reviewed as a parameter as an argument prints the received string in the LCD
display. Under the hoods, the upmLcd.Jhd1313m1 instance will write the data to
the slave device whose address is equal to the lcd_i2c_address class attribute
through the I2C bus to specify the desired location for the cursor and then to write
the specified text starting in the position in which we have located the cursor. The
first row is identified with 0, but we named the method print_line_1 because it
makes it easier for us to understand that we are writing a message in the first line of
the LCD screen.

The print_line_2 method has the same two lines of code than the print_line_1
method with just one difference: the call to the setCursor method specifies 1 as the
value for the row argument. This way, the method prints a message in the second
line of the LCD screen.

Now, we will create a subclass of the previously coded Lcd class named
TemperatureAndHumidityLcd. The subclass will specialize the Lcd class to allow
us to easily print a temperature value expressed in degrees Fahrenheit in the first
line of the LCD screen and print a humidity value expressed in percentage in the
second line of the LCD screen. The following lines show the code for the new
TemperatureAndHumidityLcd class. The code file for the sample is iot_python_
chapter_08_01.py.

class TemperatureAndHumidityLcd(Lcd):
 def print_temperature(self, temperature_fahrenheit):
 self.print_line_1("Temp. {:5.2f}F".format(temperature_
fahrenheit))

 def print_humidity(self, humidity):
 self.print_line_2("Humidity {0}%".format(humidity))

The new class (TemperatureAndHumidityLcd) adds the following two methods to its
superclass (Lcd):

• print_temperature: Calls the print_line_1 method with the formatted
text that displays the temperature value expressed in degrees Fahrenheit (ºF)
received in the temperature_fahrenheit argument.

• print_humidity: Calls the print_line_2 method with the formatted text
that displays the humidity level expressed in percentage received in the
humidity argument.

Chapter 8

[245]

Now, we will write a loop that will display the ambient temperature expressed in
degrees Fahrenheit (ºF) and the humidity value in the LCD screen, every 10 seconds.
The code file for the sample is iot_python_chapter_08_01.py.

if __name__ == "__main__":
 temperature_and_humidity_sensor = \
 TemperatureAndHumiditySensor(0)
 lcd = TemperatureAndHumidityLcd(0, 0, 0, 128)

 while True:
 temperature_and_humidity_sensor.\
 measure_temperature_and_humidity()
 lcd.print_temperature(
 temperature_and_humidity_sensor.temperature_fahrenheit)
 lcd.print_humidity(
 temperature_and_humidity_sensor.humidity)
 print("Ambient temperature in degrees Celsius: {0}".
 format(temperature_and_humidity_sensor.temperature_
celsius))
 print("Ambient temperature in degrees Fahrenheit: {0}".
 format(temperature_and_humidity_sensor.temperature_
fahrenheit))
 print("Ambient humidity: {0}".
 format(temperature_and_humidity_sensor.humidity))
 # Sleep 10 seconds (10000 milliseconds)
 time.sleep(10)

The highlighted lines show the changes made to the __main__ method compared
with the previous version. The first highlighted line creates an instance of the
previously coded TemperatureAndHumidityLcd class with 0 as the value of the
bus argument, 0 for red and green, and 128 for blue to set the background color
to light blue. The code saves the reference to this instance in the lcd local variable.
This way, the instance will establish a communication with the LCD screen and
the RGB backlight through the I2C bus. The RGB backlight will display a light blue
background.

Then, the code runs a loop forever and the highlighted line calls the lcd.print_
temperature method with temperature_and_humidity_sensor.temperature_
fahrenheit, that is, the measured temperature expressed in degrees Fahrenheit (ºF),
as an argument. This way, the code displays this temperature value in the first line of
the LCD screen.

Displaying Information and Performing Actions

[246]

The next hightlighted line calls the lcd.print_humidity method with
temperature_and_humidity_sensor.humidity, that is, the measured humidity
expressed in percentage, as an argument. This way, the code displays this humidity
value in the second line of the LCD screen.

The following line will start the example:

python iot_python_chapter_08_01.py

After you run the example, turn on an air conditioner or heating system, to generate
a change in the ambient temperature and humidity. The LCD screen will display the
temperature and humidity and refresh it every 10 seconds.

Wiring an OLED dot matrix to the I2C bus
LCD displays are not the only option when we have to display content on an external
screen through the I2C or SPI buses. There are also OLED dot matrixes that allow
us to control a specific number of dots. In OLED dot matrices we have control over
each dot, instead of controlling each character space. Some of them are grayscale and
others RGB.

The key advantage of OLED dot matrixes is that we can display any kind of graphics
and not just text. In fact, we can mix any kind of graphics and images with text.
The Grove OLED Display 0.96" is an example of a 16 grayscale 96-by-96 dot matrix
OLED display module that works with the I2C bus. The following URL provides
detailed information about this breakout board: http://www.seeedstudio.com/
depot/Grove-OLED-Display-096-p-824.html. The Xadow RGB OLED 96x24 is an
example of an RGB color 96-by-64 dot matrix OLED display module that works with
the SPI bus. The following URL provides detailed information about this breakout
board: http://www.seeedstudio.com/depot/Xadow-RGB-OLED-96x64-p-2125.
html.

Another option is to work with TFT LCD dot matrices or displays.
Some of them include support for touch detection.

http://www.seeedstudio.com/depot/Grove-OLED-Display-096-p-824.html
http://www.seeedstudio.com/depot/Grove-OLED-Display-096-p-824.html
http://www.seeedstudio.com/depot/Xadow-RGB-OLED-96x64-p-2125.html
http://www.seeedstudio.com/depot/Xadow-RGB-OLED-96x64-p-2125.html

Chapter 8

[247]

Now, we will replace the breakout board with a 16x2 LCD RGB backlight with a
16 grayscale 96-by-96 dot matrix OLED display module that also works with the
I2C bus, and we will use this new screen to display similar values with a different
configuration. The wirings are compatible with the previous breakout board.

As it happened in our previous example, the dot matrix OLED will also be
connected to the same I2C bus to which the temperature and humidity digital sensor
is connected. As the dot matrix OLED has an I2C address that is different than the
one used by the temperature and humidity digital sensor, we don't have problems
to wire the two devices to the same I2C bus.

We need the following additional part to work with this example: A SeeedStudio
Grove OLED Display 0.96", 16 grayscale 96-by-96 dot matrix OLED display module.
The 96-by-96 dot matrix OLED display provides us the chance to control 9,216 dots,
known as pixels. However, in this case, we just want to use the OLED display to
display a similar text than the one we displayed in our previous example, but with a
different layout.

If we use the default 8-by-8 character box, we have 12 columns (96/8) and 12 rows
(96/8) for characters. The following table shows an example of each line with the text
and the values.

T e m p e r a t u r e

F a h r e n h e i t
4 0 . 2

C e l s i u s
4 . 5 5

H u m i d i t y
L e v e l
8 0 %

Displaying Information and Performing Actions

[248]

The possibility to work with 12 columns and 12 rows of characters allows us to
provide a very clear description for each value. In addition, we are able to display
the temperature values expressed in both degrees Fahrenheit and degrees Celsius.
The following picture shows an example of the location of each character in the 96-
by-96 dot matrix OLED display module with an 8-by-8 character box.

After we replace the LCD screen breakout board with the OLED module, we will
have the following connections:

• The SDA pin is connected to both breakout board pins labeled SDA. This
way, we connect both the digital temperature and humidity sensor and the
OLED module to the serial data line for the I2C bus.

• The SCL pin is connected to both the breakout board pins labeled SCL. This
way, we connect both the digital temperature and humidity sensor and the
OLED module to the serial clock line for the I2C bus.

• The power pin labeled 3V3 is connected to the digital temperature and
humidity sensor breakout board power pin labeled VCC.

• The power pin labeled 5V is connected to the OLED module power pin
labeled VCC.

• The ground pin labeled GND is connected to both the breakout board pins
labeled GND.

Now, it is time make all the necessary wirings. Don't forget to shutdown the Yocto
Linux, wait for all the onboard LEDs to turn off, and unplug the power supply
from the Intel Galileo Gen 2 board before adding or removing any wire from
the board's pins.

Chapter 8

[249]

Displaying text on an OLED display
The upm library includes support for the SeeedStudio Grove OLED display 0.96",
16 grayscale 96-by-96 dot matrix OLED display breakout board the in the pyupm_
i2clcd module. As this OLED display uses SSD1327 driver integrated circuit, the
SSD1327 class declared in this module represents a 96-by-96 dot matrix OLED
display, connected to our board. The class makes it easy to clear the OLED screen,
draw bitmap images, specify the cursor location, and write text through the I2C
bus. The class works with the mraa.I2c class under the hoods to talk with the
OLED display.

We will create a new Oled class that will represent the 96-by-96 dot matrix OLED
and will use its default 8-by-8 character box to display text. We will use the SSD1327
class to interact with the OLED display. The following lines show the code for
the new Oled class that works with the upm library, specifically with the pyupm_
i2clcd module and its SSD1327 class. The code file for the sample is iot_python_
chapter_08_02.py:

class Oled:
 # The I2C address for the OLED display
 oled_i2c_address = 0x3C

 def __init__(self, bus, red, green, blue):
 self.oled = upmLcd.SSD1327(
 bus,
 self.__class__.oled_i2c_address)
 self.oled.clear()

 def print_line(self, row, message):
 self.oled.setCursor(row, 0)
 self.oled.setGrayLevel(12)
 self.oled.write(message)

The Oled class declares the oled_i2c_address class attribute that defines the I2C
address for the OLED display, that is, the address that will process the commands
that locate the cursor and write text once the cursor is located in a specific row and
column. The address is 3C in hexadecimal (0x3C).

We have to specify the I2C bus number to which the OLED display is wired when we
create an instance of the Oled class in the bus required argument. The constructor,
that is, the __init__ method, creates a new upmLcd. SSD1327 instance with the
received bus argument followed by the oled_i2c_address class attribute, and saves
the reference for the new instance in the oled attribute. Finally, the code calls the
clear method for the new instance to clear the OLED screen.

Displaying Information and Performing Actions

[250]

The class declared the print_line method to make it easy to print text on a specific
row. The code calls the setCursor method for the upmLcd.SSD1327 instance (self.
oled), with the received row value as the value for the row argument and 0 for the
column argument, to locate the cursor in the specified row and the first column.
Then, a call to the setGrayLevel and the write method for the the upmLcd.SSD1327
instance (self.oled) with the message reveiced as a parameter as an argument
prints the received string in the OLED display with the default 8-by-8 character box
with the gray level set to 12. Under the hoods, the upmLcd.SSD1327 instance will
write data to the slave device whose address is equal to the oled_i2c_address class
attribute through the I2C bus to specify the desired location for the cursor and then to
write the specified text starting in the position in which we have located the cursor.

Now, we will create a subclass of the previously coded Oled class named
TemperatureAndHumidityOled. The subclass will specialize the Oled class to
allow us to easily print a temperature value expressed in degrees Fahrenheit, the
temperature value expressed in degrees Celsius and a humidity value expressed in
percentage. We will use the previously explained layout for the text. The following
lines show the code for the new TemperatureAndHumidityOled class. The code file
for the sample is iot_python_chapter_08_02.py.

class TemperatureAndHumidityOled(Oled):
 def print_temperature(self, temperature_fahrenheit, temperature_
celsius):
 self.oled.clear()
 self.print_line(0, "Temperature")
 self.print_line(2, "Fahrenheit")
 self.print_line(3, "{:5.2f}".format(temperature_fahrenheit))
 self.print_line(5, "Celsius")
 self.print_line(6, "{:5.2f}".format(temperature_celsius))

 def print_humidity(self, humidity):
 self.print_line(8, "Humidity")
 self.print_line(9, "Level")
 self.print_line(10, "{0}%".format(humidity))

The new class (TemperatureAndHumidityOled) adds the following two methods to
its superclass (Oled):

• print_temperature: Calls the print_line method many times to display
the temperature in both degrees Fahrenheit (ºF) and Celsius (ºC) received
as arguments

• print_humidity: Calls the print_line method many times to display the
humidity value received as an argument

Chapter 8

[251]

In this case, we refresh many lines to change just a few values. As we will
run a loop every 10 seconds, it won't be a problem. However, in other
cases in which we want to update values in a shorter amount of time, we
can write optimized code that just clears a single line and updates the
specific value in this line.

Now, we will write a loop that will display the ambient temperature expressed in
Fahrenheit (ºF) and Celsius (ºC) and the humidity value in the OLED screen, every
10 seconds. The code file for the sample is iot_python_chapter_08_02.py.

if __name__ == "__main__":
 temperature_and_humidity_sensor = \
 TemperatureAndHumiditySensor(0)
 oled = TemperatureAndHumidityOled(0)

 while True:
 temperature_and_humidity_sensor.\
 measure_temperature_and_humidity()
 oled.print_temperature(
 temperature_and_humidity_sensor.temperature_fahrenheit,
 temperature_and_humidity_sensor.temperature_celsius)
 oled.print_humidity(
 temperature_and_humidity_sensor.humidity)
 print("Ambient temperature in degrees Celsius: {0}".
 format(temperature_and_humidity_sensor.temperature_
celsius))
 print("Ambient temperature in degrees Fahrenheit: {0}".
 format(temperature_and_humidity_sensor.temperature_
fahrenheit))
 print("Ambient humidity: {0}".
 format(temperature_and_humidity_sensor.humidity))
 # Sleep 10 seconds (10000 milliseconds)
 time.sleep(10)

The highlighted lines show the changes made in the __main__ method compared
with the previous version. The first highlighted line creates an instance of the
previously coded TemperatureAndHumidityOled class with 0 as the value of the bus
argument. The code saves the reference to this instance in the oled local variable.
This way, the instance will establish a communication with the OLED screen through
the I2C bus.

Displaying Information and Performing Actions

[252]

Then, the code runs a loop forever and the highlighted line calls the oled.print_
temperature method with temperature_and_humidity_sensor.temperature_
fahrenheit and temperature_and_humidity_sensor.temperature_celsius as
arguments. This way, the code displays both temperature values in the first lines of
the OLED screen.

The next hightlighted line calls the oled.print_humidity method with
temperature_and_humidity_sensor.humidity. This way, the code uses many
lines to display this humidity value at the bottom of the OLED screen.

The following line will start the example:

python iot_python_chapter_08_02.py

After you run the example, turn on an air conditioner or a heating system to generate
a change in the ambient temperature and humidity. The OLED screen will display
the temperature and humidity and refresh it every 10 seconds.

Wiring a servo motor
So far, we have been using sensors to retrieve data from the real world and we
displayed information in LCD and OLED displays. However, IoT devices are not
limited to sensing and displaying data, they can also move things. We can connect
different components, shields, or breakout boards to our Intel Galileo Gen 2 board
and write Python code to move things connected to the board.

Standard servo motors are extremely useful to precisely control a shaft and position
it at various angles, usually between 0 and 180 degrees. In Chapter 4, Working with a
RESTful API and Pulse Width Modulation, we worked with pulse width modulation,
known as PWM, to control the brightness of an LED and a RGB LED. We can also
use PWM to control a standard analog servo motor and position its shaft at a
specific angle.

Standard servo motors are DC motors that includes gears
and feedback control loop circuitry that provides precision
positioning. They are ideal for pinion steering, robot arms and
legs, among other usages that require a precise positioning.
Standard servo motors don't require motor drivers.

Chapter 8

[253]

Obviously, not all servor motors have the same features and we must take into
account many of them when we select a specific servo motor for our project. It
depends on what we need to position, the accuracy, the required torque, the optimal
servo rotational velocity, among other factors. In this case, we will focus on the usage
of PWM to position a standard servo motor. However, you cannot use the same
servo to rotate a lighter plastic piece than the one you will need to rotate a heavy
robotic arm. It is necessary to research about the appropriate servo for each task.

Now, we will wire a standard high sensitive mini servo motor to our existing project
and we will rotate the shaft to display the measured temperature expressed in
degrees Fahrenheit with the shaft. The shaft will allow us to display the measured
temperature in a half circle protractor that measures angles in degrees and will
display the number for the angle from 0 to 180 degrees. The combination of the
servo with the shaft and the protactor will allow us to display the temperature
with moving parts. Then, we can create our own protactor with a scale that can
add colors, specific thresholds and many other visual artifacts to make temperature
measurement funnier. Specifically, we can create a gauge chart, speedometer or
semicircle donut, that is, a combination of a doughnut chart and a pie chart in a
single chart with the different temperature values. The following picture shows and
example of a half circle protractor that we can use in combination with the servo
with the shaft.

We need the following additional part to work with this example: A SeeedStudio
Grove Servo or a EMAX 9g ES08A High Sensitive Mini Servo. The following URLs
provide detailed information about these servos: http://www.seeedstudio.com/
depot/Grove-Servo-p-1241.html and http://www.seeedstudio.com/depot/
EMAX-9g-ES08A-High-Sensitive-Mini-Servo-p-760.html.

http://www.seeedstudio.com/depot/Grove-Servo-p-1241.html
http://www.seeedstudio.com/depot/Grove-Servo-p-1241.html
http://www.seeedstudio.com/depot/EMAX-9g-ES08A-High-Sensitive-Mini-Servo-p-760.html
http://www.seeedstudio.com/depot/EMAX-9g-ES08A-High-Sensitive-Mini-Servo-p-760.html

Displaying Information and Performing Actions

[254]

The following diagram shows the digital temperature and humidity breakout,
the LCD RGB backlight breakout, the mini servo, the necessary wirings and the
wirings from the Intel Galileo Gen 2 board to the breadboard. The Fritzing file for
the sample is iot_fritzing_chapter_08_03.fzz and the following picture is the
breadboard view:

Chapter 8

[255]

The following picture shows the schematic with the electronic components
represented as symbols:

As seen in the previous schematic, we added the following additional connections to
our existing project:

• The power pin labeled 5V in the board's symbol is connected to the servo's
pin labeled +. Servos usually use a red wire for this connection.

• The PWM capable GPIO pin labeled D3 PWM in the board's symbol is
connected to the servo's pin labeled PULSE. Servos usually use a yellow
wire for this connection.

• The ground pin labeled GND in the board's symbol is connected to the
servo's pin labeled -. Servos usually use a black wire for this connection.

Displaying Information and Performing Actions

[256]

Now, it is time make all the necessary wirings. Don't forget to shut down the Yocto
Linux, wait for all the onboard LEDs to turn off, and unplug the power supply
from the Intel Galileo Gen 2 board before adding or removing any wire from the
board's pins.

Positioning a shaft to indicate a value
with a servo motor
We can use the mraa.Pwm class to control PWM on the PWM capable GPIO pin
labeled ~3, as we learned in Chapter 4, Working with a RESTful API and Pulse Width
Modulation. However, this would require us to read the detailed specs for the servo.
The upm library includes support for both the SeeedStudio Grove Servo or the EMAX
9g ES08A High Sensitive Mini Servo in the pyupm_servo module. The ES08A class
declared in this module represents any of the two mentioned servors connected to
our board.

The class makes it easy to set the desired angle for the servo shaft and work with
angles instead of duty cycles and other PWM details. The class works with the mraa.
Pwm class under the hoods to configure PWM and control the duty cycle based on the
desired angle for the shaft.

We will take the code we wrote in the previous example and we will use this code
as a baseline to add the new features. The code file for the sample was iot_python_
chapter_08_02.py.

We will create a TemperatureServo class to represent the servo and make it easier
for us to position the shaft in a valid angle (from 0 to 180 degrees) based on the
temperature expressed in degrees Fahrenheit. We will use the ES08A class to interact
with the servo. The following lines show the code for the new TemperatureServo
class that works with the upm library, specifically with the pyupm_servo module.
The code file for the sample is iot_python_chapter_08_03.py.

import pyupm_th02 as upmTh02
import pyupm_i2clcd as upmLcd
import pyupm_servo as upmServo
import time

class TemperatureServo:
 def __init__(self, pin):
 self.servo = upmServo.ES08A(pin)
 self.servo.setAngle(0)

Chapter 8

[257]

 def print_temperature(self, temperature_fahrenheit):
 angle = temperature_fahrenheit
 if angle < 0:
 angle = 0
 elif angle > 180:
 angle = 180
 self.servo.setAngle(angle)

We have to specify the pin number to which the servo is connected when we create
an instance of the TemperatureServo class in the pin required argument. The
constructor, that is, the __init__ method, creates a new upmServo.ES08A instance
with the received pin as its pin argument, saves its reference in the servo attribute
and calls its setAngle with 0 as the value for the angle required argument. This
way, the underlying code will configure the output duty cycle for the PWM enabled
GPIO pin based on the received value in the angle argument to position the shaft at
the desired angle. In this case, we want the shaft to be positioned at 0 degrees.

The class defines a print_temperature method that receives a temperature value
expressed in degrees Fahrenheit (ºF) in the temperature_fahrenheit argument.
The code defines an angle local variable that makes sure that the desired angle
for the shaft is in a valid range: from 0 to 180 (inclusive). If the value received in
the temperature_fahrenheit argument is lower than 0, the angle value will be
0. If the value received in the temperature_fahrenheit argument is greater than
180, the angle value will be 180. Then, the code calls the setAngle method for
the upmServo.ES08A instance (self.servo) with angle as an argument. Under
the hoods, the upmServo.ES08A instance will configure the output duty cycle for
the PWM enabled GPIO pin based on the received value in the angle argument to
position the shaft at the desired angle. This way, the shaft will position at an angle
that will be the same than the received temperature in degrees Fahrenheit (ºF), as
long as the temperature value is between 0 and 180 degrees Fahrenheit (ºF).

In case it is too cold, (less than 0 degrees Fahrenheit) the shaft will stay at a 0 degrees
angle. In case the temperature is higher than 180 degrees Fahrenheit, the shaft will
stay at a 180 degrees angle.

Now, we will make changes to our main loop to display the ambient temperature
expressed in Fahrenheit (ºF) with the shaft, every 10 seconds. The code file for the
sample is iot_python_chapter_08_03.py.

if __name__ == "__main__":
 temperature_and_humidity_sensor = \
 TemperatureAndHumiditySensor(0)
 oled = TemperatureAndHumidityOled(0)
 temperature_servo = TemperatureServo(3)
 while True:

Displaying Information and Performing Actions

[258]

 temperature_and_humidity_sensor.\
 measure_temperature_and_humidity()
 oled.print_temperature(
 temperature_and_humidity_sensor.temperature_fahrenheit,
 temperature_and_humidity_sensor.temperature_celsius)
 oled.print_humidity(
 temperature_and_humidity_sensor.humidity)
 temperature_servo.print_temperature(
 temperature_and_humidity_sensor.temperature_fahrenheit)
 print("Ambient temperature in degrees Celsius: {0}".
 format(temperature_and_humidity_sensor.temperature_
celsius))
 print("Ambient temperature in degrees Fahrenheit: {0}".
 format(temperature_and_humidity_sensor.temperature_
fahrenheit))
 print("Ambient humidity: {0}".
 format(temperature_and_humidity_sensor.humidity))
 # Sleep 10 seconds (10000 milliseconds)
 time.sleep(10)

The highlighted lines show the changes made to the __main__ method compared
with the previous version. The first highlighted line creates an instance of the
previously coded TemperatureServo class with 3 as the value of the pin argument.
The code saves the reference to this instance in the temperature_servo local
variable. This way, the instance will configure PWM for pin number 3 and position
the shaft at 0 degrees.

Then, the code runs a loop forever and the highlighted line calls the temperature_
servo.print_temperature method with temperature_and_humidity_sensor.
temperature_fahrenheit as an argument. This way, the code makes the shaft
point to the temperature value in the protractor.

The following line will start the example.

python iot_python_chapter_08_03.py

After you run the example, turn on an air conditioner or a heating system and
generate a change in the ambient temperature. You will notice how the shaft starts
moving to reflect the changes in the temperature every 10 seconds.

Chapter 8

[259]

Test your knowledge
1. The Intel Galileo Gen 2 board works as an I2C bus master and allows us to:

1. Connect many slaves to the I2C bus as long as their have different
I2C addresses.

2. Connect many slaves to the I2C bus as long as their have the
same I2C addresses.

3. Connect a maximum of two slaves to the I2C bus as long as their have
different I2C addresses.

2. A 16x2 LCD module allows us to display:
1. Two lines of text with 16 characters each.
2. Sixteen lines of text with 2 characters each.
3. Sixteen lines of text with 3 characters each.

3. A 16 grayscale 96-by-96 dot matrix OLED display module allows
us to control:

1. 96 lines of text with 96 characters each.
2. A single line with 96 dots or 96 characters, based on how we

configure the OLED display.
3. 9,216 dots (96*96).

4. A 16 grayscale 96-by-96 dot matrix OLED display with an 8-by-8 character
box allows us to display:

1. 96 lines of text with 96 characters each: 96 columns and 96 rows.
2. 16 lines of text with 16 characters each: 16 columns and 16 rows.
3. 12 lines of text with 12 characters each: 12 columns and 12 rows.

5. Standard servos allow us to:

1. Display text on an OLED display.
2. Position the shaft at various specific angles.
3. Move the shaft to a specific location by specifying the desired latitude

and longitude.

Displaying Information and Performing Actions

[260]

Summary
In this chapter, we learned about different displays the we could connect to our
board through the I2C bus. We worked with an LCD display, an RGB backlight,
and then replaced it with an OLED dot matrix.

We wrote the code that took advantage of the modules and classes included in the
upm library that made it easier for us to work with LCD and OLED display and show
text on them. In addition, we wrote the code that interacted with an analog servo.
Instead of writing our own code to set the output duty cycle based on the desired
position for the shaft, we took advantage of a specific module and a class in the upm
library. We could control the shaft to allow us to create a gauge chart to display
the temperature value retrieved with a sensor. Our Python code could make
things move.

Now that we are able to show data next to the board and work with servos, we will
connect our IoT device to the entire world and work with cloud services, which is
the topic of the next chapter.

[261]

Working with the Cloud
In this chapter, we will take advantage of many cloud services to publish and
visualize data collected for sensors and to establish bi-directional communications
between Internet-connected things. We will cover the following topics:

• Publishing data to the cloud with dweepy and dweet.io
• Building a web-based dashboard with freeboard.io
• Sending and receiving data in real time through Internet with PubNub
• Publishing messages with commands through the PubNub cloud
• Working with bi-directional communications between IoT devices

and other devices
• Publishing messages to the cloud with a Python PubNub client
• Using the MQTT protocol with Mosquitto and Eclipse Paho
• Publishing messages to a Mosquitto broker with a Python client

Publishing data to the cloud with dweepy
In Chapter 8, Displaying Information and Performing Actions, we worked with a digital
temperature and humidity sensor combined with displays and a servo. Now, we
want to take advantage of two cloud services to build a real time and interactive
web-based dashboard that allows us to watch gauges with the following information
in a web browser:

• Ambient temperature measured in degrees Fahrenheit (ºF)
• Ambient temperature measured in degrees Celsius (ºC)
• Ambient humidity level expressed in percentage (%)

Working with the Cloud

[262]

First, we will take advantage of dweet.io to publish the data retrieved from the
sensors and make it available to different computers and devices all over the world.
The dweet.io data sharing utility allows us to easily publish data or messages and
alerts from IoT devices and then use other devices to subscribe to this data. The
dweet.io data sharing utility defines itself as something similar to Twitter for social
machines. You can read more about dweet.io in its Webpage: http://dweet.io.

In our example, we will take advantage of the free services
offered by dweet.io and we won't use some advanced
features that provide privacy for our data but also require
a paid subscription. Our data will be available to anyone
that can access the dweet.io web page because we are not
working with locked dweets.

The dweet.io data sharing utility provides a Web api that we can send data from
our IoT device, known as thing in dweet.io documentation. First, we have to chose
a unique name for our thing. It is convenient to combine a string with a GUID (short
for Global Unique Identifier). Another option is to click on the Try It Now button
on the main dweet.io web page and grab the name that the web page chooses for
our thing. This way, we are sure that the name is unique and nobody else is using
this name for another thing to publish data with dweet.io.

Once we have chosen a unique name for our thing, we can start publishing data,
a process known as dweeting. We just need to compose a POST HTTP verb
with the desired JSON data in the body and with the following request URL:
https://dweet.io/dweet/for/my-thing-name. We must replace my-thing-
name with the name we have chosen for our thing. In our examples, we will use
iot_python_chapter_09_01_gaston_hillar to name our IoT device that will
publish temperature and humidity values, that is, the thing that will dweet. Thus,
we have to compose a POST HTTP verb with the desired JSON data in the body
and with the following request URL: https://dweet.io/dweet/for/iot_python_
chapter_09_01_gaston_hillar. Make sure you replace the name with the name
you have chosen for your thing.

Dweepy is a simple Python client for dweet.io that allows us to easily publish
data to dweet.io with Python. Instead of manually building and sending an
HTTP request to a specific URL with Python, we can use the methods provided
by this useful module. The following is the Web page for the Dweepy module:
https://pypi.python.org/pypi/dweepy/0.2.0. Under the hoods, Dweepy
uses the popular features provided by the popular requests module to build
and send the HTTP requests.

http://dweet.io
https://pypi.python.org/pypi/dweepy/0.2.0

Chapter 9

[263]

One of the nice things of working with Python as our main programming
language for IoT is that there is always a package that makes things easy
for us in Python.

In Chapter 2, Working with Python on Intel Galileo Gen 2, we installed pip installer to
easily install additional Python 2.7.3 packages in the Yocto Linux that we are running
on the board. Now, we will use pip installer to install Dweepy 0.2.0. We just need to
run the following command in the SSH terminal to install the package:

pip install dweepy

The last lines for the output will indicate that the dweepy package has been
successfully installed. Don't worry about the error messages related to building
wheel and the insecure platform warning:

Collecting dweepy
Downloading dweepy-0.2.0.tar.gz
Requirement already satisfied (use --upgrade to upgrade):
requests<3,>=2 in /usr/lib/python2.7/site-packages (from dweepy)
Installing collected packages: dweepy
 Running setup.py install for dweepy
Successfully installed dweepy-0.2.0

We will take the code we wrote in the previous chapter when we read temperature
and humidity values from the sensor and we will use this code as a baseline to add
the new features. The code file for the sample was iot_python_chapter_08_03.py.

We will use the recently installed dweepy module to publish data to dweet.io and
make it available as a data source for another cloud service that will allow us to
build a web-based dashboard. We will add the necessary lines to our loop and it
will publish the measured values every 10 seconds. The code file for the sample is
iot_python_chapter_09_01.py.

import pyupm_th02 as upmTh02
import pyupm_i2clcd as upmLcd
import pyupm_servo as upmServo
import dweepy
import time

if __name__ == "__main__":
 temperature_and_humidity_sensor = \
 TemperatureAndHumiditySensor(0)
 oled = TemperatureAndHumidityOled(0)
 temperature_servo = TemperatureServo(3)
 # Don't forget to replace the thing_name value

Working with the Cloud

[264]

 # with your own thing name
 thing_name = "iot_python_chapter_09_01_gaston_hillar"
 while True:
 temperature_and_humidity_sensor.\
 measure_temperature_and_humidity()
 oled.print_temperature(
 temperature_and_humidity_sensor.temperature_fahrenheit,
 temperature_and_humidity_sensor.temperature_celsius)
 oled.print_humidity(
 temperature_and_humidity_sensor.humidity)
 temperature_servo.print_temperature(
 temperature_and_humidity_sensor.temperature_fahrenheit)
 # Push data to dweet.io
 dweet = {"temperature_celsius": "{:5.2f}".format(temperature_
and_humidity_sensor.temperature_celsius),
 "temperature_fahrenheit": "{:5.2f}".
format(temperature_and_humidity_sensor.temperature_fahrenheit),
 "humidity_level_percentage": "{:5.2f}".
format(temperature_and_humidity_sensor.humidity)}
 dweepy.dweet_for(thing_name, dweet)
 print("Ambient temperature in degrees Celsius: {0}".
 format(temperature_and_humidity_sensor.temperature_
celsius))
 print("Ambient temperature in degrees Fahrenheit: {0}".
 format(temperature_and_humidity_sensor.temperature_
fahrenheit))
 print("Ambient humidity: {0}".
 format(temperature_and_humidity_sensor.humidity))
 # Sleep 10 seconds (10000 milliseconds)
 time.sleep(10)

The highlighted lines show the changes made to the __main__ method compared
with the previous version. The first highlighted line creates a local variable named
thing_name that saves a string with the name we have chosen for our thing to use
with dweet.io. Remember that you have to replace the string with the name you
have chosen for your thing before running the sample code.

Chapter 9

[265]

Then, the code runs a loop forever and the first highlighted line creates a dictionary
and saves it in the dweet local variable. The dictionary defines the key-value pairs
that we want to send as JSON data to dweet.io for our thing. The following are the
keys the code will send:

• temperature_celsius

• temperature_fahrenheit

• humidity_level_percentage

The values for the previously enumerated keys are the values retrieved by the
sensor converted to strings. Once the dictionary with the desired JSON data is
built, the code calls the dweepy.dweet_for method with thing_name and dweet
as arguments, that is, the thing name and the JSON data we want to publish for
the specified thing name. Under the hoods, the dweepy.dweet_for method uses
the requests module to compose a POST HTTP verb with the dweet dictionary as
the desired JSON data in the body and with the following request URL: https://
dweet.io/dweet/for/ followed by the thing name specified in the thing_name local
variable. This way, the code dweets the temperature and humidity values retrieved
from the sensor in different units.

The following line will start the example.

python iot_python_chapter_09_01.py

After you run the example, turn on an air conditioner or a heating system, to
generate a change in the ambient temperature and humidity. This way, we will
notice changes in the data that is being published every 10 seconds.

Wait around 20 seconds and open the following URL in any Web browser: http://
dweet.io/follow/iot_python_chapter_09_01_gaston_hillar. Don't forget
to replace iot_python_chapter_09_01_gaston_hillar with the name you have
chosen for your thing. In this case, we can enter the URL in any device connected to
the Internet. We don't need the device to be in the same LAN than the board because
the values are published with dweet.io and they are available everywhere.

Working with the Cloud

[266]

The Visual view will display a line graph with the humidity level and the
temperature values as they were changing over time. The right-hand side will
display the latest value that was published. The view will be refreshed automatically
when the Python code dweets new values. The following picture shows a screenshot
with the Visual view:

Click on the Raw view and the page will display the latest JSON data that the Python
code running on the board has published and received by dweet.io for our thing.
The following lines show an example of the latest JSON data that was received and
that was shown in the previous picture:

{
 "humidity_level_percentage": 20.01,
 "temperature_celsius": 19.56,
 "temperature_fahrenheit": 67.21
}

In Chapter 4, Working with a RESTful API and Pulse Width Modulation, we installed
HTTPie, a command-line HTTP client written in Python that makes is easy to send
HTTP requests and uses a syntax that is easier than curl (also known as cURL). We
can run the following HTTPie command in any computer or device to retrieve the
latest dweet made for our thing.

http -b https://dweet.io:443/get/latest/dweet/for/iot_python_
chapter_09_01_gaston_hillar

Chapter 9

[267]

The previous command will compose and send the following HTTP request: GET
https://dweet.io:443/get/latest/dweet/for/iot_python_chapter_09_01_
gaston_hillar. The dweet.io API will return the latest dweet for the specified
thing. The following lines show a sample response from dweet.io. The JSON data is
included in the value for the content key.

{
 "by": "getting",
 "the": "dweets",
 "this": "succeeded",
 "with": [
 {
 "content": {
 "humidity_level_percentage": 19.92,
 "temperature_celsius": 20.06,
 "temperature_fahrenheit": 68.11
 },
 "created": "2016-03-27T00:11:12.598Z",
 "thing": "iot_python_chapter_09_01_gaston_hillar"
 }
]
}

We can run the following HTTPie command in any computer or device to retrieve all
of the saved dweets for our thing.

http -b https://dweet.io:443/get/ dweets/for/iot_python_chapter_09_01_
gaston_hillar

The previous command will compose and send the following HTTP request: GET
https://dweet.io:443/get/ dweets/for/iot_python_chapter_09_01_gaston_
hillar. The dweet.io API will return the saved dweets from its long term storage
for the specified thing. The following lines show a sample response from dweet.
io. Notice that there are limitations in the number of dweets stored in the long term
storage and in the returned values.

{
 "by": "getting",
 "the": "dweets",
 "this": "succeeded",
 "with": [
 {
 "content": {
 "humidity_level_percentage": 19.94,
 "temperature_celsius": 20.01,
 "temperature_fahrenheit": 68.02

Working with the Cloud

[268]

 },
 "created": "2016-03-27T00:11:00.554Z",
 "thing": "iot_python_chapter_09_01_gaston_hillar"
 },
 {
 "content": {
 "humidity_level_percentage": 19.92,
 "temperature_celsius": 19.98,
 "temperature_fahrenheit": 67.96
 },
 "created": "2016-03-27T00:10:49.823Z",
 "thing": "iot_python_chapter_09_01_gaston_hillar"
 },
 {
 "content": {
 "humidity_level_percentage": 19.92,
 "temperature_celsius": 19.95,
 "temperature_fahrenheit": 67.91
 },
 "created": "2016-03-27T00:10:39.123Z",
 "thing": "iot_python_chapter_09_01_gaston_hillar"
 },
 {
 "content": {
 "humidity_level_percentage": 19.91,
 "temperature_celsius": 19.9,
 "temperature_fahrenheit": 67.82
 },
 "created": "2016-03-27T00:10:28.394Z",
 "thing": "iot_python_chapter_09_01_gaston_hillar"
 }
]
}

Chapter 9

[269]

Building a web-based dashboard with
Freeboard
The dweet.io data sharing utility allowed us to easily publish data to the cloud with
just a few lines of code. Now, we are ready to use dweet.io and our thing name as
a data source to build a real-time web-based dashboard. We will take advantage of
freeboard.io to visualize the data collected with the sensor and published to dweet.
io in many gauges and make the dashboard available to different computers and
devices all over the world. Freeboard.io allows us to build a dashboard by selecting
data sources and dragging and dropping customizable widgets. Freeboard.io defines
itself as a cloud-based service that allows us to visualize the Internet of Things. You
can read more about freeboard.io in its Webpage: http://freeboard.io.

In our example, we will take advantage of the free services offered by
freeboard.io and we won't use some advanced features that provide
privacy for our dashboards but also require a paid subscription. Our
dashboard will be available to anyone that has the unique URL for it
because we are not working with private dashboards.

Freeboard requires us to sign up and create an account with a valid e-mail and a
password before we can build a web-based dashboard. We aren't required to enter
any credit card or payment information. If you already have an account at freeboard.
io, you can skip the next step.

Go to http://freeboard.io in your Web browser and click Start Now. You can
achieve the same goal by visiting https://freeboard.io/signup. Enter your
desired user name in Pick a Username, your e-mail in Enter Your Email and the
desired password in Create a Password. Once you have filled up all the fields,
click Create My Account.

Once you created your account, you can go to http://freeboard.io in your
Web browser and click Login. You can achieve the same goal by visiting
https://freeboard.io/login. Then, enter your user name or e-mail and
password, and click Sign In. Freeboard will display your freeboards, also
known as dashboards.

http://freeboard.io
http://freeboard.io
https://freeboard.io/signup
http://freeboard.io
https://freeboard.io/login

Working with the Cloud

[270]

Enter Ambient temperature and humidity in the enter a name textbox at the left
hand side of the Create New button and then click on this button. Freeboard.io will
display an empty dashboard with many buttons that allow us to add panes and data
sources, among other things. The following picture shows a screenshot with the
empty dashboard.

Click on Add below Datasources and the Website will open the Datasource dialog
box. Select Dweet.io in the Type dropdown and the dialog box will display the fields
required to define a dweet.io datasource.

Enter Ambient temperature and humidity in Name and the thing name we
have been using for dweet.io in Thing Name. Remember that we were using
iot_python_chapter_09_01_gaston_hillar to name our IoT device but you had
replaced it with a different name. If the name you enter doesn't match the name you
used when working with dweet.io, the datasource won't have the appropriate data.
The following picture shows a screenshot with the configuration for the dweet.io
datasource that uses the sample thing name.

Chapter 9

[271]

Click Save and the datasource will appear listed below Datasources. As the board is
running the Python code that is dweeting, the time shown below Last Updated will
change every 10 seconds. If the time doesn't change every 10 seconds, it means that
the datasource has a wrong configuration or that the board is not running the Python
code that is dweeting anymore.

Click on Add pane to add a new empty pane to the dashboard. Then, click on the
plus sign (+) at the upper right corner of the new empty pane and Freeboard will
display the Widget dialog box.

Select Gauge in the Type dropdown and the dialog box will display the fields
required to add a gauge widget to the pane within the dashboard. Enter
Temperature in degrees Fahrenheit in Title.

Click + Datasource at the right-hand side of the Value textbox, select Ambient
Temperature and humidity and then select temperature_fahrenheit. After you
make the selections the following text will appear in the Value textbox: datasources
["Ambient temperature and humidity"] ["temperature_fahrenheit"].

Working with the Cloud

[272]

Enter ºF in Units, -30 in Minimum and 130 in Maximum. Then, click Save and
Freeboard will close the dialog box and add the new gauge to the previously created
pane within the dashboard. The gauge will display the latest value that the code
running in the board dweeted for the ambient temperature in degrees Fahrenheit,
that is, the value for the temperature_fahrenheit key in the JSON data that the
code has published for the last time to dweet.io. The following picture shows the
Ambient temperature and humidity datasource displaying the last updated time
and the gauge showing the latest value for the ambient temperature measured in
degrees Fahrenheit.

Click on Add pane to add another new empty pane to the dashboard. Then, click on
the plus sign (+) at the upper right corner of the new empty pane and Freeboard will
display the Widget dialog box.

Select Gauge in the Type dropdown and the dialog box will display the fields
required to add a gauge widget to the pane within the dashboard. Enter Humidity
level in percentage in Title.

Click + Datasource at the right-hand side of the Value textbox, select Ambient
Temperature and humidity and then select humidity_level_percentage. After you
make the selections the following text will appear in the Value textbox: datasources
["Ambient temperature and humidity"] ["humidity_level_percentage"].

Chapter 9

[273]

Enter % in Units, 0 in Minimum and 100 in Maximum. Then, click Save and
Freeboard will close the dialog box and add the new gauge to the previously created
pane within the dashboard. The gauge will display the latest value that the code
running in the board dweeted for the ambient humidity level in percentage, that is,
the value for the humidity_level_percentage key in the JSON data that the code
has published for the last time to dweet.io.

Now, click on the plus sign (+) at the upper right corner of the pane that is displaying
the temperature in degrees Fahrenheit and Freeboard will display the Widget
dialog box.

Select Gauge in the Type dropdown and the dialog box will display the fields
required to add a gauge widget to the pane within the dashboard. Enter
Temperature in degrees Celsius in Title.

Click + Datasource at the right-hand side of the Value textbox, select Ambient
Temperature and humidity and then select temperature_celsius. After you make
the selections the following text will appear in the Value textbox: datasources
["Ambient temperature and humidity"] ["temperature_celsius"].

Enter ºC in Units, -40 in Minimum and 55 in Maximum. Then, click Save and
Freeboard will close the dialog box and add the new gauge to the previously existing
pane within the dashboard. This way, the pane will display two gauges, with the
temperature expressed in two different units. The new gauge will display the latest
value that the code running in the board dweeted for the ambient temperature in
degrees Celsius, that is, the value for the temperature_celsius key in the JSON
data that the code has published for the last time to dweet.io.

Now, click on the configuration icon at the right-hand side of the + button of the
pane that displays both temperatures. Freeboard will display the Pane dialog box.
Enter Temperature in Title and click Save.

Click on the configuration icon at the right-hand side of the + button of the pane
that displays the humidity level. Freeboard will display the Pane dialog box. Enter
Humidity in Title and click Save.

Working with the Cloud

[274]

Drag and drop the panes to locate the Humidity pane at the left-hand side of the
Temperature pane. The following picture shows the dashboard we built, with two
panes and three gauges that refresh the data automatically when the code running
on the Intel Galileo Gen 2 board dweets new data.

We can access the recently built dashboard in any device by entering the
URL that our Web browser is displaying at the time we are working with
the dashboard. The URL is composed of the https://freeboard.
io/board/ prefix followed by letters and numbers. For example, in
case the URL is https://freeboard.io/board/EXAMPLE, we just
need to enter it in any Web browser running on any device or computer
connected to the Internet and we can watch the gauges and they will be
refreshed as new data is being publishes from our Intel Galileo Gen 2
board to dweet.io.

Chapter 9

[275]

The combination of dweet.io as our datasource and freeboard.io as our web-based
dashboard made it easy for us to monitor the data retrieved from the sensor wired
to our Intel Galileo Gen 2 board with any device that provides a Web browser. The
combination of these two cloud-based services for IoT is just one example of how
we can easily combine different services. There is an increase in the number of IoT
cloud-based services, which can be used in our solutions.

Sending and receiving data in real-time
through Internet with PubNub
In Chapter 4, Working with a RESTful API and Pulse Width Modulation, we developed
and consumed a RETful API that allows us to control electronic components
connected to our Intel Galileo Gen 2 board through HTTP requests. Now, we want to
send and receive data in real-time through the Internet and a RESTful API is not the
most appropriate option to do this. Instead, we will work with a publish/subscribe
model based on a protocol that is lighter than the HTTP protocol. Specifically, we
will use a service based on the MQTT (short for MQ Telemetry Transport) protocol.

The MQTT protocol is a machine-to-machine (short for M2M) and Internet of
Things connectivity protocol. MQTT is a lightweight messaging protocol that runs
on top of the TCP/IP protocol and works with a publish-subscribe mechanism. It is
possible for any device to subscribe to a specific channel (also known as topic) and
it will receive all the messages published to this channel. In addition, the device can
publish message to this or other channel. The protocol is becoming very popular in
IoT and M2M projects. You can read more about the MQTT protocol in the following
Webpage: http://mqtt.org.

PubNub provides many cloud-based services and one of them allows us to easily
stream data and signal any device in real-time, working with the MQTT protocol
under the hoods. We will take advantage of this PubNub service to send and receive
data in real-time through Internet and make it easy to control our Intel Galileo Gen
2 board through the Internet. As PubNub provides a Python API with high quality
documentation and examples, it is extremely easy to use the service in Python.
PubNub defines itself as the global data stream network for IoT, Mobile and Web
applications. You can read more about PubNub in its Webpage: http://www.
pubnub.com.

http://mqtt.org
http://www.pubnub.com
http://www.pubnub.com

Working with the Cloud

[276]

In our example, we will take advantage of the free services offered by
PubNub and we won't use some advanced features and additional
services that might empower our IoT project connectivity requirements
but also require a paid subscription.

PubNub requires us to sign up and create an account with a valid e-mail and a
password before we can create an application within PubNub that allows us to start
using their free services. We aren't required to enter any credit card or payment
information. If you already have an account at PubNub, you can skip the next step.

Once you created your account PubNub will redirect you to the Admin Portal that
lists your PubNub applications. It is necessary to generate your PubNub publish and
subscribe keys in order to send and receive messages in the network. A new pane
will represent the application in the Admin portal. The following screenshot shows
the Temperature Control application pane in the PubNub Admin portal:

Click on the Temperature Control pane and PubNub will display the Demo Keyset
pane that has been automatically generated for the application. Click on this pane
and PubNub will display the publish, subscribe, and secret keys. We must copy
and paste each of these keys to use them in our code that will publish messages and
subscribe to them. The following screenshot shows the prefixes for the keys and the
remaining characters have been erased in the image:

Chapter 9

[277]

In order to copy the secret key, you must click on the eye icon at the right-hand side
of the key and PubNub will make all the characters visible.

In Chapter 2, Working with Python on Intel Galileo Gen 2, we installed pip installer to
easily install additional Python 2.7.3 packages in the Yocto Linux that we are running
on the board. Now, we will use pip installer to install PubNub Python SDK 3.7.6. We
just need to run the following command in the SSH terminal to install the package.
Notice that it can take a few minutes to complete the installation.

pip install pubnub

The last lines for the output will indicate that the pubnub package has been
successfully installed. Don't worry about the error messages related to building
wheel and the insecure platform warning.

 Downloading pubnub-3.7.6.tar.gz
Collecting pycrypto>=2.6.1 (from pubnub)
 Downloading pycrypto-2.6.1.tar.gz (446kB)
 100% |################################| 446kB 25kB/s
Requirement already satisfied (use --upgrade to upgrade):
requests>=2.4.0 in /usr/lib/python2.7/site-packages (from pubnub)
Installing collected packages: pycrypto, pubnub
 Running setup.py install for pycrypto
Installing collected packages: pycrypto, pubnub
 Running setup.py install for pycrypto
Running setup.py install for pubnub
Successfully installed pubnub-3.7.6 pycrypto-2.6.1

Working with the Cloud

[278]

We will take the code we wrote in the previous chapter when we read temperature
and humidity values from the sensor, we printed the values in an OLED matrix
and rotated a servo's shaft to display the measured temperature expressed in
degrees Fahrenheit with the shaft. The code file for the sample was iot_python_
chapter_08_03.py. We will use this code as a baseline to add new features that will
allow us to perform the following actions with PubNub messages sent to a specific
channel from any device that has a Web browser:

• Rotate the servo's shaft to display a temperature value in degrees Fahrenheit
received as part of the message.

• Display a line of text received as part of the message at the bottom of the
OLED matrix.

We will use the recently installed pubnub module to subscribe to a specific
channel and run code when we receive messages in the channel. We will create
a MessageChannel class to represent the communications channel, configure
the PubNub subscription and declare the code for the callbacks that are going
to be executed when certain events are fired. The code file for the sample is iot_
python_chapter_09_02.py. Remember that we use the code file iot_python_
chapter_08_03.py as a baseline, and therefore, we will add the class to the existing
code in this file and we will create a new Python file. Don't forget to replace the
strings assigned to the publish_key and subscribe_key local variables in the
__init__ method with the values you have retrieved from the previously
explained PubNub key generation process.

import time
from pubnub import Pubnub

class MessageChannel:
 command_key = "command"

 def __init__(self, channel, temperature_servo, oled):
 self.temperature_servo = temperature_servo
 self.oled = oled
 self.channel = channel
 # Publish key is the one that usually starts with the "pub-c-"
prefix
 # Do not forget to replace the string with your publish key
 publish_key = "pub-c-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
 # Subscribe key is the one that usually starts with the
"sub-c" prefix
 # Do not forget to replace the string with your subscribe key

Chapter 9

[279]

 subscribe_key = "sub-c-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
 self.pubnub = Pubnub(publish_key=publish_key, subscribe_
key=subscribe_key)
 self.pubnub.subscribe(channels=self.channel,
 callback=self.callback,
 error=self.callback,
 connect=self.connect,
 reconnect=self.reconnect,
 disconnect=self.disconnect)

 def callback(self, message, channel):
 if channel == self.channel:
 if self.__class__.command_key in message:
 if message[self.__class__.command_key] == "print_
temperature_fahrenheit":
 self.temperature_servo.print_temperature(message["
temperature_fahrenheit"])
 elif message[self.__class__.command_key] == "print_
information_message":
 self.oled.print_line(11, message["text"])
 print("I've received the following message: {0}".
format(message))

 def error(self, message):
 print("Error: " + str(message))

 def connect(self, message):
 print("Connected to the {0} channel".
 format(self.channel))
 print(self.pubnub.publish(
 channel=self.channel,
 message="Listening to messages in the Intel Galileo Gen 2
board"))

 def reconnect(self, message):
 print("Reconnected to the {0} channel".
 format(self.channel))

 def disconnect(self, message):
 print("Disconnected from the {0} channel".
 Format(self.channel))

Working with the Cloud

[280]

The MessageChannel class declares the command_key class attribute that defines the
key string that defines what the code will understand as the command. Whenever
we receive a message that includes the specified key string, we know that the value
associated to this key in the dictionary will indicate the command that the message
wants the code running in the board to be processed. Each command requires
additional key-value pairs that provide the necessary information to execute
the command.

We have to specify the PubNub channel name, the TemperatureServo instance the
Oled instance in the channel, temperature_servo, and oled required arguments.
The constructor, that is, the __init__ method, saves the received arguments in
three attributes with the same names. The channel argument specifies the PubNub
channel to which we are going to subscribe to listen to the messages that other
devices send to this channel. We will also publish messages to this channel, and
therefore, we will be both a subscriber and a publisher for this channel.

In this case, we will only subscribe to one channel. However, it is
very important to know that we are not limited to subscribe to a
single channel, we might subscribe to many channels.

Then, the constructor declares two local variables: publish_key and subscribe_
key. These local variables save the publish and subscribe keys that we had generated
with the PubNub Admin portal. Then, the code creates a new Pubnub instance with
publish_key and subscribe_key as the arguments, and saves the reference for the
new instance in the pubnub attribute. Finally, the code calls the subscribe method
for the new instance to subscribe to data on the channel saved in the channel
attribute. Under the hoods, the subscribe method makes the client create an
open TCP socket to the PubNub network that includes an MQTT broker and starts
listening to messages on the specified channel. The call to this method specifies many
methods declared in the MessageChannel class for the following named arguments:

• callback: Specifies the function that will be called when there is a new
message received from the channel

• error: Specifies the function that will be called on an error event
• connect: Specifies the function that will be called when a successful

connection is established with the PubNub cloud
• reconnect: Specifies the function that will be called when a successful re-

connection is completed with the PubNub cloud
• disconnect: Specifies the function that will be called when the client

disconnects from the PubNub cloud

Chapter 9

[281]

This way, whenever one of the previously enumerated events occur, the specified
method will be executed. The callback method receives two arguments: message
and channel. First, the method checks whether the received channel matches
the value in the channel attribute. In this case, whenever the callback method is
executed, the value in the channel argument will always match the value in the
channel attribute because we just subscribed to one channel. However, in case we
subscribe to more than one channel, is is always necessary to check which is the
channel in which the message was sent and in which we are receiving the message.

Then, the code checks whether the command_key class attribute is included in the
message dictionary. If the expression evaluates to True, it means that the message
includes a command that we have to process. However, before we can process the
command, we have to check which is the command, and therefore, it is necessary
to retrieve the value associated with the key equivalent to the command_key class
attribute. The code is capable of running code when the value is any of the following
two commands:

• print_temperature_fahrenheit: The command must specify the
temperature value expressed in degrees Fahrenheit in the value of the
temperature_fahrenheit key. The code calls the self.temperature_
servo.print_temperature method with the temperature value retrieved
from the dictionary as an argument. This way, the code moves the servo's
shaft based on the specified temperature value in the message that includes
the command.

• print_information_message: The command must specify the line of text
that has to be displayed at the bottom of the OLED matrix in the value of the
print_information_message key. The code calls the self.oled.print_
line method with 11 and the text value retrieved from the dictionary as
arguments. This way, the code displays the text received in the message that
includes the command at the bottom of the OLED matrix.

No matter whether the message included a valid command or not, the method prints
the raw message that it received in the console output.

The connect method prints a message indicating that a connection has been
established with the channel. Then, the method prints the results of calling the self.
pubnub.publish method that publishes a message in the channel name saved in
self.channel with the following message: "Listening to messages in the
Intel Galileo Gen 2 board". In this case, the call to this method runs with a
synchronous execution. We will work with asynchronous execution for this method
in our next example.

Working with the Cloud

[282]

At this time, we are already subscribed to this channel, and therefore, we will receive
the previously published message and the callback method will be executed with
this message as an argument. However, as the message doesn't include the key that
identifies a command, the code in the callback method will just display the received
message and it won't process any of the previously analyzed commands.

The other methods declared in the MessageChannel class just display information to
the console output about the event that has occurred.

Now, we will use the previously coded MessageChannel class to create a new
version of the __main__ method that uses the PubNub cloud to receive and process
commands. The new version doesn't rotate the servo's shaft when the ambient
temperature changes, instead, it will do this when it receives the appropriate
command from any device connected to PubNub cloud. The following lines show
the new version of the __main__ method. The code file for the sample is iot_
python_chapter_09_02.py.

if __name__ == "__main__":
 temperature_and_humidity_sensor = \
 TemperatureAndHumiditySensor(0)
 oled = TemperatureAndHumidityOled(0)
 temperature_servo = TemperatureServo(3)
 message_channel = MessageChannel("temperature", temperature_servo,
oled)
 while True:
 temperature_and_humidity_sensor.\
 measure_temperature_and_humidity()
 oled.print_temperature(
 temperature_and_humidity_sensor.temperature_fahrenheit,
 temperature_and_humidity_sensor.temperature_celsius)
 oled.print_humidity(
 temperature_and_humidity_sensor.humidity)
 print("Ambient temperature in degrees Celsius: {0}".
 format(temperature_and_humidity_sensor.temperature_
celsius))
 print("Ambient temperature in degrees Fahrenheit: {0}".
 format(temperature_and_humidity_sensor.temperature_
fahrenheit))

Chapter 9

[283]

 print("Ambient humidity: {0}".
 format(temperature_and_humidity_sensor.humidity))
 # Sleep 10 seconds (10000 milliseconds)
 time.sleep(10)

The highlighted line creates an instance of the previously coded MessageChannel
class with "temperature", temperature_servo, and oled as the arguments. The
constructor will subscribe to the temperature channel in the PubNub cloud, and
therefore, we must send the messages to this channel in order to send the commands
that the code will process with an asynchronous execution. The loop will read the
values from the sensor and print the values to the console as in the previous version
of the code, and therefore, we will have code running in the loop and we will also
have code listening to the messages in the temperature channel in the PubNub
cloud. We will start the example later because we want to subscribe to the channel in
the PubNub debug console before we run the code in the board.

Publishing messages with commands
through the PubNub cloud
Now, we will take advantage of the PubNub console to send messages with
commands to the temperature channel and make the Python code running on
the board process these commands. In case you have logged out of PubNub, login
again and click on the Temperature Control pane in the Admin Portal. PubNub will
display the Demo Keyset pane.

Click on the Demo Keyset pane and PubNub will display the publish, subscribe,
and secret keys. This way, we select the keyset that we want to use for our
PubNub application.

Working with the Cloud

[284]

Click on Debug Console on the sidebar located the left-hand side of the screen.
PubNub will create a client for a default channel and subscribe to this channel using
the secret keys we have selected in the previous step. We want to subscribe to the
temperature channel, and therefore, enter temperature in the Default Channel
textbox within a pane that includes the Add client button at the bottom. Then, click
on Add client and PubNub will add a new pane with a random client name as a title
and the channel name, temperature, in the second line. PubNub makes the client
subscribe to this channel and we will be able to receive messages published to this
channel and send messages to this channel. The following picture shows the pane
for the generated client named Client-ot7pi, subscribed to the temperature channel.
Notice that the client name will be different when you follow the explained steps.

The client pane displays the output generated when PubNub subscribed the client
to the channel. PubNub returns a formatted response for each command. In this
case, it indicates that the status is equal to Subscribed and the channel name is
temperature.

[1,"Subscribed","temperature"]

Chapter 9

[285]

Now, it is time to start running the example in the Intel Galileo Gen 2 board.
The following line will start the example in the SSH console:

python iot_python_chapter_09_02.py

After you run the example, go to the Web browser in which you are working
with the PubNub debug console. You will see the following message listed in the
previously created client:

"Listening to messages in the Intel Galileo Gen 2 board"

The Python code running in the board published this message, specifically, the
connect method in the MessageChannel class sent this message after the application
established a connection with the PubNub cloud. The following picture shows the
message listed in the previously created client. Notice that the icon at the left-hand
side of the text indicates it is a message. The other message was a debug message
with the results of subscribing to the channel.

Working with the Cloud

[286]

At the bottom of the client pane, you will see the following text and the Send button
at the right-hand side:

{"text":"Enter Message Here"}

Now, we will replace the previously shown text with a message. Enter the following
JSON code and click Send:

{"command":"print_temperature_fahrenheit", "temperature_fahrenheit":
50 }

The text editor where you enter the message has some issues in certain
browsers. Thus, it is convenient to use your favorite text editor to enter
the JSON code, copy it and then past it to replace the text that is included
by default in the text for the message to be sent.

After you click Send, the following lines will appear in the client log. The first line
is a debug message with the results of publishing the message and indicates that
the message has been sent. The formatted response includes a number (1 message),
the status (Sent) and a time token. The second line is the message that arrives to
the channel because we are subscribed to the temperature channel, that is, we also
receive the message we sent.

[1,"Sent","14594756860875537"]
{
 "command": "print_temperature_fahrenheit",
 "temperature_fahrenheit": 50
}

The following picture shows the messages and debug messages log for the PubNub
client after we clicked the Send button:

Chapter 9

[287]

After you publish the previous message, you will see the following output in the
SSH console for the Intel Galileo Gen 2 board. You will notice the servo's shaft rotates
to 50 degrees.

I've received the following message: {u'command': u'print_temperature_
fahrenheit', u'temperature_fahrenheit': 50}

Now, enter the following JSON code and click Send:

{"command":"print_information_message", "text": "Client ready"}

Working with the Cloud

[288]

After you click Send, the following lines will appear in the client log. The first line is
a debug message with the previously explained formatted response with the results
of publishing the message and indicates that the message has been sent. The second
line is the message that arrives to the channel because we are subscribed to the
temperature channel, that is, we also receive the message we sent.

 [1,"Sent","14594794434885921"]
 {
 "command": "print_information_message",
 "text": "Client ready"
}

The following picture shows the messages and debug messages log for the PubNub
client after we clicked the Send button.

After you publish the previous message, you will see the following output in the SSH
console for the Intel Galileo Gen 2 board. You will see the following text displayed at
the bottom of the OLED matrix: Client ready.

I've received the following message: {u'text': u'Client ready',
u'command': u'print_information_message'}

Chapter 9

[289]

When we published the two messages with the commands, we have definitely
noticed a problem. We don't know whether the command was processed or not in
the code that is running on the IoT device, that is, in the Intel Galileo Gen 2 board.
We know that the board started listening messages in the temperature channel, but
we don't receive any kind of response from the IoT device after the command has
been processed.

Working with bi-directional
communications
We can easily add a few lines of code to publish a message to the same channel
in which we are receiving messages to indicate that the command has been
successfully processed. We will use our previous example as a baseline and we will
create a new version of the MessageChannel class. The code file was iot_python_
chapter_09_02.py. Don't forget to replace the strings assigned to the publish_key
and subscribe_key local variables in the __init__ method with the values you
have retrieved from the previously explained PubNub key generation process. The
following lines show the new version of the MessageChannel class that publishes
a message after a command has been successfully processed. The code file for the
sample is iot_python_chapter_09_03.py.

import time
from pubnub import Pubnub

class MessageChannel:
 command_key = "command"
 successfully_processed_command_key = "successfully_processed_
command"

 def __init__(self, channel, temperature_servo, oled):
 self.temperature_servo = temperature_servo
 self.oled = oled
 self.channel = channel
 # Do not forget to replace the string with your publish key
 publish_key = "pub-c-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
 # Subscribe key is the one that usually starts with the
"sub-c" prefix
 # Do not forget to replace the string with your subscribe key
 subscribe_key = "sub-c-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
 self.pubnub = Pubnub(publish_key=publish_key, subscribe_
key=subscribe_key)
 self.pubnub.subscribe(channels=self.channel,
 callback=self.callback,

Working with the Cloud

[290]

 error=self.callback,
 connect=self.connect,
 reconnect=self.reconnect,
 disconnect=self.disconnect)

 def callback_response_message(self, message):
 print("I've received the following response from PubNub cloud:
{0}".format(message))

 def error_response_message(self, message):
 print("There was an error when working with the PubNub cloud:
{0}".format(message))

 def publish_response_message(self, message):
 response_message = {
 self.__class__.successfully_processed_command_key:
 message[self.__class__.command_key]}
 self.pubnub.publish(
 channel=self.channel,
 message=response_message,
 callback=self.callback_response_message,
 error=self.error_response_message)

 def callback(self, message, channel):
 if channel == self.channel:
 print("I've received the following message: {0}".
format(message))
 if self.__class__.command_key in message:
 if message[self.__class__.command_key] == "print_
temperature_fahrenheit":
 self.temperature_servo.print_temperature(message["
temperature_fahrenheit"])
 self.publish_response_message(message)
 elif message[self.__class__.command_key] == "print_
information_message":
 self.oled.print_line(11, message["text"])
 self.publish_response_message(message)

 def error(self, message):
 print("Error: " + str(message))

Chapter 9

[291]

 def connect(self, message):
 print("Connected to the {0} channel".
 format(self.channel))
 print(self.pubnub.publish(
 channel=self.channel,
 message="Listening to messages in the Intel Galileo Gen 2
board"))

 def reconnect(self, message):
 print("Reconnected to the {0} channel".
 format(self.channel))

 def disconnect(self, message):
 print("Disconnected from the {0} channel".
 format(self.channel))

The highlighted lines in the previous code for the new version of the
MessageChannel class show the changes we made in the code. First, the code
declares the successfully_processed_command_key class attribute that defines
the key string that defines what the code will use as a successfully processed
command key in a response message published to the channel. Whenever we
publish a message that includes the specified key string, we know that the value
associated to this key in the dictionary will indicate the command that the board
has successfully processed.

The code declares the following three new methods:

• callback_response_message: This method will be used as the callback that
will be executed when a successfully processed command response message
is published to the channel. The method just prints the formatted response
that PubNub returns when a message has been successfully published in
the channel. In this case, the message argument doesn't hold the original
message that has been published, it holds the formatted response. We use
message for the argument name to keep consistency with the PubNub API.

• error_response_message: This method will be used as the callback that
will be executed when an error occurs when trying to publish a successfully
processed command response message to the channel. The method just
prints the error message that PubNub returns when a message hasn't been
successfully published in the channel.

Working with the Cloud

[292]

• publish_response_message: This method receives the message with the
command that was successfully processed in the message argument. The
code creates a response_message dictionary with the successfully_
processed_command_key class attribute as the key and the value of the key
specified in the command_key class attribute for the message dictionary as the
value. Then, the code calls the self.pubnub.publish method to publish the
response_message dictionary to the channel saved in the channel attribute.
The call to this method specifies self.callback_response_message as
the callback to be executed when the message is successfully published and
self.error_response_message as the callback to be executed when an
error occurred during the publishing process. When we specify a callback,
the publish method works with an asynchronous execution, and therefore,
the execution is non-blocking. The publication of the message and the
callbacks that are specified will run in a different thread.

Now, the callback method defined in the MessageChannel class adds a call to the
publish_response_message method with the message that included the command
that has been successfully processed (message) as an argument. As previously
explained, the publish_response_message method is non-blocking and will
return immediately while the successfully processed message is published in
another thread.

Now, it is time to start running the example in the Intel Galileo Gen 2 board.
The following line will start the example in the SSH console:

python iot_python_chapter_09_03.py

After you run the example, go to the Web browser in which you are working
with the PubNub debug console. You will see the following message listed in
the previously created client:

"Listening to messages in the Intel Galileo Gen 2 board"

Enter the following JSON code and click Send:

{"command":"print_temperature_fahrenheit", "temperature_fahrenheit":
90 }

Chapter 9

[293]

After you click Send, the following lines will appear in the client log. The last
message has been published by the board to the channel and indicates that the
print_temperature_fahrenheit command has been successfully processed.

[1,"Sent","14595406989121047"]
{
 "command": "print_temperature_fahrenheit",
 "temperature_fahrenheit": 90
}
{
 "successfully_processed_command": "print_temperature_fahrenheit"
}

The following picture shows the messages and debug messages log for the PubNub
client after we clicked the Send button:

Working with the Cloud

[294]

After you publish the previous message, you will see the following output in the
SSH console for the Intel Galileo Gen 2 board. You will notice the servo's shaft rotates
to 90 degrees. The board also receives the successfully processed command message
because it is subscribed to the channel in which the message has been published.

I've received the following message: {u'command': u'print_temperature_
fahrenheit', u'temperature_fahrenheit': 90}
I've received the following response from PubNub cloud: [1, u'Sent',
u'14595422426124592']
I've received the following message: {u'successfully_processed_
command': u'print_temperature_fahrenheit'}

Now, enter the following JSON code and click Send:

{"command":"print_information_message", "text": "2nd message"}

After you click Send, the following lines will appear in the client log. The last
message has been published by the board to the channel and indicates that the
print_information_message command has been successfully processed.

[1,"Sent","14595434708640961"]
{
 "command": "print_information_message",
 "text": "2nd message"
}
{
 "successfully_processed_command": "print_information_message"
}

The following picture shows the messages and debug messages log for the PubNub
client after we clicked the Send button.

Chapter 9

[295]

After you publish the previous message, you will see the following output in
the SSH console for the Intel Galileo Gen 2 board. You will see the following text
displayed at the bottom of the OLED matrix: 2nd message. The board also receives
the successfully processed command message because it is subscribed to the channel
in which the message has been published.

I've received the following message: {u'text': u'2nd message',
u'command': u'print_information_message'}
2nd message
I've received the following response from PubNub cloud: [1, u'Sent',
u'14595434710438777']
I've received the following message: {u'successfully_processed_
command': u'print_information_message'}

Working with the Cloud

[296]

We can work with the different SDKs provided by PubNub to subscribe and
publish to a channel. We can also make different IoT devices talk to themselves by
publishing messages to channels and processing them. In this case, we just created
a few commands and we didn't add detailed information about the device that has
to process the command or the device that has generated a specific message. A more
complex API would require commands that include more information and security.

Publishing messages to the cloud with a
Python PubNub client
So far, we have been using the PubNub debug console to publish messages to
the temperature channel and make the Python code running in the Intel Galileo
Gen 2 board process them. Now, we are going to code a Python client that will
publish messages to the temperature channel. This way, we will be able to design
applications that can talk to IoT devices with Python code in the publisher and in the
subscriber devices.

We can run the Python client on another Intel Galileo Gen 2 board or in any device
that has Python 2.7.x installed. In addition, the code will run with Python 3.x. For
example, we can run the Python client in our computer. We just need to make sure
that we install the pubnub module we have previously installed with pip in the
Python version that is running in the Yocto Linux for the board.

We will create a Client class to represent a PubNub client, configure the PubNub
subscription, make it easy to publish a message with a command and the required
values for the command and declare the code for the callbacks that are going to be
executed when certain events are fired. The code file for the sample is iot_python_
chapter_09_04.py. Don't forget to replace the strings assigned to the publish_key
and subscribe_key local variables in the __init__ method with the values you
have retrieved from the previously explained PubNub key generation process. The
following lines show the code for the Client class:

import time
from pubnub import Pubnub

class Client:
 command_key = "command"

 def __init__(self, channel):
 self.channel = channel
 # Publish key is the one that usually starts with the "pub-c-"
prefix

Chapter 9

[297]

 publish_key = "pub-c-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
 # Subscribe key is the one that usually starts with the
"sub-c" prefix
 # Do not forget to replace the string with your subscribe key
 subscribe_key = "sub-c-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
 self.pubnub = Pubnub(publish_key=publish_key, subscribe_
key=subscribe_key)
 self.pubnub.subscribe(channels=self.channel,
 callback=self.callback,
 error=self.callback,
 connect=self.connect,
 reconnect=self.reconnect,
 disconnect=self.disconnect)

 def callback_command_message(self, message):
 print("I've received the following response from PubNub cloud:
{0}".format(message))

 def error_command_message(self, message):
 print("There was an error when working with the PubNub cloud:
{0}".format(message))

 def publish_command(self, command_name, key, value):
 command_message = {
 self.__class__.command_key: command_name,
 key: value}
 self.pubnub.publish(
 channel=self.channel,
 message=command_message,
 callback=self.callback_command_message,
 error=self.error_command_message)

 def callback(self, message, channel):
 if channel == self.channel:
 print("I've received the following message: {0}".
format(message))

 def error(self, message):
 print("Error: " + str(message))

 def connect(self, message):
 print("Connected to the {0} channel".
 format(self.channel))
 print(self.pubnub.publish(
 channel=self.channel,

Working with the Cloud

[298]

 message="Listening to messages in the PubNub Python
Client"))

 def reconnect(self, message):
 print("Reconnected to the {0} channel".
 format(self.channel))

 def disconnect(self, message):
 print("Disconnected from the {0} channel".
 format(self.channel))

The Client class declares the command_key class attribute that defines the key
string that defines what the code understands as a command in the messages.
Our main goal is to build and publish command messages to a specified channel.
We have to specify the PubNub channel name in the channel required argument.
The constructor, that is, the __init__ method, saves the received argument in an
attribute with the same name. We will be both a subscriber and a publisher for
this channel.

Then, the constructor declares two local variables: publish_key and subscribe_
key. These local variables save the publish and subscribe keys we had generated
with the PubNub Admin portal. Then, the code creates a new Pubnub instance with
publish_key and subscribe_key as the arguments, and saves the reference for the
new instance in the pubnub attribute. Finally, the code calls the subscribe method
for the new instance to subscribe to data on the channel saved in the channel
attribute. The call to this method specifies many methods declared in the Client
class as we did for our previous examples.

The publish_command method receives a command name, the key and the value that
provide the necessary information to execute the command in the command_name,
key and value required arguments. In this case, we don't target the command to a
specific IoT device and all the devices that subscribe to the channel and run the code
in our previous example will process the commands that we publish. We can use
the code as a baseline to work with more complex examples in which we have to
generate commands that target specific IoT devices. Obviously, it is also necessary to
improve the security.

Chapter 9

[299]

The method creates a dictionary and saves it in the command_message local variable.
The command_key class attribute is the first key for the dictionary and the command_
name received as an argument, the value that composes the first key-value pair. Then,
the code calls the self.pubnub.publish method to publish the command_message
dictionary to the channel saved in the channel attribute. The call to this method
specifies self.callback_command_message as the callback to be executed when
the message is successfully published and self.error_command_message as the
callback to be executed when an error occurred during the publishing process. As
happened in our previous example, when we specify a callback, the publish method
works with an asynchronous execution.

Now, we will use the previously coded Client class to write a __main__ method
that uses the PubNub cloud to publish two commands that our board will process.
The following lines show the code for the __main__ method. The code file for the
sample is iot_python_chapter_09_04.py.

if __name__ == "__main__":
 client = Client("temperature")
 client.publish_command(
 "print_temperature_fahrenheit",
 "temperature_fahrenheit",
 45)
 client.publish_command(
 "print_information_message",
 "text",
 "Python IoT"
)
 # Sleep 60 seconds (60000 milliseconds)
 time.sleep(60)

The code in the __main__ method is very easy to understand. The code creates an
instance of the Client class with "temperature" as an argument to become both a
subscriber and a publisher for this channel in the PubNub cloud. The code saves the
new instances in the client local variable.

The code calls the publish_command method with the necessary arguments to build
and publish the print_temperature_fahrenheit command with a temperature
value of 45. The method will publish the command with an asynchronous execution.
Then, the code calls the publish_command method again with the necessary
arguments to build and publish the print_information_message command with a
text value of "Python IoT". The method will publish the second command with an
asynchronous execution.

Working with the Cloud

[300]

Finally, the code sleeps for 1 minute (60 seconds) in order to make it possible for
the asynchronous executions to successfully publish the commands. The different
callbacks defined in the Client class will be executed as the different events fire. As
we are also subscribed to the channel, we will also receive the messages we publish
in the temperature channel.

Keep the Python code we have executed in our previous example running on the
board. We want the board to process our commands. In addition, keep the Web
browser in which you are working with the PubNub debug console opened because
we also want to see all the messages in the log.

The following line will start the example for the Python client in any computer or
device that you want to use as a client. It is possible to run the code in another SSH
terminal in case you want to use the same board as a client.

python iot_python_chapter_09_04.py

After you run the example, you will see the following output in the Python
console that runs the Python client, that is, the iot_python_chapter_09_04.py
Python script.

Connected to the temperature channel
I've received the following response from PubNub cloud: [1, u'Sent',
u'14596508980494876']
I've received the following response from PubNub cloud: [1, u'Sent',
u'14596508980505581']
[1, u'Sent', u'14596508982165140']
I've received the following message: {u'text': u'Python IoT',
u'command': u'print_information_message'}
I've received the following message: {u'command': u'print_temperature_
fahrenheit', u'temperature_fahrenheit': 45}
I've received the following message: Listening to messages in the
PubNub Python Client
I've received the following message: {u'successfully_processed_
command': u'print_information_message'}
I've received the following message: {u'successfully_processed_
command': u'print_temperature_fahrenheit'}

Chapter 9

[301]

The code used the PubNub Python SDK to build and publish the following two
command messages in the temperature channel:

{"command":"print_temperature_fahrenheit", "temperature_fahrenheit":
"45"}
{"command":"print_information_message", "text": "Python IoT"}

As we are also subscribed to the temperature channel, we receive the messages we
sent with an asynchronous execution. Then, we received the successfully processed
command messages for the two command messages. The board has processed the
commands and published the messages to the temperature channel.

After you run the example, go to the Web browser in which you are working
with the PubNub debug console. You will see the following messages listed in
the previously created client:

[1,"Subscribed","temperature"]
"Listening to messages in the Intel Galileo Gen 2 board"
{
 "text": "Python IoT",
 "command": "print_information_message"
}
{
 "command": "print_temperature_fahrenheit",
 "temperature_fahrenheit": 45
}
"Listening to messages in the PubNub Python Client"
{
 "successfully_processed_command": "print_information_message"
}
{
 "successfully_processed_command": "print_temperature_fahrenheit"
}

Working with the Cloud

[302]

The following picture shows the last messages displayed in the log for the PubNub
client after we run the previous example:

You will see the following text displayed at the bottom of the OLED matrix: Python
IoT. In addition, the servo's shaft will rotate to 45 degrees.

We can use the PubNub SDKs available in different programming
languages to create applications and apps that publish and receive
messages in the PubNub cloud and interact with IoT devices. In this
case, we worked with the Python SDK to create a client that publishes
commands. It is possible to create mobile apps that publish commands
and easily build an app that can interact with our IoT device.

Chapter 9

[303]

Using MQTT with Mosquitto and Eclipse
Paho
Mosquitto is an open source message broker that implements the versions 3.1 and
3.1.1 of the MQTT protocol, and therefore, allows us to work with messages using
the publish/subscribe model. Mosquitto is an iot.eclipse.org project and is provided
with the Eclipse Public Project (EPL)/EDL license. The following is the Web page for
Mosquitto: http://mosquitto.org.

The Eclipse Paho project provides an open source client implementation of MQTT.
The project includes a Python client, also known as the Paho Python Client or Eclipse
Paho MQTT Python client library. This Python client has been contributed from the
Mosquitto project and was originally the Mosquitto Python Client. The following
is the Web page for the Eclipse Paho project: http://www.eclipse.org/paho. The
following is the Web page for the Eclipse Paho MQTT Python client library, that is,
the paho-mqtt module: https://pypi.python.org/pypi/paho-mqtt/1.1.

In Chapter 2, Working with Python on Intel Galileo Gen 2, we installed pip installer to
easily install additional Python 2.7.3 packages in the Yocto Linux that we are running
on the board. Now, we will use pip installer to install paho-mqtt 1.1. We just need to
run the following command in the SSH terminal to install the package.

pip install paho-mqtt

The last lines for the output will indicate that the paho-mqtt package has been
successfully installed. Don't worry about the error messages related to building
wheel and the insecure platform warning.

Collecting paho-mqtt
 Downloading paho-mqtt-1.1.tar.gz (41kB)
 100% |################################| 45kB 147kB/s
Installing collected packages: paho-mqtt
 Running setup.py install for paho-mqtt
Successfully installed paho-mqtt-1.1

Eclipse allows us to use a publically accessible sandbox server for the
Eclipse IoT projects at iot.eclipse.org, port 1883. In the following
examples, we will use this sandbox server as our Mosquitto message
broker. This way, we don't have to setup a Mosquitto message broker
to test the examples and learn how to work with the Paho Python
Client. However, in a real-life application, we should setup a Mosquitto
message broker and use it for our project.

http://mosquitto.org
http://www.eclipse.org/paho
https://pypi.python.org/pypi/paho-mqtt/1.1
iot.eclipse.org

Working with the Cloud

[304]

We will take the code we wrote in the previous chapter when we read temperature
and humidity values from the sensor, we printed the values in an OLED matrix
and rotated a servo's shaft to display the measured temperature expressed in
degrees Fahrenheit with the shaft. The code file for the sample was iot_python_
chapter_08_03.py. We will use this code as a baseline to add the same features
that we added when we worked with the PubNub cloud. However, in this case,
we will use the Paho Python Client and the publically accessible sandbox server
that provides us with a Mosquitto message broker. We will be able to perform the
following actions with MQTT messages sent to a specific topic from any device that
can publish MQTT messages in the topic to which we are subscribed:

• Rotate the servo's shaft to display a temperature value in degrees Fahrenheit
received as part of the message

• Display a line of text received as part of the message at the bottom of the
OLED matrix

The Paho Python Client uses the topic name instead of channel.
You can think of a topic as a channel.

We will use the recently installed paho-mqtt module to subscribe to a specific
topic and run code when we receive messages in the topic. We will create a
MessageTopic class to represent the communications topic, configure the MQTT
client, the subscription to the client and declare the code for the callbacks that are
going to be executed when certain events are fired. The code file for the sample is
iot_python_chapter_09_05.py. Remember that we use the code file iot_python_
chapter_08_03.py as a baseline, and therefore, we will add the class to the existing
code in this file and we will create a new Python file. Don't forget to replace the
strings assigned to the topic class attribute with your unique topic name. As the
Mosquitto broker we are using is public, you should use a unique topic to make sure
you only receive the messages you publish.

import time
import paho.mqtt.client as mqtt
import json

class MessageTopic:
 command_key = "command"
 successfully_processed_command_key = "successfully_processed_
command"
 # Replace with your own topic name
 topic = "iot-python-gaston-hillar/temperature"

Chapter 9

[305]

 active_instance = None

 def __init__(self, temperature_servo, oled):
 self.temperature_servo = temperature_servo
 self.oled = oled
 self.client = mqtt.Client()
 self.client.on_connect = MessageTopic.on_connect
 self.client.on_message = MessageTopic.on_message
 self.client.connect(host="iot.eclipse.org",
 port=1883,
 keepalive=60)
 MessageTopic.active_instance = self

 def loop(self):
 self.client.loop()

 @staticmethod
 def on_connect(client, userdata, flags, rc):
 print("Connected to the {0} topic".
 format(MessageTopic.topic))
 subscribe_result = client.subscribe(MessageTopic.topic)
 publish_result_1 = client.publish(
 topic=MessageTopic.topic,
 payload="Listening to messages in the Intel Galileo Gen 2
board")

 @staticmethod
 def on_message(client, userdata, msg):
 if msg.topic == MessageTopic.topic:
 print("I've received the following message: {0}".
format(str(msg.payload)))
 try:
 message_dictionary = json.loads(msg.payload)
 if MessageTopic.command_key in message_dictionary:
 if message_dictionary[MessageTopic.command_key] ==
"print_temperature_fahrenheit":
 MessageTopic.active_instance.temperature_
servo.print_temperature(
 message_dictionary["temperature_
fahrenheit"])
 MessageTopic.active_instance.publish_response_
message(
 message_dictionary)
 elif message_dictionary[MessageTopic.command_key]
== "print_information_message":

Working with the Cloud

[306]

 MessageTopic.active_instance.oled.print_line(
 11, message_dictionary["text"])
 MessageTopic.active_instance.publish_response_
message(message_dictionary)
 except ValueError:
 # msg is not a dictionary
 # No JSON object could be decoded
 pass

 def publish_response_message(self, message):
 response_message = json.dumps({
 self.__class__.successfully_processed_command_key:
 message[self.__class__.command_key]})
 result = self.client.publish(topic=self.__class__.topic,
 payload=response_message)
 return result

The MessageTopic class declares the command_key class attribute that defines the
key string that defines what the code will understand as the command. Whenever
we receive a message that includes the specified key string, we know that the value
associated to this key in the dictionary will indicate the command that the message
wants the code running in the board to be processed. In this case, we don't receive
messages as dictionaries, and therefore, it is necessary to convert them from strings
to dictionaries when they are not just a string.

The code declares the successfully_processed_command_key class attribute
that defines the key string that defines what the code will use as a successfully
processed command key in a response message published to the topic. Whenever
we publish a message that includes the specified key string, we know that the value
associated to this key in the dictionary will indicate the command that the board has
successfully processed.

We have to specify the TemperatureServo instance and the Oled instance in the
temperature_servo and oled required arguments. The constructor, that is, the
__init__ method, saves the received arguments in two attributes with the same
names. The topic class attribute argument specifies the Mosquitto topic to which
we are going to subscribe to listen to the messages that other devices send to this
topic. We will also publish messages to this topic, and therefore, we will be both a
subscriber and a publisher for this channel.

Chapter 9

[307]

Then, the constructor creates an instance of the mqtt.Client class that represents an
MQTT client and we will use to communicate with an MQTT broker. As we create
the instance with the default parameters, we will create an instance of paho.mqtt.
client.MQTTv31 and we will work with MQTT version 3.1.

The code also saves a reference to this instance in the active_instance class
attribute because we have to access the instance in static methods that we will be
specified as callbacks for the different events that the MQTT client fires.

Then, the code assigns the self.client.on_connect attribute to the on_connect
static method and the self.client.on_message attribute to the on_message static
method. Static methods do not receive either self of cls as the first argument, and
therefore, we can use them as callbacks with the required number of arguments.

Finally, the constructor calls the self.client.connect method and specifies the
publically accessible sandbox server for the Eclipse IoT projects at iot.eclipse.org,
port 1883, in the arguments. This way, the code asks the MQTT client to establish
a connection to the specified MQTT broker. In case you decide to use your own
Mosquitto broker, you just need to change the values for the host and port
arguments, according to the configuration for the Mosquitto broker. The connect
method runs with an asynchronous execution, and therefore, it is a non-blocking call.

After a connection has been successfully established with the MQTT broker, the
specified callback in the self.client.on_connect attribute will be executed, that
is, the on_connect static method (marked with the @staticmethod decorator). This
static method receives the mqtt.Client instance that established the connection with
the MQTT broker in the client argument. The code calls the client.subscribe
method with MessageTopic.topic as an argument to subscribe to the topic specified
in the topic class attribute.

In this case, we will only subscribe to one topic. However, it is very
important to know that we are not limited to subscribe to a single
topic, we might subscribe to many topics with a single call to the
subscribe method.

Finally, the code calls the client.publish method with MessageTopic.topic
as the topic argument and a message string in the payload argument. This way,
we publish a string message that says "Listening to messages in the Intel
Galileo Gen 2 board" to the topic specified in the topic class attribute.

Working with the Cloud

[308]

Whenever there is a new message received in the topic to which we have subscribed,
the specified callback in the self.client.on_messsage attribute will be executed,
that is, the on_message static method (marked with the @staticmethod decorator).
This static method receives the mqtt.Client instance that established the connection
with the MQTT broker in the client argument and an mqtt.MQTTMessage instance
in the msg argument. The mqtt.MQTTMessage class describes an incoming message.
First, the static method checks whether the msg.topic attribute, that indicates the
topic in which the message has been received, matches the value in the topic class
attribute. In this case, whenever the on_message method is executed, the value in
msg.topic will always match the value in the topic class attribute because we just
subscribed to one topic. However, in case we subscribe to more than one topic, is is
always necessary to check which is the topic in which the message was sent and in
which we are receiving the message.

The code prints the message that has been received, that is, the msg.payload
attribute. Then, the code assigns the result of the json.loads function to deserialize
msg.payload to a Python object and assigns the results to the message_dictionary
local variable. In case the contents of msg.payload are not JSON, a ValueError
exception will be captured and no more code will be executed in the method.
In case the contents of msg.payload are JSON, we will have a dictionary in the
message_dictionary local variable.

Then, the code checks whether the command_key class attribute is included in the
message_dictionary dictionary. If the expression evaluates to True, it means that
the JSON message converted to a dictionary includes a command that we have to
process. However, before we can process the command, we have to check which is
the command, and therefore, it is necessary to retrieve the value associated with the
key equivalent to the command_key class attribute. The code is capable of running
specific code when the value is any of the two commands that we used in our
previous example when we worked with the PubNub cloud.

The code uses the active_instance class attribute that has a reference to the
active MessageTopic instance to call the necessary methods for either the
temperature_servo or the oled attribute based on the command that has
to be processed. We had to declare the callbacks as static methods, and therefore,
we use this class attribute to access the active instance.

Chapter 9

[309]

Once the command has been successfully processed, the code calls the publish_
response_message for the MessageTopic instance saved in the active_instance
class attribute. This method receives the message dictionary that has been received
with the command in the message argument. The method calls the json.dumps
function to serialize a dictionary to a JSON formatted string with the response
message that indicates the command has been successfully processed. Finally,
the code calls the client.publish method with the topic class attribute as the
topic argument and the JSON formatted string (response_message) in the
payload argument.

In this case, we are not evaluating the response from the
publish method. In addition, we are using the default value
for the qos argument that specifies the desired quality of
service. In more advanced scenarios, we should add code to
check the results of the method and probably adding code
on the on_publish callback that is fired when a message is
successfully published.

Now, we will use the previously coded MessageTopic class to create a new version
of the __main__ method that uses the Mosquitto broker and the MQTT client to
receive and process commands. The new version doesn't rotate the servo's shaft
when the ambient temperature changes, instead, it will do this when it receives the
appropriate command from any device connected to the Mosquitto broker. The
following lines show the new version of the __main__ method. The code file for the
sample is iot_python_chapter_09_05.py.

if __name__ == "__main__":
 temperature_and_humidity_sensor = \
 TemperatureAndHumiditySensor(0)
 oled = TemperatureAndHumidityOled(0)
 temperature_servo = TemperatureServo(3)
 message_topic = MessageTopic(temperature_servo, oled)
 while True:
 temperature_and_humidity_sensor.\
 measure_temperature_and_humidity()
 oled.print_temperature(
 temperature_and_humidity_sensor.temperature_fahrenheit,
 temperature_and_humidity_sensor.temperature_celsius)
 oled.print_humidity(
 temperature_and_humidity_sensor.humidity)

Working with the Cloud

[310]

 print("Ambient temperature in degrees Celsius: {0}".
 format(temperature_and_humidity_sensor.temperature_
celsius))
 print("Ambient temperature in degrees Fahrenheit: {0}".
 format(temperature_and_humidity_sensor.temperature_
fahrenheit))
 print("Ambient humidity: {0}".
 format(temperature_and_humidity_sensor.humidity))
 # Sleep 10 seconds (10000 milliseconds) but process messages
every 1 second
 for i in range(0, 10):
 message_channel.loop()
 time.sleep(1)

The highlighted line creates an instance of the previously coded MessageTopic
class with temperature_servo and oled as the arguments. The constructor
will subscribe to the "iot-python-gaston-hillar/temperature" topic in the
Mosquitto broker, and therefore, we must publish messages to this topic in order to
send the commands that the code will process. The loop will read the values from the
sensor and print the values to the console as in the previous version of the code, and
therefore, we will have code running in the loop and we will also have code listening
to the messages in the "iot-python-gaston-hillar/temperature" topic in the
Mosquitto broker. The last lines of the loop call the message_channel.loop method
10 times and sleep 1 second each time between the calls. The loop method calls the
loop method for the MQTT client to and ensures communication with the broker is
carried out. Think about the call to the loop method as synchronizing your mailbox.
Any pending messages to the published in the outgoing box will be sent and any
incoming messages will arrive to the inbox and the events that we have previously
analyzed will be fired.

There is also a threaded interface that we can run by calling the
loop_start method for the MQTT client. This way, we can avoid
multiple calls to the loop method.

The following line will start the example.

python iot_python_chapter_09_05.py

Keep the code running in the board. We will start receiving messages later because
we have to write the code that will publish messages to this topic and send the
commands to be processed.

Chapter 9

[311]

Publishing messages to a Mosquitto
broker with a Python client
We have the code that is going to be running in the Intel Galileo Gen 2 board to
process the command messages received from the Mosquitto message broker.
Now, we are going to code a Python client that will publish messages to the "iot-
python-gaston-hillar/temperature" channel. This way, we will be able to design
applications that can talk to IoT devices with MQTT messages. Specifically, the
applications will be able to communicate through a Mosquitto message broker with
Python code in the publisher and in the subscriber devices.

We can run the Python client on another Intel Galileo Gen 2 board or in any device
that has Python 2.7.x installed. In addition, the code will run with Python 3.x. For
example, we can run the Python client in our computer. We just need to make sure
that we install the pubnub module we have previously installed with pip in the
Python version that is running in the Yocto Linux for the board.

We will create many functions that we will assign as the callbacks to the events in
the MQTT client. In addition, we will declare variables and a helper function to
make it easy to publish a message with a command and the required values for the
command. The code file for the sample is iot_python_chapter_09_06.py. Don't
forget to replace the string assigned to the topic variable with the topic name you
have specified in the previous code. The following lines show the code that defines
the variables and the functions:

command_key = "command"
topic = "iot-python-gaston-hillar/temperature"

def on_connect(client, userdata, flags, rc):
 print("Connected to the {0} topic".
 format(topic))
 subscribe_result = client.subscribe(topic)
 publish_result_1 = client.publish(
 topic=topic,
 payload="Listening to messages in the Paho Python Client")
 publish_result_2 = publish_command(
 client,
 topic,
 "print_temperature_fahrenheit",
 "temperature_fahrenheit",
 45)

Working with the Cloud

[312]

 publish_result_3 = publish_command(
 client,
 topic,
 "print_information_message",
 "text",
 "Python IoT")

def on_message(client, userdata, msg):
 if msg.topic == topic:
 print("I've received the following message: {0}".
format(str(msg.payload)))

def publish_command(client, topic, command_name, key, value):
 command_message = json.dumps({
 command_key: command_name,
 key: value})
 result = client.publish(topic=topic,
 payload=command_message)
 return result

The code declares the command_key variable that defines the key string that indicates
what the code understands as a command in the messages. Our main goal is to build
and publish command messages to the topic specified in the topic variable. We will
be both a subscriber and a publisher for this topic.

The on_connect function is the callback that will be executed once a successful
connection has been established with the Mosquitto MQTT broker. The code calls
the subscribe method for the MQTT client received in the client argument and
then calls the publish method to send the following string message to the topic:
"Listening to messages in the Paho Python Client"

The code calls the publish_command function with the necessary arguments to build
and publish the print_temperature_fahrenheit command with a temperature
value of 45. Finally, the code calls the publish_command function again with the
necessary arguments to build and publish the print_information_message
command with a text value of "Python IoT".

Chapter 9

[313]

The publish_command function receives the MQTT client, the topic, the command
name, the key and the value that provide the necessary information to execute the
command in the client, topic, command_name, key and value required arguments.
In this case, we don't target the command to a specific IoT device and all the devices
that subscribe to the topic and run the code in our previous example will process the
commands that we publish. We can use the code as a baseline to work with more
complex examples in which we have to generate commands that target specific IoT
devices. As happened in our previous examples, it is also necessary to improve
the security.

The function creates a dictionary and saves the results of serializing the dictionary to
a JSON formatted string in the command_message local variable. The command_key
variable is the first key for the dictionary and the command_name received as an
argument, the value that composes the first key-value pair. Then, the code calls the
client.publish method to publish the command_message JSON formatted string to
the topic received as an argument.

The on_message function will be executed each time a new message arrives to the
topic to which we have subscribed. The function just prints the raw string with the
payload of the received message.

Now, we will use the previously coded functions to write a __main__ method
that publishes the two commands included in MQTT messages that our board will
process. The following lines show the code for the __main__ method. The code file
for the sample is iot_python_chapter_09_06.py.

if __name__ == "__main__":
 client = mqtt.Client()
 client.on_connect = on_connect
 client.on_message = on_message
 client.connect(host="iot.eclipse.org",
 port=1883,
 keepalive=60)
 client.loop_forever()

The code in the __main__ method is very easy to understand. The code creates an
instance of the mqtt.Client class that represents an MQTT client and we will use
it to communicate with an MQTT broker. As we create the instance with the default
parameters, we will create an instance of paho.mqtt.client.MQTTv31 and we will
work with MQTT version 3.1.

Working with the Cloud

[314]

Then, the code assigns the client.on_connect attribute to the previously coded
on_connect function and the client.on_message attribute to the on_message
function. The code calls the client.connect method and specifies the publically
accessible sandbox server for the Eclipse IoT projects at iot.eclipse.org, port 1883, in
the arguments. This way, the code asks the MQTT client to establish a connection to
the specified MQTT broker. In case you decide to use your own Mosquitto broker,
you just need to change the values for the host and port arguments, according to
the configuration for the Mosquitto broker. Remember that the connect method runs
with an asynchronous execution, and therefore, it is a non-blocking call.

After a connection has been successfully established with the MQTT broker, the
specified callback in the client.on_connect attribute will be executed, that
is, the on_connect function. The function receives the mqtt.Client instance
that established the connection with the MQTT broker in the client argument.
As previously explained, the function subscribes to a topic and schedules the
publication of three messages to it.

Finally, the code calls the client.loop_forever method that calls the loop method
for us in an infinite blocking loop. At this point, we only want to run the MQTT
client loop in our program. The scheduled messages will be published and we will
receive the messages with the successfully executed command details after the board
processes the commands.

Keep the Python code we have executed in our previous example running on the
board. We want the board to process our commands. The following line will start the
example for the Python client in any computer or device that you want to use as a
client. It is possible to run the code in another SSH terminal in case you want to use
the same board as a client.

python iot_python_chapter_09_06.py

After you run the example, you will see the following output in the Python
console that runs the Python client, that is, the iot_python_chapter_09_06.py
Python script.

Connected to the iot-python-gaston-hillar/temperature topic
I've received the following message: Listening to messages in the Paho
Python Client
I've received the following message: {"command": "print_temperature_
fahrenheit", "temperature_fahrenheit": 45}
I've received the following message: {"text": "Python IoT", "command":
"print_information_message"}

Chapter 9

[315]

I've received the following message: {"successfully_processed_
command": "print_temperature_fahrenheit"}
I've received the following message: {"successfully_processed_
command": "print_information_message"}

The code used the Eclipse Paho MQTT Python client library to build and publish
the following two command messages in the "iot-python-gaston-hillar/
temperature" topic in the Mosquitto broker:

{"command":"print_temperature_fahrenheit", "temperature_fahrenheit":
"45"}
{"command":"print_information_message", "text": "Python IoT"}

As we are also subscribed to the "iot-python-gaston-hillar/temperature"
topic, we receive the messages we sent. Then, we received the successfully processed
command messages for the two command messages. The board has processed the
commands and published the messages to the "iot-python-gaston-hillar/
temperature" topic.

You will see the following messages in the output for the SSH terminal that is
running the code for the board that processes the commands, that is, the iot_
python_chapter_09_05.py Python script:

I've received the following message: Listening to messages in the
Intel Galileo Gen 2 board
I've received the following message: Listening to messages in the Paho
Python Client
I've received the following message: {"command": "print_temperature_
fahrenheit", "temperature_fahrenheit": 45}
I've received the following message: {"text": "Python IoT", "command":
"print_information_message"}
I've received the following message: {"successfully_processed_
command": "print_temperature_fahrenheit"}
I've received the following message: {"successfully_processed_
command": "print_information_message"}

You will see the following text displayed at the bottom of the OLED matrix: Python
IoT. In addition, the servo's shaft will rotate to 45 degrees.

Working with the Cloud

[316]

Test your knowledge
1. MQTT is:

1. A heavyweight messaging protocol that runs on top of the TCP/IP
protocol and works with a publish-subscribe mechanism.

2. A lightweight messaging protocol that runs on top of the TCP/IP
protocol and works with a publish-subscribe mechanism.

3. An equivalent to HTTP.

2. Mosquitto is:
1. An open source message broker that implements the versions 3.1 and

3.1.1 of the MQTT protocol.
2. A closed source message broker that implements the versions 3.1 and

3.1.1 of the MQTT protocol.
3. An open source message broker that implements a RESTful API.

3. The Eclipse Paho project provides:
1. An open source client implementation of HTTP.
2. An open source client implementation of dweet.io.
3. An open source client implementation of MQTT.

4. Which of the following Python modules is the Paho Python Client?
1. paho-client-pip.
2. paho-mqtt.
3. paho-http.

5. Dweepy is:

1. A simple Python client for dweet.io that allows us to easily publish
data to dweet.io with Python.

2. A simple Python client for Mosquitto that allows us to easily publish
messages to a Mosquitto message broker.

3. A simple Python client for PubNub cloud that allows us to easily
publish messages to the PubNub cloud.

Chapter 9

[317]

Summary
In this chapter, we combined many cloud-based services that allowed us to easily
publish data collected from sensors and visualize it in a web-based dashboard. We
realized that there is always a Python API, and therefore, it is easy to write Python
code that interacts with popular cloud-based services.

We worked with the MQTT protocol and its publish/subscribe model to process
commands in our board and indicate when the commands were successfully
processed through messages. First, we worked with the PubNub cloud that works
with the MQTT protocol under the hoods. Then, we developed the same example
with Mosquitto and Eclipse Paho. Now, we know how we can write applications that
can establish bi-directional communications with our IoT devices. In addition, we
know how we can make IoT devices communicate with other IoT devices.

Now that we are able to take advantage of many cloud services and we worked with
the MQTT protocol, we will learn how to analyze huge amounts of data, which is the
topic of the next chapter.

[319]

Analyzing Huge Amounts of
Data with Cloud-based

IoT Analytics
In this chapter, we will work with Intel IoT Analytics to analyze huge amounts of
data with this powerful cloud-based service. We will:

• Understand the relationship between Internet of Things and Big Data
• Learn the Intel IoT Analytics structure
• Set up devices in Intel IoT Analytics
• Configure components in Intel IoT Analytics
• Collect sensor data with Intel IoT Analytics
• Analyze sensor data with Intel IoT Analytics
• Trigger alerts with rules in Intel IoT Analytics

Understanding the relationship between
Internet of Things and Big Data
Big Data is watching us. We are generating valuable data each time we perform an
action without even knowing that. Every time we tap, click, tweet, stop on a red
light signal, hop on a bus, or perform an action caught by the millions of real-time
sensors in any city around the world, we are generating valuable data. We interact
with IoT devices that have sensors, collect data, and publish it to the Cloud. In
order to analyze and process Big Data, managers, architects, developers, and system
administrators require many skills that were not necessary for applications that
worked with smaller data sets.

Analyzing Huge Amounts of Data with Cloud-based IoT Analytics

[320]

We have been working with examples that collected data from the real world
through sensors and published it to the Cloud. We also published messages that
include data from sensors and commands that have to be processed by code running
on an IoT device. Sometimes, we are retrieving data from the sensors every second.
Thus, it is very easy to realize that we generate huge amounts of data, and therefore,
it is very important to learn many things related to Big Data. Internet of Things
comprises Big Data.

Imagine we write Python code that runs on an Intel Galileo Gen 2 board and
performs the following actions every second:

• Read the measured ambient temperature from a temperature and
humidity sensor

• Read the measured ambient humidity level from a temperature and
humidity sensor

• Read the measured volumetric water content in soil from ten soil moisture
sensor that measure the values in different locations

• Publish a message with the ambient temperature, ambient humidity, and the
ten volumetric water contents

The first things that might come to our mind are the number of sensors we have
to connect to our board. Let's consider that all the sensors are digital sensors and
we have to connect them to the I2C bus. We can connect the digital temperature
and humidity sensor plus then ten soil-moisture sensors to the I2C bus as long as
all the sensors have different I2C bus addresses. We just need to make sure that we
can configure the I2C bus address for the soil moisture sensors and we can assign a
different I2C address to each of these sensors.

Catnip Electronics designed a digital soil moisture sensor that provides an I2C
interface and one of its features is that it allows an I2C address change. The default
I2C address for this sensor is 0x20 (hexadecimal 20) but we can easily change it. We
just need to connect each sensor to the I2C bus, write the new address to register one
and the new address will take effect after we reset the sensor. We just need to write
a 6 to the sensor's I2C address to reset the sensor. We can follow the same procedure
for all the sensors and assign different I2C addresses to them. You can read more
about the digital soil moisture sensor in the following webpage: http://www.
tindie.com/products/miceuz/i2c-soil-moisture-sensor.

http://www.tindie.com/products/miceuz/i2c-soil-moisture-sensor
http://www.tindie.com/products/miceuz/i2c-soil-moisture-sensor

Chapter 10

[321]

We want to analyze hourly, daily, monthly, quarterly, and yearly data. However,
we do need to measure every second and not every single day because it is very
important to analyze how data changes per second. We are going to collect
the following:

• 60 measurements for all the variables per minute
• 3,600 (60 * 60) measurements per hour
• 86,400 (3,600 x 24) measurements per day
• 31,536,000 (86,400 * 365) measurements per year (considering that we aren't

talking about a leap year)

We won't have just one IoT device collecting data and publishing it. We will have
3,000 IoT devices running the same code and they will generate 94,608,000,000
(31,356,300 * 3,000), that is, ninety-four billion six hundred eight million,
measurements per year. In addition, we have other data sources that we have to
analyze: all the tweets about weather related issues in the locations in which the
sensors are capturing data. Thus, we have huge volumes of both structured and
unstructured data that we want to analyze computationally, to reveal patterns and
associations. We are definitely talking about Big Data practices.

The sample numbers are useful to understand the relationship between Big Data and
IoT. We won't deploy 3,000 boards for our next example and we won't cover all the
topics related to IoT analytics and Big Data because it would be out of the scope of
this book. However, we will work with the cloud-based analytics system that works
with a component included in the Intel IoT Development Kit image that we have
been using to boot the board with the Yocto Linux meta distribution in Chapter 2,
Working with Python on Intel Galileo Gen 2.

Understanding the Intel IoT Analytics
structure
Imagine that we have to collect and analyze sensor data for 3,000 IoT devices,
that is, 3,000 Intel Galileo Gen 2 boards running the Python code that interacts
with sensors. We would need to invest in the storage and processing capacity to
perform IoT analytics with such a huge amount of data. Whenever we have a similar
requirement, we can take advantage of a cloud-based solution. Intel IoT Analytics is
one of them and it works very well with the Intel Galileo Gen 2 board and Python.

Analyzing Huge Amounts of Data with Cloud-based IoT Analytics

[322]

Intel IoT Analytics requires us to sign up, create an account with a valid e-mail and
a password, and click on the activation link of a confirmation e-mail before we can
publish the sensor data using their free services. We aren't required to enter any
credit card or payment information. If you already have an account at Intel IoT
Analytics, you can skip this step. You can also use your existing Facebook, Google+,
or GitHub account to log in. The following is the main web page for the Intel IoT
Analytics site: https://dashboard.us.enableiot.com. Make sure to review the
terms and conditions before you use this cloud-based service with sensitive data.

Once you create your account and log in for the first time to Intel IoT Analytics, the
site will display the Create new Account page. Enter the desired name to identity the
account, that is, your analytics project in Account Name. Enter Temperature and
humidity for our example and leave the default option for Sensor health report.
Then, click Create and the site will display the My Dashboard page for the recently
created account. Each account represents a separate workspace with its own set of
sensors and related data. The site allows us to create more than one account and
easily switch between them. The following screenshot shows the initial view for
the My Dashboard page after we created a new account:

https://dashboard.us.enableiot.com

Chapter 10

[323]

The My Dashboard page indicates that we still don't have registered devices,
and therefore, we don't have either transmitting devices or observations. Each
time we publish data from a registered device to Intel IoT Analytics, we create an
observation for the device. Thus, the My Dashboard page provides the number of
last observations in a specific period. By default, the page displays the sum of the last
hour observations for all the registered devices. Keep the web site opened in your
web browser because we will continue working with it later.

As a user, we can work with many accounts. Each account can contain many devices,
has a name and an identifier known as accountId. Each device has a globally unique
identifier known as deviceId. So, each Intel Galileo Gen 2 board that includes
sensors will become one device for the account we have created. In our case, we
will just work with a single Intel Galileo Gen 2 board. However, remember that
our goal is to demonstrate how we can work with 3,000 IoT devices handled by a
single account.

We can think of each device as an endpoint that contains one or more components
that can provide one of the following in Intel IoT Analytics:

• Actuator: A setting that can be modified on a device. For example, rotate the
angle of a servo's shaft or turn on an LED.

• Time series: A series of values captured from a sensor, that is, a collection
of observations. For example, a collection of observations with ambient
temperature values retrieved with a temperature and humidity sensor,
expressed in degrees Fahrenheit and including timestamps.

In our case, we need a device to use the following components that will retrieve the
values from the digital temperature and humidity sensor connected to our board:

• A time series with ambient temperature observations expressed in degrees
Fahrenheit (ºF)

• A time series with ambient temperature observations expressed in degrees
Celsius (ºC)

• A time series with ambient humidity level observations expressed
in percentage

First, we will work with the UI provided by the Intel IoT Analytics web site in
combination with the iotkit-admin utility to set up the device, activate it and
register the three components included in the previous list. This way, we will learn to
work with the structure required by Intel IoT Analytics. Then, we will write Python
code that uses the REST API to create observations for the defined components that
belong to an activated device included in our recently created account.

Analyzing Huge Amounts of Data with Cloud-based IoT Analytics

[324]

We can also the REST API to perform the previously explained setup tasks by
writing a Python code. In case we have to work with more than a dozen devices, we
won't want to perform the setup tasks by working with the UI provided by the Intel
IoT Analytics web site, we would definitely want to write code that automates the
setup tasks.

Setting up devices in Intel IoT Analytics
The image that we have been using to boot our Intel Galileo Gen 2 board includes
a local agent for Intel IoT Analytics preinstalled. Unless we have made specific
changes to the Yocto Linux meta distribution to disable specific components,
we will have the agent running as a daemon on the device. The agent includes the
iotkit-admin command-line utility that allows us to perform specific interactions
with Intel IoT Analytics. We will use this command-line utility to perform the
following tasks:

• Test the proper communication with Intel IoT Analytics
• Obtain the device id
• Activate a device
• Register three time series components for the device.
• Send test observations

First, we will check whether the iotkit-admin command-line utility can establish
proper communication with Intel IoT Analytics. We just need to run the following
command in the SSH terminal:

iotkit-admin test

If the connection is successful, we will see lines similar to the following ones. The last
line provides information about the build, that is, the version.

2016-04-05T02:17:49.573Z - info: Trying to connect to host ...
2016-04-05T02:17:56.780Z - info: Connected to dashboard.us.enableiot.
com
2016-04-05T02:17:56.799Z - info: Environment: prod
2016-04-05T02:17:56.807Z - info: Build: 0.14.5

Chapter 10

[325]

Now, run the following command in the SSH terminal to obtain the device ID,
also known as deviceId:

iotkit-admin device-id

The previous command will generate an output line such as the following one with
the device ID. By default, the device ID is equal to the MAC address of the network
interface card.

2016-04-05T02:23:23.170Z - info: Device ID: 98-4F-EE-01-75-72

You can use the following command to change the device ID to a different one:
iotkit-admin set-device-id new-device-id. You just need to replace new-
device-id with the new device id you want to set up for your device. However,
bear in mind the new device ID must be a globally unique identifier.

In this case, we will use kansas-temperature-humidity-01 as our device ID for all
our samples. You must replace it in all the commands, then include this name with
the device name you retrieved or the new device ID you assign to the device.

The following command in the SSH terminal will rename the device:

iotkit-admin set-device-id kansas-temperature-humidity-01

The following lines show the output for the previous command:

2016-04-08T17:56:15.355Z - info: Device ID set to: kansas-temperature-
humidity

Go to the web browser in which you are working with the Intel IoT Analytics
dashboard, click on the menu icon (a button with three horizontal lines located at
the upper-left corner). Select Account and the site will display the My Account page
with detailed information about the account we previously created.

Analyzing Huge Amounts of Data with Cloud-based IoT Analytics

[326]

The initial view will display the Details tab. In case the Activation Code includes the
(Code Expired) text, it means that the activation code is not valid anymore and it is
necessary to click on the refresh icon located on the right-hand side of the Activation
Code textbox (the second icon with the two arrows). We have to make sure that
the activation code hasn't expired in order to activate the device successfully.
The following screenshot gives the initial view for the My Account page for the
Temperature and humidity account with the activation code expired:

Once you refresh the activation code by clicking on the refresh button, a countdown
stopwatch will indicate the time left for the activation code until it expires. You will
have one hour after you click on the refresh button. Click on the eye icon to view the
hidden activation code and copy it. We will use 01aCti0e as our sample activation
code and you will have to replace it with your activation code.

Chapter 10

[327]

Now, run the following command in the SSH terminal to activate the device with the
previously generated activation code. Replace 01aCti0e with your activation code.

iotkit-admin activate 01aCti0e

The previous command will generate an output similar to the following lines:

2016-04-05T02:24:46.449Z - info: Activating ...
2016-04-05T02:24:49.817Z - info: Saving device token...
2016-04-05T02:24:50.646Z - info: Updating metadata...
2016-04-05T02:24:50.691Z - info: Metadata updated.

Our Intel Galileo Gen 2 board, that is, the device, is now associated with the
Temperature and humidity account that provided us with the activation code and
the command generated the necessary security credentials, that is, the device token.

Go to the web browser in which you are working with the Intel IoT Analytics
dashboard, click on the menu icon (a button with three horizontal lines located at
the upper-left corner). Select Devices and the site will display the My Devices page
with the list of all the devices that we have activated for the current account. The
previously activated kansas-temperature-humidity-01 device will appear in the
list with Kansas-temperature-humidity-01-NAME in its Name column and active
in the Status column. The following screenshot shows the device listed in the My
Devices page:

Click on the device Id in the previous list (kansas-temperature-humidity-01) to see
and edit the device details. You can add tags and attributes to make it easier to filter
the devices in the previous list. These possibilities are extremely useful when we
have to work with more than a dozen devices as they make it easy for us to filter the
devices in the list.

Analyzing Huge Amounts of Data with Cloud-based IoT Analytics

[328]

Setting up components in Intel IoT
Analytics
Go to the web browser in which you are working with the Intel IoT Analytics
dashboard, click on the menu icon, select Account and the site will display the
My Account page. Then, click on the Catalog tab and the site will display the
components registered in the catalog grouped in the following three categories:

• Humidity
• Powerswitch
• Temperature

Make sure that the Humidity components panel is expanded and click on humidity.
v1.0. The site will display the Component definition dialog box for the humidity.
v1.0 component, that is, the component named humidity whose version is
1.0. The following screenshot shows the values for the different fields in the
component definition:

Chapter 10

[329]

The humidity component version 1.0 represents a time series with ambient
humidity level expressed in percentage. The Data type is Number, the Unit of
measure is Percent (%), the Format is Float and the Display is Time Series.
We can use this component for our ambient humidity level observations.

Click on Close, make sure that the Temperature components panel is expanded and
click on temperature.v1.0. The site will display the Component definition dialog
box for the temperature.v1.0 component, that is, the component named temperature
whose version is 1.0. The following screenshot shows the values for the different
fields in the component definition:

The temperature component version 1.0 represents a time series with temperature
expressed in degrees Celsius. The Data type is Number, the Unit of measure is
Degrees Celsius, the Format is Float and the Display is Time Series. We can use this
component for our ambient temperature observations expressed in degrees Celsius.

Analyzing Huge Amounts of Data with Cloud-based IoT Analytics

[330]

Click on Close and make sure that the Temperature components panel is
expanded. There is no other temperature component, and therefore, we will
have to create a new component for our ambient temperature observations
expressed in degrees Fahrenheit.

Click on Add new Catalog Item at the bottom of the page and the site will display
the Component definition dialog box with all the fields empty except from the
version that will have a fixed 1.0 value. We are creating the first version of a new
catalog item. Enter and select the following values:

• Enter temperaturef in Component Name
• Select Sensor in Type
• Select Number in Data type
• Enter Degrees Fahrenheit in Unit of measure
• Select Float in Format
• Select Time Series in Display

Finally, click on Save and the site will add the new component definition at the
bottom of the list with the temperaturef.v.1.0 name.

Now that we are sure that we have all the required component definitions in the
catalog, we have to register the components that our device will use to create
observations. We must give a name or alias of each component we register, and
we must specify the component type and version from the previous catalog. The
following table summarizes the components that we will register for our device:

Component name or alias Component type Description
temperaturec temperature.v1.0 A time series with ambient

temperature observations expressed
in degrees Celsius (ºC)

temperaturef temperaturef.v1.0 A time series with ambient
temperature observations expressed
in degrees Fahrenheit (ºF)

humidity humidity.v1.0 A time series with ambient
humidity level observations
expressed in percentage

Chapter 10

[331]

We can use the following command to register each component: iotkit-admin
register component-name component-type. We just need to replace component-
name with the name that will identify the component and component-type
with the name that identifies the component type in the catalog, including the
version number.

The following command in the SSH terminal will register the temperaturec
component from the previous table:

iotkit-admin register temperaturec temperature.v1.0

The following lines show the output for the previous command.

2016-04-08T22:40:04.581Z - info: Starting registration ...
2016-04-08T22:40:04.711Z - info: Device has already been activated.
Updating ...
2016-04-08T22:40:04.739Z - info: Updating metadata...
2016-04-08T22:40:04.920Z - info: Metadata updated.
Attributes sent
2016-04-08T22:40:10.167Z - info: Component registered
name=temperaturec, type=temperature.v1.0, cid=c37cb57d-002c-4a66-866e-
ce66bc3b2340, d_id=kansas-temperature-humidity-01

The last line provides us with the component id, that is, the value after cid= and
before the next comma (,). In the previous output, the component id is c37cb57d-
002c-4a66-866e-ce66bc3b2340. We have to save each component id because we
will need it later to write code that creates observations using the REST API.

The following command in the SSH terminal will register the temperaturef
component from the previous table:

iotkit-admin register temperaturef temperaturef.v1.0

The following lines show the output for the previous command:

2016-04-08T22:40:20.510Z - info: Starting registration ...
2016-04-08T22:40:20.641Z - info: Device has already been activated.
Updating ...
2016-04-08T22:40:20.669Z - info: Updating metadata...
2016-04-08T22:40:20.849Z - info: Metadata updated.
Attributes sent
2016-04-08T22:40:26.156Z - info: Component registered
name=temperaturef, type=temperaturef.v1.0, cid=0f3b3aae-ce40-4fb4-
a939-e7c705915f0c, d_id=kansas-temperature-humidity-01

Analyzing Huge Amounts of Data with Cloud-based IoT Analytics

[332]

As happened with the other command, the last line provides us with the component
id, that is, the value after cid= and before the next comma (,). In the previous
output, the component id is 0f3b3aae-ce40-4fb4-a939-e7c705915f0c.
We have to save this one for its later usage in our code.

The following command in the SSH terminal will register the humidity component
from the previous table:

iotkit-admin register humidity humidity.v1.0

The following lines show the output for the previous command and the last line
includes the component id.

2016-04-08T22:40:36.512Z - info: Starting registration ...
2016-04-08T22:40:36.643Z - info: Device has already been activated.
Updating ...
2016-04-08T22:40:36.670Z - info: Updating metadata...
2016-04-08T22:40:36.849Z - info: Metadata updated.
Attributes sent
2016-04-08T22:40:43.003Z - info: Component registered name=humidity,
type=humidity.v1.0, cid=71aba984-c485-4ced-bf19-c0f32649bcee, d_
id=kansas-temperature-humidity-01

The component ids will be different from the values indicated in
the previous outputs and you will have to take note of each of the
component ids that have been generated with the previous commands.

Go to the web browser in which you are working with the Intel IoT Analytics
dashboard, click on the menu icon. Select Devices and the site will display the
My Devices page. Click on the device Id in the previous list (kansas-temperature-
humidity-01) to see and edit the device details. Click on +Components to expand
the components registered for the device and you will see a list with the following
three components:

• temperaturec
• temperaturef
• humidity

Chapter 10

[333]

The following screenshot shows the three components registered for the
selected device:

Analyzing Huge Amounts of Data with Cloud-based IoT Analytics

[334]

We can click on any of the three components and check the details for the registered
component. In case we lose the component id, we can retrieve it by clicking on the
component and the Component Definition dialog box will display the component
id just below the component type description. The following screenshot shows
the component definition for the temperaturef component. The component id
0f3b3aae-ce40-4fb4-a939-e7c705915f0c appears below the Custom Component
label on the right-hand side.

Unluckily, there is no way to retrieve the device token that was generated when
we activated the device with the features included in the site. We need the device
token to create observations for the registered components. The agent for Intel IoT
Analytics saves the device token with other configuration values for the device in the
device.json file and its default path is /usr/lib/node_modules/iotkit-agent/
data/device.json. As the file name suggests, the file contains JSON code. We just
need to run the following command in the SSH terminal to display the text content
from the previous file and allow us to retrieve the device token:

cat /usr/lib/node_modules/iotkit-agent/data/device.json

Chapter 10

[335]

The following lines show the output for the previous command that includes all the
configurations we have made so far for our device. The line that defines the value for
the device token is highlighted.

{
 "activation_retries": 10,
 "activation_code": null,
 "device_id": "kansas-temperature-humidity-01",
 "device_name": false,
 "device_loc": [
 88.34,
 64.22047,
 0
],
 "gateway_id": false,
 "device_token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJqdGkiOi
JjOTNmMTJhMy05MWZlLTQ3MWYtODM4OS02OGM1NDYxNDIxMDUiLCJpc3
MiOiJodHRwOi8vZW5hYmxlaW90LmNvbSIsInN1YiI6ImthbnNhcy10ZW1wZXJhdHVyZ
S1odW1pZGl0eS0wMSIsImV4cCI6IjIwMjYtMDQtMDZUMTk6MDA6MTkuNzA0WiJ9.PH5y
Qas2FiQvUSR9V2pa3n3kIYZvmSe_xXY7QkFjlXUVUcyy9Sk_eVF4AL6qpZlBC9vjtd0L-
VMZiULC9YXxAVl9s5Cl8ZqpQs36E1ssv_1H9CBFXKiiPArplzaWXVzvIRBVVzwfQrGr
MoD_l4DcHlH2zgn5UGxhZ3RMPUvqgeneG3P-hSbPScPQL1pW85VT2IHT3seWyW1c637I_
MDpHbJJCbkytPVpJpwKBxrCiKlGhvsh5pl4eLUXYUPlQAzB9QzC_ohujG23b-ApfHZug
YD7zJa-05u0lkt93EEnuCk39o5SmPmIiuBup-k_mLn_VMde5fUvbxDt_SMI0XY3_Q",
 "account_id": "22612154-0f71-4f64-a68e-e116771115d5",
 "sensor_list": [
 {
 "name": "temperaturec",
 "type": "temperature.v1.0",
 "cid": "c37cb57d-002c-4a66-866e-ce66bc3b2340",
 "d_id": "kansas-temperature-humidity-01"
 },
 {
 "name": "temperaturef",
 "type": "temperaturef.v1.0",
 "cid": "0f3b3aae-ce40-4fb4-a939-e7c705915f0c",
 "d_id": "kansas-temperature-humidity-01"
 },
 {
 "name": "humidity",
 "type": "humidity.v1.0",
 "cid": "71aba984-c485-4ced-bf19-c0f32649bcee",
 "d_id": "kansas-temperature-humidity-01"
 }
]
}

Analyzing Huge Amounts of Data with Cloud-based IoT Analytics

[336]

The previous lines also show the component id for each of the components that
we have registered. Thus, we have all the necessary configuration values that we
will have to use in our code in just one place. In this case, the device token is the
following, that is, the string value for the "device_token" key. However, the value
that you will retrieve will be different.

"eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJqdGkiOiJjOTNmMTJhMy05MWZlLT
Q3MWYtODM4OS02OGM1NDYxNDIxMDUiLCJpc3MiOiJodHRwOi8vZW5hYmxlaW90LmNvb
SIsInN1YiI6ImthbnNhcy10ZW1wZXJhdHVyZS1odW1pZGl0eS0wMSIsImV4cCI6IjIw
MjYtMDQtMDZUMTk6MDA6MTkuNzA0WiJ9.PH5yQas2FiQvUSR9V2pa3n3kIYZvmSe_xXY
7QkFjlXUVUcyy9Sk_eVF4AL6qpZlBC9vjtd0L-VMZiULC9YXxAVl9s5Cl8ZqpQs36
E1ssv_1H9CBFXKiiPArplzaWXVzvIRBVVzwfQrGrMoD_l4DcHlH2zgn5UGxhZ3RMP
UvqgeneG3P-hSbPScPQL1pW85VT2IHT3seWyW1c637I_MDpHbJJCbkytPVpJpwKBxr
CiKlGhvsh5pl4eLUXYUPlQAzB9QzC_ohujG23b-ApfHZugYD7zJa-05u0lkt93EEnu
Ck39o5SmPmIiuBup-k_mLn_VMde5fUvbxDt_SMI0XY3_Q"

Collecting sensor data with Intel IoT
Analytics
We will take the code we wrote in Chapter 8, Displaying Information and Performing
Actions, when we read temperature and humidity values from the sensor, we printed
the values in an OLED matrix and rotated a servo's shaft to display the measured
temperature expressed in degrees Fahrenheit with the shaft. The code file for the
sample was iot_python_chapter_08_03.py. We will use this code as a baseline to
add new features that will allow us to create observations for the three components
we registered for our activated device.

In Chapter 2, Working with Python on Intel Galileo Gen 2, we made sure that the pip
installer was available to install additional Python 2.7.3 packages in the Yocto Linux
that we are running on the board. Now, we will use pip installer to make sure that
the requests package is installed. This package is a very popular HTTP library for
Python that allows us to easily build and send HTTP requests with an extremely easy
to understand syntax.

If you have worked with examples from the previous chapter, you will have this
package already installed. However, in case you just jumped into this chapter, it
might be necessary to install it. We just need to run the following command in the
SSH terminal to install the package. Notice that it can take a few minutes to complete
the installation.

pip install requests

Chapter 10

[337]

In case you see the following output, it means that the requests package was already
installed and you can move on to the next step.

Requirement already satisfied (use --upgrade to upgrade): requests in
/usr/lib/python2.7/site-packages

We will create an IntelIotAnalytics class to represent the interface to Intel IoT
Analytics and make it easy for us to publish observations for the three components.
However, before we code the class, we have to make sure that we can replace the
content for many class attributes that define important values related to our account,
the components, and the device. You will have to replace the strings specified for the
following class attributes with the appropriate values:

• account_name: The value of the Account name field in the My Account
page. In our example, we used "Temperature and humidity" for our
account name.

• account_id: The value of the Account ID field in the My Account page. In
our example, we use "22612154-0f71-4f64-a68e-e116771115d5" for our
account id. We can also retrieve the account id value by reading the string
value specified for the "account_id" key in the device.json file.

• device_id: The value of the ID field in the Add / Edit a Device page that
the site shows when we click on a device name in the list displayed in
the My Devices page. In our example, we use "kansas-temperature-
humidity-01" for our device id. We can also retrieve the device_id by
running the following command in an SSH terminal: iotkit-admin
device-id or by reading the string value specified for the "device_id" key
in the device.json file.

• device_token: The value of the device token that was generated when we
activated the device. As previously explained, we can retrieve the device
token by reading the string value specified for the "device_token" key in
the device.json file.

• component_id_temperature_fahrenheit: The value of the component id
that was generated when we registered the temperaturef component. The
component id is displayed below the component type in the Component
Definition dialog box. In our example, we use "0f3b3aae-ce40-4fb4-
a939-e7c705915f0c" for this value. We can also retrieve the component
id value by reading the string value specified for the "cid" key in the same
block that declares the "name": "temperaturef" key-value pair, in the
device.json file.

Analyzing Huge Amounts of Data with Cloud-based IoT Analytics

[338]

• component_id_temperature_celsius: The value of the component id that
was generated when we registered the temperaturec component. In our
example, we use "c37cb57d-002c-4a66-866e-ce66bc3b2340" for
this value.

• component_id_humidity_level_percentage: The value of the component
id that was generated when we registered the humidity component. In
our example, we use "71aba984-c485-4ced-bf19-c0f32649bcee"
for this value.

The code file for the sample is iot_python_chapter_10_01.py. Remember
that we use the code file iot_python_chapter_08_03.py as a baseline, and
therefore, we will add the IntelIotAnalytics class to the existing code in this
file and we will create a new Python file. The following lines show the code for
the IntelIotAnalytics class that allows us to publish observations for the
temperaturef, temperaturec and humidity components through the REST API.

import time
import json
import requests

class IntelIotAnalytics:
 base_url = "https://dashboard.us.enableiot.com/v1/api"
 # You can retrieve the following information from the My Account
page
 account_name = "Temperature and humidity"
 account_id = "22612154-0f71-4f64-a68e-e116771115d5"
 # You can retrieve the device token with the following command:
 # cat /usr/lib/node_modules/iotkit-agent/data/device.json
 device_token = "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJqdGkiOi
JjOTNmMTJhMy05MWZlLTQ3MWYtODM4OS02OGM1NDYxNDIxMDUiLCJpc3MiOiJodHRwO
i8vZW5hYmxlaW90LmNvbSIsInN1YiI6ImthbnNhcy10ZW1wZXJhdHVyZS1odW1pZGl0e
S0wMSIsImV4cCI6IjIwMjYtMDQtMDZUMTk6MDA6MTkuNzA0WiJ9.PH5yQas2FiQvUSR
9V2pa3n3kIYZvmSe_xXY7QkFjlXUVUcyy9Sk_eVF4AL6qpZlBC9vjtd0L-VMZiULC9Y
XxAVl9s5Cl8ZqpQs36E1ssv_1H9CBFXKiiPArplzaWXVzvIRBVVzwfQrGrMoD_l4DcHl
H2zgn5UGxhZ3RMPUvqgeneG3P-hSbPScPQL1pW85VT2IHT3seWyW1c637I_MDpHbJJC
bkytPVpJpwKBxrCiKlGhvsh5pl4eLUXYUPlQAzB9QzC_ohujG23b-ApfHZugYD7zJa-05
u0lkt93EEnuCk39o5SmPmIiuBup-k_mLn_VMde5fUvbxDt_SMI0XY3_Q"
 device_id = "kansas-temperature-humidity-01"
 component_id_temperature_fahrenheit = "0f3b3aae-ce40-4fb4-a939-
e7c705915f0c"
 component_id_temperature_celsius = "c37cb57d-002c-4a66-866e-
ce66bc3b2340"
 component_id_humidity_level_percentage = "71aba984-c485-4ced-bf19-
c0f32649bcee"

Chapter 10

[339]

 def publish_observation(self,
 temperature_fahrenheit,
 temperature_celsius,
 humidity_level):
 url = "{0}/data/{1}".\
 format(self.__class__.base_url, self.__class__.device_id)
 now = int(time.time()) * 1000
 body = {
 "on": now,
 "accountId": self.__class__.account_id,
 "data": []
 }
 temperature_celsius_data = {
 "componentId": self.__class__.component_id_temperature_
celsius,
 "on": now,
 "value": str(temperature_celsius)
 }
 temperature_fahrenheit_data = {
 "componentId": self.__class__.component_id_temperature_
fahrenheit,
 "on": now,
 "value": str(temperature_fahrenheit)
 }
 humidity_level_percentage_data = {
 "componentId": self.__class__.component_id_humidity_level_
percentage,
 "on": now,
 "value": str(humidity_level)
 }
 body["data"].append(temperature_celsius_data)
 body["data"].append(temperature_fahrenheit_data)
 body["data"].append(humidity_level_percentage_data)
 data = json.dumps(body)
 headers = {
 'Authorization': 'Bearer ' + self.__class__.device_token,
 'content-type': 'application/json'
 }
 response = requests.post(url, data=data, headers=headers,
proxies={}, verify=True)
 if response.status_code != 201:
 print "The request failed. Status code: {0}. Response
text: {1}.".\
 format(response.status_code, response.text)

Analyzing Huge Amounts of Data with Cloud-based IoT Analytics

[340]

The IntelIotAnalytics class declares many class attributes that we explained
before and that you need to replace with your own string values: account_name,
account_id, device_token, device_id, component_id_temperature_fahrenheit,
component_id_temperature_celsius and component_id_humidity_level_
percentage. The base_url class attribute defines the base URL to access the REST
API: https://dashboard.us.enableiot.com/v1/api. We will use this value in
combination with a data path and the device_id class attribute to build the URL
to which we will send the HTTP request to publish an observation.

The class declares the publish_observation method that receives the temperature
expressed in degrees Fahrenheit, the temperature expressed in degrees Celsius and
the humidity level percentage in the temperature_fahrenheit, temperature_
celsius and humidity_level arguments. The method builds the URL to which
we will send the HTTP request to create an observation for the device and the three
components. The URL is composed of the base_url class attribute, /data/ and the
device_id class attribute. As happens with many REST APIs, the base_url class
attribute specifies the version number for the API. This way, we make sure that we
are always working with a specific version and that our requests are compatible with
this version. The code saves the value for the build URL in the url local variable.

Then, the code saves the board's current time in seconds multiplied by 1000 in the
now local variable. The code creates a body dictionary that represents the request's
body with the following key-value pairs:

• "on": The value stored in the now local variable, that is, the board's current
time. It is the time for the observations.

• "accountId": The value stored in the accountId class attribute, that is,
the Intel IoT Analytics account to which we will publish the observation.

• "data": An empty array that we will fill later with one observation for
each component.

Then, the code creates three dictionaries with the following key-value pairs that
represent an observation for a specific component:

• "componentId": The value stored in the class attribute that specifies the
component id to which we will publish the observation.

• "on": The value stored in the now local variable, that is, the board's current
time. It is the time for the observation. We use the same variable for all the
observations, and therefore, they are registered with the same time.

• "value": The string representation of the value received as an argument in
the method.

Chapter 10

[341]

Then, the code calls the append method to add the three dictionaries to the data
key in the body dictionary. This way, the data key will have an array with three
dictionaries as its value. The code calls the json.dumps function to serialize the
body dictionary to a JSON formatted string and saves it in the data local variable.

The next line creates a headers dictionary with the following key-value pairs that
represent the headers for the HTTP request:

• "Authorization": The authorization string composed of the concatenation
of "Bearer" and the device token saved in the device_token class attribute

• "content-type": Declares the content type as JSON: "application/json"

At this point, the code has built the headers and the body for the HTTP request that
will publish the observations to Intel IoT Analytics. The next line calls the requests.
post function to send an HTTP POST request to the URL specified by the url local
variable, with the data dictionary as the JSON body data and the headers dictionary
as the headers.

The requests.post method returns a response saved in the response local
variable and the code evaluates whether the code attribute for response is not
equal to 201. In case the code is different than 201, it means that the observations
weren't successfully published, that is, something went wrong. In this case, the code
prints the values for the status_code and text attributes for the response to the
console output to allow us to understand what went wrong. In case we use a wrong
device token or a wrong id for the account, the device or the components, we will
receive errors.

Now, we will use the previously coded IntelIoTAnalytics class to create a new
version of the __main__ method that publishes observations to Intel IoT Analytics
every 5 seconds. The following lines show the new version of the __main__ method.
The code file for the sample is iot_python_chapter_10_01.py.

if __name__ == "__main__":
 temperature_and_humidity_sensor = \
 TemperatureAndHumiditySensor(0)
 oled = TemperatureAndHumidityOled(0)
 intel_iot_analytics = IntelIotAnalytics()
 while True:
 temperature_and_humidity_sensor.\
 measure_temperature_and_humidity()
 oled.print_temperature(

Analyzing Huge Amounts of Data with Cloud-based IoT Analytics

[342]

 temperature_and_humidity_sensor.temperature_fahrenheit,
 temperature_and_humidity_sensor.temperature_celsius)
 oled.print_humidity(
 temperature_and_humidity_sensor.humidity)
 print("Ambient temperature in degrees Celsius: {0}".
 format(temperature_and_humidity_sensor.temperature_
celsius))
 print("Ambient temperature in degrees Fahrenheit: {0}".
 format(temperature_and_humidity_sensor.temperature_
fahrenheit))
 print("Ambient humidity: {0}".
 format(temperature_and_humidity_sensor.humidity))
 intel_iot_analytics.publish_observation(
 temperature_and_humidity_sensor.temperature_fahrenheit,
 temperature_and_humidity_sensor.temperature_celsius,
 temperature_and_humidity_sensor.humidity
)
 # Sleep 5 seconds (5000 milliseconds)
 time.sleep(5)

The highlighted lines show the code that creates an instance of the previously created
IntelIoTAnalytics class and saves its reference in the intel_iot_analytics local
variable. Then, the code within the loop that runs every 5 seconds calls the publish_
observation method with the temperature and humidity values retrieved from the
temperature and humidity sensor as arguments.

The following line will start the example:

python iot_python_chapter_10_01.py

After you run the example, turn on an air conditioner or a heating system, to
generate a change in the ambient temperature and humidity. This way, we will
notice changes in the data that is being published every 5 seconds. Keep the code
running while we explore different features included in Intel IoT Analytics.

Chapter 10

[343]

Go to the web browser in which you are working with the Intel IoT Analytics
dashboard, click on the menu icon and select Dashboard. The site will display the
My Dashboard page that will indicate you have one active device and it will update
the number of observations published in the last hour as it receives observations
from the board. The following pictures show the dashboard with the active device
and the counter that includes 945 observations published in the last hour:

Analyzing Huge Amounts of Data with Cloud-based IoT Analytics

[344]

Keep the browser open with the dashboard view and you will notice that
observations value increases in the last hour, as the code continues running on the
board. You can click on the configuration icon located at the upper-right corner of
the panel that displays the number of observations and a context-menu will allow
you to configure the observations period you want to see in this panel. For example,
you can change from Last hour to Last week to display the number of observations
the device has registered during the last week.

Analyzing sensor data with Intel IoT
Analytics
Intel IoT Analytics allows us to generate charts with the data generated for each
component that has observations for a specific device. First, we have to select the
device and then we have to choose one or more component to generate the chart
with historic time series or the time series that are being generated with the code
running on the board, that is, live data for the component.

Go to the web browser in which you are working with the Intel IoT Analytics
dashboard, click on the menu icon and select Charts. The site will display the My
Charts page that will allow you to search for devices using many search criteria,
such as the device name, the associated tags, and its properties.

In this case, we just have one activated device, and therefore, we can select the device
from the list of devices that the site shows us below the Select Device section. This
section displays the first characters for the device name at the right-hand side of a
checkbox and the number of components that have been registered for this device at
the right-hand side of the text. The following picture shows the Select Device section
with kansas-temp… representing the kansas-temperature-humidity-01 device.
If you hover the mouse over the checkbox or tap on the text, the site will display
a popup with the complete name for the device and the types of the registered
components. The following screenshot show the popup with this information
displayed for the kansas-temp… checkbox.

Chapter 10

[345]

Check the kansas-temp… checkbox and the site will display the three registered
components for the selected device. In this case, the site displays the component
names (temperaturec, temperaturef, and humidity) while in the previously
explained popup the site showed the component types (temperature.v1.0,
temperaturef.v1.0, and humidity.v1.0).

Analyzing Huge Amounts of Data with Cloud-based IoT Analytics

[346]

Check the temperaturef checkbox and the site will display a chart with the ambient
temperature measured in degrees Fahrenheit for the past hour. By default, the chart
uses a line and generates a graph with the time series values registered in the past
hour. By default, the refresh rate for the graph is set to 30 seconds, and therefore, the
chart will be updated every 30 seconds and will display all the new observations that
were published by the board through the REST API in this period.

Chapter 10

[347]

We can use the different buttons at the top of the chart to change the chart type and
to select the time range we want to view displayed in the graph. We can also change
the refresh rate to as low as five seconds or as high as 60 seconds. If we save the
graph as favorite, the site will display it as part of the dashboard in My Dashboard.

Click on the Raw data button (A bullets icon) located at the right-hand side of the
Chart button (A picture icon with mountains). The site will display a list with the
raw data that has been sent to build the time series, that is, all the observations
received for the selected component. The following screenshot shows an example
of the first page of the raw data view for the temperaturef component in the
past hour.

Analyzing Huge Amounts of Data with Cloud-based IoT Analytics

[348]

In this example, it is extremely useful to generate a chart with the temperature
and the humidity level. Go back to the Chart view by clicking on the Chart button
(A picture icon with mountains) and check the checkbox for humidity. This way,
the site will generate a graph that combines the temperature expressed in degrees
Fahrenheit and the humidity level expressed in percentage. The following screenshot
shows the generated chart when temperaturef and humidity are both checked:

Chapter 10

[349]

Triggering alerts with rules in Intel IoT
Analytics
Intel IoT Analytics allows us to define the rules that can trigger any of the following
notification types:

• Email
• HTTP Endpoint
• Actuation

Go to the web browser in which you are working with the Intel IoT Analytics
dashboard, click on the menu icon and select Rules. The site will display the My
Rules page that will allow you to define rules for the activated devices. In this case,
we will define a rule that will send us an e-mail when the humidity level is lower
than 10%.

Click on Add a rule and the site will display us a form that will allow us to enter the
details for the new rule. Enter Very low humidity level in Rule Name, select Low
in Priority and Email in Notifications type. Select the e-mail address to which you
want to receive the notifications in the dropdown in the Notifications To panel.

Click Next and the site will ask us to select the devices to which the new rule has
to be applied. In this case, we just have one activated device, and therefore, we can
select the device from the list of devices that the site shows us below the Select
Device section. As seen in previous device selection pages, this section displays
the first characters for the device name at the right-hand side of a checkbox and the
number of components that have been registered for this device at the right-hand
side of the text. Check the kansas-temp… checkbox and the name will appear in the
Selected Devices list.

Click Next and the site will ask us to specify the conditions for the new rule. Leave
the Enable Automatic Reset checkbox unchecked because we want the rule to
become inactive after every alert until it is acknowledged. This way, after we receive
an alert, we will only receive additional alerts when we acknowledge the first alert
that was generated.

Analyzing Huge Amounts of Data with Cloud-based IoT Analytics

[350]

Select humidity (Number) in Monitored Measure and Basic Condition in Trigger
When. Then, select < in the additional dropdown that appears and enter 10 in the
Enter a value textbox. This way, we are creating a rule that will trigger when the
value in a humidity observation is lower than 10 (humidity < 10). The following
screenshot shows the defined condition:

Chapter 10

[351]

Click Done and the rule will be added to the list shown in My Rules. The following
screenshot shows the rule definition included in this list after we define it:

After the humidity level is lower than 10%, an alert will be triggered and we will see
a number 1 in the alerts icon (the bell). After we click on the icon, the site will display
all the unread alerts we have. The following screenshot shows the My Dashboard
page with one unread alert:

Analyzing Huge Amounts of Data with Cloud-based IoT Analytics

[352]

If we click on the alert, the site will display the details of the situation that triggered
the alert. We can also go Alerts in the menu and see the list of the received alerts.
The following screenshot show the alert included in the list of received alerts:

If we click on the Alert number, the site will display the details for the alert including
the condition defined in the rule that triggered the alert and the measured value. In
this case, the measured value was 7.99. It is possible to add comments to an alert.
The following screenshot shows the details for the alert:

Chapter 10

[353]

In addition, we receive an e-mail that includes the following text:

Alert Monitor has received an alert. Alert data:

- Alert Id: 1
- Device: kansas-temperature-humidity-01
- Reason: humidity < 10
- Priority: Low

Alert Data
Component Name Values
humidity 7.99;

You can go here to check it on Dashboard
Regards

In this case, we defined a very simple condition in our rule. However, we can define
a more complex condition that can include any of the following conditions:

• Time-based condition
• Statistics based condition
• Single-sensor change detection
• Multisensory change detection

We can play with the different options to trigger alerts for a large number of devices
with multiple sensors and huge amounts of data. One of the most interesting features
of Intel IoT Analytics is that we can easily work with huge amounts of data with the
charts, the rules and the alerts.

Analyzing Huge Amounts of Data with Cloud-based IoT Analytics

[354]

Test your knowledge
1. The components for each device in Intel IoT Analytics can be either:

1. Actuator or time series.
2. Account, actuator or time series.
3. Proxy, account, actuator or time series.

2. Each time we publish data from a registered device to Intel IoT Analytics,
we create:

1. An actuator.
2. An account.
3. An observation.

3. A time series is:
1. A series of actions performed by an actuator, that is, a collection

of actions.
2. A series of values captured from a sensor, that is, a collection

of observations.
3. A series of triggered alarms, that is, a collection of alarms.

4. We can use the following command-line utility to activate our board as a
device in an Intel IoT Analytics account:

1. iotkit-admin
2. iotkit-configure
3. iotkit-setup

5. In order to send observations from a device with the REST API provided by
Intel IoT Analytics, we need the following token:

1. The sensor token.
2. The observation token.
3. The device token.

Chapter 10

[355]

Summary
In this chapter, we understood the close relationship between Internet of Things and
Big Data. We worked with a cloud-based service that allowed us to organize huge
amounts of data collected by multiple devices and their sensors. We took advantage
of the requests package to write a few lines of Python code that could interact with
the Intel IoT Analytics REST API.

We used the Intel IoT Analytics web site to set up a device and its components. Then,
we made changes to one of our examples to collect data from the sensors and publish
observations to Intel IoT Analytics. Then, we learned about the different options that
Intel IoT Analytics offers us to analyze huge amounts of data. Finally, we defined
rules that triggered alerts. Now that we are able to take advantage of Intel IoT
Analytics to analyze huge amounts of data, we are ready to deploy thousands
of IoT devices that collect data from multiple sensors.

We learned to use Python and the Intel Galileo Gen 2 board to create low cost devices
that collect huge amounts of data, interact with each other and take advantage of
cloud-services and cloud-based storage. We can develop IoT prototypes from the
hardware selection to all the necessary stacks with Python 2.7.3, its libraries and
tools. In case we need a smaller board or a different alternative, we can switch to any
of the compatible Intel Edison boards, and therefore, we can switch to this board in
case we need to.

We are able to leverage our existing Python knowledge to capture data from the real
world, interact with physical objects, develop APIs and use different IoT protocols.
We learned to use specific libraries to work with low-level hardware, sensors,
actuators, buses, and displays. We are ready to become makers and to be part
of the exciting IoT world.

We can start working on fascinating projects that can transform everyday objects
into smart devices with sensors and actuators. We are ready to start building
ecosystems composed of thousands of IoT devices, with Python as our main
programming language.

[357]

Exercise Answers

Chapter 1, Understanding and Setting up
the Base IoT Hardware

Q1 2
Q2 1
Q3 2
Q4 3
Q5 1

Chapter 2, Working with Python on Intel
Galileo Gen 2

Q1 2
Q2 1
Q3 2
Q4 3
Q5 1

Exercise Answers

[358]

Chapter 3, Interacting with Digital
Outputs with Python

Q1 3
Q2 1
Q3 1
Q4 2
Q5 2

Chapter 4, Working with a RESTful API
and Pulse Width Modulation

Q1 3
Q2 3
Q3 2
Q4 1
Q5 2

Chapter 5, Working with Digital Inputs,
Polling and Interrupts

Q1 1
Q2 2
Q3 1
Q4 2
Q5 3

Appendix

[359]

Chapter 6, Working with Analog Inputs
and Local Storage

Q1 3
Q2 1
Q3 2
Q4 1
Q5 3

Chapter 7, Retrieving Data from the Real
World with Sensors

Q1 2
Q2 1
Q3 2
Q4 3
Q5 1

Chapter 8, Displaying Information and
Performing Actions

Q1 1
Q2 1
Q3 3
Q4 3
Q5 2

Exercise Answers

[360]

Chapter 9, Working with the Cloud
Q1 2
Q2 1
Q3 3
Q4 2
Q5 1

Chapter 10, Analyzing Huge Amounts of
Data with Cloud-based IoT Analytics

Q1 1
Q2 3
Q3 2
Q4 1
Q5 3

[361]

Index
Symbols
7-Zip

URL 29

A
accelerometers

working with 199
actions

firing, when environment
light changes 174-180

additional expansion and
connectivity capabilities

recognizing 12-16
additional libraries

installing 50, 51
adxl1345.cxx, C++ source code file

reference 214
ambient temperature

measuring, with analog sensor 224-226
analog accelerometer

used, for measuring three
axis acceleration 203-206

wiring, to analog input pins 200-203
analog inputs

about 161, 162
analog input pin, wiring with

voltage source 163-165
controlling, with wiring-x86 library 180-183

analog temperature sensor
wiring 221-224

analog values
generating, PWM used 107-111
generating, via HTTP requests 114-117

Arduino 1.0 pinout
recognizing 8-12

attributes, IntelIotAnalytics class
account_id 337
account_name 337
component_id_humidity_level_percentage

338
component_id_temperature_celsius 338
component_id_temperature_fahrenheit 337
device_id 337
device_token 337

B
bi-directional communications

working with 289-296
Big Data 319
BoardInteraction class

set_rgb_led_brightness method 178
update_leds_brightness method 178

Bonjour Browser
URL 37

breadboards
prototyping with 62-65

buttons 17-19

C
callback_response_message method 291
components

setting up, in Intel IoT Analytics 328-336
curl utility

URL 93

[362]

D
dark_max_voltage attribute 172
darkness level

determining, with analog inputs and
mraa library 171-174

data
publishing, to cloud with dweepy 261-267
receiving in real-time, through Internet with

PubNub 275-283
sending in real-time, through Internet with

PubNub 275-283
devices

setting up, in Intel IoT Analytics 324-327
digital accelerometer

controlling, I2C bus using with
mraa library 214-220

used, for measuring three axis
acceleration 211-214

wiring, to I2C bus 207-211
digital input pins

wiring, with pushbuttons 135-137
digital inputs

reading, with wiring-x86 library 148-150
digital outputs

controlling, with object-oriented
code 78-80

controlling, with wiring-x86 library 87-89
wiring, with schematics 65-71

digital temperature and humidity sensor
wiring, to I2C bus 226-229

dweepy
used, for publishing data to cloud 261-267

dweet.io
about 262
URL 262

E
Eclipse Paho

about 303
URL 303

Eclipse Paho MQTT Python client library
reference 303

EEPROM (Electrically Erasable
Programmable Read-Only
Memory) 8

error_response_message method 291
extremely_dark_max_voltage attribute 172

F
files

logging to, in local storage 183-185
firmware

checking 20-24
upgrading 20-24

Freeboard
used, for building web-based

dashboard 269-275
freeboard.io

URL 269
Fritzing

download link 4

G
GPIO (General Purpose Input/Output) 60
GUID (Global Unique Identifier) 262

H
HTTP requests

analog values, generating via 114-117
composing 98-103
sending 98-103

I
I2C bus

for controlling digital accelerometer,
with mraa library 214-221

Input/Output
recognizing 8-12

Intel Galileo Firmware and Drivers
download link 20

Intel Galileo Gen 2 board
about 2
assigned IP address, retrieving 34-38
components 3-8
operating system, connecting 39-44
setting up, for working with Python as

programming language 27-34

[363]

Intel IoT Analytics
actuator 323
alerts, triggering with rules 349-353
components, setting up 328-336
devices, setting up 324-327
sensor data, analyzing with 344-348
sensor data, collecting with 336-344
structure 321-324
time series 323

IntelIotAnalytics class
attributes 337

Intel IoT Development Kit Images
Repository

reference 28
Intel Quark SoC X1000

reference 6
Internet of Things

about 320
relationship, with Big Data 319-321

interrupts
using, for detecting pressed

pushbuttons 151-157
is_pressed property 139
is_released property 139

L
LCD displays

about 235-237
connection types 236, 237
considerations 237, 238
text, displaying 241-245

LCD RGB backlight
wiring, to I2C bus 238-241

LDR (Light-Dependent Resistor) 168, 194
LEDs 17-19

M
machine-to-machine (M2M) 275
MessageChannel class, methods

callback 280
connect 280
disconnect 280
error 280
reconnect 280

messages
publishing to cloud, with Python

PubNub client 296-302
publishing, to Mosquitto broker with

Python client 311-315
publishing, with commands through

PubNub cloud 283-288
methods, BoardInteraction class

check_push_buttons_callback 143
set_max_brightness 143
set_min_brightness 143

Mosquitto
about 303
URL 303

MQTT (MQ Telemetry Transport)
about 275
URL 275
using, with Mosquitto and

Eclipse Paho 303-310
mraa library

about 198
mraa.I2c class 198
Mraa.Spi class 198
mraa.UART class 198

N
necessary libraries

installing 44-50
upgrading 44-50

numbers
printing in LEDs, with RESTful API 91-98

O
object-oriented code

for controlling digital outputs 78-80
improving 81, 82

OLED display
text, displaying 249-251

OLED dot matrix
wiring, to I2C bus 246-248

onboard component
turning on and off 55-62

[364]

P
paho-mqtt module

reference 303
photoresistor

wiring, to analog input pin 167-170
pin numbers

isolating, to improve wirings 82-87
pins

wiring, with PWM capabilities 103-106
pip

installing 50, 51
print_information_message command 281
print_temperature_fahrenheit

command 281
publish_response_message method 292
PubNub

URL 275
pullup resistors 130-134
pushbuttons

about 130-134
statuses, reading 142-147
statuses, reading with digital inputs and

mraa library 138-141
PutMaxBrightnessHandler class 145
PutMinBrightnessHandler class 144
PuTTY

URL 39
PWM capabilities

pins, wiring with 103-106
PWM (Pulse Width Modulation)

about 8, 104
controlling, with wiring-x86

library 124, 125
used, for generating analog values 107-114

Python code, for counting from 1 to 9
writing, with LEDs 73-76

Python interpreter
invoking 52, 53

Python PubNub client
messages, publishing with 296-302

R
RAM (Random Access Memory) 7
RESTful API

for printing numbers in LEDs 91-98

preparing, for web application
requirements 117-119

RGB LED
colors, setting with PWM and

RESTful API 119-123

S
schematics

working with, for wiring digital
outputs 65-71

SCL (Serial CLock) 9
SDA (Serial DAta) 9
sensor data

analyzing, with Intel IoT
Analytics 344-348

collecting, with Intel IoT Analytics 336-344
sensors

about 194
connection types 194, 197
considerations 195-197

servo motor
value, indicating by positioning

shaft 256-258
wiring 252-256

SFTP 57
SoC 6
SRAM (Static Random Access Memory) 8
SSH 57

T
Telerik Fiddler

URL 93
temperature and humidity

measuring, with digital sensor 229-232
three axis acceleration

measuring, with analog
accelerometer 203-206

measuring, with digital
accelerometer 211-214

Tornado 91
tornado.web.RequestHandler

GetBlueBrightnessHandler 113
GetCurrentNumberHandler 95
GetGREENBrightnessHandler 113

[365]

GetRedBrightnessHandler 113
PutBlueBrightnessHandler 112
PutGreenBrightnessHandler 112
PutNumberInLedsHandler 95
PutRedBrightnessHandler 111
VersionHandler 95, 111

U
UART (Universal Asynchronous Receiver/

Transmitter) port 9
USB attached storage

working with 186-190

V
very_dark_max_voltage attribute 172
voltage

measuring, with analog inputs and
mraa library 166, 167

W
web-based dashboard

building, with Freeboard 269-275
wiring-x86 library

PWM, controlling with 124, 125

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding and Setting up the Base IoT Hardware
	Understanding the Intel Galileo Gen 2 board and its components
	Recognizing the Input/Output and the Arduino 1.0 pinout
	Recognizing additional expansion and connectivity capabilities
	Understanding the buttons and the LEDs
	Checking and upgrading the board's firmware
	Test your knowledge
	Summary

	Chapter 2: Working with Python on Intel Galileo Gen 2
	Setting up the board to work with Python as the programming language
	Retrieving the board's assigned IP address
	Connecting to the board's operating system
	Installing and upgrading the necessary libraries to interact with the board
	Installing pip and additional libraries
	Invoking the Python interpreter
	Test your knowledge
	Summary

	Chapter 3: Interacting with Digital Outputs with Python
	Turning on and off an onboard component
	Prototyping with breadboards
	Working with schematics to wire digital outputs
	Counting from 1 to 9 with LEDs, Python code and the mraa library
	Taking advantage of object-oriented code to control digital outputs
	Improving our object-oriented code to provide new features
	Isolating the pin numbers to improve wirings
	Controlling digital outputs with the wiring-x86 library
	Test your knowledge
	Summary

	Chapter 4: Working with a RESTful API and Pulse Width Modulation
	Printing numbers in LEDs with a RESTful API
	Composing and sending HTTP requests
	Wiring pins with PWM capabilities
	Using PWM to generate analog values
	Generating analog values via HTTP requests
	Preparing the RESTful API for Web application requirements
	Using PWM plus a RESTful API to set colors for an RGB LED
	Controlling PWM with the wiring-x86 library
	Test your knowledge
	Summary

	Chapter 5: Working with Digital Inputs, Polling and Interrupts
	Understanding pushbuttons and pullup resistors
	Wiring digital input pins with pushbuttons
	Reading pushbutton statuses with digital inputs and the mraa library
	Reading pushbutton statuses and running a RESTful API
	Reading digital inputs with the wiring-x86 library
	Using interrupts to detect pressed pushbuttons
	Test your knowledge
	Summary

	Chapter 6: Working with Analog Inputs and Local Storage
	Understanding the analog inputs
	Wiring an analog input pin with a voltage source
	Measuring voltage with analog inputs and the mraa library
	Wiring a photoresistor to an analog input pin
	Determining the darkness level with analog inputs and the mraa library
	Firing actions when the environment light changes
	Controlling analog inputs with the wiring-x86 library
	Logging to files in the local storage
	Working with USB attached storage
	Test your knowledge
	Summary

	Chapter 7: Retrieving Data from the Real World with Sensors
	Understanding sensors and their connection types
	Working with accelerometers
	Wiring an analog accelerometer to the analog input pins
	Measuring three axis acceleration with an analog accelerometer
	Wiring a digital accelerometer to the
I2C bus
	Measuring three axis acceleration with a digital accelerometer
	Using the I2C bus to control a digital accelerometer with the mraa library
	Wiring an analog temperature sensor
	Measuring ambient temperature with an analog sensor
	Wiring a digital temperature and humidity sensor to the I2C bus
	Measuring temperature and humidity with a digital sensor
	Test your knowledge
	Summary

	Chapter 8: Displaying Information and Performing Actions
	Understanding LCD displays and their connection types
	Wiring an LCD RGB backlight to the I2C bus
	Displaying text on an LCD display
	Wiring an OLED dot matrix to the I2C bus
	Displaying text on an OLED display
	Wiring a servo motor
	Positioning a shaft to indicate a value with a servo motor
	Test your knowledge
	Summary

	Chapter 9: Working with the Cloud
	Publishing data to the cloud with dweepy
	Building a web-based dashboard with Freeboard
	Sending and receiving data in real-time through Internet with PubNub
	Publishing messages with commands through the PubNub cloud
	Working with bi-directional communications
	Publishing messages to the cloud with a Python PubNub client
	Using MQTT with Mosquitto and Eclipse Paho
	Publishing messages to a Mosquitto broker with a Python client
	Test your knowledge
	Summary

	Chapter 10: Analyzing Huge Amounts of Data with Cloud-based IoT Analytics
	Understanding the relationship between Internet of Things and Big Data
	Understanding the Intel IoT Analytics structure
	Setting up devices in Intel IoT Analytics
	Setting up components in Intel IoT Analytics
	Collecting sensor data with Intel IoT Analytics
	Analyzing sensor data with Intel IoT Analytics
	Triggering alerts with rules in Intel IoT Analytics
	Test your knowledge
	Summary

	Appendix: Exercise Answers
	Index

