
M A N N I N G

Simon Morris

Covers JavaFX v 1.2

IN ACTION

www.allitebooks.com

http://www.allitebooks.org


JavaFX in Action

    

  

www.allitebooks.com

http://www.allitebooks.org


 

    

  

www.allitebooks.com

http://www.allitebooks.org


JavaFX 
in Action

SIMON MORRIS

M A N N I N G
Greenwich 

(74° w. long.)
    

  

www.allitebooks.com

http://www.allitebooks.org


For online information and ordering of this and other Manning books, please visit 
www.manning.com. The publisher offers discounts on this book when ordered in quantity.  
For more information, please contact

Special Sales Department
Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830
email: orders@manning.com

©2010 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in 
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written 
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are 
claimed as trademarks. Where those designations appear in the book, and Manning 
Publications was aware of a trademark claim, the designations have been printed in initial caps 
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have  
the books we publish printed on acid-free paper, and we exert our best efforts to that end. 
Recognizing also our responsibility to conserve the resources of our planet, Manning books are 
printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

Development Editor: Tom Cirtin
Manning Publications Co. Copyeditor: Linda Recktenwald
Sound View Court 3B Proofreader: Elizabeth Martin
Greenwich, CT 06830 Typesetter: Gordan Salinovic

Cover designer: Leslie Haimes

ISBN 978-1-933988-99-3
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09 
    

  

www.allitebooks.com

http://www.manning.com
http://www.allitebooks.org


 To my father, the coolest folk singer this side of the Mersey.
 (Be honest, Dad, if you’d known how obsessed I was going to get, 

 would you have agreed to buy my first computer?)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

  

www.allitebooks.com

http://www.allitebooks.org


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

  

www.allitebooks.com

http://www.allitebooks.org


contents
preface xiii
acknowledgments xv
about this book xvii
about the title xxi
about the cover illustration xxii

1 Welcome to the future: introducing JavaFX 1
1.1 Introducing JavaFX 2

Why do we need JavaFX Script? The power of a DSL 2 ■ Back to 
the future: the rise of the cloud 4 ■ Form follows function: the fall 
and rebirth of desktop Java 6

1.2 Minimum effort, maximum impact: a quick shot of JavaFX 8
1.3 Comparing Java and JavaFX Script: “Hello JavaFX!” 10
1.4 Comparing JavaFX with Adobe AIR, GWT, and Silverlight 11

Adobe AIR and Flex 11 ■ Google Web Toolkit 11 ■ Microsoft 
Silverlight 12 ■ And by comparison, JavaFX 12

1.5 But why should I buy this book? 12
1.6 Summary 13
vii

    

  

www.allitebooks.com

http://www.allitebooks.org


CONTENTSviii
2 JavaFX Script data and variables 15
2.1 Annotating code with comments 16
2.2 Data types 17

Static, not dynamic, types 17 ■ Value type declaration  17 
Initialize-only and reassignable variables (var, def) 20 
Arithmetic on value types (+, -, etc.) 21 ■ Logic operators (and, or, 
not, <, >, =, >=, <=, !=) 22 ■ Translating and checking types (as, 
instanceof)  23

2.3 Working with text, via strings 24
String literals and embedded expressions 24 ■ String 
formatting 25 ■ String localization 26

2.4 Durations, using time literals 28
2.5 Sequences: not quite arrays 29

Basic sequence declaration and access (sizeof) 29 ■ Sequence 
creation using ranges ([..], step) 30 ■ Sequence creation using 
slices ( [..<] ) 31 ■ Sequence creation using a predicate 32 
Sequence manipulation (insert, delete, reverse) 32 ■ Sequences, 
behind the scenes 34

2.6 Autoupdating related data, with binds 34
Binding to variables (bind) 35 ■ Binding to bound variables 36 
Binding to a sequence element 36 ■ Binding to an entire sequence 
(for) 37 ■ Binding to code 37 ■ Bidirectional binds (with 
inverse) 38 ■ The mechanics behind bindings 39 ■ Bound 
functions (bound) 40 ■ Bound object literals 42

2.7 Working nicely with Java 43
Avoiding naming conflicts, with quoted identifiers 43 ■ Handling 
Java native arrays (nativearray of) 44

2.8 Summary 45

3 JavaFX Script code and structure 46
3.1 Imposing order and control with packages  

(package, import) 47
3.2 Developing classes 48

Scripts 48 ■ Class definition (class, def, var, function, this) 49 
Object declaration (init, postinit, isInitialized(), new) 52 ■ Object 
declaration and sequences 54 ■ Class inheritance (abstract, 
extends, override) 55 ■ Mixin inheritance (mixin) 58 
Function types 61 ■ Anonymous functions 62 ■ Access 
modifiers (package, protected, public, public-read, public-init) 64
    

  

www.allitebooks.com

http://www.allitebooks.org


CONTENTS ix
3.3 Flow control, using conditions 67
Basic conditions (if, else) 67 ■ Conditions as expressions 68 
Ternary expressions and beyond 69

3.4 Sequence-based loops 70
Basic sequence loops (for) 70 ■ For loops as expressions 
(indexof) 71 ■ Rolling nested loops into one expression 71 
Controlling flow within for loops (break, continue) 72 ■ Filtering 
for expressions (where) 73

3.5 Repeating code with while loops (while, break, continue) 73
3.6 Acting on variable and sequence changes, using triggers 74

Single-value triggers (on replace) 74 ■ Sequence triggers (on 
replace [..]) 75

3.7 Trapping problems using exceptions  
(try, catch, any, finally) 76

3.8 Summary 78

4 Swing by numbers 79
4.1 Swing time: Puzzle, version 1 82

Our initial puzzle data class 82 ■ Our initial GUI class 83 
Building the buttons 85 ■ Model/View/Controller, JavaFX Script 
style 87 ■ Running version 1 88

4.2 Better informed and better looking: Puzzle, version 2 88
Making the puzzle class clever, using triggers and function 
types 88 ■ Group checking up close: function types 90 ■ Firing 
the update: triggers 92 ■ Better-looking GUI: playing with the 
underlying Swing component 92 ■ Running version 2 94

4.3 Game on: Puzzle, version 3 95
Adding stats to the puzzle class 96 ■ Finishing off the puzzle 
grid GUI 98 ■ Adding a status line to our GUI with a 
label 101 ■ Running version 3 102

4.4 Other Swing components 103
4.5 Bonus: using bind to validate forms 103
4.6 Summary 105

5 Behind the scene graph 106
5.1 What is a scene graph? 107

Nodes: the building blocks of the scene graph 108 ■ Groups: graph 
manipulation made easy 108
    

  

www.allitebooks.com

http://www.allitebooks.org


CONTENTSx
5.2 Getting animated: LightShow, version 1 109
Raindrop animations 109 ■ The RainDrop class: creating graphics from 
geometric shapes 110 ■ Timelines and animation (Timeline, 
KeyFrame) 112 ■ Interpolating variables across a timeline (at, tween, 
=>) 113 ■ How the RainDrop class works 115 ■ The LightShow class, 
version 1: a stage for our scene graph 115 ■ Running version 1 118

5.3 Total transformation: LightShow, version 2 118
The swirling lines animation  118 ■ The SwirlingLines class: 
rectangles, rotations, and transformations 119 ■ Manipulating 
node rendering with transformations 121 ■ The LightShow class, 
version 2: color animations 124 ■ Running version 2 127

5.4 Lost in translation? Positioning nodes in the scene graph 128
5.5 Bonus: creating hypertext-style links 129
5.6 Summary 130

6 Moving pictures 132
6.1 Taking control: Video Player, version 1 134

The Util class: creating image nodes 134 ■ The Button class: scene 
graph images and user input 135 ■ The GridBox class: lay out 
your nodes 140 ■ The Player class, version 1 142 ■ Running 
version 1 144

6.2 Making the list: Video Player, version 2 145
The List class: a complex multipart custom node 146 ■ The 
ListPane class: scrolling and clipping a scene graph 149 ■ Using 
media in JavaFX 152 ■ The Player class, version 2: video and 
linear gradients 154 ■ Creating varying color fills with 
LinearGradient 159 ■ Running version 2 161

6.3 Bonus: taking control of fonts 161
6.4 Summary 163

7 Controls, charts, and storage 165
7.1 Comments welcome: Feedback, version 1 166

The Record class: a bound model for our UI 167 ■ The Feedback class: 
controls and panel containers 168 ■ Running version 1 175

7.2 Chart topping: Feedback, version 2  175
Cross-platform persistent storage 176 ■ How Storage manages its 
files 179 ■ Adding pie and bar charts 180 ■ Taking control of 
chart axes 187 ■ Other chart controls (area, bubble, line, and 
scatter) 188 ■ Running version 2 190
    

  



CONTENTS xi
7.3 Bonus: creating a styled UI control in JavaFX 190
What is a stylesheet? 191 ■ Creating a control: the Progress 
class 192 ■ Creating a skin: the ProgressSkin class 193 
Using our styled control with a CSS document 196 ■ Further CSS 
details 199

7.4 Summary 200

8 Web services with style 202
8.1 Our project: a Flickr image viewer 203

The Flickr web service 204 ■ Getting registered with Flickr 204

8.2 Using a web service in JavaFX 205
Calling the web service with HttpRequest 205 ■ Parsing XML 
with PullParser 208 ■ A recap 212 ■ Testing our web service 
code 212

8.3 Picture this: the PhotoViewer application 213
Displaying thumbnails from the web service: the GalleryView 
class 214 ■ The easy way to animate: transitions 220 ■ The 
main photo desktop: the PhotoViewer class 221 ■ Running the 
application  228

8.4 Size matters: node bounds in different contexts 228
8.5 Summary 229

9 From app to applet 230
9.1 The Enigma project 231

The mechanics of the Enigma cipher 231

9.2 Programmer/designer workflow:  
Enigma machine, version 1  232

Getting ready to use the JavaFX Production Suite 233 
Converting SVG files to FXZ 234 ■ The Rotor class: the heart of the 
encryption 236 ■ A quick utility class 238 ■ The Key class: 
input to the machine 239 ■ The Lamp class: output from the 
machine 241 ■ The Enigma class: binding the encryption engine 
to the interface 243 ■ Running version 1 246 ■ Shortcuts 
using NetBeans, Photoshop, or Illustrator 246

9.3 More cryptic: Enigma machine, version 2  247
The Rotor class, version 2: giving the cipher a visual presence 248 
The Paper class: making a permanent output record 251 ■ The 
Enigma class, version 2: at last our code is ready to 
encode 253 ■ Running version 2 256
    

  



CONTENTSxii
9.4 From application to applet 257
The Enigma class: from application to applet 257 ■ The JavaFX 
Packager utility 259 ■ Packaging up the applet 260 
Dragging the applet onto the desktop 263

9.5 Bonus: Building the UI in an art tool 266
9.6 Summary 268

10 Clever graphics and smart phones 270
10.1 Amazing games: a retro 3D puzzle  271

Creating a faux 3D effect 272 ■ Using 2D to create 3D 273

10.2 The maze game 274
The MazeDisplay class: 3D view from 2D points 274 ■ The Map class: 
where are we? 282 ■ The Radar class: this is where we are 284 
The Compass class: this is where we’re facing 286 ■ The ScoreBoard 
class: are we there yet? 288 ■ The MazeGame class: our 
application 289 ■ Running the MazeGame project 291

10.3 On the move: desktop to mobile in a single bound 291
Packaging the game for the mobile profile 292 ■ Running the 
mobile emulator 293 ■ Emulator options 295 ■ Running the 
software on a real phone 295

10.4 Performance tips 297
10.5 Summary 298

11 Best of both worlds: using JavaFX from Java 300
11.1 Different styles of linking the two languages 301
11.2 Adventures in JavaFX Script 301

Game engine events 303 ■ Calling the JavaFX Script event code 
from Java 305

11.3 Adding FX to Java 308
The problem with mixing languages 309 ■ The problem solved: an 
elegant solution to link the languages 309 ■ Fetching the JavaFX 
Script object from within Java 311

11.4 Summary 313

appendix A Getting started 315
appendix B JavaFX Script: a quick reference 323
appendix C Not familiar with Java? 343
appendix D JavaFX and the Java platform 350

index 353
    

  



preface
I suppose for many it was just another unremarkable mid-May Wednesday; certainly I 
don’t recall the weather making any effort to surprise. What might have made the day 
slightly memorable for some, perhaps, was that Manchester United was playing Chel-
sea in the final of the ultra-prestigious soccer European Champions League. A couple 
of days earlier I’d returned from a few weeks’ sampling of random pubs and music 
clubs in North America, starting in Los Angeles (actually, starting in Dublin, Ireland, 
but I’ll not complicate the story) and ending in Vancouver. Now I sat in front of my 
TV, hoping, somewhat optimistically, for a 3–0 destruction of United, to round off the 
perfect holiday.

 And that’s when the phone rang.
 Mike Stephens, associate publisher at Manning Publications, was on the other end. 

Earlier that day he’d emailed me to request a one-to-one, and, bang!, on the agreed 
time, there he was! Over the next 60 minutes or so I hardly noticed any of the game. 
We talked about Java and the way the industry was going, and inevitably the topic 
drifted toward JavaFX. At that time JavaFX was still in an embryonic state: features 
were being added, evaluated, and then modified or dropped. Anything and every-
thing could change with each prototype release. Yet, to me at least, the ideas behind 
JFX showed great promise. If enough backing was put behind the project, and with a 
fair wind to guide it, I thought JavaFX had the potential to really shake up the whole 
front-end (user-facing) rich internet application market. With those sentiments in 
mind, some weeks earlier, I’d blogged about my early experiences—good and bad—
with the platform on java.net.
xiii

    

  



PREFACExiv
 I’ve always had an interest in computer graphics. I consider myself fortunate to 
have been born at just the right time to catch the wave of 8-bit computers that 
swamped the market in the early 1980s. The Commodore 64 was the first computer I 
owned, a machine with truly overwhelming potential and decidedly underwhelming 
documentation. Thankfully the version of BASIC that shipped with the C64 was only 
half finished—I say thankfully, because it meant wannabe programmers like me had no 
alternative but to learn the mystic black arts of machine code hacking and metal bash-
ing (programming the graphics and sound chips directly).

 As the 8-bit era gave way to the 16-bit era and then the 32-bit era, graphics pro-
gramming became ever more removed from physical hardware. Bashing the metal was 
discouraged in favor of multiple layers of software abstraction. Not that I objected; I 
understood why these changes were necessary, but they did take all the fun out of pro-
gramming. Compared to the instant gratification of the poke’n’peek 8-bit days, modern 
graphics programming was more like a huge exercise in complex logistics.

 Scene graph-based graphics systems put the immediacy back into UI program-
ming: the coder no longer worries about how or when the screen will update, just 
what goes where and how it should all animate. Yet I considered that only part of the 
solution. None of the popular programming languages was specifically designed to 
tackle the unique circumstances in graphics programming. When the likes of Java or 
C# did introduce new language features, they tended to be for the benefit of web 
frameworks or database programming, not pixel pushing.

 But JavaFX was different. It was a clear—and unashamed—attempt to build a prod-
uct optimized for slick graphics and media. Not only did it use a scene graph, but it 
had a programming language tailor-made for creating modern UIs and animation. 
The perfect marriage of these ideas, for me, was what really set JavaFX apart. Some-
one, somewhere, cared about coding beautiful UIs as much as I did and wanted to 
make it fun again!

 Suffice to say, by the time the phone call ended, Mike had talked me into writing a 
book about JavaFX—although, to be honest, I didn’t really need much persuasion. 
Oh, and Manchester United beat Chelsea, 6–5, on sudden death penalties. I guess you 
can’t have everything!
    

  



acknowledgments
Let me start with a big thank you to the people at Manning, for their professional and 
ever-courteous guidance as this book evolved. They include Marjan Bace, Tom Cirtin, 
Steven Hong, Elizabeth Martin, Nermina Miller, Mary Piergies, Linda Recktenwald, 
Gordan Salinovic, Maureen Spencer, Mike Stephens, and Karen Tegtmeyer. No doubt 
there were many others, through whose hands the manuscript passed during its jour-
ney from pixels to paper—I am grateful to you all for your support, your trust in me as 
a writer, and your patience.

 Thanks also to Jasper Potts and Brian Goetz, of the JavaFX team at Sun Microsys-
tems, whose invaluable corrections and clarifications helped improve the text. Guys, 
I’m even prepared to forgive the breaking changes the team introduced with each 
revision, requiring me to rewrite parts of existing chapters several times!

 Special thanks, and possibly a medal of valor, must go to Jonathan Giles, who man-
aged a technical proofreading of the manuscript, despite my best efforts to undo him 
by shuffling bits of the chapters around. Congrats, Jonathan, on joining Sun’s 
JFX team!

 Thanks also to the following reviewers who read the manuscript at different stages 
of its development for their feedback and comments: Jeremy Anderson, Horaci 
Macias Viel, Peter Johnson, Valentin Crettaz, Carol McDonald, Kevin Munc, Kenneth 
McDonald, Tijs Rademakers, Timothy Binkley-Jones, Edmon Begoli, Riccardo 
Audano, Sean Hogg, Reza Rahman, and Carl Dea.

 And finally, a quick mention to Sally Lupton, whose photos grace some of the fig-
ures in chapter 8, and the MEAP readers who suggested ideas and corrections on the 
xv

    

  



ACKNOWLEDGMENTSxvi
book’s forum. They include Pradeep Bashyal, Dirk Detering, user EdZilla, Raul Guer-
rero, Joshua Logan, Jerry Lowery, Mike Mormando, Thomas Schütt, Pete Siemsen, 
user swvswvswv, and Kendrick Wilson. Hope you enjoy the finished product, guys.

 Anyone I’ve forgotten, consider yourself thanked, and feel free to pencil your 
name in here: ____________.
    

  



about this book
Perhaps it’s best to start by explaining one thing this book categorically is not: JavaFX in 
Action is not a retread of readily available online documentation. If you want that kind 
of thing, no doubt other books will suffice. In the age of search engines and IDEs with 
context-sensitive help, a complete list of functions for a given class is never more than 
a few keystrokes away. API documentation is plentiful—what’s usually lacking is an expla-
nation of how the various classes fit together, and interact, to solve particular problems.

 This book seeks to teach JavaFX from first principles through practical examples 
instead of merely repackaging API documentation. The opening third (chapters 1 to 3) 
introduces the platform and the JavaFX Script language, while the remaining two-thirds 
(chapters 4 to 11) use a project-driven approach to study the JavaFX APIs.

 The overriding theme of the book is cool ways to learn a cool technology. The projects 
are fun, the text permits itself occasional flashes of humor (without being overly flip-
pant), and the problem/solution format brightens up even the most mundane parts 
of the API. But the text doesn’t shy away from hard-nosed technical detail when neces-
sary: if you want to understand why, and not just how, this is the book for you.

 JavaFX is a brash, new, energetic, and entertaining technology—this book attempts 
to capture that spirit: an invaluable desktop companion, alongside the official API
documentation.

Project structure
Each project chapter begins by outlining an application with specific needs and chal-
lenges and then shows how to develop the code to meet those needs. At the end of the 
chapter the reader has a working program that doubles as a framework for further 
xvii

    

  



ABOUT THIS BOOKxviii
experimentation on the topics covered in the chapter. The project types range from 
puzzle games to data-driven forms. Some chapters also contain mini-bonus projects, 
extending the techniques of the main project into a business-oriented context when 
appropriate or covering ad hoc related topics.

 Although each chapter stands as a tutorial in its own right, the book as a whole is 
designed to slowly build competence with core JavaFX tools, classes, and techniques. 
Early chapters use only simple scene graph structures (the data determining what’s 
drawn on screen), but slowly the complexity builds, chapter on chapter, as the reader 
acquires more familiarity with scene graph code.

Who should read this book?
JavaFX in Action requires prior knowledge of software development. A familiarity with 
Java would be very useful, although not absolutely necessary. The book does not cover 
IDEs or other development tools (except if they are specifically part of the JavaFX SDK
or associated packages), but it does contain the URLs of tutorials and other resources 
that may be of interest to users of specific IDEs or tools.

 Prior experience with graphics and animation is not required, although a familiar-
ity with programs such as Adobe Photoshop, Adobe Illustrator, or Inkscape would be 
handy if you want to adapt some of the code demonstrated in later chapters to your 
own projects.

Roadmap
Chapter 1 acts as an introduction to the world of rich internet applications and 
explains JavaFX’s place within it. This chapter briefly compares JavaFX to its main 
commercial rivals and shows a couple of code examples as a taster.

 Chapters 2 and 3 introduce the JavaFX Script language, using short and to-the-
point examples to demonstrate each syntax variant and language feature.

 Chapter 4 is the first project chapter, focusing on practicing newfound JavaFX
Script skills (like binds and triggers) to build a Model/View/Controller–based appli-
cation. The project shows how to use Swing from within JavaFX. The bonus project 
looks at using binds to validate a form.

 Chapters 5 and 6 introduce scene graph coding: animation, layouts, effects, mouse 
events, and node manipulation. Chapter 6 also covers video playback, while its bonus 
project explains how to embed custom fonts into a JFX application.

 Chapter 7 looks specifically at building business-centric applications, using JavaFX’s 
standard chart and UI control libraries. This chapter also covers device-agnostic persis-
tent storage, and the bonus project deals with writing your own controls.

 Chapters 8 considers web services, parsing data formats, and off-the-shelf anima-
tion classes.

 Chapters 9 and 10 deal with writing cross-platform applications for web applets 
and cell phones. Chapter 9 also looks at the designer/programmer workflow and con-
siders how to import designer artwork into JavaFX applications and manipulate it. 
    

  



ABOUT THIS BOOK xix
 Chapter 11 is a short chapter on using JavaFX from within a Java program.
 Appendix A tackles what to download and install to develop JavaFX code, includ-

ing IDE plug-ins. It also provides URLs of useful resources.
 Appendix B is a JavaFX Script reference, with fragments of code demonstrating all 

the syntax patterns and conventions.
 Appendixes C and D provide background material for readers unfamiliar with the 

Java platform or whose programming experience may be limited (for example, some-
one whose primary skills lie in graphic design, not full-time programming).

 When appropriate, the text may briefly mention other topics or techniques as they 
relate to the problems being solved in a given section. Consult the table of contents or 
the index for an indication of whether specific topics are covered.

Typographical conventions
■ Courier is used for listings, language keywords, class names, variable names, 

function names, and any other identifiers (elements the JavaFX Script compiler 
would recognize) relating directly to the source code.

■ Faint courier in listings represents code unchanged from a previous revision. 
Because some projects develop their code over more than one revision, this 
allows the reader to quickly see the differences between a new version of a list-
ing and its previous incarnation.

■ Bold courier in listings is used to annotate source code edits made for the ben-
efit of the manuscript. For example, large blocks of repeating code might be 
replaced by a comment, in bold, explaining that the listing has been summa-
rized for the sake of readability.

Source code
The source code for each project chapter and the language introduction chapters 
are available for download as an archive from the book’s website, at http://
www.manning.com/JavaFXinAction.

 Some projects are developed in stages, over successive versions, throughout the 
course of a chapter. When this is the case, the code for each individual version is pre-
sented separately and complete, in a version subdirectory within the chapter’s main 
directory. Required resource files for each version are also bundled correctly inside 
each version’s subdirectory.

 The source code archive does not contain IDE-specific project files but is laid out 
in such a way as to make it easy to import into an IDE.

 Source code updates
JavaFX is a fast-moving technology, each release not necessarily backward compatible 
with existing releases. This book covers JavaFX 1.2, the first version featuring a full 
complement of standard UI libraries, which should limit breaking changes in later 
releases.
    

  

http://www.manning.com/JavaFXinAction
http://www.manning.com/JavaFXinAction


ABOUT THIS BOOKxx
 In order for readers not to be caught out by updates, for a reasonable period after 
publication, the author will post revised source code for new JavaFX releases, along with 
brief notes updating each chapter, to his site at http://www.jfxia.com/. The updates 
will also be available from the publisher's website at http://www.manning.com/
JavaFXinAction.

Author Online
Purchase of JavaFX in Action includes free access to a private web forum run by Manning 
Publications where you can make comments about the book, ask technical questions, 
and receive help from the author and from other users. To access the forum and sub-
scribe to it, point your web browser to http://www.manning.com/JavaFXinAction. This 
page provides information on how to get on the forum once you are registered, what 
kind of help is available, and the rules of conduct on the forum. It also provides links 
to the source code for the examples in the book, errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful 
dialog between individual readers and between readers and the authors can take 
place. It is not a commitment to any specific amount of participation on the part of 
the author, whose contribution to the Author Online remains voluntary (and 
unpaid). We suggest you try asking the author some challenging questions lest his 
interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.
    

  

http://www.jfxia.com/
http://www.manning.com/JavaFXinAction
http://www.manning.com/JavaFXinAction
http://www.manning.com/JavaFXinAction


about the title 
By combining introductions, overviews, and how-to examples, the In Action books are 
designed to help learning and remembering. According to research in cognitive sci-
ence, the things people remember are things they discover during self-motivated 
exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for 
learning to become permanent it must pass through stages of exploration, play, and, 
interestingly, retelling of what is being learned. People understand and remember 
new things, which is to say they master them, only after actively exploring them. 
Humans learn in action. An essential part of an In Action guide is that it is example-
driven. It encourages the reader to try things out, to play with new code, and explore 
new ideas.

 There is another, more mundane, reason for the title of this book: our readers are 
busy. They use books to do a job or to solve a problem. They need books that allow 
them to jump in and jump out easily and learn just what they want just when they want 
it. They need books that aid them in action. The books in this series are designed for 
such readers.
xxi

    

  



about the cover illustration
The figure on the cover of JavaFX in Action is a “carny” which is a slang term for a car-
nival or fun fair employee. The word carnival means a time of merrymaking, and fairs 
with animals, magicians, jugglers, rides, and booths selling trinkets as well as food and 
drink have been popular in Europe and America for centuries. 

 The illustration is taken from a 19th century edition of Sylvain Maréchal’s four-
volume compendium of regional dress customs published in France. Each illustration 
is finely drawn and colored by hand. The rich variety of Maréchal’s collection reminds 
us vividly of how culturally apart the world’s towns and regions were just 200 years ago. 
Isolated from each other, people spoke different dialects and languages. In the streets 
or in the countryside, it was easy to identify where they lived and what their trade or 
station in life was just by what they were wearing.

 Dress codes have changed since then and the diversity by region, so rich at the 
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity 
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers 
based on the rich diversity of regional life of two centuries ago, brought back to life by 
Maréchal’s pictures.
xxii

    

  



Welcome to the future: 
 introducing JavaFX
“If the only tool you have is a hammer, you tend to see every problem as a nail,” 
American psychologist Abraham Maslow once observed.

 Language advocacy is a popular pastime with many programmers, but what 
many fail to realize is that programming languages are like tools: each is good at 
some things and next to useless at others. Java, inspired as it was by prior art like C 
and Smalltalk, sports a solid general-purpose syntax that gets the job done with the 
minimum of fuss in the majority of cases. Unfortunately, there will always be those 
areas that, by their very nature, demand something a little more specialized. Graph-
ics programming has typically been one such area.

 Graphics programming used to be fun! Early personal computer software 
sported predominantly character-based UIs. Bitmap displays were too expensive, 

This chapter covers
■ Reviewing the history of the internet-based application
■ Asking what promise DSLs hold for UIs
■ Looking at JavaFX Script examples
■ Comparing JavaFX to its main rivals
1

    

  



2 CHAPTER 1 Welcome to the future: introducing JavaFX
although some computers offered the luxury of hardware sprites. For the program-
mer, the simple act of poking values into RAM gave instant visual gratification.

 These days things are a lot more complicated; we have layers of abstraction separat-
ing us from the hardware. Sure, they give us the wonders of scrollbars, rich text edi-
tors, and tabbed panes, but they also constrain us. The World Wide Web raised the 
bar; users now expect glossier visuals, yet the graphical toolkits used to create desktop 
software are little evolved from the days of the first Macintosh or Amiga.

 But it’s not just the look of software that has been changed by the web. Increasingly 
data is moving away from the hard disk and onto the internet. Our tools are also starting 
to move that way, yet the fledgling attempts to build online applications using HTML
and Ajax have resulted in nothing more than pale imitations of their desktop cousins. 
At the same time, consumer devices like phones and TV set top boxes are getting 
increasingly sophisticated in terms of their UI, and faster wireless networks are reaching 
out to these devices, allowing applications to run in places previously unheard of.

 If only there were a purpose-built tool for writing the next generation of internet 
software, one that could serve up the same rich functionality of a desktop application, 
yet with drop-dead-gorgeous visuals and rich media content within easy reach, deliv-
ered to whatever device (PC, television, or smart phone) we wanted to work from today.

 Sound too good to be true? Let me introduce you to JavaFX!

1.1 Introducing JavaFX
JavaFX is the name of a family of technologies for developing visually rich applications 
across a variety of devices. Version 1.0 was launched in December 2008, focusing on 
the desktop and web applets. Version 1.1 arrived a couple of months later, adding 
phone support to the mix, and by summer 2009 version 1.2 was available, sporting a 
modern UI toolkit. Later editions promise to expand the platform’s reach even fur-
ther, onto TV devices, Blu-ray disc players, and possibly even personal video recorders, 
plus further enhance its desktop support with more next-gen UI controls.

 The JavaFX APIs have a radically different way of handling graphics, known as retained 
mode, shifting focus away from the pixel-pushing immediate mode (à la the Java2D library 
used by Swing), toward a more structured approach that makes animation cleaner and 
easier. At JavaFX’s center is a major new programming language, JavaFX Script, built 
from the ground up for modeling and animating multimedia applications. JavaFX
Script is compiled and object oriented, with a syntax independent of Java but capable 
of working with Java class files. Together JavaFX Script (the language) and JavaFX (the 
APIs and tools) create a modern, powerful, and convenient way to create software.

1.1.1 Why do we need JavaFX Script? The power of a DSL

A very good question: why do we need yet another language? The world is full of pro-
gramming languages—wouldn’t one of the existing languages do? Perhaps JavaScript, 
or Python, or Scala? Indeed, what’s wrong with Java? Certainly JavaFX Script makes 
writing slick graphical applications easier, but is there more to it than that?

 What makes graphics programming such an ill fit for modern program- 
ming languages? There are many problems; ask a dozen experts and you’ll get 
    

  



3Introducing JavaFX
thirteen answers, but let me (your humble author) risk suggesting a couple of prime 
suspects:

■ UIs generally require quite large nested data structures: trees of elements, each 
providing a baffling array of configurable options and behaviors. Figure 1.1 
demonstrates the hierarchy within a typical desktop application: controls laid 
out within panels, panels nested within other panels (tabbed panes, for exam-
ple), ultimately held within windows. Procedural languages like to work in 
clearly delineated steps, but this linear pattern conflicts with the tree pattern 
inherent in most GUIs.

■ Graphics code tends to rely heavily on concurrency—processes running in par-
allel. Modern UI fashions have amplified this requirement, with several transi-
tion effects often running within a single interface simultaneously. The 
boilerplate code demanded by many languages to create and manage these ani-
mations is verbose and cumbersome.

Perhaps you can think of other problems, but the above two I mentioned (at least in 
my experience) seem to create more than enough trouble between them. It’s deep, 
fundamental problems like these that a domain-specific language can best address.

Figure 1.1 A complex GUI typical of modern desktop applications. Two windows host scrolling 
control palettes, while another holds an editable image and rulers.
    

  



4 CHAPTER 1 Welcome to the future: introducing JavaFX
A domain-specific language (DSL) is a programming language designed from the 
ground up to meet a particular set of challenges and solve a specific type of problem. 
The language at the heart of JavaFX, JavaFX Script, is an innovative DSL for creating 
visually rich UIs. It boasts a declarative syntax, meaning the code structure mirrors the 
structure of the interface. Associated UI components are kept in one place, not strewn 
across multiple locations. Simple language constructs soothe the pain of updating and 
animating the interface, reducing code complexity while increasing productivity. The 
language syntax is also heavily expression-based, allowing tight integration between 
object models and the code that controls them.

 In layperson’s terms, JavaFX Script is a tool custom made for UI programming.
 But JavaFX isn’t just about slick visuals; it’s also an important weapon in the arms 

race for the emerging Rich Internet Application (RIA) market. But what is an RIA?

1.1.2 Back to the future: the rise of the cloud

Douglas Adams wrote, “I suppose the best way to find out where you come from is to 
find out where you’re going, and then work backwards.”

 Sometimes we become so engrossed in the here and now, we forget to stop and 
consider how we arrived at where we are. We know where we want to go, but can our 
past better help us get there?

 In the pre-internet age, software was installed straight onto the hard drive. If sud-
denly overcome by an urge to share with friends your latest poetic masterpiece, you 
needed at your disposal both the document file and the software to open it. Chances 
are neither would be available. Your friends might be grateful, but clearly this was a 
problem needing a solution.

 The World Wide Web was a small step toward that solution. Initially, applications
were nothing more than query/response database lookups, but web mail changed all 
that (figure 1.2). Web mail marked a fundamental shift in the relationship between 

Figure 1.2 Google’s Gmail is an example of a website application that attempts 
to mimic the look and function of a desktop application.
    

  



5Introducing JavaFX
site and visitor. Previously the site held content that the visitor browsed or queried, but 
web mail sites supplied no content themselves, relying instead on content from (or 
for) the user. The role of the site had moved from information source to storage 
depot, and the role of the visitor from passive consumer to active producer.

 A new generation of websites attempted to ape the look and feel of traditional 
desktop software, earning the moniker “Rich Internet Application” after Macromedia 
(subsequently purchased by Adobe) coined the term in a 2002 white paper noting the 
transition of applications from the desktop onto the web. By late 2007 the term cloud 
computing was in common use to describe the anticipated move from the hard disk to 
the network for storing personal data such as word processor documents, music files, 
or photos.

 Despite the enthusiasm, progress was slow and frustrating. Ajax helped paper over 
some of the cracks, but at its heart the web was designed to show page-based content, 
not run software. Web content is poured into the window, left to right down the page, 
echoing the technology’s publishing origins, while input is predominantly restricted 
to basic form components. Mimicking the layout and functionality of a desktop appli-
cation inside a document-centric environment was not easy, as numerous web devel-
opers soon discovered (figure 1.3).

Figure 1.3 Google Docs runs inside a browser and has a much simpler GUI than Microsoft 
Office or OpenOffice.org. (Google Docs shown.)
    

  



6 CHAPTER 1 Welcome to the future: introducing JavaFX
At the bleeding edges of the software development world some programmers dared to 
commit heresy; they asked whether the web browser was really the best platform for cre-
ating RIAs. Looking back they saw a wealth of old desktop software with high-fidelity UIs 
and sophisticated interactivity. But this software used old desktop toolkits, bound firmly 
to one hardware and OS platform. Web pages could be loaded dynamically from the 
internet on any type of computer; web RIAs were nimble, yet they lacked any capacity 
for sophistication.

1.1.3 Form follows function: the fall and rebirth of desktop Java

From its first release in 1995 Java had featured a powerful technology for deploying 
rich applications within a web page. So called Java applets could be placed on any 
page, just like an image, and ran inside a secure environment that prevented unau-
thorized tampering with the underlying operating system (figure 1.4). While applets 
boosted the visibility of the Java brand, the idea initially met with mixed success. The 
applet was a hard-core programming technology in a world dominated by artists and 
designers, and while many page authors drooled over Java’s power, few understood 
how to install an applet onto their own site, let alone how to create one from scratch.

 Java applet’s main rival was Macromedia Flash, an animation and presentation tool 
boasting a more designer-friendly development experience. Once Macromedia’s plug-
in began to gain ground, the writing was on the wall for the humble Java applet. Already 
Sun was starting to ignore user-facing Java in favor of big back-end systems running 
enterprise web applications. The Java applet vanished almost as quickly as it arrived.

Figure 1.4  
An applet (the game 
3D-Blox) runs inside 
a web page, living 
alongside other web 
content like text and 
images.
    

  



7Introducing JavaFX
Fast forward 10 years and the buzz was once again about online applications: RIAs and 
cloud computing. Yet Ajax and HTML were struggling to provide the kind of refined 
UI many now wanted, and Flash’s strengths lay more in animation than solid functional
GUIs and data manipulation.

 Could Java be given a second chance?
 Java had proved itself in the enterprise space, amassing many followers in the soft-

ware community and a vast archive of third-party libraries. Yet Java still had one major 
handicap—on the desktop it remained a tool for cola-swigging, black-T-shirt-wearing 
code junkies, not trendy cappuccino-sipping, goatee-stroking artists. If Java was to be 
the answer to the RIA dilemma, it needed to be more Leonardo da Vinci and less Bill 
Gates (figure 1.5).

 In 2005 Sun Microsystems acquired SeeBeyond Technology Corporation, and in 
the process it picked up a talented software engineer by the name of Chris Oliver. Oli-
ver’s experimental F3 (Form Follows Function) programming language sought to 
make GUI programming easier by designing the syntax around the specific needs of 
UI programming. As they pondered how best to exploit the emerging RIA market, the 
folks at Sun could surely not have failed to note the potential of combining the exist-
ing Java platform with Oliver’s new graphics power tool. So in 2007, at the JavaOne 
Conference (the community’s most important annual gathering), F3 was given center 
stage as Java’s beachhead into the new RIA market.

 And as if to demonstrate its importance, F3 was blessed with a sexy new name: JavaFX!

Figure 1.5 The StudioMOTO demo, one of the original JavaFX examples, shows off a glossy UI with 
animation, movement, and rotating elements all responding to the user’s interaction.
    

  

www.allitebooks.com

http://www.allitebooks.org


8 CHAPTER 1 Welcome to the future: introducing JavaFX
1.2 Minimum effort, maximum impact: a quick shot of JavaFX
It’s hard to visualize the difference a 
new technology will make to your 
working life from a description alone. 
What’s often needed is a short but 
powerful example of what’s possible. 
A picture is worth a thousand words, 
and so in lieu of a few pages of text, I 
give you figure 1.6.

 Six shaded balls bounce smoothly 
up and down onto a reflective shaded 
surface, as the desktop is exposed 
behind the balls. The window has 
no title bar (the title bar you see 
belongs to the text editor behind), 
but clicking inside its boundary will 
close the window and exit the bounc-
ing ball application.

 Now, the sixty-four-thousand-dollar question: how many lines of code does it take 
to construct an application like this? Consider what’s involved: multiple objects mov-
ing independently, circular shading on each ball, linear shading on the ground, a 
reflection effect, transparency against the desktop, and a click event handler. If you 
said “less than 70,” then you’d be right! Indeed, the whole source file is only 1.4k in 
size and weighs in at a mere 69 lines.  Don’t believe me? Take a look at listing 1.1.

import javafx.animation.*;
import javafx.stage.*;
import javafx.scene.*;
import javafx.scene.effect.*;
import javafx.scene.shape.*;
import javafx.scene.input.*;
import javafx.scene.paint.*;

var balls = for(i in [0..<6]) {
    var c = Circle {
        translateX: (i*40)+90;  translateY: 30;
        radius: 18;
        fill: RadialGradient {
            focusX: 0.25;  focusY:0.25;
            proportional: true;
            stops: [
                Stop { offset: 0; color: Color.WHITE; } ,
                Stop { offset: 1; color: Color.BLACK; }
            ]
        };
    }
}

Listing 1.1 The bouncing ball demo

Figure 1.6 The bouncing balls demo, with color 
shading, reflection effect, and a shaped window 
(that’s a text editor behind, with source code loaded, 
demonstrating the app’s transparency).
    

  



9Minimum effort, maximum impact: a quick shot of JavaFX
Stage {
    scene: Scene {
        content: Group {
            content: [
                Rectangle {
                    width: 380;  height: 250;  
                    opacity: 0.01;
                    onMouseClicked: 
                        function(ev:MouseEvent) { FX.exit(); }
                } , balls
            ]
            effect: Reflection {
                fraction: 0.25;  topOffset: -18;
                topOpacity: 0.5;  bottomOpacity: 0.125;
            }
        }
        fill: LinearGradient {
            endX: 0;  endY: 1;  proportional: true;
            stops: [
                Stop { offset: 0.74;  color: Color.TRANSPARENT; } ,
                Stop { offset: 0.75;  color: Color.BLACK } ,
                Stop { offset: 1;  color: Color.GRAY }
            ]
        }
    };
    style: StageStyle.TRANSPARENT
};

Timeline {
    keyFrames: for(i in [0..<sizeof balls]) {
        KeyFrame {
            time: i*200ms;
            action: function() {
                Timeline {
                    repeatCount: Timeline.INDEFINITE;
                    autoReverse: true;
                    keyFrames: [
                        at (0s) { balls[i].translateY => 30 } ,
                        at (1s) { balls[i].translateY => 230 
                            tween Interpolator.EASEIN }
                    ]
                }.play();
            }            
        }
    }
}.play();

Since this is an introductory chapter, I’m not going to go into detail about how each 
part of the code works. Besides, by the time you’ve finished this book you won’t need 
an explanation of its mysteries, because you’ll already be writing cool demos of your 
own. Suffice to say although the code may look cryptic now, it’s all pretty straightfor-
ward once you know the few simple rules that govern the language syntax. Make a 
mental note, if you want, to check back with listing 1.1 as you read the first half of this 
book; you’ll be surprised at how quickly its secrets are revealed.
    

  



10 CHAPTER 1 Welcome to the future: introducing JavaFX
1.3 Comparing Java and JavaFX Script: “Hello JavaFX!”
So far we’ve discussed what JavaFX is and why it’s needed. We’ve looked at an example 
of JavaFX Script and seen that it’s very different from Java, but just how different? For 
a true side-by-side comparison to demonstrate the benefits of JavaFX Script over Java, 
we need to code the same program in both languages. Listings 1.2 and 1.3 do just that, 
and figure 1.7 compares them visually.

import javafx.scene.Scene;
import javafx.scene.text.*;
import javafx.stage.Stage;
Stage {
    title: "Hello World JavaFX"
    scene: Scene {
        content: Text {
            content: "Hello World!"
            font: Font { size: 30 }
            layoutX: 114
            layoutY: 45
        }
    }
    width:400  height:100
}

Listing 1.2 is a simple JavaFX Script program. Don’t panic if you don’t understand it 
yet–this isn’t a tutorial; we’re merely contrasting the two languages. The program 
opens a new frame on the desktop with “Hello World JavaFX” in the title bar and the 
legend “Hello World!” as the window contents. Perhaps you can already decipher a 
few clues as to how it works.

import javax.swing.*;
class HelloWorldJava {
    public static void main(String[] args) {
        Runnable r = new Runnable() {
            public void run() {
                JLabel l = new JLabel("Hello World!",JLabel.CENTER);
                l.setFont(l.getFont().deriveFont(30f));
                JFrame f = new JFrame("Hello World Java");
                f.getContentPane().add(l);
                f.setSize(400,100);
                f.setVisible(true);
            }
        };
        SwingUtilities.invokeLater(r);
    }
}

The Java equivalent is presented in listing 1.3. It certainly looks busier, although actually 
it has been stripped back, almost to the point of becoming crude. The Java code is typical 
of GUIs programmed under popular languages like Java, C++, or BASIC. The frame and 

Listing 1.2 Hello World as JavaFX Script

Listing 1.3 Hello World as Java 
    

  



11Comparing JavaFX with Adobe AIR, GWT, and Silverlight
the label holding the “Hello World” legend 
are constructed and combined in separate 
discrete steps. The order of these steps does 
not necessarily tally with the structure of 
the UI they build; the label is created before 
its parent frame is created but added after.

 As the scale of the GUI increases, Java’s 
verbose syntax and disjointed structure 
(compared to the GUI structure) quickly 
become a handful, while JavaFX Script, a 
bit like the famous Energizer Bunny, can keep on going for far longer, thanks to its 
declarative syntax.

 For readers unfamiliar with the Java platform, appendix D provides an overview, 
including how the “write once, run anywhere” promise is achieved, the different edi-
tions of Java, and the versions and revision names over the years. Although JavaFX
Script is independent of Java as a language, it’s reliance on the Java runtime platform 
means background knowledge of Java is useful.

1.4 Comparing JavaFX with Adobe AIR, GWT, and Silverlight
JavaFX is not the only technology competing to become king of the RIA space: Adobe, 
Google, and Microsoft are all chasing the prize too. But how do their offerings com-
pare to JavaFX? Now that we’ve explored some of the concepts behind JavaFX, we’re 
in a better position to contrast the platform against its alleged rivals.

 Comparing technologies is always fraught with danger. Each technology is a multi-
faceted beast, and it’s impossible to sum up all the nuanced arguments in just a few 
paragraphs. Readers are encouraged to seek second opinions in deciding which tech-
nology to adopt.

1.4.1 Adobe AIR and Flex

Flex is a toolkit adding application-centric features to Flash movies, making it easier to 
write serious web apps alongside games and animations. AIR (Adobe Integrated Run-
time, originally codenamed Apollo) is an attempt to allow Flex web applications to 
become first-class citizens on the desktop. AIR programs can be installed just like regu-
lar desktop programs on a PC, Mac, or Linux computer, assuming the appropriate AIR
runtime has been installed beforehand. Using WebKit (the open source HTML/
JavaScript component), AIR provides a web-page-like shell in which HTML, JavaScript, 
Flex, Flash, and PDF content can interact. AIR has made it possible to transfer web 
programming skills directly onto the desktop, and Adobe plans to extend this concept 
to allow AIR programmers to target mobile devices as well.

1.4.2 Google Web Toolkit

Google Web Toolkit (GWT) is an open source attempt to smooth over the bumps in 
HTML/Ajax application development with a consistent cross-browser JavaScript library 
of desktop-inspired widgets and functions. It’s said that GWT started as an internal 

Figure 1.7 Separated at birth: “Hello World!” as 
a JavaFX application and as a Java application
    

  



12 CHAPTER 1 Welcome to the future: introducing JavaFX
Google project to help write sites like Gmail and Google Calendar (although which 
Google sites actually use GWT is unknown). GWT applications are coded in Java, com-
piled to JavaScript, and run entirely within the web browser. They can make use of 
optionally installed plug-ins, such as Gears, to provide offline support.

1.4.3 Microsoft Silverlight

With Silverlight, Microsoft is seeking to shift its desktop software prowess inside the 
browser. Silverlight is a proprietary browser plug-in for recent editions of Windows 
and Mac OS X. Linux is also covered via an open source project and a deal with Novell 
(licensing difficulties may exist for non-Novell Linux customers). Silverlight supports 
rich vector-based UIs, coded in .NET languages (like C#) and a UI markup language 
called XAML (Extensible Application Markup Language). Microsoft worked hard to 
create a fluid video/multimedia environment, with solid support for all the formats 
supported by its Windows Media framework. 

1.4.4 And by comparison, JavaFX

While other RIA technologies blur the line between desktop and browser, JavaFX
removes the distinction entirely. A single JavaFX application can move seamlessly 
(quite literally, by being dragged from the browser window) from one environment to 
the other. Desktop, applets, and smart phones can already be targeted, while Blu-ray 
and other TV devices are expected to join this list at a later date. With a common core 
across all environments, complemented by device-specific extensions, JavaFX lets us 
target every device or exploit the full power of a particular device.

 While other RIA technologies recycle existing languages, JavaFX Script is built from 
the ground up specifically for creating sophisticated UIs and animation. Studying 
common working methods found in UI software, the JavaFX team created a language 
around those patterns. The declarative syntax permits code and structure to be inter-
woven with a degree of ease not found in the bilingual approach of its rivals. Direct 
relationships can be defined between an object and the data or functions it depends 
on; the heavy lifting of model/view/controller is done for you. And because JavaFX
Script is compatible with Java classes, it has access to over a decade of libraries and 
open source projects.

 It’s true that the need to learn a new language may discourage some, but the 
reward is a much more powerful tool, shaped specifically for the job at hand. Picking 
the best tool can often mean the difference between success and failure, while hold-
ing onto our familiar tools for too long can sometimes put us at a disadvantage. The 
skill is in knowing when to embrace a new technology, and hopefully this section has 
helped clarify whether JavaFX is the right technology for you!

1.5 But why should I buy this book?
Good question—indeed, why buy a book at all? The APIs are documented online, and 
there are blogs aplenty guiding coders through that tricky first application.
    

  



13Summary
 This book specifically seeks not to regurgitate existing documentation, like so 
many programming tomes tend to do. You won’t find laborious enumerations of every 
variation of every shade of every nuance of every class. This book assumes you’re intel-
ligent enough to read the documentation for yourself, once pointed in the right 
direction; you don’t need it reprinted here. So what is in this book?

 The early chapters give a quick and entertaining (yet comprehensive) guide to the 
JavaFX Script language; then it’s straight into the projects! Each project chapter 
houses a self-contained miniapplication requiring specific skills and works from initial 
goals toward a solution in JavaFX. Successive projects reinforce acquired skills and add 
new ones. Concepts are demonstrated and explained in real-world scenarios; it’s an 
approach centered on common practices, solutions, and patterns, rather than merely 
ticking off every variation of, for example, a scene graph node or animated transition 
included in the API.

 The code in each chapter seeks to be ideas-rich but compact and fresh. What’s the 
point of page upon page of stuff the reader already saw in previous chapters? 
Although functional, each completed project leaves room for readers to experiment 
further, practicing newfound skills by adding features or polishing the UI with extra 
color blends and animations.

 For better or worse, the text attempts to remain agnostic of any particular IDE or 
tool, other than those shipped with the standard JavaFX SDK. Illustrated click-by-click 
guides for each IDE would be page hungry and offer little over the online tutorials 
already provided with (or for) each plug-in. Again, it’s about complementing available 
documentation, not reproducing it, leaving more room for JavaFX examples and 
advice, not IDE-specific tutorials. (This is, after all, JavaFX in Action not NetBeans in 
Action!) Relevant plug-in/IDE links are provided in the appendices.

 So, is this book for you? If you’re merely looking for a hard copy of the API docu-
mentation, perhaps not. But if you want something that goes deeper, exploring JavaFX
through real-world code, solving real-world problems, I hope you’ll find what you’re 
looking for in the pages to come.

1.6 Summary
This chapter has been an introduction to the world of JavaFX and JavaFX Script. We 
started by considering the power of domain-specific languages, designed specifically 
to meet the needs of particular tasks. Then we considered the rise of the RIA and the 
challenges in developing such applications using current browser-based technolo-
gies. We revisited Java’s disappointing track record on the desktop, particularly with 
lightweight internet applications like applets, but saw how this could change with the 
introduction of JavaFX to address a new generation of internet applications. We saw 
an example of JavaFX Script doing modestly impressive things in only a few dozen 
lines of code, and we reviewed side-by-side the differences in styles and size of Java 
and JavaFX Script source code. Finally, we considered how JavaFX stacks up against 
the apparent opposition.
    

  



14 CHAPTER 1 Welcome to the future: introducing JavaFX
 I hope this has been enough to grab your attention and fire your imagination, 
because in the next chapter we leave the theory behind and dive straight into the 
detail.

 Over the next couple of chapters we’ll tour the JavaFX Script language, with, I 
hope, plenty of nice surprises along the way. This will get us ready to tackle subse-
quent chapters, where we use practical miniprojects to demonstrate different aspects 
of JavaFX. (For those expert Java programmers who would prefer more of a whistle-
stop tour of the new language, appendix B acts as both a flash-card tutorial and 
an aide-mémoire).

 Before we move on, you will almost certainly want to take a detour to appendix A, 
which acts as a setup guide for downloading and installing JavaFX, plus getting your 
code to build. It also features some very useful JavaFX links for help and further read-
ing. Also, if you’re not a Java programmer, let me draw your attention to the crash 
course in object-oriented programming in appendix C and the introduction to the 
Java platform (and how JavaFX fits into it) in appendix D.

 So that’s the introduction out of the way. Are you excited? Well, I certainly hope 
so! Let the fun begin.

 

    

  



JavaFX Script 
 DATA AND VARIABLES
If chapter 1 has had the desired effect, you should be eager to get your hands dirty 
with code. But before we can start dazzling unsuspecting bystanders with our stun-
ning JavaFX visuals, we’ll need to become acquainted with Java FX Script, JavaFX’s 
own programming language. In this chapter, and the one that follows, we’ll start to 
do just that.

 In this chapter we will look at how variables are created and manipulated. JavaFX
Script has a lot of interesting features in this area, beyond those offered by languages 
like Java or JavaScript, such as sophisticated array manipulation and the ability to 
bind variables into automatic update relationships. By the end of this chapter you’ll 
understand how these features work, so in the next chapter we can explore how they 
integrate into standard programming constructs like loops, conditions, and classes. 

This chapter covers
■ Introducing JavaFX Script variables
■ Doing interesting things to strings
■ Getting linear, with ranges and sequences
■ Automating variable updates using binds
15

    

  



16 CHAPTER 2 JavaFX Script data and variables
 In writing this tutorial I’ve attempted to create a smooth progression through the 
language, with later sections building on the knowledge gleaned from previous read-
ing. This logical progression wasn’t always possible, and occasionally later detail 
bleeds into earlier sections. 

If you don’t fancy a full-on tutorial right now, and you consider yourself a 
good enough Java programmer, you might try picking up the basics of 
JavaFX Script from the quick reference guide in appendix B.

Each of the code snippets in this tutorial should be runnable as is. Many output to 
standard out, and when this is the case the console output is presented following the 
code snippet, in bold text.

 One final note: from now on I’ll occasionally resort to the familiar term JavaFX or 
JFX in lieu of the more formal language title. Strictly speaking, this is wrong (JavaFX is 
the platform and not the language), but you’ll forgive me if I err on the side of mak-
ing the prose more digestible, at the risk of annoying a few pedants. (You know who 
you are!)

2.1 Annotating code with comments
Before we begin in earnest, let’s look at JavaFX Script’s method for code commenting. 
That way you’ll be able to comment your own code as you play along at home during 
the sections to come. There’s not a lot to cover, because JavaFX Script uses the same 
C++-like syntax as many other popular languages (see listing 2.1).

// A single line comment.

/* A multi line comment.
   Continuing on this line.
   And this one too! */

/* Another multi line comment
 * in a style much preferred by
 * many programmers...
 */

That was short and sweet. Unlike listing 2.1, the source code in this book is devoid of 
inline comments, to keep the examples tight on the printed page (reducing the 
need to flip to and from multiple pages when studying a listing), but as you experi-
ment with your own code, I strongly recommend you use comments to annotate it. 
Not only is this good practice, but it helps your little gray cells reinforce your newly 
acquired knowledge.

 JavaFX Script also supports the familiar Javadoc comment format. These are specially 
formatted comments, written directly above class, variable, or function definitions, that 
can be turned into program documentation via a tool called javafxdoc. JavaFXDoc 
comments are multiline and begin with /**, the extra asterisk signaling the special 
JavaFXDoc format. All manner of documentation details can be specified inside one of 

Listing 2.1 JavaFX Script comments

QUICK START
    

  



17Data types
these comments; the available fields are listed on the OpenJFX project site (details of 
which can be found in appendix A).

 Now that you know how to write code the compiler ignores, let’s move on to write 
something that has an effect. We’ll begin with basic data types.

2.2 Data types
At the heart of any language is data and data manipulation. Numbers, conditions, and 
text are all typical candidates for data types, and indeed JavaFX Script has types to rep-
resent all of these. But being a language centered on animation, it also features a type 
to represent time.

 JavaFX Script’s approach to variables is slightly different than that of Java. Java 
employs a dual strategy, respecting both the high-level objects of object-orientation and 
the low-level primitives of bytecode, JavaFX Script has only objects. But that’s not to say 
it doesn’t have any of the syntactic conveniences of Java’s primitive types, as we’ll see 
in the following sections.

2.2.1 Static, not dynamic, types

Variables in JavaFX Script are statically typed, meaning each variable holds a given 
type of information, which allows only a compatible range of operations to be per-
formed on it. Strings will not, for example, magically turn themselves into numbers so 
we can perform arithmetic on them, even if these strings contain only valid number 
characters. In that regard they work the same way as the Java language.

 Java novices, or other curious souls, can consult appendix C for more on static ver-
sus dynamic variable types in programming languages.

2.2.2 Value type declaration 

Value types are the core building blocks for data in JavaFX Script, designed to hold 
commonplace data like numbers and text. Unlike Java primitives, JavaFX Script’s 
value types are fully fledged objects, with all the added goodness that stems from 
using classes.

Give reasons for your answer
There’s undoubtedly a certain resistance to source code commenting among pro-
grammers. It was ever thus! Comments acquired a bad name during the 1970s 
and 1980s, when the prevailing mood was for vast quantities of documentation 
about every variable and parameter. Pure overkill. I’d suggest the ideal use for com-
ments is in explaining the reasoning behind an algorithm. “Give reasons for your an-
swer,” as countless high school examination papers would demand. To the oft-heard 
complaint “my code is self-documenting,” I’d counter, “only to the compiler!” Justify-
ing your ideas in a line or two before each code “paragraph” is a useful discipline for 
double-checking your own thinking, with a bonus that it helps fellow coders spot when 
your code doesn’t live up to the promise of your comments.
    

  



18 CHAPTER 2 JavaFX Script data and variables
One thing making value types stand out from their object brethren is that special pro-
vision is made for them in the JavaFX Script syntax. Not sure what this means? Con-
sider the humble String class (java.lang.String) in Java: although just another 
class, String is blessed with its own syntax variants for creation and concatenation, 
without need of constructors and methods. This is just syntactic sugar; behind the 
scenes the source is implemented by familiar constructors and methods, but the string 
syntax keeps source code readable.

 Another difference between value types and other objects is that uninitialized 
(unassigned) value types assume a default value rather than null. Indeed value types 
cannot be assigned a null value. We’ll look at default values shortly.

 JavaFX Script offers several basic types, detailed in table 2.1. 
 Many of the types in table 2.1 are recognizable as variations on the basic primitive 

types you often find in other programming languages. The Duration type stands out 
as being unusual. It reflects JavaFX Script’s focus on animation and demands more 
than just a basic explanation, so we’ll put it aside until later in this chapter.

Table 2.1 JavaFX Script value types

Type Details Java equivalent

Boolean True or false flag java.lang.Boolean

Byte Signed 8-bit integer. JFX 1.1+ java.lang.Byte

Character Unsigned 16-bit Unicode. JFX 1.1+ java.lang.Character

Double Signed 64-bit fraction. JFX 1.1+ java.lang.Double

Duration Time interval None

Float Signed 32-bit fraction. JFX 1.1+ java.lang.Float

Integer Signed 32-bit integer java.lang.Integer

Long Signed 64-bit integer. JFX 1.1+ java.lang.Long

Number Signed 32-bit fraction. java.lang.Float

Short Signed 16-bit integer. JFX 1.1+ java.lang.Short

String Unicode text string java.lang.String

Changes for JavaFX Script 1.1
In JavaFX Script 1.0 the only fractional (floating point) type was Number, which had 
double precision, making it equivalent to Java’s Double. In JavaFX Script 1.1 six new 
types were introduced: Byte, Character, Double, Float, Long, and Short. This re-
sulted in Number being downsized to 32-bit precision, effectively becoming an alter-
native name for the new Float type.
    

  



19Data types
Let’s look at example code defining the types we’re looking at in this section.

var valBool:Boolean = true;
var valByte:Byte = -123;
var valChar:Character = 65;
var valDouble:Double = 1.23456789;
var valFloat:Float = 1.23456789;
var valInt:Integer = 8;
var valLong:Long = 123456789;
var valNum:Number = 1.245;
var valShort:Short = 1234;
var valStr:String = "Example text";
println("Assigned: B: {valBool}, By: {valByte}, "
    "C: {valChar}, D: {valDouble}, F: {valFloat}, ");
println("  I: {valInt}, L: {valLong}, N: {valNum}, "
    "Sh: {valShort}, S: {valStr}");

var hexInt:Integer = 0x20;
var octInt:Integer = 040;
var eNum:Double = 1.234E-56;
println("hexInt: {hexInt}, octInt: {octInt}, "
    "eNum: {eNum}");

Assigned: B: true, By: -123, C: A, D: 1.23456789, F: 1.2345679,
  I: 8, L: 123456789, N: 1.245, Sh: 1234, S: Example text
hexInt: 32, octInt: 32, eNum: 1.234E-56

The keyword var begins variable declarations, followed by the variable name itself. 
Next comes a colon and the variable’s type, and after this an equals symbol and the 
variable’s initial value. A semicolon is used to close the declaration.

 Keen-eyed readers will have spotted the use of the keyword true in the boolean 
declaration; just as in Java, true and false are reserved words in JavaFX Script. You 
may also have noted the differing results for the Float and Double types, born out of 
their differences in precision.

 It’s also possible to express integers using hexadecimal or octal, and floating point 
values using scientific E notation, as per other programming languages. The final out-
put line shows this in effect.

Listing 2.2 Defining value types

println() and strange-looking strings
The listings in this section, and other sections in this chapter, make reference to a 
certain println() function. Common to all JavaFX objects, thanks to its inclusion in 
the javafx.lang.FX base class, println() is the JavaFX way of writing to the ap-
plication’s default output stream. Java programmers will be familiar with println()
through Java’s System.out object but may not recognize the bizarre curly braced 
strings being used to create the formatted output. For now accept them—we’ll deal 
with the details in a few pages.
    

  



20 CHAPTER 2 JavaFX Script data and variables
As in many languages, the initializer is optional. We could have ended each declara-
tion after its type, with just closing semicolons, resulting in each variable being initial-
ized to a sensible default value. Listing 2.3 shows a handful of examples.

var defBool:Boolean;
var defInt:Integer;
var defNum:Number;
var defStr:String;
println("Default: B: {defBool}, "
    "I: {defInt}, N: {defNum}, S: {defStr}");

Default: B: false, I: 0, N: 0.0, S: 

You’ll note in listing 2.3 the absence of any initial values. Despite being objects, value 
types cannot be null, so defaults of false, zero, or empty are used. But the initial value 
is not the only thing we can leave off, as listing 2.4 shows:

var infBool = true;
var infFlt = 1.0;        
var infInt = 1;
var infStr = "Some text";
println("Infered: B: {infBool}, "
    "F: {infFlt}, I: {infInt}, S: {infStr}");
println("{infFlt.getClass()}");

Infered: B: true, F: 1.0, I: 1, S: Some text
class java.lang.Float

JavaFX Script supports type inference when declaring variables. In plain English, this 
means if an initializer is used and the compiler can unambiguously deduce the vari-
able’s type from it, you can omit the explicit type declaration. In listing 2.4, if we’d ini-
tialized infFlt with just the value 1, it would have become an Integer instead of a 
Float; quoting the fractional part drops a hint as to our intended type. 

2.2.3 Initialize-only and reassignable variables (var, def)

So far we’ve seen variables declared using the var keyword. But there’s a second way 
of declaring variables, as listing 2.5 is about to reveal.

var canAssign:Integer = 5;
def cannotAssign:Integer = 5;
canAssign = 55;
//cannotAssign = 55;          

Using def instead of var results in variables that cannot be reassigned once created. 

Listing 2.3 Defining value types using defaults

Listing 2.4 Defining value types using type inference

Listing 2.5 Declaring variables with def

Be careful declaring non-ints

Compiler error if 
uncommented
    

  



21Data types
 It’s tempting to think of def variables only as constants; indeed that’s how they’re 
often used, but it’s not always the case. A def variable cannot be reassigned, but the 
object it references can mutate (change its contents). Some types of objects are immu-
table (they provide no way to change their content once created, examples being 
String and Integer), so we might assume a def variable of an immutable type must be 
a constant. But again, this is not always the case. In a later section we’ll investigate 
bound variables, revisiting def to see how a variable (even of an immutable type) can 
change its value without actually changing its content.

 So, ignoring bound variables for the moment, a valid question is “when should 
we use var and when should we use def?” First, def is useful if we want to drop hints 
to fellow programmers as to how a given variable should be used. Second, the com-
piler can detect misuse of a variable if it knows how we intend to use it, but cru-
cially, JFX can better optimize our software if given extra information about the data 
it’s working with.

 For simple assignments like those in listing 2.5, it’s largely a matter of choice or 
style. Using def helps make our intentions clear and means our code might run a 
shade faster.

2.2.4 Arithmetic on value types (+, -, etc.)

Waxing lyrical about JavaFX Script’s arithmetic capabilities is pointless: they’re basi-
cally the same as those of most programming languages. Unlike Java, JavaFX Script’s 
value types are objects, so they respond to both conventional operator syntax (like Java 
primitives) and method calls (like Java objects). Let’s see how that works in practice, 
in listing 2.6.

def n1:Number = 1.5;
def n2:Number = 2.0;
var nAdd = n1 + n2;
var nSub = n1 - n2;
var nMul = n1 * n2;
var nDiv = n1 / n2;
var iNum = n1.intValue();               
println("nAdd = {nAdd}, nSub = {nSub}, "
    "nMul = {nMul}, nDiv = {nDiv}");
println("iNum = {iNum}");

nAdd = 3.5, nSub = -0.5, nMul = 3.0, nDiv = 0.75
iNum = 1

The variables n1 and n2 (listing 2.6) are initialized, and a handful of basic mathematical 
operations are performed. Note the conversion of n1 to an integer via intValue(), 
made possible by value types actually being objects. We’ll look at objects later—for now 
be aware that value types are more than just primitives. 

Listing 2.6 Arithmetic on value types

Converting n1 
to an integer
    

  



22 CHAPTER 2 JavaFX Script data and variables
In table 2.2 is a list of the common arithmetic operators; let’s see some of them in 
action (see listing 2.7).

var int1 = 10;
var int2 = 10;
int1 *= 2;
int2 *= 5;
var int3 = 9 mod (4+2*2);
var num:Number = 1.0/(2.5).intValue();  
println("int1 = {int1}, "
    "int2 = {int2}, int3 = {int3}, num = {num}");

int1 = 20, int2 = 50, int3 = 1, num = 0.5

It’s all very familiar. The only oddity in listing 2.7 is the value 2.5 having a method 
called on it (surrounding brackets avoid ambiguity over the point character). This is 
yet another example of the lack of true primitives, including literals too! The numeric 
literal 2.5 became a JavaFX Float type, allowing function calls on it.

2.2.5 Logic operators (and, or, not, <, >, =, >=, <=, !=)

In the next chapter we’ll look at code constructs, such as conditions. But, as we’re cur-
rently exploring the topic of data, we might as well take a quick gander (courtesy of 
listing 2.8) at the logic operations that form the backbone of condition code.

 For most programmers, apart from a few differences in keywords (and and or
instead of && and ||), there’s no great surprise lurking in listing 2.8. As in Java, the 

Table 2.2 List of arithmetic operators 

Operator Function

+ Addition

- Subtraction; unary negation

* Multiplication

/ Division

mod Remainder (Java’s equivalent is %)

+= Addition and assign

-= Subtract and assign

*= Multiply and assign

/= Divide and assign

++ Prefix (pre-increment assign) / suffix (post-increment assign)

-- Prefix (pre-decrement assign) / suffix (post-decrement assign)

Listing 2.7 Further examples of arithmetic operations

Number literals 
are objects too
    

  



23Data types
instanceof operator is used for testing the type of an object, in this case a Java Date. 
It’s all rather predictable—but then, isn’t that a good thing? 

def testVal = 99;
var flag1 = (testVal == 99);
var flag2 = (testVal != 99);
var flag3 = (testVal <= 100);
var flag4 = (flag1 or flag2);
var flag5 = (flag1 and flag2);
var today:java.util.Date = new java.util.Date();  
var flag6 = (today instanceof java.util.Date);
println("flag1 = {flag1}, flag2 = {flag2}, "
"flag3 = {flag3}");
println("flag4 = {flag4}, flag5 = {flag5}, "
"flag6 = {flag6}");

flag1 = true, flag2 = false, flag3 = true
flag4 = true, flag5 = false, flag6 = true

2.2.6 Translating and checking types (as, instanceof) 

Because JavaFX Script is a statically typed language, casts may be required to convert 
one data type into another. If the conversion is guaranteed to be safe, JavaFX Script 
allows it without a fuss, but where there’s potential for error or ambiguity, JavaFX
Script insists on a cast.

 Casts are performed by appending the keyword as, followed by the desired type, 
after the variable or term that needs converting. Listing 2.9 shows an example.

import java.lang.System;
var pseudoRnd:Integer = 
    (System.currentTimeMillis() as Integer) mod 1000;

var str:java.lang.Object = "A string";
var inst1 = (str instanceof String);
var inst2 = (str instanceof java.lang.Boolean);
println("String={inst1} Boolean={inst2}");

String=true Boolean=false

Usually casting is required when a larger object is downsized to a smaller one, as in the 
example, where a 64-bit value is being truncated to a 32-bit value. Another example is 
when an object type is being changed down the hierarchy of classes, to a more specific 
subclass. For non-Java programmers there’s more detail on the purpose of casts in 
appendix C—look under section C2.

 Checking the type of a variable can be done with instanceof, which returns true
if the variable matches the supplied type and false if it doesn’t.

 This concludes our look at basic data types. If it’s been all rather tame for you, 
don’t worry; the next section will start to introduce some JFX power tools.

Listing 2.8 Logic operators

Listing 2.9 Casting types

Creating a Java 
Date object
    

  



24 CHAPTER 2 JavaFX Script data and variables
2.3 Working with text, via strings
Where would we be without strings? This book wouldn’t be getting written, that’s for 
sure (pounding the whole manuscript out on a manual typewriter somehow doesn’t 
endear itself). We looked at defining basic string variables previously; now let’s delve 
deeper to unlock the power of string manipulation in JavaFX.

2.3.1 String literals and embedded expressions

String literals allow us to write strings directly into the source code of our programs. 
JavaFX Script string literals can be defined using single or double quotes, as listing 2.10 
demonstrates.

def str1 = 'Single quotes';
def str2 = "Double quotes";
println("str1 = {str1}");
println("str2 = {str2}");

str1 = Single quotes
str2 = Double quotes

Is there a difference between these two styles? No. Either double or single quotes can 
be used to enclose a string, and providing both ends of the string match it doesn’t 
matter which you use. Listing 2.11 shows even more string syntax variations.

def multiline = "This string starts here, "
'and ends here!';
println("multiline = {multiline}");

println("UK authors prefer 'single quotes'");
println('US authors prefer "double quotes"');
println('I use "US" and \'UK\' quotes');

multiline = This string starts here, and ends here!
UK authors prefer 'single quotes'
US authors prefer "double quotes"
I use "US" and 'UK' quotes

String literals next to each other in the source code, with nothing in between (except 
whitespace), are concatenated together, even when on separate source code lines. 
Single-quoted strings can contain double-quote characters, and double-quoted strings 
can contain single-quote characters, but to use the same quote as delimits the string 
you need to escape it with a backslash. This ability to switch quote styles is particularly 
useful when working with other languages from within JavaFX Script, like SQL. (By the 
way, yes, I know many modern British novelists prefer double quotes!)

 In the listings shown previously some of the strings have contained a strange curly 
brace format for incorporating variables. Now it’s time to find out what that’s all 
about.

Listing 2.10 Basic string definitions

Listing 2.11 Multiline strings, double- and single-quoted strings
    

  



25Working with text, via strings
def rating = "cool";
def eval1 = "JavaFX is {rating}!";
def eval2 = "JavaFX is \{rating\}!";
println("eval1 = {eval1}");
println("eval2 = {eval2}");

def flag = true;
def eval3 = 
    "JavaFX is {if(flag) "cool" else "uncool"}!";
println("eval3 = {eval3}");

eval1 = JavaFX is cool!
eval2 = JavaFX is {rating}!
eval3 = JavaFX is cool!

Strings can contain expressions enclosed in curly braces. When encountered, the 
expression body is executed, and the result is substituted for the expression itself. In 
listing 2.12 we see the value of the variable rating is inserted into the string content 
of eval1 by enclosing a reference to rating in braces. Escaping the opening and clos-
ing braces with a backslash prevents any attempted expression evaluation, as has hap-
pened with eval2.

 We can get more adventurous than just simple variable references. The condi-
tion embedded inside the curly braces of eval3 displays either “JavaFX is cool!” or 
“JavaFX is uncool!” depending on the contents of the boolean variable flag. We’ll be 
looking at the if/else syntax later, of course, but for now let’s continue our explora-
tion of strings, because JavaFX Script offers even more devious ways to manipulate 
their contents.

2.3.2 String formatting

We’ve seen how to expand a variable into a string using the curly brace syntax, but this 
is only the tip of the iceberg. Java has a handy class called java.util.Formatter, which 
permits string control similar to C’s infamous printf() function. The Formatter class 
allows commonly displayed data types, specifically strings, numbers, and dates, to be 
translated into text form based on a pattern. Listing 2.13 shows the JFX equivalent.

import java.util.Calendar;
import java.util.Date;

def magic = -889275714;
println("{magic} in hex is {%08x magic}");  

def cal:Calendar = Calendar.getInstance();
cal.set(1991,2,4);
def joesBirthday:Date = cal.getTime();
println("Joe was born on a {%tA joesBirthday}");  

-889275714 in hex is cafebabe
Joe was born on a Monday

Listing 2.12 Strings with embedded expressions

Listing 2.13 String formatting

Eight-digit 
hexadecimal

Display date’s 
weekday
    

  



26 CHAPTER 2 JavaFX Script data and variables
In the two println() calls of listing 2.13 we see the string formatter in action. The 
first uses a format of %08x to display an eight-digit hexadecimal representation of the 
value of magic. The second example creates a date for 4 March 1991 using Java’s Cal-
endar and Date classes (months are indexed from 0, while days are indexed from 1). 
The format pattern %tA displays the day name (Monday, Tuesday, ...) from any date it 
is applied to.

 For more details on the various formatting options, consult the Java documenta-
tion for the java.util.Formatter class.

As well as in built string formatting, JavaFX Script has a specific syntax for string local-
ization, which is what we’ll look at next. 

2.3.3 String localization

The internet is a global phenomenon, and while it might save programmers a whole 
load of pain if everyone would agree on a single language, calendar, and daylight sav-
ing time, the fact is people cherish their local culture and customs, and our software 
should respect that. An application might use dozens, hundreds, or even thousands of 
bits of text to communicate to its user. For true internationalization these need to be 
changeable at runtime to reflect the native language of the user (or, at least, the lan-
guage settings of the computer the user is using). To do this we use individual prop-
erty files, each detailing the strings to be used for a given language.

 Listing 2.14 is a simple two-line localization property file for UK English. Its file-
name and location are important.

"Trash" = "Rubbish"
"STR_KEY" = "UK version"

The filename must begin with the name of the script it is used in, followed by an 
underscore character, then a valid ISO Language Code as specified in the standard, 

Listing 2.14 String localization: the <classname>_en_UK.fxproperties file

Being negative
Perhaps you’re wondering how the hexadecimal value CAFEBABE could be repre-
sented in decimal as -889275714, not 3405691582. Like Java, JavaFX Script uses 
a 32-bit signed Integer type, meaning the lower 31 binary digits of each integer 
represent its value and the most significant digit stores whether the value is posi-
tive or negative. Because the hex value CAFEBABE uses all 32 bits, its 32nd bit 
causes JFX to see it as negative in many circumstances. If we tried to store the 
number 3405691582 in an integer, the compiler would inform us it’s too big. How-
ever -889275714 results in exactly the same 32-bit pattern.

In case you didn’t know, CAFEBABE is the 4-byte magic identifier starting every valid 
Java bytecode class file. You learn something new every day! (Or maybe not.)
    

  



27Working with text, via strings
ISO-639.2. These codes comprise two lowercase characters, signifying which language 
the localization file should be used for. If a specific variant of a language is required 
(for example, UK English instead of US English) a further underscore and an ISO
Country Code may be added, as specified by ISO-3166. These codes are two uppercase 
characters, documenting a specific country. Finally, the extension .fxproperties must 
be added.

 In the book’s source code the script for testing listing 2.14 is called Examples3.fx, 
so the properties file for UK English would be Examples3_en_UK.fxproperties. If we 
created a companion property file for all Japanese regions, it would be called 
Examples3_ja.fxproperties (ja being the language code for Japanese).

 All properties files must be placed somewhere on the classpath so JavaFX can find 
them at runtime. Listing 2.15 shows the code to test our localization strings.

println(##"Trash");
println(##[STR_KEY]"Default version");

Trash
Default version

Rubbish
UK version

The listing demonstrates two examples of localized strings in JavaFX Script and the 
output for two runs of the program, one non-UK and the other UK.

 The ## prefix means JFX will look for an appropriate localization file and use its 
contents to replace the following string. In the first line of code the string "Trash" is 
replaced by "Rubbish" using the en_UK file we created earlier. The "Trash" string is 
used as a key to look up the replacement in the properties file. If we’re not running 
the program in the United Kingdom, or the property file cannot be loaded, the 
"Trash" string is used as a default.

 The second line does the same, except the key and the default are separate. 
So "STR_KEY" is used as a key to look up the localization property, and "Default
version" is used if no suitable localization can be found.

 You might be wondering how you can test the code without bloating your carbon 
footprint with a round-the-world trip. Fortunately, the JVM has a couple of system 
properties to control its region and language settings, namely user.region and 
user.language. They should be settable within the testing environment of your IDE
(look under “System properties”) or from the command line using the -D switch. 
Here are a couple of examples:

-Duser.region=UK -Duser.language=en
-Duser.region=US

And that’s strings. Thus far we’ve looked at very familiar data types, but next we’ll 
look at a value type you won’t find in any other popular programming language: 
the Duration.

Listing 2.15 String localization
    

  

www.allitebooks.com

http://www.allitebooks.org


28 CHAPTER 2 JavaFX Script data and variables
2.4 Durations, using time literals
You really know a language is specialized to cope with animation when you see it has a 
literal syntax for time durations. What are time literals? Well, just as the quoted syntax 
makes creating strings easy, the time literal syntax provides a simple, specialized nota-
tion for expressing intervals of time. Listing 2.16 shows it in action.

def mil = 25ms;                      
def sec = 30s;                         
def min = 15m;                       
def hrs = 2h;                        
println("mil = {mil}, sec = {sec}, "
    "min = {min}, hrs = {hrs}");    

mil = 25ms, sec = 30000ms, min = 900000ms, hrs = 7200000ms

Appending ms, s, m, or h to a value creates an object of type Duration (not unlike wrap-
ping characters with quotes turns them into a String). Listing 2.16 demonstrates times 
expressed using the literal notation: 25 milliseconds, 30 seconds, 15 minutes, and 2 
hours. No matter how they were defined, Duration objects default to milliseconds 
when toString() is called on them. This handy notation is pretty versatile and can be 
used in a variety of ways, including with arithmetic and boolean logic. Listing 2.17 
shows a few examples of what can be done, using Java’s System.printf() method to 
add platform-specific line separators into the output string.

import java.lang.System;
def dur1 = 15m * 4;       
def dur2 = 0.5h * 2;       
def flag1 = (dur1 == dur2);
def flag2 = (dur1 > 55m);
def flag3 = (dur2 < 123ms);
System.out.printf(
    "dur1 = {dur1.toMinutes()}m , "
    "dur2 = {dur2.toMinutes()}m%n"   
    "(dur1 == dur2) is {flag1}%n"
    "(dur1 > 55m) is {flag2}%n"
    "(dur1 < 123ms) is {flag3}%n");

dur1 = 60.0m , dur2 = 60.0m
(dur1 == dur2) is true
(dur1 > 55m) is true
(dur1 < 123ms) is false

Both dur1 and dur2 are created as Duration objects, set to one hour. The first is cre-
ated by multiplying 15 minutes by 4, and the second is created by multiplying half an 
hour by 2. These Duration objects are then compared against each other and against 
other literal Duration objects. To make the console output more readable, we convert 
the usual millisecond representation to minutes.

Listing 2.16 Declaring Duration types

Listing 2.17 Arithmetic on duration types

Milliseconds, 
seconds, minutes, 
and hours

Output is milliseconds

15 minutes times 4

Half an hour 
times 2

Converted 
to minutes
    

  



29Sequences: not quite arrays
 When we start playing with animation we’ll see how time literals help create com-
pact, readable, source code for all manner of visual effects. But we still have a lot to 
explore before we get there, for example “sequences”. 

2.5 Sequences: not quite arrays
Sequences are collections of objects or values with a logical ordered relationship. As 
the saying goes, they do “exactly what it says on the tin”; in other words, a sequence is 
a sequence of things!

 It’s tempting to think of sequences as arrays by another name—indeed they can be 
used for array-like functionality—but sequences hide some pretty clever extra func-
tionality, making them more useful for the type of work JavaFX is designed to do. In 
the following sections we’ll look at how to define, extend, retract, slice, and filter 
JavaFX sequences. Sequences have quite a rich syntax associated with them, so let’s 
jump straight in.

2.5.1 Basic sequence declaration and access (sizeof)

We won’t get very far if we cannot define new sequences. Listing 2.18 shows us how to 
do just that.

import java.lang.System;
def seq1:String[] = [ "A" , "B" , "C" ];
def seq2:String[] = [ seq1 , "D" , "E" ];
def flag1 = (seq2 == ["A","B","C","D","E"]);
def size = sizeof seq1;
System.out.printf("seq1 = {seq1.toString()}%n"
    "seq2 = {seq2.toString()}%n"
    "flag1 = {flag1}%n"
    "size = {size}%n");

seq1 = [ A, B, C ]
seq2 = [ A, B, C, D, E ]
flag1 = true
size = 3

Listing 2.18 exposes a few important sequence concepts:

■ A new sequence is declared using square-brackets syntax. 
■ When one sequence is used inside another, it is expanded in place. Sequences 

are always linear; multidimensional sequences are not supported. 
■ Sequences are equal if they are the same size and each corresponding element 

is equal; in other words, the same values in the same order. The notation for 
referring to the type of a sequence uses square brackets after the plain object 
type. For example, String[] refers to a sequence of String objects.

■ Sequence type notation is the plain object type followed by square brackets. 
For example, String[] refers to a sequence of String objects.

■ The sizeof operator can be used to determine the length of a sequence.

Listing 2.18 Sequence declaration
    

  



30 CHAPTER 2 JavaFX Script data and variables
To reference a value in a sequence we use the same square-bracket syntax as many other 
programming languages. The first element is at index zero, as listing 2.19 proves.

import java.lang.System;
def faceCards = [ "Jack" , "Queen" , "King" ];
var king = faceCards[2];
def ints = [10,11,12,13,14,15,16,17,18,19,20];
var oneInt = ints[3];
var outside = ints[-1];
System.out.printf("faceCards[2] = {king}\n"
    "ints[3] = {oneInt}\n"
    "ints[-1] = {outside}\n");

faceCards[2] = King
ints[3] = 13
ints[-1] = 0

You’ll note how referring to an element outside of the sequence bounds returns a 
default value, rather than an error or an exception. Apart from this oddity, the code 
looks remarkably close to arrays in other programming languages—so, what about 
those clever features I promised? Let’s experience our first bit of sequence cleverness 
by looking at ranges and slices.

2.5.2 Sequence creation using ranges ([..], step)

The examples thus far have seen sequences created explicitly, with content as comma 
separated lists inside square brackets. This may not always be convenient, so JFX sup-
ports a handy range syntax. Check out listing 2.20.

def seq3 = [ 1 .. 100 ];                            
println("seq3[0] = {seq3[0]},"
    "seq3[11] = {seq3[11]}, seq3[89] = {seq3[89]}");

seq3[0] = 1,seq3[11] = 12, seq3[89] = 90

The sequence is populated with the values 1 to 100, inclusive. Two dots separate the 
start and end delimiters of the range, enclosed in the familiar square brackets. Is that 
all there is to it? No, not by a long stretch! Take a look at listing 2.21.

def range1 = [0..100 step 5];
def range2 = [100..0 step -5];
def range3 = [0..100 step -5];          
def range4 = [0.0 .. 1.0 step 0.25];
println("range1 = {range1.toString()}");
println("range2 = {range2.toString()}");
println("range3 = {range3.toString()}");
println("range4 = {range4.toString()}");

range1 = [ 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 

Listing 2.19 Referencing a sequence element

Listing 2.20 Sequence creation using a range

Listing 2.21 Sequence creation using a stepped range

Two dots 
create a range

Compiler warning 
under JavaFX 1.2
    

  



31Sequences: not quite arrays
➥   50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 ]
range2 = [ 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 

➥   50, 45, 40, 35, 30, 25, 20, 15, 10, 5, 0 ]
range3 = [ ]
range4 = [ 0.0, 0.25, 0.5, 0.75, 1.0 ]

Listing 2.21 shows ranges created using an extra step parameter. The first runs from 0 
to 100 in steps of 5 (0, 5, 10, ...), and the second does the same in reverse (100, 95, 90, 
...) The third goes from 0 to 100 backwards, resulting (quite rightly!) in an empty 
sequence. Finally, just to prove ranges aren’t all about integers, we have a range from 0 
to 1 in steps of a quarter.

 Ranges can nest inside larger declarations, expanding in place to create a single 
sequence. We can exploit this fact for more readable source code, as listing 2.22 shows.

def blackjackValues = [ [1..10] , 10,10,10 ];  
println("blackjackValues = "
    "{blackjackValues.toString()}");

blackjackValues = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10 ]

Listing 2.22 creates a sequence representing the card values in the game Blackjack: aces 
to tens use their face value, while picture cards (jack, queen, king) are valued at 10. (Yes, 
I am aware aces are also 11—what do you want, blood?)

2.5.3 Sequence creation using slices ( [..<] )

The range syntax can be useful in many circumstances, but it’s not the only trick 
JavaFX Script has up its sleeve. For situations that demand more control, we can also 
take a slice from an existing sequence to create a new one, as listing 2.23 shows.

import java.lang.System;
def source = [0 .. 100];
var slice1 = source[0 .. 10];
var slice2 = source[0 ..< 10];
var slice3 = source[95..];
var slice4 = source[95..<];
var format = "%s = %d to %d%n";
System.out.printf(format, "slice1", 
    slice1[0], slice1[(sizeof slice1)-1] );
System.out.printf(format, "slice2", 
    slice2[0], slice2[(sizeof slice2)-1] );
System.out.printf(format, "slice3", 
    slice3[0], slice3[(sizeof slice3)-1] );
System.out.printf(format, "slice4", 
    slice4[0], slice4[(sizeof slice4)-1] );

slice1 = 0 to 10                          
slice2 = 0 to 9                             
slice3 = 95 to 100                        
slice4 = 95 to 99                         

Listing 2.22 Expanding one sequence inside another

Listing 2.23 Sequence declaration using a slice

Expanding a range inside 
another declaration

Just the 
start/end 
values
    

  



32 CHAPTER 2 JavaFX Script data and variables
Here the double-dot syntax creates a slice of an existing sequence, source. The num-
bers defining the slice are element indexes, so in the case of slice1 the range 
[0..10] refers to the first 11 elements in source, resulting in the values 0 to 10.

 The .. syntax describes an inclusive range, while the ..< syntax can be used to 
define an exclusive range (0 to 10, not including 10 itself). If you leave the trailing 
delimiter off a .. range, the slice will be taken to the end of the sequence, effectively 
making the end delimiter the sequence size minus 1. If you leave the trailing delimiter 
off a ..< range, the slice will be taken to the end of the sequence minus one element, 
effectively dropping the last index.

2.5.4 Sequence creation using a predicate

The next weapon in the sequence arsenal we’ll look at (and perhaps the most power-
ful) is the predicate syntax, which allows us to take a conditional slice from inside 
another sequence. The predicate syntax takes the form of a variable and a condition 
separated by a bar character. The destination (output) sequence is constructed by load-
ing each element in the source sequences into the variable and applying the condition 
to determine whether it should be included in the destination or not. Listing 2.24 
shows this in action.

def source2 = [0 .. 9];
var lowVals = source2[n|n<5];
println("lowVals = {lowVals.toString()}");

def people = 
    ["Alan","Andy","Bob","Colin","Dave","Eddie"];
var peopleSubset = 
    people[s | s.startsWith("A")].toString();
println("predicate = {peopleSubset}");

lowVals = [ 0, 1, 2, 3, 4 ]
predicate = [ Alan, Andy ]

Take a look at how lowVals is created in listing 2.24. Each of the numbers in source2
is assigned to n, and the condition n<5 is tested to determine whether the value will be 
added to lowVals. The second example applies a test to see if the sequence element 
begins with the character A, meaning in our example only “Alan” and “Andy” will 
make it into the destination sequence.

 Predicates are pretty useful, particularly because their syntax is nice and compact. 
But even this isn’t the end of what we can do with sequences.

2.5.5 Sequence manipulation (insert, delete, reverse)

Sequences can be manipulated by inserting and removing elements dynamically. We 
can do this either to the end of the sequence, before an existing element, or after an 
existing element. The three variations are demonstrated with listing 2.25.

 

Listing 2.24 Sequence declaration using a predicate
    

  



33Sequences: not quite arrays
var seq1 = [1..5];
insert 6 into seq1;
println("Insert1: {seq1.toString()}");
insert 0 before seq1[0];
println("Insert2: {seq1.toString()}");
insert 99 after seq1[2];
println("Insert3: {seq1.toString()}");

Insert1: [ 1, 2, 3, 4, 5, 6 ]
Insert2: [ 0, 1, 2, 3, 4, 5, 6 ]
Insert3: [ 0, 1, 2, 99, 3, 4, 5, 6 ]

This example shows a basic range sequence created with the values 1 through 5. The 
first insert appends a new value, 6, to the end of the sequence, the next inserts a new 
value, 0, before the current first value, and the final insert shoehorns a value, 99, after 
the third element in the sequence.

 That’s covers insert, but what about deleting from sequences? Here’s how.

var seq2 = [[1..10],10];
delete seq2[0];
println("Delete1: {seq2.toString()}");
delete seq2[0..2];
println("Delete2: {seq2.toString()}");
delete 10 from seq2;
println("Delete3: {seq2.toString()}");
delete seq2;
println("Delete4: {seq2.toString()}");

Delete1: [ 2, 3, 4, 5, 6, 7, 8, 9, 10, 10 ]
Delete2: [ 5, 6, 7, 8, 9, 10, 10 ]
Delete3: [ 5, 6, 7, 8, 9 ]
Delete4: [ ]

It should be obvious what listing 2.26 does. Starting with a sequence of 1 through 10, 
plus another 10, the first delete operation removes the first index, the second deletes 
a range from index positions 0 to 2 (inclusive), the third removes any tens from the 
sequence, and the final delete removes the entire sequence.

 One final trick is the ability to reverse the order of a sequence, as shown here.

var seq3 = [1..10];
seq3 = reverse seq3;
println("Reverse: {seq3.toString()}");

Reverse: [ 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 ]

The code in listing 2.27 merely flips the order of seq3, from 1 through 10 to 10 
through 1.

Listing 2.25 Sequence manipulation: insert

Listing 2.26 Sequence manipulation: delete

Listing 2.27 Sequence manipulation: reverse
    

  



34 CHAPTER 2 JavaFX Script data and variables
 All this inserting, deleting, and reversing may seem pretty useful, but perhaps 
some of you are worried about how much processing power it takes to chop and 
change large runs of data during the course of a program’s execution. Because 
sequences aren’t merely simple arrays, the answer is “surprisingly little.”

2.5.6 Sequences, behind the scenes

I hinted briefly in the introduction to sequences of how they’re not really arrays. 
Indeed, I am indebted to Sun engineer Jasper Potts, who pointed out the folly of 
drawing too close an analogy between JFX sequences and Java arrays and collections.

 Behind the scenes, sequences use a host of different strategies to form the data you 
and I actually work with. Sequences are immutable (they cannot be changed; modifi-
cations result in new sequence objects), but this does not make them slow or ineffi-
cient. When we create a number range, like [0..100] for example, only the bounds of 
the range are stored, and the nth value is calculated whenever it is accessed. By sup-
porting different composite techniques, a sequence can hold a collection of different 
types of data represented with different strategies and can add/remove elements 
within the body of the sequence without wholesale copying.

 Suffice to say, when we reversed the sequence in listing 2.27 no data was actually 
rearranged!

And that’s it for sequences, at least until we consider the for loop later on. In the next 
section we’ll start to look at binding, perhaps JavaFX Script’s most powerful syntax 
feature. 

2.6 Autoupdating related data, with binds
Binding is a way of defining an automatic update relationship between data in one 
part of your program and data elsewhere it depends on. Although binding has many 
applications, it’s particularly useful in UI programming.

 Writing code to ensure a GUI always betrays the true state of the data it is repre-
senting can be a thankless task. Not only is the code that links model and UI usually 
verbose, but quite often it lives miles away from either. Binding connects the interface 
directly to the source data or (more accurately) to a nugget of code that interprets the 
data. The code that controls the interface’s state is defined in the interface declara-
tion itself!

More details
Michael Heinrichs has an interesting blog entry covering, in some detail, the types of 
representations and strategies sequences use beneath the surface to give the maxi-
mum flexibility, with minimum drudgery: 

http://blogs.sun.com/michaelheinrichs/entry/
internal_design_of_javafx_sequences1
    

  

http://blogs.sun.com/michaelheinrichs/entry/internal_design_of_javafx_sequences1
http://blogs.sun.com/michaelheinrichs/entry/internal_design_of_javafx_sequences1


35Autoupdating related data, with binds
 Because binding is such a useful part of JavaFX, in the coming sections we’ll cover 
not only its various applications but also the mechanics of how it works, for those occa-
sions when it’s important to know.

2.6.1 Binding to variables (bind)

Let’s start with the basics. Listing 2.28 is a straightforward example:

var percentage:Integer;
def progress = bind "Progress: {percentage}% finished";
for(v in [0..100 step 20]) {                           
    percentage = v;                                      
    println(progress);                                 
}                                                      

Progress: 0% finished
Progress: 20% finished
Progress: 40% finished
Progress: 60% finished
Progress: 80% finished
Progress: 100% finished

This simple example updates the variable percentage from 0 to 100 in steps of 20 
using a for loop (which we’ll study next chapter), with the variable progress auto-
matically tracking the updates.

 You’ll note the use of the bind keyword, which tells the JavaFX Script compiler that 
the code that follows is a bound expression. Expressions are bits of code that return val-
ues, so what bind is saying is “the value of this variable is controlled by this piece of 
code.” In listing 2.28 the bound progress string reevaluates its contents each time the 
variable it depends on changes. So, whenever percentage changes, its new value is 
automatically reflected in the progress string.

 But hold on—how can progress change when it’s declared using def, not var? 
Technically it doesn’t ever change. Its value changes, true, but its real content (the 
expression) never actually gets reassigned. This is why, back when we covered var and 
def, I warned against thinking of def variables as simple constants, even if their type is 
immutable. Because a one-way bound variable should not be directly assigned to, using 
def is more correct than using var.

 Bind works not only with strings but other data types too, as we’ll see in listing 2.29.

var thisYear = 2008;
def lastYear = bind thisYear-1;
def nextYear = bind thisYear+1;
println("2008: {lastYear}, {thisYear}, {nextYear}");
thisYear = 1996;
println("1996: {lastYear}, {thisYear}, {nextYear}");

2008: 2007, 2008, 2009
1996: 1995, 1996, 1997

Listing 2.28 Binding into a string

Listing 2.29 Binding between variables

This is a 
for loop
    

  



36 CHAPTER 2 JavaFX Script data and variables
In listing 2.29 the values of lastYear and nextYear are dependent on the current 
contents of thisYear. A change to thisYear causes its siblings to recalculate the 
expression associated with their binding, meaning they will always be one year behind 
or ahead of whatever thisYear is set to.

2.6.2 Binding to bound variables

What about bound variables themselves—can they be the target of other bound vari-
ables, creating a chain of bindings? The answer, it seems, is yes! Check out listing 2.30.

var flagA = true;
def flagB = bind not flagA;
def flagC = bind not flagB;
println("flagA = {flagA}, "
    "flagB = {flagB}, flagC = {flagC}");
flagA = false;
println("flagA = {flagA}, "
    "flagB = {flagB}, flagC = {flagC}");

flagA = true, flagB = false, flagC = true
flagA = false, flagB = true, flagC = false

The first two variables in listing 2.30, flagA and flagB, will always hold opposite val-
ues. Whenever flagA is set, its companion is set to the inverse automatically. The third 
value, flagC, is the inverse of flagB, creating a chain of updates from A to B to C, 
such that C is always the opposite of B and the same as A.

2.6.3 Binding to a sequence element

How do you use the bind syntax with a sequence? As luck would have it, that’s the next 
bit of example code (listing 2.31).

var range = [1..5];             
def reference = bind range[2];
println("range[2] = {reference}");
delete range[0];                    
println("range[2] = {reference}");
delete range;                       
println("range[2] = {reference}");

range[2] = 3
range[2] = 4
range[2] = 0

When we bind against a sequence element, we do so by way of its index—when the 
sequence is extended or truncated, the bind does not track the change by adjusting 
its index to match. In listing 2.31, even though the first element of range is deleted, 
causing the other elements to move down the sequence, the bind still points to the 
third index. Also, as we’d expect, accessing the third index after all elements have 
been deleted returns a default value.

Listing 2.30 Binding to bound variables

Listing 2.31 Binding against a sequence element

'range' is  [1,2,3,4,5]

'range' is [2,3,4,5]

'range' is empty
    

  



37Autoupdating related data, with binds
2.6.4 Binding to an entire sequence (for)

In the previous section we witnessed what happens when we bind against an individual 
sequence element, but what happens when we bind against an entire sequence? List-
ing 2.32 has the answer.

var multiplier:Integer = 2;
var seqSrc = [ 1..3 ];
def seqDst = bind for(seqVal in seqSrc) { seqVal*multiplier; }
println("seqSrc = {seqSrc.toString()},"
    " seqDst = {seqDst.toString()}");
insert 10 into seqSrc;                  
println("seqSrc = {seqSrc.toString()},"
    " seqDst = {seqDst.toString()}");
multiplier = 3;                         
println("seqSrc = {seqSrc.toString()},"
    " seqDst = {seqDst.toString()}");

seqSrc = [ 1, 2, 3 ], seqDst = [ 2, 4, 6 ]
seqSrc = [ 1, 2, 3, 10 ], seqDst = [ 2, 4, 6, 20 ]
seqSrc = [ 1, 2, 3, 10 ], seqDst = [ 3, 6, 9, 30 ]

The code shows one sequence, seqDst, bound against another, seqSrc. The bind 
expression takes the form of a loop, which doubles the value in each element of the 
source sequence. (In JavaFX Script, for loops create sequences; we’ll look at the syntax 
in detail next chapter.) When the source sequence changes, for example, a new element 
is added, the bind ensures the destination sequence is kept in step, using the expression.

 When the multiplier changes, the destination sequence is again kept in step. So, 
both seqSrc and multiplier affect seqDst. Binds are sensitive to change from every 
variable within their expression, something to keep in mind when writing your own 
bind code.

2.6.5 Binding to code

In truth, all the examples thus far have demonstrated binding to code—a simple vari-
able read is, after all, code. The bind keyword merely attaches an expression (any unit 
of code that produces a result) to a read-only variable. This section looks a little 
deeper into how to exploit this functionality. For example, what if we need some 
logic to control how a bound variable gets updated? That’s the first question we’ll 
answer, using listing 2.33.

var mode = false;
def modeStatus = bind if(mode) "On" else "Off";
println("Mode: {modeStatus}");
mode = true;
println("Mode: {modeStatus}");

Mode: Off
Mode: On

Listing 2.32 Binding to a sequence itself

Listing 2.33 Binding to a ternary expression

Change source sequence

Change multiplier
    

  



38 CHAPTER 2 JavaFX Script data and variables
Listing 2.33 contains a binding that uses an if/else block to control the update of 
the string modeStatus, resulting in the contents being either “on” or “off.” The if/
else block is reevaluated each time mode changes.

 Listing 2.34 shows an even more ambitious example.

var userID = "";
def realName = bind getName(userID);
def status = bind getStatus(userID);
def display = bind "Status: {realName} is {status}";
println(display);
userID = "adam";
println(display);
userID = "dan";
println(display);

function getName(id:String) : String {               
    if(id.equals("adam")) { return "Adam Booth"; }     
    else if(id.equals("dan")) { return "Dan Jones"; }
    else { return "Unknown"; }                       
}                                                    

function getStatus(id:String) : String {             
    if(id.equals("adam")) { return "Online"; }       
    else if(id.equals("dan")) { return "Offline"; }  
    else { return "Unknown"; }                       
}                                                    

Status: Unknown is Unknown
Status: Adam Booth is Online
Status: Dan Jones is Offline

We haven’t covered functions yet, but it shouldn’t be hard to figure out what the 
example code is doing. Working forward, down the chain, we start with userID,
bound by two further variables called realName and status. These two variables call 
functions with userID as a parameter, both of which return a string whose contents 
depend on the userID passed in. A string called display adds an extra layer of bind-
ing by using the two bound variables to form a status string. Merely changing userID
causes realName, status, and display to automatically update.

2.6.6 Bidirectional binds (with inverse)

We’ve seen some pretty complex binding examples thus far, but suppose we wanted 
only a simple bind that directly mirrored another variable. Would it be possible to 
have the bind work in both directions, so a change to either variable would result in a 
change to its twin? Listing 2.35 shows how this can be achieved.

var dictionary = "US";
var thesaurus = bind dictionary with inverse;
println("Dict:{dictionary} Thes:{thesaurus}");

Listing 2.34 A more complex binding example

Listing 2.35 Bidirectional binding

Functions, accept 
and return a string
    

  



39Autoupdating related data, with binds
thesaurus = "UK";
println("Dict:{dictionary} Thes:{thesaurus}");

dictionary = "FR";
println("Dict:{dictionary} Thes:{thesaurus}");
Dict:US Thes:US
Dict:UK Thes:UK
Dict:FR Thes:FR

The code uses the with inverse keywords to create a two-way link between the vari-
ables dictionary and thesaurus. A change to one is automatically pushed across to 
the other. We can do this only because the bound expression is a simple, one-to-one 
reflection of another variable.

 This may not seem like the most exciting functionality in the world; admittedly list-
ing 2.35 doesn’t do the idea justice. Imagine a data structure whose members are dis-
played on screen in editable text fields. When the data structure changes, the text 
fields should change. When the text fields change, the data structure should change. 
You can imagine the fun we’d have implementing that with a unidirectional bind: 
whichever end we put the bind on would become beholden to the bind expression, 
incapable of being altered. Bidirectional binds neatly solve that problem—both ends 
are editable.

 By the way, did you spot anything unusual about the dictionary and thesaurus
variables? (Well done, if you did!) Yes, we’re using var instead of def. Unidirectional 
binds could not, by their very nature, be changed once declared. But bidirectional 
binds, by their very nature, are intended to allow change. Thus we use var instead 
of def.

2.6.7 The mechanics behind bindings

The OpenJFX project’s own language documentation goes into some detail on how 
binding works and possible side effects that may occur if a particular set of circum-
stances conspire. You need to know two things when working with binds.

 First, you aren’t free to put just any old code inside a bind’s body; it has to be an 
expression (a single unit of code that returns a value). This means, for example, you 
can’t update the value of an outside variable (that is, one defined outside the bind) 
from within the body of code associated with a bind. This makes sense—the idea is to 
define relationships between data sources and their interfaces; bindings are not 
general-purpose triggers for running code when variables are accessed.

Expression mystery
Eagle-eyed readers may be saying at this point, “Hold on, in previous sections we saw 
binds working against conditions and loops, yet they aren’t in themselves expres-
sions!” Well, you’d be wrong if you thought that. In JavaFX Script they are expressions! 
But a full exploration of this will have to wait until next chapter.
    

  



40 CHAPTER 2 JavaFX Script data and variables
The only exception to the expression rule is variable declarations. You are allowed, it 
seems, to declare new variable definitions within a bound body. You cannot update 
the variable once declared, so you must use the def keyword. (The JavaFX Script 1.0 
compiler allows both var and def keywords to be used, but the documentation 
appears to suggest only def will be supported in the future.)

 Moving on to our second topic: when it comes to bound expressions, JavaFX Script 
attempts to perform something called a minimal recalculation, which sounds rather 
cryptic but means only it’s as lazy as possible. An example (listing 2.36) will explain all.

var x = 0;
def y = bind getVal() + x;
for(loop in [1..5]) {
    x = loop;
    println("x = {x}, y = {y}"); 
}

function getVal() : Integer {
    println("getVal() called");
    return 100;
}

getVal() called
x = 1, y = 101
x = 2, y = 102
x = 3, y = 103
x = 4, y = 104
x = 5, y = 105

The bind in listing 2.36 has two parts: a call to a function, getVal(), and a variable, 
x. As x gets updated in the for loop, you might expect the println() call in 
getVal() to be triggered repeatedly, but it’s called only once. The result from the 
first half of the expression (the function call) was reused, because JavaFX knows it’s 
not dependent on the value that caused the update. This speeds things along, keep-
ing the execution tight, but it could have unexpected side effects if your code 
assumes every part of a bound expression will always run. Best practice, therefore, 
dictates avoiding such assumptions.

2.6.8 Bound functions (bound)

In the previous section we saw how bindings try to perform the minimal amount of 
recalculation necessary for each update. This is fine when the expression we’re bind-
ing against is transparent, but what if the bind is against some black box piece of code 
with outside dependencies?

 Functions provide such a black box. When a bind involves a function, it only 
watches the parameters passed into the function to determine when recalculation is 
needed. The mechanism inside the function (the code it contains) is not considered, 
and thus any dependencies it may have are not factored into the bind recalculations. 
Listing 2.37 shows both the problem and the solution.

Listing 2.36 Minimal recalculation
    

  



41Autoupdating related data, with binds
var ratio = 5;
var posX = 5;
var posY = 10;
def coords1 = bind "{scale1(posX)},{scale1(posY)}";
def coords2 = bind "{scale2(posX)},{scale2(posY)}";

function scale1(v:Integer) : Integer {
    return v*ratio;
}
bound function scale2(v:Integer) : Integer {
    return v*ratio;
}

println("1={coords1}  2={coords2}");
posX = 6;
println("1={coords1}  2={coords2}");
posY = 9;
println("1={coords1}  2={coords2}");
ratio = 3;
println("1={coords1}  2={coords2}");

1=25,50  2=25,50
1=30,50  2=30,50
1=30,45  2=30,45
1=30,45  2=18,27

Listing 2.37 shows two binds, coords1 and coords2, which both call a function. We’ll 
look at coords1 first, since this is the one presenting the problem.

 The variable coords1 is updated via two calls to a function called scale1(). The 
function is used to scale two coordinates, posX and posY, by a given factor, ratio. The 
scale1() function accepts each coordinate and scales it by the appropriate factor 
using a reference to the external ratio variable. Watch what happens as we change 
the three variables involved in the bind: posX, posY, and ratio.

 We change posX, and the value of coords1 is automatically updated. This is 
because the bind knows that posX is integral to the bind. Likewise for posY. But a 
change to ratio does not force a recalculation of coord1. Why? The fact that this 
external variable is key to the integrity of the coords1 bind is lost—the function body 
is a black box and was not scanned for dependencies.

 And now the solution: coords2 uses exactly the same code, except the function it 
binds against, named scale2(), carries the bound keyword prefix. This keyword is a 
warning to the compiler, flagging potential external dependencies. When JavaFX
Script binds against a function marked bound, it looks inside for variables to include in 
the binding. Therefore coord2 gets correctly recalculated when ratio is changed, 
even though the reference to ratio is hidden inside a function.

 We call functions like scale1() unbound functions—their body is never included in 
the list of dependencies for a bind. We call functions like scale2() bound functions—
their body is scanned for external variables they rely on, and these are included as 
triggers to cause a recalculation of the bind.

Listing 2.37 Bound functions
    

  



42 CHAPTER 2 JavaFX Script data and variables
 When writing your own API libraries, you need to be aware of whether the return 
value of each function is entirely self-contained or dependent on some external data 
(perhaps a class instance variable?). If data other than the function parameters could 
influence the return value, you should consider marking the function as bound.

2.6.9 Bound object literals

Now that we’ve explored how binding works, and the difference between bound and 
unbound functions, we can look at how they respond to object literals.

 Object what? Sorry, but this is one of those occasions when I have to skip ahead and 
introduce something we won’t cover fully until chapter 3. Object literals are JavaFX
Script’s way of declaratively creating complex objects. You should still be able to follow 
the basics of what follows, in listing 2.38, although you may want to bookmark this sec-
tion and revisit it once you’ve read chapter 3.

class TextContainer {  
    var label:String;
    var content:String;
    init {
        println("Object created: {label}");
    }
}

var someContent:String = "Pew, Pew, Barney, Magreu";  

def obj1 = bind TextContainer {  
    label: "obj1";
    content: someContent;
};
def obj2 = bind TextContainer {  
    label: "obj2";
    content: bind someContent;
};

someContent = "Cuthbert, Dibble and Grub";  

Object created: obj1
Object created: obj2
Object created: obj1

In the example we start by creating a new class with two variables. The first, label, 
merely tags each object so we can tell them apart in the output. The other, content, is 
the variable we’re interested in. You’ll note there’s also a block of init code in our 
class; this will run whenever an object is created from the class, printing the label
variable so we can see when objects are created.

 We then define a String called someContent, to use in our object literals. The next 
two blocks of code are object literals. We create two of them, named obj1 and obj2, 
applying a bind to both. We use the variable someContent to populate the content
variable of the objects, although there is a subtle difference between the two declara-
tions that will alter the way binding works.

Listing 2.38 Binding and object literals

Create a class

Some text 
to bind to

Causes 
output line 1

Causes 
output line 2

Causes 
output line 3
    

  



43Working nicely with Java
 Creating the two objects causes the init code to run, resulting in the first two lines 
of our output; no great surprises there. But look what happens when we change the 
someContent variable, which was used by the objects. The first object (obj1) is re-
created, while the second (obj2) is not. Why is that?

 Think back to the way binds worked with functions. When one of the function 
parameters changes, the bind reruns the function with the new data. Object literals 
work the same way: the bind applies not only to the object but to the variables used 
when declaring it. When one of those variables changes, the object literal is rerun with 
the new data, causing a new object to be created. So that explains why a new obj1 was 
created when someContent was changed, but why didn’t obj2 suffer the same fate?

 If you look at where someContent is used in the declaration of obj2, you’ll see a 
second bind. This inner bind effectively shields the outer bind from changes affecting 
the object’s content variable, creating a kind of nested context that prevents the recal-
culation from bubbling up to the object level. Remember this trick whenever you 
need to bind against an object literal but don’t want the object creation rerun when-
ever one of the variables the declaration relied on changes.

 If you don’t yet appreciate how useful JavaFX bindings are, you’ll get plenty of 
examples in our first project in chapter 4. In the next section we’ll examine some bits 
of syntax that, although not as powerful as binds, can be just as useful.

2.7 Working nicely with Java
JavaFX Script is designed to work well with Java. As you’ll see in the next chapter, Java 
classes can be brought directly into JavaFX programs and used with the same ease as 
JavaFX Script classes themselves. But inevitably there will be a few areas where the two 
languages don’t mesh quite so easily. In the following sections we’ll look at a couple of 
useful language features that help keep the interoperability cogs well oiled.

2.7.1 Avoiding naming conflicts, with quoted identifiers

Quoted identifiers are the bizarre double angle brackets wrapping some terms in JFX
source code, for example, <<java.lang.System>>. Strange as these symbols look, they 
actually perform a very simple yet vital function. Because JavaFX sits atop the Java plat-
form and has access to Java libraries, it’s possible names originating in Java may clash 
with keywords or syntax patterns in JavaFX Script. Those peculiar angle brackets 
resolve this discord, ensuring a blissful harmony of Java and JavaFX at all times.

 The double angle brackets wrap identifiers (identifiers are the names referring to 
variables, functions, classes, and so on) to exclude them from presumptions the com-
piler might otherwise make. Listing 2.39 shows an example.

var <<var>> = "A string variable called var";
println("{<<var>>}");

A string variable called var

Listing 2.39 Quoted identifiers
    

  



44 CHAPTER 2 JavaFX Script data and variables
Please (please, please!) don’t do something as stupid as listing 2.39 in real production 
code. By using (abusing?) quoted identifiers, we’ve created a variable with the name 
of a JavaFX Script keyword. Normally we’d only do this if “var” were something in Java 
we needed to reference.

2.7.2 Handling Java native arrays (nativearray of)

Alongside its array classes (like Vector and ArrayList) Java also has in built native 
arrays. Java native arrays are a fixed size and feature a square-bracket syntax similar to 
JavaFX Script’s sequences. But native arrays and sequences are not quite the same 
thing, as you may have guessed if you’ve read section 2.5.6. When working with Java 
classes we may encounter native arrays, and we need some easy way of bringing them 
into our JavaFX programs. Listing 2.40 shows how it can be done.

def commaSep:java.lang.String = "one,two,three,four";
def numbers:nativearray of java.lang.String =
    commaSep.split(",");
println("1st: {numbers[0]}");
for(i in numbers) { println("{i}"); }

1st: one
one
two
three
four

Here we create a Java String object containing a comma-separated list and then use a 
String.split() call to break the list up into its constituent parts, resulting in an array 
of String objects. To bring this array into JavaFX Script as an actual array (rather than 
a sequence), we declare numbers as being of type nativearray of String. The num-
bers object can then be read and written to use the familiar square-bracket syntax and 
even feature as part of a for loop.

 While this eases the process of working with Java native arrays, it’s important to 
remember that a variable declared using nativearray is not a sequence; for exam-
ple, it may contain null objects, and the insert/delete syntax from section 2.5.5 
will not work. 

Experimental feature The nativearray functionality was added to 
JavaFX 1.2 as an experiment. It may be modified, or even removed, in 
later revisions of the JavaFX Script language.

Listing 2.40 Native arrays

Java strings versus JavaFX strings
There’s no significance in declaring commaSep as a Java String. Under-the-hood 
JavaFX Script strings use Java strings, so either would have worked. However, be-
cause split() is a Java method, returning a Java native array, I thought the code 
would be more readable if I spelled out explicitly the Java connection.

WARNING
    

  



45Summary
2.8 Summary
As you’ve now seen, JavaFX Script value types and sequences house some pretty power-
ful features. Chief among them is the ability to bind data into automatically updating 
chains, slashing the amount of code we have to write to keep our UI up to date. String 
formatting and sequence manipulation also offer great potential when used in a 
graphics and animation-rich environment.

 And speaking of animation, there was one small piece of the JavaFX Script’s data 
syntax we missed in this chapter. JFX provides a literal syntax for quick and easy cre-
ation of points on an animation time line, using the keywords at and tween. This is 
quite a specialist part of the language, without application beyond of the remit of ani-
mation. Because it’s impossible to demonstrate how this syntax works without refer-
ence to the graphics classes and packages it supports, I’ve held over discussion of this 
one small part of the language for a later chapter.

 In the next chapter we’ll complete our tour of the JavaFX Script language by look-
ing at the meat of the language, the stuff that actually gets our data moving.

 

    

  



JavaFX Script 
CODE AND STRUCTURE
In chapter 2 we looked at JavaFX Script’s data types and manipulations; this chapter 
looks at its code constructs. Separating the two is somewhat arbitrary—we saw 
plenty of code hiding in the previous chapter’s examples because code and data 
are flip sides of the same coin. Ahead we’ll see how the concepts we discovered last 
chapter integrate into the syntax as a whole. Our grounding in data will hopefully 
engender a more immediate understanding as we encounter conditions, loops, 
functions, classes, and the like.

 As mentioned in chapters 1 and 2, JavaFX Script is what’s referred to as an expres-
sion language, meaning most executable bits of code return either zero or one or 
more values (aka: void, a value, or a sequence). Even loops and conditions will 
work on the right-hand side of an assignment. It’s important to fix this idea in your 

This chapter covers
■ Writing, inheriting, and using classes
■ Mixing code with conditions and loops
■ Running code when a variable changes
■ Dealing with accidents and the unexpected
46

    

  



47Imposing order and control with packages (package, import)
mind as we progress through this chapter, particularly if you’re not used to languages 
working this way. I’ll point out the ramifications as the chapter unfolds. 

 We’ll start with higher-level language features like classes and objects and work our 
way down into the trenches to examine loops and conditions. It goes without saying 
that you’ll require an understanding of the material in the previous chapter, so if you 
skipped ahead to the juicy code stuff, please consider backtracking to at least read up 
on binds and sequences.

 I’ve maintained a couple of conventions from the last chapter. First, source code 
is presented in small chunks that (unless otherwise stated) compile and run inde-
pendently, with the console output presented in bold. Second, to avoid too much 
repetition I’m continuing to incur the wrath of pedants by occasionally referring to 
the language variously as JavaFX Script (its proper name) or by the shorthand JavaFX
or JFX.

 We have quite an exciting journey ahead, with a few twists and turns, so let’s get 
going. We’ll start by looking at the highest level of structure we can apply to our code: 
the package.

3.1 Imposing order and control with packages  
(package, import)
The outermost construct for imposing order on our code is the package. Packages 
allow us to relate portions of our code together for convenience, to control access to 
variables and functions (see access modifiers, later), and to permit classes to have identi-
cal names but different purposes. Listing 3.1 shows an example.

import java.util.Date;                       

var date1:Date = Date {};                      
var date2:java.util.Date = java.util.Date {};

Here we see two different ways of creating a Date object. The first makes use of the 
import statement at the start of the code (and would fail to compile without it), while 
the second does not. As in Java, an asterisk can be used at the end of an import state-
ment instead of a class name to include all the classes from the stated package 
without having to list them individually. Listing 3.2 shows how we can create our 
own packages.

package jfxia.chapter3;                    

public class Date {                          
    override function toString() : String {
        "This is our date class";          
    }                                      
};                                         

Listing 3.1 Using the package statement to shorten class names

Listing 3.2 Including a class inside a package

Date lives in 
the package 
java.util

Should go 
in the file 
Date.fx
    

  



48 CHAPTER 3 JavaFX Script code and structure
The package statement, which must appear at the start of the source, places the code 
from this example into a package called jfxia.chapter3, from where import may be 
used to pull it into other class files.

 In terms of how packages are physically stored, JavaFX Script uses the same combi-
nation of directories and class files as Java. For non-Java programmers there’s a more 
in-depth discussion of packages in appendix C, section C3. Next we turn our attention 
to the class content itself.

3.2 Developing classes
Classes are an integral part of object orientation (OO), encapsulating state and behav-
ior for components in a larger system, allowing us to express software through the 
relationships linking its autonomous component parts. Object orientation has 
become an incredibly popular way of constructing software in recent years; both Java 
and its underlying JVM environment are heavily object-centric. No surprise, then, that 
JavaFX Script is also object-oriented.

 JavaFX’s implementation of OO is close, but not identical, to Java’s. The key differ-
ence is that JavaFX Script permits something called mixin inheritance, which offers 
more power than Java’s interfaces but stops short of full-blown multiple-class inheri-
tance. In the coming subsections we’ll explore the ins and outs of JFX classes and how 
to define, create, inherit, control, and manipulate them.

3.2.1 Scripts

In some languages source code files are just arbitrary containers for code. In other 
languages the compiler attaches significance to where the code is placed, as with the 
Java compiler’s linking of class names with source files. In JavaFX Script the source file 
has a role in the language itself.

 In JFX a single source file is known as a script, and scripts can have their own 
code, functions, and variables, distinct from a class. They can also be used to create 
an application’s top-level code (see listing 3.3), the stuff that runs when your pro-
gram starts. The code, in listing 3.3, lives in a file called “Examples2.fx”.

package jfxia.chapter3;

def scriptVar:Integer = 99;  

Listing 3.3 Scripts and classes

Changes to object orientation
Starting with JavaFX 1.2, full-blown multiple inheritance was dropped from the JavaFX 
Script language in favor of mixins. The former proved to have too many edge case is-
sues, while the latter is apparently much cleaner. We’ll look at how mixins work later 
in this chapter.

Script variable
    

  



49Developing classes
function scriptFunc() : Integer {                  
    def localVar:Integer = -1;                       
    return localVar;                               
}                                                  

println (                                                
    "Examples2.scriptVar = {Examples2.scriptVar}\n"        
    "Examples2.scriptFunc() = {Examples2.scriptFunc()}\n"
    "scriptVar = {scriptVar}\n"                          
    "scriptFunc() = {scriptFunc()}\n"                    
);                                                       

Examples2.scriptVar = 99
Examples2.scriptFunc() = -1
scriptVar = 99
scriptFunc() = -1

Listing 3.3 shows variables and functions in the script context. We saw plenty of exam-
ples of this type of code in chapter 2, where almost every listing used the script con-
text for its code.

 Script functions and variables live outside of any class. In many ways they behave like 
static methods and variables in Java. They can be accessed by using the script name as 
a prefix, like Examples2.scriptVar or Examples2.scriptFunc(), although when 
accessed from inside their own script (as listing 3.3 shows) the prefix can be omitted. 
They are visible to all code inside the current script, including classes. External visibility 
(outside the script) is controlled by access modifiers, which we’ll study later in this chapter.

 When the JavaFX compiler runs, it turns each script into a bytecode class (plus an 
interface, but we won’t worry about implementation details here!). The script context 
functions and variables effectively become what Java would term static methods and 
variables in the class, but the script context can also contain loose code that isn’t 
inside a function. What happens to this code?

 It gets bundled up and executed if we run the script. In effect, it becomes Java’s 
public static main() method. In listing 3.3 the println() will run if we launch the 
class jfxia.chapter3.Examples2 using the JavaFX runtime. There is one restriction 
on loose expressions: they can only be used in scripts with no externally visible vari-
ables, functions, or classes. This is another access modifiers issue that will be explained 
later in this chapter.

 Now that you’ve seen scripts in action, it’s about time we looked at some class 
examples.

3.2.2 Class definition (class, def, var, function, this)

Creating new classes is an important part of object orientation, and true to form the 
JavaFX Script syntax boasts its trademark brevity. In this section we’ll forgo mention of 
inheritance for now, concentrating instead on the basic format of a class, its data, and 
its behavior. 

 We’ve seen script context variables and functions in the last section (and last 
chapter too), and their class equivalents are no different. The official JFX language 

Script 
function

Bootstrap 
code
    

  



50 CHAPTER 3 JavaFX Script code and structure
documentation refers to them as instance variables and instance functions, because they 
are accessed via a class instance (an object of the class type), so we’ll stick to that ter-
minology. To make the following prose flow more readily I’ll sometimes refer to 
functions and variables using the combining term members, as in “script members” or 
“instance members.”

 Listing 3.4 defines a music track with three variables and two functions. 

class Track {        
    var title:String;                     
    var artist:String;                      
    var time:Duration;                    

    function sameTrack(t:Track) : Boolean {   
        return (t.title.equals(this.title) and  
            t.artist.equals(this.artist));    
    }                                         

    override function toString() : String {         
        return '"{title}" by "{artist}" : '           
            '{time.toMinutes() as Integer}m '       
            '{time.toSeconds() mod 60 as Integer}s';
    }                                               
}

var song:Track = Track {        
    title: "Special"              
    artist: "Garbage"           
    time: 220s                  
};                              
println(song);

"Special" by "Garbage" : 3m 40s

Note that JavaFX Script uses the same naming conventions as Java: class names begin 
with a capital letter, function and variable names do not. Both use camel case to form 
names from multiple words. You don’t have to stick to these rules, but it helps make 
your code readable to other programmers.

 The title, artist, and time are the variables that objects of type Track will have, 
the instance variables. Just like script variables, they can be assigned initial values, 
although the three examples in listing 3.4 all use defaults.

 Functions in JFX classes are defined using the keyword function, followed by the 
function’s name, a list of parameters, and their type in parentheses, followed by 
a colon and the return type (where Void means no return). There are two functions 
in listing 3.4: the first accepts another Track and checks whether it references 
the same song as the current object; the second constructs a String to represent 
this song.

 The toString() function has the keyword override prefixing its definition. This 
is a requirement of JavaFX Script’s inheritance mechanism, which we’ll look at later 
this chapter. As with Java, all objects in JavaFX Script have a toString() function. Just 

Listing 3.4 Class definition, with variables and functions

Track class

Instance 
variables

Instance 
function

Another 
instance 
function

Declaring a 
new object 
from Track
    

  



51Developing classes
like Java, this function is called automatically whenever the compiler encounters an 
object in circumstances that require a String. So println(song) is silently translated 
by the compiler into println(song.toString()).

 The keyword this can be used inside the class to refer to the current object, 
although its use can usually be inferred, as the toString() function demonstrates. A 
class’s instance members are accessible to all code inside the class, and the enclosing 
script via objects of the class. External access (outside the script) is controlled by 
access modifiers (discussed later).

 Once we’ve defined our class, we can create objects from it. We’ll look at different 
ways of doing that in the next section, but just to complete our example I’ve included 
a sneak preview at the tail of listing 3.4. In the code, song is created as an object of 
type Track. We didn’t strictly need to specify the type after song (type inference would 
work), but since this is your first proper class example, I thought it wouldn’t hurt to go 
that extra mile.

 Before we move on, some bits and pieces need extra attention. Take a look at the 
source code in listing 3.5.

function doesReturn() : String {
    "Return this";
}
function doesNotReturn() {
    var discarded = doesReturn();
}

There are a couple of things to note in listing 3.5. First, the doesNotReturn() func-
tion fails to declare its return type. It seems that explicitly declaring the return type is 
unnecessary when the function doesn’t return anything—Void is assumed.

 Second, and far more important, shouldn’t doesReturn() have a return keyword 
in there somewhere? Recall that JavaFX Script is an expression language, and most of 

Listing 3.5 A closer look at functions

Properties: what’s in a name?
Although the JavaFX Script documentation prefers the formal term instance vari-
ables, sometimes public class variables are referred to as properties. In program-
ming, a property is a class element whose read/write syntax superficially resembles 
a variable, but with code that runs on each access. The result is much cleaner code 
than, for example, Java’s verbose getter/setter method calls (although the function 
is the same).

JavaFX Script variables can be bound to functions controlling their value, and triggers 
may run when their value changes. Yet binds and triggers are not intended as a prop-
erty syntax. The real reason JavaFX Script’s instance variables are sometimes called 
properties likely has more to do with JFX’s declarative syntax giving the same clean 
code feel as the real properties found in languages like C#.
    

  



52 CHAPTER 3 JavaFX Script code and structure
its code constructs give out a result. Thus, the last expression of a function can be used 
for the return value, even if the return keyword itself is missing.

3.2.3 Object declaration (init, postinit, isInitialized(), new)

We saw an example of creating an object from a class in the previous section. Many 
other object-oriented languages call a constructor, often via a keyword such as new, but 
JavaFX Script objects have no constructors, preferring its distinctive declarative syntax.

 By invoking what the JFX documentation snappily calls the object literal syntax, we can 
declaratively create new objects. Listing 3.6 shows how. Simply state the class name, open 
curly braces, list each instance variable you want to give an initial value to (using its name 
and value separated by a colon), and don’t forget the closing curly braces. (The source 
file for listing 3.6 is SpaceShip.fx.)

package jfxia.chapter3;

def UNKNOWN_DRIVE:Integer = 0;
def WARP_DRIVE:Integer = 1;     

class SpaceShip {                               
    var name:String;                              
    var crew:Integer;                           
    var canTimeTravel:Boolean;                  
    var drive:Integer = SpaceShip.UNKNOWN_DRIVE;
                                                
    init {                                      
        println("Building: {name}");            
        if(not isInitialized(crew))             
            println("  Warning: no crew!");     
    }                                           
    postinit {                                  
        if(drive==WARP_DRIVE)                   
            println("  Engaging warp drive");   
    }                                           
}                                               

def ship1 = SpaceShip {       
    name:"Starship Enterprise"  
    crew:400                  
    drive:SpaceShip.WARP_DRIVE
    canTimeTravel:false       
};                            

def ship2 = SpaceShip {                            
    name:"The TARDIS" ; crew:1 ; canTimeTravel:true  
};                                                 

def ship3 = SpaceShip{ name:"Thunderbird 5" };  

def ship4 = new SpaceShip();                
ship4.name="The Liberator";                    
ship4.crew=7;                               
ship4.canTimeTravel=false;                  

Listing 3.6 Object declaration, using declarative syntax or the new keyword

Script 
variables

Our class, 
including init / 
postinit blocks

Declarative 
syntax

Again, 
declarative 
syntax

Only name set

Java-style 
syntax
    

  



53Developing classes
Building: Starship Enterprise
  Engaging warp drive
Building: The TARDIS
Building: Thunderbird 5
  Warning: no crew!
Building:
  Warning: no crew!

We create four objects: the first three using the JavaFX Script syntax and the final one 
using a Java-style syntax.

 From the first three examples you’ll note how JFX uses the colon notation, allowing 
us to set any available variable on the object as part of its creation. This way of explicitly 
writing out objects is what’s referred to as an object literal. The second example uses a 
more compact layout: multiple assignments per line, separated by semicolons.

 Before looking at the third example, we need to consider the init and postinit
blocks inside the class. As you may have guessed, these run when an object is created. 
The sequence of events is as follows:

1 The virgin object is created.
2 The Java superclass default constructor is called.
3 The object literal’s instance variable values are computed but not set.
4 The instance variables of the JavaFX superclass are set.
5 The instance variables of this class are now set, in lexical order.
6 The init block of each class in the object’s class hierarchy is called, if present, 

starting from the top of the hierarchy. The object is now considered initialized.
7 The postinit block of each class in the object’s hierarchy is called, if present, 

starting from the top of the hierarchy.

The isInitialized() built-in function allows us to test whether a given variable has 
been explicitly set. In our third example only the name variable is set in the object lit-
eral, so the warning message tells us that Thunderbird 5 has no crew (which, in itself, 
might demand the attention of International Rescue!). Conveniently, isInitial-
ized() isn’t fooled by the fact that crew, as a value type, will have a default (unas-
signed) value of 0.

 The isInitalized() function is handy for knowing whether an object literal 
bothered to set an instance variable, so we can assign appropriate initial values to 
those variables it missed. Alternatively you could provide multiple means of configur-
ing an object, like separate lengthCm and lengthInches variables, and detect which 
was used.

 Moving on to the fourth example, you’ll note that it looks like the way we create 
new object instances in Java. Indeed, that’s intentional. There may be times when we 
are forced to instantiate a Java object using a specific constructor; the new syntax 
allows us to do just that. But new can be used on any class, including JavaFX Script 
classes; however, we should resist that temptation. The new syntax should be used only 
when JavaFX Script’s declarative syntax will not work (the example is bad practice!)
    

  



54 CHAPTER 3 JavaFX Script code and structure
 Because the fourth object’s instance variables don’t get set until after the object is 
created, the Building message has an empty name and the crew warning is triggered.

3.2.4 Object declaration and sequences

There’s nothing special about listing 3.7. It simply pulls together the object-creation 
syntax we saw previously with the sequence syntax we witnessed last chapter. It’s worth 
an example on its own, as this mixing of objects and sequences crops up frequently in 
JavaFX programming.

 Listing 3.7 creates two Track objects inside a sequence (note the Track[] type). To 
run this code you need the Track class we saw in listing 3.4.

var playlist:Track[] = [
    Track {
        title: "Special"
        artist: "Garbage"
        time: 220s
    } ,
    Track {
        title: "End of the World..."
        artist: "REM"
        time: 245s
    }
];
println(playlist.toString());                          

[ "Special" by "Garbage" : 3m 40s, "End of the World..." 

➥   by "REM" : 4m 5s ]

Instead of a boring list of comma-separated numbers or strings, the sequence contains 
object literal declarations between its square brackets. For readability I’ve used only 
two tracks in playlist, but the sequence could hold as many as you want—although 

Listing 3.7 Sequence declaration

JavaFX Script and semicolons
We touched on the issue of semicolons in the previous text. As in Java, semicolons 
are used to terminate expressions, but the JavaFX Script compiler seems particularly 
liberal about when a semicolon is necessary. When we meet ternary expressions in 
section 3.3.3, we’ll see an example of where they cannot be used, but other than that 
there’s apparently little enforcement of where they must be used. It seems when the 
compiler can infer the end of a construct using a closing brace or whitespace alone, 
it is happy to do so.

For the purposes of this book’s source code, I’m adopting a general style of adding in 
semicolons at appropriate places, even if they can be omitted. You can drop them 
from your own code if you want, but I’m keeping them in the sample code to provide 
both clarity and familiarity.

toString() could 
be omitted
    

  



55Developing classes
be careful, the JavaFX compiler may issue warnings if you attempt to add anything by 
Rick Astley.

3.2.5 Class inheritance (abstract, extends, override)

One of the most important tenets of object orientation is subclassing, the ability of a 
class to inherit fields and behavior from another. By defining classes in terms of one 
another, we make our objects amenable to polymorphism, allowing them to be refer-
enced as more than one type. (For readers unfamiliar with terms like polymorphism, 
there’s a beginners’ guide to object orientation in appendix C, section C5).

 Java programmers may be surprised to learn that JavaFX Script deviates from the 
Java model for object orientation. As well as supporting Java’s single inheritance, 
JavaFX Script supports mixin inheritance. We’ll look at mixins a little later; first we need 
to get familiar with the basics of single inheritance from a JavaFX point of view. The 
following example (listings 3.8, 3.9, and 3.10) has been broken up into parts, which 
we’ll explore piece by piece.

import java.util.Date;

abstract class Animal {
    var life:Integer = 0;   
    var birthDate:Date;       

    function born() : Void {     
        this.birthDate = Date{};   
    }                            

    function getName() : String {
        "Animal"                 
    }                            

    override function toString() : String {         
        "{this.getName()}  Life: {life}  "            
            "Bday: {%te birthDate} {%tb birthDate}";
    }                                               
}

Listing 3.8 shows a simple Animal class. It’s home to just a life gauge and a date of birth, 
plus three functions: born() for when the object is just created, getName() to get the 
animal type as a String, and toString() for getting a printable description of the 
object. This is the base class onto which we’ll build in the following parts of the code.

 The abstract keyword prefixing the class definition tells the compiler that objects 
of this class cannot be created directly. Sometimes we need a class to be only a base 
(parent) class to other classes. We can’t create Animal objects directly, but we can sub-
class Animal and create objects of the subclass. Thanks to polymorphism, we can even 
assign these subclass objects to a variable of type Animal, although handling objects as 
type Animal is not the same as actually creating an Animal object itself. We’ll see an 
example of this shortly.

Listing 3.8 Class inheritance, part 1

Instance 
variables

Instance 
functions, new 
for this class

Instance function, 
inherited
    

  



56 CHAPTER 3 JavaFX Script code and structure
 Our second chunk of code (listing 3.9) inherits the first by using the extends key-
word after its name followed by the parent class name, in this case Animal. As you may 
expect, this makes Mammal a type of Animal.

class Mammal extends Animal {             
    override function getName() : String {
        "Mammal"                            
    }                                     

    function giveBirth() : Mammal {  
        var m  = Mammal { life:100 };  
        m.born();                    
        return m;                    
    }                                
}

The class overrides the getName() method to provide its own answer, which explains 
the override keyword prefixing the function. The extra keyword is required at the 
start of any function that overrides another; it doesn’t do anything other than help 
document the code and make it harder for bugs to creep into our programs. If you 
leave it off, you’ll get a compiler warning. If you include it when you shouldn’t, you’ll 
get a compiler error.

 You should use the override keyword even when subclassing Java classes, which is 
why you may have spotted it on the toString() function of Animal, in listing 3.8. All 
objects in the JVM are descendants of java.lang.Object, which means all JavaFX
objects are too, even if they don’t explicitly extend any class. Thus toString(), which 
originates in Object, needs the override keyword.

 The Animal class adds an extra function for giving birth to a new Mammal. 
The new function creates a fresh Mammal, sets its initial life value, and then calls 
born(). The born() function is inherited from Animal, along with the toString()
function.

 So far, so good; how about another Animal subclass? Take a look at listing 3.10.

class Reptile extends Animal {
    override var life =  200;            

    override function getName() : String {
        "Reptile"                           
    }                                     

    function layEgg() : Egg {
        var e = Egg {          
            baby: Reptile {} 
        };                   
        e;                   
    }                        
}

Listing 3.9 Class inheritance, part 2

Listing 3.10 Class inheritance, part 3

Subclass of Animal

Overrides the 
one in Animal

Brand-new 
instance 
method

Override inherited initial value

Overrides the 
function in Animal

Create a Reptile 
inside an Egg
    

  



57Developing classes
class Egg {                          
    var baby:Reptile;                  
    function toString() : String {   
         return "Egg => Baby:{baby}";
    }                                
}                                    

Again we have a subclass of Animal, this time called Reptile, with its own overridden 
implementation of getName() and its own new function. The new function in ques-
tion creates and returns a fourth type of object, Egg, housing a new Reptile.

 At the head of the Reptile class is an overridden instance variable. Why do we 
need to override an instance variable? Think about it: overriding an instance function 
redefines it, replacing its (code) contents. Likewise, overriding an instance variable 
redefines its contents, giving it a new initial value. This means any Reptile object lit-
eral failing to set life will get a value of 200, not the 0 value inherited from Animal.

 Before we move on, check out the use of JFX’s declarative syntax in layEgg(). The 
Reptile object is literally constructed inside the Egg. We could have done it longhand 
(the Java way), first creating a Reptile, then creating the Egg, then plugging one into 
the other, but the JavaFX Script syntax allows us far more elegance.

 Now finally we need code to test our new objects. Listing 3.11 does just that.

def mammal = Mammal { life:150  ; birthDate: Date{} };
def animal:Animal = mammal.giveBirth();
println(mammal);                       
println(animal);                       
println(animal.getName());                             

def reptile = Reptile { life:175  ; birthDate: Date{} };
def egg = reptile.layEgg();
println(reptile);            
println(egg);                  

Mammal  Life: 150  Bday: 3 Aug
Mammal  Life: 100  Bday: 3 Aug
Mammal
Reptile  Life: 175  Bday: 3 Aug
Egg => Baby:Reptile  Life: 200  Bday: null null

In listing 3.11 we create two Mammal objects, but here’s the clever part: we store one of 
them as an Animal. Even though Animal is abstract and we can’t create Animal objects 
themselves, we can still reference its subclasses, such as Mammal, as Animal objects. 
That’s the power of polymorphism.

 Here’s a quiz question: after printing both Mammal objects, we call getName() on 
the object typed as an Animal. The getName() function exists in both Mammal and its 
parent superclass, Animal. So what will it return: “Mammal,” which is the type it truly is, 
or “Animal,” the type it’s being stored as?

 The answer is “Mammal.” Because JavaFX functions are virtual, the subclass redefi-
nition of getName() replaces the original in the parent class, even when the object is 
referenced by way of its parent type.

Listing 3.11 Virtual functions demonstrated

The Egg 
class itself

First output line

Second output line

Third output line

Fourth output line

Final output line
    

  



58 CHAPTER 3 JavaFX Script code and structure
 The last output line shows the Reptile inside the Egg. But why is its output 
different from that of the other Reptile object? Well, layEgg() never calls born(), 
so birthDate is null. This is what causes the null values when we print out the day 
and month. And because life is not set either, the overridden initial value of 200 
is used.

 By the way, before we move on I do want to acknowledge to any women reading 
this that I fully acknowledge childbirth is not as painless as creating a new object and 
calling a function on it! Likewise, similar sentiments to any reptiles that happen to be 
reading this.

3.2.6 Mixin inheritance (mixin)

Mixin, a portmanteau of mix and in, is the name of a lightweight inheritance model that 
complements the class inheritance we’ve already seen. In JavaFX Script each class can 
be subclassed from one parent at a time; this neatly sidesteps potential conflicts and 
ambiguities between multiple parents but creates a bit of a straitjacket. Mixins allow a 
class to acquire the characteristics of another type (a mixin class) without full-blown 
multiple inheritance.

Each JavaFX Script class can inherit at most one Java or JavaFX class but any number of 
Java interfaces and/or JavaFX mixins. In turn, each JavaFX mixin can inherit from any 
number of Java interfaces and/or JavaFX mixins. A mixin provides a list of functions 
and variables any inheriting class must have, plus optional default content. A class that 
inherits a mixin is called a mixee (because it’s the recipient of a mixin).

 The process works like this: if the mixee extends another regular class, the vari-
ables and functions (the class members) in this superclass are inherited as per usual, 
before the mixing process begins. Then each mixin class is considered in turn, as they 
appear on the extends list (we’ll look at the syntax in a moment). If the mixee omits a 
function or a variable, rather than flag a compiler error, the missing content is auto-
matically copied in (“mixed in”) to the mixee, almost as if it had been cut and pasted. 
Mixin variables and functions can also carry default content—initial values and func-
tion bodies—and that too will be mixed in if absent from the mixee.

 This is a lot to take in at once, so let’s work through the process by way of an exam-
ple. Listing 3.12 shows code that might be used in a role-playing game.

 
 

Changes to JavaFX Script inheritance
Early JavaFX Script compilers supported full-blown multiple inheritance; however, 
JavaFX 1.2 heralded a shift toward mixins and introduced the mixin keyword to the 
language. The intent was to remove some of the edge-case complications and perfor-
mance costs caused by multiple inheritance, while keeping much of its benefit.
    

  



59Developing classes
mixin class Motor {                                        
    public var distance:Integer = 0;                         

    public function move(dir:Integer,dist:Integer) : Void {
        distance+=dist;                                    
    }                                                      
}                                                          

mixin class Weapon {                                 
    public var bullets:Integer                         
        on replace { println("Bullets: {bullets}"); }
    }                                                
                                                     
    init {                                           
        reload();                                    
    }                                                

    public function fire(dir:Integer) : Void {      
        if(bullets>0)  bullets--;                   
    }                                               
                                                    
    public abstract function reload() : Void;       
}                                                   

class Robot extends Motor,Weapon {     
    override var bullets = 1000
        on replace { println("Bang"); }
        
    override function reload() : Void {
        bullets=100;
    }
}

class Android extends Robot , Weapon,Motor {  
}

Here we have two mixin classes and two regular classes. The Robot and Android
classes might be character types, while the Motor and Weapon mixins might represent 
traits characters can have. As you can see, the mixin keyword prefixes a class defini-
tion to flag it as a mixin. Mixins are then inherited by listing them after the extends
keyword, separated by commas. To implement mixin content in a mixee, we use the 
same syntax as for overriding class members in regular inheritance, including the 
override keyword.

 Using the code in listing 3.12 for reference, the process of mixing would be as 
follows:

1 The Robot class does not inherit from any superclass, so we start from a clean 
slate, so to speak.

2 Because Motor appears first on the extends list, it’s first to be considered. Our 
Robot class implements neither a distance variable nor a move() function, so 

Listing 3.12 Mixins

Mixin for 
movement

Mixin for 
weapons

Inherits both 
mixins

Weapon/Motor 
are redundant
    

  



60 CHAPTER 3 JavaFX Script code and structure
the default implementations are inherited, including their value/body. (If you 
can’t be bothered to provide your own, you get one for free!)

3 The Weapon mixin is considered next. It specifies one variable and two func-
tions: default content is provided for bullets and fire(), but reload() is 
abstract, forcing any potential mixee to provide its own body implementation. 
The Robot class provides implementations of bullet and reload(), but fire()
is absent, so Weapon’s default is inherited.

4 Robot is complete, with the content of Robot, Motor, and Weapon mixed to cre-
ate one class. The result can be successfully cast to any of these three types.

5 The Android class extends Robot, and as such its inheritance of Weapon and 
Motor has no effect—all the necessary members are already present. Even 
changing the order on the extends line cannot alter anything. Android should 
probably be amended to remove Motor and Weapon from its extends list—
although they don’t do any harm, their presence is potentially confusing.

You’ll note from the code that mixins can contain init (and postinit) blocks, and 
their variables also support on replace triggers (we haven’t looked at triggers yet, so 
you might want to bookmark this page and come back to it). How do these work when 
the mixee is used?

 In the case of init blocks, when any object is created its class’s superclass is initial-
ized first (which in turn initializes its own superclass, creating a chain reaction up the 
class hierarchy), and then the class itself is initialized. Initialization involves the init
blocks of each mixin being run in the order in which they appeared on the extends
list, and then the class’s own init block being run. The postinit blocks are then run, 
using the same order (mixins first, class last).

 The effect for on replace blocks is similar, with triggers farther up the inheritance 
tree running before those in the class itself. In our example both Weapon.bullets and 
Robot.bullets have a trigger block (the latter complements, rather than overrides, 
the former). When bullets is assigned, the on replace block for Weapon.bullets
runs first, followed by the one in Robot.bullets.

 We can quickly mop up some of the remaining mixin questions with a mini-FAQ:

■ Q: Can I declare an object using a mixin class? 
A: Not directly—mixins are effectively abstract. But you can create the object using its reg-
ular class type and then cast to one of its mixin types.

■ Q: What’s the relationship between mixins and Java interfaces? 
A: Java’s interfaces are effectively viewed as mixins with only abstract functions.

■ Q: Do I have to fully implement all the members of every mixin I inherit? 
A: No, but if any of the functions still have no bodies after the inheritance process (they are 
still abstract), the resulting class must be declared abstract. (Mixin classes themselves are, 
effectively, abstract.) 

■ Q: Can I use the super and this keywords in a mixin function body? 
A: Yes. They work much like they do with regular classes.
    

  



61Developing classes
■ Q: Can I use super in a mixee, in reference to a mixin’s default function body? 
A: Yes. If you provide your own function body, you can still reference the default one you 
overrode from the mixin using super.

■ Q: What if mixin member names clash with existing mixee member names? 
A: If they are compatible with the existing members, then nothing happens—they’re consid-
ered to already be inherited. But if they are incompatible (like a variable having a different 
type than its namesake), a compiler error results.

■ Q: What if two mixins have identical members, with different defaults? 
A: Mixin inheritance follows the order of the extends list—the earliest mixin wins!

■ Q: If two mixins have identical functions, which does super reference? 
A: When a mixee provides its own implementation of a function that appears in more 
than one of its mixins, using super to reference the original isn’t sufficient. To specify pre-
cisely which mixin we’re referring to, we can use its class name instead, thus, 
Eggs.scramble() and SecretMessage.scramble().

That concludes our look at class inheritance; you may wish to revisit it (particularly 
the stuff on mixins) once you’ve read through the remainder of this chapter, but for 
now let’s push on with our exploration of the JavaFX Script language.

3.2.7 Function types

Function types in JavaFX are incredibly useful. Not only do they provide a neat way of 
creating event handlers (see anonymous functions, later in this chapter) but they allow 
us to plug bits of bespoke code into existing software algorithms. Functions in JavaFX
Script are first-class objects, meaning we can have variables of function type and can pass 
functions into other functions as parameters. Listing 3.13 shows a simple example.

var func : function(:String):Boolean;
func = testFunc;
println( func("True") );
println( func("False") );

function testFunc(s:String):Boolean {
    return (s.equalsIgnoreCase("true"));
}

true
false

Listing 3.13 centers on the function at its tail, testFunc(), which accepts a String
and returns a Boolean.

 First we define a new variable, func, with a strange-looking type. The variable will 
hold a reference to our function, so its type reflects the function signature. The 
keyword function is followed by the parameter list in parenthesis (variable names are 
optional) and then a colon and the return type. In listing 3.13 the type is 
function(:String):Boolean, a function that accepts a single String and returns a 

Listing 3.13 Function types
    

  



62 CHAPTER 3 JavaFX Script code and structure
Boolean. We can assign to this variable any function that matches that signature, and 
indeed in the very next line we do just that when we assign testFunc to func, using 
what looks like a standard variable assignment. We can now call testFunc() by way of 
our variable reference to it, which the code does twice just to prove it works.

 Passing functions to other functions works along similar lines (see listing 3.14). 
The receiving function uses a function signature for its parameters, just like the vari-
able in listing 3.13.

function manip(s:String ,               

➥   f:function(:String):String) : Void {  
    println("{s} = {f(a)}");            
}                                       

function m1(s:String) : String { 
    s.toLowerCase();               
}                                

function m2(s:String) : String {
    s.substring(0,4);           
}                               

manip("JavaFX" , m1);
manip("JavaFX" , m2);

JavaFX = javafx
JavaFX = Java

The first function in listing 3.14, manip(), accepts two parameters and returns 
Void. The first parameter is of type String, and the second is of type 
function(:String):String, which in plain English translates as a function that 
accepts a String and returns a String. Fortunately we happen to have two such func-
tions, m1() and m2(), on hand. Both accept and return a String, with basic manipula-
tion in between. We call manip() twice, passing in a String and one of our functions 
each time. The manip() function invokes the parameter function with the String and 
prints the result. A simple example, perhaps, yet one that adequately demonstrates 
the effect.

 Being able to reference functions like this is quite a powerful feature. Imagine a 
list class capable of being sorted or filtered by a plug-in-able function, for example. 
But this isn’t the end of our discussion. In the next section we continue to look at 
functions, this time with a twist.

3.2.8 Anonymous functions

We’ve just seen how we can pass functions into other functions and assign them to 
variables, but what application does this have? The most obvious one is callbacks, or 
event handlers as they’re more commonly known in the Java world.

 In a GUI environment we frequently need to respond to events originating from 
the user: when they click a button or slide a scrollbar we need to know. Typically we 

Listing 3.14 Passing functions as parameters to other functions

Function with 
parameter function

Functions we pass 
into manip()
    

  



63Developing classes
register a piece of code with the class generating the event, to be called when that 
event happens. JavaFX Script’s function types, with their ability to point at code, fit the 
bill perfectly. But having to create script or class functions for each event handler is a 
pain, especially because in most cases they’re used in only one place. If only there 
were a shortcut syntax for one-time function creation. Well, unsurprisingly, there is. 
And listing 3.15 shows us how.

import java.io.File;

class FileSystemWalker {
    var root:String;
    var extension:String;
    var action:function(:File):Void;

    function go() { walk(new File(root)); }

    function walk(dir:File) : Void {
        var files:File[] = dir.listFiles();
        for(f:File in files) {
            if(f.isDirectory()) {
                walk(f);
            }
            else if(f.getName().endsWith(extension)) {
                action(f);
            }
        }
    }
}

var walker = FileSystemWalker {
    root: FX.getArguments()[0];
    extension: ".png";
    action: function(f:File) {         
        println("Found {f.getName()}");  
    }                                  
};
walker.go();

The class FileSystemWalker has three variables and two functions. One of the vari-
ables is a function type, called action, which can point to functions of type func-
tion(:File):Void—or, in plain English, any function that accepts a java.io.File
object and returns nothing.

 The most important function is walk(), which recursively walks a directory tree 
looking for files that end with the desired extension, calling whichever function has 
been assigned to action for each match, passing the file in as a parameter. The other 
function, go(), merely acts as a convenience to kick-start the recursive process from a 
given root directory. So far, nothing new! But it starts to get interesting when we see 
how walker, an object of type FileSystemWalker, is created.

 In its declaration walker assigns the root directory to the first parameter passed in 
on the command line—so when you run the code, make sure you nominate a directory! 

Listing 3.15 Anonymous functions

Anonymous 
function
    

  



64 CHAPTER 3 JavaFX Script code and structure
(The FX.getArguments() function is how we get at the command-line arguments, by 
the way.) The extension is set to PNG files, so walk() will act only on filenames with that 
ending. But look at the way action is assigned.

 Rather than pointing to a function elsewhere, the action code merely defines a 
nameless (anonymous) function of the required type right there as part of the assign-
ment. This is an anonymous function, a define-and-forget piece of code assigned to a 
variable of function type. It allows us to plug short snippets of code into existing 
classes without the inconvenience of having to fill up our scripts with fully fleshed-out 
functions, making it ideal for quick and easy event handling.

3.2.9 Access modifiers (package, protected, public, public-read, public-init)

We round off our look at classes by examining how to keep secrets. Classes encapsu-
late related variables and functions into self-contained objects, but an object becomes 
truly self-contained when it can lock out third parties from its implementation detail.

 JavaFX’s access modifiers are tailored to suit the JavaFX Script language and its 
declarative syntax. Access modifiers can be applied to script members (functions and 
variables at script level), instance members (functions and variables inside a class), and 
classes themselves. They cannot be used with, indeed make no sense for, local variables 
inside functions. (See listing 3.3 for an example of different types of variables.)

 There are four basic modes of visibility in JavaFX Script, outlined in table 3.1.

There are two additive access modifiers, which may be combined with the four modes 
in table 3.1—modifiers to the modifiers, if you like. They are designed to complement 
JavaFX Script’s declarative (object literal) syntax. As such, they apply only to var vari-
ables (capable of being modified) and cannot be used with functions, classes, or any 
def variables. Table 3.2 details them. 

Table 3.1 Basic access modifiers

Modifier keyword Visibility effect

(default) Visible only within the enclosing script. This default mode (with no associated key-
word) is the least visible of all access modes.

package Visible within the enclosing script and any script or class within the same package.

protected Visible within the enclosing script, any script or class within the same package, and 
subclasses from other packages. 

public Visible to anyone, anywhere.

Table 3.2 Additive access modifiers

Modifier keyword Visibility effect

public-read Adds public read access to the basic mode.

public-init Adds public read access and object literal write access to the basic mode.
    

  



65Developing classes
The public-read modifier grants readability to a variable, while writing is still con-
trolled by its basic mode. The public-init modifier also grants public writing, but only 
during object declaration. Writing at other times is still controlled by the basic mode.

 Each modifier solves a particular problem, so the clearest way to explain their use 
is with a task-centric mini-FAQ, like the one up next:

■ Q: I’ve written a script/class and don’t want other scripts messing with my func-
tions or variables, as I might change them at a later date. Can I do this? 
A: Stick with the default access mode. It gives you complete freedom with your variables 
and functions because no other script can interact with them.

■ Q: I’m writing a package. Some functions and variables need to be accessible 
across scripts and classes of the package, but I don’t want other programmers 
getting access to them. Is this possible? 
A: Sure, the package access modifier will do that for you.

■ Q: Some of my class’s functions and variables would be useful to authors of sub-
classes, but I don’t want to open them up to the world. How is this done? 
A: Check out the protected access modifier; it grants package visibility, plus any sub-
classes from outside the package.

■ Q: I have a class with some variables I’d like to make readable by everyone, but I 
still want to control write access to them. Can JavaFX Script do this? 
A: Indeed! Just combine public-read with one of the four basic modes.

■ Q: I’d like to control writing to my instance variables, except when the instance 
is first created. Is this possible? 
A: Funny you should ask. Just add public-init to one of the four basic modes, and 
your variables will become public writable when used from an object literal.

■ Q: So, why can’t I use these additive modifiers with def variables? 
A: Common sense. A public-read def would be the same as a public def, and a 
public-init def would be rather pointless.

Enough questions, let’s consider some actual source code (listing 3.16).

package jfxia.chapter3.access;

public class AccessTest {
    var sDefault:String;            
    package var sPackage:String;      
    protected var sProtected:String;
    public var sPublic:String;      

    public-read var sPublicReadDefault:String;            
    public-read package var sPublicReadPackage:String;      
    public-init protected var sPublicInitProtected:String;

    init {
        println("sDefault = {this.sDefault}");
        println("sPackage = {this.sPackage}");
        println("sProtected = {this.sProtected}");

Listing 3.16 Access modifiers on a class

Basic 
modes

Additive 
modes
    

  



66 CHAPTER 3 JavaFX Script code and structure
        println("sPublic = {this.sPublic}");
        println("sPublicReadDefault = "
            "{this.sPublicReadDefault}");
        println("sPublicReadPackage = "
            "{this.sPublicReadPackage}");
        println("sPublicInitProtected = "
            "{this.sPublicInitProtected}");
    }
}

Listing 3.16 shows a class with instance variables displaying various types of access visi-
bility. Note that the class is in package jfxia.chapter3.access. To test it we need 
some further sample code such as in listing 3.17.

package jfxia.chapter3;
import jfxia.chapter3.access.AccessTest;

def a:AccessTest = AccessTest {
    // ** sDefault has script only (default) access 
    //sDefault: "set";

    // ** sPackage is not public; cannot be accessed 

➥   from outside package
    //sPackage: "set";

    // ** sProtected has protected access
    //sProtected: "set";

    sPublic: "set";                          

    // ** sPublicReadDefault has script only (default) 

➥   initialization access
    //sPublicReadDefault: "set";

    // ** sPublicReadPackage has package initialization 

➥   access
    //sPublicReadPackage: "set";

    sPublicInitProtected: "set";                       
};

// ** sPublicInitProtected has protected write access
//a.sPublicInitProtected = "set2";                   

def str:String = a.sPublicReadDefault;  

sDefault =
sPackage =
sProtected =
sPublic = set
sPublicReadDefault =
sPublicReadPackage =
sPublicInitProtected = set

Listing 3.17 tests the AccessTest class we saw in listing 3.16. It lives in a different pack-
age than AccessTest, so we can expect all manner of access problems. The script 
builds an instance of AccessTest, attempting to set each of its instance members. The 

Listing 3.17 Testing access modifiers

Always 
works

Works during 
declaration

Fails outside 
declaration

Read is 
okay
    

  



67Flow control, using conditions
lines that fail have been commented out, with the compilation error shown in a com-
ment on the preceding line.

 Of the seven variables, only two are successfully accessible during the object’s dec-
laration, one of which is the public variable allowing total unhindered access.

 Keen eyes will have spotted that the protected variable cannot be assigned, but its 
public-init protected cousin can. The public-init modifier grants write access only 
during initialization—which is why a second assignment, outside the object literal, fails.

 Also, note how the public-read 'default' variable has become read-only outside 
of its class.

 So that’s it for access modifiers. By sensibly choosing access modes we can create 
effective components, allowing other programmers to interact with them through 
clearly defined means, while protecting their inner implementation detail.

 And so ends our discussion of classes. In the next section we begin studying famil-
iar code constructs like conditions and loops, but with an expression language twist.

3.3 Flow control, using conditions
Conditions are a standard part of all programming languages. Without them we’d 
have straight line code, doing the same thing every time with zero regard for user 
input or other runtime stimuli. This would cut dramatically the number of bugs in our 
code but would ever so slightly render all software completely useless.

 JavaFX Script’s conditions behave in a not-too-dissimilar fashion to other lan-
guages, but the expression syntax permits one or two interesting tricks.

First let’s look at some basic conditions.

3.3.1 Basic conditions (if, else)

We’ll kick things off with a basic example (listing 3.18).

var someValue = 99;

if(someValue==99) {
    println("Equals 99");
}

Listing 3.18 Conditions

Use your imagination
The demonstration conditions in the following sections are somewhat contrived. Hard-
coded values mean the same path is always followed each time the code is run. I 
could have written each example to accept some runtime variable (an external factor, 
not determinable at compile time) such that each path could be exercised. While this 
would add an element of real-world-ness, it would also make the code much longer, 
without adding any demonstration value. It goes without saying that I consider readers 
of this book to be intelligent enough to study each example and dry run in their heads 
how different data would activate the various paths through the code.
    

  



68 CHAPTER 3 JavaFX Script code and structure
if(someValue >= 100) {
    println("100 or over");
}
else {
    println("Less than 100");
}

if(someValue < 0) {
    println("Negative");
}
else if(someValue > 0) {
    println("Positive");
}
else {
    println("Zero");
}

Equals 99
Less than 100
Positive

There are three condition examples in this code, all depending on the variable some-
Value. The first is a straight if block; its code is either run or it is not. The second 
adds an else block, which will run if its associated condition is false. The third adds 
another condition block, which is tested only if the first condition is false.

3.3.2 Conditions as expressions

So JavaFX’s if/elseif/else construct is the same as that of countless other pro-
gramming languages, but you’ll recall mention of “interesting tricks”—let’s look at 
listing 3.19.

var negValue = -1;
var sign = if(negValue < 0) { "Negative"; }
    else if(negValue > 0) { "Positive"; }
    else { "Zero"; }
println("sign = {sign}");

sign = Negative

Your eyes do not deceive, we are indeed assigning from a condition!
 The variable sign takes its value directly from the result of the condition that 

follows. It will acquire the value "Positive", "Negative", or "Zero", depending on 
the outcome of the condition. How is this happening? Let’s chant the mantra 
together, shall we? “JavaFX Script is an expression language! JavaFX Script is an 
expression language!”

 JavaFX’s conditions give out a result and thus can be used on the right-hand side of 
an assignment, or as part of a bind, or in any other situation in which a result is 
expected. Now perhaps you understand why we were able to use conditions directly 
inside formatted strings or to update bound variables.

Listing 3.19 Conditions as expressions
    

  



69Flow control, using conditions
3.3.3 Ternary expressions and beyond

Let’s expand on this notion. In other languages there’s a concept of a ternary expres-
sion, which consists of a condition followed by two results; the first is returned if the 
condition is true, the second if it is false. We can achieve the same thing via JavaFX
Script’s if/else, as shown in listing 3.20.

import java.lang.System;

var asHex = true;
System.out.printf (
    if(asHex) "Hex:%04x%n" else "Dec:%d%n" ,
    12345
);

Hex:3039

Depending on the value of isHex either the first or the second formatting string will be 
applied to the number 12345. Note the lack of curly braces and the absence of a closing 
semicolon in each block of the if/else. When used in a ternary sense, each part of the 
if construct should house just a single expression; semicolons and braces would be 
needed only for multiple expressions, which would not fit the ternary format. Any semi-
colon should therefore come at the end of the entire if/else construct.

 Listing 3.21 shows something a little more ambitious.

var mode = 2;
println (
    if(mode==0) "Yellow alert"
    else if(mode==1) "Orange alert"
    else if(mode==2) "Mauve alert"
    else "Red alert"
);

Mauve alert

Here we see the true power of conditions being expressions. What amounts to a switch
construct is actually directly providing the parameter for a function call, without set-
ting a variable first or wrapping itself in a function. Naturally because of our hard-
coded mode, the alert will always be set to mauve. (Besides, as every Red Dwarf fan 
knows, red alert requires changing the light bulb!) 

 This idea of conditions having results is a powerful one, so let’s push it to its logical 
(or should that be illogical?) conclusion, with listing 3.22.

import java.lang.System;

var rand = (System.currentTimeMillis() as Integer) mod 2;
var flag:Boolean = (rand == 0);

Listing 3.20 Ternary expressions

Listing 3.21 Beyond ternary expressions

Listing 3.22 Condition expressions taken to an extreme
    

  



70 CHAPTER 3 JavaFX Script code and structure
var ambiguous = if(flag) 99 else "Hello";

println("{rand}: flag={flag}, ambiguous={ambiguous} "
    "({ambiguous.getClass()})");

0: flag=true, ambiguous=99 (class java.lang.Integer )  
1: flag=false, ambiguous=Hello (class java.lang.String)  

Admittedly, when I first wrote this code, I expected a compiler error. None was forth-
coming. This time we use not hard-coded values but a weak pseudorandom event to 
feed the decision logic. First we use a Java API method to get the POSIX time in milli-
seconds (the number of milliseconds elapsed since midnight, 1 January 1970), setting 
a variable called flag such that sometimes when we run the code the result will be 
true and other times false. Another variable, ambiguous, is then set depending on 
flag—if true it will be assigned an Integer and if false a String.

 So the type of ambiguous is dependent on the path the code takes—I’m not sure I 
like this (and would strongly urge you not to make use of such ambiguous typing in 
your own code), but JFX seems to handle it without complaint.

 Anyway, with that rather dangerous example, we’ll leave conditions behind and 
move on to something else—loops.

3.4 Sequence-based loops
Loops are another staple of programming, allowing us to repeatedly execute a given 
section of code until a condition is met. In JavaFX Script loops are strongly associated 
with sequences, and like conditions they hold a trick or two when it comes to being 
treated as expressions.

3.4.1 Basic sequence loops (for)

Let’s begin with listing 3.23; a basic example that introduces the for syntax.

for(a in [1..3]) {
    for(b in [1..3]) {
        println("{a} x {b} = {a*b}");
    }
}

1 x 1 = 1
1 x 2 = 2
1 x 3 = 3
2 x 1 = 2
2 x 2 = 4
2 x 3 = 6
3 x 1 = 3
3 x 2 = 6
3 x 3 = 9

If you ever forget your three times table, now you have a convenient JavaFX program 
to print it for you—two loops, one inside the other, with a println() at the center of 

Listing 3.23 Basic for loops

Two different 
executions
    

  



71Sequence-based loops
it all. Note how we tie the loop to a sequence, defined by a range, and then pull each 
element out into the loop variable.

3.4.2 For loops as expressions (indexof)

Now for something that exploits the expression language facilities; check out list- 
ing 3.24.

var cards = 
    for(str in ["A",[2..10],"J","Q","K"]) {
        str.toString();
}
println(cards.toString());

cards =
    for(str in ["A",[2..10],"J","Q","K"]) 
        if(indexof str < 10) null else str.toString();
println(cards.toString());

[ A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K ]
[ J, Q, K ]

A for loop returns a sequence, and listing 3.24 shows us exploiting that fact by using a 
loop to construct a sequence of strings using toString() over a mixture of strings and 
integers. Each pass through the loop an element is plucked from the source 
sequence, converted into a string, and added to the destination sequence, cards. The 
loop variable becomes a String or an Integer depending on the element in the 
source sequence. Fortunately all variables in JavaFX Script inherit toString().

 If you ever need to know the index of an element during a for expression, 
indexof is your friend. The first element is 0, the second is 1, and so on. Null values 
are ignored when building sequences, so not every iteration through the loop need 
extend the sequence contents. The second part of listing 3.24 shows both these fea-
tures in action.

3.4.3 Rolling nested loops into one expression

The loop syntax gives us an easy way to create loops within loops, allowing us, for exam-
ple, to drill down to access sequences inside objects within sequences. In listing 3.25 we 
use a sequence of SoccerTeam objects, each containing a sequence of player names.

class SoccerTeam {                    
    public-init var name: String;       
    public-init var players: String[];
}                                     

var fiveAsideLeague:SoccerTeam[] = [
    SoccerTeam {                    
        name: "Java United"         

Listing 3.24 Sequence creation using for expressions

Listing 3.25 Nested loops within one for expression

A soccer 
team class

First soccer 
team object
    

  



72 CHAPTER 3 JavaFX Script code and structure
        players: [ "Smith","Jones","Brown",
            "Johnson","Schwartz" ]         
    } ,                                    
    SoccerTeam {                            
        name: ".Net Rovers"                   
        players: [ "Davis","Taylor","Booth",
            "May","Ballmer" ]               
    }                                       
];

for(t in fiveAsideLeague, p in t.players) {
    println("{t.name}: {p}");                
}                                          

Java United: Smith
Java United: Jones
Java United: Brown
Java United: Johnson
Java United: Schwartz
.Net Rovers: Davis
.Net Rovers: Taylor
.Net Rovers: Booth
.Net Rovers: May
.Net Rovers: Ballmer

First we define our team class; then we create a sequence of two five-on-a-side teams, each 
team with a name and five players. The meat of the example comes at the end, when we 
use a single for statement to print each player from each team. Each level of the loop 
is separated by a comma. We have the outer part that walks over the teams, and we have 
the inner part that walks over each player within each team. It means we can unroll the 
whole structure with just one for expression instead of multiple nested expressions.

3.4.4 Controlling flow within for loops (break, continue)

JavaFX Script supports both the continue and break functionality of other languages 
in its for loops. Continues skip on to the next iteration of the loop without executing 
the remainder of any code in the body. Breaks terminate the loop immediately. 
Unlike with other languages, JavaFX Script breaks do not support a label to point to a 
specific for loop to break out of. Listing 3.26 provides an example.

var total=0;
for(i in [0..50]) {
    if(i<5) { continue; }
    else if (i>10) { break; }
    total+=i;
}
println(total);

45

The loop runs, supposedly, from 0 to 50. However, we ignore the first five passes by 
using a continue, and we force the loop to terminate with a break when it gets 

Listing 3.26 Flow control within for, with break and continue

First soccer 
team object

Second soccer 
team object

Print players 
within teams
    

  



73Repeating code with while loops (while, break, continue)
beyond 10. In effect total is updated only for 5 to 10, which explains the result (5 + 6 
+ 7 + 8 + 9 + 10 = 45).

3.4.5 Filtering for expressions (where)

There’s one final trick we should cover when it comes to loops (see listing 3.27): apply-
ing a filter to selectively pull out only the elements of the source sequence we want.

var divisibleBy7 = 
    for(i in [0..50] where (i mod 7)==0) i;
println(divisibleBy7.toString());

[ 0, 7, 14, 21, 28, 35, 42, 49 ]

The loop in the example code runs over each element in a sequence from 0 to 50, but 
the added where clause filters out any loop value that isn’t evenly divisible by 7. The 
result is the sequence divisibleBy7, whose contents we print. (Incidentally, in this 
particular example, since all we wanted to do was add the filtered elements into a new 
sequence, we could have used the predicate syntax we saw last chapter.)

 That’s it for sequence-based loops, at least for now. We’ll again touch briefly on 
sequences when we visit triggers. In the next section we’ll consider a more conven-
tional type of loop.

3.5 Repeating code with while loops (while, break, continue)
As well as sequence-centric for loops, JavaFX Script supports while loops, in a similar 
fashion to other languages. The syntax is fairly simple, so we begin, as ever, with an 
example. Cast an eye over listing 3.28.

var i=0;
var total=0;
while(i<10) {
    total+=i;
    i++;
}
println(total);

i=0;
total=0;
while(i<50) {
    if(i<5) { i++; continue; }
    else if (i>10) { break; }
    total+=i;
    i++;
}
println(total);

45
45

Listing 3.27 Filtered for expression

Listing 3.28 Basic while loops
    

  



74 CHAPTER 3 JavaFX Script code and structure
Two while loops are shown in listing 3.28, the first a simple loop, the second involving 
break and continue logic. To create a while loop we use the keyword while, followed 
by a terminating condition in parentheses and the body of the loop in curly braces. 
The first loop walks over the numbers 0 to 9, by way of the variable i, totaling each 
loop value as it goes. The result of totaling all the values 0 to 9 is 45.

 The second loop performs a similar feat, walking over the values 0 to 50—or does 
it? The continue keyword is triggered for all values under 5, and the break statement 
is triggered when the loop exceeds 10. The former will cause the body of the loop to be 
skipped, jumping straight to the next iteration, while the latter causes the loop to be 
aborted. The result is that only the values 5 to 10 are totaled, also giving the answer 45.

 As with for loops, break statements do not support a label pointing to which loop 
(of several nested) to break out of.

3.6 Acting on variable and sequence changes, using triggers
Triggers allow us to assign some code to run when a given variable is modified. It’s a 
simple yet powerful feature that can greatly aid us in creating sophisticated code that 
reacts to data change.

3.6.1 Single-value triggers (on replace)

Listing 3.29 demonstrates a simple trigger in action.

class TestTrigger {
    var current = 99
        on replace oldVal = newVal {
            previous = oldVal;        
        };                          
    var previous = 0;

    override function toString() : String {
        "current={current} previous={previous}";
    }
}

var trig1 = TestTrigger {};
println(trig1);
trig1.current = 7;
println(trig1);
trig1.current = -8;
println(trig1);

current=99 previous=0
current=7 previous=99
current=-8 previous=7

The TestTrigger class has two variables, the first of which has a trigger attached to it. 
Triggers are added to the end of a variable declaration, using the keyword phrase on 
replace, followed by a variable to hold the current value, an equals sign, and a vari-
able to hold the replacement value. In the example oldVal will contain the existing 

Listing 3.29 Trigger on variable change

Runs when current 
is changed
    

  



75Acting on variable and sequence changes, using triggers
value of current when the trigger is activated, and newVal will contain the updated 
value. We use the old value to populate a second variable, previous, ensuring it is 
always one step behind current.

 Note: the equals sign used as part of the on replace construct is just a separator, not 
an assignment. I suppose oldVal and newVal could have been separated by a comma, 
but the language designers presumably thought the equals sign was more intuitive.

 The code block is called after the variable is updated, so newVal is already in place 
when our code starts. Actually, we could have just read current instead of newVal.

 For convenience, the trigger syntax can be abbreviated, as shown in listing 3.30.

var onRep1:Integer = 0 on replace {  
    println("onRep1: {onRep1}");
}
var onRep2:Integer = 5 on replace oldVal {  
    println("onRep2: {oldVal} => {onRep2}");
}
onRep1 = 99;
onRep2++;
onRep2--;

onRep1: 0     
onRep2: 0 => 5  
onRep1: 99
onRep2: 5 => 6
onRep2: 6 => 5

This shows two shorter syntax variants. The first doesn’t bother with either the newVal
or the oldVal, while the second bothers only with the oldVal.

3.6.2 Sequence triggers (on replace [..])

As you’d expect, we can also assign a trigger to a sequence. To do this we need to also 
tap into not only the previous and replacement values but also the range of the 
sequence that’s being affected. Fortunately we can use a trigger itself to demonstrate 
how it works, as listing 3.31 proves.

var seq1 = [1..3]
    on replace oldVal[firstIdx..lastIdx] = newVal {
        println (
            "Changing [{firstIdx}..{lastIdx}] from "
            "{oldVal.toString()} to "
            "{newVal.toString()}"
        );
    };
println("Inserts");
insert 4 into seq1;
insert 0 before seq1[0];
insert [98,99] after seq1[2];

Listing 3.30 Shorter trigger syntax

Listing 3.31 Triggers on a sequence

No old or new value

Old value only

Initialization
    

  



76 CHAPTER 3 JavaFX Script code and structure
println("Deletes");
delete seq1[0];
delete seq1[0..2];
delete seq1;
println("Assign then reverse");
seq1 = [1..3];
seq1 = reverse seq1;

Changing [0..-1] from [ ] to [ 1, 2, 3 ]
Inserts
Changing [3..2] from [ 1, 2, 3 ] to [ 4 ]
Changing [0..-1] from [ 1, 2, 3, 4 ] to [ 0 ]
Changing [3..2] from [ 0, 1, 2, 3, 4 ] to [ 98, 99 ]
Deletes
Changing [0..0] from [ 0, 1, 2, 98, 99, 3, 4 ] to [ ]
Changing [0..2] from [ 1, 2, 98, 99, 3, 4 ] to [ ]
Changing [0..2] from [ 99, 3, 4 ] to [ ]
Assign then reverse
Changing [0..-1] from [ ] to [ 1, 2, 3 ]
Changing [0..2] from [ 1, 2, 3 ] to [ 3, 2, 1 ]

The output tells the story of how the trigger was used. The on replace syntax has 
been complemented by a couple of new variables boxed in square brackets. Don’t be 
confused: this extension to on replace isn’t actually a sequence itself; the language 
designers just borrowed the familiar syntax to make it look more intuitive.

 Watch carefully how the two values change as we perform various sequence 
operations.

 When the sequence is first created, a trigger call is made adding the initial values 
at index 0. Then we see three further insert operations. Each time oldVal is set to the 
preinsert contents, newVal is set to the contents being added; firstIdx is the index to 
which the new values will be added, and lastIdx is one behind firstIdx (it has little 
meaning during an insert, so it just gets an arbitrary value).

 We next see three delete operations. Again oldVal is the current content of the 
sequence before the operation, newVal is an empty sequence (there are no new values 
in a delete, obviously), and firstIdx and lastIdx describe the index range of the ele-
ments being removed.

 Finally we repopulate the sequence with fresh data, causing an insert trigger, and 
then reverse the sequence to cause a mass replacement. Note how during the reverse 
the firstIdx and lastIdx values actually express the elements being modified, 
unlike with an insert where only the lower index is used.

 Triggers can be really useful in certain circumstances, but we should avoid tempta-
tion to abuse them; the last thing we want is code that’s hard to understand and a 
nightmare to debug. And speaking of code that doesn’t do what we think it should, in 
the next section we look at exceptions (talk about a slick segue!)

3.7 Trapping problems using exceptions (try, catch, any, finally)
To misquote the famous cliché, “Stuff happens!” And when it happens, we need some 
way of knowing about it. Exceptions give us a way to assign a block of code to be run 
    

  



77Trapping problems using exceptions (try, catch, any, finally)
when a problem occurs or to signal a problem within our own code to outside code that 
may be using our API. As always, we begin with an example. Take a look at listing 3.32.

import java.lang.NullPointerException;
import java.io.IOException;

var key = 0;
try {
    println(doSomething());
}
catch(ex:IOException) {
    println("ERROR reading data {ex}")
}
catch(any) {
    println("ERROR unknown fault");
}
finally {
    println("This always runs");
}

function doSomething() : String {
    if(key==1) {
        throw new IOException("Data corrupt");
    }
    else if(key==2) {
        throw new NullPointerException();
    }
    "No problems!";
}

No problems!    
This always runs  

ERROR reading data java.io.IOException: Data corrupt
This always runs                                      

ERROR unknown fault
This always runs     

The code hinges on the value of key, determining which exceptions may be thrown. 
The example is a little contrived, but it’s compact and demonstrates the mechanics 
of exceptions perfectly well. The try block is the code we want to trap exceptions on, 
and the catch blocks are executed if the doSomething() function actually throws an 
exception. The first block will be activated if the function throws an IOException. 
The second uses the any keyword to trap other exceptions that might be thrown. 
And last, the finally block will always be executed, regardless of whether or not an 
exception occurred.

 The results, in bold, show the code being run with different values for key. First we 
have a clean run with no exceptions; the function returns normally, the results are 
printed, and the finally block is run. Second we have a (simulated) IO failure, caus-
ing the function to abort by throwing an IOException, which is trapped by our first 

Listing 3.32 Exception handling

key = 0

key = 1

key = 2
    

  

www.allitebooks.com

http://www.allitebooks.org


78 CHAPTER 3 JavaFX Script code and structure
catch block, and again the finally block runs at the close. In the third run we cause 
the function to abort with a NullPointerException, triggering the catchall exception 
handler, and once again the finally block runs at the close.

 The finally block is a useful device for cleaning up after a piece of code, such as 
closing a file properly before leaving a function. To avoid identical code in multiple 
places the finally block should be used. Its contents will run no matter how the try
block exits. We can even use finally blocks without catch blocks, keeping code clean 
by putting must-run terminating code in a single place.

3.8 Summary
JavaFX Script may seem a little quirky in places to someone coming to it fresh, but its 
quirks all generally seem to make sense. Its expression language syntax might seem a 
little bizarre at first—assigning from if and for blocks takes some getting used to—
but it permits code and data structures to be interwoven seamlessly. Binding and trig-
gers allow us to define relationships between variables, and code to run when those 
variables change. But more important, they permit us to put such code right next to 
the variables they relate to, rather than in some disparate block or source file miles 
away from where the variable is actually defined.

 We’ve covered so much over the last few dozen pages, I wouldn’t be at all surprised 
if you feel your head is spinning. What we need is a nice, gentle project to get us 
started. Something fun, yet with enough challenge to allow us to practice some of the 
unique JavaFX Script features you’ve just learned about.

 In the next chapter we’re not going to jump straight in with animations and swish 
UIs; instead we’re keeping it nice and simple by developing a Swing-like application—
a number puzzle game like the ones found in many newspapers. So, brew yourself a 
fresh cup of coffee, and I’ll see you in the next chapter.
    

  



Swing by numbers
You’ve had to take in a lot in the last couple of chapters—an entirely new language, 
no less! I know many of you will be eager to dive straight into creating media-rich 
applications, but you need to learn to walk before you can run. JavaFX Script gives 
us a lot of powerful tools for writing great software, but all you’ve seen thus far is a 
few abstract examples.

 So for this, our first project, we won’t be developing any flashy visuals or clever 
animations. Be patient. Instead we need to start putting all the stuff you learned 
over the last few dozen pages to good use. A common paradigm in UI software is 
Model/View/Controller, where data and UI are separate, interacting by posting 
updates to each other. The model is the data, while the view/controller is the display 
and its input. We’re going to develop a data class and a corresponding UI to see 
how the language features of JavaFX Script allow us to bind them together (pun 

This chapter covers
■ Practicing core JavaFX Script skills
■ Using model/view/controller, without reams  

of boilerplate
■ Building a user interface that swings
■ Validating a simple form
79

    

  



80 CHAPTER 4 Swing by numbers
only partially intended). But first we need to decide on a simple project to practice 
on, something fun yet informative. 

 We’re going to develop a version of the simple, yet addictive, number puzzle game 
found in countless newspapers and magazines around the world. If you’ve never 
encountered such puzzles before, take a look at figure 4.1.

 The general idea is to fill in the missing cells in a grid with unique numbers (in a 
standard puzzle, 1 to 9) in each row, each column, and each box. A successful solution is 
a grid completely filled in, without duplicates in any row, column, or box.

We’ll be using JavaFX’s javafx.ext.swing package to develop our UI. These classes 
wrap Swing components, allowing us to use Java’s UI toolkit in a JavaFX desktop appli-
cation. For those of you who have developed with Swing in the past, this will be a real 
eye opener. You’ll see firsthand how the same UIs you previously created with reams and 
reams of Java code can be constructed with relatively terse declarative JavaFX code. For 
those who haven’t encountered the delights of Swing, this will be a gentle introduction 
to creating traditional UIs with the power tools JFX provides. Either way, we’ll have fun.

 This project is not a comprehensive Swing tutorial. Swing is a huge and very com-
plex beast, with books the size of telephone directories published about it. JavaFX

Figure 4.1 A number puzzle 
grid, shown both empty and 
recently completed

The number puzzle
Number puzzles like the one we’re developing have been published in magazines and 
newspapers since the late nineteenth century. By the time of WWI, their popularity had 
waned, and they fell into obscurity. In the late 1970s the puzzle was reinvented, legend 
has it, by Howard Garns, an American puzzle author, and it eventually found its way to 
Japan where it gained the title “Sudoku.” It took another 25 years for the puzzle to 
become popular in the West. Its inclusion in the UK’s Sunday Times newspaper was 
an overnight success, and from there it has gone on to create addicts around the world.

By far the most common puzzle format is a basic 9 x 9 grid, giving us nine rows of 
nine cells each, nine columns of nine cells each, and nine 3 x 3 boxes of nine cells 
each. At the start of the puzzle a grid is presented with some of the numbers already 
in place. The player must fill in the missing cells using only the numbers 1 to 9, such 
that all 27 groups (nine rows, nine columns, nine boxes) contain only one occurrence 
of each number.
    

  



81Swing time: Puzzle, version 1
itself provides direct support (JFX wrappers) for only a handful of core Swing compo-
nents, although the whole of Swing can be used directly as Java objects, of course. The 
project is primarily about showing how a Swing-like UI can be constructed quickly and 
cleanly, using JavaFX Script.

Enough about Swing—what about our number puzzle? I don’t know if you’ve ever 
noticed, but often the simpler the idea, the harder it is to capture in words alone. 
Sometimes it’s far quicker to learn by seeing something in action. Our number puzzle 
uses blissfully simple rules, yet it’s hard to describe in the abstract. So to avoid confu-
sion we need to agree on a few basic terms before we proceed:

■ The grid is the playing area on which the puzzle is played.
■ A row is horizontal line of cells in the grid.
■ A column is a vertical line of cells in the grid.
■ A box is a subgrid within the grid.
■ A group is any segment of the grid that 

must contain unique numbers (all rows, 
columns, and boxes).

■ A position is a single cell within a group.

The elements are demonstrated in figure 4.2.
 Rather than throw everything at you at once, 

we’re going to develop the application piece by 
piece, building it as we go. With each stage we’ll 
add in a more functionality, using the language 
features we learned in the previous two chapters, 
and you’ll see how they can be employed to 
make our application work.

 Right then, compiler to the ready, let’s begin.
    

JavaFX and Swing
JavaFX has two UI toolkits: its own javafx.scene.control library and the javafx. 
ext.swing wrappers around Java’s Swing. What’s the difference? The Swing wrap-
pers will allow desktop apps to have native look ’n’ feel, but Swing can’t easily be port-
ed to phones and TVs. So JavaFX’s own library will allow greater portability between 
devices and better harmony with JavaFX’s scene graph.

The new controls are really where the engineers at Sun want JavaFX to go; the Swing 
wrappers were initially a stop-gap until the controls library was ready. But the Swing 
wrappers are unlikely to vanish for a while—some developers of existing Swing appli-
cations have expressed interest in moving over to JavaFX Script for their GUI coding. 
The Swing library may, eventually, become an optional extension, rather than a stan-
dard JavaFX API.

Figure 4.2 Groups are rows, columns, 
or boxes within the grid, which must 
hold unique values.
    

  



82 CHAPTER 4 Swing by numbers
4.1 Swing time: Puzzle, version 1
What is Swing? When Java first entered the market, its official UI API was known as 
AWT (Abstract Window Toolkit), a library that sought to smooth over the differences 
between the various native GUI toolkits on Windows, the Mac, Linux, and any other 
desktop environment it was ported to. AWT wrapped the operating system’s own native 
GUI widgets (buttons, scrollbars, text areas, etc.) to create a consistent environment 
across all platforms. Yet because of this it came under fire as being a lowest-common-
denominator solution, a subset of only the features available on all platforms. So in 
answer to this criticism a more powerful alternative was developed: Swing!

 Swing sits atop AWT but uses only its lowest level features—pixel pushing and key-
board/mouse input mainly—to deliver an entirely Java-based library of UI widgets. 
Swing is a large and very powerful creature, quite possibly one of the most powerful 
(certainly one of the most complex) UI toolkits ever created. In this project, we’ll be 
looking at only a small part of it.

 Because we’re developing our puzzle bit by bit, in version 1 we won’t expect to 
have a working game. We’re laying the foundations for what’s to come.

4.1.1 Our initial puzzle data class

We need to start somewhere, so here’s some basic code that will get the ball rolling, 
defining the data we need to represent our puzzle. Listing 4.1 is our initial shot at a 
main puzzle grid class, but as you’ll see it’s far from finished. 

package jfxia.chapter4;

package class PuzzleGrid {
    public-init var boxDim:Integer = 3;
    public-read def gridDim:Integer = bind boxDim*boxDim;
    public-read def gridSize:Integer = bind gridDim*gridDim;

    package var grid:Integer[] = 
        for(a in [0..<gridSize]) { 0 }
}

Listing 4.1 PuzzleGrid.fx (version 1)

What’s in a name?
The generic name for a UI control differs from system to system and from toolkit to 
toolkit. In the old Motif (X/X-Windows) toolkit they were called widgets; Windows uses 
the boring term controls, Java AWT/Swing calls them by the rather bland name com-
ponents, and I seem to recall the Amiga even referred to them by rather bizarre name 
gadgets. Looks like nobody can agree!

With so many terms in use for the same thing, the conversation could quickly become 
confusing. Therefore, when referring to GUI elements in the abstract, I’ll use the term 
widgets; when referring specifically to Swing or AWT elements, I’ll use the term com-
ponents; and when referring specifically to JavaFX elements, I’ll use the term controls.
    

  



83Swing time: Puzzle, version 1
So far all we have is four variables, which do the following:

■ The boxDim variable is the dimension of each box inside the main grid. Boxes 
are square, so we don’t need separate width and height dimensions.

■ The gridDim variable holds the width and height of the game grid. The grid is 
square, so we don’t need to hold separate values for both dimensions. This 
value is always the square of the boxDim variable—a 3 x 3 box results in a 9 x 9 
grid, a 4 x 4 box results in a 16 x 16 grid, and so on—so we utilize a bind to 
ensure they remain consistent.

■ The gridSize variable is a convenience for when we need to know the total 
number of cells in the grid. You’ll note that we’re using a bind here too; when 
gridDim is changed, gridSize will automatically be updated.

■ The grid itself, represented as a sequence of Integer values. We’ll create an 
initial, default, grid with all zeros for now using a for loop.

So far, so good. We’ve defined our basic data class and used some JavaFX Script clever-
ness to ensure gridSize and gridDim are always up to date whenever the data they 
depend on changes. When boxDim is set, it begins a chain reaction that sees gridDim
and then gridSize recalculated. Strictly speaking, it might have made more sense to 
bind boxDim to the square root of gridDim rather than the other way around, but I 
don’t fancy writing a square root function for a project like this.

 Note that although the puzzle requires the numbers 1 to 9, we also use the num-
ber 0 (zero) to represent an empty cell. Thus the permissible values for each cell 
range from 0 to 9.

 Our initial data class is missing a lot of important functionality, but it should be suf-
ficient to get a UI on the screen. We can then further refine and develop both the puz-
zle class and the interface as the chapter progresses.

4.1.2 Our initial GUI class

So much for the puzzle grid class; what about a GUI?
 Recall that JavaFX encourages software to be built in a declarative fashion, espe-

cially UIs. Until now this has been a rather cute idea floating around in the ether, but 
right now you’re finally about to see a concrete example of how this works in the real 
world and why it’s so powerful.

 Listing 4.2 is the entry point to our application, building a basic UI for our applica-
tion using the previously touted declarative syntax.

package jfxia.chapter4;

import javafx.ext.swing.SwingButton;
import javafx.scene.Scene;
import javafx.scene.text.Font;
import javafx.stage.Stage;

def cellSize:Number = 40;          

Listing 4.2 Game.fx (version 1)

Cell dimensions
    

  



84 CHAPTER 4 Swing by numbers
def puz = PuzzleGrid { boxDim:3 };  

def gridFont = Font {           
    name: "Arial Bold"            
    size: 15                    
};                              

Stage {
    title: "Game"
    visible: true
    scene: Scene {
        content: for(idx in [0..<puz.gridSize]) {
            var x:Integer = (idx mod puz.gridDim);
            var y:Integer = (idx / puz.gridDim);    
            SwingButton {                      
                layoutX: x * cellSize;             
                layoutY: y * cellSize;         
                width: cellSize;               
                height: cellSize;              

                text: bind notZero(puz.grid[idx]);
                font: gridFont;                   
                action: function():Void {         
                    var v = puz.grid[idx];        
                    v = (v+1) mod (puz.gridDim+1);
                    puz.grid[idx] = v;            
                }                                 
            }                                     
        }
        width: puz.gridDim * cellSize;
        height: puz.gridDim * cellSize;
    }
}

function notZero(i:Integer):String { if(i==0) " " else "{i}"; }  

You can see from the import statements at the head of the source file that it’s pulling 
in several GUI-based classes from the standard JavaFX APIs. The Swing wrapper 
classes live in a JavaFX package named, conveniently, javafx.ext.swing. We could 
use the classes in the original Swing packages directly (like other Java API classes, 
they are available), but the JFX wrappers make it easier to use common Swing compo-
nents declaratively.

 The cellSize variable defines how big, in pixels, each square in the grid will be. 
Our game needs a PuzzleGrid object, and we create one with the variable puz, set-
ting boxDim to declaratively describe its size. After puz we create a font for our GUI. 
Since we’re using the same font for each grid cell, we may as well create one font 
object and reuse it. Again, this is done declaratively using an object literal. The final 
chunk of the listing—and quite a hefty chunk it is too—consists of the actual user 
interface code itself.

 We’ve using Swing buttons to represent each cell in the grid, so we can easily dis-
play a label and respond to a mouse click, but let’s strip away the button detail for the 
moment and concentrate on the outer detail of the window.

Our puzzle class

A font we 
wish to reuse

Index to grid x/y

Each grid cell is 
a Swing button

Hide 
zero
    

  



85Swing time: Puzzle, version 1
Stage {
    title: "Game"
    visible: true
    scene: Scene {
        content: /*** STRIPPED, FOR NOW ***/
        width: puz.gridDim * cellSize
        height: puz.gridDim * cellSize
    }
};

Here’s an abridged reproduction of the code we saw in listing 4.2. We see two objects 
being created, one nested inside the other. At the outermost level we have a Stage, 
and inside that a Scene. There are further objects inside the Scene, but the previous 
snippet doesn’t show them.

 The Stage represents the link to the outside world. Because this is a desktop appli-
cation, the Stage will take the form of a window. In a web browser applet, the Stage
would be an applet container. Using a common top-level object like this aids portabil-
ity between desktop, web, mobile, TV, and the like.

 Three variables are set on Stage: the window’s title as shown in its drag bar, the 
window’s visibility to determine whether it’s shown (we didn’t need to set this because 
it’s true by default), and the window’s content. The content is a Scene object, used to 
describe the root of a scene graph. We’ll look at the scene graph in far more detail in 
the next chapter; for now all you need to know is that it’s where our UI will live.

 The Scene object has its own variables, aside from content. They are width and 
height, and they determine the size of the inner window area (the part inside the bor-
ders and title bar). The window will be sized around these dimensions, with the total 
window size being the Scene dimensions plus any borders and title (drag) bars the 
operating system adds to decorate the window.

 There’s a chunk of code missing from the middle of the previous snippet, and now 
it’s time to see what it does.

4.1.3 Building the buttons

Here’s a reminder of the mysterious piece of code we left out of our discussion in the 
last section:

content: for(idx in [0..<puz.gridSize]) {
    var x:Integer = (idx mod puz.gridDim);
    var y:Integer = (idx / puz.gridDim);
    SwingButton {
        layoutX: x * cellSize;
        layoutY: y * cellSize;
        width: cellSize;
        height: cellSize;

        text: bind notZero(puz.grid[idx]); 
        font: gridFont
        action: function():Void {
            var v = puz.grid[idx];
            v = (v+1) mod (puz.gridDim+1);
    

  



86 CHAPTER 4 Swing by numbers
            puz.grid[idx] = v;
        }
    }
}

The code goes inside a Scene, which in turn provides the contents for our Stage, 
you’ll recall—but what does it do? Put simply, it creates a square grid of SwingButton
objects, tied to data inside the puz object. You can see the effect in figure 4.3.

The for loop runs for as many times as the puzzle’s grid size, creating a fresh button 
for each cell. Before the button is created we convert the loop index, stored in idx, 
into an actual grid x and y position. Dividing by the grid width gives us the y position 
(ignoring any fractional part), while the remainder of the same division gives us the 
x position.

 Each button has seven variables declaratively set. The first four are the button’s posi-
tion and size inside the scene, in pixels. They lay the buttons out as a grid, relying on 
the cellSize variable we created at the head of the file. The three other variables are 
the button’s text, its font, and an event handler that fires when the button is clicked.

 The button’s text is bound to the corresponding element in the puzzle’s grid 
sequence. Thus the first button will be bound to the first sequence element, the sec-
ond to the second, and so on, as shown in figure 4.4. We do not want the value 0 to be 
shown to the user, so we’ve created a convenience function called notZero(), which 
you can see at the foot of the script. This function returns any Integer passed into it 
as a String, except for 0, which results in a space.

 You may recognize the action as an anonymous function. The function reads its 
corresponding element in the puzzle grid sequence, increments it, ensuring that the 

Figure 4.3 The game as 
it appears after clicking 
on a few cells (note the 
highlight on the lower 3). 
Depending on your JRE 
version, you’ll get Ocean- 
(left) or Nimbus- (right) 
themed buttons.

Figure 4.4 The text of  
each button is bound to the 
corresponding value in the 
puzzle’s grid sequence.
    

  



87Swing time: Puzzle, version 1
value wraps around to 0 if it exceeds the maximum number allowed, and then stores it 
back in the sequence. Here’s the clever part: because the text variable is bound to the 
sequence element, whenever action’s function changes the element value, the but-
ton’s text is automatically updated.

4.1.4 Model/View/Controller, JavaFX Script style

We touched on the Model/View/Controller paradigm briefly in the introduction, and 
hopefully those readers familiar with the MVC concept will already have seen how this 
is playing out under JavaFX Script.

 In languages like Java, MVC is implemented by way of interfaces and event classes. 
In JavaFX Script this is swept away in favor of a much cleaner approach built deep into 
the language syntax. The relationships between our game UI and its data are formed 
using binds and triggers. The model (game data) uses triggers to respond to input 
from the view/controller (UI display). In turn, the view binds against variables in the 
model, establishing its relationship with them as expressions. The relationship is shown 
in figure 4.5.

 This is how MVC works in JavaFX Script. Any code that is dependent on a model 
expresses that dependency using a bind, and JavaFX Script automatically honors that 
relationship without the programmer having to manually maintain it. The beauty of 

Sometimes binds can be too clever!
Some of you may be wondering why it was necessary to wrap the button text’s if/
else code in the notZero() function. What’s wrong with the following?

text: bind if(puz.grid[idx]==0) " " else "{puz.grid[idx]}"

The answer lies with the way binds work and how they strive to be as efficient as 
possible. When puz.grid[idx] goes from 0 to 1, the result of the condition chang-
es from true to false, but when it goes from 1 to 2, the result remains false. 
The bind tries to be clever; it thinks to itself, “Well, the result of the condition 
hasn’t changed, so I’m not going to reevaluate its body,” and so the SwingButton
displays 1 for every value except 0. Fortunately, by hiding the if condition inside 
a black-box function (see chapter 2, section 2.6.8), we can neatly sidestep 
bind’s cleverness.

public var username String joe

public var domain String example.com

var m Model

View

SwingLabel {
    text  bind "{m.username}@{m.domain}"
}

joe@example.com

Figure 4.5 Model/View/Controller is achieved in JavaFX 
Script largely by way of bound expressions. Here one such 
expression depends on two strings for the contents of its 
SwingLabel.
    

  



88 CHAPTER 4 Swing by numbers
this approach is it strips away the boilerplate classes and interfaces of other languages, 
like Java, distilling everything down to its purest form. If a given part of our UI is 
dependent on some external data, that dependency is expressed immediately (mean-
ing inline) as part of its definition. It is not scattered throughout our code in disparate 
event handlers, interfaces, and event objects, as in Java.

 If there is a two-way relationship between the UI and its data, a bidirectional bind (the 
with inverse syntax) can be used. For example, a text field may display the contents of 
a given variable in a model. If the variable changes, the text field should update auto-
matically; if the text field is edited, the variable should update automatically. Providing 
the relationship is elemental in nature, in other words a direct one-to-one relationship, 
a bidirectional bind will achieve this.

 When I told you binds were really useful things, I wasn’t kidding!

4.1.5 Running version 1

It may not be the most impressive game so far, but it gives us a solid foundation to work 
from. When version 1 of the puzzle is run, it displays the puzzle grid (see figure 4.3) and 
responds to mouse clicks by cycling through the available numbers.

 This is just a start, but already we’ve seen some of the power tools we learned about 
in the previous two chapters making a big contribution: the declarative syntax, bound 
variables, and anonymous functions are all in full effect.

 So let’s continue to build up the functionality of our game by making it more 
useful.

4.2 Better informed and better looking: Puzzle, version 2
So far we have a basic UI up and running, but it lacks the functionality to make it a 
playable game. There are two problems we need to tackle next:

■ The buttons don’t look particularly appealing, and it’s hard to see where the 
boxes are on the puzzle grid.

■ The game doesn’t warn us when we duplicate numbers in a given group. If I, as 
the player, put two 3s on the same row, for example, the game does not flag this 
as an error.

In this section we’ll remedy these faults. The first is entirely the domain of the UI class, 
Game, while the second is predominantly the domain of the data class, PuzzleGrid.

4.2.1 Making the puzzle class clever, using triggers and function types

The data class was tiny in version 1, with only a handful of variables to its name. To 
make the class more aware of the rules of the puzzle, we need to add a whole host of 
code. Let’s start with PuzzleGrid.fx, shown in listing 4.3, and see what changes need to 
be made. Following the listing I’ll explain the key changes, one by one. (In listing 4.3, 
and in other listings throughout this book, code unchanged from the previous 
revision is shown as slightly fainter, allowing the reader to immediately see where the 
additions/alterations are.)
    

  



89Better informed and better looking: Puzzle, version 2
package jfxia.chapter4;

package class PuzzleGrid {
    public-init var boxDim:Integer = 3;
    public-read def gridDim:Integer = bind boxDim*boxDim;
    public-read def gridSize:Integer = bind gridDim*gridDim;

    package var grid:Integer[] = 
        for(a in [0..<gridSize]) { 0 }
        on replace current[lo..hi] = replacement {
            update();                               
        }                                         

    package var clashes:Boolean[] =    
        for(a in [0..<gridSize]) false;  

    function update() : Void {                   
        clashes = for(a in [0..<gridSize]) false;  
        for(grp in [0..<gridDim]) {              
            checkGroup(grp,row2Idx);             
            checkGroup(grp,column2Idx);          
            checkGroup(grp,box2Idx);             
        }                                        
    }                                            

    function checkGroup (                       
        group:Integer ,                                    
        func:function(:Integer,:Integer):Integer
    ) : Void {                                  
        var freq = for(a in [0..gridDim]) 0;    
        for(pos in [0..<gridDim]) {             
            var val = grid[ func(group,pos) ];  
            if(val > 0) { freq[val]++; }        
        }                                                
        for(pos in [0..<gridDim]) {                      
            var idx = func(group,pos);                   
            var val = grid[idx];                         
            clashes[idx] = clashes[idx] or (freq[val]>1);
        }                                                
    }                                                    

    function row2Idx(group:Integer,pos:Integer) : Integer {
        return group*gridDim + pos;
    }

    function column2Idx(group:Integer,pos:Integer) : Integer {
        return group + pos*gridDim;
    }

    function box2Idx(group:Integer,pos:Integer) : Integer {
        var xOff = (group mod boxDim) * boxDim;
        var yOff = ((group/boxDim) as Integer) * boxDim;
        var x = pos mod boxDim;
        var y = (pos/boxDim) as Integer;
        return (xOff+x) + (yOff+y)*gridDim;
    }
}

Listing 4.3 PuzzleGrid.fx (version 2)

Trigger an update 
to clashes

Does this cell clash 
with another?

Update clashes 
sequence

Check a given 
group for clashes
    

  



90 CHAPTER 4 Swing by numbers
Whew! That’s quite bit of code to be added in one go, but don’t panic; it’s all rather 
straightforward when you know what it’s meant to do.

 The purpose of listing 4.3 is to update a new sequence, called clashes, which 
holds a flag set to true if a given cell currently conflicts with others and false if it 
does not. The UI can then bind to this sequence, changing the way a grid cell is dis-
played to warn the player of any duplicates.

 The function update() clears the clashes sequence and then checks each group 
in turn. In our basic 9 x 9 puzzle there are 27 groups: nine rows, nine columns, and 
nine boxes. Each group has nine positions it needs to check for duplicates. However, 
most of the work is deferred to the function checkGroup(), which handles the check-
ing of an individual group. Let’s take a closer look at this function, so we can under-
stand how it fits into update().

4.2.2 Group checking up close: function types

Here’s the checkGroup() function we’re looking at, reproduced on its own to refresh 
your memory and save ambiguity:

function checkGroup (
    group:Integer ,
    func:function(:Integer,:Integer):Integer
) : Void {
    var freq = for(a in [0..gridDim]) 0;
    for(pos in [0..<gridDim]) {
        var val = grid[ func(group,pos) ];
        if(val > 0) { freq[val]++; }
    }
    for(pos in [0..<gridDim]) {
        var idx = func(group,pos);
        var val = grid[idx];
        clashes[idx] = clashes[idx] or (freq[val]>1);
    }
}

The first four lines are the function’s signature; unfortunately it’s quite long, so I split 
it over four separate lines in an attempt to make it more readable. You can see the 
function is called checkGroup, and it accepts two 
parameters: an Integer and a function type. The 
function type accepts two Integer variables and 
gives a single Integer in return. The Void on the 
end signifies checkGroup() has no return value.

 So, why do we need to pass a function to check-
Group()? Think about it: when we’re checking each 
position in a row group we’re working horizontally 
across the grid, when we’re checking each position 
in a column group we’re working vertically down 
the grid, and for a box group we’re working line by 
line within a portion of the grid. Figure 4.6 demon-
strates this.

Figure 4.6 Coordinate translations 
for column, row, and box groups
    

  



91Better informed and better looking: Puzzle, version 2
 We have three different ways of translating group and position to grid coordinates:

■ For rows the group is the y coordinate in the grid and the position is the x coor-
dinate. So position 0 of group 0 will be (0,0) on the grid, and position 2 of 
group 1 will be (2,1) on the grid.

■ For columns the group is the x coordinate in the grid and the position is the y 
coordinate. So position 2 of group 1 will be (1,2) when translated into grid 
coordinates.

■ For boxes we need to do some clever math to translate the group to a subsec-
tion of the grid, so group 8 (in the southeast corner) will have its first cell at 
coordinates (6,6). We then need to do some more clever math to turn the posi-
tion into an offset within this subgrid. Position 1, for example, would be offset 
(1,0), giving us an absolute position of (7,6) on the grid when combined with 
group 8.

The code that actually checks for duplicates within a given group is identical, as we’ve 
just seen—all that differs is the way the group type translates its group number and 
position into grid coordinates. So the function passed in to checkGroup() abstracts 
away this translation. The two values it accepts are the group and the position. The 
value it returns is the grid coordinate, or rather the index in the grid sequence that 
corresponds with the group and position. (One of the benefits of storing the grid as a 
single-dimension sequence is that we don’t need to figure out a way to return two val-
ues, an x and a y, from these three translation functions.)

 Now that you understand what the passed-in function does, let’s examine the code 
inside checkGroup() to see what it does. It’s broken into two stages:

var freq = for(a in [0..gridDim]) 0;
for(pos in [0..<gridDim]) {
    var val = grid[ func(group,pos) ];
    if(val > 0) { freq[val]++; }
}

Here’s the first stage reproduced on its own. We kick off by defining a new sequence 
called freq, with enough space for each unique number in our puzzle. This will 
hold the frequency of the numbers in our group. Recall that we’re using 0 to repre-
sent an empty cell, so to make the code easier we’ve allowed space in the sequence 
for 0 plus the 1 to 9. Then we extract each position in the group, using the parame-
ter function to translate group/position to a grid index. We increment the fre-
quency corresponding to the value at the grid index—so if the value was 1, freq[1]
would get incremented.

 This builds us a table of how often each value occurs in the group. Now we want to 
act on that data.

for(pos in [0..<gridDim]) {
    var idx = func(group,pos);
    var val = grid[idx];
    clashes[idx] = clashes[idx] or (freq[val]>1);
}

    

  



92 CHAPTER 4 Swing by numbers
The second stage of the checkGroup() function is reproduced here. It should be quite 
obvious what needs doing; we take a second pass over each position in the group, pull-
ing out its value once again with help from our translation function. Then we set the 
flag in clashes if the value appears in the group more than once (signifying a clash!)

 Note: a given cell in the puzzle grid may cause a clash in some groups but not oth-
ers. It is important, therefore, that we preserve the clashes already discovered with 
other groups. This is why the clash check is or’d with the current value in the clashes
sequence, rather than simply overwriting it.

4.2.3 Firing the update: triggers

Now we know how each group is checked, and we’ve seen the power of using function 
types to allow us to reuse code with plug-in-able variations, but we still need to complete 
the picture. The function update() will call checkGroup() 27 times (assuming a stan-
dard 9 x 9 grid), but what makes update() run?

 Perhaps a better question might be, “When should update() run?” To which the 
answer should surely be, “Whenever the grid sequence is changed!”

 We could wire something into our button event handler to always call update(), but 
this would be exposing the PuzzleGrid class’s inner mechanics to another class, some-
thing we should avoid if we can. So why not wire something into the actual grid
sequence itself?

package var grid:Integer[] = 
    for(a in [0..<gridSize]) { 0 }
        on replace current[lo..hi] = replacement {
            update();
        }

Using a trigger we can ensure update() runs whenever the grid sequence is modified. 
It’s a simple, effective, and clean solution that means the clashes sequence will never 
get out of step with grid.

4.2.4 Better-looking GUI: playing with the underlying Swing component

We’ve managed to soup up the puzzle class itself by making it responsive to duplicates 
under the rules of the puzzle. We can now exploit that functionality in our GUI, but we 
also need to make the game look more appealing.

 Listing 4.4 gives us version 2 of the Game class.

package jfxia.chapter4;

import javax.swing.JButton;
import javax.swing.border.LineBorder;
import javafx.ext.swing.SwingButton;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.text.Font;

Listing 4.4 Game.fx (version 2)
    

  



93Better informed and better looking: Puzzle, version 2
import javafx.stage.Stage;

def gridCol1 = java.awt.Color.WHITE;           
def gridCol2 = new java.awt.Color(0xCCCCCC);     
def border = new LineBorder(java.awt.Color.GRAY);  

def cellSize:Number = 40;

def puz = PuzzleGrid { boxDim:3 };

def gridFont = Font {
    name: "Arial Bold"
    size: 20
};

Stage {
    title: "Game"
    visible: true
    scene: Scene {
        content: for(idx in [0..<puz.gridSize]) {
            var x:Integer = (idx mod puz.gridDim);
            var y:Integer = (idx / puz.gridDim);
            var b = SwingButton {                
                layoutX: x * cellSize;
                layoutY: y * cellSize;
                width: cellSize;
                height: cellSize;

                text: bind notZero(puz.grid[idx]); 
                font: gridFont;
                foreground: bind                  
                    if(puz.clashes[idx]) Color.RED  
                    else Color.GRAY;              
                action: function():Void {
                    var v = puz.grid[idx];
                    v = (v+1) mod (puz.gridDim+1);
                    puz.grid[idx] = v;
                }
            };

            x/=puz.boxDim;  y/=puz.boxDim;            
            var bg = if((x mod 2)==(y mod 2)) gridCol1  
                else gridCol2;                        

            var jb = b.getJComponent() as JButton;
            jb.setContentAreaFilled(false);         
            jb.setBackground(bg);                 
            jb.setOpaque(true);                   
            jb.setBorder(border);                 
            jb.setBorderPainted(true);            
            b;
        }
        width: puz.gridDim * cellSize;
        height:puz.gridDim * cellSize;
    }
}

function notZero(i:Integer):String { if(i==0) " " else "{i}"; }

Two-tone background

Lines between 
grid cells

A Button 
reference

Bind the 
foreground 
color to clashes

Background 
color from index

Manipulate the 
button via Swing
    

  



94 CHAPTER 4 Swing by numbers
Listing 4.4 adds a couple of new imports at the 
head of the file and two new variables: gridCol1
and gridCol2. These will help us to change the 
background color of the buttons to represent the 
boxes on the grid. We’ll use the border variable to 
give us a gray pin line around each box, as shown 
in figure 4.7.

 All the changes center on the button sequence 
being created and added into the Scene. You’ll 
note from figure 4.7 that the button’s foreground
color is now bound to the clashes sequence we 
developed previously. You’ll recall that when the 
contents of puz.grid change, puz.clashes is 
automatically updated via the trigger we added to 
the PuzzleGrid class. With this bind in place, the 
UI’s buttons are immediately recolored to reflect any change in the clash status.

 But those aren’t the only changes we’ve made. In version 1 (listing 4.2) we added 
a new SwingButton straight into the scene graph, but now we capture it in a 
variable reference to manipulate it further before it gets added. After the button is 
created, we extract the underlying Swing component using the function getJ-
Component(), giving us full access to all its methods. First we remove the shaded fill 
effect. Next we set our own flat color background, creating a checkerboard effect 
for the boxes, and ensure the background is painted by making the button opaque. 
Finally we assign the border we created earlier, to create a gray pin line around 
each button.

 Note that the background color is calculated by translating the cell’s raw grid coor-
dinate into a box coordinate (just scale them by the box size) and using this to assign 
colors based on a checkerboard pattern.

 At the end of the loop we restate the variable used to hold the button reference. 
Because JavaFX Script is an expression language, this becomes our returned value to 
the loop’s sequence.

 With our new version of the game class in place, we’re ready to try running the 
code again and seeing how the changes play out on the desktop.

4.2.5 Running version 2

Thanks to some clever trigger action, and a little bit of Swing coding, we’ve man-
aged to get a puzzle game that now looks more the part and can warn players when 
they enter duplicate numbers within a group. See figure 4.7 for how the game cur-
rently looks.

 It may seem like we’re still a million miles away from a completed game, but actu-
ally we’re in the home stretch, and the finishing line is within sight. So let’s push on to 
the next, and final, version of the game.

Figure 4.7 The restyled user 
interface, with differentiated boxes 
using background color and duplicate 
warnings using foreground (text) color
    

  



95Game on: Puzzle, version 3
4.3 Game on: Puzzle, version 3
We’re almost there; the puzzle is nearly complete. But what work do we have left to do 
on our game? Let’s make a list:

1 We need to add actual numbers for the start point of the puzzle; otherwise, the 
grid is just empty, and the puzzle wouldn’t be very...well...puzzling.

2 We need to lock these starting numbers, so the player can’t accidentally change 
them.

3 We need to notify the player when they’ve solved the puzzle. It would also be 
nice to inform them how many empty grid cells, and how many clashes, they 
currently have.

Boxing clever: how to create a checkerboard pattern
In the box2Idx() function we witnessed in PuzzleGrid, and now with the checker-
board background pattern, we’ve had to do some clever math to figure out where the 
boxes are. Perhaps you’re not interested in how this was done—but for those who are 
curious, here’s an explanation.

We need to convert a sequence index (from 0 to 80, assuming a standard 9 x 9 grid) 
to a box coordinate (0,0) through (2,2) assuming nine boxes. The pattern itself is quite 
easy to produce once you have these coordinates: if x and y are both odd or both even, 
we use one color; if x and y are odd/even or even/odd, we use the other color. We 
can figure out whether a number is odd or even by dividing the remainder (the mod) of 
a division by 2: odd numbers result in 1; even numbers result in 0. Try it for yourself 
on a piece of paper if you don’t believe me.

Let’s assume we’re given a grid sequence index, like 29; should this cell be shad-
ed with a white or a gray background? First we convert the number 29 into a coordi-
nate on the grid. The y coordinate is the number of times the grid dimension will 
divide into the number: 29 divided by 9 is 3. The x coordinate is the remainder of 
this division: 29 mod 9 is 2. Therefore index 29 is grid coordinate (x = 2,y = 3), as-
suming the coordinates start at 0. But we need to translate this into a box coordi-
nate, which is easily done by scaling it by the box size: 2 divided by 3 is 0, and 3 
divided by 3 is 1. So grid index 29 becomes grid coordinate (2,3) and becomes box 
coordinate (0,1). We then compare the oddness/evenness of these coordinates to 
determine which background shade to use.

What about the box2Idx() function? It’s similar in principle, except we’re almost 
working backwards: we’re given a group and a position, and we need to work out the 
grid sequence index. To do this we first need to find the origin (northwest) coordinate 
of the box representing the group in the grid, which we can do by dividing and mod-ing 
the group by the box size to get x and y coordinates. We do the same thing to the 
position to get the coordinate offset within the box. Then we add the offset to the or-
igin to get the absolute x and y within the grid. Finally, to convert the grid x,y to an 
index, we multiple y by the grid dimension and add on x.
    

  



96 CHAPTER 4 Swing by numbers
This is really just a mopping-up exercise, dealing with all the outstanding issues neces-
sary to make the puzzle work. Yet there’s still opportunity for learning, and for practic-
ing our JavaFX skills, as you’ll shortly see.

4.3.1 Adding stats to the puzzle class

In order to inform the player of how many clashes and empty cells we have, the puzzle 
class needs added functionality. We also need the class to provide some way of fixing 
the starting cells, so the GUI knows not to change them.

 Listing 4.5 is the final version of the class, with all the new code added.

package jfxia.chapter4;

package class PuzzleGrid {
    public-init var boxDim:Integer = 3;
    public-read def gridDim:Integer = bind boxDim*boxDim;
    public-read def gridSize:Integer = bind gridDim*gridDim;

    package var grid:Integer[] = 
        for(a in [0..<gridSize]) { 0 }
        on replace current[lo..hi] = replacement {
            update();
        }

    package var clashes:Boolean[] = 
        for(a in [0..<gridSize]) false;

    package var fixed:Boolean[] =      
        for(a in [0..<gridSize]) false;  

    package var numEmpty = 0;               
    package var numClashes = 0;               
    package def completed:Boolean = bind    
        ((numEmpty==0) and (numClashes==0));

    public function fixGrid() : Void { 
        for(idx in [0..<gridSize]) {     
            fixed[idx] = (grid[idx]>0);
        }                              
    }                                  

    function update() : Void {
        clashes = for(a in [0..<gridSize]) false;
        for(grp in [0..<gridDim]) {
            checkGroup(grp,row2Idx);
            checkGroup(grp,column2Idx);
            checkGroup(grp,box2Idx);
        }
        checkStats();                
    }

    function checkGroup (
        group:Integer , 
        func:function(:Integer,:Integer):Integer

Listing 4.5 PuzzleGrid.fx (version 3)

The new 
variables

Fix the static 
starting cells

Call the stats updater
    

  



97Game on: Puzzle, version 3
    ) : Void {
        var freq = for(a in [0..gridDim]) 0;
        for(pos in [0..<gridDim]) {
            var val = grid[ func(group,pos) ];
            if(val > 0) { freq[val]++; }
        }
        for(pos in [0..<gridDim]) {
            var idx = func(group,pos);
            var val = grid[idx];
            clashes[idx] = clashes[idx] or (freq[val]>1);
        }
    }

    function checkStats() : Void {         
        numEmpty = 0;                      
        numClashes = 0;                    
        for(idx in [0..<gridSize]) {         
            if(grid[idx]==0)  numEmpty++;  
            if(clashes[idx])  numClashes++;
        }                                  
    }                                      

    function row2Idx(group:Integer,pos:Integer) : Integer {
        return group*gridDim + pos;
    }

    function column2Idx(group:Integer,pos:Integer) : Integer {
        return group + pos*gridDim;
    }

    function box2Idx(group:Integer,pos:Integer) : Integer {
        var xOff = (group mod boxDim) * boxDim;
        var yOff = ((group/boxDim) as Integer) * boxDim;
        var x = pos mod boxDim;
        var y = (pos/boxDim) as Integer;
        return (xOff+x) + (yOff+y)*gridDim;
    }
}

Four new variables have been added in listing 4.5: the first, fixed, is a sequence that 
denotes which cells in the grid should not be changeable. The next three provide 
basic stats about the puzzle: numEmpty, numClashes, and completed.

 We’ve also added a new function, fixGrid(), which walks over the puzzle 
grid and marks any cells that are non-zero in the fixed sequence. The GUI class 
can call this function to lock all existing cells in the puzzle, but why didn’t we 
use some clever device like a bind or a trigger to automatically update the 
fixed sequence?

 The grid sequence gets updated frequently, indeed, each time the player changes 
the value of a cell in the puzzle. We need the fixed sequence to update only when the 
grid is initially loaded with the starting values of the puzzle. We could rather cleverly 
rewrite the trigger to spot when the entire grid is being written, rather than a single 
cell (it can see how many cells are being changed at once, after all), but this might 
cause confusion later on. For example, suppose we added a load/save feature to our 

Count empty and 
clashing cells
    

  



98 CHAPTER 4 Swing by numbers
game. Restoring the grid after a load operation would cause the trigger to mistakenly 
fix all the existing non-zero cells, including those added by the player. Some may be 
wrong; indeed some may be clashes! How would the player feel if she were unable to 
change them?

 For all the power JavaFX Script gives us, it must be acknowledged that sometimes 
the simplest solution is the best, even if it doesn’t give us a chance to show fellow pro-
grammers just how clever-clever we are.

 We have one final new function in our class: checkStats()populates the numEmpty
and numClashes variables. It’s called from the update() function, so it will run when-
ever the grid sequence is changed. The completed variable is bound to these vari-
ables and will become true when both are 0.

 Let’s now turn to the final piece of the puzzle (groan!), the GUI.

4.3.2 Finishing off the puzzle grid GUI

If you survived the horrendous pun at the end of the last section, you’ll know this is 
the part where we pull everything together in one final burst of activity on the GUI
class, to complete our puzzle game.

 We have two aims with these modifications:

■ Provide an actual starting grid, to act as a puzzle. The game is pointless without 
one.

■ Plug in a status line at the bottom of the grid display, to inform the player of 
empty cells, clashing cells, and a successfully completed puzzle.

We’ll look at the former in this section and the latter in the next section.
 You might think these changes would be pretty mundane, but I’ve thrown in a lay-

out class to keep you on your toes. Check out listing 4.6.

package jfxia.chapter4;

import javax.swing.JButton;
import javax.swing.border.LineBorder;
import javafx.ext.swing.SwingButton;
import javafx.ext.swing.SwingLabel;
import javafx.scene.Scene;
import javafx.scene.layout.Flow;
import javafx.scene.paint.Color;
import javafx.scene.text.Font;
import javafx.stage.Stage;

def gridCol1 = java.awt.Color.WHITE;
def gridCol2 = new java.awt.Color(0xCCCCCC);
def border = new LineBorder(java.awt.Color.GRAY);

def cellSize:Number = 40;

var puz = PuzzleGrid {
    boxDim: 3

Listing 4.6 Game.fx (version 3)
    

  



99Game on: Puzzle, version 3
    grid: [                    
        5,3,0 , 0,7,0 , 0,0,0 ,  
        6,0,0 , 1,9,5 , 0,0,0 ,
        0,9,8 , 0,0,0 , 0,6,0 ,
        8,0,0 , 0,6,0 , 0,0,3 ,
        4,0,0 , 8,0,3 , 0,0,1 ,
        7,0,0 , 0,2,0 , 0,0,6 ,
        0,6,0 , 0,0,0 , 2,8,0 ,
        0,0,0 , 4,1,9 , 0,0,5 ,
        0,0,0 , 0,8,0 , 0,7,9  
    ]                          
};
puz.fixGrid();          

var gridFont = Font {
    name: "Arial Bold"
    size: 20
};

Stage {
    title: "Game"
    visible: true
    scene: Scene {
        content: [                          
            for(idx in [0..<puz.gridSize]) {         
                var x:Integer = (idx mod puz.gridDim);
                var y:Integer = (idx / puz.gridDim);
                var b = SwingButton {
                    layoutX: x * cellSize;
                    layoutY: y * cellSize;
                    width: cellSize;
                    height: cellSize;
                    text: bind notZero(puz.grid[idx]); 
                    font: gridFont;
                    foreground: bind 
                        if(puz.clashes[idx]) Color.RED
                        else if(puz.fixed[idx])  Color.BLACK
                        else Color.GRAY;
                    action: function():Void {
                        if(puz.fixed[idx]) { return; }
                        var v = puz.grid[idx];
                        v = (v+1) mod (puz.gridDim+1);
                        puz.grid[idx] = v;
                    }
                };

                x/=puz.boxDim;  y/=puz.boxDim;
                var bg = if((x mod 2)==(y mod 2)) gridCol1
                    else gridCol2;

                var jb = b.getJComponent() as JButton;
                jb.setContentAreaFilled(false);
                jb.setBackground(bg);
                jb.setOpaque(true);
                jb.setBorder(border);
                jb.setBorderPainted(true);
                b;

Some puzzle 
data, at last!

Fix the initial 
puzzle cells

Grid loop now inside 
larger sequence
    

  



100 CHAPTER 4 Swing by numbers
            } ,             
            Flow {                                           
                layoutX: 10;                         
                layoutY: bind puz.gridDim * cellSize;
                hgap: 50;                            
                content: [                           
                    SwingLabel {                     
                        text: bind "Empty: {puz.numEmpty}" 
                            "   Clashes: {puz.numClashes}";
                    } ,                                    
                    SwingLabel {                           
                        text: "Complete!";                 
                        visible: bind puz.completed;       
                        foreground: Color.GREEN            
                    }                                      
                ]                                          
            }                                              
        ]
        width: puz.gridDim * cellSize;
        height:puz.gridDim * cellSize + 20;  
    }
}

function notZero(i:Integer):String { if(i==0) " " else "{i}"; }

You can see a couple of new imports at the head of the file—one is a Swing label class, 
and the other is the promised JFX layout class.

 You’ll note the grid variable of the PuzzleGrid class is now being set, and 
fixGrid() is being called to lock the initial puzzle numbers in place. You could pro-
vide your own puzzle data here if you want; I used the data that illustrates the Wikipe-
dia Sudoku article as an example.

 In this version of the game we’ll be adding more elements to the scene graph 
beyond those created by the for loop. For this reason the loop (which creates a 
sequence of Swing buttons) has been moved inside a set of square brackets, effectively 
wrapping it inside a larger sequence. Embedded sequences like this are expanded in 
place, you’ll recall, so the buttons yielded from the loop are expanded into the outer 
sequence, and our new elements (discussed later) are added after them.

 Taking a closer look at the SwingButton definition you see a couple of minor but 
important additions. Here’s the snippet of code we’re talking about, extracted out of 
the main body of the button creation:

foreground: bind 
    if(puz.clashes[idx]) Color.RED
    else if(puz.fixed[idx])  Color.BLACK
    else Color.GRAY
action: function():Void {
    if(puz.fixed[idx]) { return; }
    var v = puz.grid[idx];
    v = (v+1) mod (puz.gridDim+1);
    puz.grid[idx] = v;
}

End of grid loop

The status 
panel

Allow for status line
    

  



101Game on: Puzzle, version 3
In the foreground code we now look for and colorize fixed cells as solid black. And to 
complement this, in the event handler we now check for unchangeable cells, exiting if 
one is clicked without modifying its contents. These two minor changes, coupled with 
the work we did with the PuzzleGrid class, ensure the starting numbers of a puzzle 
will not be editable.

4.3.3 Adding a status line to our GUI with a label

The bulk of the changes come with the introduction of a status line to the foot of the 
GUI declaration. Here, for your convenience, is the code once more, devoid of its sur-
rounding clutter:

Flow {
    layoutX: 10;
    layoutY: bind puz.gridDim * cellSize;
    hgap: 50;
    content: [
        SwingLabel {
            text: bind "Empty: {puz.numEmpty}"
                "   Clashes: {puz.numClashes}";
        } ,
        SwingLabel {
            text: "Complete!";
            visible: bind puz.completed;
            foreground: Color.GREEN
        }
    ]
}

This code is placed inside a larger sequence, used to populate the Scene. The UI ele-
ments it defines appear after all the grid buttons, which were created using a for loop, 
as you saw earlier.

 You’ll immediately notice a Flow, which is one of JavaFX’s layout nodes, otherwise 
known as a container. It controls how its children are positioned on screen. Look at fig-
ure 4.8 and you’ll see another example of Flow in action. The gray shapes are arranged, 
from left to right, in the order in which they appear inside the content sequence.

 Like the Scene class, Flow accepts a sequence for its contents but doesn’t add any 
new graphics itself. Instead it positions its children on the display by placing them 
one after another, either horizontally or vertically (depending upon how it has been 
configured), wrapping onto a new row or column when necessary. It has several 
options, including hgap, which determines the number of pixels to place between 
consecutive nodes in a row. The javafx.scene.layout package has several different 
container nodes, each specializing in a different geometry, and no doubt new ones 
will be added with each JavaFX release. Using these layout nodes we can place screen 

Figure 4.8 Elements 
inside a Flow are lined  
up in rows or columns, 
wrapping when necessary.
    

  



102 CHAPTER 4 Swing by numbers
objects in relation to one another without resort-
ing to absolute x/y positioning as we did with the 
button grid.

 To ensure the status line is at the foot of the dis-
play, we use its layoutY variable to lower it below 
the button grid. It you check out the Scene, you’ll 
note it has had its height amended to accommo-
date the new content. You can see how it looks in 
figure 4.9.

 To implement the status bar we need to arrange 
five pieces of text, so we’ll use SwingLabel classes. 
These are the equivalent of the Swing JLabel class, 
designed to show small quantities of text (typically 
used for labeling, hence the name) on our UI. We 
can group the “Empty” and “Clashes” text into one 
label, but the “Completed!” text needs to be a dif-
ferent color. So we need two labels.

SwingLabel {
    text: bind "Empty: {puz.numEmpty}"
        "   Clashes: {puz.numClashes}";
} ,
SwingLabel {
    text: "Complete!";
    visible: bind puz.completed;
    foreground: Color.GREEN
}

Here’s the declarative code for the two labels again, and you can immediately see how 
they are both bound to variables in the puz object. The first label binds its text to a string 
expression containing the number of empty and clashing cells; the second shows the 
“Complete!” message, its visibility dependent on the puz.completed variable.

 So there we go—our GUI! 

4.3.4 Running version 3

We now have a functioning number puzzle game, as depicted in figure 4.9. Clicking 
on a changeable cell causes its numbers to cycle through all the possibilities. Dupli-
cate numbers (clashes) are shown in red, while the fixed numbers of the initial puzzle 
are shown in black. The status bar keeps track of our progress and informs us when we 
have a winning solution.

 Almost all of this was done by developing an intelligent puzzle class, PuzzleGrid, 
which automatically responds to changes in the grid with updates to its other data. 
The GUI in turn is bound to this data, using it to colorize cells in the grid and show sta-
tus information.

 A single click on a button sets off a chain reaction, updating the grid, which 
updates the other status variables, which updates the GUI. Once the bind and trigger 

Figure 4.9 The puzzle game with its 
status panel, implemented using Flow
    

  



103Bonus: using bind to validate forms
relationships are defined, the code runs automatically, without us having to prompt it 
each time the grid is altered. In our example the grid gets altered from only one place 
(the anonymous function event handler on each button), so this might not seem like 
much of a saving, but imagine how much easier life would be if we expanded our 
game to include a load/save feature or a hint feature—both of which alter the grid 
contents. Indeed, it becomes no extra work at all, so long as the relationships between 
the variables are well defined through binds.

4.4 Other Swing components
In our lightning tour of JavaFX’s Swing support we looked at a couple of common wid-
gets, namely SwingButton and SwingLabel. We also looked at some core scene graph 
containers like Stage, Scene, and Flow. Obviously it’s hard to create an example proj-
ect that would include every different type of widget, so here’s a quick rundown of a 
few key UI classes we didn’t look at:

■ SwingCheckBox—A button that is either checked or unchecked.
■ SwingComboBox—Displays a drop-down list of items, optionally with a free text 

box.
■ SwingList and SwingListItem—Displays a list of items from which the user can 

select.
■ SwingRadioButton, SwingToggleGroup—Together these classes allow for 

groups of buttons, in which only one button is selectable at any given time.
■ SwingScrollPane—Allows large UI content to be displayed through a restricted 

viewport, with scrollbars for navigation. Useful if you have a big panel of widgets, 
for example, which you want to display inside a scrollable area.

■ SwingSlider—A thumb and track widget, for selecting a value from a range of 
possibilities using a mouse.

■ SwingTextField—Provides text entry facilities, unsurprisingly.

These are just a few of the classes in the javafx.ext.swing package, and Swing itself 
provides many more. You could get some practice with them by expanding our puzzle 
application; for example, how about a toggle that switches the highlighting of clash-
ing cells on or off? This could be done by way of a SwingCheckBox, perhaps.

4.5 Bonus: using bind to validate forms
This chapter has been a fun way to introduce key JavaFX Script language constructs, like 
binds and triggers. These tools are very useful, particularly for things like form valida-
tion. Before we move on, let’s detour to look at a bonus example, by way of listing 4.7.

import javafx.ext.swing.*;
import javafx.geometry.VPos;
import javafx.scene.Scene;
import javafx.scene.shape.Circle;

Listing 4.7 Using bind for form validation
    

  



104 CHAPTER 4 Swing by numbers
import javafx.scene.input.KeyEvent;
import javafx.scene.layout.*;
import javafx.scene.paint.Color;
import javafx.stage.Stage;

var ageTF:SwingTextField;
def ageValid:Boolean = bind checkRange(ageTF.text,18,65);

Stage {
    scene: Scene {
        content: VBox {
            layoutX: 5;  layoutY: 5;
            content: [
                Flow {
                    nodeVPos: VPos.CENTER;
                    hgap: 10;  vgap: 10;
                    width: 190;
                    content: [
                        SwingLabel {
                            text: "Age: ";
                        },
                        ageTF = SwingTextField {
                            columns: 10
                        },
                        Circle {
                            radius: bind 
                                ageTF.layoutBounds.height/4;
                            fill: bind if(ageValid)
                                Color.LIGHTGREEN else Color.RED;
                        },                        

                        SwingButton {
                            text: "Send";
                            disable: bind not ageValid;
                        }                        
                    ]
                }
                
            ]
        }
        width: 190;  height: 65;
    }
}

function checkRange(s:String,lo:Integer,hi:Integer) :Boolean {
    try {
        def i:Integer = Integer.parseInt(ageTF.text);
        return (i>=lo and i<=hi);
    }
    catch(any) { return false; }
}

This self-contained demo uses a function, checkRange(), to validate the contents of a 
text field. Depending on the validity state, an indicator circle changes and the Send 
button switches between disabled and enabled. We’ll be dealing with raw shapes like 
circles in the next chapter, so don’t worry too much about the unfamiliar code right 
now; the important part is in the binds involving ageValid.
    

  



105Summary
 The circle starts out red, and the button is disabled. As we type, these elements 
update, as shown in figure 4.10. An age between 18 and 65 changes the circle’s color 
and enables the button, all thanks to the power of binds (you may need to squint to 
see the Swing button’s subtle appearance change). The ageValid variable is bound to 
a function for checking whether the text field content is an integer within the speci-
fied range. This variable is in turn bound by the circle and the Send button. 

In a real application we would have numerous form fields, each with its own validity 
boolean. We would use all these values to control the Send button’s behavior. We 
might also develop a convenience class using the circle, pointing it at a UI component 
(for sizing) and binding it to the corresponding validity boolean. In the next chapter 
we’ll touch on creating custom graphic classes like this, but for now just study the way 
bind is used to create automatic relationships between parts of our UI.

4.6 Summary
In this chapter we developed a working number-puzzle game, complete with a fully 
responsive desktop GUI. And in less than 200 lines of code—not bad!

 Assuming you haven’t fallen foul to our fiendish number puzzle game (may I 
remind you, the screen shots give the solution away, so there’s really no excuse!), 
you’ve—I hope—learned a lot about writing JavaFX code during the course of this 
chapter. Although the number puzzle wasn’t the most glamorous of applications in 
terms of visuals, it was still fun, I think, and afforded us much-needed practice with 
the JFX language. And that’s all we need right now.

 The game could be improved; for example, it would be nice for the cells to 
respond to keyboard input so the player didn’t have to cycle through each number in 
turn, but I’ll leave that as an exercise to the reader. You’ve seen enough of JavaFX by 
now that you can extract the required answers from the API documentation and 
implement them yourself.

 In the next chapter we’re getting up close and personal with the scene graph, 
JavaFX’s backbone for presenting and animating flashy visuals. So make sure you pack 
your ultratrendy shades.

Figure 4.10 Age must be between 18 and 65 inclusive. Incorrect content shows a 
red circle and disables Send (left and right); correct content shows a light-green circle 
and enables Send (middle).
    

  



Behind the scene graph
In chapter 4 we looked at building a rather traditional UI with Swing. Although 
Swing is an important Java toolkit for interface development, it isn’t central to 
JavaFX’s way of working with graphics. JavaFX comes at graphics programming 
from a very different angle, with a focus more on free-form animation, movement, 
and effects, contrasting to Swing’s rather rigid widget controls. In this chapter we’ll 
be taking our first look at how JFX does things, constructing a solid foundation 
onto which we can build in future chapters with evermore sophisticated and elabo-
rate graphical effects.

 The project we’ll be working on is more fun than practical. The idea is to cre-
ate something visually interesting with comparatively few lines of source code—
certainly far fewer than we’d expect if we were forced to build the same applica-
tion using a language like Java or C++. One of the driving factors behind JFX is to 
allow rapid prototyping and construction of computer visuals and effects, and it’s 

This chapter covers
■ Defining a scene graph
■ Animating stuff on screen, with ease
■ Transforming graphics and playing with color
■ Responding to mouse events
106

    

  



107What is a scene graph?
this speed and ease of development I hope to demonstrate as we progress through 
the chapter.

 We’ll be exploring what’s known as the scene graph, the very heart of JavaFX’s 
graphics functionality. We touched on the scene graph briefly in the last chapter; 
now it’s time to get better acquainted with it. The scene graph is a remarkably differ-
ent beast than the Java2D library typically used to write Java graphics, but it’s impor-
tant to remember that one is not a replacement for the other. Both JavaFX’s scene 
graph and Java2D provide different means of getting pixels on the screen, and each 
has its strengths and weaknesses. For slick, colorful visuals the scene graph model 
has many advantages over the Java2D model—we’ll be seeing exactly why that is in 
the next section.

5.1 What is a scene graph?
There are two ways of looking at graphics: a blunt, low-level “throw the pixels on the 
screen” approach and a higher-level abstraction that sees the display as constructed 
from recognizable primitives, like lines, rectangles, and bitmap images.

 The first is what’s called an immediate mode approach, and the second a retained mode
approach. In immediate mode each element on the display is instructed to draw itself 
into a designated part of the display immediately—no record is kept of what is being 
drawn (other than the destination bitmap itself, of course). By comparison, in 
retained mode a tree structure is created detailing the type of graphic elements resi-
dent on the display—the upkeep of this (rendering it to screen) is no longer the 
responsibility of each element.

 Figure 5.1 is a representation of how the two systems work.
 We can characterize the immediate mode approach like so: “When it’s time to 

redraw the screen I’ll point you toward your part of it, and you take charge of drawing 
what’s necessary.” Meanwhile the retained mode approach could be characterized as 
follows: “Tell me what you look like and how you fit in with the other elements on the 
display, and I’ll make sure you’re always drawn properly, at the correct position, and 
updated when necessary.”

 This offloading of responsibility allows any code using the retained mode model to 
concentrate on other things, like animating and otherwise manipulating its elements, 
safe in the knowledge that all changes will be correctly reflected on screen.

 So, what is a scene graph? It is, quite simply, the structure of display elements to be 
maintained onscreen in a retained mode system.

Group

Rectangle

Circle

Retained Mode Immediate Mode

Bitmap

Figure 5.1 A symbolic representation of 
retained mode and immediate mode. The 
former sees the world as a hierarchy of 
graphical elements, the latter as just pixels.
    

  



108 CHAPTER 5 Behind the scene graph
5.1.1 Nodes: the building blocks of the scene graph

The elements of the scene graph are known as 
nodes. Some nodes describe drawing primitives, 
such as a rectangle, a circle, a bitmap image, or a 
video clip. Other nodes act as grouping devices; 
like directories in a filesystem, they enable other 
nodes to be collected together and a treelike struc-
ture to be created. This treelike structure is impor-
tant for deciding how the nodes appear when they 
overlap, specifically which nodes appear in front of 
other nodes and how they are related to one 
another when manipulated. We can best demon-
strate this functionality using figure 5.2.

 A rocket ship might be constructed from sev-
eral shapes: a distorted rectangle for its body, two 
triangular fins, and a black, circular cockpit win-
dow. It may also have a little rocket jet pointing out of its tail, likewise constructed 
from shapes. Each shape would be one primitive on the scene graph, one node in a 
tree-like structure of elements that can be rendered to screen. When nodes are 
manipulated, such as toggling the rocket jet to simulate a flickering flame, the display 
is automatically updated.

5.1.2 Groups: graph manipulation made easy

Once shapes have been added to a scene 
graph, we can manipulate them using 
such transformations as a rotation. But 
the last thing we want is for the constit-
uent parts to stay in the same location 
when rotated. The effect might be a tad 
unsettling if the fins on our rocket ship 
appeared to fly off on an adventure all 
their own (figure 5.3). We want the 
whole ship to rotate consistently, as one, 
around a single universal origin.

 Groups are the answer! They allow us 
to combine several scene graph ele-
ments so they can be manipulated as 
one. Groups can be used within groups 
to form a hierarchy; the rocket’s body 
and flame could be grouped separately 
within a main group, allowing the latter 
to be toggled on or off by flipping its vis-
ibility, as shown in figure 5.2.

Figure 5.2 Elements in a scene 
graph can be manipulated without 
concern for how the actual pixels will 
be repainted. For example, hiding 
elements will trigger an automatic 
update onscreen.

Figure 5.3 Grouping nodes in a scene graph allows 
them to be manipulated as one. The upper rocket 
has been rotated as a group; the lower rocket has 
been rotated as separate constituent nodes.
    

  



109Getting animated: LightShow, version 1
 This introductory text has only brushed the surface of the power scene graphs offer 
us. The retained mode approach allows sophisticated scaling, rotation, opacity (trans-
parency), filter, and other video effects to be applied to entire swathes of objects all at 
once, without having to worry about the mechanics of rendering the changes to screen.

 So that’s all there really is to the scene graph. Hopefully your interest has been 
piqued by the prospect of all this pixel-pushing goodness; all we need now is a suitable 
project to have some fun with.

5.2 Getting animated: LightShow, version 1
The eighties were a time of massive change in the computer industry. As the decade 
began, exciting new machines, such as Space Invaders and Pac-Man, were already 
draining loose change from the pockets of unsuspecting teenage boys, and before 
long video games entered the home thanks to early consoles and microcomputers. An 
explosion in new types of software occurred, some serious, others just bizarre.

 Pioneered by the legendary llama-obsessed games programmer Jeff Minter, Psyche-
delia (later, Colourspace and Trip-a-Tron) provided strange real-time explosions of 
color on computer monitors, ideal for accompanying music. The concept would later 
find its way into software like Winamp and Windows Media Player, under the banner 
of visualizations.

 In this chapter we’re going to develop our own, very simple light synthesizer. It won’t 
respond to sound, as a real light synth should, but we’ll have a lot of fun throwing pat-
terns onscreen and getting them to animate—a colorful introduction (in every sense) 
to the mysterious world of JavaFX’s scene graph.

 At the end of the project you should have a loose framework into which you can 
plug your own scene graph experiments. So let’s plunge in at the deep end by seeing 
how to plug nodes together.

5.2.1 Raindrop animations

The JavaFX scene graph API is split into many packages, 
specializing in various aspects of video graphics and 
effects. You’ll be glad to know we’ll be looking at only a 
handful of them in this chapter. At its heart, the scene 
graph centers on a single element known as a node. There 
are numerous nodes provided in the standard API; some 
draw shapes, some act as groups, while others are con-
cerned with layout. All the nodes are linked, at the top 
level, into a stage, which provides a bridge to the outside 
world, be that a desktop window or a browser applet.

 For our light synthesizer we’re going to start by cre-
ating a raindrop effect, like tiny droplets of water falling 
onto the still surface of a pond. For those wondering (or 
perhaps pondering) how this might look, the effect is 
caught in action in figure 5.4.

Figure 5.4 Raindrops are 
constructed from several  
ripples. Each ripple expands 
outward, fading as it goes.
    

  



110 CHAPTER 5 Behind the scene graph
 Before we begin, it’s essential to pin down exactly how a raindrop works from a 
computer graphics point of view:

■ Each raindrop is constructed from multiple ripple circles.
■ Each ripple circle animates, starting at zero width and growing to a given 

radius, over a set duration. As each ripple grows, it also fades.
■ Ripples are staggered to begin their individual animation at regular beats 

throughout the lifetime of the overall raindrop animation.

Keen-eyed readers will have spotted two different types of timing going on here: at the 
outermost level we have the raindrop activating ripples at regular beats, and at the lowest 
level we have the smooth animation of an individual ripple running its course, expand-
ing and fading. These are two very different types of animation, one digital in nature 
(jumping between states, with no midway transitions) and the other analog in nature (a 
smooth transition between states), combining to form the overall raindrop effect.

5.2.2 The RainDrop class: creating graphics from geometric shapes

Now that you know what we’re trying to achieve, let’s look at a piece of code that 
defines the scene graph. See listing 5.1.

package jfxia.chapter5;

import javafx.animation.Interpolator;
import javafx.animation.KeyFrame;
import javafx.animation.Timeline;
import javafx.lang.Duration;
import javafx.scene.Group;
import javafx.scene.paint.Color; 
import javafx.scene.shape.Circle;

package class RainDrop extends Group {  
    public-init var radius:Number = 150.0;     
    public-init var numRipples:Integer = 3;      
    public-init var rippleGap:Duration = 250ms;
    package var color:Color = Color.LIGHTBLUE; 

    var ripples:Ripple[];
    var masterTimeline:Timeline;

    init {
        ripples = for(i in [0..<numRipples]) Ripple {
            stroke: bind color;                        
            animRadius: radius;                      
        };                                           
        content = ripples;
        masterTimeline = Timeline {                  
            keyFrames:                               
                for(i in [0..<numRipples]) KeyFrame {
                    time: i*rippleGap;               
                    action: function() {             

Listing 5.1 RainDrop.fx

Subclasses 
Group

External interface 
variables

Multiple Ripple 
instances

Timeline to 
activate ripples
    

  



111Getting animated: LightShow, version 1
                        ripples[i].rippleTimeline
                            .playFromStart();    
                    }                            
                };                               
        };                                       
    }                                            

    package function start(x:Integer,y:Integer) : Void {
        this.layoutX = x;                                 
        this.layoutY = y;                               
        masterTimeline.playFromStart();                 
    }                                                   
}

class Ripple extends Circle {  
    var animRadius:Number;
    override var fill = null;

    def rippleTimeline = Timeline {
        keyFrames: [
            at (0ms) {              
                radius => 0;          
                opacity => 1.0;     
                strokeWidth => 10.0;
                visible => true;    
            } ,                     
            at (1.5s) {                        
                radius => animRadius             
                    tween Interpolator.EASEOUT;
                opacity => 0.0                 
                    tween Interpolator.EASEOUT;
                strokeWidth => 5.0             
                    tween Interpolator.LINEAR; 
                visible => false;              
            }                                  
        ]
    };
}

Listing 5.1 creates two classes, Raindrop and Ripple. Together they form our desired 
raindrop effect onscreen, with multiple circles fanning out from a central point, fad-
ing as they go. The code will not run on its own—we need another bootstrap class, 
which we’ll look at in a moment. For now let’s consider how the raindrop effect works 
and how the example code implements it.

 The second class, Ripple, implements a single animating ripple, which is why it 
subclasses the javafx.scene.shape.Circle class. Each circle is a node in the scene 
graph, a geometric shape that can be rendered onscreen. A raindrop with just one rip-
ple would look rather lame. That’s why the first class, RainDrop, is a container for sev-
eral Ripple objects, subclassing javafx.scene.Group, which is the standard JavaFX
scene graph group node.

 The Group class works like the Flow class we encountered last chapter, except it 
does not impose any layout on its children. The content attribute is a sequence of 

Timeline to 
activate ripples

Starts 
animating 
ripples

Subclasses 
Circle

Start 
animation 
state

Finish 
animation 
state
    

  



112 CHAPTER 5 Behind the scene graph
Node objects, which it will draw, from 
first to last, such that earlier nodes are 
drawn below later ones.

 Child nodes are positioned within 
their parent Group using the layoutX
and layoutY variables inherited from 
Node, which is the aptly named parent 
class of all scene graph node objects. 
Circle objects use their center as a 
coordinate origin, while other shapes 
(like Rectangle) might use their top-left 
corner. Coordinates are local to their 
parent, as figure 5.5 explains. The actual 
onscreen coordinates of a given node are the sum of its own layout translation plus all 
layout translations of its parent groups, both direct and indirect.

 Enough of groups—what about our code? We’ll study the animation inside Ripple
shortly, but first we need to understand the container class, RainDrop, where the rain-
drop’s external interface lies.

 First we define public-init variables, allowing other classes to manipulate our rain-
drop declaratively. The radius is the width each ripple will grow to, while numRipples
defines the number of ripples in the overall raindrop animation, and rippleGap is the 
timing between each ripple being instigated. Finally color is, unsurprisingly, the color 
of the ripple circles. Later in the project we’re going to manipulate the raindrop hue, 
so we’ve made color externally writable.

 The private variable ripples holds our Ripple objects. You can see it being set up 
in the init block and then plugged into the scene graph via content in (parent class) 
Group.

 Another private variable being set up in init is masterTimeline, which fires off 
each individual ripple circle animation at regular beats, controlled by rippleGap. The 
remainder of the class is a function that activates this animation. The function moves 
RainDrop to a given point, around which the ripples will be drawn, and kicks off 
the animation.

 Now all we need to know is how the animation works.

5.2.3 Timelines and animation (Timeline, KeyFrame)

Animation in JavaFX is achieved through timelines, as represented by the appropriately 
named Timeline class. A timeline is a duration into which points of change can be 
defined. In JavaFX those points are known as key frames (note the KeyFrame class refer-
ence in listing 5.1), and they can take a couple of different forms.

 The first form uses a function type to assign a piece of code to run at a given point 
on the timeline, while the second changes the state of one or more variables across 
the duration between key frames, as represented in figure 5.6 (think back to the end 
of section 5.2.1 when we discussed digital- and analog-style animations).

100

50
Group

Circle

Scene

50

80x = 100 + 80
y = 50 + 50

x = 100
y = 50

Figure 5.5 Groups provide a local coordinate 
space for their children. The Group is laid out to 
(100,50) and the Circle (positioned around its 
center) to (80,50), giving an absolute position of 
(180,100).
    

  



113Getting animated: LightShow, version 1
The code for the masterTimeline variable of the RainDrop class is conveniently repro-
duced next. It deals with the outermost part of the raindrop animation, firing off the 
ripples at regular beats.

masterTimeline = Timeline {
    keyFrames: 
        for(i in [0..<numRipples]) KeyFrame {
            time: i*rippleGap;
            action: function() {
                ripples[i].rippleTimeline
                    .playFromStart();
            }
        }
};

In the example snippet we see only the first form of timeline in play. The masterTime-
line is a Timeline object containing several KeyFrame objects, one for each ripple in the 
animation. Each key frame consists of two parts: the action to be performed (the 
action) and the point on the timeline when it should start (the time). The result is a 
timeline that works through the ripples sequence one by one, with a delay of ripple-
Gap milliseconds between each, calling 
playFromStart() on the timeline inside 
each Ripple object and thereby starting 
its animation. In a nutshell, masterTime-
line controls the triggering of each rip-
ple in the raindrop; figure 5.7 shows how 
this works in diagrammatic form.

 As the master timeline runs (shown 
vertically in figure 5.7), it triggers the indi-
vidual ripple’s animation (shown hor-
izontally), which uses the second form of 
timeline to manipulate a circle over time. 
In the next section we’ll take a look at this 
second, transitional timeline form.

5.2.4 Interpolating variables across a timeline (at, tween, =>)

We’ve seen how Timeline and KeyFrame objects can be combined to call a piece of 
code at given points through the duration of an animation. This is like constructing a 

Figure 5.6  
One use of key frames 
is to define milestones 
throughout an 
animation, recording 
the state scene graph 
objects should be in at 
that point.

Figure 5.7 The master timeline awakes at regular 
intervals and fires off the next ripple’s timeline. 
The effect is a raindrop of several ripples with 
staggered start times.
    

  



114 CHAPTER 5 Behind the scene graph
timeline digitally, with actions triggered at set points along the course of the anima-
tion. But what happens if we wish to smoothly progress from one state to another?

 The ripples in our animation demonstrate two forms of smooth animation: they 
grow outward toward their maximum radius, and they become progressively fainter as 
the animation runs. To do this we need a different type of key frame, one that marks 
waypoints along a journey of transition.

def rippleTimeline = Timeline {
    keyFrames: [
        at (0ms) {
            radius => 0;
            opacity => 1.0;
            strokeWidth => 10.0;
            visible => true;
        } ,
        at (1.5s) {
            radius => animRadius 
                tween Interpolator.EASEOUT;
            opacity => 0.0 
                tween Interpolator.EASEOUT;
            strokeWidth => 5.0 
                tween Interpolator.LINEAR;
            visible => false;
        }
    ]
};

I’ve reproduced the Timeline constructed for the Ripple class—it uses a very unusual 
syntax compared to the one we saw previously in the RainDrop class. You may recall 
that earlier in this book I noted that one small part of the JavaFX Script syntax was to 
be explained later. Now it’s time to learn all about that missing bit of syntax.

 The at/tween syntax is a shortcut to make writing Timeline objects easier. In 
effect, it’s a literal syntax for KeyFrame objects. Each at block contains the state of 
variables at a given point in the timeline, using a => symbol to match value with vari-
able. The duration literal following the at keyword is the point on the timeline to 
which those values will apply. Remember, those assignments will be made at some 
point in the future, when the timeline is executed—they do not take immedi- 
ate effect.

 Taking the previous example, we can see that at 0 milliseconds the Ripple’s 
visible attribute is set to true, while at 1.5 seconds (1500 milliseconds) it’s set to 
false. Because invisible nodes are ignored when redrawing the scene graph, this 
shows the ripple at the start of the animation and hides it at the end. We also see 
changes to the ripple’s radius (from 0 to animRadius, making the ripple grow to its 
desired size), its opacity (from fully opaque to totally transparent), and its line thick-
ness (from 10 pixels to 5). But what about that tween syntax at the end of those lines?

 The tween syntax tells JavaFX to perform a progressive analog change, rather than 
a sudden digital change. If not for tween, the ripple circle would jump immediately 
from 0 to maximum radius, fully opaque to totally transparent, and thick line to thin 
    

  



115Getting animated: LightShow, version 1
line, once the 1.5 second mark was reached. Tweening makes the animation run 
through all the stages in between. 

 But you’ll note we do more than just move in a linear fashion from one key frame 
to another; we actually define how the progression happens. The constants that follow 
the tween keyword (like Interpolator.EASEOUT and Interpolator.LINEAR in the 
example code) define the pace of transition across that part of the animation. In our 
example the ease-out interpolator starts slowly and builds up speed (a kind of soft 
acceleration), while a linear one maintains a constant speed across the transition (no 
wind up or wind down).

5.2.5 How the RainDrop class works

Before we move on to consider the bootstrap that will display our lovely new RainDrop
class, I want to recap, step by step, exactly how the RainDrop works. We’ve covered 
quite a bit of new material in the last few pages, and it’s important that you under-
stand how it all fits together.

 The RainDrop class is a Node that can be rendered in a JavaFX scene graph. It’s con-
structed from other nodes, specifically several instances of the Ripple class, each of 
which draws and animates one circle (a ripple) in the drop animation. When the 
RainDrop.start(x:Integer,y:Integer) function is called, it fires up a Timeline, 
which periodically starts the timeline inside each Ripple, transitioning the radius, 
opacity, and stroke width of the circle to make it animate.

 Now that we have something to animate, we need to plug it into a framework to 
show it onscreen. In the next section we’ll see how that looks.

5.2.6 The LightShow class, version 1: a stage for our scene graph

To get our raindrops onscreen we need to create a scene graph window and hook the 
RainDrop class into its stage. A single raindrop wouldn’t look very good, so how about 
we create multiple drops, which fire repeatedly as we move the mouse around? List-
ing 5.2 does just that!

package jfxia.chapter5;

import javafx.scene.Scene;
import javafx.scene.input.MouseEvent;

Listing 5.2 LightShow.fx (version 1)

Limitations with the literal syntax, pre-1.2
It would seem that while the at syntax is happy to accept literal durations for times, 
the JavaFX Script 1.1 compiler had problems with variables. This made it difficult to 
vary the time of a key frame using a variable. The problem seems to have been ad-
dressed in the 1.2 compiler, but if you find yourself maintaining any old code, you need 
to be aware of this issue. In version 2 of this project you’ll see a slightly more verbose 
syntax for key frames that has the same effect as at/tween but without this issue.
    

  



116 CHAPTER 5 Behind the scene graph
import javafx.scene.paint.Color; 
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

import java.lang.System;

Stage {
    scene: Scene {
        def numDrops = 10;      
        var currentDrop = 0;      
        var lastDropTime:Long=0;
        var drops:RainDrop[];   

        content: [
            Rectangle {                           
                width:400;  height:400;
                fill: Color.LIGHTCYAN;
                onMouseMoved: function(ev:MouseEvent) {  
                    def t:Long =                           
                        System.currentTimeMillis();      
                    if((t-lastDropTime) > 200) {         
                        drops[currentDrop]               
                            .start(ev.x,ev.y);           
                        currentDrop =                    
                            (currentDrop+1) mod numDrops;
                        lastDropTime=t;                  
                    }                                    
                }
            } ,
            drops = for(i in [0..<numDrops]) {
                RainDrop {};
            }                    
        ]
        width: 400; 
        height: 400;  
    }
    title: "LightShow v1";
    resizable: false;       
}

We first encountered the javafx.stage.Stage class in the previous chapter. Its scene
variable is the socket into which our scene graph should be plugged, which we do 
using the javafx.scene.Scene class.

 The animation works by creating several instances of the RainDrop class, cycling 
through them over and over as the mouse moves. What happens if we run out of rain-
drops? Well, if we time things right, a RainDrop will have finished its animation by the 
time it is called into service again. By knowing how long each RainDrop animation 
takes and how frequently it is triggered, we can work out how many RainDrop nodes 
we need to continually run the animation.

 Inside our Scene we first define some variables, local to that node:

■ The numDrops variable defines the size of the RainDrop sequence—how many 
will be included in the scene graph, while currentDrop remembers which drop 
in the sequence is next to be animated.

Local variables, 
including RainDrop 
sequence

The background 
rectangle

Mouse event 
handler

Stage 
dimensions

Window 
configuration
    

  



117Getting animated: LightShow, version 1
■ The lastDropTime variable records the time of the last drop animation, to 
ensure a reasonable gap between raindrops.

■ drops is the RainDrop sequence itself.

We will manipulate these variables in an event handler. The first node in the Scene is a 
Rectangle, which is another kind of geometric shape similar to the Circle class. It 
will give our raindrop animation a colorful backdrop. We set the dimensions of the 
Rectangle within its parent and define a fill color. Then we assign an event handler 
to it.

onMouseMoved: function(ev:MouseEvent) {
    def t:Long = System.currentTimeMillis();
    if((t-lastDropTime) > 200) {
        drops[currentDrop].start(ev.x,ev.y);
        currentDrop = (currentDrop+1) mod numDrops;
        lastDropTime=t;
    }
}

The onMouseMoved variable is a function type, allowing us to attach event handling 
code to the Rectangle that responds to mouse movements across its surface. The 
example code has fewer line breaks, for extra readability. It works the same way as the 
button event handlers we saw in the Swing project in the last chapter, except it 
responds to mouse movement rather than button clicks. This event-handling code is 
the hub of the LightShow class; it’s here that we initiate the raindrop animation. The 
code is assigned to the Rectangle because it covers the whole of the window interior, 
and thus it will receive movement events wherever the mouse travels.

 But how does the event handler code work?
 The first thing we do is get the current time from the computer’s internal clock, 

using the Java method inside java.lang.System. We don’t want to fire off new 
raindrops too quickly, so the next line is a check to see when we last started a fresh 
raindrop animation; if it’s within the last 200 milliseconds, we exit without fur- 
ther action.

 Assuming we’re outside the time limit, we proceed by creating a fresh raindrop 
animation. This requires three steps: first we call start(x:Integer,y:Integer) on 
the next available raindrop, passing in the mouse event’s x and y position, causing the 
class to begin animating around those coordinates. Then we move the currentDrop
variable on to the next RainDrop in the sequence, wrapping around to the start if nec-
essary, cycling through RainDrop objects as the mouse events are acted upon. Finally 
we store the current time, ready for the next handler invocation.

 The Rectangle needs to access the RainDrop sequence from its onMouseMoved
event handler, which is why we created a reference to the sequence as a local variable 
called drops before we declaratively created the Rectangle. Having added the Rect-
angle to the Group we can then add drops, so they’ll be drawn above the Rectangle. 
Because JavaFX Script is an expression language, the assignment to the drops variable 
also acts as an assignment into the enclosing scene graph sequence.
    

  



118 CHAPTER 5 Behind the scene graph
5.2.7 Running version 1

Running the code is as simple as compiling both classes and starting up 
jfxia.chapter5.LightShow and waving your mouse over the window that appears. 
The effect is of circular patterns tracing the flow of your mouse, expanding and fading 
as they go. While they may serve no useful purpose, the application’s visuals are (I 
hope) interesting and fun to play with. They demonstrate how rich animation can be 
created quite quickly from within JavaFX, with reasonably little code.

 So far we’ve thrown a few shapes on screen and looked at how the scene graph 
groups things together. But the RainDrop is perhaps not the most efficient example of 
writing custom scene graph nodes. For a start, what happens if our custom node isn’t 
a convenient subclass of an existing node? In the next section we’ll see how using 
JavaFX’s purpose-made CustomNode class helps us create unique custom nodes. We’ll 
also be spinning a few psychedelic shapes on screen, so if you have a lava lamp 
around, now would be a good time to switch it on.

5.3 Total transformation: LightShow, version 2
Subclassing CustomNode is the recommended way of creating custom-made nodes in 
JavaFX. Although we managed perfectly well by subclassing Group for the RainDrop, a 
CustomNode subclass allows us a bit more control. For a start it includes a create()
function that gets called when the node is created, acting as a lightweight constructor.

 In our second version of the LightShow project we’re going to write a CustomNode
that will slot into the main bootstrap class, just like the RainDrop. We’re also going to 
explore exotic uses of animation timelines, to bring a splash of Technicolor to 
our software.

5.3.1 The swirling lines animation

We’ll start with a new class to create animated 
swirling lines, radiating out from a center 
point. The lines are like spokes on a wheel, 
spaced evenly around all 360 degrees of a 
ring, as in figure 5.8.

 The SwirlingLines class uses transfor-
mations on Rectangle shapes to rotate and 
position each line within the scene graph. All 
the shapes in a given ring are contained 
within (and controlled via) a parent group, 
which is in turn linked to a custom node.

 As with the RainDrop, we’ll use the class 
multiple times in the LightShow, the end 
effect being several nested rings of col-
ored lines rotating in different directions, 
while transitioning through several hues. 

Figure 5.8 The SwirlingLines class 
creates a single ring of spokes, rotating around 
a central origin. Instances demonstrating 
different attribute settings are displayed.
    

  



119Total transformation: LightShow, version 2
Figure 5.8 shows the result. The animation will run continuously and will not inter-
act with the user.

 We have a lot of interesting new ideas to cover; all we need now is source code.

5.3.2 The SwirlingLines class: rectangles, rotations, and transformations

The SwirlingLines source code is presented in listing 5.3. It contains quite a host of 
instance variables for configuring its operation, from line length and thickness to the 
speed and direction of rotation. This will give us plenty of stuff to play with when we 
incorporate it into our project application a little later on.

 Previously I mentioned that the lines in the finished application will continually 
change color. This class does not concern itself with the color changes, but it does bind 
a handy-dandy color variable, which some other class (the LightShow being a prime 
suspect) might want to manipulate. Listing 5.3 is the code.

package jfxia.chapter5;

import javafx.animation.Interpolator;
import javafx.animation.KeyFrame;
import javafx.animation.Timeline;
import javafx.lang.Duration;
import javafx.scene.CustomNode;
import javafx.scene.Group;
import javafx.scene.Node;
import javafx.scene.paint.Color; 
import javafx.scene.shape.Rectangle;
import javafx.scene.transform.Transform;

package class SwirlingLines extends CustomNode {
    public-init var antiClockwise:Boolean = false;
    public-init var baseAngle:Number = 0.0;         
    public-init var numLines:Integer = 12;        
    public-init var rotateDuration:Duration = 1s; 
    public-init var lineLength:Number = 100.0;    
    public-init var lineThickness:Number = 20.0;  
    public-init var centerRadius:Number = 20.0;   
    package var color:Color;                      

    var rotateSlice:Number =                             
        (if(antiClockwise) -360.0 else 360.0) / numLines;  
    var animRotateInc:Number;                            

    override function create():Node {
        def node = Group {
            content: for(i in [0..<numLines]) {
                Rectangle {
                    width: lineLength;    
                    height: lineThickness;  
                    fill: bind color;      
                    transforms: [                      
                        Transform.rotate (             
                            baseAngle + rotateSlice*i ,

Listing 5.3 SwirlingLines.fx

External 
attributes

Internal attributes, 
mainly animation

Bound to external 
attributes

Transformation 
ops array
    

  



120 CHAPTER 5 Behind the scene graph
                            0,0              
                        ) ,                  
                        Transform.translate (
                            centerRadius ,   
                            0-lineThickness/2
                        )                    
                    ];                       
                };                
            };
            rotate: bind baseAngle + animRotateInc;  
        };

        Timeline {
            repeatCount: Timeline.INDEFINITE;  
            keyFrames: [
                KeyFrame {                  
                    time: 0s;                 
                    values: [               
                        animRotateInc => 0.0
                    ];                      
                } ,                         
                KeyFrame {                           
                    time: rotateDuration;              
                    values: [                        
                        animRotateInc => rotateSlice 
                            tween Interpolator.LINEAR
                    ];                               
                }                                    
            ];
        }.play();      

        return node;
    }
}

The SwirlingLines class in listing 5.3 is a custom node, as denoted by its subclassing of 
the javafx.scene.CustomNode class. While subclassing Group was fine for our simple rip-
ples, we need something more powerful for 
the effect we’re building. CustomNode sub-
classes permit the building of complex mul-
tishape graphs inside their create()

function, beyond just extending an existing 
predefined shape.

 What’s interesting about create() is that 
it gets called once, before the init or pos-
tinit blocks are run. Yes, you read that cor-
rectly: create() is run after the declared 
variables are set but before the class is fully 
initialized! Be sure to keep this in mind when 
designing your own CustomNode subclasses. 
Figure 5.9 is a diagrammatic rendering of 
what the SwirlingLines code produces.

Transformation 
ops array

Rotate 
Group

Run 
forever

Start of 
rotation

End of 
rotation

Start 
animation

rotateSlice

ce
nt

er
Ra

di
us

lineLength

lineThickness

baseAngle

Figure 5.9 SwirlingLines creates a  
ring of rectangles, fully customizable from  
its instance variables.
    

  



121Total transformation: LightShow, version 2
 Taking a look at the class we can clearly see several instance variables available for 
tailoring the class declaratively. Figure 5.9 shows the main initialization variables in 
diagram form, but here’s a description of what they do:

■ The color variable controls the line color (obviously!), while lineLength and 
lineThickness control the size of the lines. Since we’ll be manipulating color
throughout the run of the application, it has been made package visible, and its 
reference in the scene graph is bound.

■ The antiClockwise flag determines the direction of animation, while baseAn-
gle controls how the lines are initially oriented (the first line doesn’t have to 
start at 0 degrees).

■ The numLines determines how many lines form the ring; they will be evenly 
spaced around the total 360 degrees.

■ The rotateDuration attribute controls how long it takes for the ring to per-
form one animation cycle. If there are 16 lines, this will be the time it takes to 
animate through one-sixteenth of a total 360-degree revolution.

■ centerRadius details the empty space between the rotation center and the 
inner end of each line—in other words, how far away from the hub the lines are 
positioned.

There are some private variables, used to control the internal mechanics of the class.

■ The rotateSlice value is the angle between each line in the ring. This is 360 
divided by the number of lines. The value is used to constrain the animation 
(which we’ll look at in a moment) and is either positive or negative, depending 
on in which direction the ring will spin.

■ The animRotateInc object is the value we change during the timeline animation.

The rotation is performed at the group level, thanks to the group node’s rotate vari-
able being bound to animRotateInc. Although the ring will appear to rotate freely 
through a full 360 degrees, this is an optical illusion. The animation moves only between 
lines, so if there are four lines, our animation will continually run between just 0 and 90 
degrees. (There’s no great advantage in not making the ring spin a full 360 degrees; it 
just wasn’t necessary to create the desired effect.)

 The next part of the class is a function called create(), which returns a Node. The 
CustomNode class provides this function specifically for us to override with code to build 
our own scene graph structure (note the override keyword). The node we return from 
this function will be added to the scene graph, which is what we’ll look at next.

5.3.3 Manipulating node rendering with transformations

The create() function is rather unusual, in that it gets called before the class’s init
block. This means if you’re going to use init to set up any of your variables, they need 
to be bound in the scene graph to ensure the changes are reflected on screen.

 Our create() function, in listing 5.3, does all the work of setting up the nodes in 
the swirling lines scene graph and defining the animation timeline. The first of these 
    

  



122 CHAPTER 5 Behind the scene graph
two responsibilities involves creating a sequence of Rectangle objects, the inner code 
for which is reproduced here with fewer line breaks:

Rectangle {
    width: lineLength; 
    height: lineThickness;
    fill: bind color;
    transform: [
        Transform.rotate(baseAngle + rotateSlice*i, 0,0) ,
        Transform.translate(centerRadius , 0-lineThickness/2)
    ];
};   

The function uses a for loop to populate a Group with Rectangle objects. Width, 
height, and fill color all reference the class variables, with fill being bound so it 
responds to changes. So far nothing new, but take a look at the transform assignment; 
what’s going on there?

 Transformations are discrete operations applied to a node (and thereby its chil-
dren) during the process of rendering it to the screen. The javafx.scene.trans-
form.Transform class contains a host of handy transformation functions that can be 
applied to our nodes. Transformations are executed in order, from first to last, and 
the order in which they are applied is often crucial to the result.

 Let’s consider the two operations in our example code: first we perform a rotation 
of a given angle around a given point, and then we move (translate) the node a given 
distance in the x and y directions. The first operation ensures the line is drawn at the 
correct angle, rotated around the origin (which is the center of the ring, recall). The 
second operation moves the line away from the origin but also centers it along its 
radial by moving up half its height. I realize it might be a little hard to visualize why 
this centering is necessary; figure 5.10 should clarify what’s happening.

 Without the negative y axis transla-
tion the rectangle would hang off the 
radial line like a flag on a flagpole. We 
want the rectangle to straddle the radial, 
and that’s what the translation achieves.

 As previously noted, it’s important to 
consider the order in which transforming 
operations are performed. Turning 45 
degrees and then walking forward five 
paces is not the same as walking forward 

Custom node initialization and older JavaFX versions
Be warned, JavaFX 1.2 was the first version of JavaFX in which create() was called 
before init. In previous versions init was called first, then create(), and finally 
postinit.

Figure 5.10 With and without centering: moving 
the Rectangle negatively in the y axis, by half its 
height, has the effect of centering it on its origin—
in this case the radial spoke of a ring.
    

  



123Total transformation: LightShow, version 2
five paces and then turning 45 degrees; check out figure 5.11 if you don’t believe me. 
Always remember the golden rule: each time a node is drawn, its transformations are 
applied in order, from first to last.

Now that you understand transformations, let’s look at the remainder of the code:

Timeline {
    repeatCount: Timeline.INDEFINITE;
    keyFrames: [
        KeyFrame {
            time: 0s;
            values: [
                animRotateInc => 0.0 
            ];
        } ,
        KeyFrame {
            time: rotateDuration; 

When up sometimes means down
When I say the second transformation moves the Rectangle “up,” it’s a relative 
term—up in relation to the rotation we previously applied. If thinking about this hurts 
your head, picture it this way: the screen is a giant wall, and tacked onto that wall are 
separate pieces of paper with drawings on them (like you’d find in an elementary 
school classroom, where students have their crayon masterpieces on display).

We can take any one of these pieces of paper and rotate in on the wall; for example, 
we could display a given picture upside-down. If we take one of the drawings down 
from the wall and erase an object, redrawing it higher up (like moving the sun farther 
up in the sky), then we tack the drawing back onto the wall upside-down, did we move 
the object up or down? In terms of the paper, we moved it up. But after we applied 
the rotation, we moved it down in terms of the overall wall. We have two coordinate 
spaces in operation here, the global one (the wall) and the local one (the paper).

To return to our project source code, when we said we moved the Rectangle “up,” 
we meant in terms of its local coordinate space. That space (like the paper on the 
wall) is rotated, but it doesn’t matter, because from a local point of view up still means 
up (left still means left, etc.), even if the rotation actually changes the effect in terms 
of the global space.

Figure 5.11 Two examples of transformations: 
translate and then rotate (left), and rotate and 
then translate (right). The order of the 
operations results in markedly different results.
    

  



124 CHAPTER 5 Behind the scene graph
            values: [
                animRotateInc => rotateSlice
                    tween Interpolator.LINEAR
            ];
        }
    ];
}.play();   

The example creates a timeline that runs continually once started, thanks to 
Timeline.INDEFINITE, with two KeyFrame objects, one marking its start and the other 
its end. All the timeline does is tween the variable animRotateInc, which the Group
binds to. These changes cause the Group, and its Rectangle contents, to rotate.

 The timeline looks a little different from the at syntax we saw in action in the Rip-
ple class. There’s no difference in terms of functionality; we’re just writing out the 
KeyFrame objects longhand instead of using the briefer syntax. The KeyFrame code is 
quite easy to define declaratively; time is obviously the point at which the key frame 
should be active, while values is a comma-separated list (a sequence) of attribute => 
value definitions.

Once we’ve created the timeline, we kick it off immediately by calling its play() func-
tion. The Timeline class has a number of functions for controlling playback. The two 
we’ve seen in this project are playFromStart() and play(). The former restarts a 
timeline from the beginning, while the latter picks up where it left off. Because our 
timeline will run indefinitely, we can use either.

5.3.4 The LightShow class, version 2: color animations

Now that we have a swirling lines class, let’s add it into our application class, Light-
Show. We also want to create some kind of psychedelic color effect as well. Listing 5.4 
shows how the updates change the code.

package jfxia.chapter5;

import javafx.animation.Interpolator;
import javafx.animation.KeyFrame;
import javafx.animation.Timeline;
import javafx.lang.Duration;
import javafx.scene.Scene;
import javafx.scene.input.MouseEvent;

Listing 5.4 LightShow.fx (version 2)

Limitations with the literal syntax, pre-1.2, part 2
As previously mentioned, the at syntax for describing key frames worked fine with 
time literals, but not variables, when used with JavaFX 1.1 compiler. However, the ver-
bose syntax in our example doesn’t seem to suffer from this problem. (As already not-
ed, the issue seems to have been addressed in the 1.2 compiler.)
    

  



125Total transformation: LightShow, version 2
import javafx.scene.paint.Color; 
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

import java.lang.System;

def sourceCols = [                 
     "#ff3333","#ffff33","#33ff33",    
     "#33ffff","#3333ff","#ff33ff" 
];                                   
def colorShifts = for(i in [0..<6]) {
    ColorShifter {                   
        sourceColors: sourceCols;    
        duration: 3s;                
        offset: i;                   
    };                               
}                                    

def sceneWidth:Number = 400;
def sceneHeight:Number = 400;
Stage {
    scene: Scene {
        def numDrops = 10;
        var currentDrop = 0;
        var lastDropTime:Long=0;
        def drop = for(i in [0..<numDrops]) {
            RainDrop {};
        }

        def lines = for(i in [0..<6]) {          
            SwirlingLines {                        
                def ii = i+1;                    
                layoutX: sceneWidth/2;           
                layoutY: sceneHeight/2;          
                numLines: 6+i;                   
                color: bind colorShifts[i].color;
                centerRadius: (ii)*20;           
                lineLength: (ii)*10;             
                lineThickness: (ii)*3;           
                antiClockwise: ((i mod 2)==0);   
                rotateDuration: 1s/(ii);         
            }                                    
        };                                       

        def rect = Rectangle {
            width: sceneWidth;
            height: sceneHeight;
            fill: Color.BLACK;
            onMouseMoved: function(ev:MouseEvent) {
                def t:Long = 
                    System.currentTimeMillis();
                if((t-lastDropTime) > 200) {
                    drop[currentDrop].color = 
                        colorShifts[0].color;   
                    drop[currentDrop]
                        .start(ev.x,ev.y);
                    currentDrop = 

Create six color 
animations

Swirling lines 
sequences, 
declaratively 
defined

Color shift our 
raindrops
    

  



126 CHAPTER 5 Behind the scene graph
                        (currentDrop+1) mod numDrops;
                    lastDropTime=t;
                }
            }
        };

        content: [
            rect ,
            lines ,  
            drop
        ]
        width: sceneWidth;
        height: sceneHeight;
    }
    title: "LightShow v2";
    resizable: false;
    onClose: function() { FX.exit(); }  
}

class ColorShifter {
    public-init var duration:Duration = 3s;
    public-init var sourceColors:String[];   
    public-init var offset:Integer=0;      

    var color:Color;             
    var tLine:Timeline;

    init {
        def gap = duration / ((sizeof sourceColors)-1);
        Timeline {
            def arrSz = sizeof sourceColors;
            repeatCount: Timeline.INDEFINITE;
            keyFrames: for(i in [0..<arrSz+1]) {    
                KeyFrame {                            
                    def pos = (offset+i) mod arrSz; 
                    time: gap * i;                  
                    values: color =>                
                        Color.web(sourceColors[pos])
                        tween Interpolator.LINEAR;  
                }                                   
            }                                       
        }.play();
    }
}

We’ll have a look at the color shifter first. At the start of listing 5.4 there’s a sequence 
of colors called sourceCols, using web-style definitions (#rrggbb, as hex). Following 
that, a for loop creates seven ColorShifter objects.

 The ColorShifter provides us with ever-shifting color, cycling through a collec-
tion of shades over a period of time. You can find its code at the bottom of listing 5.4. 
The external interface is as follows:

■ The duration attribute is the time it will take to do one full circle of the colors.
■ The sequence sourceColors provides the hues to cycle through, and offset is 

the index to use as the first color.
■ color is the output—the current hue.

Lines added to 
scene graph

Explicitly close 
window

Declaration 
variables

Output color

A KeyFrame  
for each color, 
wrapped around
    

  



127Total transformation: LightShow, version 2
The class creates a timeline with a KeyFrame for each color, using tweening to ensure a 
smooth transition between each. The first color is used twice, at both ends of the ani-
mation, to ensure a smooth transition when wrapping around from last to first color. 
That’s why the loop runs for one greater than the actual size of the source sequence 
and the mod operator is applied to the loop index to keep it within range. Once cre-
ated, the ColorShifter timeline is started and runs continually.

 That’s it for the color animations. Returning to the scene graph, let’s have a look at 
how the SwirlingLines are added to our Group node:

def lines = for(i in [0..<6]) {
    SwirlingLines {
        def ii = i+1;
        layoutX: fWidth/2;
        layoutY: fHeight/2;
        numLines: 6+i;
        color: bind colorShifts[i].color;
        centerRadius: (ii)*20;
        lineLength: (ii)*10;
        lineThickness: (ii)*3;
        antiClockwise: ((i mod 2)==0);
        rotateDuration: 1s/(ii);
    }
 };

Nothing particularly unusual here. We create seven rings of lines, and each is bound 
to a different ever-changing ColorShifter. Because the ColorShifter objects were all 
declared with different source colors (we used a different offset each time), each 
ring pulses with a different part of the sourceCols input sequence. Each successive 
ring has more lines, longer and thicker, with a larger gap at the center. The rings alter-
nate clockwise and counterclockwise, with outer rings rotating faster than inner ones.

 Now that we have the code, let’s see 
what happens when we run it.

5.3.5 Running version 2

Version 2 adds rotating patterns of lines and 
ever-changing colors, all animating merrily 
away without our having to get involved in 
any ugly code to draw them on screen as 
we’d need to if this was a Swing application 
using immediate mode rendering. Figure 
5.12 shows the application running.

 When you run the code, you’ll see I 
added a few extra changes to version 1: the 
background is now black, and the rain-
drops are bound to a ColorShifter too. 
The effect is an explosion of color patterns 
across the window as the mouse is moved.

Figure 5.12 Version 2 of the project application, 
featuring both swirling lines and raindrops
    

  



128 CHAPTER 5 Behind the scene graph
5.4 Lost in translation? Positioning nodes in the scene graph
Before we round out this chapter, there’s one topic we really should review: the rela-
tionship between a scene graph node’s layout (layoutX and layoutY), its translation 
(translateX and translateY), and its coordinates. It’s vital that you understand how 
these three work with one another.

 Each scene graph node has a way of specifying its location within its own local space; 
for example, Rectangle has x and y, Circle has centerX and centerY, and so on. These 
define points within the node’s own local coordinate space, quite separate to (although 
ultimately combined with) its location as a whole (see figure 5.13).

 To borrow section 5.3.3’s paper/wall analogy, if each shape is a drawing on a 
piece of paper tacked onto a wall, we might say Rectangle.x and Rectangle.y rep-
resent the rectangle’s position within the paper, while Rectangle.layoutX and 
Rectangle.layoutY represent the paper’s position within the wall. The former is the 
shape’s location within its own space; the latter is its location within its parent’s 
space. The important point to remember is this: the node’s local space is unchanged 
no matter how it is rotated, bent, folded, or otherwise manipulated in the scene 
graph outside.

 Actually, that isn’t the whole story, because a shape’s location isn’t just determined 
by layoutX and layoutY. If you check the documentation for Node, you’ll see there’s a 
second set of coordinates, called translateX and translateY.

 In versions of JavaFX prior to 1.2 the layout variables didn’t exist, and the translate 
variables were used to position nodes. But 1.2 introduced the controls API, and with it 
more sophisticated layout management. The designers of JavaFX realized they needed 
to separate a node’s layout position from any movement it might subsequently make 
as part of an animation; thus the concept of separate layout and translation coordinates 
was born. So, the location of a node is determined by its layout coordinates (its home 
within its parent), combined with its translation coordinates (where an animation has 
since moved it), combined with its own local coordinates after transformations have 
been applied.

 Whew! Hopefully that clears everything up.

layoutX: 10
layoutY: 10

x: 4
y: 15

Group

Rectangle

layoutX: 10
layoutY: 10

x: 4
y: 15

Group
Rectangle

Figure 5.13 A Rectangle with its own local coordinates, translated 
within a Group. The local coordinates are not affected when the node is 
transformed in its parent’s space, like a rotation by 270 degrees.
    

  



129Bonus: creating hypertext-style links
5.5 Bonus: creating hypertext-style links
We ended the last chapter with a bonus example listing, to frame the skills learned in 
more of a business/e-commerce context. This chapter’s light synthesizer served as a 
fun way to introduce the scene graph, but it has little practical value beyond simply 
being entertaining. So before I sum up, let’s indulge in another little detour, by way of 
listing 5.5.

import javafx.scene.*;
import javafx.scene.input.MouseEvent;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.*;
import javafx.stage.Stage;

var border:Number = 20;
var hyperLink:Group = Group {
    var t:Text;
    var r:Rectangle;
    layoutX: border;  layoutY: border;
    content: [
        r = Rectangle {
            width: bind t.layoutBounds.width;
            height: bind t.layoutBounds.height;
            opacity: 0;
            onMouseClicked: function(ev:MouseEvent) {
                println("Ouch!");
            }
        } ,
        t = Text {
            content: "Link text";
            font: Font.font("Helvetica",56);
            textOrigin: TextOrigin.TOP;
            underline: bind r.hover;
            fill: bind if(r.pressed) Color.RED 
                else Color.BLACK;
        }
    ]
}

Stage {
    scene: Scene {
        content: hyperLink;
        width: hyperLink.layoutBounds.width + border*2;
        height: hyperLink.layoutBounds.height + border*2;
    }
    resizable: false;
}

What the listing does is to create a hypertext-like button from some text. Actually, 
JavaFX 1.2 came with a link control as standard, but that doesn’t mean we can’t learn 
something from crafting our own. Figure 5.14 shows how it looks when running. The 

Listing 5.5 Link.fx
    

  



130 CHAPTER 5 Behind the scene graph
text is normally displayed black and undecorated, but it becomes underlined when 
the mouse is over it. When the mouse button is pressed, the color changes to red, 
before returning to black upon release.

 The core of the code is in the Rectangle and Text objects used to populate the 
scene (via a Group). The Text object is akin to Swing’s JLabel; it’s used to include text 
within a scene graph. We’ll cover Text in far more details next chapter, so for now 
please forgive me if I gloss over some of its details. The important point to note is that 
Text, like other scene graph nodes we encountered this chapter, behaves like a shape, 
meaning its concept of area is not limited to merely being rectangular. As the mouse 
travels over the text, it constantly enters and leaves the shape, the pointer passing 
inside and outside each letter.

 Clearly we need the link to behave like a rectangle when it comes to its interaction 
with the mouse. To do this we employ an invisible Rectangle behind the Text, taking 
responsibility for mouse events. Note how the size of the Rectangle node is bound 
tightly to its companion Text node, while the underline decoration and fill color of 
the Text node are bound to the Rectangle’s hover state. Also note how the event 
function (which runs when the link is clicked) is attached to onMouseClicked() on 
the Rectangle, not the Text node.

 Now that we have our own handmade hypertext link, we can customize it to our 
heart’s content—perhaps make the underline fade in and out, or apply a drop shadow 
on mouse over. This was just an example to show how the scene graph sometimes 
requires a jot of lateral thinking when it comes to getting the effect you want. In the 
next chapter you’ll see further examples of using nodes in clever ways, not just as 
proxies for event handling but to add padding around parts of the UI during layout 
and to define clipping areas to shape the visibility of a scene graph.

5.6 Summary
In this chapter we took our first look at the scene graph and played around with 
throwing shapes on screen. We saw multiple examples of timeline–based animation 
and explored how to define timelines to suit different purposes: triggering events at 
given moments and progressively transitioning variables between different states. We 
also witnessed how timelines could be used to animate more than just shapes 
onscreen. And to cap it all, we dabbled with mouse events. 

 The LightShow example isn’t the most useful application in the world, and we 
didn’t even wire it up to a sound source like true visualizations, but I hope you found 

Figure 5.14 The link text depicted in three states: idle (left), underlined when hovered over 
(center), and red upon a mouse button press (right)
    

  



131Summary
it suitably entertaining. You can use the LightShow application as a framework for 
plugging in and trying your own CustomNode experiments, if you wish. There are 
plenty of different transformations we didn’t have space to cover in this chapter—you 
might want to try playing with some of them, distorting the Rectangle lines or even 
adding different shapes of your own and seeing what effects they create.

 The bonus listing, I hope, got you thinking about how to adapt the techniques we 
used in this chapter for more practical purposes. Indeed in some ways it was a taste of 
what’s to come, because in the very next chapter we’ll be staying with the scene graph 
but looking at building a slightly more useful application (using video, no less!). We’ll 
also be creating our own custom UI components and looking at some of the effects we 
can create using the scene graph.

 For now, have fun extending and adapting the LightShow, and when you’re ready 
I’ll see you in the next chapter!
    

  



Moving pictures
In previous chapters we developed an application using JavaFX’s Swing wrappers 
and played around with the scene graph. Now it’s time to turn our hands toward 
creating a UI that combines the functionality of a traditional desktop application 
with the visual pizzazz of the new scene graph library. And when it comes to desk-
top software, you don’t often get showier than media players.

 Some applications demand unique interfaces, games and media players being 
prime candidates. They don’t just stick to the conventional form controls but cre-
ate a less-rigid experience, with sophisticated use of imagery, sound, movement, and 
animation. In the chapter 5 we started to explore the JavaFX scene graph, and in 
the next chapter we’ll be looking at JavaFX’s standard form controls. So, by way of a 
bridge between the two, in this chapter we’ll be getting far more interactive with 
the scene graph, by making it respond and animate to a range of mouse events. 
The nodes we’ll develop will be far showier (and specialized to the UI experience of 

This chapter covers
■ Interacting with complex custom nodes
■ Laying stuff out on screen, using containers
■ Playing video
■ Embedding fonts into an application
132

    

  



133Moving pictures
this project) than the standard controls shipped with JavaFX or Swing. For this reason, 
we will be developing them as CustomNode classes, rather than formal Control classes. 
(There’s no reason why they couldn’t be written as full-blown controls, but I wanted 
this chapter to focus on getting more experience with the scene graph.)

 We’ll also look at using the media classes to play videos from the local hard disk. To 
try out the project (see figure 6.1) you’ll need a directory of movie files, such as MPEG
and WMV files.

 The video player we’ll be developing is very primitive, lacking much of the func-
tionality of full-size professional players like Windows Media Player or QuickTime. A 
full player application would have been 10 times the size with little extra educational 
value. Although primitive in function, our player will require a couple of custom con-
trols, each demonstrating a different technique or skill.

 We’ll also be adding a gradient fill to the background, and a real-time reflection 
effect will be applied to the video itself, making it look like it’s resting on a shiny surface.

This project requires a few images, which can be downloaded along with 
the source code from the book’s website: http://www.manning.com/
JavaFXinAction.

 

Over the coming pages you’ll learn about working with images and video, creating 
controls from scene graph shapes, and applying fancy color fills and effect. This is 
quite a busy project, with a lot of interesting ground to cover, so let’s get started.

Figure 6.1 A preview of the simple video player we’ll be building in this chapter

DOWNLOAD
NEEDED
    

  

http://www.manning.com/JavaFXinAction
http://www.manning.com/JavaFXinAction


134 CHAPTER 6 Moving pictures
6.1 Taking control: Video Player, version 1
In this version of the player software we’re focusing mainly on building the UI we’ll 
need when we manipulate our video later on. Before JavaFX came along, getting video 
to work under Java would have deserved an entire book in itself. Thankfully, JavaFX
makes things a lot easier. JavaFX’s video classes are easy to use, so we don’t have to 
devote the entire chapter to just getting video on screen.

 You can see what this stage of the project looks like in figure 6.2.

We’ll begin simply enough, with the control panel that sits at the foot of the video 
player. It includes two examples of custom UI classes. The first is an image button, 
demonstrated to the left in figure 6.2; the second is a layout node, positioning the slid-
ers and text to the right in figure 6.2.

 We’ll tackle the button first.

6.1.1 The Util class: creating image nodes

As before, the code is broken up into several classes and source files. But before we 
look at the button class itself, we’ll take a short detour to consider a utility class. Quite 
often when we build software, the same jobs seem to keep coming up time and again, 
and sometimes it’s useful to write small utility functions that can be called on by other 
parts of the code.

 In our case the button we’re writing needs to load images from a directory associ-
ated with the program—these are not images the user would choose but icons that 
come bundled with our player application. The code is shown in listing 6.1.

package jfxia.chapter6;

import javafx.scene.image.Image;

import java.io.File;
import java.net.URL;

package function appImage(f:String) : Image {
    Image {
        url: (new URL("{__DIR__}../../images/{f}")).toString();
    };
}

The script-level (static) function appImage() is used to load an application image from 
the project’s images directory, such as icons, backgrounds, and other paraphernalia that 

Listing 6.1 Util.fx

Figure 6.2  
The interface for version 1 
of our application
    

  

http://blogs.sun.com/rakeshmenonp/entry/javafx_custom_fonts
http://blogs.sun.com/rakeshmenonp/entry/javafx_custom_fonts


135Taking control: Video Player, version 1
might constitute our UI. It accepts a string—the filename of the image to load—and 
returns a JavaFX Image class representing that image. The JavaFX Image class uses a URL
as its source parameter, explaining the presence of the Java URL class. Have you noticed 
that strange symbol in the middle of the code: __DIR__? What does it do?

 It’s an example of a predefined variable for passing environment information into 
our running program.

■ __DIR__ returns the location of the current class file as a URL. It may point to a 
directory if the class is a .class bytecode file on the computer’s hard disk, or it 
may point to a JAR file if the class has been packaged inside a Java archive.

■ __FILE__ returns the full filename and path of the current class file as a URL.
■ __PROFILE__ returns either browser, desktop, or mobile, depending on the 

environment the JavaFX application is running in.

Note how both __FILE__ and __DIR__ are URLs instead of files. If the executing class 
lives on a local drive, the URL will use the file: protocol. If the class was loaded from 
across the internet, it may take the form of an http:-based address.

 Most of you should have realized the appImage() function isn’t the most robust 
piece of code in the world. It relies on the fact that our classes live in a package called 
jfxia.chapter6, which resolves to two directories deep from the application’s root 
directory. It backs out of those directories and looks for an images directory living 
directly off the application root. If we were to package the whole application into a 
JAR, this brittle assumption would break. But for now it’s enough to get us going.

6.1.2 The Button class: scene graph images and user input

The Button class creates a simple push button of the type we saw in our Swing example 
in chapter 4. However, this one is built entirely using the scene graph and has a bit of 
animation magic when it’s pressed. The Button is a very simple component, which offers 
an ideal introduction to creating sophisticated, interactive, custom nodes. 

 The button is constructed from two bitmap graphics: a background frame and a 
foreground icon. When the mouse moves over the button its color changes, and when 
clicked it changes again, requiring three versions of the background image: the idle
mode image, the hover image, and the pressed (clicked) 
image. See figure 6.3.

 When the button is pressed, the copy of the icon 
expands and fades, creating a pleasing ghosted zoom 
animation. Figure 6.3 demonstrates the effect: the 
arrow icon animates over the blue circle background. 
We’ll be constructing the button from scratch, using a 
CustomNode, and implementing its animation as well as 
providing our own event handlers (because a button 
that stays mute when pressed is about as much use as 
the proverbial chocolate teapot).

 Enough theory. Let’s look at the code in listing 6.2. 

Figure 6.3 The button is 
constructed from two bitmap 
images: a background (blue 
circle) and icon (arrow). When 
the button is pressed, a ghost 
of its icon expands and fades.
    

  



136 CHAPTER 6 Moving pictures
Because the button we’re developing is a little more involved than the 
code we’ve seen thus far, I’ve broken its listing into two chunks, with 
accompanying text.

package jfxia.chapter6;

import javafx.animation.Interpolator;
import javafx.animation.KeyFrame;
import javafx.animation.Timeline;
import javafx.lang.Duration;
import javafx.scene.CustomNode;
import javafx.scene.Group;
import javafx.scene.Node;
import javafx.scene.input.MouseEvent;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.shape.Rectangle;
import javafx.util.Math;

def backIdleIm:Image = Util.appImage("button_idle.png");  
def backHoverIm:Image = Util.appImage("button_high.png");
def backPressIm:Image = Util.appImage("button_down.png");

package class Button extends CustomNode {
    public-init var iconFilename:String;                   
    public-init var clickAnimationScale:Number = 2.5;
    public-init var clickAnimationDuration:Duration = 0.25s;
    public-init var action:function(ev:MouseEvent);

    def foreImage:Image = Util.appImage(iconFilename);      
    var backImage:Image = backIdleIm; 
    def maxWidth:Number = Math.max (          
        foreImage.width*clickAnimationScale ,   
        backImage.width                       
    );                                        
    def maxHeight:Number = Math.max (         
        foreImage.height*clickAnimationScale ,
        backImage.height                      
    );                                        

    var animButtonClick:Timeline;     
    var animScale:Number = 1.0;
    var animAlpha:Number = 0.0;
    var iconVisible:Boolean = false;

    // ** Part 2 is listing 6.3

Listing 6.2 covers the first part of our custom button, including the variable defini-
tions. The first thing we see are script variables to use as the button background 
images. Because these are common to all instances of our Button class, we save a few 
bytes by loading them just once.

 Our Button class extends javafx.scene.CustomNode, which is the recognized way 
to create new scene graph nodes from scratch. Inside the class itself we find several 
external interface variables, used to configure its behavior:

Listing 6.2 Button.fx (part 1)

BROKEN 
LISTINGS

Button frame 
images

External 
interface 
variables

Private 
variables

Which is the 
bigger image?

Animation 
variables
    

  



137Taking control: Video Player, version 1
■ The iconFilename variable holds the filename of the icon image.
■ The clickAnimationScale and clickAnimationDuration variables control the 

size and timing of the fade/zoom effect.
■ The action function type is for a button press event handler.

There are also internal implementation variables:

■ The foreImage and backImage are the button’s current background and fore-
ground images.

■ Variables maxWidth and maxHeight figure out how big the button should be, 
based on whichever is larger, the foreground or the background image.

■ The variables animButtonClick, animScale, animAlpha, and iconVisible all 
form part of the fade/zoom animation.

For CustomNode classes the create() function is called before the init block is run. 
This means we need to initialize the foreImage, backImage, maxWidth, and maxHeight
variables as part of their definition, so they’re ready to use when create() is called.

Listing 6.3, the second half of the code, is where we create our button’s scene graph.

    // ** Part 1 in listing 6.2
    override function create() : Node {
        def n = Group {
            layoutX: maxWidth/2;
            layoutY: maxHeight/2;
            content: [
                Rectangle {           
                    x: 0-(maxWidth/2);
                    y: 0-(maxHeight/2);
                    width: maxWidth;
                    height: maxHeight;
                    opacity: 0;
                } ,
                ImageView {               
                    image: bind backImage;
                    x: 0-(backImage.width/2);
                    y: 0-(backImage.height/2);

Listing 6.3 Button.fx (part 2)

Custom node initialization
It’s worth repeating: starting with JavaFX 1.2, create() is called before init and 
postinit; don’t get caught! Give all key variables default values as part of their def-
inition. Do not initialize them in the init block.

A quick tip: remember that object variables are initialized in the order in which they 
are specified in the source file, so if you ever need to preload private variables, make 
sure any public variables they depend on are initialized first.

Force 
dimensions

Background 
image
    

  



138 CHAPTER 6 Moving pictures
                    onMouseEntered: function(ev:MouseEvent) {
                        backImage = backHoverIm;               
                    }                                        
                    onMouseExited: function(ev:MouseEvent) {
                        backImage = backIdleIm;               
                    }                                       
                    onMousePressed: function(ev:MouseEvent) {
                        backImage = backPressIm;               
                        animButtonClick.playFromStart();     
                        if(action!=null)  action(ev);        
                    }                                        
                    onMouseReleased: function(ev:MouseEvent) {
                        backImage = backHoverIm;                
                    }                                         
                } ,
                ImageView {                        
                    image: foreImage;
                    x: bind (0-foreImage.width)/2;
                    y: bind (0-foreImage.height)/2;
                    opacity: bind 1-animAlpha;
                } ,
                ImageView {                        
                    image: foreImage;
                    x: bind 0-(foreImage.width/2);
                    y: bind 0-(foreImage.height/2);
                    visible: bind iconVisible;
                    scaleX: bind animScale;
                    scaleY: bind animScale;
                    opacity: bind animAlpha;
                } 
            ]
        };

        animButtonClick = Timeline {  
            keyFrames: [
                KeyFrame {
                    time: 0s;
                    values: [
                        animScale => 1.0  ,
                        animAlpha => 1.0 ,
                        iconVisible => true
                    ]
                } ,
                KeyFrame {
                    time: clickAnimationDuration;
                    values: [
                        animScale => clickAnimationScale 
                            tween Interpolator.EASEOUT ,
                        animAlpha => 0.0 
                            tween Interpolator.LINEAR ,
                        iconVisible => false
                    ]
                }                
            ];
        };            

Mouse enters 
node

Mouse leaves 
node

Mouse 
button down

Mouse 
button up

Icon 
image

Animation 
image

Animation 
timeline
    

  



139Taking control: Video Player, version 1
        return n;
    }
}

At the top of listing 6.3 is the create() function, where the scene graph for this node 
is constructed. This is a function inherited from CustomNode, which is why override is 
present, and it’s the recognized place to build our graph.

 As we’ve come to expect, the various 
elements are held in place with a Group
node. Moving the button’s x and y coor-
dinate space (layoutX and layoutY) 
into the center makes it easier to align 
the elements of the button. The Group
is constructed from one Rectangle and 
three ImageView objects (figure 6.4). 
The Rectangle is invisible and merely 
forces the dimensions of the button to 
the maximum required size to prevent 
resizing (and jiggling neighboring 
nodes around) during animations.

 In front of the rectangle there are three ImageView objects. What’s an ImageView? 
It’s yet another type of scene graph node. This one displays Image objects; the clue is 
in the class name. Our button requires three images (figure 6.4): 

■ The button background image, which changes when the mouse hovers over or 
clicks the button.

■ The icon image, which displays the actual button symbol.
■ The animation image, which is used in the fade/zoom effect when the button is 

pressed. This is a copy of the icon image, hidden when the animation isn’t 
playing.

Look at the code for the first ImageView declaration. Like other Node subclasses, the 
ImageView can receive events and has a full complement of event-handling function 
types into which we can plug our own code. In the case of the background 
ImageView, we’ve wired up handlers to change its image when the mouse rolls into or 
out of the node and when the mouse button is pressed and released. The button 
press is by far the most interesting handler, as it not only changes the image but 
launches the fade/zoom animation and calls any action handler that might be 
linked to our Button class.

 The second ImageView in the sequence displays the regular icon—the only clever-
ness is that it will fade into view as the animating fade/zoom icon fades out. Subtract-
ing the current animation opacity from 1 means this image always has the opposite 
opacity to the animation icon image, so as the zooming icon fades out of view, the reg-
ular icon reappears, creating a pleasing full-circle effect.

Background

Icon
Animation

idle

hover

press

Figure 6.4 Ignoring the invisible Rectangle 
(used for sizing), there are three layers in our button.
    

  



140 CHAPTER 6 Moving pictures
 The third ImageView in the sequence is the animation icon. It performs the fabled 
fade/zoom, and as you’d expect it’s heavily bound to the object variables, which are 
manipulated by the animation’s timeline.

 And speaking of timelines, the create() function is rounded off by a classic start/
finish key frame example, not unlike the examples we saw in chapter 5. The anima-
tion icon’s size (scale) and opacity (alpha) are transitioned, while the animation 
ImageView is switched on at the start of the animation and off at the end. Simple stuff! 

 And so that, ladies and gentlemen, boys and girls, is our Button class. It’s not per-
fect (indeed it has one minor limitation we’ll consider later, when plugging it into our 
application), but it shows what can be achieved with only a modest amount of effort. 

6.1.3 The GridBox class: lay out your nodes

Our button class is ready to use. Now it’s 
time to turn our attention to the other 
piece of custom UI code in this stage of the 
application: the layout node. Figure 6.5 
shows the effect we’re after: the text and 
slider nodes in that screen shot are held in 
a loose grid, with variable-size columns 
and rows that adapt to the width or height 
of their contents. 

 This is not an effect we can easily construct with the standard layout classes in 
javafx.scene.layout. If you check the API documentation, you’ll see there’s a really 
handy Tile class that lays out its contents in a grid. But Tile likes to have uniform col-
umn and row sizes, and we want our columns and rows to size themselves individually 
around their largest element. So we have no option but to create our own layout 
node, and that’s just what listing 6.4 does.

package jfxia.chapter6;

import javafx.geometry.HPos;
import javafx.geometry.VPos;
import javafx.scene.Node;
import javafx.scene.layout.Container;

package class GridBox extends Container {
    public-init var columns:Integer = 5;   
    public-init var nodeHPos:HPos = HPos.LEFT;
    public-init var nodeVPos:VPos = VPos.TOP;   
    public-init var horizontalGap:Number = 0.0;
    public-init var verticalGap:Number = 0.0;    

    override function doLayout() : Void {
        def nodes = getManaged(content);  

        def sz:Integer = sizeof nodes;            
        var rows:Integer = (sz/columns);            
        rows += if((sz mod columns) > 0) 1 else 0;

Listing 6.4 GridBox.fx

Width in 
columns

Alignment

Gap between 
nodes

Content to lay out

How many 
rows?

Figure 6.5 The GridBox node positions its 
children into a grid, with flexible column and  
row sizes.
    

  



141Taking control: Video Player, version 1
        var colSz:Number[] = for(i in [0..<columns]) 0.0;
        var rowSz:Number[] = for(i in [0..<rows]) 0.0;
        for(n in nodes) {                            
            def i:Integer = indexof n;                 
            def c:Integer = (i mod columns);         
            def r:Integer = (i / columns).intValue();
            def w:Number = getNodePrefWidth(n);      
            def h:Number = getNodePrefHeight(n);     
            if(w > colSz[c])  colSz[c]=w;            
            if(h > rowSz[r])  rowSz[r]=h;            
        }                                            

        var x:Number = 0;
        var y:Number = 0;
        for(n in nodes) {
            def i:Integer = indexof n;
            def c:Integer = (i mod columns);
            def r:Integer = (i / columns).intValue();

            layoutNode(n , x,y,colSz[c],rowSz[r] ,
                nodeHPos,nodeVPos);                 

            if(c < (columns-1)) {                 
                x+=(colSz[c] + horizontalGap);      
            }                                     
            else {                                
                x=0;  y+=(rowSz[r] + verticalGap);
            }                                     
        }
    }
}

There are two ways to create custom layouts in JavaFX: one produces layout nodes that 
can be used time and time again, and the other is useful for case-specific one-shot lay-
outs. In listing 6.4 we see the former (reusable) approach.

 To create a layout node we subclass Container, a type of Group that understands 
layout. As well as proving a framework to manage node layout, Container has several 
useful utility functions we can use when writing node-positioning code.

 Our Container subclass is called GridBox, and has these public variables:

■ columns determines how many columns the grid should have. The number of 
rows is calculated based on this value and the number of managed (laid-out) 
nodes in the content sequence.

■ nodeHPos and nodeVPos determine how nodes should be aligned within the 
space available to them when being laid out.

■ horizontalGap and verticalGap control the pixel gap between rows and 
columns.

To make the code simpler, all the configuration variables are public-init so they 
cannot be modified externally once the object is created. The doLayout() function is 
overridden to provide the actual layout code. Code inherited from the Container
class will call doLayout() whenever JavaFX thinks a layout refresh is necessary.

Find maximum 
col/row size

Position 
node

Next 
position
    

  



142 CHAPTER 6 Moving pictures
 To perform the actual layout, first we scan our child nodes to work out the width of 
each column and the height of each row. Rather than read the content sequence 
directly, we use a handy function inherited from Container, getManaged(), to process 
only those nodes that require layout. Two more inherited functions, getNodePref-
Width() and getNodePrefHeight(), extract the preferred size from each node. Hav-
ing worked out the necessary column/row sizes, we do a second pass to position each 
node. Yet another inherited function, layoutNode(), positions the node within a 
given area (x, y, width and height) using the node’s own layout preferences (if speci-
fied) or nodeHPos and nodeVPos. The result is the flexible grid we want, with each 
node appropriately aligned within its cell.

Now we have a functioning grid layout node class; all we need are nodes to use it with, 
a problem we’ll remedy next.

6.1.4 The Player class, version 1

We have our two custom classes, one a control node, the other a layout node. Before 
going any further we should give them a trial run in a prototype version of our video 
player. Listing 6.5 will do this for us.

package jfxia.chapter6;

import javafx.geometry.VPos;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Slider;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.LayoutInfo;
import javafx.scene.paint.Color; 
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javafx.scene.text.TextOrigin;
import javafx.stage.Stage;

def font = Font { name: "Helvetica";  size: 16; };  

Stage {

Listing 6.5 Player.fx (version 1)

Layout using the object literal syntax
The GridBox class is an example of a layout node: a fully fledged subclass of Con-
tainer that can be used over and over. But what if we want a specific, one-time-only 
layout; do we need to create a subclass every time?

The Container class has a sibling called Panel. It does the same job as Container, 
except its code can be plugged in via function types. We can drop a Panel into our 
scene graph with an anonymous function to provide the layout code, allowing us to 
create one-shot custom layouts without the use of a subclass. A full example of Panel
in action will be presented in the next chapter.

Handy font 
declaration
    

  



143Taking control: Video Player, version 1
    scene: Scene {
        content: [
            Button {                         
                iconFilename: "arrow_l.png";
                action: function(ev:MouseEvent) {
                    println("Back");
                };
            } ,
            Button {                         
                layoutX: 80;
                iconFilename: "arrow_r.png";
                action: function(ev:MouseEvent) {
                    println("Fore");
                };
            } ,

            GridBox {                      
                layoutX: 185;  layoutY: 20;
                columns: 3;
                nodeVPos: VPos.CENTER;
                horizontalGap: 10;  verticalGap: 5;

                var max:Integer=100;
                content: for(l in ["High","Medium","Low"]) {
                    var sl:Slider;
                    var contentArr = [
                        Text {                         
                            content: l;                  
                            font: font;                
                            fill: Color.WHITE;         
                            textOrigin: TextOrigin.TOP;
                        } ,                            
                        sl = Slider {                     
                            layoutInfo:                     
                                LayoutInfo { width: 200; }
                            max: max;                     
                            value: max/2;                 
                        } ,                               
                        Text {                         
                            content: bind sl.value       
                                .intValue().toString();
                            font: font;                
                            fill: Color.WHITE;         
                            textOrigin: TextOrigin.TOP;
                        }                              
                    ];
                    max+=100;
                    contentArr;  
                }
            }
        ];
        fill: Color.BLACK;
    };
    width: 550;  height: 140;
    title: "Player v1";
    resizable: false;
}

Left 
button

Right button 
(note the layoutX)

Our GridBox 
in action

Loop to 
add rows

Left-hand 
label

The slider 
itself

Bound 
display value

Add row to 
GridBox
    

  



144 CHAPTER 6 Moving pictures
The code displays the two classes we developed: two image buttons are combined with 
JavaFX slider controls, using our grid layout.

 I mentioned very briefly at the end of the section dealing with the Button class that 
our button code has a slight limitation, which we’d discuss later. Now is the time to 
reveal all. The click animation used in our Button class introduces a slight headache: 
the animation effect expands beyond the size of the button itself. Although it creates a 
cool zoom visual, it means padding is required around the perimeter, accommodating 
the effect when it occurs. This is the purpose of the transparent Rectangle that sits 
behind the other nodes in the Button’s internal scene graph. Without this padding 
the button would grow in size as the animation plays, which might cause its parent lay-
out node to continually reevaluate its children, resulting in a jostling effect on screen 
as other nodes move to accommodate the button.

 To solve this problem we need to absolutely position our buttons, overlapping 
them so they mask their oversized padding. And this is what listing 6.5 does, by using 
the layoutX variable.

 Following the two buttons in the listing we find an example of our GridBox in use. 
Its content is formed using a for loop, adding three nodes (one whole row) with each 
pass. The first and last are Text nodes, while the middle is a Slider node. The 
javafx.scene.text.Text nodes simply display a string using a font, not unlike the 
SwingLabel class. However, because this is a scene graph node, it has a fill (body 
color) and a stroke (perimeter color), as well as other shape-like capabilities. By 
default a Text node’s coordinate origin is measured from the font’s baseline (the 
imaginary line on which the text rests, like the ruled lines on writing paper), but in 
our listing we relocate the origin to the more convenient top-left corner of the node.

 The Slider, as its name suggests, allows the user to pick a value between a given 
minimum and a maximum by dragging a thumb along a track. We explicitly set the 
layout width of the control by assigning a LayoutInfo object. When our GridBox class 
uses getNodePrefWidth() and getNodePrefHeight() to query each node’s size, this 
layout data is what’s being consulted (if the LayoutInfo isn’t set, the node’s getPref-
Width() and getPrefHeight() functions are consulted.) The final Text node on each 
row is bound to the current value of this slider, and its text content will change when 
the associated slider is adjusted.

 Version 1 of our application is complete!

6.1.5 Running version 1

Running version 1 gives us a basic control panel, as revealed by figure 6.6. Although 
the code is compact, the results are hardly crude. The buttons are fully functional, 

Figure 6.6 Our custom 
button and layout nodes 
on display
    

  



145Making the list: Video Player, version 2
have their own event handler into which code can be plugged, and sport a really cool 
animation effect when pressed. The layout node makes building the slider UI much 
easier, yet it’s still appropriately configurable.

 I’ll leave it up to you, the reader, to polish off our custom classes with your own 
bells and whistles. The GridBox in particular could become a really powerful layout 
class with not a great deal of extra work. The additional code wouldn’t be of value 
from a demonstration viewpoint (that’s why I didn’t add it myself), but I encourage 
you to use version 1 as a test bed to try out your own enhancements.

 So much for custom buttons. Did I hear someone ask when we will start playing 
with video? Good question. In the second, and final, part of this project we develop 
our most ambitious custom node yet—and, yes, finally we get to play with some video. 

6.2 Making the list: Video Player, version 2
In this part of the chapter we have two objectives. The first is to incorporate a video 
playback node into our scene graph; the second is to develop a custom node for list-
ing and choosing videos. Figure 6.7 shows what we’re after.

 Figure 6.7 shows the two new elements in action. The list allows the user to pick a 
video, and the video playback node will show it. Our control panel will interact with 
the video as it plays, pausing or restarting the action and adjusting the sound. The list 
display down the side will use tween-based animations, to control not only rollover 
effects but also its scrolling.

Figure 6.7 Lift off! Our control panel (bottom) is combined with a new list (left-hand side) 
and video node (center) to create the final player.
    

  



146 CHAPTER 6 Moving pictures
 We need to develop this list node first, so that’s where we’ll head next.

6.2.1 The List class: a complex multipart custom node

The List/ListPane code is quite com-
plex, indeed so complex that it’s been bro-
ken into two classes. List is an interior 
node for displaying a list of strings and fir-
ing action events when they are clicked. 
ListPane is an outer container node that 
allows the List to be scrolled. In figure 6.8 
you can see how the list parts fit together.

 Rather than using a scrollbar, I thought 
we might attempt something a little differ-
ent; the list will work in a vaguely iPhone-
like fashion. A press and drag will scroll 
the list, with inertia when we let go, while a 
quick press and release will be treated as a 
click on a list item. We start with just the 
inner List node, which I’ve broken into 
two parts to avoid page flipping. The first 
part is listing 6.6.

package jfxia.chapter6;

import javafx.animation.Interpolator;
import javafx.animation.KeyFrame;
import javafx.animation.Timeline;
import javafx.scene.CustomNode;
import javafx.scene.Group;
import javafx.scene.Node;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javafx.scene.text.TextOrigin;

package class List extends CustomNode {
    package var cellWidth:Number = 150;
    package var cellHeight:Number = 35;  

    public-init var content:String[];    
    public-init var font:Font = Font {};
    public-init var foreground:Color = Color.LIGHTBLUE;
    public-init var background:Color = Color.web("#557799");
    public-init var backgroundHover:Color = Color.web("#0044AA");
    public-init var backgroundPressed:Color = Color.web("#003377");

Listing 6.6 List.fx (part 1)

List item 
dimensions

List ListPane

Sc
ro

lli
ng

Figure 6.8 The List and ListPane classes 
will allow us to present a selection of movie 
files for the user to pick from.
    

  



147Making the list: Video Player, version 2
    public-init var action:function(n:Integer);

    def border:Number = 1.0;
    var totalHeight:Number;

    override function create() : Node {  
        VBox { content: build(); }
    }
    // ** Part 2 is listing 6.7  

At the head of the code is our usual collection of variables for controlling the class:

■ cellWidth and cellHeight are the dimensions of the items on screen. They 
need to be manipulated by the ListPane class, so we’ve given them package 
visibility.

■ content holds the strings that define the list labels.
■ font, foreground, background, backgroundHover, and backgroundPressed

control the font and colors of the list.
■ The function type action is our callback function.
■ border holds the gap around items in the list, and totalHeight stores the pixel 

height of the list. Both are private variables.

Looking at the create() code, we see a VBox being fed content by a function called 
build(). VBox is a layout node that stacks its contents one underneath the other—pre-
cisely the functionality we need. But what about the build() function, which creates 
its contents? Look at the next part of the code, in listing 6.7.

    // ** Part 1 is in listing 6.6
    function build() : Node[] {
        for(i in [0..<sizeof content]) {  
            var t:Text;
            var r:Rectangle;
            def g = Group {
                content: [
                    Rectangle {             
                        width: bind cellWidth;
                        height: bind cellHeight;
                        opacity: 0.0;
                    }, 
                    r = Rectangle {             
                        x:border;  y:border;
                        width: bind cellWidth-border*2;
                        height: bind cellHeight-border*2;
                        arcWidth:20;  arcHeight:20;
                        fill: background;
                        onMouseExited: function(ev:MouseEvent) {
                            anim(r,background);
                        };
                        onMouseEntered: function(ev:MouseEvent) {
                            r.fill = backgroundHover;
                        }

Listing 6.7 List.fx (part 2)

Create scene 
graph

For each 
list item

Hidden sizing 
rectangle

List 
rectangle
    

  



148 CHAPTER 6 Moving pictures
                        onMousePressed: function(ev:MouseEvent) {
                            r.fill = backgroundPressed;
                        }
                        onMouseClicked: function(ev:MouseEvent) {
                            r.fill = backgroundHover;
                            if(action!=null) { action(i); }
                        }
                    } ,
                    t = Text {                    
                        x: 10;  y: border;
                        content: bind content[i];
                        font: bind font;
                        fill: bind foreground;
                        textOrigin: TextOrigin.TOP;
                    }
                ];
            };
            t.y += (r.layoutBounds.height-      
                t.layoutBounds.height)/2;         
            totalHeight += g.layoutBounds.height;
            g;
        }
    }

    function anim(r:Rectangle,c:Color) : Void {  
        Timeline {
            keyFrames: [
                KeyFrame {
                    time: 0.5s;
                    values: [
                        r.fill => c
                            tween Interpolator.LINEAR
                    ];
                }
            ]
        }.playFromStart();
    }
}

The build() function returns a sequence of nodes, each a Group consisting of 
two Rectangle nodes and a Text node. The first node enforces an empty border on 
all four sides of each item. The second Rectangle is the visible box for our item; 
it also houses all the mouse event logic. Finally, we have the label itself, as a Text
node. For easy handling we use the top of the text as its coordinate origin, rather 
than its baseline.

 Both the background Rectangle and Text are assigned to variables (since JavaFX
Script is an expression language, this won’t prevent them from being added to the 
Group). But why? Take a look at the code immediately after the Group declaration; 
using those variables we vertically center the Text within the Rectangle, and that’s 
why we needed references to them.

 Now let’s consider the mouse handlers. Entering the item sets the background 
rectangle fill color to backgroundHover, while exiting the item kicks off a Timeline

Label 
text

Center text 
vertically

Animate 
background
    

  



149Making the list: Video Player, version 2
(via the anim() function) to slowly return it to background. This slow fade creates a 
pleasing trail effect as the mouse moves across the list.

 Pressing the mouse button sets the color to backgroundPressed, but we don’t 
bother with the corresponding button release event; instead, we look for the higher-
level clicked event, created when the user taps the button as opposed to a press and 
hold. The click event fires off our own action function, which can be assigned by out-
side code to respond to list selections.

 The List class is only half of the list display; it’s almost useless without its sibling, 
the ListPane class. That’s where we’re headed next.

6.2.2 The ListPane class: scrolling and clipping a scene graph

Now that we’ve seen the List node, let’s consider the outer container that scrolls it. 
Check out listing 6.8.

package jfxia.chapter6;

import javafx.animation.Interpolator;
import javafx.animation.KeyFrame;
import javafx.animation.Timeline;
import javafx.scene.CustomNode;
import javafx.scene.Group;
import javafx.scene.Node;
import javafx.scene.input.MouseEvent;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;

package class ListPane extends CustomNode {
    public-init var content:List;

    package var width:Number = 150.0       
        on replace oldVal = newVal {         
            if(content!=null)              
                content.cellWidth = newVal;
        };                                 
    package var height:Number = 300.0;    
    package var scrollY:Number = 0.0          
        on replace oldVal = newVal {            
            if(content!=null)                 
                content.translateY = 0-newVal;
        };                                    

    var clickY:Number;             
    var scrollOrigin:Number;         
    var buttonDown:Boolean = false;
    var dragDelta:Number;          
    var dragTimeline:Timeline;     
    var noScroll:Boolean =
        bind content.layoutBounds.height < this.height;
    // ** Part 2 is listing 6.9

Listing 6.8 is the first part of our ListPane class, designed to house the List we cre-
ated earlier. The exposed variables are quite straightforward:

Listing 6.8 ListPane.fx (part 1)

Pass width 
on to List

Position List 
within pane

Drag 
variables

Inertia animation 
variables
    

  



150 CHAPTER 6 Moving pictures
■ content is our List.
■ width and height are the dimensions of the node. width is passed on to the 

List, where it’s used to size the list items.
■ scrollY is the scroll position of the List within our pane. The value is the 

List position relative to the ListPane, which is why it’s negative. To scroll to 
pixel position 40, for example, we position the List at -40 compared to its con-
tainer pane.

The private variables control the drag and the animation effect:

■ To move the List we need to know how far we’ve dragged the mouse during this 
operation and where the List was before we started to drag. The private variable 
clickY records where inside the pane the mouse was when its button was 
pressed, and scrollOrigin records its scroll position at that time. buttonDown is 
a handy flag, recording whether or not we’re in the middle of a drag operation.

■ To create the inertia effect we must know how fast the mouse was traveling 
before its button was released, and dragDelta records that for us. We also need 
a Timeline for the effect, hence dragTimeline.

■ If the List is smaller than the ListPane, we want to disable any scrolling or ani-
mation. The flag noScroll is used for this very purpose.

So much for the class variables. What about the actual scene graph and mouse event 
handlers? For those we need to look at listing 6.9.

    // ** Part 1 in listing 6.8
    override function create() : Node {
        Group {
            content: [
                this.content ,            
                Rectangle {                  
                    width: bind this.width;
                    height: bind this.height;
                    opacity: 0.0;
                    onMousePressed: function(ev:MouseEvent) {
                        animStop();
                        clickY = ev.y;
                        scrollOrigin = scrollY;
                        buttonDown = true;
                    };
                    onMouseDragged: function(ev:MouseEvent) {
                        def prevY = scrollY;
                        updateY(ev.y);
                        dragDelta = scrollY-prevY;
                    };
                    onMouseReleased: function(ev:MouseEvent) {
                        updateY(ev.y);
                        animStart(dragDelta);
                        dragDelta = 0;

Listing 6.9 ListPane.fx (part 2)

List 
node

Background and 
mouse events
    

  



151Making the list: Video Player, version 2
                        buttonDown = false;
                    };
                    onMouseWheelMoved: function(ev:MouseEvent) {
                        if(buttonDown == false) {
                            scrollY = restrainY (
                                scrollY + ev.wheelRotation
                                    * content.cellWidth
                            );
                        }
                    };        
                }
            ];
            clip: Rectangle {            
                x:0;  y:0;                 
                width: bind this.width;  
                height: bind this.height;
            }                            
        }
    }

    function updateY(y:Number) : Void {
        if(noScroll) { return; }
        scrollY = restrainY( scrollOrigin-(y-clickY) );
    }
    function restrainY(y:Number) : Number {           
        def h = content.layoutBounds.height-height;
        return 
            if(y<0)  0 
            else if(y>h)  h 
            else  y;
    }

    function animStart(delta:Number) : Void {
        if(dragDelta>5 and dragDelta<-5) { return; }
        if(noScroll) { return; }

        def endY = restrainY(scrollY+delta*15);
        dragTimeline = Timeline {                     
            keyFrames: [                                
                KeyFrame {                            
                    time: 1s;                         
                    values: [                         
                        scrollY => endY               
                            tween Interpolator.EASEOUT
                    ];                                
                }                                     
            ]                                         
        };                                            
        dragTimeline.playFromStart();
    }
    function animStop() : Void {
        if(dragTimeline!=null) {
             dragTimeline.stop();
        }
    }
}

Constrain 
visible area

Limit scroll 
to list size

Inertia 
time line
    

  



152 CHAPTER 6 Moving pictures
The scene graph for ListPane consists of two nodes: the List itself and a Rectangle
that handles our mouse events.

■ When onMousePressed is triggered, we stop any inertia animation that may be 
running, store the initial mouse y coordinate and the current list scroll posi-
tion, then flag the beginning of a drag operation.

■ When onMouseDragged is called, we update the List scroll position and store 
the number of pixels we moved this update (used to calculate the speed of the 
inertia when we let go). The restrainY() function prevents the List from 
being scrolled off its top or bottom.

■ When the onMouseReleased function is called, it updates the List position, 
kicks off the inertia animation, and resets the dragDelta and buttonDown vari-
ables so they’re ready for next time.

■ There’s also a handler for the mouse scroll wheel, onMouseWheelMoved(), 
which should work only when we’re not in the middle of a drag operation (we 
can drag or wheel, but not both at the same time!)

You’ll note that the Group employs a Rectangle as a clipping area. Clipping areas are 
the way to show only a restricted view of a scene graph. Without this, the List nodes 
would spill outside the boundary of our ListPane. The clipping assignment creates 
the view port behavior our node requires, as demonstrated in figure 6.8.

 Let’s look at the animStart() function, which kicks off the inertia animation. The 
delta parameter is the number of pixels the pointer moved in the mouse-dragged 
event immediately before the button release. We use this to calculate how far the list 
will continue to travel. If the mouse movement was too slow (less than 5 pixels), or the 
List too small to scroll, we exit. Otherwise a Timeline animation is set up and started.

 The list was our most ambitious piece of scene graph 
code yet. The result, complete with hover effect as the 
mouse moves over the list, is shown in figure 6.9. Even 
though it supports a lavish smooth scroll and animated 
reactions to the mouse pointer, it didn’t take much more 
than a couple of hundred lines of code to write. It just 
shows how easy it is to create impressive UI code in JavaFX.

 In the next section we’ll delve into the exciting world 
of multimedia, as we plug our new list into the project 
application and use it to trigger video playback.

6.2.3 Using media in JavaFX

The time has come to learn how JavaFX handles media, 
such as the video files we’ll be playing in our application. 
Before we look at the JavaFX Script code itself, let’s invest 
time in learning about the theory. We’ll start with fig- 
ure 6.10.

Figure 6.9 A closer look at 
our List and ListPane, 
with hover effect visible on 
the background of the list 
items
    

  



153Making the list: Video Player, version 2
To plug a video into the JavaFX scene graph takes three classes, located in the 
javafx.scene.media package. They are demonstrated in figure 6.10; starting from 
the outside, and working in, they are:

■ The MediaView class, which acts as a bridge between the scene graph and any 
visual media that needs to be displayed within it. MediaView isn’t needed to play 
audio-only media, because sound isn’t displayed in the scene graph.

■ The MediaPlayer class, which controls how the media is played; for example, 
stopping, restarting, skipping forward or backward, slowed down or sped up. 
MediaPlayer can be used to control audio or video. Important: MediaPlayer
merely permits programmatic control of media; it provides no actual UI con-
trols (figure 6.10 is symbolic). If you want play/pause/stop buttons, you must 
provide them yourself (and have them manipulate the MediaPlayer object).

■ The Media class, which encapsulates the actual video and/or audio data to be 
played by the MediaPlayer.

As with images, JavaFX prefers to work with URLs rather than directly with local direc-
tory paths and filenames. If you read the API documentation, you’ll see that the classes 
are designed to work with different types of media and to make allowances for data 
being streamed across a network.

 The data formats supported fall into two categories. First, JavaFX will make use of the 
runtime operating system’s media support, allowing it to play formats supported on the 
current platform. Second, for cross-platform applications JavaFX includes its own 
codec, available no matter what the capabilities of the underlying operating system.

 Table 6.1 shows the support on different platforms. At the time this book was writ-
ten, the details for Linux media support were not available, although the same mix of 
native and cross-platform codecs is expected.

 The cross-platform video comes from a partnership deal Sun made with On2 for 
its Video VP6 decoder. On2 is best known for providing the software supporting 
Flash’s own video decoder. The VP6 decoder plays FXM media on all JavaFX plat-
forms, including mobile (and presumably TV too, when it arrives) without any extra 

Media
MediaPlayer

MediaView Scene graph

Figure 6.10 Like other JavaFX 
user interface elements, video  
is played via a dedicated 
MediaView scene graph node. 
(Note: MediaPlayer is not a 
visual element; the control icons 
are symbolic.)
    

  



154 CHAPTER 6 Moving pictures
software installation. Regrettably, the only encoder for the On2 format at the time of 
writing seems to be On2 Flix, a proprietary commercial product.

 Now that you understand the theory, let’s push on to the final part of the project, 
where we build a working video player.

6.2.4 The Player class, version 2: video and linear gradients

We now have all the pieces; all that remains is to pull them together. The listing that 
follows is our largest single source file yet, almost 200 lines (be thankful this isn’t 
a Java book, or it could have been 10 times that). I’ve broken it up into three 
parts, each dealing with different stages of the application. The opening part is list-
ing 6.10.

package jfxia.chapter6;

import javafx.geometry.HPos;
import javafx.geometry.VPos;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Slider;
import javafx.scene.effect.Reflection;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.LayoutInfo;
import javafx.scene.layout.Stack;
import javafx.scene.media.Media;
import javafx.scene.media.MediaPlayer;
import javafx.scene.media.MediaView;
import javafx.scene.paint.Color; 
import javafx.scene.paint.LinearGradient; 
import javafx.scene.paint.Stop; 
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javafx.scene.text.TextOrigin;

Table 6.1 JavaFX media support on various operating systems

Platform Codecs Formats

Mac OS X 10.4 and above 
(Core Video)

Video: H.261, H.263, and H.264 codecs. MPEG-1, 
MPEG-2, and MPEG-4 Video file formats and asso-
ciated codecs (such as AVC). Sorenson Video 2 
and 3 codecs. 
Audio: AIFF, MP3, WAV, MPEG-4 AAC Audio (.m4a, 
.m4b, .m4p), MIDI.

3GPP / 3GPP2, AVI, 
MOV, MP4, MP3

Windows XP/Vista
(DirectShow)

Video: Windows Media Video, H264 (as an update). 
Audio: MPEG-1, MP3, Windows Media Audio, MIDI.

MP3, WAV, WMV, AVI, 
ASF

JavaFX (cross platform) Video: On2 VP6. 
Audio: MP3.

FLV, FXM (Sun defined 
FLV subset), MP3

Listing 6.10 Player.fx (version 2, part 1)
    

  



155Making the list: Video Player, version 2
import javafx.stage.Stage;

import java.io.File;
import javax.swing.JFileChooser;

var sourceDir:File;
var sourceFiles:String[];

def fileDialog = new JFileChooser();      
fileDialog.setFileSelectionMode(            
   JFileChooser.DIRECTORIES_ONLY);        
def ret = fileDialog.showOpenDialog(null);
if(ret == JFileChooser.APPROVE_OPTION) {
    sourceDir = fileDialog.getSelectedFile();     
    if(sourceDir.isDirectory() == false) {          
        println("{sourceDir} is not a directory");
        FX.exit();                                
    }                                             
    def files:File[] = sourceDir.listFiles();               
    for(i in [0 ..< sizeof files]) {                          
        def fn:String = files[i].getName().toLowerCase();   
        if(fn.endsWith(".mpg") or fn.endsWith(".mpeg")      
            or fn.endsWith(".wmv") or fn.endsWith(".flv")) {
            insert files[i].getName() into sourceFiles;     
        }
    }
}
else {
    FX.exit();
}
// ** Part 2 is in listing 6.11; part 3 in listing 6.12

When run, the program asks for a directory containing video files using Swing’s own 
JFileChooser class. This time we’re not using JavaFX wrappers around a Swing com-
ponent; we’re creating and using the raw Java class itself. Having created the chooser, 
we tell it to list only directories, then show it, and wait for it to return. Assuming the user 
selected a directory, we run through all its files, looking for potential videos based on 
their filename extension, populating the sourceFiles sequence when found.

 Assuming we continue running past this piece of code, the next step (listing 6.11) 
is to set up the scene graph for our video player.

// ** Part 1 is in listing 6.10; part 3 in listing 6.12
def margin = 10.0;
def videoWidth = 480.0;                        
def videoHeight = 320.0;                         
def reflectSize = 0.25;
def font = Font { name: "Helvetica";  size: 16; };
def listWidth = 200;
def listHeight = 
    videoHeight*(1.0+reflectSize) +  margin*2;  

var volumeSlider:Slider;                     
var balanceSlider:Slider;                    

Listing 6.11 Player.fx (version 2, part 2)

Select a 
directory

Check valid 
selection

Create video 
file list

Video display 
dimensions

Height matches 
media area

Volume/balance 
sliders
    

  



156 CHAPTER 6 Moving pictures
def list:ListPane = ListPane {  
    content: List {
        content: sourceFiles;
        font: font;
        action: function(i:Integer) {   
            player.media = Media {        
                source: getVideoPath(i);
            }                           
            player.play();              
        };                              
    };
    width: listWidth;
    height: listHeight;
} 

var player:MediaPlayer = MediaPlayer {        
    volume:  bind volumeSlider.value / 100.0;   
    balance: bind balanceSlider.value / 100.0;
    onEndOfMedia: function() {                
        player.currentTime = 0s;              
    }                                         
}                                             
def view:Stack = Stack {
    layoutX: listWidth + margin;
    layoutY: margin;
    nodeHPos: HPos.CENTER;
    nodeVPos: VPos.BASELINE;  
    content: [
        Rectangle {             
            width: videoWidth;    
            height: videoHeight;
            opacity: 0;         
        } ,                     
        MediaView {
            fitWidth: videoWidth;
            fitHeight: videoHeight;
            preserveRatio: true;
            effect: Reflection {      
                fraction: reflectSize;  
                topOpacity: 0.25;     
                bottomOpacity: 0.0;   
            };                        
            mediaPlayer: player;
        }
    ]
}
def vidPos = bind player.currentTime.toSeconds() as Integer;  

def panel:Group = Group {  
    layoutY: listHeight;
    content: [
        Button {                      
            iconFilename: "play.png";
            action: function(ev:MouseEvent) {
                player.play();
            }

List 
display

Action: create 
then play media

Control video 
with player

Always rests on 
area baseline

Spacer 
rectangle

Reflection 
under video

Video 
position/duration (handy)

Control 
panel Play 

button
    

  



157Making the list: Video Player, version 2
        } ,
        Button {                            
            layoutX: 80;
            iconFilename: "pause.png";
            action: function(ev:MouseEvent) {
                player.pause();
            };
        } ,
        GridBox {                     
            layoutX:185;  layoutY:20;
            columns:4;
            nodeVPos: VPos.CENTER;
            horizontalGap:10;  verticalGap:20;
            content: [
                makeLabel("Volume") ,                   
                volumeSlider = Slider {                   
                    layoutInfo: LayoutInfo { width:150 }
                    value: 100;  max: 100;              
                } ,                                     

                makeLabel("Balance") ,                  
                balanceSlider = Slider {                  
                    layoutInfo: LayoutInfo { width:150 }
                    value: 0;  min: -100;  max: 100;    
                } ,                                     

                makeLabel("Playback") ,        
                Text {                           
                    content: bind              
                        if(player.media!=null) 
                            "{vidPos} seconds" 
                        else                   
                            "No video";        
                    font: font;                
                    fill: Color.LIGHTBLUE;     
                    textOrigin: TextOrigin.TOP;
                }                              
            ];
        }
    ];
};
// ** Part 1 is in listing 6.10; part 3 is in listing 6.12 

In listing 6.11 we create the parts of our scene graph, which will be plugged into the 
application’s Stage in part 3 (listing 6.12). There are three main parts: list is the 
scrolling list of videos from which the user can select, view is the video display area 
itself, and panel is the control panel that runs along the bottom of the window. You’ll 
notice that the MediaPlayer is also given its own variable, player. 

 The list is constructed from the two classes, List and ListPane, we developed ear-
lier. Its contents are the filenames from the directory returned by JFileChooser. The 
action event takes the selected list index and turns it into a URL (thanks to the get-
VideoPath() function we’ll see later), creates a new Media object from it, plugs the 
Media object into player, and starts it playing.

Pause 
button

GridBox 
layout

Volume 
slider

Balance 
slider

Position 
display
    

  



158 CHAPTER 6 Moving pictures
 The player node itself is quite simple. Its volume and balance variables are bound 
to sliders in the control panel, and it has an event handler (onEndOfMedia) that 
rewinds the video back to the start once it reaches the end.

 The video area, view, uses another of JavaFX’s standard layout nodes: Stack. 
Stack overlaps its children on top of each other, earlier nodes in the content
sequence appearing below later nodes. Because children may be different sizes, the 
nodeHPos and nodeVPos properties determine how smaller nodes should be aligned. 
In our case we use a transparent spacer Rectangle to enforce the maximum size of 
our video area and then add the MediaView so it always rests against the bottom 
(baseline) of this area.

 Figure 6.11 shows relationship of the key variables.
 The script-level variables videoWidth and videoHeight determine the pixel size of 

the actual video node, reflectSize is the proportion of the node that gets reflected 
below it (see figures 6.1 and 6.7), and margin is the border around the whole area. 
Because the scrolling list extends for the full height of the video area, listHeight is cal-
culated using videoHeight, including its reflectSize, plus the top and bottom margin.

 The fitWidth and fitHeight parameters are set on the MediaView node, causing 
any video to be scaled to the videoWidth/videoHeight area, but preserveRatio is set 
so the video is never stretched out of proportion. Because a given video may be smaller, 
when scaled, than either videoWidth or videoHeight, we use the Stack node’s nodeH-
Pos and nodeVPos variables to fix the video centrally along the baseline of the area.

 The reflection effect may look impressive, but in JavaFX applying any visual effect 
to a section of the scene graph is as easy as assigning the given node’s effect variable. 
If you look in the API documentation for the javafx.scene.effect package, you’ll 
see all manner of different effects you can apply; we’ll be looking at more of them in 
future chapters. The Reflection effect adds a mirror below its node, with a given 
top/bottom opacity.

 Finally, the control panel, aka the panel variable, will be familiar from version 1 of 
the project. The only substantial difference is that now the sliders are plugged into actual 
video player variables. The makeLabel() function is simply a convenience for creating 
label text; it appears in part 3 of the code. And speaking of part 3, here’s listing 6.12.

margin

reflectSize

videoWidth

lis
tH

ei
gh

t

vi
de

oH
ei

gh
t

Rectangle
MediaView

fitWidthfitHeight

fitWidthfitHeight

Figure 6.11 The 
video area layout and 
sizing are controlled by 
variables, some at the 
script level and others 
local to the scene 
graph node itself.
    

  



159Making the list: Video Player, version 2
// ** Part 1 is in listing 6.10; part 2 in listing 6.11
Stage {
    scene: Scene {
        content: [           
            list,view,panel    
        ];                   
        fill: LinearGradient {                       
            endX:0;  endY:1;                           
            proportional: true;                      
            stops: [                                 
                Stop {                               
                    offset:0.55;  color:Color.BLACK; 
                } ,                                  
                Stop {                               
                    offset:1;  color:Color.STEELBLUE;
                }                                    
            ];                                       
        };                                           
    };
    title: "Player v2";
    resizable: false;
}

function makeLabel(str:String) : Text {  
    Text {
        content: str;
        font: font;
        fill: Color.LIGHTBLUE;
        textOrigin: TextOrigin.TOP;
    };
}

function getVideoPath(i:Integer) : String {   
    def f = new File(sourceDir,sourceFiles[i]);
    return f.toURI().toString();
}    

The final part of our application. Whew!
 We see here that the three nodes we created in the second part (list, view, and 

panel) are hooked into our scene. At the bottom of the listing we see the makeLabel()
and getVideoPath() convenience functions we used previously. But what’s that in the 
middle of the listing, plugged into the scene’s fill parameter? That’s a LinearGradi-
ent, and it’s responsible for the graduated fill color that sits behind the whole window’s 
contents. If you think it looks rather odd, don’t worry; I’ve devoted an entire section to 
unlocking its secrets, up next.

6.2.5 Creating varying color fills with LinearGradient

Instead of using a boring flat color for the window background, in listing 6.12 we create 
a LinearGradient and use it as the scene’s fill. We can do this because the Scene class 
accepts a javafx.scene.paint.Paint instance as its background fill. The Paint class is 

Listing 6.12 Player.fx (version 2, part 3)

Scene 
graph bits

Linear gradient 
background

Handy label 
maker function

Convert list 
filename to URL
    

  



160 CHAPTER 6 Moving pictures
a base for any object that can be used to 
determine how the pixels in a shape will 
be drawn; the flat colors we used in pre-
vious examples are also types of Paint, 
albeit not very exciting ones.

 A gradient paint is one that transi-
tions between a set of colors as it draws 
a shape. Good examples of linear gra-
dients might include a color spectrum 
or a chrome metal effect, as shown in 
figure 6.12. 

 Think about how the color gradually changes across the painted area. To define a 
linear gradient we need two things: a line with start and end points (a path to follow) 
and a list of colors on the line plus where they are positioned. For a simple rainbow 
spectrum we might define a horizontal (or vertical) line, with each color stop spaced 
equally along its length.

 The line can function either with proportional sizing or via absolute pixel coordi-
nates. What’s the difference? Take a look at the examples in figure 6.13.

 When proportional is true, the line coordinates (startX, startY, endX, and endY) 
are scaled across a virtual coordinate space from 0 to 1, which is stretched to fit the 
actual painted area whenever the paint is applied. Without proportional set, the line 
start and end coordinates are absolute pixel positions. This means if you define a ver-
tical gradient line of (0,0) to (0,100) but then paint an area of 200 x 200 pixels, the tran-
sition will not cover the entire painted area. By setting a parameter called cycleMethod
we can control how the remainder will paint. The default option extends the color at 
either end of the gradient line. Alternatively we can repeat the gradient or reflect it by 
painting it backwards.

 Incidentally, LinearGradient creates stripes of color along a gradient line, but you 
might also want to check out its cousin, RadialGradient, which paints circular pat-
terns. It can be particularly useful for creating pleasing 3D ball effects.

Figure 6.13 A proportional (P) gradient scaled to full height. Then three nonproportional examples, 
gradient (0,0) to (0,100), painted onto 200 x 200 sized rectangles with various cycle (C) methods.

x=0 y=0
Start

x=100 y=0
End

Stop: 0%
Black

Stop: 50%
White

Stop: 100%
Black

Figure 6.12 A gradient paint is one where the pixel 
tone changes over the course of a given area. Colors 
are set at stops along a line, and the paint 
transitions between them as a shape is drawn.
    

  



161Bonus: taking control of fonts
6.2.6 Running version 2

Running version 2 of the project gives us our video player. Selecting a file from the 
list on the left will play it in the central area, complete with snazzy reflection over 
the shaded floor. Figure 6.14 shows what you should expect when firing up the 
application, selecting a directory, and playing a video (especially if you’re a Mighty 
Reds fan).

Okay, so perhaps it’s not the most functional player in the world, but it’s still very 
impressive when you consider how little work we needed to pull it off. Think how long 
it would have taken to code all the UI and effects using Java or C++. And that’s before 
we even think about getting video playback working.

6.3 Bonus: taking control of fonts
Time for another detour section. This one doesn’t directly relate to the material in 
this chapter, but it’s a very useful UI trick, and this seems an opportune moment to 
mention it.

 Like Java, JavaFX has a small set of standard fonts with dependable names and 
appearances. It can also use fonts available on the local computer, although there’s no 
guarantee which fonts will be installed or precisely what they’ll look like. So, what if we 
need a specific font, not guaranteed to be available on every computer? Fortunately, 

Figure 6.14 You’ll never walk alone: relive favorite moments with your own 
homemade video player (like your soccer team lifting the Champion’s League trophy).
    

  



162 CHAPTER 6 Moving pictures
JavaFX allows us to embed fonts directly 
inside our application, guaranteeing 
availability and appearance. Figure 6.15 
shows an example.

 To embed a typeface we need a font 
file in a format such as TrueType. The 
file is not loaded directly from a URL or 
an input stream but assigned an alias from which it can be referenced like any stan-
dard or operating system font. This is a two-step process:

1 The font file should be placed somewhere under the build directory of your 
project, so it is effectively inside the application (and ultimately inside the appli-
cation’s JAR file, when we package it—see chapter 9).

2 A file named META-INF/fonts.mf should be created/edited. This will provide 
mappings between font names and their associated embedded files. The META-
INF directory should be familiar to you as the place where Java stores metadata 
about resources and JARs. Most JAR files have a META-INF directory, often cre-
ated by the jar utility if not already part of the project.

When a JavaFX application needs to resolve a font name, it first checks the embedded 
fonts for a match; then it checks the standard JavaFX fonts and then the operating sys-
tem’s fonts. If no match can be found, it uses a default fallback font. So, by creating a 
fonts.mf file we can get our own fonts used in preference to other fonts, but what does 
this file look like? Listing 6.13 demonstrates.

Data\ Control = /ttf/data-latin.ttf

This single line creates a mapping between the name Data Control (the backslash 
escapes the space) and a TrueType font file called data-latin.ttf, living in a directory 
called ttf off the build directory. Having created a font mapping, we can reference it 
in our code like any other font, as shown in listing 6.14.

import javafx.scene.Scene;
import javafx.scene.text.*;
import javafx.stage.Stage;

Stage {
    scene: Scene {
        content: Text {
            textOrigin: TextOrigin.TOP;
            font: Font {
                name: "Data Control";
                size: 40;
            }
            content: "Some text using an\nembedded font.";

Listing 6.13 fonts.mf

Listing 6.14 FontTest.fx

Figure 6.15 Text rendered using an embedded 
TrueType font file
    

  



163Summary
        }
    }
}

Listing 6.14 is a simple program consisting of a text node in a window. It looks like fig-
ure 6.15 when run. The Font declaration references Data Control like it was a stan-
dard JavaFX or operating system font, which resolves via the fonts.mf file to our 
embedded font. When compiled, our application’s build directory should feature the 
following files:

■ FontTest.class
■ META-INF/fonts.mf
■ ttf/data-latin.ttf

The FontTest.fx source didn’t specify a package, so its class file will compile into the 
root (I’ve omitted compiler implementation classes for readability). Also off the root 
is the META-INF directory with our font mapping file and the ttf directory where we 
deposited the font data file. Actually, it doesn’t matter where we put the font file, so 
long as it lives under the build directory and the correct location is noted in the map-
ping file.

 With this simple technique we can bundle any unusual fonts we need inside the 
application (and ultimately inside its JAR file), guaranteeing that they are available no 
matter where our code runs. A very useful UI trick indeed!

6.4 Summary
In this chapter we’ve seen in greater depth how to use the standard scene graph nodes 
to build fairly sophisticated pieces of UI, we’ve looked at how to include images and 
video in our JavaFX applications, and we’ve played around with gradient paints. We’ve 
also seen our first example of plugging an effect (reflection) into the scene graph.

 Writing good scene graph code is all about planning. JavaFX gives you some power-
ful raw building blocks; you have to consider the best way to fit them together for the 
effect you’re trying to achieve. Always be aware that a scene graph is a different beast 
than something like Swing or Java 2D. It’s a structured representation of the graphics 
on screen, and as such we need to ensure it includes layout and spacing information, 
because we don’t have direct control of the actual pixel painting as we do in Java 2D. 
Transparent shapes can be used to enforce spacing around parts of our scene graph, 
but they can also be used as a central event target.

Credit where credit’s due
I’m indebted to Rakesh Menon, who was the first (as far as I know) to reveal this meth-
od of embedding fonts into a JavaFX application. His blog post is located here:

http://blogs.sun.com/rakeshmenonp/entry/javafx_custom_fonts
    

  

http://blogs.sun.com/rakeshmenonp/entry/javafx_custom_fonts


164 CHAPTER 6 Moving pictures
 Hopefully the source code in this chapter has given you ideas about how to write 
your own UI nodes. Feel free to experiment with the player, filling in its gaps and add-
ing new features. Or take the custom nodes and develop them further in your own 
applications.

 In the next chapter we’re shifting focus from simple interactive scene graph nodes 
to full blown controls, as we explore JavaFX’s standard user interface APIs. We'll also 
discover another powerful way to customize node layout.

 But for now, enjoy the movie!
 

    

  



Controls, 
charts, and storage
There can’t be many programmers who haven’t heard of the Xerox Alto, if not by 
name then certainly by reputation. The Alto was a pioneering desktop computer 
created in the 1970s at the Xerox’s Palo Alto Research Center (PARC). It boasted 
the first modern-style GUI, but today it’s probably best remembered as the inspira-
tion behind the Apple Macintosh. Although graphics have become more colorful 
since those early monochrome days, fundamentally the GUI has changed very 
little. A time traveler from 1985 (perhaps arriving in a DeLorean sports car?) may 
be impressed by the beauty of modern desktop software but would still recog- 
nize the majority of UI widgets. UI stalwarts like buttons, lists, and check boxes 
still dominate. The World Wide Web popularized the hypertext pane, but that 

This chapter covers
■ Creating forms using standard controls
■ Storing data (even on applets and phones)
■ Playing with 3D charts and graphs
■ Writing our own skinnable control
165

    

  



166 CHAPTER 7 Controls, charts, and storage
aside, very few innovations have really caught on. But then, if something works, why 
fix it?

 But one problem did need fixing. The Xerox PARC GUI worked well for a desktop 
computer like the Alto but was wholly inappropriate for small-screen devices like a cell 
phone. So mobile devices found their own ways of doing things, creating little-brother
equivalents to many standard desktop widgets. But, inevitably, little brothers grow up: 
mobile screens got better, graphics performance increased, and processing power 
seemed to leap with each new product release. Suddenly phones, media players, 
games consoles, and set-top boxes started to sport UIs looking uncannily like their 
desktop siblings, yet independent UI toolkits were still used for each.

 One remit of the JavaFX project was to unite the different UI markets—PCs, Blu-ray 
players, cell phones, and other devices—under one universal toolkit, to create (as Tol-
kien might have put it) one toolkit to rule them all. Java had always had powerful desktop 
UI libraries (Abstract Windows Toolkit [AWT] and Swing), but they were far too com-
plex for smaller devices. Neither used the retained-mode graphics favored by JavaFX’s 
scene graph, and neither was designed to be constructed declaratively, making them 
alien to the way JavaFX would like to work.

 The JavaFX team planned a new library of UI widgets: universal, lightweight, 
modern, and easily restyled. The result of their labor was the controls API intro- 
duced in JavaFX 1.2, designed to complement (and eventually replace) the desktop-
only Swing wrappers in javafx.ext.swing, which had shipped with earlier Java- 
FX versions.

 In this chapter we’re going to learn how to use the new controls API, along with 
other features that debuted in 1.2. So far we’ve had a lot of fun with games, anima-
tions, and media, but JavaFX’s controls permit us to write more serious applications, 
so that’s what we’ll be doing in this chapter’s project. Let’s begin by outlining the 
application we’re building.

7.1 Comments welcome: Feedback, version 1
In this chapter we’ll develop a small feedback form using JavaFX controls. Different con-
trol types will collect the answers to our questions, a persistent storage API will save this 
data, and some chart/graph controls will display the resulting statistics (see figure 7.1). 
Along the way we’ll also expand our knowledge of JavaFX’s container nodes.

 There are just two classes in this project, but they pack quite a punch in terms of 
new material covered. As with previous projects, the code has been broken into ver-
sions. Version 1 will focus on building the input form using the new JavaFX 1.2 con-
trols, and version 2 will save the data and create charts from it.

 Although we’ll be covering only a subset of the controls available under JavaFX 1.2—
buttons, text fields, radio buttons, and sliders—there’s enough variety to give you a taste 
of the controls library as a whole. We begin not with the controls but with a model class 
to bind our UI against.
    

  



167Comments welcome: Feedback, version 1
7.1.1 The Record class: a bound model for our UI

To hold the data we’re collecting for our form we need a class, such as the one in list-
ing 7.1. Variables store the data for each field on the form, and a set of corresponding 
booleans reveals whether each value is valid. From a design point of view, it’s useful to 
keep the logic determining the validity of a given field close to its data storage. In 
ye olde times (when AWT and Swing were all we had) this logic would be scattered across 
several far-flung event handlers, but not with JavaFX Script.

package jfxia.chapter7;

package def REGIONS:String[] = [ "Asia","America","Europe" ];

package class Record {
    package var name:String;
    package var email:String;
    package var region:Integer = -1;
    package var rating:Number = 0;

    package def validName:Boolean = bind (  
        name.length() > 2
    );
    package def validEmail:Boolean = bind (  
        (email.length() > 7) and 
        (email.indexOf("@") > 0)
    );
    package def validRegion:Boolean = bind (  

Listing 7.1 Record.fx (version 1)

Figure 7.1 A bar chart, with 3D effect, showing feedback scores from contributors

Name valid?

Email address valid?

Region set?
    

  



168 CHAPTER 7 Controls, charts, and storage
        region >= 0
    );
    package def validRating:Boolean = bind (  
        rating > 0
    );
    package def valid:Boolean = bind (  
        validName and validEmail and 
        validRegion and validRating
    );
}

This is our initial data class: a model to wire into our UI’s view/controller—recall the 
Model/View/Controller (MVC) paradigm. The class consists of four basic feedback 
items, each with a corresponding Boolean variable bound to its validity, plus a master 
validity boolean:

■ The name variable holds the name of the feedback user, and the validName vari-
able checks to see if its length is over two characters.

■ The email variable holds the email address of the feedback user, and the valid-
Email variable checks to see if it is at least eight characters long and has an @ (at) 
symbol somewhere after the first character.

■ The region variable stores the location of the user. A sequence of valid region 
names, REGIONS, appears at the head of the code, in the script context. The 
validRegion variable checks to see that the default, -1, is not set.

■ The rating variable holds a feedback score, between 1 and 10. The valid-
Rating variable checks to see whether the default, 0, is not set.

An extra variable, valid, is a kind of master boolean, depending on the validity of all the 
other variables. It determines whether the Record as a whole is ready to be saved.

 This four-field data class is what we’ll base our UI on. Sure, we could ask more than 
four questions (in the real world we certainly would), but this wouldn’t really teach us 
anything new. The four we have will be more than enough for this project, but feel 
free to add your own if you want.

 We have a class to store the data; all we need now is a user interface.

7.1.2 The Feedback class: controls and panel containers

Java calls them components; I sometimes call them by the generic term widgets, but the 
new (official) JavaFX name for UI elements is controls, it seems. Controls are buttons,
text fields, sliders, and other functional bits and pieces that enable us to collect input 
from the user and display output in return. In our feedback form we’ll use a text field 
to collect the respondents’ name and email address, we’ll use radio buttons to allow 
them to tell us where they live, and we’ll use a slider to let them provide a score out 
of 10. Figure 7.2 shows what the interface will look like.

 A Next button sits in the corner of the window, allowing the user to move to the 
next page of the application. In the finished project the button will initially submit the 
feedback form (assuming all fields are valid) and then become a toggle, so users can 

Rating set?

All fields valid?
    

  

http://www.w3.org/Style/CSS/


169Comments welcome: Feedback, version 1
jump between a bar chart and a pie chart that summarize the data already collected. 
In version 1, however, the charts aren’t available, so we’ll just use the button to print 
the current data in the model object.

 Because the UI code is quite long, I’ve broken it into four smaller listings (list-
ings 7.2-7.5), each dealing with a different part of the interface. The first part, list-
ing 7.2, begins with a long shopping list of classes (many for control and layout) that 
need to be imported.

package jfxia.chapter7;

import javafx.scene.Group;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.RadioButton;
import javafx.scene.control.Slider;
import javafx.scene.control.TextBox;
import javafx.scene.control.ToggleGroup;
import javafx.scene.layout.Panel;
import javafx.scene.layout.Tile;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;
import javafx.util.Sequences;

def record:Record = Record {};  

def winW:Number = 550;
def winH:Number = 350;
// Part 2 is listing 7.3; part 3, listing 7.4; part 4, listing 7.5

Listing 7.2 Feedback.fx (version 1, part 1)

Figure 7.2 Our 
project’s simple 
feedback form, 
complete with  
text fields, radio 
buttons, and sliders. 
Oh, and a Next button 
in the corner!

Our data model
    

  



170 CHAPTER 7 Controls, charts, and storage
At the start of the code we see a new Record object being declared. Recall that this is 
the model class our UI will plumb itself into. The next two lines define a couple of 
constants that will be used as Scene dimensions in the part 2 of the code. And speak-
ing of part 2, listing 7.3 is next.

// Part 1 is listing 7.2
def nextButton = Button {  
    text: "Next";
    action: function() {
        println("{record.name} {record.email} "
            "{record.region} {record.rating}");  
    }
}

var mainPan:Panel;
Stage {
    scene: Scene {
        content: mainPan = Panel {               
            prefWidth: function(w:Number) { winW };
            prefHeight: function(h:Number) { winH };
            onLayout: function() {                 
                mainPan.resizeContent();
                var c = mainPan.content;
                for(n in mainPan.getManaged(c)) {
                    def node:Node = n as Node;                    
                    var x = winW-node.layoutBounds.width;
                    var y = winH-node.layoutBounds.height;
                    if(not (node instanceof Button)) {    
                        x/=2;  y/=2;                        
                    }                                     
                    mainPan.positionNode(node , x,y);  
                }
            }
            content: [              
                createFeedbackUI() ,  
                nextButton          
            ]                       
        }
        width: winW;  height: winH;
    }
    resizable: false;
}
// Part 3 is listing 7.4; part 4, listing 7.5

The Button class creates a standard button control, like the Swing buttons we saw in 
previous chapters, except entirely scene-graph based and therefore not confined to 
the desktop. Our nextButton object is very simple: text to display and an action func-
tion to run when clicked. In version 2 this button will permit users to move between 
pages of the application, but for version 1 all it does is print the data in our Record.

 The most interesting part of listing 7.3 is the Panel class—clearly it’s some kind of 
scene graph node, but it looks far more complex than the nodes we’ve encountered 

Listing 7.3 Feedback.fx (version 1, part 2)

Button in 
southeast corner

Just print 
record details

Declarative 
custom layout

Called to lay 
out children

Don’t center 
nextButton

Position 
node

Create window’s 
scene graph
    

  



171Comments welcome: Feedback, version 1
so far. You may recall that when we built the video player project, we created our own 
custom layout node by extending javafx.scene.layout.Container. Because we cre-
ated a full container class, we could use it over and over in different places. But what if 
we wanted a one-shot layout? Do we have to go to all the hassle of writing a separate 
class each time?

 No, we don’t. The javafx.scene.layout.Panel class is a lightweight custom lay-
out node. Its mechanics can be plugged in declaratively, making it ideal for creating 
one-shot containers, without the pain of writing a whole new class. The class has sev-
eral variables that can be populated with anonymous functions to report its minimum, 
maximum, and preferred size, plus the all-important onLayout function, for actually 
positioning its children. Let’s refresh our memory of the layout code in listing 7.3.

onLayout: function() {
    mainPan.resizeContent();
    var c = mainPan.content;
    for(n in mainPan.getManaged(c)) {
        def node:Node = n as Node;
        var x = winW-node.layoutBounds.width;
        var y = winH-node.layoutBounds.height;
        if(not (node instanceof Button)) { x/=2;  y/=2; }
        mainPan.positionNode(node , x,y);
    }
}

The mainPan variable is a reference to the Panel object itself, so mainPan.resizeCon-
tent() will resize the Panel’s own children to their preferred dimensions. The code 
then loops over each node requiring layout, centering it within the Scene (or rather, 
the constants used to size our Scene). Note, however, that we do not center any node 
of type Button—this is why the Next button ends up in corner of the window.

 At the end of listing 7.3 you’ll notice that, aside from the nextButton, the contents 
of the panel are populated by a function called createFeedbackUI(). Listing 7.4 
shows us its detail.

// Part 2 is listing 7.3; part 1, listing 7.2
function createFeedbackUI() : Node {         
    def ok:String = "OK";
    def bad:String = "BAD";

    var togGrp = ToggleGroup {};              
    def selected = bind togGrp.selectedButton
        on replace {
            if(togGrp.selectedButton != null) {
                record.region = Sequences.indexOf
                    (togGrp.buttons , togGrp.selectedButton);
            }
        }

    VBox {
        var sl:Slider;

Listing 7.4 Feedback.fx (version 1, part 3)

Function builds 
feedback form

RadioButton 
group
    

  



172 CHAPTER 7 Controls, charts, and storage
        spacing: 4;
        content: [
            createRow(  
                "Name:" ,
                TextBox {
                    columns:30;
                    text: bind record.name with inverse;
                } ,
                Label {
                    text: bind 
                        if(record.validName) ok else bad;
                }
            ) ,
            createRow(   
                "Email:" ,
                TextBox {
                    columns: 30;
                    text: bind record.email with inverse;
                } ,
                Label {
                    text: bind 
                        if(record.validEmail) ok else bad;
                }
            ) ,
            createRow(     
                "Region:" ,
                Tile {
                    columns: 1;
                    content: for(r in Record.REGIONS) {
                        def idx:Integer = (indexof r);
                        RadioButton {
                            text: r; 
                            toggleGroup: togGrp;          
                            selected: (record.region==idx);
                                
                        }
                    }
                } ,
                Label {
                    text: bind 
                        if(record.validRegion) ok else bad;
                }
            ) ,
            createRow(     
                "Rating:" ,
                sl = Slider {
                    max: 10;
                    value: bind record.rating with inverse;
                } ,
                Label {
                    text: text: bind if(record.validRating)
                        "{sl.value as Integer}" else bad;
                }
            )
        ]

Name row

Email row

Region row

Assign to 
ToggleGroup

Rating row
    

  



173Comments welcome: Feedback, version 1
    }
}
// Part 4 in listing 7.5

Each page in the application has its own function to create it. Separating each part of 
the scene graph into functions makes things more manageable. Listing 7.4 shows the 
function that creates the feedback form itself. It adds a row for each input field in the 
form, using a function called createRow() that we’ll look at in the final listing for this 
source file. Each row consists of a string to act as the field’s label, the control being 
used to collect the data, and a Label to display the validity of the current data.

 A set of unfamiliar controls has been introduced in listing 7.4: TextBox provides a 
simple text entry field, Slider permits the user to choose a value within a given range 
(we saw it briefly in the last chapter), and RadioButton allows the user to make a 
choice from a given set of options. (Legend has it radio buttons got their name from 
the old-fashioned car radios, with mechanical push-button tuning.)

 The RadioButton controls are added, via a for loop, to a Tile container, configured 
to position them in a single row. Because the RadioButton controls have to cooperate, 
they refer to a common ToggleGroup object. All 
RadioButton controls added to a given group will 
work together to ensure only one button is ever 
selected at any given time. Each grouping of radio but-
tons in a UI must have its own ToggleGroup object to 
manage it, or the buttons won’t be able to cooperate.

 Figure 7.3 shows the flow of data that connects 
the model to the UI. These connections are made 
through binds. Each control (with the exception of 
the radio buttons) has a bidirectional bind to its 
associated data in the model. If the model changes, 
the control updates; likewise, if the control changes, 
the model updates. The Label at the end of each 
row is also bound to the model; whenever any data 
in the model changes, the associated validity 
boolean updates, and this in turn causes the Label
to update.

 Unfortunately the ToggleGroup that controls our 
radio buttons isn’t so easy to bind against. It has a 
variable to tell us which RadioButton is currently 
selected but not the index of the button—the index 
is what we really need to know. Figure 7.4 shows the 
workaround we employ to convert the RadioButton
into an index. We create a variable (selected) that 
binds against ToggleGroup’s selectedButton field, 
running a trigger each time it changes. The trigger 
translates the selected ToggleButton (a superclass of 

var name:String;

def validName:Boolean;

Record

Name: Simon Morris OK

var region:Integer;

def validRegion:Boolean;

Record

def selected:ToggleButton
  on replace {}

Region: OKAsia
America
Europa

Figure 7.3 The flow of  
updates between the model and 
the UI: the data and text box are 
bidirectionally bound, the validity 
boolean is bound to the data, and 
the validity label is bound to the 
validity boolean.

Figure 7.4 To update the model 
from a ToggleGroup we bind a 
variable against the group’s 
selected button and then use a 
trigger to translate any changes 
into the button’s index value.
    

  



174 CHAPTER 7 Controls, charts, and storage
RadioButton) into an index and pushes the value into the model. This causes the 
familiar validity boolean updates.

 Regrettably, because the relationship between control and model is not bidirec-
tional, a change to the model is not automatically reflected in the UI. (Hopefully 
future enhancements to the ToggleGroup class will make this type of binding easier.)

 The final listing for this source code file is presented in listing 7.5. It shows the 
createRow() function we saw producing each row of the feedback form.

// Part 3 is listing 7.4; part 2, listing 7.3; part 1, listing 7.2
function createRow(lab:String,n:Node,v:Node) : Node {
    def margin:Number = 10;

    n.layoutX = 150;     
    v.layoutX = 420;       

    var grp:Group = Group {                 
        layoutX: margin;                      
        layoutY: margin;                    
        content: [ Label{text:lab} , n , v ]
    }                                       
    Group {
        content: [
            Rectangle {
                fill: null;
                stroke: Color.POWDERBLUE;
                strokeWidth: 2;
                width: 450 + margin*2;
                height: bind
                    grp.layoutBounds.height + margin*2;
                arcWidth: 10;  arcHeight: 10;
            } ,
            grp  
        ]
    }
}

This function is a convenience for positioning each row of the feedback form. It 
accepts a String and two Node objects: the String is turned into a Label, and the two 
nodes are positioned at set points horizontally (so the overall effect is three columns 
running down the form). Absolute positioning of nodes like this is less flexible than 
using a layout container but can be worth-
while if the UI is static and would otherwise 
demand custom layout code. In the sample 
code the rectangles grouping each row rule 
out the use of something like the standard 
Tile container. Figure 7.5 shows the 
relationship between the function parame-
ters and the chunk of scene graph the func- 
tion creates.

Listing 7.5 Feedback.fx (version 1, part 4)

Position control 
and label

Build controls 
group

Use group 
inside border

createRow(lab:String,n:Node,v:Node)

Label
Name: Simon Morris OK

Figure 7.5 The createRow() function is a 
convenience for manufacturing each part of the 
feedback form. Each row consists of three 
parts: a text label and two nodes (controls).
    

  



175Chart topping: Feedback, version 2
 The three nodes are gathered inside a Group and then added to another Group
that provides a pin-line border by way of a Rectangle node.

 The createRow() function draws to a close version 1 of the source code for our 
feedback form. These two simple classes, Record and Feedback, provide the entirety 
of the application. Now it’s time to test the code.

7.1.3 Running version 1

Building and running version 1 of the project results in the window shown in figure 7.6.

We can edit the four data fields of the form, and their corresponding labels will 
change to reflect their content’s validity. Clicking the Next button merely prints the 
details in the model, Record, to the console. Obviously this isn’t particularly useful, 
unless we intend to deliberately ignore our users’ feedback (which, of course, no self-
respecting company would ever do!), so in the next part of this chapter we’ll store the 
data from the form and produce some statistics.

7.2 Chart topping: Feedback, version 2
So we have a simple feedback form; it asks only four questions, but that’s enough to 
derive some statistics from. In order to create those statistics, we need to record the 
details provided by each user. On a desktop application this would be as simple as 
opening a file and writing to it, but JavaFX applications might need to run on cell 
phones or inside a web page, where writing to a disk isn’t usually an option. Fortu-
nately JavaFX 1.2 provides its own persistent storage solution, which we’ll explore in 
the coming section.

 Once the data is stored safely, we need to find something to do with it. And again 
JavaFX provides an answer, in the form of its chart controls. All manner of graphs and 
charts can be created from collections of data and displayed in suitably impressive 

Figure 7.6  
Version 1 of the 
application, running
    

  



176 CHAPTER 7 Controls, charts, and storage
ways. We’ll be using a couple of simple 3D charts to display the region and rating data 
from our form. So that’s the plan; now let’s get started.

7.2.1 Cross-platform persistent storage

Almost every application needs to record data—even games like to save their high-
score tables. In a thin-client environment, working exclusively against data on a net-
work, we have the luxury of not worrying about the storage capabilities of the host 
device, but fatter clients aren’t so lucky. A problem arises about how to persist data 
across all the devices JavaFX supports. On the desktop we can fall back to Java’s I/O
classes to read and write files on the host’s hard disk, but what happens if our code 
finds itself running as an applet, or on a cell phone, or on a Blu-ray player—where can 
it save its data then?

 The javafx.io package provides a clean, cross-platform, persistence mechanism 
for that very purpose. It allows us to read and write files in a managed way across a 
variety of devices. By managed, I mean these files are firmly associated with the running 
application. In effect, they behave like a cross between the files of a regular desktop 
application and the cookies of a web page. Let’s take a look at a demonstration, by way 
of listing 7.6.

package jfxia.chapter7;

import javafx.io.Resource;
import javafx.io.Storage;
import javafx.io.http.URLConverter;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintStream;

package def REGIONS:String[] = [ "Asia","America","Europe" ];

package class Record {
    package var name:String;
    package var email:String;
    package var region:Integer = -1;
    package var rating:Number = 0;

    package def validName:Boolean = bind (
        name.length() > 2
    );
    package def validEmail:Boolean = bind (
        (email.length() > 7) and 
        (email.indexOf("@") > 0)
    );
    package def validRegion:Boolean = bind (
        region >= 0
    );
    package def validRating:Boolean = bind (
        rating > 0
    );

Listing 7.6 Record.fx (version 2)
    

  



177Chart topping: Feedback, version 2
    package def valid:Boolean = bind (
        validName and validEmail and 
        validRegion and validRating
    );
}

package function encode(r:Record) : String {  
    def conv = URLConverter{} 
    "{conv.encodeString(r.name)}&"
        "{conv.encodeString(r.email)}&"
        "{r.region}&"
        "{r.rating as Integer}"
}

package function decode(s:String) : Record {  
    def conv = URLConverter{}
    def arr:String[] = s.split("&");
    if(sizeof arr < 4) {              
        null                            
    }                                 
    else {
        Record {                             
            name: conv.decodeString(arr[0]);   
            email: conv.decodeString(arr[1]);
            region: Integer.parseInt(        
                conv.decodeString(arr[2]));  
            rating: Integer.parseInt(        
                conv.decodeString(arr[3]));  
        }                                    
    }
}

def FILENAME:String = "feedback.txt";  
package function load() : Record[] {               
    var recs:Record[] = [];

    def data:Storage = Storage { source: FILENAME; }
    def resource:Resource = data.resource;

    if(resource.readable) {
        def br:BufferedReader = new BufferedReader(
            new InputStreamReader(                   
                resource.openInputStream()         
            )                                      
        );                                         
        var in:String = br.readLine();
        while(in!=null) {
            insert Record.decode(in) into recs;  
            in = br.readLine();
        }
        br.close();
    }

    recs;    
}
package function save(recs:Record[]) : Void {      
    def data:Storage = Storage { source: FILENAME; }
    def resource:Resource = data.resource;

Encode record 
into string

Decode record 
from string

Error: too 
few fields

Create Record 
object

Filename 
for data

Load all 
records

Use Java’s 
BufferedReader 
class

Call our decode() 
function

Save all 
records
    

  



178 CHAPTER 7 Controls, charts, and storage
    if(resource.writable) {
        def ps:PrintStream =  new PrintStream(
            resource.openOutputStream(true)
        );
        for(r in recs) {
            ps.println(Record.encode(r));  
        }
        ps.close();
    }
}

This listing adds a mass of code to load and save the Record objects our UI populates. 
At the head of the file we see six I/O-related classes being imported. The first three 
are from JavaFX and the final three are from Java. (I’ll explain why we need the Java 
classes later.)

 Below the Record class itself (unchanged from the last version) we find four brand-
new script-level functions. The first two are named encode() and decode(), and they 
translate our data to and from a String, using the javafx.io.http.URLConverter
class. This class provides useful functions for working with web addresses, specifically 
encoding and decoding the parameters on HTTP GET requests (when query data is 
encoded as part of the URL). The encode() function uses URLConverter to turn a 
Record object into a String, so whitespace and other potentially troublesome charac-
ters are taken care of. Its companion reverses the process, reconstructing a Record
from an encoded String.

 The second two functions in listing 7.6, named load() and save(), make use of 
this encode/decode functionality to store and later re-create an entire bank of Record
objects to a file. To locate the file we create a Storage object with the required file-
name and use its embedded Resource object to work with the data. Let’s remind our-
selves of the body of the load() function:

def data:Storage = Storage { source: FILENAME; }
def resource:Resource = data.resource; 
if(resource.readable) {
    def br:BufferedReader = new BufferedReader(
        new InputStreamReader(
            resource.openInputStream()
        )
    );
    var in:String = br.readLine();
    while(in!=null) {
        insert Record.decode(in) into recs;
        in = br.readLine();
    }
    br.close();
}

Variables in the Resource class allow us to check on the state of the file (for example, 
its readability) and access its input stream. In the example, we use Java’s Buffered-
Reader, wrapped around an InputStreamReader, to pull data from the input stream as 
text. Java’s reader classes know how to interpret different character encodings and 

Call our encode() 
function
    

  



179Chart topping: Feedback, version 2
deal with non-English characters (like letters with accents). The decode() function we 
saw earlier is then used to translate this text into a Record object.

Now let’s turn our attention to the body of the save() function:

def data:Storage = Storage { source: FILENAME; }
def resource:Resource = data.resource;
if(resource.writable) {
    def ps:PrintStream =  new PrintStream(
        resource.openOutputStream(true)
    );
    for(r in recs) {
        ps.println(Record.encode(r));
    }
    ps.close();
}

Again Storage and Resource are used to establish a link to the data, and Java classes 
are used to write it, combined with the encode() function to turn each Record into a 
String.

 Using JavaFX’s persistence API we can save and recover data to the host device, 
regardless of whether it’s a phone, a games console, or a PC. Although the entry point 
into the data is described as a filename, we cannot use the API to access arbitrary files 
on the host. A bit like cookies on a website, the mechanism links data to the applica-
tion that wrote it, a process that deserves a little further explanation.

7.2.2 How Storage manages its files

The Storage class segregates the files it saves using the application’s URL domain and 
path. In listing 7.6 we saw the Storage class being used to access a file with a basic file-
name, feedback.txt, but it’s also possible to prefix a filename with a path, like /JFX/
FeedbackApplet/feedback.txt. To explain what impact this has on how the data is 
stored and accessed, we need to look at some example web addresses:

■ http://www.jfxia.com/Games/PacmanGame/index.html
■ http://www.jfxia.com/Games/SpaceInvaders/index.html

For JavaFX code from the above URLs, the persistence API would create an original 
space for the www.jfxia.com domain within its storage area (exactly where this is doesn’t 
concern us; indeed it might be different for each device and/or manufacturer). This 

Using Java’s I/O classes
It’s a shame we have to use Java’s reader/writer classes, as we can’t be sure those 
classes will be available outside the desktop environment. JavaFX 1.2 doesn’t yet 
have a full complement of its own readers and writers, so for the time being we either 
have to handle the raw byte stream ourselves, use JavaScript Object Notation (JSON)/
eXtensible Markup Language (XML), or revert to Java’s I/O classes.
    

  

http://www.jfxia.com/Games/PacmanGame/index.html
http://www.jfxia.com/Games/SpaceInvaders/index.html
http://www.jfxia.com


180 CHAPTER 7 Controls, charts, and storage
ensures files associated with applets/applications from different organizations or 
authors are kept apart. Within that space, files can be further managed by using the 
path element of the URL. The location of the HTML, JAR, or WebStart JNLP file 
(depending on what is being referenced by the URL) is taken to be the default directory 
of the application, and permission is granted to read or write files using that directory 
path or any path that’s a direct or indirect parent or descendant.

 Let’s decipher that rather cryptic last sentence by using the two example URLs.

■ If the applet at /Games/PacmanGame/index.html used the Storage class to 
create a file called scores.dat, the persistence API would write it into /Games/
PacmanGame/scores.dat, within its area set aside for the www.jfxia.com 
domain. Because the applet didn’t specify a path prefix for the filename, the 
API used the path of the HTML page the applet was on.

■ The applet could alternatively specify the absolute path, /Games/
PacmanGame/scores.dat, resulting in the same effect as scores.dat on its own.

■ The applet could also have specified a subdirectory off of its home directory, such 
as /Games/PacmanGame/Data/scores.dat. As a descendant of the home direc-
tory, it would be granted permission for reading and writing. (Note: no such 
physical directory has to exist on the www.jfxia.com web server. These file paths 
are merely data source identifiers, and the data isn’t being stored on the server 
side anyway!)

■ The applet could alternatively have used the /Games/ or / (root) directory. 
Because both are parents of the applet’s home directory, they would also have 
been permitted. But here’s the important part: while both /Games/SpaceIn-
vaders/index.html and /Games/PacmanGame/index.html can access the root 
and the Games directory, they cannot access each other’s directories or any 
subdirectories therein.

In other words, if either game writes its data above its home directory, that 
data is available to other applications living (directly or indirectly) off that 
directory. So, if the data was written into the root directory, then all JavaFX pro-
grams on www.jfxia.com could read or write it.

By using a full path prefix, different JavaFX programs can choose to share or hide 
their data files using the Storage mechanism. Subdirectories (below home) help us to 
organize our data; parent directories (above home) help us to share it. It’s that simple!

7.2.3 Adding pie and bar charts

For every Dilbert, there’s a Pointy-Haired Boss, or so it seems. As programmers inter-
ested in graphics, we naturally want to spend our time writing video effects, UI con-
trols, and Pac-Man clones; unfortunately, our bosses are unlikely to let us. When 
bosses say “graphics” they generally mean charts and graphs, and that’s probably why 
the 1.2 release of JavaFX came with a collection of ready-made pie, bar, line, and other 
chart controls (like the 3D pie chart in figure 7.7).
    

  

http://www.jfxia.com
http://www.jfxia.com
http://www.jfxia.com


181Chart topping: Feedback, version 2
The next update of the feedback application will take the region and rating data col-
lected from each user (and stored using the new persistent Record class) and produce 
a pie chart and a bar graph from it. The first part of the new Feedback class is shown 
in listing 7.7. The code continues in listings 7.8 and 7.9.

package jfxia.chapter7;

import javafx.scene.Group;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.chart.BarChart;
import javafx.scene.chart.BarChart3D;
import javafx.scene.chart.PieChart;
import javafx.scene.chart.PieChart3D;
import javafx.scene.chart.part.CategoryAxis;
import javafx.scene.chart.part.NumberAxis;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.RadioButton;
import javafx.scene.control.Slider;
import javafx.scene.control.TextBox;
import javafx.scene.control.ToggleGroup;
import javafx.scene.layout.Panel;
import javafx.scene.layout.Tile;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.stage.Alert;

Listing 7.7 Feedback.fx (version 2, part 1)

Figure 7.7 JavaFX has a powerful library of chart controls, including a 3D pie chart.
    

  



182 CHAPTER 7 Controls, charts, and storage
import javafx.stage.Stage;
import javafx.util.Sequences;

var recordStore = Record.load();
def record:Record = Record {};
insert record into recordStore;

def winW:Number = 550;
def winH:Number = 350;
var showCharts:Boolean = false;  
var showPie:Boolean = false;     

def nextButton = Button {
    text: "Next";
    action: function() {
        if(not showCharts) {   
            if(record.valid) {
                delete mainPan.content[0];     

                Record.save(recordStore);  

                insert createChartUI()        
                    before mainPan.content[0];  
                showCharts=true;              
            }
            else {
                Alert.confirm("Error","Form incomplete.");  
            }
        }
        else {
            showPie = not showPie;  
        }
    }
}
// Part 2 is listing 7.8; part 3, listing 7.9 

This listing focuses on the introduction of the record store and the changes to the 
Next button. The recordStore variable is a sequence of Record objects, one of each 
feedback entry recorded in the application’s persistent storage. Having loaded past 
records, we append the virgin record created as a model for our feedback UI.

 After the user completes the feedback form, clicking the Next button will record 
the data and take the user to the charts. Subsequent clicks of the Next button toggle 
between the Regions pie chart and the Ratings bar chart. Therefore, the nextButton
control needs to be aware of whether it’s moving from the form to the charts or tog-
gling between the two charts. The showCharts and showPie variables are used for that 
very purpose.

 Within the nextButton action handler the code first checks, courtesy of show-
Charts, which mode the UI is currently in (form or charts). If the form is currently 
displayed, the form UI is deleted from the scene graph, the Record sequence is saved 
to persistent storage (including the Record just populated by the form), and the chart 
UI is created and added to the scene graph. Finally showCharts is set to mark the 
switch from form to charts. If nextButton is clicked when showCharts is already set, 
the showPie variable is toggled, causing a different chart to be displayed.

Show form 
or charts?

Show pie 
or bar?

If form showing
Remove form from 
scene graph

Save form data

Insert charts into 
scene graph

Form 
invalid

Toggle between 
charts
    

  



183Chart topping: Feedback, version 2
 Listing 7.7 contains all the necessary updates to the application, except the cru-
cial step of creating the charts themselves. To find out how that’s done, we need to 
consult listing 7.8, which holds the first part of the createChartUI() function. 
Because large parts of the class are unchanged, I’ve replaced the details with com-
ments in bold.

// Part 1 is listing 7.7
var mainPan:Panel;                                   
Stage {                                                
    // Stage details unchanged from previous         
    // version                                       
}                                                    

function createFeedbackUI() : Node {                 
    // createFeedbackUI() details unchanged from     
    // previous version                              
}                                                    

function createRow(lab:String,n:Node,v:Node) : Node {
    // createRow() details unchanged from previous   
    // version                                       
}                                                    

function createChartUI() : Node {
    def regionData:PieChart.Data[] =
        for(r in Record.REGIONS) {
            var regIdx:Integer  = indexof r;  
            var cnt:Integer = 0;                
            for(rc in recordStore) {          
                if(rc.region == regIdx) cnt++;
            }                                 

            PieChart.Data {
                label: r;    
                value: cnt;
            }              
        }

    var highestCnt:Integer = 0;              
    def ratingData:BarChart.Data[] = 
        for(i in [1..10]) {
            var cnt:Integer = 0;                
            for(rec in recordStore) {             
                def rat = rec.rating as Integer;
                if(rat == i) cnt++;             
            }                                   
            if(cnt>highestCnt) highestCnt=cnt;

            BarChart.Data {                   
                category: "{i}";                
                value: cnt;                   
            }                                 
        }

Listing 7.8 Feedback.fx (version 2, part 2)

Refer to previous 
Feedback.fx 
version

Count respondents 
for given region

Create PieChart.Data 
for region

Highest rating 
in data

Count respondents 
for given rating

Create BarChart.Data 
for rating
    

  



184 CHAPTER 7 Controls, charts, and storage
This is only the first half of the function, not the entire thing. It deals with creating the 
data required by the pie and bar chart controls. The first block of code builds the data 
for the regions pie chart, the second block deals with the ratings bar chart.

def regionData:PieChart.Data[] =
    for(r in Record.REGIONS) {
        var regIdx:Integer  = indexof r;
        var cnt:Integer = 0;
        for(rc in recordStore) {
            if(rc.region == regIdx) cnt++;
        }
        PieChart.Data {
            label: r;
            value: cnt;
        }
    }

The first block, reprised here, creates a PieChart.Data object for each region named 
in the Record.REGIONS sequence. These objects collect to create a sequence called 
regionData. For each region we walk over every record in recordStore, building a 
count of the responses for that region—the regIdx variable holds the region index, 
and the inner for loop looks for records matching that index. Once we have the 
count, we use it with the region name to create a new PieChart.Data object, which 
gets added to the regionData sequence.

var highestCnt:Integer = 0;
def ratingData:BarChart.Data[] = 
    for(i in [1..10]) {
        var cnt:Integer = 0;
        for(rec in recordStore) {
            def rat = rec.rating as Integer;
            if(rat == i) cnt++;
        }
        if(cnt>highestCnt) highestCnt=cnt;
        BarChart.Data {
            category: "{i}";
            value: cnt;
        }
    }

The bar chart code, reproduced here, is very similar to the pie chart code. This time 
we’re dealing with numeric ratings between 1 and 10; for each of the 10 possible rat-
ings we scan the records, counting how many feedback responses gave that rating. We 
keep track of the size of the most popular (highestCnt) so we can scale the chart 
appropriately. Each rating’s count is used to create a BarChart.Data object, used to 
populate the ratingData sequence.

 Now that we’ve seen how the data in the record store is translated into sequences 
of PieChart.Data and BarChart.Data objects, we can turn our attention to the actual 
creation of the chart controls themselves. Listing 7.9 shows how it’s done.
    

  



185Chart topping: Feedback, version 2
    Group {
        content: [
            PieChart3D {                  
                width: 500;  height: 350;
                visible: bind showPie;    
                title: "Regions";
                titleGap: 0;
                data: regionData;       
                pieLabelVisible: true;
                pieValueVisible: true;
            } ,
            BarChart3D {                 
                width: 500;  height: 350;
                visible: bind not showPie;   
                title: "Ratings";
                titleGap: 10;
                data: BarChart.Series {            
                    name: "Ratings";                 
                    data: ratingData;              
                }                                  
                categoryAxis: CategoryAxis {        
                    categories: for(r in ratingData)  
                        r.category;                 
                }                                   
                valueAxis: NumberAxis {    
                    lowerBound: 0;           
                    upperBound: highestCnt;
                    tickUnit: 1;           
                }                          
            }
        ]
    }
}

The final part of the createChartUI() function manufactures the chart scene graph. 
Both chart controls are held inside a simple Group. The first, PieChart3D, has its visi-
bility bound to show whenever showPie is true; the second, BarChart3D, has its visibil-
ity bound to show whenever showPie is false. Figure 7.8 reveals how both charts look 
when displayed.

 The PieChart3D control’s declaration is quite simple to understand: the title and 
titleGap properties control the label that appears over the chart and how far away it 
is from the bounds of the pie graphic itself. The regionData sequence we created in 
listing 7.8 is referenced via data. The pieLabelVisible and pieValueVisible vari-
ables cause the values and labels of each pie slice (set in each PieChart.Data object, 
as you recall) to be drawn.

 The BarChart3D control’s declaration is more complicated. As well as the familiar 
title and titleGap properties, objects controlling each axis are created, and the 
ratingData sequence (created in listing 7.8) is wrapped inside a BarChart.Series

Listing 7.9 Feedback.fx (version 2, part 3)

Pie chart 
control

Control its 
visibility

Plug in data 
sequence

Bar chart control

Control its 
visibility

Wrap data 
sequence

Labels for 
category axis

Bounds and unit 
for value axis
    

  



186 CHAPTER 7 Controls, charts, and storage
object rather than being plugged directly into the control. But what is a Bar-
Chart.Series, and why is it necessary?

 JavaFX’s bar charts are quite clever beasts—they can display several sets of data simul-
taneously. Suppose our application had allowed the user to set two ratings instead of just 
one; we could display both sets (or series) in one chart, looking like figure 7.9.

 Each category in the chart (1 to 10 along the horizontal axis) has two independent 
bars, one from each series of data.

data: [
    BarChart.Series {
        name: "Ratings";
        data: ratingData;
    } ,
    BarChart.Series {
        name: "Ratings 2";
        data: reverse ratingData;
    }
]

Figure 7.8 A bar chart and a pie chart, as drawn in 3D by the JavaFX 1.2 chart library

Figure 7.9 This is 
what the project’s bar 
chart would look like if 
it used two data series 
rather than one. Each 
category has two bars, 
and the key at the foot 
of the chart shows two 
labels.
    

  



187Chart topping: Feedback, version 2
The data property in BarChart3D accepts a sequence of type BarChart.Series rather 
than just a single object. The example quick-’n’-dirty code snippet proves this, by add-
ing a second series that mirrors the first (this was how figure 7.9 was created). Each 
BarChart.Series object contains a BarChart.Data object holding its data, and a label 
to use in the key at the foot of the chart.

 With that explained, only the categoryAxis and valueAxis variables remain a 
mystery. We’ll look at those in the next section.

7.2.4 Taking control of chart axes 

If you’ve checked out the JavaFX API documentation, you’ll have noticed that the 
chart classes are grouped into three packages. The main one, javafx.scene.chart, 
contains the chart controls themselves, plus their associated data and series classes. 
The javafx.scene.chart.data package holds the superclasses for these data and 
series classes (unless you code your own charts, you’re unlikely to work directly with 
them). javafx.scene.chart.part contains classes to model common chart elements, 
such as the axes. This package is home to the CategoryAxis and NumberAxis used in 
listing 7.9. Here’s a reminder of that code:

categoryAxis: CategoryAxis {
    categories: for(r in ratingData)
        r.category;
}
valueAxis: NumberAxis {
    lowerBound: 0;
    upperBound: highestCnt;
    tickUnit: 1;
}

These variables (part of the BarChart3D control, as you recall) determine how the 
horizontal (category) and vertical (value) axes will be drawn. Although many differ-
ent types of charts exist, there are only a handful of different axis flavors. An axis can 
represent a linear (analog) range of values, or it can represent a finite set of groups. 
For example, if we drew a line chart of temperature readings over a 24-hour period, it 
might have ticks (or labels) every 5 degrees Centigrade on the temperature axis and 
every hour on the time axis, but the data is not necessarily constrained by these mark-
ings. We might plot a temperature of 37 degrees (which is not a multiple of 5) at 9:43 
a.m. (which is not on the hour). If we then drew a bar chart of average daily tempera-
tures for each month in a year, while the temperature axis would still be analog, the 
time axis would now be grouped into 12 distinct categories (January, February, etc.).

 CategoryAxis and NumberAxis (plus the abstract ValueAxis) model those axis 
types. The first handles grouped data and the second linear data. Each has a host of 
configuration options for controlling what gets drawn and how. One particularly use-
ful example is NumberAxis.formatTickLabel(), a function type that allows us to con-
trol how the values on an axis are labeled. To convert the values 0 to 11 into calendar 
names, we would use the following NumberAxis code:
    

  



188 CHAPTER 7 Controls, charts, and storage
NumberAxis {
    label: "Months";
    lowerBound:0;  upperBound:12;
    tickUnit: 1;
    formatTickLabel: function(f:Float) {
        def cal = ["Jan","Feb","Mar","Apr","May","Jun" , 
            "Jul","Aug","Sep","Oct","Nov","Dec" ];
        cal[f as Integer];
    }
}

The lowerBound and upperBound variables constrain the axis to values between 0 to 11 
(inclusive), while tickUnit determines the frequency of labels on the axis (one label 
for every integer value). The formatTickLabel code converts a label value into text, 
using a lookup table of calendar month names. (The cal sequence is a local variable 
merely for the sake of brevity; in real-world code it would be declared at the script or 
class level, thereby avoiding a rebuild every time the function runs.)

 You can see more examples of these axis classes at work in the next section, where 
we look at the other types of chart supported by JavaFX.

7.2.5 Other chart controls (area, bubble, line, and scatter)

Bar charts and pie charts are staples of the charting world, but JavaFX offers far more 
than just these two. In this section we’ll tour alternatives, beginning with the two 
charts in figure 7.10.

 The AreaChart class accepts a collection of x and y values, using them as points 
defining a polygon. The effect looks like a mountain range, and it’s a useful alterna-
tive to the simple line chart (see later).

 As well as the 3D bar chart we witnessed in the feedback project, JavaFX has a 2D
alternative. The BarChart control has the same data requirements as its BarChart3D
sibling; both accept a collection of values defining the height of each bar.

 Two more chart types are demonstrated in figure 7.11.

Figure 7.10 An area chart (left) and a standard 2D bar chart (right)
    

  



189Chart topping: Feedback, version 2
The BubbleChart is rarely used, but it can be a real lifesaver when necessary. As well as 
x and y values, each point can contain a radius, giving effectively a third dimension of 
data.

 The LineChart is the familiar graph we all remember from school. Using x and y 
values, it plots a line to connect the dots.

 The two final chart types are shown in figure 7.12.
 Just as the bar chart comes in 2D and 3D flavors, so the pie chart also has 2D and 3D

variations. Both PieChart and PieChart3D are unusual, as (understandably) they do 
not support multiple series of data like the other charts; only one set of values can be 
plugged in.

 The ScatterChart, although graphically the simplest of all JavaFX charts, is 
incredibly useful for revealing patterns within a given body of data. It plots x and y val-
ues anywhere within its coordinate space.

Figure 7.11 A bubble chart (left) and a line chart (right)

Figure 7.12 A standard 2D pie chart (left) and a scatter chart (right)
    

  



190 CHAPTER 7 Controls, charts, and storage
That completes our whistle-stop tour of the JavaFX charting controls. All that remains 
is to compile and try our new feedback application.

7.2.6 Running version 2

Starting up the project gives us the same form UI from version 1, but now the Next but-
ton has been rewired to save the data and replace the form UI with a couple of charts. 
The result should look like figure 7.13. Depending on how powerful your computer is, 
the flip between form and charts may not be instantaneous. I ran the code on an old 
laptop, and there was a slight (0.5s to 1s) delay before the charts appeared. A brief 
investigation revealed the delay emanated from building the chart UI. (Perhaps a sim-
ple processing animation is needed, giving an instance response to a Next button click?)

Once the form has been submitted, to enter another record you need to quit and 
restart the application. I could have added logic to reset the UI and add a new Record
to the recordStore, but the listings would have been longer, with little extra educa-
tional value. You can add the code yourself if you want. (Hint: you need to make sure 
the UI is bound against a new Record object; either rebuild a fresh UI for each Record
or devise an abstraction, so the UI isn’t plumbed directly into a specific Record.)

 In the final part of this chapter, we finish with a super-sized bonus section, all 
about creating our own controls and skinning them.

7.3 Bonus: creating a styled UI control in JavaFX
In this chapter’s project we saw JavaFX controls in action; now it’s time to write our 
own control from scratch. Because much of the detail in this section is based on 
research and trial and error rather than official JavaFX documentation, I’ve separated 

Figure 7.13 Version 2 of the Feedback application runs, complete with form (main image) and two 
charts (thumbnails).
    

  



191Bonus: creating a styled UI control in JavaFX
it from the main project in this chapter and turned it into a (admittedly, rather 
lengthy) bonus project.

 As already explained, JavaFX’s controls library, in stark contrast to Java’s Swing 
library, can function across a wide range of devices and environments—but that’s not 
all it can do. Each control in the library can have its appearance customized through 
skins and stylesheets. This allows designers and other nonprogrammers to radically 
change the look of an application, without having to write or recompile any code.

 In this section we’ll develop our own very simple, style-aware control. Probably 
the simplest of all widget types is the humble progress bar; it’s a 100% visual ele-
ment with no interaction with the mouse or keyboard, and as such it’s ideal for prac-
ticing skinning. The standard controls API already has a progress control of its own 
(we’ll see it in action in the next chapter), but it won’t hurt to develop our own 
super-sexy version.

Check for updates This section was written originally against JavaFX 1.1 
and then updated for the 1.2 release. Although the latter saw the debut 
of the controls library, at the time of writing much of the details on how 
skins and Cascading Style Sheets (CSS) support works is still largely 
undocumented. The material in this section is largely based on what little 
information there is, plus lots of investigation. Sources close to the 
JavaFX team have hinted that, broadly speaking, the techniques laid out 
in the following pages are correct. However, readers are urged to search 
out fresh information that may have emerged since this chapter was writ-
ten, particularly official tutorials, or best practice guides for writing skins.

Let’s look at stylesheets.

7.3.1 What is a stylesheet?

Back in the old days (when the web was in black and white) elements forming an 
HTML document determined both the logical meaning of their content and how they 
would be displayed. For example, a <p> element indicated a given node in the DOM
(Document Object Model) was of paragraph type. But marking the node as a para-
graph also implied how it would be drawn on the browser page, how much whitespace 
would appear around it, how the text would flow, and so on. To counteract these pre-
sumptions new element types like <font> and <center> were added to browsers to 
influence display. With no logical function in the document, these new elements pol-
luted the DOM and made it impossible to render the document in different ways 
across different environments.

 CSS is a means of fixing this problem, by separating the logical meaning of an 
element from the way it’s displayed. A stylesheet is a separate document (or a self-con-
tained section within an HTML document) defining rules for rendering the HTML
elements. By merely changing the CSS, a web designer can specify the display set-
tings of a paragraph (for example), without need to inject extra style-specific ele-
ments into the HTML. Stylesheet rules can be targeted at every node of a given type, 
at nodes having been assigned a given class, or at a specific node carrying a given ID

WARNING
    

  



192 CHAPTER 7 Controls, charts, and storage
(see figure 7.14). Untangling the 
logical structure of a document 
from how it should be displayed 
allows the document to be shown in 
many different ways, simply by 
changing its stylesheet.

 What works for web page content 
could also work for GUI controls; if 
buttons, sliders, scrollbars, and 
other controls deferred to an exter-
nal stylesheet for their display settings, artists and designers could change their look 
without having to write a single line of software code. This is precisely the intent 
behind JavaFX’s style-aware controls library.

 JavaFX allows both programmers 
and designers to get in on the style 
act. Each JavaFX control defers not to 
a stylesheet directly but to a skin. Fig-
ure 7.15 shows this relationship dia-
grammatically. The skin is a JavaFX
class that draws the control; it can 
expose various properties (public 
instance variables), which JavaFX can 
then allow designers to change via a 
CSS-like file format.

 In a rough sense the control acts 
as the model and the skin as the view, 
in the popular Model/View/Con-
troller model of UIs. But the added JavaFX twist is that the skin can be configured by a 
stylesheet. Controls are created by subclassing javafx.scene.control.Control and 
skins by subclassing Skin in the same package. Another class, Behavior, is designed to 
map inputs (keystrokes, for example) to host-specific actions on the control, effec-
tively making it a type of MVC controller.

 Now that you understand the theory, let’s look at each part in turn as actual code.

7.3.2 Creating a control: the Progress class

We’re going to write our own style-compliant control from scratch, just to see how easy 
it is. The control we’ll write will be a simple progress bar, like the one that might 
appear during a file download operation. The progress bar will take minimum and 
maximum bounds, plus a value, and display a series of boxes forming a horizontal bar, 
colored to show where the value falls in relation to its bounds. To keep things nice and 
simple our control won’t respond to any mouse or keyboard input, allowing us to 
focus exclusively on the interaction between model (control) and view (skin), while 
ignoring the controller (behavior).

<p>

</p>
<p class="myClass">

</p>

Some text

Some more text

p
{ background−color: gray;
  color: white;
}

p.myClass
{ color: black;
}

HTML Document CSS Stylesheet

Figure 7.14 Two style rules and two HTML paragraph 
elements. The first rule applies to both paragraphs, while 
the second applies only to paragraphs of class myClass.

Progress

minimum
maximum
value

ProgressSkin

boxCount
boxWidth
boxHeight
etc.

CSS

Figure 7.15 The data from the control (Progress) 
and the CSS from the stylesheet are combined inside 
the skin (ProgressSkin) to produce a displayable UI 
control, in this example, a progress bar.
    

  



193Bonus: creating a styled UI control in JavaFX
 Listing 7.10 shows the control class itself. This is the object other software will use 
when wishing to create a control declaratively. It subclasses the Control class from 
javafx.scene.control, a type of CustomNode designed to work with styling.

package jfxia.chapter7;

import javafx.scene.control.Control;

public class Progress extends Control
{   public var minimum:Number = 0;           
    public var maximum:Number = 100;           
    public var value:Number = 50 on replace {
        if(value<minimum) { value=minimum; } 
        if(value>maximum) { value=maximum; } 
    };                                       

    override var skin = ProgressSkin{};  
}

Our Progress class has three variables: maximum and minimum determine the range of 
the progress (its high and low values), while value is the current setting within that 
range. We override the skin variable inherited from Control to assign a default skin 
object. The skin, as you recall, gives our control its face and processes user input. It’s a 
key part of the styling process, so let’s look at that class next.

7.3.3 Creating a skin: the ProgressSkin class

In itself the Progress class does nothing but hold the fundamental data of the prog-
ress meter control. Even though it’s a CustomNode subclass, it defers all its display and 
input to the skin class. So, what does this skin class look like? It looks like listing 7.11.

package jfxia.chapter7;

import javafx.scene.Group;
import javafx.scene.control.Skin;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.paint.LinearGradient;
import javafx.scene.paint.Paint;
import javafx.scene.paint.Stop;
import javafx.scene.shape.Rectangle;

public class ProgressSkin extends Skin {
    public var boxCount:Integer = 10;                
    public var boxWidth:Number = 7;                  
    public var boxHeight:Number = 20;                
    public var boxStrokeWidth:Number = 1;            
    public var boxCornerArc:Number = 3;              
    public var boxHGap:Number = 1;                   

    public var boxUnsetStroke:Paint = Color.DARKBLUE;

Listing 7.10 Progress.fx

Listing 7.11 ProgressSkin.fx (part 1)

The control’s 
data

Override the skin

These properties 
can be styled 
with CSS
    

  



194 CHAPTER 7 Controls, charts, and storage
    public var boxUnsetFill:Paint = makeLG(Color.CYAN,
        Color.BLUE,Color.DARKBLUE);                   
    public var boxSetStroke:Paint = Color.DARKGREEN;  
    public var boxSetFill:Paint = makeLG(Color.YELLOW,
        Color.LIMEGREEN,Color.DARKGREEN);             

    def boxValue:Integer = bind {            
        var p:Progress = control as Progress;  
        var v:Number = (p.value-p.minimum) / 
            (p.maximum-p.minimum);           
        (boxCount*v) as Integer;             
    }                                        
// ** Part 2 is listing 7.12

Listing 7.11 is the opening of our skin class, ProcessSkin. (The second part of the 
source code is shown in listing 7.12.) The Progress class is effectively the model, and 
this class is the view in the classic MVC scheme. It subclasses javafx.scene.control. 
Skin, allowing it to be used as a skin.

 The properties at the top of the class are all exposed so that they can be altered by 
a stylesheet. They perform various stylistic functions.

■ The boxCount variable determines how many progress bar boxes should appear 
on screen.

■ The boxWidth and boxHeight variables hold the dimensions of each box, while 
boxHGap is the pixel gap between boxes.

■ The variable boxStrokeWidth is the size of the trim around each box, and box-
CornerArc is the radius of the rounded corners.

■ For the public interface, we have two pairs of variables that colorize the control. 
The first pair are boxUnsetStroke and boxUnsetFill, the trim and body colors 
for switched-off boxes; the second pair is (unsurprisingly) boxSetStroke and 
boxSetFill, and they do the same thing for switched-on boxes. The makeLG()
function is a convenience for creating gradient fills; we’ll see it in the conclud-
ing part of the code.

■ The private variable boxValue uses the data in the Progress control to work out 
how many boxes should be switched on. The reference to control is a variable 
inherited from its parent class, Skin, allowing us to read the current state of the 
control (model) the skin is plugged into.

One thing of particular note in listing 7.11: the stroke and fill properties are Paint
objects, not Color objects. Why? Quite simply, the former allows us to plug in a gradient 
fill or some other complex pattern, while the latter would support only a flat color. And, 
believe it or not, JavaFX’s support for styles actually extends all the way to patterned fills.

 Moving on, the concluding part of the source code (listing 7.12) shows how these 
variables are used to construct the progress meter.

// ** Part 1 is listing 7.11
    override var node = HBox {   
        spacing: bind boxHGap;

Listing 7.12 ProgressSkin.fx (part 2)

These properties 
can be styled 
with CSS

How many boxes 
to highlight?

Override node 
in Skin class
    

  



195Bonus: creating a styled UI control in JavaFX
        content: bind for(i in [0..<boxCount]) {
            Rectangle {
                width: bind boxWidth;            
                height: bind boxHeight;            
                arcWidth: bind boxCornerArc;     
                arcHeight: bind boxCornerArc;    
                strokeWidth: bind boxStrokeWidth;
                stroke: bind                   
                    if(i<boxValue) boxSetStroke  
                    else boxUnsetStroke;       
                fill: bind                   
                    if(i<boxValue) boxSetFill  
                    else boxUnsetFill;       
            };
        }
    };

    override function getPrefWidth(n:Number) : Number {                   
        boxCount * (boxWidth+boxHGap) – boxHGap;           
    }                                                                     
    override function getMaxWidth() { getPrefWidth(-1) }                 
    override function getMinWidth() { getPrefWidth(-1) }                 
                                                         
    override function getPrefHeight(n:Number) : Number {                 
        boxHeight;                                                        
    }                                                    
    override function getMaxHeight() { getPrefWidth(-1) }                 
    override function getMinHeight() { getPrefWidth(-1) }
                                                                          
    override function contains                                            
        (x:Number,y:Number) : Boolean {                                   
        control.layoutBounds.contains(x,y);                               
    }                                                                    
    override function intersects                                         
        (x:Number,y:Number,w:Number,h:Number):Boolean {                   
        control.layoutBounds.intersects(x,y,w,h);                         
    }                                                     

    function makeLG(c1:Color,c2:Color,c3:Color) : LinearGradient {  
        LinearGradient {
            endX: 0;  endY: 1;  proportional: true;
            stops: [
                Stop { offset:0;    color: c3; } ,
                Stop { offset:0.25; color: c1; } ,
                Stop { offset:0.50; color: c2; } ,
                Stop { offset:0.85; color: c3; } 
            ];
        };        
    }
}

We see how the style variables are used to form a horizontal row of boxes. An inher-
ited variable from Skin, named node, is used to record the skin’s scene graph. Any-
thing plugged into node becomes the corporeal form (physical body) of the control 
the skin is applied to. In our case we’ve a heavily bound sequence of Rectangle

Bind visible 
properties

Bind trim color 
to boxValue

Bind body color 
to boxValue

Inherited from 
Resizable

Gradient paint 
from three colors
    

  



196 CHAPTER 7 Controls, charts, and storage
objects, each tied to the instance variables of the class. This sequence is all it takes to 
create our progress bar.

 Because our control needs to be capable of being laid out, our Skin subclass over-
rides functions to expose its maximum, minimum, and preferred dimensions. To 
keep the code small I’ve used the preferred size for all three, and I’ve ignored the 
available width/height passed in as a parameter (which is a bit naughty). Our skin also 
fills out a couple of abstract functions, contains() and intersects(), by deferring to 
the control. (Simply redirecting these calls to the control like this should work for the 
majority of custom controls you’ll ever find yourself writing.) Remember, even though 
the control delegates its appearance to the skin, it is still a genuine scene graph node, 
and we can rely on its inherited functionality.

 At the end of the listing is the makeLG() function, a convenience for creating the 
LinearGradient paints used as default values for the box fills.

 All that remains, now that we’ve seen the control and its skin, is to take a look at it 
running with an actual style document.

7.3.4 Using our styled control with a CSS document

The Progress and ProgressSkin classes create a new type of control, capable of being 
configured through an external stylesheet document. Now it’s time to see how our 
new control can be used and manipulated.

 Listing 7.13 is a test program for trying out our new control. It creates three exam-
ples: (1) a regular Progress control without any class or ID (note, in this context the 
word class refers to the CSS-style class and has nothing to do with any class written in 
the JavaFX Script language), (2) another Progress control with an ID ("testID"), 
and (3) a final Progress assigned to a style class ("testClass").

package jfxia.chapter7;

import javafx.animation.KeyFrame;
import javafx.animation.Interpolator;
import javafx.animation.Timeline;
import javafx.scene.Scene;
import javafx.stage.Stage;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;

var val:Number = 0;
Stage {
    scene: Scene {
        content: VBox {
            spacing:10;
            layoutX: 5;  layoutY: 5;
            content: [
                Progress {                   
                    minimum: 0;  maximum: 100;
                    value: bind val;    
                } ,
                Progress {       

Listing 7.13 TestCSS.fx

Plain control, 
no ID or class

Control with ID
    

  



197Bonus: creating a styled UI control in JavaFX
                    id: "testId";
                    minimum: 0;  maximum: 100;
                    value: bind val;    
                } ,
                Progress {                   
                    styleClass: "testClass";
                    style: "boxSetStroke: white";
                    minimum: 0;  maximum: 100;
                    value: bind val;    
                }
            ];
        };
        stylesheets: [ "{__DIR__}Test.css" ]  
        fill:  Color.BLACK;
        width: 230;  height: 105;
    };
    title: "CSS Test";
};

Timeline {
    repeatCount: Timeline.INDEFINITE;
    autoReverse: true;
    keyFrames: [                                           
        at(0s)   { val => 0 } ,                              
        at(0.1s) { val => 0 tween Interpolator.LINEAR } ,  
        at(0.9s) { val => 100 tween Interpolator.LINEAR } ,
        at(1s)   { val => 100 }                            
    ];                                                     
}.play();

Note how the final progress bar also assigns its own 
local style for the boxSetStroke? This is important, as 
we’ll see in a short while.

 Figure 7.16 shows the progress control on screen. 
All three Progress bars are bound to the variable val, 
which the Timeline at the foot of the code repeatedly 
increases and decreases (with a slight pause at either 
end), to make the bars shoot up and down from mini-
mum to maximum.

 The key part of the code lies in the stylesheets property of Scene. This is where 
we plug in our list of CSS documents (just one in our example) using their 
URLs. This particular example expects our docs to sit next to the TestCSS bytecode 
files. The __DIR__ built-in variable returns the directory of the current class file as a 
URL, as you recall. If you downloaded the project’s source code, you’ll find the CSS
file nested inside the res directory, off the project’s root. When you build the 
project, make sure this file gets copied into the build directory, next to the TestCSS
class file.

 Now it’s time for the grand unveiling of the CSS file that styles our component. 
Listing 7.14 shows the three style rules we’ve created for our test program. (Remem-
ber, it lives inside jfxia.chapter7, next to the TestCSS class.)

Control 
with class

Assign 
stylesheets

Run val backward 
and forward

Figure 7.16 Three examples 
of our progress bar in action
    

  



198 CHAPTER 7 Controls, charts, and storage
"jfxia.chapter7.Progress" {
    boxSetStroke: darkred;
    boxSetFill: linear (0%,0%) to (0%,100%) stops 
        (0.0,darkred), (0.25,yellow), (0.50,red), (0.85,darkred);    
    boxUnsetStroke: darkblue;
    boxUnsetFill: linear (0%,0%) to (0%,100%) stops 
        (0.0,darkblue), (0.25,cyan), (0.50,blue), (0.85,darkblue);
}

"jfxia.chapter7.Progress"#testId {
    boxWidth: 25;  boxHeight: 30;
    boxCornerArc: 12;  boxStrokeWidth: 3;    
    boxCount: 7;
    boxHGap: 1;

    boxUnsetStroke: dimgray;
    boxUnsetFill: linear (0%,0%) to (0%,100%) stops 
        (0%,dimgray), (25%,white), (50%,silver), (75%,slategray);
}

"Progress".testClass {
    boxWidth: 14;
    boxCornerArc: 7;
    boxStrokeWidth: 2;
    boxHGap: 3;

    boxSetStroke: darkgreen;
    boxSetFill: linear (0%,0%) to (0%,100%) stops 
        (0.0,darkgreen), (0.25,yellow), (0.50,limegreen), (0.85,darkgreen);
}

The first rule targets all instances of jfxia.chapter7.Progress controls. The settings 
in its body are applied to the skin of the control. The second is far more specific; like 
the first it applies to jfxia.chapter7.Progress controls, but only to that particular 
control with the ID of testID. The final rule targets the Progress class again (this 
time omitting the package prefix, just to show it’s not necessary if the class name 
alone is not ambiguous), but it applies itself to any such control belonging to the 
style class testClass.

Listing 7.14 Test.css

Classes and IDs
In stylesheets, classes and IDs perform similar functions but for use in different ways. 
Assigning an ID to an element in a document means it can be targeted specifically. 
IDs are supposed to be unique names, appearing only once in a given document. They 
can be used for more than just targeting stylesheet rules.

What happens if we need to apply a style, not to a specific DOM element but to an 
entire subset of elements? To do this we use a class, a nonunique identifier designed 
primarily as a type identifier onto which CSS rules can bind.
    

  



199Bonus: creating a styled UI control in JavaFX
 If multiple rules match a single control, the styles from all rules are applied in a 
strict order, starting with the generic (no class, no ID) rule, continuing with the class 
rule, then the specific ID rule, and finally any style plugged directly into the object lit-
eral inside the JavaFX Script code. Remember that explicit style assignment I said was 
important a couple of pages back? That was an example of overruling the CSS file with 
a style written directly into the JFX code itself. The styles for each matching rule are 
applied in order, with later styles overwriting the assignments of previous styles.

 If absolutely nothing matches the control, the default styles defined in the skin 
class itself, ProgressSkin in our case, remain untouched. It’s important, therefore, to 
ensure your skins always have sensible defaults.

 You’ll note how the class name is wrapped in quotes. If you were wondering, this is 
simply to stop the dots in the name from being misinterpreted as CSS-style class sepa-
rators, like the one immediately before the name "testClass".

Inside the body of each style rule we see the skin’s public properties being assigned. 
The majority of these assignments are self-explanatory. Variables like boxCount, box-
Width, and boxHeight all take integer numbers, and color variables can take CSS color 
definitions or names, but what about the strange linear syntax?

7.3.5 Further CSS details

The exact nature of how CSS interacts with JavaFX skins is still not documented as this 
chapter is being written and updated, yet already several JFX devotees have dug deep 
into the class files and discovered some of the secrets therein.

 In lieu of official tutorials and documentation, we’ll look at a couple of examples 
to get an idea of what’s available. An internet search will no doubt reveal further 
styling options, although by the time you read this the official documentation should 
be available.

 Here is one of the linear paint examples from the featured stylesheet:

boxUnsetFill: linear (0%,0%) to (0%,100%) stops 
    (0.0,dimgray), (0.25,white), (0.50,silver), (0.75,slategray);

The example creates, as you might expect, a LinearGradient paint starting in the top-
left corner (0% of the way across the area, 0% of the way down) and ending in the bot-
tom left (0% of the way across, 100% of the way down). This results in a straightfor-
ward vertical gradient. To define the color stops, we use a comma-separated list of 

Cascading Style Sheets
In this book we don’t have the space to go into detail about the format of CSS, on 
which JavaFX stylesheets are firmly based. CSS is a World Wide Web Consortium 
specification, and the W3C website has plenty of documentation on the format at 
http://www.w3.org/Style/CSS/
    

  

http://www.w3.org/Style/CSS/


200 CHAPTER 7 Controls, charts, and storage
position/color pairs in parentheses. For the positions we could use percentages again 
or a fraction-based scale from 0 to 1. The colors are regular CSS color definitions (see 
the W3C’s documentation for details).

 The stylesheet in our example is tied directly to the ProgressSkin we created for 
our Progress control. The settings it changes are the publicly accessible variables 
inside the skin class. But we can go further than only tweaking the skin’s variables; we 
can replace the entire skin class:

"Progress"#testID {
    skin: jfxia.chapter7.AlternativeProgressSkin;
}

The fragment of stylesheet in the example sets the skin itself, providing an alternative 
class to the ProgressSkin we installed by default. Obviously we haven’t written such a 
class—this is just a demonstration. The style rule targets a specific example of the 
Progress control, with the ID testID, although if we removed the ID specifier from 
the rule it would target all Progress controls.

The JavaFX 1.2 release introduced a bug: controls created after the 
stylesheet was installed are not styled. This means if your application 
dynamically creates bits of UI as it runs and adds them into the scene 
graph, styling will not be applied to those controls. A bug fix is on its way; 
in the meantime the only solution is to remove and reassign the 
stylesheets variable in Scene every time you create a new control that 
needs styling.

The AlternativeProgressSkin class would have its own public interface, with its own 
variables that could be styled. For this reason the rule should be placed before any 
other rule that styles variables of the AlternativeProgressSkin (indeed some com-
mentators have noted it works best when placed in a separate rule, all on its own).

7.4 Summary
In this chapter we built a simple user interface, using JavaFX’s controls API, and dis-
played some statistics, thanks to the charts API. We also learned how to store data in a 
manner that won’t break as our code travels from device to device. Although the proj-
ect was simple, it gave a solid grounding into controls, charts, and client-side persis-
tence. However, we didn’t get a chance to look at every type of control.

 So, what did we miss? CheckBox is a basic opt-in/out control, either checked or 
unchecked. JavaFX check boxes also support a third option, undefined, typically used 
in check box trees, when a parent check box acts as a master switch to enable/disable 
all its children. Hyperlink is a web-like link, acting like a Button but looking like a 
piece of text. ListView displays a vertical list of selectable items. ProgressBar is a 
long, thin control, showing either the completeness of a given process or an anima-
tion suggesting work is being done; ProgressIndicator does the same thing but with 
a more compact dial display. ScrollBar is designed to control a large area displayed 

STYLING 
BUG
    

  



201Summary
within a smaller viewport. ToggleButton flips between selected or unselected; it can 
be used in a ToggleGroup; however (unlike a RadioButton), a ToggleButton can be 
unselected with a second click, leaving the group with no currently selected button.

 In the bonus project we created our own control that could be manipulated by 
CSS-like stylesheets. Although some of the styling detail was a little speculative because 
of the unavailability of solid documentation at the time of writing, the project should, 
at the very least, act as a primer.

 With controls and charts we can build serious applications, targeted across a variety 
of platforms. With skins and styling they can also look good. And, since everything is 
scene graph–based, it can be manipulated just like the graphics in previous chapters.

 In the next chapter we’re sticking with the practical theme by looking at web ser-
vices—but, of course, we’ll also be having plenty of fun. Until then, why not try 
extending the main project’s form with extra controls or charts? Experiment, see what 
works, and get some positive feedback.

 

    

  



Web services with style
In this chapter we’re going to cover a range of exciting JavaFX features—and possi-
bly the most fun project thus far. In previous chapters we were still learning the 
ropes, so to speak, but now that bind and triggers are becoming second nature and 
the scene graph is no longer a strange alien beast, we can move on to some of the 
power tools the JavaFX API has to offer.

 We’ll start by learning how to call a web service and parse its XML response. As 
more of our data is moving online and hidden behind web services, knowing how 
to exploit their power from within our own software becomes crucial. Then we’ll 
turn our attention to taking the pain out of animation effects. As if the animation 
tools built into JavaFX Script weren’t enough, JavaFX also includes a whole library 
of off-the-shelf transition classes. When we apply these classes to scene graph nodes, 
we can make them move, spin, scale, and fade with ease.

This chapter covers
■ Calling a web service
■ Parsing an XML document
■ Dynamically editing the scene graph
■ Animating, with off-the-shelf transitions
202

    

  



203Our project: a Flickr image viewer
 This chapter has a lot to cover, but by the time you reach its end you’ll have experi-
enced practical examples of most of the core JavaFX libraries. There are still plenty of 
juicy morsels in the remaining chapters. But after this we’ll be focusing more on tech-
niques and applications than on learning new API classes.

 Let’s get started.

8.1 Our project: a Flickr image viewer
Everyone and his dog are writing demos to exploit the Flickr web service API. It’s not 
hard to understand why. Located at http://www.flickr.com, the site is an online photo 
gallery where the public can upload and arrange its digital masterpieces for others to 
browse. It’s highly addictive trawling though random photos, some looking clearly 
amateur but others shockingly professional. Of course, as programmers we just want 
to know how cool the programming API is! As it happens, Flickr’s API is pretty cool 
(which explains why everyone and his dog are using it).

 Why did I decide to go with Flickr for this book? First, it’s a well-known API with 
plenty of documentation and programmers who are familiar with it—important for 
anyone playing with the source code after the chapter has been read. Second, I wanted 
to show that photo gallery applications don’t have to be boring (witness figure 8.1), par-
ticularly when you have a tool like JavaFX at your disposal.  

 The application we’re going to build will run full screen. It will use a web service 
API to fetch details of a particular gallery then show thumbnails in a strip along the 
bottom of the screen, one page at a time. Selecting a thumbnail will cause the image 

Figure 8.1 Our photo viewer will allow us to contact the online photo service, view thumbnails from 
a gallery, and then select and toss a full-sized image onto a desktop as if it were a real photo.
    

  

http://www.flickr.com


204 CHAPTER 8 Web services with style
to spin onto the main desktop (the background) display, looking as if it’s a printed 
photograph. The desktop can be dragged to move the photos, and as more pictures 
are dropped onto it, older ones (at the bottom of the heap) gracefully fade away.

8.1.1 The Flickr web service

A web service is a means of communicating between two pieces of software, typically on 
different networked computers. The client request is formulated using HTTP in a way 
that mimics a remote method invocation (RMI); the server responds with a structured 
document of data in either XML or JSON.

 Flickr has quite a rich web service, with numerous functions covering a range of 
the site’s capabilities. It also supports different web service data formats. In our proj-
ect we’ll use a lightweight (“RESTful”) protocol to send the request, with the resulting 
data returned to us as an XML document. REST (Representational State Transfer) is 
becoming increasingly popular as a means of addressing web services; it generally 
involves less work than the heavily structured alternatives based on SOAP.

Before we can go any further, you’ll need to register yourself as a Flickr developer, 
assuming you don’t have an account already.

8.1.2 Getting registered with Flickr

You must register with Flickr so you can call its web service, which is a necessary part of 
this project. Signing up is relatively quick to do and totally free for nonprofessional 
use. Once your account is created you’ll be assigned a key (a long hexadecimal string) 
for use in any software you write accessing the service. The necessity for a key, it seems, 
is primarily to stop a single developer from flooding the site with requests.

 Go to http://www.flickr.com/services/api/ and click the Sign Up link at the head 
of the page to begin the process of creating your account. The site will walk you through 
what you need to do, which shouldn’t take long. Once your account is created, a Your 

Thanks, Sally!
I’d like to thank Sally Lupton, who kindly allowed her gallery to be used to illustrate 
figures 8.1, 8.3, and 8.4 in this chapter. Her Superlambanana photos were certainly 
a lot nicer than anything your humble author could produce.

Not enough REST?
For more background information on REST take a look at its Wikipedia page. The official 
JavaFX site also hosts a Media Browser project that demonstrates a RESTful service.

http://en.wikipedia.org/wiki/Representational_State_Transfer 
http://javafx.com/docs/tutorials/mediabrowser/
    

  

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://javafx.com/docs/tutorials/mediabrowser/
http://www.flickr.com/services/api/


205Using a web service in JavaFX
API Keys link will appear at the head of the page whenever you’re logged in. Click it to 
view your developer account details, including the all-important key.

 The site contains plenty of API documentation and tutorials. We’ll be using only a 
tiny subset of the full API, but once you’ve seen an example of one web service call, it 
should be clear how to apply the documentation to call another.

 So, if you don’t already have a Flickr developer account, put this book down and 
register one right now, before you read any further. You can’t run the project code 
without one, and the very next section will throw us straight into web service coding.

8.2 Using a web service in JavaFX
At the heart of JavaFX’s web service support are three classes. In the javafx.io.http
package there’s the HttpRequest class, used to make the HTTP request; in 
javafx.data.pull there’s PullParser and Event, used to parse the reply.

 Our application also uses three classes itself: FlickrService handles the request 
(using HttpRequest), FlickrResult processes the result (using PullParser and 
Event), and FlickrPhoto stores the details of the photos as they are pulled from 
the result.

 In the sections ahead we’ll examine each of these classes.

8.2.1 Calling the web service with HttpRequest

We’ll start, naturally enough, with the FlickrService. You’ll find it in listing 8.1. As in 
previous chapters, the listing has been broken into stages to aid explanation.

package jfxia.chapter8;

import javafx.io.http.HttpRequest;
import javafx.data.pull.PullParser;
import java.io.InputStream;
import java.lang.Exception;

def REST:String = "http://api.flickr.com/services/rest/";  

function createArgList(args:String[]) : String {        
    var ret="";                                           
    var sep="";                                         
    for(i in [0..<sizeof args step 2]) {                
        ret="{ret}{sep}{args[i]}={args[i+1]}";          
        sep="&";                                        
    }                                                   
    return ret;                                         
}                                                       
// ** Part 2 is listing 8.2; part 3 is listing 8.3

We begin with one variable and one function, at the script level. The variable, REST, 
is the base URL for the web service we’ll be addressing. Onto this we’ll add our 
request and its parameters. The function createArgList() is a useful utility for 
building the argument string appended to the end of REST. It takes a sequence of 

Listing 8.1 FlickrService.fx (part 1)

URL of web 
service

Create HTTP 
query string 
from keys/values
    

  



206 CHAPTER 8 Web services with style
key/value pairs and combines each into a query string using the format key=value, 
separated by ampersands.

 Listing 8.2 shows the top of the FlickrService class itself. 

// ** Part 1 is listing 8.1
public class FlickrService {
    public var apiKey:String;
    public var userId:String;
    public var photosPerPage:Integer = 10;
    public-read var page:Integer = 0;    
    public var onSuccess:function(:FlickrResult);
    public var onFailure:function(:String);        

    var valid:Boolean;                    

    init {                               
        valid = isInitialized(apiKey);     
        if(not valid)                    
            println("API key required.");
    }                                    
// ** Part 3 is listing 8.3

At the head of the class we see several variables:

■ apiKey holds the developer key (the one associated with your Flickr account).
■ userId is for the account identifier of the person whose gallery we’ll be viewing.
■ photosPerPage and page determine the page size (how many thumbs are 

fetched at once) and which page was previously fetched.
■ onSuccess and onFailure are function types, permitting us to run code on the 

success or failure of our web service request.

In the init block we test for apiKey initialization; if it’s unset we print an error mes-
sage. A professional application would do something more useful with the error, of 
course, but for our project a simple error report like this will suffice (it keeps the class 
free of too much off-topic detail).

 We conclude the code with listing 8.3.

// ** Part 1 is listing 8.1; part 2 is listing 8.2
    public function loadPage(p:Integer) : Void {
        if(not valid) throw new Exception("API key not set.");

        page = p;

        var args = [                                      
            "method",    "flickr.people.getPublicPhotos",
            "api_key",    apiKey,
            "user_id",    userId,
            "per_page",   photosPerPage.toString(),
            "page",       page.toString()
        ];

        def http:HttpRequest = HttpRequest {   

Listing 8.2 FlickrService.fx (part 2)

Listing 8.3 FlickrService.fx (part 3)

Callback 
functions

Missing API key?

Check for 
API key

Request 
arguments

Web call
    

  



207Using a web service in JavaFX
            method: HttpRequest.GET;                 
            location: "{REST}?{createArgList(args)}";  
            onResponseCode: function(code:Integer) {        
                if(code!=200 and onFailure!=null)
                    onFailure("HTTP code {code}");
            }
            onException: function(ex:Exception) {  
                if(onFailure!=null)
                    onFailure(ex.toString());
            }
            onInput: function(ip:InputStream) {  
                def fr = FlickrResult {};
                def parser = PullParser  {       
                    documentType: PullParser.XML;  
                    input: ip;                   
                    onEvent: fr.xmlEvent;        
                };                               
                parser.parse();                  
                parser.input.close();            
                if(onSuccess!=null)  onSuccess(fr);
            }
        };
        http.start();
    }
}

In the final part of our service request code loadPage() function is where the action 
is; it takes a page number and accesses the Flickr service to fetch the photo details for 
that page. Each request ends in a call to either onSuccess or onFailure (if popu-
lated), allowing applications to run their own code when the process ends. (We’ll deal 
with how our photo viewer uses these functions later.)

 After (double) checking the apiKey and storing the selected page, loadPage()
creates a sequence of key/value pairs to act as the arguments passed to the service call. 
The first list argument is the function we’re calling on the web service, and the follow-
ing arguments are parameters we’re passing in.

 Flickr’s flickr.people.getPublicPhotos function returns a list of photos for a 
given user account, page by page. We need to pass in our own key, the ID of the per-
son whose gallery we want to read, the number of photos we want back (the page size 
to break the gallery up into), and which page we want. See the web service API docu-
mentation for more details on this function.

 After the argument list we have the HttpRequest object itself. The HTTP request 
doesn’t execute immediately. Web service requests are commonly instigated from 
inside UI event handlers; if we performed the request immediately, it would hog the 
current thread (the GUI thread) and cause our application’s interface to become tem-
porarily unresponsive. Instead, when start() is called, the network activity is pushed 
onto another thread, and we assign callbacks to run when there’s something ready to 
act upon (see figure 8.2).

 The HttpRequest request declaratively sets a number of properties. The method
and location variables tell HttpRequest how and where to direct the HTTP call. To 
form the web address we use the script function createArgList(), turning the args

Method and 
address

Initial 
response

I/O error

Success!

Create and call 
XML parser
    

  



208 CHAPTER 8 Web services with style
sequence into a web-like query string, and append it to the REST base URL. The onRe-
sponseCode, onException, and onInput event function types will be called at different 
stages of the request life cycle. The HttpRequest class actually has a host of different 
functions and variables to track the request state in fine detail (check the API docs), 
but typically we don’t need such fine-grained control.

 The onResponseCode event is called when the initial HTTP response code is 
received (200 means “ok”; other codes signify different results), onException is called 
if there’s an I/O problem, while onInput is called when the result actually starts to 
arrive. The onInput call passes in a Java InputStream object, which we can assign a 
parser to. The JavaFX class PullParser is just such a parser. It reads either XML- or 
JSON-formatted data from the input stream and breaks it down into a series of events. 
To receive the events we need to register a function. But because our particular proj-
ect needs to store some of the data being returned, I’ve written not just a single func-
tion but an entire class (the FlickrResult class) to interact with it. And that’s what 
we’ll look at next.

8.2.2 Parsing XML with PullParser

Because we need somewhere to store the data we are pulling from the web service, 
we’ll create an entire class to interact with the parser. That class is FlickrResult, tak-
ing each XML element as it is encountered, extracting data, and populating its vari-
ables. The class also houses a FlickrPhoto sequence, to store details for each 
individual photo.

 Listing 8.4 is the first part of our class to process and store the information coming 
back from the web service.

package jfxia.chapter8;

import javafx.data.pull.Event;
import javafx.data.pull.PullParser;
import javafx.data.xml.QName;

public class FlickrResult {
    public-read var stat:String;  

Listing 8.4 FlickrResult.fx (part 1)

loadPage() called

’http’ object created

http.start()

GUI thread

HTTP load thread

http.onResponseCode()

http.onInput()

Figure 8.2 When start() is called on an 
HttpRequest object, a second thread takes 
over and communicates its progress through 
callback events, allowing the GUI thread to get 
back to its work.

Status message 
from service
    

  



209Using a web service in JavaFX
    public-read var total:Integer;      
    public-read var perPage:Integer;      
    public-read var page:Integer;       
    public-read var pages:Integer;      

    public-read var photos:FlickrPhoto[];          

    public def valid:Boolean =  bind (stat == "ok");  
// ** Part 2 is listing 8.5

Let’s have a closer look at the details:

■ The stat variable holds the success/failure of the response, as described in the 
reply. If Flickr can fulfill our request, we’ll get back the simple message “ok”.

■ The total variable holds the number of photos in the entire gallery, perPage
contains how many there are per page (should match the number requested), 
and pages details the number of available pages (based on the total and num-
ber of photos per page).

■ page is the current page (again, it should match the one we requested).
■ The valid variable is a handy boolean for checking whether Flickr was able to 

respond to our request.

Listing 8.5 is the second half of our parser class. It contains the code that responds to 
the PullParser events. So we’re not working blindly, the following is an example of 
the sort of XML the web service might reply with. Each opening element tag, closing 
element tag, and loose text content inside an element cause our event handler to 
be called.

<?xml version="1.0" encoding="utf-8" ?> 
<rsp stat="ok">
  <photos page="1" pages="20" perpage="10" total="195">
    <photo id="3188821292" owner="12345678@N09" secret="cafebabe" 
        server="3095" farm="4" title="Hello" 
        ispublic="1" isfriend="0" isfamily="0" /> 
    <!-- Another nine photo elements appear here -->
  </photos>
</rsp>

And now, here is the code to parse this data.

// ** Part 1 is listing 8.4
    public function xmlEvent(ev:Event) : Void {
        if(not (ev.type == PullParser.START_ELEMENT)) {  
            return;
        }

        if(ev.level==0 and ev.qname.name == "rsp") {  
            stat = readAttrS(ev,"stat");
        }
        else if(ev.level==1 and ev.qname.name == "photos") {  
            total = readAttrI(ev,"total");

Listing 8.5 FlickrResult.fx (part 2)

Gallery 
details

Data for each 
photo in pages

Was request 
successful?

Not a start 
element? Exit!

Top level, 
<rsp>

2nd level, 
<photos>
    

  



210 CHAPTER 8 Web services with style
            perPage = readAttrI(ev,"perpage");
            page = readAttrI(ev,"page");
            pages = readAttrI(ev,"pages");
        }
        else if(ev.level==2 and ev.qname.name == "photo") {  
            def photo = FlickrPhoto {              
                id: readAttrS(ev,"id");              
                farm: readAttrS(ev,"farm");        
                owner: readAttrS(ev,"owner");      
                secret: readAttrS(ev,"secret");    
                server: readAttrS(ev,"server");    
                title: readAttrS(ev,"title");      
                isFamily: readAttrB(ev,"isfamily");
                isFriend: readAttrB(ev,"isfriend");
                isPublic: readAttrB(ev,"ispublic");
            };                                     
            insert photo into photos;              
        }
        else {                      
            println("{ev}");
        }
    }

    function readAttrS(ev:Event,attr:String) : String {  
        def qn = QName{name:attr};
        return ev.getAttributeValue(qn) as String;
    }
    function readAttrI(ev:Event,attr:String) : Integer {     
        return java.lang.Integer.parseInt(readAttrS(ev,attr));
    }
    function readAttrB(ev:Event,attr:String) : Boolean {  
        return (readAttrI(ev,attr)!=0);
    }
}

The function xmlEvent() is the callback invoked whenever a node in the XML docu-
ment is encountered (note: node in this context does not refer to a scene graph node). 
Both XML and JSON documents are nested structures, forming a tree of nodes. 
JavaFX’s parser walks this tree, firing an event for each node it encounters, with an 
Event object to describe the type of node (text or tag, for example), its name, its level 
in the tree, and so on.

 Our XML handler is interested only in starting tags; that’s why we exit if the node 
type isn’t an element start. The large if/else block parses specific elements. At level 0 
we’re interested in the <rsp> element, to get the status message (which we hope will be 
“ok”). At level 1 we’re interested in the <photos> element, with attributes describing 
the gallery, page size, and so on. At level 2, we’re interested in the <photo> element, 
holding details of a specific photo on the page we’re reading. For any other type of ele-
ment, we simply print to the console (handy for debugging) and then ignore.

 The <photo> element is where we create each new FlickrPhoto object, with the 
help of three private functions for extracting named attributes from the tag in given 
data formats. Let’s look at the FlickrPhoto class, in listing 8.6.

3rd level, 
<photo>

Create and store 
photo object

Didn’t recognize 
element

Read string 
attribute

Read integer 
attribute

Read boolean 
attribute
    

  



211Using a web service in JavaFX
package jfxia.chapter8;

public def SQUARE:Number = 75; 
public def THUMB:Number = 100;   
public def SMALL:Number = 240; 
public def MEDIUM:Number = 500;
public def LARGE:Number = 1024;

public class FlickrPhoto {
    public-init var id:String;       
    public-init var farm:String;       
    public-init var owner:String;    
    public-init var secret:String;   
    public-init var server:String;   
    public-init var title:String;    
    public-init var isFamily:Boolean;
    public-init var isFriend:Boolean;
    public-init var isPublic:Boolean;

    def urlBase:String = bind                    
        "http://farm{farm}.static.flickr.com/"
        "{server}/{id}_{secret}";
    public def urlSquare:String = bind "{urlBase}_s.jpg";    
    public def urlThumb:String = bind "{urlBase}_t.jpg";       
    public def urlSmall:String = bind "{urlBase}_m.jpg";     
    public def urlMedium:String = bind "{urlBase}.jpg";      
    //public def urlLarge:String = bind "{urlBase}_b.jpg";   
    //public def urlOriginal:String = bind "{urlBase}_o.jpg";
}

Each Flickr photo comes prescaled to various sizes, accessible via slightly different file-
names. You’ll note that script-level constants are used to describe the sizes of these 
images.

■ A square thumbnail is 75 x 75 pixels.
■ A regular thumbnail is 100 pixels on its longest side.
■ A small image is 240 pixels on its longest side.
■ A medium image is 500 pixels on its longest side.
■ A large image is 1024 pixels on its longest side.
■ The original image has no size restrictions.

Inside the class proper we find a host of public-init properties that store the 
details supplied via the XML response. The farm, secret, and server variables are 
all used to construct the web address of a given image. The other variables should be 
self-explanatory.

 At the foot of the class we have the web addresses of each scaled image. The differ-
ent sizes of image all share the same basic address, with a minor addition to the file-
name for each size (except for medium). We can use these addresses to load our 
thumbnails and full-size images. In our project we’ll be working with the thumbnail 
and medium-size images only. The class can load any of the images, but since extra 

Listing 8.6 FlickrPhoto.fx

Image 
pixel sizes

Photo data, 
provided by 
the XML

Base image 
address

Actual 
image 
URLs
    

  



212 CHAPTER 8 Web services with style
steps and permissions may be required to load the larger-size images using the web 
service API, I’ve commented out the last two web addresses. The web service documen-
tation explains how to get access to them.

 That’s all we require to make, and consume, a web service request. Now all that’s 
needed is code to test it, but before we go there, let’s recap the process, to ensure you 
understand what’s happening. 

8.2.3 A recap

The process of calling a web service may seem a bit convoluted. A lot of classes, func-
tion calls, and event callbacks are involved, so here’s a blow-by-blow recap of how our 
project code works:

1 We formulate a web service request in FlickrService, using the service func-
tion we want to call plus its parameters.

2 Our FlickrService has two function types (event callbacks), onSuccess and 
onFailure, called upon the outcome of a web service request. We implement 
functions for these to deal with the data once it has loaded or handle any errors.

3 Now that everything is in place, we use JavaFX’s HttpRequest to execute the 
request itself. It begins running in the background, allowing the current GUI
thread to continue running unblocked.

4 If the HttpRequest fails, onFailure will be called. If we get as far as an Input-
Stream, we create a parser (JavaFX’s PullParser) to deal with the XML
returned by the web service. The parser invokes an event callback function as 
incoming nodes are received, which we assign to a function, xmlEvent() in 
FlickrResult, a class designed to store data received from the web service. 

5 The callback function in FlickrResult parses each start tag in the XML. For 
each photo it creates and stores a new FlickrPhoto object.

6 Once the parsing is finished, execution returns to onInput() in FlickrService, 
which calls onSuccess with the resulting data.

7 In the onSuccess function we can now do whatever we want with the data 
loaded from the service.

Now, at last, we need to actually see our web service in action.

8.2.4 Testing our web service code

Having spent the last few pages creating a set of classes to extract data from our cho-
sen web service, we’ll round off this part of the project with listing 8.7, showing how 
easy it is to use.

package jfxia.chapter8;

FlickrService {
    apiKey: "-";    // <== Your key goes here
    userId: "29803026@N08";                  

Listing 8.7 TestWS.fx

User’s gallery 
to view
    

  



213Picture this: the PhotoViewer application
    photosPerPage: 10;

    onSuccess: function(res:FlickrResult) { 
        for(photo in res.photos) {            
            println("{photo.urlMedium}");
        }                                   
    }                                       
    onFailure: function(s:String) {
        println("{s}");              
    }                              
}.loadPage(1);

javafx.stage.Stage { visible: true; }     

Listing 8.7 is a small test program to create a web service request for photo details and 
print the URL of each medium-size image. To make the code work you’ll need to sup-
ply the key you got when you signed up for a Flickr developer account.

 As you can see, all that hard work paid off in the form of a nice and simple class we 
can use to get at our photo data.

 Because the network activity takes place in the background, away from the main 
GUI thread, we need to stop the application from immediately terminating before 
Flickr has time to send back any details. We do this by creating a dummy window; it’s a 
crude solution but effective. If all goes well, the code should spit out onto the console 
a list of 10 web addresses, one for each medium-size image in the first page of the gal-
lery we accessed.

 Now that our network code is complete, we can get back to our usual habit of writ-
ing cool GUI code.

8.3 Picture this: the PhotoViewer application
In this, the second part of the project, we’re going to use the web service classes we 
developed earlier in an application to throw photos on screen. The application will be 
full screen—that is to say, it will not run in a window on the desktop but will take over 
the whole display. It will also use transitions to perform its movement and other ani-
mated effects.

 The application has a bar of thumbnails along its foot, combined with three but-
tons, demonstrated in figure 8.3. One button moves the thumbnails forward by a 
page, another moves them back, and the final button clears the main display area (or 
desktop, as I’m calling it) of photos. As we move over the thumbnails in the bar, the 
associated title text, which the web service gave us, is displayed.

 To get a photo onto the desktop, we merely click its thumbnail to see it spin dra-
matically onto the display scaled to full size. Initially we scale the tiny thumbnail up to 
the size of the photo, while we wait for the higher-resolution image to be loaded. As 
we wait, a progress bar appears in the corner of the photo, showing how much of the 
image has arrived over the network. When the high-resolution image finally finishes 
loading, it replaces the scaled-up thumbnail, and the progress bar vanishes.

 We can click and drag individual images to move them around the desktop, or we 
can click on an empty part of the desktop and drag to move all the images at once.

Success, print 
photo URLs

Failure, print 
message

Prevent 
termination
    

  



214 CHAPTER 8 Web services with style
The application itself is constructed from two further classes, weighing in at over 200 
lines apiece. But don’t worry, they still contain plenty of fresh JavaFX goodness for us 
to explore. As usual, they’ve been broken up into parts to aid explanation. We begin 
with the class that handles the thumbnail bar.

8.3.1 Displaying thumbnails from the web service: the GalleryView class

The GalleryView class is the visual component that deals with the Flickr web service, 
and it presents a horizontal list of thumbnails based on the data it extracts from the 
service. Figure 8.4 shows the specific part of the application we’re building.

That’s what we want it to look like; let’s dive straight into the source code with listing 
8.8. GalleryView.fx is presented in four parts: listings 8.8, 8.9, 8.10, and 8.11. Here we 
see the variables in the top part of our GalleryView class. 

package jfxia.chapter8;

import javafx.animation.Interpolator;

Listing 8.8 GalleryView.fx (part 1)

Figure 8.3 Photos selected from the thumbnail bar fly onto the desktop.

Figure 8.4 The custom scene graph node we are creating
    

  



215Picture this: the PhotoViewer application
import javafx.animation.transition.TranslateTransition;
import javafx.scene.CustomNode;
import javafx.scene.Group;
import javafx.scene.Node;
import javafx.scene.image.Image; 
import javafx.scene.image.ImageView; 
import javafx.scene.input.MouseEvent;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Font;
import javafx.scene.text.Text;

package class GalleryView extends CustomNode {
    def thumbWidth:Number = FlickrPhoto.THUMB; 
    def thumbHeight:Number = FlickrPhoto.THUMB;  
    def thumbBorder:Number =  10;              

    public-init var apiKey:String;
    public-init var userId:String;  
    package var width:Number = 0;
    package def height:Number = thumbHeight + thumbBorder*2;
    package var action:function(:FlickrPhoto,              
        :Image,:Number,:Number);

    public-read var page:Integer = 1
        on replace {                  
            loadPage();             
        };    
    public-read var pageSize:Integer =
        bind {
            def aw:Number = width;                     
            def pw:Number = thumbWidth + thumbBorder*2;  
            (aw/pw).intValue();                        
        }
        on replace {
            if(pageSize>0)  createUI();  
            loadPage();
            
        };
    var service:FlickrService;    
    var result:FlickrResult;      
    var thumbImages:Image[];      

    var topGroup:Group = Group{};
    var thumbGroup:Group;          
    var textDisplay:Text;        
// ** Part 2 is listing 8.9; part 3, listing 8.10; part 4 is listing 8.11

At its head we see a few handy constants being defined: the maximum dimensions of a 
thumbnail (brought in from the FlickrPhoto class for convenience) and the gap 
between each thumbnail. The other variables are:

■ apiKey and userId should be familiar from the first part of the project. We set 
these when we create a GalleryView, so it can access the Flickr service.

■ The height of the bar we can calculate from the size of the thumbnails and their 
surrounding frames, but the width is set externally by using the size of the screen.

Handy 
constants

Flickr details
Thumbnail 
clicked 
event

New page means 
thumbs reload

Width determines 
thumbnail count

Rebuild scene 
graph on change

Flickr classes and 
fetched thumbs

Handy scene 
graph stuff
    

  



216 CHAPTER 8 Web services with style
■ The action function type holds the callback we use to tell the outside applica-
tion that a thumbnail has been clicked. The parameters are the FlickrPhoto
associated with this thumbnail, the thumb Image already downloaded, and the 
x/y location of the thumbnail in the bar.

■ The page and pageSize variables control which page of thumbnails is loaded 
and how many thumbnails are on that page. Changing either causes an access 
to the web service to fetch fresh data, which is why both have an on replace
block. A change to pageSize will also cause the contents of the scene graph to 
be rebuilt, using the function we created for this very purpose. The page size is 
determined by the number of thumbnails we can fit inside the width, which 
explains the bind.

■ The private variables service, results, and thumbImages all relate directly to 
the web service. The first is the interface we use to load each page of thumb-
nails, the second is the result of the last page load, and finally we have the actual 
thumbnail images themselves.

■ Private variables topGroup, thumbGroup, and textDisplay are all parts of the 
scene graph that need manipulating in response to events.

Now we’ll turn to the actual code that initializes those variables. Listing 8.9 sets up the 
web service and returns the top-level node of our bit of the scene graph. 

// ** Part 1 is listing 8.8
    init {
        service = FlickrService {  
            apiKey: bind apiKey;
            userId: bind userId;
            photosPerPage: bind pageSize;
            onSuccess: function(res:FlickrResult)
            {   result = res;                      
                assignThumbs(result);            
            }                                    
            onFailure: function(s:String)
            {   println("{s}");            
            }                            
        };
    }

    override function create() : Node {           
         topGroup;                                
    }                                             
// ** Part 3 is listing 8.10; part 4, listing 8.11

The code shouldn’t need too much explanation. We register two functions with the 
FlickrService class: onSuccess will run when data has been successfully fetched, and 
onFailure will run if it hits a snag. In the case of a successful load, we store the result
object so we can use its data later, and we call a private function (see later for the 
code) to copy the URLs of the new thumbnails out of the result and into the 
thumbImage sequence, causing them to start loading.

Listing 8.9 GalleryView.fx (part 2)

Flickr web 
service class

Do this on 
success

Do this on 
failure

Return scene 
graph node
    

  



217Picture this: the PhotoViewer application
 Listing 8.10, the third part of the code, takes us to the scene graph for this class.

// ** Part 1 is listing 8.8; part 2, listing 8.9
    function createUI() : Void {                   
        def sz:Number = thumbWidth + thumbBorder*2;
        var thumbImageViews:ImageView[] = [];

        textDisplay = Text {         
            font: Font { size: 30; }
            fill: Color.BROWN;
            layoutX: bind 
                (width-textDisplay.layoutBounds.width)/2;
        }

        thumbGroup = Group {                   
            content: for(i in [0..<pageSize]) {
                var iv:ImageView = ImageView {
                    layoutX: bind i*sz + thumbBorder +      
                        (if(iv.image==null) 0                 
                        else (thumbWidth-iv.image.width)/2);
                    layoutY: bind thumbBorder +             
                        (if(iv.image==null) 0               
                        else (thumbHeight-iv.image.height)/2);
                    fitWidth: thumbWidth;  
                    fitHeight: thumbHeight;        
                    preserveRatio: true;   

                    image: bind if(thumbImages!=null)
                        thumbImages[i] else null;      
                };
                insert iv into thumbImageViews;
                iv;
            };
        };

        def frameGroup:Group = Group {         
            content: for(i in [0..<pageSize]) {
                def r:Rectangle = Rectangle {
                    layoutX: i*sz + 2;
                    width: sz-4;  height: sz - 4;
                    arcWidth: 25;  arcHeight: 25;
                    opacity: 0.15;
                    fill: Color.WHITE;

                    onMouseEntered: function(ev:MouseEvent) {  
                        r.opacity = 0.35;
                        if(result!=null and 
                            i<(sizeof result.photos)) {
                            textDisplay.content = 
                                result.photos[i].title;
                        }
                    }
                    onMouseExited: function(ev:MouseEvent) {  
                        r.opacity = 0.15;
                        textDisplay.content = "";
                    }

Listing 8.10 GalleryView.fx (part 3)

Create actual 
scene graph

Photo title 
banner text

Sequence of 
thumbnail images

Center 
align 
thumb

Resize 
image

Use image, if 
available

Background 
rectangle

Change 
opacity, 
show 
title text

Change 
opacity, 
clear 
title text
    

  



218 CHAPTER 8 Web services with style
                    onMouseClicked: function(ev:MouseEvent) {  
                        if(action!=null) {
                            def f = result.photos[i];
                            def t = thumbImages[i];
                            def v = thumbImageViews[i];
                            def x:Number = v.layoutX;
                            def y:Number = v.layoutY;
                            action(f, t,x,y);
                        }
                    }
                };
            };    
        };

        topGroup.layoutX = (width - pageSize*sz) / 2;  
        topGroup.content =  [                     
             frameGroup , thumbGroup , textDisplay  
        ];                                        
    }
// ** Part 4 is listing 8.11

Listing 8.10 is the real meat of the scene graph. Whenever the pageSize variable is 
changed (assuming it’s not the initial zero assignment), the createUI() function runs 
to repopulate the topGroup node, which is the root of our scene graph fragment.

 The code constructs three layers of node, as shown in figure 8.5. We group the 
images separately from their background frames, so they can be animated indepen-
dently. Whenever a new page of thumbnails is loaded, the current thumbnails will fall 
out of view; we can animate them separately only if they are grouped apart from their 
framing rectangles.

 The textDisplay is used to show the title of each image as the mouse passes over 
it. We build the thumbGroup by adding an image at a time, scaled to fit the space avail-
able (which shouldn’t be necessary if Flickr deliver the thumbs in the size we expect, 
but just in case this changes). We store each Image as we create it, because we’ll need 
access to this thumbnail in the onMouseClicked()event handler.

 The frameGroup is where we put all the mouse handling code. A rollover causes 
the photo’s text to be displayed (entered) or cleared (exited), and the frame’s opacity 
is changed. When the mouse is clicked it triggers an action event, with the appropri-
ate FlickrPhoto object, its thumbnail image (we stored it earlier), and the coordi-
nates within the bar, all bundled up and passed to the function assigned to action. 

Fire action 
event

Center 
gallery view

Create top-
level node

Moon landing

textDisplaythumbGroup

frameGroup

Figure 8.5 The thumbnail bar 
scene graph is made up on three 
core components: a group of frame 
rectangles in the background, a 
group of images over it, and a text 
node to display the thumb titles.
    

  



219Picture this: the PhotoViewer application
Almost there! Only one block of code left, listing 8.11, and it is has a surprise up its sleeve.

// ** Part 1 is listing 8.8; part 2, listing 8.9; part 3, listing 8.10
    package function next() : Void { setPage(page+1); }
    package function previous() : Void { setPage(page-1); }
    function setPage(p:Integer) : Void {                  
        if(result!=null) {
            page = 
                if(p<=0)  result.pages    
                else if(p>result.pages)  1  
                else  p;                  
        }
    }    

    function loadPage() : Void {                     
        if(service!=null and pageSize>0 and page>0) {
            TranslateTransition {                    
                node: thumbGroup;                    
                byX: 0;  byY: height;                
                interpolator: Interpolator.EASEIN;
                duration: 0.5s;
                action: function() {          
                    unassignThumbs();
                    thumbGroup.translateY = 0;
                    service.loadPage(page);
                }
            }.play();                      
        }
    }
    function assignThumbs(res:FlickrResult) : Void {     
        thumbImages = for(i in [0..<sizeof res.photos]) {
            var im = Image {
                url: res.photos[i].urlThumb;
                backgroundLoading: true;
            };
        };
    }
    function unassignThumbs() : Void {  
        thumbImages =  [];
    }    
}

The final part of our mammoth GalleryView class begins with three functions for 
manipulating the page variable, ensuring it never strays outside the acceptable range 
(Flickr starts its page numbering at 1, in case you were wondering). The next() and 
previous() functions will be called by outside classes to cause the gallery to advance 
or retreat.

 We’ll skip over loadPage() for now (we’ll come back to it in a moment). The 
assignThumbs() and unassignThumbs() functions do what their name suggests. The 
first takes a FlickrResult, as retrieved from the web service, and populates the Ima-
geView nodes in the thumbnail bar with fresh Image content. The second clears the 
thumbImages sequence, to remove the thumbnails from the bar.

Listing 8.11 GalleryView.fx (part 4)

Make sure page 
is within range

Wrap around on 
over/underflow

Load page 
of thumbs

Move...

...this node...

...by this amount.

Do this, when 
finished

Run transition

URLs from result 
into ImageViews

Clear thumb 
image
    

  



220 CHAPTER 8 Web services with style
 The loadPage() function is the code ultimately responsible for responding 
to each request to fetch a fresh page of thumbnails from the web service. The en- 
tire function is based on a strange new type of operation called a transition. We’ve 
yet to see a transition in any of the projects so far, so let’s stop and examine it 
in detail.

8.3.2 The easy way to animate: transitions

So far, whenever we wanted to animate something we had to build a Timeline and use 
it to manipulate the variables we wanted to change. It doesn’t take a rocket scientist to 
realize a handful of common node properties (location, rotation, opacity, etc.) are fre-
quent targets for animation. We could save a lot of unnecessary boilerplate if we cre-
ated a library of prebuilt animation classes, pointed them at the nodes we wanted to 
animate, and then let them get on with the job.

 If you haven’t guessed by now, this is what transitions are. Let’s have another look at 
the code in the last section:

TranslateTransition {
    node: thumbGroup;
    byX: 0;  byY: height;
    interpolator: Interpolator.EASEIN;
    duration: 0.5s;
    action: function() {
        unassignThumbs();
        thumbGroup.translateY = 0;
        service.loadPage(page);
    }
}.play();            

The TranslateTransition is all about movement. It has a host of different configura-
tion options that allow us to move a node from a given point, to a given point, or by a 
given distance. In our example we’re moving the entire thumbnail group downward 
by the height of the thumbnail bar, which (one assumes) would have the effect of 
sending the thumbnails off the bottom of the screen.

 When the transition is over, we have the opportunity to run some code. That’s the 
purpose of the action function type. When this code runs, we know the thumbnails 
will be off screen, so we unassign them to get rid of the current images. Then we move 
the group we just animated back to its starting position, by resetting translateY
(note: translateY, not layoutY, because TranslateTransition doesn’t change its tar-
get node’s layout position). And finally, we ask the web service to load a fresh page of 
thumbnails. This call will return immediately, as the web service interaction is carried 
out on another thread. In listing 8.9 we saw that the web service invokes 
assignThumbs() when its data has successfully loaded, so the images we just deleted 
with unassignThumbs() should start to be repopulated once the web service code 
is finished.

 The call to play(), in case you haven’t realized, fires the transition into action.
    

  



221Picture this: the PhotoViewer application
8.3.3 The main photo desktop: the PhotoViewer class

To round off our project we’re going to look at clicking and dragging bits of the scene 
graph, and we’ll play with even more types of transition. It all takes place in the Photo-
Viewer class, of which listing 8.12 is the first part. PhotoViewer.fx is divided into four 
parts; the final one in listing 8.15.

package jfxia.chapter8;

import javafx.animation.Interpolator;
import javafx.animation.transition.FadeTransition;
import javafx.animation.transition.ParallelTransition;
import javafx.animation.transition.ScaleTransition;
import javafx.animation.transition.RotateTransition;
import javafx.animation.transition.TranslateTransition;
import javafx.geometry.Bounds;
import javafx.scene.*;
import javafx.scene.control.Button;
import javafx.scene.control.ProgressBar;
import javafx.scene.image.*; 
import javafx.scene.input.MouseEvent;
import javafx.scene.paint.*;
import javafx.scene.layout.LayoutInfo;
import javafx.scene.layout.Tile;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;
import javafx.util.Math;

import java.lang.System;
import java.util.Random;

def buttonW:Number = 90;                                 
def buttonH:Number = 35;                                   
def maxImages:Integer = 6;                               
def rand:Random = new Random(System.currentTimeMillis());

var sc:Scene;

def exitButton = Button  {           
    text: "Exit";
    layoutX: bind sc.width - buttonW;
    width: buttonW;  height: buttonH;
    action: function() { FX.exit(); }
};

def mouseHandler:Rectangle = Rectangle {  
    var dragX:Number;
    var dragY:Number;
    width: bind sc.width;
    height: bind sc.height;
    opacity: 0;
    onMousePressed: function(ev:MouseEvent) {
        dragX=ev.x;  dragY=ev.y;               
    }                                        

Listing 8.12 PhotoViewer.fx (part 1)

Constants and 
utility objects

Exit 
button

Capture desktop 
click events

Remember 
initial position
    

  



222 CHAPTER 8 Web services with style
    onMouseDragged: function(ev:MouseEvent) {
        var idx:Integer = 0;                   
        for(i in desktopGroup.content) {     
            def v:Number = 1.0 + idx/3.0;    
            i.layoutX += (ev.x-dragX) * v;   
            i.layoutY += (ev.y-dragY) * v;   
            idx++;                           
        }                                    
        dragX=ev.x;  dragY=ev.y;             
    }                                        
}
def desktopGroup:Group = Group {}              

// ** Part 2 is listing 8.13; part 3, listing 8.14; part 4, listing 8.15

At the head of the source we define a few constants, such as the button size and max-
imum number of photos on the desktop. We also create an instance of Java’s random 
number class, which we’ll use to add a degree of variety to the animations. JFX’s 
javafx.util.Math class has a random() function, but it only returns a Double
between 0 and 1. (Although it has fewer options, our code would be able to run out-
side the desktop, where the full Java SE libraries aren’t necessarily available.)

 To get the dimensions of the screen we reference the application’s Scene, which is 
what the sc variable is for. JavaFX has a class called javafx.stage.Screen, detailing all 
the available screens on devices that accommodate multiple monitors. We could tie 
the layout to the data in Screen, but referencing Scene instead makes it easier to 
adapt the code so it no longer runs full screen.

 The exit button, imaginatively named exitButton, comes next. Then we define an 
invisible Rectangle, for capturing desktop mouse clicks and drag events. When the 
user clicks an empty part of the desktop, the event will be directed to this shape. On 
button down it stores the x/y position, and as drag events come in it moves all the 
nodes inside a Group called desktopGroup. This group is where all the desktop photos 
are stored. As each is moved, the code adds a small scaling factor, so more recent 
(higher) photos move farther than earlier (lower) ones, creating a cool parallax 
effect. (My friend Adam wasn’t so keen on the parallax effect when I showed it to him, 
but what does he know?)

 Moving on, listing 8.13 shows us our GalleryView class in action.

// ** Part 1 is listing 8.12
def galView:GalleryView = GalleryView      
{   layoutY: bind (sc.height-galView.height);
    width: bind sc.width-100;                  

    apiKey: "-";  // <== Your key goes here
    userId: "29803026@N08";                  

    action: function(ph:FlickrPhoto ,     
        im:Image,x:Number,y:Number) {
        def pv:Node = createPhoto(ph,im);

Listing 8.13 PhotoViewer.fx (part 2)

Move all 
photos with 
parallax

Photos 
added here

Thumbnail bar

Position 
and size

Flickr 
details

Thumbnail 
clicked
    

  



223Picture this: the PhotoViewer application
        def pvSz:Bounds = pv.layoutBounds;
        def endX:Number = (sc.width-pvSz.width) / 2;
        def endY:Number = (sc.height-pvSz.height) / 2;
        ParallelTransition {                          
            node: pv;
            content: [
                TranslateTransition {                 
                    fromX: galView.layoutX + x;         
                    fromY: galView.layoutY + y;       
                    toX: endX;                        
                    toY: endY;                        
                    interpolator: Interpolator.EASEIN;
                    duration: 0.5s;                   
                } ,                                   
                ScaleTransition {             
                    fromX: 0.25;  fromY: 0.25;  
                    toX: 1.0;  toY: 1.0;      
                    duration: 0.5s;           
                },                            
                RotateTransition {                     
                    fromAngle: 0;                        
                    byAngle: 360 + rand.nextInt(60)-30;
                    duration: 0.5s;                    
                }                                      
            ];
        }.play();

        insert pv into desktopGroup.content;  

        if((sizeof desktopGroup.content) > maxImages) {
            FadeTransition {                             
                node: desktopGroup.content[0];         
                fromValue:1;  toValue:0;               
                duration: 2s;                          
                action: function() {                   
                    delete desktopGroup.content[0];    
                }                                      
            }.play();                                  
        }                                              
    };
};
// ** Part 3 is listing 8.14; part 4, listing 8.15

Here’s a really meaty piece of code for us to chew on. The action event does all man-
ner of clever things with transitions to spin the photo from the thumbnail bar onto 
the desktop. But let’s look at the other definitions first. We need the thumbnail bar to 
sit along the bottom of the screen, so the width and layoutY are bound to the Scene
object’s size. We then plug in the familiar Flickr apiKey and userID (remember to 
provide your own key).

 The action function runs when someone clicks a thumbnail in the GalleryView. 
It passes us the FlickrPhoto object, a copy of the thumbnail-size image (we’ll use this 
as a stand-in while the full-size image loads), and the coordinates of the image within 
the bar so we can calculate where to start the movement transition.

Perform transitions 
together

Move: onto 
desktop from 
thumb bar

Scale: 
quarter 
to full

Rotate: Full 360, 
plus/minus random

Add photo to 
desktopGroup

Too many photos 
on desktop?
    

  



224 CHAPTER 8 Web services with style
 We need a photo to work from, and the createPhoto() is a handy private function 
that creates one for us, complete with white border, shadow, loading progress bar, and 
the ability to be dragged around the desktop. We’ll examine its code at the end of the 
listing; for now accept that pv is a new photo to be added to the desktop. The endX
and endY variables are the destination coordinates on the desktop where the image 
will land. We use the photo’s dimensions, from layoutBounds, to center it.

 The ParallelTransition is another 
type of animation transition, except it 
doesn’t have any direct effect itself. It 
acts as a group, playing several other 
transitions at the same time. In our code 
we use the ParallelTransition with 
three other transitions, represented in 
figure 8.6. 

 The TranslateTransition you’ve 
already seen; it moves the image from 
the thumbnail bar into the center of 
the desktop. At the same time the 
ScaleTransition makes it grow from a 
quarter of its size to full size, over the 
same period of time. The Rotate-
Transition spins the node by 360 
degrees, plus or minus a random angle, no more than 30 degrees either way. Note how 
we only have to specify the actual target node at the ParallelTransition level, not at 
every transition contained within it. We fire off the transition to run in the background 
and add the new photo to the desktopGroup, to ensure it’s displayed on the screen.

 The final block of code uses yet another transition, this time a FadeTransition. 
We don’t want too many photos on the desktop at a time, so once the maximum has 
been exceeded we kick off a fade to make the oldest photo gracefully vanish, and then 
(using an action) we delete it from the desktopGroup.

 In the third part of the PhotoViewer code (listing 8.14) we’ll tie off the loose ends, 
getting ready to build the scene graph.

// ** Part 1 is listing 8.12; part 2, listing 8.13 
def controls:Tile = Tile {                                  
    def li = LayoutInfo { width: buttonW;  height: buttonH }
    layoutX: bind sc.width - buttonW;
    layoutY: bind sc.height - controls.layoutBounds.height;
    hgap: 5;
    columns: 1;
    content: [
        Button {          
            text: "Clear";
            layoutInfo: li;                                  

Listing 8.14 PhotoViewer.fx (part 3)

Clear/prev/next 
buttons

Clear: empty 
desktopGroup

Translate

Scale

Rotate

Parallel

Figure 8.6 All three transitions, translate 
(movement), scale, and rotate, are performed at 
the same time to the same scene graph node.
    

  



225Picture this: the PhotoViewer application
            action: function() { desktopGroup.content = []; }
        } ,                                                  
        Button {                                  
            text: "Next";                           
            layoutInfo: li;                       
            action: function() { galView.next(); }
        } ,                                       
        Button {                                      
            text: "Previous";                           
            layoutInfo: li;                           
            action: function() { galView.previous(); }
        }                                             
    ],
}

Stage {
    scene: sc = Scene {
        content: [                       
            mouseHandler, desktopGroup,    
            galView, controls, exitButton
        ];                               
        fill: LinearGradient {
            endX: 1;  endY: 1;  proportional: true;
            stops: [
                Stop { offset: 0;  color: Color.WHITE; } ,
                Stop { offset: 1;  color: Color.GOLDENROD; }
            ];
        };
    }    
    fullScreen: true;        
};
// ** Part 4 is listing 8.15

Listing 8.14 is quite tame compared to the previous two parts of PhotoViewer. Three 
JavaFX buttons allow the user to navigate the gallery using the exposed functions in 
GalleryView and to clear the desktop by emptying desktopGroup.contents. Then we 
build the actual Stage itself by combining the screenwide mouse hander, photo 
group, gallery, and buttons. The Scene background is set to a pleasant yellow/gold 
tint, a suitable backdrop for our photos. And speaking of photos, listing 8.15 has the 
final piece of code in this source file, a function to build our photo nodes.

// ** Part 1 is listing 8.12; part 2, listing 8.13; part 3, listing 8.14
function createPhoto(photo:FlickrPhoto, image:Image) : Node {
    var im:Image;
    var iv:ImageView;
    var pr:ProgressBar;

    def w:Number = bind iv.layoutBounds.width + 10; 
    def h:Number = bind iv.layoutBounds.height + 10;  

    def n:Group = Group {
        var dragOriginX:Number;
        var dragOriginY:Number;  

Listing 8.15 PhotoViewer.fx (part 4)

Clear: empty 
desktopGroup

Next: 
next page

Previous: 
last page

Add to 
application scene

Full screen, 
please

Photo size 
(without shadow)

Drag 
variables
    

  



226 CHAPTER 8 Web services with style
        content: [
            Rectangle {                        
                layoutX: 15;  layoutY: 15;       
                width: bind w;  height: bind h;
                opacity: 0.25;                 
            } ,                                
            Rectangle {                        
                width: bind w;  height: bind h;  
                fill: Color.WHITE;             
            } ,                                

            iv = ImageView {                  
                layoutX: 5;  layoutY: 5;        
                fitWidth: FlickrPhoto.MEDIUM; 
                fitHeight: FlickrPhoto.MEDIUM;
                preserveRatio: true;          
                //smooth:true;                
                image: im = Image {           
                    url: photo.urlMedium;     
                    backgroundLoading: true;  
                    placeholder: image;       
                };                            
            } ,                               
            pr = ProgressBar {                   
                layoutX: 10;  layoutY: 10;         
                progress: bind im.progress/100.0;
                visible: bind (pr.progress<1.0); 
            }                                    
        ];

        blocksMouse: true;                          
        onMousePressed: function(ev:MouseEvent) {
            dragOriginX=ev.x;  dragOriginY=ev.y;    
        }
        onMouseDragged: function(ev:MouseEvent) {
            n.layoutX += ev.x-dragOriginX;   
            n.layoutY += ev.y-dragOriginY;     
        }
    };
}

We’ve saved the best for last; this is real heavy-duty JavaFX Script coding! The create-
Photo() function constructs a scene graph node to act as our full-size desktop photo, 
but it does more than just that. It:

■ Creates a white border and shadow to fit around the photo, matched to the cor-
rect dimensions of the image.

■ Displays a scaled thumbnail and kicks off the loading of the full-size image.
■ Displays a progress meter while we wait for the full image to load.
■ Allows itself to be dragged by the mouse, within its parent (the desktop).

At the top of the function we define some variables to reference parts of the scene 
graph we’re creating. The variables w and h are the size of the photo, including its 
white border. The first Rectangle inside our Group is the shadow, using the default 

Shadow 
rectangle

White border 
rectangle

ImageView 
displays thumb 
or photo

Progress 
bar bound 
to loading

Mouse events 
stop here

Record click 
start coords

Update coordinates 
from drag
    

  



227Picture this: the PhotoViewer application
color (black) set to a quarter opacity. I experimented with using the DropShadow effect 
class inside javafx.scene.effect but found it had too much of a detrimental impact 
on the application’s frame rate, so this Rectangle is a kind of poor man’s alternative. 
The shadow is followed by the white photo border, and this in turn is followed by the 
ImageView to display our photo.

 We make sure the image is sized to fit the proportions of Flickr’s medium-size photo, 
and we point to the medium photo’s URL from the FlickrPhoto object. Here’s the 
clever part: we assign the thumbnail as the placeholder while we wait for the full-size 
image to load. This ensures we get something to display immediately, even if it’s blocky.

 The progress bar completes the scene graph contents. It will be visible only so long 
as there’s still some loading left to be done.

 That’s the scene graph; now it’s time to look at the event handlers.

blocksMouse: true;
onMousePressed: function(ev:MouseEvent) {
    dragOriginX=ev.x;  dragOriginY=ev.y;
}
onMouseDragged: function(ev:MouseEvent) {
    n.layoutX += ev.x-dragOriginX;
    n.layoutY += ev.y-dragOriginY;
}

The example is the chunk of code responsible for allowing us to drag the node 
around the desktop display. The blocksMouse setting is very important; without it 
we’d get all manner of bizarre effects whenever we moved a photo. When the mouse 
button goes down on a given part of the screen, there may be numerous scene graph 
nodes layered beneath it, so what gets the event? The highest node? The lowest node? 
All of them?

 The answer is “all of them,” working from front to back, unless we take action to stop 
it. If we allowed mouse events to be applied to both a photo and the underlying desktop, 
we’d get two sets of actions at once. With some 
applications this might be desirable, but in our 
case it is not; the event should go to either an 
individual photo or the desktop, but not both! 
The handy blocksMouse variable can be set to 
prevent mouse events from traveling any far-
ther down the stack of nodes.

 The remainder of the event code should 
be fairly obvious. When the mouse goes 
down we record its start position, relative to 
the top-left corner of the node. Even though 
the node will be rotated on the desktop, the 
mouse coordinates still work in sync with the 
rectangular shape of the photo, because the 
coordinates are local to the interior of the 
node (see figure 8.7). Drag events then 

(0,0)

(100,0)

(0,100)

(100,100)

( )(0,0) ( 0 )(200,0)

00(200,200)( )(0,200)

Figure 8.7 The coordinate system of a 
node always matches the rotation of the 
node itself. The gray rectangle has been 
rotated 30 degrees clockwise, yet its 
local coordinate system is unaffected.

  
    



228 CHAPTER 8 Web services with style
update the layout position of the node within its parent, causing it to move inside 
the desktop.

 Now that our JavaFX Script code is done and dusted, we can try running the 
application.

8.3.4 Running the application

Before running the application, make sure you’ve set your own Flickr API key (the one 
you got after registering) into the apiKey variable in listing 8.13. Failure to do so will 
mean the code will exit with an exception.

 Once the application is running, the screen should look like figures 8.1 and 8.3. A 
paged thumbnail image display should appear at the foot of the screen, with clicked 
images flying onto the main desktop. Initially the full-size image will lack detail, as a 
copy of the thumbnail is scaled up to act as a placeholder while the high-res version 
loads. After a second or two, however, the scaled thumbnail should be replaced by the 
real image (depending on how fast your internet connection is).

 Clicking and dragging the images on the desktop will move them around, while 
clicking and dragging an empty part of the desktop will move all the desktop images 
currently displayed. The desktop will show only a handful of images at a time; older 
images will fade away as new ones are added.

 The application demonstrates a lot of manipulation of nodes, including scaling, 
rotation, and movement. This seems an ideal time to discuss how JavaFX calculates the 
size (bounds) of each part of the scene graph when various transformations are 
applied. So that’s what we’ll do next.

8.4 Size matters: node bounds in different contexts
In this project we had a lot of rotating and scaling of nodes, and we saw prominent use 
of layoutBounds and other node properties. If you browsed the JavaFX API documen-
tation, you may have noticed that every node has several javafx.geometry.Bounds
properties, publicizing its location and size. Each defines two x and y coordinates: top-
left corner and bottom-right corner. But why so many Bounds—wouldn’t one be 
enough, and how do they relate to each other?

 The truth is they detail the location of the node at different points during its jour-
ney from abstract shape in a scene graph, to pixels on the video screen. The journey 
looks like this:

1 We start with the basic node.
2 At this point layoutBounds is calculated.
3 Any effects are performed (reflections, drop shadow, etc.), as specified by the 

node’s effect property.
4 If the cache property is set to true, the node may be cached as a bitmap to 

speed future updates.
5 Opacity is applied next, as per the opacity property.
6 The node is clipped according to its clip property, if set.
7 At this point boundsInLocal is calculated.
    

  



229Summary
8 Any transforms are then applied, translating, rotating, and scaling the node.
9 The node is scaled, by scaleX and scaleY.

10 The rotate property is now applied.
11 The node origin is moved within its parent, using layoutX/translateX and 

layoutY/translateY.
12 At this point boundsInParent is calculated.

In layperson’s terms layoutBounds is the size the node thinks it is. Most of the time these 
are the bounds you’ll use to read the node’s size or lay it out. Next, boundsInLocal
accommodates any nontransforming alterations (drop shadow, clip, etc.) applied to the 
node. Usually effects are ignored during layout (we usually want two nodes placed side 
by side to touch, even if they have surrounding drop shadows), so you’ll probably find 
boundsInLocal is only infrequently needed in your code. Finally, boundsInParent
exposes the true pixel footprint of the node inside its parent, once all effects, clips, and 
transformation operations have been applied. Since the scene graph translates coordi-
nate spaces automatically, including for events, you’ll likely find there are very few cir-
cumstances where you actually need to reference boundsInParent yourself.

8.5 Summary
This has been quite a long project, and along the way we’ve dealt with a lot of impor-
tant topics. We started by looking at addressing a web service and parsing the XML
data it gave back. This is a vital skill, as the promise of cloud computing is ever more reli-
ance on web services as a means of linking software components. Although we 
addressed only one Flickr method, the technique is the same for all web service calls. 
You should be able to extend the classes in the first part of our project to talk to other 
bits of the Flickr API with ease. Why not give it a try?

 In the main application we threw nodes around the screen with reckless abandon, 
thanks to our new friend the transition. Transitions take the sting out of creating beau-
tiful UI animation, and as such they deserve prime place in any JavaFX programmer’s 
toolbox. Why not experiment with the other types of transition javafx.animation. 
transition has to offer?

 You’ll be glad to know that not only do we now have a nice little application to view 
our own (or someone else’s) photos with, but we’ve passed an important milestone on 
our journey to master JavaFX. With this chapter we’ve now touched on most of the 
important scene graph topics. Sure, we didn’t get to use every transition, or try out 
every different effect, and we didn’t even get to play with every different type of shape 
in the javafx.scene.shape package, but we’ve covered enough of a representative 
sample that you should now be able to find your way around the JavaFX API documen-
tation without getting hopelessly lost.

 In the next chapter we’ll move away from purely language and API concerns to look 
at how designers and programmers can work together and how to turn our applications 
into applets. Until then, I encourage you make this project’s code your own—add a text 
field for the ID of the gallery to view, and have a lot more fun with transitions.
    

  



From app to applet
Previous chapters have concerned themselves with language syntax and program-
ming APIs—the nuts and bolts of coding JavaFX. In this chapter we’re focusing 
more on how JavaFX fits into the wider world, both at development time and at 
deployment time.

 One of the goals of JavaFX was to recognize the prominent role graphic artists 
and designers play in modern desktop software and bring them into the application 
development process in a more meaningful way. To this end Sun created the JavaFX
Production Suite, a collection of tools for translating content from the likes of Adobe 
Photoshop and Illustrator into a format manipulable by a JavaFX program.

 Another key goal of JavaFX was to provide a single development technology, 
adaptable to many different environments (as mentioned in the introductory 
chapter). The 1.0 release concentrated on getting the desktop and web right; 
phones followed with 1.1 in February 2009, and the TV platform is expected 

This chapter covers
■ Turning a desktop app into a web applet
■ Explaining designer/programmer workflow
■ Manipulating Adobe/SVG artwork
■ Designing entire UIs in graphics programs
230

    

  



231The Enigma project
sometime in 2009/10. The snappily titled “release 6 update 10” of the Java Runtime 
Environment (JRE) offers an enhanced experience for desktop applications and web 
applets. The new features mainly center on making it less painful for end users to 
install updates to the JRE, easier for developers to ensure the right version of Java is 
available on the end user’s computer, and considerably easier for the end user to rip 
their favorite applet out of the browser (literally) and plunk it down on the desktop 
as a standalone application.

 In this chapter we’re going to explore how JavaFX makes life easier for nonprogram-
mers, focusing specifically on improvements in the designer and end-user experience. 
First we’ll have some fun developing UI widgets from SVG (Scalable Vector Graphics) 
images, turning them into scene graph nodes, and manipulating them in our code. 
Then we’ll transform the application into an applet to run inside a web browser. As with 
previous chapters, you’ll be learning by example. So far most of our projects have cen-
tered on visuals; it’s about time we developed something with a little more practical 
value. Increasingly serious applications are getting glossy UIs, and you don’t get more 
serious than when the output from your program could change the fate of nations.

9.1 The Enigma project
These days practically everyone in the developed world has used encryption. From 
online shopping to cell phone calls, encryption is the oil that lubricates modern digi-
tal networks. It’s interesting to consider, then, that machine-based encryption (as 
opposed to the pencil-and-paper variety) is a relatively recent innovation. Indeed, not 
until World War II did automated encryption achieve widespread adoption, with one 
technology in particular becoming the stuff of legend.

 The Enigma machine was an electro-mechanical device, first created for commer-
cial use in the early 1920s, but soon adopted by the German military for scrambling 
radio Morse code messages between commanders and their troops in the field. With 
its complex, ever-shifting encoding patterns, many people thought the Enigma was 
unbreakable, presumably the same people who thought the Titanic was unsinkable. 
As it happens, the Enigma cipher was broken, not once but twice!

 Creating our own Enigma machine gives us a practical program with a real-world 
purpose, albeit one 60 years old. Its UI demands may be limited but offer a neat 
opportunity to cover important JavaFX techniques for turbocharging UI development 
(plus it’s an excuse to write JFX code that isn’t strictly UI related). Having recon-
structed our own little piece of computing history, we’ll be turning it from a desktop 
application into an applet and then letting the end user turn it back into a desktop 
application again with the drag and drop of a mouse.

9.1.1 The mechanics of the Enigma cipher

Despite its awesome power, the Enigma machine was blissfully simple by design. Pre-
dating the modern electronic computer, it relied on old-fashioned electric wiring and 
mechanical gears. The system consisted of four parts: three rotors and a reflector.
    

  



232 CHAPTER 9 From app to applet
 Each rotor is a disk with 52 electrical contacts, 26 on one face and another 26 on 
the other. Inside the disk each contact is wired to another on the opposite face. Elec-
tric current entering at position 1 might exit on the other side in position 8, for exam-
ple. The output from one rotor was passed into the next through the contacts on the 
faces, forming a circuit.

 In figure 9.1 current entering Rotor A in position 1 leaves in position 8. Position 8 
in the next rotor is wired to position 3, and 3 in the last rotor is wired to 22. The final 
component, the reflector, directs the current back through the rotors in the reverse 
direction. This ensures that pressing A will give W and (more important, when it 
comes time to decode) pressing W will give A.

Each time a letter is encoded, one or more rotors turn, changing the combined cir-
cuit. This constant shifting of the circuit is what gives the Enigma part of its power; 
each letter is encoded differently with successive presses. To decode a message suc-
cessfully, one must set the three rotor disks to the same start position as when the mes-
sage was originally encoded. Failure to do so results in garbage.

9.2 Programmer/designer workflow: 
Enigma machine, version 1
The first stab we’re going to have at an Enigma machine will put only the basic 
encryption and input and output components in place. In this initial version of the 
project we’ll stick to familiar ground by developing a desktop application; the web 
applet will come later. You can see what the application will look like from figure 9.2. 
In the next version we’ll flesh it out with a nicer interface and better features.

 To create the key and lamp graphics we’ll be using two SVG files, which we’ll trans-
late to JavaFX’s own FXZ file format using the tools in the JavaFX Production Suite. In 
keeping with this book’s policy of not favoring one platform or tool or IDE, I used the 
open source application Inkscape to draw the graphics and the SVG converter tool to 

A

W

ReflectorRotor CRotor A Rotor B

Figure 9.1 Tracing one path inside the Enigma, forming a circuit linking key A with 
lamp W and key W with lamp A. But as the rotors move, the circuit changes to 
provide a different link.
    

  

http://java.sun.com/developer/technicalArticles/javase/newapplets/
http://java.sun.com/developer/technicalArticles/javase/newapplets/
http://java.sun.com/javase/6/docs/technotes/guides/javaws/developersguide/syntax.html
http://java.sun.com/docs/books/tutorial/security/tour1/
http://java.sun.com/docs/books/tutorial/security/tour1/


233Programmer/designer workflow: Enigma machine, version 1
turn them into JavaFX scene graph–compatible files. If you are lucky enough to own 
Adobe Photoshop CS3 or Illustrator CS3, you can use plug-ins available in the suite to 
export directly into JavaFX’s FXZ format from inside those programs.

 The SVG/IDE-agnostic route isn’t that different from working with the Adobe tools 
and using the NetBeans JFX plug-in. For completeness I’ll give a quick rundown of the 
Adobe/NetBeans shortcuts at the end of the first version.

9.2.1 Getting ready to use the JavaFX Production Suite

To join in with this chapter you’ll need to download a few things. The first is the 
JavaFX Production Suite, available from the official JavaFX site; download this and 
install it. The JavaFX Production Suite is a separate download to the SDK because the 
suite is intended for use by designers, not programmers.

The second download is the project source code, including the project’s SVG and FXZ
files, available from this book’s web page. Without this you won’t have the graphics 
files to use in the project.

 The final download is optional: Inkscape, an open source vector graphics applica-
tion, which you can use to draw SVG files yourself. Because the SVG files are already 
available to you in the source code download, you won’t need Inkscape for this project, 

Figure 9.2 Our initial version of 
the Enigma machine will provide 
only basic encryption, input, and 
output, served up with a splash of 
visual flare, naturally!

JavaFX v1.0 and the Production Suite
Are you being forced to use the old 1.0 version of JavaFX? If you find yourself maintaining 
ancient code, you need to be aware that JavaFX 1.0 did not include the FXD library by 
default, as its successors do. To use the FXZ/FXD format with a JavaFX 1.0 application, 
you’ll need to download the Production Suite and include its javafx-fxd-1.0.jar file on 
your classpath. You’ll also need to ship it with your application, along with other JARs 
your code depends on.
    

  



234 CHAPTER 9 From app to applet
but you may find it useful when developing your own graphics. As noted, you could 
alternatively use Photoshop CS3 (for bitmap images) or Illustrator CS3 (for vector 
images), if you have access to them.

If you downloaded the source code, you should have access to the SVG files used to 
create the images in this part of the project.

9.2.2 Converting SVG files to FXZ

Scalable Vector Graphics is a W3C standard for vector images on the web. Vector 
images, unlike their bitmap cousins, are defined in terms of geometric points and 
shapes, making them scalable to any display resolution. This fits in nicely with the way 
JavaFX’s scene graph works.

 There are two files supplied with the project, key.svg and lamp.svg, defining the vec-
tor images we’ll need. They’re in the svg directory of the project. Figure 9.3 shows the 

The links
http://javafx.com/    (follow the download link) 
http://www.manning.com/JavaFXinAction 
http://www.inkscape.org/

Figure 9.3 SVG images are formed from a collection of shapes; the key is two circles painted with 
gradient fills. JavaFX also supports layered bitmaps from Photoshop and vector images from Illustrator.
    

  

http://javafx.com/
http://www.manning.com/JavaFXinAction
http://www.inkscape.org/


235Programmer/designer workflow: Enigma machine, version 1
key image being edited by Inkscape. To bring these images into our JavaFX project we 
need to translate them from their SVG format into something closer to JavaFX Script. 
Fortunately for us, the JavaFX Production Suite comes with a tool to do just that.

 The format JavaFX uses is called FXZ (at least, that’s the three-letter extension its 
files carry), which is a simple zip file holding one or more components. Chief among 
these is the FXD file, a JavaFX Script scene graph declaration. There may also be other 
supporting files, such as bitmap images or fonts. (If you want to poke around inside 
an FXZ, just change its file extension from .fxz to .zip, and it should open in your 
favorite zip application.)

 For each of our SVG files the converter parses the SVG and outputs the equivalent 
JavaFX Script code, which it stores in the FXD file. Any supporting files (for example, 
texture bitmaps) are also stored, and the whole thing is zipped up to form an FXZ file.

 Once the JavaFX Production Suite is installed, the SVG to JavaFX Graphics Con-
verter should be available as a regular desktop application (for example, via the Start 
menu on Windows). You can see what it looks like in figure 9.4.

 To run the converter we need to provide the filenames of the source SVG and the 
destination FXZ. We can also choose whether to retain jfx: IDs during the conver-
sion, which demands extra explanation.

 While creating the original SVG file (and this is also true of Illustrator and Photo-
shop files), it is possible to mark particular elements and expose them to JavaFX after 
the conversion. We do this by assigning the prefix jfx: (that’s jfx followed by a colon) 
to the layer or element’s ID. When the conversion tool sees that prefix on an ID, it 
stores a reference to the element in the FXD, allowing us to later address that specific 
part of the scene graph in our own code. Later, when we play with the lamp graphic, 
we’ll see an example of doing just that. In general you should ensure that the option is 
switched on when running the tool.

TIP Check your ID When I first attempted to use FXZ files in my JavaFX pro-
grams, the FXD reader didn’t seem to find the parts of the image I’d 
carefully labeled with the jfx: prefix. After 15 minutes of frustration, 
I realized my schoolboy error: naming the layers of a SVG is not the 
same as setting their IDs. The JavaFX Production Suite relies on the ID
only. So if, like me, you experience trouble finding parts of your image 
once it has been loaded into JavaFX, double-check the IDs on your origi-
nal SVG.

Figure 9.4 The SVG Converter takes SVG files, using the W3C’s vector format, 
and translates them into FXZ files, using JavaFX’s declarative scene graph markup.
    

  



236 CHAPTER 9 From app to applet
The JavaFX Production Suite also comes with a utility to display FXZ files, called the 
JavaFX Graphics Viewer. After generating your FXZ, you can use it to check the output. 
If you haven’t done so already, try running the converter tool and generating FXZ files 
from the project’s SVGs; then use the viewer to check the results.

 We’ll use the resulting FXZ files when we develop the lamp and key classes. Right 
now you need to be aware that the FXZ files should be copied into the 
jfxia.chapter9 package of the build, so they live next to the two classes that load 
them; otherwise the application will fail when you run it.

9.2.3 The Rotor class: the heart of the encryption

The Rotor class is the heart of the actual encryption code. Each instance models a sin-
gle rotor in the Enigma. Its 26 positions are labeled A to Z, but they should not be 
confused with the actual letters being encoded or decoded. The assigning of a letter 
for each position is purely practical; operators needed to encode rotor start positions 
into each message but the machine had no digit keys, so rotors were labeled A–Z 
rather than 1–26. For convenience we’ll also configure each rotor using the letter cor-
responding to each position. Since the current can pass in either direction through 
the rotor wiring, we’ll build two lookup tables, one for left to right and one for right to 
left. Listing 9.1 has the code.

package jfxia.chapter9;

package class Rotor {
    public-init var wiring:String;
    public-init var turnover:String;
    public-read var rotorPosition:Integer = 0;
    public-read var isTurnoverPosition:Boolean = bind 
        (rotorPosition == turnoverPosition);

    var rightToLeft:Integer[];
    var leftToRight:Integer[];
    var turnoverPosition:Integer;

    init {
        rightToLeft = for(a in [0..<26]) { -1; }
        leftToRight = for(a in [0..<26]) { -1; }  
        var i=0;                                
        while(i<26) {                           
            var j:Integer = chrToPos(wiring,i); 
            rightToLeft[i]=j;                   
            leftToRight[j]=i;                   
            i++;                                
        }                                       

        if(isInitialized(turnover))                 
            turnoverPosition = chrToPos(turnover,0);  
    }

    package function encode(i:Integer,leftwards:Boolean) : Integer {  
        var res = (i+rotorPosition) mod 26;

Listing 9.1 Rotor.fx (version 1)

Wiring 
connections 
set as string

When should 
next rotor move?

Encode an input
    

  

http://javafx.com/docs/tutorials/deployment/


237Programmer/designer workflow: Enigma machine, version 1
        var r:Integer = if(leftwards) rightToLeft[res]
            else leftToRight[res];                    
        return (r-rotorPosition+26) mod 26;           
    }                                                 
    package function nextPosition() : Boolean {
        rotorPosition = if(rotorPosition==25) 0  
            else rotorPosition+1;              
        return isTurnoverPosition;             
    }                                          
}

package function posToChr(i:Integer) : String {          
    var c:Character = (i+65) as Character;                 
    return c.toString();                                 
}                                                        
package function chrToPos(s:String,i:Integer) : Integer {
    var ch:Integer = s.charAt(i);                        
    return ch-65;                                        
}                                                        

Looking at listing 9.1 we can see the wiring is set using a String, making it easy to 
declaratively create new rotor objects. Other public variables control how the encryp-
tion works and how the rotors turn.

■ The variable wiring is the source for two lookup tables, used to model the 
flow of current as it passes through the rotor. The tables created from wiring
determine how the contacts on the rotor faces are linked: rightToLeft gives 
the outputs for positions A to Z (0 to 25) on one face, and for convenience 
leftToRight does the reverse path from the other face. If the first letter in 
wiring was D, for example, the first entry of rightToLeft would be 3 (labeled 
D because A = 0, B = 1, etc.), and the fourth entry of leftToRight would be 0 
(labeled A). Thus 0 becomes 3 right to left, and 3 becomes 0 left to right.

■ The variable turnover is the position (as a letter) at which the next rotor should 
step (like when a car odometer digit moves to 0, causing the next-highest digit to 
also move). The private variable turnoverPosition is the turnover in its more 
useful numeric form. One might have expected a rotor to do a full A-to-Z cycle 
before the next rotor ticks over one position, but the Enigma designers thought 
this was too predictable. The isTurnoverPosition variable is a handy bound flag 
for assessing whether this rotor is currently at its turnover position.

■ The rotorPosition property is the current rotation offset of this rotor, as an 
Integer. If this were set to 2, for example, an input for position 23 would actu-
ally enter the rotor at position 25.

So that’s our Rotor class. Each rotor provides one part of the overall encryption 
mechanism. We can use a Rotor object to create the reflector too; we just need 
to ensure the wiring string models symmetrical paths. Figure 9.5 show how this 
might look.

 The regular rotors are symmetrical only by reversing the direction of current flow. 
Just because N (left input) results in A (right output), does not mean A will result in N 

Encode an input

Step to next 
position, returning 
turnover

Convert 
between letter 
and position
    

  



238 CHAPTER 9 From app to applet
when moving in the same left-to-right direction. Figure 9.5 shows this relationship in 
its left-hand rotor. We can, however, conspire to create a rotor in which these connec-
tions are deliberately mirrored (see figure 9.5’s right-hand rotor), and this is precisely 
how we model the reflector. This convenience saves us from needing to create a spe-
cific reflector class.

9.2.4 A quick utility class

Before we proceed with the scene graph classes, we need a quick utility class to help 
position nodes. Listing 9.2, which does that, is up next.

package jfxia.chapter9;

import javafx.scene.Node;

package bound function center(a:Node,b:Node,hv:Boolean) : Number {
    var aa:Number = if(hv) a.layoutBounds.width
        else a.layoutBounds.height;
    var bb:Number = if(hv) b.layoutBounds.width
        else b.layoutBounds.height;
    return ((aa-bb) /2);
}
package bound function center(a:Number,b:Node,hv:Boolean) : Number {
    var bb:Number = if(hv) b.layoutBounds.width
        else b.layoutBounds.height;
    return ((a-bb) /2);
}

The two functions in listing 9.2 are used to center one node inside another. The first 
function centers node b inside node a; the second centers node b inside a given 
dimension. In both cases the boolean hv controls whether the result is based on the 
width (true) or the height (false) of the parameter nodes.

Listing 9.2 Util.fx

A A

N

D

A

N

A

N

Figure 9.5 Two disks, with left/right faces. The rotor wiring is not symmetrical (left), but we can 
create a reflector from a rotor by ensuring 13 of the wires mirror the path of the other 13 (right).
    

  



239Programmer/designer workflow: Enigma machine, version 1
9.2.5 The Key class: input to the machine

The real Enigma machine used keys and lamps to capture input and show output. To 
remain faithful to the original we’ll create our own Key and Lamp custom nodes. The 
Key is first; see listing 9.3.

package jfxia.chapter9;

import javafx.fxd.FXDNode;
import javafx.scene.Node;
import javafx.scene.CustomNode;
import javafx.scene.Group;
import javafx.scene.paint.Color;
import javafx.scene.input.MouseEvent;
import javafx.scene.text.Font;
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.scene.text.TextOrigin;

package class Key extends CustomNode {
    package def diameter:Number = 40;
    def fontSize:Integer = 24;

    public-init var letter:String on replace {          
        letterValue = letter.charAt(0)-65;                
    }                                                   
    package var action:function(:Integer,:Boolean):Void;
                    
    def scale:Number = bind if(pressed) 0.9 else 1.0;  
    def letterFont:Font = Font.font(
        "Courier", FontWeight.BOLD, fontSize
    );
    var letterValue:Integer;

    override function create() : Node {
        def keyNode = FXDNode {                           
            url: "{__DIR__}key.fxz";                      
        }                                                 

        keyNode.onMousePressed = function(ev:MouseEvent) { 
            if(action!=null)                                 
                action(letterValue,true);                  
        };                                                 
        keyNode.onMouseReleased = function(ev:MouseEvent) {
            if(action!=null)                               
                action(letterValue,false);                 
        };                                                 

        Group {
            var k:Node;
            var t:Node;
            content: [
                k = keyNode ,  
                t = Text {                              
                    layoutX: bind Util.center(k,t,true);

Listing 9.3 Key.fx

Key’s 
letter

Animation 
scale

Load FXZ file 
into node

Assign 
mouse 
handlers

FXD 
node

Key letter, 
centered
    

  



240 CHAPTER 9 From app to applet
                    layoutY: bind Util.center(k,t,false);
                    fill: Color.WHITE;                   
                    content: letter;                     
                    font: letterFont;                    
                    textOrigin: TextOrigin.TOP;          
                }                                        
            ];
            scaleX: bind scale;
            scaleY: bind scale;
        }
    }
}

The Key class is used to display an old-fashioned-looking manual typewriter key on the 
screen. Its variables are as follows:

■ diameter and fontSize set the size of the key and its key font.
■ letter is the character to display on this key. In order to convert the ASCII char-

acters A to Z into the values 0 to 25, the String.toChar() function is called, 
and 65 (the value of ASCII letter A) is subtracted.

■ action is the event callback by which the outside world can learn when our key 
is pressed or released.

■ scale is bound to the inherited variable pressed. It resizes our key whenever 
the mouse button is down.

■ letterFont is the font we use for the key symbol.

The overridden create() function is, as always, where the scene graph is assembled. It 
starts with an unfamiliar bit of code, reproduced here:

def keyNode = FXDNode {
    url: "{__DIR__}key.fxz";
}

The FXDNode class creates a scene graph node from an FXZ file. This isn’t actually as 
complex as sounds, given the SVG to JavaFX Graphics Converter tool has already done 
all the heavy lifting of converting the SVG format into declarative JavaFX Script code. 
The class also has options to load the FXZ in the background (rather than tie up the 
GUI thread) and provide a placeholder node while the file is loaded and processed. 
But the FXDNode created from our file doesn’t have any event handlers.

keyNode.onMousePressed = function(ev:MouseEvent) {
    if(action!=null)
        action(letterValue,true);
}; 
keyNode.onMouseReleased = function(ev:MouseEvent) {
    if(action!=null)
        action(letterValue,false);
};

Once our key image has been loaded as a node, we need to assign two mouse event 
handlers to it. Because the object is already defined, we can’t do this declaratively, so 

Key letter, 
centered
    

  



241Programmer/designer workflow: Enigma machine, version 1
we must revert to plain-old procedural code (à la Java) to hook up two anonymous 
functions. Both call the action() function type (if set) to inform the outside world a 
key has been pressed or released.

 The rest of the scene graph code should be fairly clear. We need to overlay a letter 
onto the key, and that’s what the Text node does. It uses the utility functions we cre-
ated earlier to center itself inside the key. (There is actually a layout node called Stack
that can center its contents; we saw it in listing 6.11.) At the foot of the scene graph 
the containing Group is bound to the scale variable, which in turn is bound to the 
inherited pressed state of the node. Whenever the mouse button goes down, the 
whole key shrinks slightly, as if being pressed.

NOTE Don’t forget to copy the FXZ files The FXZ files for this project should be 
inside the directory representing the jfxia.chapter9 package, so a ref-
erence to __DIR__ can be used to find them. Once you’ve built the proj-
ect code, make sure the FXZs are alongside the project class files.

Next we need to create the Lamp class to display our output.

9.2.6 The Lamp class: output from the machine

We’ve just developed a stylized input for our emulator; now we need a similar retro-
looking output. In the original Enigma machine the encoded letters were displayed 
on 26 lamps, one of which would light up to display the output as a key was pressed, so 
that’s what we’ll develop next, in listing 9.4.

package jfxia.chapter9;

import javafx.fxd.FXDLoader;
import javafx.fxd.FXDContent;
import javafx.scene.Node;
import javafx.scene.CustomNode;
import javafx.scene.Group;
import javafx.scene.paint.Color;
import javafx.scene.text.Font;
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.scene.text.TextOrigin;

package class Lamp extends CustomNode {
    package def diameter:Number = 40;
    def fontSize:Integer = 20;

    public-init var letter:String;
    package var lit:Boolean = false on replace {
        if(lampOn!=null)  lampOn.visible = lit;   
    }                                           

    def letterFont:Font = Font.font(
        "Helvetic", FontWeight.REGULAR, fontSize
    );

Listing 9.4 Lamp.fx

Manipulate 
lamp FXD
    

  



242 CHAPTER 9 From app to applet
    var lampOn:Node;                         

    override function create() : Node {
        def lampContent:FXDContent = FXDLoader
            .loadContent("{__DIR__}lamp.fxz");  

        def lampNode = lampContent.getRoot();  

        lampOn = lampContent.getNode("lampOn");  

        var c:Node;
        var t:Node;
        Group {
            content: [
                c = lampNode ,  
                t = Text {                               
                    content: letter;                       
                    font: letterFont;                    
                    textOrigin: TextOrigin.TOP;          
                    layoutX: bind Util.center(c,t,true); 
                    layoutY: bind Util.center(c,t,false);
                }                                        
            ];
        }
    }
}

The Lamp class is a very simple binary display node. It has no mouse or keyboard input, 
just two states: lit or unlit. Once again we load an FXZ file and bring its content into 
our code. But this time, instead of using the quick-’n’-easy FXDNode class, we go the 
long route via FXDLoader and FXDContent. (There’s no great advantage to this; I just 
thought a bit of variety in the example code wouldn’t hurt!) Once the file is loaded, 
we extract references to specific parts of the scene graph described by the FXD.

 If you load up the original SVG files, you’ll find inside the lamp a layer with an alter-
native version of the center part of the image, making it appear lit up (see figure 9.6). 
The layer is set to be invisible, so it doesn’t show by default. It has been given the ID
jfx:lampOn, causing the converter to record a reference to it in the FXD.

 In the code we extract that reference by calling 
FXDContent.getNode() with an ID of lampOn. We 
don’t need the jfx: prefix with the FXZ/FXD; it was 
used in the original SVG only to tag the parts of the 
image we wanted to ID in the FXD. If the ID is found, 
we’ll get back a scene graph node, which we’ll store 
in a variable called lampOn (it doesn’t have to share 
the same name). We can now manipulate lampOn in 
the code, by switching its visibility on or off whenever 
the status of lit changes.

 This ability to design images in third-party appli-
cations, bring them into our JavaFX programs, and 
then reach inside and manipulate their constituent 

Our FXD node

Load as 
FXDContent type

Top level

Specific 
layer

Use in scene 
graph

Letter text, 
centered

lampOff

lampOn

Figure 9.6 The lamp image is 
constructed from two layers. The 
lower layer shows the rim of the lamp 
and its dormant (off) graphic; the 
upper layer, invisible by default, 
shows the active (on) graphic.
    

  



243Programmer/designer workflow: Enigma machine, version 1
parts is very powerful. Imagine, for example, a chess game where the board and all the 
playing pieces are stored in one big SVG (or Photoshop or Illustrator) image, tagged 
with individual JFX IDs. To update the game’s graphics the designer merely supplies a 
replacement FXZ file. Providing the IDs are the same, it should drop straight into the 
project as a direct replacement, without the need for a rebuild of the code.

9.2.7 The Enigma class: binding the encryption engine to the interface

Ignoring the utility class, we’ve seen three application classes so far: the Rotor, which 
provides the basis of our Enigma cipher emulation; the Key, which provides the input; 
and the Lamp, which displays the output. Now it’s time to pull these classes together 
with an actual application class, the first part of which is listing 9.5.

package jfxia.chapter9;

import javafx.scene.Group;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.effect.DropShadow;
import javafx.scene.layout.Tile;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

def rotors:Rotor[] = [                           
    Rotor { wiring: "JGDQOXUSCAMIFRVTPNEWKBLZYH";    
        turnover: "R" } ,                        
    Rotor { wiring: "NTZPSFBOKMWRCJDIVLAEYUXHGQ";
        turnover: "F" } ,                        
    Rotor { wiring: "JVIUBHTCDYAKEQZPOSGXNRMWFL";
        turnover: "W" }                          
];                                               
def reflector =                                  
    Rotor { wiring: "QYHOGNECVPUZTFDJAXWMKISRBL"; }

def row1:String[] = [ "Q","W","E","R","T","Z","U","I","O" ];
def row2:String[] = [ "A","S","D","F","G","H","J","K" ];      
def row3:String[] = [ "P","Y","X","C","V","B","N","M","L" ];

def dummyLamp = Lamp {};
var lamps:Lamp[] = for(i in [0..<26])  dummyLamp;

def innerWidth:Integer = 450;
def innerHeight:Integer = 320;
// Part 2 is listing 9.6; part 3, listing 9.7

This is just the top part of our application class. The code mainly concerns itself with 
setting up the three rotors and single reflector, plus defining the keyboard and lamp 
layout. We’ll use the Enigma’s authentic keyboard layout, which is similar to but not 
quite the same as QWERTY. Because we need to manipulate the lamps, we create 
a sequence to hold the nodes alphabetically. We won’t be creating the lamp node 
in ABC order, so 26 dummy entries pad the sequence to allow lamps[letter]=node
later on.

Listing 9.5 Enigma.fx (version 1, part 1)

Declare the 
rotors and 
reflector

Key and 
lamp layout
    

  



244 CHAPTER 9 From app to applet
 Listing 9.6 is the second part of our project and shows the main scene graph code 
that builds the window and its contents. 

// Part 1 is listing 9.5
Stage {
    scene: Scene {  
        var l:Node;
        content: Group {
            content: [
                l = VBox {        
                    layoutX: bind 
                        Util.center(innerWidth,l,true);
                    layoutY: 20;
                    spacing: 4;
                    content: [                           
                        createRow(row1,false,createLamp) ,
                        createRow(row2,true,createLamp) ,
                        createRow(row3,false,createLamp)
                    ];
                } ,
                VBox {                                  
                    layoutX: bind l.layoutX;
                    layoutY: bind l.boundsInParent.maxY+10;
                    spacing: 4;
                    content: [                            
                        createRow(row1,false,createKey) ,
                        createRow(row2,true,createKey) ,
                        createRow(row3,false,createKey)
                    ];
                    effect: DropShadow {              
                        offsetX: 0;  offsetY: 5;        
                    };                                
                }
            ];
        };
        width: innerWidth;  height: innerHeight;  
    }
    title: "Enigma";
    resizable: false;
    onClose: function() { FX.exit(); }
}
// Part 3 is listing 9.7

The structure is fairly simple: we have two VBox containers (they stack their contents 
in a vertical alignment, recall), each populated with three calls to createRow(). The 
top VBox is aligned centrally using the utility functions we developed earlier and 20 
pixels from the top of the window’s inner bounds. The second VBox has its X layout 
bound to its sibling and its Y layout set to 10 pixels below the bottom of its sibling.

 The second VBox has an effect attached to it, javafx.scene.effect.DropShadow. We 
touched on effects briefly when we used a reflection in our video player project. Effects 
manipulate the look of a node, anything from a blur or a color tint to a reflection or even 

Listing 9.6 Enigma.fx (version 1, part 2)

Lamp, 
centered

Three rows 
of lamps

Keys, positioned 
using lamps

Three rows 
of keys

Drop-shadow 
effect

Window inner 
content
    

  



245Programmer/designer workflow: Enigma machine, version 1
a pseudo 3D distortion. The DropShadow effect merely adds a shadow underneath the 
node tree it is connected to. This gives our keys a floating 3D effect.

 The createRow() function manufactures a row of nodes from a sequence of let-
ters, using a function passed into it (createLamp or createKey). Its code begins the 
final part of this source file, as shown in listing 9.7.

// Part 1 is listing 9.5; part 2, listing 9.6
function createRow(row:String[] , indent:Boolean ,  
    func:function(l:String):Node) : Tile {
    def h = Tile {
        hgap: 4;
        columns: sizeof row;
        content: for(l in [row]) { func(l); };
    };
    if(indent) {                              
        h.translateX =                          
            h.content[0].layoutBounds.width/2;
    }                                         
    return h;    
}
function createKey(l:String) : Node {  
    Key {
        letter: l;
        action: handleKeyPress;
    };
}
function createLamp(l:String) : Node {  
    def i:Integer = l.charAt(0)-65;
    def lamp = Lamp { letter: l; };
    lamps[i]=lamp;
    return lamp;
}

function handleKeyPress(l:Integer,down:Boolean) : Void {  
    def res = encodePosition(l);
    lamps[res].lit = down;
    if(not down) {                           
        var b:Boolean;                         
        b=rotors[2].nextPosition();          
        if(b) { b=rotors[1].nextPosition(); }
        if(b) { rotors[0].nextPosition(); }  
    }                                        
}

function encodePosition(i:Integer) : Integer {   
    var res=i;
    for(r in rotors) { res=r.encode(res,false); }       
    res=reflector.encode(res,false);                          
    for(r in reverse rotors) { res=r.encode(res,true); }
    return res;
}

Listing 9.7 Enigma.fx (version 1, part 3)

Create rows of 
lamps or keys

Intent row, if 
required

Function used 
to create key

Function used 
to create lamp

Handle key 
up or down

Key release? 
Turn rotors

Encode key 
position

Forward then 
back through 
rotors
    

  



246 CHAPTER 9 From app to applet
Here we see the createRow() function encountered in the previous part. Since the lay-
out for both the keyboard and lamp board is the same, a single utility function is 
employed to position the nodes in each row. The createKey() and createLamp() func-
tions are passed to createRow() to manufacture the nodes to be laid out. For that impor-
tant authentic keyboard look, rows can be indented slightly, using the indent boolean.

 Finally, we need to consider the handleKeyPress() and encodePosition() func-
tions. The former uses the latter to walk forward, then backward across the rotors, 
with the deflector in the middle, performing each stage of the encryption. Once the 
input letter is encoded, it switches the associated lamp on or off (depending on the 
direction the key just moved) and turns any rotors that need turning (the nextPosi-
tion() function turns a rotor and returns true if it hits its turnover position).

 And so, with the Enigma class itself now ready, we have version 1 of our simulated 
encryption machine.

9.2.8 Running version 1

What we have with version 1 is a functional, if not very practical, Enigma emulator. 
Figure 9.7 shows what to expect when the application is fired up.

Pressing a key runs its position through the rotors and reflector, with the result dis-
played on a lamp. There are two clear problems with the current version: first, we can-
not see or adjust the settings of the rotors, and second (in a departure from the real 
Enigma), we cannot capture the output in a more permanent form.

 In the second version of our Enigma we’ll be fixing those problems, making the 
application good enough to put on the web for all to see.

9.2.9 Shortcuts using NetBeans, Photoshop, or Illustrator

The details in this chapter attempt to be as inclusive as possible. Inkscape was chosen 
as an example of an SVG editor precisely because it was free and did not favor a partic-

Figure 9.7 This is what we should 
see when compiling and running 
version 1. It works, but not in a 
very practical way. The stylized 
button and lamp nodes help lend 
the application an authentic feel.
    

  



247More cryptic: Enigma machine, version 2
ular operating system. As mentioned previously, the JavaFX Production Suite does 
hold some benefits for users of certain well-known products. In this section we’ll list 
those benefits.

 If you are lucky enough to own Adobe Photoshop CS3 or Adobe Illustrator CS3, or 
you’re working with someone who uses them, you’ll be happy to know that the JavaFX
Production Suite comes with plug-ins for these applications to save directly to FXZ (no 
need for external tools, like the SVG Converter). Obviously you need to install the Pro-
duction Suite on the computer running Photoshop or Illustrator, and make sure 
there’s an up-to-date JRE on there too, but you don’t need to install the full JavaFX SDK.

 Just as we saw with our SVG files, layers and sublayers in graphics created with these 
products can be prefixed with jfx: to preserve them in the FXD definition written into 
the FXZ file. Fonts, bitmaps, and other supporting data will also be included in the FXZ.

 The good news isn’t confined to designers; programmers using NetBeans also have 
an extra little tool included in the Production Suite. The UI Stub Generator is a conve-
nience tool for NetBeans users to create JavaFX Script wrappers from FXZ files. Point-
ing the tool at any FXZ file results in a source code file being generated that extends 
javafx.fxd.FXDNode. Each exposed node in the FXZ (the ones with jfx: prefixes in 
the original image) is given a variable in the class, so it can be accessed easily. An 
update() method is written to do all the heavy lifting of populating the variables with 
successive calls to getNode(). Once the file is generated, NetBeans users can compile 
this class into their project and use it in preference to explicit getNode() calls.

 The UI Stub Generator helps to keep your source files clean from the mechanics of 
reading FXD data; however, once the source code has been generated you may feel the 
need to edit it. The tool assumes everything is a Node, so if you plan on addressing a 
given part of the scene graph by its true form (for example, a Text node), you’ll need 
to change the variable’s type and add a cast to the relevant getNode() line.

 All of these tools are fully documented in the help files that come bundled with 
the JavaFX Production Suite.

9.3 More cryptic: Enigma machine, version 2
Version 1 of the project has a couple of issues that need addressing. First, the user 
needs to be able to view and change the state of the rotors. Second, we need to intro-
duce some way to capture the encoded output.

 To fix the first problem we’re going to turn the Rotor class into a node that can be 
used not only to encode a message but also to set the encryption parameters. To fix 
the second we’ll develop a simple printout display, which looks like a teletype page, 
that records our output along with the lamps. You can see what it looks like at the top 
of figure 9.8.

 As a glance at figure 9.8 reveals, each rotor will show its letter in a gradient-filled 
display, with arrow buttons constructed from scene graph polygons. The paper node 
we’ll develop will be shaded at the top, giving the impression its text is vanishing over 
a curved surface. Changes to the Enigma class will tie the features into the applica-
tion’s interface, giving a more polished look.
    

  



248 CHAPTER 9 From app to applet
9.3.1 The Rotor class, version 2: giving the cipher a visual presence

The Rotor class needs a makeover to turn it into a fully fledged custom node, allowing 
users to interact with it. Because this code is being integrated into the existing class, 
I’ve taken the liberty of snipping (omitting for the sake of brevity) the bulk of the 
code from the previous version, as you’ll see from listing 9.8. (It may not save many 
trees, but it could help save a few branches.) The snipped parts have been marked 
with bold comments to show what has been dropped and where. Refer to listing 9.1 
for a reminder of what’s missing.

package jfxia.chapter9;

import javafx.scene.Node;
import javafx.scene.CustomNode;
import javafx.scene.Group;
import javafx.scene.input.MouseEvent;
import javafx.scene.paint.Color;
import javafx.scene.paint.LinearGradient;
import javafx.scene.paint.Stop;
import javafx.scene.shape.Polygon;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Font;

Listing 9.8 Rotor.fx (version 2—changes only)

Figure 9.8 Quite an improvement: 
the Enigma emulator acquires a 
printout display and rotors, as well 
as an attractive shaded backdrop.
    

  



249More cryptic: Enigma machine, version 2
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.scene.text.TextOrigin;

package class Rotor extends CustomNode {
    // [Snipped variables: see previous version]

    def fontSize:Integer = 40;                
    def width:Number = 60;                      
    def height:Number = 60;                   
    def buttonHeight:Number = 20.0;           
    def letterFont:Font = Font.font(          
        "Helvetic" , FontWeight.BOLD, fontSize
    );                                        

    // [Snipped init block: see previous version]

    override function create() : Node {
        var r:Node;
        var t:Node;
        Group {
            content: [
                Polygon {     
                    points: [
                        width/2 , 0.0 ,
                        0.0 , buttonHeight ,
                        width , buttonHeight
                    ];
                    fill: Color.BEIGE;
                    onMouseClicked: function(ev:MouseEvent) {     
                        rotorPosition = if(rotorPosition==0) 25 
                            else rotorPosition-1;
                    }
                } ,            
                r = Rectangle {           
                    layoutY: buttonHeight;
                    width: width;
                    height: height;
                    fill: LinearGradient {
                        proportional: false;
                        endX:0;  endY:height;
                        stops: [
                            Stop { offset: 0.0;  
                                color: Color.DARKSLATEGRAY; } ,
                            Stop { offset: 0.25;  
                                color: Color.DARKGRAY; } ,
                            Stop { offset: 1.0;  
                                color: Color.BLACK; }
                        ]
                    }
                } ,
                Rectangle {                
                    layoutX: 4;
                    layoutY: buttonHeight;
                    width: width-8;
                    height: height;
                    fill: LinearGradient {

Sizing and font 
constants

Up arrow 
polygon

Move 
rotor 
back 
one

Rotor 
display rim

Rotor 
display body
    

  



250 CHAPTER 9 From app to applet
                        proportional: false;
                        endX:0;  endY:height;
                        stops: [
                            Stop { offset: 0.0;  
                                color: Color.DARKGRAY; } ,
                            Stop { offset: 0.25;  
                                color: Color.WHITE; } ,
                            Stop { offset: 0.75;  
                                color: Color.DARKGRAY; } ,
                            Stop { offset: 1.0;  
                                color: Color.BLACK; }
                        ]
                    }
                } ,
                t = Text {                              
                    layoutX: bind Util.center(r,t,true);
                    layoutY: bind buttonHeight + 
                        Util.center(r,t,false);
                    content: bind posToChr(rotorPosition);
                    font: letterFont;
                    textOrigin: TextOrigin.TOP;
                } ,
                Polygon {                        
                    layoutY: buttonHeight+height;
                    points: [
                        0.0 , 0.0 ,
                        width/2 , buttonHeight ,
                        width , 0.0
                    ];
                    fill: Color.BEIGE;                       
                    onMouseClicked: function(ev:MouseEvent) {
                        rotorPosition = if(rotorPosition==25) 0 
                            else rotorPosition+1;
                    }
                }
            ];
        }
    }

    // [Snipped encode(), nextPosition(): see previous version]
}
// [Snipped posToChr(), chrToPos(): see previous version]

The new Rotor class contains a hefty set of additions. The scene graph, as assembled 
by create(), brings together several layered elements to form the final image. The 
graph is structured around a Group, at the top and tail of which are Polygon shapes. 
As its name suggests, the Polygon is a node that allows its silhouette to be custom 
defined from a sequence of coordinate pairs. The values in the points sequence are 
alternate x and y positions. They form the outline of a shape, with the last coordinate 
connecting back to the first to seal the perimeter. Both of our polygons are simple tri-
angles, with points at the extreme left, extreme right, and in the middle, forming up 
and down arrows.

Rotor current 
letter

Down arrow 
polygon

Move rotor 
forward one
    

  



251More cryptic: Enigma machine, version 2
 The rest of the scene graph consists of familiar components: two gradient-filled 
rectangles and a text node, forming the rotor body between the arrows.

 The arrow polygons have mouse handlers attached to them to change the current 
rotorPosition. As rotor positions form a circle, condition logic wraps rotorPosition
around when it overshoots the start or end of its range. The turnover position is 
ignored, you’ll note, because we don’t want rotors clocking each other as we’re manu-
ally adjusting them. 

 So that’s the finished Rotor. Now for the Paper class.

9.3.2 The Paper class: making a permanent output record

The Paper class is a neat little display node, with five lines of text that are scaled verti-
cally to create the effect of the lines vanishing over a curved surface. We’re employing 
a fixed-width font, for that authentic manual typewriter look. Check out figure 9.9. 
You can almost hear the clack-clack-clack of those levers, hammering out each letter 
as the keys are pressed.

The real Enigma didn’t have a paper output. The machines were designed to be car-
ried at the frontline of a battle, and their rotor mechanics and battery were bulky 
enough without adding a stationery cupboard full of paper and ink ribbons. But we’ve 
moved on a little in the 80-plus years since the Enigma was first developed, and while a 
1200 dpi laser printer might be stretching credibility a little too far, we can at least give 
our emulator a period teletype display. The code is in listing 9.9.

package jfxia.chapter9;

import javafx.scene.CustomNode;
import javafx.scene.Group;
import javafx.scene.Node;
import javafx.scene.effect.DropShadow;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.paint.LinearGradient;
import javafx.scene.paint.Stop;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Font;

Listing 9.9 Paper.fx

Figure 9.9 Each line of our Paper 
node is scaled to create the optical 
effect of a surface curving away, to 
accompany the shading of the 
background Rectangle.
    

  



252 CHAPTER 9 From app to applet
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.scene.text.TextOrigin;

package class Paper extends CustomNode {
    package var width:Number = 300.0;
    public-read var height:Number;

    def lines:Integer= 5;
    def font:Font = Font.font(
        "Courier" , FontWeight.REGULAR , 20
    );

    def paper:Text[] = for(i in [0..<lines]) {  
        def y:Number = height;                      
        def scale:Number = 1.0 - ((lines-1-i)*0.15);  
        def lineHeight:Number = 25*scale;           
        height = height+lineHeight;                 
        Text {
            layoutY: y;
            font: font;
            textOrigin: TextOrigin.TOP;
            scaleY: scale;
            clip: Rectangle {
                width: width;  height: lineHeight;
            }
        };
    }        

    override function create() : Node {
        Group {
            content: [
                Rectangle {          
                    width: width;
                    height: height;
                    fill: LinearGradient {
                        proportional: true;
                        endX: 0;  endY: 1;
                        stops: [
                            Stop { offset:0.0;  
                                color: Color.SLATEGRAY; } ,
                            Stop { offset:0.2;  
                                color: Color.WHITE; } ,
                            Stop { offset:1.0;  
                                color: Color.LIGHTGRAY; }
                        ];
                    }
                    effect: DropShadow {
                        offsetX: 0;  offsetY: 10;
                        color: Color.CHOCOLATE;
                    };
                } ,
                Group { content: paper; }        
            ];
            onMouseClicked: function(ev:MouseEvent) {  
                add("\n");
            }

Sequence of 
text lines

Scale and position 
to create curve

Shaded paper 
backdrop

Text nodes 
expanded in place

Scroll up 
when clicked
    

  



253More cryptic: Enigma machine, version 2
        };
    }

    package function add(l:String) : Void {  
        def z:Integer = lines-1;
        if(l.equals("\n")) {
            var i:Integer = 1;                        
            while(i<lines) {                            
                paper[i-1].content = paper[i].content;
                i++;                                  
            }                                         
            paper[z].content="";                      
        }
        else {
            paper[z].content = "{paper[z].content}{l}";  
        }
    }
}

The most interesting thing about listing 9.9 is the creation of the sequence paper. 
What this code does is to stack several Text nodes using layoutY, scaling each in turn 
from a restricted height at the top to full height at the bottom. The rather fearsome-
looking code 1.0–((lines-1-i)*0.15) subtracts multiples of 15 percent from the 
height of each line, so the first line is scaled the most and the last line not at all. The 
result is a curved look to the printout, just what we wanted!

 The rest of the listing is unremarkable scene graph code, with the exception of the 
add() function at the end. This is what the outside world uses to push new letters onto 
the bottom line of the teletype display. Normally the character is appended to the end 
of the last Text node, but if the character is a carriage return, each Text node in con-
tent is copied to its previous sibling, creating the effect of the paper scrolling up a 
line. The last Text node is set to an empty string, ready for fresh output.

 We now have all the classes we need for our finished Enigma machine; all that’s left 
is to refine the application class itself to include our new graphical rotors and paper.

9.3.3 The Enigma class, version 2: at last our code is ready to encode

Having upgraded the Rotor class and introduced a new Paper class, we need to inte-
grate these into the display. Listing 9.10 does just that.

package jfxia.chapter9;

import javafx.scene.Group;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.effect.DropShadow;
import javafx.scene.layout.Tile;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.paint.LinearGradient;
import javafx.scene.paint.Stop;

Listing 9.10 Enigma.fx (version 2, part 1 – changes only)

Add to bottom 
text line

Push 
paper up

Append to 
last line
    

  



254 CHAPTER 9 From app to applet
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

// [Snipped defintions for rotors, reflector, row1, row2,
//   row3 and lamps: see previous version]

def innerWidth:Integer = 450;
def innerHeight:Integer = 520;

var paper:Paper;
// Part 2 is listing 9.11; part 3, listing 9.12

Listing 9.10 is the top part of the updated application class, adding little to what was 
already there in the previous version. That’s why I’ve snipped parts of the content 
again, indicated (as before) with comments in bold. You can refresh your memory by 
glancing back at listing 9.5. As you can see, the window has been made bigger to 
accommodate the new elements we’re about to add, and we’ve created a variable to 
hold one of them, paper. 

 The main changes come in the next part, listing 9.11, the scene graph.

// Part 1 is listing 9.10
Stage {
    scene: Scene {
        content: Group {
            var p:Node;
            var r:Node;
            var l:Node;
            content: [
                p = paper = Paper {      
                    width: innerWidth-50;
                    layoutX: 25;
                } ,
                r = Tile {               
                    columns: 3;
                    layoutX: bind Util.center(innerWidth,r,true);
                    layoutY: bind p.boundsInParent.maxY;
                    hgap: 20;
                    content: [
                        rotors[0], rotors[1], rotors[2]
                    ];
                } ,
                l = VBox {
                    layoutX: bind Util.center(innerWidth,l,true);
                    layoutY: bind r.boundsInParent.maxY+10;
                    spacing: 4;
                    content: [
                        createRow(row1,false,createLamp) ,
                        createRow(row2,true,createLamp) ,
                        createRow(row3,false,createLamp)
                    ];
                } ,
                VBox {

Listing 9.11 Enigma.fx (version 2, part 2)

Our new 
Paper class

Rotors in 
horizontal layout
    

  



255More cryptic: Enigma machine, version 2
                    layoutX: bind l.layoutX;
                    layoutY: bind l.boundsInParent.maxY+10;
                    spacing: 4;
                    content: [
                        createRow(row1,false,createKey) ,
                        createRow(row2,true,createKey) ,
                        createRow(row3,false,createKey)
                    ];
                    effect: DropShadow {
                        offsetX: 0;  offsetY: 5;
                    };
                }
            ];
        };
        fill: LinearGradient {                     
            proportional: true;  endX: 0;  endY: 1;
            stops: [
                Stop { offset: 0.0;  color:  Color.BURLYWOOD; } ,
                Stop { offset: 0.05;  color:  Color.BEIGE; } ,
                Stop { offset: 0.2;  color:  Color.SANDYBROWN; } ,
                Stop { offset: 0.9;  color:  Color.SADDLEBROWN; }
            ];
        }
        width: innerWidth;  height: innerHeight;
    }
    title: "Enigma";
    resizable: false;
    onClose: function() { FX.exit(); }
}
// Part 3 is listing 9.12

Listing 9.11 is the meat of the new changes. I’ve preserved the full listing this time, 
without any snips, to better demonstrate how the changes integrate into what’s 
already there. At the top of the scene graph we add our new Paper class, sized to be 50 
pixels smaller than the window width. Directly below that we create a horizontal row 
of Rotor objects; recall that the new Rotor is now a CustomNode and can be used 
directly in the scene graph. The lamps have now been pushed down to be 10 pixels 
below the rotors. At the very bottom of the Scene we install a LinearGradient fill to 
create a pleasing shaded background for the window contents.

 Just one more change to this class is left, and that’s in the (on screen) keyboard 
handler, as shown in listing 9.12.

// Part 1 is listing 9.10; part 2 is listing 9.11

// [Snipped createRow(), createKey(), 
//   createLamp(): see previous version]

function handleKeyPress(l:Integer,down:Boolean) : Void {
    def res = encodePosition(l);
    lamps[res].lit = down;
    if(not down) {

Listing 9.12 Enigma.fx (version 2, part 3 – changes only)

Gradient backdrop 
to window
    

  



256 CHAPTER 9 From app to applet
        var b:Boolean;
        b=rotors[2].nextPosition();
        if(b) { b=rotors[1].nextPosition(); }
        if(b) { rotors[0].nextPosition(); }
    }
    else {                             
        paper.add(Rotor.posToChr(res));  
    }                                  
}

// [Snipped encodePosition(): see previous version]

At last we have the final part of the Enigma class, and once again the unchanged parts 
have been snipped. Check out listing 9.7 if you want to refresh your memory. Only 
one change to mention, but it’s an important one: the handleKeyPress() now has 
some plumbing to feed its key into the new paper node. This is what makes the 
encoded letter appear on the printout when a key is clicked.

9.3.4 Running version 2

Running the Enigma class gives us the display shown in figure 9.10. Our keys and 
lamps have been joined by a printout/teletype affair at the head of the window and 
three rotors just below.

 Clicking the arrows surrounding the rotors causes them to change position, while 
clicking the paper display causes it to jump up a line. As we stab away at the keys, our 

Key down? 
Add to paper

Figure 9.10 Our Enigma machine 
in action, ready to keep all our most 
intimate secrets safe from prying 
eyes (providing they don’t have 
access to any computing hardware 
made after 1940).
    

  



257From application to applet
input is encoded through the rotors, flashed up on the lamps, and appended to 
the printout.

 Is our Enigma machine finished then? Well, for now, yes, but there’s plenty of 
room for new features. The Enigma we developed is a simplified version of the origi-
nal, with two important missing elements. The genuine Enigma had rotors that could 
be removed and interchanged, to further hinder code breaking. It also featured a plug 
board: 26 sockets linked by 13 pluggable cables, effectively creating a configurable sec-
ond reflector. That said, unless anyone reading this book is planning on invading a 
small country, the simplified emulator we’ve developed should be more than enough.

 In the final part of this chapter we’ll turn our new application into an applet, so we 
can allow the world and his dog to start sending us secret messages.

9.4 From application to applet
One of the banes of deploying Java code in the bad old days was myriad options and 
misconfigurations one might encounter. Traditionally Java relied on the end user (the 
customer) to keep the installed Java implementation up to date, and naturally this led 
to a vast range of runtime versions being encountered in the wild. The larger down-
load size of the Java runtime, compared to the Adobe Flash Player, also put off many 
web developers. Java fans might note this is an apples-and-oranges comparison; the 
JRE is more akin to Microsoft’s .NET Framework, and .NET is many times larger than 
the JRE. Yet still the perception of Java as large and slow persisted.

 Starting with Java 6 update 10 at the end of 2008, a huge amount of effort was put 
behind trying to smarten up the whole Java deployment experience, for both the end 
user and the developer. In the final part of this chapter we’ll be exploring some of 
these new features, through JavaFX. Although none of them are specifically JavaFX
changes, they go hand in glove with the effort to brighten up Java’s prospects on the 
desktop, something that JavaFX is a key part of.

9.4.1 The Enigma class: from application to applet

Having successfully created an Enigma application, we need to port it over to be an 
applet. If you’ve ever written any Java applets, this might send a chill down your spine. 
Although Java applications and applets have a lot in common, translating one to the 
other still demands a modest amount of reworking. But this is JavaFX, not Java, and 
our expectations are different. JavaFX was, after all, intended to ease the process of 
moving code between different types of user-facing environments.

 Listing 9.13 shows the extent of the changes. Astute readers (those who actually 
read code comments) will note that once again the unchanged parts of the listing 
have been omitted, showing only the new material and its context. 

package jfxia.chapter9;

import javafx.scene.Group;

Listing 9.13 Enigma.fx (version 3 – changes only)
    

  



258 CHAPTER 9 From app to applet
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.effect.DropShadow;  
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.Tile;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.paint.LinearGradient;
import javafx.scene.paint.Stop;
import javafx.scene.shape.Rectangle;
import javafx.stage.AppletStageExtension;  
import javafx.stage.Stage;

// [Snipped definitions for rotors, reflector, row1, row2, row3,
//   lamps, innerWidth, innerHeight and paper: see previous version]

Stage {
    // [Snipped Scene, title, resizable and 
    //   onClose: see previous version]

    extensions: [
        AppletStageExtension {                               
            shouldDragStart: function(e: MouseEvent): Boolean {
                return e.shiftDown and e.primaryButtonDown;      
            }                                                  
            useDefaultClose: true;  
        }
    ];
}

// [Snipped createRow(), createKey(), createLamp(),
//   handleKeyPress() and encodePosition(): see first version]

Your eyes do not deceive you: the entire extent of the modifications amount to nothing 
more than eight lines of new code and two extra class imports (only one of which spe-
cifically relates to applets). The modifications center on an enhancement to the Stage
object. To accommodate specific needs of individual platforms and environments, 
JavaFX supports an extension mechanism, using subclasses of javafx.stage.StageEx-
tension. The specific extension we’re concerned with is the AppletStageExtension, 
which adds functionality for using the JavaFX program from inside a web page.

 In truth, we’re not obliged to use this extension. Most JavaFX desktop programs 
can be run as applets without any specific modifications, but the extension allows 
us to specify applet-specific behavior, thus making our application that little bit 
more professional.

 As you can see from the code, Stage has an extensions property that accepts a 
sequence of StageExtension objects. We’ve used an instance of AppletStageExten-
sion, which does two things. First, it specifies when a mouse event should be consid-
ered the start of a drag action to rip the applet out of the web page and onto the 
desktop. Second, it adds a close box to the applet when on the desktop. But simply 
changing our application isn’t enough; for effective deployment on the web we need 
to package it into a JAR file. And that’s just what we’ll do next.

Trap mouse 
events

Import applet 
extension

Plug extension 
into Stage

Condition 
to begin 
drag action

Closing X 
button
    

  



259From application to applet
9.4.2 The JavaFX Packager utility

The JavaFX SDK comes with a neat little utility to help deploy our JavaFX programs. It 
can be used to package up our applications for all manner of different environments. 
For our project we want to use it to target the desktop platform and make the result-
ing program capable of running as an applet.

The javafxpackager utility can be called from the command line and has a multitude 
of options. Table 9.1 is a list of what’s available.

Table 9.1 JavaFXPackager options 

Option(s) Function

-src or -sourcepath The location of your JavaFX Script source code (mandatory).

-cp or -classpath or -librarypath The location of dependencies, extra JAR files your code 
relies on.

-res or -resourcepath The location of resources, extra data, and image files 
your code relies on.

-d or -destination The directory to write the output.

-workDir The temporary directory to use when building the output.

-v or -verbose Print useful (debugging) information during the packaging 
process.

-p or -profile Which environment to target. Either DESKTOP or 
MOBILE (desktop includes applets).

-appName and -appVendor and  
-appVersion

Meta information about the application: its name, cre-
ator’s name, and version.

-appClass The startup class name, including package prefix 
(mandatory). 

-appWidth and -appHeight Application width and height (particularly useful for 
applets).

-appCodebase Codebase of where the application is hosted, if available 
on the web. This is the base address of where the JNLP, 
JAR, and other files are located.

NetBeans users, take note
As always, I’m going to show you how the packaging process works under the hood, 
sans IDE. If you’ve using NetBeans, however, you may want to look over the following 
step-by-step tutorial for how to access the same functionality inside your IDE:

http://javafx.com/docs/tutorials/deployment/
    

  

http://javafx.com/docs/tutorials/deployment/


260 CHAPTER 9 From app to applet
Now that you’ve familiarized yourself with the options, it’s time to see the packager in 
action.

9.4.3 Packaging up the applet

Before we can run the packager for ourselves, we need to make one change. In previ-
ous versions of this project we simply copied the FXZ files into the package directory 
created by our compiler. For the javafxpackager to work, we need to put the files in 
their own resource directory. (Of course, if you’re using an IDE you probably already 
have set up this directory, so your IDE could copy the necessary resources alongside 
the code during the build process.)

1 Next to the src directory that holds the project source code, create a new direc-
tory called res.

2 Inside the new res directory create one called jfxia and then one inside that called 
chapter9. You should end up with a directory structure of res/jfxia/chapter9 (or 
res\jfxia\chapter9 if you prefer DOS backslashes) inside the project directory.

3 Copy the two FXZ files we’re using for our project into the chapter9 directory.

Now we’re ready to run the packager. Open a new command console (such as an MS-
DOS console on Windows) and change into the project directory, such that the src and 
res directories live off your current directory. Assuming the JavaFX tools are on your 
current command path, type (all on one line):

javafxpackager -src .\src -res .\res 
  -appClass "jfxia.chapter9.Enigma"
  -appWidth 450 -appHeight 520
  -draggable -pack200 -sign

Alternatively, if you’re running a Unix-flavored machine, try this:

javafxpackager -src ./src -res ./res 
  -appClass "jfxia.chapter9.Enigma"
  -appWidth 450 -appHeight 520
  -draggable -pack200 -sign

-draggable Make applet draggable from the browser and onto the 
desktop.

-sign and -keystore and  
-keystorePassword and -keyalias 
and -keyaliasPassword

Used to sign an applet to grant it extra permissions.

-pack200 Use Java-specific compression (usually much tighter than 
plain JAR).

-help and -version Useful information about packager utility.

Table 9.1 JavaFXPackager options (continued)

Option(s) Function
    

  



261From application to applet
I’ve broken the command over several lines; you might want to turn it into a script (or 
batch file) if you plan to run the packager from outside an IDE often. Let’s look at the 
options, chunk by chunk:

■ -src is the location of our source code files. The packager attempts to build the 
source code, so it needs to know where it lives.

■ -res is the location of any resource, which in our case is the res directory hous-
ing copies of our FXZ files.

■ -appClass is the startup class for our application.
■ -appWidth and -appHeight are the size of the applet.
■ -draggable activates the ability to drag the applet out of the browser (but our 

code controls what key/mouse events will trigger this).
■ -pack200 uses supertight compression on the resulting application archive.
■ -sign signs the output so we can ask to be granted extra permissions when it 

runs on the end user’s machine. Even though our applet doesn’t do anything 
dangerous, we may trigger a security problem when running it directly from the 
computer’s file system (using a file: URL location). Since we don’t provide any 
keystore details, the packager will create a short-term self-signed certificate for 
us, which will be fine for testing purposes.

■ -cp (classpath) informs the packager about any extra JAR dependencies, so 
they can be included in the build process and copied into the distribution 
output. We don’t need any extra JARs, so I’ve not used this option (although 
remember, if you’re building code under JavaFX 1.0, you may need to refer-
ence the Production Suite’s javafx-fxd-1.0.jar file, because it wasn’t shipped 
as standard).

If all went well, you should end up with a new directory, called dist. This name is the 
default when we don’t specify a -destination option. Inside, we have all the files we 
need to run the Enigma applet.

■ Enigma.jar and Enigma.jar.pack.gz, which contain our project’s classes and 
resources in both plain JAR and Pack200 format.

■ Enigma.jnlp and Enigma_browser.jnlp, which hold the Java Web Start (JWS) 
details for our Enigma machine in regular desktop and applet variants.

■ Enigma.html, an HTML file we can use to launch our applet. We can copy the 
core markup from this file into any web page hosting the applet.

■ If you package a project using the -cp option to list dependent JARs, a lib direc-
tory will be created to contain copies of them.

From the desktop, enter the dist directory and double-click (or otherwise open) 
the HTML file. Your favorite web browser should start, and eventually the Enigma 
applet should appear in all its glory. It may take some time initially, as the JavaFX
libraries are not bundled in the distribution the package creates but loaded over the 
web from the javafx.com site. This is to ensure maximum efficiency—why should 
    

  



262 CHAPTER 9 From app to applet
every individual JFX application burden itself with local copies of the core API
libraries, when they could be loaded (and maybe cached) from a single location 
across all JavaFX programs?

 The javafx.com site holds independent copies of the JARs for each JavaFX release, 
and the javafxpackager utility writes files that target its own release, so code pack-
aged under JavaFX 1.2 will continue to run once 1.3 is available. This enables the 
JavaFX team to make breaking changes to the APIs without upsetting currently 
deployed code.

 Figure 9.11 shows the applet in action.
 The Enigma machine looks just as it did when we ran it directly on the desktop, 

except now it’s inside a browser window. Before we drag it back onto the desktop, let’s 
look at the JNLP file and make a small modification.

Java Web Start, JNLP, and applet security
JWS is a way of packaging and distributing Java desktop applications, deployable from 
a single click. Although usually started from a web link in the first instance, a JWS 
program can install desktop icon shortcuts and uninstall options in appropriate places 
for the host OS, resembling any other locally installed application. Cached copies of 
the application JARs may be held locally for speed, but the application is tied firmly to 
its origin web address, with updates fetched as required.

The JNLP file format (Java Network Launch(ing) Protocol) is at the heart of JWS. It 
provides metadata about an application the JRE needs to install and manage it. In 
Java 6 update 10 the reach of JNLP was extended to include applets, as this web 
page explains:

http://java.sun.com/developer/technicalArticles/javase/newapplets/

JavaFX doesn’t change the underlying security model of Java, either for applets 
or JWS applications. Unsigned applets (those not requiring user permission to run) 
are typically restricted in their network access and ability to interact with local 
computer resources. Signed applets can use the JNLP file to request extra privi- 
leges, which the user can grant or deny. Expert end users can also edit a special 
policy file to automatically grant or deny permissions to Java programs, based on 
their origin. 

For an overview of JNLP and its security permissions, plus a quick tutorial on applet 
security, see the following web pages (split over two lines):

http://java.sun.com/javase/6/docs/technotes/guides/javaws/ 
developersguide/syntax.html

http://java.sun.com/docs/books/tutorial/security/tour1/
    

  

http://java.sun.com/developer/technicalArticles/javase/newapplets/
http://java.sun.com/javase/6/docs/technotes/guides/javaws/developersguide/syntax.html
http://java.sun.com/javase/6/docs/technotes/guides/javaws/developersguide/syntax.html
http://java.sun.com/docs/books/tutorial/security/tour1/


263From application to applet
9.4.4 Dragging the applet onto the desktop

Dragging the application out of the browser gives us the opportunity to put an icon on 
the desktop. By default JavaFX uses a boring generic logo, but fortunately we can 
change that. To do so we need to create icon files and link them into the JNLP file.

 If you download the source code from the book’s website, you’ll find, inside this 
project’s directory, a couple of GIF files: Enigma_32.gif and Enigma_64.gif. We’ll use 
these as our icons (unless you fancy creating your own). Java Web Start allows us to 
specify icons of different sizes, for use in different situations. For the record: the first 
of the supplied icons is 32x32 pixels in size, and the second is 64x64 pixels in size.

 Copy these two images into the dist directory, and we’re ready to change the JNLP. 
Take a look at listing 9.14.

<?xml version="1.0" encoding="UTF-8"?>
<jnlp spec="1.0+" codebase="file:/JavaFX_in_Action/dist/"

Listing 9.14 Enigma_browser.jnlp

Figure 9.11 Our applet running inside Microsoft’s Internet Explorer
    

  



264 CHAPTER 9 From app to applet
    href="Enigma_browser.jnlp">
    <information>
        <title>Enigma</title>
        <vendor>Simon</vendor>
        <homepage href=""/>
        <description>Enigma</description>
        <offline-allowed/>
        <shortcut>
            <desktop/>
        </shortcut>
        <icon href="./Enigma_32.gif" width="32" height="32" />
        <icon href="./Enigma_64.gif" width="64" height="64" />
    </information>
    <security>
        <all-permissions/>
    </security>
    <resources>
        <j2se version="1.5+"/>
        <property name="jnlp.packEnabled" value="true"/>
        <property name="jnlp.versionEnabled" value="true"/>
        <extension name="JavaFX Runtime"
            href="http://dl.javafx.com/1.2/javafx-rt.jnlp"/>
        <jar href="Enigma.jar" main="true"/>
    </resources>
    <applet-desc name="Enigma" 
        main-class="com.sun.javafx.runtime.adapter.Applet"
        width="450" height="520">
        <param name="MainJavaFXScript" value="jfxia.chapter9.Enigma">
    </applet-desc>
</jnlp>

We have the Enigma_browser.jnlp file created by the packager for our application, 
complete with two extra lines (highlighted in bold) to hook up our icons. By studying 
the XML contents you can see how the details we passed into the packager were used 
to populate the JNLP configuration.

So much for the icons, now it’s time to try dragging our applet out of the browser and 
turning it back into a desktop application.

More JNLP information
Java Web Start supports all manner of options for controlling how Java applications 
behave as applets and on the desktop. Some of them are exposed by options on the 
JavaFX Packager, while others may require some post-packaging edits to the JNLP 
files. Unfortunately an in-depth discussion of JNLP is beyond the scope of this chap-
ter. The lengthy web address below (split over two lines) points to a page with details 
and examples of the various JNLP options.

http://java.sun.com/javase/6/docs/technotes/ 
guides/javaws/developersguide/syntax.html
    

  

http://java.sun.com/javase/6/docs/technotes/guides/javaws/developersguide/syntax.html
http://java.sun.com/javase/6/docs/technotes/guides/javaws/developersguide/syntax.html


265From application to applet
 Double-click the Enigma.html file inside dist to start it up again in the browser. 
Now hold down the Shift key on your computer, click and hold inside the applet with 
your mouse, and drag away from the browser. The applet should become unstuck 
from the browser page and float over the desktop. Remember, we specified the crite-
ria for the start of a drag operation in the shouldDragStart function of the Applet-
StageExtension we plugged into our application’s Stage.

 Once it’s floating free, you can let the applet go, and it will remain on the desktop. 
Figure 9.12 shows how it might look. In place of the applet on the web page there 
should appear a default Java logo, showing where the applet once lived. In the top-
right corner of our floating applet there should be a tiny close button, a result of us 
specifying useDefaultClose in the extension.

 We now have two courses of action:

■ Clicking the applet’s close button while the applet’s web page is still open 
returns the applet to its original home, inside the web page.

■ Clicking the web page’s close button while the applet is outside the browser (on 
the desktop) causes the browser window (or tab) to close and the applet to be 
installed onto our desktop, including a desktop icon.

Even though the applet’s web page may have vanished, the applet continues to run 
without a hitch. It is now truly independent of the browser. This means getting the 

Figure 9.12 Starting  
life in a web page, our 
Enigma emulator was 
then dragged onto the 
desktop to become an 
application (note the 
desktop icon) and finally 
relaunched from the 
desktop.
    

  



266 CHAPTER 9 From app to applet
Enigma emulator onto the desktop is as simple as pulling it from the browser window 
and closing the page. The applet will automatically transform into a desktop applica-
tion, complete with startup icon (although in reality it remains a JWS application, it 
merely has a new home).

 Removing the application should be as simple as following the regular uninstall 
process for software on your operating system. For example, Windows users can use 
the Add or Remove Programs feature inside Control Panel. Enigma will be listed 
along with other installed applications, with a button to remove it.

 At last we have a fully functional JavaFX applet.

9.5 Bonus: Building the UI in an art tool
Before we get to the summing up, there’s just enough time for another quick end-of-
chapter detour. At the end of section 9.2.6, when we coded the Enigma’s lamps, I 
mentioned the possibility of building an entire UI inside a design/art tool. In this sec-
tion we’re going to do just that. Figure 9.13 shows a UI constructed in Inkscape. The 
left-hand side of the window contains two buttons, each constructed from four layers 
stacked atop each other. The right-hand side indicates how those layers are formed.

Each button layer has an ID consisting of a base ID for that button, followed by a letter 
denoting the layer’s function: either F (footprint), I (idle), H (hover), or C (clicked). 
The idle layer is shown when the button is idle (not hovered over or pressed), the hover
layer is shown when the mouse is inside the button, and the clicked layer is shown when 
the button is pressed. Only one of these three layers is visible at any one time. The 
final layer, footprint, is used as a target for event handlers and to define the shape of 
the button; it is never actually displayed.

 Listing 9.15 is sample code that loads the FXD created from the Inkscape file and 
manipulates the two buttons inside it. The first button has a base ID of button1, and 
the second has a base ID of button2.

import javafx.fxd.FXDNode;
import javafx.scene.Node;
import javafx.scene.input.MouseEvent;
import javafx.scene.Scene;

Listing 9.15 UI.fx

Figure 9.13 Two 
buttons (left), each 
formed using four 
carefully labeled layers 
(demonstrated right), 
which are manipulated by 
JavaFX code to create 
functioning buttons
    

  



267Bonus: Building the UI in an art tool
import javafx.stage.Stage;

def ui:FXDNode = FXDNode { url: "{__DIR__}ui.fxz" };
FXDButton {
    fxd: ui;
    id: "button1";
    action: function() { println("Button 1 clicked"); }
}
FXDButton {
    fxd: ui;
    id: "button2";
    action: function() { println("Button 2 clicked"); }
}

Stage {
    scene: Scene {
        content: ui;  
    }    
}

class FXDButton {
    var footprintNode:Node;
    var idleNode:Node;
    var hoverNode:Node;
    var clickNode:Node;

    public-init var fxd:FXDNode;
    public-init var id:String;
    public-init var action:function():Void;

    init {
        footprintNode = fxd.getNode("{id}F");
        idleNode = fxd.getNode("{id}I");
        hoverNode = fxd.getNode("{id}H");
        clickNode = fxd.getNode("{id}C");
        makeVisible(idleNode);

        footprintNode.onMouseEntered = function(ev:MouseEvent) {
            makeVisible(
                if(footprintNode.pressed) clickNode
                    else hoverNode
            );
        }
        footprintNode.onMouseExited = function(ev:MouseEvent) {
            makeVisible(idleNode);
        }
        footprintNode.onMousePressed = function(ev:MouseEvent) {
            makeVisible(clickNode);
            if(action!=null)  action();
        }
        footprintNode.onMouseReleased = function(ev:MouseEvent) {
            makeVisible(
                if(footprintNode.hover) hoverNode 
                    else idleNode
            );
        }
    }

Root scene graph 
node of FXD
    

  



268 CHAPTER 9 From app to applet
    function makeVisible(n:Node) : Void {
        for(i:Node in [idleNode,hoverNode,clickNode])
            i.visible = (i==n);
    }
}

The FXDButton class is the hub of the action, turning parts of the FXD scene graph 
into a button. It accepts an FXDNode object, a base ID, and an action function to run 
when the button is clicked. During initialization it locates the four required layer 
nodes inside the FXD structure and adds the necessary event code to make them func-
tion as a button. For example, a base ID of button1 extracts nodes with IDs of 
button1F, button1I, button1H, and button1C and then adds event handlers to the 
footprint node to control the visibility of the other three according to mouse events. 
(In the original Inkscape file the layers were labeled with IDs of jfx:button1F, 
jfx:button1I, etc.)

 The beauty of this scheme is that a designer can create whole UI scene graphs 
inside Inkscape, Photoshop, or Illustrator, and then a programmer can turn them into 
functional user interfaces without having to recompile the code each time the design 
is tweaked. This brings us perilously close to the Holy Grail of desktop software pro-
gramming: no more tedious and inflexible reconstructions of a designer’s artwork 
using UI widgets and fiddly layout code; designers draw what they want, and program-
mers breathe life directly into their art.

 I’m certainly not suggesting that in the future every UI will be constructed this way. 
This technique suits UIs resembling interactive photos or animations, an informal 
style previously used only in video games and children’s software but now becoming 
increasingly trendy with other types of software too. I expect most UIs will become a 
fusion of the formal and informal—an audio production tool, for example, may have 
a main window looking just like a picture of a studio mixing desk, but secondary win-
dows will still use familiar widgets (albeit styled).

 As JavaFX (and its supporting tool set) continues to grow, we can expect more and 
more animation and transition capabilities to be shifted away from the source code 
and exposed directly to the designer. While highly sophisticated UIs will probably 
always need to be developed predominantly by a programmer, the ultimate goal of JFX
is to allow simple (bold, fun, colorful) UIs to be developed in design tools and then 
plugged into the application at runtime. Updating the UI becomes as simple as 
exporting a new FXD/FXZ file.

9.6 Summary
In this chapter we looked at writing a practical application, with a swish front end, 
focusing on a couple of important JavaFX skills. First of all we looked at how to take 
the hard work of a friendly neighborhood graphic designer, bring it directly into our 
JavaFX project, and manipulate it as part of the JFX scene graph. Then we examined 
how to take our own hard work and magically transform it into an applet capable of 
    

  



269Summary
being dragged from the browser and turned into a JWS application. (Okay, okay, it’s 
not actually magic!)

 I hope this chapter, as well as being a fun little project, has demonstrated how easy 
it is to move JavaFX software from one environment to another and how simple it is to 
move multimedia elements from artist to programmer. The addition of a Stage exten-
sion was all it took to add applet-specific capabilities to our Enigma machine, and con-
version into FXZ files was all it took to turn our vector images into programmable 
elements in our project.

 There are plans to bring JavaFX to many different types of device in the future. 
The ability to leap across environments in a single bound would be a welcome change 
to the current drudgery of moving applications between platforms. The bonus section 
revealed how entire UIs could be drawn by a designer and then hooked up directly 
into JavaFX code. Imagine if we could switch the whole design of our application for 
desktop, mobile, or TV by merely choosing which FXZ file was loaded on startup! It’s 
this sense of freedom, in both how we work and where our code can run, that will be 
central to JavaFX as it evolves in years to come.

 So much for the future. For now, I’ll just set the Enigma rotors to an appropriate 
three letters (I’ll let you guess what they might be) and leave you with the simple 
departing message “NIAA CHZ ZBPS DVD AWOBHC RKNAHI.”
    

  



Clever graphics 
 and smart phones
Previous projects in this book have introduced a lot of fresh material and concepts, 
covering the core of the JavaFX Script language and its associated JavaFX APIs. 
Although we haven’t explored every nook and cranny of JavaFX, by now you should 
have experienced a representative enough sample to navigate the remainder of the 
API without getting lost or confused. So this chapter is a deliberate shift down a 
gear or two.

 Over the coming pages we won’t be discovering any new libraries, classes, or 
techniques. Instead, this chapter’s project will focus on a couple of goals. We’ll start 
by reinforcing the skills you’ve acquired thus far, pushing the scene graph in direc-
tions you’ve previously not seen, and then end by moving our finished project onto 
the JavaFX Mobile platform.

The chapter covers
■ Constructing complex scene graphs
■ Handling device-agnostic key input
■ Going mobile, with the phone emulator
■ Tuning apps, for better performance
270

    

  



271Amazing games: a retro 3D puzzle
 This chapter is being written against JavaFX release 1.2 (June 2009), and, regretta-
bly, at the time of this writing, the mobile emulator is bundled only with the Windows 
JavaFX SDK. This is an omission the JFX team is committed to address soon; hopefully 
the fruits of their labor will be available by the time this book reaches you. Despite the 
limitations of the mobile preview, there’s still a lot of value in the project. The code 
has been written to run in both the desktop and the mobile environments, so non-
Microsoft users can work through the majority of the project while waiting for the 
emulator to arrive on their platform.

 The scene graph code we’ll soon encounter is by far our most complex and imagi-
native yet, so once I’ve rattled through an outline of the project, we’ll spend a little 
time on the secrets of how it’s put together. But, first of all, we need to know what the 
project is.

10.1 Amazing games: a retro 3D puzzle
It’s incredible to think, when looking at the sophistication of consoles like the Play-
Station and Xbox, just how far graphics have come in the last few decades. I’m just about 
old enough to remember the thrill of the Atari 2600 and the novelty of controlling an 
image on the TV set. The games back then seemed every bit as exciting as the games 
today, although having replayed some of my childhood favorites thanks to modern-day 
emulators, I’m at a loss to explain why. Some games never lose their charm, however. I 
discovered this the hard way, after losing the best part of a day to a Rubik’s Cube I dis-
covered while clearing out old junk.

 In this chapter we’re going to develop a classic 3D
maze game, like the ones that sprang up on the 8-bit 
computers a quarter of a decade before JavaFX was 
even a twinkle in Chris Oliver’s eye. Retro games are 
fun, and they’re popular with phone owners; not 
only is there an undeniable nostalgia factor, but their 
clean and simple game play fits nicely with the short 
bursts of activity typical of mobile device usage.

 Figure 10.1 shows our retro maze game in action. 
The maze is really a grid, with some of the cells as walls 
and others as passageways. Moving through the maze 
is done one cell at a time, either forward, backward, 
left, or right. It’s also possible to turn 90 degrees 
clockwise or counterclockwise. There’s no swish true-
3D movement here; the display simply jumps one 
block at a time, in true Dungeon Master fashion.

 To aid the player we’ll add a radar, similarly 
retro fashioned, giving an idea of where the player 
is in relation to the boundaries of the maze. We’ll 
also add a compass, spinning to show which way the 

Figure 10.1 Get lost! This is our 
simple 3D maze game. The whole 
thing is constructed from the JavaFX 
scene graph, using basic shapes.
    

  

http://javafx.com/partners/
http://javafx.com/partners/
http://www.sun.com/aboutsun/pr/2009-02/sunflash.20090212.1.xml
http://www.sun.com/aboutsun/pr/2009-02/sunflash.20090212.1.xml
http://www.sun.com/aboutsun/pr/2009-02/sunflash.20090212.1.xml


272 CHAPTER 10 Clever graphics and smart phones
view is facing. A game needs a score, so we’ll track the number of moves the player has 
made, the objective being to solve the maze in as few moves as possible.

 The interface looks fairly simple, and that’s because I want to spend most of the 
pages ahead concentrating on the 3D part of the game rather than on mundane con-
trol panel components. The 3D effect is quite an unusual use of the scene graph, and 
it demands careful forward thinking and node management. Let’s start by looking at 
the theory behind how it works.

10.1.1 Creating a faux 3D effect

One evening, many years ago, I wandered up the road where I lived at the time, and 
found myself transported back to Victorian London. A most surreal moment! It hap-
pened that a film crew had spent the morning shooting scenes for an episode of Sher-
lock Holmes, and the nearby terrace housing had undergone a period makeover. If 
you’ve ever visited a Hollywood-style back lot, you’ll be familiar with how looks can 
deceive. Everything from the brick walls to the paved sidewalks is nothing more than 
lightweight fabrications, painted and distressed to make them look authentic.

 This may surprise some readers, but the walls in our project do not use any mind-
bending 3D geometry. The maze is nothing more than the illusion of 3D, creating the 
effect without any of the heavy lifting or number crunching. Now it’s time to reveal 
its secrets.

 Picture five squares laid out side by side in a row. Now picture another row of squares, 
this time twice the size, overlaid and centered atop our original squares. And a third row, 
again twice as big (making them four times the size of the original row), and a fourth 
row (eight times the original size), all 
overlaid and centered onto the scene. If 
we joined the points from all these 
boxes, we might get a geometry like the 
one in figure 10.2.

 Figure 10.2 has been clipped so 
that some of the squares are incom-
plete or missing. We can see the small-
est row of squares, five in all, across 
the middle of the figure. The next row 
has three larger squares, the extremes 
of which are partially clipped. There 
are three even larger squares, so big 
only one fits fully within the clipped 
area, with just a fragment of its com-
panions showing. And the final row of 
squares is so large they all fall entirely 
outside the clipping area, but we can 
see evidence for them in the diagonal 

Figure 10.2 The 3D in our maze is all fake. The  
grid defines the maze geometry without using any 
complex mathematics.
    

  

http://www.sun.com/aboutsun/pr/2009-02/sunflash.20090212.1.xml


273Amazing games: a retro 3D puzzle
lines leading off at the far corners of the figure. This collection of squares is all we 
need to construct the illusion of three dimensions.

10.1.2 Using 2D to create 3D

So, the 3D effect in our maze is entirely constructed from a plain and simple 2D grid, 
but how does that actually work? Figure 10.3 shows how the geometry of our 3D dis-
play is mapped to the 20 x 20 grid we’re using to represent it.

 By using rows of squares and connecting their points, we can build a faux 3D view. 
The visible area exposed in figure 10.2 fits within a grid, 20 x 20 points. Using a grid of 
that size we can express the coordinates of every square using integer values only. Fig-
ure 10.3 shows how those points are distributed inside (and outside) the 20 x 20 grid. 
Remember: even though the diagram looks 3D, the beauty is we’re still dealing with 2D
x/y points.

■ Our five smallest squares (let’s say they’re the farthest away) are each 4 points 
wide, with the first one having its top-left and bottom-right coordinates at (0,8)-
(4,12), the second at (4,8)-(8,12), and so on. 

■ The next row of three squares is 8 points in size: (-2,6)-(6,14), then (6,6)-
(14,14), and finally (14,6)-(22,14). The first and the last squares fall slightly out-
side the (0,0)-(20,20) viewport.

■ The next row of three is 16 points in size: (-14,2)-(2,18), then (2,2)-(18,18), etc. 
The first and last squares fall predominantly outside the clipping viewport.

■ The final row, not shown in figure 10.3, needs only one square, which falls 
entirely outside the clipped area, at (-6,-6)-(26,26).

0 4 8 12 16 20

6 14−2 22

2 18
−30  −14 34  50

30−10 6
8

12
14

2
18

Figure 10.3 The geometry of our maze. Using a flat 20 x 20 grid as the viewport, the regular 
numbers describe x coordinates, and the rotated numbers (underlined) describe y coordinates.
    

  



274 CHAPTER 10 Clever graphics and smart phones
This simple grid of points is the key behind the custom node that creates the 3D maze 
display. Now that we know the theory, we need to see how it works using code.

10.2 The maze game
The game we’ll develop will be constructed from custom nodes, centered on a model
class for the maze and player status. The scene graph code is simple, except for the 3D
node, which is highly complex. The 3D custom node demonstrates just how far we can 
push JavaFX’s retained mode graphics, with clever positioning and management of nodes, 
to create a display more typical of immediate mode (the model Swing and Java 2D use).

10.2.1 The MazeDisplay class: 3D view from 2D points

We might as well start with the most complex part of the UI, indeed probably the most 
involved piece of UI code you’ll see in this book. The MazeDisplay class is the primary 
custom node responsible for rendering the 3D view. As with previous source code list-
ings, this one has been broken into stages. The first of these is listing 10.1.

package jfxia.chapter10;

import javafx.scene.CustomNode;
import javafx.scene.Group;
import javafx.scene.Node;
import javafx.scene.paint.Color;
import javafx.scene.paint.LinearGradient;
import javafx.scene.paint.Stop;
import javafx.scene.shape.Polygon;
import javafx.scene.shape.Rectangle;

package class MapDisplay extends CustomNode {
    def xPos:Integer[] = [                    
        0,  4,  8, 12, 16, 20 ,                 
      -10, -2,  6, 14, 22, 30 ,               
      -30,-14,  2, 18, 34, 50 ,               
      -70,-38, -6, 26, 58, 90                 
    ];                                        
    def yPos:Integer[] = [        
        8,  6,  2, -6 ,             
       12, 14, 18, 26             
    ];                            

    public-init var map:Map;    

    var wallVisible:Boolean[];             
    def scale:Integer = 12;     
// Part 2 is listing 10.2

We have the opening to our maze view class, and already we’re seeing some pretty cru-
cial code for making the 3D effect work.

 The opening tables, xPos and yPos, represent the points on the 20 x 20 grid shown 
in figure 10.3. Each line in the xPos table represents the horizontal coordinate for five 

Listing 10.1 MazeDisplay.fx (part 1)

Horizontal 
points on 
faux 3D

Vertical points 
on faux 3D

Map data Manipulates 
scene graph

Scale points 
on screen
    

  



275The maze game
squares. Even though nearer (larger) rows require only three squares or one square, 
we use five consistently to balance the table and make it easier to access. Each line 
contains six entries because we need not just the left-side coordinate but the right side 
too; the final entry defines the right-hand side of the final square. The first line in the 
table represents the row of squares farthest away (smallest), with each successive line 
describing nearer (larger) rows.

 The yPos table documents the vertical coordinate for each row. The first line 
describes the y positions for the tops of the farthest (smallest) row, through to the 
nearest (largest) row. The next line does the same for the bottoms. We’ll be using the 
xPos and yPos tables when we build our scene graph, shortly. Meanwhile, let’s con-
sider the remainder of the variables:

■ map variable is where we get our maze data from. It’s an instance of the Map
class, which we’ll see later.

■ The wallVisible boolean sequence is used to manipulate the scene graph 
once it has been created.

■ scale decides how many pixels each point in our 20 x 20 grid is worth. Set-
ting scale to 12 results in a maze display of 240 x 240 pixels, ideal for our 
mobile environment. Larger or smaller values allow us to size the maze to 
other display dimensions.

The next step is to create the application’s scene graph. Listing 10.2 shows how it fits 
together.

// Part 1 is listing 10.1
    override function create() : Node {
        def n:Node = Group {
            content: [
                Rectangle {
                    width: 20*scale;
                    height: 20*scale;
                    fill: LinearGradient {  
                        proportional: true;
                        endX: 0.0;  endY: 1.0;
                        stops: [
                            Stop { offset: 0.0;  
                                color: Color.color(0,0,.5); },
                            Stop { offset: 0.40;
                                color: Color.color(0,.125,.125); },
                            Stop { offset: 0.50;
                                color: Color.color(0,0,0); },
                            Stop { offset: 0.60;
                                color: Color.color(0,.125,0); },
                            Stop { offset: 1.0;
                                color: Color.color(.5,1,0); }
                        ];
                    };
                } ,                        

Listing 10.2 MazeDisplay.fx (part 2)

Sky and floor 
gradient
    

  



276 CHAPTER 10 Clever graphics and smart phones
                _wallFront(0,4,0 , 0.15),                   
                _wallSides(1,4,0 , 0.15,0.45),
                _wallFront(1,3,1 , 0.45),       
                _wallSides(2,3,1 , 0.45,0.75),
                _wallFront(1,3,2 , 0.75) ,       
                _wallSides(2,3,2 , 0.75,1.00)    
            ]
            clip: Rectangle {
                width: 20*scale;
                height: 20*scale;
            };
            cache: true;  
        };
        update();  
        
        n;
    }
// Part 3 is listing 10.3

The create() function should, by now, be immediately recognizable as the code that 
creates our scene graph. It begins with a simple background Rectangle, using a Lin-
earGradient to paint the sky and floor, gradually fading off to darkness as they 
approach the horizon. To populate the colors in the gradient we’re using a script-level 
(static) function of Color, which returns a hue based on red, green, and blue values 
expressed as decimals between 0 and 1.

 After the background, a series of function calls populates the graph with front-fac-
ing and side-facing walls. These are convenience functions that help keep create()
looking nice and clean (I tend to prefix the name of such refactored functions with an 
underscore, although that’s just personal style). We’ll look at the mechanics of how 
the shapes are added to the scene in a moment, but for now let’s just focus on the calls 
themselves. Here they are again:

_wallFront(0,4,0 , 0.15),
_wallSides(1,4,0 , 0.15,0.45),
_wallFront(1,3,1 , 0.45),
_wallSides(2,3,1 , 0.45,0.75),
_wallFront(1,3,2 , 0.75) ,
_wallSides(2,3,2 , 0.75,1.00)

The first call is to _wallFront(). It adds in the back row of five front-facing walls, 
which you can see in figure 10.4. The three-integer parameters all relate to the 
tables we saw in listing 10.1. The first two parameters are delimiters, from 0 to 4 (five 
walls), and the third parameter determines which parts of the xPos and yPos tables 
to use for coordinates. In this case we’re using line 0 (the first six entries) in xPos
and entry 0 in the top/bottom lines from yPos. In plain English this means we’ll be 
drawing boxes 0 to 4 using horizontal coordinates 0, 4, 8, 12, 16, and 20 from xPos
and vertical coordinates 8 and 12 from yPos. The final, fractional parameter deter-
mines how dark to make each wall. Because these walls are the farthest away, they 
are set to a very low brightness.

Smallest 
row, frontsMedium row, 

sides/fronts
Large row, 
sides/fronts

X-large 
sides

Cache 
output

Populate scene 
with map data
    

  



277The maze game
The next line is a call to _wallSides(). It adds in the four side-facing walls, two left of 
center, two right of center. The first three parameters do pretty much the same thing, 
but there are two brightness parameters. This is because the perspective walls (the ones 
running into the screen) have a different brightness from their farthest to their near-
est edge. The first parameter is for the farthest; the second is for the nearest.

 The remaining function calls add in the other front and side walls, working from the 
back to the front of the 3D scene. Next, we see the actual function code (listing 10.3).

// Part 1 is listing 10.1; part 2 is listing 10.2
    function _wallFront(x1:Integer,x2:Integer , r:Integer,
    op:Number ) : Node[] {
        for(x in [x1..x2]) {            
            insert false into wallVisible;          
            def pos:Integer = sizeof wallVisible -1;  

            Polygon {                   
                points: [
                    xPos[r*6+x+0]*scale , yPos[0+r]*scale , // UL
                    xPos[r*6+x+1]*scale , yPos[0+r]*scale , // UR
                    xPos[r*6+x+1]*scale , yPos[4+r]*scale , // LR
                    xPos[r*6+x+0]*scale , yPos[4+r]*scale   // LL
                ];
                fill: Color.color(0,op,0);
                visible: bind wallVisible[pos];  
            };
        }    
    }

    function _wallSides(x1:Integer,x2:Integer , r:Integer, 
    opBack:Number,opFore:Number) : Node[] {
        var half:Integer = x1 + ((x2-x1)/2).intValue();
        for(x in [x1..x2]) {                            

Listing 10.3 MazeDisplay.fx (part 3) 

Row 2

Row 3

Row 1

Row 0

Player

Figure 10.4 A plan view of the scene 
graph pieces that have to be added, in 
order, from back (row 0) to front (row 3). 
The shaded area represents the player’s 
field of view.

For each wall
Add on/off 
switch

Front wall polygon

Bind to on/off 
switch

For each 
wall
    

  



278 CHAPTER 10 Clever graphics and smart phones
            def rL:Integer = if(x>half) r else r+1;
            def rR:Integer = if(x>half) r+1 else r;  
            def opL:Number = if(x>half) opBack else opFore;
            def opR:Number = if(x>half) opFore else opBack;  

            insert false into wallVisible;          
            def pos:Integer = sizeof wallVisible -1;  

            Polygon {                           
                points: [
                    xPos[rL*6+x]*scale , yPos[0+rL]*scale , // UL
                    xPos[rR*6+x]*scale , yPos[0+rR]*scale , // UR
                    xPos[rR*6+x]*scale , yPos[4+rR]*scale , // LR
                    xPos[rL*6+x]*scale , yPos[4+rL]*scale   // LL
                ];
                fill: LinearGradient {
                    proportional: true;
                    endX:1;  endY:0;
                    stops: [
                        Stop {                         
                            offset:0;                    
                            color:Color.color(0,opL,0);
                        } ,                            
                        Stop {                         
                            offset:1;                    
                            color:Color.color(0,opR,0);
                        }                              
                    ];
                };
                visible: bind wallVisible[pos];  
            };
        }    
    }
// Part 4 is listing 10.4

Listing 10.3 shows the two functions responsible for adding the walls into our scene 
graph. The first function, _wallFront(), adds the front-facing walls. It loops inclusively 
between two delimiters, parameters x1 and x2, adding Polygon shapes. The r parameter 
determines which row in the view we’re drawing, which in turn determines the parts of 
the xPos and yPos tables we should use. For example, when r = 0 the table data for the 
farthest (smallest) row of walls is used; when r = 3 the nearest (largest) row is used.

 The polygon forms a square using the coordinate pairs upper-left, upper-right, 
lower-right, and lower-left, in that order. We could have used a Rectangle, but using a 
Polygon makes the code more consistent with its companion _wallSides() function.

 Because the xPos and yPos tables are, in reality, linear sequences, we need to do a 
little bit of math to find the correct value. Each row of horizontal coordinates in xPos
has six points, from left to right across the view. There are two sets of vertical coordi-
nates (upper y and lower y) in yPos, each with four points (rows 0 to 3). For horizon-
tal coordinates we multiply r up to the right row and then add on the wall index to 
find the left-hand side or its next-door neighbor for the right-hand side. The vertical 
coordinates, which define the top and bottom of the shape, are as simple as reading 
the rth value from the first and second line of yPos.

Near/far edge?

Near/far 
brightness?

Add on/off 
switch

Side wall polygon

Left edge 
color

Right edge 
color

Bind to on/off 
switch
    

  



279The maze game
Figure 10.5 shows how the x and y coordinates are looked up inside the two tables. 
Remember, once we’ve used the tables to find the point in our 20 x 20 grid, we need 
to apply scale to multiply it up to screen-pixel coordinates.

 Just before we create the polygon, we add a new boolean to wallVisible, and in 
the polygon itself we bind visibility to its index. This allows us to switch the wall on or 
off (visible or invisible) later in the code. This switch is key to updating the 3D view, as 
demonstrated in the final part of the code, in listing 10.4.

 The _wallSides() function is a more complex variation of the function we’ve just 
studied. This time, one edge of the polygon is on one row, and the other edge is on 
another row. The left and right edges of the polygon are positioned depending on 
whether we’re drawing a wall on the left side of the view or the right, in order to create 
the illusion of perspective. The half variable is used for that purpose, and instead of one 
r value we have two: one for the left and one for the right. We also have two color values 
for the edges of the polygon, to ensure it gets darker as it goes deeper into the display.

 Once again we add a boolean to wallVisible and bind the polygon’s visibility to 
it. But what do we do with all these booleans? The answer is in listing 10.4.

// Part 1 is listing 10.1; part 2, listing 10.2; part 3, listing 10.3 
    package function update() : Void {
        def walls:Integer[] = [
            -2, 2,-3  ,               
            -2,-1,-2  ,  1, 2,-2 ,                 
            -1, 1,-2  ,                                       
            -1,-1,-1  ,  1, 1,-1 ,                   
            -1, 1,-1  ,                     
            -1,-1, 0  ,  1, 1, 0  
        ];

        var idx:Integer = 0;
        var pos:Integer = 0;
        while(idx<sizeof walls) {
            var yOff:Integer = walls[idx+2];         
            for(xOff in [walls[idx]..walls[idx+1]]) {  

Listing 10.4 MazeDisplay.fx (part 4)

xPos[r*6+x+0]
yPos[0+r]

xPos[r*6+x+1]
yPos[0+r]

xPos[r*6+x+0]
yPos[4+r]

xPos[r*6+x+1]
yPos[4+r]

xPos[rL*6+x]
yPos[0+rL]

xPos[rR*6+x]
yPos[0+rR]

xPos[rR*6+x]
yPos[0+rR]

xPos[rL*6+x]
yPos[0+rL]

xPos[rL*6+x]
yPos[4+rL]

xPos[rR*6+x]
yPos[4+rR]

xPos[rR*6+x]
yPos[4+rR]

xPos[rL*6+x]
yPos[4+rL]

rL = r+1
rR = r

rL = r
rR = r+1

Figure 10.5 By plotting the points on our polygon, using the xPos and yPos tables for reference, we 
can created the illusion of perspective.

Row 0, fronts
Row 1, sides

Row 1, 
frontsRow 2, 

sidesRow 2, 
frontsRow 3, 

sides

(x1,y) to 
(x2,y)
    

  



280 CHAPTER 10 Clever graphics and smart phones
                var rot:Integer[] = map.rotateToView(xOff,yOff);
                wallVisible[pos] = not map.isEmpty          
                    (map.x+rot[0] , map.y+rot[1]);             
                pos++;
            }
            idx+=3;  
        }
    }
}

This is our final chunk of the mammoth 3D code. Having put all our polygons in 
place, we need to update the 3D view by switching their visibility on or off, depending 
on which cells of the map inside our viewport are walls and which are empty (passage-
ways). We do this each time the player moves, using the update() function.

 A reminder: we added rows of polygons into our scene graph, in sequence, from 
farthest to nearest. At the same time we added booleans to wallVisible in the same 
order, tying them to the corresponding polygon’s visibility. These booleans are the 
means by which we will now manipulate each wall polygon. As we move around the 
maze, different parts of the map fall inside our field of view (the viewport). The wall 
nodes never get moved or deleted, and when a given cell of the map has no wall block 
present, the corresponding polygons are simply made invisible (they’re still there in 
the graph; they just don’t get drawn).

 The update() function looks at map positions, relative to the player’s position and 
orientation (facing north, south, east, or west), and sets the visibility boolean on the 
corresponding node of the scene graph. Figure 10.6 shows how the relative coordi-
nates relate to the player’s position at (0,0).

 We need to work through each polygon node in the scene graph, relate it to an x/
y coordinate in the map, and set the corresponding wallVisible boolean to turn the 
polygon on or off. The walls table at the start of the code holds sets of x1, x2, and y 

Change 
visibility

Next x1, x2, 
y triple

(0,0)

(0,−1)

(0,−2)

(0,−3) (1,−3)(−1,−3)(−2,−3) (2,−3)

(1,−2)(−1,−2)(−2,−2) (2,−2)

(−1,−1) (1,−1)

(−1,0) (1,0)(0,0)

(0,−1)

(0,−2) (1,−2)(−1,−2)−2) (2

,−1) (1,−

Player

Figure 10.6 Having created our scene 
graph walls, we need to be able to switch 
them off and on depending on which cells 
in the map are wall blocks, relative to the 
player’s location.
    

  



281The maze game
triples that control this process. Let’s remind ourselves of the table, with one eye on 
figure 10.6, so we can see what that means:

def walls:Integer[] =
[   -2, 2,-3  , 
    -2,-1,-2  ,  1, 2,-2 ,
    // Snipped
]

The first nodes in the scene graph are the back walls, which run from coordinates 
(-2,-3) to (2,-3) relative to our player’s position, where (0,0) is the cell the player 
is currently standing on. This is why our first triple is -2,2,-3 (x = -2 to x = 2, with 
y = -3).

 Next we have four side walls, controlled by cells (-2,-2) and (-1,-2) on the left-hand 
side of the view and (1,-2) and (2,-2) on the right. You can see that the second line of 
walls has the corresponding triples. (We don’t bother with the central cell, (0,-2), 
because that cell’s side walls are entirely obscured by its front-facing polygon.)

 The remaining lines in walls deal with the rest of the scene graph, row by row. All 
of these values are fed into a loop, translating the table into on/off settings for each 
wall polygon.

var idx:Integer = 0;
var pos:Integer = 0;
while(idx<sizeof walls) {
    var yOff:Integer = walls[idx+2];
    for(xOff in [walls[idx]..walls[idx+1]]) {
        var rot:Integer[] = map.rotateToView(xOff,yOff);
        wallVisible[pos] = not map.isEmpty
            (map.x+rot[0] , map.y+rot[1]);
        pos++;
    }
    idx+=3;
}

The while loop works its way through the walls table, three entries at a time; the 
variable idx stores the current offset into walls. Remember, the first value in the tri-
ple is the start x coordinate, the second is the end x coordinate, and the third is the y 
coordinate. The nested for loop then works through these coordinates, rotating 
them to match the player’s direction and adding them into the current player x/y 
position to get the absolute cell in the map to query. We then query the cell to see if 
it is empty or not.

 Once this code has run, each of the polygons in the scene graph will be visible or 
invisible, depending on its corresponding entry in the map. And voilà, our 3D display 
is alive!

 I did warn you this was the most complex piece of scene graph code in the book, 
and I’m sure it didn’t disappoint. You may have to scan the details a couple of times 
just to ensure they sink in. The purpose behind this example is to show that retained 
mode graphics (scene graph-based, in other words) don’t have to be simple shapes. 
They are capable of complexity similar to immediate-mode graphics. All it takes is a 
    

  



282 CHAPTER 10 Clever graphics and smart phones
little planning and imagination. You’ll be glad to hear the remaining custom nodes 
are trivial by comparison.

10.2.2 The Map class: where are we?

Now that we’ve seen the MapDisplay class, it’s time to introduce the model class that 
provides its data. Listing 10.5 provides the code.

package jfxia.chapter10;

package class Map
{   def wallMap:Integer[] = [            
        1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,  
        1,0,0,1,0,1,0,0,0,0,0,0,0,1,0,1 ,
        1,1,0,1,0,1,1,1,0,1,1,0,1,1,0,1 ,
        1,0,0,1,0,1,0,1,0,0,0,0,0,1,0,1 ,
        1,0,1,1,0,1,0,1,0,1,1,1,0,0,0,1 ,
        1,0,0,1,0,0,0,1,0,1,0,1,1,1,1,1 ,
        1,0,0,1,1,1,1,1,0,1,0,0,0,0,0,1 ,
        1,0,1,1,0,0,0,1,0,1,1,1,0,1,0,1 ,
        1,0,0,1,1,0,1,1,0,0,0,1,0,1,1,1 ,
        1,1,0,0,0,0,0,1,0,1,1,1,0,1,0,1 ,
        1,0,0,1,1,0,1,1,0,0,1,0,0,0,0,1 ,
        1,1,0,0,1,0,0,1,1,0,1,0,1,0,0,1 ,
        1,0,0,1,1,1,0,0,0,0,0,0,1,1,0,1 ,
        1,0,0,0,1,0,0,1,1,0,1,1,1,0,0,1 ,
        1,1,0,0,0,1,0,1,0,0,0,0,0,0,0,1 ,
        1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1  
    ];                                   

    package def width:Integer = 16; 
    package def height:Integer = 16;  

    package def startX:Integer = 1;
    package def startY:Integer = 1;  
    package def endX:Integer = 14; 
    package def endY:Integer = 1;  

    public-read var x:Integer;  
    public-read var y:Integer;    
    public-read var dir:Integer;
    public-read var success:Boolean =  
        bind ((x==endX) and (y==endY));  
// Part 2 is in listing 10.6

In listing 10.5 have the first half of our Map class. It begins with a huge table defining 
which parts of the map are walls and which are passageways. Immediately following 
that we have the dimensions of the map, 16 x 16 cells, followed by the cells that 
denote the start and end locations.

 The public-read variables expose the current cell (x and y) the player is stand-
ing on and which direction the player is facing. North is 0, east is 1, south is 2, and 
west is 3. Finally we have a convenience boolean, true when the player’s location is 
the same as the end location (and the maze has therefore been solved).

Listing 10.5 Map.fx (part 1)

Maze wall data; 1 
is a wall, 0 is an 
empty space

Dimensions 
of map

Start and 
end cells

Current player 
position/direction

Reached the 
end yet?
    

  



283The maze game
 Let’s move on the listing 10.6, which is the second part of the Map class.

// Part 1 is listing 10.5
    init {
        x = startX;
        y = startY;
    }

    package function isEmpty(x:Integer,y:Integer) : Boolean {
        if(x<0 or y<0 or x>=width or y>=height) { return false; }
        var idx:Integer = y*width+x;
        return( wallMap[idx]==0 );
    }

    package function moveRel(rx:Integer,ry:Integer,rt:Integer) : Boolean {
        if(rx!=0 or ry!=0)                                                
        {   def rot:Integer[] = rotateToView(rx,ry);         
            if(isEmpty(x+rot[0],y+rot[1])) {        
                x+=rot[0];  y+=rot[1];             
                return true;                        
            }                                       
            else {
                return false;
            }
        }
        else if(rt<0) {         
            dir=(dir+4-1) mod 4;  
            return true;        
        }                       
        else if(rt>0) {       
            dir=(dir+1) mod 4;  
            return true;      
        }                     
        else {
            return false;
        }
    }

    package function rotateToView(x:Integer,y:Integer) : Integer[] {
        [   if(dir==1) 0-y         
                else if(dir==2) 0-x  
                else if(dir==3) y  
                else x ,           
            if(dir==1) x           
                else if(dir==2) 0-y  
                else if(dir==3) 0-x
                else y             
        ];
    }    
}

In the conclusion of the Map class we have a set of useful functions for querying the 
map data and updating the player’s position.

Listing 10.6 Map.fx (part 2)

Moving x/y?

Rotate 
coordinates

If possible, 
move to cell

Turn left 
(counterclockwise)

Turn right 
(clockwise)

Calculate absolute 
x coordinate

Calculate absolute 
y coordinate
    

  



284 CHAPTER 10 Clever graphics and smart phones
■ The init block assigns the player’s current location from the map’s start location.
■ isEmpty()returns true if the cell at x and y has no wall. We saw it in action dur-

ing the update of the 3D maze, determining whether nodes should be visible or 
invisible.

■ moveRel()accepts three parameters, controlling x movement, y movement, and 
rotation. It returns true if the move was performed. The parameters are used 
to move the player relative to the current position and orientation or rotate their 
view. If rx or ry is not 0, the relative positions are added to the current player 
location (the rx and ry coordinates are based on the direction the player is cur-
rently facing, so the rotateToView()orientates them the same way as the map). 
If the rt parameter is not 0, it is used to rotate the player’s current orientation.

■ rotateToView() is the function we’ve seen used repeatedly whenever we needed 
to translate relative coordinates facing in the player’s current orientation to rel-
ative coordinates orientated north. If I move forward one cell, the relative move-
ment is x = 0, y = -1 (vertically one cell up, horizontally no cells). But if I’m facing 
east at the time, this needs to be translated to x = 1, y = 0 (horizontally right one 
cell, vertically no cells) to make sense on the map data. The rotateToView() func-
tion translates this player-centric movement into 
a map-centric movement, returning a sequence 
of two values: x and y.

So that’s our Map class. There are three simple custom 
nodes we need to look at before we pull everything 
together into our main application. So let’s deal with 
them quickly.

10.2.3 The Radar class: this is where we are

The Radar class is a simple class for displaying the 
position of the player within the bounds of the maze, 
as show in the bottom-left corner of figure 10.7.

 The radar has a kind of 8-bit retro style, in keeping 
with the simple, unfussy graphics of the maze. It 
doesn’t show the walls of the maze—that would make 
the game too easy—just a pulsing circle representing 
where the player is and a yellow square for the goal.

 Let’s take a look at the code, courtesy of listing 10.7.

package jfxia.chapter10;

import javafx.animation.transition.ScaleTransition;
import javafx.animation.Timeline;
import javafx.scene.CustomNode;
import javafx.scene.Group;
import javafx.scene.Node;

Listing 10.7 Radar.fx

Figure 10.7 The maze game, 
complete with radar in the 
bottom left-hand corner and a 
compass in the bottom right
    

  



285The maze game
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Rectangle;

package class Radar extends CustomNode
{   def cellSize:Number = 4;
    def border:Number = 8;
    public-init var map:Map;

    override function create() : Node {
        var c:Circle;
        var n:Group = Group {
            def w = map.width*cellSize;
            def h = map.height*cellSize;

            layoutX: border;
            layoutY: border;
            content: [
                Rectangle  {             
                    width: w;  height: h;
                    fill: null;
                    stroke: Color.GREEN;
                    strokeWidth:2;
                } ,
                c = Circle {             
                    layoutX: cellSize/2;
                    layoutY: cellSize/2;
                    centerX: bind map.x * cellSize;
                    centerY: bind map.y * cellSize;
                    radius: cellSize;
                    fill: Color.LIGHTGREEN;
                } ,
                Rectangle {                
                    x: map.endX * cellSize; 
                    y: map.endY * cellSize; 
                    width: cellSize;
                    height: cellSize;
                    fill: Color.YELLOW;
                }
            ];
            clip: Rectangle {
                width: w + border*2;  
                height: h + border*2;
            }
        }

        ScaleTransition {                    
            node: c;                           
            duration: 0.5s;                  
            fromX: 0.2;  fromY: 0.2;         
            toX: 1;  toY: 1;                 
            autoReverse: true;               
            repeatCount: Timeline.INDEFINITE;
        }.play();                            
        
        n;
    }
}

Background 
rectangle

Circle presenting 
player

End 
marker

Infinite scale 
in/out
    

  



286 CHAPTER 10 Clever graphics and smart phones
The Radar class is a very simple scene graph coupled with a ScaleTransition. The 
cellSize is the pixel dimension each maze cell will be scaled to on our display. You’ll 
recall from the Map class that the maze is 16 x 16 cells in size. At a pixel size of 4, this 
means the radar will be 64 x 64 pixels. And speaking of the Map class, the map variable 
is a local reference to the game’s state and data. The border is the gap around the 
edge of the radar, bringing the total size to 80 x 80 pixels.

 The scene graph manufactured in create() is very basic, but then it doesn’t need 
to be fancy. Three shapes are contained within a Group, shifted by the border.

 A background Rectangle, provides the boundary of the maze area, sized using the 
map dimensions against the cellSize constant. A Circle is used to show where the 
player currently is; its position is bound to the cellSize multiplied by the player’s 
location in the map. Because a JavaFX Circle node’s origin is its center point, we shift 
it by half a cell, to put the origin of the circle in the center of the cell. The end point 
in the map (the winning cell) is displayed using a yellow Rectangle.

 Before we return the Group we create a ScaleTransition, continually growing and 
shrinking the circle from full size to just 20%. With the autoReverse flag set to true, 
the animation will play forward and then backward. And with repeatCount set to 
Timeline.INDEFINITE, it will continue to run, forward and backward, forever. (Well, 
at least until the program exits!)

10.2.4 The Compass class: this is where we’re facing

The Compass class is another simple, retro-style class. This one spins to point in the 
direction the player is facing. Listing 10.8 is our compass code. It’s a two-part custom 
node, with a static part that does not move and a mobile part that rotates to show the 
player’s orientation. You can see what it looks like by glancing back at figure 10.7.

package jfxia.chapter10;

import javafx.animation.transition.RotateTransition;
import javafx.scene.CustomNode;
import javafx.scene.Group;
import javafx.scene.Node;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Polygon;
import javafx.scene.shape.Rectangle;

package class Compass extends CustomNode {
    def size:Number = 64;
    def blobRadius:Number = 5;

    public-init var map:Map;

    var compassNode:Node;

    override function create() : Node {
        def sz2:Number = size/2;
        def sz4:Number = size/4;

Listing 10.8 Compass.fx
    

  



287The maze game
        compassNode = Group {   
            content: [
                Circle {                
                    centerX: sz2;  
                    centerY: blobRadius;
                    radius: blobRadius;
                    fill: Color.YELLOW;
                } ,
                _makeCircle(blobRadius , sz2) ,       
                _makeCircle(size-blobRadius-1 , sz2) ,  
                _makeCircle(sz2 , size-blobRadius-1)  
            ]
            rotate: map.dir * 90;  
        };

        Group {      
            content: [
                Circle {                        
                    centerX: sz2;  centerY: sz2;  
                    radius: sz2-blobRadius;     
                    stroke: Color.GREEN;        
                    strokeWidth: 2;             
                    fill: null;                 
                } ,                             

                Polygon {                   
                    points: [                 
                        sz2 , sz4 ,         
                        size-sz4 , size-sz4,
                        sz2 ,  sz2+sz4/2 ,  
                        sz4 , size-sz4      
                    ];                      
                    fill: Color.LIGHTGREEN; 
                } ,                         
                compassNode                     
            ] 
            clip: Rectangle { width:size;  height:size; }
        }
    }

    package function update() : Void {  
        RotateTransition {
            node: compassNode;
            duration: 1s;
            toAngle: map.dir * 90;  
        }.play();
    }

    function _makeCircle(x:Number,y:Number) : Circle {  
        Circle {
            centerX: x;  centerY: y;
            radius: blobRadius;
            stroke: Color.GREEN;
            strokeWidth: 2;
        }
    }
}

Rotating group

North circle 
(yellow)

West, east, and south 
circles (hollow)

Initial rotation

Static group

Ring 
circle

Central 
arrow

Add in 
rotating group

Change rotation

Animate to 
new direction

Convenience 
function: 
make a circle
    

  



288 CHAPTER 10 Clever graphics and smart phones
The instance variable size is the diameter of the ring, while blobRadius helps size the 
circles around the ring. (Blob? Well, can you think of a better name?)

 Inside create(), the compassNode group is the rotating part of the graph. It is 
nothing more than four circles (blobs) representing the points of the compass, with 
the northern position a solid yellow color. The other three are hollow and identical 
enough to be created by a convenience function, _makeCircle(). The compassNode is 
plugged into a static part of the scene graph, comprising a ring and an arrow polygon.

 The update() function is called whenever the direction the player is facing 
changes. It kicks off a RotateTransition to spin the blob group, making the yellow 
blob face the player’s direction. Because we specify only an end angle and no starting 
angle, the transition (conveniently) starts from the current rotate position.

10.2.5 The ScoreBoard class: are we there yet?

Only one more custom node to go; then we can write the application class itself. The 
scoreboard keeps track of the score and displays a winning message; its code is in list-
ing 10.9.

package jfxia.chapter10;

import javafx.scene.CustomNode;
import javafx.scene.Node;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.text.Text;
import javafx.scene.text.TextOrigin;

package class ScoreBoard extends CustomNode {
    public-init var score:Integer;
    package var success:Boolean = false;

    override function create() : Node {
        VBox {
            spacing: 5;
            content: [
                Text {                         
                    content: "Moves:";           
                    textOrigin: TextOrigin.TOP;
                    fill: Color.GREEN;         
                } ,                            
                Text {                         
                    content: bind "{score}";       
                    textOrigin: TextOrigin.TOP;
                    fill: Color.YELLOW;        
                } ,                            
                Text {                         
                    content: bind if(success)    
                        "SUCCESS!" else "";    
                    textOrigin: TextOrigin.TOP;
                    fill: Color.YELLOW;        
                }                              

Listing 10.9 ScoreBoard.fx

Static text: 
“Moves:”

Dynamic 
text: score

Success 
message
    

  



289The maze game
Figure 10.8 The scoreboard 
sits at the bottom of the display, 
showing the moves used and a 
“SUCCESS!” message once the 
end of the maze is reached.

            ];
        };
    }

    package function increment() : Void
    {   if(not success)  score++;        
    }                                  
}

The score panel is used in the lower-middle part of 
the game display. It shows the moves taken and a 
message if the player manages to reach the winning 
map cell. You can see it in action in figure 10.8.

 There’s not a lot to mention about this bit of 
scene graph; it’s just three Text nodes stacked verti-
cally. The increment() function will add to the score, 
but only if the success flag has not been set. As you’ll 
see when we check out the application class, success
is set to true once the end of the maze is reached 
and never unset. This prevents the score from rising 
once the maze has been solved.

10.2.6 The MazeGame class:  
our application

At last we get to our application’s main class, where 
we pull the four custom nodes previously discussed 
together into our game’s UI. This is our application 
class (listing 10.10), and thanks to all the work we 
did with the custom nodes, it looks pretty compact 
and simple.

package jfxia.chapter10;

import javafx.scene.Scene;
import javafx.scene.Group;
import javafx.scene.input.KeyCode;
import javafx.scene.input.KeyEvent;
import javafx.stage.Stage;

def map:Map = Map{};
var mapDisp:MapDisplay;
var scBoard:ScoreBoard;
var comp:Compass;
var gp:Group;

Stage {
    scene: Scene {
        content: gp = Group {
            content: [

Listing 10.10 MazeGame.fx

Increment score, 
if not success
    

  



290 CHAPTER 10 Clever graphics and smart phones
                mapDisp = MapDisplay {
                    map: map;           
                } ,                   
                Radar                 
                {   map: map;             
                    layoutY: 240;     
                } ,                   
                scBoard = ScoreBoard {
                    layoutX: 88;        
                    layoutY: 248;     
                } ,                   
                comp = Compass { 
                    map: map;      
                    layoutX: 168;
                    layoutY: 248;
                }                
            ];
            onKeyPressed: keyHandler;       
        }
        width: 240;  height: 320;
        fill: javafx.scene.paint.Color.BLACK;  
    }
}
gp.requestFocus();                         

function keyHandler(ev:KeyEvent) : Void {
    def c = ev.code;                     
    def x:Integer = 
        if(c==KeyCode.VK_LEFT) -1     
        else if(c==KeyCode.VK_RIGHT) 1  
        else 0;                       
    def y:Integer = 
        if(c==KeyCode.VK_UP) -1      
        else if(c==KeyCode.VK_DOWN) 1  
        else 0;                      
    def t:Integer = 
        if(c==KeyCode.VK_SOFTKEY_0 or     
            c==KeyCode.VK_OPEN_BRACKET) -1  
        else if(c==KeyCode.VK_SOFTKEY_1 or
            c==KeyCode.VK_CLOSE_BRACKET) 1
        else 0;                           

    if(x==0 and y==0 and t==0)  return;  

    if( map.moveRel(x,y,t) ) {           
        mapDisp.update();  comp.update();  
        if(t==0)  scBoard.increment();   
    }                                    

    if(map.success)  scBoard.success=true;  
}

After defining a few variables, we move straight into the scene graph. Since this is a 
top-level application class, we use a Stage and a Scene and then plug our custom 
nodes into it via a Group. The MazeDisplay is added first, followed by the Radar posi-
tioned into the bottom left-hand corner. Next to the radar is the ScoreBoard, and 
finally the Compass takes up the bottom right-hand corner.

3D map 
display

Radar, 
lower left

ScoreBoard, 
lower middle

Compass, 
lower right

Install keyboard 
handler

Default background 
is white

Request 
keyboard focus

Which key 
was pressed?

Move left 
or right?

Move forward 
or backward?

Turn left 
or right?

Nothing to do? Exit!

Perform movement 
or turn

Have we won?
    

  



291On the move: desktop to mobile in a single bound
 The reason we used a Group, rather than plug the nodes directly into the Scene, is 
to give us a node we can assign a keyboard handler to. In this case it’s a function by the 
name of keyHandler, defined outside the graph for readability sake. To make the han-
dler work we need to request the keyboard input focus, which is the purpose of the 
gp.requestFocus() call.

 What of the handler itself? The KeyEvent parameter contains all manner of infor-
mation about the state of the keyboard when the event was generated. In this case we 
just want the raw code of the key that got pressed, which we copy into a handy vari-
able. We compare this variable against the constants in the KeyCode class, to populate 
three more variables: x, y and t, such that x is -1 if moving left and 1 if moving right, y
is -1 if moving forward and 1 if moving backward, and t is -1 if turning left (counter-
clockwise) and 1 if turning right (clockwise).

 You’ll recognize these values as the relative movements the Map class accepts to 
make a movement, which is precisely what we do using map.moveRel(). The function 
returns true if the player successfully moved or turned, which causes us to update the 
MazeDisplay and the Compass. If the action was a move (not a turn), we also incre-
ment the moves counter in the ScoreBoard class.

 Finally we check to see if the winning cell has been reached and set the Score-
Board’s success flag if it has. Note that it never gets unset; this is so the score won’t 
rise if the player continues to move once the maze has been solved.

 And that’s our complete game. Now let’s try it out.

10.2.7 Running the MazeGame project

We can run the game in the usual way and navigate around in glorious 3D using the 
keyboard’s cursor keys (the arrow keys) and the square bracket keys for turning. With-
out cheating by looking at the data, see if you can navigate your way to the end using 
only the radar and compass to aid you.

 Take a look back at figures 10.7 and 10.8 to see how the game looks in action.
 The game works perfectly well on the desktop, but our ultimate goal is to transfer 

it onto a mobile device emulator. If you’re wondering how much we’ll have to change 
to achieve that aim, then the next section might come as a pleasant surprise.

10.3 On the move: desktop to mobile in a single bound
It’s time to move our application onto a cell phone or, more specifically, an emulator 
that simulates the limited environment of a cell phone (see figure 10.9).

 In the source code for the MazeGame class (listing 10.10) you may have noticed each 
action of turning, either clockwise or counterclockwise, was wired to a couple of keys. 
The KeyCode.VK_SOFTKEY_0 and the KeyCode.VK_SOFTKEY_1 could be used in prefer-
ence to KeyCode.VK_OPEN_BRACKET and KeyCode.VK_CLOSE_BRACKET. As you may have 
guessed, this is to accommodate the limited key input on many mobile devices.

 This is really the only concession I had to make for the mobile environment. The 
rest of the code is mobile ready. When writing the game I was very careful to use only 
those classes available for the common profile.
    

  



292 CHAPTER 10 Clever graphics and smart phones
Figure 10.9 Our maze game hits the small 
screen. More specifically, it’s running on the 
JavaFX 1.2 mobile emulator.

 The common what?
 The term profile is used to refer to given 

groupings of a JavaFX class. Not every class 
in the JavaFX API is available across every 
device, because not every device has the 
same power or abilities. Classes that can be 
used only on the desktop, for example, are 
in the desktop profile. Similarly classes that 
may be available only on JavaFX TV are 
exclusive to the TV profile (hypothetically 
speaking, given that the TV platform is 
months from release as I write). Classes that 
span all environments, devices, and plat-
forms are said to be in the common profile. By 
sticking to only the part of the JavaFX API
that is in the common profile, we ensure 
that the maze game will work on all JavaFX
platforms, including the phone emulator. 
But how can we find out which classes are 
supported by which profile?

 The official JavaFX web documentation 
features a toggle, in the form of a group of 
links at the head of each page, for showing 
only those bits of code inside a given profile. 
This is handy when we wish to know the 
devices and platforms our finished code will 
be able to run on. Flip the switch to “com-
mon,” and all the desktop-only parts of the 
API will vanish from the page, leaving only 
those safe to use for mobile development.

 So, we don’t need to make any changes to the software; our game is already primed 
to go mobile. We just need to know how to get it there!

10.3.1 Packaging the game for the mobile profile

To get the game ready for the emulator we use the trusty javafxpackager tool, first 
encountered in the Enigma chapter, to bundle code ready for the web. In this sce-
nario, however, we want to output a MIDlet rather than an applet (MID stands for 
Mobile Information Device). MIDlets are Java applications packaged for a mobile envi-
ronment, and here’s how we create one:

javafxpackager -profile MOBILE -src .\src
  -appClass jfxia.chapter10.MazeGame
  -appWidth 240 -appHeight 320
    

  



293On the move: desktop to mobile in a single bound
The example is the command line we need to call the packager with, split over several 
lines. If you’re on a Unix-flavored machine, the directory slashes run the opposite way, 
like so: 

javafxpackager -profile MOBILE -src ./src 
  -appClass jfxia.chapter10.MazeGame
  -appWidth 240 -appHeight 320

The command assumes you are sitting in the project’s directory, with src immediately 
off from your current directory (and the JavaFX command-line tools on your path). 
The options for the packager are quite straightforward. The application’s source 
directory, its main class name, and its dimensions should all be familiar. The only 
change from when we used the packager to create an applet is the -profile MOBILE
option. This time we’re asking to output to the mobile environment instead of the 
desktop. (If you need to remind yourself of how the packager works, take a look back 
at section 9.4.2, in the previous chapter.)

 A dist directory is created within our project, and inside you should find two files:

■ The MazeGame.jar file is the game code, as you would expect.
■ Its companion, MazeGame.jad, is a definition file full of metadata, helping 

mobile devices to download the code and users to know what it does before 
they download it.

The JAR and the JAD file are all we need to get our application onto a phone. The JAR
is the code and the JAD is a property file with metadata for the application. But before 
our software goes anywhere near a real phone, we’d obviously want to test it in a devel-
opment environment first. The next step, therefore, is to learn how to fire up the 
mobile emulator.

10.3.2 Running the mobile emulator

The mobile emulator is a simulation of the hardware and software environment in 
typical mobile phones. The emulator enables us to test and debug a new application 
without using an actual cell phone.

Going mobile, with NetBeans
Once again I’m showing you how things happen under the hood, without the abstrac-
tion of any given integrated development environment (IDE). If you’re running Net-
Beans, you should be able to build and package the mobile application without leaving 
your development environment. Terrence Barr has written an interesting blog entry ex-
plaining how to create and build mobile projects from NetBeans (the following web ad-
dress has been broken over two lines).

http://weblogs.java.net/blog/terrencebarr/archive/2008/12/ 
javafx_10_is_he.html
    

  

http://weblogs.java.net/blog/terrencebarr/archive/2008/12/javafx_10_is_he.html
http://weblogs.java.net/blog/terrencebarr/archive/2008/12/javafx_10_is_he.html


294 CHAPTER 10 Clever graphics and smart phones
 You’ll find the emulator inside the emulator\bin directory of your JavaFX installa-
tion. If you’re planning to run the emulator from the command line, check to make 
sure that this directory is on your execution search path. To run the emulator with our 
maze game, we merely need to point its -Xdescriptor option at our JAD file, like so:

emulator -Xdescriptor:dist\MazeGame.jad

When you run this command, a little service program will start up called the JavaFX
SDK 1.2 Device Manager. You’ll see its icon in the system tray (typically located in the 
southeast corner of the screen on Windows). If you are running a firewall (and I sin-
cerely hope you are), you may get a few alerts at this point, asking you to sanction con-
nections from this new software. Providing the details relate to Java and not some 
other mysterious application, you should grant the required permissions to allow the 
Device Manager and emulator to run. The result should look like figure 10.10.

 Once the emulator has fired up, the game can be played using the navigation but-
tons and the two function buttons directly below the screen. The navigation buttons 
move around the maze, while the function buttons turn the view. 

Figure 10.10 The old JavaFX 
1.1 mobile emulator (left) and 
its 1.2 update (right) in action. 
Strangely, the older version 
seems to reproduce the gradient 
paints better.

Running the mobile emulator, with NetBeans
If you want to remain within your IDE while testing mobile applications, there’s a guide 
to working with the emulator from NetBeans under the section titled “Using the Run 
in Mobile Emulator Execution Model” at the following web address:

http://javafx.com/docs/tutorials/deployment/configure-for-deploy.jsp
    

  

http://javafx.com/docs/tutorials/deployment/configure-for-deploy.jsp


295On the move: desktop to mobile in a single bound
And that’s it; our maze has successfully gone mobile!

10.3.3 Emulator options

The emulator has a range of command-line options, outlined in table 10.1. Options 
have been grouped by association.

Several of these options accept parameters; consult the emulator’s local documenta-
tion page (it came with the rest of the documentation when you installed JFX on your 
computer) or use the -help switch to get a list of what is required for each option. 

 Generally you’ll be using -Xdescriptor to test your software, perhaps with -Xdebug
to allow a remote debugger to be used as your code runs. The -Xquery and -Xdevice
options can be used to test your application on differing mobile device configurations. 
These configurations do not necessarily re-create specific models of a real-world phone 
but rather generalized approximations of devices available on the market. The -Xjam
option allows you to re-create a true mobile application lifecycle, from over the air 
deployment to eventual deinstallation.

 Next up is testing our application on a real phone.

10.3.4 Running the software on a real phone

We’ve come this far, and no doubt you’re now eager to learn how to get the software 
onto a real phone. If so, I’m afraid this section might be a little disappointing.

 As this chapter is being written, JavaFX Mobile is too new for there to be many phys-
ical devices readily available to test our application on. At JavaOne 2009 Sun made avail-
able some HTC Touch Diamond phones running JavaFX 1.2. These were intended as 
beta release hardware for developers to test their applications on. Consumer-focused 
JavaFX Mobile phones are being worked on, but right now it’s not possible to walk into 

Table 10.1 Emulator options

Options Function

-version 
-help

Print version or help information. Use the latter to get more information on other 
options.

-Xdebug 
-Xrunjdwp

Allow a debugger to connect to the emulator and optionally set a Java Wire Debug 
Protocol (JWDP) for the emulator/debugger to use when communicating.

-Xquery 
-Xdevice

List available devices the emulator can simulate along with their attributes, or 
specify which device to employ when running software on the emulator.

-Xdescriptor 
-Xautotest

Run a given mobile application via its JAD file, or automatically test each mobile 
application in a MIDlet suite (in theory it’s possible to package several mobile 
applications into one JAR, although this feature and the associated autotest 
option are rarely used in practice).

-Xjam Send commands to the Java Application Manager (JAM) simulator on the emulator. 
The JAM manages the phone’s installed applications and permits OTA (over the 
air) installation from a URL.
    

  



296 CHAPTER 10 Clever graphics and smart phones
a store and come out with a phone that runs JavaFX out of the box or install an upgrade 
to support it.

 Assuming JavaFX follows the same basic deployment scheme as the current Java 
Micro Edition, we can make an educated guess as to how it might work once JavaFX
starts to become available on actual consumer devices. By uploading both the JAR and 
JAD onto a web server, we can make them accessible for public download. Pointing the 
phone toward the JAD’s URL (the file may need editing first, to provide an absolute 
URL to its companion JAR) should cause the phone to query the user about download-
ing the application. If the user accepts, the software will be transferred onto the 
phone and made available on its application menus.

 Obviously, the process may vary slightly from phone to phone and OS to OS, but 
the general theory should hold true across all devices: the JAD file is the primary desti-
nation, which then references the actual application JAR file.

More on Java ME
Judging by the emulator shipped with JavaFX SDK v1.2, the JFX mobile emulator owes 
a lot to recent developments in Java ME (Micro Edition). The first link (broken over two 
lines) points to detailed information on the new Java ME emulator and its options, 
while the second is a portal page to Java ME’s latest developments:

http://java.sun.com/javame/reference/docs/sjwc-2.2/ 
pdf-html/html/tools/index.html

http://java.sun.com/javame/index.jsp

For more background on how Java ME MIDlets interact with a phone and its OS (in-
cluding its lifecycle), plus details of the JAD file format, consult these links:

http://developers.sun.com/mobility/learn/midp/lifecycle/

http://en.wikipedia.org/wiki/JAD_(file_format)

Who’s on board?
So where is JavaFX Mobile going in terms of real-world devices? Who’s on board from 
the handset manufacturers and other hardware providers? The following web links col-
lect documentation and press releases detailing prominent hardware partners Sun 
has announced at the time of writing:

http://javafx.com/partners/

http://www.sun.com/aboutsun/pr/2009-02/sunflash.20090212.1.xml

http://developer.sonyericsson.com/site/global/newsandevents/ 
latestnews/newsfeb09/ 
p_javafxmobile_sonyericsson_announcement.jsp
    

  

http://java.sun.com/javame/reference/docs/sjwc-2.2/pdf-html/html/tools/index.html
http://java.sun.com/javame/reference/docs/sjwc-2.2/pdf-html/html/tools/index.html
http://java.sun.com/javame/index.jsp
http://developers.sun.com/mobility/learn/midp/lifecycle/
http://en.wikipedia.org/wiki/JAD_(file_format)
http://javafx.com/partners/
http://www.sun.com/aboutsun/pr/2009-02/sunflash.20090212.1.xml
http://developer.sonyericsson.com/site/global/newsandevents/latestnews/newsfeb09/p_javafxmobile_sonyericsson_announcement.jsp
http://developer.sonyericsson.com/site/global/newsandevents/latestnews/newsfeb09/p_javafxmobile_sonyericsson_announcement.jsp
http://developer.sonyericsson.com/site/global/newsandevents/latestnews/newsfeb09/p_javafxmobile_sonyericsson_announcement.jsp


297Performance tips
It’s a shame we can’t currently run our applications on real-world phones, but the 
emulator does a good job of preparing us for the near future, when we should be able 
to. It allows us to see not only how the interface will work but also how the perfor-
mance will rank against the desktop. Efficient performance is key to writing good 
mobile software, so it’s worth spending our final section before the summary looking 
at a few simple optimization techniques. 

10.4 Performance tips
When developing on the mobile platform it’s important to pay particular attention to 
how expensive various operations are. Things a desktop computer can do without 
breaking a sweat may really tax smaller devices. The following are notes on how to 
keep your mobile applications zipping along at top speed. This list is by no means 
exhaustive. It’s compiled from my own observations with SDK 1.2, comments from 
other JavaFX coders, and advice from Sun engineers.

■ Binds are useful but carry an overhead. While you shouldn’t avoid them alto-
gether, you need to be sensible in their use. Too many bound variables can 
cause significant slowdowns in your application. Avoid binding to data that is 
unlikely to change during the lifetime of the application, for example, the 
screen resolution. When variables need to respond to changes in other vari-
ables, consider using triggers on the source to push updates out rather than 
binds on the recipients to pull them in.

■ Image manipulation can be expensive, particularly if the images are large. Set-
ting the width and height of an Image will cause it to be prescaled to the 
required size as it loads. Scaling images to fit a display is obviously more com-
mon on mobile applications; valuable resources can be saved by doing it up 
front rather than continually during live scene graph updates.

■ In a mobile environment, where the UI might need to be resized to fit the 
device’s resolution, a shapes-based approach is often better than an image-
based approach. It’s a lot less expensive to resize or transform shapes than 
images, and the results look cleaner too. However, see the next point.

■ Oversized scene graphs can cause headaches. The precise problems will likely 
vary from device to device, depending on the graphics hardware, but in general 
scene graphs should be culled of unnecessary shapes, invisible nodes, or fully 
transparent sections when possible. Rather than hiding unused parts of a user 
interface, consider adding/removing them from the stage’s scene as required. 
Sometimes fixing your UI into a bitmap image is better than forcing JavaFX
Mobile to render a complex scene graph structure with every update. (Shapes 
versus images is something of a fine balancing act.)

■ As a follow-up to the previous point, be aware that text nodes, because of their 
nature, are complex shapes. Devices may have efficient font-rendering 
functions built into their OS, but these may not be so hot for drawing trans-
formed text.
    

  



298 CHAPTER 10 Clever graphics and smart phones
You’ll note in the maze game that I broke one of these rules. I switched the visibility of 
wall nodes rather than remove unwanted nodes from the scene graph. The code was 
tough enough, I felt, without confusing readers with more complexity. The maze 
game seems to work fine on the emulator, but to squeeze out maximum performance 
we should ditch the wallVisible sequence and change the update() function to 
rebuild the scene graph from scratch with each move, including only visible nodes.

10.5 Summary
In this chapter we’ve pushed the scene graph further than anything we’ve seen 
before, traveling beyond the flat world of two dimensions. We also got a small taste of 
JavaFX Mobile, although only via the emulator for now.

 As always with the projects in this book, there’s still plenty of room for experimen-
tation. For example, the game works fine on 240 x 320 resolution displays but needs 
to be scaled and rearranged for alternative screen sizes. (Hint: the MazeDisplay class 
supports a scaling factor, which you might want to investigate.)

 This chapter went through quite a journey during the writing of the book, some of 
which is worth mentioning from a technical point of view. It was earmarked originally 
as a mobile chapter, but by the fall of 2008 it looked increasingly uncertain whether 
mobile support would be in the initial JavaFX release. The first draft was targeted at 
the desktop, and featured a far more complex scene graph that applied perspective 
effects onto bitmap images, overlaid with translucent polygons to provide darkness. 
Very Dungeon Master (see figure 10.11). However, when JavaFX 1.0 arrived in Decem-
ber 2008, complete with bonus Mobile preview, the code was stripped back radically to 
become more suitable for a mobile device.

 Originally I wanted to manufacture the 3D scene using SVG: create a vector-based 
wall image and replicate it for all the sizes and distortions needed to form the 19 wall 
pieces. Each piece would be on a different (jfx: labeled) layer inside a single SVG
and could be switched on or off independently to show or hide the wall nodes. A little 
bit of extra effort up front with Inkscape (or Illustrator) would produce much cleaner 
source code, effectively removing the need for the _wallFront() and _wallSides()
functions. Imagine my disappointment when I discovered the FXD library wasn’t yet 
compatible with the JavaFX 1.0 Mobile profile.

Credit where credit’s due
You can find these tips, plus more (including examples), in an article by Michael Hei-
nrichs titled “JavaFX Mobile Applications — Best Practices for Improving Perfor-
mance.” The web address has been broken over two lines:

http://java.sun.com/developer/technicalArticles/ 
javafx/mobile/index.html
    

  

http://java.sun.com/developer/technicalArticles/javafx/mobile/index.html
http://java.sun.com/developer/technicalArticles/javafx/mobile/index.html


299Summary
So it’s early days for the Mobile profile, clearly, but even the debut release used for 
this chapter shows great promise. As mobile devices jump in performance, and their 
multimedia prowess increases, the desktop and the handheld spaces are slowly con-
verging. JavaFX allows us to take advantage of this trend, targeting multiple environ-
ments in a single bound through a common profile, rather than coding from scratch 
for every platform our application is delivered on. 

 So far in the book we’ve used JavaFX on the desktop, taken a short hop over to a 
web browser, then a mighty leap onto a phone, all without breaking a sweat. Is there 
anywhere else JavaFX can go? Well, yes! It can also run inside other applications, exe-
cuting scripts and creating bits of UI. Although a rather esoteric skill, it can (in very 
particular circumstances) be incredibly useful. So that’s where we’ll be heading next.

Figure 10.11 A desktop 
version of the 3D maze, 
complete with bitmap walls 
using a perspective effect. 
Sadly, the bitmaps had to go 
when the project was adapted 
to fit a mobile platform.
    

  



Best of both worlds: 
 using JavaFX from Java
In previous chapters we saw plenty of examples demonstrating Java classes being 
used from JavaFX Script. Now it’s time for an about-face; how do we call JavaFX
Script from Java?

 Because JavaFX Script compiles directly to JRE-compatible bytecode, it might be 
tempting to assume we can treat JavaFX-created classes in much the same way we 
might treat compiled Java classes or JARs. But this would be unwise. There are 
enough differences between the two languages for assumption making to be a dan-
gerous business. For example, JavaFX Script uses a declarative syntax to create new 
objects; any constructors in the bytecode files are therefore a consequence of com-
piler implementation, not the JavaFX Script code. We can’t guarantee future JavaFX
Script compilers will be implemented the same way; constructors present in classes 

This chapter covers
■ Mixing JavaFX into Java programs
■ Calling JavaFX Script as a scripting language
■ Defining our Java app’s Swing UI in JavaFX
■ Adding JavaFX to the Java classpath
300

    

  



301Adventures in JavaFX Script
written by one JFX compiler might vanish or change in the next. So in this chapter 
we’ll look at how to get the two languages interacting in a manner that doesn’t 
depend on internal mechanics.

 A reasonable question to ask before we get going is, “When is an application con-
sidered Java, and when is it JavaFX Script?” Suppose I write a small JavaFX Script pro-
gram that relies on a huge JAR library written in Java; is my program a Java program 
that uses JavaFX Script or a JavaFX Script program that relies on Java? Which is the pri-
mary language?

 Obviously, there are different ways of measuring this, but for the purposes of this 
chapter the primary language is the one that forms the entry point into the applica-
tion. In our scenario it’s JavaFX Script that runs first, placing our hypothetical applica-
tion unambiguously into the category of a JavaFX application that uses Java. We’ve 
seen plenty of examples of this type of program already. In the pages to come we’ll 
focus exclusively on the flip side of the coin: bringing JavaFX Script into an already-
running Java program.

11.1 Different styles of linking the two languages
There are two core ways we might employ JavaFX Script in our Java programs.

■ As a direct alternative to Java —We might enjoy JavaFX Script’s declarative syntax 
so much we decide to write significant portions of our Java program’s UI in it. In 
this scenario JavaFX Script plays no part in the final binary release (although 
JavaFX APIs may be used). Everything is compiled to bytecode, and JFX is merely 
being used as a tool to write part of the source code.

■ As a runtime scripting language —We might want to add scripting capabilities to 
our Java application and decide that JavaFX Script is a suitable language to 
achieve this. In this scenario JavaFX Script is an active part of the final product, 
providing a scriptable interface to control the application as it runs.

The project we’ll develop in this chapter demonstrates both uses.

11.2 Adventures in JavaFX Script
What we need now is an interesting project that demands both types of script usage, 
something like a simple adventure game. We can use JavaFX Script as a Java replace-
ment to create some of the UI and as a scripting language for the game events.

 The technique of breaking up an application into a core engine and a series of light-
weight event scripts is well known in the video games industry, but it’s also becoming 
increasingly common in productivity applications too. It allows programs like word 
processors and graphics tools to open themselves up to enhancement and customiza-
tion without releasing their source code. Mostly it’s the larger, more sophisticated 
applications that benefit from script-ability like this; thus, for the purposes of this 
book, it’s probably best we stick to a simple game—although the techniques are 
exactly the same, no matter what the scale or purpose of the program.
    

  



302 CHAPTER 11 Best of both worlds: using JavaFX from Java
 Creating the graphics for an adventure game can take longer than writing the actual 
game code itself. Lucky, then, that your humble author toyed with an isometric game 
engine way back in the days of 16-bit consoles. Even luckier, a ready-made palette of iso-
metric game tiles (painstakingly crafted in Deluxe Paint, I recall) survived on an old 
hard drive (see figure 11.1) ready to be plundered. The graphics are a little retro in 
appearance but will serve our needs well. Remember, kids, it’s good to recycle!

 The engine we’ll use will be constructed in Java and just about functional enough 
to plug in the JavaFX Script code we want to use with it. Since this is not a Java book, I 
won’t be reproducing the Java source code in full within these pages. Indeed, we won’t 
even be looking at how the engine works; the game engine is a means to an end—a 
sample application we can use as a test bed for our JavaFX Script integration. Instead, 
we’ll focus on the fragments binding JavaFX Script into the Java.

For the sake of flexibility many video games are developed in two distinct parts. A pro-
grammer will build a game engine, which drives the game based on the graphics, 
sounds, and level/map data the designers feed into it. This data is often created with 
specially written tools for that particular game engine. It’s a process not unlike the 
programmer/designer workflow we touched on with the Enigma applet project.

Figure 11.1 A simple Java 
adventure game engine, using an 
isometric view. The control panel 
at the foot of the window, as well 
as the in-game events, will be 
written using JavaFX Script.

Download the source
The majority of the project’s Java code is not reproduced in this chapter (this is a 
JavaFX book, after all!). You can download the full source and the associated graphics 
files from the book’s website. The source is fully annotated; each section relating to 
working with JavaFX Script is clearly labeled. Try searching for the keyword JavaFX.

http://manning.com/JavaFXinAction/
    

  

http://manning.com/JavaFXinAction/


303Adventures in JavaFX Script
Our simple Java isometric game engine employs a 
grid-based map. The game environment is broken 
up into rooms, and each room is a grid of stacked 
images, carefully placed to give an isometric 3D 
effect. Take a look at figure 11.2 for a visual repre-
sentation of how they are arranged.

 Unlike the maze we developed previously, the 
game map isn’t hardcoded into the source. A sim-
ple data file is used, which the game engine reads 
to build the map. Obviously, it’s not enough for the 
game’s designer to build a static map; she needs to 
add often quite complex interactions to model the 
game events. This is when the programmer reaches 
for a scripting engine.

11.2.1 Game engine events

Building lightweight scripting into a game engine allows the game designer the free-
dom she needs to program the game’s story, without hardcoding details into the game 
application itself. Our game engine uses JavaFX Script as its scripting engine to sup-
port three types of game events:

■ An event can run whenever the player leaves a given cell.
■ An event can run whenever the player enters a given cell.
■ We can define actions, which the player triggers by standing on a given cell and 

pressing the spacebar on the keyboard, for example, when the player wants to 
throw a wall-mounted switch.

Our game engine uses a large text file, which describes each room, including the 
width and height of its area (in cells), the tile images that appear in each cell, and the 
door locations connecting rooms. More important, it also includes the event code, 
written in JavaFX Script. We can see how a part of it might look in listing 11.1.

#ROOM 1 6 6
#TITLE The 2nd Room
0000010f06 000C010f06 0E00010f06 0008010f06 004c010f06 0008010f06
0000010f06 0000000006 0000002b06 0000000006 0000000006 0045000006  
0000010f06 0000000006 0000002a06 0000000006 0000000003 0000000008
0000071106 0000000006 0000000005 0000000006 0000000003 0000000003
0000081006 0000001e06 0000000003 0000000003 0000000003 0000000003
000A010f06 0000000006 0000000007 0000002c06 0000002d06 0000000004
#LINK 1 5 1 1 to 0 1 2 1                             
#REPAINT 000000 001000 001000 000000 010000 000110
#END

#SCRIPT 1 4 1 action                    
def st = state as jfxia.chapter11.State;

Listing 11.1 A fragment of the game data file

Grid  
of tile 
graphics

Door link

Action event as 
JavaFX Script

Figure 11.2 Each cell in the game 
environment is created from up to five 
images: one floor tile, two wall tiles, 
and two faces that modify one side of 
a wall tile.
    

  



304 CHAPTER 11 Best of both worlds: using JavaFX from Java
if(st.getPlayerFacing()==0)             
    st.setRoomCell(1,4,0 , -1,-1,-1,0x4e,-1);
    st.setRoomCell(0,6,1 , -1,0,-1,-1,-1);   
}                                            
#END                                         

We have only a fragment of the data file shown here, detailing just one room. The syn-
tax is one I made up myself to quickly test the engine; if this were a serious project, I 
might have used XML instead. The whole file is parsed by the game engine upon 
startup. We’re not interested in the details, but for the record, the #ROOM line declares 
this data to be for room 1 (rooms start at 0) and 6 x 6 cells in size, the #TITLE line 
gives the room a name, and a #LINK line connects room 1 cell (5,1) east, with room 0 
cell (1,2) east. The #REPAINT line is a series of flags that help optimize screen updates. 
Figure 11.3 shows the room in question.

 The important part is the #SCRIPT block, attached to room 1 cell (4,1) as an action
event type, meaning it will run when the player presses the spacebar. The script checks 
to see whether the player is facing north (0 means north), and if so it changes a tile at 
cell (4,0), flipping the switch mounted on the wall into the up position. It also 
changes a tile in another room, removing an obstruction.

 The script does all of these things by calling functions on an object named st, 
which is a reference (cast as type jfxia.chapter11.State) to another object called 
state. The obvious question is, “Where does state come from?” I’m sure it won’t 
come as any surprise to learn it’s an object dropped into our JavaFX Script environ-
ment by the Java code that calls our script. To investigate further we need to check out 
that Java code, which is precisely where we’ll head next.

Figure 11.3 This is room 1 
(room IDs start at 0), which the 
fragment of data file in listing 
11.1 refers to. The player stands 
on cell (3,1), in front of him is 
the event cell (4,1), and beyond 
that the door link cell (5,1).
    

  



305Adventures in JavaFX Script
11.2.2 Calling the JavaFX Script event code from Java

Java SE version 6 supports JSR 223. For those who don’t recognize the name, JSR 223 is 
the Java Specification Request for running scripting languages within Java programs. 
By implementing something called a scripting engine (not to be confused with our 
game engine) a language can make itself available to running Java programs. Not only 
can Java run scripts written in that language, but it may also be able to share objects 
with its scripts.

 JSR 223 uses what’s known as the service provider mechanism. To use the scripting 
engine (and the language it implements) all we need do is include the engine’s JAR
on Java’s classpath, and the engine will be found when requested. Even though we 
generally work with JavaFX Script as a compiled language, JavaFX comes with a 
scripting engine. It lives in the javafxc.jar file, inside the lib directory of your JavaFX
SDK installation.

Important: Getting the classpath right
When you run a JavaFX program using the javafx command (directly or via an IDE), 
the standard JavaFX JAR files are included on the classpath for you. When you invoke 
JavaFX code from Java, however, this won’t happen. You need to manually add the 
necessary JARs to the classpath. If you explore your JavaFX installation, you’ll see 
subdirectories within lib for each profile. The files you need depend on which features 
of JavaFX you use; to get our game running I found I needed to include the following 
from the JavaFX 1.2 SDK:

shared/javafxc.jar (for the JavaFX Script JSR 223 scripting engine) 
shared/javafxrt.jar 
desktop/decora-runtime.jar 
desktop/javafx-anim.jar 
desktop/javafx-geom.jar 
desktop/javafx-sg-common.jar 
desktop/javafx-sg-swing.jar 
desktop/javafx-ui-common.jar 
desktop/javafx-ui-desktop.jar 
desktop/javafx-ui-swing.jar

Tip: if figuring out which JARs you need is too painful for you, why not set the ja-
va.ext.dirs property when you run your JRE, pointing it at the necessary library di-
rectories within JavaFX? (Of course, while this solution is fine on our developer box, it 
doesn’t easily deploy to regular users’ computers, without wrapping our program in a 
startup script.)

java -Djava.ext.dirs=<search path> MyJavaClass
    

  



306 CHAPTER 11 Best of both worlds: using JavaFX from Java
Once the javafxc.jar file is on the classpath, we need to know how to invoke its script-
ing engine, and that’s precisely what listing 11.2 does. It shows fragments of the Map
class, part of the Java game engine I implemented for this project. This listing shows 
how to set up the scripting engine; we’ll deal with actually running scripts later. 

import javax.script.ScriptEngineManager;     
import com.sun.javafx.api.JavaFXScriptEngine;  

// ...

boolean callEnterEventScript(int kx,int ky) {         
    return callEventScript(currentRoom.enter , kx,ky);   
}                                                     
boolean callExitEventScript(int kx,int ky) {          
    return callEventScript(currentRoom.exit , kx,ky); 
}                                                     
boolean callActionEventScript(int kx,int ky) {        
    return callEventScript(currentRoom.action , kx,ky);
}                                                      

private boolean callEventScript(HashMap<Integer,String>hash,
int kx,int ky) {
    int x=state.playerX , y=state.playerY , f=state.playerFacing;
    Room r=currentRoom;

    int key = kx*100+ky;
    String script;
    if(hash.containsKey(key)) {
        script = hash.get(key);  
        try {
            ScriptEngineManager manager =       
                new ScriptEngineManager();        
            JavaFXScriptEngine jfxScriptEngine =
                (JavaFXScriptEngine)manager     
                .getEngineByName("javafx");     

            jfxScriptEngine.put("state",state);      

            jfxScriptEngine.eval(script);  
        }catch(Exception e) {
            e.printStackTrace();
            System.err.println(script);
        }
    }

    return !(state.playerX==x && state.playerY==y && 
        state.playerFacing==f && currentRoom==r);
}

Remember, this is not the complete source file—just the bits relating to JSR 223.
 At the head of the listing we import the classes required for Java to talk to the JavaFX

Script scripting engine. The first import, javax.script.ScriptEngineManager, is the 
class we’ll use to discover (get a reference to) the JavaFX Script engine. The second 

Listing 11.2 Map.java: calling JavaFX Script from Java

Import JavaFX 
scripting engine

Three different 
event types

Handle 
each 
game 
event

Event code from 
game data

Service 
provider finds 
JFX engine

Make state 
available

Run 
script
    

  



307Adventures in JavaFX Script
import, com.sun.javafx.api.JavaFXScriptEngine, is the JavaFX Script scripting 
engine itself.

 The bulk of the code is taken from the body of the Map class. Each of the three 
event types supported has its own method. The game engine uses three hash tables 
to store the events. Each method defers to a central event handling method, 
callEventScript(), passing the necessary hash table for the current room, along 
with the cell x/y position relating to the event (typically the player’s location).

 The callEventScript() method combines the x and y positions into a single 
value, which it uses as a key to extract the JavaFX Script code attached to that cell. The 
script code is loaded into a String variable called, appropriately enough, script. This 
variable now holds raw JavaFX Script source code, like we saw in listing 11.1, earlier. To 
run this code we use a scripting engine, and that’s what we see in the middle of the 
callEventScript() method.

ScriptEngineManager manager = new ScriptEngineManager();
JavaFXScriptEngine jfxScriptEngine = 
    (JavaFXScriptEngine)manager.getEngineByName("javafx");

First we use Java’s ScriptEngineManager to get a reference to JavaFX’s JavaFX-
ScriptEngine. You can see that we first create a new manager and then ask it to find 
(using the service provider mechanism) a scripting engine that matches the token 
javafx. Assuming the necessary JavaFX Script JAR file is on the classpath, the manager 
should get a positive match.

jfxScriptEngine.put("state",state);

Having acquired a reference to a JavaFX Script scripting engine, we add a Java object, 
state, into the engine’s runtime environment. We encountered this variable in the 
event code of listing 11.1. The state object is where our game engine holds status 
data like the position of the player and references to map data. It also provides meth-
ods to modify this data, which is why it’s being shared with the JavaFX Script environ-
ment. We can share as many Java objects as we please like this and choose what 
names they appear under in the script environment (in our code, however, we stick 
with state).

jfxScriptEngine.eval(script);

The call to eval(), passing the JavaFX Script code, causes the code to run. An excep-
tion handler is needed around the eval() call to catch any runtime errors thrown by 
the script. If all goes according to plan, though, we will have successfully called JavaFX
Script from within a Java program, without relying on any compiler implementation 
detail to link the two.

 So that’s one way to hook JavaFX Script into Java, but what about the other way? 
This is where we’ll head next.
    

  



308 CHAPTER 11 Best of both worlds: using JavaFX from Java
11.3 Adding FX to Java
So far we’ve looked at how to treat JavaFX Script as a runtime scripting language. As 
you’ll recall, there’s another way it can be used in a Java application; we can mix com-
piled Java and compiled JavaFX Script in the same project, developing different parts 
of our program in different languages.

 The preview release of JavaFX (pre 1.0) featured a Canvas class, acting as a bridge 
between the JavaFX scene graph and AWT/Swing. Sadly, this class was removed from 
the full release, making it impossible to pass anything except Swing wrapper nodes 
back to a Java UI. But even without the scene graph, this technique is still useful, for 
the following reasons:

■ It’s entirely possible the JavaFX team may add a bridge between the scene graph 
and AWT/Swing back in at a later release.

■ Depending on what you’re writing, JavaFX Script’s declarative syntax may be 
useful for building data structures other than just graphics. (Be careful: JavaFX
was designed for GUI coding, and as such it likes to run its code on the UI event 
dispatch thread.)

Problems with JavaFX 1.2?
When I wrote this project against JavaFX 1.1, I created a single JavaFXScriptEngine
object in the constructor, passing in the reference to state, and reused it for each 
eval() call. Some deep changes were made to the JSR 223 implementation for 
JavaFX 1.2, and I found this no longer worked; eval() would always rerun the first 
script the engine was passed, ignoring the new code passed in. The solution was to 
create a fresh engine for each script call. I’m not sure if this is a bug in my under-
standing of JavaFX’s JSR 223 code, a bug in the JSR 223 implementation itself, or 
just a feature! Per Bothner has written a blog entry about the 1.2 changes, so if you’re 
interested, go take a look:

http://per.bothner.com/blog/2009/JavaFX-scripting-changes/

Using a JavaFX scene graph inside Java: the hack
When JavaFX 1.0 was released, Sun engineer Josh Marinacci blogged about a quick-
’n’-dirty hack from fellow Java/JFX team members Richard Bair and Jasper Potts, 
building a bridge between the JavaFX scene graph and Swing. Unfortunately, this 
code stopped working when 1.2 arrived, but the open source JFXtras project (created 
by Stephen Chin) took up the challenge. Their 1.2-compatible solution, however, re-
lies on internal scene graph implementation detail and isn’t guaranteed to work in 
future releases.

http://blogs.sun.com/javafx/entry/how_to_use_javafx_in 
http://code.google.com/p/jfxtras/
    

  

http://per.bothner.com/blog/2009/JavaFX-scripting-changes/
http://blogs.sun.com/javafx/entry/how_to_use_javafx_in
http://code.google.com/p/jfxtras/


309Adding FX to Java
As an example our project will use a very basic control panel below the main game 
view. The simple panel is a JavaFX Script–created SwingLabel. To see how it looks, see 
figure 11.4.

In the sections that follow we’ll look at how to implement this panel in a way that 
makes it easy for the two languages to interact safely.

11.3.1 The problem with mixing languages

Think about what we’re trying to achieve here. We have three languages in play: two 
high-level languages (Java and JavaFX Script) are both compiled to a common low-
level language (bytecode). When we used JSR 223, the two languages were separated 
through the high-level abstraction of a scripting engine. Effectively the Java program 
was self-contained, and JavaFX Script code was treated almost as data (just like the 
map data). But in this section we’re attempting to use the two languages together, cre-
ating two halves of a single program.

 JavaFX Script guarantees a high degree of interoperability with Java as part of its lan-
guage syntax; JavaFX programmers don’t have to worry about the internals of class files 
created from Java code. The same is not true in the opposite direction. Although it 
seems likely that JavaFX Script functions will translate directly into bytecode methods, 
this is just an assumption. It may not be true of future (or rival) JavaFX Script compilers. 
How do we link the two languages in both directions, without making any assumptions?

 Fortunately, an elegant solution emerges after a little bit of lateral thinking. If 
JavaFX Script’s compatibility with Java classes is guaranteed, but Java’s compatibility 
with JavaFX Script classes is undefined, can we use the former to fix the latter? Yes, we 
can, using Java interfaces!

11.3.2 The problem solved: an elegant solution to link the languages

If we encode the interactions between our two languages into a Java interface and get 
the JavaFX Script code to implement (or extend, to use the JFX parlance) this interface, 
we have a guaranteed Java-compatible bridge between the two languages that Java can 
exploit to communicate with the JavaFX Script software.

 Listing 11.3 shows the Java interface created for our game engine. It has only 
two methods: the first is used to fetch the control panel user interface as a Java 

Figure 11.4 The panel at the foot of the game’s window is written entirely in 
compiled JavaFX Script.
    

  



310 CHAPTER 11 Best of both worlds: using JavaFX from Java
Swing–compatible object (a JComponent), and the second is used to interact with the 
user interface.

package jfxia.chapter11;

import javax.swing.JComponent;

public interface ControlPanel {
    public JComponent getUI();        
    public void setTitle(String s);  
}

Now that you’re familiar with the interface and its methods, let’s see them in action. 
Listing 11.4 shows fragments of the Game class, written in Java, displaying the first part 
of how to hook a JavaFX-created user interface control into Java Swing.

import javax.script.ScriptEngineManager;     
import com.sun.javafx.api.JavaFXScriptEngine;  

// ...

private ControlPanel ctrlPan;  

// ...

ctrlPan = getJavaFX();                        
ctrlPan.setTitle(state.getCurrentRoomTitle());  

JPanel pan = new JPanel(new BorderLayout());
pan.add(mapView,BorderLayout.CENTER);         
pan.add(ctrlPan.getUI(),BorderLayout.SOUTH);

//Part 2 is listing 11.5

First we create a class variable to hold our JavaFX object reference, using the 
ControlPanel interface we defined as a bridge. Then comes the meaty part: to plug 
the two UIs together we use the method getJavaFX(), which fetches the Control-
Panel (details in listing part 2, so be patient!). We call a method on it to set the ini-
tial room name; then we use the ControlPanel.getUI() interface method to pull a 
Swing-compatible JComponent from the JavaFX Script code and add it into the 

Listing 11.3 ControlPanel.java

Listing 11.4 Game.java (part 1): adding JavaFX UIs to Java code

Skinning cats
We can also form a bridge by subclassing a Java class. However, interfaces, with their 
lack of inherited behavior, generally provide a cleaner (sharper, less complicated) cou-
pling. But, as the saying goes, “there’s more than one way to skin a cat.” Choose the 
way that makes sense to you and your current project.

Fetch Java-
compatible UI

Interact 
with UI

Imports 
required

Control panel 
reference

Create and 
set up

Hook into 
Java Swing
    

  



311Adding FX to Java
southern position of a BorderLayout panel. (The other component, added to the 
center position, is the main game view, in case you’re wondering.)

 Exactly how the JavaFX object is turned into a Java object is hidden behind the 
mysterious getJavaFX() method, which will surrender its secrets next.

11.3.3 Fetching the JavaFX Script object from within Java

The code that creates the ControlPanel class will look very familiar. It’s just a variation 
on the JSR 223 scripting engine code you saw earlier in listing 11.2.

 Listing 11.5 is the second half of our Game class fragments. It shows the method 
getJavaFX() using the JavaFX Script scripting engine.

private ControlPanel getJavaFX() {
    ScriptEngineManager manager = new ScriptEngineManager();
    JavaFXScriptEngine jfxScriptEngine =
        (JavaFXScriptEngine)manager.getEngineByName ("javafx");
    try {
        return (ControlPanel)jfxScriptEngine.eval (
            "import jfxia.chapter11.jfx.ControlPanelImpl;\n"+
            "return ControlPanelImpl{};"
        );
    }
    catch(Exception e) {
        e.printStackTrace();
        return null;
    }
}

Since we’re going to use the scripting engine only once, we lump all the code to initial-
ize the engine and call the script into one place. The script simply returns a declara-
tively created JavaFX Script object of type ControlPanelImpl, which (you can’t tell from 
this listing, but won’t be shocked to learn) extends our ControlPanel interface. The 
object returned by the script provides the return value for the getJavaFX() method.

 Figure 11.5 demonstrates the full relationship. Once the ControlPanelImpl object 
is created, Java and JavaFX Script commu-
nicate only via a common interface. JavaFX
Script’s respect for Java interfaces means 
this is a safe way to link the two. However, 
JavaFX Script’s lack of support for construc-
tors means the ControlPanelImpl object 
must still be created using JSR 223.

 Let’s look at ControlPanelImpl. Because 
it’s written in JavaFX Script, the code is pre-
sented in its entirety (for those suffering 
JavaFX withdrawal symptoms) in listing 11.6.

 

Listing 11.5 Game.java (part 2): adding JavaFX user interfaces to Java code

Java

Game.java

JavaFX Script

ControlPanelImpl.fx

ControlPanel.java

getUI() setTitle() getUI()
setTitle()

Figure 11.5 Java’s Game class and the 
JavaFX Script ControlPanelImpl.fx 
class communicate via a Java interface, 
ControlPanel.java.
    

  



312 CHAPTER 11 Best of both worlds: using JavaFX from Java
package jfxia.chapter11.jfx;

import javafx.ext.swing.SwingComponent;
import javafx.ext.swing.SwingHorizontalAlignment;
import javafx.ext.swing.SwingLabel;
import javafx.ext.swing.SwingVerticalAlignment;
import javafx.scene.CustomNode;
import javafx.scene.Node;
import javafx.scene.paint.Color;
import javafx.scene.text.Font;
import javafx.scene.text.FontWeight;

import javax.swing.JComponent;      
import jfxia.chapter11.ControlPanel;  

public class ControlPanelImpl extends CustomNode, ControlPanel {  
    public-init var text:String;    
    var myNode:SwingComponent;
    var myColor:Color = Color.BLACK;

    public override function create() : Node {
        myNode = SwingLabel {                 
            text: bind text;
            font: 
                Font.font("Helvetica",FontWeight.BOLD,24);
            horizontalTextPosition: 
                SwingHorizontalAlignment.CENTER;
            verticalTextPosition: 
                SwingVerticalAlignment.CENTER;
            foreground: Color.BLUE;
        }
    }

    public override function getUI() : JComponent {   
        myNode.getJComponent();                         
    }                                                 
                                                      
    public override function setTitle(s:String):Void {
        text = s;                                     
    }                                                 
}

The script looks just like a standard Swing node. At the foot of the listing we see 
two functions that implement the ControlPanel interface. The first, getUI(), pulls 
the Swing JComponent from our node using the getJComponent() function 
supported by the Swing wrappers in the javafx.ext.swing package. The second 
function, setTitle(), allows Java to change the displayed text string of the con- 
trol panel.

 And that’s it! We now have a successful morsel of JavaFX code running happily 
inside a Java Swing application. Not hard, when you know how!

Listing 11.6 ControlPanelImpl.fx

Required for 
Java coupling

Subclass our 
Java interface

Create and 
store node

ControlPanel interface 
methods/functions
    

  



313Summary
11.4 Summary
In this chapter we’ve covered quite a simple skill, yet a sometimes useful one. Bringing 
JavaFX Script code into an existing Java program is something that needs to be done 
carefully and without assumptions about how a given JavaFX compiler works. Fortu-
nately Java 6’s scripting engine support, coupled with JavaFX Script’s respect for the 
Java language’s class hierarchy mechanism, makes it possible to link the two languages 
in a clean way. It may not be something we need to do every day, but it’s nice to know 
the option is there when we need it.

 Using scripting languages from within Java certainly gives us great power. (Don’t for-
get, “With great power there must also come great responsibility!” as Stan Lee once 
wrote.) It allows us to develop different parts of our application in languages more suit-
able to the task at hand. Sooner rather than later, I hope, the JavaFX team will add a work-
ing bridge between the scene graph and AWT/Swing, so we can exploit JavaFX to the 
fullest within existing Java applications. JavaFX would surely give us a powerful tool in 
slashing development times of Java desktop apps and reducing the frequency of UI bugs.

 This chapter brings the book to a close. We began in chapter 1 with excited talk 
about the promise of rich internet applications and the power of domain-specific lan-
guages, worked our way through the JavaFX Script language, learned how to use 
binds, manipulated the scene graph, took a trip to the movies, looked through our 
photo collection, sent some secret codes from within a web browser, got lost in a 
mobile maze, and ended up learning how to have the best of both worlds. What a jour-
ney! I hope it’s been fun.

Important: Compiling the code
This is a minor point but an important one: the JavaFX Script class relies on the Java 
interface, so whatever process or IDE we use to build the source code, we need to 
ensure the Java code is compiled first. The Java code doesn’t need the interface im-
plementation to be available when it builds (the whole idea of interfaces is so the im-
plementation can be plugged in later). The JavaFX Script code needs the interface 
class to be available, and on the classpath, for it to build.

Using an interface has one extra advantage: providing we haven’t changed the inter-
face itself, we don’t need to compile both sides of the application every time the code 
changes. If all our modifications are restricted to the Java side, we have to recompile 
only the Java, leaving the JavaFX Script classes alone. Likewise, the reverse is true if 
all the changes are restricted to the JavaFX Script side.

You could make use of this natural separation when designing your own projects, per-
haps assigning the Java and the JavaFX Script code to different teams of developers, 
coding independently against interfaces that bridge their work.
    

  



314 CHAPTER 11 Best of both worlds: using JavaFX from Java
 At the start of the book I stated that my mission was not to reproduce the API doc-
umentation blow for blow. The book was written against JavaFX SDK 1.2, and JavaFX
still has plenty of room for growth in future revisions; my goal was to give you a good 
grounding in the concepts and ideas that surround JavaFX, so you could take future 
enhancements in your stride. The final chapters, as I’m sure you noticed, became 
more speculative, revealing what might be coming up in future revisions of the JFX
platform. Any speculation was based on public material from Sun and the JavaFX
team, so I hope there won’t be too many surprises after the book goes to press.

 Although practicality meant none of the projects in this book were as mind blow-
ing as they could have been, I hope they gave you plenty to think about. Download the 
source code, play with it, add to it, and fill in the bits I didn’t have the space to do. 
Then try building your own apps. Increasingly, modern applications are featuring 
sumptuous graphical effects and rich multimedia, and JavaFX gives you the power to 
compete with the best of them. Push your skills to the max, amaze yourself, amaze 
your friends, amaze the world! 

 Above all, have fun!
    

  



appendix A:
Getting started

This section provides details on how to download, install, set up, compile, and run 
the JavaFX development environment. It also provides URLs to useful JavaFX web 
resources.

 Everything you need to get started with JavaFX is free to download, for Microsoft 
Windows, Mac OS X, or Linux.

A.1 Downloading and installing
Before we can start writing JavaFX applications, we need the right software. Next 
you’ll find web addresses to the downloads you need to get started. For each piece 
of software read the licenses (if any) and requirements carefully, and follow the 
download and installation instructions.

 Please read over this section before downloading anything, particularly if you’re 
new to Java. It contains information in later subsections that helps you get a solid 
overview of which tools you may want to download and install.

 The JavaFX tools themselves fall into two categories: the JavaFX SDK for program-
mers and the JavaFX Production Suite for designers. Their contents are outlined in 
the sections that deal with each. This book primarily focuses on the programmer 
tools (the SDK), although for the full experience it’s recommended that you down-
load both.

A.1.1 The Java Development Kit (essential)

First, if you don’t have the latest version, you need to visit the Java Standard Edition 
downloads page to fetch and install a copy of the Java SE JDK. Sun provides SE
(Standard Edition) implementations for Microsoft Windows and Linux, including 
64-bit builds. The Macintosh is covered by Apple’s own JDK, which unfortunately 
tends to lag behind the Sun releases. If it’s available for your system, you’re strongly 
urged to get the latest update of Java 6 JDK, preferably a version after Update 10, 
315

    

  



316 APPENDIX A Getting started
because of radical enhancements in applet deployment and Java startup times begin-
ning with that release. Remember, you need to download the JDK, not the JRE. The 
Java Runtime Environment does not contain the extra tools needed to write Java soft-
ware. (The JDK comes bundled with a compatible JRE).

■ Java SE Downloads (Windows and Linux) 
http://java.sun.com/javase/downloads/index.jsp

■ Apple’s Java Development Kit (Mac OS X) 
http://developer.apple.com/java/

At the time of writing, for JavaFX 1.2 the requirements are:

■ For Windows: Windows XP (SP2) or Vista, running JDK 6 Update 13 (minimum) 
or JDK 6 Update 14 (recommended).

■ For Mac: Mac OS X 10.4.10 or later, running JDK 5 Update 16 (aka v1.5.0_16) 
minimum (Java for Mac OS X 10.4 Release 7/Java for Mac OS X 10.5 Update 2)

■ For Linux: Ubuntu 8.04 LTE, running JDK 6 Update 13 (minimum) or JDK 6 
Update 14 (recommended). Media playback requires GStreamer 0.10.18.

A.1.2 NetBeans or other IDEs (optional)

You’ll find plenty of references to NetBeans on Sun’s Java pages, including options to 
download the NetBeans program as a bundle with the JDK. The JDK provides the raw 
tools for Java, such as the language compiler and runtime environment; it does not 
contain a source code editor or an IDE. An IDE is a seamless software environment, 
providing sophisticated visual tools for editing, analyzing, and debugging code. Most 
of these tools are available in the standard JDK, but as command-line (e.g., shell or MS-
DOS) programs rather than GUI-based applications.

 If you’re not at home with command-line environments, you are strongly recom-
mended to install an IDE to help you write your software. Modern IDEs are quite 
sophisticated; they can be extended with new technologies, like the JavaFX Script com-
piler used to build JavaFX code. Such extensions come in the form of plug-ins, 
installed into the IDE to teach it how to interface to new tools. NetBeans is Sun’s own 
IDE; however, it is not the only one available (nor, indeed, is it necessarily the most 
popular). Rivals of note include Eclipse and IntelliJ, each with its own devoted follow-
ing. You may want to investigate these alternatives before you make a choice, but it’s 
important to check to see whether the necessary plug-ins have been crafted for your 
chosen IDE to integrate into the tools you want to run, especially JavaFX.

Combined JDK and JavaFX SDK download
As of JDK 6 Update 13, Sun’s website offered a combined download/install package 
for JDK 6 and the JavaFX SDK. You may choose to download this two-in-one option if 
you want, rather than download and install both components separately. Read the rest 
of these setup instructions before you decide.
    

  

http://java.sun.com/javase/downloads/index.jsp
http://developer.apple.com/java/


317Downloading and installing
 Because NetBeans is Sun’s own IDE, its plug-in support for JavaFX is guaranteed 
and likely to be one step ahead of its rivals. By all means investigate the various 
options (talk to fellow programmers to see which IDE they recommend), but if you’re 
still uncertain, download NetBeans—it’s by far the safest option.

■ NetBeans 
http://www.netbeans.org/

■ Eclipse 
http://www.eclipse.org/

■ IntelliJ 
http://www.jetbrains.com/idea/ (Warning: no JFX plug-in at time of writing)

This book does not favor one IDE over any other. Each IDE has its own tutorials and 
documentation, as well as a strong online fan base. Covering every IDE would place an 
unnecessary burden on the text, while picking only one would alienate devotees of 
rival platforms. Fortunately, online tutorials are available.

■ Building a JavaFX Application Using NetBeans IDE 
http://java.sun.com/javafx/1/tutorials/build-javafx-nb-app/

■ Developing JavaFX applications with Eclipse – Tutorial (Lars Vogel) 
http://www.vogella.de/articles/JavaFX/article.html

A.1.3 The IDE plug-ins (required, if using an IDE)

We talked about IDEs and their merits. Each IDE needs a plug-in to teach it how to 
use the JavaFX SDK tools. These URLs will lead you to the relevant project page.

■ NetBeans JavaFX Plug-in 
http://javafx.netbeans.org/

■ Eclipse JavaFX plug-in 
http://javafx.com/docs/gettingstarted/eclipse-plugin/

■ IntelliJ JavaFX Plug-in 
No plug-in at the time of writing. Check for updates at  
http://plugins.intellij.net/

A.1.4 The JavaFX SDK (essential)

Having downloaded and installed the latest Java SE JDK, and perhaps a favored IDE, 
you now need to do the same for the JavaFX SDK. This provides the extra JFX compo-
nents for creating JavaFX software to target the Java SE platform.

 As well as a project website, JavaFX has a slick marketing-focused site from where 
you can download the latest official release. This site is the central hub for anyone 
who wants to download JavaFX and any official tools, browse an extensive list 
of demos, read various tutorials, or check out the JavaFX API documentation 
and JavaFX Script language specification. It’s a one-stop shop for JavaFX downloads 
and information.
    

  

http://www.netbeans.org/
http://www.eclipse.org/
http://www.jetbrains.com/idea/
http://java.sun.com/javafx/1/tutorials/build-javafx-nb-app/
http://www.vogella.de/articles/JavaFX/article.html
http://javafx.netbeans.org/
http://javafx.com/docs/gettingstarted/eclipse-plugin/
http://plugins.intellij.net/


318 APPENDIX A Getting started
■ The JavaFX Site 
http://www.javafx.com/

■ The JavaFX Site Download page (direct link) 
http://javafx.com/downloads/all.jsp

The OpenJFX project is an open source initiative, sponsored by Sun Microsystems, to 
create the JavaFX Script compiler. This is where JavaFX Script, as a technology, is being 
engineered and experimented on; future versions of the language will spring from 
this project. Presumably in the future the API will be covered by an open source proj-
ect too. The project site contains the latest compiler releases and their source code, 
although not necessarily an accompanying API release.

 If you want to play an active role in shaping the future of JavaFX itself, this is a 
good place to start. However, if you prefer to leave the nuances of language design to 
more experienced compiler engineers, you can ignore this site.

■ The OpenJFX Project Home Page 
https://openjfx.dev.java.net/

■ The JavaFX Build Server 
http://openjfx.java.sun.com/

A.1.5 The JavaFX Production Suite (optional)

The JavaFX Production Suite, previously known under its codename of Project Nile, is 
a set of plug-ins for both Adobe Illustrator (CS3+) and Adobe Photoshop (CS3+), 
allowing export into a special JavaFX graphics format, called FXD or FXZ (FXD is the 
format, but files are compressed and given an .fxz extension). There’s also a SVG to 
FXZ converter and a handy FXZ file viewer.

■ Javafx Production Suite Download 
http://javafx.com/downloads/all.jsp

■ Getting Started With JavaFX Production Suite 
http://javafx.com/docs/gettingstarted/production_suite/

The Production Suite is aimed at designers; you don’t need it just to write software. 
However, if you own the CS3 version of Illustrator or Photoshop, or you fancy bringing 
SVG images into your JFX programs, why not give it a try? The tools output to the FXD
format, which marries perfectly with the JavaFX scene graph. Image layers can be ref-
erenced and manipulated freely from inside JavaFX, meaning UI chunks can be con-
structed in a graphics tool and brought alive inside JavaFX programs.

 Readers unfortunate enough not to own these Adobe applications might be 
interested in Inkscape, a highly regarded open source vector graphics program. It 
can save to the SVG format supported by JavaFX’s FXZ conversion tool. Although 
it cannot currently write directly to JavaFX’s own FXZ format, programmers close 
to the project have indicated they intend to add this feature (so check the lat- 
est release).
    

  

http://www.javafx.com/
http://javafx.com/downloads/all.jsp
https://openjfx.dev.java.net/
http://openjfx.java.sun.com/
http://javafx.com/downloads/all.jsp
http://javafx.com/docs/gettingstarted/production_suite/


319Compiling JavaFX
■ Inkscape 
http://www.inkscape.org/

■ Inkscape and JavaFX Working Together (Silveira Neto) 
http://silveiraneto.net/2008/11/21/inkscape-and-javafx-working-together/

Regrettably, at the time of writing, no tool appears to exist for converting PSD (Photo-
shop) or AI (Illustrator) files themselves into a JavaFX-compatible form. This means it 
is not possible to convert files from Gimp (another much-praised open source graph-
ics tool) to FXD format. We can but keep our fingers crossed a plug-in for Gimp will be 
developed soon—or better still a standalone graphics-conversion tool.

A.1.6 Recap

To recap, the minimum you must have installed to begin JavaFX development is:

■ The Java SE Development Kit (JDK)
■ The JavaFX SDK

Optionally you may also wish to install:

■ An IDE of your choice, with its associated JavaFX plug-in (if the command line 
isn’t your thing)

■ The JavaFX Production Suite
■ Inkscape (as an alternative to Adobe Illustrator)

And if you’re the kind of expert programmer who wants to keep your finger on the 
pulse of the JavaFX Script compiler project (not recommended for the faint of heart):

■ The latest OpenJFX build

A.2 Compiling JavaFX
Having downloaded and installed the latest JDK and a JavaFX SDK, you’ll need to know 
how to run the JavaFX Script compiler and execute the programs it creates. If you 
plan to develop all your software exclusively from within an IDE, you needn’t pay too 
much attention to this section (although it’s always handy to know what’s happening 
under the hood).

 I’m going to explain the necessary steps in a platform-agnostic way. I assume you’re 
already familiar with the ins and outs of your computer’s command-line interface, be 
that something like Bash on Unix-flavored platforms, Microsoft’s own MS-DOS, or 
whatever CLI your system provides. Readers who aren’t competent with a command 
line are strongly recommended to use an IDE.

A.2.1 Setting the path

To get access to all the tools you need to develop, you must have both the JDK and the 
JavaFX SDK on your path.

 When you install the JavaFX SDK (on Windows, at least), the necessary directories 
will be added to the command path as part of the install process. To check them, 
    

  

http://www.inkscape.org/
http://silveiraneto.net/2008/11/21/inkscape-and-javafx-working-together/


320 APPENDIX A Getting started
right-click My Computer and choose Properties; on the Advanced tab click Environ-
ment Variables and look for Path in the list.

 If they haven’t been set up correctly, or you want to control them yourself (perhaps 
because you need to switch between versions of JavaFX), take a look at the directories 
where Java SDK and JavaFX SDK were installed. Inside you’ll find various subdirecto-
ries, one of which should be called bin. These directories have all the Java and JavaFX
command-line tools, and both need to be on your execution path.

 To test that both these directories are correctly set on your path, type the following 
at the command line:

javac -version
javafxc -version

If the paths are correct, each command will cause the respective compiler to run, 
printing its version information. Next we need to check to make sure the runtime 
environments are set. Type the following into the command line:

java -version
javafx -version

If the compiler commands work, it’s very unlikely the runtime commands will fail. 
However, make sure the versions are the ones you expect! Some operating systems come pre-
installed with a JRE, sometimes woefully out of date, so it’s always a good idea to dou-
ble check that you have the right runtime on your path.

 Because the output files (classes) created by the JavaFX Script compiler are Java 
compatible, the javafx command actually wraps java, adding the required JavaFX
libraries so we don’t have to put them on the classpath ourselves. The version informa-
tion will relate to JavaFX, but options such as -help appear to be passed straight to the 
Java runtime.

A.2.2 Running the compiler

Now that you have made sure the tools are on your path, building software is merely a 
case of calling the compiler and pointing it at some source files. The JavaFX Script 
compiler takes most of the same command-line options as the Java compiler. You can 
get a listing of them with the command

javafxc -help

A simple compilation, on Windows or Unix, might look like this:

javafxc -d . src\*.fx          (Windows/MS-DOS)
javafxc -d . src/*.fx          (Unix variant)

The compiler will run, building all the source files inside the src directory, outputting 
its classes into the current directory. JavaFX Script source files typically carry the .fx 
extension. If the classes use packages, you’ll find that the output directory will contain 
a directory structure mirroring the package structure.
    

  



321Useful URLs
A.2.3 Running the code

Now that you have built your code, the final step is to run it. The JavaFX runtime com-
mand wraps the Java runtime command, adding the extra JavaFX API classes onto the 
class path for you. A list of options can be displayed using the following command:

javafx -help

A typical invocation of the JavaFX runtime might look something like this:

javafx -cp . mypackage.MyClass

The class mypackage.MyClass is loaded and run, assuming it lives in the current work-
ing directory. The -cp option defines the class path. In the example the parameter 
immediately following it (the period) denotes the current directory, ensuring our 
classes will be found by the JRE.

A.3 Useful URLs
Learning a new platform is always hard at first. It’s nice to have resources you can turn 
to for guidance, information, and inspiration. This section lists URLs that may be use-
ful to you in your JavaFX work. The URLs are loosely grouped by type but are in no 
particular order of preference.

■ Book: JavaFX in Action, website
http://www.manning.com/JavaFXinAction/

■ JavaFX: The JavaFX Site
http://www.javafx.com/

■ JavaFX: JavaFX Technology at a Glance
http://java.sun.com/javafx/index.jsp

■ JavaFX: JavaFX API Documentation
http://java.sun.com/javafx/1.2/docs/api/

■ JavaFX: JavaFX Script Language Reference
http://openjfx.java.sun.com/current-build/doc/reference/ 
JavaFXReference.html

■ JavaFX: The OpenJFX Project Home Page
https://openjfx.dev.java.net/ 

■ Java: Sun’s Java Developer Home Page
http://java.sun.com/

■ Community: Sun’s Java Community website
http://java.net/

■ Community: Javalobby Developer Community
http://java.dzone.com/

■ Blog: James Weaver’s JavaFX Blog
http://learnjavafx.typepad.com/

■ Blog: Chris Oliver’s Blog
    

  

http://www.manning.com/JavaFXinAction/
http://www.javafx.com/
http://java.sun.com/javafx/index.jsp
http://java.sun.com/javafx/1.2/docs/api/
http://openjfx.java.sun.com/current-build/doc/reference/JavaFXReference.html
http://openjfx.java.sun.com/current-build/doc/reference/JavaFXReference.html
https://openjfx.dev.java.net/
http://java.sun.com/
http://java.net/
http://java.dzone.com/
http://learnjavafx.typepad.com/


322 APPENDIX A Getting started
http://blogs.sun.com/chrisoliver/
■ Blog: Joshua Marinacci’s Blog

http://weblogs.java.net/blog/joshy/
■ Blog: Ramblings on life, the Universe, and Java(FX)

http://weblogs.java.net/blog/javakiddy/
■ Extra examples, coded during the writing of this book

http://www.jfxia.com/
    

  

http://blogs.sun.com/chrisoliver/
http://weblogs.java.net/blog/joshy/
http://weblogs.java.net/blog/javakiddy/
http://www.jfxia.com/


appendix B:
JavaFX Script: 

 a quick reference

This appendix is an ultraterse guide to JavaFX Script, almost like flash cards for 
each of the topics covered in the main language tutorial chapters earlier in this 
book. As well as acting as a quick reference to the language syntax, it could also be 
used by highly confident developers (impatient to get on to the projects) as a fast 
track to learning the basics of the JavaFX Script language.

B.1 Comments
JavaFX Script supports comments in the same way as Java:

// A single line comment.
/* A multi line comment. */

B.2 Variables and data types—the basics
JavaFX Script variables are statically, not dynamically, typed. The language has no 
concept of primitives in the way Java does; everything is an object. Some types may 
be declared using a literal syntax. We call these the value types, and they are Bool-
ean, Byte, Character, Double, Duration, Float, Integer, Long, Number, Short, and 
String. KeyFrame, an animation class, also has its own specific literal syntax (dealt 
with in the chapters dealing with animation timelines).

 Aside from having their own literal syntax, value types can never be null, mean-
ing unassigned value types have default values. Value types are also immutable.

Variable declaration (def, var, Boolean, Integer, Number, String)

Value types are created using the var or the def keyword, followed by the variable’s 
name and optionally a colon and a type.
323

    

  



324 APPENDIX B JavaFX Script: a quick reference
var valBool:Boolean = true;
var valByte:Byte = -123;
var valChar:Character = 65;
var valDouble:Double = 1.23456789;
var valFloat:Float = 1.23456789;
var valInt:Integer = 8;
var valLong:Long = 123456789;
var valNum:Number = 1.245;
var valShort:Short = 1234;
var valStr:String = "Example text";

If initial values are not provided, sensible defaults are used. JavaFX Script also sup-
ports type inference.

var assBool = true;
var assInt = 1;
var assNum = 1.1;
var assStr = "Some text";

The def keyword prevents a variable from being reassigned once its initial value is set. 
This aids readability, bug detection, and performance. Note: although the variable 
cannot be reassigned, if its body uses a one-way bind, its value can still change.

var canAssign:Integer = 5;
def cannotAssign:Integer = 5;
canAssign = 55;
cannotAssign = 55;// Compiler error

Arithmetic (+, -, etc.)

Numbers may be manipulated in mostly the same ways as Java when it comes to arith-
metic. Remember, though, all variables are objects, and so are literals in the source code.

def n1:Number = 1.5;
def n2:Number = 2.0;
var nAdd = n1 + n2;
var nSub = n1 - n2;
var nMul = n1 * n2;
var nDiv = n1 / n2;
var iNum = n1.intValue();

var int1 = 10;
var int2 = 10;
int1 *= 2;
int2 *= 5;
var int3 = 9 mod (4+2*2);
var num:Number = 1.0/(2.5).intValue();

def dec = 16;      // 16 in decimal
def hex = 0x10;    // 16 in hexadecimal
def oct = 020;     // 16 in octal

Logic operators (and, or, not, <, >, =, >=, <=, !=)

Comparisons between variables are done pretty much the same way as in Java, except 
the && and || symbols are replaced by the keywords and and or.
    

  



325Strings
def testVal = 99;
var flag1 = (testVal == 99);
var flag2 = (testVal != 99);
var flag3 = (testVal <= 100);
var flag4 = (flag1 or flag2);
var flag5 = (flag1 and flag2);
var today:java.util.Date = new java.util.Date();
var flag6 = (today instanceof java.util.Date);
var flag7 = not flag6;

Casting (as, instanceof)

Casting is done using the as keyword, following the variable to be cast. Types can be 
tested using the instanceof operator.

var pseudoRnd:Integer = 
    (java.langSystem.currentTimeMillis() as Integer) mod 1000;

var str:java.lang.Object = "A string";
var inst1 = (str instanceof String);

B.3 Strings
Strings largely behave as they do in Java, but there are a few interesting extra pieces of 
functionality specific to JavaFX Script.

String literals and embedded expressions

String literals may be written using either single or double quotes to enclose their con-
tent. Two consecutive strings in the source (with nothing but whitespace in between) 
are concatenated, even if separated by a new line.

var str1 = 'Single quotes';
var newline = "This string starts here, "
'and ends here!';

The same type of quote character must start and end a string. The quote not being 
used as a delimiter is free to be used inside the string. A backslash can be used to 
escape a quote.

println("UK authors prefer 'single quotes'");
println('US authors prefer "double quotes"');
println('I use "US" and \'UK\' quotes');

Embedded expressions may be run inside strings, using curly brace delimiters.

var rating = "cool";
var eval1 = "JavaFX is {rating}!";
var flag = true;
var eval2 = 
    "JavaFX is {if(flag) "cool" else "uncool"}!";

String formating

Embedded string expressions may also contain formatting, using the same syntax as 
Java’s java.util.Formatter class.
    

  



326 APPENDIX B JavaFX Script: a quick reference
import java.util.Calendar;
import java.util.Date;
def magic = -889275714;
println("{magic} in hex is {%08x magic}");
def cal:Calendar = Calendar.getInstance();
cal.set(1,3,4);
def joesBirthday:Date = cal.getTime();
println("Joe was born on a {%tA joesBirthday}");               

String localization

Strings can be localized using property files on the classpath. This permits our soft-
ware to speak many different languages and allows us to add new languages easily. The 
property filename should follow one of two formats:

<SCRIPT_NAME>_<LANG_CODE>.fxproperties
<SCRIPT_NAME>_<LANG_CODE>_<REGION_CODE>.fxproperties

In the <SCRIPT_NAME> is the base name (no .fx extension) of the script to which the 
localization file applies, <LANG_CODE> is an ISO language code, and <REGION_CODE> is 
an ISO region code.

 To use the localized strings in our programs, we use a double # syntax, which has 
two variants, as follows:

def str1:String = ##"Trashcan";
def str2:String = ##[TRASH_KEY]"Trashcan";

The first example uses "Trashcan" as both the property search key and the fallback 
value. The second example uses "TRASH_KEY" as the property key and "Trashcan" as 
the fallback default.

B.4 Durations
Durations are objects for storing and manipulating time. They have their own literal 
syntax, with a postfix h (hours), m (minutes), s (seconds), or ms (milliseconds) denot-
ing the time units.

def mil = 25ms;
def sec = 30s;
def min = 15m;
def hrs = 2h; 

def dur1 = 15m * 4;           // 1 hour
def dur2 = 0.5h * 2;          // 1 hour
def flag1 = (dur1 == dur2);   // True
def flag2 = (dur1 > 55m);     // True
def flag3 = (dur2 < 123ms);   // False

B.5 Sequences: lists of objects
JavaFX has no primitive arrays as such, but what it has instead are single-dimensional 
lists that can be declared and manipulated in numerous ways not supported by con-
ventional Java arrays.
    

  



327Sequences: lists of objects
Basic sequence declaration and access (sizeof)

A sequence may be declared with its initial items between square brackets. A sequence 
inside a sequence is expanded in place. Two sequences are equal if they contain the 
same quantity, type, value, and order of items. The sizeof operator is used to deter-
mine the length of a sequence.

def seq1:String[] = [ "A" , "B" , "C" ];
def seq2:String[] = [ seq1 , "D" , "E" ];
def flag1 = (seq2 == ["A","B","C","D","E"]);
def size = sizeof seq1;

To reference a value we use the square bracket syntax. Referencing an index outside 
the current range returns a default value rather than an exception.

def faceCards = [ "Jack" , "Queen" , "King" ];
var king = faceCards[2];
def ints = [10,11,12,13,14,15,16,17,18,19,20];
var oneInt = ints[3];
var outside = ints[-1];  // Returns zero

Sequence creation using ranges ( [..], step)

Sequences may be populated using a range syntax. An optional step may be supplied 
to determine the increment between items.

def seq = [ 1 .. 100 ];
def range1 = [0..100 step 5];
def range2 = [100..0 step -5];
def range3 = [0..100 step -5];
def range4 = [0.0 .. 1.0 step 0.25];

We can also include ranges inside larger declarations. Recall that a nested sequence is 
expanded in place.

def blackjackValues = [ [1..10] , 10,10,10 ];

Sequence creation using slices ( [..<] )

We can create a sequence range using a slice of indexes from another sequence. Here 
the .. syntax includes the end index in the range, while ..< excludes the end index.

def source = [0 .. 100];
var slice1 = source[0 .. 10];     // 0 to 10
var slice2 = source[0 ..< 10];    // 0 to 9
var slice3 = source[95..];        // 95 to 100
var slice4 = source[95..<];       // 95 to 99 (exclude last item)

Sequence creation using a predicate

A predicate can be used to take a conditional slice from an existing sequence, creating 
a new sequence.

def source = [0 .. 9];
var lowVals = source[n|n<5];
def people = 
    

  



328 APPENDIX B JavaFX Script: a quick reference
    ["Alan","Andy","Bob","Colin","Dave","Eddie"];
var peopleSubset = 
    people[s | s.startsWith("A")].toString();

Sequence manipulation (insert, delete, reverse)

Sequences can be manipulated by inserting and removing elements dynamically. We 
can even reverse a sequence.

var seq1 = [1..5];
insert 6 into seq1;
insert 0 before seq1[0];
insert 99 after seq1[2];

var seq2 = [[1..10],10];
delete seq2[0];
delete seq2[0..2];
delete 10 from seq2;  // Delete any 10s
delete seq2;  // Delete whole sequence

var seq3 = [1..10];
seq3 = reverse seq3;

B.6 Binds
Binds define a relationship between a data source and a data consumer. When the 
source changes, the bind performs a minimal recalculation using only those parts of the 
bind expression affected by any change.

Binding to variables (bind)

Bound variables are created using the bind keyword. They are read-only, so we use def
instead of var.

var percentage:Integer;
def progress = bind "Progress: {percentage}% finished";
for(v in [0..100 step 20]) {
    percentage = v;
    println(progress);
}

var thisYear = 2008;
def lastYear = bind thisYear-1;
def nextYear = bind thisYear+1;
// lastYear=2007, thisYear=2008, nextYear=2009
thisYear = 1996;
// lastYear=1995, thisYear=1995, nextYear=1996 

It is possible to bind to a bound variable, as follows:

var flagA = true;
def flagB = bind not flagA;   // Always opposite of flagA
def flagC = bind not flagB;   // Always opposite of flagB, same as flagA

Binding to a sequence

Binding to a sequence index is done so by way of its index.
    

  



329Cooperating with Java
var range = [1..5];
def ref = bind range[2];   // ref == 3
delete range[0];           // ref == 4
delete range;              // ref == 0

We can also bind against an entire sequence.

var seqSrc = [ 1..3 ];
def seqDst = bind for(x in seqSrc) { x*2; }   // seqDst == [2,4,6]
insert 10 into seqSrc;                        // seqDst == [2,4,6,20]

Binding to code

The bound expression may contain code, including function calls.

var mode = false;
def modeStatus = bind if(mode) "On" else "Off";

var userID = "";
def realName = bind getName(userID);
function getName(id:String) : String {
    if(id.equals("adam")) { return "Adam Booth"; }
    else if(id.equals("dan")) { return "Dan Jones"; }
    else { return "Unknown"; }
}

Bidirectional binds (with inverse)

For simple binds, which mirror another variable directly, it’s possible to create a two-
way relationship, such that changing one variable changes the other. Because this type 
of bind is assignable, we use var instead of def.

var dictionary = "US";
var thesaurus = bind dictionary with inverse;
// dictionary=”US”, thesaurus=”US”
thesaurus = "UK";
// dictionary=”UK”, thesaurus=”UK”
thesaurus = "FR";
// dictionary=”FR”, thesaurus=”FR”

Bound functions (bound)

If a function depends on variables outside of its local scope, these are not automati-
cally included in the bind. To change this, mark the function as bound, and its depen-
dencies will trigger bind updates correctly.

var ratio = 5;
var posX = 5;
def coord = bind "{scale(posX)}";  // Binds posX and ratio
bound function scale(v:Integer) : Integer {
    return v*ratio;
}

B.7 Cooperating with Java
JavaFX Script was designed to work with existing Java libraries, and most of the time it 
works just fine. However, despite the best efforts of the JavaFX designers, 
    

  



330 APPENDIX B JavaFX Script: a quick reference
incompatibilities between the different languages are inevitable. Fortunately, JavaFX
Script provides some “get out of jail free” features, to smooth over any occasional bump.

Quoted identifiers

Quoted identifiers mark a part of the source code as an identifier, which otherwise 
might have confused the compiler. They are handy for referencing Java method 
names that clash with JavaFX Script reserved words, for example.

var <<var>> = "A string variable called var";

Java native arrays (nativearray of)

JavaFX 1.2 has a special type syntax for mapping Java native arrays (returned from Java 
method calls) into JavaFX Script programs, without translating them into sequences.

def jClass:Class = (new StringBuilder()).getClass();
def cons:nativearray of Constructor = 
    jClass.getDeclaredConstructors();
println("1st: {cons[0]}");
for(i in cons) { println("{i}"); }

B.8 Packages (package, import)
Packages relate portions of our code together into a group. They work the same way 
as Java packages. Importing allows the code to avoid using cumbersome fully qualified 
class names. As in Java, an asterisk can be used at the end of an import statement 
instead of a class name, to include all the classes from the stated package without hav-
ing to list them individually.

import java.util.Date;
var date1:Date = Date {};

Adding a class into a package is as follows:

package jfxia.chapter3;
public class Date
{   override function toString() : String
    {   "This is our date class";
    }
};

Using both Java’s Date class and the previous one looks like this:

import java.lang.System;
var date1 = java.util.Date {};
var date2 = jfxia.chapter3.Date {};

B.9 Developing classes
JavaFX Script’s support for OO is pretty rich, including mixin inheritance. Classes ref-
erenced outside of a source file must live in an individual file named after that class. 
Unlike with Java, not all code in JavaFX Script has to live inside a class—so called script-
level code is bundled up and run as if it is in a Java main() method.
    

  



331Developing classes
Scripts

Variables and functions can live at the script level, that is, outside of any class. When 
located in the script context, they behave like (and are accessed like) Java static class 
members.

// This code lives in a file called “Examples2.fx”
package jfxia.chapter3;

def scriptVar:Integer = 99;
function scriptFunc() : Integer {
    def localVar:Integer = -1;
    return localVar;
}

println(
    "Examples2.scriptVar = {Examples2.scriptVar}\n"
    "Examples2.scriptFunc() = {Examples2.scriptFunc()}\n"
    "scriptVar = {scriptVar}\n"
    "scriptFunc() = {scriptFunc()}\n"
);

Any loose code that lives in at the script level (code not part of a script function) can 
be executed as an application bootstrap.

Class definition (class, def ,var, function, this)

Variables in classes are created with the familiar var and def keywords, while behavior 
is implemented by way of a function. The keyword this can be used to refer to the 
current object, although its use is optional.

import javafx.lang.Duration;
class Track
{   var title:String;
    var artist:String;
    var time:Duration;
    function equals(t:Track) : Boolean
    {   return (t.title.equals(this.title) and 
            t.artist.equals(this.artist));
    }
    override function toString() : String
    {   return '"{title}" by "{artist}" : '
            '{time.toMinutes() as Integer}m '
            '{time.toSeconds() mod 60 as Integer}s';
    }
}
var song:Track = Track
{   title: "Special"
    artist: "Garbage"
    time: 220s
};

Object declaration (init, postinit, isInitialized(), new)

JavaFX Script objects have no constructors, preferring its trademark declarative syntax 
instead. The init block of code is called once all class variables have been assigned, and 
once finished the object is considered initialized. The postinit block is then called.
    

  



332 APPENDIX B JavaFX Script: a quick reference
 The built-in function isInitialized() can be used to find out if a variable was 
assigned a value during object initialization.

def UNKNOWN_DRIVE:Integer = 0;
def WARP_DRIVE:Integer = 1;
class SpaceShip {
    var name:String;
    var crew:Integer;
    var canTimeTravel:Boolean;
    var drive:Integer = SpaceShip.UNKNOWN_DRIVE;
    init {
        println("Building: {name}");
        if(not isInitialized(crew))
            println("  Warning: no crew!");
    }
    postinit {
        if(drive==WARP_DRIVE)
            println("  Engaging warp drive");
    }
}

def ship1 = SpaceShip {
    name:"Starship Enterprise"
    crew:400
    drive:SpaceShip.WARP_DRIVE 
    canTimeTravel:false 
};

There may be times when we are forced to instantiate a Java object using a specific 
constructor to make it function the way we desire. The new syntax allows us to do just 
that. It can be used on any class, including JavaFX Script classes, although it is 
intended to be used only with Java classes, when the declarative syntax isn’t sufficient.

def ship2 = new SpaceShip();
ship2.name="The Liberator";
ship2.crew=7;
ship2.canTimeTravel=false;

Class inheritance (abstract, extends, override)

JavaFX Script supports inheritance, using the extends keyword. As in Java, functions 
are virtual. The abstract keyword can be used to prevent a class from being instanti-
ated directly. The override keyword is needed on any instance function or variable 
that overrides a parent class; overridden variables are used to change initial values.

 The following code should live in a file called Animal.fx :

import java.util.Date;

abstract class Animal {
    var life:Integer = 0;
    var birthDate:Date;

    function born() : Void {
        this.birthDate = Date{};
    }
    

  



333Developing classes
    function getName() : String {
        "Animal"
    }
    override function toString() : String {
        "{this.getName()}  Life: {life}  "+
            "Bday: {%te birthDate} {%tb birthDate}";
    }
}

The following class is a subclass of the above Animal class:

class Mammal extends Animal {
    override function getName() : String {
        "Mammal"
    }
    function giveBirth() : Mammal {
        var m  = Mammal { life:100 };
        m.born();
        return m;
    }
}

Mixin inheritance (mixin)

JavaFX Script supports mixin inheritance, whereby functionality from multiple mixin
classes can be copied into a class in a single step, without the issues related to multiple 
inheritance. Mixin classes act like Java interfaces, except they may carry default vari-
able values and function bodies.

mixin class Motor {
    public var distance:Integer = 0;
    public var battery:Integer;
    public function move(dir:Integer,dist:Integer) : Void {
        distance+=dist;
    }
}

class Robot extends Motor {
    // Motor.battery not mixed in -- already present
    override var battery = 1000;

    // Motor.distance mixed in

    // Motor.move() mixed in
}

Mixins are processed from first to last on the extends list. A regular JavaFX Script class 
can extend (inherit) any number of mixin classes or Java interfaces but only one other 
regular class. A mixin class can inherit any number of mixin classes and Java interfaces 
but no regular classes.

Function types

Functions in JavaFX Script are first-class objects, meaning we can have variables of func-
tion type and even pass a function into another function as a parameter.
    

  



334 APPENDIX B JavaFX Script: a quick reference
var func : function(:String):Boolean;
func = testFunc;
function testFunc(s:String):Boolean {
    return (s.equalsIgnoreCase("true"));
}

The variable func in the example is of type function(:String):Boolean, which rep-
resents the signature of functions that may be assigned to it. Functions may be passed 
as parameters to other functions using a similar syntax.

function manip(s:String , f:function(:String):String) : Void {
    println("{s} = "+f(s));
}
function m1(s:String) : String {
    s.toLowerCase();
}
function m2(s:String) : String {
    s.substring(0,4);
}
manip("JavaFX" , m1);
manip("JavaFX" , m2);

Anonymous functions

Anonymous functions allow lightweight, single-use, nameless functions to be created 
within a declarative context.

import java.io.File;

class FileSystemWalker
{   var root:String;
    var extension:String;
    var action:function(:File):Void;

    function go() { walk(new File(root)); }
    function walk(dir:File) : Void {
        var files:File[] = dir.listFiles();
        for(f:File in files) {
            if(f.isDirectory()) {
                walk(f);
            }
            else if(f.getName().endsWith(extension)) {
                action(f);
            }
        }
    }
}

var walker = FileSystemWalker {
    root: FX.getArguments()[0];
    extension: ".png";
    action: function(f:File) {
        println("Found {f.getName()}");
    }
};
walker.go();
    

  



335Developing classes
In the example an anonymous function, accepting a File as a parameter, is assigned 
to the action variable of a FileSystemWalker class instance. Anonymous functions 
similar to this are used extensively for event handling in JavaFX Script, instead of 
Java’s class-heavy listener model.

Access modifiers (package, protected, public, public-read, public-init)

Using access modifiers we can restrict access to our script or instance variables and 
functions. Access modifiers perform the same role in JavaFX Script as they do in Java, 
but their implementation differs from Java. Table B.1 lists the basic access modifiers, 
and table B.2 lists the additive access modifiers.      

The comments above each class, variable, and function in the following code explain 
their visibility: 

// Instantiate: anywhere
public class AccessTest {
    // Class and script only
    var sDefault:String;
    // Class, script and package
    package var sPackage:String;
    // Class, script, package, and any subclass
    protected var sProtected:String;
    // Everywhere
    public var sPublic:String;

    // Write: class and script only / Read: anywhere
    public-read var sPublicReadDefault:String;
    // Write: class, script and package / Read: anywhere
    public-read package var sPublicReadPackage:String;

Table B.1 Basic access modifiers

Modifier keyword Visibility effect

(default) Visible only within the enclosing script. This default mode (with no associated key-
word) is the least visible of all access modes.

package Visible within the enclosing script and any script or class within the same package.

protected Visible within the enclosing script, any script or class within the same package, and 
subclasses from other packages. This modifier works only with class members, not 
script members or the class itself.

public Visible to anyone, anywhere.

Table B.2 Additive access modifiers

Modifier keyword Visibility effect

public-read Adds public read access to the basic mode.

public-init Adds public read access and object literal write access to the basic mode.
    

  



336 APPENDIX B JavaFX Script: a quick reference
    // Write: class, script, package and subclass – plus anywhere
    //   when creating object literals / Read: anywhere
    public-init protected var sPublicInitProtected:String;
}

B.10 Conditions
JavaFX Script’s conditions look and behave in a not-too-dissimilar fashion to the con-
ditions of other languages, Java included. However, JavaFX Script’s expression-based 
syntax affords some interesting twists.

Basic conditions (if, else)

The if/else syntax is the same as Java’s. JavaFX Script has no keyword for else/if; 
instead we should use an if construct directly after an else.

ivar someValue = 99;

if(someValue==99) {
    println("Equals 99");
}

if(someValue >= 100) {
    println("100 or over");
}
else {
    println("Less than 100");
}

if(someValue < 0) {
    println("Negative");
}
else if(someValue > 0) {
    println("Positive");
}
else {
    println("Zero");
}

Because JavaFX’s conditions are expressions, they give out a result and as such can be 
used on the right-hand side of an assignment, or as part of a bind, or in any other situ-
ation in which a result is expected.

var negValue = -1;
var sign = if(negValue < 0) { "Negative"; }
    else if(negValue > 0) { "Positive"; }
    else { "Zero"; }

Ternary expressions and beyond

Because all conditions are also expressions, JavaFX Script requires no explicit syntax 
for ternary expressions.

var asHex = true;
java.lang.System.out.printf(
    if(asHex) "Hex:%04x%n" else "Dec:%d%n" ,
    12345
);
    

  



337Loops
Using the expression language syntax, it is possible to go beyond the standard true/
false embedded condition.

var mode = 2;
println(
    if(mode==0) "Yellow alert"
    else if(mode==1) "Orange alert"
    else if(mode==2) "Mauve alert"
    else "Red alert"
);

B.11 Loops
Loops allow us to repeatedly execute a given section of code until a given condition is 
met. In JavaFX Script for loops are tied firmly to sequences and work as expressions 
just like conditions. A more traditional type of loop is the while loop, which runs a 
block of code until a condition is met.

Basic sequence loops (for)

for loops work like the for/each loop of other languages.

for(a in [1..3]) {
    for(b in [1..3]) {
        println("{a} x {b} = {a*b}");
    }
}

for loops are expressions, returning a sequence.

var cards = 
    for(str in ["A",[2..10],"J","Q","K"]) 
        str.toString();

In each pass through the loop in the example, an element is plucked from the source 
sequence, converted into a string, and added to the destination sequence, cards.

Rolling nested loops into one expression

The loop syntax gives us an easy way to create loops within loops, allowing us to drill 
down to access further sequences held within the objects inside a sequence.

import java.lang.System;
class SoccerTeam {
    var name: String;
    var players: String[];
}
var fiveAsideLeague:SoccerTeam[] = [
    SoccerTeam {
        name: "Java United"
        players: [ "Smith","Jones","Brown",
            "Johnson","Schwartz" ]
    } ,
    SoccerTeam {
        name: ".Net Rovers"
    

  



338 APPENDIX B JavaFX Script: a quick reference
        players: [ "Davis","Taylor","Booth",
            "May","Ballmer" ]
    }
];
for(t in fiveAsideLeague, p in t.players) {
    println("{t.name}: {p}");
}

Controlling flow within for loops (break, continue)

JavaFX Script supports both the continue and break functionality in its for loops, to skip 
to the next iteration or terminate the loop immediately. Loop labels are not supported.

var total=0;
for(i in [0..50]) {
    if(i<5) { continue; }
    else if (i>10) { break; }
    total+=i;
}

Filtering for expressions (where)

Filters selectively pull out only the elements of the source sequence we want.

var divisibleBy7 = 
    for(i in [0..50] where (i mod 7)==0) i;

The result of the example code is a sequence whose contents are only those numbers 
from the source evenly divisible by 7.

While loops (while, break, continue)

JavaFX Script supports while loops in a similar fashion to other languages. As with for
loops, the break keyword can be used to exit a loop prematurely (labels are not sup-
ported), and continue can be used to skip to the next iteration. 

var i=0;
var total=0;
while(i<10) {
    total+=i;
    i++;
}
i=0;
total=0;
while(i<50) {
    if(i<5) { i++; continue; }
    else if (i>10) { break; }
    total+=i;
    i++;
}

B.12 Triggers
Triggers allow us to assign code to run when a given variable is modified. Triggers can 
be used with either regular variables or sequences.
    

  



339Exceptions (try, catch, any, finally)
Single-value triggers (on replace)

The trigger syntax is used at the end of a variable declaration with the keywords on 
replace and two variables, one for the current value and one for the incoming 
value. In the following example, previous always holds the last value of its compan-
ion, current.

class TestTrigger
{   var current = 99 on replace oldVal = newVal {
        previous = oldVal;
    };
    var previous = 0;
}

It is permissible to leave off the new value and use the variable name itself or to leave 
off both values.

var a = 99 on replace oldVal {
    println("Old={oldVal}  New={a}");
}
var b = 99 on replace {
    println("New={b}");
}

Sequence triggers (on replace [..])

We can assign a trigger to a sequence. To do this we need to also tap into not only the 
existing and replacement values but also the range of the sequence that is being 
affected. The old and new values refer to sequences, and a range-like syntax is used to 
give the index span of the elements affected.

var seq1 = [1..3]
    on replace oldVal[lo..hi] = newVal {
        println(
            "Changing [{lo}..{hi}] from "+
            "{oldVal.toString()} to "+
            "{newVal.toString()}"
        );
    };

For an insert the low index is the insert point, the high index is the low index minus 1, 
the old sequence is empty, and the new sequence contains the values being added. For a 
delete the low index and the high index define the range being removed, the old sequence
is the sequence as it currently is, and the new sequence is empty. For a change (includ-
ing a reverse) the low index and high index define the range, the old sequence is the con-
tent as it currently is, and the new sequence is the content after the change is applied.

B.13 Exceptions (try, catch, any, finally)
Exceptions give us a way to assign a block of code to be run when a problem occurs or 
to signal a problem within our own code to outside code that may be using our API. 
catch blocks can trap exceptions of a particular type, or any can be used to create a 
catch-all default exception handler. finally blocks are always run when the try block 
    

  



340 APPENDIX B JavaFX Script: a quick reference
exits, whether cleanly or as the result of an exception. As in Java, the try/finally
construct may be used on its own, without any exception-handling blocks.

import java.lang.NullPointerException;
import java.io.IOException;

var key = 0;
try {
    println(doSomething());
}
catch(ex:IOException) {
    println("ERROR reading data {ex}")
}
catch(any) {
    println("ERROR unknown fault");
}
finally {
    println("This always runs");
}

function doSomething() : String {
    if(key==1) {
        throw new IOException("Data corrupt");
    }
    else if(key==2) {
        throw new NullPointerException();
    }
    "No problems!";
}

B.14 Keywords
Table B.3 lists JavaFX Script keywords and reserved words. Implemented keywords are 
shown in fixed width font; reserved (but unused) words are shown in regular text. 

Table B.3 Keywords and reserved words 

abstract after and as assert

at attribute

before bind bound break

catch class continue

def delete

else exclusive extends

false finally first for from

function

if import indexof in init

insert instanceof into inverse

last lazy
    

  



341Operator precedence
B.15 Operator precedence
Table B.4 lists operators, grouped by precedence (the priority order in which they 
take effect). 

mixin mod

new not null

on or override

package postinit private protected public-init

public public-read

replace return reverse

sizeof static step super

then this throw trigger true

try tween typeof

var

where while with

Table B.4 Operators 

Priority Operator Evaluation mode Description

1 function() Class Function call

1 () Bracketed expression

1 new Class Object instantiation

1 Object literal Class Object instantiation and initialization

2 ++ (suffixed) Right to left Post-increment assign

2 -- (suffixed) Right to left Post-decrement assign

3 ++ (prefixed) Right to left Pre-increment assign

3 -- (prefixed) Right to left Pre-decrement assign

3 not Boolean Logical negation

3 sizeof Sequence Sequence length

3 reverse Sequence Sequence reverse

3 indexof Sequence Element index in sequence

3 => Tween

4 * Left to right Multiplication

Table B.3 Keywords and reserved words (continued)
    

  



342 APPENDIX B JavaFX Script: a quick reference
B.16 Pseudo variables
JavaFX Script is host to a handful of handy predefined global variables, for accessing 
environment and script/class details, as shown in table B.5. 

4 / Left to right Division

4 mod Left to right Remainder

5 + Left to right Addition

5 - Left to right Subtraction

6 == Left to right Equality

6 != Left to right Inequality

6 < Left to right Less than

6 <= Left to right Less than or equal to

6 > Left to right Greater than

6 >= Left to right Greater than or equal to

7 instanceof Class Type check

7 as Class Type cast

8 or Right to left Logical OR

9 and Right to left Logical AND

10 += Add with assign

10 -= Subtract with assign

10 *= Multiple with assign

10 /= Divide with assign

10 %- Remainder with assign

11 = Assign

Table B.5 Pseudo variables

Variable Purpose

__DIR__ Returns the location of the current class file as a URL, as a directory if the class is a 
regular bytecode file, or as a JAR file if the class is inside a Java archive.

__FILE__ Returns the full filename and path of the current class file as a URL.

__PROFILE__ Returns browser, desktop, or mobile, depending on the runtime environment.

Table B.4 Operators (continued)

Priority Operator Evaluation mode Description
    

  



appendix C:
Not familiar with Java?

This appendix is a collection of brief introductory texts that back up the material in 
the language tutorial chapters and elsewhere. Many of this book’s readers will have 
arrived at JavaFX from Java, but not all of you. JavaFX is deliberately designed to 
have a broad appeal beyond just the regular Java desktop programmers. The prob-
lem was this: how to supply the necessary background knowledge about the Java 
platform to the latter, without boring the former. This appendix is the solution.

 Each section in this appendix deals in detail with those nuanced workings of the 
Java platform that apply to JavaFX, as well as other associated background material.

C.1 Static types versus dynamic types
Although JavaFX Script started life as a scripting language, it does not adopt the 
loose laissez-faire attitude toward variable types found in other scripting languages. 
If you came here from a design background (perhaps with some basic scripting 
experience thanks to early versions of JavaScript or ActionScript), you may not be 
familiar with how a statically typed language differs from a dynamically typed one.

someVariable = "123"
someVariable = someVariable+1

This code fragment (in no particular language) demonstrates the difference 
between JFX’s static typing and the dynamic typing of other scripting languages. 
The variable someVariable is being loaded with the string “123”, then an arithme-
tic operation is being performed on its contents—what should the result of this 
operation be?

 One answer might be to throw a runtime error, because arithmetic cannot be 
performed on text. Another answer might be to silently normalize the two oper-
ands, either by converting the string to a number (resulting in the value 124) or the 
value to a character string (resulting in the string “1231”). Or the operation could 
343

    

  



344 APPENDIX C Not familiar with Java?
simply be flagged as invalid before the code runs; a string is a string, a value is a value, 
and never the twain shall meet (except under strict predefined conditions, where run-
time consequences can always be anticipated).

 JavaFX Script, following Java’s lead, uses the static typed solution. Variables are clearly 
delineated as to their content type and, by inference, what operations are valid on them. 
This approach can sometimes add coding overhead—for example, explicit operations 
are needed to convert user input (typically character data) into value types—but the 
plus side is it might spare us a few embarrassing crashes when the company CEO stupidly 
types “Forty Nine” into our application’s age field during a live demo.

C.2 Casts
In statically typed languages (see section C.1) the type of a variable is important, but 
there are times when data doesn’t arrive in the form we want it to. Casting is a way of ask-
ing JavaFX Script to translate one data type into another compatible type. Most pro-
gramming languages insist on casts when there’s risk of a potential loss of information, 
for example, if a 64-bit value is stored in a 32-bit variable. Casting generally isn’t required 
to go the other way, because the operation is guaranteed to be safe from data loss.

import java.lang.System;
var pseudoRnd:Integer = 
    (System.currentTimeMillis() as Integer) mod 1000;

In this example we want to take the milliseconds part of the current time to use as a very 
rough pseudo random number between 0 and 999. The Java API method System. 
currentTimeMillis() returns the current time as the total number of milliseconds 
since the Unix/POSIX epoch (midnight on 1 January 1970), which returns a 64-bit 
number. Since it takes only a regular 32-bit integer to store a value between 0 and 999, 
we cast the result to an JFX Integer, before taking only the lower three decimal digits.

 As demonstrated, JavaFX uses the keyword as to perform casts, with the destina-
tion type immediately following. This contrasts with the syntax of Java, C, C++, and 
others, where the type prefixes the data and is surrounded by parentheses.

 The most common usages of casts are:

■ When there’s risk of data loss (the aforementioned 64- to 32-bit example)
■ When an object is being handled by a super type and needs to be converted 

into its true type (see section C4)
■ When the parameters of a function call are ambiguous, matching more than 

one possible overloaded function

Fortunately, if we miss a cast when one is necessary, the compiler will inform us, which 
is handy given that even experienced programmers are prone to forget them from 
time to time.

C.3 Packages
Packages allow us to relate portions of our code together into a group. There are sev-
eral reasons why this might be handy, including:
    

  



345Packages
■ Convenience —Just as grouping files into directories imposes order on our data, 
so grouping code into packages can impose order within our software. Any-
thing that allows us to organize our code so we can better manage it is useful 
when writing nontrivial applications.

■ Integrity —It’s possible to allow functions and variables to be visible to other 
members of a package yet deny access to nonmembers (see section C.5). This 
permits creation of functionality that spans several classes without exposing 
implementation details to third-party developers who may be using our API. It 
means we can write sophisticated software yet still lock other programmers out 
of parts we wish to control ourselves.

■ Flexibility —We can have two classes that share the same name, providing they 
live in different packages. This means we can mix APIs without fear of class-
naming clashes.

C.3.1 Importing classes from a package

Throughout the source in this book you’ll see lines such as

import javafx.stage.Stage;

crop up frequently near the start of many listings. This line is necessary to refer to the 
Stage object of the javafx.stage package without using its fully qualified class name. (In 
case you’re reading this before chapter 4, Stage is a top-level user interface container.)

 Importing classes means we can avoid getting repetitive motion injuries from typ-
ing those long (and frankly quite ugly) package prefixes each time we wish to refer to 
a given class. Once imported, the package prefix can be omitted; the import state-
ment is a heads-up to the compiler as to which classes may appear in the current 
source code file. The compiler will silently add the missing package prefix to any class 
reference that does not have one. (Importing just makes our source readable; it 
doesn’t change what our source code does.)

 Let’s take a look at a more complete example:

import java.util.Date;                         

var date1:Date = Date {};                    
var date2:java.util.Date = java.util.Date {};

We see two different ways of creating a Date object in the example—the first makes 
use of the import statement at the start of the code (and would fail without it), while 
the second does not. 

 As in Java, an asterisk can be used at the end of an import statement instead of a 
class name. The asterisk acts as a wild card to include all the classes from the stated 
package without having to list them individually.

C.3.2 Packages and physical files

Obviously the class files written by the JavaFX Script compiler have to be arranged 
in a manner that allows them to be identified as belonging to a given package. 

Date lives in the 
package java.util
    

  



346 APPENDIX C Not familiar with Java?
Typically Java has used directories to arrange its classes into packages, so 
game.ui.Menu would be represented by a file called Menu.class (plus any support 
class files the compiler creates) living inside a directory called ui, which in turn is 
inside a directory called game.

 Both the Java and JavaFX compilers support an option, -d, allowing us to specify 
where to write this directory structure when compiling. When running the compiled 
code, this directory should be placed on the classpath for the classes to be found. So, 
if we compile our classes to the CoolGame directory, then game.ui.Menu would end 
up in a file called CoolGame/game/ui/Menu.class (using Unix directory slashes), 
and CoolGame would need to be on the classpath for game.ui.Menu to be found.

C.3.3 Creating packaged classes and dealing with name clashes

You’ve seen how to import a class from a package, but how do we create our own pack-
ages? And what happens if we need to work with two classes that have identical names 
but live in different packages? The next example will deal with both these issues. But 
first we need to create a demonstration class.

package jfxia.chapter3;           
class Date {                        
    function toString() : String {
        "This is our date class"; 
    }                             
}                                 

In the example, we have the definition for a class called Date (in the file Date.fx, so 
the compiler can find it), which does nothing more than return a message when its 
toString() function is called. The package statement at the head of a source file 
places the code into jfxia.chapter3, which is the package we want it to live in. Now 
we need some more code to test it:

var date1 = java.util.Date {};
var date2 = jfxia.chapter3.Date {};
println(date1.toString());
println(date2.toString());

Mon Aug 04 18:33:03 BST 2008
This is our date class

We didn’t bother to import our package! Why? In this example we’re using both our 
own Date class and the one in the Java API package java.util. This is a naming con-
flict: we now have two classes with the same name. If we neglect to provide their fully 
qualified name (the class name including its package prefix), how can the compiler tell 
which class we are referring to?

 The answer is, it can’t! Unfortunately, in this instance we need to provide the fully 
qualified name of each class to avoid ambiguity. This makes importing either class 
rather academic. Imports wouldn’t throw a compilation error, but we couldn’t use 
abbreviated names for either Date class, not so long as we have a name clash in our 
source code file.

Should go 
in the file 
Date.fx
    

  



347Object orientation
NOTE Packages are not a heirarchy Despite the misleading impression their 
names often suggest, Java and JavaFX packages are not arranged in a hier-
archy. The package java.awt.event is actually a sibling of java.awt, not 
a child. If you import all the classes from the latter, you do not automati-
cally get the former. This is a common newbie mistake.

Once we’ve compiled our code, we can bundle the package into a JAR file to make it 
easy to distribute. A JAR file is a zip archive with a standardized/recognized layout and 
content. By convention all of the classes in a given package are bundled inside a single 
JAR. It’s possible to split a package over multiple JARs, but the practice is rarely used. 
However, JAR archives frequently contains multiple related packages.

C.4 Object orientation
Classes are an integral part of object orientation, encapsulating state and behavior for 
each component in a larger system, thereby allowing us to express our software in 
terms of the structures and relationships that link its autonomous component parts. 
Object orientation has become an incredibly popular way of constructing software in 
recent years: both Java and its underlying JVM environment are heavily object-centric. 
But what is object orientation?

 The following sections describe object orientation from a JVM point of view, 
although I’ve stuck with JavaFX Script terminology (functions, not methods). This is only 
a whistle-stop tour through OO; consult a book on the topic if you want to know more.

C.4.1 Modeling the world with classes

At the sharp end of object-oriented software everything tends to boil down to types. 
What type is an object? For example, is it a plane, a train, or an automobile? Of course, 
all three are types of vehicle and share common properties and functionality. They all 
move and therefore have a speedometer and an odometer (mileage) and consume 
power. They all carry passengers as well. They all need some form of engine to drive 
them forward and a braking system to slow them down. But, of course, they also have 
a lot of differences. Trains cannot arbitrarily turn left or right because they are bound 
by the constraints of a track (or at least they shouldn’t be able to under normal oper-
ating conditions). Cars cannot fly through the air like a plane (again, under normal 
operating conditions!), but they can move in reverse, which is something a plane in 
flight cannot do. (Unless it’s a Harrier Jump Jet!)

 We build up object-oriented software by modeling these relationships. Classes are 
the nodes we link together to create such models. If we were building a transport sim-
ulator, we might start with a Vehicle class that contains all the data and functionality 
we know is common to all vehicles in our system. The odometer, for example, could be 
included in this top-level class, because all vehicles have a mileage. We could also 
define a few functions, perhaps speedUp() and slowDown(), because increasing and 
decreasing speed is common to all vehicles.
    

  



348 APPENDIX C Not familiar with Java?
C.4.2 Classes from classes: subclassing and overriding

Once we have a generic Vehicle class, we can define more specific vehicles based on 
it. We might define a Plane class, which adds an altitude attribute. We might also 
define an Automobile class, which adds turn-left and turn-right functions, and so on. 
The process of creating a more specific class in terms of a more general one is known 
as subclassing. Java and JavaFX Script also use the synonym extending.

 When a class subclasses another, it can replace the implementations of variables 
and functions in its parent (super) class with its own. This is known as overriding. It 
cannot change their type—an integer variable must remain an integer—but it can 
change their default value or (in the case of a function) their code body. Each 
Vehicle subclass, for example, could define its own implementation of speedUp()
and slowDown(), simulating the specific mechanics of the given type of vehicle 
they represent.

C.4.3 An object can be referenced in different ways: polymorphism

An object on our simulation may be created as a type of the HarrierJumpJet class, 
which in turn is a type of Plane, which in turn is a type of Vehicle. Because we know 
the HarrierJumpJet inherited all the functionality of Plane (even if it did override 
some of it with its own implementation), and by proxy inherited all the functionality 
of Vehicle (again, even if it replaced some of it), the HarrierJumpJet object can be 
treated as being of type HarrierJumpJet, Plane, or Vehicle. 

 This ability to treat objects by way of their superclass types (parents in the class 
hierarchy) is known as polymorphism. It means we can create a variable of Vehicle type 
and store any subclass from Vehicle in it, including SteamTrain, FordModelT, and 
ApolloSpaceCapsule. Likewise, a variable of type Plane can hold any object that is of 
type Plane or a subclass of Plane (HarrierJumpJet, Boeing747, Spitfire, etc.)

 A variable of type Plane could not hold a BatMobile, however, because BatMobile
is a subclass of Automobile, not Plane.

C.4.4 Partial implementation: abstract functions and interfaces

Sometimes we want to create classes that are intended only for subclassing. For exam-
ple, we probably do not want to create objects of type Plane directly, because the class 
is too generic; instead we want to create objects of specific plane types (HarrierJump-
Jet, Boeing747, etc.) that subclass Plane. By marking a class as abstract we can prevent 
it from being used to create objects directly. An abstract class must be subclassed before 
it can be used.

 Abstract classes can contain abstract functions. These are functions that have no 
functionality (no code body) and must be overridden before being used. For exam-
ple, the speedUp() and slowDown() functions in Vehicle would likely be abstract, 
with each subclass overriding them to simulate precisely how its given type of vehicle 
accelerates or decelerates. If a class contains abstract functions, the class itself must 
be abstract.
    

  



349Access modifiers
C.5 Access modifiers
Access modifiers allow us to control the visibility of parts of our class.

 Consider the following scenario: as part of a larger system we constructed a class 
that dealt with dates, but for some reason we bothered to record only the last two dig-
its of the year. So 2005 is stored as only 05. This isn’t a problem, because the class sup-
ports a getYear() function that adds on 2000 before it returns a result. Then our boss 
comes to see us and explains that the system is being expanded to deal with data from 
as far back as 1995—time to change our class to store dates as four digits. But as soon 
as we publish the change a fellow programmer, from another part of the team, com-
plains that we’re making his code break! Extensively throughout his code he was read-
ing the year directly, not bothering with our getYear() function, and so what we 
assumed would be a localized change is now a major global headache.

 What we need is some way to lock other programmers out of the implementation 
detail of our code, to effectively mark parts of the code as “no go” areas and force 
everyone to use a class the way we intended it to be used. Access modifiers provide just 
such a mechanism, by getting the compiler to enforce rules we describe for each class, 
variable, or function. There are different levels of access that can be granted: the most 
closed limits visibility to just the immediate class or script, while the most open allows 
total access to anyone.

 If we’d used access modifiers correctly in the scenario we began with, our fellow 
programmer would not have had direct access to the data in our class; he would 
need to work through the public interface functions we provided for him. This would 
leave us free to fix bugs and upgrade the class internals, because we would know for 
sure which parts of our code others are dependent on and which parts are under 
our total control. 
    

  



appendix D:
JavaFX and 

 the Java platform

JavaFX is not Java, but it rests within a sea of tools and technologies designed to sup-
port Java. Thus it shares the unusual dualistic characteristic of being of Java (the 
platform) but not Java (the language)!

 Given JavaFX’s intentions it’s reasonable to assume a minority of readers may 
have been drawn to it (and thereby to this book) without first having come through 
Java; they would no doubt benefit from a little background, whereas Java-savvy read-
ers will surely be keen to hear how the new platform and the old cooperate. So for 
young pups and old dogs alike, this appendix provides some background material, 
introducing Java and exploring how JavaFX fits into the existing Java environment.

D.1 How not to go native
Java is a software platform that seeks to fulfill the mantra “write once, run any-
where.” Software is compiled to bytecode files in the form of machine code instruc-
tions runnable on a virtual machine called a JVM.) The virtual machine provides a 
layer of abstraction, allowing the program to be run on many devices without need-
ing to be specifically compiled to the machine code of the underlying hardware. 
Figure D.1 shows the lifecycle of a typical Java application. 

 Once the source code files are compiled into bytecode class files, they can be 
bundled into a single archive known as a JAR for easy distribution. JARs can contain 
runnable applications or support libraries. There are numerous ways of getting the 
software onto the end-user computer, from the traditional (ship it on a CD-ROM) to 
the modern (embed it in a web page).

 JavaFX Script compiles to bytecode files, just like Java, although because of the 
way the language works, each pure JavaFX Script class is translated into both a class 
350

    

  



351Java SE/ME/EE and JDK/JRE: three editions, two audiences
and an interface. JavaFX Script can also access classes in a Java package, both the stan-
dard API packages and any third-party packages that are on the classpath when the 
JavaFX software is run.

D.2 Java SE/ME/EE and JDK/JRE:  
three editions, two audiences
For programmers unfamiliar with Java it should be noted that there are three main 
Java markets: Standard Edition targets regular desktop users, Micro Edition is an exten-
sion to the Standard Edition adding tools and libraries for small devices like cell 
phones, and Enterprise Edition enhances the Standard Edition for writing web applica-
tions and web services. (Note: although applets are used on the web, they are part of 
Java SE, not Java EE).

 There exist two basic audiences for Java: the regular user who merely wants to run 
the software and the programmer who wants to create the software. On the desktop 
(Java SE) these are personified by the Java Runtime Environment and the Java Develop-
ment Kit. The JRE has the tools necessary to run a Java program and is often shipped 
preinstalled on desktop computers, while the JDK bolsters the JRE with extra tools to 
create and debug Java software.

 Obviously, for cell phones the various handset manufacturers take care of provid-
ing a runtime environment on their phones (so there’s no JRE download for Java ME), 
but to actually develop mobile applications one needs the Java ME SDK (formerly 
known as the Java ME Wireless Toolkit) as well as the standard JDK.

 If all this seems like a jumble of names and acronyms, don’t worry—the introduc-
tion of JavaFX greatly simplified things! To develop JavaFX programs (capable of run-
ning on the desktop, on the web as applets, and on mobile devices) one only needs to 
install the Java SE JDK and the JavaFX SDK. These two downloads are sufficient to tar-
get all the various JFX platforms.

Java
source

Byte
code

Byte
code

JAR

JRE

PC

JRE

Mac

JRE

Linux

JRE

HAL 9000

Compile Package

Figure D.1  
From compile time to 
runtime: the lifecycle 
of a typical Java 
application
    

  



352 APPENDIX D JavaFX and the Java platform
D.3 Release versions: a rose by any other name
One source of confusion for novice Java programmers is release names and versions. 
Since 1995 Java has been through many revisions. In the beginning it was simple; the 
first commonly used version of Java was 1.02, which was succeeded by 1.1 shortly there-
after. Someone then apparently decided 1.2 didn’t sound important enough, so Java 
acquired the nom de plume Java2. Thus we got Java2 Standard Edition version 1.2, more 
commonly written as J2SE v1.2. This schizophrenic naming convention continued until 
version 1.5, when it was replaced by a new schizophrenic naming convention; Java2
reverted to Java once more, and 1.5 became 5.0; however, due to technical issues the 1.5 
label continued to be used as a kind of internal version number in some places.

 (It is left as an exercise for the reader to guess what medication the people who 
came up with the above may have been on.)

 Java SE 6 Update 14 (or later) is the version of the Java platform currently recom-
mended for writing and running JavaFX software on Windows. On the Mac, later revi-
sions of Java 5 may work, with minor issues and inefficiencies. Support for older 
versions enables a wider potential user base on the Mac, where JVM/JRE releases have 
sometimes trailed Sun’s own release schedule.

 Since JavaFX really tries to push what’s possible in the realms of graphics and 
media, it’s recommended that you install as recent a version of Java as you can get 
your hands on. Not only do later revisions have bug fixes, but they often feature even 
better graphics performance and so are always preferred over older versions. If you’re 
running an old JVM/JRE, why not make JavaFX your excuse for upgrading?
    

  



index
Symbols

## prefix 27

Numerics

3D Blox 6

A

Abstract Window Toolkit.  
See AWT

access modifiers 49, 51,  
64, 335, 349

visibility 65
ActionScript 343
Adobe 5, 230, 233
Adobe Integrated Runtime.  

See AIR
Adventure Game project

accessing JavaFX Script 
objects from Java 309

calling the JavaFX Script 
engine 307

control panel Java 
interface 309

control panel JFX node 311
creating the control 

panel 311
data file format 303
game events 303–304
map data 302
setting the classpath 305

AIR
provides web-page-like 

shell 11
Ajax 2, 5
Alto (PARC) 166
Amiga 2, 82
animation 139, 144–145, 220

ripple circle 110, 112
smooth 114

anonymous functions 86, 103
Apple Macintosh 165
applets 176, 180

close button 265
creating 257–258
Java 6
output MIDlet instead 292
part of Java SE 351
security 262
unsigned 262

AppletStageExtension 
(class) 258, 265

AreaChart (class) 188
arithmetic operations 28
ArrayList (class, Java) 44
arrays 29, 34, 44
Astley, Rick 55
Atari 2600 271
autoReverse (variable) 286
AWT 82, 166–167, 308

B

Bair, Richard 308
bar charts 169, 181–182,  

184, 187

BarChart (class) 188
BarChart.Data (class) 184, 187
BarChart.Series (class) 185
BarChart3D (class) 185, 187
Barr, Terrence 293
BASIC 10
Behavior (class) 192
binds 87, 102–103, 173, 297

automatic update 34
bidirectional 38, 88, 173, 329
bidirectional and controls 39
booleans 36
to bounds variables 36
conditions 38
ensure consistency 83
to expressions 37, 329
functions 38, 43
to functions 40, 329
functions with 

dependencies 40–41
inner binds 43
issues with conditions 87
mechanics and limitations 39
minimal recalculation  

40–41, 43
nesting 43
numbers 36
object literals 42
optimizing 297
to sequence elements 36, 328
sequences 90
to sequences 37, 329
to sequences elements 86
side effects 39–40
strings 35
353

    

  



INDEX354
binds (continued)
Sudoku project 83
unbound functions 41
to variables 35
variables 68

bitmaps 135, 234, 297
Blackjack 31
blocksMouse (variable) 227
Blu-ray 166, 176
Boolean (value type) 18
BorderLayout (class, Java) 311
bound expressions 35
Bounds (class) 228
boundsInLocal (variable) 229
boundsInParent (variable) 229
BubbleChart (class) 189
BufferedReader (class, Java) 178
Button (class) 170
buttons 82

change background color 94
for each cell 86
hold reference 94
single click sets off chain 

reaction 102
standard control 170
Swing 84

bytecode 300–301, 309
Bytes (value type) 18

C

C 1, 25
C# 51
C++ 10, 16, 106, 161
cache (variable) 228
CAFEBABE 26
Calendar (class, Java) 26
callbacks. See event handlers
camel case 50
Canvas (class, obsolete) 308
Cascading Style Sheets. See CSS
casts 60, 344
catch (keyword)

finally (keyword) 77
CategoryAxis (class) 187
categoryAxis (variable) 187
cell phones 166, 176, 291

save and recover data 179
Character (value type) 18
chart axes 185–188
charts 180–187, 190

multiple series 186
types 188–190

Chin, Stephen 308
Circle (class) 111, 128, 286

classes 48
definition 49–52

classpath 27, 233, 261, 305, 313
clip (variable) 228
clipping 272
cloud computing 5
code

annotating with comments 16
color 112, 124, 126

change background 94
define fill 117–118
fixed code 101

Color (class) 276
comma separated lists 30
command line 293

arguments 64
common profile 291
concurrency 3
console output 16, 28
constructors 52
Container (class) 140–142, 171
containers 101
contains() 196
content (variable) 85, 111, 147, 

150, 253
Control (class) 133, 192
controls 81, 166, 168–175,  

190, 193
other names 168
relationship with model 174
standard form 132
writing your own 190–200

controls API 128
coordinate spaces 123
create (method) 139, 288

in CustomNode class 137
lightweight constructor 118
node initialization 120
scene graph assembled  

240, 250, 276, 286
CSS 191, 196

interacts with skins 199
plug in list of documents 197
rules 198

curly braces 25
cursor keys 291
custom node 274, 282, 284,  

286, 289
initialization 137

CustomNode (class)  
118, 135–136, 193, 255

constructing a button  
135–140

and create() function  
120–121

D

data types 17
databases 4
Date (class, Java) 23, 26, 47
declarative syntax 4, 12, 64
default value 20, 30, 53

returned 36
Deluxe Paint 302
desktop

applications 80
icons 262–263
profile 292
software 165

Dilbert 180
__DIR__ 135, 197, 241
Document Object Model.  

See DOM
doLayout() 141
DOM 191, 198
domain-specific language.  

See DSL
Double (class, Java) 18
Double (value type) 18
double quotes 24
drag to install 258, 263–266
DropShadow (class) 227, 244
DSL 4, 313
Dungeon Master 271, 298
Duration (value type) 18, 28
durations 28–29, 326

arithmetic 28
literal syntax 28, 326

dynamically typed 343

E

E notation 19
Eclipse 316
effect (variable) 158, 228
empty sequences 31
emulator (command) 294
encapsulation 64
encryption 231–232, 237

Rotor (class) is heart of 
code 236

Enigma machine 231, 241,  
251, 253

plug board 257
used keys and lamps 239

Enigma project
application class,  

version 1 243, 245
application class,  

version 2 253–254
    

  



INDEX 355
Enigma project (continued)
application class,  

version 3 257
application, version 2 255
building the UI 244
changing the desktop 

icon 263
converting the SVG 

graphics 234
creating the lamp and key 

graphics 232
creating the rotors and 

reflector 243
dragging from browser to 

desktop 265
encoding a letter 246
from app to applet 258
getting the JavaFX Production 

Suite 233
JNLP file 263
key button class 239
lamp display class 241
laying out the UI,  

version 2 255
manipulating the lamp 

layers 242
modeling the step 

position 237, 251
modeling the wiring 237
packaging the resource 

files 260
paper printout class 251
printout display 251
rotor arrow buttons 251, 256
rotor class, version 1 236
rotor class, version 2 248
rotor mechanics 231, 257
running the packager 260
running version 1 246
running version 2 256
testing the applet 261
the encryption 236
the reflector 237, 257
turning the rotor into a 

UI 248
utility class 238

escape character 24
Event (class) 210
event dispatch thread 213, 308
event handlers 61–62, 117, 158, 

307
events (Java) 87
expression

bound 35
exception to rule 40

expression language 46, 51, 68, 
70–71, 78, 94

limitations with binds 39
Extensible Application Markup 

Language. See XAML
eXtensible Markup Language. 

See XML
extensions (variable) 258

F

F3
renamed JavaFX 7

FadeTransition (class) 224
Feedback project

bar chart control 185
data validity checks 168
feedback class, version 1  

169, 171, 174
feedback class, version 2  

181, 183–184
form interface, version 1 168
loading feedback records 182
model class, version 1 167
model class, version 2 176
model variables 168
Next button 182
pie chart control 185
pie chart data 184
running version 1 175
running version 2 190
saving feedback records 182
saving model data 176
validation 168

__FILE__ 135
File (class, Java) 63
fill (variable) 122, 130, 144,  

159, 194
firewall 294
Flash (Adobe) 6, 11, 153, 257
Flex 11
Flickr 203, 214

API 207, 219, 227
registering 204, 213, 223

Float (value type) 18, 20, 22
floating point 18
Flow (class) 101, 111
Font (class) 163
fonts 86, 144, 161–163, 240, 297

fixed-width 251
in grid cells 84

fonts.mf file 162
form validation 103
Formatter 25
full screen 203, 213, 222

functions 47–48, 65, 77, 90
access modifiers applied to 64
anonymous 241
bound and unbound 41
parameters 50, 61
pass into other functions 62
signatures 61
types 61

FXD (data format)  
235, 268, 318

created from Inkscape 
file 266

download Production 
Suite 233

prefixed with jfx: 247
FXDContent (class) 242
FXDLoader (class) 242
FXDNode (class) 240, 242,  

247, 268
fxproperties (file format) 27
FXZ (file format) 232, 235–236, 

242, 260, 318
copied files into directory 

package 260
preserve definition written 

into 247
scene graph into button 268
scene graph node from 240

G

game engine 302–303,  
306–307, 309

getArguments() 64
getJComponent() 94
getManaged() 142
getNodePrefHeight() 142, 144
getNodePrefWidth() 142, 144
getPrefHeight() 144
getPrefWidth() 144
GIF (file format) 263
GIMP 319
Google Docs 5
Google Web Toolkit. See GWT
gradient fills 194
graphics

immediate and retained 
modes 107

immediate mode 2
programming 1
retained mode 2, 274

Group (class) 118, 127, 139, 
148, 175, 222, 286, 290

chart controls held inside 185
contents rotate 124
    

  



INDEX356
Group (class) (continued)
populate with Rectangle 

objects 122
Rectangle as clipping 

area 152
similar to Flow (class) 111

GUI 62, 79, 81
exploit functionality 92
native toolkits 82
problems with 2
status line 101
thread 207, 240

GWT 11

H

height
scene 85

Hello World JavaFX 10
hexadecimal 19, 26
Hienrichs, Michael 34
HTC Touch Diamond 295
HTML 2, 180
HTTP 204
HTTP request

doesn’t execute 
immediately 207

HttpRequest (class) 205, 212
hypertext 129
Hypertext Markup Language.  

See HTML

I

IDE 293–294
Illustrator (Adobe) 233, 235, 

247, 268, 318
Image (class) 135, 216, 218, 297
image scaling 297
images 137, 211, 216, 220

animated independently 218
load from directory 134
size 211

ImageView (class) 139, 219, 227
immediate mode graphics  

2, 107, 127, 274, 281
init (keyword) 112
initializer

optional 20
Inkscape 232–233, 246, 266, 

268, 318
inline comments 16
inMousePressed (variable) 152

InputStream (class, Java)  
208, 212

InputStreamReader (class, 
Java) 178

instance functions 50
instance variables 50, 57
Integer (value type) 18, 20
integrated development envi-

ronment. See IDE
IntelliJ 316
interfaces (Java) 48, 58, 60, 87, 

309, 311, 313
internationalization 26
Interpolator (class) 115
intersects() 196
IOException (class, Java) 77
iPhone 146
isInitialized() 53, 332
ISO-3166 (Country Code) 27
ISO-639.2 (Language Code) 27

J

JAD (file format) 293, 295–296
JAM 295
JAR 293, 300–301, 305, 307, 350

extras 261
location default directory 180
manually add 305
and META-INF directory 162
and Production Suite 233
software on a phone 295–296

Java 53, 257, 294, 311
adding FX 308
API method 70
applets 6
comparison with JavaFX 

Script 10
default logo 265
how MVC implemented 87
native arrays 44
object-centric 48
override (keyword) 56
reader classes 178–179
release names 352
scripting engine 305
using UI toolkit 80
using with JavaFX  

43, 301, 306
java (command) 305
Java 2D 274
Java Application Manager.  

See JAM
Java Development Kit. See JDK
Java EE 351

Java I/O classes 176
Java ME 296, 351
Java Network Launch(ing) Pro-

tocol. See  JNLP
Java Runtime Environment.  

See JRE
Java ScriptEngineManager 307
Java SE 351
Java SE JDK 315
Java Specification Request.  

See JSR
Java Swing library 191
Java Web Start. See JWS
Java Wire Debug Protocol.  

See JWDP
java.ext.dirs property 305
Java2D library 107
JavaFX

compared to rivals 12
Hello World 10
installation 233
overview 2
releases 2, 230, 261–262, 271
requirements 316
scripting language 305–307
SDK 315
Software Deverlopment 

Kit 233
vs. Adobe AIR, GWT, and 

Silverlight 11–12
wrappers for a few Swing 

components 80
javafx (command) 305
JavaFX 1.2

link control standard 129
JavaFX Graphics Viewer 236
JavaFX Mobile 270, 295
JavaFX Packager 259–262, 293
JavaFX Production Suite 230, 

247, 315, 318
JavaFX Script

32-bit signed Integer type 26
access modifiers 64–67
additive access modifiers  

64, 335
anonymous functions  

61–62, 64
arithmetic 21, 324
arithmetic operators 21
binding 34
casts 23, 325
class inheritance 55–58, 332
classes 330
classes. See classes
comments 16, 323
    

  



INDEX 357
JavaFX Script (continued)
compared to Java 17, 22, 48, 

50, 52, 55, 67, 257
compiler 49, 58, 70, 115, 300, 

309, 346
conditions 67–70
constants 21
constructing Java objects  

53, 332
creating animation 12
custom made for UI 

programming 4
def vs var 21, 35, 39–40
durations 28
exceptions 76–78
for loops 70–73, 337
function types 61–62, 90, 333
hexadecimal notation 19
logic operators 22, 324
mixin inheritance 48, 58–61
object declaration 52–55
on replace 216
operators 21–23
overview 2
packages 47
println() 19
private members 64, 335
quoted identifiers 43, 330
reserved words 19
sequences 29
strings 24
supports Javadoc comment 

format 16
triggers 74–76
value types 17–18, 323
while loops 73
working other languages 24

JavaFX Script keywords
abstract 55, 60, 332
at 45, 114
bind 35, 37, 328
bound 41, 329
break 72, 74, 338
catch 77, 339
continue 72, 74, 338
def 35, 39, 64, 323
delete 33, 76, 328
else 25, 68–69, 336
extends 56, 58–59, 332
false 19, 23, 69
finally 340
for 70, 72, 78, 122, 126, 144, 

281, 337
function 50, 61, 331
if 25, 68–69, 78, 336

import 47, 84, 330, 345
indexof 71
init 42, 53, 60, 121, 137, 206, 

284, 331
insert 33, 76, 328
instanceof 23, 325
mixin 58–59, 333
nativearray of 330
new 53, 332
on replace 60, 74, 76, 339
override 56, 59, 121, 332
package 47, 64, 330, 335
postinit 53, 60, 122, 331
protected 64, 335
public 64, 67, 335
public-init 64, 67, 141,  

211, 335
public-read 64, 67, 282, 335
return 51
reverse 33, 76, 328
sizeof 29, 327
step 31
super 60–61
this 51, 60, 331
true 19, 23, 69
try 77, 339
tween 45, 114
var 19–20, 35, 39, 64, 323
where 73
while 74, 281, 338
with inverse 39

JavaFX SDK 1.2 Device 294
javafx.com (website) 261
javafx.data.pull (package) 205
javafx.ext.swing (package)  

80, 84, 103, 166, 312
javafx.io (package) 176
javafx.io.http (package) 205
javafx.scene.chart 

(package) 187
javafx.scene.chart.data 

(package) 187
javafx.scene.chart.part 

(package) 187
javafx.scene.control 

(package) 81, 193
javafx.scene.effect 

(package) 227, 244
javafx.scene.layout 

(package) 101, 140, 171
javafx.scene.media 

(package) 153
javafx.stage (package) 258
javafxdoc 16
JavaFXDocs 228, 292

javafxpackager (command)  
259, 261–262, 292

JavaFXScriptEngine  
(class, Java) 307–308

JavaOne 295
JavaOne 2007 7
JavaScript 2, 343
JavaScript Object Notation.  

See JSON
JComponent (class, Java)  

310, 312
JDK 315, 351
JFileChooser (class, Java) 155
jfx prefix (FXD format)  

235, 242, 247, 268
JLabel (class, Java) 102, 130
JNLP 180, 262
JRE 231, 257, 262
JRE-compatible bytecode 300
JSON 179, 204

documents nested 
structures 210

JSR 223 305–306, 308–309, 311
acquiring a scripting 

engine 307
calling the scripting 

engine 307
exposing Java objects 307

JVM 350
JWDP 295
JWS 261, 263–264

K

keyboard
events 291
soft keys 291

KeyCode (class) 291
KeyEvent (class) 291
KeyFrame 127
KeyFrame (class) 112–113, 124
keywords 340

See also JavaFX Script keywords

L

Label (class) 173
layout 101, 109, 111,  

128, 228–229
custom 140, 145
node 134
size 171

layoutBounds (variable)  
224, 228
    

  



INDEX358
LayoutInfo (class) 144
layoutX (variable) 128, 144, 229
layoutY (variable) 102, 128, 220, 

223, 253
light synthesizer 109
LightShow project

application class,  
version 1 115

application class,  
version 2 124

color animation 126
raindrop construction 110
raindrop node 110, 114–115
running version 1 118
running version 2 127
swirling lines mechanics 121
swirling lines node 118–119

line charts 187–188
LinearGradient (class) 159–160, 

196, 199, 255, 276
LineChart (class) 189
Linux 11, 82, 153, 316
localization 26
logic operations 22
Long (value type) 18
look-’n’-feel 81
loops 171, 278, 281

sequence-based 70–73
Lupton, Sally 204

M

Mac OS X 316
Mac OS X 10.4 154
Macintosh 2, 11
Macintosh (Apple) 82
Macromedia 5
Marinacci, Josh 308
Maslow, Abraham 1
Math (class) 222
mathematical operations 21
Maze project

3D custom node class  
274–275, 277, 279

adapting for mobile 291
application class 289
compass custom node 

class 286
compass display 271, 286, 290
creating the 3D illusion 272
faux 3D 271–274, 277,  

279–281, 284, 291
faux 3D coordinates 273, 279
keeping score 289

map coordinates  
281–282, 284

maze model class  
274, 282–283, 286, 291

maze view display 274, 290
packaging for mobile 292
perspective 277, 279
player movement  

271, 284, 291
player orientation 271, 280, 

284, 288, 291
player’s view 280, 284
radar custom node class 284
radar display 271, 284, 290
running on a phone 295
running the application 291
running the emulator 294
scene graph 276
scoreboard custom node 

class 288
scoreboard display  

272, 288, 290
wall creation functions 276
wall visibility 279–281
x/y tables 274, 276, 278

Media (class) 153
MediaPlayer (class) 153, 157
MediaView (class) 153, 158
members, combining term 50
Menon, Rakesh 163
Microsoft Office 5
MIDlet 292
minimal recalculation 40
Minter, Jeff 109
mixee 58
mixin 58
mixin inheritance 55

earliest wins 61
See also JavaFX Script, mixin 

inheritance
mobile emulator 291, 293,  

295–296
mobile profile 293
mod (operator) 127
mode, retained 2
model class 82, 88
model, relationship with 

control 174
Model/View/Controller  

79, 87–88, 168, 192
Motif (X Windows) 82
mouse events 218, 225, 240, 251

avoiding two actions 227
background image 139
define invisible Rectangle 222

handlers 148
Rectangle handles 152
text change color  

117, 130, 135
MPEG 133
MS-DOS 260, 316, 319
multimedia 2
multiple inheritance 48, 58
MVC

how it works in JavaFX 
Script 87

N

nested loops 71
.NET 257
NetBeans 233, 247, 259,  

293–294, 316
Next button 190
Node (class) 112, 115, 121, 128, 

174, 247
nodeHPos (variable) 141, 158
nodes 136, 141, 229

dragging 204, 213,  
221–222, 226

visibility 242
nodes (scene graph) 108–109, 

111, 128
coordinates 112
opacity 114–115
rotation 121–122
stroke 115
transformation  

118, 122–123, 128
translation 122
visibility 114

nodeVPos (variable) 141, 158
null 18, 20, 44, 58, 71
NullPointerException

(class, Java) 78
Number (value type) 18
NumberAxis (class) 187

O

object creation (init and 
postinit) 53

object literal 42, 53
syntax 52, 54, 57, 84

object orientation 17, 48–49, 
347–348

subclassing 55
octal 19
Oliver, Chris 7, 271
On2 153
    

  



INDEX 359
onException (variable) 208
onMouseClicked (variable) 218
onMouseClicked() 130
onMouseDragged 

(variable) 152
onMouseMoved (variable) 117
onMouseReleased 

(variable) 152
onResponseCode (variable) 208
opacity 109, 139, 218
open source 232, 318
OpenJFX 17, 39, 318–319
OpenOffice.org 5
operating systems 6
operator precedence 341
over the air deployment 295

P

Pack200 261
package 344–347

See also JavaFX Script,  
packages

Pac-Man 109
Paint (class) 159, 194
Panel (class) 142, 170
ParallelTransition (class) 224
PARC 165
performance 297–298
persistent storage 176–179
persistent storage (client 

side) 166, 175, 182
Photo viewer project

application class 221–222, 
224–225

building the HTTP query 205
communicating with 

Flickr 205
displaying thumbnails 214
Flickr account key 206–207, 

215, 223
Flickr data class 210, 212
Flickr gallery id 206, 215
Flickr image sizes 211
Flickr response class 208, 212
Flickr service class  

205–206, 212
navigating the 

thumbnails 219
parsing the Flickr reply 208
running the application 228
signing up for Flickr 204
testing the Flickr service 212

thumbnail gallery class  
214, 216, 219

thumbnail transition 220
Photoshop (Adobe) 233, 235, 

247, 268, 318
pie charts 169, 181–182, 184
PieChart (class) 189
PieChart.Data (class) 184–185
PieChart3D (class) 185, 189
play() 124
playFromStart() 113, 124
Playstation 271
PNG 64
Polygon (class) 250, 278
polymorphism 55
POSIX 70
Potts, Jasper 34, 308
primitives 17, 22
printf() 25
println() 40, 49, 70
__PROFILE__ 135
programmer/designer 

workflow 302
programming graphics 1
Progress Bar project

application class 196
layout 196
progress control class 193
progress skin class 193
stylesheet 197
stylesheet basics 191
writing a custom control 192

progress bars 191
Project Nile 318
properties 51
pseudo variables 342
public-init (keyword) 112
PullParser (class) 205, 208, 212
PullParserHttpRequest 

(class) 208–212
Python 2

Q

QuickTime 133
quote marks

to define string literals 24

R

RadialGradient (class) 160
radio buttons 166, 168, 173
RadioButton (class) 173
RainDrop (class) 110
Random (class, Java) 222

range delimiters 30
Rectangle (class) 123, 128, 144, 

175, 222, 276, 278, 286
first node in Scene 117–118
houses mouse event logic 148
invisible 139
populate a Group 122, 124
sequence of objects 195
shadow 226
transparent spacer 158

Reflection (class) 158
reflection effect 8, 158
remote method invocation.  

See RMI
repeatCount (variable) 286
Representational State Transfer. 

See REST
requestFocus() 291
reserved words 19
Resource (class) 178–179
REST 204
retained mode graphics  

107, 274, 281
RIA 4–5
Rich Internet Application.  

See RIA
RMI 204
rotate (variable) 121, 229
RotateTransition (class)  

224, 288
rotation 109
Rubik's Cube 271

S

Scala 2
Scalable Vector Graphics. See 

SVG
ScaleTransition (class) 224, 286
scaleX (variable) 229
scaleY (variable) 229
scaling 109, 140, 253
ScatterChart (class) 189
Scene (class) 85–86, 170–171, 

255, 290
background 225
button sequence added 94
define variables 116
populating 101–102
referencing 222–223

scene graph 85, 100, 129–130, 
185, 229, 268

add Paper (class) 255
adding rows 280
adding walls 278
    

  



INDEX360
scene graph (continued)
assembled in create()  

240, 276
Button (class) created 135
clipping 152
compared to JavaFX 107
contents rebuilt 216
extends 

javafx.fxd.FXDNode 247
forms final image 250
FXD file 235
grouping nodes 108, 118
immediate vs retained 

mode 107
oversized 297
stage 109
structural overview 108
thumbnail bar 218

Screen (class) 222
script context 49, 134, 276
ScriptEngineManager  

(class, Java) 306
scripting engine 303, 305–307, 

309, 311
scripting language 301
scripts 48, 301
scrollbars 82
SDK 271, 305
SeeBeyond Technology 

Corporation 7
semicolons 54, 69

closing 20
sequences 29–34, 70, 124,  

184, 245
access inside objects 71
adding elements 44, 76
adding or removing 

elements 36
appending elements 33
behind the scenes 34
binding elements 36
binding sequences 37
conditional slices 32
declaration 29, 327
deleting all elements 33
double dot syntax 32
empty 31
equality 29, 327
for loops 37
freq 91
immutable 34
inclusive and exclusive range 

syntax 32
index range deletion 33
inserting elements 32
inserting or removing 

elements 34

linear 278
manipulation 32, 328
nested declarations 31
nested ranges 31
of colors 126
order reversal 33
predicate declaration 32, 327
range declaration 30
range delimeters 32
removing elements 32, 44, 76
reverse elements 76
reverse ranges 31
ripples 113
size of RainDrop 116
slice declaration 31, 327
slice syntax 31
Sudoku project 83, 86
type 29
update fixed 97

service provider 
mechanism 305, 307

shaped windows 8
shapes 108–109, 112, 118,  

130, 234
Short (value type) 18
Silveira Neto 319
single quotes 24
Skin (class) 192, 194–195
skin (variable) 193
skins 191–193, 199
Slider (class) 144, 173
sliders 140, 166, 168
Smalltalk 1
SOAP 204
source files 48
Space Invaders 109
sprites 2
SQL 24
square bracket syntax 29–30
Stack (class) 158, 241
Stage (class) 85–86, 116, 225, 

258, 265, 290
static methods (Java) 49
statically typed 343
Storage (class) 178–180
String (value type) 18, 21, 28
strings 325

embedded expressions  
24, 325

embedded if/else 25, 68
formatting 25–26, 69, 325
literals 24, 325
localization 26–27, 326
multiline 24
quotes 24, 325

stroke (variable) 144, 194

StudioMOTO 7
stylesheets 191, 196
stylesheets (variable) 197
subclasses 65
subclassing 55
Sudoku 80, 100

history 80
terms 81

Sudoku project
boxes 91
cell background color 94
checkGroup() 90–91
checking for clashes 90–91
checking groups 90
checkStats() 98
columns 91
creating the grid UI 84
fixGrid() 97, 100
game class, version 1 83, 85
game class, version 2 92
game class, version 3 98, 100
game stats 97–98, 101–102
loading/saving the game  

97, 103
locking starting cells 96
model class, version 1 82
model class, version 2  

88, 90–91
model class, version 3 96
rows 91
running version 1 88
running version 2 94
running version 3 102
styling the grid UI 94
updaing the model 92
update() 90, 92, 98
updating grid cells 86
updating the model 94, 97

Sun Microsystems 6, 81, 230, 
297, 318

acquired SeeBeyond 7
superclass 57–58
Superlambanana 204
SVG 231–232, 318

converting to FXD 
format 235

converting to FXZ 234–236
layers 235, 242, 247, 266

SVG Converter (tool) 232, 235, 
240, 247

SVG editor 246
SVG UI project

adding event handlers to 
layers 268

application class 266
naming the layers 266
    

  



INDEX 361
Swing
buttons 84, 100
classes wrap components 80
components 103
explained 82
importing JavaFX UIs  

308–312
sits atop AWT 82
wrapper classes 84
wrappers 132

SwingButton (class) 86–87,  
94, 100

SwingCheckBox (class) 103
SwingComboBox (class) 103
SwingLabel (class) 102, 144, 309
SwingList (class) 103
SwingListItem (class) 103
SwingRadioButton (class) 103
SwingScrollPane (class) 103
SwingSlider (class) 103
SwingTextField (class) 103
SwingToggleGroup (class) 103
switch construct 69
syntactic sugar 18
syntax

declarative 4, 12
object literal 52
square bracket 29–30

synthesizer, light 109
System (class, Java) 43, 117
system properties 27

T

ternary expressions 69, 336
Text (class) 130, 144, 148, 241, 

247, 253, 289
text fields 82, 166, 168
TextBox (class) 173
thin client 176
thumbnails 203, 211, 219, 223

bar across screen 213
Tile (class) 140, 173–174
Timeline (class) 112–113,  

220, 286
controlling playback 124
creating inertia effect 150
helping in animation 115

timelines 112, 114, 124, 127
ToggleGroup (class) 173–174
toString() 28, 51, 55, 71
Transform (class) 122
transition effects 3
transitions 202, 213, 220
TranslateTransition (class)  

220, 224

translateX (variable) 128, 229
translateY (variable)  

128, 220, 229
transparency

against the desktop 8
triggers 60, 73, 78, 87, 92, 97, 

102–103, 173, 297
assign to a sequence 75

TrueType (fonts) 162
TV profile 292

U

UI Stub Generator 247
UI. See GUI
underline (variable) 130
underscore character 26
URL (class, Java) 135
URLConverter (class) 178
useDefaultClose (variable) 265

V

validating forms 103–105
value types

are objects 21
compared to Java 18
declaration 17–20
default values 20
type inference 20

ValueAxis (class) 187
valueAxis (variable) 187
variable declarations 40
variables 17, 39

access modifiers applied to 64
control access to 47
live outside a class 49
readability to 65

variables type
inference when declaring 20

VBox (class) 147, 244
Vector (class, Java) 44
vector images 234
video 145, 152–154

codecs 153
from the local hard disk 133
plug into JavaFX scene 

graph 153
Video project

application class,  
version 1 142

application class,  
version 2 154–155, 158

button custom node 135, 137
control panel layout 140
custom button 135

gridbox custom 
container 140

image loader 134
list custom node 146–147
list pane custom node  

149–150
running version 1 144
running version 2 161

Video VP6 153
virtual functions 57
visible (variable) 114
visualizations 109
Void (type) 50–51, 62

W

W3C 234
web mail 4
web services 202, 207, 209, 212

defined 204
WebKit 11
whitespace 24
width

scene 85
Wikipedia 100
Winamp 109
Windows (Microsoft) 82, 235, 

260, 266, 271, 294, 316, 319
Windows Media Player 109, 133
Windows XP/Vista 154
WMV 133
word processor 5, 301
World Wide Web 2, 165

web applications 4
World Wide Web 

Consortium 199
write once, run anywhere  

11, 350

X

XAML 12
Xbox 271
Xerox 165
Xerox’s Palo Alto Research Cen-

ter. See PARC
XML 179, 202, 204

documents nested 
structures 210

Z

zip files 235
    

  



ISBN 13: 978-1-933988-99-3
ISBN 10: 1-933988-99-1

9 7 8 1 9 3 3 9 8 8 9 9 3

99445

W
ith JavaFX  you can create dazzlingly rich applications 
for the web, desktop, and mobile devices. It is a complete 
RIA system with powerful presentation and animation 

libraries, a declarative scripting language, and an intuitive coding 
model—all fully integrated with the Java platform. 

Assuming no previous knowledge of JavaFX, JavaFX in Action 
makes the exploration of JavaFX interesting and easy by using 
numerous bite-sized projects. You’ll gain a solid grounding in 
the JavaFX syntax and related APIs and then learn to apply key 
features of the JavaFX platform through the examples. JavaFX 
expert Simon Morris helps you transform variables and opera-
tors into bouncing raindrops, brilliant colors, and dancing 
interface components. And, below the chrome, you’ll master 
techniques to make your business applications more responsive 
and user friendly.  

What’s Inside
Covers JavaFX 1.2!
JavaFX Script language tutorial
Techniques for desktop, web, and mobile development
How to mix Java and JavaFX
How to connect to resources in the Cloud

Based in the UK, Simon Morris builds web and desktop applica-
tions for commercial, academic, and government clients. He 
blogs at Java.net.

For online access to the author, and a free ebook for owners 
of this book, go to manning.com/JavaFXinAction

$44 99 / C  $56 99  [INCLUDING BOOK]

JAVAFX IN ACTION 

JAVA/WEB DEVELOPMENT

Simon Morris

“Handy book for RIA 
  developers.”
  —Carol McDonald, Java Architect 
       Sun Microsystems 
       
“Highly recommended!”
  —Horaci Macias Viel, Soft ware
       Solutions Architect, Avaya

“Everyone will learn something
  from this book. I did!” 
  —Jasper Potts, JavaFX Engineer  
       Sun Microsystems

“With JavaFX you can brew up 
  industrial grade RIAs, and 
  this book can help you craft 
  mighty tasty pints.” 
  —Kevin Munc, UI Consultant
       Nationwide Insurance

“An excellent and easy-to-read 
  introduction to the very latest 
  in JavaFX technologies.” 
  —Jonathan Giles, Soft ware Engineer 
       JavaFX Team, Sun Microsystems

M A N N I N G

SEE  INSERT

  


	Front cover
	contents
	preface
	acknowledgments
	about this book
	Project structure
	Who should read this book?
	Roadmap
	Typographical conventions
	Source code
	Source code updates
	Author Online

	about the title
	about the cover illustration
	Welcome to the future: introducing JavaFX
	1.1 Introducing JavaFX
	1.1.1 Why do we need JavaFX Script? The power of a DSL
	1.1.2 Back to the future: the rise of the cloud
	1.1.3 Form follows function: the fall and rebirth of desktop Java

	1.2 Minimum effort, maximum impact: a quick shot of JavaFX
	1.3 Comparing Java and JavaFX Script: “Hello JavaFX!”
	1.4 Comparing JavaFX with Adobe AIR, GWT, and Silverlight
	1.4.1 Adobe AIR and Flex
	1.4.2 Google Web Toolkit
	1.4.3 Microsoft Silverlight
	1.4.4 And by comparison, JavaFX

	1.5 But why should I buy this book?
	1.6 Summary

	JavaFX Script data and variables
	2.1 Annotating code with comments
	2.2 Data types
	2.2.1 Static, not dynamic, types
	2.2.2 Value type declaration
	2.2.3 Initialize-only and reassignable variables (var, def)
	2.2.4 Arithmetic on value types (+, -, etc.)
	2.2.5 Logic operators (and, or, not, <, >, =, >=, <=, !=)
	2.2.6 Translating and checking types (as, instanceof)

	2.3 Working with text, via strings
	2.3.1 String literals and embedded expressions
	2.3.2 String formatting
	2.3.3 String localization

	2.4 Durations, using time literals
	2.5 Sequences: not quite arrays
	2.5.1 Basic sequence declaration and access (sizeof)
	2.5.2 Sequence creation using ranges ([..], step)
	2.5.3 Sequence creation using slices ( [..<] )
	2.5.4 Sequence creation using a predicate
	2.5.5 Sequence manipulation (insert, delete, reverse)
	2.5.6 Sequences, behind the scenes

	2.6 Autoupdating related data, with binds
	2.6.1 Binding to variables (bind)
	2.6.2 Binding to bound variables
	2.6.3 Binding to a sequence element
	2.6.4 Binding to an entire sequence (for)
	2.6.5 Binding to code
	2.6.6 Bidirectional binds (with inverse)
	2.6.7 The mechanics behind bindings
	2.6.8 Bound functions (bound)
	2.6.9 Bound object literals

	2.7 Working nicely with Java
	2.7.1 Avoiding naming conflicts, with quoted identifiers
	2.7.2 Handling Java native arrays (nativearray of)

	2.8 Summary

	JavaFX Script code and structure
	3.1 Imposing order and control with packages (package, import)
	3.2 Developing classes
	3.2.1 Scripts
	3.2.2 Class definition (class, def, var, function, this)
	3.2.3 Object declaration (init, postinit, isInitialized(), new)
	3.2.4 Object declaration and sequences
	3.2.5 Class inheritance (abstract, extends, override)
	3.2.6 Mixin inheritance (mixin)
	3.2.7 Function types
	3.2.8 Anonymous functions
	3.2.9 Access modifiers (package, protected, public, public-read, public-init)

	3.3 Flow control, using conditions
	3.3.1 Basic conditions (if, else)
	3.3.2 Conditions as expressions
	3.3.3 Ternary expressions and beyond

	3.4 Sequence-based loops
	3.4.1 Basic sequence loops (for)
	3.4.2 For loops as expressions (indexof)
	3.4.3 Rolling nested loops into one expression
	3.4.4 Controlling flow within for loops (break, continue)
	3.4.5 Filtering for expressions (where)

	3.5 Repeating code with while loops (while, break, continue)
	3.6 Acting on variable and sequence changes, using triggers
	3.6.1 Single-value triggers (on replace)
	3.6.2 Sequence triggers (on replace [..])

	3.7 Trapping problems using exceptions (try, catch, any, finally)
	3.8 Summary

	Swing by numbers
	4.1 Swing time: Puzzle, version 1
	4.1.1 Our initial puzzle data class
	4.1.2 Our initial GUI class
	4.1.3 Building the buttons
	4.1.4 Model/View/Controller, JavaFX Script style
	4.1.5 Running version 1

	4.2 Better informed and better looking: Puzzle, version 2
	4.2.1 Making the puzzle class clever, using triggers and function types
	4.2.2 Group checking up close: function types
	4.2.3 Firing the update: triggers
	4.2.4 Better-looking GUI: playing with the underlying Swing component
	4.2.5 Running version 2

	4.3 Game on: Puzzle, version 3
	4.3.1 Adding stats to the puzzle class
	4.3.2 Finishing off the puzzle grid GUI
	4.3.3 Adding a status line to our GUI with a label
	4.3.4 Running version 3

	4.4 Other Swing components
	4.5 Bonus: using bind to validate forms
	4.6 Summary

	Behind the scene graph
	5.1 What is a scene graph?
	5.1.1 Nodes: the building blocks of the scene graph
	5.1.2 Groups: graph manipulation made easy

	5.2 Getting animated: LightShow, version 1
	5.2.1 Raindrop animations
	5.2.2 The RainDrop class: creating graphics from geometric shapes
	5.2.3 Timelines and animation (Timeline, KeyFrame)
	5.2.4 Interpolating variables across a timeline (at, tween, =>)
	5.2.5 How the RainDrop class works
	5.2.6 The LightShow class, version 1: a stage for our scene graph
	5.2.7 Running version 1

	5.3 Total transformation: LightShow, version 2
	5.3.1 The swirling lines animation
	5.3.2 The SwirlingLines class: rectangles, rotations, and transformations
	5.3.3 Manipulating node rendering with transformations
	5.3.4 The LightShow class, version 2: color animations
	5.3.5 Running version 2

	5.4 Lost in translation? Positioning nodes in the scene graph
	5.5 Bonus: creating hypertext-style links
	5.6 Summary

	Moving pictures
	6.1 Taking control: Video Player, version 1
	6.1.1 The Util class: creating image nodes
	6.1.2 The Button class: scene graph images and user input
	6.1.3 The GridBox class: lay out your nodes
	6.1.4 The Player class, version 1
	6.1.5 Running version 1

	6.2 Making the list: Video Player, version 2
	6.2.1 The List class: a complex multipart custom node
	6.2.2 The ListPane class: scrolling and clipping a scene graph
	6.2.3 Using media in JavaFX
	6.2.4 The Player class, version 2: video and linear gradients
	6.2.5 Creating varying color fills with LinearGradient
	6.2.6 Running version 2

	6.3 Bonus: taking control of fonts
	6.4 Summary

	Controls, charts, and storage
	7.1 Comments welcome: Feedback, version 1
	7.1.1 The Record class: a bound model for our UI
	7.1.2 The Feedback class: controls and panel containers
	7.1.3 Running version 1

	7.2 Chart topping: Feedback, version 2
	7.2.1 Cross-platform persistent storage
	7.2.2 How Storage manages its files
	7.2.3 Adding pie and bar charts
	7.2.4 Taking control of chart axes
	7.2.5 Other chart controls (area, bubble, line, and scatter)
	7.2.6 Running version 2

	7.3 Bonus: creating a styled UI control in JavaFX
	7.3.1 What is a stylesheet?
	7.3.2 Creating a control: the Progress class
	7.3.3 Creating a skin: the ProgressSkin class
	7.3.4 Using our styled control with a CSS document
	7.3.5 Further CSS details

	7.4 Summary

	Web services with style
	8.1 Our project: a Flickr image viewer
	8.1.1 The Flickr web service
	8.1.2 Getting registered with Flickr

	8.2 Using a web service in JavaFX
	8.2.1 Calling the web service with HttpRequest
	8.2.2 Parsing XML with PullParser
	8.2.3 A recap
	8.2.4 Testing our web service code

	8.3 Picture this: the PhotoViewer application
	8.3.1 Displaying thumbnails from the web service: the GalleryView class
	8.3.2 The easy way to animate: transitions
	8.3.3 The main photo desktop: the PhotoViewer class
	8.3.4 Running the application

	8.4 Size matters: node bounds in different contexts
	8.5 Summary

	From app to applet
	9.1 The Enigma project
	9.1.1 The mechanics of the Enigma cipher

	9.2 Programmer/designer workflow: Enigma machine, version 1
	9.2.1 Getting ready to use the JavaFX Production Suite
	9.2.2 Converting SVG files to FXZ
	9.2.3 The Rotor class: the heart of the encryption
	9.2.4 A quick utility class
	9.2.5 The Key class: input to the machine
	9.2.6 The Lamp class: output from the machine
	9.2.7 The Enigma class: binding the encryption engine to the interface
	9.2.8 Running version 1
	9.2.9 Shortcuts using NetBeans, Photoshop, or Illustrator

	9.3 More cryptic: Enigma machine, version 2
	9.3.1 The Rotor class, version 2: giving the cipher a visual presence
	9.3.2 The Paper class: making a permanent output record
	9.3.3 The Enigma class, version 2: at last our code is ready to encode
	9.3.4 Running version 2

	9.4 From application to applet
	9.4.1 The Enigma class: from application to applet
	9.4.2 The JavaFX Packager utility
	9.4.3 Packaging up the applet
	9.4.4 Dragging the applet onto the desktop

	9.5 Bonus: Building the UI in an art tool
	9.6 Summary

	Clever graphics and smart phones
	10.1 Amazing games: a retro 3D puzzle
	10.1.1 Creating a faux 3D effect
	10.1.2 Using 2D to create 3D

	10.2 The maze game
	10.2.1 The MazeDisplay class: 3D view from 2D points
	10.2.2 The Map class: where are we?
	10.2.3 The Radar class: this is where we are
	10.2.4 The Compass class: this is where we’re facing
	10.2.5 The ScoreBoard class: are we there yet?
	10.2.6 The MazeGame class: our application
	10.2.7 Running the MazeGame project

	10.3 On the move: desktop to mobile in a single bound
	10.3.1 Packaging the game for the mobile profile
	10.3.2 Running the mobile emulator
	10.3.3 Emulator options
	10.3.4 Running the software on a real phone

	10.4 Performance tips
	10.5 Summary

	Best of both worlds: using JavaFX from Java
	11.1 Different styles of linking the two languages
	11.2 Adventures in JavaFX Script
	11.2.1 Game engine events
	11.2.2 Calling the JavaFX Script event code from Java

	11.3 Adding FX to Java
	11.3.1 The problem with mixing languages
	11.3.2 The problem solved: an elegant solution to link the languages
	11.3.3 Fetching the JavaFX Script object from within Java

	11.4 Summary

	appendix A: Getting started
	A.1 Downloading and installing
	A.1.1 The Java Development Kit (essential)
	A.1.2 NetBeans or other IDEs (optional)
	A.1.3 The IDE plug-ins (required, if using an IDE)
	A.1.4 The JavaFX SDK (essential)
	A.1.5 The JavaFX Production Suite (optional)
	A.1.6 Recap

	A.2 Compiling JavaFX
	A.2.1 Setting the path
	A.2.2 Running the compiler
	A.2.3 Running the code

	A.3 Useful URLs

	appendix B: JavaFX Script: a quick reference
	B.1 Comments
	B.2 Variables and data types—the basics
	Variable declaration (def, var, Boolean, Integer, Number, String)
	Arithmetic (+, -, etc.)
	Logic operators (and, or, not, <, >, =, >=, <=, !=)
	Casting (as, instanceof)

	B.3 Strings
	String literals and embedded expressions
	String formating
	String localization

	B.4 Durations
	B.5 Sequences: lists of objects
	Basic sequence declaration and access (sizeof)
	Sequence creation using ranges ( [..], step)
	Sequence creation using slices ( [..<] )
	Sequence creation using a predicate
	Sequence manipulation (insert, delete, reverse)

	B.6 Binds
	Binding to variables (bind)
	Binding to a sequence
	Binding to code
	Bidirectional binds (with inverse)
	Bound functions (bound)

	B.7 Cooperating with Java
	Quoted identifiers
	Java native arrays (nativearray of)

	B.8 Packages (package, import)
	B.9 Developing classes
	Scripts
	Class definition (class, def ,var, function, this)
	Object declaration (init, postinit, isInitialized(), new)
	Class inheritance (abstract, extends, override)
	Mixin inheritance (mixin)
	Function types
	Anonymous functions
	Access modifiers (package, protected, public, public-read, public-init)

	B.10 Conditions
	Basic conditions (if, else)
	Ternary expressions and beyond

	B.11 Loops
	Basic sequence loops (for)
	Rolling nested loops into one expression
	Controlling flow within for loops (break, continue)
	Filtering for expressions (where)
	While loops (while, break, continue)

	B.12 Triggers
	Single-value triggers (on replace)
	Sequence triggers (on replace [..])

	B.13 Exceptions (try, catch, any, finally)
	B.14 Keywords
	B.15 Operator precedence
	B.16 Pseudo variables

	appendix C: Not familiar with Java?
	C.1 Static types versus dynamic types
	C.2 Casts
	C.3 Packages
	C.3.1 Importing classes from a package
	C.3.2 Packages and physical files
	C.3.3 Creating packaged classes and dealing with name clashes

	C.4 Object orientation
	C.4.1 Modeling the world with classes
	C.4.2 Classes from classes: subclassing and overriding
	C.4.3 An object can be referenced in different ways: polymorphism
	C.4.4 Partial implementation: abstract functions and interfaces

	C.5 Access modifiers

	appendix D: JavaFX and the Java platform
	D.1 How not to go native
	D.2 Java SE/ME/EE and JDK/JRE: three editions, two audiences
	D.3 Release versions: a rose by any other name

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Back cover



