
www.allitebooks.com

http://www.allitebooks.org

Julia High Performance

Design and develop high performing programs
with Julia

Avik Sengupta

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Julia High Performance

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2016

Production reference: 1220416

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-091-9

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Avik Sengupta

Reviewer
QL ZHUO

Commissioning Editor
Priya Singh

Acquisition Editor
Reshma Raman

Content Development Editor
Onkar Wani

Technical Editor
Kunal Chaudhari

Copy Editor
Shruti Iyer

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Jason Monteiro

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Avik Sengupta has worked on risk and trading systems in investment banking
for many years, mostly using Java interspersed with snippets of the exotic R and K
languages. This experience left him wondering whether there were better things out
there. Avik's quest came to a happy conclusion with the appearance of Julia in 2012.
He has been happily coding in Julia and contributing to it ever since.

This book was only possible because four intrepid computer scientists
decided they wanted a better language six years ago. So, I would like
to thank Alan, Jeff, Stefan, and Viral for giving Julia to the world.
The world of scientific computing has changed drastically as a result.

Working in Julia over the last three years has been one of the most
enjoyable experiences in my professional career. A large part of this
joy is due to the people who inhabit this community. It is a collection
of smart and engaged scientists and developers who have taught me
far more than programming languages. A big "thank you" goes to
the entire Julia community, which is responsible for all the buzz that
Julia has received.

Many thanks are due to the reviewers who generously provided
their time to improve this book. While all the deficiencies remain
my own, this is now a much better product thanks to their efforts.

Writing a book turned out to need many more late nights than
I would have thought necessary. So, I would like to give a big
shout-out to Vaishali and Ahan for keeping me sane and well-fed
during this process.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

QL ZHUO (also known as KDr2 online) is an open source developer from China who
has about 10 years experience with Linux, C, C++, Java, Python, and Perl development.
He loves participating in and contributing to the open source community, which,
of course, includes the Julia community. QL maintains a personal website at
http://kdr2.com, and you can find out more about him there.

www.allitebooks.com

http://kdr2.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Julia is Fast 1

Julia – fast and dynamic 2
Designed for speed 4

JIT and LLVM 4
Types 6

How fast can Julia be? 7
Summary 9

Chapter 2: Analyzing Julia Performance 11
Timing Julia code 11

Tic and Toc 12
The @time macro 12
The @timev macro 13

The Julia profiler 13
Using the profiler 14
ProfileView 16

Analyzing memory allocation 17
Using the memory allocation tracker 17

Statistically accurate benchmarking 18
Using Benchmarks.jl 18

Summary 19
Chapter 3: Types in Julia 21

The Julia type system 21
Using types 21
Multiple dispatch 22
Abstract types 23
Julia's type hierarchy 24
Composite and immutable types 25

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Type parameters 26
Type inference 27

Type-stability 28
Definitions 28
Fixing type-instability 29
Performance pitfalls 30
Identifying type-stability 31
Loop variables 36

Kernel methods 39
Types in storage locations 41

Arrays 41
Composite types 43
Parametric composite types 44

Summary 44
Chapter 4: Functions and Macros – Structuring Julia Code
for High Performance 45

Using globals 46
The trouble with globals 46
Fixing performance issues with globals 48

Inlining 50
Default inlining 51
Controlling inlining 52
Disabling inlining 54

Closures and anonymous functions 55
FastAnonymous 56

Using macros for performance 57
The Julia compilation process 57
Using macros 58
Evaluating a polynomial 59
Horner's method 60
The Horner macro 61

Generated functions 63
Using generated functions 63
Using generated functions for performance 63
Using named parameters 66

Summary 66
Chapter 5: Fast Numbers 67

Numbers in Julia 67
Integers 67
Integer overflow 69

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

BigInt 71
The floating point 71
Unchecked conversions for unsigned integers 72

Trading performance for accuracy 72
The fastmath macro 73
The K-B-N summation 75

Subnormal numbers 76
Subnormal numbers to zero 77

Summary 79
Chapter 6: Fast Arrays 81

Array internals in Julia 81
Array representation and storage 82
Column-wise storage 84

Bound checking 87
Removing the cost of bound checking 87
Configuring bound checks at startup 88

Allocations and in-place operations 89
Preallocating function output 90
Mutating versions 91

Array views 92
SIMD parallelization 94
Yeppp! 97
Writing generic library functions with arrays 99
Summary 102

Chapter 7: Beyond the Single Processor 103
Parallelism in Julia 103

Starting a cluster 104
Communication between Julia processes 105

Programming parallel tasks 106
@everywhere 106
@spawn 107
Parallel for 108
Parallel map 109
Distributed arrays 110

Shared arrays 110
Threading 110

Summary 111
Index 113

www.allitebooks.com

http://www.allitebooks.org

[v]

Preface
When I first learned about Julia in early 2012, it was clear to me that this is a
language that I've wanted for many years. The use of multiple dispatch made it
very easy to express mathematical concepts, while the speed of the language made
it feasible to express them in the Julia. I came for the elegance and stayed for the
performance. On the other hand, some users come to Julia for the performance and
stay for the elegance. Either way, in order to fully appreciate the power and beauty
of the language, it needs to live up to its promise of high performance.

I hope this book will help Julia programmers at all levels to learn the design
techniques and paradigms that produce fast Julia code. One of the nice things
about Julia is that its performance characteristics are simple and easy to reason out.
I hope this book will provide you with a framework to think about and analyze the
performance of your own code.

What this book covers
Chapter 1, Julia is Fast, discuses some of the design underpinning the language and its
focus on high performance.

Chapter 2, Analyzing Julia Performance, provides the tools and techniques you can use
to measure and analyze the performance of your own programs.

Chapter 3, Types in Julia, describes the type system and discusses why writing
type-stable code is crucial to high performance.

Chapter 4, Functions and Macros – Structuring Julia Code for High Performance, discusses
techniques to use dispatch and code generation to structure high-performance
programs.

Chapter 5, Fast Numbers, discusses the basic numeric types and why they are fast.

Preface

[vi]

Chapter 6, Fast Arrays, describes ways to use multidimensional arrays in the fastest
possible way.

Chapter 7, Beyond the Single Processor, provides an introduction to Julia's distributed
computing facilities.

What you need for this book
If you are reading this book, we assume you have installed Julia and written a
few simple Julia programs and that you are familiar with Julia REPL. The basic
Julia installation, available from http://julialang.org/downloads, is the only
prerequisite for this book. We will demonstrate most of the techniques in the book
using REPL, and we encourage your to follow along. Paste the commands on to
REPL and inspect the output yourself.

Who this book is for
This book is for beginner- and intermediate-level Julia developers who are
interested in high-performance technical computing. We expect you to have
a basic understanding of Julia's syntax and have written a few small Julia
programs prior to reading this book.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"abstract types are defined using the abstract keyword."

A block of code is set as follows:

 function bar(a, b)
 x::Int64 = 0
 y = a+b+x
 return y
 end

http://julialang.org/downloads

Preface

[vii]

Any command-line input or output is written as follows:

julia> @benchmark serial_add()

================ Benchmark Results ========================

Time per evaluation: 6.95 ms [6.59 ms, 7.31 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

Memory allocated: 0.00 bytes

Number of allocations: 0 allocations

Number of samples: 100

Number of evaluations: 100

Time spent benchmarking: 0.86 s

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[viii]

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on
the book's webpage at the Packt Publishing website. This page can be accessed
by entering the book's name in the Search box. Please note that you need to be
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/JuliaHighPerformance_ColorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/JuliaHighPerformance_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JuliaHighPerformance_ColorImages.pdf

Preface

[ix]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Julia is Fast
In many ways, the history of programming languages has often been driven by, and
certainly intertwined, with the needs of numerical and scientific computing. The first
high-level programming language, Fortran, was created with scientific computing
in mind, and continues to be important in the field even to this day. In recent years,
the rise of data science as a specialty has brought additional focus to scientific
computing, particularly for statistical uses. In this area, somewhat counterintuitively,
both specialized languages such as R and general-purpose languages such as Python
are in widespread use. The rise of Hadoop and Spark has spread the use of Java and
Scala respectively among this community. In the midst of all this, Matlab has had
a strong niche within engineering and communities, while Mathematica remains
unparalleled for symbolic operations.

A new language for scientific computing therefore has a very high barrier to overcome.
It's been only a few short years since the Julia language was introduced into the
world. In this time, it's innovative features, which make it a dynamic language, based
on multiple dispatch as its defining paradigm, has created growing niche within the
numerical computing world. However, it's the claim of high performance that excited
its early adopters the most.

This, then, is a book that celebrates writing high-performance programs. With Julia,
this is not only possible, but also reasonably straightforward, within a low-overhead,
dynamic language.

Julia is Fast

[2]

As a reader of this book, you have likely already written your first few Julia
programs. We will assume that you have successfully installed Julia, and have a
working programming environment available. We expect you are familiar with
very basic Julia syntax, but we will discuss and review many of those concepts
throughout the book as we introduce them.

• Julia – fast and dynamic
• Designed for speed
• How fast can Julia be?

Julia – fast and dynamic
It is a widely believed myth in programming language communities that
high-performance languages and dynamic languages are completely disjoint sets.
The perceived wisdom is that, if you want programmer productivity, you should
use a dynamic language, such as Ruby, Python or R. On the other hand, if you want
fast code execution, you should use a statically typed language such as C or Java.

There are always exceptions to this rule. However, for most mainstream programmers,
this is a strongly held belief.

This usually manifests itself in what is known as the "two language" problem. This is
something that is especially prominent in scientific computing. This is the situation
where the performance-critical inner kernel is written in C, but is then wrapped and
used from a dynamic, higher-level language. Code written in traditional, scientific
computing environments such as R, Matlab or NumPy follows this paradigm.

Code written in this fashion is not without its drawbacks however. Even though it
looks like this gets you the best of both worlds — fast computation, while allowing
the programmer to use a high-level language — this is a path full of hidden dangers.
For one, someone will have to write the low-level kernel. So, you need two different
skillsets. If you are lucky to find the low level code in C for your project, you are
fine. However, if you are doing anything new or original, or even slightly different
from the norm, you will find yourself writing both C and a high-level language.
This severely limits the number of contributors that your projects or research will
get: to be really productive, they have to be familiar with two languages.

Chapter 1

[3]

Secondly, when running code routinely written in two languages, there can be severe
and unforeseen performance pitfalls. When you can drop down to C code quickly,
everything is fine. However, if, for whatever reason, your code cannot call into a C
routine, you'll find your program taking hundreds or even thousands of times more
longer than you expected.

Julia is the first modern language to make a reasonable effort to solve the "two
language" problem. It is a high-level, dynamic, language with powerful features
that make for a very productive programmer. At the same time, code written in Julia
usually runs very fast, almost as fast as code written in statically typed languages.

The rest of this chapter describes some of the underlying design decisions that
make Julia such a fast language. We also see some evidence of the performance
claims for Julia.

The rest of the book shows you how to write your Julia programs in a way that
optimizes its time and memory usage to the maximum. We will discuss how to
measure and reason performance in Julia, and how to avoid potential performance
pitfalls.

For all the content in this book, we will illustrate our point individually with small
and simple programs. We hope that this will enable you grasp the crux of the issue,
without getting distracted by unnecessary elements of a larger program. We expect
that this methodology will therefore provide you with an instinctive intuition about
Julia's performance profile.

Julia has a refreshingly simple performance model – and thus writing fast Julia
code is a matter of understanding a few key elements of computer architecture,
and how the Julia compiler interacts with it. We hope that, by the end of this book,
your instincts are well developed to design and write your own Julia code with the
fastest possible performance.

Versions of Julia
Julia is a fast moving project, with an open development process.
All the code and examples in this book are targeted at version 0.4
of the language, which is the currently released version at the time
of publication. Check Packt's website for changes and errata for
future versions of Julia.

Julia is Fast

[4]

Designed for speed
When the creators of Julia launched the language into the world, they said the
following in a blog post entitled Why We Created Julia, which was published in
early 2012:

"We want a language that's open source, with a liberal license. We want the speed
of C with the dynamism of Ruby. We want a language that's homoiconic, with true
macros like Lisp, but with obvious, familiar mathematical notation like Matlab. We
want something as usable for general programming as Python, as easy for statistics
as R, as natural for string processing as Perl, as powerful for linear algebra as
Matlab, as good at gluing programs together as the shell. Something that is dirt
simple to learn, yet keeps the most serious hackers happy. We want it interactive
and we want it compiled.

(Did we mention it should be as fast as C?)"

High performance, indeed nearly C-level performance, has therefore been one of
the founding principles of the language. It's built from the ground up to enable a
fast execution of code.

In addition to being a core design principle, it has also been a necessity from the early
stages of its development. A very large part of Julia's standard library, including very
basic low-level operations, is written in Julia itself. For example, the + operation to add
two integers is defined in Julia itself. (Refer to: https://github.com/JuliaLang/
julia/blob/1986c5024db36b4c921130351597f5b4f9f81691/base/int.jl#L8).
Similarly, the basic for loop uses the standard iteration mechanism available to all
user-defined types. This means that the implementation had to be very fast from the
very beginning to create a usable language. The creators of Julia did not have the
luxury of escaping to C for even the core elements of the library.

We will note throughout the book many design decisions that have been made with
an eye to high performance. But there are three main elements that create the basis
for Julia's speed.

JIT and LLVM
Julia is a Just In Time (JIT) compiled language, rather than an interpreted one.
This allows Julia to be dynamic, without having the overhead of interpretation.
This compilation infrastructure is build on top of Low Level Virtual Machine
(LLVM) (http://llvm.org).

http://llvm.org

Chapter 1

[5]

The LLVM compiler without infrastructure project originated at University of
Illinois. It now has contributions from a very large number of corporate as well as
independent developers. As a result of all this work, it is now a very high-quality,
yet modular, system for many different compilation and code generation activities.

Julia uses LLVM for its JIT compilation needs. The Julia runtime generates LLVM
Intermediate Representation (IR) and hands it over to LLVM's JIT compiler, which
in turn generates machine code that is executed on the CPU. As a result, sophisticated
compilation techniques that are built into LLVM are ready and available to Julia, from
the simple (such as Loop Unrolling or Loop Deletion) to state-of-the-art (such as SIMD
Vectorization) ones. These compiler optimizations form a very large body of work, and
in this sense, the existence is of LLVM is very much a pre-requisite to the existence of
Julia. It would have been an almost impossible task for a small team of developers to
build this infrastructure from scratch.

Just-In-Time compilation
Just-in-Time compilation is a technique in which the code in a high-
level language is converted to machine code for execution on the CPU
at runtime. This is in contrast to interpreted languages, whose runtime
executes the source language directly. This usually has a significantly
higher overhead. On the other hand, Ahead of Time (AOT) compilation
refers to the technique of converting source language into machine code
as a separate step prior to running the code. In this case, the converted
machine code can usually be saved to disk as an executable file.

Julia is Fast

[6]

Types
We will have much more to say about types in Julia throughout this book. At this
stage, suffice it to say that Julia's concept of types is a key ingredient in its performance.

The Julia compiler tries to infer the type of all data used in a program, and compiles
different versions of functions specialized to particular types of its arguments. To take
a simple example, consider the sqrt function. This function can be called with integer
or floating-point arguments. Julia will compile two versions of the code, one for integer
arguments, and one for floating point arguments. This means that, at runtime, fast,
straight-line code without any type checks will be executed on the CPU.

The ability of the compiler to reason about types is due to the combination of a
sophisticated dataflow-based algorithm, and careful language design that allows
this information to be inferred from most programs before execution begins. Put
in another way, the language is designed to make it easy to statically analyze.

If there is a single reason for Julia is being such a high-performance language, this
is it. This is why Julia is able to run at C-like speeds while still being a dynamic
language. Type inference and code specialization are as close to a secret sauce as Julia
gets. It is notable that, outside this type inference mechanism, the Julia compiler is
quite simple. It does not include many advanced Just in Time optimizations that
Java and JavaScript compilers are known to use. When the compiler has enough
information about the types within the code, it can generate optimized, straight-line,
code without many of these advanced techniques.

It is useful to note here that unlike some other optionally typed dynamic languages,
simply adding type annotations to your code does not usually make Julia go any faster.
Type inference means that the compiler is, in most cases, able to figure out the types
of variables when necessary. Hence you can usually write high-level code without
fighting with the compiler about types, and still achieve superior performance.

Chapter 1

[7]

How fast can Julia be?
The best evidence of Julia's performance claims is when you write your own code.
However, we can provide an indication of how fast Julia can be by comparing a
similar algorithm over multiple languages.

As an example, let's consider a very simple routine to calculate the power sum for a
series, as follows:

1000

21

1
n n=∑

The following code runs this computation in Julia 500 times:

function pisum()
 sum = 0.0
 for j = 1:500
 sum = 0.0
 for k = 1:10000
 sum += 1.0/(k*k)
 end
 end
 sum
end

You will notice that this code contains no type annotations. It should look quite
familiar to any modern dynamic language. The same algorithm implemented in
C would look something similar to this:

double pisum() {
 double sum = 0.0;
 for (int j=0; j<500; ++j) {
 sum = 0.0;
 for (int k=1; k<=10000; ++k) {
 sum += 1.0/(k*k);
 }
 }
 return sum;
}

Julia is Fast

[8]

Downloading the example code
You can download the example code files for this book
from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files
e-mailed directly to you.
You can download the code files by following these steps:

• Log in or register to our website using your e-mail
address and password

• Let the mouse pointer hover on the SUPPORT tab at
the top

• Click on Code Downloads & Errata
• Enter the name of the book in the Search box
• Select the book for which you're looking to download

the code files
• Choose from the drop-down menu where you

purchased this book from
• Click on Code Download

You can also download the code files by clicking on the Code
Files button on the book's webpage at the Packt Publishing
website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be
logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip
or extract the folder using the latest version of:

• WinRAR/7-Zip for Windows
• Zipeg/iZip/UnRarX for Mac
• 7-Zip/PeaZip for Linux

By timing this code, and its re-implementation in many other languages (all of which
are available at https://github.com/JuliaLang/julia/tree/master/test/
perf/micro), we can note that Julia's performance claims are certainly borne out in
this limited test. Julia can perform at a level similar to C and other statically typed
and compiled languages.

This is of course a micro benchmark, and should therefore not be extrapolated
too much. However, I hope you will agree that it is possible to achieve excellent
performance in Julia. The rest of the book will attempt to show how you can
achieve performance close to this standard in your code.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/JuliaLang/julia/tree/master/test/perf/micro
https://github.com/JuliaLang/julia/tree/master/test/perf/micro

Chapter 1

[9]

Summary
In this chapter, you noted that Julia is a language that is built from the ground up
for high performance. Its design and implementation have always been focused on
providing the highest possible performance on the modern CPU.

The rest of the book will show you how to use the power of Julia to the maximum,
to write the fastest possible code in this language. In the next chapter, we will discuss
how to measure the speed of Julia code, and identify performance bottlenecks.
You will learn some of the tools that are built into Julia for this purpose.

[11]

Analyzing Julia Performance
Before we can try and optimize any Julia code we have written, we first need to
understand its performance characteristics. Is the code fast enough for our needs? If
not, how much slower is it from what it needs to be? And finally, can we understand
where the bottlenecks are, so that we can prioritize where to focus our optimization
effort? This chapter will show us the tools available in Julia to answer these questions
and more. In later chapters, we will take a look at how to use this information to
optimize our code.

In this chapter we will cover the following topics:

• Timing Julia functions
• Accurate benchmarking
• Profiling Julia functions
• Tracking detailed memory allocation

Timing Julia code
The first step to understanding anything is to measure it. The same goes for writing
high-performance Julia code; we need to measure the performance of the code as
the first step to achieving this. Fortunately Julia makes this extremely easy for us.
There are simple ways to measure the time taken by any Julia code built into the
Julia runtime. Moreover, if you want to perform statistically accurate benchmarking,
there are high-quality packages available.

Analyzing Julia Performance

[12]

Tic and Toc
The simplest way to measure time in Julia is using the tic() and toc() functions.
Place these functions respectively before and after any piece of Julia code, and we
will note the time taken by this code on the console. Run the following code:

julia> tic(); sqrt(rand(1000)); toc();

elapsed time: 0.000137693 seconds

In the preceding code, we measured the time taken to generate 1,000 random
numbers, and to compute its square root. Technically, all the toc() function does is
print the elapsed time value since the last invocation of tic(). The time printed in
this case (and other cases) is the actual elapsed time value, not the time spent by
the CPU on the process. In other words, this is the wall-clock time. In particular, this
time can be affected by any other CPU's intensive processes running on the machine
at the same time.

Using these functions might be convenient when running a script, but it is not
convenient during interactive development on Julia's Read Eval Print Load (REPL)
console. Therefore, the most common way to measure the elapsed time of Julia code
is to use the @time macro, which we will discuss next.

The @time macro
Whenever you care about the performance of your code (which you should do all
the time), the @time macro will end up being one of your most used commands on
the Julia prompt. Built into the runtime, this macro wraps the provided expression
to calculate and print the elapsed time while running it. It also measures and outputs
the amount of memory allocated while running this code as follows:

julia> @time sqrt(rand(1000));

 0.000023 seconds (8 allocations: 15.969 KB)

Any kind of Julia expression can be wrapped by the @time macro. Usually, it is a
function call as before, but it could be any other valid expression as follows:

julia> s=0

0

julia> @time for i=1:1000

 s=s+sqrt(i)

 end

 0.001270 seconds (2.40 k allocations: 54.058 KB)

Chapter 2

[13]

Timing measurements and JIT compiling
Recall that Julia is a JIT compiled language. The Julia compiler and
runtime compiles any Julia code into machine code the first time it
sees it. This means that, if you measure the execution time of any Julia
expression that executes for the first time, you will end up measuring
the time (and memory use) required to compile this code. So, whenever
you time any piece of Julia code, it is crucial to run it at least once, prior
to measuring the execution time. Always measure the second or later
invocation.

The @timev macro
An enhanced version of the @time macro is also available: the @timev macro. This
macro operates in a very similar manner to @time, but measures some additional
memory statistics, and provides elapsed time measurements with nanosecond
precision. Take a look at the following code:

julia> @timev sqrt(rand(1000));

 0.000012 seconds (8 allocations: 15.969 KB)

elapsed time (ns): 11551

bytes allocated: 16352

pool allocs: 6

non-pool GC allocs:2

Both the @time and @timev macros return the value of the expression whose
performance they measured. Hence, these can be added without side-effects to
almost any location within the Julia code.

The Julia profiler
The Julia runtime includes a built-in profiler that can be used to measure which lines
of code contribute the most to the total execution time of a codebase. It can therefore
be used to identify bottlenecks in code, which can in turn be used to prioritize
optimization efforts.

This built-in system is what is known as a sampling profiler. Its work is to inspect the
call stack of the running system every few milliseconds (by default, 1 millisecond on
UNIX and 10 milliseconds on Windows), and identify each line of code that contributes
to this call stack. The idea is that the lines of code that are executed most often are
found more often on the call stack. Hence, over many such samples, the count of how
often each line of code is encountered will be a measure of how often this code runs.

www.allitebooks.com

http://www.allitebooks.org

Analyzing Julia Performance

[14]

The primary advantage of a sampling profiler is that it can run without modifying
the source program, and thus has a very minimal overhead. The program runs
at almost full speed when being profiled. The downside of the profiler is that
the data is statistical in nature, and may not reflect exactly how the program
performed. However, when sampled over a reasonable period of time (say a few
hundred milliseconds at least), the results are accurate enough to provide a good
understanding of how the program performs, and what its bottlenecks are.

Using the profiler
The profiler code lives within the profile module within Julia. So the first step in
using the profiler is to import its namespace into the current session. You can do
this via the following code.

julia> using Base.Profile

This makes the @profile macro available to measure and store the performance
profile of the expression supplied to it.

Do not profile the JIT
As with measuring the time of execution, remember to run your
code at least once before attempting to profile it. Otherwise, you
will end up profiling the Julia JIT compiler, rather than your code.

To see how the profiler works, let's start with a test function that creates 1,000 sets of
10,000 random numbers, and then computes the standard deviation of each set. Run
the following:

 function testfunc()
 x = rand(10000, 1000)
 y = std(x, 1)
 return y
 end

After calling the function once to ensure that all the code is compiled, we can run the
profiler over this code. as follows:

julia> @profile testfunc()

This will execute the expression while collecting profile information. The expression
will return as usual, and the collected profile information will be stored in memory.

julia> Profile.print()

34 REPL.jl; anonymous; line: 93

Chapter 2

[15]

 34 REPL.jl; eval_user_input; line: 63

 34 profile.jl; anonymous; line: 16

 21 random.jl; rand!; line: 347

 21 dSFMT.jl; dsfmt_fill_array_close_open!; line: 76

 12 statistics.jl; var; line: 169

 1 reducedim.jl; reduced_dims; line: 19

 6 statistics.jl; mean; line: 31

 6 reducedim.jl; sum!; line: 258

 6 reducedim.jl; _mapreducedim!; line: 197

 4 reduce.jl; mapreduce_pairwise_impl; line: 111

 2 reduce.jl; mapreduce_pairwise_impl; line: 111

 ...

 2 reduce.jl; mapreduce_pairwise_impl; line: 112

 ...

 2 reduce.jl; mapreduce_pairwise_impl; line: 112

 2 reduce.jl; mapreduce_pairwise_impl; line: 111

 ...

 5 statistics.jl; varm!; line: 152

 5 statistics.jl; centralize_sumabs2!; line: 117

 4 reduce.jl; mapreduce_pairwise_impl; line: 111

 4 reduce.jl; mapreduce_pairwise_impl; line: 112

 2 reduce.jl; mapreduce_pairwise_impl; line: 111

 2 reduce.jl; mapreduce_pairwise_impl; line: 111

 2 reduce.jl; mapreduce_pairwise_impl; line: 108

 2 simdloop.jl; mapreduce_seq_impl; line: 67

 2 reduce.jl; mapreduce_pairwise_impl; line: 112

 ...

As you can note, the output from the profiler is a hierarchical list of code locations,
representing the call stack for the program. The number against each line counts
the number of times this line was sampled by the profiler. Therefore, the higher the
number, the greater the contribution of that line to the total runtime of the program.
It indicates the time spent on the line, and all its callees.

What does this output tell us? Well, among other things, it shows that the creation
of the random arrays took most of the execution time, about two-thirds. For the
remainder of the calculation of the standard deviation, the time was evenly split
between the computation of the mean and variance.

Analyzing Julia Performance

[16]

There are a few profiler options that are sometimes useful, although the defaults
are a good choice for most use cases. Primary among them is the sampling interval.
This can be provided as keyword arguments to the Profile.init() method.
The default delay is 1 millisecond on Linux, and should be increased for very
long-running programs through the following line of code:

julia> Profile.init(delay=.01)

The delay may be reduced as well, but the overhead of profiling can increase
significantly if it is lowered too much.

Finally, you may have realized that the profiler stores its samples in memory to be
viewed later. In order to profile a different program during an existing Julia session,
it may be necessary to clear the stored profile from memory. The Profile.clear()
function does this, and must therefore be run between any two invocations of @
profile within the same Julia process.

ProfileView
The textual display of the profiler output shown before is useful and elucidating
in many cases, but can get confusing if read for long, or deeply nested call graphs.
In this case, or in general if you would prefer a graphical output, the ProfileView
package provides such an output. However, this is not built in to the base of Julia,
and must be installed as an external package

Pkg.add("ProfileView")

This will install the ProfileView package and its dependencies (which include the
Tk graphical environment). Once installed, its usage is very simple. Simply call the
ProfileView.view() function instead of Profile.print() after the profile samples
have been collected using @profile. A user interface window will pop up, with the
profile displayed as a flame graph, looking similar to the following screenshot. Move
your cursor over the blocks to note a hover containing the details of the call location:

Chapter 2

[17]

This view provides the same information as the tree view seen earlier, but may be
easier to navigate and understand, particularly for larger programs. In this chart,
elapsed time goes from left to right, while the call stack goes from bottom to top.
The width of the bar therefore shows the time spent by the program in a particular
call location and its callees. The bars stacked on top of one another show a call from
one to the other.

Analyzing memory allocation
The amount of memory used by a program is sometimes as important to track
as the amount of time taken to run it. This is not only because memory is a limited
resource that can be in short supply, but also because excessive allocation can easily
lead to excessive execution time. The time taken to allocate and de-allocate memory
and run the garbage collection can become quite significant when a program uses
large amounts of memory.

The @time macro seen in the previous sections provides information about memory
allocation for the expression or function being timed. In some cases however it may
be difficult to predict where exactly in the code the memory allocation occurs. For
these situations, Julia's track allocation functionality is just what is needed.

Using the memory allocation tracker
To get Julia to track memory allocation, start the julia process with the –track-
allocation=user option as follows:

julia> track -allocation=user

This will start a normal Julia session in which you can run your code as usual.
However, in the background, Julia will track all the memory used, which will be
written to .mem files when Julia exits. There will be a new .mem file for each .jl
file that is loaded and executed. These files will contain the Julia code from their
corresponding source files, with each line annotated with the total amount of
memory that was allocated as a result of executing this line.

As we discussed before, when running Julia code, the compiler will compile user
code at runtime. Once again, we do not want to measure the memory allocation
due to the compiler. To achieve this, first run the code under measurement once,
after starting the Julia process. Then run the Profile.clear_malloc_data()
function to restart the allocation measurement counters. Finally, run the code
under measurement once again, and then exit the process. This way, we will
get the most accurate memory measurements.

Analyzing Julia Performance

[18]

Statistically accurate benchmarking
The tools described in this chapter, particularly the @time macro, are useful to
identify and investigate bottlenecks in our program. However, they are not very
accurate for a fine-grained analysis of fast programs. If you want to, for example,
compare two functions that take a few milliseconds to run, the amount of error and
variability in the measurement will easily swamp the running time of this function.

Using Benchmarks.jl
The solution then is to use the Benchmarks.jl package for statistically accurate
benchmarking. This package is not yet published in the official repository, but is
stable and high-quality nevertheless. It can be installed with Pkg.clone("https://
github.com/johnmyleswhite/Benchmarks.jl.git") and the subsequent usage
is simple. Instead of using @time, as before, simply use @benchmark. Unlike @time
however, this macro can only be used in front of function calls, rather than any
expression. It will evaluate the parameters of the function separately, and then call
the function multiple times to build up a sample of execution times.

The output will show the mean time taken to run the code, but with statistically
accurate upper and lower bounds. These statistics are computed using an ordinary
least squares fit of the measured execution time to estimate the expected distribution.
Take a look at the following:

julia> using Benchmarks

julia> @benchmark sqrt(rand(1000))

================ Benchmark Results ========================

 Time per evaluation: 9.48 μs [9.26 μs, 9.69 μs]

Proportion of time in GC: 5.43% [4.22%, 6.65%]

 Memory allocated: 15.81 kb

 Number of allocations: 4 allocations

 Number of samples: 6601

 Number of evaluations: 1080001

 R² of OLS model: 0.913

 Time spent benchmarking: 10.28 s

Chapter 2

[19]

Summary
In this chapter, we discussed how to use the available tools to measure the
performance of Julia code. You learned to measure the time and memory
resources used by code, and understood the hotspots for any program.

In subsequent chapters, you will learn how to fix the issues that we identified
using these tools, and make our Julia programs perform at their fastest.

[21]

Types in Julia
Julia is a dynamically typed language in which, unlike languages such as Java or
C, the programmer does not need to specify the fixed type of every variable in the
program. Yet, somewhat counterintuitively, Julia achieves its impressive performance
characteristics by inferring and using type information for all the data in the program.
In this chapter, we will start with a brief look at the type system in the language and
then explain how to use this type system to write high-performance code.

• The Julia type system
• Type-stability
• Types at storage locations

The Julia type system
Types in Julia are essentially tag-on values that restrict the range of potential values
that can possibly be stored at this location. Being a dynamic language, these tags are
relevant only to runtime values. Types are not enforced at compile time (except in
rare cases); rather, they are checked at runtime. However, type information is used
at compile time to generate specialized methods and different kinds of function
argument.

Using types
In most dynamic languages, types are usually implicit in how values are created.
Julia can, and usually is, written in this way—with no explicit type annotations.
However, additionally in Julia, you can specify that variables or function parameters
should be restricted to specific types using the :: symbol. Here's an example:

foo(x::Integer) = "an integer" #Declare type of function argument

foo(x::ASCIIString) = "a string"

Types in Julia

[22]

function bar(a, b)

 x::Int64 = 0 #Declare type of local variable

 y = a+b #Type of variable will be inferred

 return y

end

julia> foo(1) #Dispatch on type of argument

"an integer"

julia> foo("1") #Dispatch on type of argument

"a string"

julia> foo(1.5) #Dispatch fails

ERROR: `foo` has no method matching foo(::Float64)

A note on terminology

In Julia, an abstract operation represented by a name is called a
function, while the individual implementations for specific types are
called methods. Thus, in the preceding code, we can talk of the foo
function and the foo methods for Integer and ASCIIString.

Multiple dispatch
If there were one unifying strand through the design of the Julia language, it would
be multiple dispatch. Simply put, dispatch is the process of selecting a function to
be executed at runtime. Multiple dispatch, then, is the method of determining
the function to be called based on the types of all the parameters of the function.
Thus, one of the most important uses of types in Julia programs is to arrange the
appropriate method dispatch by specifying the types of function arguments.

Note that this is different from the concept of method overloading. Dispatch is a
runtime process, while method overloading is a compile-time concept. In most
traditional object-oriented languages, dispatch at runtime occurs only on the runtime
type of the receiver of the method (for example, the object before the dot)—hence the
term "single dispatch."

Chapter 3

[23]

Julia programs, therefore, usually contain many small function definitions for
different types of arguments. It is good practice, however, to constrain argument
types to the widest level possible. Use tight constraints only when you know
that the method will fail on other types. Otherwise, write your method to accept
unconstrained types and depend on the runtime to dispatch nested calls to the
correct methods.

As an example, consider the following function to compute the sum of the square of
two numbers:

sumsqr(x, y) = x^2 + y^2

In this code, we do not specify any type constraints for the x and y arguments of our
sumsqr function. The base library will contain different + and ^ methods for integers
and floats, and the runtime will dispatch to the correct method based on the types of
the arguments. Take a look at the output:

julia> sumsqr(1, 2)

5

julia> sumsqr(1.5, 2.5)

8.5

julia> sumsqr(1 + 2im , 2 + 3im)

-8 + 16im

Abstract types
Types in Julia can be concrete or abstract. Abstract types cannot have any
instantiated values. In other words, they can only be the nodes of the type hierarchy,
not its leaves. They represent sets of related types. For example, Julia contains integer
types for 32-bit and 64-bit integers—Int32 and Int64, respectively. Both these types
therefore inherit from the Integer abstract type.

Abstract types are defined using the abstract keyword. The inheritance relationship
between types is denoted using the <: symbol followed by the name of the parent (or
super) type. As an example, shown here are the abstract types defined as the basis of
Julia's number types:

abstract Number
abstract Real <: Number
abstract FloatingPoint <: Real
abstract Integer <: Real
abstract Signed <: Integer
abstract Unsigned <: Integer

Types in Julia

[24]

You will notice that the Number type is declared without any explicit super type.
Hence, as discussed in the next section, it is the direct subtype of Any.

Concrete types, on the other hand, are the types that can be instantiated to values.
Thus, every value in Julia is of one concrete type. One of the most important points
to note about concrete types is that they cannot have any subtypes. Only abstract
types can be subtyped. In the language of type theory, all concrete types are declared
final in Julia.

Julia's type hierarchy
All types in Julia live within a type hierarchy. This hierarchy is rooted at the top
by the Any type. All Julia types without exception live within this hierarchy. In
particular, unlike languages such as Java, there is no distinction between so-called
primitive types and reference types. While there may be differences in how the
numbers are represented internally compared to user-defined types, as far as the
type system is concerned they form a unified hierarchy.

When a type declaration is omitted for a variable or parameter (as in many of the
examples in the previous chapter), it can contain values of any type. This is denoted
by the special Any type. The Any type can therefore be seen as being at the top of
Julia's type hierarchy. All other Julia types are subtypes of this type. Visualizing the
type hierarchy of some of the numeric types described in the previous chapter is
instructive, as follows:

Chapter 3

[25]

At the other end of the spectrum resides the None type. This type lives at the bottom
of the type hierarchy. All types are super types of None, and there can be no actual
instances of this type.

Another special type is the Void type. This type has a single instance defined
named nothing. This is typically used to denote the absence of a value. For example,
methods that don't return any other value (for instance, a return type of void in some
languages), return nothing.

Composite and immutable types
Composite types in Julia are collections of named fields. They are equivalent to a
struct in C and can be thought of as roughly equivalent to a class without behavior
in object-oriented languages. They are defined with the type keyword and contain
the names and types of the fields within them. Take a look at the following code:

 type Pixel

 x::Int64

 y::Int64

 color::Int64

 end

julia> p = Pixel(5,5, 100)

Pixel(5,5,100)

julia> p.x = 10;

julia> p.x

10

By default, the fields of a composite type can be changed at any time. In cases
where this is undesirable, an immutable type can be declared using the immutable
keyword. In this case, field values can be set only while constructing an instance of
the type. Once created, field values cannot change. Take a look at the following code:

 immutable IPixel

 x::Int64

 y::Int64

 color::Int64

 end

Types in Julia

[26]

julia> p = IPixel(5,5, 100)

IPixel(5,5,100)

julia> p.x=10

ERROR: type IPixel is immutable

Type parameters
Type parameters are one of the most useful and powerful features of Julia's type
system. This is the ability to use parameters when defining types (or functions),
thereby defining a whole set of types, one for each value of the parameter. This is
analogous to generic or template programming in other languages.

Type parameters are declared within curly braces. For the preceding Pixel type,
if we wanted to store color as an integer, a hexadecimal string, or as an RGB type,
we could write it as follows. In this case, Pixel itself becomes an abstract type, and
Pixel{Int64} or Pixel{ASCIIString} are the concrete types:

type Pixel{T}
 x::Int64
 y::Int64
 color::T
end

Parameters of a type are usually other types. This will be familiar if you have used
template classes in C++ or Java generics. In Julia, however, type parameters are not
restricted to be other types. They can be values though they are restricted to a set of
constant, immutable types. Hence, you can use, among others, integers or symbols
as type parameters.

The built-in Array{T.N} type is a good example of this usage. This type is
parameterized by two parameters, one of which is a type and the other a value.
The first parameter, T, is the type of the elements of the array. The second, N, is an
integer specifying the number of dimensions of the array.

The addition of type parameters provides more information to the compiler about
the composition of memory. For example, it allows the programmer to assert (or
the compiler to infer) the types of elements stored within a container. This, as we'll
discuss in the next section, allows the compiler to generate code in turn that is
optimized to the types and storage in question.

Chapter 3

[27]

Type inference
Types in Julia are optional and unobtrusive. The type system usually does not
impede for the programmer. It is not necessary or recommended to annotate all
variables with type information.

This is not to say that type information is redundant. Quite the opposite is true, in
fact. A large part of Julia's speed comes from the ability of the compiler to compile
and cache specialized versions of each function for all the possible types to which it
can be applied. This means that most functions can be compiled down to their best
possible optimized representations.

To achieve this balance, the runtime tries to figure out as much type information as
it can through type inference. The algorithm is based on forward dataflow analysis.
It should be noted that this is not an implementation of the famous Hindley-Milner
algorithm using unification, which is used in the ML family of languages. In these
languages, it is mandatory for the compiler to be able to determine the types of every
value in the system. For Julia, however, the type inference can be performed on a
best-effort basis, with any failure handled with a runtime fallback.

As a simple example of visible type inference, consider the following line of code
that creates an array from a range of integers. This code does not have any type
annotations. Yet the runtime is able to create an array with properly typed elements
of Int64:

julia>[x for x=1:5]

5-element Array{Int64,1}:

 1

 2

 3

 4

 5

In this section, we provided a quick overview of some important type features
in Julia. For more information, visit the online documentation at http://docs.
julialang.org/en/release-0.4/manual/types/.

For the rest of this chapter, we will assume familiarity with these concepts and look
at how this impacts the performance of Julia code

http://docs.julialang.org/en/release-0.4/manual/types/
http://docs.julialang.org/en/release-0.4/manual/types/

Types in Julia

[28]

Type-stability
In order for the Julia compiler to compile a specialized version of functions for each
different type of its argument, it needs to infer, as best as possible, the parameter
and return types of all functions. Without this, Julia's speed would be hugely
compromised. In order to do this effectively, the code must be written in a way
that it is type-stable.

Definitions
Type-stability is the idea that the type of the return value of a function is dependent
only on the types of its arguments and not the values. When this is true, the
compiler can infer the return type of a function by knowing the types of its inputs.
This ensures that type inference can continue across chains of function invocations
without actually running the code, even though the language is fully dynamic.

As an example, let's look at the following code, which returns the input for positive
numbers but 0 for negative numbers:

function trunc(x)
 if x < 0
 return 0
 else
 return x
 end
end

This code works for both integers and floating-point output, as follows:

julia> trunc(-1)

0

julia> trunc(-2.5)

0

julia> trunc(2.5)

2.5

However, you may notice an issue with calling this function with the float input.
Take a look at the following:

julia> typeof(trunc(2.5))

Float64

Chapter 3

[29]

julia> typeof(trunc(-2.5))

Int64

The return type of the trunc function, in this case, depends on the value of the input
and not just its type. The type of the argument for both the preceding invocations is
Float64. However, if the value of the input is less than zero, the type of the return is
Int64. On the other hand, if the input is value is zero or greater, then the type of the
output is Float64. This makes the function type-unstable.

Fixing type-instability
Now that we can recognize type-unstable code, the question arises: how can we fix
code such as this? There are two obvious solutions. One would be to separate the
write versions of the trunc function for different input types. So, we could have a
version of trunc for integers and another for floating point. However, this would
cause instances of repeated, copy-pasted code. Also, there would not be just two
such instances; there would be copies for Float32, Float64, Int32, Int64, and so
on. Further, we would have to write a new version of this function for all the new
numeric types that are defined. It should be obvious that writing generic functions
that operate on a wide variety of related types is really the best way to get concise
and elegant Julia code.

The second obvious solution is to branch on the input type within the generic
function. So, we could write code similar to this:

if typeof(x) == Float64
 return 0.0
elseif typeof(x) == Float32
 return Float32(0.0)
elseif typeof(x) == Int64
 return 0
……
end

I hope you can see that this can quickly get tedious. However, this type of code
provides us with a hint to the correct solution. In Julia, whenever you find yourself
explicitly checking the type of any variable, it is time to let dispatch do the job.

The Julia base library contains a zero(x) function that takes as its argument any
numeric value and returns an appropriately typed zero value for this type. Using this
function, we can write a generic trunc function that is type-stable yet works for any
input type, as follows:

function trunc_fixed(x)
 if x < 0

Types in Julia

[30]

 return zero(x)
 else
 return x
 end
end

Output of the code:

julia> trunc_fixed(-2.4)

0.0

julia> trunc_fixed(-2)

0

julia> typeof(trunc_fixed(-2.4))

Float64

julia> typeof(trunc_fixed(-2))

Int64

In making the trunc function type-stable, we used a standard library function to
move the type variable part of the code into another function. The principle applies
when you do not have a base function to fall back upon. Isolate the part of your
function that varies depending on the type of the input and allow Julia's dispatch to
call the correct piece of code, depending on the type.

Performance pitfalls
We said that type-stability is very important for high-performance Julia code. The
speed of Julia programs arises from its ability to compile and cache specialized code
for each function argument type. When a function is type-unstable, the Julia compiler
cannot compile a fast, specialized version of its caller. Let's take a look at this in
action with the preceding code:

julia> @benchmark trunc(2.5)

================ Benchmark Results ========================

 Time per evaluation: 13.38 ns [13.04 ns, 13.73 ns]

Proportion of time in GC: 2.39% [1.76%, 3.01%]

 Memory allocated: 16.00 bytes

 Number of allocations: 1 allocations

 Number of samples: 13501

Chapter 3

[31]

 Number of evaluations: 774542001

 R² of OLS model: 0.802

 Time spent benchmarking: 10.50 s

julia> @benchmark trunc_fixed(2.5)

================ Benchmark Results ========================

 Time per evaluation: 5.90 ns [5.86 ns, 5.94 ns]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

 Number of samples: 10601

 Number of evaluations: 48829501

 R² of OLS model: 0.985

 Time spent benchmarking: 0.51 s

Note that the type-stable version is twice as fast as the type-unstable version.
Crucially, the type-stable version does not allocate any memory, while the type-
unstable version does allocate quite a lot of memory. This combination of slow
execution and large memory access is something that you will want to get rid of from
your code at all times. Thankfully, it is not that hard to identify type-unstable tools.
With the tools available within the language, you will be able to build up an intuition
about this very quickly.

Identifying type-stability
In the preceding trunc function, the type instability was found by reading
and understanding the code. In many cases where the code is longer or more
complicated, it may not be easy or even possible to understand the type behavior of a
function merely by inspection. It would be useful to have some tools at our disposal.

Fortunately, Julia provides the @code_warntype macro that enables us to view the
types inferred by the compiler, thereby identifying any type instability in our code.
The output of @code_warntype is the lowered, type-inferred AST structure. In other
words, the compiler parses and processes the source code into a standardized form
and then runs the type inference on the result to figure out the possible types of all
the variables and function calls within the code.

Types in Julia

[32]

Let's run this on our type-unstable method and take a look at what it says, as follows:

julia> @code_warntype trunc(2.5)

Variables:

 x::Float64

 ##fy#7786::Float64

Body:

 begin # none, line 2:

 ##fy#7786 =
 (Base.box)(Float64,(Base.sitofp)(Float64,0))::Float64

 unless

(Base.box)(Base.Bool,(Base.or_int)((Base.lt_float)(x::Float64,##fy#77
86::Float64)::Bool,(Base.box)(Base.Bool,(Base.and_int)((Base.box)(Bas
e.Bool,(Base.and_int)((Base.eq_float)(x::Float64,##fy#7786::Float64):
:Bool,(Base.lt_float)(##fy#7786::Float64,9.223372036854776e18)::Bool)
::Any)::Bool,(Base.slt_int)((Base.box)(Int64,(Base.fptosi)(Int64,##fy
#7786::Float64))::Int64,0)::Bool)::Any)::Bool))::Bool goto 0 # none,
line 3:

 return 0

 goto 1

 0: # none, line 5:

 return x::Float64

 1:

 end::UNION{FLOAT64,INT64}

While this output might look slightly scary at first, the relevant portions are easy
to highlight. If you run this on Julia REPL, you will see that, in the last line of the
output, "Union{Float64,Int64}", is highlighted in red (this is represented by
capital letters in the preceding output). This line shows that the compiler inferred
that the return type of this function, when passed Float64 as an argument, can
either be Float64 or Int64. Therefore, this function is type-unstable, and this is
made obvious by the red highlighting in REPL.

In general, the output from @code_warntype, as the name suggests, will warn us
of any type inference problem in the code, highlighting it in red. These will usually
be variables for which the compiler cannot infer any bound, those typed as ANY, or
where there are multiple options for possible types denoted as Union. While there
are some cases where these warnings might be false positives, they should always
be investigated if they are unexpected.

Chapter 3

[33]

If we run this macro on the trunc_fixed function, which we made type-stable, we
will note that the compiler can infer Float64 as the return type of the function. Upon
running this in REPL, there is no red font in the output, giving us confidence that the
function is type-stable. Take a look at the following:

julia> @code_warntype trunc_fixed(-2.4)

Variables:

 x::Float64

 ##fy#8904::Float64

Body:

 begin # none, line 2:

 ##fy#8904 = (Base.box)(Float64,(Base.sitofp)
(Float64,0)::Any)::Float64

 unless

(Base.box)(Base.Bool,(Base.or_int)((Base.lt_float)(x::Float64,##fy#89
04::Float64)::Bool,(Base.box)(Base.Bool,(Base.and_int)((Base.box)(Bas
e.Bool,(Base.and_int)((Base.eq_float)(x::Float64,##fy#8904::Float64):
:Bool,(Base.lt_float)(##fy#8904::Float64,9.223372036854776e18)::Bool)
::Any)::Bool,(Base.slt_int)((Base.box)(Int64,(Base.fptosi)(Int64,##fy
#8904::Float64)::Any)::Int64,0)::Bool)::Any)::Bool)::Any)::Bool goto
0 # none, line 3:

 return (Base.box)(Float64,(Base.sitofp)(Float64,0)::Any)::Float64

 goto 1

 0: # none, line 5:

 return x::Float64

 1:

 end::Float64

Further evidence of the benefits of type-stability can be observed by looking at
the LLVM bitcode produced by the Julia compiler. This can be seen using the @
code_llvm macro, which outputs the result of compiling Julia code into LLVM
bitcode. While the details of the output are not relevant, it should be obvious that
the type-stable function compiles a much smaller amount of code. It comprises fewer
instructions and thus is significantly faster. Take a look at the following code:

julia> @code_llvm trunc(2.5)

define %jl_value_t* @julia_trunc_23088(double) {

top:

 %1 = fcmp uge double %0, 0.000000e+00

www.allitebooks.com

http://www.allitebooks.org

Types in Julia

[34]

 br i1 %1, label %L, label %if

if: ; preds = %top

 ret %jl_value_t* inttoptr (i64 4356202576 to %jl_value_t*)

L: ; preds = %top

 %2 = call %jl_value_t* @jl_gc_alloc_1w()

 %3 = getelementptr inbounds %jl_value_t* %2, i64 -1, i32 0

 store %jl_value_t* inttoptr (i64 4357097552 to %jl_value_t*),
 %jl_value_t** %3, align 8

 %4 = bitcast %jl_value_t* %2 to double*

 store double %0, double* %4, align 16

 ret %jl_value_t* %2

}

julia> @code_llvm trunc_fixed(2.5)

define double @julia_trunc_fixed_23089(double) {

top:

 %1 = fcmp uge double %0, 0.000000e+00

 br i1 %1, label %L, label %if

if: ; preds = %top

 ret double 0.000000e+00

L: ; preds = %top

 ret double %0

}

If you are more comfortable with assembly instructions than with LLVM bitcode, the
same inference can be gleaned from looking at the final assembly instructions that
the Julia code compiles to. This can be output using the @code_native macro and is
the final code that gets run on the computer's processor. This output is the result of
the full gamut of compiler optimizations implemented by the Julia compiler as well
as LLVM's JIT. Looking at the output for our usual functions, we can see once again
that the type-stable function does significantly less work, as follows:

Chapter 3

[35]

julia> @code_native trunc(2.5)

 .section __TEXT,__text,regular,pure_instructions

Filename: none

Source line: 5

 pushq %rbp

 movq %rsp, %rbp

 subq $16, %rsp

 vmovsd %xmm0, -8(%rbp)

 vxorpd %xmm1, %xmm1, %xmm1

 vucomisd %xmm0, %xmm1

 ja L67

Source line: 5

 movabsq $jl_gc_alloc_1w, %rax

 callq *%rax

 movabsq $4357097552, %rcx ## imm = 0x103B40850

 movq %rcx, -8(%rax)

 vmovsd -8(%rbp), %xmm0

 vmovsd %xmm0, (%rax)

 jmpq L77

L67: movabsq $4356202576, %rax ## imm = 0x103A66050

Source line: 3

L77: addq $16, %rsp

 popq %rbp

 ret

julia> @code_native trunc_fixed(2.5)

 .section __TEXT,__text,regular,pure_instructions

Filename: none

Source line: 5

 pushq %rbp

 movq %rsp, %rbp

 vxorpd %xmm1, %xmm1, %xmm1

 vucomisd %xmm0, %xmm1

 jbe L22

 vxorpd %xmm0, %xmm0, %xmm0

Source line: 5

L22: popq %rbp

 ret

Types in Julia

[36]

Loop variables
Another facet of type-stability that is important in Julia is that variables within a loop
should not change their type from one iteration of the loop to another. Let's first look
at a case where this is not true, as follows:

function sumsqrtn(n)
 r = 0
 for i = 1:n
 r = r + sqrt(i)
 end
 return r
end

In this function, the r variable starts out as Int64, when the loop is entered in the
first iteration. However the sqrt function returns Float64, which when added to
Int64, returns Float64. At this point, at Line 4 of the function, r becomes Float64.
This violates the rule of not changing the type of a variable within a loop and makes
this code type-unstable.

Inspecting the @code_warntype output for this function makes this obvious. Viewing
this in REPL, we're faced with a swathe of red, which again is highlighted in capital
letters here:

julia> @code_warntype sumsqrtn(5)

Variables:

 n::Int64

 r::ANY

 #s52::Int64

 i::Int64

Body:

 begin # none, line 2:

 r = 0 # none, line 3:

 GenSym(0) = $(Expr(:new, UnitRange{Int64}, 1,
:(((top(getfield))(Base.Intrinsics,:select_value)::I)((Base.sle_int)(
1,n::Int64)::Bool,n::Int64,(Base.box)(Int64,(Base.sub_int)(1,1))::Int
64)::Int64)))

 #s52 = (top(getfield))(GenSym(0),:start)::Int64

 unless (Base.box)(Base.Bool,(Base.not_int)(#s52::Int64 ===
(Base.box)(Base.Int,(Base.add_int)((top(getfield))(GenSym(0),:stop)::
Int64,1))::Int64::Bool))::Bool goto 1

 2:

Chapter 3

[37]

 GenSym(2) = #s52::Int64

 GenSym(3) =
(Base.box)(Base.Int,(Base.add_int)(#s52::Int64,1))::Int64

 i = GenSym(2)

 #s52 = GenSym(3) # none, line 4:

 r = r::Union{Float64,Int64} +
(Base.Math.box)(Base.Math.Float64,(Base.Math.sqrt_llvm)((Base.box)(Fl
oat64,(Base.sitofp)(Float64,i::Int64))::Float64))::Float64::Float64

 3:

 unless
(Base.box)(Base.Bool,(Base.not_int)((Base.box)(Base.Bool,(Base.not_in
t)(#s52::Int64 ===
(Base.box)(Base.Int,(Base.add_int)((top(getfield))(GenSym(0),:stop)::
Int64,1))::Int64::Bool))::Bool))::Bool goto 2

 1:

 0: # none, line 6:

 return r::UNION{FLOAT64,INT64}

 end::UNION{FLOAT64,INT64}

This output shows that the compiler cannot infer a tight bound for the value of r
(it is typed as ANY), and the function itself can return either Float64 or Int64
(for example, it is typed as Union{Float64,Int64})

Fixing the instability is easy in this case. We just need to initialize the r variable
to be the Float64 value as we know that that is the type it will eventually take.
Take a look at the following function now:

function sumsqrtn_fixed(n)
 r = 0.0
 for i = 1:n
 r = r + sqrt(i)
 end
 return r
end

The @code_warntype output for this function is now clean, as follows:

julia> @code_warntype sumsqrtn_fixed(5)

Variables:

 n::Int64

 r::Float64

 #s52::Int64

Types in Julia

[38]

 i::Int64

Body:

 begin # none, line 2:

 r = 0.0 # none, line 3:

 GenSym(0) = $(Expr(:new, UnitRange{Int64}, 1,
:(((top(getfield))(Base.Intrinsics,:select_value)::I)((Base.sle_int)(
1,n::Int64)::Bool,n::Int64,(Base.box)(Int64,(Base.sub_int)(1,1))::Int
64)::Int64)))

 #s52 = (top(getfield))(GenSym(0),:start)::Int64

 unless (Base.box)(Base.Bool,(Base.not_int)(#s52::Int64 ===
(Base.box)(Base.Int,(Base.add_int)((top(getfield))(GenSym(0),:stop)::
Int64,1))::Int64::Bool))::Bool goto 1

 2:

 GenSym(2) = #s52::Int64

 GenSym(3) =
(Base.box)(Base.Int,(Base.add_int)(#s52::Int64,1))::Int64

 i = GenSym(2)

 #s52 = GenSym(3) # none, line 4:

 r =
(Base.box)(Base.Float64,(Base.add_float)(r::Float64,(Base.Math.box)(B
ase.Math.Float64,(Base.Math.sqrt_llvm)((Base.box)(Float64,(Base.sitof
p)(Float64,i::Int64))::Float64))::Float64))::Float64

 3:

 unless
(Base.box)(Base.Bool,(Base.not_int)((Base.box)(Base.Bool,(Base.not_in
t)(#s52::Int64 ===
(Base.box)(Base.Int,(Base.add_int)((top(getfield))(GenSym(0),:stop)::
Int64,1))::Int64::Bool))::Bool))::Bool goto 2

 1:

 0: # none, line 6:

 return r::Float64

 end::Float64

To show why all of this is important, let's time both of these functions, as follows:

julia> @benchmark sumsqrtn(1000_000)

================ Benchmark Results ========================

 Time per evaluation: 36.26 ms [34.02 ms, 38.49 ms]

Proportion of time in GC: 18.81% [15.57%, 22.05%]

 Memory allocated: 30.52 mb

Chapter 3

[39]

 Number of allocations: 2000000 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 3.80 s

julia> @benchmark sumsqrtn_fixed(1000_000)

================ Benchmark Results ========================

 Time per evaluation: 9.52 ms [9.05 ms, 9.99 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.98 s

Here, we can see that the type-stable version is four times as fast. More importantly,
the type-unstable version of the function allocates a large amount of memory, which
is unnecessary. Using type-unstable code, therefore, is extremely prejudicial to
high-performance code.

Kernel methods
Type inference in Julia primarily works by inspecting the types of function
parameters and identifying the type of the return value. This suggests that some type
instability issues may be mitigated by breaking up a function into smaller functions.
This can provide additional hints to the compiler, making more accurate type
inferencing possible.

For an example of this, consider a contrived function that takes as input the "Int64"
or "Float64" string and returns an array of 10 elements, the types of which
correspond to the type name passed as the input argument. Functions such as this
may arise when creating arrays based on user input or by reading a file in which the
type of the output is determined at runtime. Take a look at the following:

 function string_zeros(s::AbstractString)
 x = Array(s=="Int64"?Int64:Float64, 1_000_000)
 for i in 1:length(x)
 x[i] = 0
 end
 return x
 end

Types in Julia

[40]

We will benchmark this code to find an average execution time of over 38
milliseconds per function call with a large memory allocation, as shown by the
following code:

julia> @benchmark string_zeros("Int64")

================ Benchmark Results ========================

 Time per evaluation: 38.05 ms [36.80 ms, 39.30 ms]

Proportion of time in GC: 6.45% [6.07%, 6.83%]

 Memory allocated: 22.88 mb

 Number of allocations: 999492 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 4.19 s

This seems to be unnecessarily high. The loop in the function is the obvious place
where most of the time is spent within this function. We note that, in this loop, the
type of the variable being accessed (x) cannot be known before the function is called,
even when the type of the function arguments is known. This prevents the compiler
from generating an optimized loop operating on one specific type.

What we need to do is ensure that the loop operates in such a way that the type of
the x variable is known to the compiler. As we said earlier, type inference operates
on function boundaries, which suggests a solution to our conundrum. We can split
out the loop into its own function, separating the determination of the type of x and
the operations on x across a function call, as follows:

 function string_zeros_stable(s::AbstractString)
 x = Array(s=="Int64"?Int64:Float64, 1_000_000)
 return fill_zeros(x)
 end

 function fill_zeros(x)
 for i in 1:length(x)
 x[i] = 0
 end
 return x
 end

Now, by benchmarking this solution, we will find that the execution time of our
function reduces by a factor of 10, with a corresponding fall in the allocated memory.
Therefore, in situations where the types of variables are uncertain, we need to be
careful in ensuring that the compiler can be provided with as much information
as necessary.

Chapter 3

[41]

Types in storage locations
We discussed in the earlier sections that, when writing idiomatic Julia code,
we should try and write functions with the minimum amount of type constraints
possible in order to write generic code. We do not need to specify the types of
function arguments or local variables for performance reasons. The compiler will be
able to infer the required types. Thus, while the types are important, they are usually
optional when writing Julia code. In general, bindings do not need to be typed; they
are inferred.

However, when defining storage locations for data, it is important to specify a
concrete type. So, for things that hold data, such as arrays, dictionaries, or fields
in composite types, it is best to explicitly define the type that it will hold.

Arrays
As an example, let's create two arrays containing the same data—the numbers one
to ten, which are of the Int64 type. The first array we will create is defined to hold
values of the Int64 type. The second is defined to hold values of the abstract Number
type, which is a supertype of Int64. Take a look at the following code:

julia> a = Int64[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

10-element Array{Int64,1}:

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

julia> b = Number[1,2,3,4,5,6,7,8,9,10]

10-element Array{Number,1}:

 1

 2

 3

 4

Types in Julia

[42]

 5

 6

 7

 8

 9

 10

We will then pass these arrays into the following function that calculates the sum of
squares of the elements of these arrays, as follows:

function arr_sumsqr{T <: Number}(x::Array{T})
 r = zero(T)
 for i = 1:length(x)
 r = r + x[i] ^ 2
 end
 return r
end

By timing the invocations, we will see that, when using the Int64 array,
this computation is over ten times faster than when using the Number array,
even when the data within the arrays is identical, as follows:

julia> @benchmark arr_sumsqr(a)

================ Benchmark Results ========================

 Time per evaluation: 34.52 ns [34.06 ns, 34.99 ns]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

 Number of samples: 9301

 Number of evaluations: 14145701

 R² of OLS model: 0.955

 Time spent benchmarking: 0.54 s

julia> @benchmark arr_sumsqr(b)

================ Benchmark Results ========================

 Time per evaluation: 463.24 ns [455.46 ns, 471.02 ns]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

 Number of samples: 6601

Chapter 3

[43]

 Number of evaluations: 1080001

 R² of OLS model: 0.951

 Time spent benchmarking: 0.57 s

The reason for this massive difference lies in how the values are stored within the
array. When the array is defined to contain a specific concrete type, the Julia runtime
can store the values inline within the allocation of the array since it knows the exact
size of each element. When the array can contain an abstract type, the actual value
can be of any size. Thus, when the Julia runtime creates the array, it only stores the
pointers to the actual values within the array. The values are stored elsewhere on
the heap. This not only causes an extra memory load when reading the values, the
indirection can mess up pipelining and cache affinity when executing this code on
the CPU.

Composite types
There is another situation where concrete types must be specified for good
performance: in the fields of composite types.

As an example, consider a composite type holding the location of a point in 2D space.
In this scenario, we could define the object as follows:

immutable Point
 x
 y
end

However, this definition would perform quite badly. The primary issue is that the
x and y fields in this type can be used to store values of any type. In particular, they
could be other complex types that are accessed as pointers. In this case, the compiler
will not know whether access to the fields of the Point type requires a pointer
indirection, and thus it cannot optimize the reading of these values.

It will be much better to define this type with the field values constrained to concrete
types. This will have two benefits. Firstly, the field values will be stored inline when
the object is allocated rather than being not directed via pointer. Secondly, all code
that uses fields of this type will be able to be type-inferred correctly, as follows:

immutable ConcretePoint
 x::Float64
 y::Float64
end

Types in Julia

[44]

Parametric composite types
While the preceding definition of ConcretePoint performs well, it loses some
significant flexibility. If we wanted to store the field values as Float32 or Float16,
we would be unable to use the same type. To lose so much flexibility for performance
seems very unfortunate.

It would be tempting to fix this using an abstract type as the fields. In this case, all
the concrete floating point numbers are subtypes of the AbstractFloat type. Here,
we could then define a PointsWithAbstract type that contains fields annotated as
AbstractFloat, as follows:

immutable PointWithAbstract
 x::AbstractFloat
 y::AbstractFloat
end

However, this code has the same drawbacks as the original Point type mentioned
earlier. It will be slow, and the compiler will be unable to optimize access to the type.
The solution is to use a parametric type, as follows:

function ParametricPoint{T <: AbstractFloat}
 x::T
 y::T
end

When we write the type in this manner, our code remains generic. We can write our
methods with the confidence that the ParametricPoint type can hold values for
any type of a floating point number. Yet, at runtime, when an instance of this type
is created, it is instantiated with a particular type of float. In other words, once an
instance is created, T becomes known. At this point, all the benefits of specifying the
concrete type discussed before are applicable. Both storage and type inferences are
efficient now.

Summary
In this chapter, we discussed how types play a crucial role in writing idiomatic and
performant code in Julia. Much of what we discussed here is exactly what makes
Julia unique—a dynamic language where types, dispatch, and inference play
a fundamental role.

We discussed how to write type-stable code and when and how to define type
annotations for performance. In the next chapter, we will discuss the performance
characteristics of another important part of the language: functions.

[45]

Functions and Macros –
Structuring Julia Code for

High Performance
In Julia, the function is the primary unit of a code structure. Idiomatic Julia code
consists of many small functions that are defined with different types of arguments.
In general, the overhead of a function call in Julia is very small, and, with type
specialization, the compiled version of the function is very efficient. In this chapter,
we will look at some of the techniques that Julia uses to make function calls very fast.
We will also look at some limitations that are worth keeping in mind for the fastest
code. Finally, we will look at some situations where moving code out of functions
and into other structures, such as macros and staged functions, allows code to be
faster and more efficient:

• Using globals
• Inlining
• Closures and anonymous functions
• Using macros for performance
• Using generated functions
• Using named parameters

Functions and Macros – Structuring Julia Code for High Performance

[46]

Using globals
One of the first performance tips that you come across when learning Julia is the
advice not to use global variables. This is usually not a very onerous requirement, as
global state is often considered bad programming practice. Further, this limitation
is most likely going to be removed in future versions of Julia. However, given how
easy it is to fall into this trap and the large amount of performance degradation that
can occur, it is important to keep this in mind when writing Julia code.

The trouble with globals
In the previous chapter, we saw how Julia achieves its high performance runtime
by compiling specialized versions of functions for particular types of arguments—
a process that relies on type inference using data flow techniques. However, global
variables can be written to at any time, and by any code. The compiler cannot keep
track of all writes to global variables; this would be akin to solving the halting problem.
Therefore, the data-flow technique fails to perform any inference for these types of
global variables. As a result, the compiler cannot create specialized functions when
using these variables.

To understand the performance hit of using global variables, let's use a simple
function that calculates the sum of the integer powers of a set of floating point
values. We use a global variable to store the integer power:

p = 2

function pow_array(x::Vector{Float64})
 s = 0.0
 for y in x
 s = s + y^p
 end
 return s
end

Benchmarking this function, we see that it takes approximately 10 milliseconds for
each evaluation of this function for an input array of length 100000. This is way too
high for something that should only take a few machine instructions to execute:

Chapter 4

[47]

julia> t=rand(100000);

julia> @benchmark pow_array(t)

================ Benchmark Results ========================

 Time per evaluation: 9.39 ms [8.48 ms, 10.30 ms]

Proportion of time in GC: 4.58% [0.00%, 10.14%]

 Memory allocated: 4.58 mb

 Number of allocations: 300000 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.97 s

A look at the @code_warntype output for this function shows us that the compiler
has been unable to infer the type of the result when calculating with the global
variable, marking it as ANY. This then flows through the entire function, right up
to the return value (as usual, any untyped variables, displayed in red in the REPL,
are shown in capital letters, as follows):

julia> @code_warntype pow_array(t)

Variables:

 x::Array{Float64,1}

 s::ANY

 #s641::Int64

 y::Float64

Body:

 begin # none, line 2:

 s = 0.0 # none, line 3:

 #s641 = 1

 GenSym(2) = (Base.arraylen)(x::Array{Float64,1})::Int64

 unless

(Base.box)(Base.Bool,(Base.not_int)((Base.slt_int)(GenSym(2),#s641
::Int64)::Bool))::Bool goto 1

 2:

 GenSym(4) = (Base.arrayref)(x::Array{Float64,1},#s641::Int64)::Flo
at64

 GenSym(5) = (Base.box)(Base.Int,(Base.add_int)
(#s641::Int64,1)::Any)::Int64

 y = GenSym(4)

 #s641 = GenSym(5) # none, line 4:

 s = s + y::Float64 ^ Main.p::ANY::ANY

 3:

Functions and Macros – Structuring Julia Code for High Performance

[48]

 GenSym(3) = (Base.arraylen)(x::Array{Float64,1})::Int64

 unless
(Base.box)(Base.Bool,(Base.not_int)((Base.box)(Base.Bool,(Base.not
_int)((Base.slt_int)(GenSym(3),#s641::Int64)::Bool))::Bool))::Bool
goto 2

 1:

 0: # none, line 6:

 return s

 end:: ANY

Fixing performance issues with globals
A simple way to get back performance is to declare the global variable a const:

const p2 = 2
function pow_array2(x::Vector{Float64})
 s = 0.0
 for y in x
 s = s + y^p2
 end
 return s
end

Just this change will get us a little under two orders of magnitude performance gain
on the following function:

julia> @benchmark pow_array2(t)

================ Benchmark Results ========================

 Time per evaluation: 123.90 μs [120.54 μs, 127.27 μs]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

 Number of samples: 3901

 Number of evaluations: 82201

 R² of OLS model: 0.926

 Time spent benchmarking: 10.44 s

Chapter 4

[49]

Global const
The const declaration in Julia means something different from the
similar keyword in C. In Julia, a global variable declared as const can
change its value (a warning is printed). However, what it cannot do is
change its type. Also, note that you cannot explicitly declare the type
of a global variable. That is, an incantation, such as x::Int64 = 2,
will raise an error when made in the global scope.

Once again, @code_warntype will show us that this function is now correctly
type inferred all the way through. Compare this output against the one from the
previous function in the preceding section. You will notice that the return value
of this function is being inferred as Float64:

julia> @code_warntype pow_array2(t)

Variables:

 x::Array{Float64,1}

 s::Float64

 #s614::Int64

 y::Float64

Body:

 begin # none, line 2:

 s = 0.0 # none, line 3:

 #s614 = 1

 GenSym(2) = (Base.arraylen)(x::Array{Float64,1})::Int64

 unless (Base.box)(Base.Bool,(Base.not_int)((Base.slt_int)(GenSym(2)
,#s614::Int64)::Bool))::Bool goto 1

 2:

 GenSym(4) = (Base.arrayref)(x::Array{Float64,1},#s614::Int64)::Flo
at64

 GenSym(5) = (Base.box)(Base.Int,(Base.add_int)
(#s614::Int64,1))::Int64

 y = GenSym(4)

 #s614 = GenSym(5) # none, line 4:

 s = (Base.box)(Base.Float64,(Base.add_float)(s::Float64,(Base.
Math.box)(Base.Math.Float64,(Base.Math.powi_llvm)(y::Float64,(Base.box)
(Int32,(Base.checked_trunc_sint)(Int32,Main.p2))::Int32))::Float64))::Flo
at64

Functions and Macros – Structuring Julia Code for High Performance

[50]

 3:

 GenSym(3) = (Base.arraylen)(x::Array{Float64,1})::Int64

 unless (Base.box)(Base.Bool,(Base.not_int)((Base.box)(Base.
Bool,(Base.not_int)((Base.slt_int)(GenSym(3),#s614::Int64)::Bool))::Bool)
)::Bool goto 2

 1:

 0: # none, line 6:

 return s::Float64

 end::Float64

Another way to solve the issue of the global variable is to pass the global as a function
argument. A function argument can be type inferred; hence, the function specialization
will be effected in this case.

Inlining
As we've mentioned before, Julia code consists of many small functions. Unlike
most other language implementations, some of the core primitives in the base
library are also implemented in Julia. This means that the function call overhead
has the potential to be a bottleneck in a Julia program. This is mitigated using
some aggressive inlining performed by the Julia compiler.

Inlining is an optimization performed by a compiler, where the contents of a
function or method is inserted directly into the body of the caller of that function.
Thus, instead of making a function call, execution continues directly by executing
the operations of the callee within the caller's body.

In addition, many compiler optimization techniques work within the body of a
single function. Inlining, therefore, allows many more optimizations to be effective
within the program.

Compiler optimizations
Julia uses the LLVM compiler to generate machine code, which is
finally run on the CPU. Most of the usual compiler optimization
techniques that run on Julia code are performed by LLVM. The
one major exception is inlining, which is performed by the Julia
compiler itself before LLVM is invoked.

Chapter 4

[51]

Default inlining
The Julia compiler automatically inlines functions that it considers inline-worthy.
The compiler implements a set of heuristics to determine what to inline. Essentially,
this boils down to small functions with deterministic types.

While inlining usually results in an increase in code speed, it also
simultaneously increases the size of the code. Hence, a balance needs
to be maintained. The heuristics are, therefore, tuned to maximize the
performance of typical Julia code without causing excessive bloating
of the compiled code.

As an example, let's take a look at a simple set of functions, some of which we've
seen in previous chapters:

trunc(x) = x < 0 ? zero(x) : x

function sqrt_sin(x)
 y = trunc(x)
 return sin(sqrt(y)+1)
end

We can then look at the processed AST after the compiler has run its type inference
and inlining passes. Note how in the following output, the code for the trunc
function has been inserted into the sqrt_sin function as the first few lines:

julia> @code_typed sqrt_sin(1)

1-element Array{Any,1}:

 :($(Expr(:lambda, Any[:x],
Any[Any[Any[:x,Int64,0],Any[:y,Int64,18],Any[:_var0,Int64,2]],Any[
],Any[Float64,Float64,Float64],Any[]], :(begin # none, line 2:

 unless (Base.slt_int)(x::Int64,0)::Bool goto 1

 _var0 = 0

 goto 2

 1:

 _var0 = x::Int64

 2:

 y = _var0::Int64 # none, line 3:

 GenSym(0) = (Base.box)(Base.Float64,(Base.add_float)((Base.Math.
box)(Base.Math
.Float64,(Base.Math.sqrt_llvm)((Base.box)(Float64,(Base.sitofp)(Float64,y
::Int64))::Float64))::Float64,(Base.box)(Float64,(Base.sito
fp)(Float64,1))::Float64))::Float64

Functions and Macros – Structuring Julia Code for High Performance

[52]

 GenSym(2) =
(top(ccall))((top(tuple))("sin",Base.Math.libm)::Tuple{ASCIIString
,ASCIIString},Base.Math.Float64,(top(svec))(Base.Math.Float64)::Si
mpleVector,GenSym(0),0)::Float64

 return

 (Base.Math.nan_dom_err)(GenSym(2),GenSym(0))::Float64

 end::Float64))))

Controlling inlining
Sometimes, the heuristics to inline that are built into the Julia compiler will fail
to inline functions that we want inlined. These would typically be performance-
sensitive functions that are called many times in inner loops, for example, array
indexers. For this purpose, Julia provides the @inline macro. This macro needs
 to be placed in front of a function definition. When that function is called, its body
will be placed inline at the location where it is called.

There is no call-site annotation to force inlining. We cannot inline a
particular invocation of an, otherwise, normal function. The function
itself should be marked with @inline, and then every invocation of
that function will be inlined.

Let's demonstrate this with an example. In the following code, we define an f(x)
function that performs some numerical operations on its arguments, as well as a
g(x) function that calls f after transforming its argument:

function f(x)
 a=x*5
 b=a+3
 c=a-4
 d=b/c
end

This function f is too long to be inlined by default, which we verify by inspecting
the @code_typed output of its g calling function. Note that the function definition
of g continues to contain a call to the f function:

julia> @code_typed g(3)

1-element Array{Any,1}:

 :($(Expr(:lambda, Any[:x],
Any[Any[Any[:x,Int64,0]],Any[],Any[],Any[]], :(begin # none, line 1:

Chapter 4

[53]

 return

(Main.f)((Base.box)(Int64,(Base.mul_int)(2,x::Int64))::Int64)::Fl
oat64

 end::Float64))))

We then define the same computation in a function that we declare with the @inline
macro:

@inline function f_inline(x)
 a=x*5
 b=a+3
 c=a-4
 d=b/c
end

g_inline(x) = f_inline(2*x)

When we inspect the compiled AST for this function, it is apparent that the called
function has been inlined into the caller:

julia> @code_typed g_inline(3)

1-element Array{Any,1}:

 :($(Expr(:lambda, Any[:x], Any[Any[Any[:x,Int64,0],Any[symbol("##a#6865"
),Int64,18],Any[symbol("
##b#6866"),Int64,18],Any[symbol("##c#6867"),Int64,18],Any[symbol("##d
#6868"),Float64,18]],Any[],Any[Float64],Any[]], :(begin # none, line
1:

 ##a#6865 =
(Base.box)(Int64,(Base.mul_int)((Base.box)(Int64,(Base.mul_int)(2,x::
Int64))::Int64,5))::Int64

 ##b#6866 =
(Base.box)(Base.Int,(Base.add_int)(##a#6865::Int64,3))::Int64

 ##c#6867 =
(Base.box)(Int64,(Base.sub_int)(##a#6865::Int64,4))::Int64

 GenSym(0) =
(Base.box)(Base.Float64,(Base.div_float)((Base.box)(Float64,(Base.sit
ofp)(Float64,##b#6866::Int64))::Float64,(Base.box)(Float64,(Base.sito
fp)(Float64,##c#6867::Int64))::Float64))::Float64

 ##d#6868 = GenSym(0)

 return GenSym(0)

 end::Float64))))

Functions and Macros – Structuring Julia Code for High Performance

[54]

It is even more instructive to see the LLVM bitcode that is generated from this
function. We can see this using the @code_llvm macro. Note that the first line of the
function is now %1 = mul i64 %0, 10. This shows the argument of the function
being multiplied by 10. Look back at the source of the function—the argument is
multiplied by 2 in the g function and, subsequently, by 5 in the f function. The
LLVM optimizer has recognized this and consolidated these two operations into a
single multiplication. This optimization has occurred by merging code across two
different functions and, thus, couldn't have happened without inlining:

julia> @code_llvm g_inline(3)

define double @julia_g_inline_21456(i64) {

top:

 %1 = mul i64 %0, 10

 %2 = add i64 %1, 3

 %3 = add i64 %1, -4

 %4 = sitofp i64 %2 to double

 %5 = sitofp i64 %3 to double

 %6 = fdiv double %4, %5

 ret double %6

}

Disabling inlining
We've seen how useful inlining can be for the performance of our programs.
However, in some situations, it may be useful to turn off all inlining. These can
be during complex debugging sessions or while running code coverage analysis.
For example, in any situation where one needs to maintain direct correspondence
between source lines of code and executing machine code, inlining can be problematic.

Therefore, Julia provides a –inline=no command line option to be used in these
circumstances. Using this option will disable all inlining, including the ones
marked with @inline. We warned you that using this option makes all Julia code
significantly slower. However, in rare situations this is exactly what is needed.

Chapter 4

[55]

Closures and anonymous functions
We saw how important functions are in idiomatic Julia code. While not a pure
functional language, Julia shares many features with such languages. In particular,
functions in Julia are first class entities, and they can passed around to other
functions to create higher-order functions. A canonical example of such a higher-
order function is the map function, which evaluates the given function over each
element of the provided collection.

As you would expect from a language with these functional features, it is also
possible to create closures and anonymous functions in Julia. Anonymous functions,
as the name suggests, are functions without a name, and they are usually created
at the point where they are passed in to another function as an argument. In Julia,
they are created with the -> operator separating the arguments from the function
body. These, and named functions created within the scope of another function,
and referring to variables from this outer scope, are called closures. This name
arises from the idea of these functions "closing over" the outer scope.

Anonymous functions and closures are much slower than named functions in
versions of Julia prior to 0.5. This is due to the fact that the Julia compiler currently
cannot type infer the result of anonymous functions. It should be obvious that the
lack of type inference will significantly slow these functions down. As always, it is
instructive to look at an example and measure its performance. First, we define a
sqr function, which returns the square of its input argument:

sqr(x) = x ^ 2

We then measure the performance of map, evaluating this function over a random
array of 100,000 Float64 elements. We also measure the performance of map when
it is passed the same computation as an anonymous function, rather than the named
sqr function:

julia> @benchmark map(sqr, rand(100_000))

================ Benchmark Results ========================

 Time per evaluation: 3.81 ms [2.98 ms, 4.64 ms]

Proportion of time in GC: 8.88% [0.00%, 20.33%]

 Memory allocated: 3.81 mb

 Number of allocations: 200003 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.41 s

Functions and Macros – Structuring Julia Code for High Performance

[56]

julia> @benchmark map(x->x^2, rand(100_000))

================ Benchmark Results ========================

 Time per evaluation: 7.97 ms [6.97 ms, 8.96 ms]

Proportion of time in GC: 5.38% [0.00%, 12.70%]

 Memory allocated: 3.81 mb

 Number of allocations: 200003 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.83 s

It is apparent that using a named function is about twice as fast as using an
anonymous function. It should be noted that while this is true of the current
version of Julia at the time of writing (0.4,) this limitation will be removed in
future versions of Julia. If you are using Julia v0.5 or later, then you do not need
to consider any of the content in this section or the next section. In these versions,
anonymous functions are as fast as named functions. However, for the moment,
it is advisable to limit uses of closures and anonymous functions as much as possible
in performance-sensitive code.

FastAnonymous
However, in many situations, it is necessary or even convenient to use anonymous
functions. We have a language with many functional features, and it would be
a shame to forgo closures. So, if the slow performance of these constructs are a
bottleneck in your code, the innovative Julia community has a workaround in the
form of the FastAnonymous package.

Using this package is easy and causes very low programmer overhead. After
installing and importing, writing an @anon macro before an anonymous function
declaration will transform it into a form that can be type inferred, and this is, thus,
much faster. Running the example from the previous section with this approach
yields a significantly faster runtime:

julia> using FastAnonymous

julia> @benchmark map(@anon(x->x^2), rand(100_000))

Chapter 4

[57]

================ Benchmark Results ========================

 Time per evaluation: 488.63 μs [298.53 μs, 678.73 μs]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 781.31 kb

 Number of allocations: 2 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.29 s

Once again, we should note that use of this package will become unnecessary in
version 0.5 and further versions of Julia when the performance difference between
anonymous and named functions are removed.

Using macros for performance
So far in this chapter, we have focused on making our functions run faster. However,
as fast we make them, all the computation occurs when a function is called. The best
way to make any code faster is, however, to do less work. So, a strategy is to move
any possible work to compile time, which leaves less work to do at runtime.

The Julia compilation process
However, for a dynamic language such as Julia, the terms compile time and runtime
are not always clearly defined. In some sense, everything happens at runtime because
our code is not compiled to a binary ahead of time. However, there are clearly divided
processes that occur from when the code is read from disk to when it is finally executed
on the CPU.

Functions and Macros – Structuring Julia Code for High Performance

[58]

As the compiler goes through each stage, it can write code to execute at various
points along this pipeline rather than everything waiting until the end—the
runtime. While we might loosely use the terminology of compile time for some
of our metaprogramming techniques, having the ability to run code at multiple
stages along this pipeline provides some powerful capabilities:

Using macros
Julia macros are code that can be used to write Julia code. A macro is executed
very early in the compiler process, as soon as the code is loaded and parsed.

Macros are usually used as a means to reduce repetitive code, whereby large
volumes of code with a common pattern can be generated from a smaller set
of primitives. However, they can also be used to improve performance in some
situations. This usually involves moving common or constant computation to
the compile time wherever possible. To see how this can work, let's look at the
problem of evaluating a polynomial.

Chapter 4

[59]

Evaluating a polynomial
Consider the following polynomial expression:

Given a set of coefficients [a0,a1,a2,….,an], we need to find the value of the p(x) function
for a particular value of x.

A simple and naive but general implementation to evaluate any polynomial may be,
as follows:

function poly_naive(x, a...)
 p=zero(x)
 for i = 1:length(a)
 p = p + a[i] * x^(i-1)
 end
 return p
end

Type Stability, once again
You will recognize this from the discussions in the previous
chapter that the initialization of p=zero(x) rather than p=0
ensures the type stability of this code.

Using this function, let's imagine that we need to compute a particular polynomial:

julia> f_naive(x) = poly_naive(x, 1,2,3,4,5)

julia> f_naive(3.5)

966.5625

Let's verify the calculation by hand to test its accuracy and then benchmark the
computation to see how fast it can run:

julia> 1 + 2*3.5 + 3*3.5^2 + 4*3.5^3 + 5*3.5^4

966.5625

Functions and Macros – Structuring Julia Code for High Performance

[60]

julia> @benchmark f_naive(3.5)

================ Benchmark Results ========================

 Time per evaluation: 162.51 ns [160.31 ns, 164.71 ns]

Proportion of time in GC: 0.18% [0.00%, 0.39%]

 Memory allocated: 32.00 bytes

 Number of allocations: 2 allocations

 Number of samples: 9701

 Number of evaluations: 20709801

 R² of OLS model: 0.953

 Time spent benchmarking: 3.39 s

This computation takes a little over 160 nanoseconds. While this is not a particularly
long interval, it is quite long for modern CPUs. A 2.4 GHz processor should be able
to perform around 10,000 floating point operations in that time, which seems like a
lot of work to compute a polynomial with five terms. The primary reason why this
is slower than we would expect is that floating-point exponentiation is a particularly
expensive operation.

Peak Flops
The peakflops() Julia function will return the maximum
number of floating point operations per second (flops)
possible on the current processor.

Horner's method
So, the first thing to do is to find a better algorithm, one which can replace the
exponentiation into multiplications. This can be done by the Horner method,
which is named after the nineteenth century British mathematician, William
George Horner. This is accomplished by defining a sequence, as follows:

Then, b0 is the value of the p(x) polynomial.

Chapter 4

[61]

This algorithm can be implemented in Julia, as follows:

function poly_horner(x, a...)
 b=zero(x)
 for i = length(a):-1:1
 b = a[i] + b * x
 end
 return b
end

We can then test and benchmark this for the same polynomial:

f_horner(x) = poly_horner(x, 1,2,3,4,5)

julia> @benchmark f_horner(3.5)

================ Benchmark Results ========================

 Time per evaluation: 41.51 ns [40.96 ns, 42.06 ns]

Proportion of time in GC: 1.16% [0.75%, 1.57%]

 Memory allocated: 32.00 bytes

 Number of allocations: 2 allocations

 Number of samples: 12301

 Number of evaluations: 246795401

 R² of OLS model: 0.943

 Time spent benchmarking: 10.36 s

We see that using a better algorithm gets us a 4x improvement in the evaluation
speed of this polynomial. Can we do better?

The Horner macro
Improving the speed of this computation starts with realizing that the coefficients of
the polynomial are constants. They do not change and are known when writing the
program. In other words, they are known at compile time. So, maybe we can expand
and write out the expression for the Horner's rule for our polynomial. This will take
the following form, for the polynomial that we used previously:

muladd(x,muladd(x,muladd(x,muladd(x,5,4),3),2),1)

This is likely to be the fastest way to compute our polynomial. However, writing this
out for every polynomial that we might want to use will be extremely annoying. We
loose the benefit of having a general library function that can compute any polynomial.

Functions and Macros – Structuring Julia Code for High Performance

[62]

This is exactly the kind of situation where macros can help. We can write a
macro that will produce the previous expression when given a set of polynomial
coefficients. This can be done when the compiler loads the code. At runtime, when
this function is called, it will execute this optimized expression. Julia's base library
contains this macro, which we can see repeated, as follows:

macro horner(x, p...)

 ex = esc(p[end])

 for i = length(p)-1:-1:1

 ex = :(muladd(t, $ex, $(esc(p[i]))))

 end

 Expr(:block, :(t = $(esc(x))), ex)

end

f_horner_macro(x) = @horner(x, 1,2,3,4,5)

julia> @benchmark f_horner_macro(3.5)

================ Benchmark Results ========================

 Time per evaluation: 3.66 ns [3.62 ns, 3.69 ns]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

 Number of samples: 11601

 Number of evaluations: 126646601

 R² of OLS model: 0.970

 Time spent benchmarking: 0.53 s

So, this method using a macro gives us an amazing 10x improvement over calling
the Horner's method as a function. Also, this function does not allocate any memory
at runtime.

We've seen how this strategy of generating customized code for particular problems
using a macro can sometimes lead to massive performance increases. While the @
horner macro is a simple and canonical example of this strategy, it can be used to
great effect in our own code.

Chapter 4

[63]

Generated functions
Macros run very early in the compilers process when there is no information about
how the program might execute. The inputs to a macro are, therefore, simply symbols
and expressions—the textual tokens that make up a program. Given that a lot of
Julia's powers come from its type system, it may be useful to have something such
as macros—code that generates code—at a point where the compiler has inferred the
types of the variables and function arguments in the program. Generated functions
(also sometimes called staged functions) fulfill this need.

Using generated functions
Declaring a generated function is simple. Instead of the usual function keyword,
generated functions are declared with the appropriately named @generated
function keyword. This declares a function that can be called normally from
any point in the rest of the program.

Generated functions come in two parts, which are related to how they are executed.
They are invoked once for each unique type of its arguments. At this point, the
arguments themselves take the values of their types. The return value of this execution
must be an expression that is used as the body of the function when called with values
of these types. This cycle is executed each time the function is called with new types.
The function is called with types as values once, and then the returned expression is
used for all invocations with argument values of this type.

More on generated functions
In this section, we quickly described how to write generated functions.
We will not go into too much detail. For more information along with
examples, please refer to the online Julia documentation

Using generated functions for performance
As with macros, strategies to use generated functions for performance revolve
around moving constant parts of the computation earlier into the compilation stage.
However, unlike macros, here the computations are fixed only for a certain type of
argument. For different types of argument, the computations are different. Staged
functions handle this difference elegantly.

Functions and Macros – Structuring Julia Code for High Performance

[64]

As an example, let's consider a rather trivial problem: calculating the number of cells
of a multidimensional array. The answer is of course a product of the number of
elements in each dimension. As Julia has true multidimensional arrays, the number of
dimensions, and the number of multiplications are not known upfront. One possible
implementation is to loop over the number of dimensions, multiplying as we go:

function prod_dim{T, N}(x::Array{T, N})
 s = 1
 for i = 1:N
 s = s * size(x, i)
 end
 return s
 end

Type parameters
Please review the Julia documentation on type parameters or refer
to Type parameters section in Chapter 3, Types in Julia, if the preceding
code looks unfamiliar.

This function will now work for arrays with any number of dimensions. Let's test
this to see whether it works:

julia> prod_dim(rand(10,5,5))

250

Optimizing this computation with a generated function starts with the observation that
the number of iterations of the loop is equal to the number of dimensions of the array,
which is encoded as a type parameter for arrays. In other words, for a particular type
of input (and array of a particular dimension), the loop size is fixed. So, what we can
try to do in a generated function is move the loop to the compile time:

@generated function prod_dim_gen_impl{T, N}(x::Array{T, N})
 ex = :(1)
 for i = 1:N
 ex = :(size(x, $i) * $ex)
 end
 return ex
end

In this generated function, the loop runs at compile time when the type of x is
known. We create an ex expression, which then becomes the body of the function
when actually called with an instance of an array. We can see that this function
works; it returns the same result as our earlier version with the loop:

julia>prod_dim_gen_impl(rand(10, 5,5))

250

Chapter 4

[65]

However, it would be instructive to see the code that is generated and actually run
for this function. For this purpose, we can paste the body of the generated function
into a normal function, as follows:

function prod_dim_gen_impl{T, N}(x::Array{T, N})
 ex = :(1)
 for i = 1:N
 ex = :(size(x, $i) * $ex)
 end
 return ex
end

We can then call this function with the type of the arguments as input, and the
returned expression will show us how this generated function works:

julia> x = rand(2, 2, 2);

julia> prod_dim_gen_impl(x)

:(size(x,3) * (size(x,2) * (size(x,1) * 1)))

julia> x = rand(2, 2, 2, 2);

julia> prod_dim_gen_impl(x)

:(size(x,4) * (size(x,3) * (size(x,2) * (size(x,1) * 1))))

It should be apparent what has happened here. For an array of three dimensions,
we are multiplying three numbers; while for an array of four dimensions, we are
multiplying two numbers. The loop of 1:N ran at compile time and then disappeared.
The resulting code will be much faster without the loop, particularly if this function is
called excessively in some other inner loop.

The technique of removing loops and replacing them with the calculations inline
is usually called loop-unrolling, and it is often performed manually in performance-
sensitive code. However, in Julia, generated functions are an easy and elegant way
to achieve this without too much effort.

Also, note that this function looks much simpler without the loop. The number of
tokens in this function is significantly reduced. This might make the function inline-
worthy and cause the compiler to inline this function, making this code even faster.

Functions and Macros – Structuring Julia Code for High Performance

[66]

Using named parameters
Julia supports a convenient named parameter syntax that is useful when creating
complicated API with many optional parameters. However, the compiler cannot
infer the types of named parameters effectively. Therefore, it should now be
apparent that using named parameters can cause degraded performance.

As an example, we shall write the same function, once with named arguments,
and once with regular, positional arguments. It will be apparent that the version
with named arguments does not perform very well. (As an aside, note that the
Benchmarks package that we've been using does not support named arguments.
Therefore, we are benchmarking this code in a very simple way):

julia> named_param(x; y=1, z=1) = x^y + x^z

named_param (generic function with 1 method)

julia> pos_param(x,y,z) = x^y + x^z

pos_param (generic function with 1 method)

julia> @time for i in 1:100000;named_param(4; y=2, z=3);end

 0.032424 seconds (100.23 k allocations: 9.167 MB)

julia> @time for i in 1:100000;pos_param(4, 2, 3);end

 0.000832 seconds

It is apparent that using named parameters incurs a significant overhead in Julia.
However, when designing high-level functions, it is still advantageous to use
named parameters in order to create easy to use API's. Just don't use them in
performance-sensitive inner loops.

Summary
In this chapter, we saw different ways to structure our code to make it perform
better. The function is the primary element in Julia code; however, sometimes it
is not the best option. Macros and generated functions can play an important role
where appropriate.

In the next chapter, we will look deeper into the problem of numbers. We will see how
Julia designs its core number types, and how to make basic numeric operations fly.

[67]

Fast Numbers
As it is a numerical programming language, fast computations with numbers are
central to everything we do in Julia. In the previous chapters, we discussed how the
Julia compiler and runtime perform across a wide range of code. In this chapter, we
will take a detailed look at how these core constructs are designed and implemented
in Julia.

In this chapter, we will cover the following topics:

• Numbers in Julia
• Trading performance for accuracy
• Subnormal numbers

Numbers in Julia
The basic number types in Julia are designed to closely follow the hardware on
which it runs. The default numeric types are as close to the metal as possible—a
design decision that contributes to Julia's C-like speed.

Integers
Integers in Julia are stored as binary values. Their default size, as in C, depends on
the size of the CPU/OS on which Julia runs. On a 32-bit OS, the integers are 32 bits
by default, and on a 64-bit machine, they are 64 bits by default. These two integer
sizes are represented as different types within Julia: Int32 and Int64, respectively.
The Int type alias represents the actual integer type used by the system. The WORD_
SIZE constant contains the bit width of the current Julia environment, which is as
follows:

julia> WORD_SIZE

64

Fast Numbers

[68]

The bits function displays the underlying binary representation of the numbers.
On a 64-bit machine, we get:

julia> bits(3)

"0011"

The default integer types are signed. That is, the first (and the most significant) bit
is set to 1 to denote negative numbers, which are then stored as two's complement,
as follows:

julia> bits(-3)

"1101"

Types such as these, and the following floating point types whose representation
is simply a set of bits, have optimized handling within the Julia runtime. They are
called bits types, and this feature can be queried for any type using the isbits
function, as follows:

julia> isbits(Int64)

true

julia> isbits(ASCIIString)

false

One point to note is that, as a Julia value, basic numeric types can be boxed. That
is, when stored in memory they are prefixed with a tag that represents their type.
However, the Julia compiler is usually very good at removing any unnecessary
boxing/unboxing operations. They can usually be compiled out. For example, we
can define a function that adds two numbers and inspect the machine code that is
generated and executed when this function is called via the following code:

myadd(x, y) = x + y

Looking at the output of of the following compiled code, (even if, like me, you are
not an expert at reading assembly), it should be apparent that, other than the function
overhead to set the stack and return the result, the generated code simply consists of
the CPU instruction to add two machine integers, addq. There is no boxing/unboxing
operation remaining in the native code when the function is called. Take a look at
the following:

Chapter 5

[69]

julia> @code_native myadd(1,2)

 .section __TEXT,__text,regular,pure_instructions

Filename: none

Source line: 1

 pushq %rbp

 movq %rsp, %rbp

Source line: 1

 addq %rsi, %rdi

 movq %rdi, %rax

 popq %rbp

 ret

There is an even bigger advantage to storing numbers using the machine
representation. Arrays of these numbers can be stored using contiguous storage.
A type tag is stored once at the start. Beyond this, data in numerical arrays is stored
in a packed form. This not only means that these arrays can be passed to C libraries
as-is (minus the type tag) but also that the compiler can optimize computations on
these arrays easily. There is no need for pointer dereferencing when operating on
numerical arrays of bit types.

Integer overflow
A further consequence of the decision to use machine integers by default is that there
are no overflow checks present within any base mathematical operation in Julia.

With a fixed number of bytes available to represent integers of a certain type, the
possible values are bounded. These bounds can be viewed using the typemax and
typemin functions, as follows:

julia> typemax(Int64)

9223372036854775807

julia> bits(typemax(Int64))

"0111"

Julia> typemin(Int64)

-9223372036854775808

julia> bits(typemin(Int64))

"1000"

Fast Numbers

[70]

When the result of any operation is beyond the possible values for a type, it overflows.
This typically results in the number being wrapped around from the maximum to the
minimum, as in the following code:

julia> 9223372036854775806 + 1

9223372036854775807

julia> 9223372036854775806 + 1 + 1

-9223372036854775808

julia> typemin(Int64)

-9223372036854775808

Another way to think about an overflow is that, to represent larger numbers,
additional bits are required in the most significant positions. These bits are then
chopped off, and the remaining bits are returned as the result. Thinking about
it this way explains many counterintuitive results when it comes to overflows.
Take a look at the following code:

julia> 2^64

0

julia> 2^65

0

This behavior is very different from what is observed in popular dynamic languages,
such as Ruby and Python. In these languages, every basic mathematical operation
includes an overflow check. When the overflow is detected, the value is automatically
upgraded to a wider type capable of storing the larger value. However, this causes a
significant overhead to all numerical computation. Not only do we have to pay the cost
for the extra CPU operation for the overflow check, but the conditional statement also
prevents CPU pipelining from being effective. For this reason, Julia (as with Java and
C) chooses to operate directly on machine integers and forgo all overflow checks.

This may be confusing and frustrating at first glance if you have a background in
programming Python or Ruby, but this is the price you pay for high-performance
computing. Once you understand that Julia's numbers are really close to the metal
and designed to be directly operated on by the CPU, it should not be any more
difficult to construct correctly behaving programs in practice.

Chapter 5

[71]

BigInt
If you know your program needs to operate on large integers beyond the range of
Int32 or Int64, there are various options in Julia. First, if your numbers can still be
bounded, there is Int128. However, for arbitrarily large integers, Julia has built-in
support via the BigInt type. Run the following code:

julia> big(9223372036854775806) + 1 + 1

9223372036854775808

julia> big(2)^64

18446744073709551616

Operations on Int128 are slower, and for BigInts they are much slower than for the
default integers. However, we can use these in situations where they are warranted
without compromising on the performance of computations that fit within the
bounds of the default types.

The floating point
The default floating-point type is always 64-bits wide and is called Float64. This
is true irrespective of the underlying machine and OS bit width. It is represented in
memory using the IEEE 754 binary standard.

The IEEE 754 standard is the universally accepted technical standard for floating
point operations in computer hardware and software. Almost all commonly used
CPU types implement their floating-point support using this standard. As a result,
storing numbers in this format means that the CPU (or rather the FPU—the floating
point unit within the CPU) can operate on them natively and quickly.

The binary storage standard for 64-bit floating point numbers consists of 1 sign bit,
11 bits of exponent, and 52 bits of the mantissa (or the significand), as follows:

julia> bits(2.5)

"0100000000000100"

julia> bits(-2.5)

"1100000000000100"

Fast Numbers

[72]

Unchecked conversions for unsigned integers
The basic integers described previously are all signed values. Unsigned integers can
be specified using the UInt64 and UInt32 types. As with many other Julia types, the
type conversions can be done via type constructors, as follows:

julia> UInt64(UInt32(1))

0x0000000000000001

These conversions check for out-of-range values. They throw an error when trying to
convert a value that does not fit in the resulting type, as follows:

julia> UInt32(UInt64(1))

0x00000001

julia> UInt32(typemax(UInt64))

ERROR: InexactError()

in call at essentials.jl:56

The conditional check will have an overhead when performing this calculation, not
only because of following out the CPU's instructions but also due to pipeline failures.
In some situations, when working with binary data, it may be acceptable to truncate
64-bit values to 32-bit values without checking. In such situations, there is a shortcut
in Julia, which is to use the % operator with the type, as in the following code:

julia> typemax(UInt64) % UInt32

0xffffffff

Using this construct prevents any errors from being thrown for out-of-bound values,
and it is much faster than the checked version of the conversion. This also works for
other base unsigned types, such as UInt16 and UInt8.

Trading performance for accuracy
In this book, we largely focus on performance. However, at this stage, it should be
said that accurate math is usually an even bigger concern. All basic floating-point
arithmetic in Julia follows strict IEEE 754 semantics. Rounding is handled carefully in
all base library code to guarantee the theoretical best error limits. In some situations,
however, it is possible to trade off performance for accuracy and vice versa.

Chapter 5

[73]

The fastmath macro
The @fastmath macro is a tool to loosen the constraints of IEEE floating point
operations in order to achieve greater performance. It can rearrange the order of
evaluation to something with is mathematically equivalent but that would not be
the same for discrete floating point numbers due to rounding/error effects. It can
also replace some intrinsic operations with their faster variants that do not check for
NaN or Infinity. This results in faster operation but might cause a compromise in
accuracy. This option is similar to the -ffast-math compiler option in clang or GCC.

As an example, consider the following code that calculates the finite difference
between the elements of an array and then sums them. We can create two versions
of the function that are identical except for the fact that one has the @fastmath
annotation and one doesn't. Simply use the following code:

function sum_diff(x)
 n = length(x); d = 1/(n-1)
 s = zero(eltype(x))
 s = s + (x[2] - x[1]) / d
 for i = 2:length(x)-1
 s = s + (x[i+1] - x[i+1]) / (2*d)
 end
 s = s + (x[n] - x[n-1])/d
end

function sum_diff_fast(x)
 n=length(x); d = 1/(n-1)
 s = zero(eltype(x))
 @fastmath s = s + (x[2] - x[1]) / d
 @fastmath for i = 2:n-1
 s = s + (x[i+1] - x[i+1]) / (2*d)
 end
 @fastmath s = s + (x[n] - x[n-1])/d
end

We can note that the @fastmath macro can be used in front of statements or loops.
In fact, it can be used in front of any block of code, including functions. Anything
relevant within this block will be rewritten by the macro.

Fast Numbers

[74]

Benchmarking the two implementations shows that @fastmath provides an
approximate 2.5x improvement over the base version. Take a look at the following:

julia> t=rand(2000);

julia> sum_diff(t)

46.636190420898515

julia> sum_diff_fast(t)

46.636190420898515

julia> @benchmark sum_diff(t)

================ Benchmark Results ========================

 Time per evaluation: 5.74 μs [5.68 μs, 5.81 μs]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

 Number of samples: 3901

 Number of evaluations: 82201

 R² of OLS model: 0.987

 Time spent benchmarking: 0.53 s

julia> @benchmark sum_diff_fast(t)

================ Benchmark Results ========================

 Time per evaluation: 2.10 μs [2.09 μs, 2.11 μs]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

 Number of samples: 4901

 Number of evaluations: 213901

 R² of OLS model: 0.997

 Time spent benchmarking: 0.50 s

This result is very much dependent on the nature of the computation. In many
situations, the improvements are much lower. Also, in this case, the two functions
return the exact same value, which is not true in the general case. The message, then,
is to test and measure extensively when using this feature.

Chapter 5

[75]

As with everything else in Julia, we can introspect and take a look at what changes
the macro makes to our code. We can observe that the macro rewrites the intrinsic
functions with its own _fast versions in the following code:

julia> macroexpand(:(@fastmath for i=2:n-1; s = s + (x[i+1] -
x[i+1]) / (2*d); end))

:(for i = 2:Base.FastMath.sub_fast(n,1) # none, line 1:

 s =
Base.FastMath.add_fast(s,Base.FastMath.div_fast(Base.FastMath.sub_fas
t(x[Base.FastMath.add_fast(i,1)],x[Base.FastMath.add_fast(i,1)]),Base
.FastMath.mul_fast(2,d)))

 end)

The K-B-N summation
Adding a collection of floating point values is a very common operation, but it is
surprisingly susceptible to the accumulation of errors. A naïve implementation—that
is, adding elements from the first to the last—accumulates errors at the rate of ()O n ,
 where n is the number of elements being summed. Julia's sum base uses a pairwise
summation algorithm that does better by accumulating errors at ()()logO n but is
almost as fast. However, there exists a more complicated summation algorithm
attributed to William Kahan whose error is bound by ()1O . This is implemented in
Julia in the sum_kbn function.

In order to test the accuracy of sum, we will use a set of numbers that are particularly
susceptible to rounding errors. The sum of the set of three numbers (1, -1, and 10-100)
should be 10-100. However, as one of these numbers is much smaller than the other
two, the result will be incorrectly rounded to 0. Take a look at the following code:

julia> sum([1 1e-100 -1])

0.0

julia> sum_kbn([1 1e-100 -1])

1.0e-100

julia> @benchmark sum([1 1e-100 -1])

================ Benchmark Results ========================

 Time per evaluation: 6.72 ns [6.68 ns, 6.75 ns]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

Fast Numbers

[76]

 Number of samples: 10701

 Number of evaluations: 53712201

 R² of OLS model: 0.991

 Time spent benchmarking: 0.52 s

julia> @benchmark sum_kbn([1 1e-100 -1])

================ Benchmark Results ========================

 Time per evaluation: 9.53 ns [9.47 ns, 9.60 ns]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

 Number of samples: 10601

 Number of evaluations: 48829501

 R² of OLS model: 0.987

 Time spent benchmarking: 0.52 s

In summary, the default sum function is adequate for most situations. It is fast and quite
accurate. However, for pathological cases or when summing millions of elements, the
sum_kbn function may give up some performance in favor of increased accuracy.

Subnormal numbers
Subnormal numbers (also sometimes called denormal) are very small floating
point values near zero. Formally, they are numbers smaller than those that can be
represented without leading zeros in the significand (for example, normal numbers).
Typically, floating point numbers are represented without leading zeros in the
significand. Leading zeros in the number are moved to the exponent (that is, 0.0123 is
represented as 1.23x10-2). Subnormal numbers are, therefore, numbers in which such
a representation would cause the exponent to be lower than the minimum possible
value. In such a situation, the significand is forced to have leading zeros. Much more
detail on these numbers is available on Wikipedia at https://en.wikipedia.org/
wiki/Denormal_number.

Subnormal numbers in Julia can be identified by the issubnormal function, as follows:

julia> issubnormal(1.0)

false

julia> issubnormal(1.0e-308)

true

https://en.wikipedia.org/wiki/Denormal_number
https://en.wikipedia.org/wiki/Denormal_number

Chapter 5

[77]

Subnormal numbers are useful for a gradual underflow. Without them, for example,
subtraction between extremely small values of floating point numbers might underflow
to zero, causing subsequent divide-by-zero errors. This is shown in the following code:

julia> 3e-308 - 3.001e-308

-1.0e-311

julia> issubnormal(3e-308 - 3.001e-308)

true

Subnormal numbers to zero
Subnormal numbers cause a significant slowdown on modern CPUs, sometimes by
up to 100x. This may be hard to track down because these performance problems can
occur when the inputs take certain values even if we hold the algorithm constant.
They manifest as unexplained, intermittent slowdowns.

One solution would be to force all subnormal numbers to be treated as zero. This will
set a CPU flag that discards all the subnormal numbers and uses zero in its place.
While this solves the performance problem, it should be used with care as it may
cause accuracy and numerical stability problems. In particular, it is no longer true
that x-y = = 0 => x = = y, as can be noted in the following code:

julia> set_zero_subnormals(true)

true

julia> 3e-308 - 3.001e-308

-0.0

julia> 3e-308 == 3.001e-308

false

julia> get_zero_subnormals()

true

Fast Numbers

[78]

One of the ways subnormal numbers arise is when a calculation exponentially
decays to zero. This gradual flattening of the curve results in many subnormal
numbers being created and causes a sudden performance drop. As an example,
we will take a look at one such computation here:

function timestep(b, a, dt)
 n = length(b)
 b[1] = 1
 two = eltype(b)(2)
 for i=2:n-1
 b[i] = a[i] + (a[i-1] - two*a[i] + a[i+1]) * dt
 end
 b[n] = 0
end

function heatflow(a, nstep)
 b = similar(a)
 o = eltype(a)(0.1)
 for t=1:div(nstep,2)
 timestep(b,a,o)
 timestep(a,b,o)
 end
end

We will then benchmark these functions with and without forcing subnormal numbers
to zero. We can note a speedup by around two times by forcing subnormal numbers to
zero. Take a look at the following:

julia> set_zero_subnormals(false)

true

julia> @benchmark heatflow(a, 1000)

================ Benchmark Results ========================

 Time per evaluation: 4.19 ms [2.29 ms, 6.09 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 3.98 kb

 Number of allocations: 1 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.46 s

Chapter 5

[79]

julia> set_zero_subnormals(true)

true

julia> @benchmark heatflow(a, 1000)

================ Benchmark Results ========================

 Time per evaluation: 2.20 ms [2.06 ms, 2.34 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 3.98 kb

 Number of allocations: 1 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.25 s

Summary
In this chapter, we discussed how Julia uses a machine representation of numbers to
achieve C-like performance for its arithmetic computations. We noted how to work
within these design constraints and considered the edge cases that are introduced.

Working with single numbers, however, is the easy part. Most numerical
computations, as we noted throughout this book, consist of working on large sets of
numbers. In the next chapter, we will take a look at how to make arrays perform fast.

[81]

Fast Arrays
It should not be a surprise to readers of this book that array operations are often the
cornerstone of scientific and numeric programming. While arrays are a fundamental
data structure in all programming, there are special considerations when they are
used in numerical programming. One particular difference is that arrays are not
just viewed as entities for data storage. Rather, they represent the fundamental
mathematical structures of vectors and matrices.

In this chapter, we will discuss how to use arrays in Julia in the fastest possible way.
When you profile your program, you will find that, in many cases, the majority of its
execution time is spent in array operations. Therefore, the discussions in this chapter
will likely turn out to be crucial in creating high-performance Julia code. The following
are the topics we will cover:

• Array internals and storage
• Bounds checks
• In-place operations
• Subarrays
• SIMD parallelization
• Yeppp! for fast vector operations
• Writing generic library functions using arrays

Array internals in Julia
We discussed how Julia's performance comes out of using type information to
compile specific and fast machine code for different data types. Nowhere is this
more apparent than in array-related code. This is probably where all of Julia's
design choices pay off in creating high-performance code.

Fast Arrays

[82]

Array representation and storage
An array type in Julia is parameterized by the type of its elements and the number
of its dimensions. Hence, the type of an array is represented as Array{T, N},
where T is the type of its elements, and N is the number of dimensions. So, for
example, Array{UTF8String, 1} is a one-dimensional array of strings, while
Array{Float64,2} is a two-dimensional array of floating point numbers.

Type parameters
You must have realized that type parameters in Julia do not always
have to be other types; they can be constant values as well. This makes
Julia's type system enormously powerful. It allows the type system to
represent complex relationships and enables many operations to be
moved to compile (or dispatch) time rather than at runtime.

Representing the type of an element within the type of arrays as a type parameter
allows powerful optimization. It allows arrays of primitive types (and many immutable
types) to be stored inline. In other words, the elements of the array are stored within
the array's own primary memory allocation.

In the following diagram, we will show this storage mechanism. The numbers in
the top row represent array indexes, while the numbers in the boxes are the integer
elements stored within the array. The numbers in the bottom row represent the
memory addresses where each of these elements is stored:

Chapter 6

[83]

In most other dynamic languages, all arrays are stored using pointers to their values.
This is usually because the language runtime does not have enough information
about the types of values to be stored in an array and hence cannot allocate the
correctly sized storage. As represented in the following figures, when an array
is allocated, contiguous storage simply consists of pointers to the actual elements,
even when these elements are primitive types that can be stored natively in memory.

This method of storing arrays inline, without pointer indirection as much as possible,
has many advantages and, as we discussed earlier, is responsible for much of Julia's
performance claims. In other dynamic languages, the type of every element of the
array is uncertain and the compiler has to insert type checks on each access. This can
quickly add up and become a major performance drain.

Further, even when every element of the array is of the same type, we pay the price
of memory load for every array element if they are stored as pointers. Given the
relative costs of a CPU operation versus a memory load on a modern processor,
not doing this is a huge benefit.

There are other benefits too. When the compiler and CPU notice operations on a
contiguous block of memory, CPU pipelining and caching are much more efficient.
Some CPU optimizations, such as Single Instruction Multiple Data (SIMD), are also
unavailable when using indirect array loads.

www.allitebooks.com

http://www.allitebooks.org

Fast Arrays

[84]

Column-wise storage
When an array has only one dimension, its elements can be stored one after the other
in a contiguous block of memory. As we observed in the previous section, operating
on this array sequentially from its starting index to its end can be very fast, being
amenable to many compiler and CPU optimizations.

Two-dimensional or higher arrays can, however, be stored in two different ways.
We can store them row-wise or column-wise. In other words, we can store from the
beginning of the array the elements of the first row, followed by the elements of the
second row, and so on. Alternatively, we can store the elements of the first column,
then the elements of the second column, and so on.

R
ow

 In
de

x

Column Index

Two-Dimensional Array

1

1

2

2

3

3 4

8

2

3 6 4 2

791

6 5 4

Row-Major

Row 1 Row 2 Row 3

Column-Major

Column 1 Column 2 Column 3 Column 4

8

8

6

2

5

3

4

6

2

1

1

6

9

5

7

9

3

4

6

4

4

7

2

2

Chapter 6

[85]

Arrays in C are stored as row-ordered. Julia, on the other hand, chooses the latter
strategy, storing arrays as column-ordered, similar to MATLAB and Fortran. This
rule applies to higher-dimensional arrays as well. In Julia, the array is stored with
the last dimension first.

Naming convention
Conventionally, the term row refers to the first dimension
of a two-dimensional array, and column refers to the second
dimension. As an example, for a two-dimensional array of
x::Array{Float64, 2} floats, the expression x[2,4] refers
to the elements in the second row and the fourth column.

This particular strategy of storing arrays has implications for how we navigate them.
The most efficient way to read an array is in the same order in which it is laid out in
memory. That is, each sequential read should access contiguous areas in memory.

We can demonstrate the performance impact of reading arrays in sequence with the
following code, which squares and sums the elements of a two-dimensional floating
point array, writing the result at each step back to the same position. This code
exercises both the read and write operations for the array:

function col_iter(x)
 s=zero(eltype(x))
 for i = 1:size(x, 2)
 for j = 1:size(x, 1)
 s = s + x[j, i] ^ 2
 x[j, i] = s
 end
 end
end

function row_iter(x)
 s=zero(eltype(x))
 for i = 1:size(x, 1)
 for j = 1:size(x, 2)
 s = s + x[i, j] ^ 2
 x[i, j] = s
 end
 end
end

Fast Arrays

[86]

The row_iter function operates on the array in the first order row, while the
col_iter function operates on the array in the first order column. We expect,
based on the description of the previous array storage, that the col_iter function
would be considerably faster than the row_iter function. Running the benchmarks,
this is indeed what we see, as follows:

julia> a = rand(1000, 1000);

julia> @benchmark col_iter(a)

================ Benchmark Results ========================

 Time per evaluation: 2.37 ms [1.64 ms, 3.10 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.28 s

julia> @benchmark row_iter(a)

================ Benchmark Results ========================

 Time per evaluation: 6.53 ms [4.99 ms, 8.08 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.71 s

The difference between the two is quite significant. Column major access is more
than twice as fast. This kind of difference in the inner loop of an algorithm can
make a very noticeable difference in the overall runtime. It is, therefore, crucial to
consider the order in which multidimensional arrays are processed when writing
performance-sensitive code.

Chapter 6

[87]

Bound checking
Like most dynamic languages, the Julia runtime performs bound checks on arrays by
default. This means that the Julia compiler and runtime verify that the arrays are not
indexed outside their limits and that all the indexes lie between the actual start and
end of an array. Reading values of memory mistakenly beyond the end of an array
is often the cause of many bugs and security issues in unmanaged software. Hence,
bound checking is an important determinant of safety in your programs.

Removing the cost of bound checking
However, as with any extra operation, bound checking has costs too. There are extra
operations for all array reads and writes. While this cost is reasonably small and is
usually a good trade-off for safety, in some situations, where it can be guaranteed
that the array bounds are never crossed, it may be worthwhile to remove these
checks. This is possible in Julia using the @inbounds macro, as follows:

function prefix_bounds(a, b)
 for i = 2:size(a, 1)
 a[i] = b[i-1] + b[i]
 end
end

function prefix_inbounds(a, b)
 @inbounds for i = 2:size(a, 1)
 a[i] = b[i-1] + b[i]
 end
end

The @inbounds macro can be applied in front of a function or loop definition. Once
this is done, all bound checking is disabled within the code block annotated with this
macro. The performance benefit of doing this is small but may be significant overall
for hot inner loops. Take a look at the following code:

julia> @benchmark prefix_bounds(x, y)

================ Benchmark Results ========================

 Time per evaluation: 1.78 ms [1.72 ms, 1.83 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.20 s

Fast Arrays

[88]

julia> @benchmark prefix_inbounds(x, y)

================ Benchmark Results ========================

 Time per evaluation: 1.50 ms [1.24 ms, 1.76 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.17 s

The @inbounds annotation should only be used when it can be guaranteed that the
array access within the annotated block will never be out of bounds. This typically
should be only when the limits of the loop depend directly on the length of the array—
that is, for code of the for i in 1:length(array) form. If the programmer disables
bound checking for some code and the array access is actually out of bounds, the
results will be undefined. At best, the program will crash quickly.

Configuring bound checks at startup
The Julia runtime can use a command-line flag to set up bound-checking behavior
for the entire session. The –check-bounds option can take two values: yes and no.
These options will override any macro annotation in the source code.

When the Julia environment is started with –check-bounds=yes, all @inbounds
annotations in code are ignored, and bound checks are mandatorily performed.
This option is useful when running tests to ensure that code errors are properly
reported and debugged if any.

Alternatively, when the Julia runtime is started with –check-bounds=no, no
bound checking is done at all. This is equivalent to annotating all array access
with the @inbounds macro. This option should only be used sparingly in the case
of extremely performance-sensitive code, in which the system is very well tested
and with minimal user inputs.

Chapter 6

[89]

Allocations and in-place operations
Consider the following trivial function, xpow, which takes an integer as input and
returns the first few powers of the number. Another function, xpow_loop, uses
the first function to compute the sum of squares of a large sequence of numbers,
as follows:

function xpow(x)
 return [x x^2 x^3 x^4]
end

function xpow_loop(n)
 s = 0
 for i = 1:n
 s = s + xpow(i)[2]
 end
 return s
end

Benchmarking this function for a large input shows that this function is quite slow,
as follows:

julia> @benchmark xpow_loop(1000000)

================ Benchmark Results ========================

 Time per evaluation: 103.17 ms [101.39 ms, 104.95 ms]

Proportion of time in GC: 13.15% [12.76%, 13.53%]

 Memory allocated: 152.58 mb

 Number of allocations: 4999441 allocations

 Number of samples: 97

 Number of evaluations: 97

 Time spent benchmarking: 10.16 s

The clue is in the number of allocations displayed in the preceding output. Within
the xpow function, a four-element array is allocated for each invocation of this
function. This allocation and the subsequent garbage collection take a significant
amount of time. The Proportion of time in GC statistic displayed in the
preceding code snippet also hints at this problem.

Fast Arrays

[90]

Preallocating function output
Note that, in the xpow_loop function, we only require one array at a time to compute
our result. The array returned from one xpow call is differenced in the next iteration
of the loop. This suggests that all these allocations for new array are a waste, and
it may be easier to preallocate a single array to hold the result for each iteration,
as follows:

function xpow!(result::Array{Int, 1}, x)
 @assert length(result) == 4
 result[1] = x
 result[2] = x^2
 result[3] = x^3
 result[4] = x^4
end

function xpow_loop_noalloc(n)
 r = [0, 0, 0, 0]
 s = 0
 for i = 1:n
 xpow!(r, i)
 s = s + r[2]
 end
 s
end

Note that the xpow! function now has an exclamation mark in its name. This Julia
convention denotes that this function takes an output variable that mutates as an
argument. We allocate a single variable outside the loop in the xpow_loop_noalloc
function and then use it in all loop iterations to store the result of the xpow! function.
Take a look at the following code:

@benchmark xpow_loop_noalloc(1000000)

================ Benchmark Results ========================

 Time per evaluation: 11.02 ms [10.47 ms, 11.57 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 96.00 bytes

 Number of allocations: 1 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 1.13 s

Chapter 6

[91]

The result of this change is quite impressive. The runtime of the function, doing the
same computation, decreases by an order of magnitude. Even more impressively,
instead of millions of allocations, the program got by with only a single allocation.

The message, then, is simple: pay attention to what allocations happen within your
inner loops. Julia provides you with simple tools to track this, so this is easy to fix.
In fact, we don't need a full-fledged benchmarking infrastructure to figure this out.
The simple @time macro also displays the allocations clearly, as shown by the
following code:

julia> @time xpow_loop(1000000)

 0.115578 seconds (5.00 M allocations: 152.583 MB, 21.99% gc time)

julia> @time xpow_loop_noalloc(1000000)

 0.011720 seconds (5 allocations: 256 bytes)

Mutating versions
Given what we discussed in the previous section about the benefits of preallocating
output, it should come as no surprise that many base library functions in Julia have
mutating counterparts that modify their arguments rather than allocating a new
output structure.

For example, the sort base library function, which sorts an array, allocates a new
array of the same size as its input to hold its output: the sorted array. On the other
hand, sort! makes an in-place sorting operation, in which the input array is itself
sorted, as follows:

Julia> @benchmark sort!(a)

================ Benchmark Results ========================

 Time per evaluation: 15.92 ms [15.16 ms, 16.69 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 1.63 s

Fast Arrays

[92]

julia> @benchmark sort(a)

================ Benchmark Results ========================

 Time per evaluation: 18.51 ms [17.22 ms, 19.80 ms]

Proportion of time in GC: 4.78% [0.34%, 9.22%]

 Memory allocated: 7.63 mb

 Number of allocations: 4 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 1.90 s

In this case, while the performance difference is significant, note that the allocating
version of the function spends a significant proportion of its time in garbage collection
and allocates a large amount of memory.

Array views
Julia, similarly to most scientific languages, has a very convenient syntax for array
slicing. Consider the following example that sums each column of a two-dimensional
matrix. First, we will define a function that sums the elements of a vector to produce
a scalar. We will then use this function inside a loop to sum the columns of a matrix,
passing each column one by one to our vector adder, as follows:

function sum_vector(x::Array{Float64, 1})
 s = 0.0
 for i = 1:length(x)
 s = s + x[i]
 end
 return s
end

function sum_cols_matrix(x::Array{Float64, 2})
 num_cols = size(x, 2)
 s = zeros(num_cols)
 for i = 1:num_cols
 s[i] = sum_vector(x[:, i])
 end
 return s
end

Chapter 6

[93]

The x[:, j] syntax denotes all the row elements of the jth column. In other words,
it slices a matrix into its individual columns. Benchmarking this function, we will
notice that the allocations and GC times are quite high. Take a look:

julia> @benchmark sum_cols_matrix(rand(1000, 1000))

================ Benchmark Results ========================

 Time per evaluation: 4.45 ms [3.45 ms, 5.46 ms]

Proportion of time in GC: 17.55% [3.19%, 31.91%]

 Memory allocated: 7.76 mb

 Number of allocations: 3979 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.48 s

The reason for the high allocation is the fact that in Julia, array slices create a copy
of the slice. In other words, for every x[:, j] slice operation in the preceding code
snippet, a new vector is allocated to hold the column, and the element values are
copied into it from the original matrix. This obviously causes a large overheard in
this kind of algorithms.

What we would like in this case is to create a vector representing one column of the
matrix that shares its storage with the original array. This saves a significant amount
of allocation and copying.

Julia 0.4 includes a sub() function, which does exactly this. It returns a new array
that is actually a view into the original array. Creating a SubArray is very fast, much
faster than creating a sliced copy. Accessing a SubArray can be slower than accessing
a regular dense array, but Julia's standard library has some extremely well-tuned
code for this purpose. This code achieves performance nearly on a par with using
regular arrays.

Using sub(), we can rewrite our sum_cols_matrix function to reduce the
allocations due to slicing. However, first, we need to loosen the parameter type of
sum_vector, as we will now pass SubArray to this function. The SubArray type
is a subtype of AbstractArray, but it is obviously a different type than the Array
concrete type, which denotes dense, contiguous stored arrays. Take a look at the
following code:

function sum_vector(x::AbstractArray)
 s = 0.0
 for i = 1:length(x)
 s = s + x[i]
 end

Fast Arrays

[94]

 return s
end

function sum_cols_matrix_views(x::Array{Float64, 2})
 num_cols = size(x, 2); num_rows = size(x, 1)
 s = zeros(num_cols)
 for i = 1:num_cols
 s[i] = sum_vector(sub(x, 1:num_rows, i))
 end
 return s
end

We can note that this function, which uses the views of arrays to operate on portions
of them, is significantly faster than using slices and copies. Most importantly, in the
following benchmark, the number of allocations and the time spent in GC are much
lower, as follows:

julia> @benchmark sum_cols_matrix_views(rand(1000, 1000))
================ Benchmark Results ========================
 Time per evaluation: 1.38 ms [1.06 ms, 1.71 ms]
Proportion of time in GC: 0.81% [0.00%, 5.64%]
 Memory allocated: 101.64 kb
 Number of allocations: 3001 allocations
 Number of samples: 100
 Number of evaluations: 100
 Time spent benchmarking: 0.18 s

SIMD parallelization
SIMD is the method of parallelizing computation whereby a single operation is
performed on many data elements simultaneously. Modern CPU architectures
contain instruction sets that can do this, operating on many variables at once.

Say you want to add two vectors, placing the result in a third vector. Let's imagine
that there is no standard library function to achieve this, and you were writing a
naïve implementation of this operation. Execute the following code:

function sum_vectors!(x, y, z)
 n = length(x)
 for i = 1:n
 x[i] = y[i] + z[i]
 end
end

Chapter 6

[95]

Say the input arrays to this function has 1,000 elements. Then, the function essentially
performs 1,000 sequential additions. A typical SIMD-enabled processor, however, can
add maybe eight numbers in one CPU cycle. Adding each of the elements sequentially
can, therefore, be a waste of CPU capabilities.

On the other hand, rewriting code to operate on parts of the array in parallel can
get complex quickly. Doing this for a wide range of algorithms can be an impossible
task. Julia, as you would expect, makes this significantly easier using the @simd
macro. Placing this macro against a loop gives the compiler the freedom to use
SIMD instructions for the operations within this loop if possible, as shown in the
following code:

function sum_vectors_simd!(x, y, z)
 n = length(x)
 @inbounds @simd for i = 1:n
 x[i] = y[i] + z[i]
 end
end

With this one change to the function, we can now achieve significant performance
gains on this operation, as follows:

julia> @benchmark sum_vectors!(zeros(Float32, 1000000), rand(Float32,
1000000), rand(Float32, 1000000))

================ Benchmark Results ========================

 Time per evaluation: 1.88 ms [1.73 ms, 2.03 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.24 s

julia> @benchmark sum_vectors_simd!(zeros(Float32, 1000000),
rand(Float32, 1000000), rand(Float32, 1000000))

================ Benchmark Results ========================

 Time per evaluation: 1.02 ms [980.93 μs, 1.06 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

Fast Arrays

[96]

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.24 s

There are a few limitations to using the @simd macro. This does not make every
loop faster. In particular, note that using SIMD implies that the order of operations
within and across the loop might change. The compiler needs to be certain that the
reordering will be safe before it attempts to parallelize a loop. Therefore, before
adding @simd annotation to your code, you need to ensure that the loop has the
following properties:

• All iterations of the loop are independent of each other. That is, no iteration
of the loop uses a value from a previous iteration or waits for its completion.
The significant exception to this rule is that certain reductions are permitted.

• The arrays being operated upon within the loop do not overlap in memory.
• The loop body is straight-line code without branches or function calls.
• The number of iterations of the loop is obvious. In practical terms, this

means that the loop should typically be expressed on the length of the
arrays within it.

• The subscript (or index variable) within the loop changes by one for each
iteration. In other words, the subscript is unit stride.

• Bounds checking is disabled for SIMD loops. (Bound checking can cause
branches due to exceptional conditions.)

To check whether the compiler successfully vectorized your code, use the @code_llvm
macro to inspect the generated LLVM bitcode. While the output might be long and
inscrutable, the keywords to look for in the output are sections prefixed with vector
and vectorized operations that look similar to <n * float>.

The following is an extract from the output of @code_llvm for the function we ran
before, showing a successful vectorization of the operations. Thus, we know that the
performance gains we observed are indeed coming from an automatic vectorization
of our sequential code:

julia> @code_llvm sum_vectors_simd!(zeros(Float32, 1000000),
rand(Float32, 1000000), rand(Float32, 1000000))

………

vector.ph: ; preds = %if3

 %n.vec = sub i64 %20, %n.mod.vf

 %28 = sub i64 %n.mod.vf, %20

Chapter 6

[97]

 br label %vector.body

vector.body: ; preds =
%vector.body, %vector.ph

 %lsr.iv42 = phi i64 [%lsr.iv.next43, %vector.body], [0,
 %vector.ph]

 %29 = mul i64 %lsr.iv42, -4

 %uglygep71 = getelementptr i8* %25, i64 %29

 %uglygep7172 = bitcast i8* %uglygep71 to <8 x float>*

 %wide.load = load <8 x float>* %uglygep7172, align 4

 %30 = mul i64 %lsr.iv42, -4

 %sunkaddr = ptrtoint i8* %25 to i64

 %sunkaddr73 = add i64 %sunkaddr, %30

 %sunkaddr74 = add i64 %sunkaddr73, 32

 %sunkaddr75 = inttoptr i64 %sunkaddr74 to <8 x float>*

 %wide.load14 = load <8 x float>* %sunkaddr75, align 4

Yeppp!
Many algorithms for scientific computing compute transcendental functions (log, sin,
and cos) on arrays of floating point values. These are heavily used operations with
strict correctness requirements and thus have been the target of many optimization
efforts over the years. Faster versions of these functions can have a huge impact on
the performance of many applications in the scientific computing domain.

In this area, the Yeppp! software suite can be considered state-of-the-art. Primarily
written at Georgia Institute of Technology by Marat Dukhan, Yeppp! provides
optimized implementations of modern processors of these functions, which are
much faster compared to the implementations in system libraries.

Julia has a very easy-to-use binding to Yeppp! within a package. It can be installed
using the in-built package management mechanism Pkg.add("Yeppp"). Once
installed, the functions are available with the Yeppp module. There is no simpler
way to get a 4x performance boost. With performance gains of this magnitude,
there is little reason to use anything else for code where a large number of
transcendental functions needs to be computed. Run the following code:

julia> @benchmark log(a)

================ Benchmark Results ========================

Fast Arrays

[98]

 Time per evaluation: 17.41 ms [16.27 ms, 18.55 ms]

Proportion of time in GC: 5.08% [0.32%, 9.83%]

 Memory allocated: 7.63 mb

 Number of allocations: 2 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 1.81 s

julia> @benchmark Yeppp.log(a)

================ Benchmark Results ========================

 Time per evaluation: 4.45 ms [3.54 ms, 5.35 ms]

Proportion of time in GC: 15.63% [1.55%, 29.71%]

 Memory allocated: 7.63 mb

 Number of allocations: 2 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.49 s

Yeppp also provides in-place versions of its functions that can be faster in many
situations, saving allocations and subsequent garbage collection. The in-place
version of log, for example, provides a 2x performance gain over the allocating
version we ran before. Take a look at the following code:

julia> @benchmark Yeppp.log!(a)

================ Benchmark Results ========================

 Time per evaluation: 2.34 ms [2.01 ms, 2.67 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.26 s

The Yeppp Julia package provides implementations of some common vectorized
functions, including log, sin, exp, and sumabs. Refer to https://github.com/
JuliaLang/Yeppp.jl for full details of its capabilities.

https://github.com/JuliaLang/Yeppp.jl
https://github.com/JuliaLang/Yeppp.jl

Chapter 6

[99]

Writing generic library functions
with arrays
The suggestions in the previous sections should make your array code fast and
high-performance. If you are directly writing code to solve your own problems, this
should be enough. However, if you are writing library routines that may be called
by other programs, you will need to heed additional concerns. Your function may be
called with arrays of different kinds and with different dimensions. To write generic
code that is fast with all types and dimensions of arrays, your code needs to be
careful in how it iterates over the elements of the arrays.

All Julia arrays are subtypes of the AbstractArray type. All abstract arrays must
provide facilities for indexation and iteration. However, these can be implemented
very differently for different types of arrays. The default array is DenseArray, which
stores its elements in contiguous memory. As discussed before, these elements can
be pointers or values, but in either case, they are stored in contiguous memory. This
means that linear indexing is very fast for all these arrays. However, this is not true
for all kinds of arrays.

Linear indexing
The term linear indexing refers to the ability of indexing a
multidimensional array by a single scalar index. So, for example, if we
have a three-dimensional array x with 10 elements in each dimension,
it can be indexed with a single integer in the range of 1 to 1000. In other
words, x[1], x[2],…x[10], x[11], …x[99], and x[100] are consecutive
elements of the array. As described earlier, Julia arrays are stored in a
major order column, so linear indexing runs through the array in this
order. This makes linear indexing particularly cache-friendly because
contiguous memory segments are accessed consecutively. In contrast,
cartesian indexing uses the complete dimensions of the array to index it.
The three-dimensional array x is indexed by three integers x[i, j, k].

For example, subarrays can be efficiently indexed using cartesian indexing, but
linear indexing is much slower due to the need to compute a div for each indexing
operation. While cartesian indexing is useful when the dimensions of an array are
known, generic code typically uses linear indexing to work with multidimensional
arrays. This, then, may create performance pitfalls.

Fast Arrays

[100]

As an example of a function that can work with generic multidimensional arrays,
let's write a simple function that sums all the elements in an array, as follows:

function mysum_linear(a::AbstractArray)
 s=zero(eltype(a))
 for i = 1:length(a)
 s=s+a[i]
 end
 return s
end

This function works with arrays of any type and dimension, as we can note in the
test calls in the following code, in which we call it with a range—a three-dimensional
array, a two-dimensional array, and a two-dimensional subarray, respectively:

julia> mysum_linear(1:1000000)

500000500000

julia> mysum_linear(reshape(1:1000000, 100, 100, 100))

500000500000

julia> mysum_linear(reshape(1:1000000, 1000, 1000))

500000500000

julia> mysum_linear(sub(reshape(1:1000000, 1000, 1000), 1:500, 1:500))

62437625000

If we benchmark these functions, we will note that calling the same function on a
subarray is significantly slower than calling it on a regular dense array.

julia> @benchmark mysum_linear(reshape(1:1000000, 1000, 1000))

================ Benchmark Results ========================

 Time per evaluation: 808.98 μs [728.67 μs, 889.28 μs]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.33 s

Chapter 6

[101]

julia> @benchmark mysum_linear(sub(reshape(1:1000000, 1000, 1000), 1:500,
1:500))

================ Benchmark Results ========================

 Time per evaluation: 11.39 ms [10.23 ms, 12.55 ms]

Proportion of time in GC: 4.97% [0.75%, 9.19%]

 Memory allocated: 7.61 mb

 Number of allocations: 498989 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 1.34 s

In situations such as this where we want to write generic functions that can be
performant with different kinds of arrays, the advice is to not use linear indexing.
So, what should we use?

The simplest option is to directly iterate the array rather than iterating its indices.
The iterator for each kind of array will choose the most optimal strategy for high
performance. Hence, the code to add the elements of a multidimensional array
can be written as follows:

function mysum_in(a::AbstractArray)
 s = zero(eltype(a))
 for i in a
 s = s + i
 end
end

If we benchmark this function, we can see the difference in performance, as follows:

julia> @benchmark mysum_in(sub(reshape(1:1000000, 1000, 1000), 1:500,
1:500))

================ Benchmark Results ========================

 Time per evaluation: 354.25 μs [347.11 μs, 361.39 μs]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.23 s

Fast Arrays

[102]

This strategy is usable when the algorithm only requires the elements of the array and
not its indexes. If the indexes need to be available within the loop, they can be written
using the eachindex() method. Each array defines an optimized eachindex() method
that allows the iteration of its index efficient. We can then rewrite the sum function as
follows, even though, for this particular function, we do not actually need indexes:

function mysum_eachindex(a::AbstractArray)
 s = zero(eltype(a))
 for i in eachindex(a)
 s = s + a[i]
 end
end

The benchmark numbers demonstrate an order of magnitude improvement in the
speed of these functions when not using linear indexing for subarrays. Writing code
in this manner, therefore, allows our function to be used correctly and efficiently by
all manner of arrays in Julia. Take a look at the following:

Julia> @benchmark mysum_eachindex(sub(reshape(1:1000000, 1000, 1000),
1:500, 1:500))

================ Benchmark Results ========================

 Time per evaluation: 383.06 μs [363.04 μs, 403.07 μs]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.22 s

Summary
In this chapter, we covered the performance characteristics in Julia of the most
important data structure in scientific computing: the array. We discussed why Julia's
design enables extremely fast array operations and how to get the best performance in
our code when operating on arrays. This brings us to the end of our journey creating
the fastest possible code in the Julia. Using all the tips discussed until now, the
performance of your code should approach that of well-written C.

Sometimes, however, this isn't enough; we want higher performance. Our data may
be larger or our computations intensive. In this case, the only option is to parallelize
our processing using multiple CPUs and systems. In the next chapter, we will take a
brief look at the features that Julia provides to write parallel systems easily.

[103]

Beyond the Single Processor
Throughout this book, we discussed ways to make our code run faster and more
efficiently. Using the suggestions in the previous chapters, your code now fully
utilizes the processor without much overhead or wastage. However, if you still
need your computation to finish even earlier, the only solution is distributing the
computation over multiple cores, processors, and machines. In this chapter, we will
briefly discuss some of the facilities available in Julia for distributed computing.
A complete exposition of this topic is probably the subject of another large book—
this chapter can only provide a few pointers for further information, such as:

• Parallelism in Julia
• Programming parallel tasks
• Shared memory arrays

Parallelism in Julia
Julia is currently a single-threaded language (although it does perform asynchronous
I/O). This means that the Julia code that you write will run sequentially on a single
core of the machine. There are a few significant exceptions; Julia has asynchronous
I/O that can offload network or file access to a separate operating system thread,
and some libraries embedded within Julia, such as OpenBLAS, spawn and manage
multiple threads for their computations. Notwithstanding these exceptions, most
user-written Julia code is limited to a single core.

Julia, however, contains an easy-to-use multiprocessor mechanism. You can start
multiple Julia processes either on a single host or across a network, and you can
control, communicate, and execute programs across the entire cluster.

Beyond the Single Processor

[104]

Starting a cluster
The communication between Julia processes is one-sided in the sense of there being
a master process that accepts the user's inputs and controls all the other processes.
Starting a cluster, therefore, involves either a command-line switch while starting the
master Julia process or calling methods from REPL. At its simplest, the –p n option
while starting Julia creates n additional processes on the local host, as can be seen in
the following:

$./julia -p 2

 _

 _ _ _(_)_ | A fresh approach to technical computing

 (_) | (_) (_) | Documentation: http://docs.julialang.org

 _ _ _| |_ __ _ | Type "?help" for help.

 | | | | | | |/ _` | |

 | | |_| | | | (_| | | Version 0.4.3-pre+6 (2015-12-11 00:38 UTC)

 _/ |__'_|_|_|__'_| | Commit adffe19* (63 days old release-0.4)

|__/ | x86_64-apple-darwin15.2.0

The procs() method can be used to inspect the cluster. It returns the IDs of all the
Julia processes that are available. We can note in the following that we have three
processes available—the master and two child processes:

julia> procs()

3-element Array{Int64,1}:

 1

 2

 3

The addprocs(n) method creates additional processes connected to the same master.
It behaves similarly to the –p n option but is a pure Julia function that can be called
from REPL or other Julia code, as follows:

julia> addprocs(2)

2-element Array{Int64,1}:

 4

 5

julia> procs()

Chapter 7

[105]

5-element Array{Int64,1}:

 1

 2

 3

 4

 5

These commands launch multiple Julia processes on the same machine. This is useful
to the extent of running as many Julia processes as the number of cores on this host.
Beyond this, you can start processes on other hosts by providing the hostname to the
addprocs call, as follows:

julia> addprocs(["10.0.2.1", "10.0.2.2"])

7-element Array{Int64,1}:

 1

 2

 3

 4

 5

 6

 7

This invocation, by default, uses Secure Shell (SSH) to connect to and start Julia
processes on remote machines. There are, of course, many different configuration
options possible for this setup, including the ability to use other protocols to control
and communicate between processes. All this and more is described in detail in the
manual at http://docs.julialang.org/en/release-0.4/manual/parallel-
computing/#clustermanagers.

Communication between Julia processes
The primitive facilities provided by Julia to move code and data within a cluster of
processes consist of remote references and remote calls. As the name suggests, a remote
reference consists of a reference to data residing on a different Julia process. Thereby,
values can be retrieved from (or written to) such a reference.

http://docs.julialang.org/en/release-0.4/manual/parallel-computing/#clustermanagers
http://docs.julialang.org/en/release-0.4/manual/parallel-computing/#clustermanagers

Beyond the Single Processor

[106]

A remote call, on the other hand, is a request to execute a function on a particular
node. Such a call is asynchronous in that a remote calls finishes immediately,
returning the RemoteRef object, which is a reference to its result. The arguments to
remotecall are the function name, the process number to execute the function in,
and the arguments to this function. The caller, then, has the option to wait() on the
reference until the call completes and then fetch() the result into its own process,
as shown in the following code:

julia> a = remotecall(2,sqrt, 4.0)

RemoteRef{Channel{Any}}(2,1,3)

julia> wait(a)

RemoteRef{Channel{Any}}(2,1,3)

julia> fetch(a)

2.0

For simple uses, the remotecall_fetch function can combine these two steps and
return the function result at once, as follows:

julia> remotecall_fetch(2, sqrt, 4.0)

2.0

Programming parallel tasks
The low-level facilities that we saw in the previous section are quite flexible and
very powerful. However, they leave a lot to be desired in terms of ease of use. Julia,
therefore, has built-in set of higher-level programming tools that make it much easier
to write parallel code. We will discuss some of them in the next section.

@everywhere
The @everywhere macro is used to run the same code in all the processes in
the cluster. This is useful to set up the environment to run the actual parallel
computation later. The following code loads the Distributions package and
calls the rand method on all the nodes simultaneously, as follows:

julia> @everywhere using Distributions

julia> @everywhere rand(Normal())

Chapter 7

[107]

@spawn
The @spawn macro is a simpler way to run a function in a remote process without
having to specify the remote node or having to work through ambiguous syntax.
Take a look at the following code:

julia> a=@spawn randn(5,5)^2

RemoteRef{Channel{Any}}(2,1,240)

julia> fetch(a)

5x5 Array{Float64,2}:

 -0.478348 -0.185402 6.21775 2.62166 -5.4774

 -3.22569 -1.56487 3.03402 -0.305334 -1.75827

 -2.9194 -0.0549954 0.922262 -0.117073 -0.281402

 0.709968 1.87017 -1.7031 0.343585 0.09105

 3.20311 0.49899 -0.202174 -0.337815 -1.81711

This macro actually creates a closure around the code being called on the remote node.
This means that any variable declared on the current node will be copied over to the
remote node. In the preceding code, the random array is created on the remote node.
However, in the following code, the random array is created on the current node and
copied to the remote node. Even though the two code extracts look similar, they have
very different performance characteristics. Take a look at the following code:

julia> b=rand(5,5)

5x5 Array{Float64,2}:

 0.409983 0.852665 0.490156 0.481329 0.642901

 0.676688 0.0865577 0.59649 0.553313 0.950665

 0.591476 0.824942 0.440399 0.701106 0.321909

 0.137929 0.0138369 0.273889 0.677865 0.33638

 0.249115 0.710354 0.972105 0.617701 0.969487

julia> a=@spawn b^2

RemoteRef{Channel{Any}}(3,1,242)

julia> fetch(a)

5x5 Array{Float64,2}:

 1.26154 1.29108 1.68222 1.73618 2.01716

 1.00195 1.75952 1.7217 1.7541 1.81713

Beyond the Single Processor

[108]

 1.2381 1.17741 1.48089 1.72401 1.8542

 0.405205 0.593076 0.709137 0.933354 0.744132

 1.48451 1.77305 2.08556 2.21207 2.29608

Parallel for
Julia includes an inbuilt parallel for loop that can automatically distribute the
computation within a for loop across all the nodes in a cluster. This can sometimes
allow code to be sped up across machines with little programmer intervention.

In the following code, we will generate a million random numbers and add them.
The first function computes each step serially, while the second function attempts
to distribute the steps across the cluster. Each step in this loop can be computed
independently and should thus be easy to parallelize:

 function serial_add()
 s=0.0
 for i = 1:1000000
 s=s+randn()
 end
 return s
 end

 function parallel_add()
 return @parallel (+) for i=1:1000000
 randn()
 end
 end

We can note that the parallel function provides a significant performance
improvement without the programmer having to manage the task distribution
or internode communication explicitly. Now, take a look at the following code:

julia> @benchmark serial_add()

================ Benchmark Results ========================

 Time per evaluation: 6.95 ms [6.59 ms, 7.31 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 0.00 bytes

 Number of allocations: 0 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.86 s

julia> @benchmark parallel_add()

Chapter 7

[109]

================ Benchmark Results ========================

 Time per evaluation: 4.42 ms [4.25 ms, 4.60 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

 Memory allocated: 154.42 kb

 Number of allocations: 2012 allocations

 Number of samples: 100

 Number of evaluations: 100

 Time spent benchmarking: 0.63 s

Parallel map
The parallel for loop we discussed in the previous section can perform a reduction
(the addition in the previous code) and works well even if each step in the
computation is lightweight. For code where each iteration is heavyweight, and there
is no reduction to be done, the parallel map construct is useful. In the following code,
we will create 10 large matrices and then perform a singular-value decomposition on
each. We can note that parallelizing this computation can attain a significant speed
improvement simply by changing one character in the code:

julia> x=[rand(100,100) for i in 1:10];

julia> @benchmark map(svd, x)

================ Benchmark Results ========================

 Time per evaluation: 327.77 ms [320.38 ms, 335.16 ms]

Proportion of time in GC: 0.13% [0.00%, 0.40%]

 Memory allocated: 5.47 mb

 Number of allocations: 231 allocations

 Number of samples: 29

 Number of evaluations: 29

 Time spent benchmarking: 10.18 s

julia> @benchmark pmap(svd, x)

================ Benchmark Results ========================

 Time per evaluation: 165.30 ms [161.76 ms, 168.84 ms]

Proportion of time in GC: 0.10% [0.00%, 0.40%]

 Memory allocated: 1.66 mb

 Number of allocations: 2106 allocations

 Number of samples: 59

 Number of evaluations: 59

 Time spent benchmarking: 10.11 s

Beyond the Single Processor

[110]

Distributed arrays
The DistributedArrays package provides an implementation of partitioned
multidimensional arrays. Detailed package documentation is available at https://
github.com/JuliaParallel/DistributedArrays.jl. For the moment, it suffices
to say that there exist facilities to partition datasets automatically at creation or
manually, as well as distributing the computation to each node for operation on the
local parts of the arrays.

Shared arrays
Distributed arrays are a fully generic solution that scales across many networked
hosts in order to work on data that cannot fit in the memory of a single machine.
However, in many circumstances, although the data does fit in the memory, we want
multiple Julia processes to improve throughput by fully utilizing all the cores in a
machine. In this situation, shared arrays are useful to get different Julia processes
operating on the same data.

Shared arrays, as the name suggests, are arrays that are shared across multiple Julia
processes on the same machine.

Constructing SharedArray requires specifying its type, its dimensions, and the list of
process IDs that will have access to the array, as follows:

S=SharedArray(Float64, (100, 100, 5), pids=[2,3,4,5]);

Once a shared array is created, it is accessible in full to all the specified workers
(on the same machine). Unlike a distributed array, the data is not partitioned, and
hence there is no need for any data transfer between nodes. Therefore, when the data
is small enough to fit in the memory but large enough to require multiple nodes to
process, shared arrays are particularly useful. Not only are they highly performant
in these situations, it is much easier to write code for them.

Threading
Shared arrays can be seen as some kind of shared memory multiprocessing in Julia.
They are currently useful as Julia does not have first-class threads that can operate on
shared memory. This is, however, being worked on as we speak, and it is likely that
in the future versions of Julia, it will be possible to operate on shared memory arrays
from multiple threads within the same process.

https://github.com/JuliaParallel/DistributedArrays.jl
https://github.com/JuliaParallel/DistributedArrays.jl

Chapter 7

[111]

Summary
This chapter provided a very cursory glimpse into the parallel computing facilities
built into the Julia language. While we didn't cover much in detail in this chapter,
you have hopefully noted how easy it is to get started with distributed computation
in Julia. With a little bit of help from the online documentation, it should be easy to
create high performing distributed codebases in Julia.

[113]

Index
Symbols
@everywhere macro 106
@fastmath macro 73-75
@spawn macro 107
@time macro 12
@timev macro 13

A
accurate benchmarking 18
Ahead of Time (AOT) 5
allocations 89
array internals

about 81
column wise storage 84-86
representation 82
storage 82, 83

arrays
used, for writing generic library

functions 99-102
array views 92, 93

B
Benchmarks.jl

using 18
BigInt 71
bounds checking

about 87
configuration, at startup 88
cost, removing 87, 88

C
closures and anonymous functions

about 55
FastAnonymous 56

cluster managers
reference link 105

code specialization 6

D
distributed arrays

about 110
reference link 110

F
flame graph 16
floating point 71
floating point operations per

second (flops) 60
function output

preallocating 90

G
generated functions

about 63
using 63
using, for performance 63-65

generic library functions
writing, arrays used 99-101

globals
issues 46
performance issues, fixing with 48-50
using 46

[114]

I
inlining

about 50
controlling 52-54
default inlining 51
disabling 54

in-place operations 89
integers

about 67-69
overflow 69, 70

Intermediate Representation (IR) 5

J
Julia

about 21
advantages 2, 3
array internals 81
Just-In-Time (JIT) compiled language 5
Low Level Virtual Machine (LLVM) 4
numbers 67
parallelism 103
performance speed 7
reference link 4
speed 4
types 6
type system 21
versions 3

Julia code
@time macro 12
@timev macro 13
tic() function 12
timing 11
toc() function 12

Julia profiler
about 13
ProfileView 16
using 14, 15

Just-In-Time (JIT) 4

K
K-B-N summation 75, 76
kernel methods 39, 40

L
linear indexing 99
Low Level Virtual Machine (LLVM)

reference link 4

M
macros, for performance

Horner macro 61, 62
Horner's method 60, 61
Julia compilation process 57, 58
polynomial, evaluating 59, 60
using 57, 58

memory allocation
analyzing 17
tracker, using 17

N
named parameters

using 66
numbers

about 67
BigInt 71
floating point 71
integer overflow 69, 70
integers 67-69
unchecked conversions, for unsigned

integers 72

P
parallel for loop 108
parallelism

about 103
cluster, starting 104, 105
communication, between

Julia processes 105
parallel map 109
parallel tasks, programming

@everywhere macro, using 106
@spawn macro, using 107
about 106
distributed arrays 110
parallel for loop 108
parallel map 109

[115]

performance
@fastmath macro 73
fastmath macro 74, 75
K-B-N summation 75, 76
trading, for accuracy 72

R
Read Eval Print Load (REPL) 12
remote calls 105
remote references 105

S
sampling profiler 13
Secure Shell (SSH) 105
shared arrays

about 110
threading 110

Single Instruction Multiple Data (SIMD)
about 83
parallelization 94-96

sqrt function 6
storage locations

arrays 41-43
composite types 43
defining 41
parametric composite types 44

subnormal numbers (denormal)
about 76, 77
reference link 76
treating, as zero 77, 78

T
tic() function 12
toc() function 12
type inference 6
type parameters 82
type-stability

about 28
definitions 28
fixing 29, 30
identifying 31-34
loop variables 36-39
performance pitfalls 30

type system, Julia
about 21
abstract types 23
composite types 25
multiple dispatch 22, 23
online documentation 27
type hierarchy 24, 25
type inference 27
type parameters 26
types, using 21, 22

U
unsigned integers 72

V
versions

mutating 91

Y
Yeppp! software

about 97, 98
reference link 98

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Julia is Fast
	Julia – fast and dynamic
	Designed for speed
	JIT and LLVM
	Types

	How fast can Julia be?
	Summary

	Chapter 2: Analyzing Julia Performance
	Timing Julia code
	Tic and Toc
	The @time macro
	The @timev macro

	The Julia profiler
	Using the profiler
	ProfileView

	Analyzing memory allocation
	Using the memory allocation tracker

	Statistically accurate benchmarking
	Using Benchmarks.jl

	Summary

	Chapter 3: Types in Julia
	The Julia type system
	Using types
	Multiple dispatch
	Abstract types
	Julia's type hierarchy
	Composite and immutable types
	Type parameters
	Type inference

	Type-stability
	Definitions
	Fixing type-instability
	Performance pitfalls
	Identifying type-stability
	Loop variables

	Kernel methods
	Types in storage locations
	Arrays
	Composite types
	Parametric composite types

	Summary

	Chapter 4: Functions and Macros – Structuring Julia Code for High Performance
	Using globals
	The trouble with globals
	Fixing performance issues with globals

	Inlining
	Default inlining
	Controlling inlining
	Disabling inlining

	Closures and anonymous functions
	FastAnonymous

	Using macros for performance
	The Julia compilation process
	Using macros
	Evaluating a polynomial
	Horner's method
	The Horner macro

	Generated functions
	Using generated functions
	Using generated functions for performance
	Using named parameters

	Summary

	Chapter 5: Fast Numbers
	Numbers in Julia
	Integers
	Integer overflow
	BigInt
	The floating point
	Unchecked conversions for unsigned integers

	Trading performance for accuracy
	The fastmath macro
	The K-B-N summation

	Subnormal numbers
	Subnormal numbers to zero

	Summary

	Chapter 6: Fast Arrays
	Array internals in Julia
	Array representation and storage
	Column-wise storage

	Bound checking
	Removing the cost of bound checking
	Configuring bound checks at startup

	Allocations and in-place operations
	Preallocating function output
	Mutating versions

	Array views
	SIMD parallelization
	Yeppp!
	Writing generic library functions
with arrays
	Summary

	Chapter 7: Beyond the Single Processor
	Parallelism in Julia
	Starting a cluster
	Communication between Julia processes

	Programming parallel tasks
	@everywhere
	@spawn
	Parallel for
	Parallel map
	Distributed arrays

	Shared arrays
	Threading

	Summary

	Index

