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Preface
When I first learned about Julia in early 2012, it was clear to me that this is a 
language that I've wanted for many years. The use of multiple dispatch made it 
very easy to express mathematical concepts, while the speed of the language made 
it feasible to express them in the Julia. I came for the elegance and stayed for the 
performance. On the other hand, some users come to Julia for the performance and 
stay for the elegance. Either way, in order to fully appreciate the power and beauty 
of the language, it needs to live up to its promise of high performance.

I hope this book will help Julia programmers at all levels to learn the design 
techniques and paradigms that produce fast Julia code. One of the nice things  
about Julia is that its performance characteristics are simple and easy to reason out. 
I hope this book will provide you with a framework to think about and analyze the 
performance of your own code.

What this book covers
Chapter 1, Julia is Fast, discuses some of the design underpinning the language and its 
focus on high performance.

Chapter 2, Analyzing Julia Performance, provides the tools and techniques you can use 
to measure and analyze the performance of your own programs.

Chapter 3, Types in Julia, describes the type system and discusses why writing  
type-stable code is crucial to high performance.

Chapter 4, Functions and Macros – Structuring Julia Code for High Performance, discusses 
techniques to use dispatch and code generation to structure high-performance 
programs.

Chapter 5, Fast Numbers, discusses the basic numeric types and why they are fast.
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Chapter 6, Fast Arrays, describes ways to use multidimensional arrays in the fastest 
possible way.

Chapter 7, Beyond the Single Processor, provides an introduction to Julia's distributed 
computing facilities.

What you need for this book
If you are reading this book, we assume you have installed Julia and written a 
few simple Julia programs and that you are familiar with Julia REPL. The basic 
Julia installation, available from http://julialang.org/downloads, is the only 
prerequisite for this book. We will demonstrate most of the techniques in the book 
using REPL, and we encourage your to follow along. Paste the commands on to 
REPL and inspect the output yourself.

Who this book is for
This book is for beginner- and intermediate-level Julia developers who are  
interested in high-performance technical computing. We expect you to have  
a basic understanding of Julia's syntax and have written a few small Julia  
programs prior to reading this book.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"abstract types are defined using the abstract keyword."

A block of code is set as follows:

    function bar(a, b)
        x::Int64 = 0
        y = a+b+x
        return y
    end

http://julialang.org/downloads
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Any command-line input or output is written as follows:

julia> @benchmark serial_add() 

================ Benchmark Results ======================== 

Time per evaluation: 6.95 ms [6.59 ms, 7.31 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%] 

Memory allocated: 0.00 bytes 

Number of allocations: 0 allocations 

Number of samples: 100 

Number of evaluations: 100 

Time spent benchmarking: 0.86 s 

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

www.packtpub.com/authors
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Downloading the example code
You can download the example code files for this book from your account at 
http://www.packtpub.com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on  
the book's webpage at the Packt Publishing website. This page can be accessed  
by entering the book's name in the Search box. Please note that you need to be 
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams 
used in this book. The color images will help you better understand the changes in 
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/JuliaHighPerformance_ColorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/JuliaHighPerformance_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JuliaHighPerformance_ColorImages.pdf
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support




[ 1 ]

Julia is Fast
In many ways, the history of programming languages has often been driven by, and 
certainly intertwined, with the needs of numerical and scientific computing. The first 
high-level programming language, Fortran, was created with scientific computing 
in mind, and continues to be important in the field even to this day. In recent years, 
the rise of data science as a specialty has brought additional focus to scientific 
computing, particularly for statistical uses. In this area, somewhat counterintuitively, 
both specialized languages such as R and general-purpose languages such as Python 
are in widespread use. The rise of Hadoop and Spark has spread the use of Java and 
Scala respectively among this community. In the midst of all this, Matlab has had 
a strong niche within engineering and communities, while Mathematica remains 
unparalleled for symbolic operations.

A new language for scientific computing therefore has a very high barrier to overcome. 
It's been only a few short years since the Julia language was introduced into the 
world. In this time, it's innovative features, which make it a dynamic language, based 
on multiple dispatch as its defining paradigm, has created growing niche within the 
numerical computing world. However, it's the claim of high performance that excited 
its early adopters the most.

This, then, is a book that celebrates writing high-performance programs. With Julia, 
this is not only possible, but also reasonably straightforward, within a low-overhead, 
dynamic language.
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As a reader of this book, you have likely already written your first few Julia 
programs. We will assume that you have successfully installed Julia, and have a 
working programming environment available. We expect you are familiar with 
very basic Julia syntax, but we will discuss and review many of those concepts 
throughout the book as we introduce them.

• Julia – fast and dynamic
• Designed for speed
• How fast can Julia be?

Julia – fast and dynamic
It is a widely believed myth in programming language communities that  
high-performance languages and dynamic languages are completely disjoint sets. 
The perceived wisdom is that, if you want programmer productivity, you should  
use a dynamic language, such as Ruby, Python or R. On the other hand, if you want 
fast code execution, you should use a statically typed language such as C or Java.

There are always exceptions to this rule. However, for most mainstream programmers, 
this is a strongly held belief.

This usually manifests itself in what is known as the "two language" problem. This is 
something that is especially prominent in scientific computing. This is the situation 
where the performance-critical inner kernel is written in C, but is then wrapped and 
used from a dynamic, higher-level language. Code written in traditional, scientific 
computing environments such as R, Matlab or NumPy follows this paradigm.

Code written in this fashion is not without its drawbacks however. Even though it 
looks like this gets you the best of both worlds — fast computation, while allowing 
the programmer to use a high-level language — this is a path full of hidden dangers. 
For one, someone will have to write the low-level kernel. So, you need two different 
skillsets. If you are lucky to find the low level code in C for your project, you are  
fine. However, if you are doing anything new or original, or even slightly different 
from the norm, you will find yourself writing both C and a high-level language.  
This severely limits the number of contributors that your projects or research will 
get: to be really productive, they have to be familiar with two languages.
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Secondly, when running code routinely written in two languages, there can be severe 
and unforeseen performance pitfalls. When you can drop down to C code quickly, 
everything is fine. However, if, for whatever reason, your code cannot call into a C 
routine, you'll find your program taking hundreds or even thousands of times more 
longer than you expected.

Julia is the first modern language to make a reasonable effort to solve the "two 
language" problem. It is a high-level, dynamic, language with powerful features  
that make for a very productive programmer. At the same time, code written in Julia 
usually runs very fast, almost as fast as code written in statically typed languages.

The rest of this chapter describes some of the underlying design decisions that  
make Julia such a fast language. We also see some evidence of the performance 
claims for Julia.

The rest of the book shows you how to write your Julia programs in a way that 
optimizes its time and memory usage to the maximum. We will discuss how to 
measure and reason performance in Julia, and how to avoid potential performance 
pitfalls.

For all the content in this book, we will illustrate our point individually with small 
and simple programs. We hope that this will enable you grasp the crux of the issue, 
without getting distracted by unnecessary elements of a larger program. We expect 
that this methodology will therefore provide you with an instinctive intuition about 
Julia's performance profile.

Julia has a refreshingly simple performance model – and thus writing fast Julia  
code is a matter of understanding a few key elements of computer architecture,  
and how the Julia compiler interacts with it. We hope that, by the end of this book, 
your instincts are well developed to design and write your own Julia code with the 
fastest possible performance.

Versions of Julia
Julia is a fast moving project, with an open development process. 
All the code and examples in this book are targeted at version 0.4 
of the language, which is the currently released version at the time 
of publication. Check Packt's website for changes and errata for 
future versions of Julia.



Julia is Fast

[ 4 ]

Designed for speed
When the creators of Julia launched the language into the world, they said the 
following in a blog post entitled Why We Created Julia, which was published in  
early 2012:

"We want a language that's open source, with a liberal license. We want the speed 
of C with the dynamism of Ruby. We want a language that's homoiconic, with true 
macros like Lisp, but with obvious, familiar mathematical notation like Matlab. We 
want something as usable for general programming as Python, as easy for statistics 
as R, as natural for string processing as Perl, as powerful for linear algebra as 
Matlab, as good at gluing programs together as the shell. Something that is dirt 
simple to learn, yet keeps the most serious hackers happy. We want it interactive 
and we want it compiled.

(Did we mention it should be as fast as C?)"

High performance, indeed nearly C-level performance, has therefore been one of  
the founding principles of the language. It's built from the ground up to enable a  
fast execution of code.

In addition to being a core design principle, it has also been a necessity from the early 
stages of its development. A very large part of Julia's standard library, including very 
basic low-level operations, is written in Julia itself. For example, the + operation to add 
two integers is defined in Julia itself. (Refer to: https://github.com/JuliaLang/
julia/blob/1986c5024db36b4c921130351597f5b4f9f81691/base/int.jl#L8). 
Similarly, the basic for loop uses the standard iteration mechanism available to all 
user-defined types. This means that the implementation had to be very fast from the 
very beginning to create a usable language. The creators of Julia did not have the 
luxury of escaping to C for even the core elements of the library.

We will note throughout the book many design decisions that have been made with 
an eye to high performance. But there are three main elements that create the basis 
for Julia's speed.

JIT and LLVM
Julia is a Just In Time (JIT) compiled language, rather than an interpreted one.  
This allows Julia to be dynamic, without having the overhead of interpretation.  
This compilation infrastructure is build on top of Low Level Virtual Machine 
(LLVM) (http://llvm.org).

http://llvm.org
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The LLVM compiler without infrastructure project originated at University of 
Illinois. It now has contributions from a very large number of corporate as well as 
independent developers. As a result of all this work, it is now a very high-quality, 
yet modular, system for many different compilation and code generation activities.

Julia uses LLVM for its JIT compilation needs. The Julia runtime generates LLVM 
Intermediate Representation (IR) and hands it over to LLVM's JIT compiler, which 
in turn generates machine code that is executed on the CPU. As a result, sophisticated 
compilation techniques that are built into LLVM are ready and available to Julia, from 
the simple (such as Loop Unrolling or Loop Deletion) to state-of-the-art (such as SIMD 
Vectorization) ones. These compiler optimizations form a very large body of work, and 
in this sense, the existence is of LLVM is very much a pre-requisite to the existence of 
Julia. It would have been an almost impossible task for a small team of developers to 
build this infrastructure from scratch.

Just-In-Time compilation
Just-in-Time compilation is a technique in which the code in a high-
level language is converted to machine code for execution on the CPU 
at runtime. This is in contrast to interpreted languages, whose runtime 
executes the source language directly. This usually has a significantly 
higher overhead. On the other hand, Ahead of Time (AOT) compilation 
refers to the technique of converting source language into machine code 
as a separate step prior to running the code. In this case, the converted 
machine code can usually be saved to disk as an executable file.
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Types
We will have much more to say about types in Julia throughout this book. At this 
stage, suffice it to say that Julia's concept of types is a key ingredient in its performance.

The Julia compiler tries to infer the type of all data used in a program, and compiles 
different versions of functions specialized to particular types of its arguments. To take 
a simple example, consider the sqrt function. This function can be called with integer 
or floating-point arguments. Julia will compile two versions of the code, one for integer 
arguments, and one for floating point arguments. This means that, at runtime, fast, 
straight-line code without any type checks will be executed on the CPU.

The ability of the compiler to reason about types is due to the combination of a 
sophisticated dataflow-based algorithm, and careful language design that allows  
this information to be inferred from most programs before execution begins. Put  
in another way, the language is designed to make it easy to statically analyze.

If there is a single reason for Julia is being such a high-performance language, this 
is it. This is why Julia is able to run at C-like speeds while still being a dynamic 
language. Type inference and code specialization are as close to a secret sauce as Julia 
gets. It is notable that, outside this type inference mechanism, the Julia compiler is 
quite simple. It does not include many advanced Just in Time optimizations that 
Java and JavaScript compilers are known to use. When the compiler has enough 
information about the types within the code, it can generate optimized, straight-line, 
code without many of these advanced techniques.

It is useful to note here that unlike some other optionally typed dynamic languages, 
simply adding type annotations to your code does not usually make Julia go any faster. 
Type inference means that the compiler is, in most cases, able to figure out the types 
of variables when necessary. Hence you can usually write high-level code without 
fighting with the compiler about types, and still achieve superior performance.
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How fast can Julia be?
The best evidence of Julia's performance claims is when you write your own code. 
However, we can provide an indication of how fast Julia can be by comparing a 
similar algorithm over multiple languages.

As an example, let's consider a very simple routine to calculate the power sum for a 
series, as follows:

1000

21

1
n n=∑

The following code runs this computation in Julia 500 times:

function pisum()
    sum = 0.0
    for j = 1:500
        sum = 0.0
        for k = 1:10000
            sum += 1.0/(k*k)
        end
    end
    sum
end

You will notice that this code contains no type annotations. It should look quite 
familiar to any modern dynamic language. The same algorithm implemented in  
C would look something similar to this:

double pisum() {
    double sum = 0.0;
    for (int j=0; j<500; ++j) {
        sum = 0.0;
        for (int k=1; k<=10000; ++k) {
            sum += 1.0/(k*k);
        }
    }
    return sum;
}
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Downloading the example code
You can download the example code files for this book 
from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files 
e-mailed directly to you.
You can download the code files by following these steps:

• Log in or register to our website using your e-mail 
address and password

• Let the mouse pointer hover on the SUPPORT tab at 
the top

• Click on Code Downloads & Errata
• Enter the name of the book in the Search box
• Select the book for which you're looking to download 

the code files
• Choose from the drop-down menu where you 

purchased this book from
• Click on Code Download

You can also download the code files by clicking on the Code 
Files button on the book's webpage at the Packt Publishing 
website. This page can be accessed by entering the book's 
name in the Search box. Please note that you need to be 
logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip 
or extract the folder using the latest version of:

• WinRAR/7-Zip for Windows
• Zipeg/iZip/UnRarX for Mac
• 7-Zip/PeaZip for Linux

By timing this code, and its re-implementation in many other languages (all of which 
are available at https://github.com/JuliaLang/julia/tree/master/test/
perf/micro), we can note that Julia's performance claims are certainly borne out in 
this limited test. Julia can perform at a level similar to C and other statically typed 
and compiled languages.

This is of course a micro benchmark, and should therefore not be extrapolated 
too much. However, I hope you will agree that it is possible to achieve excellent 
performance in Julia. The rest of the book will attempt to show how you can  
achieve performance close to this standard in your code.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/JuliaLang/julia/tree/master/test/perf/micro
https://github.com/JuliaLang/julia/tree/master/test/perf/micro
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Summary
In this chapter, you noted that Julia is a language that is built from the ground up  
for high performance. Its design and implementation have always been focused on 
providing the highest possible performance on the modern CPU.

The rest of the book will show you how to use the power of Julia to the maximum,  
to write the fastest possible code in this language. In the next chapter, we will discuss 
how to measure the speed of Julia code, and identify performance bottlenecks.  
You will learn some of the tools that are built into Julia for this purpose.
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Analyzing Julia Performance
Before we can try and optimize any Julia code we have written, we first need to 
understand its performance characteristics. Is the code fast enough for our needs? If 
not, how much slower is it from what it needs to be? And finally, can we understand 
where the bottlenecks are, so that we can prioritize where to focus our optimization 
effort? This chapter will show us the tools available in Julia to answer these questions 
and more. In later chapters, we will take a look at how to use this information to 
optimize our code.

In this chapter we will cover the following topics:

• Timing Julia functions
• Accurate benchmarking
• Profiling Julia functions
• Tracking detailed memory allocation

Timing Julia code
The first step to understanding anything is to measure it. The same goes for writing 
high-performance Julia code; we need to measure the performance of the code as  
the first step to achieving this. Fortunately Julia makes this extremely easy for us. 
There are simple ways to measure the time taken by any Julia code built into the  
Julia runtime. Moreover, if you want to perform statistically accurate benchmarking, 
there are high-quality packages available.
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Tic and Toc
The simplest way to measure time in Julia is using the tic() and toc() functions. 
Place these functions respectively before and after any piece of Julia code, and we 
will note the time taken by this code on the console. Run the following code:

julia> tic(); sqrt(rand(1000)); toc();

elapsed time: 0.000137693 seconds

In the preceding code, we measured the time taken to generate 1,000 random 
numbers, and to compute its square root. Technically, all the toc() function does is 
print the elapsed time value since the last invocation of tic(). The time printed in 
this case (and other cases) is the actual elapsed time value, not the time spent by 
the CPU on the process. In other words, this is the wall-clock time. In particular, this 
time can be affected by any other CPU's intensive processes running on the machine 
at the same time.

Using these functions might be convenient when running a script, but it is not  
convenient during interactive development on Julia's Read Eval Print Load (REPL) 
console. Therefore, the most common way to measure the elapsed time of Julia code 
is to use the @time macro, which we will discuss next.

The @time macro
Whenever you care about the performance of your code (which you should do all 
the time), the @time macro will end up being one of your most used commands on 
the Julia prompt. Built into the runtime, this macro wraps the provided expression 
to calculate and print the elapsed time while running it. It also measures and outputs 
the amount of memory allocated while running this code as follows:

julia> @time sqrt(rand(1000));

  0.000023 seconds (8 allocations: 15.969 KB)

Any kind of Julia expression can be wrapped by the @time macro. Usually, it is a 
function call as before, but it could be any other valid expression as follows:

julia> s=0

0

julia> @time for i=1:1000

            s=s+sqrt(i)

       end

  0.001270 seconds (2.40 k allocations: 54.058 KB)
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Timing measurements and JIT compiling
Recall that Julia is a JIT compiled language. The Julia compiler and 
runtime compiles any Julia code into machine code the first time it 
sees it. This means that, if you measure the execution time of any Julia 
expression that executes for the first time, you will end up measuring 
the time (and memory use) required to compile this code. So, whenever 
you time any piece of Julia code, it is crucial to run it at least once, prior 
to measuring the execution time. Always measure the second or later 
invocation.

The @timev macro
An enhanced version of the @time macro is also available: the @timev macro. This 
macro operates in a very similar manner to @time, but measures some additional 
memory statistics, and provides elapsed time measurements with nanosecond 
precision. Take a look at the following code:

julia> @timev sqrt(rand(1000));

  0.000012 seconds (8 allocations: 15.969 KB)

elapsed time (ns): 11551

bytes allocated:   16352

pool allocs:       6

non-pool GC allocs:2

Both the @time and @timev macros return the value of the expression whose 
performance they measured. Hence, these can be added without side-effects to 
almost any location within the Julia code.

The Julia profiler
The Julia runtime includes a built-in profiler that can be used to measure which lines 
of code contribute the most to the total execution time of a codebase. It can therefore 
be used to identify bottlenecks in code, which can in turn be used to prioritize 
optimization efforts.

This built-in system is what is known as a sampling profiler. Its work is to inspect the 
call stack of the running system every few milliseconds (by default, 1 millisecond on 
UNIX and 10 milliseconds on Windows), and identify each line of code that contributes 
to this call stack. The idea is that the lines of code that are executed most often are 
found more often on the call stack. Hence, over many such samples, the count of how 
often each line of code is encountered will be a measure of how often this code runs.

www.allitebooks.com

http://www.allitebooks.org


Analyzing Julia Performance

[ 14 ]

The primary advantage of a sampling profiler is that it can run without modifying 
the source program, and thus has a very minimal overhead. The program runs 
at almost full speed when being profiled. The downside of the profiler is that 
the data is statistical in nature, and may not reflect exactly how the program 
performed. However, when sampled over a reasonable period of time (say a few 
hundred milliseconds at least), the results are accurate enough to provide a good 
understanding of how the program performs, and what its bottlenecks are.

Using the profiler
The profiler code lives within the profile module within Julia. So the first step in 
using the profiler is to import its namespace into the current session. You can do  
this via the following code.

julia> using Base.Profile

This makes the @profile macro available to measure and store the performance 
profile of the expression supplied to it.

Do not profile the JIT
As with measuring the time of execution, remember to run your 
code at least once before attempting to profile it. Otherwise, you 
will end up profiling the Julia JIT compiler, rather than your code.

To see how the profiler works, let's start with a test function that creates 1,000 sets of 
10,000 random numbers, and then computes the standard deviation of each set. Run 
the following:

    function testfunc()
        x = rand(10000, 1000)
        y = std(x, 1)
        return y
    end

After calling the function once to ensure that all the code is compiled, we can run the 
profiler over this code. as follows:

julia> @profile testfunc()

This will execute the expression while collecting profile information. The expression 
will return as usual, and the collected profile information will be stored in memory.

julia> Profile.print()

34 REPL.jl; anonymous; line: 93
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 34 REPL.jl; eval_user_input; line: 63

  34 profile.jl; anonymous; line: 16

   21 random.jl; rand!; line: 347

    21 dSFMT.jl; dsfmt_fill_array_close_open!; line: 76

   12 statistics.jl; var; line: 169

    1 reducedim.jl; reduced_dims; line: 19

    6 statistics.jl; mean; line: 31

     6 reducedim.jl; sum!; line: 258

      6 reducedim.jl; _mapreducedim!; line: 197

       4 reduce.jl; mapreduce_pairwise_impl; line: 111

        2 reduce.jl; mapreduce_pairwise_impl; line: 111

         ...

        2 reduce.jl; mapreduce_pairwise_impl; line: 112

         ...

       2 reduce.jl; mapreduce_pairwise_impl; line: 112

        2 reduce.jl; mapreduce_pairwise_impl; line: 111

         ...

    5 statistics.jl; varm!; line: 152

     5 statistics.jl; centralize_sumabs2!; line: 117

      4 reduce.jl; mapreduce_pairwise_impl; line: 111

       4 reduce.jl; mapreduce_pairwise_impl; line: 112

        2 reduce.jl; mapreduce_pairwise_impl; line: 111

         2 reduce.jl; mapreduce_pairwise_impl; line: 111

          2 reduce.jl; mapreduce_pairwise_impl; line: 108

           2 simdloop.jl; mapreduce_seq_impl; line: 67

        2 reduce.jl; mapreduce_pairwise_impl; line: 112

         ...

As you can note, the output from the profiler is a hierarchical list of code locations, 
representing the call stack for the program. The number against each line counts 
the number of times this line was sampled by the profiler. Therefore, the higher the 
number, the greater the contribution of that line to the total runtime of the program.  
It indicates the time spent on the line, and all its callees.

What does this output tell us? Well, among other things, it shows that the creation 
of the random arrays took most of the execution time, about two-thirds. For the 
remainder of the calculation of the standard deviation, the time was evenly split 
between the computation of the mean and variance.
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There are a few profiler options that are sometimes useful, although the defaults  
are a good choice for most use cases. Primary among them is the sampling interval. 
This can be provided as keyword arguments to the Profile.init() method.  
The default delay is 1 millisecond on Linux, and should be increased for very  
long-running programs through the following line of code:

julia> Profile.init(delay=.01)

The delay may be reduced as well, but the overhead of profiling can increase 
significantly if it is lowered too much.

Finally, you may have realized that the profiler stores its samples in memory to be 
viewed later. In order to profile a different program during an existing Julia session, 
it may be necessary to clear the stored profile from memory. The Profile.clear() 
function does this, and must therefore be run between any two invocations of @
profile within the same Julia process.

ProfileView
The textual display of the profiler output shown before is useful and elucidating 
in many cases, but can get confusing if read for long, or deeply nested call graphs. 
In this case, or in general if you would prefer a graphical output, the ProfileView 
package provides such an output. However, this is not built in to the base of Julia,  
and must be installed as an external package

Pkg.add("ProfileView")

This will install the ProfileView package and its dependencies (which include the 
Tk graphical environment). Once installed, its usage is very simple. Simply call the 
ProfileView.view() function instead of Profile.print() after the profile samples 
have been collected using @profile. A user interface window will pop up, with the 
profile displayed as a flame graph, looking similar to the following screenshot. Move 
your cursor over the blocks to note a hover containing the details of the call location:
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This view provides the same information as the tree view seen earlier, but may be 
easier to navigate and understand, particularly for larger programs. In this chart, 
elapsed time goes from left to right, while the call stack goes from bottom to top.  
The width of the bar therefore shows the time spent by the program in a particular 
call location and its callees. The bars stacked on top of one another show a call from 
one to the other.

Analyzing memory allocation
The amount of memory used by a program is sometimes as important to track  
as the amount of time taken to run it. This is not only because memory is a limited 
resource that can be in short supply, but also because excessive allocation can easily 
lead to excessive execution time. The time taken to allocate and de-allocate memory 
and run the garbage collection can become quite significant when a program uses 
large amounts of memory.

The @time macro seen in the previous sections provides information about memory 
allocation for the expression or function being timed. In some cases however it may 
be difficult to predict where exactly in the code the memory allocation occurs. For 
these situations, Julia's track allocation functionality is just what is needed.

Using the memory allocation tracker
To get Julia to track memory allocation, start the julia process with the –track-
allocation=user option as follows:

julia> track -allocation=user

This will start a normal Julia session in which you can run your code as usual. 
However, in the background, Julia will track all the memory used, which will be 
written to .mem files when Julia exits. There will be a new .mem file for each .jl 
file that is loaded and executed. These files will contain the Julia code from their 
corresponding source files, with each line annotated with the total amount of 
memory that was allocated as a result of executing this line.

As we discussed before, when running Julia code, the compiler will compile user 
code at runtime. Once again, we do not want to measure the memory allocation  
due to the compiler. To achieve this, first run the code under measurement once, 
after starting the Julia process. Then run the Profile.clear_malloc_data() 
function to restart the allocation measurement counters. Finally, run the code  
under measurement once again, and then exit the process. This way, we will  
get the most accurate memory measurements.
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Statistically accurate benchmarking
The tools described in this chapter, particularly the @time macro, are useful to 
identify and investigate bottlenecks in our program. However, they are not very 
accurate for a fine-grained analysis of fast programs. If you want to, for example, 
compare two functions that take a few milliseconds to run, the amount of error and 
variability in the measurement will easily swamp the running time of this function.

Using Benchmarks.jl
The solution then is to use the Benchmarks.jl package for statistically accurate 
benchmarking. This package is not yet published in the official repository, but is 
stable and high-quality nevertheless. It can be installed with Pkg.clone("https://
github.com/johnmyleswhite/Benchmarks.jl.git") and the subsequent usage 
is simple. Instead of using @time, as before, simply use @benchmark. Unlike @time 
however, this macro can only be used in front of function calls, rather than any 
expression. It will evaluate the parameters of the function separately, and then call 
the function multiple times to build up a sample of execution times.

The output will show the mean time taken to run the code, but with statistically 
accurate upper and lower bounds. These statistics are computed using an ordinary 
least squares fit of the measured execution time to estimate the expected distribution. 
Take a look at the following:

julia> using Benchmarks

julia> @benchmark sqrt(rand(1000))

================ Benchmark Results ========================

     Time per evaluation: 9.48 μs [9.26 μs, 9.69 μs]

Proportion of time in GC: 5.43% [4.22%, 6.65%]

        Memory allocated: 15.81 kb

   Number of allocations: 4 allocations

       Number of samples: 6601

   Number of evaluations: 1080001

         R² of OLS model: 0.913

 Time spent benchmarking: 10.28 s
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Summary
In this chapter, we discussed how to use the available tools to measure the 
performance of Julia code. You learned to measure the time and memory  
resources used by code, and understood the hotspots for any program.

In subsequent chapters, you will learn how to fix the issues that we identified  
using these tools, and make our Julia programs perform at their fastest.
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Types in Julia
Julia is a dynamically typed language in which, unlike languages such as Java or 
C, the programmer does not need to specify the fixed type of every variable in the 
program. Yet, somewhat counterintuitively, Julia achieves its impressive performance 
characteristics by inferring and using type information for all the data in the program. 
In this chapter, we will start with a brief look at the type system in the language and 
then explain how to use this type system to write high-performance code.

• The Julia type system
• Type-stability
• Types at storage locations

The Julia type system
Types in Julia are essentially tag-on values that restrict the range of potential values 
that can possibly be stored at this location. Being a dynamic language, these tags are 
relevant only to runtime values. Types are not enforced at compile time (except in 
rare cases); rather, they are checked at runtime. However, type information is used 
at compile time to generate specialized methods and different kinds of function 
argument.

Using types
In most dynamic languages, types are usually implicit in how values are created. 
Julia can, and usually is, written in this way—with no explicit type annotations. 
However, additionally in Julia, you can specify that variables or function parameters 
should be restricted to specific types using the :: symbol. Here's an example:

foo(x::Integer) = "an integer"    #Declare type of function argument

foo(x::ASCIIString) = "a string"
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function bar(a, b)

   x::Int64 = 0                  #Declare type of local variable

   y = a+b                       #Type of variable will be inferred

   return y

end

julia> foo(1)                     #Dispatch on type of argument

"an integer"

julia> foo("1")                   #Dispatch on type of argument

"a string"

julia> foo(1.5)                   #Dispatch fails

ERROR: `foo` has no method matching foo(::Float64)

A note on terminology

In Julia, an abstract operation represented by a name is called a 
function, while the individual implementations for specific types are 
called methods. Thus, in the preceding code, we can talk of the foo 
function and the foo methods for Integer and ASCIIString.

Multiple dispatch
If there were one unifying strand through the design of the Julia language, it would 
be multiple dispatch. Simply put, dispatch is the process of selecting a function to 
be executed at runtime. Multiple dispatch, then, is the method of determining 
the function to be called based on the types of all the parameters of the function. 
Thus, one of the most important uses of types in Julia programs is to arrange the 
appropriate method dispatch by specifying the types of function arguments.

Note that this is different from the concept of method overloading. Dispatch is a 
runtime process, while method overloading is a compile-time concept. In most 
traditional object-oriented languages, dispatch at runtime occurs only on the runtime 
type of the receiver of the method (for example, the object before the dot)—hence the 
term "single dispatch."
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Julia programs, therefore, usually contain many small function definitions for 
different types of arguments. It is good practice, however, to constrain argument 
types to the widest level possible. Use tight constraints only when you know 
that the method will fail on other types. Otherwise, write your method to accept 
unconstrained types and depend on the runtime to dispatch nested calls to the 
correct methods.

As an example, consider the following function to compute the sum of the square of 
two numbers:

sumsqr(x, y) = x^2 + y^2

In this code, we do not specify any type constraints for the x and y arguments of our 
sumsqr function. The base library will contain different + and ^ methods for integers 
and floats, and the runtime will dispatch to the correct method based on the types of 
the arguments. Take a look at the output:

julia> sumsqr(1, 2)

5

julia> sumsqr(1.5, 2.5)

8.5

julia> sumsqr(1 + 2im , 2 + 3im)

-8 + 16im

Abstract types
Types in Julia can be concrete or abstract. Abstract types cannot have any 
instantiated values. In other words, they can only be the nodes of the type hierarchy, 
not its leaves. They represent sets of related types. For example, Julia contains integer 
types for 32-bit and 64-bit integers—Int32 and Int64, respectively. Both these types 
therefore inherit from the Integer abstract type.

Abstract types are defined using the abstract keyword. The inheritance relationship 
between types is denoted using the <: symbol followed by the name of the parent (or 
super) type. As an example, shown here are the abstract types defined as the basis of 
Julia's number types:

abstract Number
abstract Real     <: Number 
abstract FloatingPoint <: Real 
abstract Integer  <: Real 
abstract Signed   <: Integer 
abstract Unsigned <: Integer
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You will notice that the Number type is declared without any explicit super type. 
Hence, as discussed in the next section, it is the direct subtype of Any.

Concrete types, on the other hand, are the types that can be instantiated to values. 
Thus, every value in Julia is of one concrete type. One of the most important points 
to note about concrete types is that they cannot have any subtypes. Only abstract 
types can be subtyped. In the language of type theory, all concrete types are declared 
final in Julia.

Julia's type hierarchy
All types in Julia live within a type hierarchy. This hierarchy is rooted at the top 
by the Any type. All Julia types without exception live within this hierarchy. In 
particular, unlike languages such as Java, there is no distinction between so-called 
primitive types and reference types. While there may be differences in how the 
numbers are represented internally compared to user-defined types, as far as the 
type system is concerned they form a unified hierarchy.

When a type declaration is omitted for a variable or parameter (as in many of the 
examples in the previous chapter), it can contain values of any type. This is denoted 
by the special Any type. The Any type can therefore be seen as being at the top of 
Julia's type hierarchy. All other Julia types are subtypes of this type. Visualizing the 
type hierarchy of some of the numeric types described in the previous chapter is 
instructive, as follows:
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At the other end of the spectrum resides the None type. This type lives at the bottom 
of the type hierarchy. All types are super types of None, and there can be no actual 
instances of this type.

Another special type is the Void type. This type has a single instance defined  
named nothing. This is typically used to denote the absence of a value. For example, 
methods that don't return any other value (for instance, a return type of void in some 
languages), return nothing.

Composite and immutable types
Composite types in Julia are collections of named fields. They are equivalent to a 
struct in C and can be thought of as roughly equivalent to a class without behavior 
in object-oriented languages. They are defined with the type keyword and contain 
the names and types of the fields within them. Take a look at the following code:

    type Pixel

        x::Int64

        y::Int64

        color::Int64

    end

julia> p = Pixel(5,5, 100)

Pixel(5,5,100)

julia> p.x = 10;

julia> p.x

10

By default, the fields of a composite type can be changed at any time. In cases 
where this is undesirable, an immutable type can be declared using the immutable 
keyword. In this case, field values can be set only while constructing an instance of 
the type. Once created, field values cannot change. Take a look at the following code:

    immutable IPixel

        x::Int64

        y::Int64

        color::Int64

    end
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julia> p = IPixel(5,5, 100)

IPixel(5,5,100)

julia> p.x=10

ERROR: type IPixel is immutable

Type parameters
Type parameters are one of the most useful and powerful features of Julia's type 
system. This is the ability to use parameters when defining types (or functions), 
thereby defining a whole set of types, one for each value of the parameter. This is 
analogous to generic or template programming in other languages.

Type parameters are declared within curly braces. For the preceding Pixel type, 
if we wanted to store color as an integer, a hexadecimal string, or as an RGB type, 
we could write it as follows. In this case, Pixel itself becomes an abstract type, and 
Pixel{Int64} or Pixel{ASCIIString} are the concrete types:

type Pixel{T}
    x::Int64
    y::Int64
    color::T
end

Parameters of a type are usually other types. This will be familiar if you have used 
template classes in C++ or Java generics. In Julia, however, type parameters are not 
restricted to be other types. They can be values though they are restricted to a set of 
constant, immutable types. Hence, you can use, among others, integers or symbols  
as type parameters.

The built-in Array{T.N} type is a good example of this usage. This type is 
parameterized by two parameters, one of which is a type and the other a value.  
The first parameter, T, is the type of the elements of the array. The second, N, is an 
integer specifying the number of dimensions of the array.

The addition of type parameters provides more information to the compiler about 
the composition of memory. For example, it allows the programmer to assert (or 
the compiler to infer) the types of elements stored within a container. This, as we'll 
discuss in the next section, allows the compiler to generate code in turn that is 
optimized to the types and storage in question.
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Type inference
Types in Julia are optional and unobtrusive. The type system usually does not 
impede for the programmer. It is not necessary or recommended to annotate all  
variables with type information.

This is not to say that type information is redundant. Quite the opposite is true, in 
fact. A large part of Julia's speed comes from the ability of the compiler to compile 
and cache specialized versions of each function for all the possible types to which it 
can be applied. This means that most functions can be compiled down to their best 
possible optimized representations.

To achieve this balance, the runtime tries to figure out as much type information as 
it can through type inference. The algorithm is based on forward dataflow analysis. 
It should be noted that this is not an implementation of the famous Hindley-Milner 
algorithm using unification, which is used in the ML family of languages. In these 
languages, it is mandatory for the compiler to be able to determine the types of every 
value in the system. For Julia, however, the type inference can be performed on a 
best-effort basis, with any failure handled with a runtime fallback.

As a simple example of visible type inference, consider the following line of code 
that creates an array from a range of integers. This code does not have any type 
annotations. Yet the runtime is able to create an array with properly typed elements 
of Int64:

julia>[x for x=1:5]

5-element Array{Int64,1}:

 1

 2

 3

 4

 5

In this section, we provided a quick overview of some important type features 
in Julia. For more information, visit the online documentation at http://docs.
julialang.org/en/release-0.4/manual/types/.

For the rest of this chapter, we will assume familiarity with these concepts and look 
at how this impacts the performance of Julia code

http://docs.julialang.org/en/release-0.4/manual/types/
http://docs.julialang.org/en/release-0.4/manual/types/
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Type-stability
In order for the Julia compiler to compile a specialized version of functions for each 
different type of its argument, it needs to infer, as best as possible, the parameter 
and return types of all functions. Without this, Julia's speed would be hugely 
compromised. In order to do this effectively, the code must be written in a way  
that it is type-stable.

Definitions
Type-stability is the idea that the type of the return value of a function is dependent 
only on the types of its arguments and not the values. When this is true, the 
compiler can infer the return type of a function by knowing the types of its inputs. 
This ensures that type inference can continue across chains of function invocations 
without actually running the code, even though the language is fully dynamic.

As an example, let's look at the following code, which returns the input for positive 
numbers but 0 for negative numbers:

function trunc(x)
   if x < 0
      return 0
   else
      return x
   end
end

This code works for both integers and floating-point output, as follows:

julia> trunc(-1)

0

julia> trunc(-2.5)

0

julia> trunc(2.5)

2.5

However, you may notice an issue with calling this function with the float input. 
Take a look at the following:

julia> typeof(trunc(2.5))

Float64
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julia> typeof(trunc(-2.5))

Int64

The return type of the trunc function, in this case, depends on the value of the input 
and not just its type. The type of the argument for both the preceding invocations is 
Float64. However, if the value of the input is less than zero, the type of the return is 
Int64. On the other hand, if the input is value is zero or greater, then the type of the 
output is Float64. This makes the function type-unstable.

Fixing type-instability
Now that we can recognize type-unstable code, the question arises: how can we fix 
code such as this? There are two obvious solutions. One would be to separate the 
write versions of the trunc function for different input types. So, we could have a 
version of trunc for integers and another for floating point. However, this would 
cause instances of repeated, copy-pasted code. Also, there would not be just two 
such instances; there would be copies for Float32, Float64, Int32, Int64, and so 
on. Further, we would have to write a new version of this function for all the new 
numeric types that are defined. It should be obvious that writing generic functions 
that operate on a wide variety of related types is really the best way to get concise 
and elegant Julia code.

The second obvious solution is to branch on the input type within the generic 
function. So, we could write code similar to this:

if typeof(x) == Float64
    return 0.0
elseif typeof(x) == Float32
    return Float32(0.0)
elseif typeof(x) == Int64
    return 0
……
end

I hope you can see that this can quickly get tedious. However, this type of code 
provides us with a hint to the correct solution. In Julia, whenever you find yourself 
explicitly checking the type of any variable, it is time to let dispatch do the job.

The Julia base library contains a zero(x) function that takes as its argument any 
numeric value and returns an appropriately typed zero value for this type. Using this 
function, we can write a generic trunc function that is type-stable yet works for any 
input type, as follows:

function trunc_fixed(x)
    if x < 0
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        return zero(x)
    else
        return x
    end
end

Output of the code:

julia> trunc_fixed(-2.4)

0.0

julia> trunc_fixed(-2)

0

julia> typeof(trunc_fixed(-2.4))

Float64

julia> typeof(trunc_fixed(-2))

Int64

In making the trunc function type-stable, we used a standard library function to 
move the type variable part of the code into another function. The principle applies 
when you do not have a base function to fall back upon. Isolate the part of your 
function that varies depending on the type of the input and allow Julia's dispatch to 
call the correct piece of code, depending on the type.

Performance pitfalls
We said that type-stability is very important for high-performance Julia code. The 
speed of Julia programs arises from its ability to compile and cache specialized code 
for each function argument type. When a function is type-unstable, the Julia compiler 
cannot compile a fast, specialized version of its caller. Let's take a look at this in 
action with the preceding code:

julia> @benchmark trunc(2.5)

================ Benchmark Results ========================

    Time per evaluation: 13.38 ns [13.04 ns, 13.73 ns]

Proportion of time in GC: 2.39% [1.76%, 3.01%]

        Memory allocated: 16.00 bytes

   Number of allocations: 1 allocations

       Number of samples: 13501
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   Number of evaluations: 774542001

         R² of OLS model: 0.802

 Time spent benchmarking: 10.50 s

julia> @benchmark trunc_fixed(2.5)

================ Benchmark Results ========================

    Time per evaluation: 5.90 ns [5.86 ns, 5.94 ns]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations

       Number of samples: 10601

   Number of evaluations: 48829501

         R² of OLS model: 0.985

 Time spent benchmarking: 0.51 s

Note that the type-stable version is twice as fast as the type-unstable version. 
Crucially, the type-stable version does not allocate any memory, while the type-
unstable version does allocate quite a lot of memory. This combination of slow 
execution and large memory access is something that you will want to get rid of from 
your code at all times. Thankfully, it is not that hard to identify type-unstable tools. 
With the tools available within the language, you will be able to build up an intuition 
about this very quickly.

Identifying type-stability
In the preceding trunc function, the type instability was found by reading 
and understanding the code. In many cases where the code is longer or more 
complicated, it may not be easy or even possible to understand the type behavior of a 
function merely by inspection. It would be useful to have some tools at our disposal.

Fortunately, Julia provides the @code_warntype macro that enables us to view the 
types inferred by the compiler, thereby identifying any type instability in our code. 
The output of @code_warntype is the lowered, type-inferred AST structure. In other 
words, the compiler parses and processes the source code into a standardized form 
and then runs the type inference on the result to figure out the possible types of all 
the variables and function calls within the code.
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Let's run this on our type-unstable method and take a look at what it says, as follows:

julia> @code_warntype trunc(2.5)

Variables:

  x::Float64

  ##fy#7786::Float64

Body:

  begin  # none, line 2:

      ##fy#7786 =  
      (Base.box)(Float64,(Base.sitofp)(Float64,0))::Float64

      unless

(Base.box)(Base.Bool,(Base.or_int)((Base.lt_float)(x::Float64,##fy#77  
86::Float64)::Bool,(Base.box)(Base.Bool,(Base.and_int)((Base.box)(Bas  
e.Bool,(Base.and_int)((Base.eq_float)(x::Float64,##fy#7786::Float64):  
:Bool,(Base.lt_float)(##fy#7786::Float64,9.223372036854776e18)::Bool)  
::Any)::Bool,(Base.slt_int)((Base.box)(Int64,(Base.fptosi)(Int64,##fy  
#7786::Float64))::Int64,0)::Bool)::Any)::Bool))::Bool goto 0 # none,  
line 3:

      return 0

      goto 1

      0:  # none, line 5:

      return x::Float64

      1:

  end::UNION{FLOAT64,INT64}

While this output might look slightly scary at first, the relevant portions are easy 
to highlight. If you run this on Julia REPL, you will see that, in the last line of the 
output, "Union{Float64,Int64}", is highlighted in red (this is represented by 
capital letters in the preceding output). This line shows that the compiler inferred 
that the return type of this function, when passed Float64 as an argument, can 
either be Float64 or Int64. Therefore, this function is type-unstable, and this is 
made obvious by the red highlighting in REPL.

In general, the output from @code_warntype, as the name suggests, will warn us 
of any type inference problem in the code, highlighting it in red. These will usually 
be variables for which the compiler cannot infer any bound, those typed as ANY, or 
where there are multiple options for possible types denoted as Union. While there 
are some cases where these warnings might be false positives, they should always  
be investigated if they are unexpected.
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If we run this macro on the trunc_fixed function, which we made type-stable, we 
will note that the compiler can infer Float64 as the return type of the function. Upon 
running this in REPL, there is no red font in the output, giving us confidence that the 
function is type-stable. Take a look at the following:

julia> @code_warntype trunc_fixed(-2.4)

Variables:

  x::Float64

  ##fy#8904::Float64

Body:

  begin  # none, line 2:

      ##fy#8904 = (Base.box)(Float64,(Base.sitofp)
(Float64,0)::Any)::Float64

      unless

(Base.box)(Base.Bool,(Base.or_int)((Base.lt_float)(x::Float64,##fy#89  
04::Float64)::Bool,(Base.box)(Base.Bool,(Base.and_int)((Base.box)(Bas  
e.Bool,(Base.and_int)((Base.eq_float)(x::Float64,##fy#8904::Float64):  
:Bool,(Base.lt_float)(##fy#8904::Float64,9.223372036854776e18)::Bool)  
::Any)::Bool,(Base.slt_int)((Base.box)(Int64,(Base.fptosi)(Int64,##fy  
#8904::Float64)::Any)::Int64,0)::Bool)::Any)::Bool)::Any)::Bool goto  
0 # none, line 3:

      return (Base.box)(Float64,(Base.sitofp)(Float64,0)::Any)::Float64

      goto 1

      0:  # none, line 5:

      return x::Float64

      1: 

  end::Float64

Further evidence of the benefits of type-stability can be observed by looking at 
the LLVM bitcode produced by the Julia compiler. This can be seen using the @
code_llvm macro, which outputs the result of compiling Julia code into LLVM 
bitcode. While the details of the output are not relevant, it should be obvious that 
the type-stable function compiles a much smaller amount of code. It comprises fewer 
instructions and thus is significantly faster. Take a look at the following code:

julia> @code_llvm trunc(2.5)

define %jl_value_t* @julia_trunc_23088(double) {

top:

  %1 = fcmp uge double %0, 0.000000e+00
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  br i1 %1, label %L, label %if

if:                                               ; preds = %top

  ret %jl_value_t* inttoptr (i64 4356202576 to %jl_value_t*)

L:                                                ; preds = %top

  %2 = call %jl_value_t* @jl_gc_alloc_1w()

  %3 = getelementptr inbounds %jl_value_t* %2, i64 -1, i32 0

  store %jl_value_t* inttoptr (i64 4357097552 to %jl_value_t*),  
  %jl_value_t** %3, align 8

  %4 = bitcast %jl_value_t* %2 to double*

  store double %0, double* %4, align 16

  ret %jl_value_t* %2

}

julia> @code_llvm trunc_fixed(2.5)

define double @julia_trunc_fixed_23089(double) {

top:

  %1 = fcmp uge double %0, 0.000000e+00

  br i1 %1, label %L, label %if

if:                                               ; preds = %top

  ret double 0.000000e+00

L:                                                ; preds = %top

  ret double %0

}

If you are more comfortable with assembly instructions than with LLVM bitcode, the 
same inference can be gleaned from looking at the final assembly instructions that 
the Julia code compiles to. This can be output using the @code_native macro and is 
the final code that gets run on the computer's processor. This output is the result of 
the full gamut of compiler optimizations implemented by the Julia compiler as well 
as LLVM's JIT. Looking at the output for our usual functions, we can see once again 
that the type-stable function does significantly less work, as follows:
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julia> @code_native trunc(2.5)

   .section   __TEXT,__text,regular,pure_instructions

Filename: none

Source line: 5

   pushq   %rbp

   movq   %rsp, %rbp

   subq   $16, %rsp

   vmovsd   %xmm0, -8(%rbp)

   vxorpd   %xmm1, %xmm1, %xmm1

   vucomisd   %xmm0, %xmm1

   ja   L67

Source line: 5

   movabsq   $jl_gc_alloc_1w, %rax

   callq   *%rax

   movabsq   $4357097552, %rcx       ## imm = 0x103B40850

   movq   %rcx, -8(%rax)

   vmovsd   -8(%rbp), %xmm0

   vmovsd   %xmm0, (%rax)

   jmpq   L77

L67:   movabsq   $4356202576, %rax   ## imm = 0x103A66050

Source line: 3

L77:   addq   $16, %rsp

   popq   %rbp

   ret

julia> @code_native trunc_fixed(2.5)

   .section   __TEXT,__text,regular,pure_instructions

Filename: none

Source line: 5

   pushq   %rbp

   movq   %rsp, %rbp

   vxorpd   %xmm1, %xmm1, %xmm1

   vucomisd   %xmm0, %xmm1

   jbe   L22

   vxorpd   %xmm0, %xmm0, %xmm0

Source line: 5

L22:   popq   %rbp

   ret
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Loop variables
Another facet of type-stability that is important in Julia is that variables within a loop 
should not change their type from one iteration of the loop to another. Let's first look 
at a case where this is not true, as follows:

function sumsqrtn(n) 
    r = 0
    for i = 1:n 
        r = r + sqrt(i)
    end
    return r
end

In this function, the r variable starts out as Int64, when the loop is entered in the 
first iteration. However the sqrt function returns Float64, which when added to 
Int64, returns Float64. At this point, at Line 4 of the function, r becomes Float64. 
This violates the rule of not changing the type of a variable within a loop and makes 
this code type-unstable.

Inspecting the @code_warntype output for this function makes this obvious. Viewing 
this in REPL, we're faced with a swathe of red, which again is highlighted in capital 
letters here:

julia> @code_warntype sumsqrtn(5)

Variables:

  n::Int64

  r::ANY

  #s52::Int64

  i::Int64

Body:

  begin  # none, line 2:

      r = 0 # none, line 3:

      GenSym(0) = $(Expr(:new, UnitRange{Int64}, 1,  
:(((top(getfield))(Base.Intrinsics,:select_value)::I)((Base.sle_int)(  
1,n::Int64)::Bool,n::Int64,(Base.box)(Int64,(Base.sub_int)(1,1))::Int  
64)::Int64)))

      #s52 = (top(getfield))(GenSym(0),:start)::Int64

      unless (Base.box)(Base.Bool,(Base.not_int)(#s52::Int64 ===  
(Base.box)(Base.Int,(Base.add_int)((top(getfield))(GenSym(0),:stop)::  
Int64,1))::Int64::Bool))::Bool goto 1

      2:
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      GenSym(2) = #s52::Int64

      GenSym(3) =  
(Base.box)(Base.Int,(Base.add_int)(#s52::Int64,1))::Int64

      i = GenSym(2)

      #s52 = GenSym(3) # none, line 4:

      r = r::Union{Float64,Int64} +  
(Base.Math.box)(Base.Math.Float64,(Base.Math.sqrt_llvm)((Base.box)(Fl  
oat64,(Base.sitofp)(Float64,i::Int64))::Float64))::Float64::Float64

      3:

      unless  
(Base.box)(Base.Bool,(Base.not_int)((Base.box)(Base.Bool,(Base.not_in  
t)(#s52::Int64 ===  
(Base.box)(Base.Int,(Base.add_int)((top(getfield))(GenSym(0),:stop)::  
Int64,1))::Int64::Bool))::Bool))::Bool goto 2

      1:

      0:  # none, line 6:

      return r::UNION{FLOAT64,INT64}

  end::UNION{FLOAT64,INT64}

This output shows that the compiler cannot infer a tight bound for the value of r  
(it is typed as ANY), and the function itself can return either Float64 or Int64  
(for example, it is typed as Union{Float64,Int64})

Fixing the instability is easy in this case. We just need to initialize the r variable  
to be the Float64 value as we know that that is the type it will eventually take.  
Take a look at the following function now:

function sumsqrtn_fixed(n) 
     r = 0.0
     for i = 1:n 
         r = r + sqrt(i)
     end
     return r
end

The @code_warntype output for this function is now clean, as follows:

julia> @code_warntype sumsqrtn_fixed(5)

Variables:

  n::Int64

  r::Float64

  #s52::Int64
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  i::Int64

Body:

  begin  # none, line 2:

      r = 0.0 # none, line 3:

      GenSym(0) = $(Expr(:new, UnitRange{Int64}, 1,  
:(((top(getfield))(Base.Intrinsics,:select_value)::I)((Base.sle_int)(  
1,n::Int64)::Bool,n::Int64,(Base.box)(Int64,(Base.sub_int)(1,1))::Int  
64)::Int64)))

      #s52 = (top(getfield))(GenSym(0),:start)::Int64

      unless (Base.box)(Base.Bool,(Base.not_int)(#s52::Int64 ===  
(Base.box)(Base.Int,(Base.add_int)((top(getfield))(GenSym(0),:stop)::  
Int64,1))::Int64::Bool))::Bool goto 1

      2: 

      GenSym(2) = #s52::Int64

      GenSym(3) =  
(Base.box)(Base.Int,(Base.add_int)(#s52::Int64,1))::Int64

      i = GenSym(2)

      #s52 = GenSym(3) # none, line 4:

      r =  
(Base.box)(Base.Float64,(Base.add_float)(r::Float64,(Base.Math.box)(B  
ase.Math.Float64,(Base.Math.sqrt_llvm)((Base.box)(Float64,(Base.sitof  
p)(Float64,i::Int64))::Float64))::Float64))::Float64

      3: 

      unless  
(Base.box)(Base.Bool,(Base.not_int)((Base.box)(Base.Bool,(Base.not_in  
t)(#s52::Int64 ===  
(Base.box)(Base.Int,(Base.add_int)((top(getfield))(GenSym(0),:stop)::  
Int64,1))::Int64::Bool))::Bool))::Bool goto 2

      1: 

      0:  # none, line 6:

      return r::Float64

  end::Float64

To show why all of this is important, let's time both of these functions, as follows:

julia> @benchmark sumsqrtn(1000_000)

================ Benchmark Results ========================

     Time per evaluation: 36.26 ms [34.02 ms, 38.49 ms]

Proportion of time in GC: 18.81% [15.57%, 22.05%]

        Memory allocated: 30.52 mb
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   Number of allocations: 2000000 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 3.80 s

julia> @benchmark sumsqrtn_fixed(1000_000)

================ Benchmark Results ========================

     Time per evaluation: 9.52 ms [9.05 ms, 9.99 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.98 s

Here, we can see that the type-stable version is four times as fast. More importantly, 
the type-unstable version of the function allocates a large amount of memory, which 
is unnecessary. Using type-unstable code, therefore, is extremely prejudicial to  
high-performance code.

Kernel methods
Type inference in Julia primarily works by inspecting the types of function 
parameters and identifying the type of the return value. This suggests that some type 
instability issues may be mitigated by breaking up a function into smaller functions. 
This can provide additional hints to the compiler, making more accurate type 
inferencing possible.

For an example of this, consider a contrived function that takes as input the "Int64" 
or "Float64" string and returns an array of 10 elements, the types of which 
correspond to the type name passed as the input argument. Functions such as this 
may arise when creating arrays based on user input or by reading a file in which the 
type of the output is determined at runtime. Take a look at the following:

     function string_zeros(s::AbstractString)
         x = Array(s=="Int64"?Int64:Float64, 1_000_000)
         for i in 1:length(x)
             x[i] = 0
         end
         return x
     end
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We will benchmark this code to find an average execution time of over 38 
milliseconds per function call with a large memory allocation, as shown by the 
following code:

julia> @benchmark string_zeros("Int64")

================ Benchmark Results ========================

     Time per evaluation: 38.05 ms [36.80 ms, 39.30 ms]

Proportion of time in GC: 6.45% [6.07%, 6.83%]

        Memory allocated: 22.88 mb

   Number of allocations: 999492 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 4.19 s

This seems to be unnecessarily high. The loop in the function is the obvious place 
where most of the time is spent within this function. We note that, in this loop, the 
type of the variable being accessed (x) cannot be known before the function is called, 
even when the type of the function arguments is known. This prevents the compiler 
from generating an optimized loop operating on one specific type.

What we need to do is ensure that the loop operates in such a way that the type of 
the x variable is known to the compiler. As we said earlier, type inference operates 
on function boundaries, which suggests a solution to our conundrum. We can split 
out the loop into its own function, separating the determination of the type of x and 
the operations on x across a function call, as follows:

   function string_zeros_stable(s::AbstractString)
     x = Array(s=="Int64"?Int64:Float64, 1_000_000)
     return fill_zeros(x)
   end

   function fill_zeros(x)
     for i in 1:length(x)
       x[i] = 0
     end
     return x
   end

Now, by benchmarking this solution, we will find that the execution time of our 
function reduces by a factor of 10, with a corresponding fall in the allocated memory. 
Therefore, in situations where the types of variables are uncertain, we need to be 
careful in ensuring that the compiler can be provided with as much information  
as necessary.
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Types in storage locations
We discussed in the earlier sections that, when writing idiomatic Julia code,  
we should try and write functions with the minimum amount of type constraints 
possible in order to write generic code. We do not need to specify the types of 
function arguments or local variables for performance reasons. The compiler will be 
able to infer the required types. Thus, while the types are important, they are usually 
optional when writing Julia code. In general, bindings do not need to be typed; they 
are inferred.

However, when defining storage locations for data, it is important to specify a 
concrete type. So, for things that hold data, such as arrays, dictionaries, or fields  
in composite types, it is best to explicitly define the type that it will hold.

Arrays
As an example, let's create two arrays containing the same data—the numbers one 
to ten, which are of the Int64 type. The first array we will create is defined to hold 
values of the Int64 type. The second is defined to hold values of the abstract Number 
type, which is a supertype of Int64. Take a look at the following code:

julia> a = Int64[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

10-element Array{Int64,1}:

  1

  2

  3

  4

  5

  6

  7

  8

  9

 10

julia> b = Number[1,2,3,4,5,6,7,8,9,10]

10-element Array{Number,1}:

  1

  2

  3

  4
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  5

  6

  7

  8

  9

 10

We will then pass these arrays into the following function that calculates the sum of 
squares of the elements of these arrays, as follows:

function arr_sumsqr{T <: Number}(x::Array{T}) 
    r = zero(T)
    for i = 1:length(x)
        r = r + x[i] ^ 2
    end
    return r
end

By timing the invocations, we will see that, when using the Int64 array,  
this computation is over ten times faster than when using the Number array,  
even when the data within the arrays is identical, as follows:

julia> @benchmark arr_sumsqr(a)

================ Benchmark Results ========================

     Time per evaluation: 34.52 ns [34.06 ns, 34.99 ns]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations

       Number of samples: 9301

   Number of evaluations: 14145701

         R² of OLS model: 0.955

 Time spent benchmarking: 0.54 s

julia> @benchmark arr_sumsqr(b)

================ Benchmark Results ========================

    Time per evaluation: 463.24 ns [455.46 ns, 471.02 ns]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations

       Number of samples: 6601
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   Number of evaluations: 1080001

         R² of OLS model: 0.951

 Time spent benchmarking: 0.57 s

The reason for this massive difference lies in how the values are stored within the 
array. When the array is defined to contain a specific concrete type, the Julia runtime 
can store the values inline within the allocation of the array since it knows the exact 
size of each element. When the array can contain an abstract type, the actual value 
can be of any size. Thus, when the Julia runtime creates the array, it only stores the 
pointers to the actual values within the array. The values are stored elsewhere on 
the heap. This not only causes an extra memory load when reading the values, the 
indirection can mess up pipelining and cache affinity when executing this code on 
the CPU.

Composite types
There is another situation where concrete types must be specified for good 
performance: in the fields of composite types.

As an example, consider a composite type holding the location of a point in 2D space. 
In this scenario, we could define the object as follows:

immutable Point
    x
    y
end

However, this definition would perform quite badly. The primary issue is that the 
x and y fields in this type can be used to store values of any type. In particular, they 
could be other complex types that are accessed as pointers. In this case, the compiler 
will not know whether access to the fields of the Point type requires a pointer 
indirection, and thus it cannot optimize the reading of these values.

It will be much better to define this type with the field values constrained to concrete 
types. This will have two benefits. Firstly, the field values will be stored inline when 
the object is allocated rather than being not directed via pointer. Secondly, all code 
that uses fields of this type will be able to be type-inferred correctly, as follows:

immutable ConcretePoint
    x::Float64
    y::Float64
end
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Parametric composite types
While the preceding definition of ConcretePoint performs well, it loses some 
significant flexibility. If we wanted to store the field values as Float32 or Float16, 
we would be unable to use the same type. To lose so much flexibility for performance 
seems very unfortunate.

It would be tempting to fix this using an abstract type as the fields. In this case, all 
the concrete floating point numbers are subtypes of the AbstractFloat type. Here, 
we could then define a PointsWithAbstract type that contains fields annotated as 
AbstractFloat, as follows:

immutable PointWithAbstract
    x::AbstractFloat
    y::AbstractFloat
end

However, this code has the same drawbacks as the original Point type mentioned 
earlier. It will be slow, and the compiler will be unable to optimize access to the type. 
The solution is to use a parametric type, as follows:

function ParametricPoint{T <: AbstractFloat}
    x::T
    y::T
end 

When we write the type in this manner, our code remains generic. We can write our 
methods with the confidence that the ParametricPoint type can hold values for 
any type of a floating point number. Yet, at runtime, when an instance of this type 
is created, it is instantiated with a particular type of float. In other words, once an 
instance is created, T becomes known. At this point, all the benefits of specifying the 
concrete type discussed before are applicable. Both storage and type inferences are 
efficient now.

Summary
In this chapter, we discussed how types play a crucial role in writing idiomatic and 
performant code in Julia. Much of what we discussed here is exactly what makes 
Julia unique—a dynamic language where types, dispatch, and inference play  
a fundamental role.

We discussed how to write type-stable code and when and how to define type 
annotations for performance. In the next chapter, we will discuss the performance 
characteristics of another important part of the language: functions.
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Functions and Macros – 
Structuring Julia Code for 

High Performance
In Julia, the function is the primary unit of a code structure. Idiomatic Julia code 
consists of many small functions that are defined with different types of arguments. 
In general, the overhead of a function call in Julia is very small, and, with type 
specialization, the compiled version of the function is very efficient. In this chapter, 
we will look at some of the techniques that Julia uses to make function calls very fast. 
We will also look at some limitations that are worth keeping in mind for the fastest 
code. Finally, we will look at some situations where moving code out of functions 
and into other structures, such as macros and staged functions, allows code to be 
faster and more efficient:

• Using globals
• Inlining
• Closures and anonymous functions
• Using macros for performance
• Using generated functions
• Using named parameters
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Using globals
One of the first performance tips that you come across when learning Julia is the 
advice not to use global variables. This is usually not a very onerous requirement, as 
global state is often considered bad programming practice. Further, this limitation 
is most likely going to be removed in future versions of Julia. However, given how 
easy it is to fall into this trap and the large amount of performance degradation that 
can occur, it is important to keep this in mind when writing Julia code.

The trouble with globals
In the previous chapter, we saw how Julia achieves its high performance runtime  
by compiling specialized versions of functions for particular types of arguments— 
a process that relies on type inference using data flow techniques. However, global 
variables can be written to at any time, and by any code. The compiler cannot keep 
track of all writes to global variables; this would be akin to solving the halting problem. 
Therefore, the data-flow technique fails to perform any inference for these types of 
global variables. As a result, the compiler cannot create specialized functions when 
using these variables.

To understand the performance hit of using global variables, let's use a simple 
function that calculates the sum of the integer powers of a set of floating point 
values. We use a global variable to store the integer power:

p = 2

function pow_array(x::Vector{Float64})
  s = 0.0
    for y in x
      s = s + y^p
    end
    return s
end

Benchmarking this function, we see that it takes approximately 10 milliseconds for 
each evaluation of this function for an input array of length 100000. This is way too 
high for something that should only take a few machine instructions to execute:
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julia> t=rand(100000);

julia> @benchmark pow_array(t)

================ Benchmark Results ========================

     Time per evaluation: 9.39 ms [8.48 ms, 10.30 ms]

Proportion of time in GC: 4.58% [0.00%, 10.14%]

        Memory allocated: 4.58 mb

   Number of allocations: 300000 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.97 s

A look at the @code_warntype output for this function shows us that the compiler 
has been unable to infer the type of the result when calculating with the global 
variable, marking it as ANY. This then flows through the entire function, right up  
to the return value (as usual, any untyped variables, displayed in red in the REPL, 
are shown in capital letters, as follows):

julia> @code_warntype pow_array(t)

Variables:

  x::Array{Float64,1}

  s::ANY

  #s641::Int64

  y::Float64

Body:

  begin  # none, line 2:

      s = 0.0 # none, line 3:

      #s641 = 1

      GenSym(2) = (Base.arraylen)(x::Array{Float64,1})::Int64

      unless

(Base.box)(Base.Bool,(Base.not_int)((Base.slt_int)(GenSym(2),#s641  
::Int64)::Bool))::Bool goto 1

      2: 

      GenSym(4) = (Base.arrayref)(x::Array{Float64,1},#s641::Int64)::Flo
at64

      GenSym(5) = (Base.box)(Base.Int,(Base.add_int)
(#s641::Int64,1)::Any)::Int64

      y = GenSym(4)

      #s641 = GenSym(5) # none, line 4:

      s = s + y::Float64 ^ Main.p::ANY::ANY

      3: 
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      GenSym(3) = (Base.arraylen)(x::Array{Float64,1})::Int64

      unless  
(Base.box)(Base.Bool,(Base.not_int)((Base.box)(Base.Bool,(Base.not  
_int)((Base.slt_int)(GenSym(3),#s641::Int64)::Bool))::Bool))::Bool  
goto 2

      1: 

      0:  # none, line 6:

      return s

  end:: ANY

Fixing performance issues with globals
A simple way to get back performance is to declare the global variable a const:

const p2 = 2
function pow_array2(x::Vector{Float64})
  s = 0.0
    for y in x
       s = s + y^p2
    end
    return s
end

Just this change will get us a little under two orders of magnitude performance gain 
on the following function:

julia> @benchmark pow_array2(t)

================ Benchmark Results ========================

    Time per evaluation: 123.90 μs [120.54 μs, 127.27 μs]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations

       Number of samples: 3901

   Number of evaluations: 82201

         R² of OLS model: 0.926

 Time spent benchmarking: 10.44 s
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Global const
The const declaration in Julia means something different from the 
similar keyword in C. In Julia, a global variable declared as const can 
change its value (a warning is printed). However, what it cannot do is 
change its type. Also, note that you cannot explicitly declare the type 
of a global variable. That is, an incantation, such as x::Int64 = 2, 
will raise an error when made in the global scope.

Once again, @code_warntype will show us that this function is now correctly  
type inferred all the way through. Compare this output against the one from the 
previous function in the preceding section. You will notice that the return value  
of this function is being inferred as Float64:

julia> @code_warntype pow_array2(t)

Variables:

  x::Array{Float64,1}

  s::Float64

  #s614::Int64

  y::Float64

Body:

  begin  # none, line 2:

      s = 0.0 # none, line 3:

      #s614 = 1

      GenSym(2) = (Base.arraylen)(x::Array{Float64,1})::Int64

      unless (Base.box)(Base.Bool,(Base.not_int)((Base.slt_int)(GenSym(2)
,#s614::Int64)::Bool))::Bool goto 1

      2: 

      GenSym(4) = (Base.arrayref)(x::Array{Float64,1},#s614::Int64)::Flo
at64

      GenSym(5) = (Base.box)(Base.Int,(Base.add_int)
(#s614::Int64,1))::Int64

      y = GenSym(4)

      #s614 = GenSym(5) # none, line 4:

      s = (Base.box)(Base.Float64,(Base.add_float)(s::Float64,(Base.
Math.box)(Base.Math.Float64,(Base.Math.powi_llvm)(y::Float64,(Base.box)
(Int32,(Base.checked_trunc_sint)(Int32,Main.p2))::Int32))::Float64))::Flo
at64
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      3: 

      GenSym(3) = (Base.arraylen)(x::Array{Float64,1})::Int64

      unless (Base.box)(Base.Bool,(Base.not_int)((Base.box)(Base.
Bool,(Base.not_int)((Base.slt_int)(GenSym(3),#s614::Int64)::Bool))::Bool)
)::Bool goto 2

      1: 

      0:  # none, line 6:

      return s::Float64

  end::Float64

Another way to solve the issue of the global variable is to pass the global as a function 
argument. A function argument can be type inferred; hence, the function specialization 
will be effected in this case.

Inlining
As we've mentioned before, Julia code consists of many small functions. Unlike  
most other language implementations, some of the core primitives in the base  
library are also implemented in Julia. This means that the function call overhead  
has the potential to be a bottleneck in a Julia program. This is mitigated using  
some aggressive inlining performed by the Julia compiler.

Inlining is an optimization performed by a compiler, where the contents of a  
function or method is inserted directly into the body of the caller of that function. 
Thus, instead of making a function call, execution continues directly by executing  
the operations of the callee within the caller's body.

In addition, many compiler optimization techniques work within the body of a  
single function. Inlining, therefore, allows many more optimizations to be effective 
within the program.

Compiler optimizations
Julia uses the LLVM compiler to generate machine code, which is 
finally run on the CPU. Most of the usual compiler optimization 
techniques that run on Julia code are performed by LLVM. The 
one major exception is inlining, which is performed by the Julia 
compiler itself before LLVM is invoked.
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Default inlining
The Julia compiler automatically inlines functions that it considers inline-worthy. 
The compiler implements a set of heuristics to determine what to inline. Essentially, 
this boils down to small functions with deterministic types.

While inlining usually results in an increase in code speed, it also 
simultaneously increases the size of the code. Hence, a balance needs 
to be maintained. The heuristics are, therefore, tuned to maximize the 
performance of typical Julia code without causing excessive bloating 
of the compiled code.

As an example, let's take a look at a simple set of functions, some of which we've 
seen in previous chapters:

trunc(x) = x < 0 ? zero(x) : x

function sqrt_sin(x) 
  y = trunc(x)
  return sin(sqrt(y)+1)
end

We can then look at the processed AST after the compiler has run its type inference 
and inlining passes. Note how in the following output, the code for the trunc 
function has been inserted into the sqrt_sin function as the first few lines:

julia> @code_typed sqrt_sin(1)

1-element Array{Any,1}:

 :($(Expr(:lambda, Any[:x],  
Any[Any[Any[:x,Int64,0],Any[:y,Int64,18],Any[:_var0,Int64,2]],Any[  
],Any[Float64,Float64,Float64],Any[]], :(begin  # none, line 2:

        unless (Base.slt_int)(x::Int64,0)::Bool goto 1

        _var0 = 0

        goto 2

        1: 

        _var0 = x::Int64

        2: 

        y = _var0::Int64 # none, line 3:

        GenSym(0) = (Base.box)(Base.Float64,(Base.add_float)((Base.Math.
box)(Base.Math  
.Float64,(Base.Math.sqrt_llvm)((Base.box)(Float64,(Base.sitofp)(Float64,y
::Int64))::Float64))::Float64,(Base.box)(Float64,(Base.sito  
fp)(Float64,1))::Float64))::Float64
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        GenSym(2) =  
(top(ccall))((top(tuple))("sin",Base.Math.libm)::Tuple{ASCIIString  
,ASCIIString},Base.Math.Float64,(top(svec))(Base.Math.Float64)::Si  
mpleVector,GenSym(0),0)::Float64

        return

 (Base.Math.nan_dom_err)(GenSym(2),GenSym(0))::Float64

    end::Float64))))

Controlling inlining
Sometimes, the heuristics to inline that are built into the Julia compiler will fail 
to inline functions that we want inlined. These would typically be performance-
sensitive functions that are called many times in inner loops, for example, array 
indexers. For this purpose, Julia provides the @inline macro. This macro needs 
 to be placed in front of a function definition. When that function is called, its body 
will be placed inline at the location where it is called.

There is no call-site annotation to force inlining. We cannot inline a 
particular invocation of an, otherwise, normal function. The function 
itself should be marked with @inline, and then every invocation of 
that function will be inlined.

Let's demonstrate this with an example. In the following code, we define an f(x) 
function that performs some numerical operations on its arguments, as well as a 
g(x) function that calls f after transforming its argument:

function f(x) 
   a=x*5
   b=a+3
   c=a-4
   d=b/c
end

This function f is too long to be inlined by default, which we verify by inspecting  
the @code_typed output of its g calling function. Note that the function definition  
of g continues to contain a call to the f function:

julia> @code_typed g(3)

1-element Array{Any,1}:

 :($(Expr(:lambda, Any[:x],  
Any[Any[Any[:x,Int64,0]],Any[],Any[],Any[]], :(begin  # none, line 1:
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        return 

(Main.f)((Base.box)(Int64,(Base.mul_int)(2,x::Int64))::Int64)::Fl  
oat64

    end::Float64))))

We then define the same computation in a function that we declare with the @inline 
macro:

@inline function f_inline(x) 
   a=x*5
   b=a+3
   c=a-4
   d=b/c
end

g_inline(x) = f_inline(2*x)

When we inspect the compiled AST for this function, it is apparent that the called 
function has been inlined into the caller:

julia> @code_typed g_inline(3)

1-element Array{Any,1}:

 :($(Expr(:lambda, Any[:x], Any[Any[Any[:x,Int64,0],Any[symbol("##a#6865"
),Int64,18],Any[symbol("  
##b#6866"),Int64,18],Any[symbol("##c#6867"),Int64,18],Any[symbol("##d  
#6868"),Float64,18]],Any[],Any[Float64],Any[]], :(begin  # none, line  
1:

        ##a#6865 =  
(Base.box)(Int64,(Base.mul_int)((Base.box)(Int64,(Base.mul_int)(2,x::  
Int64))::Int64,5))::Int64

        ##b#6866 =  
(Base.box)(Base.Int,(Base.add_int)(##a#6865::Int64,3))::Int64

        ##c#6867 =  
(Base.box)(Int64,(Base.sub_int)(##a#6865::Int64,4))::Int64

        GenSym(0) =  
(Base.box)(Base.Float64,(Base.div_float)((Base.box)(Float64,(Base.sit  
ofp)(Float64,##b#6866::Int64))::Float64,(Base.box)(Float64,(Base.sito  
fp)(Float64,##c#6867::Int64))::Float64))::Float64

        ##d#6868 = GenSym(0)

        return GenSym(0)

    end::Float64))))
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It is even more instructive to see the LLVM bitcode that is generated from this 
function. We can see this using the @code_llvm macro. Note that the first line of the 
function is now %1 = mul i64 %0, 10. This shows the argument of the function 
being multiplied by 10. Look back at the source of the function—the argument is 
multiplied by 2 in the g function and, subsequently, by 5 in the f function. The 
LLVM optimizer has recognized this and consolidated these two operations into a 
single multiplication. This optimization has occurred by merging code across two 
different functions and, thus, couldn't have happened without inlining:

julia> @code_llvm g_inline(3)

define double @julia_g_inline_21456(i64) {

top:

  %1 = mul i64 %0, 10

  %2 = add i64 %1, 3

  %3 = add i64 %1, -4

  %4 = sitofp i64 %2 to double

  %5 = sitofp i64 %3 to double

  %6 = fdiv double %4, %5

  ret double %6

}

Disabling inlining
We've seen how useful inlining can be for the performance of our programs.  
However, in some situations, it may be useful to turn off all inlining. These can  
be during complex debugging sessions or while running code coverage analysis.  
For example, in any situation where one needs to maintain direct correspondence 
between source lines of code and executing machine code, inlining can be problematic.

Therefore, Julia provides a –inline=no command line option to be used in these 
circumstances. Using this option will disable all inlining, including the ones 
marked with @inline. We warned you that using this option makes all Julia code 
significantly slower. However, in rare situations this is exactly what is needed.
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Closures and anonymous functions
We saw how important functions are in idiomatic Julia code. While not a pure 
functional language, Julia shares many features with such languages. In particular, 
functions in Julia are first class entities, and they can passed around to other 
functions to create higher-order functions. A canonical example of such a higher-
order function is the map function, which evaluates the given function over each 
element of the provided collection.

As you would expect from a language with these functional features, it is also 
possible to create closures and anonymous functions in Julia. Anonymous functions, 
as the name suggests, are functions without a name, and they are usually created  
at the point where they are passed in to another function as an argument. In Julia, 
they are created with the -> operator separating the arguments from the function 
body. These, and named functions created within the scope of another function,  
and referring to variables from this outer scope, are called closures. This name  
arises from the idea of these functions "closing over" the outer scope.

Anonymous functions and closures are much slower than named functions in 
versions of Julia prior to 0.5. This is due to the fact that the Julia compiler currently 
cannot type infer the result of anonymous functions. It should be obvious that the 
lack of type inference will significantly slow these functions down. As always, it is 
instructive to look at an example and measure its performance. First, we define a  
sqr function, which returns the square of its input argument:

sqr(x) = x ^ 2

We then measure the performance of map, evaluating this function over a random 
array of 100,000 Float64 elements. We also measure the performance of map when 
it is passed the same computation as an anonymous function, rather than the named 
sqr function:

julia> @benchmark map(sqr, rand(100_000))

================ Benchmark Results ========================

     Time per evaluation: 3.81 ms [2.98 ms, 4.64 ms]

Proportion of time in GC: 8.88% [0.00%, 20.33%]

        Memory allocated: 3.81 mb

   Number of allocations: 200003 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.41 s
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julia> @benchmark map(x->x^2, rand(100_000))

================ Benchmark Results ========================

     Time per evaluation: 7.97 ms [6.97 ms, 8.96 ms]

Proportion of time in GC: 5.38% [0.00%, 12.70%]

        Memory allocated: 3.81 mb

   Number of allocations: 200003 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.83 s

It is apparent that using a named function is about twice as fast as using an 
anonymous function. It should be noted that while this is true of the current  
version of Julia at the time of writing (0.4,) this limitation will be removed in  
future versions of Julia. If you are using Julia v0.5 or later, then you do not need 
to consider any of the content in this section or the next section. In these versions, 
anonymous functions are as fast as named functions. However, for the moment,  
it is advisable to limit uses of closures and anonymous functions as much as possible 
in performance-sensitive code.

FastAnonymous
However, in many situations, it is necessary or even convenient to use anonymous 
functions. We have a language with many functional features, and it would be 
a shame to forgo closures. So, if the slow performance of these constructs are a 
bottleneck in your code, the innovative Julia community has a workaround in the 
form of the FastAnonymous package.

Using this package is easy and causes very low programmer overhead. After 
installing and importing, writing an @anon macro before an anonymous function 
declaration will transform it into a form that can be type inferred, and this is, thus, 
much faster. Running the example from the previous section with this approach 
yields a significantly faster runtime:

julia> using FastAnonymous

julia> @benchmark map(@anon(x->x^2), rand(100_000))



Chapter 4

[ 57 ]

================ Benchmark Results ========================

    Time per evaluation: 488.63 μs [298.53 μs, 678.73 μs]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 781.31 kb

   Number of allocations: 2 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.29 s

Once again, we should note that use of this package will become unnecessary in 
version 0.5 and further versions of Julia when the performance difference between 
anonymous and named functions are removed.

Using macros for performance
So far in this chapter, we have focused on making our functions run faster. However, 
as fast we make them, all the computation occurs when a function is called. The best 
way to make any code faster is, however, to do less work. So, a strategy is to move 
any possible work to compile time, which leaves less work to do at runtime.

The Julia compilation process
However, for a dynamic language such as Julia, the terms compile time and runtime 
are not always clearly defined. In some sense, everything happens at runtime because 
our code is not compiled to a binary ahead of time. However, there are clearly divided 
processes that occur from when the code is read from disk to when it is finally executed 
on the CPU.
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As the compiler goes through each stage, it can write code to execute at various 
points along this pipeline rather than everything waiting until the end—the 
runtime. While we might loosely use the terminology of compile time for some  
of our metaprogramming techniques, having the ability to run code at multiple 
stages along this pipeline provides some powerful capabilities:

Using macros
Julia macros are code that can be used to write Julia code. A macro is executed  
very early in the compiler process, as soon as the code is loaded and parsed.

Macros are usually used as a means to reduce repetitive code, whereby large 
volumes of code with a common pattern can be generated from a smaller set  
of primitives. However, they can also be used to improve performance in some 
situations. This usually involves moving common or constant computation to  
the compile time wherever possible. To see how this can work, let's look at the 
problem of evaluating a polynomial.
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Evaluating a polynomial
Consider the following polynomial expression:

Given a set of coefficients [a0,a1,a2,….,an], we need to find the value of the p(x) function 
for a particular value of x.

A simple and naive but general implementation to evaluate any polynomial may be, 
as follows:

function poly_naive(x, a...)
  p=zero(x)
  for i = 1:length(a)
    p = p + a[i] *  x^(i-1)
  end
  return p
end

Type Stability, once again
You will recognize this from the discussions in the previous 
chapter that the initialization of p=zero(x) rather than p=0 
ensures the type stability of this code.

Using this function, let's imagine that we need to compute a particular polynomial:

julia> f_naive(x) = poly_naive(x, 1,2,3,4,5)

julia> f_naive(3.5)

966.5625

Let's verify the calculation by hand to test its accuracy and then benchmark the 
computation to see how fast it can run:

julia>  1 + 2*3.5 + 3*3.5^2 + 4*3.5^3 + 5*3.5^4

966.5625
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julia> @benchmark f_naive(3.5)

================ Benchmark Results ========================

    Time per evaluation: 162.51 ns [160.31 ns, 164.71 ns]

Proportion of time in GC: 0.18% [0.00%, 0.39%]

        Memory allocated: 32.00 bytes

   Number of allocations: 2 allocations

       Number of samples: 9701

   Number of evaluations: 20709801

         R² of OLS model: 0.953

 Time spent benchmarking: 3.39 s

This computation takes a little over 160 nanoseconds. While this is not a particularly 
long interval, it is quite long for modern CPUs. A 2.4 GHz processor should be able 
to perform around 10,000 floating point operations in that time, which seems like a 
lot of work to compute a polynomial with five terms. The primary reason why this 
is slower than we would expect is that floating-point exponentiation is a particularly 
expensive operation.

Peak Flops
The peakflops() Julia function will return the maximum 
number of floating point operations per second (flops) 
possible on the current processor.

Horner's method
So, the first thing to do is to find a better algorithm, one which can replace the 
exponentiation into multiplications. This can be done by the Horner method,  
which is named after the nineteenth century British mathematician, William  
George Horner. This is accomplished by defining a sequence, as follows:

Then, b0 is the value of the p(x) polynomial.
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This algorithm can be implemented in Julia, as follows:

function poly_horner(x, a...)
  b=zero(x)
    for i = length(a):-1:1
      b = a[i] + b * x
    end
    return b
end

We can then test and benchmark this for the same polynomial:

f_horner(x) = poly_horner(x, 1,2,3,4,5)

julia> @benchmark f_horner(3.5)

================ Benchmark Results ========================

     Time per evaluation: 41.51 ns [40.96 ns, 42.06 ns]

Proportion of time in GC: 1.16% [0.75%, 1.57%]

        Memory allocated: 32.00 bytes

   Number of allocations: 2 allocations

       Number of samples: 12301

   Number of evaluations: 246795401

         R² of OLS model: 0.943

 Time spent benchmarking: 10.36 s

We see that using a better algorithm gets us a 4x improvement in the evaluation 
speed of this polynomial. Can we do better?

The Horner macro
Improving the speed of this computation starts with realizing that the coefficients of 
the polynomial are constants. They do not change and are known when writing the 
program. In other words, they are known at compile time. So, maybe we can expand 
and write out the expression for the Horner's rule for our polynomial. This will take 
the following form, for the polynomial that we used previously:

muladd(x,muladd(x,muladd(x,muladd(x,5,4),3),2),1)

This is likely to be the fastest way to compute our polynomial. However, writing this 
out for every polynomial that we might want to use will be extremely annoying. We 
loose the benefit of having a general library function that can compute any polynomial.
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This is exactly the kind of situation where macros can help. We can write a 
macro that will produce the previous expression when given a set of polynomial 
coefficients. This can be done when the compiler loads the code. At runtime, when 
this function is called, it will execute this optimized expression. Julia's base library 
contains this macro, which we can see repeated, as follows:

macro horner(x, p...)

    ex = esc(p[end])

    for i = length(p)-1:-1:1

        ex = :(muladd(t, $ex, $(esc(p[i]))))

    end

    Expr(:block, :(t = $(esc(x))), ex)

end

f_horner_macro(x) = @horner(x, 1,2,3,4,5)

julia> @benchmark f_horner_macro(3.5)

================ Benchmark Results ========================

     Time per evaluation: 3.66 ns [3.62 ns, 3.69 ns]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations

       Number of samples: 11601

   Number of evaluations: 126646601

         R² of OLS model: 0.970

 Time spent benchmarking: 0.53 s

So, this method using a macro gives us an amazing 10x improvement over calling  
the Horner's method as a function. Also, this function does not allocate any memory 
at runtime.

We've seen how this strategy of generating customized code for particular problems 
using a macro can sometimes lead to massive performance increases. While the @
horner macro is a simple and canonical example of this strategy, it can be used to 
great effect in our own code.



Chapter 4

[ 63 ]

Generated functions
Macros run very early in the compilers process when there is no information about 
how the program might execute. The inputs to a macro are, therefore, simply symbols 
and expressions—the textual tokens that make up a program. Given that a lot of 
Julia's powers come from its type system, it may be useful to have something such 
as macros—code that generates code—at a point where the compiler has inferred the 
types of the variables and function arguments in the program. Generated functions 
(also sometimes called staged functions) fulfill this need.

Using generated functions
Declaring a generated function is simple. Instead of the usual function keyword, 
generated functions are declared with the appropriately named @generated 
function keyword. This declares a function that can be called normally from  
any point in the rest of the program.

Generated functions come in two parts, which are related to how they are executed. 
They are invoked once for each unique type of its arguments. At this point, the 
arguments themselves take the values of their types. The return value of this execution 
must be an expression that is used as the body of the function when called with values 
of these types. This cycle is executed each time the function is called with new types. 
The function is called with types as values once, and then the returned expression is 
used for all invocations with argument values of this type.

More on generated functions
In this section, we quickly described how to write generated functions. 
We will not go into too much detail. For more information along with 
examples, please refer to the online Julia documentation

Using generated functions for performance
As with macros, strategies to use generated functions for performance revolve 
around moving constant parts of the computation earlier into the compilation stage. 
However, unlike macros, here the computations are fixed only for a certain type of 
argument. For different types of argument, the computations are different. Staged 
functions handle this difference elegantly.
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As an example, let's consider a rather trivial problem: calculating the number of cells 
of a multidimensional array. The answer is of course a product of the number of 
elements in each dimension. As Julia has true multidimensional arrays, the number of 
dimensions, and the number of multiplications are not known upfront. One possible 
implementation is to loop over the number of dimensions, multiplying as we go:

function prod_dim{T, N}(x::Array{T, N})
    s = 1
    for i = 1:N
        s = s * size(x, i)
    end
    return s
 end

Type parameters
Please review the Julia documentation on type parameters or refer 
to Type parameters section in Chapter 3, Types in Julia, if the preceding 
code looks unfamiliar.

This function will now work for arrays with any number of dimensions. Let's test 
this to see whether it works:

julia> prod_dim(rand(10,5,5))

250

Optimizing this computation with a generated function starts with the observation that 
the number of iterations of the loop is equal to the number of dimensions of the array, 
which is encoded as a type parameter for arrays. In other words, for a particular type 
of input (and array of a particular dimension), the loop size is fixed. So, what we can 
try to do in a generated function is move the loop to the compile time:

@generated function prod_dim_gen_impl{T, N}(x::Array{T, N})
     ex = :(1)
     for i = 1:N
          ex = :(size(x, $i) * $ex)
     end
     return ex
end

In this generated function, the loop runs at compile time when the type of x is 
known. We create an ex expression, which then becomes the body of the function 
when actually called with an instance of an array. We can see that this function 
works; it returns the same result as our earlier version with the loop:

julia>prod_dim_gen_impl(rand(10, 5,5))

250
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However, it would be instructive to see the code that is generated and actually run 
for this function. For this purpose, we can paste the body of the generated function 
into a normal function, as follows:

function prod_dim_gen_impl{T, N}(x::Array{T, N})
    ex = :(1)
    for i = 1:N
       ex = :(size(x, $i) * $ex)
    end
    return ex
end

We can then call this function with the type of the arguments as input, and the 
returned expression will show us how this generated function works:

julia> x = rand(2, 2, 2);

julia> prod_dim_gen_impl(x)

:(size(x,3) * (size(x,2) * (size(x,1) * 1)))

    

julia> x = rand(2, 2, 2, 2);

julia> prod_dim_gen_impl(x)

:(size(x,4) * (size(x,3) * (size(x,2) * (size(x,1) * 1))))

It should be apparent what has happened here. For an array of three dimensions, 
we are multiplying three numbers; while for an array of four dimensions, we are 
multiplying two numbers. The loop of 1:N ran at compile time and then disappeared. 
The resulting code will be much faster without the loop, particularly if this function is 
called excessively in some other inner loop.

The technique of removing loops and replacing them with the calculations inline 
is usually called loop-unrolling, and it is often performed manually in performance-
sensitive code. However, in Julia, generated functions are an easy and elegant way  
to achieve this without too much effort.

Also, note that this function looks much simpler without the loop. The number of 
tokens in this function is significantly reduced. This might make the function inline-
worthy and cause the compiler to inline this function, making this code even faster.
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Using named parameters
Julia supports a convenient named parameter syntax that is useful when creating 
complicated API with many optional parameters. However, the compiler cannot 
infer the types of named parameters effectively. Therefore, it should now be 
apparent that using named parameters can cause degraded performance.

As an example, we shall write the same function, once with named arguments, 
and once with regular, positional arguments. It will be apparent that the version 
with named arguments does not perform very well. (As an aside, note that the 
Benchmarks package that we've been using does not support named arguments. 
Therefore, we are benchmarking this code in a very simple way):

julia> named_param(x; y=1, z=1)  =  x^y + x^z

named_param (generic function with 1 method)

julia> pos_param(x,y,z) = x^y + x^z

pos_param (generic function with 1 method)

julia> @time for i in 1:100000;named_param(4; y=2, z=3);end

  0.032424 seconds (100.23 k allocations: 9.167 MB)

julia> @time for i in 1:100000;pos_param(4, 2, 3);end

  0.000832 seconds

It is apparent that using named parameters incurs a significant overhead in Julia. 
However, when designing high-level functions, it is still advantageous to use  
named parameters in order to create easy to use API's. Just don't use them in 
performance-sensitive inner loops.

Summary
In this chapter, we saw different ways to structure our code to make it perform 
better. The function is the primary element in Julia code; however, sometimes it 
is not the best option. Macros and generated functions can play an important role 
where appropriate.

In the next chapter, we will look deeper into the problem of numbers. We will see how 
Julia designs its core number types, and how to make basic numeric operations fly.
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Fast Numbers
As it is a numerical programming language, fast computations with numbers are 
central to everything we do in Julia. In the previous chapters, we discussed how the 
Julia compiler and runtime perform across a wide range of code. In this chapter, we 
will take a detailed look at how these core constructs are designed and implemented 
in Julia.

In this chapter, we will cover the following topics:

• Numbers in Julia
• Trading performance for accuracy
• Subnormal numbers

Numbers in Julia
The basic number types in Julia are designed to closely follow the hardware on 
which it runs. The default numeric types are as close to the metal as possible—a 
design decision that contributes to Julia's C-like speed.

Integers
Integers in Julia are stored as binary values. Their default size, as in C, depends on 
the size of the CPU/OS on which Julia runs. On a 32-bit OS, the integers are 32 bits 
by default, and on a 64-bit machine, they are 64 bits by default. These two integer 
sizes are represented as different types within Julia: Int32 and Int64, respectively. 
The Int type alias represents the actual integer type used by the system. The WORD_
SIZE constant contains the bit width of the current Julia environment, which is as 
follows:

julia> WORD_SIZE

64
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The bits function displays the underlying binary representation of the numbers.  
On a 64-bit machine, we get:

julia> bits(3)

"0000000000000000000000000000000000000000000000000000000000000011"

The default integer types are signed. That is, the first (and the most significant) bit  
is set to 1 to denote negative numbers, which are then stored as two's complement,  
as follows:

julia> bits(-3)

"1111111111111111111111111111111111111111111111111111111111111101"

Types such as these, and the following floating point types whose representation 
is simply a set of bits, have optimized handling within the Julia runtime. They are 
called bits types, and this feature can be queried for any type using the isbits 
function, as follows:

julia> isbits(Int64)

true

julia> isbits(ASCIIString)

false

One point to note is that, as a Julia value, basic numeric types can be boxed. That 
is, when stored in memory they are prefixed with a tag that represents their type. 
However, the Julia compiler is usually very good at removing any unnecessary 
boxing/unboxing operations. They can usually be compiled out. For example, we 
can define a function that adds two numbers and inspect the machine code that is 
generated and executed when this function is called via the following code:

myadd(x, y) = x + y

Looking at the output of of the following compiled code, (even if, like me, you are 
not an expert at reading assembly), it should be apparent that, other than the function 
overhead to set the stack and return the result, the generated code simply consists of 
the CPU instruction to add two machine integers, addq. There is no boxing/unboxing 
operation remaining in the native code when the function is called. Take a look at  
the following:
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julia> @code_native myadd(1,2)

    .section __TEXT,__text,regular,pure_instructions

Filename: none

Source line: 1

    pushq %rbp

    movq  %rsp, %rbp

Source line: 1

    addq  %rsi, %rdi

    movq  %rdi, %rax

    popq  %rbp

    ret

There is an even bigger advantage to storing numbers using the machine 
representation. Arrays of these numbers can be stored using contiguous storage.  
A type tag is stored once at the start. Beyond this, data in numerical arrays is stored 
in a packed form. This not only means that these arrays can be passed to C libraries 
as-is (minus the type tag) but also that the compiler can optimize computations on 
these arrays easily. There is no need for pointer dereferencing when operating on 
numerical arrays of bit types.

Integer overflow
A further consequence of the decision to use machine integers by default is that there 
are no overflow checks present within any base mathematical operation in Julia.

With a fixed number of bytes available to represent integers of a certain type, the 
possible values are bounded. These bounds can be viewed using the typemax and 
typemin functions, as follows:

julia> typemax(Int64)

9223372036854775807

julia> bits(typemax(Int64))

"0111111111111111111111111111111111111111111111111111111111111111"

Julia> typemin(Int64)

-9223372036854775808

julia> bits(typemin(Int64))

"1000000000000000000000000000000000000000000000000000000000000000"
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When the result of any operation is beyond the possible values for a type, it overflows. 
This typically results in the number being wrapped around from the maximum to the 
minimum, as in the following code:

julia> 9223372036854775806 + 1

9223372036854775807

julia> 9223372036854775806 + 1 + 1

-9223372036854775808

julia> typemin(Int64)

-9223372036854775808

Another way to think about an overflow is that, to represent larger numbers, 
additional bits are required in the most significant positions. These bits are then 
chopped off, and the remaining bits are returned as the result. Thinking about  
it this way explains many counterintuitive results when it comes to overflows.  
Take a look at the following code:

julia> 2^64

0

julia> 2^65

0

This behavior is very different from what is observed in popular dynamic languages, 
such as Ruby and Python. In these languages, every basic mathematical operation 
includes an overflow check. When the overflow is detected, the value is automatically 
upgraded to a wider type capable of storing the larger value. However, this causes a 
significant overhead to all numerical computation. Not only do we have to pay the cost 
for the extra CPU operation for the overflow check, but the conditional statement also 
prevents CPU pipelining from being effective. For this reason, Julia (as with Java and 
C) chooses to operate directly on machine integers and forgo all overflow checks.

This may be confusing and frustrating at first glance if you have a background in 
programming Python or Ruby, but this is the price you pay for high-performance 
computing. Once you understand that Julia's numbers are really close to the metal 
and designed to be directly operated on by the CPU, it should not be any more 
difficult to construct correctly behaving programs in practice.
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BigInt
If you know your program needs to operate on large integers beyond the range of 
Int32 or Int64, there are various options in Julia. First, if your numbers can still be 
bounded, there is Int128. However, for arbitrarily large integers, Julia has built-in 
support via the BigInt type. Run the following code:

julia> big(9223372036854775806) + 1 + 1

9223372036854775808

julia> big(2)^64

18446744073709551616

Operations on Int128 are slower, and for BigInts they are much slower than for the 
default integers. However, we can use these in situations where they are warranted 
without compromising on the performance of computations that fit within the 
bounds of the default types.

The floating point
The default floating-point type is always 64-bits wide and is called Float64. This 
is true irrespective of the underlying machine and OS bit width. It is represented in 
memory using the IEEE 754 binary standard.

The IEEE 754 standard is the universally accepted technical standard for floating 
point operations in computer hardware and software. Almost all commonly used 
CPU types implement their floating-point support using this standard. As a result, 
storing numbers in this format means that the CPU (or rather the FPU—the floating 
point unit within the CPU) can operate on them natively and quickly.

The binary storage standard for 64-bit floating point numbers consists of 1 sign bit, 
11 bits of exponent, and 52 bits of the mantissa (or the significand), as follows:

julia> bits(2.5)

"0100000000000100000000000000000000000000000000000000000000000000"

julia> bits(-2.5)

"1100000000000100000000000000000000000000000000000000000000000000"
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Unchecked conversions for unsigned integers
The basic integers described previously are all signed values. Unsigned integers can 
be specified using the UInt64 and UInt32 types. As with many other Julia types, the 
type conversions can be done via type constructors, as follows:

julia> UInt64(UInt32(1))

0x0000000000000001

These conversions check for out-of-range values. They throw an error when trying to 
convert a value that does not fit in the resulting type, as follows:

julia> UInt32(UInt64(1))

0x00000001

julia> UInt32(typemax(UInt64))

ERROR: InexactError()

in call at essentials.jl:56

The conditional check will have an overhead when performing this calculation, not 
only because of following out the CPU's instructions but also due to pipeline failures. 
In some situations, when working with binary data, it may be acceptable to truncate 
64-bit values to 32-bit values without checking. In such situations, there is a shortcut 
in Julia, which is to use the % operator with the type, as in the following code:

julia> typemax(UInt64) % UInt32

0xffffffff

Using this construct prevents any errors from being thrown for out-of-bound values, 
and it is much faster than the checked version of the conversion. This also works for 
other base unsigned types, such as UInt16 and UInt8.

Trading performance for accuracy
In this book, we largely focus on performance. However, at this stage, it should be 
said that accurate math is usually an even bigger concern. All basic floating-point 
arithmetic in Julia follows strict IEEE 754 semantics. Rounding is handled carefully in 
all base library code to guarantee the theoretical best error limits. In some situations, 
however, it is possible to trade off performance for accuracy and vice versa.



Chapter 5

[ 73 ]

The fastmath macro
The @fastmath macro is a tool to loosen the constraints of IEEE floating point 
operations in order to achieve greater performance. It can rearrange the order of 
evaluation to something with is mathematically equivalent but that would not be 
the same for discrete floating point numbers due to rounding/error effects. It can 
also replace some intrinsic operations with their faster variants that do not check for 
NaN or Infinity. This results in faster operation but might cause a compromise in 
accuracy. This option is similar to the -ffast-math compiler option in clang or GCC.

As an example, consider the following code that calculates the finite difference 
between the elements of an array and then sums them. We can create two versions 
of the function that are identical except for the fact that one has the @fastmath 
annotation and one doesn't. Simply use the following code:

function sum_diff(x)
    n = length(x); d = 1/(n-1)
    s = zero(eltype(x))
    s = s +  (x[2] - x[1]) / d
    for i = 2:length(x)-1
        s =  s + (x[i+1] - x[i+1]) / (2*d)
    end
    s = s + (x[n] - x[n-1])/d
end

function sum_diff_fast(x)
    n=length(x); d = 1/(n-1)
    s = zero(eltype(x))
    @fastmath s = s +  (x[2] - x[1]) / d
    @fastmath for i = 2:n-1
        s =  s + (x[i+1] - x[i+1]) / (2*d)
    end
    @fastmath s = s + (x[n] - x[n-1])/d
end

We can note that the @fastmath macro can be used in front of statements or loops. 
In fact, it can be used in front of any block of code, including functions. Anything 
relevant within this block will be rewritten by the macro.
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Benchmarking the two implementations shows that @fastmath provides an 
approximate 2.5x improvement over the base version. Take a look at the following:

julia> t=rand(2000);

julia> sum_diff(t)

46.636190420898515

julia> sum_diff_fast(t)

46.636190420898515

julia> @benchmark sum_diff(t)

================ Benchmark Results ========================

     Time per evaluation: 5.74 μs [5.68 μs, 5.81 μs]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations

       Number of samples: 3901

   Number of evaluations: 82201

         R² of OLS model: 0.987

 Time spent benchmarking: 0.53 s

julia> @benchmark sum_diff_fast(t)

================ Benchmark Results ========================

     Time per evaluation: 2.10 μs [2.09 μs, 2.11 μs]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations

       Number of samples: 4901

   Number of evaluations: 213901

         R² of OLS model: 0.997

 Time spent benchmarking: 0.50 s

This result is very much dependent on the nature of the computation. In many 
situations, the improvements are much lower. Also, in this case, the two functions 
return the exact same value, which is not true in the general case. The message, then, 
is to test and measure extensively when using this feature.
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As with everything else in Julia, we can introspect and take a look at what changes 
the macro makes to our code. We can observe that the macro rewrites the intrinsic 
functions with its own _fast versions in the following code:

julia> macroexpand(:(@fastmath for i=2:n-1; s =  s + (x[i+1] -  
x[i+1]) / (2*d); end))

:(for i = 2:Base.FastMath.sub_fast(n,1) # none, line 1:

        s =  
Base.FastMath.add_fast(s,Base.FastMath.div_fast(Base.FastMath.sub_fas  
t(x[Base.FastMath.add_fast(i,1)],x[Base.FastMath.add_fast(i,1)]),Base  
.FastMath.mul_fast(2,d)))

    end)

The K-B-N summation
Adding a collection of floating point values is a very common operation, but it is 
surprisingly susceptible to the accumulation of errors. A naïve implementation—that 
is, adding elements from the first to the last—accumulates errors at the rate of ( )O n , 
 where n is the number of elements being summed. Julia's sum base uses a pairwise 
summation algorithm that does better by accumulating errors at ( )( )logO n  but is 
almost as fast. However, there exists a more complicated summation algorithm 
attributed to William Kahan whose error is bound by ( )1O . This is implemented in 
Julia in the sum_kbn function.

In order to test the accuracy of sum, we will use a set of numbers that are particularly 
susceptible to rounding errors. The sum of the set of three numbers (1, -1, and 10-100) 
should be 10-100. However, as one of these numbers is much smaller than the other 
two, the result will be incorrectly rounded to 0. Take a look at the following code:

julia> sum([1 1e-100 -1])

0.0

julia> sum_kbn([1 1e-100 -1])

1.0e-100

julia> @benchmark sum([1 1e-100 -1])

================ Benchmark Results ========================

     Time per evaluation: 6.72 ns [6.68 ns, 6.75 ns]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations
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       Number of samples: 10701

   Number of evaluations: 53712201

         R² of OLS model: 0.991

 Time spent benchmarking: 0.52 s

julia> @benchmark sum_kbn([1 1e-100 -1])

================ Benchmark Results ========================

     Time per evaluation: 9.53 ns [9.47 ns, 9.60 ns]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations

       Number of samples: 10601

   Number of evaluations: 48829501

         R² of OLS model: 0.987

 Time spent benchmarking: 0.52 s

In summary, the default sum function is adequate for most situations. It is fast and quite 
accurate. However, for pathological cases or when summing millions of elements, the 
sum_kbn function may give up some performance in favor of increased accuracy.

Subnormal numbers
Subnormal numbers (also sometimes called denormal) are very small floating 
point values near zero. Formally, they are numbers smaller than those that can be 
represented without leading zeros in the significand (for example, normal numbers). 
Typically, floating point numbers are represented without leading zeros in the 
significand. Leading zeros in the number are moved to the exponent (that is, 0.0123 is 
represented as 1.23x10-2). Subnormal numbers are, therefore, numbers in which such 
a representation would cause the exponent to be lower than the minimum possible 
value. In such a situation, the significand is forced to have leading zeros. Much more 
detail on these numbers is available on Wikipedia at https://en.wikipedia.org/
wiki/Denormal_number.

Subnormal numbers in Julia can be identified by the issubnormal function, as follows:

julia> issubnormal(1.0)

false

julia> issubnormal(1.0e-308)

true

https://en.wikipedia.org/wiki/Denormal_number
https://en.wikipedia.org/wiki/Denormal_number
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Subnormal numbers are useful for a gradual underflow. Without them, for example, 
subtraction between extremely small values of floating point numbers might underflow 
to zero, causing subsequent divide-by-zero errors. This is shown in the following code:

julia> 3e-308 - 3.001e-308

-1.0e-311

julia> issubnormal(3e-308 - 3.001e-308)

true

Subnormal numbers to zero
Subnormal numbers cause a significant slowdown on modern CPUs, sometimes by 
up to 100x. This may be hard to track down because these performance problems can 
occur when the inputs take certain values even if we hold the algorithm constant. 
They manifest as unexplained, intermittent slowdowns.

One solution would be to force all subnormal numbers to be treated as zero. This will 
set a CPU flag that discards all the subnormal numbers and uses zero in its place. 
While this solves the performance problem, it should be used with care as it may 
cause accuracy and numerical stability problems. In particular, it is no longer true 
that x-y = = 0 => x = = y, as can be noted in the following code:

julia> set_zero_subnormals(true)

true

julia> 3e-308 - 3.001e-308

-0.0

julia> 3e-308 == 3.001e-308

false

julia> get_zero_subnormals()

true
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One of the ways subnormal numbers arise is when a calculation exponentially 
decays to zero. This gradual flattening of the curve results in many subnormal 
numbers being created and causes a sudden performance drop. As an example,  
we will take a look at one such computation here:

function timestep( b, a, dt )
    n = length(b)
    b[1] = 1
    two = eltype(b)(2)                           
    for i=2:n-1
        b[i] = a[i] + (a[i-1] - two*a[i] + a[i+1]) * dt
    end
    b[n] = 0
end

function heatflow( a, nstep )
    b = similar(a)
    o = eltype(a)(0.1)
    for t=1:div(nstep,2)                
        timestep(b,a,o)
        timestep(a,b,o)
    end
end

We will then benchmark these functions with and without forcing subnormal numbers 
to zero. We can note a speedup by around two times by forcing subnormal numbers to 
zero. Take a look at the following:

julia> set_zero_subnormals(false)

true

julia> @benchmark heatflow(a, 1000)

================ Benchmark Results ========================

     Time per evaluation: 4.19 ms [2.29 ms, 6.09 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 3.98 kb

   Number of allocations: 1 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.46 s
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julia> set_zero_subnormals(true)

true

julia> @benchmark heatflow(a, 1000)

================ Benchmark Results ========================

     Time per evaluation: 2.20 ms [2.06 ms, 2.34 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 3.98 kb

   Number of allocations: 1 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.25 s

Summary
In this chapter, we discussed how Julia uses a machine representation of numbers to 
achieve C-like performance for its arithmetic computations. We noted how to work 
within these design constraints and considered the edge cases that are introduced.

Working with single numbers, however, is the easy part. Most numerical 
computations, as we noted throughout this book, consist of working on large sets of 
numbers. In the next chapter, we will take a look at how to make arrays perform fast.
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Fast Arrays
It should not be a surprise to readers of this book that array operations are often the 
cornerstone of scientific and numeric programming. While arrays are a fundamental 
data structure in all programming, there are special considerations when they are 
used in numerical programming. One particular difference is that arrays are not 
just viewed as entities for data storage. Rather, they represent the fundamental 
mathematical structures of vectors and matrices.

In this chapter, we will discuss how to use arrays in Julia in the fastest possible way. 
When you profile your program, you will find that, in many cases, the majority of its 
execution time is spent in array operations. Therefore, the discussions in this chapter 
will likely turn out to be crucial in creating high-performance Julia code. The following 
are the topics we will cover:

• Array internals and storage
• Bounds checks
• In-place operations
• Subarrays
• SIMD parallelization
• Yeppp! for fast vector operations
• Writing generic library functions using arrays

Array internals in Julia
We discussed how Julia's performance comes out of using type information to 
compile specific and fast machine code for different data types. Nowhere is this  
more apparent than in array-related code. This is probably where all of Julia's  
design choices pay off in creating high-performance code.
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Array representation and storage
An array type in Julia is parameterized by the type of its elements and the number 
of its dimensions. Hence, the type of an array is represented as Array{T, N}, 
where T is the type of its elements, and N is the number of dimensions. So, for 
example, Array{UTF8String, 1} is a one-dimensional array of strings, while 
Array{Float64,2} is a two-dimensional array of floating point numbers.

Type parameters
You must have realized that type parameters in Julia do not always 
have to be other types; they can be constant values as well. This makes 
Julia's type system enormously powerful. It allows the type system to 
represent complex relationships and enables many operations to be 
moved to compile (or dispatch) time rather than at runtime.

Representing the type of an element within the type of arrays as a type parameter 
allows powerful optimization. It allows arrays of primitive types (and many immutable 
types) to be stored inline. In other words, the elements of the array are stored within 
the array's own primary memory allocation.

In the following diagram, we will show this storage mechanism. The numbers in 
the top row represent array indexes, while the numbers in the boxes are the integer 
elements stored within the array. The numbers in the bottom row represent the 
memory addresses where each of these elements is stored:
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In most other dynamic languages, all arrays are stored using pointers to their values. 
This is usually because the language runtime does not have enough information 
about the types of values to be stored in an array and hence cannot allocate the 
correctly sized storage. As represented in the following figures, when an array  
is allocated, contiguous storage simply consists of pointers to the actual elements,  
even when these elements are primitive types that can be stored natively in memory.

This method of storing arrays inline, without pointer indirection as much as possible, 
has many advantages and, as we discussed earlier, is responsible for much of Julia's 
performance claims. In other dynamic languages, the type of every element of the 
array is uncertain and the compiler has to insert type checks on each access. This can 
quickly add up and become a major performance drain.

Further, even when every element of the array is of the same type, we pay the price 
of memory load for every array element if they are stored as pointers. Given the 
relative costs of a CPU operation versus a memory load on a modern processor,  
not doing this is a huge benefit.

There are other benefits too. When the compiler and CPU notice operations on a 
contiguous block of memory, CPU pipelining and caching are much more efficient. 
Some CPU optimizations, such as Single Instruction Multiple Data (SIMD), are also 
unavailable when using indirect array loads.

www.allitebooks.com

http://www.allitebooks.org
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Column-wise storage
When an array has only one dimension, its elements can be stored one after the other 
in a contiguous block of memory. As we observed in the previous section, operating 
on this array sequentially from its starting index to its end can be very fast, being 
amenable to many compiler and CPU optimizations.

Two-dimensional or higher arrays can, however, be stored in two different ways. 
We can store them row-wise or column-wise. In other words, we can store from the 
beginning of the array the elements of the first row, followed by the elements of the 
second row, and so on. Alternatively, we can store the elements of the first column, 
then the elements of the second column, and so on.
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Arrays in C are stored as row-ordered. Julia, on the other hand, chooses the latter 
strategy, storing arrays as column-ordered, similar to MATLAB and Fortran. This 
rule applies to higher-dimensional arrays as well. In Julia, the array is stored with  
the last dimension first.

Naming convention
Conventionally, the term row refers to the first dimension 
of a two-dimensional array, and column refers to the second 
dimension. As an example, for a two-dimensional array of 
x::Array{Float64, 2} floats, the expression x[2,4] refers 
to the elements in the second row and the fourth column.

This particular strategy of storing arrays has implications for how we navigate them. 
The most efficient way to read an array is in the same order in which it is laid out in 
memory. That is, each sequential read should access contiguous areas in memory.

We can demonstrate the performance impact of reading arrays in sequence with the 
following code, which squares and sums the elements of a two-dimensional floating 
point array, writing the result at each step back to the same position. This code 
exercises both the read and write operations for the array:

function col_iter(x)
    s=zero(eltype(x))
    for i = 1:size(x, 2)
       for j = 1:size(x, 1)
          s = s + x[j, i] ^ 2 
          x[j, i] = s
       end
    end
end

function row_iter(x)
   s=zero(eltype(x))
   for i = 1:size(x, 1)
      for j = 1:size(x, 2)
       s = s + x[i, j] ^ 2  
         x[i, j] = s
      end
   end
end
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The row_iter function operates on the array in the first order row, while the  
col_iter function operates on the array in the first order column. We expect,  
based on the description of the previous array storage, that the col_iter function 
would be considerably faster than the row_iter function. Running the benchmarks, 
this is indeed what we see, as follows:

julia> a = rand(1000, 1000);

julia> @benchmark col_iter(a)

================ Benchmark Results ========================

     Time per evaluation: 2.37 ms [1.64 ms, 3.10 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.28 s

julia> @benchmark row_iter(a)

================ Benchmark Results ========================

     Time per evaluation: 6.53 ms [4.99 ms, 8.08 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.71 s 

The difference between the two is quite significant. Column major access is more 
than twice as fast. This kind of difference in the inner loop of an algorithm can 
make a very noticeable difference in the overall runtime. It is, therefore, crucial to 
consider the order in which multidimensional arrays are processed when writing 
performance-sensitive code.
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Bound checking
Like most dynamic languages, the Julia runtime performs bound checks on arrays by 
default. This means that the Julia compiler and runtime verify that the arrays are not 
indexed outside their limits and that all the indexes lie between the actual start and 
end of an array. Reading values of memory mistakenly beyond the end of an array 
is often the cause of many bugs and security issues in unmanaged software. Hence, 
bound checking is an important determinant of safety in your programs.

Removing the cost of bound checking
However, as with any extra operation, bound checking has costs too. There are extra 
operations for all array reads and writes. While this cost is reasonably small and is 
usually a good trade-off for safety, in some situations, where it can be guaranteed 
that the array bounds are never crossed, it may be worthwhile to remove these 
checks. This is possible in Julia using the @inbounds macro, as follows:

function prefix_bounds(a, b)
      for i = 2:size(a, 1)
            a[i] = b[i-1] + b[i]
      end
end

function prefix_inbounds(a, b)
    @inbounds for i = 2:size(a, 1)
         a[i] = b[i-1] + b[i]
    end
end

The @inbounds macro can be applied in front of a function or loop definition. Once 
this is done, all bound checking is disabled within the code block annotated with this 
macro. The performance benefit of doing this is small but may be significant overall 
for hot inner loops. Take a look at the following code:

julia> @benchmark prefix_bounds(x, y)

================ Benchmark Results ========================

     Time per evaluation: 1.78 ms [1.72 ms, 1.83 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.20 s
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julia> @benchmark prefix_inbounds(x, y)

================ Benchmark Results ========================

     Time per evaluation: 1.50 ms [1.24 ms, 1.76 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.17 s

The @inbounds annotation should only be used when it can be guaranteed that the 
array access within the annotated block will never be out of bounds. This typically 
should be only when the limits of the loop depend directly on the length of the array—
that is, for code of the for i in 1:length(array) form. If the programmer disables 
bound checking for some code and the array access is actually out of bounds, the 
results will be undefined. At best, the program will crash quickly.

Configuring bound checks at startup
The Julia runtime can use a command-line flag to set up bound-checking behavior 
for the entire session. The –check-bounds option can take two values: yes and no. 
These options will override any macro annotation in the source code.

When the Julia environment is started with –check-bounds=yes, all @inbounds 
annotations in code are ignored, and bound checks are mandatorily performed.  
This option is useful when running tests to ensure that code errors are properly 
reported and debugged if any.

Alternatively, when the Julia runtime is started with –check-bounds=no, no  
bound checking is done at all. This is equivalent to annotating all array access  
with the @inbounds macro. This option should only be used sparingly in the case  
of extremely performance-sensitive code, in which the system is very well tested  
and with minimal user inputs.
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Allocations and in-place operations
Consider the following trivial function, xpow, which takes an integer as input and 
returns the first few powers of the number. Another function, xpow_loop, uses  
the first function to compute the sum of squares of a large sequence of numbers,  
as follows:

function xpow(x)
   return [x x^2 x^3 x^4]
end

function xpow_loop(n)
    s = 0
    for i = 1:n
      s = s + xpow(i)[2]
    end
   return s
end

Benchmarking this function for a large input shows that this function is quite slow,  
as follows:

julia> @benchmark xpow_loop(1000000)

================ Benchmark Results ========================

     Time per evaluation: 103.17 ms [101.39 ms, 104.95 ms]

Proportion of time in GC: 13.15% [12.76%, 13.53%]

        Memory allocated: 152.58 mb

   Number of allocations: 4999441 allocations

       Number of samples: 97

   Number of evaluations: 97

 Time spent benchmarking: 10.16 s

The clue is in the number of allocations displayed in the preceding output. Within 
the xpow function, a four-element array is allocated for each invocation of this 
function. This allocation and the subsequent garbage collection take a significant 
amount of time. The Proportion of time in GC statistic displayed in the 
preceding code snippet also hints at this problem.
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Preallocating function output
Note that, in the xpow_loop function, we only require one array at a time to compute 
our result. The array returned from one xpow call is differenced in the next iteration 
of the loop. This suggests that all these allocations for new array are a waste, and  
it may be easier to preallocate a single array to hold the result for each iteration,  
as follows:

function xpow!(result::Array{Int, 1}, x)
    @assert length(result) == 4
    result[1] = x
    result[2] = x^2
    result[3] = x^3
    result[4] = x^4
end

function xpow_loop_noalloc(n)
    r = [0, 0, 0, 0]
    s = 0
    for i = 1:n
       xpow!(r, i)
       s = s + r[2]
    end
    s
end

Note that the xpow! function now has an exclamation mark in its name. This Julia 
convention denotes that this function takes an output variable that mutates as an 
argument. We allocate a single variable outside the loop in the xpow_loop_noalloc 
function and then use it in all loop iterations to store the result of the xpow! function. 
Take a look at the following code:

@benchmark xpow_loop_noalloc(1000000)

================ Benchmark Results ========================

     Time per evaluation: 11.02 ms [10.47 ms, 11.57 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 96.00 bytes

   Number of allocations: 1 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 1.13 s
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The result of this change is quite impressive. The runtime of the function, doing the 
same computation, decreases by an order of magnitude. Even more impressively, 
instead of millions of allocations, the program got by with only a single allocation.

The message, then, is simple: pay attention to what allocations happen within your 
inner loops. Julia provides you with simple tools to track this, so this is easy to fix.  
In fact, we don't need a full-fledged benchmarking infrastructure to figure this out.  
The simple @time macro also displays the allocations clearly, as shown by the 
following code:

julia> @time xpow_loop(1000000)

  0.115578 seconds (5.00 M allocations: 152.583 MB, 21.99% gc time)

julia> @time xpow_loop_noalloc(1000000)

  0.011720 seconds (5 allocations: 256 bytes)

Mutating versions
Given what we discussed in the previous section about the benefits of preallocating 
output, it should come as no surprise that many base library functions in Julia have 
mutating counterparts that modify their arguments rather than allocating a new 
output structure.

For example, the sort base library function, which sorts an array, allocates a new 
array of the same size as its input to hold its output: the sorted array. On the other 
hand, sort! makes an in-place sorting operation, in which the input array is itself 
sorted, as follows:

Julia> @benchmark sort!(a)

================ Benchmark Results ========================

     Time per evaluation: 15.92 ms [15.16 ms, 16.69 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 1.63 s
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julia> @benchmark sort(a)

================ Benchmark Results ========================

     Time per evaluation: 18.51 ms [17.22 ms, 19.80 ms]

Proportion of time in GC: 4.78% [0.34%, 9.22%]

        Memory allocated: 7.63 mb

   Number of allocations: 4 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 1.90 s

In this case, while the performance difference is significant, note that the allocating 
version of the function spends a significant proportion of its time in garbage collection 
and allocates a large amount of memory.

Array views
Julia, similarly to most scientific languages, has a very convenient syntax for array 
slicing. Consider the following example that sums each column of a two-dimensional 
matrix. First, we will define a function that sums the elements of a vector to produce 
a scalar. We will then use this function inside a loop to sum the columns of a matrix, 
passing each column one by one to our vector adder, as follows:

function sum_vector(x::Array{Float64, 1})
   s = 0.0
   for i = 1:length(x)
      s = s + x[i]
   end
   return s
end

function sum_cols_matrix(x::Array{Float64, 2})
   num_cols = size(x, 2)
   s = zeros(num_cols)
   for i = 1:num_cols
      s[i] = sum_vector(x[:, i])
  end
  return s
end
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The x[:, j] syntax denotes all the row elements of the jth column. In other words, 
it slices a matrix into its individual columns. Benchmarking this function, we will 
notice that the allocations and GC times are quite high. Take a look:

julia> @benchmark sum_cols_matrix(rand(1000, 1000))

================ Benchmark Results ========================

     Time per evaluation: 4.45 ms [3.45 ms, 5.46 ms]

Proportion of time in GC: 17.55% [3.19%, 31.91%]

        Memory allocated: 7.76 mb

   Number of allocations: 3979 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.48 s

The reason for the high allocation is the fact that in Julia, array slices create a copy 
of the slice. In other words, for every x[:, j] slice operation in the preceding code 
snippet, a new vector is allocated to hold the column, and the element values are 
copied into it from the original matrix. This obviously causes a large overheard in 
this kind of algorithms.

What we would like in this case is to create a vector representing one column of the 
matrix that shares its storage with the original array. This saves a significant amount 
of allocation and copying.

Julia 0.4 includes a sub() function, which does exactly this. It returns a new array 
that is actually a view into the original array. Creating a SubArray is very fast, much 
faster than creating a sliced copy. Accessing a SubArray can be slower than accessing 
a regular dense array, but Julia's standard library has some extremely well-tuned 
code for this purpose. This code achieves performance nearly on a par with using 
regular arrays.

Using sub(), we can rewrite our sum_cols_matrix function to reduce the 
allocations due to slicing. However, first, we need to loosen the parameter type of 
sum_vector, as we will now pass SubArray to this function. The SubArray type 
is a subtype of AbstractArray, but it is obviously a different type than the Array 
concrete type, which denotes dense, contiguous stored arrays. Take a look at the 
following code:

function sum_vector(x::AbstractArray)
   s = 0.0
   for i = 1:length(x)
      s = s + x[i]
   end
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   return s
end

function sum_cols_matrix_views(x::Array{Float64, 2})
   num_cols = size(x, 2); num_rows = size(x, 1)
   s = zeros(num_cols)
   for i = 1:num_cols
      s[i] = sum_vector(sub(x, 1:num_rows, i))
   end
   return s
end

We can note that this function, which uses the views of arrays to operate on portions 
of them, is significantly faster than using slices and copies. Most importantly, in the 
following benchmark, the number of allocations and the time spent in GC are much 
lower, as follows:

julia> @benchmark sum_cols_matrix_views(rand(1000, 1000))
================ Benchmark Results ========================
     Time per evaluation: 1.38 ms [1.06 ms, 1.71 ms]
Proportion of time in GC: 0.81% [0.00%, 5.64%]
        Memory allocated: 101.64 kb
   Number of allocations: 3001 allocations
       Number of samples: 100
   Number of evaluations: 100
 Time spent benchmarking: 0.18 s

SIMD parallelization
SIMD is the method of parallelizing computation whereby a single operation is 
performed on many data elements simultaneously. Modern CPU architectures 
contain instruction sets that can do this, operating on many variables at once.

Say you want to add two vectors, placing the result in a third vector. Let's imagine 
that there is no standard library function to achieve this, and you were writing a 
naïve implementation of this operation. Execute the following code:

function sum_vectors!(x, y, z)
    n = length(x)
    for i = 1:n
        x[i] = y[i] + z[i]
    end
end
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Say the input arrays to this function has 1,000 elements. Then, the function essentially 
performs 1,000 sequential additions. A typical SIMD-enabled processor, however, can 
add maybe eight numbers in one CPU cycle. Adding each of the elements sequentially 
can, therefore, be a waste of CPU capabilities.

On the other hand, rewriting code to operate on parts of the array in parallel can 
get complex quickly. Doing this for a wide range of algorithms can be an impossible 
task. Julia, as you would expect, makes this significantly easier using the @simd 
macro. Placing this macro against a loop gives the compiler the freedom to use 
SIMD instructions for the operations within this loop if possible, as shown in the 
following code:

function sum_vectors_simd!(x, y, z)
    n = length(x)
    @inbounds @simd for i = 1:n
          x[i] = y[i] + z[i]
    end
end

With this one change to the function, we can now achieve significant performance 
gains on this operation, as follows:

julia> @benchmark sum_vectors!(zeros(Float32, 1000000), rand(Float32, 
1000000), rand(Float32, 1000000))

================ Benchmark Results ========================

     Time per evaluation: 1.88 ms [1.73 ms, 2.03 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.24 s

julia> @benchmark sum_vectors_simd!(zeros(Float32, 1000000), 
rand(Float32, 1000000), rand(Float32, 1000000))

================ Benchmark Results ========================

     Time per evaluation: 1.02 ms [980.93 μs, 1.06 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations



Fast Arrays

[ 96 ]

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.24 s

There are a few limitations to using the @simd macro. This does not make every 
loop faster. In particular, note that using SIMD implies that the order of operations 
within and across the loop might change. The compiler needs to be certain that the 
reordering will be safe before it attempts to parallelize a loop. Therefore, before 
adding @simd annotation to your code, you need to ensure that the loop has the 
following properties:

• All iterations of the loop are independent of each other. That is, no iteration 
of the loop uses a value from a previous iteration or waits for its completion. 
The significant exception to this rule is that certain reductions are permitted.

• The arrays being operated upon within the loop do not overlap in memory.
• The loop body is straight-line code without branches or function calls.
• The number of iterations of the loop is obvious. In practical terms, this  

means that the loop should typically be expressed on the length of the  
arrays within it.

• The subscript (or index variable) within the loop changes by one for each 
iteration. In other words, the subscript is unit stride.

• Bounds checking is disabled for SIMD loops. (Bound checking can cause 
branches due to exceptional conditions.)

To check whether the compiler successfully vectorized your code, use the @code_llvm 
macro to inspect the generated LLVM bitcode. While the output might be long and 
inscrutable, the keywords to look for in the output are sections prefixed with vector 
and vectorized operations that look similar to <n * float>.

The following is an extract from the output of @code_llvm for the function we ran 
before, showing a successful vectorization of the operations. Thus, we know that the 
performance gains we observed are indeed coming from an automatic vectorization 
of our sequential code:

julia> @code_llvm sum_vectors_simd!(zeros(Float32, 1000000),  
rand(Float32, 1000000), rand(Float32, 1000000))

………

vector.ph:                                        ; preds = %if3

  %n.vec = sub i64 %20, %n.mod.vf

  %28 = sub i64 %n.mod.vf, %20
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  br label %vector.body

vector.body:                                      ; preds =  
%vector.body, %vector.ph

  %lsr.iv42 = phi i64 [ %lsr.iv.next43, %vector.body ], [ 0,  
  %vector.ph ]

  %29 = mul i64 %lsr.iv42, -4

  %uglygep71 = getelementptr i8* %25, i64 %29

  %uglygep7172 = bitcast i8* %uglygep71 to <8 x float>*

  %wide.load = load <8 x float>* %uglygep7172, align 4

  %30 = mul i64 %lsr.iv42, -4

  %sunkaddr = ptrtoint i8* %25 to i64

  %sunkaddr73 = add i64 %sunkaddr, %30

  %sunkaddr74 = add i64 %sunkaddr73, 32

  %sunkaddr75 = inttoptr i64 %sunkaddr74 to <8 x float>*

  %wide.load14 = load <8 x float>* %sunkaddr75, align 4

Yeppp!
Many algorithms for scientific computing compute transcendental functions (log, sin, 
and cos) on arrays of floating point values. These are heavily used operations with 
strict correctness requirements and thus have been the target of many optimization 
efforts over the years. Faster versions of these functions can have a huge impact on  
the performance of many applications in the scientific computing domain.

In this area, the Yeppp! software suite can be considered state-of-the-art. Primarily 
written at Georgia Institute of Technology by Marat Dukhan, Yeppp! provides 
optimized implementations of modern processors of these functions, which are  
much faster compared to the implementations in system libraries.

Julia has a very easy-to-use binding to Yeppp! within a package. It can be installed 
using the in-built package management mechanism Pkg.add("Yeppp"). Once 
installed, the functions are available with the Yeppp module. There is no simpler  
way to get a 4x performance boost. With performance gains of this magnitude,  
there is little reason to use anything else for code where a large number of 
transcendental functions needs to be computed. Run the following code:

julia> @benchmark log(a)

================ Benchmark Results ========================
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     Time per evaluation: 17.41 ms [16.27 ms, 18.55 ms]

Proportion of time in GC: 5.08% [0.32%, 9.83%]

        Memory allocated: 7.63 mb

   Number of allocations: 2 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 1.81 s

julia> @benchmark Yeppp.log(a)

================ Benchmark Results ========================

     Time per evaluation: 4.45 ms [3.54 ms, 5.35 ms]

Proportion of time in GC: 15.63% [1.55%, 29.71%]

        Memory allocated: 7.63 mb

   Number of allocations: 2 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.49 s

Yeppp also provides in-place versions of its functions that can be faster in many 
situations, saving allocations and subsequent garbage collection. The in-place  
version of log, for example, provides a 2x performance gain over the allocating 
version we ran before. Take a look at the following code:

julia> @benchmark Yeppp.log!(a)

================ Benchmark Results ========================

     Time per evaluation: 2.34 ms [2.01 ms, 2.67 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.26 s

The Yeppp Julia package provides implementations of some common vectorized 
functions, including log, sin, exp, and sumabs. Refer to https://github.com/
JuliaLang/Yeppp.jl for full details of its capabilities.

https://github.com/JuliaLang/Yeppp.jl
https://github.com/JuliaLang/Yeppp.jl
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Writing generic library functions  
with arrays
The suggestions in the previous sections should make your array code fast and 
high-performance. If you are directly writing code to solve your own problems, this 
should be enough. However, if you are writing library routines that may be called 
by other programs, you will need to heed additional concerns. Your function may be 
called with arrays of different kinds and with different dimensions. To write generic 
code that is fast with all types and dimensions of arrays, your code needs to be 
careful in how it iterates over the elements of the arrays.

All Julia arrays are subtypes of the AbstractArray type. All abstract arrays must 
provide facilities for indexation and iteration. However, these can be implemented 
very differently for different types of arrays. The default array is DenseArray, which 
stores its elements in contiguous memory. As discussed before, these elements can 
be pointers or values, but in either case, they are stored in contiguous memory. This 
means that linear indexing is very fast for all these arrays. However, this is not true 
for all kinds of arrays.

Linear indexing
The term linear indexing refers to the ability of indexing a 
multidimensional array by a single scalar index. So, for example, if we 
have a three-dimensional array x with 10 elements in each dimension, 
it can be indexed with a single integer in the range of 1 to 1000. In other 
words, x[1], x[2],…x[10], x[11], …x[99], and x[100] are consecutive 
elements of the array. As described earlier, Julia arrays are stored in a 
major order column, so linear indexing runs through the array in this 
order. This makes linear indexing particularly cache-friendly because 
contiguous memory segments are accessed consecutively. In contrast, 
cartesian indexing uses the complete dimensions of the array to index it. 
The three-dimensional array x is indexed by three integers x[i, j, k].

For example, subarrays can be efficiently indexed using cartesian indexing, but 
linear indexing is much slower due to the need to compute a div for each indexing 
operation. While cartesian indexing is useful when the dimensions of an array are 
known, generic code typically uses linear indexing to work with multidimensional 
arrays. This, then, may create performance pitfalls.
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As an example of a function that can work with generic multidimensional arrays, 
let's write a simple function that sums all the elements in an array, as follows:

function mysum_linear(a::AbstractArray)
    s=zero(eltype(a))
    for i = 1:length(a)
        s=s+a[i]
    end
    return s
end

This function works with arrays of any type and dimension, as we can note in the 
test calls in the following code, in which we call it with a range—a three-dimensional 
array, a two-dimensional array, and a two-dimensional subarray, respectively:

julia> mysum_linear(1:1000000)

500000500000

julia> mysum_linear(reshape(1:1000000, 100, 100, 100))

500000500000

julia> mysum_linear(reshape(1:1000000, 1000, 1000))

500000500000

julia> mysum_linear(sub(reshape(1:1000000, 1000, 1000), 1:500, 1:500) )

62437625000

If we benchmark these functions, we will note that calling the same function on a 
subarray is significantly slower than calling it on a regular dense array.

julia> @benchmark mysum_linear(reshape(1:1000000, 1000, 1000))

================ Benchmark Results ========================

     Time per evaluation: 808.98 μs [728.67 μs, 889.28 μs]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.33 s
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julia> @benchmark mysum_linear(sub(reshape(1:1000000, 1000, 1000), 1:500, 
1:500) )

================ Benchmark Results ========================

     Time per evaluation: 11.39 ms [10.23 ms, 12.55 ms]

Proportion of time in GC: 4.97% [0.75%, 9.19%]

        Memory allocated: 7.61 mb

   Number of allocations: 498989 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 1.34 s

In situations such as this where we want to write generic functions that can be 
performant with different kinds of arrays, the advice is to not use linear indexing.  
So, what should we use?

The simplest option is to directly iterate the array rather than iterating its indices. 
The iterator for each kind of array will choose the most optimal strategy for high 
performance. Hence, the code to add the elements of a multidimensional array  
can be written as follows:

function mysum_in(a::AbstractArray)
    s = zero(eltype(a))
    for i in a
        s = s + i
    end
end

If we benchmark this function, we can see the difference in performance, as follows:

julia> @benchmark mysum_in(sub(reshape(1:1000000, 1000, 1000), 1:500, 
1:500) )

================ Benchmark Results ========================

     Time per evaluation: 354.25 μs [347.11 μs, 361.39 μs]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.23 s
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This strategy is usable when the algorithm only requires the elements of the array and 
not its indexes. If the indexes need to be available within the loop, they can be written 
using the eachindex() method. Each array defines an optimized eachindex() method 
that allows the iteration of its index efficient. We can then rewrite the sum function as 
follows, even though, for this particular function, we do not actually need indexes:

function mysum_eachindex(a::AbstractArray)
    s = zero(eltype(a))
    for i in eachindex(a)
        s = s + a[i]
    end
end

The benchmark numbers demonstrate an order of magnitude improvement in the 
speed of these functions when not using linear indexing for subarrays. Writing code 
in this manner, therefore, allows our function to be used correctly and efficiently by 
all manner of arrays in Julia. Take  a look at the following:

Julia> @benchmark mysum_eachindex(sub(reshape(1:1000000, 1000, 1000), 
1:500, 1:500) )

================ Benchmark Results ========================

     Time per evaluation: 383.06 μs [363.04 μs, 403.07 μs]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.22 s

Summary
In this chapter, we covered the performance characteristics in Julia of the most 
important data structure in scientific computing: the array. We discussed why Julia's 
design enables extremely fast array operations and how to get the best performance in 
our code when operating on arrays. This brings us to the end of our journey creating 
the fastest possible code in the Julia. Using all the tips discussed until now, the 
performance of your code should approach that of well-written C.

Sometimes, however, this isn't enough; we want higher performance. Our data may 
be larger or our computations intensive. In this case, the only option is to parallelize 
our processing using multiple CPUs and systems. In the next chapter, we will take a 
brief look at the features that Julia provides to write parallel systems easily.
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Beyond the Single Processor
Throughout this book, we discussed ways to make our code run faster and more 
efficiently. Using the suggestions in the previous chapters, your code now fully 
utilizes the processor without much overhead or wastage. However, if you still 
need your computation to finish even earlier, the only solution is distributing the 
computation over multiple cores, processors, and machines. In this chapter, we will 
briefly discuss some of the facilities available in Julia for distributed computing.  
A complete exposition of this topic is probably the subject of another large book—
this chapter can only provide a few pointers for further information, such as:

• Parallelism in Julia
• Programming parallel tasks
• Shared memory arrays

Parallelism in Julia
Julia is currently a single-threaded language (although it does perform asynchronous 
I/O). This means that the Julia code that you write will run sequentially on a single 
core of the machine. There are a few significant exceptions; Julia has asynchronous 
I/O that can offload network or file access to a separate operating system thread, 
and some libraries embedded within Julia, such as OpenBLAS, spawn and manage 
multiple threads for their computations. Notwithstanding these exceptions, most 
user-written Julia code is limited to a single core.

Julia, however, contains an easy-to-use multiprocessor mechanism. You can start 
multiple Julia processes either on a single host or across a network, and you can 
control, communicate, and execute programs across the entire cluster.
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Starting a cluster
The communication between Julia processes is one-sided in the sense of there being 
a master process that accepts the user's inputs and controls all the other processes. 
Starting a cluster, therefore, involves either a command-line switch while starting the 
master Julia process or calling methods from REPL. At its simplest, the –p n option 
while starting Julia creates n additional processes on the local host, as can be seen in 
the following:

$ ./julia -p 2

               _

   _       _ _(_)_     |  A fresh approach to technical computing

  (_)     | (_) (_)    |  Documentation: http://docs.julialang.org

   _ _   _| |_  __ _   |  Type "?help" for help.

  | | | | | | |/ _` |  |

  | | |_| | | | (_| |  |  Version 0.4.3-pre+6 (2015-12-11 00:38 UTC)

 _/ |\__'_|_|_|\__'_|  |  Commit adffe19* (63 days old release-0.4)

|__/                   |  x86_64-apple-darwin15.2.0

The procs() method can be used to inspect the cluster. It returns the IDs of all the 
Julia processes that are available. We can note in the following that we have three 
processes available—the master and two child processes:

julia> procs()

3-element Array{Int64,1}:

 1

 2

 3

The addprocs(n) method creates additional processes connected to the same master. 
It behaves similarly to the –p n option but is a pure Julia function that can be called 
from REPL or other Julia code, as follows:

julia> addprocs(2)

2-element Array{Int64,1}:

 4

 5

julia> procs()
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5-element Array{Int64,1}:

 1

 2

 3

 4

 5

These commands launch multiple Julia processes on the same machine. This is useful 
to the extent of running as many Julia processes as the number of cores on this host. 
Beyond this, you can start processes on other hosts by providing the hostname to the 
addprocs call, as follows:

julia> addprocs(["10.0.2.1", "10.0.2.2"])

7-element Array{Int64,1}:

 1

 2

 3

 4

 5

 6

 7

This invocation, by default, uses Secure Shell (SSH) to connect to and start Julia 
processes on remote machines. There are, of course, many different configuration 
options possible for this setup, including the ability to use other protocols to control 
and communicate between processes. All this and more is described in detail in the 
manual at http://docs.julialang.org/en/release-0.4/manual/parallel-
computing/#clustermanagers.

Communication between Julia processes
The primitive facilities provided by Julia to move code and data within a cluster of 
processes consist of remote references and remote calls. As the name suggests, a remote 
reference consists of a reference to data residing on a different Julia process. Thereby, 
values can be retrieved from (or written to) such a reference.

http://docs.julialang.org/en/release-0.4/manual/parallel-computing/#clustermanagers
http://docs.julialang.org/en/release-0.4/manual/parallel-computing/#clustermanagers
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A remote call, on the other hand, is a request to execute a function on a particular 
node. Such a call is asynchronous in that a remote calls finishes immediately, 
returning the RemoteRef object, which is a reference to its result. The arguments to 
remotecall are the function name, the process number to execute the function in, 
and the arguments to this function. The caller, then, has the option to wait() on the 
reference until the call completes and then fetch() the result into its own process,  
as shown in the following code:

julia> a = remotecall(2,sqrt, 4.0)  

RemoteRef{Channel{Any}}(2,1,3)

julia> wait(a)

RemoteRef{Channel{Any}}(2,1,3)

julia> fetch(a)

2.0

For simple uses, the remotecall_fetch function can combine these two steps and 
return the function result at once, as follows:

julia> remotecall_fetch(2, sqrt, 4.0)

2.0

Programming parallel tasks
The low-level facilities that we saw in the previous section are quite flexible and 
very powerful. However, they leave a lot to be desired in terms of ease of use. Julia, 
therefore, has built-in set of higher-level programming tools that make it much easier 
to write parallel code. We will discuss some of them in the next section.

@everywhere
The @everywhere macro is used to run the same code in all the processes in 
the cluster. This is useful to set up the environment to run the actual parallel 
computation later. The following code loads the Distributions package and  
calls the rand method on all the nodes simultaneously, as follows:

julia> @everywhere using Distributions

julia> @everywhere rand(Normal())
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@spawn
The @spawn macro is a simpler way to run a function in a remote process without 
having to specify the remote node or having to work through ambiguous syntax. 
Take a look at the following code:

julia> a=@spawn randn(5,5)^2

RemoteRef{Channel{Any}}(2,1,240)

julia> fetch(a)

5x5 Array{Float64,2}:

 -0.478348  -0.185402    6.21775    2.62166   -5.4774  

 -3.22569   -1.56487     3.03402   -0.305334  -1.75827 

 -2.9194    -0.0549954   0.922262  -0.117073  -0.281402

  0.709968   1.87017    -1.7031     0.343585   0.09105 

  3.20311    0.49899    -0.202174  -0.337815  -1.81711 

This macro actually creates a closure around the code being called on the remote node. 
This means that any variable declared on the current node will be copied over to the 
remote node. In the preceding code, the random array is created on the remote node. 
However, in the following code, the random array is created on the current node and 
copied to the remote node. Even though the two code extracts look similar, they have 
very different performance characteristics. Take a look at the following code:

julia> b=rand(5,5)

5x5 Array{Float64,2}:

 0.409983  0.852665   0.490156  0.481329  0.642901

 0.676688  0.0865577  0.59649   0.553313  0.950665

 0.591476  0.824942   0.440399  0.701106  0.321909

 0.137929  0.0138369  0.273889  0.677865  0.33638 

 0.249115  0.710354   0.972105  0.617701  0.969487

julia> a=@spawn b^2

RemoteRef{Channel{Any}}(3,1,242)

julia> fetch(a)

5x5 Array{Float64,2}:

 1.26154   1.29108   1.68222   1.73618   2.01716 

 1.00195   1.75952   1.7217    1.7541    1.81713 
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 1.2381    1.17741   1.48089   1.72401   1.8542  

 0.405205  0.593076  0.709137  0.933354  0.744132

 1.48451   1.77305   2.08556   2.21207   2.29608 

Parallel for
Julia includes an inbuilt parallel for loop that can automatically distribute the 
computation within a for loop across all the nodes in a cluster. This can sometimes 
allow code to be sped up across machines with little programmer intervention.

In the following code, we will generate a million random numbers and add them. 
The first function computes each step serially, while the second function attempts 
to distribute the steps across the cluster. Each step in this loop can be computed 
independently and should thus be easy to parallelize:

    function serial_add()
       s=0.0
       for i = 1:1000000
         s=s+randn()
       end
       return s
    end

    function parallel_add()
       return @parallel (+) for i=1:1000000
          randn()
       end
    end

We can note that the parallel function provides a significant performance 
improvement without the programmer having to manage the task distribution  
or internode communication explicitly. Now, take a look at the following code:

julia> @benchmark serial_add()

================ Benchmark Results ========================

     Time per evaluation: 6.95 ms [6.59 ms, 7.31 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 0.00 bytes

   Number of allocations: 0 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.86 s

julia> @benchmark parallel_add()
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================ Benchmark Results ========================

     Time per evaluation: 4.42 ms [4.25 ms, 4.60 ms]

Proportion of time in GC: 0.00% [0.00%, 0.00%]

        Memory allocated: 154.42 kb

   Number of allocations: 2012 allocations

       Number of samples: 100

   Number of evaluations: 100

 Time spent benchmarking: 0.63 s

Parallel map
The parallel for loop we discussed in the previous section can perform a reduction 
(the addition in the previous code) and works well even if each step in the 
computation is lightweight. For code where each iteration is heavyweight, and there 
is no reduction to be done, the parallel map construct is useful. In the following code, 
we will create 10 large matrices and then perform a singular-value decomposition on 
each. We can note that parallelizing this computation can attain a significant speed 
improvement simply by changing one character in the code:

julia> x=[rand(100,100) for i in 1:10];

julia> @benchmark map(svd, x)

================ Benchmark Results ========================

   Time per evaluation: 327.77 ms [320.38 ms, 335.16 ms]

Proportion of time in GC: 0.13% [0.00%, 0.40%]

        Memory allocated: 5.47 mb

   Number of allocations: 231 allocations

       Number of samples: 29

   Number of evaluations: 29

 Time spent benchmarking: 10.18 s

julia> @benchmark pmap(svd, x)

================ Benchmark Results ========================

   Time per evaluation: 165.30 ms [161.76 ms, 168.84 ms]

Proportion of time in GC: 0.10% [0.00%, 0.40%]

        Memory allocated: 1.66 mb

   Number of allocations: 2106 allocations

       Number of samples: 59

   Number of evaluations: 59

 Time spent benchmarking: 10.11 s
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Distributed arrays
The DistributedArrays package provides an implementation of partitioned 
multidimensional arrays. Detailed package documentation is available at https://
github.com/JuliaParallel/DistributedArrays.jl. For the moment, it suffices 
to say that there exist facilities to partition datasets automatically at creation or 
manually, as well as distributing the computation to each node for operation on the 
local parts of the arrays.

Shared arrays
Distributed arrays are a fully generic solution that scales across many networked 
hosts in order to work on data that cannot fit in the memory of a single machine. 
However, in many circumstances, although the data does fit in the memory, we want 
multiple Julia processes to improve throughput by fully utilizing all the cores in a 
machine. In this situation, shared arrays are useful to get different Julia processes 
operating on the same data.

Shared arrays, as the name suggests, are arrays that are shared across multiple Julia 
processes on the same machine.

Constructing SharedArray requires specifying its type, its dimensions, and the list of 
process IDs that will have access to the array, as follows:

S=SharedArray( Float64, (100, 100, 5), pids=[2,3,4,5]);

Once a shared array is created, it is accessible in full to all the specified workers  
(on the same machine). Unlike a distributed array, the data is not partitioned, and 
hence there is no need for any data transfer between nodes. Therefore, when the data 
is small enough to fit in the memory but large enough to require multiple nodes to 
process, shared arrays are particularly useful. Not only are they highly performant  
in these situations, it is much easier to write code for them.

Threading
Shared arrays can be seen as some kind of shared memory multiprocessing in Julia. 
They are currently useful as Julia does not have first-class threads that can operate on 
shared memory. This is, however, being worked on as we speak, and it is likely that 
in the future versions of Julia, it will be possible to operate on shared memory arrays 
from multiple threads within the same process.

https://github.com/JuliaParallel/DistributedArrays.jl
https://github.com/JuliaParallel/DistributedArrays.jl
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Summary
This chapter provided a very cursory glimpse into the parallel computing facilities 
built into the Julia language. While we didn't cover much in detail in this chapter, 
you have hopefully noted how easy it is to get started with distributed computation 
in Julia. With a little bit of help from the online documentation, it should be easy to 
create high performing distributed codebases in Julia.
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