
www.allitebooks.com

http://www.allitebooks.org

Laszlo in Action

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Laszlo in Action

NORMAN KLEIN

MAX CARLSON

with GLENN MACEWEN

M A N N I N G
Greenwich

(74° w. long.)
www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2008 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

Manning Publications Co. Copyeditor: Liz Welch
Sound View Court 3B Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-83-4
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 13 12 11 10 09 08 07
www.allitebooks.com

http://www.allitebooks.org

 To our parents
and our children who will follow us

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

brief contents
 PART 1 THE BASICS ..1

 1 ■ Turbocharging web technology 3

 2 ■ The declarative world of LZX 17

 3 ■ Core LZX language rules 48

 4 ■ A grand tour of views and user classes 78

 5 ■ Designing the Laszlo Market 114

 PART 2 PROTOTYPING THE LASZLO MARKET 149

 6 ■ Laying out the Laszlo Market 151

 7 ■ Introducing Laszlo components 172

 8 ■ Dynamic behavior of events and delegates 199

 9 ■ Using Laszlo services 220

 PART 3 LASZLO DATASETS....................................... 249

 10 ■ Working with XML datasets 251
vii

www.allitebooks.com

http://www.allitebooks.org

viii BRIEF CONTENTS
 11 ■ Using dynamic dataset bindings 281

 12 ■ Scoreboarding the shopping cart 319

 PART 4 INTEGRATING DHTML AND FLASH.............. 351

 13 ■ Enhancing the user experience 353

 14 ■ Branding an application 385

 15 ■ Integrating DHTML and Flash 404

 PART 5 SERVER AND OPTIMIZATION ISSUES 435

 16 ■ Networked data sources 437

 17 ■ Managing large datasets 459

 18 ■ Laszlo system optimization 484
www.allitebooks.com

http://www.allitebooks.org

contents
preface xix
acknowledgments xxi
about this book xxiii
about the title xxviii
about the cover illustration xxix

PART 1 THE BASICS ... 1

1 Turbocharging web technology 3
1.1 Laszlo is for designing and building RIAs 5

User-centered design 6 ■ Discovering Laszlo: a developer’s tale 6
A bit of history 10 ■ OpenLaszlo: open source and available
to all 11

1.2 A first taste of Laszlo LZX 12
Animating “Hello Laszlo” 13 ■ Executing on Flash
or DHTML 14

1.3 Deploying a Laszlo application 14
Server mode 14 ■ Stand-alone mode 15

1.4 Summary 16
ix

www.allitebooks.com

http://www.allitebooks.org

x CONTENTS
2 The declarative world of LZX 17
2.1 Architectural support 18

Laszlo’s three-tiered structure 20 ■ Interfacing
Laszlo to a web server 22 ■ Publisher-subscriber
communications 23 ■ Combining
inheritance models 24

2.2 LZX classes 26
The LzNode class 26 ■ The LzView class 27 ■ Defining
classes in LZX 28

2.3 The fundamentals of tags 30
Hierarchical addressing 31 ■ Parent-child attribute
propagation 34 ■ Flat tag hierarchies 36 ■ Built-in
event handling 37 ■ Event handling with
constraints 39 ■ Animating declarative tags 40
Binding tags to XML data 43

2.4 Summary 46

3 Core LZX language rules 48
3.1 Core LZX language rules 49
3.2 Learning LZX Basics 50

Debugging 50 ■ Commenting your code 53
Well-formed XML files 54

3.3 Creating object hierarchies 55
Naming objects declaratively 55 ■ Creating nodes
dynamically with JavaScript 57 ■ The subnodes array 59

3.4 Storing values in attributes 60
Attribute types 61 ■ JavaScript type expressions 64

3.5 Methods and event handlers 66
Writing methods 66 ■ Writing event-handler methods 69

3.6 Declarative constraints 73
The basics of constraints 73 ■ The once modifier 74

3.7 JavaScript and the script tag 76
3.8 Summary 77

CONTENTS xi
4 A grand tour of views and user classes 78
4.1 Introducing the basic features of views 80

Controlling view visibility 81 ■ Controlling visibility with
animation 84 ■ Animating with rotations 86 ■ Adding
multimedia resources 88 ■ Handling font specifications 97
Controlling the cursor 97

4.2 Interacting with a view 98
Receiving user events 99

4.3 Locating views 102
Locating absolute and relative screen position 103 ■ Locating
a view 104

4.4 Instantiating LFC-based objects 106
4.5 User-defined classes 107

Overriding a method in a subclass 108 ■ Using the classroot
qualifier with classes 109 ■ Instantiating LZX-based objects 111

4.6 Summary 112

5 Designing the Laszlo Market 114
5.1 Prototyping our application 115

Creating wireframes 116 ■ Storyboard transitions 118

5.2 Coding the prototype 119
The window as a prototyping tool 122 ■ Organizing
with libraries 124

5.3 Configuring the checkout screen 125
Sliding a virtual screen 125 ■ Stacking pages 126

5.4 Central control of screen display 129
Designing the screen transitions 132 ■ Triggering screen
transitions 134

5.5 Refactoring our code 137
Replacing the animator 137 ■ A general-purpose
architecture 139

5.6 Testing with LzUnit 139
Unit testing with LzUnit 140 ■ Testing the Laszlo
Market 141 ■ Testing from a URL query string 143

xii CONTENTS
5.7 Putting it all together 144
5.8 Summary 147

PART 2 PROTOTYPING THE LASZLO MARKET 149

6 Laying out the Laszlo Market 151
6.1 Common layout problems 152

Basic layouts 154 ■ Stretchable layouts 160
Dynamic layout modifiers 162 ■ Opting out
of layouts 164

6.2 Creating custom layouts 165
Extending the LzLayout class 165 ■ Building an
aircraft formation layout 165

6.3 Laying out forms 167
Labeled input fields 167 ■ Getting to know
formlayout 169 ■ Identifying class type with
instanceof 169

6.4 Summary 171

7 Introducing Laszlo components 172
7.1 Base component classes 173

Controlling focus 174 ■ Working with data
components 177

7.2 Building a multipage window 178
Coding the Shipping Information page 179
Controlling placement issues 181 ■ Creating the
Shipping Address pane 183

7.3 Validating input fields 185
Using validators 186 ■ Creating a new validator 187
Creating the Shipping Method pane 189 ■ Implementing the
Billing Information page 191 ■ Coding the Billing Method
wireframe 193 ■ Coordinating multiple pages 194
Form validation 197

7.4 Summary 198

CONTENTS xiii
8 Dynamic behavior of events and delegates 199
8.1 Exploring event-handler and constraint operation 200

How event handling and constraints work 201
Working with events 202 ■ Working
with delegates 206

8.2 Adding dynamic behavior 209
Taking a delegate-centric perspective 209 ■ Taking an
event-centric perspective 212

8.3 Using delegates with layouts 213
8.4 Dynamically adding attributes 216
8.5 Handling complex behavior with attribute setters 217
8.6 Summary 219

9 Using Laszlo services 220
9.1 Overview of services 221
9.2 Different ways to use a service 223

Calling a service method 223 ■ Receiving
service events through registration methods 224
Receiving service events through
declarative references 224

9.3 Building a stopwatch 225
9.4 Demonstrating services with a login window example 227

Controlling the mouse cursor 230 ■ Sequencing
windows with LzModeManager 232 ■ Capturing
keyboard input with LzKeys 236

9.5 Building a drag-and-drop network 238
Detecting local and global mouse events 238
Generating continuous tracking with LzIdle 239
Advanced drag-and-drop
with LzTrack 242

9.6 Summary 247

xiv CONTENTS
PART 3 LASZLO DATASETS....................................... 249

10 Working with XML datasets 251
10.1 Introducing XML-based datasets 252

Exploring XML elements 253 ■ Using XPath to select
data elements 255 ■ Binding declarative tags to XML
elements 257 ■ Establishing a data path context 259
The $path{} constraint notation 259 ■ Updating a
dataset 260 ■ Handling ontext events 262
Updating with the applyData method 263
Using local datasets 264

10.2 Matching multiple data elements 264
10.3 Sorting datasets 268

Simple sorting 268 ■ Custom sorting 269

10.4 Prototyping datasets for the Laszlo Market 271
Designing a dataset 272 ■ Resizing images using aspect ratio 274

10.5 Prototyping with grids 276
Using grids 276 ■ Processing a user selection 278

10.6 Summary 279

11 Using dynamic dataset bindings 281
11.1 Linking data nodes and data pointers 282
11.2 The LzDataNode classes 283

The abstract LzDataNode superclass 284 ■ Building
datasets with LzDataElements 285 ■ Core methods of
LzDataElement 287 ■ Working with LzDataText text
nodes 290 ■ Building XML structures
with power tools 292

11.3 Navigating with LzDatapointer and LzDatapath 294
Navigating with data pointers 295 ■ Accessing data
and text nodes 295 ■ Navigating a dataset 298 ■ Creating
and modifying datasets 300 ■ Working with the datapath
tag 303 ■ Converting between data pointers and
data nodes 304 ■ Checking updates
with rerunxpath 306

CONTENTS xv
11.4 Advanced replication manager issues 308
Filtering with onnodes 311 ■ Checking clone instantiation
with onclones 312

11.5 Master-detail design pattern 313
Implementing master-detail in Laszlo Market 314 ■ When to
use a static layout 316

11.6 Summary 317

12 Scoreboarding the shopping cart 319
12.1 How a scoreboard works 321
12.2 Reimplementing the Product List window 322

Creating the title header 322 ■ Populating a
table row 323 ■ Sorting table columns 324 ■ Basics
of a scrollbar 325 ■ Creating a selection
manager 329

12.3 Building the scoreboarding shopping cart 333
Designing the Shopping Cart window 334
Implementing scoreboarding techniques 336
Reporting add-to-cart operations 337 ■ Building
the shopping cart 337 ■ Manually updating
the quantity field 340 ■ Supporting
drag-and-drop 341 ■ Supporting the right
mouse button 346

12.4 Summary 349

PART 4 INTEGRATING DHTML AND FLASH 351

13 Enhancing the user experience 353
13.1 Animating transitions 354

Using Laszlo’s default splash screen 354 ■ Customizing
a splash screen 355

13.2 Building resizable buttons 355
The problem with simple buttons 356 ■ Building resizable
buttons 356 ■ Building multistate buttons 358 ■ Building
resizable ■ nine-piece panes 362

xvi CONTENTS
13.3 Modal windows and button interactivity 364
13.4 Basics of animation 367

Selling visual illusions 368 ■ Using animators
and animatorgroups 369

13.5 Complex animated effects 371
Simulating a squashed ball 372 ■ Interactive
animation 374 ■ Using delay for expressive
purposes 377 ■ Animating the
Market trashcan 381

13.6 Summary 383

14 Branding an application 385
14.1 Creating an application-specific look 386

Vector and bitmapped graphics 388 ■ Font
differences 388 ■ Selecting a font 389 ■ Choosing
between DHTML and Flash implementations 393

14.2 Branding with custom components 394
Customizing the tabelement component 395 ■ Creating
a custom scrollbar 398

14.3 Summary 403

15 Integrating DHTML and Flash 404
15.1 Advantages of a hybrid approach 405
15.2 Using an HTML wrapper 406

Embedding Laszlo applications in HTML 406 ■ Examining
HTML files created by Laszlo 408 ■ Embedding Laszlo
applications in HTML 410 ■ Creating default web pages 412

15.3 Intermixing DHTML and Flash applications 413
Controlling Laszlo output placement in HTML 416 ■ Building a
search engine–accessible application 418

15.4 Calling browser JavaScript from Laszlo 420
15.5 Calling Flash from Laszlo 422

Using Flash to set the system clipboard 422 ■ Accessing Flash
ActionScript objects 422

CONTENTS xvii
15.6 Embedding HTML in Laszlo 423
15.7 Working with video 426

Using streaming media 426 ■ Using the
Red5 server 427 ■ Interfacing Laszlo to a
Red5 server 428 ■ Adding video to
the Laszlo Market 429

15.8 Summary 433

PART 5 SERVER AND OPTIMIZATION ISSUES............. 435

16 Networked data sources 437
16.1 Interfacing to web servers 439

Using datasets with HTTP 440 ■ Buffered
HTTP datasets 444 ■ Pooling buffering
datasets 445 ■ Building a data
service 446

16.2 Accessing sessioned data 451
Building a sessioned shopping cart 451 ■ Deleting
from the shopping cart 455

16.3 Maintaining server domains 457
16.4 Summary 458

17 Managing large datasets 459
17.1 Processing with alternative filters 460

The setNodes backdoor 461 ■ Multikey sorting with
setNodes 462 ■ Merging and mapping datasets 463

17.2 Optimizing data display 466
Lazy replication 466 ■ Handling expansible
listings 469 ■ Expandable displays in the Laszlo
Market 470 ■ Pooling 473

17.3 Paging datasets for long listings 475
Adding paged datasets to the Market 477

17.4 Summary 483

xviii CONTENTS
18 Laszlo system optimization 484
18.1 Dynamically loading optional elements 485

Importing dynamic libraries 486 ■ Loading optional elements
with dynamic libraries 487

18.2 Optimizing critical elements 490
Instantiating objects 490 ■ Manipulating instantiation with
initstage 491 ■ Controlling initialization through initstage 493

18.3 Reducing the Market’s startup time 496
Redistributing the Market’s initialization 497 ■ Dynamically
loading noncritical elements 498

18.4 Performance utilities 500
Measuring time with getTime 500 ■ Building a simple timing
framework 501 ■ Using the Laszlo performance utilities 502
Using the developer console 503

18.5 Summary 504

index 505

appendix A Working with Struts

appendix B Working with Ruby
 on Rails

available online only from
www.manning.com/LaszloinAction

preface
When we started Laszlo Systems in 2000, our vision was to enrich web browsers
with desktop-style interaction. Just as many other software languages, such as Java,
had obscure beginnings in unrelated fields, we needed a tool to program Flash-
based set-top boxes. Flash’s timeline-based authoring tools had proven to be too
unwieldy for building large applications.

 We decided that rather than build a framework to assist Flash, we’d just view
the Flash Player as a virtual machine and build our own compiler to output Flash
files. This approach was the genesis of Laszlo LZX.

 A benefit of this compiled approach was the complete freedom to specify our
own programming model, which we named LZX, to write Flash-based applica-
tions. We modeled the initial design of the LZX language on Dynamic HTML
(DHTML), because we wanted the familiarity offered by tags, events, and Java-
Script and the benefits provided by a declarative language approach.

 We designed LZX to be a meta-language capable of being ported to multiple
environments. This would allow it to take advantage of the strengths offered by
each platform. Therefore, we designed the LZX language and APIs to be com-
pletely separate from Flash. Although this was a requirement from the project’s
inception, it took several years of development before we were ready to support
other runtimes. After a lot of hard work, we launched the first commercial release
of Laszlo in 2002, which targeted the ubiquitous Flash 5 Player.

 OpenLaszlo was born on October 5, 2004, when we released the source code
for the entire Laszlo platform under an open source license. Since then, a vibrant
xix

xx PREFACE
user community has developed around OpenLaszlo. There are user groups based
in Japan, India, China, and much of Europe. We’re constantly amazed at the
breadth and quality of the community’s contributions!

 In 2007, we delivered on our initial promise of runtime independence with the
release of OpenLaszlo 4. Now, a single LZX source application could be compiled
to Flash, DHTML/Ajax, or Java/J2ME with Sun’s Project Orbit and execute in an
identical manner. OpenLaszlo 4 makes it easy to add new runtimes, so we expect
to see LZX applications running on an increasingly wide variety of devices and
platforms in coming years.

 As an open source project with a business-friendly licensing and no ties to a
specific runtime or platform, OpenLaszlo is uniquely positioned to be the de
facto language for new web-based platforms; already fledging support has been
established for Apple’s iPhone. New projects are under way to take advantage of
future platforms and provide native support for mobile devices.

 Thank you for exploring the possibilities of OpenLaszlo and for purchasing
this book. Norman Klein, Glenn MacEwen, and I look forward to seeing the excit-
ing applications you create!

 MAX CARLSON

acknowledgments
Creating a book isn’t possible without support from a community of individuals.
First, we’d like to thank Laszlo Systems for converting their server product to
OpenLaszlo and contributing it to the open source community. Second, we’d like
to thank Laszlo Systems for creating such an innovative technology that has
arrived like a breath of fresh air to web developers everywhere. We would also like
to thank P.T. Withington, Henry Minsky, Philip Romanik, and the rest of the
OpenLaszlo team for diligently providing bug fixes for those rare bugs that we
encountered. Next, we’d like to thank the OpenLaszlo community for its warm
support. Their contributions to the OpenLaszlo platform are reflected in many of
the chapters of this book.

 We’d also like to thank the staff at Manning who made this book possible: Cyn-
thia Kane, who taught us the importance of using motivations; Marjan Bace, who
provided the guidance that kept us going; Ron Tomich, who handled all of the
marketing efforts for this book; Karen Tegtmeyer, who organized all the peer
reviews of the manuscript; Mary Piergies, who coordinated the production team’s
efforts to transform our rough manuscript into a finished book; Derek Lane and
John Sundman, who provided technical proofreading services and guidance on
technical writing issues; Liz Welch, who found our mistakes in grammar and style,
and who taught us when and where to use the hyphen; and Katie Tennant, our
proofreader, for her careful final pass through the book before it went to press.
Thanks to all of you for your hard work, and to any others at Manning whom we
may have overlooked—you made this book possible.
xxi

xxii ACKNOWLEDGMENTS
 The authors would also like to acknowledge and thank all the people at Laszlo
who provided in-depth technical information. Many of the chapters in this book
strongly reflect their contributions: Ben Shine and Bret Simister for providing lots
of information and examples for the animation chapter; Grig Bilham for provid-
ing the initial inspiration and design of our Laszlo Market; Adam Wolf and his
“Secret Art of Science” blog that explained the mysteries of using the initstage
attribute and also for being a tremendous source of Laszlo-related information;
Elliot Winard for his assistance in understanding Laszlo’s profiling utilities; and
Dan Stowell for providing assistance with many of the Laszlo services. Although
we have already thanked John Sundman for his technical writing contributions,
he deserves additional accolades for his overall contributions to this book. He was
involved in every phase of this book’s development right from the start.

 Others who reviewed the manuscript at different stages of development and to
whom we are grateful for their invaluable feedback are Stephen Haberman,
Joshua M. Woods, Andrew Glover, Edmon Begoli, Keith Tarbell, Jack Herrington,
Don Hopkins, Jeff Cunningham, Bob Hutchinson, Tyler Anderson, Matt Raible,
Elliot Winard, Derek Lane, Doug Warren, Robi Sen, Ryan Stewart, Tamara Jean
(TJ) Fredrikson, Bob Hutchinson, and Geert Bevin.

NORMAN KLEIN
I would also like to give thanks to family, friends, and everyone in the OpenLaszlo
community for their support and assistance throughout the writing process. To
my friends, Wynnia Kerr and Kristy Windom, for their support and encourage-
ment. And to my little guys, whose spirits guide my way.

MAX CARLSON
I want to thank my friends and family for helping me throughout the writing pro-
cess. And thank you to my wonderful wife Hiroko—I wouldn’t have been able to
do it without you!

GLENN MACEWEN

My thanks go to my ever-patient wife Eva, who supported me during the writing,
and many rewritings, of this book.

about this book
Welcome to Laszlo in Action. This book presents a comprehensive overview of the
fundamentals of the Laszlo LZX language. We’ve taken a slightly different organi-
zational approach than is used by most books on programming languages, where
the concepts are neatly laid out in a methodical order. But we believe this isn’t the
way most people learn new languages; people need to be immersed in a language
to gain fluency in it. So we organized our book to have an intensive set of introduc-
tory chapters, and then, at the earliest opportunity, we begin applying our rudimen-
tary Laszlo LZX knowledge toward creating an initial prototype for a Rich Internet
Application (RIA) called the Laszlo Market. Each chapter is designed both to cover
the fundamentals of Laszlo LZX and to incrementally build our application.

 This approach has the benefit of allowing us to first demonstrate concepts in a
simple stand-alone manner, and then later apply these concepts within an applica-
tion context. Because we are continually building and enhancing the work of pre-
vious chapters, this provides a scale that would not be achievable through other
presentation methods. As a result, we strongly recommend that you read the
chapters in consecutive order rather than skipping around.

 An additional advantage of this approach is that we give you a full-featured initial
working application that you can later tweak to create entirely new applications.
This should save you lots of time and aggravation attempting to get many of these
features working for the first time. The source code for the Laszlo Market applica-
tion is available at www.manning.com/klein as well as at www.laszloinaction.com.
xxiii

xxiv ABOUT THIS BOOK
Who should read this book

Since Laszlo LZX was designed to be a natural extension of XHTML and JavaScript,
it should be accessible to a wide audience of developers. Enterprise-level web devel-
opers accustomed to working with object-oriented languages should feel comfort-
able working with its blend of prototype and class-based objects. LZX is a natural
evolutionary step for Ajax developers, and once they become accustomed to work-
ing with the delegate-event and data-binding communication systems, they will
appreciate the corresponding productivity increase that it delivers. Although many
Ajax developers are adamant about only working with open standard technologies,
such as Dynamic HTML (DHTML), they are generally open to using proprietary
Flash-based solutions as long as they are compartmentalized. This approach allows
DHTML applications to be extended with multimedia capabilities. Because the
Flash-based code is compartmentalized, it can be easily replaced with an equivalent
open source solution in the future. Laszlo supports multiple platforms, and thus
provides an optimum solution for creating hybrid applications. We have dedicated
an entire chapter, chapter 15, to explaining how these applications can be built.

 We also hope that the Laszlo Market application is compelling enough to reach
beyond this immediate audience and to the larger community of DHTML web devel-
opers. We selected an online store as our sample application for many reasons. It
provides a tutorial application that nicely illustrates the major features of Laszlo
LZX; also, online shopping is still the killer app of the Web. Online store applica-
tions have the largest audience, produce the most revenue, and have the largest web
developer community. We believe that the benefits provided by an RIA approach will
result in the widespread upgrading of many existing HTML-based stores to use
newer technologies such as Laszlo. Because our book delivers a working online
store, DHTML developers only need to tweak the Laszlo Market to support their
store’s product line. In addition, the architecture of a store can be easily modified
to support many other different types of applications. We’re sure that developers
will continually surprise us with their innovative uses for the Laszlo Market.

Roadmap

Laszlo in Action consists of 18 chapters that are divided into five parts and supple-
mented by two online appendixes that provide information on the supporting
HTTP server applications. Each chapter’s material is applied to the incremental
construction of the Laszlo Market application. In the later chapters, this applica-
tion is connected to an HTTP server, featured in the appendixes, to supply the
application with XML data from a database. By the book’s conclusion, you will have
built and optimized a Laszlo online store application containing a branded appear-
ance that can execute across both the Flash and DHTML platforms.

ABOUT THIS BOOK xxv
 In the book’s first part, “The basics,” which covers chapters 1 through 5, we cover
the preliminary Laszlo LZX skills necessary to design and create an initial prototype.
In the first chapter, we provide a system-level view of Laszlo. In chapter 2, we exam-
ine the declarative and imperative architecture of Laszlo LZX applications. In the
third chapter, we make the transition from an abstract to a hands-on approach to
Laszlo LZX by taking a look at its language fundamentals. Chapter 4 explores the
feature set of the LzView object, which serves as the superclass for all visible objects
in Laszlo. By the end of chapter 5, you’ll have created a functional skeleton proto-
type for the Laszlo Market that clearly illustrates its overall operation.

 Part 2, “Prototyping the Laszlo Market,” covering chapters 6 through 9, takes
our initial skeleton prototype and begins to embellish it by defining the appear-
ance of its interior screens. In chapter 6, we’ll use the layout object to organize
the visual appearance of a screen into a series of patterns. Chapter 7 introduces
components that provide a wide variety of interface elements that solve many pre-
sentation issues. In chapter 8, we explore the publisher-subscriber communica-
tions by demonstrating the relationship between event handlers, methods, events,
and attributes. In chapter 9, we look at how services are used to support user and
system input functionality. Finally, we apply these services to the Laszlo Market by
adding a modal login window and beginning the construction of a drag-and-drop
network. This network will be continually enhanced in subsequent chapters.

 Part 3, “Laszlo datasets,” covering chapters 10 to 12, deals with Laszlo’s
approach to data handling, which is performed through its data-binding system.
Chapter 10 starts by introducing resident datasets, which can contain XML data.
Chapter 11 expands on the data-binding techniques introduced in the previous
chapter by adding the ability to manipulate a data-binding relationship to traverse
the data elements in an XML document. Chapter 12 introduces the concept of
“scoreboarding” an application. This creates a central repository, in this case a
dataset, that provides a set of interface methods to tabulate information. This cen-
tral repository implements the Laszlo Market’s shopping cart.

 Part 4, “Integrating DHTML and Flash,” covering chapters 13 through 15, exam-
ines usability issues. In chapter 13, we explain how animation can be used to impart
a sense of physicality to an application’s operation. Since this conforms to a user’s
experience dealing with physical objects, it makes the operation of an application
appear intuitive. In chapter 14, we brand the application to have an appearance
that is appropriate for its target audience. In addition, we examine the issues
involved with maintaining an identical appearance across different platforms. In
chapter 15, we describe the advantages of building hybrid or cross-platform appli-
cations and how they can be used to address shortcomings within a platform.

 Part 5, “Server and optimization issues,” covering chapters 16 through 18,
integrates our Laszlo application with a back-end server, which also introduces

xxvi ABOUT THIS BOOK
optimization issues. In chapter 16, we show how to seamlessly transition from
using resident datasets for development to HTTP-supplied datasets for produc-
tion. Chapter 17 introduces a multifaceted approach to handling these optimiza-
tion issues using lazy replication to control the allocation of resources for the
current display and paging to redistribute the loading of data pages. Finally, in
chapter 18, we extend this concept of redistributing costs to handle system opti-
mization to reduce an application’s startup time.

 Two online appendices supplement this book and are available for download
from the publisher’s website at http://www.manning.com/klein or http://
www.manning.com/LaszloinAction. To supply our Laszlo Market with XML data,
appendix A contains a Java-based Struts server-side application and appendix B pro-
vides a Ruby on Rails server-side application. The purpose is to demonstrate how to
provide server-side support for a Laszlo application. These appendices are not
intended to be authoritative sources on either Struts or Ruby on Rails development.
Please refer to other sources, such as Manning’s Struts in Action or Ruby for Rails, for
further information.

Code conventions

All source code in listings or in text is in a fixed-width font to separate it from
ordinary text. We make use of several different programming languages—Java-
Script, Java, and Ruby—as well as markup languages—XML, HTML, and CSS—in
this book, but have maintained a consistent approach to their usage. This fixed-
width font is used for method and function names, object properties, XML ele-
ments, and attributes in text.

 We have used a system of code annotations to provide explanatory assistance
and highlight important concepts. Several styles of code annotations are used:
numbered bullets link to explanations that directly follow the listing, and arrows
are used to indicate in-line explanations.

Code downloads

Source code for all of the working examples in this book is available for down-
load from http://www.manning.com/klein or http://www.manning.com/
LaszloinAction.com.

 Code listings are divided into two categories: a code listing that builds the Laszlo
Market on a chapter basis and a code listing for the individual examples used in each
chapter.

 Installing the Laszlo Market application requires that several servers, in addition
to the OpenLaszlo server, be installed and configured. Since the installation pro-
cedures for new versions of these servers are continually being updated, and are

http://www.manning.com/LaszloinAction

ABOUT THIS BOOK xxvii
already extensively covered by their online documentation, we suggest visiting these
URLs for this information:

■ Tomcat: http://tomcat.apache.org
■ OpenLaszlo: http://www.openlaszlo.org/documentation
■ Struts: http://struts.apache.org/
■ Ruby on Rails: http://www.rubyonrails.org/docs
■ Red5: http://osflash.org/red5
■ MySQL: http://dev.mysql.com/doc

For those readers who don’t have a suitable hardware environment to support
these servers or don’t have an adequate amount of product data, we have created
an operational Laszlo Market at the http://www.laszloinaction.com website. This
website also features a number of useful links and resources to assist the develop-
ment of your own store.

 If you decide to install the Laszlo Market in your local environment, please be
aware that it’s also necessary to copy the zipcodevalidator.lzx file into the $LPS/lps/
components/validators directory and then update its library.file to include it. Fur-
ther information on this procedure is included in chapter 7. If you encounter any
problems with this local configuration, the Laszlo forums are probably the best
place to seek further information and assistance.

Author Online

Purchase of Laszlo in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/Laszloin-
Action or www.manning.com/klein. This page provides information on how to get
on the forum once you are registered, what kind of help is available, and the rules
of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialogue between individual readers and between readers and the authors can
take place. It is not a commitment to any specific amount of participation on the
part of the authors, whose contribution to the book’s forum remains voluntary
(and unpaid). We suggest you try asking the authors some challenging questions,
lest their interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

www.manning.com/LaszloinAction

about the title
By combining introductions, overviews, and how-to examples, the In Action books
are designed to help learning and remembering. According to research in cogni-
tive science, the things people remember are things they discover during self-
motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, re-telling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively explor-
ing them. Humans learn in action. An essential part of an In Action book is that it
is example-driven. It encourages the reader to try things out, to play with new
code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just when
they want it. They need books that aid them in action. The books in this series are
designed for such readers.
xxviii

about the cover illustration
The figure on the cover of Laszlo in Action is called “The Coast Guard.” The illus-
tration is taken from a French travel book, Encyclopedie des Voyages by J. G. St.
Saveur, published in 1796. Travel for pleasure was a relatively new phenomenon at
the time and travel guides such as this one were popular, introducing both the
tourist as well as the armchair traveler to the inhabitants of other regions of the
world, as well as to the uniforms and costumes of French soldiers, civil servants,
tradesmen, merchants, and peasants.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years
ago. This was a time when the dress codes of two regions separated by a few dozen
miles identified people uniquely as belonging to one or the other. The travel
guide brings to life a sense of isolation and distance of that period and of every
other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life two
centuries ago brought back to life by the pictures from this travel guide.

xxix

www.allitebooks.com

http://www.allitebooks.org

Part 1

The basics

Part 1 of this book introduces enough of Laszlo to present a lightweight
functional model of a real-world application, the Laszlo Market online store.
It moves through a crash course in the fundamentals of Laszlo’s XML-based
LZX language, focuses on its declarative tags, and continues with the core
language rules illustrated with a small Laszlo application incorporating
important features such as methods, event handlers, attributes, JavaScript
libraries, and constraints. It concludes with an introduction to the most
important LZX building block, the LzView class, the superclass of all visible
objects. We explore the visibility control, multimedia resources, the layout
control, user event handling, and the relationship between LZX and Java-
Script classes. They are all brought together in the Laszlo Market prototype,
to be refined further in the remaining chapters.

Turbocharging
 web technology
This chapter covers
■ Achieving Web 2.0 goals with RIAs
■ Choosing Laszlo
■ Animating a “Hello World” application
■ Executing on Flash or DHTML
3

4 CHAPTER 1

Turbocharging web technology
Most people make the mistake of thinking design is what it looks
like. That’s not what we think design is. It’s not just how it looks
and feels. Design is how it works.

 —Steve Jobs, Apple Computer

The last decade has seen the explosive penetration of HTML-based web applica-
tions into our daily routine: you can book a flight, get driving directions, or pur-
chase goods, all on the Web. Although this initial wave of applications has been
wildly successful, the next oncoming wave, known as rich Internet applications
(RIAs), should prove to be even more pervasive. While HTML-based applications
have been limited by their static page-orientation nature, RIAs enjoy a fluidity
rivaling the operation of desktop applications.

 You might wonder what distinguishes an RIA from an HTML-based application.
With HTML pages, there is a master-slave relationship, where processing is per-
formed on a server and a client browser is only used to display static content. This
results in application state having to be stored on the server. So each step requires
a round-trip to the server to advance the application state. This synchronized
communication keeps the browser operating in lockstep with the server.

 RIAs advance this design by adding a data cache to the browser, allowing it to
maintain its own sense of state and operate as an independent client. This enables
the RIA to offer a richer and more responsive interface to users. This richer func-
tionality includes any client services such as advanced windowing components,
drag-and-drop services, vector-based graphics, audio, and video. Since there is no
need to communicate to a server, an RIA can present these services in a more respon-
sive manner. Together, this provides performance matching desktop applications.

 The promise of RIAs is so great that they don’t simply expand the capabilities
of the Web but rather move it close to Tim Berners Lee’s original vision for it.
Industry pundits have labeled this movement as Web 2.0. Although many of the
objectives of Web 2.0 are still being debated, there is general agreement as to the
importance of achieving these goals:

■ Web-based applications need to be as interactive as desktop applications.
■ Application development shouldn’t be limited to large development teams.
■ The hypertext-based heritage of the Web needs to be preserved.
■ Democratization of the Web should empower users.

Like the other RIA systems that form Web 2.0, OpenLaszlo is designed to meet
these goals. But while OpenLaszlo is an example of an RIA, it can also be viewed as
an RIA architectural approach. As a result, the OpenLaszlo system isn’t tied to a

Laszlo is for designing and building RIAs 5
particular platform such as Dynamic HTML (DHTML), Flash, or Java, but instead
can be applied across all these platforms. OpenLaszlo is able to operate across dif-
fering platforms by its adherence to open standards. In a sense, OpenLaszlo can
be viewed as the Unix of RIA systems, since it is designed to be ported to other
platforms, such as Microsoft’s Silverlight, as they become widely available. With
minor exceptions, the same code base can be executed on any of these platforms
and will produce identical display.

 Even better, its approach allows hybrid applications to be created that simulta-
neously execute across multiple platforms. This allows critical shortcomings within
one platform to be addressed by another. In particular, it allows Flash-based appli-
cations to be searchable by web crawlers, enables DHTML-based applications to
access multimedia resources such as audio and video, and establishes a competitive
landscape that allows the best component implementations to be selected.

 In this chapter, we’ll try to anticipate some of your questions about Laszlo with
some background about the Laszlo system, an introduction to Laszlo’s XML-based
language LZX, a short discussion about deploying Laszlo applications, and an
explanation of the roles of Flash and DHTML in Laszlo.

1.1 Laszlo is for designing and building RIAs

The sole purpose of Laszlo is to support the design and construction of web appli-
cations with the performance of desktop software. Laszlo removes many of the
barriers separating developers and designers. In the past, these collaborative part-
ners were forced to exist in different worlds, like the left and right hemispheres of
the brain. But Laszlo redefines these relationships, so developers can participate
in design issues such as usability and the role of emotion. These issues shouldn’t
be viewed as posing new problems for developers, but rather as providing a richer
palette for expressing their creative visions.

 A major viewpoint espoused within this book is that effective GUI development
is driven by the needs of users. It’s not enough to pay lip service to design; users
and design specialists need to be an integral part of a development process. This
philosophy, known as user-centered design, serves as the impetus for all develop-
ment-related activities. The principles of user-centered design are illustrated
through the development of a Laszlo application, the Laszlo Market, to sell online
action videos. This application incorporates material from each chapter to dem-
onstrate all facets of Laszlo development. In this chapter, we’ll begin with a ratio-
nale for choosing Laszlo. Finally, we’ll take a short look at Laszlo’s history and its
open source copyright license.

6 CHAPTER 1

Turbocharging web technology
1.1.1 User-centered design

User-centered design places the user at the center of the design process. It focuses
on how users interact with a product. The product could be anything from a potato
peeler to the latest software application. The focus is on two main issues: usefulness
and usability. Usefulness relates to applicability; how well does a product match a
user’s needs? Usability relates to ergonomic issues; is using the product intuitive,
and does its use bring pleasure or satisfaction? Meeting these requirements deter-
mines the overall success of a design.

 This emphasis differs from conventional design strategies that focus on maxi-
mizing performance. This generally results in a minimal user interface, since an
intuitive interface requires resources that might degrade performance. User-
centered design decouples an interface from hardware efficiency concerns. In fact,
an undue concern with system efficiency doesn’t necessarily lead to higher produc-
tivity. Consider this example: “What’s the quickest way to heat a cup of water in a
microwave: for one minute and 10 seconds, or for one minute and 11 seconds?” The
answer is the latter (you knew this was a trick question, didn’t you?) because it’s
faster to punch in a sequence of ones without searching for the zero. The lesson is
that in many cases user productivity is more important than hardware productivity.

 Additionally, there’s a certain level of user satisfaction in pounding out a
sequence of ones that isn’t delivered by searching for a zero. The action of pound-
ing out those ones provides a user with a psychological sense of empowerment,
instead of the frustration of searching. Suddenly, heating a cup of water is an
enriching experience rather than work. This illustrates the principle of emotional
design: the importance of making interfaces fun to use.

1.1.2 Discovering Laszlo: a developer’s tale

We believe the best way to learn and understand Laszlo LZX is within an applica-
tion context, so over the course of the book, we’ll build a real-world web appli-
cation called the Laszlo Market. We’ll also use its development to illustrate the
benefits of a user-centered approach. We present this “developer’s tale” to justify
the need for this application and to show why Laszlo is the most appropriate solu-
tion for implementing this application.

The problem with current web applications
You have landed a dream assignment to reimplement an existing online store with
your choice of implementation technologies, including Java 2 Enterprise Edition
(J2EE or, more recently, JEE) tag libraries, any flavor of Ajax, or another RIA lan-
guage. The current store is plagued by poor sales, so the owners want a complete

Laszlo is for designing and building RIAs 7
rebuild. But before you can select a technology, it’s necessary to first investigate the
reasons for the existing store’s failure.

 After some research, its problems become apparent. From the sales depart-
ment, you learn that the store consistently failed to meet sales expectations.
What’s worse, customers gave it a low positive impression rating, commenting that
it’s too similar to other stores.

 Your next stop is marketing, where you learn that although the store has a
strong supply of customers, your customers’ stay is often short, with few interac-
tions. In other words, their stick time is low and shallow. Even more alarming, 45
percent of customers abandon their shopping cart in the midst of a purchase. The
problem is starting to become clear; the store is boring and overly complicated.

 The goal of all online stores is identical: to connect with prospects, convert
them to customers, and retain them as satisfied clients. To accomplish this, you
must understand their needs. For our store to be successful, we must achieve
these goals through the following steps.

Talking to the customer
When a product fails, generally its root cause is insufficient communication with
end users. Failure to interview end users results in an application that appeals to
only a select audience. Competing online stores offer similar features and prices.
To get an edge, usability is an obvious goal. But since stick time and abandon-
ment are the issues, we also want to elicit an emotional response from users. This
creates a positive impression among users so they’ll associate a favorable feeling
with visiting our store. So first, a tone needs to be established for the store. Since
the electronic media demographic—and your group of interviewees—consists
largely of males in the 20- to 30-year-old age group, your interviews point you to a
“high-tech/comic book” tone.

 Although you don’t want to focus on specific issues too early, the cart abandon-
ment issue is financially important enough to warrant special consideration. So
you ask your users the reasons they might abandon a cart.

Reducing shopping cart abandonment
Your interviews produce a remarkably common response: the purchasing process
is too complicated. The current store is HTML-based, so purchases require the
seven steps shown in figure 1.1. Each step incurs a round-trip to the server, pre-
senting another opportunity to abandon the purchase. Worst of all, correcting
previously entered information is clumsy and the Back button only adds addi-
tional confusion. You sadly agree that there is little in the current store to inspire
trust from customers.

8 CHAPTER 1

Turbocharging web technology
Global Millennia Marketing recently conducted a survey asking customers for the
top five reasons they might abandon a shopping cart (www.imscart.com/
ecommerce_software_article_1.htm):

■ High shipping cost (69 percent)
■ Change of mind (61 percent)
■ High total cost (49 percent)
■ Long checkout process (41 percent)
■ Poor site navigation and long download times (31 percent)
■ Confusing checkout process (27 percent)

Since high prices and shipping costs are beyond our control, we’ll focus on the
remaining issues. The goal is to make the purchase process seamless, as outlined
in these steps:

■ Assemble a shopping cart
■ Enter shipping and billing addresses
■ Enter credit card information
■ Specify a shipping method

Figure 1.1
The shortcoming of an HTML-
oriented approach is clearly
demonstrated with the shopping
cart mechanism in current online
stores. It requires a customer to
endure a seven-step process,
with each step requiring a round-
trip journey to the server. This is
a major cause of shopping cart
abandonment rates that can
reach up to 75 percent.

www.imscart.com/ecommerce_software_article_1.htm

Laszlo is for designing and building RIAs 9
There is clearly too much information for one screen. Any workable solution
requires that state be stored on the client. This issue eliminates all the J2EE tag-
based solutions such as Tapestry, JavaServer Faces (JSF), and JSP Standard Tag
Library (JSTL) as candidates, since they require state be stored on the server.
Since the Ajax and RIA technologies can maintain state in the browser’s local data
cache, you decide to look more closely at Ajax and RIAs.

 Ajax and RIAs supply high-level components, such as tabs and tabsliders, to store
multiple input fields within subscreens. But even with components, there’s still
too much information. It’s becoming clear that for visual continuity, multiple vir-
tual screens will be needed.

 From your past experience with user interfaces, you conclude that animation
provides the best solution for coordinating the display of subscreens into a single
virtual screen. But you don’t welcome this conclusion; animation is complex,
requiring lots of complex coding. You search for an alternative among the newer
technologies: something called declarative notation.

The benefits of declarative notation
You know from previous experience that attempting to satisfy the project require-
ments with a procedural solution will likely result in an unacceptable budget and
schedule. With so many elements and actions involved, the coding requirements
can quickly become overwhelming.

 What’s really needed is a shorthand system that only requires a description of
what needs to occur, without requiring the instructions for how to implement it.
This is the premise of declarative programming. It only requires an application
to be described, and then an outside system is responsible for implementing it.
For a more complete discussion of declarative programming, have a look at http:
//en.wikipedia.org/wiki/Declarative_programming.

 Laszlo reads a declarative description of a user interface and instructs a client
engine (Flash, browser, or a Java Virtual Machine [JVM]) to render it. This is the
same way that HTML and browsers work. HTML markup code can specify a table with
a certain number of columns and rows, but unlike a programming language, it con-
tains no instructions on how to build it; the web browser builds it using its own inter-
nal rules for constructing tables. Laszlo takes this to a higher level with its declarative
LZX language, allowing complex dynamic GUI structures to be specified.

 A declarative language requirement removes most Ajax toolkits from consider-
ation. Almost all current Ajax toolkits are based on imperative JavaScript libraries.
The few fledging declarative Ajax initiatives, such as XForms and XAP, are too
immature compared to the other RIA technologies such as Laszlo and Flex. So
now our choices have been whittled down to the RIA technologies.

http://en.wikipedia.org/wiki/Declarative_proframming

10 CHAPTER 1

Turbocharging web technology
Examining RIA technologies
The problem with most RIA solutions is they require a special browser plug-in,
rather than running natively in the browser. A browser plug-in executes as a separate
application within the browser—a separate executing virtual machine with its own
state. The biggest problem facing a plug-in is that it must be ubiquitous—installed
everywhere. But Adobe’s Flash has pretty well resolved that problem by having a
penetration rate of about 95 percent. It has also evolved into a rich target platform
with vector graphics, downloadable fonts, and video and audio capabilities, which
complement the features of a browser.

 So Flash shows promise. But in the competitive online store world, you know
that those missing 5 percent of users are important. For certain markets, those 5
percent of users can represent a significant percentage of your customers. You
conclude that a DHTML version must also be available to reach those users. Fur-
thermore, you don’t have staff to maintain two separate source code versions; a
single version needs to be executable across both platforms.

 The other RIA candidates, Adobe’s Flex and Microsoft’s XAML (Extensible Appli-
cation Markup Language), are limited to their respective proprietary plug-in envi-
ronments. Since they both have a vested interest in promoting their plug-in
environments, neither is likely to support the DHTML market anytime soon.

 Finally, your budget is limited, so cost is important. But Laszlo is open source;
there’s no cost in downloading and using their server. You’ve found your solution!
Only Laszlo meets your requirements!

 As you call your manager’s office to see if she’s available, you imagine her first
question. What’s this Laszlo? Perhaps you had better do some historical digging
before you see her. Here’s what you find.

1.1.3 A bit of history

Laszlo Systems set out to build an RIA platform with the critical features lacking in
current web technologies. Initially attracted to the Flash Player, the Laszlo
founders were frustrated by its limitations and the difficulty of effectively using its
authoring tools. At the same time, web browsers of that era did not provide the
level of rich user experience possible in Flash. Consequently, it became evident
that what was needed was a standards-based language that could build on the rich-
ness and ubiquity of the Flash Player, utilize existing developer skills, and still
mesh with traditional web infrastructure and back ends.

 Laszlo Systems grew out of a project started by engineers David Temkin, Bret
Simister, and Max Carlson at Excite@Home. It was whimsically named after a Hun-
garian cinematographer, László Kovács, who filmed the movie Easy Rider. In 2000,
work on the Laszlo Presentation Server (LPS) was begun. The first general release

Laszlo is for designing and building RIAs 11
of LPS occurred in 2002, intended for deployment as a Behr Paint web application.
At this time, Laszlo Systems business was oriented toward selling LPS as a closed
source server.

 In 2004, version 2.2 of the entire Laszlo platform became open source as Open-
Laszlo, the purpose of which is to establish a free and open platform for RIA devel-
opment and deployment. Laszlo Systems has shifted their business focus from
selling closed source software to selling services around their open source software.

1.1.4 OpenLaszlo: open source and available to all

Laszlo is now available as OpenLaszlo, a free open source technology. By adopting
an open source model, Laszlo Systems hopes to accelerate the adoption of RIAs and
to generate community involvement in enhancing Laszlo’s quality, performance,
and features. The company continues to lead development of the platform, provid-
ing customers with application modules, support, and education programs.

Laszlo consists of the OpenLaszlo server, containing a compiler and run-
time libraries, and the Laszlo LZX language. In this book, we’ll use the
term OpenLaszlo when referring specifically to the server or software dis-
tribution or in an abstract sense, and the term Laszlo or LZX when refer-
ring to its declarative programming language.

The OpenLaszlo website at www.openlaszlo.org is the place to start learning about
Laszlo, the Laszlo community, how to download and install the software, and the
terms of the OpenLaszlo license.

OpenLaszlo is available as open source under CPL, the same open source
licensing agreement used by IBM for the Eclipse platform. CPL, a copyleft
license broadly similar to the GNU General Public License (GPL), is the
reverse of a copyright, ensuring that any person receiving a copy, or a
derived version of a work, can use, modify, and redistribute both the
work and any derived versions.

We recommend that readers download and install the OpenLaszlo software. All
the chapters feature short illustrative examples. Your Laszlo in Action learning
experience will be greatly enhanced by executing and viewing these examples on
your browser. These examples are available for download at www.manning.com/
klein (click on Source Code), or can be manually entered through your favorite
text editor. Have fun; we hope you enjoy the ride!

SHOULD
YOU SAY
LASZLO

OR
OPEN-

LASZLO?

ABOUT
THE OPEN-

LASZLO
LICENSE

www.manning.com/klein
www.manning.com/klein

12 CHAPTER 1

Turbocharging web technology
1.2 A first taste of Laszlo LZX

LZX is OpenLaszlo’s declarative XML-based language. Since we believe that exam-
ples are the best way to learn a language, we’ll start by demonstrating how to cre-
ate a “Hello World” program. Afterward, we’ll add some spice and provide a
preview of LZX’s animation features.

 Every Laszlo application is contained within an XML document delimited by
the canvas tag. This tag serves as the root node and as a parent container for all
other elements in an application. It also defines the output space used to display
the application. A canvas isn’t an abstract entity; it has concrete attributes to
define its appearance. For example, it has size attributes, width and height, spec-
ifying the initial screen size for the application. Its background color attribute,
bgcolor, specifies just that: the background color. If no background color or
image resource is specified, the background is transparent.

 Let’s start by creating a canvas with a height of 200 pixels and a light gray back-
ground. XML syntax is used to create a single-line statement:

<canvas width="400" height="200" bgcolor="0xBDDDF0"/>

A background color is specified through a simple color name—red, blue, green,
or yellow—or, as we have done here, with a hexadecimal RBG value. Congratula-
tions, you have just created your first Laszlo application consisting of a translu-
cent blue screen.

 Now that we have a canvas, we can display something in it. Laszlo contains a
large selection of standard components—buttons, text, and others—so we have
lots of choices for displaying the obligatory “Hello Laszlo” message. We have
selected a button tag which, when clicked, triggers the display of a text object
containing the “Hello Laszlo” message:

<canvas width="300" height="200" bgcolor="0xBDDDF0">
 <button text="Press" onclick="parent.msg.setText("Hello Laszlo")"/>
 <text name="msg" x="60"/>
</canvas>

Running this example produces the screenshot shown in figure 1.2.
 Since Laszlo allows us to be more creative, let’s make our first Laszlo program

signal its arrival by shouting “Hello Laszlo” to the heavens at the top of its lungs.

Figure 1.2 Clicking the button displays the “Hello Laszlo” message.

A first taste of Laszlo LZX 13
1.2.1 Animating “Hello Laszlo”

Here’s an opportunity to don our
designer thinking cap. What’s the best
way to amplify the “Hello Laszlo” mes-
sage so everyone in the room sees it?
One way is to encase our message in an
attractive window and animate it to blast
out onto the screen. To ensure that no
one misses it, let’s pulse it between its
fully expanded and contracted states.
Figure 1.3 shows our pulsing message,
just the way Hollywood might do it.

 Listing 1.1 shows how to create the pulsing message in figure 1.3. Everything is
specified declaratively, so no JavaScript coding is needed. These declarative state-
ments describe to Laszlo what we want to see. Laszlo worries about how to imple-
ment it.

<canvas>
 <window resizable="true" width="250" height="100">
 <text id="msg" text="Hello Laszlo"
 resize="true" align="center"
 fontsize="${immediateparent.width/7}"
 height="${immediateparent.height}"/>
 <animatorgroup process="sequential" repeat="Infinity">
 <animatorgroup process="simultaneous">
 <animator attribute="width" to="500" duration="1500"/>
 <animator attribute="height" to="150" duration="1500"/>
 </animatorgroup>
 <animatorgroup process="simultaneous">
 <animator attribute="width" to="250" duration="1500"/>
 <animator attribute="height" to="100" duration="1500"/>
 </animatorgroup>
 </animatorgroup>
 </window>
</canvas>

In adding this pulsing action to the “Hello Laszlo” example, we specify a resizable
window containing a text object B, whose “Hello Laszlo” text string is centered in
the window. To make the effect realistic, the expansion and contraction of the win-
dow and text objects must be coordinated. This requires that two relationships be
maintained: first, between the text’s font size and the width of the inner portion of

Listing 1.1 The extended “Hello Laszlo” program

Defines text
object

B

Specifies
constraints

C

Defines
 animator groups

D

Figure 1.3 The pulsating “Hello Laszlo”
example, shown in listing 1.1, uses constraints to
create a relationship between the size of the text
and the size of the window.

14 CHAPTER 1

Turbocharging web technology
the window; and second, between the text’s height and the height of the inner por-
tion of the window. These relationships are known as constraints C.

 Finally, three animator groups D are applied to the window. The first animator
group controls the other two, so they execute in a sequential order that repeats
indefinitely. The window’s width and height attributes are simultaneously
increased from 250 to 500 and 100 to 150 pixels over a period of 1.5 seconds.
After the expansion, these attributes decrease back to their original values over
the same period of time, thus providing the effect that the window is pulsating its
“Hello Laszlo” message.

1.2.2 Executing on Flash or DHTML

This same set of source code can be used to invoke the “Hello Laszlo” message
for either the Laszlo Flash or DHTML platform. The platform can be set at run-
time by setting the URL parameter lzr to either flash or dhtml. Depending on
your configuration, the URL for your “Hello Laszlo” application might look like
one of the following:

Flash version:
http://localhost:8080/lps/my-apps/hellolaszlo.lzx?lzr=swf7

DHTML version:
http://localhost:8080/lps/my-apps/hellolaszlo.lzx?lzr=dhtml

Because no procedural coding is involved, only declarative specification, it took
one of the authors only a couple of minutes to write and test this application.
Writing this application in a procedural language would be a significantly more
involved exercise. Now that we have your first application, an obvious next ques-
tion concerns deployment.

1.3 Deploying a Laszlo application

While other web applications must be deployed on either a web server or an appli-
cation server, a Laszlo application has the flexibility to be deployed on either. This
flexibility extends to deployment from an email attachment or from a packaged
CD-ROM distribution. These options allow a Laszlo application to be deployed in
whatever way best fits the situation.

1.3.1 Server mode

All Laszlo applications are initially created and deployed through the OpenLaszlo
Server (see figure 1.4) to deliver Shockwave Flash (SWF) or DHTML JavaScript files.
The OpenLaszlo Server is a Java servlet that executes in a Tomcat servlet container
or J2EE application server. Whenever an application’s LZX source files are updated,

http://localhost:8080/lps-4.0/my-apps/hellolaslzo.lzx?lzr=flash

Deploying a Laszlo application 15
the server recompiles the application to create a new Flash SWF or DHTML Java-
Script file.

 Once application development has completed, a range of options are available
for deployment. In the following section, we’ll examine these deployment options
and application types that might be most suitable for a particular situation.

1.3.2 Stand-alone mode

An OpenLaszlo application can be deployed in stand-alone mode or, as it’s officially
called, Stand-alone OpenLaszlo Output (SOLO) mode. This allows web applica-
tions to be served on the Internet through a low-cost web server (Microsoft IIS,
Apache, and others), sent as an email attachment, or just burned onto a CD and
mailed, as shown in figure 1.5.

Figure 1.4 The OpenLaszlo Server is a Java-based servlet executing in a J2EE or Java servlet container.
It compiles an LZX source file or set of files into a single Flash SWF or JavaScript executable file that is
transmitted to a browser for execution.

Figure 1.5
A Laszlo application created in
SOLO mode offers the ultimate
in transportability. Since it is
contained in either a Flash
SWF or DHTML embed.js file,
it can be deployed on any web
server and interface to any
server-side code (CGI, PHP,
.NET, JSP, ASP), opened as an
email attachment, or opened
directly in a web browser.

16 CHAPTER 1

Turbocharging web technology
Creating a SOLO version of a Laszlo application is simple: just set the canvas tag’s
proxied attribute to false:

<canvas proxied="false">

Or it can be set within the URL query string:

http://localhost:8080/lps/my-apps/hellolaszlo.lzx?proxied=false

In either case, the OpenLaszlo Server is instructed to create a stand-alone version
of your Laszlo application. The completed application is still a Flash SWF or
DHTML JavaScript file, but now all linkages to the OpenLaszlo Server have been
severed and the application is free to be transported and deployed through any of
the delivery systems shown in figure 1.5.

 Any Laszlo application can be deployed SOLO, except where data integration
via Simple Object Access Protocol (SOAP), Extensible Markup Language–Remote
Procedure Call (XML-RPC), or Java-RPC is required. Applications requiring such
services must use J2EE deployment. However, these are relatively specialized tech-
nologies, so the vast majority of Laszlo applications can be created in SOLO mode.

1.4 Summary

This chapter emphasized the importance of user-centered design and how Laszlo
encourages a workflow process whereby user input drives development. Unlike
many other languages, which have been adapted for specialized tasks that they are
ill-suited to handle, the sole purpose of Laszlo LZX is to create GUIs. Laszlo can be
considered both a language, LZX, and an architectural approach for building
web-based applications. Since Laszlo is open source, it doesn’t lock users into a
particular platform, instead espousing a “best of breed” approach. Users are free
to select their preferred platform: Flash or DHTML.

 Before we begin work on the Laszlo Market application in chapter 5, the
next three chapters provide a crash course in the basics of LZX; the second
chapter provides examples highlighting features of LZX declarative statements;
the third chapter provides a guide to the declarative/procedural interface; and
the fourth chapter provides an overview of the capabilities of view-based objects.
Finally, in chapter 5, we tackle the Laszlo Market design.

The declarative
 world of LZX
This chapter covers
■ Advantages of declarative notation
■ Parent-child attribute propagation
■ Built-in event handling and constraints
■ Data binding to XML elements
17

18 CHAPTER 2

The declarative world of LZX
If our basic tool, the language in which we design and code our
programs, is also complicated, the language itself becomes part of
the problem rather than part of its solution.

—C.A.R. Hoare, The Emperor’s Old Clothes,
 Turing Award Lecture, 1980

In this chapter, we’ll focus on the importance of declarative notation for building
large complex RIAs. Declarative notation allows “what is to occur” to be specified
rather than “how to make it occur.” This is the difference between telling an auto
mechanic to “adjust the valves” rather than having to write a manual on valve
adjustment. As you can imagine, this saves a lot of programming work—although
at first glance XML might seem an odd and overused choice for a programming
language such as LZX. But in this chapter, we’ll examine the characteristics of XML
that make it the ideal choice for constructing RIAs. If XML didn’t already exist, then
RIA developers would have had to invent it.

 We’ll see how XML’s hierarchical nature is perfectly suited for declaratively
describing the layout of graphical elements. It supports two different types of hier-
archies, parent-child and sibling, that describe offset and flat relationships. Later
you’ll learn how these relationships can be used to create a concise notation to
easily describe a physical configuration.

 In addition, XML’s structure can be enriched. Much of LZX’s declarative magic
is not performed directly by individual tags, but rather by operations performed
on its tags. This leverages its declarative nature to function within a context. This
context can be either a horizontal relationship with neighboring objects, or a ver-
tical relationship with its current application state represented in an XML dataset.
We’ll see how Laszlo embeds two different communication systems in its declara-
tive notation for objects to establish this bidirectional orientation.

 In this chapter, we’ll illustrate these declarative features by creating a jet forma-
tion whose members move relative to one another, depending on the application
state. By the conclusion of our example, our jet formation will be ready to fly. Best
of all, this is accomplished with declarative tags and no JavaScript coding.

2.1 Architectural support

Most declarative languages are domain-specific languages (DSLs), designed for a spe-
cific application domain. For example, HTML is a DSL whose domain is the world
of web pages. A limitation of DSLs, and declarative languages in general, is the fact

Architectural support 19
that they aren’t Turing complete,1 since there are certain tasks they can’t specify. For
example, HTML statements can’t process input events. For this reason, most
declarative languages are combined with a general-purpose language—in HTML’s
case, JavaScript—to provide a complete solution.

 This combined approach yields a development strategy whereby a DSL is used for
those portions of an application that play to its strengths, while a general-purpose
language performs tasks not expressible within a DSL. Laszlo LZX is a natural exten-
sion of this HTML/JavaScript model; it is a declarative DSL whose domain is RIA
applications, and it is also combined with JavaScript.

 LZX is a declarative language based on XML, which accesses a supporting Java-
Script library, the OpenLaszlo Runtime Library (ORL), which contains the Laszlo API.
Laszlo also features a common derivative of JavaScript that is formally known as
JavaScript 1.4, or ECMAScript 262 Edition 3. It contains only the JavaScript lan-
guage fundamentals and a base set of objects; browser-specific objects are only
accessible through the browser.

 LZX is distinctive in how it uses its declarative features to leverage the ORL API
services. These declarative features include

■ Class-based inheritance

■ Hierarchical parent-child addressing

■ Parent-child attribute propagation

■ Built-in event handling

■ Animation

■ Constraint notation support for event handling

■ Data binding to XML elements

All these features, other than class-based inheritance, are defined by the funda-
mental LzNode LZX class. In this chapter, we’ll look at the base functions of an
LzNode object and how they define the major declarative features of LZX. Along
the way, we’ll also examine how the dynamic object-oriented features of JavaScript
are used by objects in Laszlo.

 Rather than just explaining abstract concepts, we’ll demonstrate the declarative
features by applying them to a complex real-world model to maintain position

1 A programming language is called Turing complete if it has a computational power equivalent to a uni-
versal Turing machine. In short, this means that if it’s theoretically possible to compute some result,
then you can write a program in that language to do the computation. However, this does not imply a
capability for easy programming or efficient execution.
www.allitebooks.com

http://www.allitebooks.org

20 CHAPTER 2

The declarative world of LZX
within a formation of aircraft as they fly across the screen. This application demon-
strates how the complex problems of maintaining coordinated actions among a
large number of objects are easily addressed in LZX. This example is applicable to
a wide range of situations requiring related and unrelated objects to act in concert.

2.1.1 Laszlo’s three-tiered structure

Like any modern user interface, a Laszlo application adheres to the principles of the
model-view-controller (MVC) design pattern. In this architecture, the three functions of
handling user input, modeling application state, and generating visual results are
handled by three separate components: the controller, the model, and the view. The
goal of MVC is to separate the functions of the model and the view—decoupling the
model from implementation details concerning the view—to allow the controller
to handle input actions and determine when the model or the view needs updating.

 A Laszlo application has the three-tiered structure illustrated in figure 2.1,
which is an instance of the MVC design pattern. The layers are

■ A view layer of declarative LZX tags

■ A controller layer of imperative JavaScript that accesses the ORL API

■ A model layer of XML datasets

Figure 2.1 The client-side architecture of Laszlo can be viewed as a three-tiered structure. At the
top is a layer with the declarative LZX tags; this layer corresponds to the view component of the
model-view-controller design pattern. The middle layer, corresponding to the controller component,
contains imperative JavaScript and the ORL. The bottom layer, corresponding to the model
component, contains the application state stored as XML data.

Architectural support 21
The view layer provides the graphical structure of an application. The controller
layer handles events and other special services in support of the graphical struc-
ture. The model layer contains the data constituting the state of the application.

 The ORL, accessed by the controller for interacting with the user and the envi-
ronment, is organized into these areas:

■ An event system for communication among objects in the view and control-
ler layers

■ The Laszlo services, including device interfaces, timers, and screen inter-
faces such as terminal focus and window tracking

■ The layout and animation system for controlling the presentation of view-
based objects

■ The data loader and binder system for binding view objects to XML data nodes
in the model layer

Access to the controller layer is provided through event handlers at either a global
or an object level.

 The model layer maintains the state of the application within a series of XML
documents known as datasets. Since each dataset is an XML document, it consists
of a root node from which a tree-structured hierarchy emanates. This tree struc-
ture consists of data and text nodes, also referred to as elements, which can be
either parent or end nodes. Any display objects within the view layer can establish
a data-binding relationship to a node through an XPath expression. This allows
changes to the model’s datasets to be immediately reflected in the appearance of
bound visible objects.

XPATH XPath is a W3C standardized expression language for specifying data
nodes in an XML document. An XPath expression has two components: a
location path followed by either a wildcard or a predicate operator. The loca-
tion path notation mimics the Uniform Resource Identifier (URI) and
file path syntax to specify a path to a XML element. Once an element is
located, the wildcard or predicate operator is applied to access the data
element or one of its attributes.

XML serves two fundamentally different purposes in Laszlo. It is used as a high-
level markup language to contain the LZX declarative language, and to encode
structured data within a dataset. Since code and data are both XML, they can be
integrated so everything is contained in a single XML document.

 Although MVC is the underlying architecture for a Laszlo application, it needs
additional support for the interactive requirements of RIAs. In the next section,

22 CHAPTER 2

The declarative world of LZX
we’ll explore Laszlo’s approach in using MVC to separate an RIA business model
from its screen presentation.

2.1.2 Interfacing Laszlo to a web server

While a Laszlo application can use its MVC architecture to maintain state and
work independently for extended periods, it can’t permanently store these
results. Laszlo can interface to a back-end web server to retrieve or store data, as
XML documents, to a database to permanently store its state.

 Different web services, such as SOAP, XML-RPC, and Representational State
Transfer (REST), are available. Because of its popularity and simplicity, we’ll only
use REST in this book.

REST REST uses the term resource to describe any asset available from a web
server. In our case, this is an XML document. Suppose that you want a list
of Manning books; the URL to obtain this resource from a REST interface
is simply http://www.manning.com/books. Entering this URL returns a
resource consisting of an XML document contained in an HTTP
response, hence the moniker “XML over HTTP.”

A Laszlo client communicates to its supporting server through HTTP requests and
responses. Although they perform different tasks, both Laszlo and its supporting
web server use an underlying MVC architecture, shown in figure 2.2. The differ-
ence between them lies in the complexity of the controller. The server’s model
layer controls the permanent state of the application by storing the information

Client (Laszlo Application)

Model
Data

Server

View
XML
Data

Model
(XML

Dataset)XML over
HTTP

Data-binding Communication System

Controller

Controller
(global)

State
Change

View
Selection

State
Query

View

Controller
(local)

View

Controller
(global)

Constraints

Event Handling
(local)

Event Handling
(state)

Event-Delegate
Communication

System

Figure 2.2 In contrast to the MVC architecture used by a back-end HTTP server, Laszlo supplements
its basic MVC architecture with two publisher-subscriber communication systems. The event-delegate
system supports general interactive RIA needs between the view and controller layers. The data-binding
system sits between the model and view layers. Laszlo uses a multiple-controller approach, with
controller functionality embedded in each object in the view layer. An optional central controller is
indicated with dashed lines.

Architectural support 23
data contained within an HTTP request into a database, while its view layer returns
an HTTP response containing an XML document.

 Although a web server requires a relatively simple controller to support its inter-
active RIA features, Laszlo supplements its controller with two communication sys-
tems: event-delegate and data-binding. The event-delegate system allows objects
within the view and controller layers to communicate, and the data-binding system
allows objects in the view layer and data in the model layer to communicate. Laszlo
also uses a multiple-controller approach, allowing local controllers within objects
as well as global controllers. This enables Laszlo to maintain local state within
objects and as well as global state within central XML datasets.

 The ability to have the display—the view layer—immediately reflect changes in
its model state—the XML dataset—is a distinguishing feature of RIAs. This
dynamic updating provides a sense of continuity between actions and their conse-
quences, as reflected in an updated display. This capability is supported in Laszlo
by its two communication systems, both of which conform to the publisher-subscriber
design pattern, which is also referred to as the observer pattern.

2.1.3 Publisher-subscriber communications

A publisher-subscriber pattern is a one-to-many communication system in which a
subject publishes notifications and observers can subscribe to receive these notifica-
tions. One benefit of this loose coupling among objects is that publishers don’t
need to be aware of their observers. Laszlo implements this publisher-subscriber
paradigm with delegate and event objects. An event object serving as a publisher
contains a list of delegate objects, the subscribers. To be listed, a delegate registers
itself with an event object. When the attributes of a publisher object change, an
event is sent to every subscriber delegate.

 Since declarative tag objects are automatically registered by Laszlo, there is no
need to explicitly register them as publishers or subscribers. This creates an envi-
ronment where objects can publish and subscribe freely, unencumbered with cod-
ing overhead. Since RIAs require a tremendous amount of communication among
objects, this reduces repetitive coding, producing more manageable applications.
This allows developers to concentrate on the larger algorithms, instead of being
bogged down with implementation details.

 Data-binding communication uses the same approach but establishes commu-
nication by binding a view object to an XML data node through an XPath expres-
sion. The presence or absence of the data node controls the view’s visibility. In the
case of more than one matching node, multiple copies of the view are generated.
But after this relationship has been established, communication still relies on
events and delegates.

24 CHAPTER 2

The declarative world of LZX
 When the OpenLaszlo Server compiles a Laszlo application, it converts the LZX
declarative statements into JavaScript that is linked with the ORL. This close rela-
tionship allows ORL services such as event handling and data bindings to be
directly embedded into declarative notation. It also allows declarative tags to have
different semantics from JavaScript, while still taking advantage of JavaScript’s
dynamic features. The next section demonstrates how class-based semantics are
supported within LZX declarative tags, and how these semantics combine with
those of JavaScript.

2.1.4 Combining inheritance models

LZX declarative tags use a class-based inheritance model, a programming paradigm
familiar to most developers. On the other hand, JavaScript uses a prototype-based
inheritance model, which makes no distinction between classes and instances;
there are only objects. In LZX, an object can be implemented either as a JavaScript
object or as an instance of an LZX class. The pleasant result of this combination is
that an LZX object has the flexibility to dynamically add, override, or delete
attributes and methods at runtime. Since all the base LZX classes are written in
JavaScript, all LZX objects have this flexibility.

 This is quite a departure from the world of static class-based objects, which
most developers are familiar with from Java. Therefore, let’s take a moment to
compare these two object-oriented systems to better understand how each system
of inheritance works and where each is most appropriate to use.

 JavaScript has no concept of a class; it has only objects. An object in JavaScript
is represented by an associative array consisting of named slots that can either
contain a property or a method. A prototype object is used as a template to initialize a
new object, which can later be modified. Object creation and modification hap-
pen at runtime, since there is no discrete compilation phase.

 In contrast, with static class-based languages, classes are created at compile time
and instances are created at runtime. Once a class has been defined, its attributes
and methods can’t be changed at runtime. Figure 2.3 shows an example comparing
class- and prototype-based inheritance. In class-based inheritance, a derived class
extends its base class by adding new fields—one called shape in the example—and
a corresponding set of getter and setter methods—called getShape and setShape in
the example. Once this class definition has been updated, it is compiled to produce
an object instance. From this point on, the characteristics of objects instantiated
from the class definition are fixed. With prototype-based inheritance there is no
compile time, and objects can be modified by adding or subtracting properties or
methods, during execution, as shown in the lower part of figure 2.3.

Architectural support 25
For many problem domains, the inflexibility of class-based objects is an asset, not
a deficiency. For example, static definitions are required for standard interfaces
such as JDBC or HTTP. If these interface definitions were not fixed, an object
could break interoperability by modifying its definition. In such applications,
classes contain identical methods and fields for all instances, and object instances
from the same class differ only in their data values.

 But this is not the case for user interfaces. Rather than a large number of simi-
lar objects, each GUI object typically is unique, with no suitable class definition for
all of them. Consequently, it’s more practical to take an existing prototype object

Figure 2.3 Class-based objects are static; they can be defined and extended only at compile time.
Prototype-based objects are dynamic, allowing derived objects to be defined and created at runtime.
Properties and methods can be added, modified, or deleted from these derived objects. The inability of
class-based objects to dynamically create derived objects at runtime reduces programming flexibility.

26 CHAPTER 2

The declarative world of LZX
containing a significant portion of the required behavior for a new object and
tweak it by modifying its properties and methods, until the new object has the
desired appearance and behavior. This practice only works when properties and
methods can be modified directly in the instance.

 LZX combines the best of both worlds. It provides the familiar operation of
class-based inheritance with declarative tags, while at the same time the dynamic
capabilities of prototype-based inheritance are available. This approach allows
declarative classes to be created to either directly produce instances or to serve as
a convenient starting point for further tweaked unique objects. It also allows an
instance to be easily converted into a class definition. Later, we’ll see how this
leads to a code development strategy known as instance-first development.

 To understand the operation of LZX’s declarative tags, let’s start with an in-
depth look at the two fundamental LZX superclasses, the LzNode and LzView
classes. These classes define the underlying characteristics for general-purpose
LZX declarative tags.

2.2 LZX classes

Before discussing the operations underlying the declarative LZX tags, we need to
understand some of the general properties shared by most tags. We’ll start by
looking at the class hierarchy of LZX tags. Then we’ll examine how user classes are
created and the relationship of LZX classes to JavaScript classes.

2.2.1 The LzNode class

The LzNode class is the superclass for general declarative tags. The properties of
an LzNode object include its attributes, methods, and the default events it is regis-
tered to handle. But not all declarative tags are derived from the LzNode class.
Some special-purpose tags are intended to support the general-purpose tags, such
as the following:

■ Resources

■ Fonts

■ Includes, importing, and libraries

■ Methods and handlers

■ Attributes

■ Script

■ Class

■ Unit tests

LZX classes 27
These tags have a non-LzNode lineage and are confined to the top level of a Laszlo
application or within a library tag. For simplicity, we normally use the term declara-
tive tag to refer only to general-purpose LzNode-derived tags.

 Objects derived from the LzNode class, comprising approximately 85 percent
of the Laszlo tags, include this wide selection of objects:

■ All visible objects (canvas, views, and components)

■ Datasets (discussed in chapter 10)

■ Animators (discussed in chapter 5)

■ States (discussed in chapter 5)

■ Data pointers and data paths (discussed in chapter 11)

■ Layouts (discussed in chapter 6)

Any JavaScript object derived from the LzNode class can also be represented as a
declarative tag. This allows an object to be instantiated either directly by appear-
ing as a declarative tag or through JavaScript’s new constructor. Although the final
result is the same, the difference is timing.

 Since all declarative tags are compiled and executed as JavaScript statements,
declarative tags are instantiated at compile time. JavaScript statements, on the
other hand, can only dynamically
instantiate objects at runtime. The suc-
cinct notation of declarative tags is used
to create an application’s initial struc-
ture, while new objects can be dynami-
cally instantiated through JavaScript.
This provides an ideal mix of ease of
use and flexibility.

2.2.2 The LzView class

The second fundamental superclass,
LzView, is a subclass of LzNode. These
two classes are closely associated; LzNode
defines common behavior for all LZX
declarative tags, and LzView defines
their visual characteristics. Together
they describe the fundamental behavior
of all visible declarative tags, as illus-
trated in figure 2.4.

Figure 2.4 The LzView class inherits its base
attributes, methods, and events from the
LzNode class. This base set of properties is
augmented with LzView’s base set of attributes,
methods, and events to produce a visible object.

28 CHAPTER 2

The declarative world of LZX
NOTE Some terminology: Inheritance, derivation, extension, subclass, and superclass The
terms is derived from, extends, is a subclass of, and has as its superclass are
equivalent. All imply class inheritance. For example, B extends A implies
that B inherits all the properties of A.

Although the canvas tag is the root node for an entire application, its class is derived
from the LzView class. If this is surprising, think of the situation this way: all visible
elements must be an instance of a class derived from LzView. All Laszlo compo-
nents—windows, menus, scrollbars, and so on—are of a class extending LzView.
Consequently, the canvas, being a visual element—to see this, just set its background
color with the bgcolor attribute—must also be a class extending LzView. An appli-
cation can be considered as an interacting collection of views, contained within a
parent view called the canvas.

2.2.3 Defining classes in LZX

Although tags are declarative, LZX embodies the semantics of a class-based object-
oriented language. Once common functionality has been identified and a class has
been defined, instances can be created and modified. A class can be extended from
any LzNode-based class. Since we are working with dynamically interpreted declar-
ative statements, whereby an element instance can be replaced by its definition with-
out changing the application semantics, it is almost as easy to convert instances into
class definitions as it is to create instances from classes. This is what leads to the code
development strategy known as instance-first development.

 Instance-first development encourages new functionality to be added to spe-
cific instances. If during development it turns out that this functionality has
broader applicability, then it can be refactored back into the class definition for
reuse. This approach also encourages class definitions to be postponed until there
are enough potential instances to warrant a new class. This helps avoid many of
the problems with prematurely creating abstract classes and then attempting to fit
the problem to the solution. Since new functionality has been prototyped and
tested before its inclusion into a class definition, this results in a flexible system
that scales better to meet new requirements

 A subclass inherits the properties and methods of its superclass and can selec-
tively add or override them to provide specialized behavior. LZX only supports sin-
gle inheritance, meaning that a class may have only one superclass. However, the
inheritance chain can run arbitrarily deep; all properties and methods of a class
are propagated down through each level, allowing many levels of specialization.

LZX classes 29
NOTE More terminology: Naming JavaScript and LZX classes The LzView class is
written in JavaScript. In fact, any class name starting with Lz is written in
JavaScript. A lowercase name implies that a class is defined in LZX. Con-
sequently, strictly speaking, it is incorrect to refer to the view class,
although we, and others, do use that term informally. Later, we’ll see
some examples of user-defined classes with lowercase names. This nam-
ing convention is just that, a convention. But it is widely used throughout
the Laszlo API.

A user-defined class is specified with the class tag. Each new class is given a unique
name and, optionally, the name of the superclass it extends, using the form

<class name="subclassname" extends="superclassname">
…
</class>

or
<class name="subclassname" extends="superclassname"/>

By default, a class extends the LzView class, so the extends attribute is optional.
Actually, the meta-name superclassname in the previous code snippet is a bit of a
misnomer because it can represent either a class or instance name. This allows for
the support of instance-first development. As illustrated in figure 2.5, any node,
view, or visible object can serve as the superclass for a class tag. Since LzView is
the default class, it’s extended by default. Once a class has been created, a new tag
of that name is immediately available.

 The following example shows how easy it is to create a new class. Here the default
LzView class is extended to create a class called box with a size of 100 by 100 pixels:

<canvas>
 <class name="box" width="100" height="100" bgcolor="0xBBBBBB"/>
 <box/>
</canvas>

Figure 2.5
The relationship between JavaScript
classes, declarative objects, and
LZX-defined classes is shown here.
Any node, view, or other visible
object, whether instantiated from
JavaScript or with an LZX tag, can
serve as the superclass for a class
tag. LzView extends by default if no
other class is specified.

30 CHAPTER 2

The declarative world of LZX
A box instance behaves like a view with width and height of 100 pixels and a back-
ground color of 0xBBBBBB. Thus, the box class is a specialized version of LzView.
Any class defined in this way can be placed in a library file to allow other applica-
tions to use it. For example, if we want to create a red box, we can simply override
the bgcolor attribute—popular color names are supported within declarative
tags, in addition to RGB hexadecimal values—like this:

<box bgcolor="red"/>

If we want to create a red-labeled box, we can either augment the instance:

<box bgcolor="red">
 <text text="red box" valign="middle" align="centered"/>
</box>

or we could extend the box class to create a new class:

<class name="redLabeledBox" extends="box">
 <text text="red box" valign="middle" align="centered"/>
</class>
<redLabeledBox/>

This example demonstrates how natural it is to use instance-first development. A
red-labeled box was first developed as an instance and then converted into the
class redLabeledBox.

 In the next section, we’ll take a deeper look at the declarative features inher-
ited from the LzNode class. Rather than just explaining these features in the
abstract, we’ll apply them to a visual model of a formation of aircraft.

2.3 The fundamentals of tags

In the previous sections we presented overviews of the Laszlo architecture, high-
lighting the three-tiered structure of declarative, JavaScript, and XML compo-
nents within its MVC architecture, and LZX’s class-based inheritance model. This
section demonstrates how this supporting architecture and the class mechanism
combine to produce the unified set of capabilities available with declarative tags.
These powerful capabilities allow complex animated applications to be easily ren-
dered. The demonstration is carried out with a small but complex visual model of
aircraft in formation.

 Life in LZX starts with LzNode. We have a small example to demonstrate all of
its characteristics. Have you ever been to an air show at your local airport and seen
a demonstration team, like the Blue Angels or the Snowbirds, flying in a tight for-
mation separated by only a few feet? A typical formation is five aircraft in a “vee”

The fundamentals of tags 31
pattern. How do they maintain the equal spacing of their formation? The answer
is relational offsets.

 Rather than using the horizon or instruments, a pilot flying in formation looks
only at another aircraft in the group. Only the lead pilot flies freely, as each other
aircraft maintains a constant relationship with the lead or some other aircraft. As
each pilot maintains a position relative to one other aircraft, the entire formation
maintains the correct pattern.

 Our example displays a visual model of an aircraft formation. In the upcoming
sections, we show how relational offsets in this model can be implemented in LZX,
either statically or dynamically. Each of these features is illustrated in the model to
show how the properties of an LzNode object support that feature. In particular,
we’ll show how constraint-based relationships are used to coordinate window lay-
outs in a GUI. Just like the formation of aircraft, a window layout may have multi-
ple visual objects that must coordinate their actions with a “lead window.”

 So before we’re ready to fly, we’ll need to start with the fundamentals of LZX,
which begin with hierarchical addressing.

2.3.1 Hierarchical addressing

An LzNode object is instantiated declaratively with the node tag. Since LzNode-
based declarative tags are stored in Laszlo’s internal Document Object Model
(DOM), they can maintain local data. This allows a tag to have a name and main-
tain an internal state with its attributes. All LzNode-based tags have two identifica-
tion attributes, id and name. The id attribute is a global unique identifier, and
name is a local identifier.

 The object hierarchy in Laszlo’s DOM corresponds to the parent-child place-
ment in the XML document constituting a Laszlo application. The prefix parent
on a name attribute refers to a local name one level higher within the object hier-
archy. This prefix can be chained, as in parent.parent, to refer multiple levels
upward. Any LzNode-based object can be identified by its absolute name, starting
at the canvas, or a relative name, starting with a parent or other ancestor.

Global and local names
The id and name identifiers provide a link between declarative statements and
JavaScript code. An attribute specified in any declarative tag can be referenced
by JavaScript code. In the code

<canvas>
 <node name="top">
 <node>
 <handler name="oninit">

32 CHAPTER 2

The declarative world of LZX
 this.setAttribute("name", parent.name + "_1");
 </handler>
 </node>
 </node>
</canvas>

we have a parent node named top with an unnamed child node containing an
event handler named oninit. An event handler contains JavaScript code, is encap-
sulated within a container (in this case, the unnamed node), and is executed when
an event occurs (in this case, the initialization of its container—that’s what oninit
means). For the moment, don’t worry too much about event handlers—we’ll
come back to them in just a bit. It’s sufficient to know that the JavaScript in this
handler is executed during initialization.

 However, the point of this little example is not event handlers but to show how
the JavaScript in the child node references its parent’s name attribute with parent
.name. In fact, it uses its own setAttribute method—that’s what this.set-
Attribute means—to set its name to “top_1.”

 A parent-child hierarchy conforms to the rules of an XML DOM; a parent node
can have many children but a child node has only one parent. In LZX, a child’s
parent is fixed and can’t be replaced with another parent. As we develop the air-
craft formation example, we’ll demonstrate how this parent-child hierarchy is
used to simplify the coordinated movements of the aircraft.

Modeling an aircraft formation
Figure 2.6 shows a five-aircraft formation image that we want to display with our first
version of the example. Listing 2.1 shows how we start with a simple structure in an
XML document.

 An XML document contains character text data
interspersed with markup tags to separate the text
data into a hierarchy of elements, attributes of those
elements, and text data. Every XML document
structure must have a single top-level root ele-
ment called the document root. This root element
anchors a tree structure of parent nodes contain-
ing child nodes.

 Nodes in an XML document can form two
kinds of hierarchical structure: nested in a parent-
child hierarchy, or as siblings in a flat hierarchy.
Of course, nodes could also just be located in dis-
parate areas of the document. But since nodes

Figure 2.6 This is the five-aircraft
formation image that we want to
display with our first version of the
example. Listing 2.1 shows how we
start with a simple XML structure.

The fundamentals of tags 33
can reference each another through relative addressing, they can always establish
a flat relationship, no matter where they might be located.

 As a first attempt at representing our aircraft formation, we’ll use the simple
nested parent-child hierarchy shown in listing 2.1. The visual positions of the XML
statements neatly correspond to the positions of our jets in formation.

<jet>
 <jet>
 <jet/>
 </jet>
 <jet>
 <jet/>
 </jet>
</jet>

A matching pair of opening and closing markup tags indicates that jet is a par-
ent data node to a child node that is also a jet tag. Two of the jets contain a clos-
ing /> indicating that they’re both end nodes—nodes with no children. In an XML
tree hierarchy, a parent can have many children but a child has only one parent.
Currently, none of the jet tags contains attributes.

 This parent-child hierarchy is a convenient framework to represent the order
and relationships of the aircraft. The lead aircraft is the root node with two child
nodes, a first left child and a first right child. The fourth aircraft is a child node of the
first left child, while the fifth aircraft is the child node of the first right child. They
can also be considered as grandchildren of the root node. As a result, the order
and arrangement of the aircraft is clearly indicated by the positional layout of the
XML statements. It’s an easy step to convert this into a Laszlo application.

 Converting our aircraft formation XML statements into the Laszlo application
shown in listing 2.2 only requires that beginning and ending <canvas> … </can-
vas> tags be added and that an initial class definition be created for a jet class. To
complete the display, we’ll use a graphic image to provide a visual representation
of an aircraft. The image is defined as a resource called jet, which can be found in
the source file F18_Hornet.png, available in the accompanying Manning source
code archive.

Listing 2.1 A five-aircraft formation modeled in XML

Lead parent aircraft
First left child

Child of first left child

First right child
Child of first right child

34 CHAPTER 2

The declarative world of LZX
<canvas>
 <resource name="jet" src="F18_Hornet.png"/>
 <class name="jet" resource="jet"/>
 <jet>
 <jet>
 <jet/>
 </jet>
 <jet>
 <jet/>
 </jet>
 </jet>
</canvas>

We now have five jet objects available for use. When we
run the application, the display in figure 2.7 appears on
the screen. So why do we see only a single image?

 Actually, all five jets are displayed, but all at coordi-
nates (0, 0). This is what happens when five jets are
stacked on top of each other. The problem is that,
although we have captured the general layout, we still
need a way to specify the relative distances between cer-
tain aircraft. Fortunately, LZX’s parent-child hierarchy
makes this easy by propagating certain attribute values to
the children.

2.3.2 Parent-child attribute propagation

In a parent-child hierarchy, the visual attributes shown in table 2.1 are propagated
down from each parent node to its child nodes. This allows a parent node to
establish a base value for an attribute, which is automatically propagated to its
child nodes, whose values can be set as offsets from this base. We’ll discuss each of
these attributes in greater depth as we move on in the book.

Listing 2.2 The five-aircraft formation as a Laszlo application

Table 2.1 Visual attributes that are passed to children

Attribute Description

x Specifies the x position of a view

y Specifies the y position of a view

rotation Specifies the rotation value in degrees

Specify image file

Define class with
visual representation

Figure 2.7 The initial result
of executing our application
shows all five jet object
images overlaying one
another, so only the top
image can be seen.

The fundamentals of tags 35
Since all internal spatial relationships are based on relative offsets, when these
attribute values are updated for a parent view, the result is that its child nodes act
in a coordinated manner. This is just the effect needed to allow the aircraft to
maintain the conformity required by a jet formation.

Coordinating the aircraft formation
Let’s move our formation so that it’s initially positioned in the lower portion of
the screen at (400, 400) and separate the jets by 50 and 40 pixels in the x and y
directions respectively, to create an inverted “vee” shape. The layout and distances
are shown in figure 2.8.

 Within a parent-child hierarchy, every child node inherits the x and y
attributes of its parent, so rather than specifying absolute distances, the location
of each child node is specified as an offset from its parent. The lead aircraft serves
as the parent node, so the offset for its left child is (–50, 40). The bottom aircraft
in the left wing, inheriting the updated x and y attributes of its parent, need only
apply the same offset (–50, 40). The values are cumulative and so result in a total
offset of (–100, 80). An analogous set of offset values (50, 40) is applied to the

opacity Specifies the opacity value ranging from 0 to 1.0 (transparent to opaque)

stretches Causes dimension changes so child nodes fit within the view

Table 2.1 Visual attributes that are passed to children (continued)

Attribute Description

Figure 2.8 To maintain the inverted “vee” shape of the formation, each jet is offset by 50 and 40
pixels in the x and y directions, respectively. The absolute distances appear next to the jets, while
their relative offsets appear at the right.

36 CHAPTER 2

The declarative world of LZX
right wing to produce a cumulative total of (100, 80). The LZX statements for the
aircraft, updated for these offsets, are shown in listing 2.3.

 <jet x="400" y="400">
 <jet x="-50" y="40">
 <jet x="-50" y="40"/>
 </jet>
 <jet x="50" y="40">
 <jet x="50" y="40"/>
 </jet>
</jet>

A parent-child hierarchy provides the convenience of maintaining base and offset
values; it’s simple to create and requires modest system resources since the jet
objects have no communication overhead. And there’s no need to name any of
the nodes, because they can be referenced with relative notation. The parent
node provides a single location to effect a visual change throughout an entire
hierarchy. After updating and executing our model, we see a jet formation identi-
cal to the image in figure 2.6.

 However, there are limitations to working with a parent-child hierarchy. Since
a child node can’t change its parent, this relationship must be created at compile
time; it can’t be dynamically created during runtime. Additionally, the set of prop-
agated attributes is limited to those listed in table 2.1. For example, a parent’s
width and height attributes aren’t available to be offset by its children. We can
cheat, though, by setting the stretches attribute to be both, width, or height,
which gives the same result.

 An alternative to a parent-child hierarchy is to use a sibling, or flat tag, struc-
ture. This results in slightly more verbose code, but while parent-child relation-
ships must be defined at compile time, a flat hierarchy can be created at runtime
and any node can participate.

2.3.3 Flat tag hierarchies

Since a flat hierarchy doesn’t have the automatically propagated values of a par-
ent-child hierarchy, within our formation we explicitly build a hierarchy by estab-
lishing communication between a leader and its followers. One jet is designated
as the leader to establish base attribute values and to communicate value changes
by sending events to its followers. For easy reference, the leader needs a name:

<jet name="LEAD" x="400" y="400"/>

Listing 2.3 The five-aircraft formation with relative spacing between aircraft

The fundamentals of tags 37
Since "LEAD" is a local name, it is referenced with a relative address of parent
.LEAD. To maintain the formation, each following jet maintains a single relation-
ship with the lead jet—yes, we know that this isn’t how formation pilots would do
this, but let’s not stretch our analogy too much. To model this behavior, each fol-
lowing jet updates its properties to conform to those of its leader. In our case, for
example, the left following jet could update its local value with the sum of its offset
and this new value:

this.x = parent.LEAD.x – 50
this.y = parent.LEAD.y + 40

This establishes an offset of –50 for its x attribute and 40 for its y attribute.
Although this example is quite small, a real application could potentially have a
large number of property changes that need to be communicated.

 At this point, we’ve introduced some basic ideas on how to model the aircraft
formation. Our purpose has been to illustrate how LZX objects in a hierarchy are
named, how they store local data, how data values can be propagated down in the
hierarchy, and how they can be organized in an alternative flat hierarchy. In the
last case, a flat hierarchy, we’ve introduced the requirement for event communica-
tion among the jets.

 The following sections continue with the formation example to illustrate how
LZX’s built-in event handling and constraint notation perform the communica-
tion job for us, as well as how XML data binding allows data to control the display,
and finally how animation makes the model formation scoot dramatically across
the screen.

2.3.4 Built-in event handling

In our formation example, the leader event object shown in figure 2.9 is the lead
jet. The follower delegates are the remaining jets in the formation.

Figure 2.9
The dotted lines represent
the initial registration of
the followers with the
leader. Event
communication, indicated
by the solid arrows, is one-
way from the leader to its
followers. In Laszlo, the
leader is called an event
object, and each follower
is called a delegate.

38 CHAPTER 2

The declarative world of LZX
Writing all the event-handling code to support event communication among
objects can be laborious. Each delegate must be registered to receive an event;
this requires the sending object and the event be specified along with an event-
handling method. In addition, the sender must explicitly send each event. Requir-
ing a developer to write all this code adds a significant amount of work to support
communications. It would reduce a developer’s workload if this event-handling
overhead could be performed “behind the scenes,” thus allowing the developer to
concentrate on writing the event handler logic.

 Since events require processing, declarative notation can’t be used for event
handling; declarative statements only specify things and don’t actually perform
any work. As in HTML, all event handlers are written in JavaScript. Since event
handling occurs in the context of an object, each event handler is contained
within an enclosing declarative statement.

 To understand the requirements for such behind-the-scenes event handling,
let’s think about a jet setting its x property. Occasionally, the lead jet needs to
move freely without communicating property changes to other jets; the lead is
“offline,” so to speak, since other jets receive no communications. In such an
offline mode, a lead jet can set its x attribute with a simple LZX assignment, which
generates no event:

this.x = 400;

At other times, the lead jet is in formation and so must communicate property
changes to other jets; the lead is “online,” since other jets do receive communica-
tions. In such an online mode, a lead jet can set its x attribute with the set-
Attribute method, which does generate an event:

this.setAttribute("x", 400);

This generates an onx event—all events have an on prefix—which is sent to all reg-
istered listeners and contains the updated property value.

 Normally, a listener must register for any events it wants to receive. However,
all LzNode-derived tags automatically have default event handlers registered for all
its system and user attributes. A default event handler simply sets its attribute to
the event argument value like this:

this.x = x;

However, any default event handler can be overridden. In this case, an overridden
event handler would look like this:

<handler name="onx" args="x">
 this.x = x - 50;
</handler>

The fundamentals of tags 39
A tag object often uses an event handler for events it generates itself. However, it
also needs to handle events from other objects. In that case, the event handler
must reference the sending object. When the sender is itself, this reference can be
omitted. In our case, handler onx responds to a property change event from the
LEAD jet; since the event is being sent by parent.LEAD, it must be specified, as we
see in listing 2.4.

<jet … >
 <handler name="onx" args="x" reference="parent.LEAD">
 this.x = x - 50;
 </handler>
 …
 <handler name="onopacity" args="op" reference="parent.LEAD">
 this.opacity = op;
 </handler>
</jet>

To perform nondefault processing, overriding handlers must be provided for each
attribute involved. As you can imagine, this can quickly grow cumbersome. What’s
really needed is a concise notation that is a mixture of tag notation and JavaScript.

2.3.5 Event handling with constraints

The LZX construct that blends tag notation with JavaScript is the constraint, where
a property is assigned the value from a JavaScript expression contained within a
character string. To protect the expression from being interpreted as character
text, it’s wrapped in curly braces with a leading dollar sign:

x="${parent.LEAD.x–50}"

A single data element can contain any number of constraints, as many as one per
attribute.

 In our formation example, all the constraints needed to maintain a consistent
relationship between a leader and its followers can be expressed in a single declar-
ative tag, as shown in listing 2.5.

 <canvas>
 <resource name="jet" src="F18_Hornet.png"/>
 <class name="jet" resource="jet"/>
 <jet name="LEAD" x="400" y="300"/>

Listing 2.4 The formation with event handlers

Listing 2.5 The formation application with constraints

Handles onx event
from specified jet

Handles onopacity
event from specified jet

40 CHAPTER 2

The declarative world of LZX
 <jet x="${parent.LEAD.x-50}" y="${parent.LEAD.y+40}"/>
 <jet x="${parent.LEAD.x-100}" y="${parent.LEAD.y+80}"/>
 <jet x="${parent.LEAD.x+50}" y="${parent.LEAD.y+40}"/>
 <jet x="${parent.LEAD.x+100}" y="${parent.LEAD.y+80}"/>
</canvas>

Now that we have identical jet formations created for hierarchical or flat struc-
tures, we’re ready to get these formations flying across the screen. For either case,
a steady stream of ony events is required to continually update the y coordinates
to make the jets move.

2.3.6 Animating declarative tags

Every LzNode-derived object contains a built-in animator to incrementally vary its
numerically based attributes. This animator can only be called through JavaScript,
as it’s not directly accessible to a constraint, although animators can be declared
as tags.

 An animator requires a starting and ending value, as well as a duration. Together,
they determine the velocity of the animation. An attribute doesn’t need visible prop-
erties to be animated. For example, it could be used as a timed for loop to iterate
through a range of attribute values. Since every object possesses the ability to be ani-
mated and to communicate with other objects, this provides a fine-grained sense of
animation with a level of interactivity bounded only by your imagination.

 An animator generates a sequence of events, each containing an incremented
property value. This stream of incrementing events is directed at either the parent
or the leader node. In our case, since each jet is a visible object, it is registered to
handle onx and ony events and has a default event handler to update these prop-
erties. When the animator begins emitting its stream of incrementing events, the
x and y attributes of the parent node are continuously updated, resulting in a sim-
ulated movement. Since both the parent-child and the flat hierarchies use the
same base-offset mechanism, updating the parent or leader node’s attributes auto-
matically causes the rest of the jet formation to move along with it.

 Animation occurs asynchronously, so a second animator begins execution
before a first animator finishes. Starting two animators sequentially for the x and y
attributes actually executes them concurrently, which causes our formation to fly
along a diagonal path.

 But why stop there? Additional animators could easily be added to create an
even more realistic simulation of flight. Adding rotation, opacity, height, and

Constraints
position
following jets

The fundamentals of tags 41
width animators would produce the illusion of a banked turn, with the aircraft
images getting smaller and fainter as they recede into the distance. Any of the
attributes listed in table 2.1 could be used to offset children.

 We’ll keep things relatively simple and fly the formation directly north as it
fades into the distance. The parent or leader node is given an oninit initializa-
tion event handler to contain an animator for its y attribute from its initial posi-
tion of 400 to a final position of 50 over two seconds (time is given in
microseconds). Analogous animators are included to change the opacity,
width, and height attributes. Although width and height are not listed in ta-
ble 2.1, adding a stretches attribute to the parent node allows the resource
image to be compressed.

 So let’s start with the nested parent-child jet formation shown in listing 2.6.
Adding all these animation calls requires only that an initial event handler be
attached to the lead jet, with its resource image stretchable in both directions, width
and height.

<canvas>
 <resource name="jet" src="F18_Hornet.png"/>
 <class name="jet" resource="jet" stretches="both"/>
 <jet x="400" y="400">
 <handler name="oninit">
 this.animate("y", 50, 2000);
 this.animate("opacity", .3, 2000);
 this.animate("width", 90, 2000);
 this.animate("height", 90, 2000);
 </handler>
 <jet x="-50" y="40">
 <jet x="-50" y="40"/>
 </jet>
 <jet x="50" y="40">
 <jet x="50" y="40"/>
 </jet>
 </jet>
</canvas>

A flat hierarchy requires constraint-based communication for each of these
attributes, so it’s naturally a bit longer, as seen in listing 2.7.

Listing 2.6 Animating the formation model

Animates
lead jet

42 CHAPTER 2

The declarative world of LZX
 <canvas>
 <resource name="jet" src="./F18_Hornet.png"/>
 <class name="jet" resource="jet" stretches="both"/>
 <jet name="LEAD" x="400" y="400">
 <handler name="oninit">
 this.animate("y", 50, 2000);
 this.animate("opacity", .3, 2000);
 this.animate("width", 70, 2000);
 this.animate("height", 70, 2000);
 </handler>
 </jet>
 <jet x="${parent.LEAD.x-50}" y="${parent.LEAD.y+40}"
 width="${parent.LEAD.width}"
 height="${parent.LEAD.height}"
 opacity="${parent.LEAD.opacity}"/>
 <jet x="${parent.LEAD.x-100}" y="${parent.LEAD.y+80}"
 width="${parent.LEAD.width}"
 height="${parent.LEAD.height}"
 opacity="${parent.LEAD.opacity}"/>
 <jet x="${parent.LEAD.x+50}" y="${parent.LEAD.y+40}"
 width="${parent.LEAD.width}"
 height="${parent.LEAD.height}"
 opacity="${parent.LEAD.opacity}"/>
 <jet x="${parent.LEAD.x+100}" y="${parent.LEAD.y+80}"
 width="${parent.LEAD.width}"
 height="${parent.LEAD.height}"
 opacity="${parent.LEAD.opacity}"/>
</canvas>

After updating and executing our applica-
tion, the jet formation will take off from
its origin and terminate its flight at the
destination, as shown in figure 2.10.

 This example illustrates the range of
addressing capabilities of LZX’s declarative
tags. They are flexible enough to be used in
situations ranging from a static parent-
child configuration to a dynamic configu-
ration requiring constraint notation to
handle event-based communication. Best
of all, these capabilities can be freely
mixed; constraints can be added to declar-
ative tags within a parent-child hierarchy to
obtain the convenience and flexibility of
both worlds.

Listing 2.7 The formation model using a flat hierarchy

Figure 2.10 An animated sequence is created
in which distance, size, and opacity are used to
provide the impression that the aircraft
formation has zoomed off into the distance.

The fundamentals of tags 43
 Although our formation has flown off into the distance, we’re not finished yet.
Let’s consider one of life’s unpleasant realities—pilots get sick and can’t fly. Since
we can’t just substitute any pilot, we are left with a missing aircraft. Our declara-
tive notation needs a way to accommodate an outside event that removes an air-
craft from a formation.

2.3.7 Binding tags to XML data

Although constraints are a powerful tool for expressing relationships among tags,
these relationships are confined to the view and controller layers of MVC. Think
of them as being horizontal relationships. An analogous tool is needed to express
vertical relationships between the view and model layers. This allows changes to
the model to be immediately reflected in a visual object, whose affected proper-
ties are then immediately propagated to other visual objects sharing a relationship
with it. This cross-sectional relationship allows a single change to a data node
within the model to initiate a chain reaction of events in the visual display.

 Laszlo’s data-binding communication system binds the view (the subscriber) to
the model (the publisher). Since structured XML data describes “what” is to be
seen—in this case, the number of jets—this binding is a good candidate for inclu-
sion into LZX’s declarative tags. An analogy may help to understand where we’re
heading here. We’ve seen how changes in an attribute value can generate an
event that is handled by a registered receiving object. With structured XML data,
changes in a data element value can generate an event that is handled by a regis-
tered receiving object.

 Alternatively, think of extending the mechanism of a constraint that sends
events from a leader to a follower object, to an analogous mechanism that
sends events from an XML data repository to a dependent object.

 Attribute-based constraints are implemented by embedding JavaScript into a
tag. For the data-binding mechanism, we’ll need a link between an XML data ele-
ment and a tag. The missing piece we need for this link is the XPath expression.

 Previously, we used an XML document to hold the application modeling the
aircraft formation. Now we’ll use an XML document to contain structured data.
Although both are XML documents, they serve very different purposes. The docu-
ment shown in listing 2.8, called jets.xml, contains a dataset listing the jets and
their pilots.

 <dataset name="jets">
 <jet><pilot>Josh Sailor</pilot></jet>
 <jet/>

Listing 2.8 An XML document jets.xml holding structured data

Contains
missing text

44 CHAPTER 2

The declarative world of LZX
 <jet><pilot>John MacNeille</pilot></jet>
 <jet><pilot>David Carpenter</pilot></jet>
 <jet><pilot>Peter Lindsay</pilot></jet>
</dataset>

The existence of a character string, a pilot’s name, in a pilot text node of a jet
data node governs the appearance of the corresponding jet. If there’s no pilot,
then obviously the jet can’t be flown. If any change occurs within a text node—sud-
denly a pilot’s name is entered—this generates an event causing the aircraft to
appear within its formation. Of course, the converse also applies. If a change
removes a pilot’s name from a pilot text node, the corresponding jet disappears.

 An XPath expression links a data element with a corresponding jet object. If a
jet’s associated XPath expression returns a matching pilot name from this data file,
the aircraft flies and is displayed. The expression’s location path specifies a path to
a jet data element, while its predicate matches the pilot text node of the element.

 Since the jet data elements are identical, each successive entry is specified with
one-based array indexing. Here’s what the path expressions look like:

jets:/jet[1]/pilot/text()
 …
jets:/jet[5]/pilot/text()

The initial jets token identifies the jets dataset. An array reference jet[i]
selects the ith element in the file. And the predicate pilot/text() specifies the
text data in the pilot node.

 So how do we put an XPath expression into a tag? The analogy to the LZX con-
straint is the datapath attribute. Adding a datapath attribute to a declarative tag
provides the mechanism to control the display of the tag, in our case a jet object
and, of course, all its child jets. The XPath expression is given as the value of the data
path. So let’s compare how the different hierarchies react to the datapath attribute.
Listing 2.9 shows the parent-child hierarchy with a data path for each jet object.

 <jet x="400" y="400"
 datapath="jets:/jet[1]/pilot/text()">
 <jet x="-50" y="40"
 datapath="jets:/jet[2]/pilot/text()">
 <jet x="-50" y="40"
 datapath="jets:/jet[3]/pilot/text()"/>
 </jet>
 <jet x="50" y=40"
 datapath="jets:/jet[4]/pilot/text()">

Listing 2.9 The parent-child hierarchy with data path binding

Binds jet to missing
text element

The fundamentals of tags 45
 <jet x="50" y="40"
 datapath="jets:/jet[5]/pilot/text()"/>
 </jet>
</jet>

Next, the flat hierarchy is updated with data path attributes, as shown in listing 2.10.

 <jet name="LEAD" x="400" y="400"
 datapath="jets:/jet[1]/pilot/text()"/>
<jet x="${parent.LEAD.x-50}" y="${parent.LEAD.y+40}"
 datapath="jets:/jet[2]/pilot/text()"/>
<jet x="${parent.LEAD.x-100}" y="${parent.LEAD.y+80}"
 datapath="jets:/jet[3]/pilot/text()"/>
<jet x="${parent.LEAD.x+50}" y="${parent.LEAD.y+40}"
 datapath="jets:/jet[4]/pilot/text()"/>
<jet x="${parent.LEAD.x+100}" y="${parent.LEAD.y+80}"
 datapath="jets:/jet[5]/pilot/text()"/>

Now each data path controls the display of its jet. The end result for either
approach is that the display can be controlled by a single value in an XML docu-
ment. But the displayed results are very different, depending on whether the
node is represented in a parent-child or in a flat hierarchy.

 The nature of the hierarchy determines the displayed results from a bound
data path. When the bound node is a parent node, the parent node’s state deter-
mines whether its child nodes are displayed.
In other words, the ramifications of a missing
plane depend on its position or on its depen-
dencies. Since trailing aircraft depend on
their lead (the parent node) to establish a
base value, losing the lead grounds the entire
formation. Similarly, missing lower-level nodes
ground their trailing aircraft. Of course, los-
ing a tail aircraft affects only that aircraft.

 The XML pilot text node shows the pilots
assigned to each jet. As you can see in listing 2.8,
no pilot is assigned to the second jet. As a result,
the left wing is grounded, leaving only the three
aircraft shown in figure 2.11.

Listing 2.10 The flat hierarchy with data path binding

Binds jet to missing
text element

Figure 2.11 In a parent-child hierarchy,
when a data path doesn’t return any
matching pilots, that aircraft and all its
child aircraft are also grounded. Here, the
left child of the lead aircraft is missing,
grounding its trailing aircraft as well.

46 CHAPTER 2

The declarative world of LZX
 Since a flat hierarchy is fundamentally a relation-
ship of equals, there is no cascading effect. If a node’s
data path doesn’t return a matching pilot, then only
that node is affected. This even pertains to the lead
jet. This occurs because this lead jet still exists; it’s
just not visible, as we see in figure 2.12. So it can still
send out events signaling changes to its other
attributes: y, opacity, width, and height. This allows
the jet formation to still fly across the screen, leader-
less. Well, it seems that our formation analogy breaks
down a bit here since those two lead jets have noth-
ing to follow, but hopefully the main point has still
been delivered.

 The purpose of this exercise was to provide a quick overview of Laszlo’s declar-
ative tags and to demonstrate how they model complex scenarios. We’ve covered a
lot of ground and walked a fine line between introducing powerful features with-
out getting into too much detail. If we have erred in either direction, we ask for
your patience and for you to read on for more explanation. After some more
reading, you may find it useful to come back to this chapter for a review that may
be more illuminating at that time.

2.4 Summary

The Laszlo system embodies a three-tier structure, with a declarative upper layer, a
procedural JavaScript middle layer, and a data repository lower layer. Since the
declarative portion isn’t Turing complete, it is combined with a general-purpose
procedural language. This supports a development strategy whereby the declara-
tive portion is used in areas that play to its strengths, while JavaScript is used for
those portions that can’t be expressed with declarative statements.

 Laszlo LZX was designed to get the most from declarative specification. Since a
declarative program describes what is to occur rather than how it is to occur, a sig-
nificant increase in expressiveness results in large productivity gains. To achieve
these gains, capabilities were added in these areas:

■ Animation

■ Built-in event handling

■ Class-based inheritance

■ Constraint notation support for event handling

Figure 2.12 A flat hierarchy has
no inherent dependencies. So
when a data path doesn’t return
a matching pilot, it only results in
the loss of that aircraft.

Summary 47
■ Data binding to XML elements

■ Hierarchical parent-child addressing

■ Parent-child attribute propagation

Each of these capabilities is supported by specific attributes in the LzNode class,
which serves as the superclass for all declarative objects represented in the Las-
zlo DOM.

 To make all this work, LZX declarative tags send and receive events generated
by changes to attribute values. Since these communications are built into the
declarative tags, they occur invisibly in the background. This allows a clear but
minimal notation, which readily scales for complex cases.

 A constraint-based relationship can be established between an LZX graphical
element and an XML data element in a local cache. The LZX graphical element is
bound to the XML data element through an XPath expression. This allows the
visual presentation of the XML data to be controlled by the XML data itself. The
absence or presence of XML data determines whether a graphical element is dis-
played. Furthermore, the bound graphical element can be a parent node to a
large number of graphical child nodes, allowing a single XML data element to
control a graphical display of any complexity.

 The inheritance model for the LzNode class is based on the prototype-based
capabilities of JavaScript. This provides a dynamic inheritance model, whereby
object instances can be directly modified to add, delete, or update attributes and
methods. New specialized objects can be built by tweaking the characteristics of
existing objects, leading to the instance-first development strategy. The essence of
this development strategy is to embellish instances with new functionality and, if
these features prove to have wider applicability, to roll that back into the class def-
inition. This provides a road-tested approach to class development and can pre-
vent unnecessary abstractions.

 In the next chapter, we continue to explore the relationship between declara-
tive LZX and JavaScript.

Core LZX language rules
This chapter covers
■ Debugging Laszlo LZX programs
■ Commenting your code
■ Declaring attributes
■ Interfacing LZX tags to JavaScript
■ Creating event handlers and constraints
48

Core LZX language rules 49
A picture is worth a thousand words. An interface is worth a
thousand pictures.

 —Ben Shneiderman, University of Maryland
Core LZX language rules

Becoming proficient in any language requires a mastery of its mechanics. This
involves learning the “nuts and bolts” issues, such as how to declare comments
and variables, call procedures, and functions, and other activities involved with an
object-oriented environment. Since LZX uses XML and JavaScript, it leverages
widely used programming technologies and is familiar to many developers. The
remaining issue is how Laszlo integrates these differing technologies to produce
LZX. In this chapter, we’ll assume that you’re already familiar with the basics of
XML and JavaScript, and instead focus on identifying and understanding the
operation of these declarative/JavaScript interface points. An interface point is
the area where program control passes from the declarative XML to the impera-
tive JavaScript domain. Mastering these concepts is the key to understanding the
operation of a Laszlo application.

 As you’ve seen, the strength of declarative XML notation is in describing the
initial static layout of an application’s interface elements with JavaScript used for
handling its dynamic elements. Clearly, there has to be well-defined interface
points, indicated by the white balloons in figure 3.1, to transfer processing from
one domain to another.

 What makes LZX challenging to learn is the fact that the Laszlo compiler man-
ages and obscures many of these interactions. Its goal is to produce a more suc-
cinct programming interface to allow the development of larger and more
sophisticated applications. But this results in a complex system whose operation
isn’t always immediately obvious. Hopefully by the end of this chapter, you’ll have

Figure 3.1 The lighter-colored areas indicate the interface points between
the processing of LZX tags and JavaScript. In this chapter, we’ll cover each
of these topics and explain the role of the Laszlo compiler in managing them.

50 CHAPTER 3

Core LZX language rules
gained an intuitive understanding of the basic Laszlo operations and an apprecia-
tion for the abstractions performed by the Laszlo compiler. After mastering these
concepts, you should find that your initial investment to learn LZX is substantially
repaid with higher productivity.

 However, before diving into interface issues, we’ll first cover the basics of build-
ing, commenting, and debugging an application. This will provide the diagnostic
tools needed for probing the interfaces. Rather than merely reading about how
things work, you’ll be able to run experiments to test a particular feature. Fre-
quently, watching a feature in action is the easiest way to understand its operation.

3.1 Learning LZX Basics

Every Laszlo application is contained in an XML document that starts with a canvas
tag. This satisfies the XML requirement that all documents contain a single root tag
to contain all its other elements. The acceptable forms for displaying the canvas tag,
and any other declarative tag, are shown in table 3.1.

A canvas serves as a container for child declarative tags, which appear between its
opening and closing tags. These child declarative tags can contain JavaScript
code. All Laszlo applications are structured as a parent-child hierarchical tree with
the canvas as the root.

 Of course, every application requires debugging and testing. One of the first
questions of every programmer facing a new language is “How do I debug this?”

3.1.1 Debugging

Debugging information is displayed by adding the debug attribute to the canvas
tag:

<canvas debug="true"/>

Table 3.1 All Laszlo applications start with a canvas tag, the root tag for every application.
 The three acceptable forms for displaying the canvas tag, or any other tag, are shown here.

Tag Construct Typical Use

<canvas> … </canvas> A form acceptable for small, one-line applications

<canvas>
…
</canvas>

The general case for building an application

<canvas/> A legal statement expressing an empty application

Learning LZX Basics 51
or adding a debug=true suffix to the URL query string like this:

http://localhost:8080/lps/book/main.lzx?debug=true

This produces the debug window, shown in figure 3.2, which is both movable and
resizable within the browser. The debugger should always be used during develop-
ment, since it results in additional instrumentation being compiled to perform
runtime error checking. You enter commands into the debug window through its
text input field along the bottom, and then press the Enter key. The left screen in
figure 3.2 shows the display of an LzCanvas object in compacted format. All debug
output displayed in blue can be clicked to produce an expanded mode, where
individual attributes are displayed.

 The debugger is examining a running application, where tag names have been
compiled into their corresponding JavaScript ORL objects. So the debugger out-
put refers to the JavaScript LzCanvas object rather than the canvas tag.

 To add a debug value within the code, it must be contained. An oninit event is
generated when the canvas tag completes its initialization, indicating that the
application is ready to receive input. An oninit event handler provides a conve-
nient place to put this debug statement. The Debug object’s write method is used
to display its value:

<canvas debug="true">
 <handler name="oninit">
 Debug.write(canvas);
 </handler>
</canvas>

Figure 3.2 Adding the debug attribute to the canvas tag produces the debug window displayed
within a browser. Entering an object name into the input field displays the object in compacted format.
An object in compacted format is displayed in blue and can be expanded by clicking the mouse on it.
The expanded display, shown in abridged form, displays its individual attributes.

52 CHAPTER 3

Core LZX language rules
This produces the compacted output seen in figure 3.2. Individual attributes can
also be specified for display like this:

Debug.write(canvas.width);

To get the expanded output displaying all the attributes, use the inspect method:

<canvas debug="true">
 <handler name="oninit">
 Debug.inspect(canvas);
 </handler>
</canvas>

Laszlo is similar to other web technologies in that its internal DOM controls an
application’s appearance and operation. Although the debug window says Laszlo
Debugger, it really is a DOM property inspector rather than a debugger, since there is
no way to step through JavaScript code. In the next section, we’ll explain how to
perform a sanity check by verifying some of these property values.

Verifying debug values
Since JavaScript objects from the ORL correspond directly to LZX tags, individual
fields of an object map to the attributes of the corresponding tag. For example, in
figure 3.2 the displayed height and width values correspond to the height and
width attributes of the canvas. These displayed values verify the physical dimen-
sions of the browser window. Since the canvas tag specifies no width or height val-
ues, they default to 100 percent of the browser window size.

 Because the browser window is in full-screen mode and the display settings for
our monitor are set to 1024 by 768 pixels, some height is lost to the browser’s
chrome header and a smaller amount is lost to the chrome frame sides. A screen-
based ruler can be used to check these values. Although it isn’t open source, the
screen ruler shown in figure 3.3 is freely available at http://www.mioplanet.com.
With it, we can verify that our browser window has a width and height of 1000 by 575
pixels, which matches the debugger values.

 Other general information is also available from the debugger. For example,
we can find the build number of the OpenLaszlo Server, the version number for
our runtime file, or the application mode (server or SOLO) of our application.

Figure 3.3 The pixel ruler, which is movable across your screen, is an invaluable tool for
measuring distances. It’s available free at http://www.mioplanet.com/products/pixelruler.

Learning LZX Basics 53
Updating with the debugger
The debugger operates on an application’s internal DOM, which means we can use
the dynamic properties of JavaScript to change an object’s properties. This allows
us to program the debugger and immediately see the results displayed on the
screen. For example, entering the following JavaScript code into the debug window

canvas.setAttribute("bgcolor", 0xCCCCCC);

changes the background color of the canvas to a light shade of gray. This ability to
dynamically update DOM properties is a powerful tool that allows you to test code
fixes on a live, deployed application.

3.1.2 Commenting your code

LZX code contains declarative tags and JavaScript statements, so we need a syntax
for comments that is specific to each of these. For example:

<canvas debug="true">
 <!-- Handler for initialization code -->
 <handler name="oninit">
 // Expanded display of the canvas
 Debug.inspect(canvas);
 </handler>
</canvas>

The comment for the tag, of the form <!-- … -->, conforms to XML rules. The
comment for the debug statement, beginning with //, conforms to JavaScript
rules. Let’s review these rules.

XML comments
Comments that appear between, but not within, tags in LZX statements must be in
the form of XML comments:

<!-- comment -->

A comment may spread across multiple lines and terminates only when it encoun-
ters its end delimiter.

JavaScript comments
JavaScript supports more comment styles than is necessary, but this is more a heri-
tage issue than style. In all, JavaScript supports three different styles of comments,
shown in table 3.2.

 Notice that JavaScript ignores the closing characters, -->, of HTML-type com-
ments, so they behave differently than similar-looking XML comments. It’s easy
to confuse these two types of comments, so you should probably avoid using
HTML comments in a JavaScript method. Instead, use the C++ style for single-
line comments.

54 CHAPTER 3

Core LZX language rules
LZX comments
Since neither HTML nor JavaScript allows nested comments, Laszlo added the
ignore XML processing instruction to allow large sections of code to be com-
mented out, without having to worry about encountering comment end delimiters:

<?ignore
…
?>

We’re just about finished with the prerequisite material for creating and working
with an example application. Just one more topic needs to be covered: protecting
special characters within LZX code.

3.1.3 Well-formed XML files

Because an LZX application is a well-formed XML document, all its nodes, includ-
ing those containing JavaScript methods, must be valid XML. JavaScript code is
enclosed within tags and is thus protected from XML compliance requirements.
Nevertheless, this JavaScript code might contain the special XML characters listed
in table 3.3, resulting in a compile-time error. When these special characters are
present, the entire method must be protected by enclosure within a CDATA decla-
ration or the individual characters must be escaped by using the character
sequence substitution shown in the second column of table 3.3.

Table 3.2 JavaScript supports three different styles of comments.

JavaScript Comment Form Derivation of Form

/*
Comment
*/

C-style multi-line comments, where everything between the opening /*
and closing */, including newline statements, is considered to be part
of the comment

// comment Single-line comments as found in C++

<!-- comment Single-line HTML-type comments

Table 3.3 Certain XML special characters require protection in JavaScript code to avoid a compile
 error. The second column gives the substitution for escaping an individual character.

Character LZX Substitute Reason for the Conflict

< < Begins an XML tag

> > Ends an XML tag

& & Begins an XML character code

Creating object hierarchies 55
To escape an entire event handler or method, you can wrap the entire JavaScript
section of code in opening <![CDATA[and closing]]> tags, as shown in the fol-
lowing example:

<canvas debug="true">
 <handler name="oninit">
 <![CDATA[
 Debug.write("<&>");
]]>
 </handler>
</canvas>

These awkward and easily forgettable escape sequences are an unfortunate by-
product of using XML and can’t be blamed on LZX. We suggest that you sidestep
the issue by using the abbreviations feature available in most text editors. That way,
you don’t waste time and neurons memorizing these sequences.

 We are now proficient at creating a blank canvas for an application, comment-
ing this short piece of code with both XML and JavaScript comments, and examin-
ing its properties in the debugger. Our toolkit is now sufficiently equipped to
examine the infrastructure beneath an LZX application.

3.2 Creating object hierarchies

This section builds on the previous section by adding declarative tags to our mini-
mal application. We’ll examine the effects of declaratively versus dynamically cre-
ating objects. Afterward, we’ll look at the different hierarchies for containing
objects. Finally, we’ll see how these hierarchies are stored internally by LZX objects.

 In chapter 2, you saw that a core feature provided by the LzNode class is sup-
port for global and local namespaces; now we’ll use this support in a program.

3.2.1 Naming objects declaratively

Declaratively instantiating an LzNode object is simple: just use it. Although not
every node needs a name, sometimes it’s necessary to reference a specific node.
For these cases, an id attribute serves as a global identifier, as shown in listing 3.1.

<canvas debug="true">
 <node id="first"/>
</canvas>

Listing 3.1 Declaratively instantiating an LzNode object

56 CHAPTER 3

Core LZX language rules
An id is an identifier within the global namespace and can be referenced using
the name global.first or simply first. However, it can’t be accessed through
the parent-child hierarchy as canvas.first.

 If a node needs to be addressable through the parent-child hierarchy, then the
name attribute provides a local identifier within its parent node (or container). A
local identifier can be used in either an absolute or relative reference. An abso-
lute reference is a complete path starting at the canvas, while a relative reference
starts from the current location within the parent-child hierarchy. Listing 3.2
shows both forms.

<canvas debug="true">
 <node name="first">
 <node name="second">
 <handler name="oninit">
 Debug.write("parent.name=" + parent.name);
 Debug.write("this.name=" + this.name);
 Debug.write("canvas.first.name=" + canvas.first.name);
 Debug.write("canvas.first.second.name=" +
 canvas.first.second.name);
 Debug.write("first.name=" + first.name);
 Debug.write("global.first.name=" + global.first.name);
 </handler>
 </node>
 </node>
</canvas>

In listing 3.2, B and C demonstrate relative and absolute addressing, but D is a
special case. As a general rule, all top-level declarative tags have an entry in the
global table. So the first node has both a global and a local identifier and, as
seen in figure 3.4, is accessible through either relative or global references.

Listing 3.2 Relative and absolute addressing

D

Specifies relative
reference B

C

Specifies
absolute

reference

Specifies top-level names
referenced either way

Figure 3.4
Using relative, absolute and
top-level references

Creating object hierarchies 57
NOTE A word about absolute and relative referencing The structure of an absolute
or a relative reference is somewhat complex. If you are a bit puzzled by
the string first.name in the previous example, then this discussion is for
you; saying first.name is like saying “Mary’s name” rather than “Mary.”
The key to interpreting a reference is to understand that it has three
parts: a qualifier, a string of name values, and the name of a value. The quali-
fier can be empty, the keyword canvas, or a possibly empty dotted string
of parent keywords. The string of name values is a possibly empty dotted
string of valid values of name attributes. The final value name is a valid
attribute name.

For example, in the string canvas.first.name each component is a
different sort of animal. The keyword canvas is the qualifier. The string
first is the value of the name attribute. And finally, name references an
attribute in the named node. If all this seems twisted, don’t worry; it’s
actually quite intuitive once you have seen a few references. It’s even
more complex since the final value name can be a function—but we won’t
go there right now.

Laszlo currently only supports a single namespace, so the number of meaningful
names is limited. Although a prefix can be added to a name to simulate a sense of
namespace, the programmer is responsible for maintaining such a disciplined
approach. LZX is case sensitive, so the names gid, Gid, and GID are all distinct.
The cardinal rules of naming are

■ Be consistent with case.

■ Use global names sparingly.

So let’s now see how to create named nodes dynamically.

3.2.2 Creating nodes dynamically with JavaScript

A node object or any other LZX object can also be dynamically instantiated. This
allows its existence to be dependent on an outside occurrence. In contrast, a
declarative object is always instantiated. The general form for instantiating an
LzNode object looks like

var newnode = new LzNode(parent,args);

■ Where newnode is a local name for the new LzNode object.

■ parent is the parent node for the new LzNode object. If the parent is set to
null, then the new object is placed under the canvas.

■ args is an associative array—i.e., a dictionary—whose name/value pairs
specify attributes of the new node.

58 CHAPTER 3

Core LZX language rules
Each of these arguments is optional; omitting them produces a node with no
attributes whose parent is the canvas. In this example, a new node named main is
instantiated only if the button is clicked to generate an onclick event, as shown in
listing 3.3.

<canvas debug="true">
 <button text="Push">
 <handler name="onclick">
 var mynode = new LzNode(canvas, {name: "main"});
 Debug.inspect(canvas.main);
 </handler>
 </button>
</canvas>

The variable mynode is a local JavaScript variable, so its scope is limited to the
method. JavaScript variables, whether local or global, won’t be displayed within the
debugger, since only the DOM contents are displayed. For comparison, listing 3.4
shows a declarative instantiation of a node main.

<canvas debug="true">
 <node id="main"/>
</canvas>

Comparing the debugger display from listings 3.3 and 3.4 (see figure 3.5), we
see Laszlo’s DOM is identically updated for both declarative and dynamic node
instantiation.

Listing 3.3 Dynamic instantiation of node main

Listing 3.4 Declarative instantiation of node main

Figure 3.5 Both the declarative and the JavaScript versions of creating a node produce the same debug
output, indicating that the DOM is updated identically.

Creating object hierarchies 59
Although tags and objects are loosely equivalent, certain LZX tags perform func-
tions that don’t have a corresponding JavaScript method. For example, every LZX
application begins with <canvas> and ends with </canvas>; however, there is no
way to instantiate a canvas object using script. Conversely, many LZX objects, such
as services, cannot be created with declarative tag notation.

3.2.3 The subnodes array

One important attribute of the LzNode class is its subnodes array, which contains a
set of references for its child nodes. Since the canvas object is derived from the
LzNode class, it has a subnodes array. In the example in listing 3.5, a sibling rela-
tionship exists between the first and second nodes, and a parent-child relation-
ship exists between the second and child nodes. Whenever a new node-based
object is declaratively or dynamically instantiated, it is added to the parent node’s
subnodes array.

<canvas debug="true">
 <node name="first"/>
 <node name="second">
 <node name="child"/>
 </node>
 <handler name="oninit">
 Debug.inspect(canvas.subnodes);
 Debug.inspect(canvas.second.subnodes);
 </handler>
</canvas>

The canvas’s subnodes array, displayed in figure 3.6, contains two LzNode objects
called first and second. Since the contained child node second is also a parent
node, it too has a subnodes array containing its child node, called child.

Listing 3.5 Declarative instantiation of parent-child and sibling relationships

Figure 3.6 The subnodes attribute defines the parent-child hierarchy in LZX. Here, the subnodes
array for the canvas is displayed, followed by the contents of the subnodes array for the second node.

60 CHAPTER 3

Core LZX language rules
The subnodes array is used to handle references for relative addressing using the
parent prefix with a parent-child hierarchy. Since each node maintains its own
subnodes array, there is no central table to be updated.

 The next section deals with the properties that define an object: its attributes,
methods, and events.

3.3 Storing values in attributes

Being LzNode-derived blesses an object with the ability to store values in its
attributes. Attributes are local data that define the operating characteristics of an
object. We have already seen one attribute, name, that is used to store the local
name of an object.

 Laszlo supports two types of attributes: base attributes, which are class-specific
and defined by Laszlo, and user-specified attributes, which are supplied by the user
and are instance-specific. The attribute tag is used to create a user-specified
attribute, as shown in listing 3.6. Attributes are declared as child tags within their
parent element. While attributes can be dynamically created, accessing an unde-
clared attribute results in an “unknown attribute” compile-time error for a declar-
ative tag and a runtime error in JavaScript. The debugger displays all attributes in
an object.

<canvas debug="true">
 <node name="main">
 <attribute name="fruit" value="apple" type="string"/>
 </node>
 <handler name="oninit">
 Debug.inspect(main);
 </handler>
</canvas>

Figure 3.7 shows the fruit attribute within the main node.

Listing 3.6 Displaying attribute values

Figure 3.7
This debug output shows an abridged
display for the main node containing
a user-specified fruit attribute.

Storing values in attributes 61
Attributes provide a way to communicate between declarative tags and JavaScript.
When an attribute is created in a declarative tag, a new property is added to the
object, which is accessible from JavaScript. Although the this prefix can be
assumed, using this is considered a good programming practice as it indicates
that the variable is a member of the enclosing object and not a local JavaScript
variable. Although LZX tags support some class-based semantics, they don’t sup-
port all the class-based access methods found in other object-oriented languages
such as Java. All attributes are public, and there are no “private” or “protected”
access modifiers to provide data privacy. The LZX compiler does, however, offer
some access restrictions that we’ll see in the next section.

3.3.1 Attribute types

LZX attributes come in several different types. All user-specified attributes are set-
table, since users create attributes to contain values and obviously need to set
these values. The built-in base attributes can have any of the types read-only,
final, and settable.

Read-only attributes
Read-only attributes, such as parent or subnodes, are set by the Laszlo system and,
once set, can’t be modified. They aren’t accessible within a declarative tag;
attempting to access one generates a compiler error. JavaScript can be used to ini-
tialize a read-only attribute but it can’t later be modified. An example of its usage
is when the parent-child hierarchy is extended with a dynamically instantiated
node-based object. Here the node’s parent attribute is set by the new constructor.
Once a parent attribute is set, it can’t be changed.

Final attributes
A final attribute is the inverse of a read-only attribute. It is set at compile time with
a declarative tag and can’t be modified by JavaScript. Once again, JavaScript can
be used to set an uninitialized final attribute, but can’t modify a previously set
attribute. Two examples of final attributes are name and id, which are final to pro-
tect the DOM from corruption at runtime. Any attempt to modify a final attribute
generates a runtime error.

 Read-only and final attributes work together to provide a level of protection
between the compile-time nature of declarative tags and the runtime behavior of
JavaScript.

Settable attribute types
The set of data types supported by a programming language is one of its funda-
mental characteristics. JavaScript supports three primitive data types—number,

62 CHAPTER 3

Core LZX language rules
string, and boolean—along with two composite data types—object and array.
LZX extends the string type to support three additional types: text, html, and
css (Cascading Style Sheets), resulting in a total of eight data types in LZX dis-
played in table 3.4.

LZX can leverage the dynamic features of JavaScript to postpone the setting of
attribute types until runtime. In many cases, JavaScript can determine the type
without having it explicitly stated. The example in listing 3.7, with output shown
in figure 3.8, contains several such instances.

<canvas debug="true">
 <node>
 <attribute name="apple" value="true"/>
 <attribute name="berry" value="{name:'main'}"/>
 <attribute name="cherry" value="5"/>
 <handler name="oninit">
 Debug.write("apple = " + this.apple +
 " : " + typeof(this.apple));
 Debug.write("berry = " + this.berry.name +
 " : " + typeof(this.berry));
 Debug.write("cherry = " + this.cherry +
 " : " + typeof(this.cherry));
 </handler>
 </node>
</canvas>

Table 3.4 Attribute types

Type Description

boolean boolean (true or false)

color CSS color (red, blue, yellow and other common color names)

css CSS style

expression JavaScript expression (the default type)

number number

string character text

text character text

html character text containing embedded HTML tags

Listing 3.7 Dynamic typing

Sets type to
boolean

Sets type to object

Sets type
to number

Storing values in attributes 63
The attributes in listing 3.7 are set to their respective types because the value is
only applicable to a particular type.

 The type option can also be used to coerce a value to a particular type. In list-
ing 3.8, the plus operator is overloaded to work differently depending on the type
of its operands.

<canvas debug="true">
 <node>
 <attribute name="one" value="1" type="number"/>
 <attribute name="two" value="2" type="number"/>
 <attribute name="three" value="3" type="string"/>
 <attribute name="four" value="4" type="string"/>
 <attribute name="five" value="5" type="boolean"/>
 <handler name="oninit">
 var sum = this.one + this.two;
 Debug.write("1 + 2 = " + sum + " (numbers)");
 var sum = this.three + this.four;
 Debug.write("3 + 4 = " + sum + " (strings)");
 Debug.write("five = " + this.five +
 " : " + typeof(this.five));
 </handler>
 </node>
</canvas>

As shown in figure 3.9, numeric operands are added and strings are concate-
nated. But in the final value, there is a conflict between its value five and its bool-
ean type; the value supersedes the specified type, with the end result that the type
is set to number.

Listing 3.8 Coercing a value to a specific type

Figure 3.8
JavaScript can determine type without
having it explicitly stated. This dynamic
typing capability is illustrated here in a
case in which the correct type is
determined because the value is only
applicable to a particular type.

First plus
adds

First plus
concatenates

Value
supersedes type

Figure 3.9
In general, numeric operands are added, while strings are
concatenated. When there is a conflict between a value’s
natural type and its specified type, the value’s type is set
to its specified type. In this example, the value was set
to five and the type was set to boolean, so the resulting
type is number.

64 CHAPTER 3

Core LZX language rules
Specifying the type is required for string-valued attributes. If the type option is
omitted, JavaScript defaults to interpreting a string value as a JavaScript object.
This usually produces a runtime error, since a correspondingly named object
can’t be found. In the following section, we demonstrate how to work properly
with JavaScript type expressions.

3.3.2 JavaScript type expressions

In addition to the primitive types, attributes can work with JavaScript expressions,
allowing any data type to be dynamically set. By default, an attribute’s type field is
set to expression, allowing attributes to be initialized by the value returned from
a JavaScript expression. To initialize an attribute named date to the current date,
we would write

<attribute name="date" value="new Date()" type="expression"/>

The type field can even be omitted since it’s the default:

<canvas debug="true">
 <attribute name="date" value="new Date()"/>
 <handler name="oninit">
 Debug.write("data=" + canvas.date);
 Debug.write("typeof=" + typeof(canvas.date));
 </handler>
</canvas>

In either case, the attribute named date contains an object with the current date
expressible as a string, as seen in figure 3.10.

An attribute’s value can even be expressed as a constraint, as shown in listing 3.9,
with the type determined by the return value of the JavaScript expression.

<canvas debug="true">
 <attribute name="num1" value="32" type="number"/>
 <attribute name="num2" value="24" type="number"/>
 <node>
 <attribute name="result1"
 value="${parent.num1 > parent.num2}"/>
 <attribute name="result2"
 value="${parent.num1 < parent.num2}"/>

Listing 3.9 Using a constraint to assign to and dynamically type an attribute

Figure 3.10
The default type of a JavaScript expression
is that of a value returned from a JavaScript
operation.

Returns
boolean

Storing values in attributes 65
 <attribute name="result3"
 value="${parent.num1 - parent.num2}"/>
 <handler name="oninit">
 Debug.write("result1 type: " + typeof(result1) + " : " + result1);
 Debug.write("result2 type: " + typeof(result2) + " : " + result2);
 Debug.write("result3 type: " + typeof(result3) + " : " + result3);
 </handler>
 </node>
</canvas>

The return types, shown in figure 3.11,
demonstrate how the attribute type is
dependent on the operator used in
the constraint.

 Dynamic typing provides flexibility
not available with statically typed lan-
guages—where all type information
must be available at compile time. This
flexibility allows LZX to be more easily
programmed since it can dynamically respond to application changes. In a sense,
its attributes are alive, while in a statically typed language, they are set in stone.

 However, this raises the potential for type-related problems. Since JavaScript is
a loosely typed language, it has flexibility at the expense of rigor. JavaScript converts
a value to its correct type based on context. For example, if a string is used in a
numeric context, it is automatically converted to a number. But in many cases there
is insufficient information to determine type. For example, since the setAttribute
method accepts numbers, strings, or objects as an argument, it relies on correct
specification of the argument. This leads to common typing problems such as

this.setAttribute("width", "500");

instead of

this.setAttribute("width", 500);

Although JavaScript correctly converts values in most cases, it can’t be relied on in
all cases. Incorrect conversion can easily result in errors that are difficult to track
down. Since the compiler allows loose typing, it is the responsibility of the devel-
oper to ensure that the correct type is passed.

 Attributes represent the sending portion of the event-delegate communication
system. In the next section, we’ll cover the receiving portion represented by meth-
ods and event handlers. Whereas this section covered the general properties of
attributes, the next section covers the communication-related aspects of attributes.

Returns number

Figure 3.11 This output demonstrates how
the attribute type leverages the dynamic
interpretative features of JavaScript.

66 CHAPTER 3

Core LZX language rules
3.4 Methods and event handlers

Methods and event handlers work in tandem to handle all the imperative process-
ing required in a Laszlo application. This processing encompasses all the support-
ing tasks that can’t be performed with declarative notation. Methods and event
handlers consist of a declarative LZX wrapper around JavaScript code to protect it
from being parsed as XML statements. Because JavaScript can interact with declar-
ative statements, we can leverage the descriptive capabilities of declarative state-
ments to address new situations by updating their attributes.

 Methods operate like the subprograms of other procedural languages, and
their arguments can be passed by value or reference. Methods can be called by
other methods, event handlers, or Laszlo itself. An event handler is a method that
has been registered to receive events from a particular object. All the basic opera-
tions of methods are applicable to events. However, when we deal with classes, we
will encounter some differences in how methods and event handlers are overrid-
den and overloaded.

 Although there are many surface similarities between methods and event han-
dlers, there’s a big difference in how they’re used. A method is called and executed
in the context of its object. Events can be sent by multiple objects in an indetermi-
nate order, so event handlers need to be idempotent. This means the work per-
formed by an event handler must produce the same effect regardless of whether it’s
called once or multiple times. This stipulation mandates that methods should be
used to initiate events and event handlers should only process events.

 Let’s start with methods before we cover writing event handlers. We’ll examine
the relative timing of event handlers and the different types of events—base or
attribute—that specify particular event senders. Finally, we’ll show how objects
communicate through events. This event communication serves as the basis for
constraints, which are covered in the next section.

3.4.1 Writing methods

An LZX method has the following form:

<canvas>
 <method name="method_name" args="a,…,z"><![CDATA[
 var val_names;
 global_name = null;
 // JavaScript code
 return;
]]></method>
</canvas>

Contains local
variable

Contains global
variable

Methods and event handlers 67
A method is called by its name method_name, is supplied with a number of argu-
ments a,…,z, and can return a result. It is considered good practice to always pro-
tect the special characters within a method with a CDATA declaration. Local or
global JavaScript variables can be declared. Now let’s examine what is not shown in
the previous example. First, there is no access specifier, so all LZX methods have
public access. LZX provides no support for private or protected access modifiers,
so all methods can be accessed by any element.

 Second, there is no argument or return data type declaration, so the data types
for arguments and return types can dynamically change. Once again, LZX takes
advantage of the dynamic nature of JavaScript to provide the flexibility to handle
different data types depending on runtime conditions. Depending on its type, an
argument is passed by value or by reference.

 We can pass fewer arguments than are specified in the args attribute. This
allows some arguments to be optional, with default values set within the method.
However, passing too many arguments generates a compile-time error.

 The dynamic nature of JavaScript makes writing methods easy, since there is
no need to specify method types, argument types, or return types. However, loose
type checking can be a dangerous thing. The responsibility lies with the developer
to ensure that the correct data types are used.

 Let’s now look at value and reference arguments.

Passing arguments by value
In our previous example, the variable val_names is local to the method because
its definition begins with the keyword var. A local variable’s scope is confined to
the method. JavaScript does not support static variables, so there is no way to
retain a local variable’s value across invocations.

 Any variable defined without the var keyword is global, and so is universally
accessible. Since this can lead to unintended side effects, we recommend using
local variables whenever possible. Listing 3.10 shows that variables containing
primitive data types are always passed by value.

<canvas debug="true">
 <node name="node">
 <method name="test_method" args="val">
 val = 100;
 Debug.write("inside test_method, val: " + val);
 return val;
 </method>
 </node>
 <handler name="oninit">

Listing 3.10 Passing primitive types by value

68 CHAPTER 3

Core LZX language rules
 var sum = 10;
 var ret = node.test_method(sum);
 Debug.write("passed by value: " + sum);
 Debug.write("returned value: " + ret);
 </handler>
</canvas>

The variable sum is initialized to 10 and its data type is set to number, a primitive data
type. This value is passed into test_method, where the argument val is updated to
100. Since the argument is passed by value, after the call sum retains its original value
of 10, as seen in figure 3.12.

In the next section, you’ll see that passing arguments by reference is just as simple
as passing them by value.

Passing arguments by reference
Because there are no declared argument types, only objects are passed by refer-
ence. Since an array in JavaScript is considered to be an object, this supports both
regular and associative arrays. Objects passed by reference can have individual
attribute values updated. The example in listing 3.11 demonstrates passing an
argument by reference.

<canvas debug="true">
 <node name="top">
 <node name="test">
 <method name="updateName" args="node">
 node.setName("first");
 </method>
 </node>
 <handler name="oninit">
 var new_node = new LzNode(canvas.top);
 test.updateName(new_node);
 Debug.write("name =", new_node.name);
 Debug.write(canvas.top.subnodes);
 </handler>
 </node>
</canvas>

Listing 3.11 Passing by reference

Argument
passed by value

Local value
unchanged

Return value
updated

Figure 3.12
Primitive data types are passed by value. This
is demonstrated in this debug output, with a
value that was initialized to 10 and then
updated in the method to a value of 100. After
the call, it still contains the value 10.

Statically
creates node

Updates reference
argument

Dynamically creates
child of canvas

Passes argument
by reference

Methods and event handlers 69
On application initialization, a new node is dynamically instantiated as a child of the
canvas and a sibling to the node test. Since this node doesn’t have a name, the
method updateName is used to update its name. After the call, the updated value of
the name attribute, displayed in the subnodes array, can be seen in figure 3.13. Java-
Script is able to update this read-only attribute, name, because it is uninitialized.

 JavaScript passes objects and arrays by reference and primitive data types by
value, as is common in other languages. Consequently, most developers should
feel comfortable using LZX’s methods.

 An event handler operates just like a method except that its execution is trig-
gered by an event. So let’s see the implications of this difference.

3.4.2 Writing event-handler methods

An event handler operates as a subscriber in publisher-subscriber-based commu-
nications. An event handler is a method, whose event tag alerts the Laszlo com-
piler that it should be automatically registered as a subscriber to receive a
particular event from a particular publisher. Its name attribute specifies the type of
events that it receives. In its simplest form, it only receives events from its enclos-
ing object. But a reference attribute can be added to specify other publishers.

 Two types of events can be handled: system events and attribute events. A sys-
tem event is defined by the enclosing object type, while an attribute event is gen-
erated by a change to an attribute of an object. All LzNode-derived objects can
receive the base system events listed in table 3.5.

Table 3.5 The system events registered to all LzNode-derived objects are onconstruct,
 ondata, and oninit.

Event Description

onconstruct Sent at the end of the instantiation process, but before any subnodes
have been created

ondata Sent when the data selected by the node’s data path changes

oninit Sent immediately before the node becomes active

Figure 3.13
The updated subnodes array
contains a new node named
first.
www.allitebooks.com

http://www.allitebooks.org

70 CHAPTER 3

Core LZX language rules
We’ll defer looking at the ondata and onconstruct events until later chapters that
deal with datasets and optimization and start by examining the oninit event.

Handling system events
The oninit event is sent by all LzNode-derived objects when they have completed
their initialization. These events have the form on+method. For example, the
oninit event is associated with the completion of the init method. All events
have a single argument; the oninit event’s argument contains a reference to the
object that sent the event. Since the canvas is LzNode-derived, it is automatically
registered to receive oninit events:

<canvas debug="true">
 <handler name="oninit" args="s">
 Debug.write("oninit : " , s);
 </handler>
</canvas>

This event handler is idempotent, since it can be executed multiple times without
affecting application state. The canvas object generates and handles the event,
passing a reference to itself as an argument. It is sent when the canvas completes its
initialization, resulting in the display of the debug message, shown in figure 3.14.

Every event handler is associated with a declarative tag. Event handlers at the top
level of an application have no special properties and are associated with the canvas.

Handling attribute events
An attribute event, of the form on+attribute, is associated with each of an
object’s attributes. For example, whenever the setAttribute method is used to
change the value of an attribute width, it generates an onwidth event.

 Attribute-based events provide a single argument containing the value of the
attribute. Alternatively, the value can be accessed directly from the sending object,
as shown in listing 3.12.

<canvas debug="true">
 <attribute name="fruit" value="orange" type="string"/>
 <handler name="oninit" args="s">

Listing 3.12 Event arguments

Figure 3.14
All events provide a single argument
containing a reference to the object
that sent the event.

Declares and initializes attribute B

Methods and event handlers 71
 this.fruit = "pear";
 this.setAttribute("fruit", "apple");
 </handler>
 <handler name="onfruit" args="s">
 Debug.write("onfruit : " + s);
 Debug.write("onfruit : " + this.fruit);
 </handler>
</canvas>

In listing 3.12, when initializing B or directly
updating C, the attribute doesn’t generate an
event. An event is only sent when the setAt-
tribute method is used D to change its value.
In figure 3.15, we see that the updated value
can be accessed either through the event han-
dler’s argument E or directly through the
attribute itself.

 Let’s now take a look at how event genera-
tion affects processing.

Event-handler timing
When an event is generated, current processing pauses until all scheduled event
handlers have completed. This works like a stack; if an event handler generates
an event, that handler pauses until all subsequent events have been handled.
Listing 3.13 shows an example.

<canvas debug="true">
 <node name="first">
 <attribute name="fruit" value="apple" type="string"/>
 <handler name="onfruit" args="f">
 Debug.write("onfruit event occurs first : "
 + this.fruit);
 </handler>
 </node>
 <handler name="oninit">
 first.setAttribute("fruit", "orange");
 Debug.write("continues after onfruit event");
 </handler>
</canvas>

Listing 3.13 Generating and handling user events

Updates attributeC
Generates onfruit eventD

Specifies onfruit
event handlerE

Executes immediately
when fruit changes

B

Generates
event
onfruitCExecutes after onfruit

event handler D

Figure 3.15 Attribute event handling
occurs when an attribute’s value is
updated with the setAttribute
method. The updated value can be
accessed either through an argument or
through the object’s attribute itself.

72 CHAPTER 3

Core LZX language rules
When the attribute fruit is updated C
with setAttribute, processing imme-
diately continues B in the handler.
After the event handler completes, the
debug statement at D is executed. Fig-
ure 3.16 shows the debugger output for
listing 3.13.

 Up to now, we’ve only looked at sit-
uations where an object handles self-generated events. Naturally enough, we’d
like to expand our use of event handlers to handle events sent from other objects.

Handling events from other tags
For an event handler to receive an event from an external object, it’s only necessary
to add a reference attribute to specify the object sending the event. Listing 3.14
shows an updated version of an earlier example.

<canvas debug="true">
 <node name="first">
 <attribute name="fruit" value="apple" type="string"/>
 <handler name="onfruit" args="s">
 Debug.write("onfruit event handled by node");
 </handler>
 </node>
 <handler name="oninit">
 first.setAttribute("fruit", "orange");
 Debug.write("continues after onfruit event");
 </handler>
 <handler name="onfruit" reference="first" args="s">
 Debug.write("onfruit event handled by canvas");
 </handler>
</canvas>

The event is processed by both the canvas tag’s and the first tag’s onfruit event
handlers. Since two event handlers receive this event, processing is paused until
both have completed. Although, as fig-
ure 3.17 shows, the canvas’s event han-
dler is triggered first, there is no
guarantee concerning the order of
event handling.

 As you saw in the jet formation
exercise in chapter 2, while built-in
event handling is a valuable resource

Listing 3.14 The reference attribute in handlers

Handle onfruit
internally

Handle onfruit
externally

Figure 3.17 Processing is interrupted until all
event handlers receiving an event have completed.

Figure 3.16 A user-specified event called
fruit is handled by the onfruit event handler.

Declarative constraints 73
in many situations it is still too cumbersome. These situations require an even
more succinct notation, a notation that can be directly embedded within declara-
tive tags. A constraint is nothing more than an embedded event handler.

3.5 Declarative constraints

In chapter 2, you saw that within a parent-child hierarchy a limited number of
visual attributes, listed in table 2.1, are propagated to their children. But in gen-
eral, objects use events to communicate attribute value changes to other objects.
When attribute-based event processing is simple, it is often more readable to
embed these event handlers within the declarative tags themselves. Normally,
declarative tags are static, unable to react to changes in their environment, but
constraints allow certain dynamic capabilities to be expressed directly within
declarative tags. This solution leads to LZX constraints.

 Constraints are the “duct tape” of Laszlo, allowing disparate parts of an appli-
cation to interconnect. Constraints can be used with either event-delegate or data-
binding communications. They are used to set an attribute to the value returned
from a JavaScript expression. In later sections, dealing with data paths and
datasets, we’ll also see how constraints are used to set an attribute to the value
returned from a data path’s XPath expression.

 In this section, we’ll explore different types of constraints and discuss when it
is appropriate to use each type. Then, we’ll examine the limitations of constraints.

3.5.1 The basics of constraints

A constraint is applied to an attribute so that its value is set by a function’s return
value. This function is expressed as a JavaScript expression. If this expression con-
tains any attribute values, any changes to these attribute values causes the Java-
Script expression to be executed and the constrained attribute to be updated. A
constraint is declared within an attribute tag like this:

<attribute name="fruit" value="${expression}"/>

or as an inline attribute like this:

<window attribute="${expression}"/>

Let’s look at an example to explore the features of constraints. Suppose that we
have two nested windows, an inner and an outer window, and we want the inner
window to automatically resize itself to reflect resizing of the outer window. To
automatically reflect size changes to the outer window, the inner window needs to
be constrained to the outer window’s height and width (see listing 3.15).

74 CHAPTER 3

Core LZX language rules
<canvas>
 <window resizable="true" height="150" width="150">
 <window width="${parent.width-25}"
 height="${parent.height-50}"/>
 </window>
</canvas>

In listing 3.15, the width and height attributes of the inner window are con-
strained to the corresponding attributes of its parent outer window. When the
outer window is manually resized, its width and height attributes change to
reflect this resizing, causing the onwidth and onheight events to be sent to the
inner window. Now there is a relationship between these elements supporting a
consistent margin, as seen in figure 3.18.

Now suppose that you aren’t interested in maintaining a relationship between these
windows, but only need to obtain the outer window’s height to initially set the height
of the inner window. This is where the once modifier comes into the picture.

3.5.2 The once modifier
The once modifier, applied to a constraint, indicates that the constrained value of
the attribute is to be used only once, to initialize it. Listing 3.16 contains a short
example.

Listing 3.15 Using constraints to maintain window size relationship

Figure 3.18 The width and height attributes of the inner window are constrained to the values of
the corresponding attributes of its parent outer window. The inner window resizes itself to reflect any
resizing of the outer window.

Declarative constraints 75
<canvas>
 <window resizable="true" width="200">
 <attribute name="height" value="150"/>
 <window width="100" height="$once{parent.height-50}"/>
 </window>
</canvas>

The height of the inner window is initialized to a value based on the height of the
outer window. The once modifier limits the effect of this constraint to initializa-
tion. Later during execution, the height attribute of the inner window is not
affected by changes to the size of the outer window. Figure 3.19 shows this effect.
As a result, a window margin is set but not maintained.

 Using the once modifier in an attribute imposes a syntactic restriction. Since
attribute values default to type expression, a string must be quoted; otherwise, it
would be interpreted as a JavaScript variable. For example:

<attribute name="url" value="$once{parent.name + '.com'}"/>

Constraint-based relationships can also be applied dynamically with JavaScript.
While not as elegant as using declarative tags, it is still a relatively simple matter to
apply constraints with JavaScript.

 There is still one interface point left to be covered. It is isolated here in its own
section because it doesn’t share the same initialization sequence as the other tags.
As a result, it has only niche uses.

Listing 3.16 Using a once constraint for initialization

Figure 3.19 The height attribute of the inner window is declared
with the once modifier, based on the value of its parent’s height. After
initialization, it doesn’t respond to any change to its parent’s height.

76 CHAPTER 3

Core LZX language rules
3.6 JavaScript and the script tag

The last of the interface points is the script tag, which provides another way to
enclose JavaScript code within an application. But, unlike the method and han-
dler tags, it isn’t intended for general-purpose use. This much misunderstood
tag is frequently the bane of novice Laszlo developers. At first glance, it appears
to be a general-purpose tag for executing JavaScript code. However, since the
contents of the script tag are evaluated early during the initialization sequence,
the rest of the application hasn’t completed its initialization and isn’t ready to be
accessed. If it isn’t handled correctly, it can result in timing issues and produce
unexpected results.

 The purpose of the script tag is to serve as a repository for JavaScript libraries
and global variables. Appropriate uses of script include containing an auxiliary
sort function for declarative tags, setting global JavaScript variables, or containing
legacy JavaScript libraries.

 However, these uses don’t preclude the contents of a script tag from inter-
connecting with an application. Once again, constraints can be used to communi-
cate between declarative tags and JavaScript variables contained within a script
tag. Listing 3.17 demonstrates this communication.

<canvas debug="true">
 <script>fruit = "apple"</script>
 <node>
 <attribute name="result" value="$once{fruit}"/>
 <handler name="oninit">
 Debug.write("set constraint : " + this.result);
 </handler>
 </node>
</canvas>

Executing this application produces the result
shown in figure 3.20.

 We’ve now completed reviewing how declara-
tive tags and JavaScript can interface. In later
chapters, we’ll see additional ways that constraints
can be used to interconnect with XPath state-
ments to further enrich declarative statements.

Listing 3.17 Using constraints to communicate between attributes and JavaScript
 variables

Figure 3.20 Constraints allows local
JavaScript variables to be accessible
within declarative LZX tags.

Summary 77
 Now that we’ve achieved a level of proficiency working with the “nuts and
bolts” of LZX, we’re ready to proceed toward working with visible objects derived
from the LzView object.

3.7 Summary

This chapter focused on the declarative JavaScript interface of LZX and examined
the connections that allow processing to pass from declarative tags into proce-
dural JavaScript code.

 We demonstrated the relative ease with which a small application can be cre-
ated, debugged, and executed. We presented a basic set of tools that can be used
to examine the properties of Laszlo’s DOM. With these tools, you can begin to
develop insights into the interactions between various program elements.

 We introduced the main elements of the language interface: attributes, meth-
ods, and events. Since Laszlo is designed for building event-driven user interfaces,
all processing originates with an event. Regardless of where an event originates
from—user input or system related—the Laszlo system invokes an event handler
to receive it. All event processing is performed in JavaScript methods, which can
invoke other methods to handle common tasks.

 Event handling also occurs in succinctly expressed event handlers known as
constraints. The underlying mechanism is the same as for normal event handling,
but the constraint notation allows a snippet of JavaScript code to be directly
embedded within a declarative tag. This concise notation allows event-handling sit-
uations to be clearly specified without cluttering the overall logic of an application.

 Constraints can also be used in a more general form of interconnection to
allow declarative tags to reference other declarative tags, or even JavaScript vari-
ables. Although limited, this mechanism provides a convenient way to reference
any language construct of LZX.

 At this point, you’ve seen how to build a small application and have begun to
appreciate the structural skeleton of LZX. In the next chapter, we’ll introduce
the LzView class. The LzView and LzNode classes serve as the fundamental classes
of LZX.

A grand tour of
 views and user classes
This chapter covers
■ Covering visual-based object basics
■ Interacting with visual-based objects
■ Creating user classes
■ Dynamically instantiating JavaScript and LZX objects
78

A grand tour of views and user classes 79
I’m a great believer in luck and I find the harder I work, the more
I have of it.

 —Stephen Leacock,
 Canadian humorist (1869–1944)
A grand tour of views and user classes

Up to this point, we’ve focused on the general workings of LZX rather than the
characteristics of any specific tag. Now that we have some familiarity with LZX’s
skeletal framework, let’s flesh out this skeleton with an exploration of user interac-
tion. Rather than split user interaction across a number of classes, the Laszlo lan-
guage designers decided to concentrate it in a single JavaScript class called LzView.
This class is derived from the LzNode class, so it can also be used as a view declara-
tive tag. It serves as the superclass to support all visual objects within Laszlo.

 In its simplest form, a view object is just an invisible container. But adding
dimensions and a background color turns it into a rectangle. Since the view has
full access to multimedia, a view can also be used to display an image, play a video
or audio track, or specify fonts for text. Of course, it also supports positioning ele-
ments to control the placement of this display. A view also supports different ways
for users to interact with it. This supports user peripherals such as keyboards,
mice, and scroll wheels, and the different ways to control their access.

 A strong command of the LzView API is essential for creating applications.
Let’s start tackling this complex API by splitting it into these major groupings:

■ Physical dimensions

■ Background and foreground colors

■ Multimedia resources—images, audio and video, mouse cursor

■ CSS mouse events

■ Focus

■ Font specification

■ Selection of frames within a resource

■ The playing of embedded audio and video

■ Placement

■ along the z-axis

■ Relative and absolute positioning

■ Rotational placement

80 CHAPTER 4

A grand tour of views and user classes
Because this class has so many attributes and methods, we’ll conduct a “grand
tour,” visiting each of these groupings. To help you digest all this information,
we’ll organize the features in each group around central themes such as “control-
ling visibility.” These themes address high-level behaviors and will be discussed in
subsequent chapters as well. Hopefully, this provides a more interesting presenta-
tion and a better sense of how these features are used. We’ll conclude the tour by
revisiting dynamic view instantiation and creating user-defined classes.

4.1 Introducing the basic features of views

While the LzNode class defines common behavior for all LZX declarative tags, the
LzView class defines their visual and user interaction characteristics. The LzView
class adds a subviews array to LzNode’s subnodes array. This array contains only
view-based child nodes and is used to manipulate the arrangement of visual
objects to produce spatial layouts and different visual effects. Listing 4.1 produces
the debug output displaying both of the arrays in figure 4.1.

<canvas debug="true">
 <view name="main">
 <handler name="oninit">
 Debug.write("subnodes: " + canvas.subnodes + "\n" +
 "subviews : " + canvas.subviews);
 </handler>
 </view>
</canvas>

The canvas contains a subviews array containing the child view main. Since a view
is also a node, main also appears in the subnodes array. The debug window is
being displayed, so it also appears in these array listings.

Listing 4.1 Displays both the subnodes and subviews arrays

Figure 4.1 Nodes and views are maintained within their respective parent-child hierarchies. These
hierarchies are traversed through the subnodes array for nodes and through the subviews array
for views. Since the debug window is currently displayed, it appears in the subviews array.

Introducing the basic features of views 81
 Now that we’ve seen the structure used to contain LzView objects, let’s take a
look at manipulating it to control visibility.

4.1.1 Controlling view visibility

You might think that declaring a view in a canvas should produce a visible result.
But if we write

<canvas>
 <view name="top"/>
</canvas>

this only displays a blank screen. Although the view exists, it’s not visible since it
has nothing to display. For a view to be visible, it needs a minimum of a back-
ground color with positive height and width attributes or an attached media
resource. Table 4.1 shows the requisite attributes to display a view. The minimal
code to make a view visible looks like this:

<canvas>
 <view width="75" height="75" bgcolor="blue"/>
</canvas>

or—assuming that a logo.gif file exists in your local resources directory—some-
thing like:

<canvas>
 <view resource="resources/logo.gif"/>
</canvas>

In the second case, height and width attributes don’t need to be specified since
image resources have an implicit width and height. An important rule in Laszlo is
that a parent view resizes to accommodate the size of its child views. This occurs
even when the parent view has explicit dimensions smaller than its child.

TABLE KEY The tables used throughout this book provide an abridged overview of LZX
attributes and methods. For complete information about methods, refer to
the Laszlo system documentation available at www.openlaszlo.com.

Attribute tables consist of a name and data type, shown in the first two
columns. The third column states whether the attribute can be accessed
only within a tag, only within JavaScript, or both. The attribute type, in the
fourth column, can be settable (it’s writable), read-only (the obvious mean-
ing), or final (it can’t be changed at runtime). Some tables also provide a
default value column, preceding the brief description. Method tables con-
sist of the method call with its arguments followed by a short description.

82 CHAPTER 4

A grand tour of views and user classes
Specifying an attribute from table 4.1 doesn’t necessarily guarantee that the view
will be visible. Let’s look at some other attributes that affect view visibility.

Controlling visibility with clipping
The clip attribute controls rather than establishes visibility. Normally, a parent
resizes itself to the sizes of its children, even when a child is partially or completely
outside its dimensions. The boolean attribute clip turns off this behavior; see
table 4.2.

With clip set, a parent view rigidly imposes its dimensions on a child, cutting off
any portion of the child view that lies outside its boundaries. The left display in
figure 4.2 shows an unclipped view produced by the following:

<canvas>
 <view bgcolor="0xCCCCCC" width="100" height="100">
 <view bgcolor="0xDDDDDD" x="100" y="100"
 width="100" height="100"/>
 </view>
</canvas>

However, if the clip attribute is added to the parent view

<view bgcolor="0xCCCCCC" width="100" height="100" clip="true">

Table 4.1 View attributes that establish visibility properties

Name Data Type Tag or Script Attribute Type Description

bgcolor number Both Settable The background color of the view; a num-
ber between 0 and 0xFFFFFF; also sup-
ports CSS color names

height number Both Settable The height of the view

width number Both Settable The width of the view

resource string Both Settable The name of the view’s resource, or the
URL from which the resource was loaded

Table 4.2 A view’s clip attribute controls the visibility of its children.

Name Data Type Tag or Script Attribute Type Description

clip boolean Tag Final If true, any attached resource or child of
the view is clipped to the parental width
and height.

Introducing the basic features of views 83
the child view loses visibility, as seen in the right display in figure 4.2. The child
loses visibility since it is located entirely outside the bounds of its parent view.

Controlling visibility with the z-axis
If we think of the screen as a stack of translucent views, whose visibility is con-
trolled through a third dimension, the z-axis, then views with a common parent
can be reordered with the bringToFront, sendBehind, sendInFront, and sendTo-
Back methods, shown in table 4.3. These methods can change a view’s visibility by
changing its order in the stack.

In listing 4.2, clicking on any of the views causes the z-axis stack to be reordered.
This results in some views becoming visible and hiding others.

<canvas>
 <view bgcolor="red" width="100" height="100"
 onclick="bringToFront()"/>
 <view bgcolor="blue" x="50" y="50"
 width="100" height="100"

Table 4.3 A parent’s subviews can be reordered on the z-axis using the methods listed here. Such
 a reordering can cause a subview to lose or gain visibility.

Name Description

bringToFront() Makes the invoking subview the foremost subview of the parent

sendBehind(LzView) Puts the invoking subview behind the specified sibling

sendInFrontOf(LzView) Puts the invoking subview in front of the specified sibling

sendToBack() Makes the invoking subview the rearmost subview of the parent

Listing 4.2 Controlling visibility through placement

Figure 4.2
When a parent sets its clip attribute, the
child views are clipped to the parent’s
dimensions. In this example, the child view
is entirely clipped and loses visibility.

84 CHAPTER 4

A grand tour of views and user classes
 onclick="sendBehind()"/>
 <view bgcolor="green" x="100" y="100"
 width="100" height="100"
 onclick="sendInFront()"/>
 <view bgcolor="yellow" x="150" y="150"
 width="100" height="100"
 onclick="sendToBack()"/>
</canvas>

Specifying visibility directly
The visible and opacity attributes directly control a view’s visibility. The visi-
ble attribute works like a light switch, causing a view’s display to turn on and off.
The opacity attribute works like a dimming light switch by specifying an incre-
mental value from fully opaque (1.0) to transparent (0). A similar effect occurs if
we set the x and y attributes to positions outside the screen. You’ll see examples of
these in the next section.

4.1.2 Controlling visibility with animation

Since the LzView class extends LzNode, which has a built-in animator, we can ani-
mate views. Any of the visibility-controlling attributes listed in table 4.4 can be ani-
mated to provide a gradual effect.

 For example, suppose a square is to fade into nothingness over a period of 3
seconds. Listing 4.3 accomplishes this fading effect, whose results are shown in fig-
ure 4.3.

Table 4.4 The attributes listed here can be animated to control a view’s visibility.

Name Data Type Tag or Script Attribute Type Description

height number Both Settable The height of the view

width number Both Settable The width of the view

x number Both Settable The horizontal position of the view relative
to the upper-left corner of the parent view,
measuring positive to the right

y number Both Settable The vertical position of the view relative to
the upper-left corner of the parent view,
measuring positive downward

Introducing the basic features of views 85
<canvas>
 <view name="main" height="100" width="100" bgcolor="#dddddd">
 <handler name="oninit">
 main.animate("opacity", 0, 3000);
 </handler>
 </view>
</canvas>

The animation B changes the value of opacity from full opacity to transparency,
1.0 to 0, over a period of 3 seconds.

 Animation allows us to vary the x and y attributes of a view so it moves like an
actor on a stage to exit slowly to the left, right, or even up or down. The box exam-
ple can be modified to animate the x attribute to an off-screen value of –100, thus
producing an exit-stage-left effect:

<canvas>
 <view name="main" x="400" y="20"
 height="100" width="100" bgcolor="blue">
 <handler name="oninit">
 main.animate('x', -100, 3000);
 </handler>
 </view>
</canvas>

Changing the final value of x to a value greater than the screen dimensions causes
a “stage right” exit.

 The width and height attributes can be used to produce an “Alice in Wonder-
land” effect, whereby a view suddenly springs into view like a balloon or shrinks
down into nothingness:

<canvas>
 <view name="main" x="400" y="20" bgcolor="blue">
 <handler name="oninit">

Listing 4.3 Controlling visibility through opacity

Fades to
transparentB

Figure 4.3 With time increasing from left to right, the opacity of a view is continuously
reduced by an animator.

86 CHAPTER 4

A grand tour of views and user classes
 main.animate('height', 100, 3000);
 main.animate('width', 100, 3000);
 </handler>
 </view>
</canvas>

Some view attributes are so frequently used that convenience methods, listed in
table 4.5, are supplied for them. These convenience methods operate identi-
cally to setAttribute, but offer slightly better performance.

Many more transformations for views are available. In the next section, we’ll see
various ways in which a view can be rotated.

4.1.3 Animating with rotations

The rotation attribute controls rotation about an origin point, which defaults to
the upper-left corner of the screen. Listing 4.4 rotates a box twice through 720
degrees over 3 seconds.

<canvas>
 <view name="main" x="400" y="200"
 height="100" width="100" bgcolor="#DDDDDD">
 <handler name="oninit">
 main.animate('rotation', 720, 3000);
 </handler>
 </view>
</canvas>

Table 4.5 Convenience methods are intended for manipulating a view’s visibility.

Name Description

setX(number) Assigns a value to the x position of the view

setY(number) Assigns a value to the y position of the view

setHeight(number) Assigns a value to the height of the view

setWidth(number) Assigns a value to the width of the view

setOpacity(number) Assigns a value to the opacity of the view; a number between 0.0 (trans-
parent) and 1.0 (opaque)

setVisible(boolean) Sets, or resets, the visible attribute of the view and enables, or disables,
any associated clickregion (see later in this chapter for more info
on clickregion)

Listing 4.4 Rotating a box

Introducing the basic features of views 87
Figure 4.4 shows the square rotating clock-
wise about its upper-left corner.

 Specifying a negative angle for the rota-
tion produces counterclockwise motion:

<handler name="oninit">
 main.animate('rotation', -720, 3000);
</handler>

Now that you’ve seen how to rotate a view
around the default axis, let’s discuss how to
specify an axis.

Rotating on a selected axis
The origin point for a view can be modified from its default upper-left corner set-
ting with the xoffset and yoffset attributes. With a new origin set, a view rotates
around the selected axis. Since, in the rotating box example, the dimensions of
the view are 100 pixels on each side, assigning an xoffset of 100 causes the box
to rotate around its upper-right corner:

<canvas>
 <view name="main" x="400" y="200"
 height="100" width="100"
 xoffset="100" bgcolor="blue">
 <handler name="oninit">
 main.animate('rotation', 720, 3000);
 </handler>
 </view>
</canvas>

Various combinations of xoffset and yoffset values can establish the origin
point at any one of the four corners of the box, as seen in figure 4.5. Different
effects can be achieved by specifying an origin other than a corner.

Figure 4.5 Changing the origin point of a rotation by assigning to the xoffset and yoffset
attributes one of the combinations (0, 0), (0, width), (width, 0), or (width, width) causes the
square to rotate around the specified corner.

Figure 4.4 A view can be continuously
rotated by animating its rotation attribute
around an origin point, shown here as the
default upper-left corner.

88 CHAPTER 4

A grand tour of views and user classes
Table 4.6 summarizes the attributes concerned with rotation. The pixellock
attribute is applicable only to vector-based images (Flash or SVG) and turns on
subpixel positioning, providing smoother animation along diagonal arcs. It is not
applicable to DHTML.

We have shown you only some basic animation here. In chapter 13, we’ll demon-
strate how Laszlo adds features to this base to support more complex animation
effects using sequential and simultaneous animators.

4.1.4 Adding multimedia resources

Although a view is technically always rectangular, if its attached image has a trans-
parent background, a view assumes the shape of the image. A resource can con-
tain a graphical image using any of the media types shown in table 4.7. These
resources can be loaded at runtime or compiled into an application.

Table 4.6 Four attributes support view rotation.

Name Data Type Tag or Script Attribute Type Description

pixellock boolean Both Final When set, supports subpixel position-
ing to smooth animation. When
unset, makes the view snap to a
pixel boundary.

rotation number Both Settable The rotation value for the view, in
degrees; not restricted to the range 0
to 360.

xoffset number Both Settable The value to be added to the x posi-
tion of the view to establish the point
of origin before rotation.

yoffset number Both Settable The value to be added to the y posi-
tion of the view to establish the point
of origin before rotation.

Table 4.7 Laszlo supports image, audio, font, and video (Flash) resource files.

Media Type Description

Audio MP3 at sample rates: 11.025 kHz, 22.5 kHz, and 44.1 kHz

Fonts Embedded and native TrueType (TTF) files

Images PNG, JPEG, and GIF files

Vector art SWF

Introducing the basic features of views 89
A resource can be declared in one of two ways: as a resource tag or as an attribute
of a view. Resources aren’t derived from LzNode, so they must reside at the top
level. The only settable attributes for a resource tag are name and src; name is a
logical name for use by a view tag and src specifies a path to any of the media
resource types given in table 4.7. Since it’s only a path, it has no visible qualities of
its own, such as position, size, or color. So simply declaring a resource doesn’t
result in its display.

 For a resource to be displayed, it must be attached to a view through the view’s
resource attribute. If the resource is declared externally, then the resource’s name
attribute is referenced by the view. Here are two examples, first using an external
resource declaration:

<canvas>
 <resource name="logo" src="images/logo.png"/>
 <view resource="logo"/>
</canvas>

and next only using the resource attribute:

<canvas>
 <view resource="resources/logo.png"/>
</canvas>

Notice that in both cases, the image file serving as the resource’s src must be resi-
dent in the file system. This results in the resource being compiled into the appli-
cation, which also increases the download size and time. However, this resource is
now available to be displayed or played immediately at an application’s start.
Attempts to load an image file represented by an HTTP URL into a resource result
in a compile-time error.

 When a resource contains an audio file, there is no visible display associated
with the resource. Despite this, the resource still works by being attached to a view.
The pleasant result is that all media types operate similarly.

 A view’s resource-related attributes control loading, visual display, frame selec-
tion, and stretching, as well as provide information on the progress of loading.
Table 4.8 summarizes these resource-related attributes.

Vector animation SWF

Video SWF and FLV

Table 4.7 Laszlo supports image, audio, font, and video (Flash) resource files. (continued)

Media Type Description

90 CHAPTER 4

A grand tour of views and user classes
Regardless of how a resource is loaded, an extensive set of view attributes is available
to manipulate its display. For example, the height and width of a view’s resource can
be accessed through the resourceheight and resourcewidth attributes.

 When dealing with image resources, it is frequently necessary to resize them to
fit within a view. The stretches attribute causes an image to stretch or compress
to conform to the view’s dimensions. The image can be stretched by its height, its
width, or both. But if an image is not uniformly stretched, then it will distort. To
be uniformly stretched, the resized image’s dimensions must be corrected with an
aspect ratio. The unstretchedwidth and unstretchedheight attributes are avail-
able to determine this ratio:

ratio = unstretchedwidth/unstretchedheight

Table 4.8 A view’s resource-related attributes

Name
Data
Type

Tag or
Script

Attribute
Type

Description

resourceheight number Script Read-only The height of the resource attached to
the view.

resourcewidth number Script Read-only The width of the resource attached to
the view.

source string Script Settable The URL from which to load the
resource for the view; similar to the
resource attribute but callable only from
script.

stretches string Both Settable Determines a view’s coordinate space
so that contained resources and views
fit exactly into the view’s width and
height; used to resize a view’s contents
by setting its width and/or height; valid
values include height, width, and both;
the default value is none.

unstretchedheight number Script Read-only If stretches is set to height or both,
indicates the height for the view if it
were not stretched; can be used to
scale a view by a percentage of its origi-
nal size or to determine the aspect ratio
for a view.

unstretchedwidth number Script Read-only If stretches is set to width or both,
indicates the width for the view if it were
not stretched; can be used to scale a
view by a percentage of its original size or
to determine the aspect ratio for a view

Introducing the basic features of views 91
In chapter 6, you’ll see an example of resizing an image without distorting it.
 Finally, when resources need to be obtained over the Web, they can either be

accessed through their URL by the resources attribute:

<canvas>
 <view resource="http://www.google.com/intl/en/images/logo.gif"/>
</canvas>

or the setSource method:
<canvas>
 <view>
 <handler name="oninit">
 this.setSource("http://www.google.com/intl/en/images/logo.gif");
 </handler>
 </view>
</canvas>

There is also a setResource method, which is the runtime equivalent of the
resource attribute. But it can only access resident resources. Table 4.9 summarizes
these resource-related methods.

The resource-related events, shown in table 4.10, provide opportunities for process-
ing during resource loading; the three most important events are onload, onerror,
and ontimeout. The onload event is generated when a resource has been success-
fully downloaded. The onerror event is generated if the network server returns an
error. An instance of this would be the 404 error returned by a server unable to find
a resource. An ontimeout event occurs when the network server times out. Finally,
after a resource has been loaded by a child view, an onaddsubresource event is gen-
erated to allow postprocessing of that resource.

Table 4.9 A view’s resource-related methods

Name Description

setResource(src, cache, headers) Loads a resource at runtime using a resource name

setSource(src, cache, headers) Loads a resource at runtime using a URL

Table 4.10 A view’s resource-related events provide opportunities for processing during
 resource loading.

Name Description

onaddsubresource Sent when a child view adds a resource.

onerror Sent when there is an error loading the view’s resource; the argu-
ment sent with the event is the error string sent by the server.

92 CHAPTER 4

A grand tour of views and user classes
When local resources are compiled into the application, the resource-related
events listed in table 4.10 won’t be triggered. Listing 4.5 illustrates the gener-
ated event sequence when a resource is dynamically loaded, while figure 4.6
shows its event sequence.

<canvas debug="true">
 <view>
 <view resource=
 "http://www.google.com/intl/en/images/logo.gif">
 <handler name="onload">
 Debug.write("onload");
 </handler>
 </view>
 <handler name="onaddsubresource">
 Debug.write("onaddsubresource");
 </handler>
 </view>
</canvas>

A resource can have a single frame—an image—or multiple frames—a video or
audio clip. For the latter, we need a way of selecting frames.

Selecting frames
For multiframe resources, the view’s totalframes attribute provides the total
number of frames. A multiple-frame resource is represented as an array, indexed

onload Sent when the view attaches its resource.

ontimeout Sent when a request to load media for the view times out.

Listing 4.5 Events generated by dynamic loading of resources

Table 4.10 A view’s resource-related events provide opportunities for processing during
 resource loading. (continued)

Name Description

Figure 4.6
The onload and onaddsubresource
events are sent for resources accessed
through HTTP.

Introducing the basic features of views 93
in the range 0 to totalframes–1. Notice in table 4.11 that the only settable
attribute is frame. The others are read-only, since they specify physical characteris-
tics of a multiframe resource.

 The frame attribute is set to reference a particular frame; since Flash restricts a
resource to 16,000 frames, that establishes the range of frame. Here’s an example
to demonstrate frames; its output is shown in figure 4.7:

<canvas debug="true">
 <view id="player" play="true"
 resource="http://www.themeatrix1.com/meatrix.swf">
 <handler name="onframe">
 Debug.write("loadratio=" + this.loadratio);
 Debug.write("framesloadratio=" + this.framesloadratio);
 </handler>
 <handler name="onload">
 Debug.write("onload: totalframes=" + this.totalframes);
 </handler>
 <handler name="onplay">
 Debug.write("onplay");
 </handler>
 </view>
</canvas>

Since the play attribute is set, this causes the video to immediately start playing
after it has completed downloading. The onplay event occurs before the onload
event, because it needs to determine whether the resource is local or needs to be

Table 4.11 Four view attributes describe a downloaded multiframe video or audio file resource.

Name Data Type Tag or Script Attribute Type Description

frame number Both Settable Selects the frame displayed by
the resource associated with the
view, a number between 0 and
totalframes

framesloadratio number Script Read-only For a view whose resource is
loaded at runtime, the ratio of
loaded frames to total frames; a
number between 0 and 1

loadratio number Script Read-only For a view whose resource is
loaded at runtime, the ratio of
loaded bytes to total bytes; a
number between 0 and 1

totalframes number Script Read-only The total number of frames for
the view’s resource

94 CHAPTER 4

A grand tour of views and user classes
loaded over HTTP. The onload event handler can be used for postprocessing
functions, such as displaying the total number of frames. The loadratio and
framesloadratio attributes keep track of the ratio of downloaded bytes and
frames, respectively, to the total in the video—the total number of frames is avail-
able through the totalframes attribute. These ratios, as counters from 0 to 1.0,
can be used to drive a progress bar.

 Once an audio or video resource has been loaded, you’ll naturally want to con-
trol it from within its view. The play attribute, shown in table 4.12, is used to control
automatic playing upon loading for both audio and video.

Embedded Flash videos
Although progressive and streaming video is preferred over embedded video for
viewing, it is available for niche cases. Laszlo comes with a short Flash SWF video
clip, found in the laszlo-explorer/basics/jfk.swf directory of the OpenLaszlo
server installation, which is used as the video resource in listing 4.6. This resource
can be compiled into the application or downloaded, but both cases require that
it be loaded in its entirety before playback begins. In all the examples in this book,
we default to using port 8080 with the latest Laszlo version. You can change these
settings to reflect your environment.

Table 4.12 A view has only one audio- and video-related attribute.

Name Data Type Tag or Script Attribute Type Description

play boolean Both Settable If true, the resource begins playing when it
is loaded.

Figure 4.7
The loadratio and
framesloadratio attributes
display the downloading progress
for a video, expressed as a ratio.
When the video has completed
downloading, the ratio is 1.0.

Introducing the basic features of views 95
<canvas>
 <view id="player" play="false"
 resource="http://localhost:
 8080/lps/book/jfk.swf">
 <handler name="onload">
 play_btn.setVisible(true);
 stop_btn.setVisible(true);
 </handler>
 </view>
 <button name="play_btn" x="10" y="170" visible="false"
 onclick="player.play()">Play</button>
 <button name="stop_btn" x="70" y="170" visible="false"
 onclick="player.stop()">Stop</button>
</canvas>

A dynamically loaded video clip requires that the
onload event be sent before playback begins. To
ensure that the user doesn’t get trigger-happy and try
to play a clip before it has been loaded, the default vis-
ible states of the Play and Stop buttons are set to false.
They become visible only when the video clip has
completed loading. Figure 4.8 shows the video and
control button display for the player in listing 4.6.

 Table 4.13 summarizes the events for controlling
audio and video resources. The onframe event is gen-
erated continuously while a multiframe resource is in
the play state. On the last frame, both the onframe
and onlastframe events are generated. The remain-
ing events, onplay and onstop, denote when the
player begins and ends playing.

Listing 4.6 Play and Stop buttons in a simple video player

Table 4.13 A view’s audio- and video-related events

Name Description

onframe Sent from each frame during playback; this corresponds to the issuing of
onidle events.

onlastframe Sent when the view sets its fram—for example, resource number—to the last
frame; can be used to determine when a streaming media clip is completed.

Resets play;
pauses clip

Accesses
local file

Starts
clip

Stops
clip

Figure 4.8 A simple video player
like this can be produced with six
lines of code.

96 CHAPTER 4

A grand tour of views and user classes
Most of the methods related to controlling audio and video resources—see
table 4.14—correspond to the operations start, stop, pause, volume, and others,
available on a standard video or audio player.

 At this point, don’t worry too much about the details of these attributes,
events, and methods. Instead, attempt to focus on the groupings of facilities that
we’re tossing out—animation, rotations, resources, and multimedia. Soon we’ll
start using them within a meaningful example.

onplay Sent when a view begins playing its resource.

onstop Sent when a view resource, capable of playing, is stopped; sent only if stop is
called directly; when a resource hits its last frame, the LzView event
onlastframe is sent.

Table 4.14 A view’s audio- and video-related methods

Name Description

getCurrentTime() Returns the elapsed play time for the view’s resource

getPan() Returns the audio pan of the attached resource

getTotalTime() Returns the total amount of time required to play the resource

getVolume() Returns the volume of the attached resource

play(frame, relative) Starts playing the attached resource

seek(n) Skips forward or backward n seconds

setPan(number) Sets the audio pan of the attached resource

setPlay(boolean) Starts or stops playing the attached resource

setResourceNumber(number) Selects the frame to be displayed for a multiframe resource

setVolume(number) Sets the volume of the attached resource

stop(frame, relative) Stops playing the attached resource

unload() Unloads any media loaded with setSource or with
source= attribute

Table 4.13 A view’s audio- and video-related events (continued)

Name Description

Introducing the basic features of views 97
4.1.5 Handling font specifications

Although fonts are just another type of resource, their settings are controlled
through the view class. This may seem odd, since a view doesn’t have a text
attribute and can’t directly display text. To display text, a view requires a subview
that is capable of displaying text:

<canvas>
 <view fontsize="16" fontstyle="bold">
 <text text="Hello World"/>
 </view>
</canvas>

Table 4.15 describes the font-related attributes of views.

Fonts were built into the view class to allow font attributes to be inherited by its
subviews. This design decision provides a convenient way to assign font settings in
a nested hierarchy. Subviews can override font attributes to make local changes.

4.1.6 Controlling the cursor

The mouse cursor icon is controlled through the cursor attribute and the set-
Cursor method; see tables 4.15 and 4.17. This encapsulation allows the cursor to
display any image particular to a view. Any supported graphic image—GIF, JPEG,
PNG, or SWF—can be used as an image resource for the cursor. Listing 4.7 shows
how a view—the first one in the listing—can specify a particular cursor image
rather than the default image. The second view uses the default image.

Table 4.15 A view’s font-related attributes

Name
Data
Type

Tag or
Script

Attribute
Type

Default Description

font string Tag Settable verity1 Font to use for any text or input-
text elements appearing inside the
view.

fontsize number Tag Settable 8 Pixel size to use in rendering text
appearing inside the view.

fontstyle string Tag Settable plain Style to use in rendering text fields
appearing inside the view; valid val-
ues are plain, bold , italic, or
bolditalic.

fgcolor number Both Settable black Color to use to render objects
appearing inside the view.

98 CHAPTER 4

A grand tour of views and user classes
<canvas>
 <resource name="waitcursor"
 src="resources/lzwaitcursor_rsc.swf"/>
 <view width="100" height="100"
 bgcolor="#DDDDDD" cursor="waitcursor"/>
 <view x="130" width="100" height="100"
 bgcolor="#CCCCCC" clickable="true"/>
</canvas>

Although Laszlo supplies only the busy icon,
others can be easily added. The results from list-
ing 4.7 are shown in figure 4.9.

 A meaningful cursor image is a useful tech-
nique for supplying the user with information
in an unobtrusive way (although using tool tips
is even better). Tables 4.16 and 4.17 show the
cursor-related attributes and methods.

This section has presented some view basics: controlling visibility, attaching multi-
media resources, specifying fonts, and controlling cursor behavior. Let’s next
examine different ways that users can interact with a view.

4.2 Interacting with a view

Since the view is the superclass for all visible objects, it must define the base
attributes and methods for all user interaction. Later in chapter 6, which deals
with components, we’ll see how these base features are extended by user interface
components to provide higher-level services such as default keyboard processing.

Listing 4.7 Changing the mouse cursor

Table 4.16 A view’s cursor attributes

Name Data Type Tag or Script Attribute Type Description

cursor string Both Settable Sets the cursor icon to display when the cur-
sor is over the view

Table 4.17 A view’s cursor-related methods

Name Description

setCursor(resource) Sets the cursor to the given resource when the cursor is over the view

Figure 4.9 Two cursor images
supplied with Laszlo are the busy
icon and the hand icon, shown
here for comparison.

Interacting with a view 99
4.2.1 Receiving user events

User input in Laszlo was purposely designed to extend the familiar CSS mouse
events that web programmers know from working with JavaScript. The complete
list of mouse-related JavaScript events supported by the view object is given in
table 4.18. Laszlo allows user input events to be handled inline within a view,
rather than requiring an event handler. This provides some consistency with the
naming scheme used on HTML-based websites. The following code shows a useful
exercise in input event handling:

<canvas debug="true">
 <view x="10" y="10" width="100"
 height="100" bgcolor="green"
 onclick="Debug.write('onclick')"
 ondblclick="Debug.write('ondblclick')"
 onmousedown="Debug.write('onmousedown')"
 onmouseout="Debug.write('onmouseout')"
 onmouseover="Debug.write('onmouseover')"
 onmouseup="Debug.write('onmouseup')"/>
</canvas>

You are encouraged to run this example as a hands-on exercise. The goal is to get
each debug message to display.

Table 4.18 A view’s mouse-related events

Name Description

onclick Sent when the mouse button is clicked over a view.

ondblclick Sent when the button is double-clicked over a view; a view needs to be registered
to received this event; otherwise two click events are sent. A view’s double-click
time can be adjusted by setting its double_click_time attribute.

onmousedown Sent when the mouse button is pressed over a view.

onmousedragin Sent when the mouse moves over a view with the button down, after having
been already pressed over this view.

onmousedragout Sent when the mouse moves out of the view with the button down, after hav-
ing been pressed while within the view.

onmouseout Sent when the mouse moves out of a view with the button up.

onmouseover Sent when the mouse moves over a view with the button up.

onmouseup Sent when the button is released over a view.

onmouseupoutside Sent when the button is released outside a view, after having been pressed
over a view.

100 CHAPTER 4

A grand tour of views and user classes
Practice with these events until you are comfortable with their operation. When
dealing with mouse events, there is no substitute for the tactile experience.

Clickable and focusable settings
In order to interact with a view by selecting it with a mouse, it must be clickable
or have a clickregion. As a convenience, specifying any mouse event handler
for a view sets its clickable attribute. Resetting clickable to false overrides this
default setting.

 Setting the focusable attribute allows field navigation to be controlled by the
keyboard; a view with focus accepts keyboard input. Similarly, specifying any
onfocus event handler sets the focusable attribute for that view. The Tab key can
be used to traverse through the focusable views. Focus can be trapped within a view
or its child views using the focustrap attribute; this prevents other views from
obtaining focus until the focustrap attribute is reset to false. Table 4.19 contains
all of the user-input related attributes.

The user-input-related methods, shown in table 4.20, manage mouse and key-
board interaction. The getMouse method returns the mouse coordinates relative
to its view.

 Table 4.21 summarizes a view’s keyboard-related events. For the onfocus event,
and consequently the onblur event to fire, a view must be clickable. For a view to
lose focus, another view must be available to gain it, requiring the creation of
another clickable view. Of course, both views must be focusable.

Table 4.19 A view’s user input-related attributes

Name
Data
Type

Tag or
Script

Attribute
Type

Description

clickable boolean Both Settable Must be set to true for the view to receive
mouse events; automatically set to true if a
mouse event script is specified in the tag.

clickregion string Both Settable Allows an irregular region to be established as
the clickable area within a view.

focusable boolean Both Settable If true, the view participates in keyboard focus
and receives focus events and keyboard
events when it has the focus.

focustrap boolean Both Settable If true, the view traps the keyboard focus
within itself or its children; useful to restrict
keyboard focus to a specific area—for exam-
ple, within a window or dialog.

Interacting with a view 101
The onblur event occurs when a view loses focus to another view. The onkeydown
and onkeyup events receive an event when a key is pressed down and later
released. Listing 4.8 and its output in figure 4.10 demonstrate the effects of the
onfocus, onblur, onkeydown, and onkeyup events.

<canvas debug="true">
 <view width="100" height="100" bgcolor="0xCCCCCCC"
 clickable="true" focusable="true"
 onblur="Debug.write('view1 onblur')"
 onfocus="Debug.write('view1 onfocus')">
 <handler name="onkeydown" args="key">
 Debug.write("view2 onkeydown=" + key);
 </handler>
 <handler name="onkeyup" args="key">
 Debug.write("view2 onkeyup=" + key);
 </handler>
 </view>
 <view x="120" width="100"
 height="100" bgcolor="0xCCCCCCC"
 clickable="true" focusable="true"
 onblur="Debug.write('view2 onblur')"
 onfocus="Debug.write('view2 onfocus')">

Table 4.20 A view’s user-input-related methods

Name Description

getMouse('x' or 'y') Returns the x or y position of the mouse relative to this view; x or
y must be specified.

setClickable(boolean) Makes a view clickable or not clickable.

Table 4.21 A view’s keyboard-related events

Name Description

onblur Sent immediately before a node becomes active, before the view displays, or before a
layout affects its subviews.

onfocus Sent when the view gets the focus; the parameter for the event is the new focus.

onkeydown The onkeydown script is executed when the view has the focus and a key is pressed.
Sent with the keycode for the pressed key.

onkeyup The onkeyup script is executed when the view has the focus and a key is released.
Sent with the keycode for the released key.

Listing 4.8 The clickable and focusable attributes

102 CHAPTER 4

A grand tour of views and user classes
 <handler name="onkeydown" args="key">
 Debug.write("view2 onkeydown=" + key);
 </handler>
 <handler name="onkeyup" args="key">
 Debug.write("view2 onkeyup=" + key);
 </handler>
 </view>
</canvas>

We once again encourage you to run this example. In particular, you might exper-
iment with changing the focusable and clickable attribute settings and check-
ing how the number of catchable events changes.

 Figure 4.10 illustrates the result of clicking on a first view, and then on a sec-
ond view. The debugger output shows the first view acquiring focus and then los-
ing focus to the second view, which causes the onblur event. Finally, in the second
view, the Enter key is pressed, causing the ASCII code for Carriage Return, 13 dec-
imal, to be displayed.

4.3 Locating views

This section discusses the view methods that assist in locating your position within
an application. In the first subsection, this involves locating an absolute or relative
position within the screen coordinates. The second subsection deals with locating
a view within the subviews hierarchy of an LZX application.

Figure 4.10 This example demonstrates the effect of the onfocus and onblur events along
with the result of pressing the Enter key. The mouse is first clicked on the left view and then on
the right view. Debugger output shows the first view acquiring focus and then losing focus to
the second view, causing the first view to generate the onblur event. Finally, within the
second view, the Enter key is pressed, causing the ASCII code for carriage return to be displayed
in decimal as 13.

Locating views 103
4.3.1 Locating absolute and relative screen position

You have already seen, with the jet formation exercise, how the x and y attributes
of a nested view are offset from its parent’s position. For those situations when a
view needs to determine its absolute position or position relative to another refer-
ence frame, the getAttributeRelative method can be used to determine a posi-
tion relative to another view. If the other view selected is the canvas, the position
returned is absolute. This is demonstrated in listing 4.9, which shows three nested
views, each offset by 20 pixels along the x- and y-axes. When it is necessary to place
an object from one view context onto another, the getAttributeRelative method
is useful for determining the x and y coordinates in another view’s context.

 Figure 4.11 illustrates how views are positioned based on relative offset values.

<canvas debug="true">
 <view name="first" x="20" y="20" width="200"
 height="200" bgcolor="0xCCCCCC">
 <handler name="oninit">
 Debug.write("first x=" + this.x);
 Debug.write("first y=" + this.y);
 Debug.write("first relative to third x=" +
 this.getAttributeRelative("x", first.second.third));
 Debug.write("first relative to third y=" +
 this.getAttributeRelative("y", first.second.third));
 </handler>
 <view name="second" x="20" y="20" width="100"
 height="100" bgcolor="0xDDDDDD">
 <view name="third" x="20" y="20" width="50"
 height="50" bgcolor="0xBBBBBB">
 <handler name="oninit">
 Debug.write("third x=" + this.x);
 Debug.write("third y=" + this.y);
 Debug.write("third relative to canvas x=" +
 this.getAttributeRelative("x", canvas));
 Debug.write("third relative to canvas y=" +
 this.getAttributeRelative("y", canvas));
 </handler>
 </view>
 </view>
 </view>
</canvas>

Listing 4.9 The getAttributeRelative method returning coordinates in
 another view

Offsets first
by (20,20)

Offsets first by
(20,20) from third

Offsets
second by
(20,20)

Offsets third
by (20,20)

Displays third
at (60,60)
absolute

104 CHAPTER 4

A grand tour of views and user classes
Since each nested view is offset by 20 pixels, the x and y coordinates for each view
display as 20 pixels. Displaying the third view’s coordinates relative to the canvas
shows the absolute value of 60 pixels. Displaying the first view’s coordinates rela-
tive to the third view moves in a negative direction, to 20 pixels.

4.3.2 Locating a view

Every view, other than the canvas, has an entry in the subviews array of its parent.
For situations in which a view needs to locate or to check for the existence of
another view, Laszlo provides several ways to search through the parent-child hier-
archy. The searchSubviews method searches down through the child views,
searching for the specified attribute containing a matching value. The search-
Parents method searches up through the parent views. When a match is found,
an LzView object is returned. While these methods allow any attribute to be
searched for a matching value, searching for a particular named view is the most
useful. In addition, the getDepthList method returns an array listing all sibling
views. Listing 4.10 shows an example.

 <canvas debug="true">
 <view name="apples">
 <view name="bananas">
 <view name="carrots">
 <handler name="oninit">
 Debug.write("searchParent : " +
 this.searchParents("name", "bananas"));
 Debug.write("searchSubviews : " +

Listing 4.10 Searching for a view

Figure 4.11 Here views are positioned with relative offset values. The
getAttributeRelative method is used to determine a position relative
to some other view.

Locating views 105
 this.searchSubviews("name", "grapes"));
 Debug.write("Depth list : " +
 this.getDepthList());
 </handler>
 <view name="eggs"/>
 <view name="fish">
 <view name="grapes"/>
 </view>
 </view>
 </view>
 </view>
</canvas>

Figure 4.12 shows the searchParents method returning a parent node bananas,
while the searchSubviews method returns a child node grapes. The getDepth-
List method returns an array of sibling views in their declarative order, so the
grapes subview isn’t returned.

Table 4.22 summarizes the node search–related methods of the view class.
 As you saw in the previous chapter, most objects can be instantiated with either

a declarative tag or with JavaScript. We look next at dynamic instantiation of an
LzView object.

Table 4.22 A view’s node search–related methods

Name Description

getDepthList() Returns an array of subviews for the current level

searchParents(prop, val) Searches parent views for a specified property

searchSubviews(prop, val) Searches subviews for a specified property

Figure 4.12 This debugger output shows two views, named bananas and eggs, found by searching
with the searchParents and searchSubviews methods. The last line shows a listing of the
subviews of the carrots view returned by the getDepthList method.

106 CHAPTER 4

A grand tour of views and user classes
4.4 Instantiating LFC-based objects

We’ll complete our discussion of views by showing how to dynamically instantiate
an LzView object. All declarative tags contained in the Laszlo Foundation Class
(LFC) library are written in JavaScript. These declarative tags are easy to identify,
because they are referenced within the debugger and the Laszlo reference docu-
ment with a leading Lz prefix. When a JavaScript-based tag is dynamically instanti-
ated, its JavaScript constructor is used. Every JavaScript constructor is supplied
with a parent and a directory of associative name-value pairs for its initial set of
attribute values. The JavaScript constructor for the LzView class looks like this:

var name = new LzView(parent, attributes)

where

■ name is the name of the new LzView object.

■ parent is the parent node for the new LzView object. If the parent is set to
null, then the new object is placed under the canvas.

■ attributes is an array of attribute values to initialize the new object.

Listing 4.11 shows an example of dynamic instantiation.

<canvas debug="true">
 <view name="first" bgcolor="0xCCCCCC">
 <handler name="oninit">
 var parentview =
 new LzView(first, {name: "second", width: 100,
 height: 100, bgcolor: 0xDDDDDD, x: 20, y: 20});
 </handler>
 <handler name="onaddsubview" args="view">
 Debug.write("view = " + view.name);
 Debug.write("first subviews = " + first.subviews);
 </handler>
 </view>
</canvas>

Creation of a new view generates an onaddsubview event. The parent view is
resized to accommodate the dimensions of its child. In figure 4.13, the newly cre-
ated subview second can be seen in its parent’s subviews array.

Listing 4.11 Dynamic instantiation of JavaScript-based object

User-defined classes 107
The goal of these preceding sections was to scale the mountain known as the
LzView API. Since the LzView object is such a key part of LZX, it’s critically impor-
tant to have a strong command of this API in particular.

 Now that you have a basic understanding of views, it’s time to begin customiz-
ing them with user-defined classes and class-based inheritance.

4.5 User-defined classes

LZX tags use a class inheritance model similar to that of Java. Both are class-based
languages that maintain a distinction between classes and instances. Although
JavaScript’s inheritance is prototype based, its main purpose is to add a dynamic
quality to the tag inheritance model. When writing a Laszlo application, you’ll
have almost no need to create new JavaScript classes. Rather, you’ll do most devel-
opment with LZX classes.

 LZX classes implement both inheritance, where additional details are added to a
general data type to create more specific data types, and object composition, where
simple objects are combined to produce more complex ones. This means that it
supports both “is-a” and “has-a” relationships. So for instance, a Ford is a special-
ized instance of a car class, while a car class has an engine class.

 We’ll further examine inheritance-related features, such as overriding meth-
ods to change behavior and finding information about an ancestor class. LZX also
provides a class root shortcut for accessing nodes within a class. Depending on its
placement, this class root can be used to either access the root node within a class
or to traverse up the hierarchy tree to access a superclass. Finally, we’ll discuss how
to create new JavaScript classes for those times when it’s needed.

Figure 4.13 Adding a new entry to the canvas’s subviews array generates an
onaddsubview event.

108 CHAPTER 4

A grand tour of views and user classes
4.5.1 Overriding a method in a subclass

Although LZX doesn’t support overloading a method, a subclass can override
inherited methods to change their behavior. This is accomplished by creating a
new method with an identical name to the superclass’s method. Although it is
straightforward to override user-defined methods, things get more complicated
when overriding system-defined methods.

 Listing 4.12 shows how the box class’s setWidth method is overridden to set its
opacity proportional to its width, so that a larger width results in a lighter box.

<canvas>
 <class name="box" width="100" height="100" bgcolor="#BBBBBB"/>
 <class name="FadedBox" extends="box">
 <method name="setWidth" args="w">
 setAttribute("opacity", 1 – w/canvas.width);
 </method>
 </class>
 <FadedBox width="150"/>
</canvas>

But there are several problems with this approach; the width of the view never
gets set because the original behavior of setWidth never gets executed. The dis-
play ends up empty, since a view needs both its width and height attributes to be
greater than zero. But the setAttribute method can’t be used to set the width:

setAttribute("width", w);

This would cause an endless loop, because setAttribute calls the setWidth
method. Instead, it is necessary to set the width and then perform all of Laszlo’s
system responsibilities. Rather than to attempt this, a better solution is to call the
superclass’s overridden method to perform this default behavior. The super key-
word is used to call a method in the superclass:

<canvas>
 <class name="Box" width="100" height="100" bgcolor="#BBBBBB"/>
 <class name="FadedBox" extends="Box">
 <method name="setWidth" args="w">
 setAttribute("opacity", 1 – w/canvas.width);
 super.setWidth(w);
 </method>
 </class>
 <FadedBox width="150"/>
</canvas>

Listing 4.12 Overriding a method

User-defined classes 109
Now when the width attribute is set to 150 pixels in the FadedBox instance, our
setWidth method is called first, setting opacity to 70 percent and calling the
superclass’s setWidth method to ensure that the width attribute is correctly set.

 Now that you’ve seen how to use LZX’s class-based inheritance to override a
superclass’s methods, let’s take a look at using its composition features with the
classroot qualifier.

4.5.2 Using the classroot qualifier with classes

Although the parent qualifier is used to reference nodes in the XML node hierar-
chy, a classroot qualifier is also supplied to reference parent superclasses within
the class composition hierarchy. The classroot qualifier can only be used within a
class and, depending on the classroot qualifier’s placement level, it operates in
two slightly different ways. When used within a nested node in a class definition, it
references that class definition. This allows a deeply nested object to easily refer-
ence top-level attributes without having to use a long string of parent. … .parent
qualifiers. When used at the top level of a class definition, it references the parent
class in the class composition hierarchy. When multiple classroot qualifiers are
chained together, either at the top level or within a nested view, they traverse an
equal number of levels up through the class composition hierarchy.

 Listing 4.13 illustrates these class relationships; its output is shown in figure 4.14.
The listing shows an example of class composition; a car has an engine, which has
a piston. There is a single instance of a car, which calls the two fire methods of its
piston instance; one at the top level and the other within nested views, causing their
classroot references to be different. The code contained in each fire method is
identical; the only difference is their placement.

Figure 4.14 A classroot reference works differently depending on its placement. A top-level
classroot references its parent class in the class composition hierarchy. A nested classroot is a
shortcut to the root of its class definition. No matter their placement, chained classroot specifiers
always reference an equal number of parent steps upward in the class composition hierarchy.

110 CHAPTER 4

A grand tour of views and user classes
The top-level classroot references attributes from the engine class, while the
nested classroot references attributes from its current piston class. This corre-
sponds to the composition structure:

■ car (has a)

■ engine (has a)

■ piston

A top-level classroot references attributes one class level higher than a class-
root specified in a nested node. As seen in the debugged output of figure 4.14,
the top level needs a classroot.classroot qualifier to reference the seats
attribute in the engine class, while a nested node needs a classroot.class-
root.classroot qualifier to get there.

 Within the nested view, we also see that a classroot is equivalent to the longer
parent.parent qualifier for accessing attributes located at the root level of the
class definition.

<canvas debug="true">
 <class name="car">
 <attribute name="seats" value="bucket" type="string"/>
 <engine name="wankel"/>
 <handler name="oninit">
 wankel.four_cyl.a.b.fire();
 wankel.four_cyl.fire();
 </handler>
 </class>

 <class name="engine">
 <attribute name="rings" value="multi-rings" type="string"/>
 <attribute name="seats" value="bench" type="string"/>
 <piston name="four_cyl"/>
 </class>

 <class name="piston">
 <attribute name="rings" value="single rings" type="string"/>
 <view name="a">
 <view name="b">
 <method name="fire">
 Debug.write("classroot=" + classroot);
 Debug.write("parent.parent=" + parent.parent.rings);
 Debug.write("classroot.rings=" + classroot.rings);
 Debug.write("classroot.classroot.classroot.seats=" +
 classroot.classroot.classroot.seats + "\n");
 </method>

Listing 4.13 Accessing the root node of a class instance using classroot

Composes car
with engine

Composes engine
with piston

Accesses
class root

User-defined classes 111
 </view>
 </view>
 <method name="fire">
 Debug.write("classroot=" + classroot);
 Debug.write("classroot.rings=" + classroot.rings);
 Debug.write("classroot.classroot.seats=" +
 classroot.classroot.seats + "\n");
 </method>
 </class>
 <car name="mazda"/>
</canvas>

Now that you have seen how both inheritance and composition are implemented
in LZX, it’s time to wrap things up by taking a look at dynamic class instantiation.

4.5.3 Instantiating LZX-based objects

The only thing left is to see how to dynamically instantiate LZX-based class objects
within JavaScript. The full syntax to instantiate a user-defined class is a bit
unwieldy, because it supports creating a tree of child nodes. However, since the
last two arguments are optional, we discourage their use. This results in the identi-
cal syntax as for JavaScript-based instantiation. LZX-based class instantiation looks
like this:

var name = new myclass(parent, attributes,[children, instcall])

where

■ name is the name of the new object.

■ myclass is the class of the new object.

■ parent is the object that is to contain the new object; i.e., where the new
object is to be placed in the object hierarchy. The new object’s superclass is,
of course, the class of its parent object. If the parent is set to null, the newly
created object is a subclass of the view and exists as a top-level object under
the canvas.

■ attributes is an array of attribute values for initializing the new object.

■ children is an array of child views to be encapsulated by the new object.

■ instcall is a boolean that determines whether the new object is immedi-
ately instantiated or instantiated normally with the other views.

The following example reuses the previous example shown in figure 4.14 to illus-
trate how to dynamically instantiate an instance of new_class.

Accesses
calling class

112 CHAPTER 4

A grand tour of views and user classes
<canvas debug="true">
 <class name="new_class" width="100" height="100"/>

 <view name="first" bgcolor="0xCCCCCC">
 <handler name="onaddsubview" args="view">
 Debug.write("view = " + view.name);
 Debug.write("first.subviews = " + first.subviews);
 </handler>
 </view>

 <method name="init">
 var parentview = new new_class(first,
 {name: "second", bgcolor: 0xDDDDDD,
 x: 20, y: 20, width: 100, height: 100});
 </method>
</canvas>

This output matches the results from figure 4.14.
 This completes all the functionality associated with the LzView object. The

LzView object is a fundamental part of Laszlo, so allow some time to work through
the examples and to digest all the material presented here. In the upcoming
chapters, we’ll revisit many of these features, so if you encountered any difficul-
ties, they will hopefully clear up when viewed within an application context.

4.6 Summary

The LzView object is a microcosm for much of the functionality in LZX. Since it’s
the superclass of all visible objects, familiarity with it carries across to these
derived objects. For example, it defines all the mechanisms for controlling visibil-
ity. Visibility isn’t defined by just a single attribute; a large set controls visibility in
different ways. Animation can be used with the visibility attributes to control visi-
bility gradually rather than in abrupt steps.

 An LzView object controls all access to attached multimedia resources: images,
audio, video, the cursor, and fonts. This releases a view from a restrictive rectangu-
lar shape allowing it to take on the irregular shape of an attached image. An
LzView object provides various ways to stretch and shrink images to fit into con-
fined areas.

 A full set of controls is provided for managing the playback of both audio and
video media. An application has all the functionality found in a hardware audio or
video player: fast forward, reverse, volume control, and stereo panning. These
multimedia resources can be downloaded in their entirety or streamed from a
networked website. Attributes allow the current progress of a downloaded
medium to be monitored in either bytes or frames.

Summary 113
 Fonts are managed within the LzView object, making use of both resources and
the parent-child hierarchy to allow a font specification to cascade through sub-
views. This provides a hierarchy of fonts, enabling subviews to inherit font settings.

 The LzView object defines the basic interactions of a user with a visible
object, including the entire mouse- and keyboard-based set of events. It also
defines the clickable and focusable attributes, which manage the views that
will receive events.

 The goal of this ambitious chapter was to show how the fundamental elements
of LZX fit together and to allow the big picture to emerge. Now that this founda-
tion has been established, we can begin working with an online store application,
called the Laszlo Market, to demonstrate how to build an RIA application. We
hope that you’ll find it easier to understand many of Laszlo’s concepts in an appli-
cation context.

Designing
the Laszlo Market
This chapter covers
■ Prototyping an application
■ Designing screen layouts and transitions
■ Refactoring code
■ Testing
114

Prototyping our application 115
Art is making something out of nothing and selling it.
 —Frank Zappa,
 composer, guitarist, and singer

You now have the requisite Laszlo LZX skills to embark on the development of our
online Laszlo Market store, which sells action videos. But rather than jumping in
and beginning to code, let’s take some time to discuss development strategy.

 Building an RIA requires a wide range of skills, including design, client-side
and server-side programming, and content development. The required skills are
too diverse to be covered by a single individual. As a result, most RIAs are built by
a team with widely varying backgrounds. As with any team project, good commu-
nication and coordination are critical. There are many different approaches to
resolving the communication issue. One is to write requirements and design spec-
ification documents as a basis for coordinating activities.

 A complementary approach is prototype development, whereby the team
builds a series of continually refined prototypes to clarify both the requirements
and the design. In effect, the prototype becomes a living specification. This
approach fits well with agile development, where the goal is to satisfy the customer
through continuous delivery of operational software.

 This chapter demonstrates how to apply prototyping to LZX development for
the Laszlo Market.

5.1 Prototyping our application

A strong dichotomy exists between the worlds of designers and developers. These
differences are large enough to have resulted in separate working methodologies.
Developers generally prefer a system-centered approach, using modeling tools such
as Unified Modeling Language (UML), and use case statements to capture
requirements. On the other hand, designers prefer a user-centered approach, rely-
ing on users to express their requirements.

 One reason for these differences is they need to accomplish different goals.
Designers are concerned with identifying what needs to be developed, while devel-
opers are concerned with how to implement it. The user-centered design (UCD)
approach is based on the golden rule of “Know thy user.” This requires a collabo-
rative design process between designers and customers to ensure that designers
understand customer needs. Conversely, a system-centered approach complements
UCD by providing a structural model. Combining these two approaches produces

116 CHAPTER 5

Designing the Laszlo Market
two models: a sequence of prototypes for the client
side and a traditional series of UML models for the
server side. Figure 5.1 illustrates the UCD method-
ology top-down movement from wireframe
sketches of screen layouts, storyboards of screen
transitions, and prototyping.

 We’ll start our wireframes with rough wire-
frame pencil sketches to illustrate the placement
of information on the screen.

5.1.1 Creating wireframes

The process of creating wireframes has few rules.
The main idea is to get thoughts down on paper
without worrying about pretty or elaborate dia-
grams. If a wireframe is too detailed or compli-
cated to be easily jotted down on paper, the basic
ideas probably need to be simplified. Remember
that a wireframe shows only what needs to be
accomplished, not how it is to be done.

 Start with a list of the required functions for
your application. Laszlo Market’s main screen
must display the following functional areas:

■ Browse Search

■ Product List

■ Product Details

■ Shopping Cart

■ Media Player

■ Checkout

Figure 5.2 shows our first wireframe sketch for the main screen. The goal of this
design is to make all relevant functions visible.

 Now we can begin answering the what questions. What is the function for each
window? These scenarios are also known as an application’s business processes
and are directly related to the use cases. It’s often easier to conceptualize business
processes using visual aids rather than text. Wireframes frequently provide a sim-
pler method for generating use case statements.

Figure 5.1 The user-centered
design for our graphical user
interface proceeds top down
beginning with wireframe sketches
and moving through storyboards and
prototyping. This chapter covers the
first three stages, up to prototyping.

Prototyping our application 117
The question that needs to be answered is “How does a user purchase an item?” In
other words, what steps need to be performed to complete a transaction? We’ll need
to collect the user’s shipping and billing information, along with the purchased
items, and then summarize all this information into a purchase confirmation. Let’s
assume that each of these activities requires a separate form. This produces three
forms needing to be completed for a purchase: shipping, billing, and order confir-
mation. The next question is “Where will these forms be displayed?”

 At this point we’re not sure, but we’ll assume there will be a Checkout window
to contain these forms or pages. We’ll capture these requirements in a series of
wireframes, shown in figure 5.3.

Figure 5.2 The initial wireframe for the Laszlo Market’s main screen divides it
into five functional areas, along with a window for the store logo.

Figure 5.3 This wireframe for the Checkout window shows the checkout process for a user to purchase
an item. It is assumed that three separate forms are to be completed for a purchase: a shipping form, a
billing form, and an order confirmation.

118 CHAPTER 5

Designing the Laszlo Market
Although the three pages can’t be displayed simulta-
neously, they need to be easily accessible. There are
several paradigms available, such as tabs or tabsliders,
for displaying a number of pages in a window. For the
moment, we’ll just wireframe the Checkout window
as a stack of pages, as shown in figure 5.4.

 Let’s pause and summarize the proposed windows
in our design; we have the six windows on the main
screen, shown in figure 5.2, along with the Checkout
window with its three pages, shown in figure 5.4. We
can now design the screen transitions for maintaining
visual continuity.

 At this point, we don’t know if it will be handled within a single physical screen
or as an exterior screen requiring a transition. However, the first transition is from
the main screen to a screen containing the Checkout window. Transitions are
designed using storyboards, so let’s look at that technique next.

5.1.2 Storyboard transitions

Storyboarding is a technique borrowed from the animation industry to display the
states of a visual sequence. We’ll start with the state transitions shown in figure 5.5.
Even though this initial sequence is trivial, creating a storyboard is still worth-
while, since transitions can later grow more complex.

We’re now ready to move to a more detailed design. We’ll start by making an ini-
tial guess at the physical dimensions of the windows that appear on the screen. We
can get a rough idea of our model’s workability by examining the wireframe dis-
played in figure 5.6.

 There is no substitute for seeing a live display of our design. Armed with our
wireframes, we are ready to build a prototype. This is useful for evaluating propor-
tions, and other issues such as color and font. Prototyping must be fast and adapt-
able to allow different approaches and solutions to be investigated quickly. LZX
contains a number of features that makes it an excellent tool for rapid prototyping.

Figure 5.5
An initial storyboard
sequence for the main
screen and the checkout
screen shows transitions
from main to checkout and
back to main.

Figure 5.4 The Checkout
window is represented as a
low-fidelity wireframe with three
checkout pages stacked inside it.

Coding the prototype 119
5.2 Coding the prototype

LZX’s built-in layouts and constraints facilitate a straightforward information
transfer from wireframes into code. We can almost code directly from the wire-
frame measurements in figure 5.6. The canvas defaults to a width and a height set-
ting of 100 percent, allowing the application to resize when the size of the browser
window changes. We’ll create a container view named main to hold the storefront
modules, represented as views, to fill the available space:

<canvas>
 <view name="main" width="100%" height="100%">
 <!—- Storefront modules -->
 </view>
</canvas>

Figure 5.6 The first try at a detailed wireframe for the main screen of the Laszlo Market, mainly
to investigate proportions, contains six windows: a Logo header, Browse Search, Product List,
Product Details, a Shopping Cart, and Media Player.

120 CHAPTER 5

Designing the Laszlo Market
So far, we have an empty canvas with a nonvisible view container in it. So let’s add
a labeled header module. The header module uses percentage values for its width
and height. The align and valign attributes position the label within this view.
The valign attribute sets the vertical alignment to top, middle, or bottom, while
the align attribute sets the horizontal alignment to left, center, or right. Since
the label needs to be centered, it is set to center and middle:

<canvas width="100%" height="100%" bgcolor="0xDDDDDD">
 <view name="header" width="20%" height="30%"
 bgcolor="0xCCCCCC">
 <attribute name="label" type="string" value="Logo"/>
 <text align="center" valign="middle"
 fontsize="12" fontstyle="bold"
 text="${parent.label}"/>
 </view>
</canvas>

Because we have many views and each needs to be labeled, we’ll define a class for
them. To get a quick start on creating this class, let’s take one of the views and tweak
it with some additional tags. After it has the desired appearance, we only need to
change the text attribute constraint setting from parent to classroot to convert
it into the lview class shown in listing 5.1. Our labeled views are ready to be instan-
tiated. Welcome to your first example of instance-first development.

<canvas width="100%" height="100%" bgcolor="0xDDDDDD">
 <class name="lview">
 <attribute name="label" value="default" type="string"/>
 <text align="center" valign="middle"
 fontsize="12" fontstyle="bold"
 text="${classroot.label}"/>
 </class>

 <view name="main" width="100%" height="100%">
 <lview name="header" label="Logo"
 width="20%" height="30%"/>
 <lview name="details" label="Product Details"
 bgcolor="0xCCCCCC"
 x="${parent.browse.width}"
 width="55%" height="50%"/>
 <lview label="Shopping Cart"
 bgcolor="0xCCCFFF"
 x="75%"
 width="25%" height="65%"/>
 <lview name="browse" label="Browse Search"
 bgcolor="0xBBBFFF"
 y="${parent.header.height}"

Listing 5.1 Using a class to add labels to the display

Defines
labeled view
class

Contains header Logo view

Contains Product
Details view

Contains Shopping Cart view

Contains Browse
Search view

Coding the prototype 121
 width="20%" height="70%"/>
 <lview label="Product List"
 bgcolor="0xDDDFFF"
 x="${parent.browse.width}"
 y="${parent.details.height}"
 width="55%" height="50%"/>
 <lview label="Media Player"
 bgcolor="0xBBBBBB"
 x="75%" y="65%"
 width="25%" height="35%"/>
 </view>
</canvas>

Let’s move clockwise starting with the header view. This view contains no x or y
attributes, so it’s placed at the default (0, 0) position at the top-left corner of the
canvas. The horizontally adjacent view is the Product Details view. To account for
the header view, its x attribute is offset by the value of the header’s width
attribute. The vertically adjacent view is the Browse Search view. To account for
the header view, its y attribute is offset to the value of the header’s height
attribute. Afterward, these views are used as the offsets for the remaining view.
The test output seen in figure 5.7 looks fine and verifies our layout.

Contains Product List view

Contains Media Player view

Figure 5.7 The views are labeled and colored to help identify them.

122 CHAPTER 5

Designing the Laszlo Market
Labeled views are useful when the screen needs to be divided into abstract areas.
The next step requires a more interactive interface. The window component has
many properties that make it the ideal prototyping tool for such a job.

5.2.1 The window as a prototyping tool

The window component is self-labeling, resizable, and movable, and it conforms
to the Laszlo component interface, allowing it to easily interact with other Laszlo
components and letting you add sophisticated features such as scrollbars and grids
later. Listing 5.2 shows how easily our code is updated to use windows. At this stage
of design, we’re primarily focused on layout issues and aren’t concerned with
visual design issues. Nevertheless, it’s useful to add default artwork to check for siz-
ing issues.

 Art assets can be compiled or dynamically loaded into an application. We’ll
add a logo and placeholder image for the Media Player. Since we’re just rough-
ing things out, we’ll use a stretches attribute to stretch the image to fit the
Media Player window; although this results in some image degradation, it suf-
fices for now. In chapter 10 we’ll show you how to resize images so they don’t
become distorted.

<canvas bgcolor="0xDDDDDD">
 <resource name="logo"
 src="resources/laszlo_store_header.png"/>
 <resource name="video" src="resources/thematrix.jpg"/>

 <view name="main" width="100%" height="100%">
 <view name="header" width="20%" height="30%"
 resource="logo" x="30" y="15"/>
 <window name="details" title="Product Details"
 x="${main.header.width}"
 width="55%" height="50%" resizable="true"/>
 <window name="shopcart" title="Shopping Cart"
 x="75%"
 width="25%" height="65%" resizable="true"/>
 <window name="browse" title="Browse Search"
 y="${main.header.height}"
 width="20%" height="70%" resizable="true"/>
 <window name="productlist" title="Product List"
 x="${main.browse.width}"
 y="${main.details.height}"
 width="55%" height="50%" resizable="true"/>

Listing 5.2 Creating the Laszlo Market prototype with windows

Coding the prototype 123
 <window name="mediaplayer" title="Media Player"
 x="${main.browse.width+main.productlist.width}"
 y="${main.shopcart.height}"
 width="25%" height="35%" resizable="true">
 <view stretches="both"
 width="100%" height="100%" resource="video"/>
 </window>
 </view>
</canvas>

The main view is now populated with windows, as shown in figure 5.8. Since win-
dows can be dragged and resized with the mouse, we can manually tweak them if
we don’t like the initial layout.

 So far, the construction of the prototype has been as easy as programming in
HTML, and the resulting LZX program has fewer than 20 lines of code. Never-
theless, this is an appropriate stage to think about partitioning our code base
into libraries.

Figure 5.8 The main screen layout for the Laszlo Market prototype, with image resources
added, starts to take form. The windows can be adjusted by dragging and resizing with the
mouse. Afterward, a pixel ruler can be used to measure any adjusted values.

124 CHAPTER 5

Designing the Laszlo Market
5.2.2 Organizing with libraries

Every application of significant size should be partitioned into library files. The
include tag contains an href attribute to include a file. Included files can be
library, text, XML, or directory files. Included files can be nested to build hierar-
chies of included files. Laszlo supports the following types of include files:

■ Library files

■ Text files

■ XML files

■ Directories

A library file is an XML file whose root element is a library. The contents of a
library are included only once; this is true even if the library file is included more
than once. All declarative tags specified in a library are considered by Laszlo to be
top-level tags. This makes a library a good place to declare resources.

 When the root element of an included file is an XML tag, other than a library
tag, the contained XML code segment is inserted at the point of the include tag.
This occurs for each instance encountered in the source code. Similarly, the con-
tents of a text file are included at the spot of an include tag. It is identified by a
type attribute that is set to a value of text. It is also included for each instance of
the tag.

 Finally, a file system pathname can be used to reference a file; e.g., pathname/
library.lzx. The examples in listing 5.3 illustrate the various include forms.

<canvas>
 <include href="resources.lzx"/>

 <text>
 <include href="text.txt" type="text"/>
 </text>

 <window>
 <include href="code.xml"/>
 </window>

 <include href="resources"/>
</canvas>

Listing 5.3 Four forms of the include tag: a library, text, XML, and directory file

Include library file

Include text file

Include XML file

Include directory

Configuring the checkout screen 125
We’ll use two library files within our Laszlo Market application: library.lzx, a gen-
eral-purpose library file; and resources.lzx, a list of media resources. To assist
these libraries with their organizational duties, we’ll also create standardized
directories to store files. All media resources are stored in the resources directory
and listed in resources.lzx:

<library>
 <resource name="logo"
 src="resources/laszlo_store_header.png"/>
 <resource name="video" src="resources/thematrix.jpg"/>
</library>

LZX source files are stored in the lzx directory and are listed within our library.lzx
file.

 We’re ready now to move on to the checkout process. So we need to pull back
out our wireframe sketches.

5.3 Configuring the checkout screen

The design goal for our application is to maintain visual continuity throughout the
shopping experience, but this requires more information than can fit within a sin-
gle screen. What’s worse, the checkout process involves information that spreads
across the three pages of the Checkout window—shipping information, billing
information, and order confirmation. Supporting visual continuity requires that
we address these problems:

■ Handling the transitions between the main and checkout screens

■ Displaying the checkout-related shopping information

5.3.1 Sliding a virtual screen

First imagine one large virtual screen containing all the windows. Then visualize
the browser window sliding across this background of windows. By keeping some
windows from vanishing, we ensure that a user retains situational awareness and
won’t get lost. This is a useful design tool for configuring an application, since it
provides a way to lay out a flat listing of windows. This allows us to identify com-
mon elements and helps us find a design that minimizes the size of this listing.
Afterwards, areas containing similar functionality can be identified and placed
within a hierarchy of windows and sub-windows.

 Because our window configuration fits within two screens, it is an ideal candi-
date for a single virtual screen. With only two states of the browser window, most
users won’t perceive a large virtual screen but will see the application as having

126 CHAPTER 5

Designing the Laszlo Market
two modes. To make this convincing, let’s use the Shopping Cart and Media
Player windows as the common unifying elements across the main and checkout
screens, as shown in figure 5.9.

 The Shopping Cart contains the most area, so it’s a natural spot for a Change
button to switch between screen configurations. For now, don’t worry about how
this is accomplished; just be aware that the Shopping Cart and Media Player win-
dows must also be included in the checkout screen’s wireframe.

5.3.2 Stacking pages

The next problem we’ll address is the display of the checkout pages. Laszlo sup-
plies numerous components to manage the display of multiple-element screens. A
tabslider stacks pages represented as tabelement elements within the tabslider. This
works well for our checkout pages.

Using a tabslider
A “high-fidelity” wireframe for the checkout screen is shown in figure 5.10. The
Shopping Cart window on the left displays the list of items to be purchased. The
Checkout window tabslider supports three tabelements for the three checkout
pages. The Media Player provides customers with one last opportunity to view
their electronic media.

Figure 5.9 This wireframe demonstrates a proposal for transitioning from the main screen to the
checkout screen while maintaining visual continuity. The Change button scrolls the display horizontally
to expose either the main screen or the checkout screen.

Configuring the checkout screen 127
The LZX code that implements the wireframe of figure 5.10 is no more complex
or lengthy than that for our initial main screen. Once again, we can plug many of
the values directly from the high-fidelity wireframe into the height and width
attributes of the windows. Figure 5.11 shows the results.

Figure 5.10 This high-fidelity wireframe shows the checkout screen. The Checkout
window comprises three tabbed pages. The Shopping Cart and Media Player windows are
shared with the main screen. The Change button triggers a transition to the main screen.

Figure 5.11 The screen display for the checkout process. The Checkout window consists of a tabslider
with three tab elements for shipping information, billing information, and order confirmation. The Change
button reconfigures the display back to the main screen.

128 CHAPTER 5

Designing the Laszlo Market
At this point, we’ll create the checkout screen as a separate Laszlo application.
Listing 5.4 shows the code corresponding to the display shown in figure 5.11.
We’ll worry later about having to integrate these applications together again.

<canvas width="100%" height="100%">
 <include href="resources.lzx"/>

 <view name="main" width="100%" height="100%">
 <window name="shoppingcart" title="Shopping Cart"
 width="25%" height="65%">
 <button id="checkoutbtn" text="Change"
 y="80%" align="center"/>
 </window>
 <window title="Media Player"
 y="${main.shoppingcart.height}"
 width="25%" height="35%">
 <view width="100%" height="100%"
 resource="video" stretches="both"/>
 </window>
 <window title="Checkout"
 x="${parent.shoppingcart.width}"
 width="75%" height="100%">
 <tabslider name="checkoutsteps"
 width="100%" height="100%"
 spacing="2" slideduration="300">
 <tabelement text="Shipping Information"/>
 <tabelement text="Billing Information"/>
 <tabelement text="Order Confirmation"/>
 </tabslider>
 </window>
 </view>
</canvas>

The tabslider B contains two attributes C, spacing and slideduration, for con-
trolling its appearance. The spacing attribute specifies the width of the gap
between each closed tabelement. The slideduration attribute specifies the
amount of time in milliseconds for a particular tab entry to slide open. The three
pages within the Checkout window are specified with individual tabelements D.

 After we show this prototype to some users, receive feedback and, more impor-
tantly, approval on the overall design, we can begin planning how to integrate the
two screen prototypes and handle their transition.

Listing 5.4 LZX code to create the checkout screen in figure 5.11

B

D

Set
spacingC

Display a
tabslider

Display three
tabelements

Central control of screen display 129
Debugging: What to do when components or views don’t display One of the
most perplexing problems for new Laszlo developers is how to handle
visual objects that won’t display. The first step is to add an id value to the
declarative tag and then turn on the debugger. This allows the object to be
easily referenced from the debugger input window. Ensure that the object
is in expanded format by double-clicking on it. Every view-based object’s
display is governed by the same critical attributes: height, width, x, y,
and visibility. Check these values in the debugger. Ensure that a
bgcolor or resource is associated with this object and that this view-based
object isn’t hiding behind another object. You might want to return to
chapter 4 to review the properties controlling a view’s visibility.

If the values appear to be valid, experiment by setting different values
in the debugger. Remember that direct assignments don’t trigger con-
straints or event handlers and don’t update the display. To generate a vis-
ible change, the attribute value must be changed with setAttribute.
For example:

XX.x=30 // Does change display characteristics
XX.setAttribute('x', 30) // Sets the attribute value

When an appropriate value for an attribute is supplied, the object will
suddenly appear. This allows a developer to program within the debug-
ger window.

5.4 Central control of screen display

A first attempt at transitioning from one screen to another could be performed by
directly controlling the view’s visibility. This causes one screen to disappear and
another screen to suddenly appear and would look something like this:

<view id="page1" width="100%" height="100%" bgcolor="blue"/>
<view id="page2" width="100%" height="100%" bgcolor="red"/>
<button text="Change Screen Elements">
 <handler name="onclick">
 page1.setVisible(true);
 page2.setVisible(false);
 </handler>
</button>
<button x="100" text="Change back">
 <handler name="onclick">
 page1.setVisible(false);
 page2.setVisible(true);
 </handler>
</button>

Even though this example is relatively simple, it does involve a visual state transi-
tion that must be captured within a central state table. As an application becomes

 TIP

130 CHAPTER 5

Designing the Laszlo Market
more complex, it helps to view it as a set of states with state transition events leading
from one state to another. This is a many-to-many relationship since there are many
ways to transition back to a particular state and many ways to transition from it.

 For example, moving from a login window to the main application window
involves two states, Login and Main, a state transition Login to Main, and a state
transition event (clicking the OK button). While local events should be handled by
an object’s event handler, events generating a state transition need to be handled
by a global state controller. This controller maintains the application’s state
through a state transition table. We’ll build this table by identifying each state and
the paths leading from one state to another, the state transitions. Notice that a single
state can have multiple state transitions, as there might be more than one way to
get there. Since a state is static, we are most interested in the state transitions, as
this shows where changes to the current declarative structure must occur. Table 5.1
shows each state transition listed in the controller for the Laszlo Market.

In its simplest form, a controller consists of a node tag with two attributes, appstate
and currstate, which work together to control communications between this cen-
tral controller and the rest of the application.

 Since we are dealing with an event-driven GUI, all state transitions are initiated
by an event requiring the current state of the application to be changed. In the
previous example, the onclick event handler acted like a controller and directly
changed the state of the declarative tags. With a central controller, the onclick
event handler passes control to the central controller, gController, by updating
its appstate attribute with an argument indicating a transition from the current
state to a desired state:

 <handler name="onclick">
 gController.setAttribute("appstate", "Main to Checkout");
</handler>

Table 5.1 Laszlo Market states and their state transitions

State Incoming State Transition

Login Splash to Login

Main Login to Main

Main Checkout to Main

Checkout Main to Checkout

Central control of screen display 131
The central controller is now responsible for updating the declarative statements
to switch states. The currstate attribute, settable only within the central control-
ler, contains the name of the new state. It is used to trigger constraint operations
within the declarative statements to make the transition from the previous state to
this new state. When the appstate attribute is set to Main to Checkout, this
results in the currstate attribute being set to the Checkout state.

 We start building our central controller by listing the state transitions from
table 5.1. Although they all appear empty in listing 5.5, we’ll update these state-
transition case statements with logic in the upcoming sections.

<node id="gController">
 <attribute name="appstate" type="string"/>
 <attribute name="currstate" type="string"/>

 <handler name="onappstate" args="state">
 switch (state) {
 case "Splash to Login":
 this.setAttribute("currstate", "Login");
 break;
 case "Login to Main":
 this.setAttribute("currstate", "Main");
 break;
 case "Main to Checkout":
 this.setAttribute("currstate", "Checkout");
 break;
 case "Checkout to Main":
 this.setAttribute("currstate", "Main");
 break;
 default:
 // Display an error message
 break;
 }
 </handler>
</node>

Although this is a simple prototype, you should make it a habit to always use a
state controller when developing a Laszlo application. It’s much easier to begin
with a controller-based design than to deal with the problems of ripping apart an
existing code base when it grows too large to support an ad hoc method of han-
dling state.

Listing 5.5 A state-transition controller for the Market screen configurations

132 CHAPTER 5

Designing the Laszlo Market
5.4.1 Designing the screen transitions

Transitioning between the Market application states requires first that declarative
statements be established to carry out the following:

■ Integrate the main and checkout screens into a larger virtual screen

■ Create a transition mechanism to traverse this virtual screen

■ Create a trigger to initiate the traversal

Let’s start by integrating the screens.

Integrating multiple screens
We’ll start by converting our two prototype screens, main and checkout, into top-
level views called, not surprisingly, main and checkout. Since the Shopping Cart
and Media Player windows serve as a common element, they need to be removed
from the checkout view. Since these windows had a width of 25 percent, the
updated checkout view only has a width of 75 percent. These two views are placed
directly after one another within the integrated screen:

<view name="main" width="100%" height="100%">
 …
</view>
<view name="checkout" x="${main.x+main.width}"
 width="75%" height="100%">
 …
</view>

To attach the checkout screen to the right side of the main screen, set the check-
out view’s x attribute to the current position of the main view (currently 0) plus its
width. The width of the main view is equal to the size of the browser window (100
percent), ensuring that the checkout view is located off-screen to the right in the
initial state.

 Now we have a large virtual screen, with the main screen displayed in the
browser and the Checkout window hidden to the right where users can access it
by scrolling. Next we need to think about the transition to the checkout screen.

Scrolling the virtual screen
Let’s walk through the changes that we must make to the declarative statements in
order to transition from one screen to another within the virtual screen. Figure 5.12
illustrates these steps:

Displays main
view

Stores checkout
view off-screen

Central control of screen display 133
■ The main screen needs to be moved to the left just enough so the Shopping
Cart and Media Player are located on the left browser border. This is accom-
plished by setting the main view’s x attribute to a negative value. This results
in 75 percent of the main view disappearing off-screen to the left.

■ Since the checkout view’s x attribute has a constraint attached, it receives
an event when the main view’s x attribute is changed, enabling it to update
its value to reflect this change. Since 75 percent of the main view is off-
screen, this provides enough room to display the entire checkout view,
since its width is also 75 percent.

■ Appropriate actions associated with the Change button are required to ini-
tiate the change between these two states, Main and Checkout.

To transition from the main to the checkout screen, we animate the main screen
to move to the left. This is accomplished by animating the main view’s x attribute
to a destination value of –(canvas.width * .75) over a period of 700 millisec-
onds with this JavaScript call:

main.animate("x", -(canvas.width*.75), 700);

Figure 5.12 The browser window can display only a portion of the larger virtual screen (which
consists of two separate views). The virtual screen is animated to the left for a distance of
–(canvas.width*.75) pixels. After the animation, the upper-left corner of the Shopping Cart
window is at position (0, 0).

134 CHAPTER 5

Designing the Laszlo Market
To transition from the checkout screen back to the main screen (the original posi-
tion) we write

main.animate("x", 0, 700);

We can now update our central controller to represent these actions as states.
When an input event requests that the screen configuration transition from main
to checkout, this is interpreted internally as a Main to Checkout state transition
request, resulting in the internal state being updated to Checkout:

case "Main to Checkout":
 main.animate('x', -(canvas.width*.75), 700);
 this.setAttribute("currstate", "Checkout");
 break;

case "Checkout to Main":
 main.animate('x', 0, 700);
 this.setAttribute("currstate", "Main");
 break;

All that remains is to find a declarative mechanism to initiate the state transitions
of this central controller.

5.4.2 Triggering screen transitions

Clicking the Change button generates an onclick event signaling that the checkout
screen should appear. The button’s onclick event handler maintains the current
state of the application in the gController.currstate attribute. Depending on the
current state, the gController’s appstate attribute is set to a state transition
request, causing the central controller to spring into action to update the applica-
tion’s state:

<button text="Change" y="80%" align="center">
 <handler name="onclick">
 if (gController.currstate == "Main") {
 gController.setAttribute("appstate",
 "Main to Checkout");
 return; }
 if (gController.currstate == "Checkout") {
 gController.setAttribute("appstate",
 "Checkout to Main");
 return; }
 </handler>
</button>

We can now transition between the Main and Checkout states, resulting in the
screen moving back and forth between the main and checkout screens. But so far,

Signals change
to Checkout

Signals change
to Main

Central control of screen display 135
the changes to the declarative structure to transition from one state to another
are limited to updating declarative structure with JavaScript code.

 The problem with this approach is that each change to the declarative struc-
ture has to be coded in JavaScript. This works all right with animating screens,
because the animation is limited to changing the x attribute. But suppose there
are a number of small visual details that also need updating. Using JavaScript to
code individual changes would quickly become tedious. Instead, a method is
needed for making wholesale changes to declarative structure.

 In our previous example, a button labeled Change is used to initiate the state
transition to move between the Main and Checkout states. Instead of a fixed label,
this button should display “Checkout” while in the Main state and “Return to
Store” while in the Checkout state. In the next section, we’ll see how to use the
state tag to control this behavior.

The state tag
The state tag adds a conditional capability to LZX, which can be used to switch
among sections of declarative code based on its apply attribute value. This adds
an “if … then” behavior to declarative statements, creating application states that
can be applied during execution. For example, an application could switch
between constrained and unconstrained states that exhibit static and dynamic
behavior. However, note that the state tag doesn’t result in any optimization,
since all declarative tags need to be instantiated whether or not they are used.

 In its simplest form, the state tag operates like a binary switch, on when its
apply attribute is true and off when it is false. The apply attribute value can be
controlled through its apply and remove methods. Each state tag needs to have a
name. Since we already have abstract states known as Main and Checkout, it simpli-
fies things to have these names match.

 In listing 5.6, the state tag is used to control the display of the button’s text
label. Initially, the button text is set to Checkout. Since the main state is applied,
its onclick event handler is applied to the button. Looking at figure 5.13, we see
that when the button is clicked, its label changes to the “Return to Store” mes-
sage. The apply attribute is removed from the main state tag and applied to the
Checkout state tag, resulting in a switch to the Checkout state tag’s onclick event
handler. This event handler contains the reverse logic whereby the button label is
updated to display Checkout, the Checkout state is removed, and the main state is
applied, thus completing the button’s cycle of changes.

136 CHAPTER 5

Designing the Laszlo Market
<canvas>
 <button text="Checkout">
 <state name="main" apply="true">
 <handler name="onclick">
 this.setText("Return to Store");
 main.remove();
 checkout.apply();
 </handler>
 </state>
 <state name="checkout">
 <handler name="onclick">
 this.setText("Checkout");
 checkout.remove();
 main.apply();
 </handler>
 </state>
 </button>
</canvas>

The next step is to coordinate the button with the display of the main and check-
out screens. However, while the apply and remove methods work well for a single
state, they quickly become cumbersome with a large number of states. Since we
don’t want to preclude ourselves from increasing the number of states, we need a
way to expand the capabilities of the state tag with constraints to allow it to oper-
ate like a case statement.

State-based case statements
Rather than explicitly managing the apply attribute with the apply and remove
methods, we can use a constraint to support additional states, resulting in a case
statement. We’ll use a single variable, the currstate attribute from our global
controller, to select from any number of states. In general, these features provide
the state tag with the transparency required of a control statement and make it
easier to use, since there is no need to remove the previous state. In listing 5.7, the
constraint selector appears in bold.

Listing 5.6 Maintaining declarative structure with the state tag

Removes main
apply state

Applies
Checkout state

Removes checkout
apply state

Applies main
state

Figure 5.13 The button is initially in the main state, displaying a Checkout label. After the user
clicks the button to generate an onclick event, the button’s label is updated to Return to Store,
the main state is removed, and the Checkout state is applied. A subsequent click of the button
completes the cycle by updating the button label to Checkout, removing the Checkout state, and
reapplying the main state.

Refactoring our code 137
<state apply="${gController.currstate == 'main'}">
 <button x="${(immediateparent.width-this.width)/2}"
 text="Checkout" y="80%" width="100">
 <handler name="onclick">
 this.setText("Return to Store");
 gController.setAttribute("appstate", "Main to Checkout");
 </handler>
 </button
</state>
<state apply="${gController.currstate == 'checkout'}">
 <button x="${(immediateparent.width-this.width)/2}"
 text="Return to Store" y="80%" width="100">
 <handler name="onclick">
 this.setText("Checkout");
 gController.setAttribute("appstate", "Checkout to Main");
 </handler>
 </button>
</state>

The state tag approach scales well, because it can be applied to any number of
tags and can occur in multiple places throughout the declarative code. Listing 5.7
shows how the declarative structure can be easily updated to represent a new
state. Since the current state is provided by the gController.currstate attribute,
the application’s declarative structure is automatically updated to represent a new
state. Since constraint notation is used, all updates occur within the declarative
structure itself.

 We can use the state tag even further to refactor our central controller. Our
goal is to move as much functionality as possible into the declarative structure, to
leverage its greater flexibility and built-in features.

5.5 Refactoring our code

When refactoring code in LZX, look for opportunities to refactor from JavaScript
into declarative tags. The most obvious targets are areas containing lots of Java-
Script. Our central controller has such a place ripe for code refactoring—the ani-
mation scripting.

5.5.1 Replacing the animator

To refactor the central controller, we want to move as much as possible of the Java-
Script data presentation code into the declarative structure representing the

Listing 5.7 Creating a case statement structure with constraints

Switches to
main screen

Switches to
checkout
screen

138 CHAPTER 5

Designing the Laszlo Market
states, since that declarative structure is the focus of any modifications to the
states. Rather than using the JavaScript animation method to update the x
attribute of the main view, we’ll declare an animator at the top level, targeted at
the main view. Remember that since the two views are connected by a constraint
on the x attribute, any changes to the main view affect the checkout view, so the
declarative animators have the same target. A declarative animator benefits from
these advantages:

■ It can be contained within an animatorgroup tag, making possible later par-
ticipation in concurrent or sequential actions with other animators.

■ An animator object associated with an animator tag can be reused, while
the animate method instantiates an animator object for each use.

As listing 5.8 shows, a state tag with a currstate constraint determines the state
to which the animator is applied.

 <canvas>
 <view name="main" width="100%" height="100%">
 …
 </view>
 <view name="checkout" x="${main.x+main.width}"
 width="75%" height="100%">
 …
 </view>

 <state apply="${gController.currstate == ‘main'}">
 <animator target="main" attribute="x"
 duration="700" to="0"/>
 </state>
 <state apply="${gController.currstate == 'checkout'}">
 <animator target="main" attribute="x"
 duration="700" to="${-(canvas.width*.75)}"/>
 </state>
</canvas>

An animator tag uses its target attribute to specify the view against which it exe-
cutes. This provides a further level of decoupling; because a constraint can be
used to set this field, the animator could potentially be targeted against any of the
major views. We can now think in terms of operators—animators or other tags that
are applied—and entities—states. This provides us with the flexibility to mix and
match operators against entities.

Listing 5.8 Using states to apply an animator

Moves virtual
screen right

Moves virtual
screen left

Testing with LzUnit 139
5.5.2 A general-purpose architecture

Our current Market prototype design
forms the basis for a general-purpose
architecture for many Laszlo applica-
tions. This architecture uses a mirrored
state transition table to allow the declara-
tive statements to be defined as opera-
tors and entities. Figure 5.14 illustrates
this diagrammatically.

 The operators are controlled by state,
so we can easily add any number of opera-
tors and any number of views. This allows
different animator-based classes to be
applied to manipulate these views in dif-
ferent ways. The manipulation can occur
intra-screen, allowing an application to be
composed of a series of overlapping inte-
rior layers. Or, as in the Laszlo Market,
the layers can be represented as exterior
screens within a larger virtual view. This
architecture scales to support any number
of additional entities and operators.

 We’ll complete this architecture by adding the final piece, meta-operators,
which are operators that operate on other operators. We’ll use this last piece in
our last section on unit testing.

5.6 Testing with LzUnit

Writing test cases, a cornerstone of extreme programming, is well supported in LZX.
Unit tests are easy and natural to write, because they use declarative statements. A
test suite consists of individual unit tests that specify the expected characteristics
of the application. Unit tests easily map to and test specific tags. Once an applica-
tion passes a test suite, it constitutes a reference implementation for further ongoing
regression testing as development and refinement proceed.

 After establishing our testing, we’ll have the freedom to refactor our code or
head off in a new design direction with the assurance that, if we break anything,
the problems should immediately become apparent with regression testing.

Figure 5.14 Our general-purpose architecture
allows the declarative statements to be viewed
as a set of entities along with operators that
operate on them. A meta-operator operates on
other operators.

140 CHAPTER 5

Designing the Laszlo Market
5.6.1 Unit testing with LzUnit

Adding a unit-testing framework to a Laszlo application requires only that the
LzUnit library be included:

<include href="lzunit"/>

The LzUnit framework provides two tags, TestSuite and TestCase. Each
TestSuite element contains one or more instances of the TestCase element to
perform a test suite. Test suites are differentiated by name to allow multiple suites
in an application.

 When a test suite is executed, it automatically runs its entire suite of child test
cases, reporting the number of cases run, the number of failures, and the number
of runtime errors. A large variety of assertions are available for testing almost any
situation. Table 5.2 provides a complete list of the conditions that can be tested.

Optional setUp and tearDown methods exist for each test case. Since every test
run must execute cleanly, test data is loaded with setUp and later removed with
tearDown. By default, the order of execution of individual tests within a test case is
not guaranteed. To have tests run in consecutive order, the global flag asynchro-
noustests must be set to false:

Table 5.2 Assertions for performing unit testing

Calling Method Assertion Tested

assertEquals(expected, actual, message) An actual value equals (==) an expected
value.

assertFalse(condition, assertion) A condition is false.

assertNotNull(object, message) A value is not (!==) null.

assertNotSame(expected, actual, message) An actual value is not the same as (!==)
an expected value.

assertNotUndefined(object, message) A value is not undefined.

assertNull(object, message) A value is (===) null.

assertSame(expected, actual, message) An actual value is the same as (===) an
expected value.

assertTrue(condition, assertion) A condition is true.

assertUndefined(object, message) A value is undefined.

Testing with LzUnit 141
<script>
 asynchronoustests = false
</script>

Since tests are declarative, they are executed in sequential order at the next idle
event. However, a test that takes a long time to execute may complete after a sub-
sequent but shorter test.

 Be careful to ensure that any condition being tested is ready for testing. In our
case, since we are testing the animation of the storefront, which takes 700 millisec-
onds, we must ensure that our tests occur after the animation has completed. To
accomplish this, we’ll chain our test cases to ensure they run sequentially. To
chain test cases, we’ll wait for the onstop event, signaling completion of anima-
tion, and then invoke our next test case from within the onstop event handler.

5.6.2 Testing the Laszlo Market

To ensure our animation sequence doesn’t accidentally break as a result of future
code changes, let’s add some unit testing. Our centralized controller framework is
scalable, which means we can easily add a unit-testing state by adding another case
to the state transition switch statement:

<node name="gController">
 ...
 <handler name="onappstate" args="state">
 switch (state) {
 case 4:
 title = "TestSuite";
 this.testsuite.apply();
 break;
 ...
 </handler>
</node>

Since unit testing tests the other operators, which depend on the currstate
attribute accurately reflecting the current state, unit testing can’t just be another
state within the case statement. We need to use the binary apply and remove
mechanisms for the state containing the unit testing.

 Next, the declarative portion of the controller is updated with a meta-opera-
tor section containing TestSuite tags that exercise and test the other operators;
see listing 5.9. The test cases are represented as methods chained to execute
sequentially. Within the unit-testing state, the currstate attribute is manually
updated to control state transitions. All test cases that begin with the test pre-
fix automatically initiate a test; we have set up the methods with a _test suffix to
check the results.

142 CHAPTER 5

Designing the Laszlo Market
<state name="testsuite" apply="false">
 <TestSuite name="testsuite">
 <TestCase name="testcase">
 <method name="testCheckout">
 gController.setAttribute("currstate", "checkout");
 </method>
 <method name="checkout_test">
 assertEquals(-(canvas.width*.75)+3, main.x);
 gController.setAttribute("currstate", "main");
 </method>
 <method name="main_test">
 assertEquals(0, main.x);
 Debug.write(”test complete”);
 </method>
 </TestCase>
 </TestSuite>
</state>

The method testCheckout causes a transition to the Checkout state. We update
the animator tags to handle the onstop event and invoke the checkout_test
method to enable the next test within the chain; see listing 5.10.

<state name="main"
 apply="${gController.currstate == 'main'}">
 <animator name="anim" target="main" attribute="x"
 to="0" duration="700"
 onstop="testsuite.testcase.main_test()"/>
</state>
<state name="checkout"
 apply="${gController.currstate == 'checkout'}">
 <animator name="anim" target="main" attribute="x"
 to="${-(canvas.width*.75)+2.5}" duration="700"
 onstop="testsuite.testcase.checkout_test()"/>
</state>

Finally, we turn on unit testing by setting the transition state to the appropriate
value in the oninit event handler. When you run unit tests, a progress bar dis-
plays. A green bar appears for each successful test, and a red bar for each failing
test. If one or more tests fail, the background of the test status area turns red.
Since the printed page can only display grayscale, you need to imagine figure 5.15
displaying the appropriate colors.

Listing 5.9 A Laszlo Market test suite

Listing 5.10 Invoking the Laszlo Market tests

Causes transition to
Checkout state

Does checkout
test and chains
to main state

Does main
test

Invokes
main test

Invokes
checkout
test

Testing with LzUnit 143
During testing, you can watch the animations occur sequentially, as shown in fig-
ure 5.16. It’s a bit like watching a “ghost in the machine.”

 The last step involves setting up unit testing so that it is resident within your
application to be invoked with a URL query string. This removes the need to main-
tain several different versions, thus allowing a deployed application to have unit-
test facilities to assist in tracking down problems.

5.6.3 Testing from a URL query string

Using a URL query string to control unit testing lets you test a deployed Laszlo
application without removing it from a server or making any source code modifi-
cations. Controlling unit testing from a URL query string requires the LzBrowser
service. We simply need to update the oninit handler to check for the lzunit
string in a URL query string to initiate unit testing:

<canvas>
 <handler name="oninit">
 if (LzBrowser.getInitArg("lzunit") == "true")
 gController.setAttribute("appstate", 4);

Figure 5.15 A successful unit test is indicated by a green progress bar in the upper-left corner of the
screen. An unsuccessful unit test causes the screen to turn red. Information about the failed test is
displayed in the upper-left corner of the screen.

Figure 5.16 The state transitions can be tested both visually and with the green unit
testing progress bar. As long as it’s green, everything is fine.

144 CHAPTER 5

Designing the Laszlo Market
 else
 gController.setAttribute("appstate", 1);
 </handler>
 ...
</canvas>

Here’s an example of a URL query string containing an lzunit parameter:

http://localhost:8080/lps/book/main.lzx?lzr=html&lzunit=true)

Now it’s easy to move from development to unit-testing mode without needing
any reconfiguration. It’s important that unit testing be easy, so this critical step
isn’t ignored.

5.7 Putting it all together

The general architecture and skeleton for the Laszlo Market application can be
listed in a little over 100 lines of code—and this even includes an embedded state
controller and unit-testing facilities. Our skeleton includes the window layout for
each of the major screens, main and checkout, and the animation to move from
one to the other.

 Since various code examples are scattered throughout this chapter, we’ve
brought them all together in listing 5.11 to allow you to see the code in its
entirety.

<canvas width="100%" height="100%" bgcolor="0xCCCCCC">
 <include href="lzunit"/>
 <include href="resources.lzx"/>

 <script>
 asynchronoustests = false
 </script>

 <handler name="oninit">
 if (LzBrowser.getInitArg("lzunit") == "true")
 gController.setAttribute("appstate", "UnitTest");
 else
 gController.setAttribute("appstate", "Login to Main");
 </handler>

 <node name="gController">
 <attribute name="appstate" value="" type="string"/>
 <attribute name="currstate" value="" type="string"/>

 <handler name="onappstate" args="state">

Listing 5.11 The complete Laszlo Market prototype

Putting it all together 145
 switch (state) {
 case "Splash to Login":
 this.setAttribute("currstate", "Login");
 break;
 case "Login to Main":
 this.setAttribute("currstate", "Main");
 break;
 case "Main to Checkout":
 this.setAttribute("currstate", "Checkout");
 break;
 case "Checkout to Main":
 this.setAttribute("currstate", "Main");
 break;
 case "UnitTest":
 testsuite.apply();
 break;
 default:
 // Display an error message
 break; }
 </handler>
 </node>

 <view name="main" width="100%" height="100%">
 <view name="header" width="20%" height="30%"
 resource="logo" x="30" y="15"/>
 <window name="details" title="Product Details"
 x="${main.header.width}"
 width="55%" height="50%" resizable="true"/>
 <window name="shopcart" title="Shopping Cart" x="75%"
 width="25%" height="65%" resizable="true">
 <state apply="${gController.currstate == 'Main'}">
 <button x="${(immediateparent.width-this.width)/2}"
 text="Checkout" y="80%" width="100">
 <handler name="onclick">
 this.setAttribute("text", "Return to Store");
 gController.setAttribute("appstate",
 "Main to Checkout");
 </handler>
 </button>
 </state>
 <state apply="${gController.currstate == 'Checkout'}">
 <button x="${(immediateparent.width-this.width)/2}"
 text="Return to Store" y="80%" width="100">
 <handler name="onclick">
 this.setAttribute("text", "Checkout");
 gController.setAttribute("appstate",
 "Checkout to Main");
 </handler>
 </button>
 </state>
 </window>

146 CHAPTER 5

Designing the Laszlo Market
 <window name="browse" title="Browse Search"
 y="${main.header.height}"
 width="20%" height="70%" resizable="true"/>
 <window name="productlist" title="Product List"
 x="${main.browse.width}"
 y="${main.details.height}"
 width="55%" height="50%" resizable="true"/>
 <window name="mediaplayer" title="Media Player"
 x="${main.browse.width+main.productlist.width}"
 y="${main.shopcart.height}"
 width="25%" height="35%" resizable="true">
 <view stretches="both"
 width="100%" height="100%" resource="video"/>
 </window>
 </view>

 <view name="checkout" x="${main.x+main.width}"
 width="75%" height="100%">
 <tabslider name="checkoutsteps"
 width="100%" height="100%"
 spacing="2" slideduration="300">
 <tabelement text="Shipping Information"/>
 <tabelement text="Billing Information"/>
 <tabelement text="Order Confirmation"/>
 </tabslider>
 </view>

 <state apply="${gController.currstate == 'Main'}">
 <animator target="main" attribute="x"
 duration="700" to="0"
 onstop="testsuite.testcase.main_test()"/>
 </state>
 <state apply="${gController.currstate == 'Checkout'}">
 <animator target="main" attribute="x"
 duration="700" to="${-(canvas.width*.75)}"
 onstop="testsuite.testcase.checkout_test()"/>
 </state>

 <state name="testsuite" apply="false">
 <TestSuite name="testsuite">
 <TestCase name="testcase">
 <method name="testCheckout">
 gController.setAttribute("currstate", "Checkout");
 </method>
 <method name="checkout_test">
 assertEquals(-(canvas.width*.75), main.x);
 gController.setAttribute("currstate", "Main");
 </method>
 <method name="main_test">
 assertEquals(0, main.x);
 Debug.write('test complete');

Summary 147
 </method>
 </TestCase>
 </TestSuite>
 </state>
</canvas>

This completes the general architecture of the Laszlo Market. We’ve covered a lot
of ground, but have completed a working skeleton for our application. This skele-
ton will continue to be enhanced throughout the upcoming chapters. We’ll cover
topics that range from working with layouts and components, displaying the con-
tents of local XML datasets, and providing an application-branded appearance, to
integrating Laszlo Flash and DHTML components. We finally convert our proto-
type into a deployed application interfacing to an HTTP server. It’s a long ride and
hopefully you’ll enjoy the many stops along the way.

5.8 Summary

The objective of this chapter was to demonstrate Laszlo LZX by building a proto-
type representative of typical Laszlo applications. Design issues focus on the need
to maintain visual continuity across different screens. The design process consists
of initially using wireframes to identify business processes and to provide an initial
representation for their interfaces. These initial low-fidelity wireframe models are
used as playing pieces within a storyboarding process to develop the application’s
transition states. Afterward, more refined higher-fidelity wireframe models are
developed to specify layout requirements. These layout specifications can gener-
ally be directly encoded in LZX.

 A major part of this chapter dealt with determining a design strategy for inte-
grating multiple screens into a single screen. Different strategies are available, such
as using external or internal screens. For the Laszlo Market, we decided to use exter-
nal screens and animate the transition from one screen configuration to another.

 We demonstrated the use of a state transition table for implementation. This
table serves as a central MVC controller and helps maintain the separate roles of
control and process. After we completed the initial prototype, we highlighted sev-
eral areas in the source code that benefited from code refactoring. The flexibility
of this architectural approach allows unit testing to be easily added and controlled
within an application. Unit-testing code can be controlled through a URL query
string, allowing the application to be unit tested even after deployed.

148 CHAPTER 5

Designing the Laszlo Market
 At this point, the prototype captures the high-level workflow of the Laszlo Mar-
ket. The next step in the continued development of the prototype is to concen-
trate on intra-screen design and development. But before we can begin designing
the details of the main and checkout screens, we need to take a detour to better
understand the operation of layouts.

Part 2

Prototyping
 the Laszlo Market

This second part of the book concentrates on the Laszlo Market to illus-
trate new topics. The first of these is the layout object, containing an algo-
rithm for creating a visual pattern using a set of view-based objects. From
layouts, we move to reusable components, which are demonstrated by building
the panes in the Shipping Information page of the Laszlo Market. In this
context, we devote a considerable amount of time discussing the important
topic of field validation. Third, we examine how the Laszlo event-handling
system is based on event and delegate objects and how the delegate mechanism
allows a tag’s behavior to be changed during execution. Finally, the Laszlo
input services are used to provide a protected login featuring a modal registra-
tion window, tool-tip help messages, keyboard shortcuts for store-related
functions, and an introduction to drag-and-drop operations. At the end of
this part, you can see the Market start to take shape as a real online store.

Laying out
the Laszlo Market
This chapter covers
■ Solving common layout problems
■ Creating custom layouts
■ Creating form layouts
151

152 CHAPTER 6

Laying out the Laszlo Market
See first that the design is wise and just: that ascertained, pursue
it resolutely; do not for one repulse forego the purpose that you
resolved to effect.

 —William Shakespeare

In the previous chapter, we completed a skeletal shell for the Laszlo Market. In this
chapter, we’ll use layouts to build the individual screens for our application. A lay-
out object contains an algorithm designed to create a pattern for a set of sibling
view-based objects. These patterns range from a gridlike layout, similar to typical
city blocks, to stretchable layouts with variable-length borders. Screen configura-
tions of varying complexity can be handled using different layout combinations.

 A screen layout must be flexible enough to be resized without clipping design
elements or distorting the overall alignment. A static layout doesn’t afford this
flexibility, since design changes result in time-consuming manual layout reconfig-
urations. The key to providing this flexibility is to represent a screen layout with
an algorithm. This produces an initial configuration of view objects conforming
to a relationship established by this algorithm. Dynamic reconfiguration main-
tains this relationship when the dimensions of any constituent object are modi-
fied. Because a layout contains an algorithm, it can be used in a mathematical way
to produce additive compound layouts; this allows some layouts to be used as lay-
out modifiers.

 Laszlo provides a set of high-level layout tools for handling common layout
configurations and a set of low-level API interfaces for creating new layouts. In this
chapter, we’ll limit ourselves to examining only static configurations of custom lay-
outs. In chapter 8 we’ll discuss adding dynamic configuration capabilities to cus-
tom layouts.

 The chapter starts by exploring layout tools for common problems, moves on
to the fundamentals of custom layouts, and ends by showing an important appli-
cation of custom layouts for laying out input forms that perform validation.

6.1 Common layout problems

Laszlo provides a comprehensive assortment of layout tags to address a wide range
of situations, ranging from rectilinear—horizontal or vertical—placement, fixed
margins, and stretchable, rotational, and dynamic patterns. All layout tags
extend the LzLayout class. They attach to a parent view and apply a layout algo-
rithm to the parent view’s subviews array to create a layout configuration for its

Common layout problems 153
child views. By default, all views position themselves at x="0" and y="0" in their
coordinate space. If the x and y attributes are left unset, the sibling views will end
up on top of each other. When a layout is attached to a view, the layout has access
to the view’s subviews array. The base layout class contains an update method
that contains the algorithm describing the layout configuration. It is called when
the parent view completes initialization and arranges the child views into the lay-
out pattern. The source code for the layout tools is supplied with the Laszlo distri-
bution and is found in the directory $LPS_HOME/lps/components/utils/layouts.
The attributes listed in table 6.1, which control the major characteristics of a lay-
out, are supported by all layouts.

Layouts are generally oriented along either the x- or y-axis. If the axis attribute is
not specified, orientation defaults to the y-axis. The inset attribute specifies an
initial spacing value for the first child view of the layout. The spacing attribute
specifies the amount of space between adjacent child views. The default value for
both spacing and inset is 0. A layout is performed only on a set of sibling views
and can’t descend the parent-child hierarchy. A layout can either be directly
attached as an attribute:

<view layout="axis: x; spacing: 5"/>

or attached as a child node to the parent:

<view>
 <layout/>
 ...
</view>

Layouts can be categorized into these groups; the basic layouts group includes the
simplelayout and its related variations. The stretchable layouts group addresses sit-
uations requiring a stretchable border. The final group consists of layout modifi-
ers that can be used to add dynamic capabilities to the other layout tags.

Table 6.1 Attributes shared by layout classes

Name Data Type Tag or Script Attribute Type Description

axis string Both Setter The axis in which the layout oper-
ates; either x or y

inset number Both Setter The number of pixels to inset the
first view controlled by the layout

spacing number Both Setter The number of pixels to use
between each view in the layout

154 CHAPTER 6

Laying out the Laszlo Market
6.1.1 Basic layouts
The simplelayout, the most popular layout, serves as the base pattern used by
the other layouts to modify with variations. These variations include reversing the
layout, extending it over multiple rows, rotating the subview, or modifying with a
constant value.

Using the simplelayout tag
A simplelayout lays out a set of child views along a vertical or horizontal axis
with consistent spacing. The variations allow the order of child views to be
reversed, modified by an offset, wrapped over multiple rows, or changed to
accommodate a rotated member. The initial view can also be inset by a specified
amount. This tag ignores conflicting x or y attributes for any of its subviews. List-
ing 6.1 illustrates its behavior.

<canvas>
 <class name="bar" width="20" height="100" bgcolor="0xDDDDDD"/>
 <simplelayout axis="x" spacing="5"/>
 <bar x="40"/>
 <bar x="20" y="10"/>
 <bar x="-40"/>
</canvas>

Since the layout orientation is along the x-axis, the x
attributes of the contained child views are discarded.
This results in a consistent spacing of 5 pixels between
the child views. Since the y attribute is not in conflict
with the layout orientation, it is applied, as shown in fig-
ure 6.1, resulting in the second child view having an off-
set of 10 pixels along the y-axis.

 The analogous result holds for the reverse situation,
when there are conflicting y attributes in a layout ori-
ented along the y-axis.

 A simplelayout can handle dynamic changes. When
any child view controlled by a layout changes its size or
visibility, the simplelayout’s update method is invoked
with its layout algorithm:

Listing 6.1 Using a simplelayout

Figure 6.1 Conflicting x
attributes are discarded for
a simplelayout with a
matching axis. Since the y
attribute isn’t in conflict, it
is used in this layout.

Common layout problems 155
<canvas>
 <simplelayout axis="x" spacing="2"/>

 <view width="100" height="100" bgcolor="0xBBBBBB"/>
 <view width="100" height="100" bgcolor="0xCCCCCC"
 onclick="this.setWidth(50)"/>
 <view width="100" height="100" bgcolor="0xDDDDDD"/>
</canvas>

The results are shown in figure 6.2, where the middle view has its size changed
after the initial layout has occurred. When the width is changed this results in the
re-execution of the layout algorithm.

Analogously, when the visibility of the middle view is turned off, the simplelayout
is re-executed to close the gap produced by the now nonvisible view:

<canvas>
 <simplelayout axis="x" spacing="2"/>

 <view width="100" height="100" bgcolor="0xBBBBBB"/>
 <view width="100" height="100" bgcolor="0xCCCCCC"
 onclick="this.setAttribute('visible', false)"/>
 <view width="100" height="100" bgcolor="0xDDDDDD"/>
</canvas>

You can see the results in figure 6.3.

Figure 6.2 Changing the width of a child view participating in a layout results in the layout algorithm
being executed.

Figure 6.3 Changing the visibility of a child view participating in a layout results in the layout
being executed.

156 CHAPTER 6

Laying out the Laszlo Market
Changing the x or y coordinates with a setAttribute, setX, or setY call that
matches the layout orientation will not cause the layout to be updated. Instead, it
results in the layout spacing becoming irregular. Therefore, these calls shouldn’t
be used with a matching layout.

Reversing a layout
The reverselayout is similar to the simplelayout, except that it reverses the
order of the subviews. The reverselayout tag is useful for situations where infor-
mation is stored in last-in, first-out order. Although this doesn’t have much appli-
cability with declarative objects, (see listing 6.2), the situation can easily occur
with replicated views from a dataset.

<canvas>
 <view height="100" width="100" bgcolor="0xCCCCCC">
 <text>4</text>
 <text>3</text>
 <text>2</text>
 <text>1</text>
 <reverselayout end="false"/>
 </view>
</canvas>

The reverselayout’s end attribute pushes
the subviews to the bottom of the parent
view and is the default action for the
reverselayout tag. To get the reversed
views to display at the beginning of the par-
ent view, the end attribute must be reset to
false. The effects of using the end attribute
are shown in figure 6.4.

 Up to now, we have dealt with situations
where there is sufficient room to contain
the child views. The wrappinglayout is
designed for situations where line wrap-
ping is required.

Listing 6.2 The reverselayout, which displays the views in reverse order

Figure 6.4 The end attribute for the
reverselayout tag controls the placement
of the layout. Normally, it appears at the
bottom of the containing view, but setting
end="false" causes the results to be
displayed at the top of the containing view.

Common layout problems 157
Line wrapping
The wrappinglayout is similar to the simplelayout, except that it supports line
wrapping. When the number or size of the child views exceeds the available space,
this layout wraps the excess subviews onto the next line. Additional attributes,
shown in table 6.2, are used to control the placement of the initial row and for
subsequent wrapped lines.

Listing 6.3 illustrates each of the attributes in table 6.2.

<canvas>
 <view x="10" y="10" width="400" height="150" bgcolor="0xBBBBBB">
 <wrappinglayout axis="x" xinset="10" xspacing="20"
 yinset="10" yspacing="20"/>
 <view width="100" height="50" bgcolor="0xCCCCCC"/>
 <view width="100" height="50" bgcolor="0xCCCCCC"/>
 <view width="100" height="50" bgcolor="0xCCCCCC"/>
 <view width="100" height="50" bgcolor="0xCCCCCC"/>
 <view width="100" height="50" bgcolor="0xCCCCCC"/>
 </view>
</canvas>

Figure 6.5 shows the effect of these spacing and inset attributes when applied to a
layout.

Table 6.2 The wrappinglayout line-spacing attributes

Name Data Type Tag or Script Attribute Type Description

xinset number Both Setter The number of pixels to offset
the first view controlled by the
layout on the x-axis

xspacing number Both Setter The number of pixels to use
between the views controlled
by the layout on the x-axis

yinset number Both Setter The number of pixels to offset
the first view controlled by the
layout on the y-axis

yspacing number Both Setter The number of pixels to use
between the views controlled
by the layout on the y-axis

Listing 6.3 Wrappinglayout used to wrap views across multiple lines

158 CHAPTER 6

Laying out the Laszlo Market
If the xspacing and yspacing attributes are not set, their values default to that of
the spacing attribute. Likewise, if the xinset and yinset attributes are unset,
their values default to that of the inset attribute. When these attributes are speci-
fied, they override the spacing and inset attributes.

Rotational layouts
A rotational layout adjusts one or more rotated child views so they are evenly
arranged along an axis. The rotational layout thus serves as a bridge between a
rotated view and other rectilinear views. Listing 6.4 illustrates this using the
simpleboundslayout tag. Suppose we had an initial display of three colored
squares, lined up as shown on the left in figure 6.6:

<canvas>
 <view bgcolor="0xDDDDDD">
 <view width="60" height="60" bgcolor="0xCCCCCC"/>
 <view width="60" height="60" bgcolor="0xBBBBBB"/>
 <view width="60" height="60" bgcolor="0xCCCCCC"/>
 <simplelayout axis="x"/>
 </view >
</canvas>

Figure 6.5 The wrappinglayout causes extra views that don’t fit on the
initial axis to be placed along a parallel axis whose distance is specified by
the spacing attribute. More tightly controlled spacing can be achieved with
the xinset, xspacing, yinset, and yspacing attributes.

Figure 6.6 In this sequence, we move from a simplelayout to an attempt to simply rotate a
view, to finally using simpleboundslayout to fit the rotated view correctly.

Common layout problems 159
We then rotate the middle view by 45 degrees by adding a rotation="45"
attribute to it:

<view width="60" height="60" bgcolor="0xBBBBBB" rotation="45"/>

<canvas>
 <include href="utils/layouts/simpleboundslayout.lzx"/>
 <view bgcolor="0xDDDDDD">
 <view width="60" height="60" bgcolor="0xCCCCCC"/>
 <view width="60" height="60" bgcolor="0xBBBBBB" rotation="45"/>
 <view width="60" height="60" bgcolor="0xCCCCCC"/>
 <simpleboundslayout axis="x"/>
 </view>
</canvas>

Since a view rotates around its upper-left corner, this doesn’t produce the desired
effect of centering the rotated view; the view is misaligned and overlaps the first
view. Manually positioning this rotated view would be a messy and error-prone
exercise. Not only would the xoffset and yoffset attributes need to be correctly
set, but the x and y attributes for the surrounding views would also have to be
altered to provide additional space for the rotated center view, as we see on the
right side of figure 6.6. The simpleboundslayout tag handles all the calculations
for us.

 Of course, the simpleboundslayout

doesn’t just work on only a single view, but can
be extended to rotate any number of child
views to produce the pattern seen in figure 6.7.

 These views could also be rotated along
the y-axis to produce a different type of bor-
der. Now that we have seen the basic layouts,
let’s look at a layout modifier.

Modifying a layout
A common layout requirement is a fixed margin. The constantlayout tag can be
used as a layout modifier to supply this fixed margin. Since constantlayout only
provides an offset, it requires another layout to be useful.

 In listing 6.5, the constantlayout tag modifies the layout created by the
simplelayout tag to create a left margin of 20 pixels.

Listing 6.4 Aligning a rotated view with simpleboundslayout

Figure 6.7 This pattern is produced by
rotating all the child views within a parent
view and using simpleboundslayout.

160 CHAPTER 6

Laying out the Laszlo Market
<canvas>
 <class name="bar" height="20" bgcolor="0xCCCCCC"/>
 <view width="400" height="150" bgcolor="0xBBBBBB">
 <simplelayout axis="y" spacing="20"/>
 <constantlayout axis="x" value="20"/>
 <bar width="80"/>
 <bar width="100"/>
 <bar width="90"/>
 <bar width="90"/>
 </view>
</canvas>

Figure 6.8 shows the subviews offset by the 20-
pixel margin specified by the constantlayout
tag. The constantlayout tag specifies an
orthogonal, or cross, axis in relation to the
other layout allowing it to produce a consistent
effect. It can’t have a matching axis orientation
with the other layout, because it would be
ignored because of the conflict.

 All the basic layouts, with the exception of
the wrappinglayout, display a static layout.
Although views can change their size, the lay-
out doesn’t stretch or compress these views. If
the parent view has a fixed space, then,
depending on their size and number, the subviews could fall short of filling the
available space or extend beyond it. When the layout must be sized to exactly fill a
parent view’s space, we need to use stretchable layouts.

6.1.2 Stretchable layouts

Stretchable layouts have many uses for creating borders, resizable buttons, or any-
thing that requires a variable-length mid-section. A stretchable layout at a minimum
consists of a parent view with at least three child views: two end views and a middle
view. Generally, the two end views maintain a consistent appearance and size, and
serve as terminators or bookends. When the parent view’s size changes, the middle
views expand or contract, horizontally or vertically, to fill the available area.

Listing 6.5 Using the constantlayout tag to create a left margin

Figure 6.8 The constantlayout
works in conjunction with another
layout to perform layout modification.
In this case, it modifies the layout by
shifting it along the x-axis by 20 pixels.

Common layout problems 161
The stableborderlayout tag
The stableborderlayout, the simplest stretchable layout, works with three sub-
views: the middle view stretches to fill the space between the two fixed-length end
pieces. In the following example, the parent view has a width of 200 pixels and
contains three bars. In listing 6.6, the first and last bar have a fixed width of 20
pixels, while the middle bar purposely has no width specified since it stretches to
fill the available space.

<canvas>
 <class name="bar" height="100"/>
 <view name="container" x="10" y="10" width="200">
 <stableborderlayout axis="x"/>
 <bar width="20" bgcolor="#BBBBBB"/>
 <bar bgcolor="#CCCCCC"/>
 <bar width="20" bgcolor="#BBBBBB"/>
 <handler name="onclick">
 this.setAttribute("width", this.width+20);
 </handler>
 </view>
</canvas>

An onclick event handler is added to the parent view to enlarge it by 20 pixels with
each click. This causes the middle bar to expand to fill the available space. The result
in figure 6.9 shows how the second subview resizes to fill the middle section.

 But what if you have more than three child views? For that, the resizelayout
tag works like a stableborderlayout tag that contains multiple stretchable views.
This is useful for laying out a row containing a number of variable-sized images
separated by a common spacing size.

Listing 6.6 The stableborderlayout, which stretches a middle section to create
 a border

Omits width to
make stretchable

Figure 6.9 The stableborderlayout causes the middle section to
expand to fill the space between two fixed-length end pieces. This layout
handles dynamic changes by continuing to expand its middle section.

162 CHAPTER 6

Laying out the Laszlo Market
The resizelayout tag
The resizelayout tag is similar to stableborderlayout, but works with any num-
ber of resizable middle views. To specify a resizable child view, its options
attribute is set to releasetolayout. When multiple views have releasetolayout
set, the available space is split evenly among those views. Listing 6.7 shows three
fixed-size child views and two resizable child views.

<canvas>
 <class name="bar" height="100"/>
 <view name="container" x="10" y="10" width="200">
 <resizelayout axis="x"/>
 <bar bgcolor="#CCCCCC" width="20"/>
 <bar bgcolor="#BBBBBB" options="releasetolayout"/>
 <bar bgcolor="#CCCCCC" width="20"/>
 <bar bgcolor="#BBBBBB" options="releasetolayout"/>
 <bar bgcolor="#CCCCCC" width="20"/>
 <handler name="onclick">
 this.setAttribute("width", this.width+20);
 </handler>
 </view>
</canvas>

Once again, the onclick event handler
increases the width of the parent view. This
forces the two darker-colored views to resize
to accommodate the increased width. You
can see the result in figure 6.10.

 In the next section, we’ll see how these
layouts can be modified to act in a dynamic
manner.

6.1.3 Dynamic layout modifiers

The resizestate tag is a layout modifier for the stretchable layouts or the wrap-
pinglayout to provide them with a dynamic resizing capability. With dynamic
resizing, the width and height attributes of a parent view change in response to
the movement of the mouse. This produces an animated effect as the layout con-
tinually updates in response to the size changes of the parent view.

 In listing 6.8, we take an earlier example and modify its operation with the
resizestate tag. We also add onmousedown and onmouseup event handlers to
activate and deactivate the animated properties associated with the resizestate

Listing 6.7 The resizelayout tag, which stretches multiple views

Figure 6.10 The resizelayout tag works
with several subviews to maintain a stable
layout. The resizable views are identified by
the releasetolayout attribute.

Common layout problems 163
tag. Since the resizestate tag is derived from the state tag, apply and remove
methods can be used to turn its actions on and off.

<canvas>
 <view x="10" y="10" width="400" height="150" bgcolor="0xBBBBBB"
 onmousedown="rs.apply()" onmouseup="rs.remove()">
 <resizestate name="rs"/>
 <wrappinglayout axis="x" spacing="15"
 xinset="10" xspacing="20"
 yinset="10" yspacing="20"/>
 <view width="100" height="50" bgcolor="0xCCCCCC"/>
 <view width="100" height="50" bgcolor="0xCCCCCC"/>
 <view width="100" height="50" bgcolor="0xCCCCCC"/>
 <view width="100" height="50" bgcolor="0xCCCCCC"/>
 <view width="100" height="50" bgcolor="0xCCCCCC"/>
 </view>
</canvas>

The code in listing 6.8 creates an initial wrappinglayout with five sibling subviews
contained within a darker-colored parent view. Dragging the corner of the darker
background square with the mouse causes the parent view to change shape. The
child views respond by dynamically rearranging themselves to fill this new shape,
as shown in figure 6.11.

 Although we have only shown this dynamic layout modifier with the supplied
layout tags, it can also be used with your own custom layouts to produce innova-
tive effects.

Listing 6.8 Modifying a layout with the resizedstate tag

Figure 6.11 A wrappinglayout provides a dynamic animated layout capability when used
with resizestate.

164 CHAPTER 6

Laying out the Laszlo Market
6.1.4 Opting out of layouts
There are always exceptions to rules and patterns. In some situations a view is to
be excluded from participating in a layout. To do so, the view’s options attribute
is set to ignorelayout. When a view is ignored by a layout, it can be layered on
top of another layout. Listing 6.9 shows how this could be used to create a cen-
tered text label on top of a stretchable view.

<canvas>
 <class name="bar" width="100" height="20"
 bgcolor="0xCCCCCC"/>

 <view width="200" y="10" x="10"
 onmousedown="rs.apply()" onmouseup="rs.remove()">
 <resizestate name="rs"/>
 <stableborderlayout axis="x"/>
 <bar width="20"/>
 <bar bgcolor="0xDDDDDD"/>
 <text fontsize="12" text="Ignore Layout" align="center"
 options="ignorelayout"/>
 <bar width="20"/>
 </view>
</canvas>

Setting the text tag’s ignorelayout option allows the stableborderlayout lay-
out to be used, since there are now only three participating views. Adding the
resizestate tag allows the parent view to be dynamically resized. Because the
text tag has its align attribute set to center and is ignored by the layout, it strad-
dles the stretched parent view and always appears in the center as the stretched
view is resized (see figure 6.12).

 Now that you’ve learned the fundamentals of layouts and have seen a cross sec-
tion of layouts addressing a variety of common layout situations, it’s time to create
your own layouts.

Listing 6.9 Using ignorelayout to create a centered text label

Centers
text label

Figure 6.12 Setting a text view’s options attribute to ignorelayout causes the “Ignore Layout”
text to be ignored by a layout. This allows the text to straddle the parent view and always remain
centered.

Creating custom layouts 165
6.2 Creating custom layouts

Although you can combine Laszlo’s supplied layout tags to address many situa-
tions, the full power of layouts is unleashed with custom layouts. In this section,
we’ll show how to do this by extending the LzLayout class, using the aircraft for-
mation model.

6.2.1 Extending the LzLayout class
Layouts extend the LzLayout class, which, in turn, extends the node class. Since
layouts have no visual characteristics; their only purpose is to manipulate sibling
views to maintain a relationship among them. The layout class includes an update
method, which contains the algorithm to perform the layout action. Although
this is an internal Laszlo method, it is available to be overridden. This update
method is initially executed upon application startup and later will be re-executed
whenever its subviews have their layout axis or visibility attribute values changed.
Table 6.3 lists a layout’s methods, which manipulate the subviews.

Since we’ve already seen how to produce an aircraft formation using offsets and
constraints, we’ll replicate the results of that example to introduce custom
layouts. Later, we’ll expand the capabilities of our layout to include dynamic
reconfiguration.

6.2.2 Building an aircraft formation layout
To build our formation layout, we’ll start with a parent view, main, containing five
sibling jet instances. The parent’s initial position is at coordinates (400, 400).
With layouts, there is no longer a lead aircraft controlling the movements of its

Table 6.3 Layout methods

Name Description

addSubview(view) Called when a new subview is added to the layout

ignore(s) Called when a subview is to be ignored by the layout

lock() Locks the layout from processing updates

releaseLayout() Removes the layout from the view and unregisters
the delegates that the layout uses

removeSubview(sd) Called when a subview is removed from the layout

unlock() Unlocks the layout after update completes

update() Contains the algorithm for a layout

166 CHAPTER 6

Laying out the Laszlo Market
following aircraft. Instead, the Laszlo system controls the layout formation and
treats each jet equally. This is a more flexible approach, since the individual jets
don’t need to contain any attribute values to perform layout. Listing 6.10 contains
our custom layout.

<canvas debug="true">
 <resource name="jet" src="F18_Hornet.png"/>
 <class name="jet" resource="jet"/>
 <view name="main" x="400" y="400">
 <layout name="jet_layout">
 <attribute name="xspacing" value="50" type="number"/>
 <attribute name="yspacing" value="40" type="number"/>
 <method name="update">
 <![CDATA[
 for (var i = 0, row = 0; i < subviews.length; i++) {
 if (i % 2)
 subviews[i].setAttribute('x', -(row * this.xspacing));
 else
 subviews[i].setAttribute('x', row * this.xspacing);
 subviews[i].setAttribute('y', row * this.yspacing);
 if (i % 2 == 0) row++;
 }
]]>
 </method>
 </layout>
 <jet/>
 <jet/>
 <jet/>
 <jet/>
 <jet/>
 </view>
 <handler name="oninit">
 Debug.write("subviews: " + main.subviews);
 Debug.write("layouts: " + main.layouts);
 </handler>
</canvas>

The most important part of a layout is its update method, since it contains the layout
algorithm. The spacing for the jets is contained in two attributes, xspacing and
yspacing, which are set to 50 and 40 pixels, respectively. The jet formation has an
inverted “vee” shape, so logic is needed to determine when the next row is reached.
Because there are two jets per row, the first is offset by a negative value and the sec-
ond by a positive value from the center axis. The result is shown in figure 6.13.

Listing 6.10 The aircraft formation model with a custom layout

Specifies
five jets

Completes
row Specifies

custom
layout

Laying out forms 167
With this custom layout, we can enlarge the formation by simply adding jet
instances. Using a layout results in the simplest calling procedure, because there
is no need to provide names, constraints, or offsets to any of the jet instances.

 Notice that, although a layout method is defined, our code contains no calls to
it. The parent main view automatically calls the layout’s update method during the
parent’s initialization. In the next section, we’ll see a situation that takes advantage
of the simple notation for view-based objects that participate in a layout.

6.3 Laying out forms

One of the most common tasks in web application design is creating a form to
gather information from a user. To be as efficient as possible, we want to only
specify a set of labels and text fields and have a layout tag create a form with justi-
fied labels and text input fields. We want our input fields to be arranged in label-
field pairs like this:

<canvas>
 <include href="incubator/formlayout.lzx"/>
 <text>name</text>
 <edittext>Bill Higgins</edittext>
 <formlayout/>
</canvas>

Although Laszlo supplies a formlayout tag under its incubator program, it’s use-
ful to know how to create a customized version to handle formatting tweaks for
specialized components.

6.3.1 Labeled input fields
We’ll define our formlayout class to extend the layout class and use its update
method to contain our form algorithm. Our algorithm needs to distinguish
between labels and fields to perform the correct field placement. To simplify

Figure 6.13 The five jet instances are contained within the subviews array of the parent view.
The attached layout for this parent view is shown in the debug window.

168 CHAPTER 6

Laying out the Laszlo Market
things, we’ll set a fixed label length of 100, default to right justification, and have
a fixed spacing of 5 pixels between labels and input fields. Listing 6.11 shows our
formlayout class.

<library>
 <class name="formlayout" extends="layout">
 <attribute name="labelwidth" value="100"/>
 <attribute name="spacing" value="10"/>
 <method name="update">
 <![CDATA[
 var curry = 0;
 for (var i = 0; i < subviews.length; i++) {
 var sv = subviews[i];
 if (i%2 != 1) {
 sv.setX(100 - (sv.getTextWidth()+5));
 sv.setY(curry+2); }
 else {
 sv.setX(this.labelwidth);
 sv.setY(curry);
 curry+=sv.height+spacing;
 }
 }
]]>
 </method>
 </class>
</library>

The attribute labelwidth specifies the maximum length of a label B. Another
attribute, spacing, controls the vertical spacing between input fields C. The local
variable curry in the update method keeps track of the y placement on the
screen D. The test at E checks if we are working with a label or input field. At F
we right-justify the text label and add a spacer. At G we update the y placement
for the next subview. The y placement is set to the subview’s height plus the value
of the spacer.

 We’re now ready to test our formlayout class with a short application using a
sampling of label-field pairings:

<canvas>
 <include href="formlayout.lzx"/>

 <text>First Name</text><edittext>Bill</edittext>
 <text>Last Name</text><edittext>Huggins</edittext>
 <text>Company</text><edittext>Laszlo</edittext>
 <formlayout/>
</canvas>

Listing 6.11 Defining a form layout (formlayout.lzx)

Controls
label length

B

Controls
vertical spacingC

Determines y
placementD

Tests for
label or
input fieldE

Updates y
placement
for next
subview

F

G

Right-justifies
text label
with spacer

Laying out forms 169
This produces the output shown in figure 6.14.
 This test seems to work very well. So let’s now test our new class against a wider

assortment of input objects. Since the Laszlo Market’s Checkout window uses the
edittext, combobox, and checkbox objects, let’s incorporate them into the form-
layout.

6.3.2 Getting to know formlayout
As a first attempt, let’s just try an enhanced list of input objects and see what
results:

<canvas>
 <include href="formlayout.lzx"/>

 <text>Name</text><edittext>Bill Higgins</edittext>
 <text>Color</text>
 <combobox>
 <textlistitem text="Dark Blue" value="0x000055"/>
 <textlistitem text="Turquoise" value="0x66dddd"/>
 <textlistitem text="Light Blue" value="0xaaddff"/>
 </combobox>
 <text>Backups</text><checkbox/>
 <formlayout/>
</canvas>

This produces the display shown in figure 6.15.
 Although the first two labeled input fields

are correctly aligned and right-justified,
there’s a text alignment problem with the
checkbox. Fixing this requires that we identify
the object type of the input field, so that
adjustments only occur for that object type.

6.3.3 Identifying class type with instanceof
The instanceof function provides JavaScript methods with an easy way to deter-
mine the type of a declarative tag. This allows JavaScript code to distinguish
between tag types when applying tag-specific formatting. The call is of the form

o instanceof c

Figure 6.14
The custom layout formlayout generates a list of
left-justified labeled input fields holding a default value.

Figure 6.15 Trying the formlayout
class with a variety of input fields without
further development, output is right-
justified correctly but the label for the
checkbox isn’t aligned correctly. The gray
line indicates where the checkbox’s label
should be aligned.

170 CHAPTER 6

Laying out the Laszlo Market
and returns true if o is an instance of the class c. An object matches its own class
and any of its parent classes, and it works for both JavaScript and LZX classes. This
function is also useful to determine if two objects share a common superclass.

 Since a text object is an instance of a JavaScript class, its class instance is
LzText. So the text tag would match the LzText, LzView, and LzNode classes.
Since the checkbox is an LZX class, we need to check for a checkbox match. We
can now modify the update method to check for the checkbox input field and
increment the value of its y attribute by 5 pixels to align it with the text label:

<method name="update">
 <![CDATA[
 var curry=0;

 for (var i = 0; i < subviews.length; i++) {
 var sv = subviews[i];
 if (i%2 != 1) {
 sv.setX(100 - (sv.getTextWidth()+5));
 sv.setY(curry+2); }
 else {
 sv.setX(this.labelwidth);
 if (sv instanceof checkbox) {
 sv.setY(curry+5); }
 else sv.setY(curry);
 curry+=sv.height+spacing;
 }
 }
]]>
</method>

This produces the output shown in figure 6.16.
 We now have a general-purpose formlayout

tag suitable for any form consisting of a sequence
of labeled input fields. Since a layout is used,
there is no need to manually set coordinate
attributes for the individual fields. On a long,
complex form, this can save a lot of time, since a simplelayout tag can be used to
lay out multiple formlayout tags along the x-axis.

 The major capability missing from our formlayout tag is field and form valida-
tion. This is one of the major topics in the next chapter, which deals with Laszlo
components.

Aligns checkbox
with label

Figure 6.16 The checkbox is moved
down to align with the Citizen label.

Summary 171
6.4 Summary

Our goal in this chapter was not only to describe the operation of layouts, but also
to provide a rationale for using them. Laszlo supplies both a finished set of layout
tools for common situations and a low-level API for creating custom layouts.

 A layout is applied to a parent view containing a set of sibling child views. The
subviews array in every LzView forms the basis for layouts. Every layout contains an
update method, which iterates through the parent view’s subviews array to apply
its algorithm to each subview, laying out the child views in a specified pattern.

 Laszlo provides a comprehensive assortment of layout tags to address a wide
range of common layout situations. These range from the simplelayout tag and
its variations to various stretchable tags used for creating variable-length borders.
Since layouts are implemented as algorithms, layout modifiers can be applied to
layouts to achieve compound results.

 To demonstrate the basics, we revised the aircraft formation model with lay-
outs. In this way, the lead jet does not determine the base location for the forma-
tion; instead, all the jets are treated equally. One advantage is the fact that
coordinate attributes are not needed for each jet. As a result, a jet is not tied to a
specific screen location, allowing the parent to be moved anywhere on the screen.

 Finally, we created a simple formlayout custom layout to manage a sequence
of labeled input forms. This layout supports simple business forms and is useful in
the Checkout window of the Laszlo Market. In the next chapter, we’ll extend the
formlayout with field validation.

Introducing
Laszlo components
This chapter covers
■ Learning component basics
■ Building screens with components
■ Controlling field placement
■ Validating input fields
172

Base component classes 173
I would like to see components become a dignified branch of
software engineering.

 —M. D. McIlroy,
 Software Engineering Conference,1

 Germany, 1968

Reusable components have been a goal of software engineering and application
development for decades. A Laszlo component is a customizable user interface
widget, written in LZX, that delivers a level of rich behavior previously only seen in
desktop applications. Laszlo’s component library supplies a comprehensive set of
user input controls: radio buttons, scrollbars, and check boxes to build user inter-
faces with a professional appearance. The appearance of components is impor-
tant enough that a platform’s value is generally judged on the strength of its
component library. Laszlo’s component library is comparable in breadth and
quality to most commercial offerings.

 In addition, Laszlo’s components are highly customizable, so an application-
specific appearance can be easily created. While standard component features
such as padding, text margins, and shadow length can be modified through
attribute settings, since components are written in LZX and supplied with the Las-
zlo distribution, we also have the ability to completely alter the behavior or appear-
ance of a component. In chapter 14, we’ll explore creating custom components.

 There is a large collection of components, so rather than attempting to cover
them all, we’ll examine the common high-level behavior that pertains to all compo-
nents. This common behavior governs how components interface to users through
the keyboard and mouse. Additionally, it also specifies how components send events
when a user selection has been made. Because we believe the best way to learn how
to use components is within an application context, we’ve designed checkout screen
using a wide assortment of the most popular components. An additional advantage
of using an application context is that field and form validation can be performed
on these components. After all, what use are components, no matter how attractive,
if they don’t protect your application from accepting invalid data values?

7.1 Base component classes

The basic properties for Laszlo components are contained in two classes: base-
component, which provides common properties for all components, and
basevaluecomponent, which adds the ability to store data. While there is almost

1 This conference represents the first published use of the term software engineering. As such, this quote
likely represents the first use of the term components in the context of software engineering.

174 CHAPTER 7

Introducing Laszlo components
no need to work directly with these base abstract classes, it is necessary to under-
stand the base functionality they supply to higher-level component classes. These
base properties, shown in table 7.1 and later in table 7.3, define how input and
output is handled by components.

The text attribute contains a character string to label a component. But this label
can only be used within a component. Many components won’t have available
space to display it. For instance, text input fields require an external label since
the input field is used to contain text. But a window can use this text attribute to
create a label within its border.

 The other attributes control how users interact with components through key-
board and mouse input. These attributes supplement the base attributes inher-
ited from the LzView class. For example, when several components are displayed,
these attributes determine which component receives input. They also define
when and how these components respond to keyboard commands. In the upcom-
ing sections, we’ll demonstrate the use of these attributes.

7.1.1 Controlling focus

A component has focus when it is designated as the
component to receive keyboard input. As figure 7.1
shows, Laszlo represents focus as a set of corner
brackets that slowly fade away. The Tab key is used to
transfer focus among a set of eligible components.

Table 7.1 The basecomponent attributes

Name Data Type
Tag or
Script

Attribute
Type

Default Description

doesenter boolean Both Setter false Enables the component, if it has
focus, to be called with doEnter-
Down—see table 7.2

enabled boolean Both Setter true Enables component responses to
user events

hasdefault boolean Both Read-only false Determines whether or not the com-
ponent has default focus

isdefault boolean Both Setter null Gives the component default focus if
it is nearest to the focused view and
that view does not have its does-
enter attribute set to true

text string Both Setter null The label displayed on the component

Figure 7.1 Focus is indicated
through a set of corner brackets
that slowly fade away.

Base component classes 175
 Components can opt out of receiving focus by resetting their focusable
attribute to false. Some browsers, such as Firefox, also use focus internally to con-
trol its operation through keyboard shortcuts. They require the mouse button to
be clicked within the browser screen to switch focus from the browser to the appli-
cation. Once a component has attained focus, pre- and postprocessing operating
features become available to it. Let’s first look at how a component with focus
interacts with keyboard input.

Capturing keyboard input
After a component gains focus, it can perform the pre- and postprocessing opera-
tions listed in table 7.2 by setting its doesenter attribute. The doEnterDown and
doEnterUp methods are executed whenever the Enter key is pressed and released.
In addition, some components, such as the button, also support the spacebar, allow-
ing the doSpaceDown and doSpaceUp methods to be invoked. Components that
receive text input, such as input fields, can’t support spacebar-initiated processing,
because they need to receive space characters.

Listing 7.1 uses the button component to provide a demonstration of both Enter-
and spacebar-initiated processing.

<canvas debug="true">
 <button text="Press" doesenter="true">
 <method name="doEnterDown">
 Debug.write("doEnterDown");
 </method>
 <method name="doEnterUp">
 Debug.write("doEnterUp");
 </method>
 <method name="doSpaceDown">
 Debug.write("doSpaceDown");

Table 7.2 The basecomponent methods

Name Description

doEnterDown() Called if the component has focus, doesenter is true, and the
Enter key is pressed

doEnterUp() Called if the component has focus, doesenter is true, and the
Enter key is released

doSpaceDown() Called if the component has focus and the spacebar is pressed

doSpaceUp() Called if the component has focus and the spacebar is released

Listing 7.1 Enter- and spacebar-initiated processing

176 CHAPTER 7

Introducing Laszlo components
 </method>
 <method name="doSpaceUp">
 Debug.write("doSpaceUp");
 </method>
 <handler name="onclick">
 Debug.write("onclick");
 </handler>
 </button>
</canvas>

Figure 7.2 shows how pressing and releasing
the spacebar and then the Enter key causes a
series of calls to the doSpaceDown, doSpaceUp,
doEnterDown, and doEnterUp methods.

 Clicking the Press button only sends an
onclick event to the onclick handler and
doesn’t result in a call to any of these other
methods.

 So now that we’ve established how compo-
nents use focus to attain keyboard input, we
need to set up exceptions to this general rule.
For example, most windows are governed by
an OK button that must always receive keyboard input. This allows a set of selections
to be accepted by a window simply by hitting the Enter key or spacebar. So we need
to set up this button to receive keyboard input by default.

Setting keyboard defaults
The isdefault attribute is settable and overrides focus to establish a particular
component member as the master or default control. There is also a read-only
hasdefault attribute that tests true for a component designated as the default.
Finally, if any of the components has its doesenter attribute set, then the isde-
fault setting can’t override it when it has focus. In listing 7.2, we set the OK but-
ton as the default so that it responds to the Enter key and spacebar as well as
being clicked.

<canvas debug="true">
 <button text="OK" isdefault="true">
 <method name="doEnterDown">
 Debug.write("OK doEnterDown : " + this.hasdefault);
 </method>
 <method name="doEnterUp">
 Debug.write("OK doEnterUp : " + this.hasdefault);

Listing 7.2 Establishing the OK button as the default

Figure 7.2 When the doesenter
attribute is set, pressing and releasing
the Enter key or spacebar initiates the
appropriate default processing for that
key. Pressing the button shown does not
cause any of these methods to be called.

Base component classes 177
 </method>
 <handler name="onclick">
 Debug.write("OK Clicked");
 </handler>
 </button>
 <button text="Cancel" x="60" doesenter="false"/>
</canvas>

In this example, we want to ensure that pressing the Enter key always results in
execution of the OK button’s doEnterDown and doEnterUp methods, independent
of which button currently has focus. This is done by setting the Cancel button’s
doesenter attribute to false. This provides the familiar default processing func-
tionality found in most dialog windows. Figure 7.3 shows the debug output.

Let’s next see how some components can store input values. The basevaluecom-
ponent class is inherited by component classes that store data.

7.1.2 Working with data components

The basevaluecomponent class has only a single attribute, value, shown in table 7.3,
and a single method, getValue, shown in table 7.4. The getValue method is used
by all components to retrieve a value. Component classes can override this getValue
method to add customized data handling.

But there is no common method to store a value and each component class must
define its own setValue method. For example, the check box component uses a
setValue method to store its value while the combobox component uses a setText
method to store a text string. However, the value attribute is used by all components
to store their data.

Table 7.3 The basevaluecomponent attribute

Name Data Type Tag or Script Attribute Type Default Description

value Any Both Setter null The value represented by
the component

Figure 7.3
The isdefault attribute is set for
the OK button, so that its
doEnterDown and doEnterUp
are always triggered when the
Enter key is pressed and released.

178 CHAPTER 7

Introducing Laszlo components
Listing 7.3 shows how these methods can be used to retrieve an input string, con-
vert it to uppercase, and then redisplay it.

<canvas>
 <edittext width="80" doesenter="true">
 <method name="doEnterDown">
 var value = this.getText();
 this.setText(value.toUpperCase(value));
 </method>
 </edittext>
</canvas>

Now that you’re familiar with the base component features, we can begin to use
these components to develop the various screens for our Checkout window.

7.2 Building a multipage window

The Checkout window contains enough information to require multiple pages.
Additionally, each page needs to be subdivided into two panes. Each pane consists
of input fields that need input validators to immediately notify users of invalid
input. These validators need to perform both field and form validation. Form val-
idation requires that information be consistent across the multiple pages.

 Once again, we start with hand-scribbled wireframes to begin the design of the
Checkout window shown in figure 7.4, where we’ve decided to implement each
page as a tabelement component.

Table 7.4 The basevaluecomponent method

Name Description

getValue() Returns the value represented by the component

Listing 7.3 Converting an input string to uppercase

Figure 7.4 This low-fidelity wireframe provides a general overview of the tabelements in the tabslider
implementing the Checkout window.

Building a multipage window 179
The Checkout window’s tabslider holds three tabelements: Shipping Information,
Billing Information, and Order Confirmation. The shipping and billing tabele-
ments are divided into address and method panes. The address pane is almost
identical for the shipping and billing tabelements. Now, we’ll design and develop
the panes for these tabelements.

 The low-fidelity wireframe is further developed to create the high-fidelity wire-
frame shown in figure 7.5. Each of the panes is indicated by a light gray square con-
taining the layout of its labeled input fields. There is a 10-pixel border surrounding
the two panes and the window boundary, and a 20-pixel separator between the
panes. Within the panes is a 5-pixel margin along the top and left sides.

We’ll start with the general layout of the panes before working with their interior
contents.

7.2.1 Coding the Shipping Information page

Separate shipping information, billing information, and order confirmation
classes are created to represent each of the tabslider’s tabelements. We want to use
all the available space within each tabelement, so their width and height settings
are set to 100%. Since font settings propagate from parent to child, this is a good
place to set the following default font specifications: font, Verdana, font size, 12,
and font style, bold. All subsequent elements contained within these classes will
inherit these default settings, and don’t need to be specified individually:

Figure 7.5 The high-fidelity wireframe of the Shipping Information page consists of two light gray
squares, each containing a highly detailed specification for the layout of the elements. Each gray
square contains a 5-pixel margin on the top and left.

180 CHAPTER 7

Introducing Laszlo components
<class name="shippingInfo" width="100%" height="100%"
 fontsize="12" fontstyle="bold" font="Verdana"/>
<class name="billingInfo" width="100%" height="100%"
 fontsize="12" fontstyle="bold" font="Verdana"/>
<class name="orderConfirm" width="100%" height="100%"
 fontsize="12" fontstyle="bold" font="Verdana"/>

These attribute values serve as default values that can be overridden by individual
instances. We’ll adopt the practice of specifying default class attribute settings
within our defined classes to help prevent the calling sections from becoming
cluttered with numerous attribute settings.

 Although global IDs should be used sparingly, creating a set of global IDs,
shiptab, billtab, and ordertab, provides a convenient way to access the con-
tents of each tabelement. Listing 7.4 shows the declaration of our tabslider with
its tabelements.

 <tabslider height="100%" width="100%" spacing="2" slideduration="300">
 <tabelement text="Shipping Information">
 <shippingInfo id="shiptab"/>
 </tabelement>
 <tabelement text="Billing Information">
 <billinginfo id="billtab"/>
 </tabelement>
 <tabelement id="ordertab" text="Order Confirmation"/>
</tabslider>

The next step is creating the shippingInfo and billingInfo classes to populate
the Shipping and Billing Information tabelements.

Configuring the shipping and billing layouts
Since each of these tabelements consists of address and method panes, we’ll
define a separate class to represent each of them:

<class name="shippingAddress" bgcolor="0xCCCCCC"/>
<class name="shippingMethod" bgcolor="0xCCCCCC"/>
<class name="billingAddress" bgcolor="0xCCCCCC"/>
<class name="billingMethod" bgcolor="0xCCCCCC"/>

Each tabelement contains a default 5-pixel margin, which we’ll increase to 10 pixels
by setting the x and y attributes for each instance to 5. To accommodate this 10-
pixel margin, we set the height attribute to the parent’s height minus 10. Now, if
the shippingInfo instance gets resized, the 10-pixel margin won’t change. Because
this relationship occurs within a class definition, the parent specification is

Listing 7.4 Declaring a tabslider with its tabelements for the checkout screen

Building a multipage window 181
changed to classroot. The shippingAddress instance now has a 10-pixel margin
on its left, top, and bottom sides. We’ll next begin working on its width.

 To accommodate the 20-pixel spacer and the 5-pixel left and right margins, we
subtract 15 pixels from the width of each gray pane. Both gray panes have their
width set to the parent’s width divided by 2 minus 15 pixels. Finally, the right gray
pane has its x attribute offset to the parent’s width divided by 2 plus 10 pixels,
since this is half the spacer size. Here are the results of our efforts so far:

<class name="shippingInfo" fontsize="12" fontstyle="bold" font="Verdana">
 <shippingAddress x="5" y="5"
 width="${classroot.width/2-15}"
 height="${classroot.height-10}"
 bgcolor="0xCCCCCCC"/>
 <shippingMethod x="${classroot.width/2+10}" y="5"
 width="${classroot.width/2-15}"
 height="${classroot.height-10}"
 bgcolor="0xCCCCCC"/>
</class>

Since these gray squares are to be reused in the Billing Information screen, we’ll
create a graybox class to represent them. Next we’ll look at creating the 10-pixel
margin within each gray square, which serves as an introduction to the issue
of placement.

7.2.2 Controlling placement issues

Each gray box contains a form consisting of a header, text messages, and labeled
input fields. According to the layout specifications in figure 7.6, each gray box has
a 10-pixel margin along its top and left sides surrounding this form. Each pane
can be viewed as consisting of two containers: an outer view with a gray back-
ground and an inner view offset by 10 pixels to contain the form. A first attempt at
creating the graybox class might look like this:

<class name="graybox" bgcolor="0xCCCCCCC">
 <view name="content" x="10" y="10"
 width="${parent.width-20}"
 height="${parent.height-20}"/>
</class>

The x and y attributes are set to create a fixed margin of 10 pixels, and its width
and height are shortened to accommodate this margin. Finally, a text object mes-
sage is added within a graybox instance, and it also needs to have a margin set:

<canvas debug="true">
 <include href="library.lzx"/>
 <graybox name="shipping"
 width="${parent.width/2-20}"

Displays left
gray box

Displays right
gray box

182 CHAPTER 7

Introducing Laszlo components
 height="${parent.height-20}">
 <text text="message">
 <handler name="oninit">
 Debug.write("parent : ", this.parent);
 Debug.write("immediateparent : ", this.immediateparent);
 </handler>
 </text>
 </graybox>
</canvas>

Unfortunately, this doesn’t produce the expected results. Looking at figure 7.6,
we see that the message is displayed with no margin; the right image shows the
desired results.

Before diving into this issue, let’s step back and revisit some of the key view
attributes and methods concerning placement. Every child node has two parents:
a parent attribute specifying its read-only parent within an application’s node
hierarchy, and its settable immediateparent attribute, which can display a node
anywhere within the node hierarchy.

 The message isn’t placed correctly because the internal structure of a class is
not visible to outside views. By default, whenever an object—our text message—is
placed inside a class as a child node, it appears as a top-level instance within the
class. But this isn’t where we need the text message placed. It needs to be placed
inside the inner view named content, and not within the graybox instance
named shipping.

 The debugger output in figure 7.7 provides a deeper look at the problem. For
the text object to be correctly aligned, it must be a child of the view named content.
But the values for its parent and immediateparent attributes are both shipping.

 The defaultplacement attribute was created for just this type of situation; it
causes the immediateparent attribute to be set to the value of the defaultplace-
ment. Now all subsequent views placed within the graybox parent will be correctly
aligned within content.

Figure 7.6 The display on the left shows the result of defining a class without specifying a
defaultplacement attribute. Any view-based objects contained by this class instance are
displayed at the wrong level of the node hierarchy.

Building a multipage window 183
<class name="graybox" defaultplacement="content">
 <attribute name="bgcolor" value="0xCCCCCCC" type="color"/>
 <view name="content" x="10" y="10"
 width="${parent.width-20}"
 height="${parent.height-20}" bgcolor="0xBBBBBB"/>
</class>

The defaultplacement attribute affects placement for all class instances, while
the placement attribute changes the placement only for a particular instance. So
setting the placement only for the shipping graybox instance would look like this:

<graybox name="shipping" placement="content"/>

Although the placement attribute provides another way to specify placement, it
can’t be used to override the defaultplacement setting. The defaultplacement
setting always takes precedence over individual placement settings.

 Now that we’ve resolved the general layout issues, we are ready to proceed with
the two panes for the Shipping Information tabelement. We’ll start with the Ship-
ping Address pane.

7.2.3 Creating the Shipping Address pane

We can handle the configuration of the Shipping Address pane with two nested
layouts. The top-level organization of the screen is a series of views, indicated by
the dashed boxes in figure 7.8, stacked atop one another. This is easily repre-
sented with a simplelayout tag specifying 5-pixel row spacing.

 The last view contains a form, which requires a nested formlayout; see listing 7.5.
This combination provides a neat solution for handling the row-spacing require-
ments for this pane.

Figure 7.7 This debugger output shows that the text message is the child of the class instance shipping
and not of the view content. Both parent and immediateparent have the value shipping.

184 CHAPTER 7

Introducing Laszlo components
<class name="shippingAddress">
 <graybox width="${classroot.width/2-15}"
 height="${classroot.height-5}">
 <simplelayout axis="y" spacing="5"/>
 <text fontsize="16">Shipping Address</text>
 <checkbox text="Same as Billing Address"/>
 <text multiline="true" width="100%">
 Please enter an address where the items can
 be shipped to
 </text>
 <view width="100%"/>
 <formlayout align="right" spacing="3"/>
 <text text="Name:"/><edittext width="250"/>
 <text text="Company:"/><edittext width="250"/>
 <text text="Address:"/><edittext width="250"/>
 <text text="Address:"/><edittext width="250"/>
 <text text="City:"/><edittext width="250"/>
 <text text="State:"/><edittext width="150"/>
 <text text="Zip:"/><edittext width="100"/>
 <text text="Country:"/><edittext width="200"/>
 <text text="Phone:"/><edittext width="150"/>
 </view>
 </graybox>
</class>

Since everything is handled with layouts, this allows us to easily add or remove ele-
ments without impacting the overall configuration.

Listing 7.5 Using a combination of simplelayout and formlayout for the Shipping
 Address pane

Figure 7.8
A simplelayout is used to perform the higher-level
layout of the major view-based objects. The
simplelayout provides a consistent spacing of 5
pixels between each element. All the input fields
within the last view are laid out with a formlayout.

Provides 5-pixel
spacing between
rows

Overrides default
font setting

Sets multiple lines
of fixed width

Provides right
alignment and
3-pixel spacing

Validating input fields 185
 The last missing piece required by this pane is field validation. We need valida-
tion at both the field and the form levels. Field validation ensures that no fields
contain invalid data, while form validation ensures that the fields are collectively
consistent. For example, the state and zip code fields need to be checked to
ensure that the zip code belongs within the state. Invalid data needs to be imme-
diately detected and reported to the user in a nonintrusive way. In the next sec-
tion, you’ll learn how validators satisfy each of these goals.

7.3 Validating input fields

Although Flash doesn’t natively support regular expressions to check input values,
validator tags provide a convenient solution for validating user input. A field input
value is checked against a set of rules to determine its validity and a green(OK) or
red (Error) icon is displayed along with a relative error message. The rules are
written in JavaScript, but the range and requirements of input data types is small
enough to be easily handled.

 All field validators are derived from the basevalidator class. Each validator
has a doValidation method, containing the validation rules for each input field,
which is called for each input character. Initially, each validated field contains a
red error icon that changes to green when the input value satisfies the validation
criteria. This allows character classes (all numbers or letters) to be checked as well
as formatted strings (an email address consisting of name@company.com). Each
validator contains a set of attributes with specific error messages available to be
overridden to provide customized error messages.

 Validator tags must be contained within a validatingForm tag. The validat-
ingForm tag contains an errorcount attribute, which is decremented whenever an
input field satisfies its validation criteria. When the errorcount value reaches
zero, an action, such as enabling a submit button, can be performed. The valida-
tor libraries are included like this:

<include href="incubator/validators"/>

and four validator tags—stringvalidator, datevalidator, numbervalidator,
and emailvalidator—are included in the distribution. All source code for the
current suite of validators is bundled with the Laszlo distribution and can be
found in this directory:

$LPS_HOME/lps/components/incubators/validators

Validator tags are currently part of the Laszlo “incubator” program, but have
become popular enough to attain widespread use. They were originally contrib-
uted by Togawa Manabu of the Laszlo Japan users group. Since new validator

186 CHAPTER 7

Introducing Laszlo components
types are easy to write, the current list of supported data types should soon grow
into a complete library covering all the major input data types. Later we’ll cover
how to create a new validator tag.

7.3.1 Using validators

Validator tags must wrap an input field to perform validation on it. The required
attribute makes it mandatory that input be entered into a field. All error messages
are available as attributes, so it’s easy to change the default messages. The
requiredErrorstring attribute is set here to change the default requiredError-
string error message:

<stringvalidator required="true" requiredErrorstring="Required">
 <edittext width="150"/>
</stringvalidator>

Since we are dealing exclusively with text input fields in the Shipping Address
pane, we’ll create a set of classes to support a succinct notation:

<class name="checkString" extends="stringvalidator" width="150"
 required="true" requiredErrorstring="Required">
 <edittext width="${classroot.width}"/>
</class>
<class name="checkNumber" extends="numbervalidator" width="100"
 required="true" requiredErrorstring="Required">
 <edittext width="${classroot.width}"/>
</class>

As listing 7.6 shows, the validatingForm performs validation on each of the fields
in the form. The validatingForm keeps track of the number of nonvalidated input
fields. Every time a field becomes validated, its errorcount attribute is decre-
mented and its event handler is called to check for nonvalidated input fields. When
all input fields have been validated, the pane’s confirm attribute is set to true to
indicate that all its input fields are now valid. If a user subsequently updates a field
with an invalid input value, the confirm attribute changes back to false.

<validatingForm width="100%">
 <formlayout align="right" spacing="3"/>
 <text text="Name:"/><checkString width="150"/>
 <text text="Company:"/><checkString name="company"/>
 <text text="Address:"/><checkString name="addr1"/>
 <text text="Address:"/><checkString name="addr2"
 required="false"/>
 <text text="City:"/><checkString name="city"/>
 <text text="State:"/><checkString name="state"/>
 <text text="Zip:"/><checkNumber name="zip"/>
 <text text="Country:"/><checkString name="country"/>

Listing 7.6 Using validators to check input data in the Checkout window

Validating input fields 187
 <text text="Phone:"/><checkNumber name="phone"/>
 <text text="Email:"/><checkNumber name="email"/>
 <handler name="onerrorcount" args="errors">
 if (errors == 0)
 classroot.setAttribute("confirm", true);
 else
 classroot.setAttribute("confirm", false);
 </handler>
</validatingForm>

Figure 7.9 shows that all fields, with the excep-
tion of the second address field, are required.
Once a required field has been filled, a green
checkmark appears next to it, allowing a user
to easily verify that all input fields have been
correctly completed.

 Let’s now look at how easy it is create new
validator tags to provide more customized
data type validation.

7.3.2 Creating a new validator

In listing 7.6 the checkNumber class uses the
numbervalidator tag to perform validation
on zip codes. However, it is a poor match for
this job since it only ensures that the input
value is numeric and doesn’t exceed 99999.
Zip code validation should handle both five-
and nine-character forms, with the nine-
character code containing a dash. The zip-
codevalidator class, shown in listing 7.7, is
called for each input character.

<class name="zipcodevalidator" extends="basevalidator">
 <attribute name="trim" type="boolean" value="true"/>
 <attribute name="notzipcodeErrorstring" type="string"
 value="Invalid zipcode value"/>

 <method name="doValidation" args="val">
 <![CDATA[
 var valtext = getValueText(val);

 if (required && valtext.length < 1){

Listing 7.7 Validating five- and nine-character zip codes

Triggers when
field is validated

Signals form
has validated

Resets form
validation indicator

Trims white
space

Is called for
every character

Returns entire
character string

Figure 7.9 Validator tags provide a
visually attractive way to perform field-level
validation.

188 CHAPTER 7

Introducing Laszlo components
 this.setErrorstring(this.requiredErrorstring);
 return false; }
 var dash = valtext.indexOf("-");
 if (dash > 0) {
 var zips = valtext.split("-");
 if (zips[0].length != 5 || isInt(zips[0])) {
 this.setErrorstring(this.notzipcodeErrorstring);
 return false; }
 if (zips[1].length != 4 || isInt(zips[1])) {
 this.setErrorstring(this.notzipcodeErrorstring);
 return false; } }
 else {
 if (valtext.length != 5 || isInt(valtext)) {
 this.setErrorstring(this.notzipcodeErrorstring);
 return false; } }
 this.setErrorstring("");
 return true;
]]>
 </method>

 <method name="isInt" args="value">
 <![CDATA[
 if (!isNaN(value)) return false;
 if (value.toString().indexOf(".") < 0)
 return true;
 else
 return false;
]]>
 </method>
</class>

Unfortunately, local validators can’t be created and this validator class must be
moved to $LPS_HOME/lps/components/incubator/validators directory, where it
will be available to all Laszlo applications. Additionally, this directory’s library.lzx
file must be updated to include it.

 We can easily include this email validator by adding it to our previously
defined set of wrapping tag classes:

<class name="checkEmail" extends="emailvalidator" width="100"
 required="true" requiredErrorstring="Required">
 <edittext width="${classroot.width}"/>
</class>

and updating our email input field to use it:

<text text="Email:"/><checkEmail name="email"/>

This completes the Shipping Address pane. We’re ready to move on to the Ship-
ping Method pane.

Distinguishes between 5-
and 9-character codes

Validating input fields 189
7.3.3 Creating the Shipping Method pane

Although the Shipping Method wireframe, shown in figure 7.10, contains a num-
ber of complicated components, its layout is relatively straightforward. This pane
can be configured using a couple of nested simplelayout tags.

Listing 7.8 shows how the nested series of layouts shown in figure 7.10 is imple-
mented through a set of simplelayout tags. A radiogroup is a parent container
to its radio buttons and can use a layout attribute for its radio buttons.

<graybox x="${parent.width/2+10}" y="5"
 height="${parent.height-5}" width="${parent.width/2-15}">
 <simplelayout axis="y" spacing="5"/>
 <text fontsize="16">Shipping Method</text>
 <text multiline="true" fontstyle="plain">
 Please select a preferred shipping method
 </text>
 <text> United States Postal Service (1 x 2.38lbs)</text>
 <view width="100%">
 <simplelayout axis="x" spacing="30"/>
 <radiogroup id="shipmethod" layout="axis:y;spacing:3">
 <radiobutton value="1" selected="true"
 text="Mail (5-7 working days)"/>
 <radiobutton value="2" text="Priority Mail (3-5 working days)"/>
 <radiobutton value="3" text="UPS 2nd Day Mail"/>
 <radiobutton value="4" text="UPS Next Day Mail"/>
 </radiogroup>

Listing 7.8 The Shipping Method pane

Figure 7.10
The Shipping Method pane can be subdivided
into a series of nested simplelayout tags. It
consists of five view-based objects aligned along
the x-axis, where the fourth and fifth objects can
be further broken down into a series of views
aligned along the y-axis.

Spaces
shipping prices
by 30 pixels

Sets radio
button
spacing at
3 pixels

190 CHAPTER 7

Introducing Laszlo components
 <view>
 <simplelayout axis="y" spacing="3"/>
 <text text="$ 4.95"/>
 <text text="$ 6.95"/>
 <text text="$12.00"/>
 <text text="$18.00"/>
 </view>
 </view>
 <view width="100%">
 <simplelayout axis="x" spacing="10"/>
 <text name="instructions" valign="middle"
 width="${parent.width/2}"
 multiline="true" fontstyle="plain" fontsize="14"
 text="Select an arrival date to determine shipping method"/>
 <datepicker startAsIcon="false" id="shipdate"
 selecteddate="new Date()"/>
 </view>
</graybox>

To complete the Shipping Method pane, an easy-to-use interface is needed that
allows a user to pick an arrival date, which then selects the radio button for the
appropriate shipping method. This helps prevent users from accidentally spend-
ing too much on shipping. Listing 7.9 shows how this is implemented.

<datepicker y="30" startAsIcon="false"
 selecteddate="new Date()">
 <method event="onselecteddate" args="d">
 if (d == null) return;
 var now = new Date();
 var daydiff = d.getDate() - now.getDate() - 1;
 shipmethod.setByDate(daydiff);
 </method>
</datepicker>

When the datapicker is instantiated B, the current date new Date() is chosen as its
initial value. When a new date is selected through the graphical date calendar C,
the onselecteddate event handler is triggered; if an invalid date is selected, it sim-
ply returns D. The number of days between the selected and current dates is cal-
culated E. The graphical date calendar doesn’t accept a preceding date, so there
is no concern about negative values. The setByDate method for the Shipping
Method’s radio group is called F, with the difference in days as its argument. List-
ing 7.10 uses this value to set the appropriate shipping range.

Listing 7.9 Using the datepicker to select an arrival date

Sets price row
spacing at
matching 3 pixels

Spaces datepicker
by 10 pixels

Specifies
current date

B Handles
date
entry

C

Returns invalid dateD

Calculates
lead timeE

Displays target date F

Validating input fields 191
<radiogroup y="30" id="arrivalDate">
 <method name="setByDate" args="v">
 <![CDATA[
 if (v == 0)
 this.setAttribute('value', 4);
 else if (v == 1)
 this.setAttribute('value', 3);
 else if (v < 5)
 this.setAttribute('value', 2);
 else
 this.setAttribute('value', 1);
]]>
 </method>
 <radiobutton value="1" selected="true"
 text="Mail (5-7 working days)"/>
 <radiobutton value="2" text="Priority Mail (3-5 working days)"/>
 <radiobutton value="3" text="UPS 2nd Day Mail"/>
 <radiobutton value="4" text="UPS Next Day Mail"/>
</radiogroup>

It’s now time to implement the Billing Information tabelement.

7.3.4 Implementing the Billing Information page

The wireframe for the Billing Information tabelement also consists of address and
method panes, as shown in figure 7.11.

Listing 7.10 Setting the mail priority based on date

Figure 7.11 The structure of the wireframe for the Billing Information tabelement is similar to the
Shipping Information page.

192 CHAPTER 7

Introducing Laszlo components
Since the Billing Address and Shipping Address panes are almost identical, except
for the Same as Shipping Address check box, it isn’t necessary to show its code.

 Instead we’ll start with the method pane and its combobox input fields.

Creating static comboboxes
A combobox displaying a pop-up list of items for selection can be implemented
with either textlistitem tags for text labels or listitem tags to support images.
We’ll isolate all the static date information within classes. Later, in chapter 10,
we’ll show you how local datasets offer a superior solution for containing this type
of information. An abridged listing is shown here:

<class name="cal_combobox" extends="combobox">
 <textlistitem text="January" value="1"/>
 <textlistitem text="February" value="2"/>
 …
 <textlistitem text="November" value="11"/>
 <textlistitem text="December" value="12"/>
</class>

<class name="date_combobox" extends="combobox">
 <textlistitem text="2006" value="2006"/>
 …
 <textlistitem text="2009" value="2009"/>
 <textlistitem text="2010" value="2010"/>
</class>

The credit card combobox needs to display a credit card icon image along with
the name of the credit card company. Since the listitem class only contains an
image, we’ll extend it by adding a text attribute:

<class name="iconitem" extends="listitem"
 width="100%" height="24" >
 <attribute name="text" value="" type="string"/>
 <text x="20" text="${classroot.text}"/>
</class>

We’ll add these resource tags to our resources.lzx file to supply logical names to
the image locations:

<resource name="mastercard_logo" src="resources/mastercard_logo.png"/>
<resource name="visa_logo" src="resources/visa_logo.png"/>
<resource name="amex_logo" src="resources/amex_logo.png"/>

Finally, in listing 7.11, we use iconitems to combine these resources with the text
labels for each combobox item.

<combobox name="creditcard" width="180" editable="false"
 defaulttext=" ">
 <iconitem resource="visa_logo" text="Visa" value="1"/>

Listing 7.11 Credit card combobox featuring labeled icons

Ensures combobox
is initially blank

Validating input fields 193
 <iconitem resource="mastercard_logo" text="MasterCard" value="2"/>
 <iconitem resource="amex_logo" text="American Express" value="3"/>
 <method event="onselect" args="s">
 Debug.write("selection text=" + s.text +
 " value=" + s.value);
 </method>
</combobox>

The combobox’s defaulttext attribute must be set
to an empty string to create an initial blank display.
The editable attribute is reset to false to ensure that
this is a read-only display. When a selection is made,
the onselect event is sent with an iconitem object as
its argument. Figure 7.12 shows the object’s text and
value attributes.

 We’re now ready to begin converting our wireframe
into LZX using these newly created combobox classes.

7.3.5 Coding the Billing Method wireframe

The spacing among the major elements—titles and radio buttons—has 5-pixel
row spacing; the minor elements in a group have 3-pixel row spacing. All spacing
is controlled using the spacing attribute from multiple layouts. Listing 7.12 shows
the spacing attribute, highlighted in bold, for the nested layouts.

<class name="billingMethod" width="100%" height="100%">
 <attribute name="confirm" value="false" type="boolean"/>
 <graybox x="${parent.width/2+5}"
 height="${parent.height-5}"
 width="${parent.width/2-15}">
 <simplelayout axis="y" spacing="5"/>
 <text fontsize="16">Billing Method</text>
 <text multiline="true" width="100%">
 Please select the preferred payment method to use on
 this order
 </text>
 <radiogroup layout="axis:y;spacing:5">
 <radiobutton value="1" selected="true" text="Credit Card">
 <validatingForm width="100%" x="5%">
 <formlayout align="right" spacing="3"/>
 <text text="Type:"/>
 <combobox width="140"
 editable="false" defaulttext=" ">

Listing 7.12 The billingMethod class definition

Displays selection’s text and value

Contains
argument of
type listitem

Controls display
of button

Adds 3-pixel spacing
for radio buttons

Specifies nested
formlayout

Figure 7.12 A graphical display
is used for each of the credit
cards listed in the combobox.

194 CHAPTER 7

Introducing Laszlo components
 <iconitem resource="visa_logo"
 text="Visa" value="1"/>
 <iconitem resource="mastercard_logo"
 text="MasterCard" value="2"/>
 <iconitem resource="amex_logo"
 text="Amex" value="3"/>
 </combobox>
 <text text="Owner:"/><checkString name="owner"/>
 <text text="Number:"/><checkNumber name="number"/>
 <text text="Expiration Month:"/>
 <cal_combobox width="100" editable="false"/>
 <text text="Expiration Year:"/>
 <date_combobox width="80" editable="false"/>
 <text text="Verification:"/>
 <checkNumber name="verification"/>
 <method event="onerrorcount" args="val">
 <![CDATA[
 if (val == 0)
 classroot.setAttribute("confirm", true);
 else
 classroot.setAttribute("confirm", false);
]]>
 </method>
 </validatingForm>
 </radiobutton>
 <radiobutton value="2" text="Cash On Delivery"/>
 <radiobutton value="3" text="PayPal"/>
 </radiogroup>
 </graybox>
</class>

The remaining task is to coordinate the Shipping and Billing Information tabele-
ments. To relieve users of entering identical information, the “Same as … ” check
box allows one set of address information to be used across both tabelements. But
the boxes must be coordinated so that selecting one check box disables the other.
This prevents both boxes from being checked with no information entered.

7.3.6 Coordinating multiple pages

When we declared the tabelements within the tabslider, we labeled each with a
global ID—shiptab for Shipping and billtab for Billing—to allow information
in either tabelement to be conveniently accessed by the other:

<tabelement text="Shipping Information">
 <shippingInfo id="shiptab" … />
</tabelement>

Marks validation
as incomplete

Marks
validation

as complete

Validating input fields 195
<tabelement text="Billing Information">
 <billingInfo id="billtab" … />
</tabelement>

To implement the “Same as… ” functionality, we’ll add a sameas attribute to each
class definition. Each of these attributes can easily be accessed by the other class:

<class name="shippingInfo" fontsize="12" fontstyle="bold"
 font="Verdana">
 <attribute name="sameas" value="false" type="boolean"/>
 <shippingAddress name="shipAdd"/>
 <shippingMethod name="shipMeth"/>
</class>
<class name="billingInfo" fontsize="12" fontstyle="bold"
 font="Verdana">
 <attribute name="sameas" value="false" type="boolean"/>
 <billingAddress name="billAdd"/>
 <billingMethod name="billMeth"/>
</class>

The logic needed in each class is the mirror image of the other. When the Billing
Address’s Same as Shipping Address check box is checked, all the Billing Address
fields default to the values contained in the Shipping Address fields. Since these
fields have already been verified, there is no need to reconfirm them, so a con-
firm attribute tells the validation tags to ignore these fields. Listing 7.13 shows the
code for this.

<class name="billingAddress" width="100%" height="100%">
 <attribute name="confirm" value="false" type="boolean"/>
 …
 <checkbox text="Same as Shipping Address"
 enabled="${!shiptab.sameas}">
 <handler name="onclick">
 billtab.setAttribute("sameas", !billtab.sameas);
 classroot.setAttribute("confirm", !classroot.confirm);
 </handler>
 </checkbox>
 …
</class>

<class name="shippingAddress" width="100%" height="100%">
 <attribute name="confirm" value="false" type="boolean"/>
 …
 <checkbox text="Same as Billing Address"
 enabled="${!billtab.sameas}">
 <handler name="onclick">
 shiptab.setAttribute("sameas", !shiptab.sameas);

Listing 7.13 Coordinating the “Same as… ” check boxes in the Billing and Shipping pages

Constrains to
Shipping setting

Flips
current
Billing
value

Flips current form
confirmation

Accesses
Billing setting Accesses

Shipping
setting

196 CHAPTER 7

Introducing Laszlo components
 classroot.setAttribute("confirm", !classroot.confirm);
 </handler>
 </checkbox>
 …
</class>

To complete the “Same as … ” feature, the text input fields must be disabled. But
the validator tags wrap these text input fields and don’t allow their enabled state
to change. One possible solution is to use the state tag to create two sets of
tags—a validated set of text input fields, and a simple set of text input fields that
can be disabled—and switch between them. But this leads to redundant declara-
tive statements.

 A better way is to override the validator’s doValidate method inherited by the
checkstring class from its stringvalidator superclass. We’ll add an enabled
attribute that is accessible from the edittext object to disable its state. Now when
the validator tag’s enabled attribute is reset to false, validation isn’t performed
because the input field is disabled. When it is enabled, the stringvalidator
superclass’s doValidation method is called to perform its normal validation. List-
ing 7.14 shows how the doValidate method is overridden.

<class name="checkString" extends="stringvalidator" width="150"
 required="true" requiredErrorstring="Required">
 <attribute name="enabled" value="true" type="boolean"/>
 <method name="doValidation" args="val">
 if (this.enabled == false) return;
 super.doValidation(val);
 </method>
 <edittext width="${classroot.width}" enabled="${classroot.enabled}"/>
</class>

Now the input fields within each tabelement can be easily updated to support a
disabled state by adding this constraint:

<class name="billingAddress" width="100%" height="100%">
 <validatingForm width="100%">
 <formlayout align="right" spacing="5"/>
 <text text="Name:"/><checkString name="fullname"
 enabled="${!billtab.sameas}"/>
 ...
 </formlayout>
 </validatingForm>
</class>
and

Listing 7.14 Support routine for validation

Sets form
confirmation

Validating input fields 197
<class name="shippingAddress" width="100%" height="100%">
 <validatingForm width="100%">
 <formlayout align="right" spacing="5"/>
 <text text="Name:"/><checkString name="fullname"
 enabled="${!shiptab.sameas}"/>
 ...
 </formlayout>
 </validatingForm>
</class>

The result is that all the input fields for either the Shipping or Billing address
page are disabled when the other tabelement’s “Same as … ” box is checked. Con-
versely, they are enabled when the check is removed.

 Our remaining task is form validation. It leverages all the previous steps to
ensure logical consistency across the multiple tabelements.

7.3.7 Form validation
The purpose of form validation is to check for logical consistency across an entire
form. To prevent invalid information from entering the system, the Complete
Purchase button is not enabled until the validation requirements are satisfied. In
our case, form validation consists of ensuring that all the input forms contain vali-
dated information. When this condition is met, the confirm attribute for each
form is set to true.

Consequently, if a validated form is updated with an invalid entry, the Complete
Purchase button is automatically disabled. This relationship is maintained
through a constraint expression between the confirm fields for each of the tabele-
ment pages. You can see this sequence of state changes for the Complete Pur-
chase in figure 7.13.

Using XML escape characters
Although a <![CDATA[section can be used in a JavaScript method to protect ASCII
characters that have special meaning to XML, it can’t be used in declarative tags.
Instead, it’s necessary to enclose such characters in an escape sequence. This
requires the & character to be expressed as the & escape sequence:

<class name="orderConfirm" width="100%" height="100%"
 fontsize="12" fontstyle="bold" font="Verdana">

 <button align="center" valign="middle" text="Complete Purchase"
 enabled="${billtab.billAdd.confirm &&
 shiptab.shipAdd.confirm &&
 billtab.billMeth.confirm}"/>
</class>

Contains a left
gray box

198 CHAPTER 7

Introducing Laszlo components
This completes this phase of development for the tabelements of the Checkout
window.

7.4 Summary

Laszlo supplies a wide assortment of components offering quick-deployment solu-
tions to many common user interface requirements. Using components allows a
developer to rapidly construct graphical user interfaces. These components are
based on a common set of base classes providing common behavior. Since there
are so many different components available, rather than provide individual exam-
ples we have used a wide cross-section of these components within the Laszlo Mar-
ket. The intent is to not only demonstrate their use, but to show how components
can be used collectively to construct larger user interfaces.

 In the Laszlo Market, components are used to construct the Checkout window.
This window contains too much information to fit in a single screen, so it is divided
into a set of pages. These pages are implemented as tabelements within a tabslider.
Each page corresponds to a Shipping Information, Billing Information, or Order
Confirmation tabelement. We start with a set of hand-scribbled wireframes that
progress to high-fidelity wireframes, which are directly converted to LZX code.

 These screens are constructed using layouts to provide them with a flexible con-
figuration. This allows them to be resized while still maintaining a consistent spac-
ing among the input fields. We also use the formlayout with validation forms and
validators to perform field validation. This immediately alerts a user to invalid input
values. Field validation is further leveraged to support form validation, which pro-
vides validation across the multiple tabelements comprising the form. You should
now have the necessary skills to create any set of business forms within Laszlo.

Figure 7.13 The Complete Purchase button is initially disabled. It is enabled when
validation is completed. If a validated form is updated with an invalid entry, the button is
automatically disabled.

Dynamic behavior
 of events and delegates
This chapter covers
■ Understanding events and delegates
■ Adding dynamic behavior
■ Setting complex actions with attribute setters
199

200 CHAPTER 8

Dynamic behavior of events and delegates
When I can’t handle events, I let them handle themselves.
—Henry Ford, automobile manufacturer

Although we’ve already shown you how Laszlo uses built-in event handling and
constraints for communication among objects, our explanation has left some
unresolved issues. In this chapter we’ll cover these remaining issues by exploring
how this communication system is based on a publisher-subscriber foundation
built with event and delegate objects. Then we’ll apply this knowledge to add
dynamic behavior to applications. This technique supports more complex behav-
ior by allowing objects to react to inputs in different ways depending on applica-
tion context. It also allows an application to transition between various states.
Earlier we used dynamic behavior in the Laszlo Market to transition between its
main and checkout states. In this case, the Change button reacted in different
ways, depending on the application’s current state. Dynamic behavior was pro-
vided by a declarative state tag that executed a different declarative event han-
dler determined by a curr_state constraint. But this declarative approach is
limited to a finite number of states defined at compile time. In this chapter, we’ll
cover a more general approach that supports runtime modification to both
declarative and JavaScript objects using events and delegates.

 While the declarative approach provides dynamic behavior by switching
between whole event handlers, we’ll separate event handlers into handler headers
and their underlying methods. Our approach to dynamic behavior will be achieved
by replicating the information contained in these handler headers through event
and delegate objects. This provides a more general approach to allow any number
of methods to be dynamically configured to handle an event from a sender.

 In this chapter, we’ll begin by demonstrating how Laszlo implements event
handling and constraints with events and delegates. Then we’ll use events and del-
egates to dynamically change a declarative tag’s behavior by modifying how they
respond to events. Next, we’ll explore how this same technique can be applied to
layouts. By the end of this chapter, you should be comfortable dynamically chang-
ing the behavior of tags.

8.1 Exploring event-handler and constraint operation

Laszlo’s event-based communication system implements the publisher-subscriber
design pattern. It describes a one-to-many dependency among objects, where one
object acts as a publisher with which other objects register as dependent subscribers.
Whenever any of the publisher’s attributes change, an updated value is immediately

Exploring event-handler and constraint operation 201
communicated to the subscribers. This arrangement produces a loose coupling
among objects, allowing a publisher to send notifications without having to know
its subscribers. This flexibility enables subscribers to be easily added and removed
without impacting the publisher.

 In Laszlo, events are publishers and delegates are subscribers. Assuming there
are listeners, when the setAttribute method is used to update an object’s
attribute, an event sends a message to every registered delegate. Every attribute
that has listeners also has an associated event object that contains a list of listening
delegate objects. A message is sent by calling a registered delegate’s associated
method with an on+attribute argument. This is the basis for how Laszlo imple-
ments built-in event handling and constraints.

 In the next section, we’ll examine how event handlers and constraints are
implemented with event and delegate objects.

8.1.1 How event handling and constraints work

You’ve already seen how attributes can trigger event handlers and constraints
when their value is updated through the setAttribute method. However, when
no event handlers or constraints have been declared for an attribute, then no
on+attribute events are sent. In other words, Laszlo only creates an event for an
attribute that has listeners. So when no objects are registered to receive an onx
event, the call

setAttribute("x", 100);

defaults to this:

this.x = 100;

So how does Laszlo know whether a listener exists? The answer is simple. When the
Laszlo compiler encounters a handler tag or constraint notation, it instantiates
and registers a set of event and delegate objects. This communication can occur
within the object itself or between objects. Listing 8.1 shows how the presence of a
handler tag results in the instantiation of these event and delegate objects.

<canvas debug="true">
 <method name="init">
 this.setAttribute("fruit", "pear");
 </method>
 <attribute name="fruit" value="apple" type="text"/>
 <attribute name="new_fruit" type="text"/>
 <handler name="onfruit" args="fruit">

Listing 8.1 Demonstrating how a handler results in the creation of an event-delegate pair

202 CHAPTER 8

Dynamic behavior of events and delegates
 this.new_fruit = fruit;
 Debug.write(canvas.onfruit);
 Debug.write(canvas.onfruit.delegateList);
 </handler>
</canvas>

An event handler is nothing more than a decorated method tag. Figure 8.1 shows
how this decoration signals the Laszlo compiler to instantiate an onfruit event
object with a delegate list containing a single delegate object. Since the method
underlying this event handler is only invoked internally, it has a machine-generated
name of $m2 11.

Because event objects play such an important role in providing communication
within Laszlo, they are generally automatically instantiated and there is rarely a
need to directly instantiate an event.

8.1.2 Working with events

To act as a publisher, an event contains an event name, the name of the originat-
ing sender, and an array of the subscribers—that is, the delegate list. While an
event is in the process of being sent, its locked attribute is set to true.

 Since Laszlo instantiates an event object to serve an integral role within the
infrastructure, as table 8.1 shows, its attributes are read-only to prevent any
modification.

Table 8.1 Event attributes

Name Data Type Tag or Script Attribute Type Description

locked boolean Script Read-only Value is true when an event
is being sent

name string Script Read-only Event name

Figure 8.1 This debug output shows the event and delegate objects automatically
instantiated to support an event handler or constraint. The canvas object is indicated by
the “This is the canvas” text and the delegate object is indicated by the “$m2 11” text.

Exploring event-handler and constraint operation 203
In our example, a canvas object acts as both the sender and receiver. So the event
object lists the canvas as its sender and its array of delegates contains a single
recipient, which is also the canvas object. When an attribute is updated, this causes
an on+attribute event to send an attribute message to each of the delegates in
its delegate list. The left diagram in figure 8.2 shows the objects as written and the
right diagram shows the resulting objects generated during compilation.

 If this example is revised to use a constraint instead of an event handler, as in
listing 8.2, it still produces the identical set of event and delegate objects displayed
in figure 8.1.

sender string Script Read-only Originating object

delegates array Script Read-only An array of delegates to
receive this event

ready boolean Script Read-only Value is true when event is
ready to be sent

Table 8.1 Event attributes (continued)

Name Data Type Tag or Script Attribute Type Description

Figure 8.2 The initial state of the example in listing 8.1 directly reflects the LZX code. When the
code is compiled, the event handler serves as an indicator to supplement the initial objects with
the supplemental objects on the right.

204 CHAPTER 8

Dynamic behavior of events and delegates
<canvas debug="true">
 <attribute name="fruit" value="apple" type="text"/>
 <attribute name="new_fruit" value="${canvas.fruit}"/>
 <method name="init">
 this.setAttribute("fruit", "pear");
 Debug.write(canvas.onfruit);
 Debug.write(canvas.onfruit.delegateList);
 </method>
</canvas>

The previous examples only contained a single delegate in the event object’s dele-
gate list. Let’s now turn things around by adding another delegate to this list and
look at the declarative code corresponding to this delegate configuration. This
requires another subscriber to receive onfruit events from the canvas object. List-
ing 8.3 shows this additional subscriber, a view object named main, that references
the canvas publisher. By referencing the canvas object, this handler signals to the
compiler that another delegate object should be instantiated and registered for
the canvas’s onfruit event.

<canvas debug="true">
 <attribute name="fruit" value="apple" type="text"/>
 <method name="init">
 this.setAttribute("fruit", "pear");
 </method>

 <handler name="onfruit">
 Debug.write(canvas.onfruit);
 Debug.write(canvas.onfruit.delegateList);
 </handler>

 <view name="main">
 <handler name="onfruit" reference="canvas">
 Debug.write("main onfruit handler");
 </handler>
 </view>
</canvas>

Figure 8.3 shows this additional delegate, called main, in the delegate list.
 Delegates are stored in the delegateList array as they are encountered, and

they are called in that order. But there is no way to lock a position in this array,

Listing 8.2 Creating an event-delegate pair with a constraint

Listing 8.3 Creating more than one delegate for an event

Generates
event-delegate
pair

Adding delegate
to delegate list

Exploring event-handler and constraint operation 205
since the order of execution depends on application state. For example, if a
declarative structure contains a state tag with event handlers referencing the
sending object, the state tag’s applied attribute dictates the presence or absence
of a handler. As a result, you can’t depend on the execution order of event han-
dlers. Let’s take a quick look at a technique for controlling their execution order.

Controlling the execution order of handlers
Because handlers can’t be overridden and their calling order is indeterminate,
handlers support a method argument to contain their body. If a superclass has a
handler, and a subclass also declares a handler, then both handlers execute in an
uncontrolled order. But since methods can be overridden, the order of handler
invocation can be controlled. Suppose we define an onfruit handler using a
handleFruit method to contain its body, like this:

 <handler name="onfruit" method="handleFruit"
 args="fruit" />
 <method name="handleFruit" args="fruit">
 // superclass code here
 </method>

When an instance or a subclass needs to handle this event in a different manner, it
can override its superclass’s handleFruit method like this:

 <method name="handleFruit" args="fruit">
 // pre-processing
 super.handleFruit(this, "fruit")
 // post-processing
 </method>

Now the execution of the superclass’s handling method is controlled to allow pro-
cessing to occur prior or after this call. For this same reason, when creating a class
it’s better to override the init method rather than handle the oninit event.

 Let’s now take a closer look at the delegate object.

Figure 8.3 Additional delegates are added to an event’s delegate list, as shown in listing 8.3. The
delegates are identified by their different context names. One is used to handle events sent to the
canvas object and the other for the main object.

206 CHAPTER 8

Dynamic behavior of events and delegates
8.1.3 Working with delegates

To fulfill its duties as a subscriber, a delegate presents an interface allowing a spe-
cific method to be called within a specified context. It operates like an anony-
mous function in Java, since it acts as a function pointer within a class instance. An
anonymous function has no name, to prevent it from being referenced by other
callers. The intent is for a delegate to control all access to this function. An anony-
mous function is defined inline, in JavaScript, like this:

ref = function(arg1, arg2, …) {
 // do stuff here
}

The only value this function can return is a reference to itself. Now, whenever the
ref handle is evaluated, the referenced anonymous function is executed.

 For a delegate to communicate with an object’s event, it must register with the
event as a subscriber. Table 8.2 shows that a delegate consists of a set of c and f
attributes, also known as the context and the function pointer. The context identifies
the receiving object, and the function pointer identifies the event handler’s
underlying method.

Consequently, a delegate requires two steps for setup: instantiation and registra-
tion. There are two different delegate constructors; one performs instantiation
and registration as two separate calls, while the other condenses them into a sin-
gle call.

 We’ll start with the two-step constructor first. A delegate construction takes the
following form:

var del = new LzDelegate(context, method);
del.register(sender, event);

where

■ del is the name of the new LzDelegate object.

■ context is the object that executes this method.

Table 8.2 Delegate attributes

Name Data Type Tag or Script Attribute Type Description

c object Script Read-only The context in which to call the method

f string Script Read-only The name of the method to call

Exploring event-handler and constraint operation 207
■ method is the name of a method in the context object.

■ sender is the sender of this event.

■ event is the name of this event.

The context and method arguments set the values of the delegate attributes. These
values can only be set once within a constructor, since afterward they are read-only.
The single-step constructor combines these two steps into a single statement:

var del = new LzDelegate(context, method, sender, event);

and uses the identical set of arguments.
 Let’s reimplement the original example from listing 8.1 and manually instanti-

ate these event and delegate objects. This is only done as an exercise to help
demonstrate the concepts, as there’s no benefit from using manual instantiation
and making the developer responsible for releasing the object’s resources by call-
ing its destroy method.

 In listing 8.4, we’ll remove the event-handler indicator and replace it with an
ordinary method to prevent the Laszlo compiler from automatic instantiation.
Instead, we’ll explicitly instantiate and register these objects within our init
method. When the delegate is instantiated, its arguments specify the canvas as its
executing context and point to a fruit_method method. This serves as our inter-
nal method that corresponds to the $m2 11 method previously created by Laszlo.
No instantiation is necessary for the onfruit event object as it is automatically
instantiated when the delegate’s register method is executed.

<canvas debug="true">
 <attribute name="fruit" value="apple" type="text"/>

 <method name="init">
 var del = new LzDelegate(canvas, "fruit_method");
 del.register(this, "onfruit");
 this.setAttribute("fruit", "pear");
 </method>

 <method name="fruit_method">
 Debug.write(canvas.onfruit);
 Debug.write(canvas.onfruit.delegateList[0]);
 </method>
</canvas>

Listing 8.4 Manually instantiating events and delegates

Sends onfruit
eventB

208 CHAPTER 8

Dynamic behavior of events and delegates
At B, the onfruit event is sent when the setAttribute method updates the
fruit attribute. This results in the fruit_method being invoked, which produces
the same output you saw in figure 8.1.

 There is no requirement for a delegate to be registered with an event. In many
situations, it’s convenient to have a pool of instantiated delegates available to be
registered to different events. A succinct notation for utilizing delegates in this
way is to declare them as attributes:

<attribute name="del"
 value="$once{new LzDelegate(this, 'fruit_method')}"/>

This code creates a delegate object that executes the fruit_method method in
the context of the current object. This delegate object can easily be registered,
and later unregistered, with an event. Since developers are responsible for deallo-
cating manually instantiated objects, it makes sense to maintain a pool of reusable
delegates. This results in a smaller number of delegate objects whose lifespan lasts
throughout the application. But to use a pool, we’ll need to know how to unregis-
ter a delegate from an event.

Unregistering delegates
Unregistering a delegate removes it from an event’s delegate list, resulting in one
less subscriber for a published event. A delegate can call unregisterFrom to
unregister itself from a particular event:

del.unregisterFrom(event);

A delegate can also call unregisterAll to unregister itself from all events:

del.unregisterAll();

Unregistering a delegate doesn’t deallocate its resources; a delegate object is still
available to register with another object. The only way to deallocate an object’s
resources is by calling its destroy method. One of the benefits of using event han-
dlers and constraints is that Laszlo manages the allocation and deallocation of its
automatically generated event and delegate objects. This relieves developers
from these tasks, as they are only responsible for deallocating manually instanti-
ated objects. But using techniques such as pooled delegate objects further relieves
this responsibility.

 Next we’ll look at different approaches for adding dynamic behavior to an
application.

Adding dynamic behavior 209
8.2 Adding dynamic behavior

Now that you’ve seen how event handlers and constraints are implemented with
event and delegate objects, we’ll show you how to use these objects to dynami-
cally change the way an object responds to events. We’ll use an example applica-
tion featuring a button that inflates a box on each click. When a size limit is
reached, the button’s response to onclick events changes so that each subse-
quent click results in the box deflating.

 Changing an object’s behavior requires modifying the events and delegates that
interconnect objects, events, and methods. When modifying these events and del-
egates, you’ll find it equally valid to work from a delegate-centric perspective, using del-
egate objects to register with events, as from an event-centric perspective, using event
objects to add delegate objects—in other words, the result is the same. However,
we’ll generally default to working with delegates rather than events.

8.2.1 Taking a delegate-centric perspective

Now that we can register and unregister delegates, we’re ready to explore how
event behavior can be dynamically modified during execution. We’ve created an
example application that uses two buttons, Enable/Disable and Pump, to control
the inflation and deflation of the box shown in figure 8.4. When the Pump button
is clicked, the box inflates up to a maximum size. At that point, the pumping
action reverses so that subsequent Pump clicks deflate the box down to a mini-
mum size. The Enable/Disable button, not surprisingly, enables and disables the
Pump button. Although not shown in the figure, its label alternates between
Enable and Disable when clicked.

Figure 8.4 Clicking the Pump button causes the box to inflate until a maximum limit is reached.
At that point, the delegates switch from an inflate to a deflate method, resulting in subsequent
pumps deflating the box until a lower limit is reached. Once again, the delegates are reversed to
inflate the box. The box label changes to reflect its state. An added feature is the Enable/Disable
button for the Pump button, which remains enabled in the sequence shown.

210 CHAPTER 8

Dynamic behavior of events and delegates
This example is designed to demonstrate the usage of a cross section of the dele-
gate methods listed in table 8.3.

Listing 8.5 demonstrates how the behavior of the Pump button is changed by
swapping a delegate, whose associated method inflates the box, with another
delegate, whose method deflates it. We’ll also temporarily disable or enable
the delegate’s behavior, which is useful since it doesn’t require the delegate to
unregister from the event.

<canvas debug="true">
 <button text="Disable">
 <handler name="onclick">
 <![CDATA[
 if (v.inf[0] && v.inf.enabled) {
 v.inf.disable();
 this.setAttribute("text", "Enable");
 return; }
 else if (v.inf[0] && !v.inf.enabled) {
 v.inf.enable();
 this.setAttribute("text", "Disable");
 return; }
 else if (v.def[0] && v.def.enabled) {
 v.def.disable();
 this.setAttribute("text", "Enable");
 return; }

Table 8.3 Delegate methods

Name Description

LzDelegate(context,method,
 eventSender, eventName)

Delegate constructor

disable() Disables a delegate until enable is called

enable() Enables a delegate that has been disabled

execute(data) Executes the named method in the given con-
text with the given data

register(eventSender, eventName) Registers the delegate for the named event
in the given context

unregisterAll() Unregisters the delegate for all the events for
which it’s registered

unregisterFrom(event) Unregisters the delegate for the stated event

Listing 8.5 Demonstrating delegate methods

Disable, if enabled
and inflating

Enable, if disabled
and inflating

Disable, if enabled
and deflating

Adding dynamic behavior 211
 else {
 v.def.enable();
 this.setAttribute("text", "Disable");
 return; }
]]>
 </handler>
 </button>
 <button name="b" text="Pump" x="80"
 onclick="v.setAttribute('pump', 0)"/>
 <view name="v" x="80" y="40" width="30" height="30"
 bgcolor="0xBBBBBB">
 <attribute name="inf"
 value="$once{new LzDelegate(this,'inflate')}"/>
 <attribute name="def"
 value="$once{new LzDelegate(this,'deflate')}"/>
 <attribute name="pump" type="number"/>
 <text name="msg" align="center" valign="middle"
 text="+" fontsize="16"/>
 <handler name="oninit">
 this.inf.register(v, "onpump");
 </handler>
 <method name="inflate">
 if (this.width == 100) {
 this.msg.setText("-");
 this.inf.unregisterFrom(v.onpump);
 this.def.register(v, "onpump");
 return; }
 this.msg.setText("+");
 this.setAttribute("width", this.width + 10);
 this.setAttribute("height", this.height + 10);
 </method>
 <method name="deflate">
 if (this.width == 30) {
 Debug.inspect(v.onpump);
 this.def.unregisterFrom(v.onpump);
 this.inf.register(v, "onpump");
 return; }
 this.msg.setText("-");
 this.setAttribute("width", this.width - 10);
 this.setAttribute("height", this.height - 10);
 </method>
 </view>
</canvas>

Now that you know how to implement this from a delegate perspective, let’s reim-
plement it from an event-centric perspective. Instead of registering and unregis-
tering delegate objects to an event, we’ll accomplish the same thing by adding
and removing delegate objects from the event’s delegate list.

Enable, if disabled
and deflating

Allocates
inflate

delegate

Initially registers onpump
events with inflate method

Allocates
deflate

delegate

Unregisters onpump
events from inflate method

Registers onpump events
with deflate method

Unregisters onpump
events from deflate
methods

Registers onpump events
with inflate method

212 CHAPTER 8

Dynamic behavior of events and delegates
8.2.2 Taking an event-centric perspective

An event constructor is also supplied, for those rare situations when an event
needs to be manually instantiated:

 var event = new LzEvent(eventSender, eventName);

where

■ eventSender is the object sending the event.

■ eventName is the name of the event to be sent.

An event contains the methods shown in table 8.4 to manage the delegates in its
delegate list. Adding a delegate object to an event object, using the addDele-
gate method, results in this delegate being registered and contained in the
event’s delegateList array. But delegates, unlike events, aren’t automatically
instantiated by Laszlo, so adding a nonexistent delegate to an event generates a
runtime error.

 To demonstrate the general equivalence of the event-centric and delegate-
centric perspectives, we’ll reimplement the inflating-and-deflating-box example
in listing 8.6 by modifying its inflate and deflate methods to work with event
instead of delegate methods. Otherwise, the rest of the code is identical.

<method name="inflate">
 if (this.width == 100) {
 this.msg.setText("-");
 this.onpump.removeDelegate(v.inf);

Table 8.4 Event methods

Name Description

addDelegate(delegate) Adds a delegate to the delegate list

clearDelegates() Removes all delegates from the delegate list

LzEvent(eventSender,
eventName, delegate)

Calls all delegates in turn

getDelegateCount() Returns the number of delegates registered for the event

removeDelegate(delegate) Removes a delegate from the delegate list

sendEvent(data) Sends the event, passing its argument as data to the
called delegate

Listing 8.6 The inflating-box example using events rather than delegates

Removes inflate
delegate from event

Using delegates with layouts 213
 this.onpump.addDelegate(v.def);
 return; }
 this.msg.setText("+");
 this.setAttribute("width", this.width + 10);
 this.setAttribute("height", this.height + 10);
</method>

<method name="deflate">
 if (this.width == 30) {
 this.onpump.removeDelegate(v.def);
 this.onpump.addDelegate(v.inf);
 return; }
 this.msg.setText("-");
 this.setAttribute("width", this.width - 10);
 this.setAttribute("height", this.height - 10);
</method>

With this change, the inflate and deflate delegates are alternatively added and
removed from an event. The result is equivalent to registering and unregistering
the delegates from the event.

 The dynamic communication capabilities of delegates are applied to different
topics in upcoming chapters. In the next section, we’ll see how delegates are
incorporated into layouts to make them extensible. Although a layout is normally
updated only when the spacing or visible attributes of its child subviews are
changed, using delegates extends a layout to respond to changes in any attribute.

8.3 Using delegates with layouts

In this section, we’ll examine how delegates expand the capabilities of layouts.
We’ll demonstrate this feature by revisiting the aircraft formation example to
dynamically resize a configuration both horizontally and vertically whenever the
largest jet’s size increases. In chapter 6, we created a special layout to maintain
our jets in a “vee” formation. While that layout could accommodate visibility
changes—when a plane disappears, the layout closes the gap—it can’t handle size
changes, since all the jets were identically sized. We now want to be able to click
on a plane and have its size expand by 2 pixels in both directions, while still main-
taining the consistent spacing required by its formation. Figure 8.5 shows a rela-
tionship between identical and different-sized planes.

 To accommodate this resizing, we need to override the way the update
method is invoked. Normally, a layout executes its update method whenever the

Adds deflate
delegate to event

Removes deflate
delegate from event

Adds inflate
delegate to event

214 CHAPTER 8

Dynamic behavior of events and delegates
height, width, or visible attribute of any subview changes. This supports
horizontal or vertical spacing, but not both. Our jet formation layout needs to
override this behavior, because changes in jet size require the spacing to be
updated in both directions.

 The layout tag uses its updateDelegate method to establish a connection
between an event and its update method. Since this must occur for each jet, we
need to override the addSubview method to ensure that this method is applied to
each jet subview when added to its parent node. A Laszlo system method is being
overridden, so we also need to call the superclass’s addSubview method:

<method name="addSubview" args="newsub">
 this.updateDelegate.register(newsub, "onwidth");
 this.updateDelegate.register(newsub, "onheight");
 super.addSubview(newsub);
</method>

The updateDelegate is a delegate object controlling access to the layout’s
update method. We’ll register it to accept onwidth and onheight events to
ensure that changes in these attributes cause the layout to be recalculated. Now,
when any jet is clicked, it enlarges and generates a set of onwidth and onheight
events, resulting in the layout’s update method being executed and ensuring a
consistent jet formation:

<class name="jet" resource="jet" stretches="both">
 <handler name="onclick">
 this.setWidth(this.width+2);

Figure 8.5 Clicking on any of the jets increases its size while maintaining a consistent
spacing among the jets in both the x and y directions. Notice that the lead and bottom-right
aircraft are larger than the others.

Using delegates with layouts 215
 this.setHeight(this.height+2);
 </handler>
</class>

An update only needs to occur when the largest jet increases its size, since the
smaller jets can increase their size without disrupting the formation. When an
update occurs, the jets redistribute themselves to accommodate the largest jet
while still maintaining a consistent spacing. Spacing is set by the width and height
values of the largest jet; these values are set by the setMaxwidth and setMax-
height methods. Listing 8.7 puts this all together.

<canvas>
 <resource name="jet" src="F18_Hornet.png"/>
 <class name="jet" resource="jet" stretches="both">
 <handler name="onclick">
 this.setWidth(this.width+2);
 this.setHeight(this.height+2);
 </handler>
 </class>

 <view x="300" y="100">
 <layout>
 <attribute name="xspacing" value="50" type="number"/>
 <attribute name="yspacing" value="40" type="number"/>
 <method name="setMaxwidth" args="subviews">
 <![CDATA[
 for (var i = 0; i < subviews.length; i++) {
 if (this.xspacing < subviews[i].width)
 this.xspacing = subviews[i].width; }
]]>
 </method>
 <method name="setMaxheight" args="subviews">
 <![CDATA[
 for (var i = 0; i < subviews.length; i++) {
 if (this.yspacing < subviews[i].height)
 this.yspacing = subviews[i].height; }
]]>
 </method>
 <method name="addSubview" args="newsub">
 this.updateDelegate.register(newsub, "onwidth");
 this.updateDelegate.register(newsub, "onheight");
 super.addSubview(newsub);
 </method>
 <method name="update">
 <![CDATA[
 if (this.locked) return;

Listing 8.7 Handling dynamic layouts using delegates

Finds widest
plane

Finds tallest
plane

Allows height changes to
force layout update

Allows width changes to
force layout update

216 CHAPTER 8

Dynamic behavior of events and delegates
 setMaxwidth(subviews);
 setMaxheight(subviews);
 for (var i = 0, j = 0; i < subviews.length; i++) {
 if (i % 2)
 this.subviews[i].
 setAttribute('x', -(j * this.xspacing));
 else
 this.subviews[i].
 setAttribute('x', j * this.xspacing);
 this.subviews[i].
 setAttribute('y', j * this.yspacing);
 if (i % 2 == 0) j++; }
]]>
 </method>
 </layout>
 <jet/>
 <jet/>
 <jet/>
 <jet/>
 <jet/>
 </view>
</canvas>

The updateDelegate method allows a layout to be dynamically reconfigured
based on inputs from almost any attribute event. Such flexibility, just one example
of how Laszlo tags use delegates to add dynamic capabilities, opens the way for
innovation. In the next chapter, which deals with Laszlo services, you’ll see other
examples where delegates are used to provide even more flexibility.

8.4 Dynamically adding attributes

JavaScript allows attributes to be declared dynamically, which means they don’t
need to be declared at compile time. Nevertheless, it’s good programming prac-
tice to declare attributes at compile time because it allows a type specifier to be
used. However, if needed, an attribute can be dynamically created using only the
setAttribute method, as demonstrated here:

<canvas debug="true">
 <handler name="oninit">
 this.setAttribute("fruit", "apple");
 </handler>
 <handler name="onfruit">
 Debug.write("we got fruit : " + fruit);
 </handler>
</canvas>

Handling complex behavior with attribute setters 217
Figure 8.6 shows not only that an attribute was
dynamically created but that it also has an
event object associated with it to support event
handling and constraints. This is the capability
that separates attributes from ordinary Java-
Script variables.

 This brings up a related problem: since you
don’t want to clobber an existing attribute,
how do you ensure that an attribute doesn’t currently exist? The safest way to deter-
mine this is by checking the attribute’s type field for undefined:

if (typeof this.getAttribute("fruit") == "undefined")

Simply checking for a null value won’t work, because JavaScript distinguishes
between null and undefined attributes and variables.

 Normally, updating setAttribute results in an on+attribute event being
sent. But some situations require more complex actions than can be expressed by
sending a single event. For that we need attribute setters.

8.5 Handling complex behavior with attribute setters

Sometimes an algorithm can be more clearly expressed by having an attribute
change result in a complex effect, which might require sending multiple events or
having some auxiliary processing performed. For these situations, the attribute
tag’s setter option is used to specify a custom setter method to perform this pro-
cessing. Because Laszlo doesn’t know what processing will occur, it doesn’t auto-
matically send an on+attribute event to all registered listeners. Instead, the
developer is responsible for creating and sending any events with the event
object’s sendEvent method. Additionally, the developer is also responsible for
performing any cleanup operations to release instantiated objects.

 Although a custom setter can have any name, it’s considered good practice to
name it with a set prefix. However, its event names still must have the form
on+attribute.

 Listing 8.8 is an example where a speed attribute contains a speed value, whose
value must conform to several restrictions. Its value is restricted to a range of
allowable speeds; any speed greater than 65 is adjusted down to 65, and any nega-
tive speed is raised to 0. Additionally, if its duration is known, the distance can also
be calculated. Here’s how a custom setter for speed can be specified:

<attribute name="speed" value="0" type="number" setter="setSpeed"/>

Figure 8.6 Attributes are automatically
added to an object simply by being set.

218 CHAPTER 8

Dynamic behavior of events and delegates
We’ll now create a method called setSpeed as a custom attribute setter to adjust
any new value and send out a set of onspeed and ondistance events.

<canvas debug="true">
 <node>
 <attribute name="speed" type="number"
 setter="setSpeed(speed)"/>
 <attribute name="duration" value="60" type="number"/>
 <attribute name="distance" type="number"/>

 <method event="oninit">
 this.setAttribute("speed", 100);
 this.setAttribute("speed", 55);
 this.setAttribute("speed", -10);
 </method>

 <method name="setSpeed" args="s">
 <![CDATA[
 if (s > 65) this.speed = 65;
 else if (s < 0) this.speed = 0;
 else this.speed = s;
 if (this.duration)
 this.distance = this.duration * this.speed;
 if (this['ondistance'].ready)
 this.ondistance.sendEvent(this.distance);
 if (this['onspeed'].ready)
 this.onspeed.sendEvent(this.speed);
]]>
 </method>

 <handler name="onspeed" args="speed">
 Debug.write("speed: " + speed + " MPH");
 </handler>

 <handler name="ondistance" args="distance">
 Debug.write("distance: " + distance + " miles");
 </handler>
 </node>
</canvas>

To ensure that events aren’t sent to nonexistent event handlers, it’s necessary to
check for their existence. Unfortunately, when an undefined property is refer-
enced, it results in a warning message sent to the log and appearing in the debug
window. To perform this check without generating a warning message, the prop-
erty must be referenced with JavaScript array notation rather than dot notation:

if (this['onspeed']) this.onspeed.sendEvent(this.speed);

Listing 8.8 A custom setter method that filters input sent to the setAttribute method

Executes this
routine after
setting attribute

Sends an event
if ondistance
listener exists

Sends an event if
onspeed listener
exists

Summary 219
Now an event is sent to the onspeed event
handler only if it exists.

 Each event handler is triggered and
receives its updated value as an argument.
The results are shown in figure 8.7.

 Dynamic behavior techniques add
another level of interactivity that can be
applied to many areas in an application.
Its wide applicability makes understand-
ing how to apply dynamic behavior a fun-
damental technique for developers.

8.6 Summary

The combination of event and delegate objects provides an implementation of
the publisher-subscriber design pattern to support a loosely coupled communica-
tion system in Laszlo. This system consists of publishers represented by events, and
subscribers represented by delegates, where publishers send messages to their reg-
istered subscribers whenever any changes occur to their attributes. This loosely
coupled one-to-many relationship has the benefit of allowing a publisher to be
bound to its subscriber. This enables subscribers to be added or removed freely.

 The benefit of this approach is that it allows developers to concentrate on
object interactions without being burdened with the implementation details of a
publisher-subscriber communication system. This relieves developers of having to
instantiate and release objects required by this communication infrastructure and
instead lets them concentrate on building applications. This system is also flexible
enough to accommodate special behavior that doesn’t fit within the standard pro-
cedure of instantiating and associating an event with each attribute that has regis-
tered listeners.

 Once developers understand the operation of events and delegates, they can
use these tools to add dynamic behavior to their applications. This allows for
increased application complexity since an object’s response to events can be made
dependent on application context. Input controls can be overloaded to respond
differently to events to support different operating contexts. Adding dynamic
behavior to an application is a fundamental technique that will be leveraged in
different ways in the upcoming chapters.

Figure 8.7 Attribute setters allow custom
processing when an attribute is set. This
example imposes limits on a speed attribute
so that it can’t exceed 65 or be negative.

Using Laszlo services
This chapter covers
■ Using services
■ Building a stopwatch
■ Building modal window interfaces
■ Building drag-and-drop networks
220

Overview of services 221
A child of five would understand this. Send someone to
fetch a child of five.

 —Groucho Marx, humorist

Even the most visually stunning graphical displays aren’t terribly useful if there is
no way to interact with them. Users have grown accustomed to the usability of
their favorite desktop applications and expect web-based applications to be simi-
lar. In particular, they expect support for a full range of input services such as
modal windows, the mouse scroll wheel, keyboard shortcuts, tool tips, access to
menus from the right mouse button, and drag-and-drop operations.

 Most of this input functionality is supported in Laszlo by a new object type called
a service. Up to now, we have only been working with LzNode-based objects. This is
the base class that allows objects to be used declaratively and to participate in various
communication systems. But services aren’t based on this class; instead, each service
is implemented as a global singleton. You might be familiar with the term singleton,
since it’s probably the most widely used design pattern in Java. The pattern is simple;
a class is limited to a single instance. Since it has a single instance, a singleton class
needs to be globally accessible, and it must have publicly available static methods.

9.1 Overview of services

Singletons are useful when a single object is needed to coordinate actions across a
system. This makes them appropriate for representing the input devices, such as
the keyboard, mouse, or cursor. In addition, a number of software interfaces are
represented as services.

 Although Laszlo uses services to handle many system-related functions, in this
chapter we’ll focus on those services that interface to users through components
and other view-based objects. We’ll also supplement this set with some basic abstract
services—LzIdle, for generating a series of fixed interval events, and LzTimer, for
establishing timed intervals—since they can be used in combination with these ser-
vices. Table 9.1 contains a list of the services that we’ll cover in this chapter.

Table 9.1 Input services covered in this chapter

Service Name Description

LzBrowser Interacts with the browser

LzCursor Modifies the mouse cursor image

LzFocus Handles keyboard focus

222 CHAPTER 9

Using Laszlo services
Each service contains a set of methods for interfacing with one of the standard input
devices shown in figure 9.1. For example, there are services to control the behavior
of a physical device—LzCursor for the mouse cursor and LzKeys for keyboard
input—or the behavior of a software component—LzFocus and LzModeManager.

 Since services are not derived from the LzNode class, their operating character-
istics are slightly different than other objects. We’ll first cover the various ways that
services can interact with objects. Then we’ll build some simple examples to high-
light each of these techniques. Finally, we’ll see how services can be used to add
functionality to the Laszlo Market application.

LzGlobalMouse Provides application-wide control of and information about the mouse

LzIdle Generates events at a fixed frequency

LzKeys Handles keyboard input events

LzModeManager Controls modal properties of windows

LzTimer Invokes an action after a specific time interval

LzTrack Tracks mouse events over a group of views

Table 9.1 Input services covered in this chapter (continued)

Service Name Description

Figure 9.1 The Laszlo services interface to the physical devices and display components of an application.

Different ways to use a service 223
9.2 Different ways to use a service

Interfacing to services is simpler and at the same time more difficult than interfac-
ing to other objects. Because they are singletons, they don’t need to be instanti-
ated; a global singleton is created for each service during an application’s
initialization. Because all their methods are static, they are easily accessible
through JavaScript by prefacing the method name with the name of the service.
So all services can be contacted by calling one of their methods.

 But using a service can be problematic—it can’t communicate with other objects
by sending or receiving events. Although services can’t operate as subscribers, some
services need to send events. For this situation, Laszlo has supplied each service
with auxiliary functionality, allowing them to send events in one of two ways:

■ Through a registration method

■ Through a declarative reference

We’ll now demonstrate each of these techniques for interacting with a service.

9.2.1 Calling a service method

The most straightforward way to use a service is to call one of its methods. Because
a service doesn’t need to be instantiated and is globally accessible, calling a
method is easy. In listing 9.1, LzFocus.setFocus is used to initially set focus to the
login input field. For browsers such as IE that set focus within the web application,
using setFocus allows input to be immediately entered into the login field.
Unfortunately, some browsers, such as Firefox, hold onto focus. This forces users
to manually place the cursor within the login field. Nevertheless, it’s still always a
good idea to set focus for those users who can use it.

<canvas>
 <handler name="oninit">
 LzFocus.setFocus(login);
 </handler>
 <simplelayout axis="y"/>
 <edittext name="login" width="100"/>
 <edittext name="password" width="100"/>
</canvas>

Listing 9.1 Calling an LzFocus service method

224 CHAPTER 9

Using Laszlo services
When a service is used in this way, there’s no object context, so the entire applica-
tion is affected. Next you’ll see how a service and an object can directly communi-
cate with a service.

9.2.2 Receiving service events through registration methods

Services that need to send events containing a combination of possible arguments
are supplied with a registration method. A registration method is supplied with a
delegate and an array argument. The array argument contains a combination of
arguments that can be sent. Additionally, this method can be called repeatedly to
build up a sequence of arguments.

 Listing 9.2 shows how the LzKeys service uses a callOnKeyCombo registration
method to deliver from among a range of possible keyboard values to an object.
Whenever the Ctrl+A, Ctrl+B, or Ctrl+C combination of keys is pressed, callOn-
KeyCombo sends an event, along with the matching key value as an argument, to its
delegate. This results in a call to the main view’s keySeq method for this series of
keystroke combinations. LzKeys also contains a removeKeyComboCall method to
unregister this subscriber.

<canvas debug="true">
 <view name="main">
 <method name="keySeq" args="key">
 Debug.write("Escape key pressed : " + key);
 </method>
 </view>
 <handler name="oninit">
 var del = new LzDelegate(main, "keySeq");
 LzKeys.callOnKeyCombo(del, ["control", "a"]);
 LzKeys.callOnKeyCombo(del, ["control", "b"]);
 LzKeys.callOnKeyCombo(del, ["control", "c"]);
 </handler>
</canvas>

Now we’ll look at a declarative technique supported by other services.

9.2.3 Receiving service events through declarative references

Another way some services send events is through the reference field of an event
handler. Table 9.2 lists these services and their events.

Listing 9.2 Receiving a service event through a registration method

Building a stopwatch 225
Because the service event is specified declaratively, the delegate instantiation and
registration are automatic. In this example, the canvas contains handlers for the
onkeyup and onkeydown events sent by the LzKeys service:

<canvas debug="true">
 <handler name="onkeydown" reference="LzKeys" args="d">
 Debug.write("key " + d + " down");
 </handler>
 <handler name="onkeyup" reference="LzKeys" args="d">
 Debug.write("key " + d + " up");
 </handler>
</canvas>

Now that you’ve seen how objects can interact with services, let’s look at how these
base services can be used to enrich an application with powerful features, such as
timers, modal window controllers, and drag-and-drop operators.

9.3 Building a stopwatch

This example shows how dynamic behavior can be added to a simple time-keeping
mechanism, the LzTimer service, to create a stopwatch. The LzTimer service pub-
lishes an event after a specified interval of time has elapsed to allow subscribers to
handle this event. Although it can’t be guaranteed that the delegate will be called
at the precise specified time in the future, the call will not occur before that time.
LzTimer can easily be used to create a clock by adding a resetTimer call at the end
of each updateTimer cycle. This produces a repeating cycle, whose interval is the
period of each clock tick. Adding each unit of time to a total produces a clock.

Table 9.2 Service events

Service Event Description

LzFocus onfocus Sent when focus changes

LzIdle onidle Sent on each idle event

LzKeys onkeydown Sent when a key is pressed

onkeyup Sent when a key is released

LzModeManager onmode Sent when the mode changes

LzTrack onmousetrackout Sent when a mouse is dragged out

onmousetrackover Sent when a mouse is dragged over

onmousetrackup Sent when the mouse button is released

226 CHAPTER 9

Using Laszlo services
 In listing 9.3, we add stopwatch functionality by allowing the clock to be
started, stopped, and restarted without resetting its total elapsed time.

<canvas debug="true">
 <simplelayout inset="10" axis="x" spacing="2"/>
 <button y="10" text="Timer" fontstyle="bold">
 <handler name="onclick">
 this.onclick.clearDelegates();
 this.del = new LzDelegate(this, "stopTimer");
 this.del.register(this, "onclick");
 time.updateTimer();
 </handler>
 <method name="stopTimer">
 time.del.disable();
 this.onclick.clearDelegates();
 this.del = new LzDelegate(this, "restartTimer");
 this.del.register(this, "onclick");
 </method>
 <method name="restartTimer">
 time.del.enable();
 time.updateTimer(this);
 this.onclick.clearDelegates();
 this.del = new LzDelegate(this, "stopTimer");
 this.del.register(this, "onclick");
 </method>
 </button>
 <text name="time" y="10" resize="true"
 fontsize="14" fontstyle="bold">
 <attribute name="elapsedTime" type="number" value="0"/>
 <method name="updateTimer">
 this.setAttribute('text', this.elapsedTime/10);
 this.elapsedTime++;
 if (typeof this.del == "undefined"){
 this.del = new LzDelegate(this, "updateTimer");
 LzTimer.addTimer(this.del, 100);}
 else LzTimer.resetTimer(this.del, 100);
 </method>
 </text>
</canvas>

Executing this application produces the results shown in figure 9.2.
 The first time the updateTimer method is called, it sets the tick interval by call-

ing addtimer with a value of 100 msecs. To prevent subsequent onclick events
from accessing the updateTimer method, we’ll remove all delegates from the
onclick event B. Next a stopTimer event handler is registered and bound to

Listing 9.3 An LzTimer stopwatch

Prevents subsequent
invocations

B

Stops timer on
next onclickC

Starts
timerD

Restarts
timer

E

Starts another
timing cycle

F

Resets timer on subsequent calls I
Calls timer
againH

Creates
delegate for
LzTimer

G

Demonstrating services with a login window example 227
onclick events C. The next time this button is clicked, its onclick event is han-
dled by the stopTimer method to stop the timer. Finally, we’ll start the clock tick-
ing at D by calling updateTimer.

 The repeating cycle of the clock is established by creating a delegate for the
updateTimer method G, and calling addTimer with an argument of 100 msecs H.
This addTimer method only needs to be called once. The timer expires in at
least 100 msecs, and then calls the updateTimer method associated with its dele-
gate argument to repeat the cycle. But on its next trip I through updateTimer,
the timer delegate exists, so the timer is reset to the next increment of 100 msecs.
This completes the clock.

 Now we’ll add the stopwatch functionality. When the button is clicked, its
onclick event calls the stopTimer method E to stop the timer. Once again, we’ll
remove all delegates from the onclick event so we can change its functionality on
the fly, by registering the restartTimer method with the onclick event. Now the
next time the button is clicked, the restartTimer method is called to restart the
timer F to continue counting time clicks.

 LzTimer is a powerful tool to maintain state within an application. Instead of
writing every state change to a server, an LzTimer-based method could be used to
automatically update the client state to a server at an established time period. This
allows application state to be recovered if the application prematurely terminates.

9.4 Demonstrating services with
a login window example

To demonstrate the other services, we’ll add simple login functionality to the Las-
zlo Market. This isn’t intended to provide realistically secure access to our appli-
cation. For example, we haven’t yet connected to an authenticating back-end
server. Rather, the goal is only to illustrate a cross section of services. But it will
provide a gateway to the application for a new user to register through a nested
sequence of windows.

Figure 9.2 The event handler associated with onclick events is dynamically changed. The
first time the button is clicked, it starts the timer. The second click stops the timer. This
switching of event handlers allows the timer to be repeatedly started and stopped without
losing its count.

228 CHAPTER 9

Using Laszlo services
 Since only a generic nondescript login window is needed, in the interest of
brevity we’ll skip the wireframe diagrams. Recall that focus determines which win-
dow receives keyboard input. When a window receives focus, it gets moved to the
front along the z-axis to become the front-most window. Table 9.3 lists the meth-
ods available to the LzFocus service.

Although focus is generally controlled by mouse or keyboard input, it can also be
set programmatically and controlled with the LzFocus methods listed in table 9.3.
The setFocus method establishes focus on a particular view. Once this is done,
focus can be moved with the next and prev methods. The current location in a
screen can be determined with any of the getFocus, getNext, or getPrev meth-
ods. Finally, focus can be removed with the clearFocus method. Whenever focus
changes from one window to another, an onblur event is sent to both windows.

 When the Login window is displayed, all other views in the application must be
inoperable until that window is closed. This behavior requires a modal window.
The modaldialog component supplies modal window behavior and the login
class extends its properties. Listing 9.4 shows our example Login window.

<canvas debug="true">
 <include href="graybox.lzx"/>
 <include href="incubator/formlayout.lzx"/>
 <include href="incubator/validators"/>

Table 9.3 LzFocus methods

Name Description

clearFocus() Sends an onblur event to the currently focused view, if there
is one, and removes the focus from it.

getFocus() Returns the currently focused view.

getNext(focusview) Returns the next focusable view.

getPrev(focusview) Returns the previous focusable view.

next() Moves the focus to the next focusable view.

prev() Moves the focus to the previous focusable view.

setFocus(focusview) Sets the focus to the given view. If this is not the currently
focused view, an onblur event is sent to the currently
focused view, and an onfocus event is sent to the new view.

Listing 9.4 Using LzFocus for a Laszlo Market Login window

Demonstrating services with a login window example 229
 <include href="check_validators.lzx"/>

 <handler name="oninit">
 LzFocus.setFocus(logwin.top.form.uname);
 logwin.open();
 </handler>

 <class name="login" extends="modaldialog" title="Login"
 content_inset_bottom="3" content_inset_top="3"
 content_inset_left="5" content_inset_right="5">
 <graybox name="top" width="${immediateparent.width}"
 height="${immediateparent.height}">
 <simplelayout inset="5" axis="y" spacing="5"/>
 <view name="form">
 <formlayout align="right"/>
 <text>Username:</text>
 <edittext name="uname" width="150" text="guest"/>
 <text>Password:</text>
 <edittext name="upass" password="true"
 width="150" text="guest"/>
 </view>
 <view>
 <button text="OK" isdefault="true"
 onclick="logwin.doLogin()"/>
 <button text="Cancel" doesenter="false"
 onclick="logwin.doCancel()"/>
 <button text_padding_y="8" text="Register" doesenter="false"
 onclick="regwin.openWindow()"/>
 <simplelayout inset="65" axis="x" spacing="10"/>
 </view>
 </graybox>
 <method name="doLogin">
 Debug.write("Interface to back-end for authentication");
 gController.setAttribute("appstate", "Login to Main");
 this.close();
 </method>
 <method name="doCancel">
 logwin.top.form.uname.clearText();
 logwin.top.form.upass.clearText();
 </method>
 </class>

 <login name="logwin" width="320" height="160"/>
</canvas>

Since the Login window is implemented as a modaldialog, it must be explicitly
opened B with the open method. We’ll only implement the bare requirements nec-
essary to log in to an application. Login accounts C default to guest. Additionally,

Opens Login
windowB

Sets up default
guest login

C

Clears login
and password

D

230 CHAPTER 9

Using Laszlo services
there is a Register button to allow new
users to register. In a subsequent section,
we’ll implement this functionality, but
currently it only contains a stub. Finally,
the Cancel button clears D the User-
name and Password fields. Figure 9.3
shows the complete Login window.

 The OK button’s isdefault attribute
is set to true, and the other buttons have
their doesenter attribute reset to false.
Now when the user presses Enter, the
action associated with the OK button
is triggered.

9.4.1 Controlling the mouse cursor

The mouse cursor, by default, appears as an arrow, but its image changes to reflect
its context and the application state. Several images are accepted as general con-
ventions; the hourglass indicates that the system is busy, the I-beam indicates that
text is selectable or editable, and the outstretched pointing hand indicates a click-
able link. Changing the cursor icon is an effective way to provide the user with
subtle hints about application state. Table 9.4 shows the LzCursor methods for
controlling changes to the cursor image.

As an example of the LzCursor service, we can change the cursor when the mouse
is over the Register button of the Login window. We can easily modify listing 9.4 to
accomplish this. The code in the Register button tag is expanded to include addi-
tional event handlers for the onmouseover and onmouseout events to control the
setting of the mouse cursor:

Table 9.4 LzCursor methods

Name Description

lock() Prevents the current cursor image from changing

setCursorGlobal(resource) Sets the cursor to a resource

showHandCursor(boolean) Shows the hand cursor when the mouse is over a
clickable view

unlock() Restores the default cursor image and allows the
image to be changed

Figure 9.3 The OK button is established as the
default button, so any Enter key input results in
the action associated with the OK button.

Demonstrating services with a login window example 231
<resource name="handcursor_plus" src="handcursor_plus.png"/>
…
<button x="10%" y="75" text_padding_y="8"
 onmouseover="setCursor()" onmouseout="unsetCursor()"
 onclick="register.openWindow()">Register
 <method name="setCursor">
 LzCursor.setCursorGlobal("handcursor_plus");
 </method>
 <method name="unsetCursor">
 LzCursor.unlock();
 </method>
</button>

In each case, a method is called to
change the mouse cursor while the
mouse pointer is over the button, and
to restore the mouse cursor back to its
original image when the mouse moves
outside the button. Figure 9.4 shows
the result; the “+” in the upper-right
corner of the cursor indicates that a
new user can be added through a Reg-
istration window.

 One problem in mouse-cursor
management is finding an image,
especially one that fits into 32 pixels, and producing an immediate association with
an activity. The only generally accepted icons are the hourglass, the hand, and the
text I-beam. Rather than use an unfamiliar icon, it’s often easier and more infor-
mative to simply provide a text description with a tool tip.

Adding tool tips
Although tool tips aren’t a service, we’ve included a section on them here because
they’re a great way to unobtrusively provide additional information to users.
Although they are generally used to provide informational text labels for graphi-
cal icons, they can provide descriptive help messages for any field. Such a help
message appears on the screen as long as the mouse is over the target field. Tool
tips are specified in Laszlo with the tooltip tag.

 The alignment of a tool-tip message defaults to left-justified but can be
changed to right-justified with the tipalign attribute. Tool tips can be found in
the incubator directory in the Laszlo distribution. We can add a tool tip to the
Register button in our market Login window by simply adding it as a child view to
the parent tag. Modify the Register button to look like the following:

Figure 9.4 LzCursor is used to change the
mouse cursor to the pointing hand when over the
Register button. The cursor has a “+” in the upper-
right corner to indicate that a new user can be
added through a Registration window.

232 CHAPTER 9

Using Laszlo services
<include href="incubator/tooltip/tooltip.lzx"/>
 …
 <button text_padding_y="8" text="Register"
 doesenter="false" onclick="regwin.openWindow()">
 <tooltip>New users need to register</tooltip>
 </button>

As figure 9.5 shows, a tool tip complements any application by providing a conve-
nient online help facility. Since they are so easy to add, all graphic icons should be
furnished with a tool tip with a text explanation.

The Login window acts as a gateway to the application by restricting further
access until a valid login is presented to close its dialog window. However, new
users need to access the Register window to sign up for a login and a password.
The Login window’s restrictive behavior is too draconian. Instead, a way is
needed to provide controlled access to its child windows. This functionality is
provided by the LzModeManager service.

9.4.2 Sequencing windows with LzModeManager

A mode manager maintains a stack of modal view objects, constituting the windows
present on the screen at any one time, and ensures that only they can receive
mouse and keyboard events. The modal view mechanism is used to direct a user
through a series of sequential actions by controlling the passage of mouse and
keyboard events within a sequence of windows. This mechanism is used whenever
there is a critical sequence of steps that must be performed in a particular order.

 While the judicious use of modal windows can be comforting by providing the
user with a sense of guidance, their overuse can quickly become annoying and
make users feel as though they’re trapped in a maze.

 A view is made modal when it calls LzModeManager.makeModal. This places the
view and its subviews on the modal stack. Now a parent and its children views can
be accessed, with the restriction that a parent can’t close until all its children are
also closed.

Figure 9.5
Tool-tip messages should be
extensively used in any
application, since they provide
informative help messages in a
convenient and unobtrusive way.

Demonstrating services with a login window example 233
 Although LzModeManager has no attributes, it does have several methods for
manipulating the properties of the modal stack. These are listed in table 9.5.

Using modal windows in the Market
The registration process occurs through a modal regwin window that’s only acces-
sible through the Login logwin window. Once the Register window opens, the
Login window is not responsive until the Register window has closed. Listing 9.5
shows its implementation.

<canvas>
 …
 <class name="logwin" … >
 …
 </class>
 <class name="register" extends="window"
 fontstyle="bold" fontsize="12"
 visible="false" align="center"
 valign="middle">
 <graybox name="graybox"
 width="${parent.width-10}"
 height="${parent.height-10}">
 <simplelayout axis="y" spacing="5"/>
 <text fontsize="16"
 text="Registration Information"/>
 <validatingForm name="form"
 width="100%">
 <formlayout align="right"

Table 9.5 LzModeManager methods

Name Description

globalLockMouseEvents() Prevents all mouse events from firing

globalUnlockMouseEvents() Restores normal mouse event firing

hasMode(view) Tests whether the given view is in the mode list

makeModal(view) Pushes the view onto the stack of modal views

passModeEvent(event, view) Allows certain events to be passed to nonmodal views

release(view) Removes the view, and all the views below it, from the
stack of modal views

releaseAll() Clears all modal views from the stack

Listing 9.5 The Register modal window in the context of the Login window

234 CHAPTER 9

Using Laszlo services
 spacing="5"/>
 <text text="Login:"/>
 <checkString name="login"/>
 <text text="Password:"/>
 <checkString name="password"/>
 <text text="Email:"/>
 <checkEmail name="email"/>
 <method event="onerrorcount" args="val">
 if (val == 0)
 parent.buttons.submit.setAttribute("enabled", true);
 </method>
 </validatingForm>
 <view name="buttons" x="60%">
 <simplelayout axis="x" spacing="10"/>
 <button name="submit" enabled="false" text="Submit"
 isdefault="true" onclick="classroot.closeWindow()"/>
 <button name="reset" text="Reset"
 doesenter="false"
 onclick="parent.parent.clearFields()"/>
 </view>
 <method name="clearFields">
 form.login.editbox.clearText();
 form.password.editbox.clearText();
 form.email.editbox.clearText();
 </method>
 </graybox>
 <method name="openWindow">
 this.open();
 LzModeManager.makeModal(this);
 </method>
 <method name="closeWindow">
 LzModeManager.release(this);
 this.close();
 </method>
 </class>

 <login name="logwin" width="320" height="160"/>
 <register name="regwin" width="460" height="220"
 visible="false"/>
</canvas>

Figure 9.6 shows the results of executing listing 9.5. In step 1, the Login window
appears as a modaldialog window, able to receive all mouse and keyboard events.
In step 2, the Register window has been opened and made modal. The Login win-
dow is now blocked from receiving any mouse or keyboard events. If the window
contained any Close or Resize icons, they would also be disabled. The Register
window can be released from the modal manager by calling LzModeManager’s

Makes Register
window modal

Releases Register
window from
being modal

Defines Login
window

Defines Register
window

Demonstrating services with a login window example 235
release method. But we’ve configured things so that it is only accessible through
the Submit button, which is enabled only when both of its input fields are com-
pleted and validated. In step 3, control has returned to the Login window.

 Just as a house has a locked door and then a foyer transitioning to the living
area, an application should supplement its login facility—the locked door—with
an intermediary step—the foyer—before proceeding directly into the main area.
We’ll add an animated transition to provide a foyer for the Laszlo Market. Now
our application will gently materialize, instead of abruptly popping into view.
Later we’ll see how this transition period also provides a good place to hide star-
tup costs. Listing 9.6 shows the code to create this transition.

<canvas>
 <handler name="oninit">
 if (LzBrowser.getInitArg("lzunit") == "true")
 gController.setAttribute("appstate", "UnitTest");
 else
 gController.setAttribute("appstate", "Splash to Login");
 </handler>
 …
 <login name="logwin" width="320" height="160"/>
 <register name="regwin" width="460" height="220" visible="false"/>

 <view name="main" width="100%" height="100%" opacity="0">
 …
 <state apply="${gController.appstate == 'Login to Main'}">
 <animator target="main" attribute="opacity"
 duration="1500" to="1.0"
 onstop="testsuite.testcase.main_test()"/>
 </state>
 …
</canvas>

Listing 9.6 A smooth transition from login to the application

Figure 9.6 The login sequence shown in listing 9.5 uses a modal register window so that focus returns
to the Login window after the Register window has been successfully completed.

Sets initial
state to

Login

Sets main
view to
initially be
transparent

Materializes main view
over one second

236 CHAPTER 9

Using Laszlo services
This transition is created by having the application gradually increase its opacity
to 100 percent. Since our application architecture allows additional operators to
be easily added, a Login to Main operator is added that contains an animator to
generate this effect.

9.4.3 Capturing keyboard input with LzKeys

The LzKeys service allows keyboard input to be directed to any view. It handles
not only text input but also keyboard bindings such as the Shift, Ctrl, and Esc
keys. This allows actions to be associated with keyboard sequences. For example,
the key sequence Shift+F1 could be configured to execute the method associated
with a delegate. Since LzKeys is a service, key bindings are global throughout the
application, triggering regardless of which view has focus.

 The LzKeys service has a variety of attributes and methods for determining
which keys are currently pressed. Table 9.6 lists the attributes and table 9.7 the
methods.

The downKeysArray attribute and the getDownKeys method both return an array
of key codes for all keys that are currently pressed. The same information is avail-
able from the downKeysHash attribute, as an associative array where all the pressed
keycodes map to true. The isKeyDown method takes a key name—such as Shift or
Tab—and returns a boolean indicating whether or not the key is down.

Table 9.6 LzKeys attributes

Name Data Type Tag or Script Attribute Type Description

downKeysArray array Script Read-only An array of currently
pressed key codes

downKeysHash object Script Read-only A hash by which each
pressed key is set to true

keyCodes object Script Read-only A hash that maps key
names to key codes

Table 9.7 LzKeys methods

Name Description

callOnKeyCombo(delegate, keycodeArray) Instructs the service to call the
given delegate whenever the given
key combination is pressed

getDownKeys() Returns an array of the keys cur-
rently in the down position

Demonstrating services with a login window example 237
 In addition to interfacing to the keyboard, LzKeys interfaces to the mouse’s
scroll wheel. In chapter 10, you’ll see how the mouse’s scroll wheel can be
attached to a scrollbar to scroll through its contents.

Using LzKeys in the Laszlo Market
LzKeys can be added to the Laszlo Market to support “hot keys.” This allows the
Shift+F1 and Shift+F2 key sequences to trigger the Main-to-Checkout and Check-
out-to-Main screen transitions. While LzKeys sends an event, there is no need for
an argument, so it is omitted. Listing 9.7 shows how the LzKeys service uses regis-
tration methods to send events.

<canvas>
 <handler name="oninit">
 var echo = new LzDelegate(this, 'gotoCheckout');
 LzKeys.callOnKeyCombo(echo, ['f1', 'shift']);
 var del = new LzDelegate(this, 'gotoMain');
 LzKeys.callOnKeyCombo(del, ['f2', 'shift']);
 …
 </handler>

 <method name="gotoCheckout">
 gController.setAttribute("appstate", "Main to Checkout");
 </method>
 <method name="gotoMain">
 gController.setAttribute("appstate", "Checkout to Main");
 </method>
 …
</canvas>

The LzKeys service is globally accessible, so you can set up a hot key to support
almost any function in a Laszlo application.

isKeyDown(key) Checks if a particular key is down

removeKeyComboCall(delegate, keycodeArray) Removes the request to call the
delegate on the key combo

Listing 9.7 Using the LzKeys service

Table 9.7 LzKeys methods (continued)

Name Description

Sends an
event

238 CHAPTER 9

Using Laszlo services
9.5 Building a drag-and-drop network

We’ll first look at combining the LzGlobalMouse and LzIdle services to imple-
ment a simple drag-and-drop system. Then, we’ll look at the advantages provided
by building drag-and-drop networks with the LzTrack service. But all drag-and-
drop operations are based on mouse events, so let’s start by covering how local
and global mouse events serve complementary purposes.

9.5.1 Detecting local and global mouse events

Mouse events that report only within the boundaries of a view are known as local
mouse events. Because it’s frequently necessary to receive events for all mouse state
changes regardless of the mouse’s position, the LzGlobalMouse service provides
global mouse events that report mouse state changes from any screen location
and under all conditions. It even reports mouse events from nonclickable and
LzModeManager-controlled views. Listing 9.8 demonstrates how the LzGlobal-
Mouse service uses a declarative reference to send events.

<canvas debug="true">
 <simplelayout axis="y" spacing="5"/>
 <view width="100" height="100" bgcolor="0xBBBBBB">
 <text text="Clickable" align="center"
 valign="middle" fontstyle="bold"/>
 <handler name="onmousedown">
 Debug.write ("Local onmousedown");
 </handler>
 </view>
 <view width="100" height="100" bgcolor="0xBBBCCC" clickable="false">
 <text text="Not Clickable" align="center"
 valign="middle" fontstyle="bold"/>
 <handler name="onmousedown">
 Debug.write ("Won't ever be displayed");
 </handler>
 </view>
 <handler name="onmousedown" reference="LzGlobalMouse">
 Debug.write ("Global onmousedown");
 </handler>
</canvas>

Figure 9.7 shows the debugger output for two views, one clickable and one not.
When the mouse is clicked outside of both views, the onmousedown event is only
reported by LzGlobalMouse. When the mouse is clicked within the top clickable

Listing 9.8 Using the LzGlobalMouse service

Reports local
mouse events

Reports
LzGlobalMouse events

Building a drag-and-drop network 239
view, the onmousedown event is reported both locally and by the LzGlobalMouse
service. But when the bottom nonclickable view is clicked, the event is only
received by LzGlobalMouse. Figure 9.7 shows the difference between the reported
local and global mouse events.

 LzGlobalMouse enables global mouse tracking in an application, which is nec-
essary for drag-and-drop operations since a view-based object can be transported
and deposited to any location on the screen. The next step involves combining
LzGlobalMouse with the LzIdle service to generate continuous tracking.

9.5.2 Generating continuous tracking with LzIdle

The next step needed to build our drag-and-drop system is an object that gener-
ates a continuous stream of events. The LzIdle service generates a continuous
stream of onidle events. These events are ideal for tracking mouse movements,
because they are issued at the highest frequency available to Laszlo. This ensures
the smallest possible latency between mouse movements and their corresponding
screen display. Listing 9.9 shows how a drag-and-drop operation can be written
using a combination of LzIdle and LzGlobalMouse services.

<canvas>
 <class name="dragger" width="$once{parent.width}" height="20">
 <attribute name="text" value="" type="string"/>
 <attribute name="count" value="0" type="number"/>
 <text name="txt" text="${parent.text}"

Listing 9.9 Implementing drag-and-drop with LzIdle and LzGlobalMouse

Figure 9.7 The LzGlobalMouse service reports all mouse events from any location under any
conditions. The first mouse click occurs outside the views, so only LzGlobalMouse reports it. The
second mouse click occurs within the clickable view, so it is reported both locally and globally. The third
mouse click occurs within the nonclickable view, so it is only reported by LzGlobalMouse.

240 CHAPTER 9

Using Laszlo services
 resize="true" align="center"/>
 <handler name="onmousedown">
 this.image = new dragger(canvas,
 {width: this.width, height: this.height,
 bgcolor: 0xCCCCCC, clickable: true});
 this.image.setAttribute("text", this.text + ++this.count);
 this.startDrag();
 </handler>
 <method name="startDrag">
 if (typeof this.updatePos == "undefined")
 this.updatePos = new LzDelegate(this, "updatePosition");
 this.updatePos.register(LzIdle, "onidle");
 if (typeof this.eDrag == "undefined")
 this.eDrag = new LzDelegate(this, "endDrag");
 this.eDrag.register(LzGlobalMouse, "onmouseup");
 </method>
 <method name="updatePosition">
 this.image.setX(canvas.getMouse("x"));
 this.image.setY(canvas.getMouse("y"));
 </method>
 <method name="endDrag">
 var x = this.image.x - target.x;
 var y = this.image.y - target.y
 if (target.containsPt(x, y)) Debug.write("hit");
 else Debug.write("miss");
 this.updatePos.unregisterAll();
 this.eDrag.unregisterAll();
 </method>
 </class>
 <dragger text="Laszlo" bgcolor="0xBBBBBB" width="60"/>
 <view name="target" x="100" y="50"
 width="100" height="100" bgcolor="0xCCCBBB">
 <text valign="middle" align="center"
 fontstyle="bold" fontsize="16" text="Target"/>
 </view>
</canvas>

In listing 9.9 a dragger object is dragged and dropped onto a target and,
depending on its dropped location, a hit or miss message appears in the debugger
window.

 This action is initiated with an onmousedown event, which creates B a new
instance of the dragged object. This dragged object is a view-based object contain-
ing a label, an onmousedown event handler, and three methods—startDrag,
updatePosition, and endDrag—to perform its drag-and-drop operations. When a
new object is instantiated, its background color is lightened and a unique label
identifies it.

Starts
dragging Updates position

on clock tick
C

Ends
draggingD

Creates new
dragger instance

B

Updates
floater’s x
coordinates

Tests
location of
drop object

E

Releases
delegates

F

Building a drag-and-drop network 241
 The startDrag method is called to create the updatePos and eDrag dele-
gates C that add its dynamic drag-and-drop behavior. The updatePos delegate is
registered to handle onidle events generated by the LzIdle service, to repeat-
edly call updatePosition.

 Releasing the mouse button D signals that dragging has ended. The eDrag
delegate is registered to handle onmouseup events received from LzGlobalMouse.
After the drop, all the delegates are unregistered F. Since a new delegate is
instantiated only once, we don’t release their resources.

 The initial onmousedown event indicating the drag start is a local mouse event,
as it occurs within a clickable view. However, because the dragged image can be
dragged anywhere on the screen, LzGlobalMouse provides the onmouseup event
indicating the drop.

 To determine whether the object was dropped on the target, the final coordi-
nates of the dragged view are compared against the target E. Figure 9.8 shows
where three missed drops would have landed and a fourth “hit.”

We have now implemented our own simple drag-and-drop class, which operates
like a simplified version of Laszlo’s dragstate tag. The dragstate tag can be
applied to any view to make it draggable. It’s derived from the state tag, so it uses
the same set of apply and remove methods to turn dragging on and off. A simple
example showing how dragstate can be applied to a square to allow it to be
dragged across the screen looks like this:

<canvas>
 <view name="box" bgcolor="0xBBBBBB" width="20" height="20"
 onmousedown="dragger.apply()"
 onmouseup="dragger.remove()">
 <dragstate name="dragger"/>
 </view>
</canvas>

Figure 9.8 Dragging and dropping is used to create identical icons that are dropped
onto a target. The debugger shows that there were three misses before a hit.

242 CHAPTER 9

Using Laszlo services
Although this works fine for simple cases, applications typically require a network
of drag-and-drop operations that can involve multiple target areas, operations,
and source items. Laszlo provides the LzTrack service to manage these types of
complex drag-and-drop operations.

9.5.3 Advanced drag-and-drop with LzTrack

Advanced drag-and-drop operations are organized through a set of networking
rules supplied by the LzTrack service. For example, suppose we have three views,
A, B, and C, and want to impose the following set of rules:

■ Items can be dragged from A to B and C.

■ Items can be dragged from B to C.

but

■ Items can’t be dragged from B to A, C to A, or C to B.

Figure 9.9 provides a visual representa-
tion of these rules.

 LzTrack provides this network through
tracking groups, groups of views that receive
mouse-tracking events. Group members
now receive these tracking events, onmouse-
trackover, onmousetrackout, and
onmousetrackup, which signal when the
mouse—and the dragged object—enter a
view, leave a view, or release a button. The
methods listed in table 9.8 control the reg-
istration and activation of tracking-group
membership.

Table 9.8 LzTrack methods

Name Description

activate(group) Activate tracking for a particular group. Multiple groups can be
tracked simultaneously.

deactivate(group) Deactivate tracking for the currently active group.

register(v, group) Register a view to be tracked by a particular tracking group.

unregister(v, group) Unregister a view from tracking by a particular tracking group.

Figure 9.9 This schematic illustrates the
rules of a drag-and-drop network. Items can be
dragged from view A to both the B and C views.
Items from view B can only be dragged to view
C. Items in view C can’t be dragged at all.

Building a drag-and-drop network 243
A view will typically register itself as a member of a tracking group during its
oninit stage, and call the register method with a tracking-group name. Nor-
mally, a tracking group lies dormant, but when any member receives an onmouse-
down event, it can call LzTrack’s activate method with its tracking-group name to
activate it. Now all group members will receive the mouse-tracking events.

 Later, if a tracking-group member receives an onmouseup event, it can disable
all tracking events by calling LzTrack’s deactivate method with the tracking-
group name. Finally, members can leave a tracking group by calling the LzTrack’s
unregister method.

Drag-and-drop in the Laszlo Market
We’ll use LzTrack in the Laszlo Market to let customers select a product item sim-
ply by dragging and dropping it from the Product List to the Shopping Cart win-
dow. Customers will also be able to view the video trailers by dragging and
dropping them from the Product List window to the Media Player window. These
tracking relationships are illustrated in figure 9.10.

Figure 9.10 Screen 1 shows two drag source boxes in the Product List and Shopping Cart windows. In
screen 2, the Product List box is dragged to the Shopping Cart. In screen 3, the Product List or Shopping
Cart box is dragged to the Media Player. In screen 4, a draggable box is dragged to the unregistered
Product Details window.

244 CHAPTER 9

Using Laszlo services
To represent a draggable item, two colored boxes are used, one in the Product
List window and the other in the Shopping Cart. To indicate when a dragged item
is over its target window, the background window color will darken. Whenever the
mouse button is released or the mouse moves outside the target, the window back-
ground reverts to its original color. Since the Product Details window is not a
member of any tracking group, it should not respond to a dragged item.

 Since it’s the simpler case, we’ll start by working with the Media Player window.
It receives dropped objects from two sources, so it needs to register as a member
for both the product_target and shop_target tracking groups within its oninit
handler, as shown in listing 9.10.

<window name="mediaplayer" title="Media Player" … >
 <handler name="oninit">
 LzTrack.register(this, "product_target");
 LzTrack.register(this, "media_target");
 </handler>
 <handler name="onmousetrackover">
 this.setAttribute("bgcolor", 0xCCCCCC);
 </handler>
 <handler name="onmousetrackout">
 this.setAttribute("bgcolor", 0xFFFFFF);
 </handler>
 <handler name="onmousetrackup">
 this.setAttribute("bgcolor", 0xFFFFFF);
 </handler>
</window>

The window is now eligible to receive mouse-tracking events from these groups and
will change its background color depending on the received mouse-tracking event.

 Next, we’ll implement the Shopping Cart window. It only receives items
dragged from the Product List, so it only needs to register within the
product_target group. It will also change its background color to reflect the cur-
rent mouse track state. Since the Shopping Cart window is a source for draggable
objects, a small viewable object is also added to represent this source. Dragging
operations are initiated by a local onmousedown event. Listing 9.11 shows the steps
necessary to support drag-and-drop functionality in the shopping cart.

Listing 9.10 Registering the Media Player in tracking groups

Becomes dark
on mouse over

Becomes light again
on mouse out

Becomes light again
on mouse button up

Building a drag-and-drop network 245
<window name="shopcart" title="Shopping Cart" … >
 <handler name="oninit">
 LzTrack.register(this, "product_target");
 </handler>
 <handler name="onmousetrackover">
 this.setAttribute("bgcolor", 0xCCCCCC);
 </handler>
 <handler name="onmousetrackout">
 this.setAttribute("bgcolor", 0xFFFFFF);
 </handler>
 <handler name="onmousetrackup">
 this.setAttribute("bgcolor", 0xFFFFFF);
 </handler>
 <view width="40" height="40" bgcolor="0xDDDDDD">
 <handler name="onmousedown">
 dragger.startdrag("media_target");
 </handler>
 </view>
 …
</window>

Rather than instantiating a separate object for each draggable source, we’ll create
a draggable class for these transient draggable images. There will be a single glo-
bal draggable instance, dragger, that can be reused. Its dimensions match those
of the drag sources and its opacity is turned down a notch to provide it with a tran-
sient ghostly image:

<canvas>
 <draggable name="dragger" width="40" height="40"
 bgcolor="0xDDDDDD" opacity=".8"/>
 …
</canvas>

The draggable class is similar to our earlier examples, as it primarily consists of
the startdrag and enddrag methods. The startdrag method is more complex
since its drag source could potentially be registered with several LzTrack groups.
It receives an argument that can either be a string, for a single LzTrack group, or
an array representing multiple groups. Depending on the argument’s type, one or
more LzTrack groups are activated and the argument is saved in a droptarget
array to make it accessible for deactivating. Listing 9.12 shows the startdrag and
enddrag methods.

Listing 9.11 Adding drag-and-drop functionality to the shopping cart

Creates drag
source

Begins
dragging

246 CHAPTER 9

Using Laszlo services
<class name="dragger" visible="false">
 <attribute name="droptarget"/>
 <attribute name="del"/>
 <dragstate name="dragstate"/>

 <method name="startdrag" args="target">
 <![CDATA[
 this.bringToFront();
 this.setVisible(true);
 this.setX(canvas.getMouse('x') - (this.width/2));
 this.setY(canvas.getMouse('y') - (this.height/2));
 dragstate.apply();
 if (typeof target == "object") {
 this.droptarget = new Array();
 for (var i = 0; i < target.length; i++) {
 LzTrack.activate(target[i]);
 this.droptarget[i] = target[i]; } }
 else {
 LzTrack.activate(target);
 this.droptarget = target; }
 this.del = new LzDelegate(this, "enddrag");
 this.del.register(LzGlobalMouse, "onmouseup");
]]>
 </method>

 <method name="enddrag">
 <![CDATA[
 this.setVisible(false);
 draggerid.del.unregisterAll();
 dragstate.remove();
 if (typeof this.droptarget == "object") {
 for (var i = 0; i < this.droptarget.length; i++) {
 LzTrack.deactivate(this.droptarget[i]);
 this.droptarget[i] = null; } }
 else {
 LzTrack.deactivate(this.droptarget);
 this.droptarget = null; }
]]>
 </method>

 <view height="${classroot.height}" width="${classroot.width}"
 bgcolor="${classroot.bgcolor}"/>
</class>

In listing 9.12, to create the draggable icon at B, we make the icon visible and
bring it in front of the other windows. When dragging begins, the draggable icon

Listing 9.12 The startdrag and enddrag methods

Starts
drag

B

Handles
multiple
targets

C

Handles
single target

D

Sets up
for drop

Handles
drop

Summary 247
must be slightly offset from the background image to provide a sense of originat-
ing from it. Finally, we use the dragstate’s apply method to make it draggable.

 The next step C supports the drag-and-drop network by determining whether
this draggable icon has one or multiple drop targets. If the target argument is an
array, then there are multiple targets. Each target is activated D and saved for
later deactivation.

 When the icon is dropped onto its target, the draggable icon becomes invisi-
ble, its dragstate is removed, and it is unregistered to prevent it receiving further
onmouseup events.

 The drag source for the Product List window has multiple possible destina-
tions, so it needs to register with both the product_target and media_target
LzTrack groups. These targets are stored in an array to indicate to the dragger
object its multiple destinations:

<window name="productlist" title="Product List" … >
 <handler name="oninit">
 LzTrack.register(this, "product_target");
 LzTrack.register(this, "media_target");
 </handler>
 <view width="40" height="40" bgcolor="0xDDDDDD">
 <handler name="onmousedown">
 var a = new Array();
 a[0] = "product_target";
 a[1] = "media_target";
 dragger.startdrag(a);
 </handler>
 </view>
</window>

Using LzTrack groups removes the need to perform any screen coordinate tests
to determine a target position. Drag-and-drop sources are now connected to their
targeted drop zones by logical track names. This allows target combinations to be
easily updated by adding or removing members from the tracking groups.

 Although we’ve used a simple view here, this example serves as the foundation
for our drag-and-drop network. In subsequent chapters, we’ll enhance this net-
work with additional functionality. But in each case, only a few additional lines of
code will need to be added to this foundation.

9.6 Summary

It isn’t enough for an application to be visually appealing; its real worth is deter-
mined by how well it fits into the workflow of its users. Over the years, desktop
applications have discovered a number of user interface conventions that have

248 CHAPTER 9

Using Laszlo services
struck enough emotional resonance with users to have stood the test of time and
be popularly accepted. Today’s user can’t accomplish much without a mouse,
favorite keyboard shortcuts, and a scroll wheel to scan through pages. Just as
important as these physical devices are the visual paradigms that define the work-
ings of graphical interfaces. Most users would judge an application to be incom-
prehensible if it didn’t support common graphical metaphors such as drag-and-
drop, modal windows, and window selection. While many of these interface
devices and visual paradigms may have started their life as “bells and whistles,”
they have managed to succeed and thrive in popularity because they fit so nicely
into a user’s workflow.

 Laszlo provides a rich set of services supporting a wide array of interface
devices and graphical metaphors. These services provide the fundamental set of
features required to produce an application satisfying the design requirements of
today’s applications. These features are a starting point; we can augment them
with animation, audio, and video to build future interface metaphors for tomor-
row’s world. In the following chapters, we’ll continue to develop the drag-and-
drop network by defining the composition of datasets that populate the views and
provide the products available for drag-and-drop operations.

Part 3

Laszlo datasets

Part 3 is all about Laszlo’s approach to data handling, all of which, with the
limited exception of resources, is performed through its data-binding system
whereby any visual object can establish a direct relationship with data. This sys-
tem provides communication between the view and model layers of the MVC
architecture. Most significantly, the communication is bidirectional, which
along with the event-handling system, greatly enhances the versatility of Las-
zlo’s architecture because any visual object can directly interact with any other
element—object or data. The resulting integrated system allows a high degree
of interactivity among all its elements. Laszlo’s model-layer data repositories
are called datasets. Chapter 10 introduces fixed bindings between a visual
object and data in a dataset. Chapter 11 moves on to bindings that change
during runtime. Chapter 12 incorporates datasets into the Laszlo Market.

Working with
XML datasets
This chapter covers
■ Exploring XML and datasets
■ Binding visual objects to data nodes
■ Introducing the replication manager
■ Sorting datasets
■ Using grids to create listings
251

252 CHAPTER 10

Working with XML datasets
It is a capital mistake to theorize before one has data.
Insensibly one begins to twist facts to suit theories,
instead of theories to suit facts.

 —Sir Arthur Conan Doyle, author

You’ve probably been anxiously wondering when we’re going to start working
with data. Up to now, we’ve restricted ourselves to the horizontal aspects of event-
delegate communications. But data requires a vertical approach that uses the ser-
vices of the data-binding communication system. Later in this chapter, we’ll see
how the directionality of Laszlo’s communication system cleanly maps onto the
layout of horizontal and vertical prototype models.

 Laszlo’s approach to data is so comprehensive that we need four chapters to
describe it completely. Since all data for a Laszlo application is encoded in XML
and stored in datasets, we’ll begin by exploring the structural elements of XML,
followed by the XPath expressions that establish a relationship between LZX and
data. In the next chapter, we’ll explain how to manipulate the contents of
datasets. In chapter 16, we’ll introduce buffered datasets for interfacing to HTTP
servers. Finally in chapter 17, we’ll cover the special handling requirements
needed to efficiently work with large datasets.

 Laszlo’s method of data interaction involves a twist on conventional data access
methods. Although its unique qualities make its initial learning curve steeper, it
rewards this effort with an elegant system that allows complex data interactions to
be easily described. Since all data is persistently stored in datasets, data is never
digested. Instead, visual objects establish persistent relationships to individual or
multiple data elements within a dataset. Because datasets are stored in memory,
their persistence lasts only for the application’s duration. In chapter 16, we’ll
finally see how to transfer data to a web server.

10.1 Introducing XML-based datasets

In most systems, code manages data. Laszlo reverses this—data governs the presen-
tation of coded objects. Although a visual object initiates a binding to data, once the
binding is established the object cedes control of its presentation to the data. This
may seem odd at first, but consider the appealing aspects of this relationship:

■ When there is no data, nothing is displayed.

■ When a data node exists, a visual object is displayed.

■ When multiple data nodes exist, multiple visual objects are displayed.

Introducing XML-based datasets 253
This results in data changes being automatically reflected in the visual presenta-
tion. When new data nodes appear, visual objects spontaneously appear. When
data nodes are deleted, these same objects spontaneously disappear, thus elimi-
nating the display of stale data.

 All data access in Laszlo, with the exception of media resources, is performed
through its data-binding communication system. Just as event-based communica-
tions allow multiple listeners for a single sender, data bindings allow multiple
visual objects to be bound to a data node. This uses the publisher-subscriber com-
munication system discussed in chapter 8, but it is now applied vertically to data-
bound visual objects. The XML data node operates as the publisher and the
bound objects are the subscribers. Any changes to a data node’s properties are
immediately communicated to all its listeners. But since each object can handle
changes differently, this supports complex user interface interactions.

 The data-binding communication system differs from the event-handling sys-
tem by allowing bidirectional communication between publishers and subscrib-
ers. This gives subscribers a way to directly update the XML contents of a dataset
that compels the publisher to issue new events to its subscribers. Furthermore,
visual objects can now communicate horizontally with one another through
object-based attribute settings or vertically through the application state repre-
sented by data elements in a dataset.

 We’ll begin by defining the composition of an XML data structure in a dataset.
Next we’ll examine the different entities that comprise a query in an XPath
expression. Then we’ll demonstrate how a visual object can use an XPath expres-
sion to establish a data binding to a location in an XML dataset. Depending on the
XPath query and the composition of the XML dataset, the XPath expression can
return zero, one, or multiple matches. While the first two cases are handled in a
standard manner, handling multiple matches introduces the concept of replica-
tion. Later we’ll apply replication to sorting. At the end of the chapter, we’ll use
these concepts in the Laszlo Market to create a product listing. This demonstrates
how a window can easily be produced to contain a listing featuring alternating
backgrounds, selections, scrolling, column titles, and sorting.

10.1.1 Exploring XML elements

Laszlo’s approach to data access is grounded in two widely accepted standards:
XML and XPath. A Laszlo application can have an unlimited number of datasets,
where each dataset contains an XML document. A valid XML document consists of
a hierarchical tree structure with a root node containing any number of child nodes,
each of which, following the usual recursive definition of a tree, can contain other

254 CHAPTER 10

Working with XML datasets
child nodes. Figure 10.1 shows an example with the root node plum and its
two child nodes, size and color. The node color has one child node, the text
node containing the purple string.

 Laszlo uses a nonstandard terminology to describe an XML structure. While
the World Wide Web Consortium (W3C) only defines XML in terms of data ele-
ments, Laszlo adds a text element definition. Data elements can have any number of
attributes and child nodes, but a text element consists only of text data and must
be a child node of a data element.

 A dataset can be initially stocked with data from a resident or networked source.
In this chapter, we’ll only work with resident datasets. In chapter 16 we’ll see how
a resident dataset can easily be converted into a remote HTTP-accessed dataset.

Sample dataset for examples
Listing 10.1 shows a resident dataset contained in the myData.lzx dataset. This
dataset has a single root node called fruit and four child nodes: peach, plum,
peach, and cherry. Each data element has a single attribute named variety. Each
child element contains a set of color and size child elements. This sample
dataset is used for all examples in this chapter and chapter 11.

<library>
 <dataset name="myData">
 <fruit type="drupe">
 <peach variety="Freestone">
 <color>white</color>
 <size>medium</size>
 </peach>
 <plum variety="Damson">
 <color>purple</color>
 <size>small</size>
 </plum>
 <peach variety="Clingstone">
 <color>yellow</color>
 <size>large</size>
 </peach>

Listing 10.1 Contents of the myData.lzx library file

Figure 10.1
In this XML code fragment, the plum data
element contains two other data elements,
color and size, and has an attribute
variety. The data element color
contains the text element purple.

Introducing XML-based datasets 255
 <cherry variety="Bing">
 <color>red</color>
 <size>small</size>
 </cherry>
 </fruit>
 </dataset>
</library>

The contents of this dataset can be included into an application with this tag:

<include href="myData.lzx"/>

Now that we have a dataset, we need a way to access it. For this, we’ll need to use
XPath expressions.

10.1.2 Using XPath to select data elements

XPath is a compact query language for selecting elements or element sets from an
XML document. Laszlo supports only a subset of XPath, but its descriptive power is
sufficient for our purposes. The location path notation is designed to mimic the
Uniform Resource Identifier (URI) and common file path syntaxes. All of the
XPath path expressions that we’ll be using have the following form: a location path
followed by a wildcard, predicate, or function.

 A location path identifies the dataset by specifying its name followed by a colon
and forward slash. Appending a root element name to the location path selects
the dataset’s root element. Further appended element names following a forward
slash select subelements. A location path selects a data element and establishes a
context. This context can be further refined by specifying a predicate. Table 10.1
summarizes the syntax of location paths.

Table 10.1 XPath location path forms

Location Path Form Description
Example Path

Expression
Example Result

datasetname:/ Selects a dataset myData:/ <myData>…</myData>

datasetname:/
root

Selects the root ele-
ment of the dataset

myData:/fruit <fruit>…</fruit>

datasetname:/
root/…/elementN

Selects elementN myData:
/fruit/plum

<plum variety="Damson">
…
</plum>

256 CHAPTER 10

Working with XML datasets
A predicate narrows a set of matching data elements to a subset according to the dif-
ferent forms shown in table 10.2. It can select a single element using one-based
indexing, or a group of elements by using a range. JavaScript uses zero-based index-
ing, so this is the only place where one-based indexing is used in Laszlo. A range
extends from a start to an indicated element, from an indicated element to the
end, or within a specified range. Finally, the @ operator can be used to specify a
matching attribute name. In each case, the context is updated. This context serves
as a base and a function is used to select the various data contents within the spec-
ified data elements.

 As table 10.3 shows, Laszlo only supports a single wildcard selector, the asterisk
(*), to select all elements. None of the other popular wildcard characters, such as
the question mark (?) or plus (+), are supported. The purpose of the wildcard
selector is to select all of a data element’s children.

Table 10.2 XPath predicates

Predicate Form Description
Example Path

Expression
Example Result

[i] Selects the ith
element

myData:/fruit/
peach[1]

<peach variety="Freestone">
…
</peach>

[-i] Selects up to
and including the
ith element

myData:/fruit/
peach[-2]

<peach variety="Freestone">
…
</peach>
<peach variety="Clingstone">
…
</peach>

[i-] Selects from the
ith element to the
last element

myData:/fruit/
peach[2-]

<peach variety="Clingstone">
…
</peach>

[i-j] Selects from the
ith element to the
jth element

myData:/fruit/
peach[1-2]

<peach variety=”Freestone”>
…
</peach>
<peach variety="Clingstone">
…
</peach>

[@name='value'] Selects an ele-
ment with a spec-
ified attribute
containing a
specified value

myData:/fruit/
peach[@vari-
ety=‘Freestone]

<peach variety="Freestone">
…
</peach>

Introducing XML-based datasets 257
Finally, we get to terminal selectors that access the data contained within a data
element. A terminal selector can be any of the operators or functions listed in
table 10.4. They can return a data element’s attribute value, text value, or name.

Laszlo supplies the datapath attribute to contain these XPath expressions within a
declarative tag. Because this attribute is defined by the LzNode object, every LZX
object has access to it. As a result, any declarative tag can use XPath to access datasets.

10.1.3 Binding declarative tags to XML elements

A data path embeds an XPath expression in a visual tag to bind it to a dataset’s
XML elements. The behavior of a data path depends on whether the XPath
expression returns a single matching data element, multiple data elements, or no
elements. Let’s start with the simplest case, a single matching XML element.

 An XPath expression that returns no match or a single match governs the visi-
bility of its bound view object. This visibility relationship can be turned off by
resetting a view’s dataControlsVisibility attribute to false; it defaults to true. A
match represents a returned data, attribute, name, or text element. A match also
returns a context that is propagated to all child nodes. This allows child nodes to
execute relative XPath expressions to retrieve the data values in a data element. In
this way, the parent’s returned value also controls the visibility of its child nodes.
So if the contents of the dataset change so that the XPath expression no longer
returns a match, then the bound object loses its visibility, as does its children.

Table 10.3 XPath wildcard selectors

Wildcard Description Example Path Expression Example Result

* Selects all con-
tained element(s)

myData:/fruit/plum/* <color>purple</color>
<size>small</size>
<price>1.25</price>

Table 10.4 XPath terminal selectors

Function Form Description Example Path Expression Example Result

@attribute Displays the name of the speci-
fied attribute

myData:/fruit/
plum/@variety

Damson

text() Displays the contents con-
tained within the text element

myData:/fruit/
plum/size/text()

small

name() Displays the name of an
element

myData://fruit/
cherry/name()

cherry

258 CHAPTER 10

Working with XML datasets
 When an XPath expression returns a single matching data element, a pair of
data and LzDatapath objects is automatically created and an ondata event is gen-
erated. The data object contains the matched value, while the LzDatapath object
contains, among other things, a pointer to the current location or data context
within the XML dataset. Listing 10.2 illustrates how these data and LzDatapath
objects can be displayed in the ondata event handler.

<canvas debug="true">
 <include href="myData.lzx"/>

 <node datapath="myData:/fruit/@type">
 <handler name="ondata">
 Debug.write("data: ", this.data);
 Debug.write("datapath: ", this.datapath);
 </handler>
 </node>
 <node datapath="myData:/fruit/peach[1]/@variety">
 <handler name="ondata">
 Debug.write("data: ", this.data);
 Debug.write("datapath: ", this.datapath);
 </handler>
 </node>
</canvas>

Figure 10.2 shows the debugger output of the data attribute displaying the type and
variety attributes for the fruit and peach data elements, along with a set of point-
ers to the dataset whose position reflects each match within the XML structure.

 Since each of these XML element nodes has child nodes containing data ele-
ments, the data context can be used to access the data contained within these
child data elements.

Listing 10.2 Using a data path to bind a tag to an XML element in a dataset

Figure 10.2 A declarative tag uses data and datapath attributes to bind to an XML data element.
These objects are automatically created to store the information retrieved by the XPath query. The data
attribute stores the matching data value returned by the XPath expression. The datapath attribute
acts like a pointer to the XML dataset to provide a data context.

Introducing XML-based datasets 259
10.1.4 Establishing a data path context

The data context established by a parent node is available to its children. A child
node can extend its parent’s context with relative XPath addressing to add a ter-
minal selector to access subsequent data elements. This approach provides a suc-
cinct way to access and display a sequence of data elements:

<canvas>
 <include href="myData.lzx"/>

 <window>
 <view datapath="myData:/fruit">
 <text datapath="peach[1]/@variety"/>
 <text datapath="peach[1]/color/text()"/>
 <text datapath="peach[1]/size/text()"/>
 <simplelayout axis="y" spacing="2"/>
 </view>
 <view datapath="myData:/fruit/peach[2]">
 <text datapath="@variety"/>
 <text datapath="color/text()"/>
 <text datapath="size/text()"/>
 <simplelayout axis="y" spacing="2"/>
 </view>
 <simplelayout axis="y" spacing="15"/>
 </window>
</canvas>

Here the view’s data path is used to establish a con-
text, which is extended by its children with terminal
selectors to access its contained data. The results are
shown in figure 10.3.

 We’ve now seen how a data path’s XPath expres-
sion can be split across parent and child nodes. Let’s
move on to an even more general approach.

10.1.5 The $path{} constraint notation

Having a bidirectional communication system isn’t terribly useful, unless there is
a way for these systems to interact with one another. Once again, constraints are
used to provide the glue allowing the event-delegate and data-binding communi-
cation systems to interact. An object’s attributes can be set with a special path con-
straint that works with data paths. It requires that a data path context first be
established; afterward, relative XPath addressing with a terminal selector is used
to access individual data elements. Listing 10.3 shows how one view can communi-
cate values to another view using event constraints that transmit values set
through data-bound path constraints.

Figure 10.3 Once a context
has been established by a
parent, it is available to all its
children. A child node can
extend its parent’s context with
operators to access the data
contained in a data element.

260 CHAPTER 10

Working with XML datasets
 <canvas>
 <dataset name="myData">
 <width>100</width>
 <height>100</height>
 </dataset>
 <view name="main" datapath="myData:/" bgcolor="0xCCCCCC">
 <attribute name="width" value="$path{'width/text()'}"/>
 <attribute name="height" value="$path{'height/text()'}"/>
 </view>
 <view name="another" width="${main.width}" height="${main.height}"
 bgcolor="0xDDDDDD"/>
 <simplelayout spacing="5"/>
</canvas>

The purpose of this example is to demonstrate the general equivalence of these
communication systems and not to serve as an example of programming style. But
for certain applications that dynamically generate a display, storing presentation
values in a dataset might be an appropriate coding methodology.

 Another major difference between these two communication systems is that
data paths and path constraints operate in a two-way manner. This allows an object
to write or update the elements of an XML dataset. In the next section, we’ll see
how an object can transfer updated data elements back to an XML dataset.

10.1.6 Updating a dataset

To complete this circuit, the datapath object’s updateData method allows an
object to transfer its updated value back into the bound data element. Whenever
an XML element in a dataset is updated, this results in an ondata event, which
causes any bound objects to be updated. This completes a communication loop
between visual objects, as one object can update a data element, which results in
other bound views automatically having their displays updated with this new infor-
mation. Listing 10.4 demonstrates this process using a pair of width and height
input fields.

<canvas>
 <include href="/incubator/formlayout.lzx"/>
 <dataset name="myData">
 <width>100</width>
 <height>100</height>
 </dataset>

Listing 10.3 Showing how constraints and path constraints can interact

Listing 10.4 Updating a dataset

Sets initial XML
data value

Introducing XML-based datasets 261
 <view datapath="myData:/">
 <text text="Width"/>
 <edittext datapath="width/text()" doesenter="true">
 <method name="doEnterDown">
 this.datapath.updateData(this.getText());
 </method>
 </edittext>
 <text text="Height"/>
 <edittext datapath="height/text()" doesenter="true">
 <method name="doEnterDown">
 this.datapath.updateData(this.getText());

 </method>
 </edittext>
 <formlayout inset="30" align="right"/>
 </view>
 <view name="box" x="150" y="20"
 datapath="myData:/" bgcolor="0xCCCCCC">
 <attribute name="width"
 value="$path{'width/text()'}"/>
 <attribute name="height" value="$path{'height/text()'}"/>
 </view>
</canvas>

When a user enters values into these fields and presses Enter B, the doEnterDown
method is invoked to access the new value C and update the width and height
data elements in the myData dataset D.

 The view named box has its width and height attributes bound to these data
elements through path constraints. Since everything is bound together, when the
data elements are updated with new values the dimensions of the box are also
updated. This allows the values entered into the input fields to control the dimen-
sions of the box. Figure 10.4 shows the result.

Establishes
data path

B

Updates XML
dataset with
new valueC

Updates
width

attribute
with new

XML value

D

Figure 10.4 The label and input fields are bound to the same XML data element. When the XML data
element is updated, its new value is displayed by both tags.

262 CHAPTER 10

Working with XML datasets
Next we’ll tackle text objects, which are used so frequently that Laszlo adds some
optimization features.

10.1.7 Handling ontext events

One useful way to work with data paths is with bound text objects for displaying
character strings from XML data elements. However, this introduces some timing
complexities. When an XPath match is returned, it generates an ondata event.
Unfortunately, this occurs before the instantiation of the LzText object has com-
pleted. If an ondata event handler performs postprocessing on the text attribute,
those results will be overwritten by the instantiation of the LzText object. To
address this, Laszlo provides a special ontext event for working with text objects.
Listing 10.5 illustrates this problem.

<canvas>
 <include href="myData.lzx"/>

 <window datapath="myData:/fruit/plum">
 <text datapath="name()">
 <handler name="ontext">
 this.setText(text.toUpperCase());
 </handler>
 </text>
 <text datapath="name()">
 <handler name="ondata" args="d">
 Debug.write("ondata : " + this.text);
 this.setText(d.toUpperCase());
 </handler>
 <handler name="oninit">
 Debug.write("oninit");
 </handler>
 <handler name="ontext">
 Debug.write("ontext : " + text);
 </handler>
 </text>
 <simplelayout axis="y" spacing="2"/>
 </window>
</canvas>

The expected result for the example in listing 10.5 is a matching set of uppercase
PLUM text strings. But as you can see in figure 10.5, the text string set in the ondata
event handler is still in lowercase. This indicates that the text object later overwrote

Listing 10.5 Using the ontext event

Overwrites text
value set by ondata

Writes initial
text value

Introducing XML-based datasets 263
this value. Bottom line, ontext events should
be used in preference to ondata events with
text objects. The timing sequence of the
events is shown in figure 10.5.

 Laszlo also provides another more gen-
eral and efficient method, applyData, to
perform postprocessing for any object.

10.1.8 Updating with the applyData method

You’ve seen how event handlers are imple-
mented with event and delegate objects, and
the benefits of their associated loose cou-
pling. However, since it is not uncommon to have a large number of bound text
objects in a form, with each served by an ontext event handler, the savings from
not instantiating an equal number of delegates can be significant. The applyData
method, which is directly callable, saves a delegate object from being instantiated
for each text object.

 Because applyData saves system resources, it is the preferred way to handle
events for data-bound visible objects. Furthermore, its call occurs after object instan-
tiation, so there are no timing issues. When an applyData method is supplied, it is
called when an XML dataset is instantiated and when an associated data path’s
matching data element is updated.

 The following code reimplements the previous example to illustrate the opera-
tion of the applyData method and to demonstrate that it doesn’t suffer from tim-
ing problems with instantiating objects:

<canvas>
 <include href="myData.lzx"/>

 <window datapath="myData:/fruit/plum">
 <text datapath="name()">
 <method name="applyData" args="d">
 this.setText(d.toUpperCase());
 </method>
 </text>
 </window>
</canvas>

Figure 10.6 shows that the postprocessing to uppercase occurred correctly.
 Next, we’ll look at a specialized type of resident dataset.

Figure 10.5 The intended output here
is a matching pair of uppercase names.
However, the ondata change to
uppercase is overwritten by the text
instantiation. The timing sequence for
the instantiation of the text object
appears in the debug window.

264 CHAPTER 10

Working with XML datasets
10.1.9 Using local datasets

We’ve been using the myData dataset as a top-level element. Although this is the
default location for datasets, they can be further localized with a definition in a
container. Local data is useful for containing static data. For example, it can be
used to list the states in the United States, so that the data is conveniently located
close to display components. Local datasets can only be referenced with dot nota-
tion relative to a parent node. Also local datasets must be specified explicitly; they
can’t be in an included LZX dataset or XML document. The previous example can
be expressed using a local dataset like this:

<canvas>
 <window>
 <dataset name="myData">
 <fruit type="drupe">
 …
 <plum variety="Damson">
 <color>purple</color>
 <size>small</size>
 </plum>
 …
 </fruit>
 </dataset>
 <view datapath="local:parent.myData:/fruit/plum">
 <text text="$path{'name()'}"/>
 </view>
 </window>
</canvas>

This produces the same display shown in figure 10.6.
 The next obvious question is, what happens when

an XPath expression matches a multiple number of
data elements? This seemingly innocuous question
opens the door to a world populated with exotic
objects such as replicators, clones, and nodes that
seem to spontaneously appear out of nowhere. But
once you understand them, you’ll see how they seem
to magically simplify your development tasks.

10.2 Matching multiple data elements

Processing dramatically changes when a data path matches multiple data ele-
ments. When multiple matches are returned, ordinary objects aren’t able to han-
dle this situation and an LzReplicationManager object, often just called a

Figure 10.6 The applyData
method provides a means to
preprocess XML data elements.
In this example, the input field is
converted to uppercase.

Matching multiple data elements 265
replication manager, is automatically instantiated to serve as an intermediary. The
replication manager uses the original object as a template to instantiate a number
of cloned copies equal to the number of matched XML elements. The process is
illustrated in figure 10.7.

 Until now, we have worked only with data paths returning a single match,
reflected in the left side of figure 10.7, which produces a single output. The
myData dataset contains multiple XML elements named peach to demonstrate the
replication manager services depicted on the right side of figure 10.7.

 When an object’s data path returns multiple matching XML elements, the orig-
inal object is destroyed and a replication manager with the same name or id
attribute is instantiated in its place. Now, the name or id references the LzRepli-
cationManager object. Regardless of the replication manager’s assumed name,
clones can always refer to it as cloneManager.

 This replication manager is responsible for instantiating two groups of objects;
the size of each group is determined by the number of matching XML elements.
The first group, called the clones, contains identical copies, including the name or
id attribute, of the original destroyed object. The second group, called the nodes,

Figure 10.7 Depending on the number of matching data elements, a data path
either displays one corresponding view or, for more than one match, instantiates a
replication manager to control the replicated views, sometimes known as clones.

266 CHAPTER 10

Working with XML datasets
contains the matching XML elements. Tables 10.5 and 10.6 summarize the
attributes and methods of the replication manager.

There is no rank or priority within clones; all are created equal. These replicated
objects can no longer be directly accessed by their name or id; instead, all accesses
must go through their replication manager. To access a particular replicated
object, the replication manager is accessed and a particular clone is indexed in
the clones array. Similarly, a particular matching XML element is selected through
the replication manager’s nodes array.

 Listing 10.6 illustrates the relationship between a replication manager and its
clones. Since the debug messages would normally be displayed multiple times, for
each clone, a flag is added to limit their display.

<canvas debug="true">
 <include href="myData.lzx"/>
 <attribute name="already_displayed" type="boolean" value="false"/>

 <text id="main" datapath="myData:/fruit/peach">
 <handler name="ondata">
 if (canvas.already_displayed) return;
 Debug.write("main=" , main);
 Debug.write("cloneManager=" , this.cloneManager);

Table 10.5 Replication manager attributes

Name Data Type Attribute Description

Clones array of LzNodes Read-only The LzNodes that this replication
manager has created

Nodes string Read-only The data nodes that map to the clones

Table 10.6 Replication manager methods

Name Description

getCloneForNode(node) Returns a clone that is mapped to the given data
node

getCloneNumber(nth clone) Returns a pointer to the nth clone controlled by
the replication manager

setVisible Sets the visibility of all clones controlled by the
replication manager

Listing 10.6 Relationship between replication manager and clones

Accesses
replication

manager
by ID

Accesses
replication
manager
by name

Matching multiple data elements 267
 Debug.write("cloneManager.clones=",
 this.cloneManager.clones);
 Debug.write("cloneManager.nodes=" + this.cloneManager.nodes);
 Debug.write("subviews : " , canvas.subviews);
 canvas.already_displayed = true;
 </handler>
 </text>
 <simplelayout axis="y" spacing="2"/>
</canvas>

Each object in the clones array is indexed by a clone number. A particular clone can
by accessed by zero-based array indexing or through the getCloneNumber method.
The debugger window contents, shown in figure 10.8, are repeated for each repli-
cated object. In our case, there are only two occurrences, one for each peach.

 Although clones are directly accessible only through their replication man-
ager, they are still listed in the subviews array of their parent node. This allows
cloned objects to be configured with a layout tag. So, while updating cloned
views requires a little more effort, going through the cloneManager they display
normally, just like other visual objects. As a result, a simplelayout tag can handle
the layout for any number of cloned objects.

 Since the production of clones and nodes is driven by XML elements, which
are supplied by outside sources, this whole cloning replication process needs to
be carefully managed, since it has the potential to overwhelm the system with
resource consumption. The replication manager is equipped with facilities to
handle this situation. In chapter 17 you’ll see how pooling and a “lazy” replication
manager are used to efficiently handle large datasets.

 Now that we have datasets consisting of multiple commonly named elements
or sibling elements, we want to be able to sort them in either ascending or
descending order.

Displays
clones

Accesses clones array

Accesses
individual

clones

Figure 10.8 A replication manager is created by a data path when multiple matching data elements
are returned.

268 CHAPTER 10

Working with XML datasets
10.3 Sorting datasets

Laszlo provides simple and custom sorting for datasets consisting of sibling ele-
ments. Sorting defaults to a dictionary sort, whereby numeric digits precede letters
and lower class precedes upper. To get a numeric sort—so that 7 precedes 11—it’s
necessary to create a numeric sorting method. Sorting occurs on a single key,
unless a custom sort method is created to handle multiple keys. All the standard
sorting operators are specified with datapath attributes and methods. Since every
viewable object has a datapath, this allows advanced sorting techniques to be used
by all viewable objects.

10.3.1 Simple sorting

Let’s start with an example illustrating a simple sort on a dataset. The key for sort-
ing is specified by the sortpath attribute. Using this attribute requires that the
datapath be separated from its parent text object:

<canvas>
 <dataset name="numbers">
 <num>0x3</num><num>0x6</num><num>0x8</num><num>0x7</num>
 <num>0xA</num><num>0x1</num><num>0x5</num><num>0x4</num>
 <num>0x9</num><num>0xB</num><num>0x0</num><num>0xD</num>
 <num>0xE</num><num>0x2</num><num>0xC</num><num>0xF</num>
 </dataset>
 <window width="80" height="200">
 <view height="100%" width="100%" clip="true">
 <view width="100%">
 <simplelayout axis="y"/>
 <text>
 <datapath xpath="numbers:/num/text()"
 sortpath="text()"/>
 </text>
 </view>
 <scrollbar/>
 </view>
 </window>
</canvas>

Because replication occurs on the num dataset ele-
ment, the sortpath attribute works together with the
XPath expression to specify the sort key. By default,
sorting occurs in ascending order. Figure 10.9 shows
the output.

 Sorting order is controlled with the sortorder
attribute, set with a value of either descending or

Figure 10.9 Sorting order
can be either ascending or
descending, controlled with
the sortorder attribute.

Sorting datasets 269
ascending, or with a function name to perform a custom sort. The datapath tag
shown here generates the second window displayed in figure 10.9, where the data
is shown in descending order:

<datapath xpath="myData:/list/*/text()"
 sortpath="text()"
 sortorder="descending"/>

Now that you’ve seen simple sorting in ascending and descending order, we’ll
explain how to use sortorder with a function name.

10.3.2 Custom sorting

Laszlo uses a common convention, found on many other systems, to support cus-
tomized sorting. Alphanumeric is supported by default while customized sort rou-
tines, also known as sort comparators, can be supplied with an algorithm for
customized sorting.

 To perform a custom sort, a method name, contained in a constraint, is speci-
fied to the sortorder attribute. All sorting methods accept two input arguments,
a and b. These arguments are evaluated, with the values 0, 1, and –1 returned to
reflect respectively the results: a == b, a > b, and a < b.

 For example, suppose that a dataset is changed to contain the numeric word
names one, two, and three, with the contents to be sorted in that order. A custom
method named wordsort could be supplied to provide this sorting algorithm (see
listing 10.7).

<canvas>
 <dataset name="numbers">
 <num>two</num><num>three</num><num>one</num>
 </dataset>
 <window x="10" y="10" width="100" height="100">
 <view>
 <simplelayout axis="y"/>
 <text>
 <datapath xpath="numbers:/num/text()" sortpath="text()"
 sortorder="${this.wordSort}">
 <method name="wordSort" args="a,b">
 <![CDATA[
 var stat = 0;
 if (a == b) return 0;
 else if (a == "one") return 1;
 else if (a == "two" && b == "three") return 1;

Listing 10.7 Custom sorting with the sort comparator wordsort

Uses constraint
to set sorted

values

Uses custom
sorting algorithm

270 CHAPTER 10

Working with XML datasets
 else return -1;
]]>
 </method>
 </datapath>
 </text>
 </view>
 </window>
</canvas>

Specialized sorting criteria can also be established with the setComparator and
setOrder methods, allowing the attribute settings sortpath and sortorder to be
specified in a method format. A setComparator example might look like this:

<datapath xpath="myData:/num/text()" sortpath="text()">
 <handler name="oninit">
 this.setComparator(this.wordSort);
 </handler>
 …
</datapath>

The setOrder method might look like this:

<datapath xpath="myData:/num/text()">
 <handler name="oninit">
 this.setOrder("text()", this.wordSort);
 </handler>
 …
</datapath>

Each of these methods provides a specifier for the
custom wordSort algorithm and produces the out-
put shown in figure 10.10.

 Although we have shown sorting only on a sin-
gle key, multiple-key sorting can be performed by
setting the sortpath to return a parent node.
Later, the child nodes can be accessed in the sort-
ing method to handle more complex sorting. An
example of multiple-key sorting with setNodes is
shown in a later section.

 Now that we’ve examined Laszlo’s interface to XML datasets, we’re ready to
return to the Laszlo Market to use some of these new tools.

Figure 10.10 The custom sorting
algorithm in the wordSort method
produces this sorted output.

Prototyping datasets for the Laszlo Market 271
10.4 Prototyping datasets for the Laszlo Market

Up to this point, we have been working from a horizontal prototype perspective,
focusing strictly on visual layout issues, supported by only a thin veneer of function-
ality. The goal was a preliminary sketch of the application without getting bogged
down in implementation details. However, the prototype has now advanced to the
point where further progress requires a minimum implementation.

 The complementary approach of vertical prototyping, illustrated in figure 10.11,
provides such a thin sliver of implementation. In our case, this requires defining a
dataset whose contents are displayed in the Product List window. The intersection
of these two orthogonal prototypes is known as a scenario prototype, in this case a “list
products” scenario.

 With most development environments, supplying test data for prototype or
application development involves a substantial vertical prototype infrastructure,
either a system of mock data objects or an interface to a database supplied with
test objects. But a vertical prototype infrastructure is only an overhead expense to
support the continued development of the interface. Consequently, we want the
most lightweight mechanism available for this vertical functionality. But we also
want the option to reuse infrastructure elements in a final implementation.

 Laszlo’s datasets are ideal for all these needs. Since datasets are standard
objects in Laszlo, the cost of stocking them with data is minimal. And because
they can be either local or accessed using HTTP, we can use resident datasets

Figure 10.11 Normally, the main focus of prototype development concerns
building a horizontal prototype. However, certain features require a supporting
vertical prototype for their demonstration. These areas are known as scenario
prototypes, because they are full-featured.

272 CHAPTER 10

Working with XML datasets
during development and then switch to HTTP
datasets for deployment.

 Incorporating sample data marks another step
in our development framework, illustrated in fig-
ure 10.12. Although we’re working at a prototype
stage, until we advance to an API for communicat-
ing with a back-end server, we’ll now graduate from
simple horizontal prototyping to scenario proto-
typing. Now prototype development encompasses
both visual display and the accompanying data
composition required to support it.

 A disciplined progression from prototyping to
final implementation saves a considerable amount
of work. Let’s next move on to design a product
dataset for the Laszlo Market.

10.4.1 Designing a dataset

Designing a dataset involves a number of signifi-
cant decisions. The data-bound nature of Laszlo
objects causes data layout to impact the design of
the application.

 We’ll start with a dsProducts dataset featuring
a products parent node containing any number
of product child nodes:

<dataset name="dsProducts">
 <products>
 <product/>
 </products>
</dataset>

Each product requires a unique identifier, known as a stock-keeping unit (SKU). We
need to determine whether the sku should be represented as an attribute or a
child node of the product. To retrieve a specific data node requires that it have a
distinguishing characteristic or attribute; having a specific child node isn’t a dis-
tinguishing characteristic. For this reason, Laszlo’s XPath predicates have only a
single equality operator, which works only with attributes.

 Attributes are faster to process than child nodes, since there is no need to
traverse the XML structure. When processing a large number of data nodes, the
saving can be significant. However, one disadvantage of attributes is that they can

Figure 10.12 In our top-down
development framework, we
have advanced to the next
stage of including local datasets
in the prototype.

Prototyping datasets for the Laszlo Market 273
contain no XML special characters. Since a product’s description, technical speci-
fications, and outline fields can contain embedded HTML tags—to italicize a
word, for example—they must be represented as text nodes. The result is a prod-
uct data element that looks like this:

<dataset name="dsProducts">
 <products>
 <product sku="SKU-001" title="The Unfold"
 price="19.99" image="dvd/spidermen_2.png">
 <description> A disaffected musician receives a phone …
 </description>
 <specs><p>Regional Code: 1 (US and Canada)
Languages: … </specs>
 <outline>The Unfold:
A Swarm of Angels … </outline>
 </product>
 </products>
</dataset>

This high-fidelity wireframe, shown in figure 10.13, provides the physical layout of
the contents for each entry in the product list.

To implement this wireframe, we’ll create a productlist class to be contained in
the existing window component. An instance of this class is displayed for each
matching data node:

 <window title="Product List" width="55%" height="50%">
 <productlist width="100%" height="75"
 datapath="dsProducts:/products/product"/>
 <simplelayout axis="y" spacing="2"/>
 </window>

Since the productlist class contains the product list, the datapath must be
attached to an instance of it. If the datapath were attached to the window con-
tainer itself, then the entire Product List window would disappear when there
were no data elements to display.

 The implementation for the productlist class, shown in listing 10.8, contains
the constituent elements specified by the wireframe. The class consists of these

Figure 10.13 High-fidelity wireframe describing the physical layout of each
item in the Product List window

274 CHAPTER 10

Working with XML datasets
elements: a view for containing the photo image, text for the title, and text for
the price. Since the two end pieces have a fixed size, and the title is variable sized,
these layout requirements are tailor-made for a stableborderlayout.

<class name="productlist" fontsize="12"
 fontstyle="bold" bgcolor="0xDDDDDD">
 <thumbnail height="75"
 datapath="image/text()">
 <method name="applyData" args="image">
 this.setSource(gController.IMAGESFOLDER + image);
 </method>
 </thumbnail>
 <text valign="middle" datapath="title/text()"/>
 <text width="80" valign="middle"
 text="$path{'price/text()'}">
 <method name="applyData">
 this.setText("$" + this.text);
 </method>
 </text>
 <stableborderlayout axis="x"/>
</class>

When a matching XML element is encountered, all the objects are loaded with their
matching data. The thumbnail class contains the product image, resized to a height
of 75 pixels. This class uses an applyData method, B and C, to perform postpro-
cessing to attach a resource consisting of a global constant URL path prepended to
the retrieved image name, and also to prepend a dollar sign to the price.

 To resize an image to a thumbnail without distortion requires maintaining its
aspect ratio.

10.4.2 Resizing images using aspect ratio

An image’s aspect ratio is the ratio of width to height. If an image is stretched or com-
pressed without maintaining its aspect ratio, the final image will distort. Although
we initially allocated a space of 75 by 75 pixels, the natural shape of the resource
included in listing 10.8 is rectangular, with width of 360 and height of 500, resulting
in a width-to-height aspect ratio of 360 divided by 500 equaling 72 percent. Since
the height is fixed at 75 pixels, the updated width value is the height multiplied by
this calculated aspect ratio. The thumbnail class, shown in listing 10.9, handles
image-resizing issues.

Listing 10.8 Defining the productlist class

Resizes image
to fit within
75 pixels

Builds URL
by adding
image name

B

Displays title

Postprocesses
price to add $

C

Prototyping datasets for the Laszlo Market 275
<class name="thumbnail" stretches="both" height="100">
 <handler name="onload">
 var iH = this.resourceheight;
 var iW = this.resourcewidth;
 var aspectratio = iW/iH;

 setHeight(this. height);
 setWidth(this. height * aspectratio);
 Debug.write("Resource values h : " + iH +
 ", w : " + iW);
 Debug.write("aspect ratio : " + aspectratio);
 Debug.write("Updated values h : " + this.height +
 ", w : " + this.width);
 </handler>
</class>

Loading an image file is a two-step process. An ondata event is generated when
the name of the image file is read from XML data. This name is then used to
access the image. An onload event is then sent after the image has been down-
loaded. At this point, the resource’s height and width attributes are available. A
resource also has a pair of unstretchedheight and unstretchedwidth attributes,
which contain unalterable resource values. These values are useful for determin-
ing the state of the original dimensions and are used when a resource needs to be
repeatedly resized.

 Our example graphic, shown in figure 10.14, has a portrait layout with physical
dimensions of 360/500, or 72 percent. Setting the thumbnail object’s height
attribute to 75 resizes its width to 54 pixels.

 Despite accommodating the dimensions of external images, we still adhere
pretty closely to the wireframe diagram. Now that we can display a single product
item, we are ready to move on to the next phase, displaying multiple product rows.

Listing 10.9 Using the aspect ratio to resize a dynamically loaded image

Determines
aspect ratio

Sets image to
thumbnail size

Figure 10.14 The resized photo has the correct height with the width resized to accommodate
the height.

276 CHAPTER 10

Working with XML datasets
10.5 Prototyping with grids

When products are added to the dsProducts dataset, more products are dis-
played than can fit in the Product List window. Because the stock window compo-
nent doesn’t provide scrolling, these additional products aren’t displayed. Rather
than supplementing the window with scrolling and other features, a better choice
is to switch to the grid component. The grid is designed to quickly produce a pro-
totype that contains a large range of built-in features for displaying tabular data,
such as labeled headers, window scrolling, the ability to sort fields, alternating col-
ored backgrounds, and selection highlights. As you’ll see, using a grid can quickly
produce a display with a polished appearance.

10.5.1 Using grids

A grid tag is intended to contain gridcolumn and gridtext tags. The latter are
used only when necessary to allow editing of text data. Otherwise, the gridcolumn
tag is used for displaying both images and text fields.

 Listing 10.10 shows the definition of a productgrid class for our tabular prod-
uct data. We want the data to be fixed within columns, so the resizable attribute
is reset to false.

<class name="productgrid" extends="grid" fontstyle="bold"
 fontsize="14" rowheight="79" bgcolor0="0xDDDDDD">

 <gridcolumn resizable="false" width="70" sortable="false">Image
 <thumbnail name="image" datapath="@image"
 valign="middle" height="75">
 <attribute name="imageURL" value="$path{'@image'}"/>
 <method event="ondata">
 this.setResource(gController.IMAGESFOLDER + this.imageURL);
 </method>
 </thumbnail>
 </gridcolumn>

 <gridcolumn resizable="false" width="${parent.width-170}">Title
 <text valign="middle" datapath="@title"/>
 </gridcolumn>

 <gridcolumn resizable="false" width="100" sortable="false">Price
 <text valign="middle" datapath="@price">
 <method event="ontext">
 this.setText("$" + this.text);

Listing 10.10 Using a grid in a class definition for the Product List window

Sets alter-
nating back-
ground color

B

Creates Image column C

Creates Price
column

Creates Title
column

Prototyping with grids 277
 </method>
 </text>
 </gridcolumn>
</class>

In the class tag, the bgcolor0 attribute B provides a background color for even-
numbered rows, and the rowheight attribute provides some padding between
rows. We want fixed-size columns, so each column has a width with its resizable
attribute set to false. Only the Title column C is sortable; a sorted column is indi-
cated by a downward arrow. Now we only need to invoke an instance of this pro-
ductgrid class.

 The Product List window is updated with a productgrid instance. Since the
base grid component handles all layout-related issues for tabular data, the sim-
plelayout tag can be deleted. The grid also needs to control the instantiation of
the replication manager, so now the datapath’s XPath expression matches the sin-
gle XML expression dsProducts/products. The result of these changes is shown
in listing 10.11.

<window title="Product List"
 x="${parent.browsesearch.width}"
 y="${parent.details.height}"
 width="55%" height="70%">
 <productgrid width="100%" height="100%"
 datapath="dsProduct:/products"/>
</window>

Figure 10.15 shows the window display after the user has clicked the Title column
to sort the items. The second item is currently selected, giving it a different back-
ground color.

Listing 10.11 Applying the productgrid class to the Product List window

Sets width and
height for scrolling

Sets data path
to parent

Figure 10.15
Grids are a convenient tool for prototyping,
allowing the contents of a dataset to be
displayed with a number of viewing
features, including column headers,
sortable columns, scrolling, alternating
background colors, and selection.

278 CHAPTER 10

Working with XML datasets
Now that we’re satisfied with the appearance of the Product List, let’s explore the
onselection event provided by the grid for processing a user’s selection.

10.5.2 Processing a user selection

The Product List window is the starting point for interactions with the other win-
dows. For example, a selected product is displayed in the Product Details window.
It must be draggable to move it to the Shopping Cart or Media Player window.
The grid component supports these interactions with the onselect event, in addi-
tion to the familiar onclick, onmousedown, and onmouseup events.

 The onselect event is used to support the more complex multiple and range
selection features found in most desktop applications. It follows the usual conven-
tions; the Shift key is used to add a range of selections to the current selection,
and the Ctrl key allows individual selections from the currently selected set to be
toggled on or off.

 The grid container handles selections, while its constituent fields handle
mouse events. So the Title and Price columns generate onselect events, while the
image in the Image column sends onclick and other mouse-related events. This
is illustrated with the code in listing 10.12.

<class name="productgrid" ...>
 ...
 <method event="onselect">
 Debug.write("onselect : " + this.getSelection()[0]);
 </method>
 <gridcolumn resizable="false" width="70" sortable="false">Image
 <thumbnail name="image" datapath="image" valign="middle"
 height="75">
 ...
 <method event="onclick">
 Debug.write("image onclick");
 </method>
 <method event="onmousedown">
 Debug.write("image mousedown");
 </method>
 <method event="onmouseup">
 Debug.write("image mouseup");
 </method>
 </thumbnail>
 </gridcolumn>
</class>

Listing 10.12 Event handling in a grid

Set to lowest-
valued selection

Summary 279
The onselect event handler allows us to capture and populate the Product Details
window based on the user’s selection. Figure 10.16 illustrates how the mouse events
are different, depending on where the mouse selection occurs. Any selections
occurring in the image area generate mouse events rather than onselect events.

 Now that we can process a user selection from a list of choices, we’d like to dis-
play a more detailed summary of this selection in the Product Details window. But
before we can go further, we need to learn more about navigating and manipulat-
ing the structure of the XML data tree. Although datapath expressions are fine
for high-level operations, further development of the Laszlo Market requires
lower-level operations, which are the subject of the next chapter.

10.6 Summary

The LZX model of interfacing with XML documents using declarative data paths is
a powerful paradigm, resulting in a highly unified system. We can create an XML
document that controls the appearance of the user interface. Just as a declarative
system specifies only the relationships among entities, and relies on an opera-
tional system to enforce these relationships, a data path specifies a relationship
between the data elements comprising an XML document and the visual objects
representing them.

 Once this relationship is established, there is no need to supplement it with
procedural code. It doesn’t matter if the attached dataset contains no matching
data elements, a single matching data element, or multiple matching data ele-
ments. The Laszlo system carries out the correct behavior based on the data path
definition; the attached visual object is not visible, it appears with a single object,
or it appears with multiple objects created by a replication manager. This results

Figure 10.16
The top image illustrates how
the mouse events are different,
depending on where the mouse
selection occurs. Any selections
that occur in the image area
generate mouse events instead
of onselect events.

280 CHAPTER 10

Working with XML datasets
in a highly flexible architecture; once the declarative statements are written, there
is no need to modify them to address different data requirements.

 The dataset is a powerful abstraction, allowing data to be directly represented
in LZX. This almost completely eliminates any type of data access infrastructure, a
common feature of most other programming languages. This lightweight access
to data supports the top-down design-centric approach, and permits easy exten-
sions to a prototype to work with mock datasets. We can add behavior to a proto-
type and nail down design and sizing requirements as early as possible.

 Best of all, prototyping can be merged into the final application. There is very
little throw-away code. Switching a data feed from a mock dataset to a networked
dataset in an HTTP web server requires only the switching of a single attribute of
the dataset object.

 In this chapter, we supplied mock prototype data to the Laszlo Market applica-
tion. Our major goal was to explore how datasets, data paths, and LZX objects
work together to display data contained in an XML document. In the next chap-
ter, we’ll expand on the various uses of this data as we continue to add features to
our prototype—features that allow us to manipulate data in a dataset.

Using dynamic
 dataset bindings
This chapter covers
■ Modifying XML data elements
■ Navigating through the XML data structure
■ Using the master-detail design pattern
281

282 CHAPTER 11

Using dynamic dataset bindings
A mathematician is a device for turning coffee into theorems.
 —Paul Erdós
 (perhaps from Alfréd Rényi), mathematician

The previous chapter dealt with how a data binding establishes a relationship
between data and its bound visual object. This static relationship is limited, remain-
ing fixed at a single location in a dataset. Additionally, although data bindings sup-
port bidirectional communications, communication from objects to datasets is
limited to the updateData method. This chapter discusses how to move this binding
to traverse a dataset and manipulate its contents and structure using a complemen-
tary set of class groups derived from the data pointer and data node base classes.

11.1 Linking data nodes and data pointers

The relationships among the data pointer and data node classes and a dataset are
shown in figure 11.1. A data pointer establishes the context of the current loca-
tion, while the data node classes map to individual elements of a dataset.

 The data pointer classes, shown on the left side of the diagram, are derived
from the LzNode class and are known as data pointer-derived classes. Since LzNode
is their superclass, they are available as declarative tags. They provide direct access
to modify an XPath expression or even to update the dataset. When a data pointer
context is updated, it allows an XML data structure to be navigated and generates
ondata events to initiate view-level actions.

 The data node set of classes, derived from LzDataNode as shown on the right
side of figure 11.1, are based on the W3C DOM XML specification to provide a
direct representation of XML elements. The LzDataNode class serves as an abstract
superclass for the LzDataElement and LzDataText classes, representing the data
and text XML elements. We can use these classes to modify the values of data ele-
ments, delete data elements, or create new elements.

 The data node and data pointer classes perform complementary roles, allow-
ing XML structure manipulations to be performed both online and offline. Later,
we’ll see how these classes are best used in combination.

 Finally, these two sets of classes wouldn’t be complete without ways to con-
vert from a data node to a data pointer and back again. These conversion fea-
tures allow us to use data pointers and data nodes collaboratively. Since the
LzDataNode-derived classes provide the building blocks pointed to by the
LzDataPointer-derived classes, we’ll start there.

The LzDataNode classes 283
11.2 The LzDataNode classes

LzDataNode and LzNode are Laszlo’s two base classes. While LzNode is the super-
class for all declarative tags, LzDataNode is the base class for the data node classes
representing the nodes of an XML dataset. Its lineage is more limited, since it’s an
abstract class for only the LzDataElement and LzDataText classes. These classes
aren’t derived from LzNode, so they can’t be used as declarative statements and
can’t send events.

 The LzDataElement and LzDataText classes map to the XML data and text ele-
ments stored in a dataset. We can use them to examine the contents of a returned
data object:

<canvas debug="true">
 <include href="myData.lzx"/>
 <text name="main" datapath="myData:/fruit/plum/color">
 <handler name="ondata" args="data">
 Debug.write(data);
 Debug.inspect(data.childNodes);
 </handler>
 </text>
</canvas>

Figure 11.1 Laszlo provides two main approaches for accessing XML data, the data-pointer-
oriented approach and the data-node-oriented approach, embodied in two corresponding sets of
classes. The LzDataPointer class contains attributes and methods for translating from one
approach to the other.

284 CHAPTER 11

Using dynamic dataset bindings
NOTE Obtaining the myData dataset—All the examples in this chapter use the
myData dataset defined in listing 10.1.

Figure 11.2 shows the matching data returned by the XPath expression, consisting
of an LzDataElement object containing the <color>purple</color> data ele-
ment. This data element is a parent node that contains a child text element, an
LzDataText object. The data attribute for this text element contains the text
string purple.

Now that we’ve broken down the composition of a dataset into its base classes,
let’s look at each of these classes in greater detail, starting with their abstract
LzDataNode superclass.

11.2.1 The abstract LzDataNode superclass

The LzDataNode class defines the structure of an XML node. All its attributes are
read-only, as shown in table 11.1, because they reflect the properties of a tangible
data node. The nodeType attribute identifies this data node as being either a data
or a text element. The ownerDocument attribute identifies its affiliated dataset.
The parentNode attribute contains a reference to its parent’s LzDataNode object.
Let’s now see how these base properties are extended by the LzDataElement and
LzDataText classes that are derived from LzDataNode.

Table 11.1 LzDataNode attributes

Name Data Type Attribute Description

nodeType number Read-only The type of this node
ELEMENT_NODE or TEXT_NODE

ownerDocument LzDataNode Read-only The XML document or dataset
associated with this node

parentNode LzDataNode Read-only The XML parent node

Figure 11.2
The datapath's data field returns a value of
purple. This value comprises an LzDataElement
object enclosing an LzDataText object, whose
data field contains the value purple.

The LzDataNode classes 285
11.2.2 Building datasets with LzDataElements

An LzDataElement object represents a data element in an XML dataset. This ele-
ment can be either an end node or a parent node with children. A new LzData-
Element object is instantiated with its own constructor. Its attributes are shown in
table 11.2 and are passed as arguments to this constructor:

LzDataElement(nodeName, [attributes, childNodes]);

where

■ nodeName is the name of the new node.

■ attributes is a list of attributes for this node (optional).

■ childNodes is an array for children of this node (optional).

Omitting the childNodes argument creates a single data node, while specifying
an array childNodes produces a parent node with child nodes.

LzDataElement isn’t limited to creating single data elements, but can also be
used to create complex data structures. In the next example, we’ll add a top-level
vegetable parent node to the myData dataset. We’ll start with a root element
named vegetable:

var ele = new LzDataElement ("vegetable", …)

then add an associative array of names and values to create its attributes:

{type:"Tuber", condition:"fresh"}

and finally add some child nodes, contained in a regular array populated with
individual LzDataElement instances:

[new LzDataElement("carrot"), new LzDataElement("turnip")]

All these steps are shown in listing 11.1.

Table 11.2 LzDataElement attributes

Name Data Type Attribute Description

attributes object Setter List of attributes for this node

childNodes LzDataNode[] Setter An array of children for this node

nodeName string Setter The name of this node

286 CHAPTER 11

Using dynamic dataset bindings
<canvas width="100%" debug="true">
 <include href="myData.lzx"/>
 <method name="init">
 var ele = new LzDataElement ("vegetable",
 {type:"Tuber", condition:"fresh" },
 [new LzDataElement("carrot", {variety:"Danvers"}),
 new LzDataElement("turnip", {variety:"Brassica"})]);
 ele.setOwnerDocument(myData);
 myData.appendChild(ele);
 Debug.inspect(ele);
 Debug.inspect(myData.childNodes);
 </method>
</canvas>

Laszlo can’t interact with an XML data structure unless it’s attached to a dataset.
So after creating our new XML data structure B, there is a two-step procedure to
attach it to a dataset. First, its ownerDocument attribute is set C to the myData
dataset. Next, the data element is inserted into the dataset D with the append-
Child method.

 When this code is executed, the XML document contained in the myData
dataset is updated to contain a vegetable sibling node alongside the fruit node,
as you can see here:

<myData>
 <fruit type="Drupe"/>
 …
 </fruit>
 <vegetable type="Tuber" condition="fresh">
 <carrot variety="Danvers"/>
 <turnip variety="Brassica"/>
 </vegetable>
</myData>

Since it’s attached to the myData dataset, its root node is <myData>…</myData>.
 We can verify our results by checking the dataset’s contents in the debugger

(see figure 11.3). We’ve added a cosmetic line to differentiate the two sections.
The top part displays the attribute composition of the vegetable parent node,
while the bottom part displays the top-level sibling nodes of the dataset.

 Examining our new data element, we see that it is named vegetable; has two
attributes, type and condition; and is the parent to two child nodes, carrot and
turnip, where each is identified with a unique variety attribute. Its ownerDocu-
ment and parentNode attributes are of type LzDataset, to indicate its inclusion in

Listing 11.1 Inserting XML data into a dataset

Creates new
element

B

Selects
dataset
ownerD

C

Appends
element to
dataset

The LzDataNode classes 287
the myData dataset. Examining the updated composition of this dataset, we see
that it consists of an array with two nodes, fruit and vegetable.

11.2.3 Core methods of LzDataElement

Many of the LzDataNode methods overlap LzDatapointer methods to provide
offline versus online versions. Table 11.3 lists the common methods. When dis-
cussing a topic involving common methods, we’ll default to covering the naviga-
tional methods of the LzDatapointer classes and the node-creation methods of
the LzDataNode classes.

 The remaining LzDataElement methods are shown in table 11.4.

Table 11.3 Methods common to the LzDatapointer- and LzDataNode-based classes

Datapointer Classes DataNode Classes Description

addNode appendChild Adds a new child node below the cur-
rent context

deleteNode removeChild Removes the referenced node

deleteNodeAttribute removeAttr Removes the name attribute from
the current node

getChild getFirstChild and get-
LastChild

Gets a specified child node

getNodeAttribute getAttr Returns the value of the current
node’s name attribute

Figure 11.3 Checking the structure of the LzDataElement displays its attributes describing its
composition. This verifies that the vegetable data element was correctly built and attached to the
myData dataset.

288 CHAPTER 11

Using dynamic dataset bindings
getNodeName NodeName (LzDataNode
attribute)

Gets the name of the node that the
data pointer is pointing to

getNodeText data (LzDataText
attribute)

Returns a string that is a concatena-
tion of the text nodes beneath the
current element

selectNext getNextSibling Selects the next sibling node in the
dataset

selectPrev getPreviousSibling Selects the previous sibling node in
the dataset

selectParent parentNode (LzDataN-
ode attribute)

Moves up the data hierarchy to the
next parent node in the dataset

serialize serialize Serializes the current element and
its children to an XML string

setNodeAttribute setAttr Sets the name attribute of the cur-
rent node to the val argument

setNodeName setNodeName Sets the name of the current ele-
ment to the name argument

setNodeText setData Sets the current node’s text to the
text argument

Table 11.4 The remaining LzDataElement methods

Name Description

appendChild(newChild) Adds a child to this node’s list of childNodes

childOf(node1, node2) States if node1 is an ancestor node of node2

cloneNode(deep) Returns either a shallow or deep copy of this node

LzDataElement(name, attributes,
children)

Represents a hierarchical data node

getAttr(name) Returns the value for the given attribute

getElementsByTagName() Returns a list of childNodes for this node that
have a given name

insertBefore(newChild, refChild) Inserts the given LzDataNode before another
node in this node’s childNodes

Table 11.3 Methods common to the LzDatapointer- and LzDataNode-based classes (continued)

Datapointer Classes DataNode Classes Description

The LzDataNode classes 289
We’ll now re-create the vegetable parent node, consisting of carrot and turnip
child nodes, in listing 11.2, to demonstrate a cross section of LzDataElement’s
methods.

<canvas width="100%" debug="true">
 <include href="myData.lzx"/>

 <method name="init">
 var ele = new LzDataElement ("vegetable",
 {type: "Tuber", condition: "fresh" },
 [new LzDataElement("onion", {variety: "Valencia"}),
 new LzDataElement("potato", {variety: "Idaho"})]);
 nele = ele.cloneNode(false);
 Debug.write("cloneNode (shallow):" + nele);
 nele = ele.cloneNode(true);
 Debug.write("cloneNode (deep):" + nele);
 Debug.write("insert carrot before onion");
 var carrot = new LzDataElement("carrot");
 carrot.setAttr("variety", "Brassica");
 var onion = nele.getElementsByTagName("onion");
 nele.insertBefore(carrot, onion[0]);
 Debug.write("Change potato to turnip");
 var last = nele.getLastChild();
 last.setNodeName("turnip");
 last.setAttr("variety", "Danvers");
 Debug.write("Remove onion");
 var mid = nele.getFirstChild();
 mid = mid.getNextSibling();
 nele.removeChild(mid);
 Debug.write(nele.serialize());
 </method>
</canvas>

setAttr(name, value) Sets the given attribute to the given value

setAttrs(attrs) Sets the attributes of this node to the given object

setChildNodes(children) Sets the children of this node to the given array

setNodeName(name) Sets the name of this node

Listing 11.2 Populating a dataset using LzDataElement methods

Table 11.4 The remaining LzDataElement methods (continued)

Name Description

Performs
shallow copy

B

Performs deep copyC

Inserts new
carrot before
onion

D

Updates
potato to
turnip

E

Removes
onion

F

290 CHAPTER 11

Using dynamic dataset bindings
In listing 11.2, B performs a shallow clone operation that only clones the current
node, while C performs a deep clone operation that copies all its descendents. The
purpose of this step is to create a practice data structure with the appearance of
the vegetable branch.

 To convert this data structure D, a new carrot LzDataElement is instantiated
and inserted before the onion element. The getElementsByTagName method
returns an array of matching onion elements. We insert the first onion before the
carrot. The next step E is to update the existing potato element to be a turnip.
Finally, F the extra onion element is eliminated. To access this onion element, it’s
necessary to descend stepwise down to the child nodes and then to move laterally
to the correct sibling. Each of the key steps are displayed in figure 11.4 to demon-
strate the result of each operation.

Although we have taken an unnecessarily long, roundabout way to add a vegeta-
ble branch, the purpose of this exercise was to demonstrate these data element
methods.

11.2.4 Working with LzDataText text nodes

The LzDataText class represents a text element within an XML dataset, with these
characteristics: it contains only text data, must be childless, and be a child of an
LzDataElement object. As shown in table 11.5, it has only a single attribute, data,
of type, string. This definition results in all XML data, including all numeric val-
ues, being interpreted as character strings.

 Table 11.6 shows the LzDataText constructor and data setter methods.

Table 11.5 LzDataText attributes

Name Data Type Attribute Description

data string Setter The data held by this node

Figure 11.4 Using various methods, we update the myData dataset to have a vegetable branch.

The LzDataNode classes 291
LzDataText objects are created through this constructor, which takes a text string
as its argument:

var txt = new LzDataText("text string");

Listing 11.3 illustrates various ways to instantiate and initialize a text node. In this
example, we’ll create a plum data element that contains color and size data ele-
ments that each contains a text element.

<canvas debug="true">
 <method name="init">
 var ele1 = new LzDataElement("color");
 ele1.setChildNodes([new LzDataText("purple")]);
 var ele2 = new LzDataElement("size");
 dt = new LzDataText();
 dt.setData("small");
 ele2.appendChild(dt);
 var ele = new LzDataElement("plum", {variety: "Damson"},
 [ele1, ele2]);
 Debug.write(ele);
 </method>
</canvas>

First B, a minimal LzDataElement object is instantiated and an LzDataText
object is added as a child node. Next C, a minimal LzDataText object is instanti-
ated and its text string is set, which is then appended to its parent LzDataElement.
Finally D, the parent node, plum, is instantiated with an array containing the pre-
vious two data elements as its children. This produces one of the fruit data ele-
ments shown in figure 11.5.

Table 11.6 LzDataText methods

Name Description

LzDataText(text) Constructs a text node in a set of data

setData() Sets the string that this node holds

Listing 11.3 Various ways to instantiate and initialize a text node

Instantiates color
data element

B

Instantiates
size data
element

C

Instantiates
parent node

D

Figure 11.5 This output shows the plum LzDataElement consisting of two data nodes, each
containing a single text node.

292 CHAPTER 11

Using dynamic dataset bindings
These features provide the critical functionality for the LzDataNode classes. Their
remaining methods concern navigation, which are also handled by the
LzDatapointer and LzDatapath classes and are covered in section 11.3.

11.2.5 Building XML structures with power tools

The LzDataElement and LzDataText objects are intended for working on a single
node. Constructing large XML structures requires the use of more powerful tools.
The LzDataElement class contains three static methods, makeNodeList, valueTo-
Element, and stringToLzData, designed for handling these large-scale tasks.
We’ll look at each of these tools.

Creating sibling nodes with makeNodeList
The makeNodeList method provides a way to create a large number of identical
data nodes. It’s used most frequently to provide child nodes for a parent. Since
these elements are stored in an array, we can iterate through them to make cus-
tom modifications with a parallel array containing unique values:

<canvas debug="true">
 <method name="init">
 <![CDATA[
 var ele = LzDataElement.makeNodeList(4, "item");
 var attr = ["first", "second", "third", "fourth"];
 for (i = 0; i < ele.length; i++) {
 ele[i].setAttr("num", attr[i]); }
 Debug.write(ele);
]]>
 </method>
</canvas>

Figure 11.6 shows that each of the newly created nodes has a distinct num attribute
value.

 Combining makeNodeList with a nested iterator is a useful technique for creat-
ing multilayered data structures.

Figure 11.6 An arbitrary number of identical data nodes is easily created with makeNodeList.

The LzDataNode classes 293
Converting objects to XML with valueToElement
The valueToElement method converts JavaScript objects into XML data. These
JavaScript objects can be composed of nested associative and regular arrays to
create complex data structures. In the following example, an associative array is
created consisting of a name and a value, where the value is a regular array con-
sisting of strings. This associative array is then passed as an argument to the
valueToElement method.

<canvas debug="true">
 <method name="init">
 var obj = {peach: ["yellow", "medium", ".60"]};
 var de = LzDataElement.valueToElement(obj);
 Debug.write(de);
 </method>
</canvas>

This code creates a peach parent node containing a series of item child nodes.
However, since the root node name defaults to element and each data node name
defaults to item, this data structure still requires extensive manual work to clean it
up. Figure 11.7 shows the debug output.

Most situations require unique names for nodes, so this method is of limited use.
But in special situations, it can still be quite useful. We have saved the most power-
ful and useful of the power methods for last.

Building complete structures with stringToLzData
The simplest and fastest way to build an XML data structure is to use the string-
ToLzData method, which uses a string to build the data structure. Because a string
can easily be updated with dynamic runtime information, it’s easily modified to
contain updated values. Whenever a large XML data structure must be dynami-
cally built, stringToLzData is your tool of choice:

<canvas debug="true">
 <method name="init">
 <![CDATA[
 var str = "<fruit type=\"Drupe\">"

Figure 11.7 The valueToElement method converts JavaScript objects into equivalent XML data
structures. It suffers from the limitation of using a default node name (item).

294 CHAPTER 11

Using dynamic dataset bindings
 str = str.concat("<peach variety=\"Freestone\">");
 str = str.concat("<color>white</color>");
 str = str.concat("<size>medium</size>");
 str = str.concat("</peach></fruit>");
 var node = LzDataNode.stringToLzData(str);
 Debug.write(node);
]]>
 </method>
</canvas>

As shown in figure 11.8, this dynamically created XML data structure is complete,
requiring no manual modifications.

This collection of power tools provides a comprehensive set of solutions that
addresses many different situations requiring the runtime creation of an XML
structure.

 Let’s now look at how to navigate through an XML data structure using
LzDatapointer and LzDatapath.

11.3 Navigating with LzDatapointer and LzDatapath

In chapter 10, we saw how a data path establishes a link, specified by its XPath
expression, between an LZX object and a data element in a dataset. There, the data
path is specified as an attribute in a declarative tag. A limitation of this mechanism
is the static XPath expression; its location is fixed to point only at a specific node.
In this section, we’ll see how the position can be dynamically updated at runtime.

 Since they are descendants of LzNode, these classes can be expressed as
datapointer and datapath declarative tags. This means that a data path isn’t con-
fined to be an attribute in a declarative tag, but can also be represented as its own
declarative tag.

 We’ll start with an introduction to the LzDatapointer class, since it’s the super-
class for the data path.

Figure 11.8 The stringToLzData method converts a string into an XML data structure. There is
no limit to the length of the string, so an XML structure of arbitrary complexity can be produced.

Navigating with LzDatapointer and LzDatapath 295
11.3.1 Navigating with data pointers

To be useful, a data pointer must point at a data node through its xpath attribute:

<datapointer xpath="myData:/fruit"/>

While declarative tags contain a datapath attribute to support a data binding, a
data pointer contains an xpath attribute to specify its XPath expression. An xpath
attribute differs from a data path by only checking for a matching data element
and then repositioning its data pointer or data path to that location; no data-
binding operations or replication managers are instantiated.

 A data pointer can also be dynamically created and positioned in JavaScript,
like this:

var dp = new LzDatapointer();
dp.setXPath("myData:/fruit");

Whether invoked through a declarative tag or JavaScript, a data pointer is created
that points to a single data element in a dataset. Data pointers have the limitation
that their XPath expression can only return a single matching node. When its
XPath expression returns multiple matching nodes, it results in a runtime error.

 A data pointer can specify the set of attributes shown in table 11.7.

In the remainder of this section, we’ll access and display an individual data node,
explore navigation, and modify a dataset to demonstrate the various LzData-
pointer methods.

11.3.2 Accessing data and text nodes

We’ll start by demonstrating how to access and display attributes, node names,
and node text for a single data node. Rather than list all data pointer methods in
a single table, they will be grouped by a common theme. Each of these tables con-
tains an ondata event field to indicate whether or not a method sends an ondata

Table 11.7 Data pointer attributes

Name Data Type Attribute Description

context XML data Read-only The dataset associated with this XML data

p expression Read-only The LzDataNode that the data pointer is pointing to

rerunxpath boolean Setter If true, reevaluates the XPath expression when the
dataset is edited; defaults to false

xpath string Setter Contains the XPath expression for matching a data node

296 CHAPTER 11

Using dynamic dataset bindings
event to bound objects. It’s important to be aware of which methods generate an
ondata event, since a bound declarative object receives the event. Table 11.8 lists
the methods for accessing node information.

For the examples in this section, the annotation numbers in the code match the
numbers displayed in their accompanying figure. This allows you to correlate out-
put results with the code that produced it. Listing 11.4 demonstrates how to dis-
play all the characteristics for a data element. It consists of two data pointers set to
different locations in the myData dataset. The dp1 data pointer points to a second
peach data element, while the dp2 pointer points to both of the peach data ele-
ments. The methods listed in table 11.8 are used to display the characteristics of
these peach instances.

<canvas debug="true">
 <include href="myData.lzx"/>

 <datapointer id="dp1" xpath="myData:/fruit/peach[2]">
 <handler name="ondata" args="d">
 Debug.write("ondata :" + d);
 </handler>
 </datapointer>

Table 11.8 Data pointer methods for accessing node information

Name
ondata

Event
Description

getDataset() No Returns a reference to the data pointer’s dataset

getNodeAttribute(name) No Returns the value of the current node’s name attribute

getNodeAttributes() No Returns the attributes of the node pointed to by the data
pointer in an object whose keys are the attribute names
and whose values are the attribute values

getNodeCount() No Counts the number of element nodes that are children
of the node that the data pointer is pointing to

getNodeName() No Gets the name of the node that the data pointer is point-
ing to

getNodeText() No Returns a string that is a concatenation of the text
nodes beneath the current element

isValid() No Tests whether or not this data pointer is pointing to a
valid node

Listing 11.4 Accessing and displaying XML attributes, node names, and node text

Navigating with LzDatapointer and LzDatapath 297
 <datapointer id="dp2" xpath="myData:/fruit/peach">
 <handler name="ondata" args="d">
 Debug.write("ondata :" + d);
 </handler>
 <method name="init">
 Debug.write("dp1 is valid = " + dp1.isValid() +
 "\ndp2 is valid = " + dp2.isValid());
 Debug.write("getDataset=", dp1.getDataset());
 Debug.write("getNodeName=" + dp1.getNodeName());
 Debug.write("getNodeAttribute=" +
 dp1.getNodeAttribute("variety"));
 Debug.write("getNodeAttributes=",
 dp1.getNodeAttributes());
 Debug.write("getNodeCount=" +
 dp1.getNodeCount());
 Debug.write("getNodeName=" + dp1.getNodeName());
 dp1.setXPath("myData:/fruit/peach[1]/color");
 Debug.write("getNodeText=" + dp1.getNodeText());
 </method>
 </datapointer>
</canvas>

Because the XPath expression for the dp2 data pointer B returns multiple nodes,
it produces an error and fails a validity C test. The dp1 data pointer D is used to
demonstrate how to access the various properties E of a data element. Figure 11.9
shows the generated output.

 Because all the methods listed in table 11.8 are used to read a data element’s
characteristics, they contain a no value in their ondata event column. As a result,
no ondata debug messages are displayed in figure 11.9. Now that we can list the

B
Generates

runtime error Tests
whether
data pointer
is valid

C

Displays data node
characteristics

D

Displays
text node

E

Figure 11.9 The top line in the debugger indicates that the dp2 data pointer is invalid, because it matches
multiple XML data nodes. The other data pointer lists all the characteristics for its data element.

298 CHAPTER 11

Using dynamic dataset bindings
characteristics for a fixed location, let’s see how to leverage these capabilities by
traversing the nodes of a dataset.

11.3.3 Navigating a dataset

While both data node- and data pointer-derived classes support cursor methods for
stepping through data nodes, only the data pointer classes send an ondata event
when the location changes. The move doesn’t even need to be to another data
node, since moving to an invalid location generates an ondata event with a null
data argument.

 A data pointer supports lateral movement among sibling nodes with the
selectNext and selectPrev methods, and vertical movement with the select-
Parent and selectChild methods. Each method takes an argument that specifies
the number of nodes or levels to traverse.

 Table 11.9 lists these navigation methods along with auxiliary “create duplicate
pointer” and “compare pointer” methods, dupePointer and comparePointer, to
round out the example.

 In listing 11.5, two data pointers are created to traverse the sibling nodes in the
fruit root node. An ondata event handler displays a debug message for each
method generating an ondata event.

Table 11.9 Data pointer methods for navigating an XML structure

Name
ondata

Event
Description

comparePointer(ptr) No Determines whether or not this pointer points to the same
node as ptr

dupePointer() No Returns a new data pointer pointing to the same node, with a
null XPath and a false rerunxpath attribute

selectChild(amnt) Yes Moves down the data hierarchy to the next child node in the
dataset, if possible

selectNext(amnt) Yes Selects the next sibling node in the dataset, if possible

selectParent(amnt) Yes Moves up the data hierarchy to the next parent node in the
dataset, if possible

selectPrev(amnt) Yes Selects the previous sibling node in the dataset, if possible

setXPath Yes Sets the pointer to the node returned by the XPath expression

xpathQuery No Returns the result of an XPath query without updating the
pointer

Navigating with LzDatapointer and LzDatapath 299
<canvas debug="true">
 <include href="myData.lzx"/>

 <datapointer name="dp1">
 <handler name="ondata" args="d">
 Debug.write("ondata :" + d);
 </handler>
 </datapointer>
 <datapointer name="dp2"/>

 <method name="init">
 Debug.write("setXPath to myData:/fruit/peach[1]");
 dp1.setXPath("myData:/fruit/peach[1]");
 Debug.write("xpathQuery " +
 dp1.xpathQuery
 ('myData:/fruit/cherry'));
 Debug.write("Create dupe ptr dp2 from dp1 : " +
 dp1.getNodeName());
 dp2 = dp1.dupePointer();
 Debug.write("Select sibling node from " +
 dp1.getNodeName() +
 ", attribute=" + dp1.getNodeAttribute("variety"));
 dp1.selectNext(1);

 Debug.write("Select last sibling node from " +
 dp1.getNodeName());
 dp1.selectNext(2);
 Debug.write("Select previous sibling node from " +
 dp1.getNodeName());
 dp1.selectPrev(1);
 Debug.write("Check if dp1 and dp2 pointers match : " +
 dp1.comparePointer(dp2));
 Debug.write("dp1=" + dp1.serialize());
 Debug.write("dp2=" + dp2.serialize());
 Debug.write("select parent of dp1");
 dp1.selectParent();
 Debug.write("Select child node from " +
 dp1.getNodeName());
 dp1.selectChild(1);
 Debug.write("dp1 and dp2 pointers now match : "
 + dp1.comparePointer(dp2));
 </method>
</canvas>

In listing 11.5, the dp1 data pointer is set B to point at the first peach data node.
The xpathQuery method is used C to display the contents of the cherry data

Listing 11.5 Traversing sibling nodes

Points at
first peach
data node

B

Displays cherry
node without
updating

C

Creates dupli-
cate datapointerD

Selects
next data

node E

FSelects last data node

Selects
previous

data node G

Goes back to first
peach data node

I

Compares two
pointer locations

H

300 CHAPTER 11

Using dynamic dataset bindings
node, without updating the data pointer’s location. As a result, no ondata event is
generated. The dupePointer method is used D to create a duplicate pointer to
the peach location. In steps E, F, and G, the various cursor methods are demon-
strated. Next, the data pointers are compared H to determine if they point at the
same location. Since they don’t, dp1 is moved up to its parent node and then
down to its first child node. The two data pointers match, since dp2 now points
back to the first peach data node I. Figure 11.10 indicates those methods gener-
ating an ondata event by displaying an ondata message with the debug output.

 We now know how to traverse and examine the contents of datasets using data
pointers. The next step is to use these data pointers to manipulate a dataset’s
contents.

11.3.4 Creating and modifying datasets

We’ll now modify our data structure by adding and deleting attributes, data
nodes, and text nodes. Table 11.10 contains methods replicating the functionality
available through the LzDataNode-derived classes, but since data pointer methods
are used, ondata events are generated.

Figure 11.10 Methods that generate an ondata event are indicated by a following ondata
output line. The data value in the ondata output shows the current location in the dataset.

Navigating with LzDatapointer and LzDatapath 301
In listing 11.6, we’ll exercise the methods from table 11.10 by making a series of
modifications to our myData dataset. The purpose is to see which methods gener-
ate ondata events.

<canvas width="100%" debug="true">
 <include href="myData.lzx"/>

 <datapointer name="dp1" xpath="myData:/fruit/">
 <handler name="ondata" args="d">
 Debug.write("dp1 ondata : " + d);
 </handler>
 </datapointer>
 <datapointer name="dp2" xpath="myData:/fruit/plum/size">
 <handler name="ondata" args="d">
 Debug.write("dp2 ondata : " + d);
 </handler>
 </datapointer>

 <method name="init">
 Debug.write("Add new 'kumquat' node : " +
 dp1.addNode("kumquat", null,
 {variety: "Nagami"}));
dp1.setXPath("myData:/fruit/*[5]");
Debug.write("Update current node to be a \"kiwi\"");
dp1.setNodeName("kiwi");
dp1.setNodeAttribute("variety", "Arguta");

Table 11.10 Data pointer methods for manipulating an XML data tree

Name
ondata

Event
Description

addNode(name, text, attrs) Yes Adds a new child node below the current context

addNodeFromPointer(dp) No Duplicates the node that dp points to, and adds it to
the node pointed to by the data pointer

deleteNode() Yes Removes the node pointed to by the data pointer

deleteNodeAttribute(name) No Removes the name attribute from the current node

setFromPointer(dp) Yes Sets this data pointer to the location of the given
data pointer

setNodeAttribute(name, val) No Sets the name attribute of the current node to val

setNodeName(name) No Sets the name of the current node to name

setNodeText(val) No Sets the current node’s text to val; if the node
already has one or more text children, the value of
the first text node is set to val

Listing 11.6 Modifying an XML data hierarchy

Points
to fruit

B

Points to
plum’s
child nodeC

Adds
kumquat

D
Changes
name to
kiwi

E

302 CHAPTER 11

Using dynamic dataset bindings
 Debug.write("Add a \"size\" child node to kiwi with
addNodeFromPointer");

dp1.addNodeFromPointer(dp2);
Debug.write("dp1 now points to : ", dp1);
 Debug.write("set dp2 to dp1's location
 ➥with setFromPointer");
 dp2.setFromPointer(dp1);
Debug.write("Let's clean up by deleting
 ➥this \"kiwi\" node");
 dp2.deleteNode();
 </method>
</canvas>

We start with two data pointers, dp1 and dp2, which initially point at the fruit
node B and at the plum’s size node C. We’ll then modify the myData dataset,
by adding a new kumquat node with a Nagami variety attribute D and set dp1
to point to it. Next, we’ll change this node’s name to kiwi and its variety to
Arguta E, add dp2’s size node to it F, set dp2 to point at this location G, and
finally clean up by removing this node H.

 Examining the debug output in figure 11.11, we see that adding or deleting a
node generates an ondata event. This occurs even when the data pointer’s location
isn’t changed. But an ondata event is not generated when the addNodeFromPointer
method is used. This is quite likely a Laszlo oversight, so you shouldn’t depend on
this behavior since it could change in future releases to match its brethren.

 We have shown examples of all the data pointer methods except for set-
Pointer, which we’ll see in section 11.3.6 when we discuss converting between the
LzDataNode and LzDatapointer approaches. But first let’s take a short look at the
datapath class. Most of a data path’s attributes and methods are concerned with
optimization issues, so those issues are postponed until chapter 17, when we
examine large datasets.

Adds dp2’s
child node
to kiwiF

Sets dp2 to
point to dp1’s
locationG

Cleans up by
deleting kiwi H

Figure 11.11 Listing 11.6 demonstrates various methods used to create and modify datasets with
data pointers.

Navigating with LzDatapointer and LzDatapath 303
11.3.5 Working with the datapath tag

The datapath class is derived from the datapointer class, adding the capability to
handle XPath statements that match multiple data nodes. This declarative data
path is the same object that we previously used as an attribute of visible objects.
For example,

<view datapath="myData:/fruit/plum"/>

is equivalent to

<view>
 <datapath xpath="myData:/fruit/plum"/>
</view>

which can be taken one step further to

<view>
 <datapath name="dp ">
 <method name="init">
 dp.xpath("myData:/fruit/plum");
 </method>
 </datapath>
</view>

However, there are restrictions on where and how data paths can be used. Here’s
an example that shows how declaring a data path as a top-level tag can potentially
lead to problems:

<canvas>
 <include href="myData.lzx"

 <datapath xpath="myData:/fruit/plum"/>
 <datapath xpath="myData:/fruit/peach"/>
</canvas>

Since there is only a single plum data node in the myData dataset, the datapath tag
is equivalent to a datapointer tag, and can be declared at the top level. But
because there are multiple peach data nodes, a top-level datapath tag attempts to
create a replication manager that controls a matching number of cloned
instances of its parent container. In this case, the parent container is the canvas
tag. The canvas is the root node and contains the application, so there can’t be
multiple instances of it. As a result, a top-level data path tag isn’t allowed, produc-
ing a runtime error.

 LZX data-access classes are used most effectively in concert, that is, by combin-
ing the LzDataNode-derived and LzDatapointer-derived approaches. But to do
this, we need a way to easily convert from one approach to the other.

Returns a single
match: legal

Returns multiple
matches: illegal

304 CHAPTER 11

Using dynamic dataset bindings
11.3.6 Converting between data pointers and data nodes

The LzDatapointer class contains two mechanisms, shown in figure 11.12, for
converting from data pointer to data node representation and vice versa. The
data pointer’s p attribute allows any LzDataNode-derived object to be retrieved
from a data pointer. The inverse operation is accomplished through the data
pointer’s setPointer method; a data pointer can be set to point to the data node
represented by any LzDataNode-derived object.

 LzDatapointer’s p attribute serves as a bridge from data pointer objects to
data node objects. Since the data type of the p attribute is LzDataElement, this
provides access to all the LzDataElement attributes and methods. This provides a
way for LzDatapointer objects to easily access all the LzDataNode properties.
Here’s an example of this integrated approach, where a data pointer uses its p
attribute to directly access data node attributes and methods:

<datapointer name="dp" xpath="myData:/fruit">
 <method name="init">
 var name = dp.p.nodeName;
 var ele = dp.p.getElementsByTagName("plum");
 </method>
</datapointer>

The setPointer method provides the reverse conversion from data node objects
to data pointer objects. This method takes a data node as an argument and sets a

Figure 11.12 The p attribute allows an LzDataNode-derived object to be retrieved from a
data pointer. The data pointer’s setPointer method allows the reverse; a data pointer can
be set to point to the data node represented by an LzDataNode-derived object.

Navigating with LzDatapointer and LzDatapath 305
data pointer to point to its location. Because this changes the location of the data
pointer, it generates an ondata event. See listing 11.7.

<canvas width="100%" debug="true">
 <include href="myData.lzx"/>

 <datapointer name="dp" xpath="myData:/fruit/peach[2]">
 <handler name="ondata" args="d">
 Debug.write("ondata : " + d);
 </handler>
 </datapointer>

 <method name="init">
 Debug.write(dp);
 var ele = dp.p;
 Debug.write("Convert datapointer to a data element");
 Debug.write(ele);
 ele = ele.getNextSibling();
 Debug.write("Move to next data element location and reset the

datapointer");
 dp.setPointer(ele);
 Debug.write(dp);
 </method>
</canvas>

The data pointer dp is initially set B to point to the second peach data node. Its p
attribute is used to set C its location to an LzDataElement object called ele. The
LzDataElement’s getNextSibling method moves to the next sibling data element
called cherry. Finally, this data element is passed D as an argument to the set-
Pointer method to reset the data pointer to point to the cherry data node. In fig-
ure 11.13, you can see that ondata events are generated when the data pointer is
initially set and again when its position is updated.

Listing 11.7 Converting from data nodes to data pointers

Converts from data
pointer to dataelement B

Moves to next
sibling data node

C

Converts from data
element to data pointerD

Figure 11.13 A data pointer can be used to retrieve an instance of the data node to which it points,
and a data node can be used to set a data pointer.

306 CHAPTER 11

Using dynamic dataset bindings
NOTE Collaborative working relationship between data pointers and nodes—You will
generally find it easiest to manipulate XML data structures by using a data
pointer’s XPath capabilities to navigate to a selected location and then
using its p attribute to return the data node for the location. The data
node methods can be used to modify the data structure without causing
spurious ondata events. Finally, the data node can be used as an argu-
ment to a data pointer’s setPointer method to get back to working with
a data pointer.

These conversion tools provide an avenue for moving easily between
the data pointer and data node domains in a constructive manner.

11.3.7 Checking updates with rerunxpath

An XPath expression provides a link between the view and model layers, so it must
correctly respond to updates to the dataset and to the XPath expression itself.
Here is a list of the different situations that an XPath expression can handle:

■ The data in the data node is updated or removed.

■ A data node is deleted.

■ A data node is added, resulting in the XPath expression returning multiple
matches.

■ The XPath expression itself is updated.

In each case, the data pointer must point to the correct location and, for the first
three situations, an ondata event must be sent to the bound object.

 However, there is one situation that the XPath expression can’t handle. This
occurs with a wildcard predicate and the addition or deletion of a sibling node,
changing its offset value. An example should make this clear. Suppose we have

xpath="myData:/fruit/*[1]/name()"

 Inserting a new data node changes the location. With an expression like

xpath="myData:/fruit/*[2]/name()"

deleting the first data node would change the XPath location. Neither of these
situations generates an ondata event, unless the rerunxpath attribute is set. List-
ing 11.8 demonstrates this situation.

<canvas>
 <include href="myData.lzx"/>

 <view name="main" x="10" y="10">

Listing 11.8 Using rerunxpath to send an ondata event

Navigating with LzDatapointer and LzDatapath 307
 <text name="uptodate"/>
 <text name="outofdate"/>
 <button text="update Dataset">
 <handler name="onclick">
 var last = ptr.xpathQuery("*[1]");
 ptr.p.removeChild(last);
 </handler>
 </button>
 <simplelayout axis="y" spacing="3"/>
 </view>

 <datapointer name="ptr" xpath="myData:/fruit"/>
 <datapointer xpath="myData:/fruit/*[1]/name()"
 rerunxpath="true">
 <handler name="ondata" args="d">
 main.uptodate.setText(d);
 </handler>
 </datapointer>
 <datapointer xpath="myData:/fruit/*[1]/name()">
 <handler name="ondata" args="d">
 main.outofdate.setText(d);
 </handler>
 </datapointer>
</canvas>

The data pointer’s xpathQuery method is used B to obtain a copy of the first data
element peach. This data element is then removed, which changes the meaning of
* [1]. The first data node is now plum. But since the XPath expression has already
been parsed, it isn’t aware of this change unless it’s reevaluated. Setting rerun-
xpath forces the XPath expression to be reevaluated every time the contents of the
dataset change. At C and D, two data pointers are declared, one with rerunxpath
set and the other with it reset. The rerunxpath attribute ensures that its XPath
expression is reevaluated when the peach data node is removed, updating the
XPath expression to point to the plum data node. It also generates an ondata event,
updating the text object to display plum. The other data pointer is blind to all of
these proceedings and continues to dis-
play peach, as figure 11.14 shows.

 The rerunxpath attribute shouldn’t
be set needlessly, because that forces the
XPath expression to be reevaluated on
each access, which can impact perfor-
mance. As we’ve seen, it’s only needed
in a limited number of situations.

Removes first data
node from dataset

B

Evaluates XPath
multiple times

C

Evaluates XPath
only once

D

Figure 11.14 This output from listing 11.8
shows that the top text object has its
rerunxpath attribute set so it accurately
reflects changes to the XML dataset.

308 CHAPTER 11

Using dynamic dataset bindings
 Before applying this material to the Laszlo Market, we need to examine the
operation of the replication manager in the next section.

11.4 Advanced replication manager issues

Chapter 10 introduced us to how a replication man-
ager supports multiple element matches. Now let’s
examine the internal operation of the replication
manager and its associated clones and nodes arrays.
We’ll start by contrasting the timing sequence of a
data path that returns a single match versus a data
path that returns multiple matches, thereby instan-
tiating a replication manager.

 The initialization sequence for an object with a
data path that returns a single match is displayed in
figure 11.15. The completion of each step is indi-
cated by the generation of an event. This sequence
occurs synchronously in a bottom-up order where the datapath tag is first initial-
ized, followed by the initialization of its parent object and its reception of an ini-
tial ondata event.

 The multistep initialization sequence for a replication manager and its clones is
displayed in figure 11.16. When a data path returns multiple matches, a replication

Figure 11.16 When a data path returns multiple matching data nodes, its first action is to destroy the
parent object and replace it with a newly created replication manager that is responsible for governing
the creation of a matching set of node and clone objects. When all of the nodes are created, an onnodes
event is sent. When all of the clones are created, an onclones event is sent. Finally, an ondata event
is sent to each of these clones.

Figure 11.15 A datapath
object that only returns a single
match will complete its
initialization, and afterward its
parent object will be initialized and
receive an initial ondata event.

Advanced replication manager issues 309
manager is created and its parent object is destroyed and replaced with a matching
number of clones. A replication manager’s initialization sequence requires an addi-
tional set of onnodes and onclones steps.

1 Build the nodes array (onnodes event).

2 Instantiate each clone and build the clones array (onclones event).

3 Initialize the LzReplicationManager object (oninit event).

The onnodes event is sent when a nodes array containing the matching data
nodes array is created. The onclones event is sent when each of the clones has
begun instantiation and when a clones array containing the instantiated clone
objects is created.

 Although the execution of these three steps is synchronous, the instantiation
of each clone is asynchronous. In other words, the replication manager starts the
instantiation of each clone, but doesn’t wait for each clone to complete its initial-
ization. The size and complexity of a clone can significantly affect its timing,
allowing it to complete prior to or after the replication manager.

 Listing 11.9 demonstrates the differing initialization sequences for a data path
that can return either a single or multiple data nodes. When a button is clicked, it
dynamically updates an object’s datapath XPath expression, switching it from
returning a single node to multiple nodes. Although the same set of declarative
handlers are used for both cases, each has a different context, so these event han-
dlers are used in different ways. To show their relationship, two annotation
sequences are used; the first shows the progression for a single match,
and the second for multiple matches.

<canvas debug="true">
 <include href="myData.lzx"/>

 <view name="first">
 <datapath name="dp" xpath="myData:/fruit/plum">
 <handler name="oninit" args="d">
 Debug.write("datapath oninit: ", d);
 </handler>
 <handler name="onnodes" args="d">
 Debug.write("onnodes: ", d);
 </handler>
 <handler name="onclones" args="d">
 Debug.write("onclones: ", d);
 </handler>
 </datapath>

Listing 11.9 Timing issues with the replication manager

Returns
single match

Sends onclones
event

Returns multiple
matches

Sends
onnodes event

310 CHAPTER 11

Using dynamic dataset bindings
 <handler name="oninit" args="d">
 Debug.write("oninit : ", d);
 </handler>
 <handler name="ondata" args="d">
 Debug.write("ondata : " + d);
 </handler>
 </view>
 <button x="10" y="80" text="Push">
 <handler name="onclick">
 first.dp.setXPath("myData:/fruit/peach");
 </handler>
 </button>
</canvas>

The simple object initialization sequence is displayed in the upper portion of the
debug window shown in figure 11.17, while the multistep initialization sequence is
displayed in the lower portion.

 The replication manager’s first action is to create a nodes array containing
the matching data nodes. Next, the cloned objects are instantiated, resulting
in an onclones event. Finally, the initialization of the replication manager is
displayed .

 In the following sections, we’ll see how the onnodes and onclones events can
be used in an application.

Completes parent
object initialization

Receives ondata event
for parent object

Figure 11.17 The top half shows the initialization timing of a data-path-bound view object
returning a single match. The bottom half shows the timing for multiple matches that requires
the instantiation of a replication manager. This debug output has been digitally manipulated for
better presentation.

Advanced replication manager issues 311
11.4.1 Filtering with onnodes

Requirements to filter data retrieved from a dataset are very common. Often, for
example, a common text string or some HTML tags must be added or stripped to
correctly display data. Although an ondata or ontext event handler could be used,
this requires a separate event handler for each data element. Since the onnodes
event handler has access to every matching data element, this allows all data mod-
ifications to be handled in a single location. Listing 11.10 shows an example.

<canvas>
 <dataset name="sampleDS">
 <item>Line 1## sample line of text</item>
 <item>Line 2## yet another line</item>
 </dataset>

 <node>
 <datapath xpath="sampleDS:/item">
 <handler name="onnodes">
 for (var i = 0; i < nodes.length; i++) {
 var line = nodes[i].getLastChild().data;
 var pos = line.indexOf("##");
 if (pos)
 nodes[i].getFirstChild().data = line.substr(pos+3);}
 </handler>
 </datapath>
 </node>
 <text resize="true" datapath="sampleDS:/item/text()"/>
 <simplelayout/>
</canvas>

In the previous section, we saw that within the cloning process, the first step was to
create the matching nodes and then send an onnodes event. Because this step
occurs so early, it provides a centralized location to filter incoming data. In this
case, the input data nodes contain an undesired artifact, line numbers, from
another system. Our ondata filter will remove these line numbers so they won’t be
displayed. Now we are assured that all subsequently cloned objects will receive
clean data.

 Let’s now move on to the next set of initializations in the cloning process: the
onclone events.

Listing 11.10 Filtering data nodes with onnodes

Contains extra
line numbers

Removes line
number prefix

Displays data
without line
numbers

312 CHAPTER 11

Using dynamic dataset bindings
11.4.2 Checking clone instantiation with onclones

A declarative tag’s oninit event normally signals that this object has completed
initialization and is ready for use. However, the asynchronous nature of clone
instantiation turns checking for a clone’s initialization completion into a two-step
process. First we need to receive an onclones event to indicate that all the clones
have been instantiated. Then we need to wait for the last clone to send its oninit
event. Only then are we assured that all cloned objects have completed initializa-
tion and are ready for use.

 Listing 11.11 demonstrates how to perform this check for clone completions
and illustrates a pitfall of attempting to using clones before their initialization has
completed.

<canvas>
 <dataset name="tabDS">
 <item>one</item>
 <item>two</item>
 <item>three</item>
 <item>four</item>
 </dataset>

 <button y="40" text="Add Tabelements">
 <method event="onclick">
 A.tabA.setDatapath('tabDS:/item');
 B.tabB.setDatapath('tabDS:/item');
 </method>
 </button>
 <tabslider name="A" y="10" width="100" height="120" spacing="2">
 <tabelement name="tabA" text="$path{'text()'}">
 <datapath>
 <method event="onclones">
 parent.select(this.getCloneNumber(2));
 </method>
 </datapath>
 </tabelement>
 </tabslider>
 <tabslider name="B" y="10" width="100" height="120" spacing="2">
 <tabelement name="tabB" text="$path{'text()'}">
 <datapath>
 <method event="onclones">
 this.doneDel = new LzDelegate(this, "waits")
 this.doneDel.register(clones[clones.length - 1],
 "oninit")
 </method>
 <method name="waits">

Listing 11.11 Ensuring that clone initialization is complete

Dynamically
applies data path

Selects list entry
immediately

Waits for last
clone’s oninit event

Master-detail design pattern 313
 parent.select(this.getCloneNumber(2));
 </method>
 </datapath>
 </tabelement>
 </tabslider>
 <simplelayout inset="10" axis="x" spacing="20"/>
</canvas>

Both lists displayed in figure 11.18 are ini-
tially empty, because an XPath expression
hasn’t been supplied. An XPath expres-
sion is dynamically applied to both of the
tabsliders, when the user clicks the Add
Tabelements button.

 In the first tabslider, shown on the left,
the parent immediately attempts to open
a tabelement before clone initialization
has completed. In the second tabslider, a
delegate has been registered to call the
waits method when the last clone has completed its initialization and sends its
oninit event. The waits method then performs the selection.

 Initialization for cloned instances is only slightly more complex than for a sin-
gle instance; instead of checking for a single oninit event, the oninit event of
the last cloned instance must be checked.

 We’re now ready to apply this chapter’s material to the Laszlo Market, using
the master-detail design pattern to coordinate the display of multiple windows.

11.5 Master-detail design pattern

In chapter 10, we created the initial layout for the dsProducts dataset and used it
to supply products for a Product List window. Now we want to display a full
description along with technical details for each product. But the Product List
window doesn’t contain enough room to display all this information. Instead a
separate window needs to be coordinated to display auxiliary information for a
selected item in the Product List window. This situation occurs frequently enough
to be addressed with a design pattern known as master-detail.

 In the master-detail design pattern, a master window contains a summary or list
of items. When a particular item is selected, additional information for that item is

Selects completed
list entry

Figure 11.18 This contrasts the effects of
waiting for the final onclones event to
complete versus immediately proceeding with
processing. In the left figure, the selected
cloned object hasn’t completed its
initialization and isn’t ready for display.

314 CHAPTER 11

Using dynamic dataset bindings
displayed in a detail window. This relationship can scale to include multiple detail
windows, where each window specializes in a particular aspect of a selected item.

 Since the content of each window is controlled through a data binding, coordi-
nating the contents of these windows is accomplished through a shared data
pointer. The master window updates this data pointer’s location in a dataset, to
reflect the user’s current selection. This results in a data event being sent to each
of the detail windows, which use this new data location to update the displayed
contents for each of their windows.

 This example of vertically oriented communication between objects is analo-
gous to the constraint mechanism’s horizontally oriented communications in
coordinating the aircraft formation seen in chapter 2. In both cases, the result is a
coordinated action driving the presentation of visible objects.

11.5.1 Implementing master-detail in Laszlo Market

In the Laszlo Market, the Product List window serves as the master and the Prod-
uct Details window serves as the detail. The detail window displays description and
technical information that conforms to the current product selection within the
master window. Changing the selection in the master window causes the informa-
tion displayed in the Product Details window to also be updated.

 This relationship is based upon a shared data pointer. We’ll declare a data
pointer at the top level, so it can be easily shared by different objects:

<datapointer name="productdp"/>

Any class can create an ondata event handler that references the productdp data
pointer as the publisher of its ondata events. Within the master window, whenever
this data pointer is repositioned to point at a new data node, it sends an ondata
event to every class referencing this data pointer in its event handler. Here’s a sim-
ple example:

<class name="details">
 <handler name="ondata" reference="productdp">
 Debug.write("productdp ondata");
 </handler>
</class>

Now any number of detail windows receive ondata events from our master window.
 To send these ondata events, a master window positions the data pointer to

point at the data node corresponding to a user’s selection by using the data
pointer’s setFromPointer method. In table 11.10, we saw that using this method

Master-detail design pattern 315
to change the data pointer’s location results in an ondata event being sent to all
event listeners:

<class name="productgrid" extends="grid" … >
 …
 <handler name="onselect">
 productdp.setFromPointer(this.getSelection()[0]);
 </handler>
</class>

When there are multiple listeners, the order in which they receive this event is
indeterminate, but the processing of the ondata event handlers for all listeners
proceeds synchronously. As a result, all event-related processing will complete
before processing resumes in the master window’s onselect event handler.

 In a detail window, the ondata event handler uses the location of the pro-
ductdp data pointer as a base context to access its particular data locations. Sim-
ple XPath expressions can then be used to navigate from this context to specific
data locations, similar to navigating a normal file system. Listing 11.12 shows how
to do this.

 In our case, there is only one Product Details window, but we can easily add
more windows.

<class name="details" extends="window">
 <attribute name="prod_title" type="string" value=""/>
 <attribute name="description" type="string" value=""/>

 <handler name="ondata" reference="productdp">
 if (productdp.data) {
 top.setVisible(true);
 var selectedImage =
 productdp.getNodeAttribute("image");
 this.setAttribute("prod_title",
 productdp.getNodeAttribute("title"));
 productdp.setXPath("description");
 this.setAttribute("description",
 productdp.getNodeText());
 productdp.setXPath("..");
 top.col_1.image.setResource(
 gController.IMAGESFOLDER + selectedImage);
 }
 else this.top.setVisible(false);
 </handler>
</class>

Listing 11.12 The master-detail design pattern in the Laszlo Market

Checks for data
to display

Moves among attributes
and child nodes

Displays a
blank screen

316 CHAPTER 11

Using dynamic dataset bindings
11.5.2 When to use a static layout

In chapter 6 we discussed the advan-
tages of a flexible layout when work-
ing with pre-loaded image assets
compiled into the application. This
allows all display elements to be
loaded and displayed simultaneously.
However, dynamically loaded images
introduce timing differences. Now a
static layout is needed to ensure the
layout doesn’t reconfigure as the
images appear. In particular, we want
the Add to Cart button to be fixed in
place. This problem can be fixed by
specifying a static alignment for the image so the Add to Cart button remains sta-
tionary regardless of whether the image has been loaded. Figure 11.19 illustrates
the benefits of this approach.

 While the other parts of the window can reconfigure themselves to accommo-
date sizing changes, the left column, consisting of the photo image and the but-
ton, has a fixed spatial layout. As a result, when the window is resized the title and
summary information still wrap, providing a measure of flexibility. Listing 11.13
shows the steps for laying out the contents of this details window.

<class name="details" extends="window" fontsize="14" fontstyle="bold">
 <attribute name="prod_title" value="title" type="text"/>
 <attribute name="description" value="desc" type="string"/>

 <view name="top" height="${immediateparent.height}"
 width="${immediateparent.width}" visible="false">
 <view name="col_1">
 <thumbnail name="image" x="10" y="10" height="150"/>
 <button x="10" y="170" text="Add to Cart"/>
 </view>
 <view name="col_2" x="150" width="350">
 <text text="${classroot.prod_title}" width="100%"
 resize="true" fontsize="24" multiline="true"/>
 <view width="100%">
 <text text="Plot Summary:"/>
 <text text="${classroot.description}" width="100%"
 fontstyle="plain" fontsize="12" multiline="true"/>

Listing 11.13 Using a static layout to fix the Add to Cart button in position

Contains
images
and
button

Contains title
and summary

Figure 11.19 Providing static dimensions for the
photo image causes the Add to Cart button to
remain stationary until the image has been loaded.

Summary 317
 <simplelayout axis="y"/>
 </view>
 <simplelayout axis="y" spacing="10"/>
 </view>
 <simplelayout axis="x" spacing="10"/>
 </view>
 <handler name="ondata" reference="productdp">
 …
 </handler>
</class>

The Product List and Product Details
windows, shown in figure 11.20, con-
form to the master-detail design pattern.
Whenever a selection is made in the
Product List window, indicated by a
darker background, the corresponding
product description appears in the Prod-
uct Details window. This relationship
holds for all of the products in the Prod-
uct List window.

 The master-detail design pattern is
extensible, so it’s a relatively simple mat-
ter to accommodate additional detail
windows. For example, if we decide to
separate Plot Summary and Technical
Specs into separate windows, we can sim-
ply add a window-based class that refer-
ences the productdp data pointer in its
ondata event handler to be another
detail window.

11.6 Summary

This chapter builds on the XML data path material in the previous chapter, which
introduced new concepts and demonstrated the high-level behavior of data-path-
bound visible objects. We explored the underlying classes that provide this data-
binding functionality. Our first exposure to data-path-bound visual objects limited
us to a static connection to a specific data node. Building on this, we saw how to
manipulate the data elements of an XML hierarchy and traverse its tree. We also

Figure 11.20 The relationship between the
Product List (master) window and the Product
Details (detail) window is shown here. The current
selection is the Unfold video, indicated by the
darker background. A detailed display is provided
for this selection in the Product Details window.

318 CHAPTER 11

Using dynamic dataset bindings
modified the XML tree structure itself by adding, modifying, or deleting data
nodes. Finally, we introduced different ways to control the replication process
involved with data paths and the replication manager. Completing this chapter,
you have seen most of what you need to use and manipulate data paths. This sets
the stage for a later chapter on optimization.

 Applying the master-detail design pattern to the Laszlo Market provides the
building blocks for additional capabilities to be presented in the next chapter.
With our current prototype, we have limited ourselves to only reading from a
dataset. In the next chapter, we’ll begin to modify the contents of different
datasets by adding and deleting data nodes. These dataset-related changes pro-
vide a higher level of inter-window functionality in the Laszlo Market.

Scoreboarding
the shopping cart
This chapter covers
■ Building a grid window
■ Creating a scoreboarding shopping cart
■ Interfacing to the mouse scroll wheel
■ Interfacing to the right mouse button
■ Creating an image icon dragger
319

320 CHAPTER 12

Scoreboarding the shopping cart
Whoever said money can’t buy happiness simply didn’t know
where to go shopping.

 —Bo Derek, actress

One goal of the Laszlo Market is easy selection of items for the shopping cart. At
the same time, there are a multitude of windows and various keyboard and mouse-
based input devices to be supported. One unifying mechanism with a standard,
easily accessible interface is needed to update the shopping cart. For this, we turn
to the scoreboard. Although a scoreboard isn’t a formal design pattern, scoreboard-
ing techniques are widely used across many interactive applications. The purpose
of a scoreboard is to collect and tabulate information through a standard inter-
face easily accessible by a wide range of input devices.

 The most obvious application of a scoreboard is in a game with scores kept for
players—the number of monsters killed. There are many different types of score-
boards. We’ll be using a totals scoreboard that keeps track of the number of pur-
chased products and their total price. There are also actions scoreboards that record
a customer’s actions—for example, to support the undo function in an application.

 In the Laszlo Market, the shopping cart serves as our scoreboard to record pur-
chase requests and deletions from input sources. It needs to tabulate all interac-
tions affecting the contents of the shopping cart. Input can come from any of
these sources:

■ The Add to Cart button

■ Drag-and-drop operations for adding items

■ Manual input

■ Right-click mouse input

■ Drag-and-drop operations for deleting items

The shopping cart maintains a list of products to be purchased, their quantity,
and a total price. It also identifies duplicate products and updates the quantity to
ensure that each product is unique. The total price is recalculated when the shop-
ping cart contents are updated.

 This chapter begins by defining a scoreboard. But before we apply scoreboard-
ing techniques to the Market, we’ll reimplement the Product List window with a
lower-level window component. Next, we’ll update the shopping cart to support a
standard scoreboard interface. Finally, we’ll integrate our input sources to inter-
face with the shopping cart.

How a scoreboard works 321
12.1 How a scoreboard works

The scoreboard shares many similarities with the master-detail design pattern.
Where the master-detail pattern displays a user selection, a scoreboard records a user
selection. The master-detail pattern scales to support multiple display windows,
while the scoreboard pattern performs the inverse by scaling to support multiple
reporting sources. Like master-detail, a single dataset is used by all participants to
contain their input values. But a scoreboard introduces another dataset to record
each input. In our case, a totals scoreboard tabulates the current number of pur-
chases and the total price. Other types of scoreboards could also easily be supported.

 A scoreboard can be applied to many situations. Its simplest use involves a but-
ton that just triggers a collection. Manual entry modifies shopping cart contents
through the quantity field. A more sophisticated interface involves the drag-and-
drop network we built in chapter 9, where products are added by dragging them
to a shopping cart. Purchased products can be deleted by dragging and dropping
into the trash. Finally, to support all input sources, a user can right-click and
choose Add to Cart to add a product to the shopping cart. All these input sources
interact with the shopping cart through a common interface.

 When we’ve finished building our shopping cart, it will contain the functional-
ity shown in figure 12.1.

Figure 12.1 The Shopping Cart window uses a scoreboarding technique to allow input
sources to easily report product updates. The right-click input source is currently displayed.

322 CHAPTER 12

Scoreboarding the shopping cart
But before we incorporate this scoreboard functionality in our application, let’s
rebuild our Product List window using a simple window class.

12.2 Reimplementing the Product List window

In chapter 10, we created the Product List window using the grid component,
since it offered a convenient way to list the contents of a static dataset. Although
the grid component provides these basic features, it’s important to understand
how to add these features yourself. We’ll now explore how to add the following
grid-related features to a view or window:

■ Title headers for a window

■ Column sorting

■ Alternating background colors for rows

■ Window scrolling

■ A mouse-based scroll wheel

■ Selections

Lower-level components, such as views and windows, provide flexibility that will be
needed in subsequent chapters, when we start working with dynamic datasets and
dealing with issues such as optimization.

 We’ll start with the title headers.

12.2.1 Creating the title header

We’ll define a new class productwin to replace the productgrid instance. The only
difference in its interface is that the data path location is now set in the productwin:

<canvas>
 ...
 <window name="productlist"
 title="Product List"
 width="55%" height="50%"
 x="${parent.browsesearch.width}"
 y="${parent.details.height}">
 <productwin name="pwin" width="100%" height="100%"/>
 </window>
 ...
</canvas>

Next we create its subsidiary classes, starting with the columnheader class that pro-
vides the column headers appearing in the title header:

<class name="columnheader" extends="text"
 bgcolor="gray" fontstyle="bold" fontsize="12"/>

Reimplementing the Product List window 323
The columnheader class is used in the titleheader class for the Image, Title, and
Price column headers. The outer header columns have a fixed width, and the
middle column has a variable length set by the stableborderlayout tag:

<class name="titleheader">
 <columnheader width="80" text="Image"/>
 <columnheader text="Title"/>
 <columnheader width="100" text="Price"/>
 <stableborderlayout axis="x"/>
</class>

The titleheader instance has a height of 30 pixels and a width that stretches
across the window:

<canvas>
 <include href="library.lzx"/>
 <window name="productlist" title="Product List"
 width="55%" height="50%">
 <titleheader width="100%" height="30"/>
 </window>
 ...
</canvas>

The title header is now complete. The next step is to populate the rows for the
table.

12.2.2 Populating a table row

We previously saw how the rows of a table are created through a single instance
replicated through its bound data path. The productrow class has an attached
data path that matches each product, producing a replication manager to govern
the matching number of productrow clones:

<productrow width="100%"
 datapath="dsProducts:/products/product"/>

Listing 12.1 shows the productrow layout that matches our earlier grid-based layout.

<class name="productrow">
 <thumbnail name="image" datapath="image/text()"
 width="80" maxheight="75" maxwidth="75">
 <method name="applyData" args="d">
 this.setSource(gController.IMAGESFOLDER + d);
 </method>
 </thumbnail>
 <text valign="middle" datapath="title/text()"/>
 <text width="100" valign="middle" fontstyle="bold"

Listing 12.1 Populating the Product List window with rows

Specifies
thumbnail image

Contains
title

324 CHAPTER 12

Scoreboarding the shopping cart
 fontsize="14" datapath="price/text()">
 <method name="applyData" args="d">
 if (d.length == 4) this.setText("$ " + d);
 else this.setText("$" + d);
 </method>
 </text>
 <stableborderlayout axis="x"/>
 <handler name="ondata" args="d">
 var pos = this.datapath.xpathQuery('position()') * 1;
 if (pos % 2 == 0) this.setAttribute('bgcolor', 0xcccccc);
 else this.setAttribute('bgcolor', 0xffffff);
 </handler>
</class>

To produce the alternating background colors, we’ve added an ondata event han-
dler. Each matching product data node generates a data event that is sent to this
event handler B. In this handler, the XPath position function is used to obtain
the offset of each row, modulo two, to specify an alternating set of background
colors. Now that we have rows to display, the next step is to make the table col-
umns sortable.

12.2.3 Sorting table columns

Each column header that contains a headerid is sortable. The first time the col-
umn head is clicked, it is sorted in ascending order; on the next click, sorting is
performed in descending order. Subsequently, it switches between ascending and
descending sorts.

<class name="columnheader" extends="text" fontstyle="bold">
 <attribute name="headerid" type="string" value=""/>
 <handler name="onclick">
 if (this.headerid != "") {
 main.productlist.pwin.sortBy(this.headerid); }
 </handler>
</class>

Let’s assume we’re sorting by title, so the headerid is set to title. When a col-
umn header is clicked, our sortBy method is called with the sorted column’s
headerid. This results in setOrder sorting the rows by the XPath title attribute.
The sort order can be set to either ascending or descending with the setCom-
parator method:

<class name="productwin">
 <attribute name="lastsort"/>
 <method name="sortBy" args="sortpath">
 var listdp = this.products.datapath;
 listdp.setOrder('@' + sortpath);

Specifies
price

Alternates row
background colors

B

Sorts column
by specified
headerid

Reimplementing the Product List window 325
 if (this.lastsort == sortpath) {
 listdp.setComparator('descending');
 sortpath = ''; }
 else
 listdp.setComparator('ascending');
 this.lastsort = sortpath;
 </method>
 …
</class>

A limitation of this sorting is that it’s a dictionary sort, which can’t sort numbers
equal to or greater than 10. In chapter 17, you’ll learn how to specify a compara-
tor function to perform arithmetic sorting. Now that we have a sorted display, the
next step is to add a scrollbar to this window.

12.2.4 Basics of a scrollbar

Any view or window object can have a scrollbar attached to it, allowing text and
images to be scrolled. A scrollbar can be directly added to a window to display
static text. Listing 12.2 shows a window with an enabled scrollbar that scrolls
through static text.

<canvas debug="true">
 <window height="100">
 <text width="150" multiline="true">
 Four score and seven years ago our fathers brought forth on
 this continent, a new nation, conceived in Liberty, and
 dedicated to the proposition that all men are created equal.
 </text>
 <scrollbar>
 <handler name="oninit">
 Debug.write("scrolltarget : ", this.scrolltarget);
 Debug.write("scrollmax : " + this.scrollmax);
 Debug.write("scrollable : " + this.scrollable);
 Debug.write("scrollattr : " + this.scrollattr);
 Debug.write("height : " + immediateparent.height);
 </handler>
 </scrollbar>
 </window>
</canvas>

Figure 12.2 compares an enabled scrollbar to a disabled scrollbar. The difference
between their states is the height attributes: 100 versus 150 pixels. In the first case,
the inner window’s height is less than the scrolled text (scrollmax) to be displayed,

Listing 12.2 Adding a scrollbar for statically defined text

Attaches scrollbar

326 CHAPTER 12

Scoreboarding the shopping cart
which produces an enabled scrollbar; in the second case, the inner window’s height
is greater than its contents, so scrolling is disabled.

 Table 12.1 displays the complete list of scrollbar attributes. The attributes that
determine whether scrolling is enabled are scrolltarget, scrollmax, and
scrollable. The scrollable attribute specifies whether the scrollbar is enabled
or disabled. The scrolltarget attribute specifies the child view being scrolled.
The scrollmax attribute gives the height of the parent clipped view. The scroll-
attr attribute specifies whether this is a vertical or horizontal scrollbar. The step-
size attribute controls the number of pixels traversed when the scrollbar is
moved; it can be changed to a larger granularity for large documents.

Table 12.1 Scrollbar attributes

Name Data Type
Tag or
Script

Attribute
Type

Default Description

axis string Tag Final y Axis may be x or y.

disabledbgcolor number Both Setter null If defined, is used as the scroll-
bar’s background color when it is
disabled.

scrollable boolean Both Read-only true True if the scrolltarget is
bigger than the containing view,
making the scrollbar active; the
scrollbar appears disabled when
scrollable is false.

Figure 12.2 Two examples of correctly functioning scrollbars are shown to illustrate the values of the
critical scrollbar attributes. In the top example, the value of the scrollmax attribute is greater than
the height of the window, so scrollable is true and scrolling is enabled. In the bottom example, the
value of the scrollmax attribute is less than the height, so scrolling is disabled. See listing 12.2.

Reimplementing the Product List window 327
We’ll next look at the more general case of adding a scrollbar to a window con-
taining dynamic content.

Adding a scrollbar to dynamic content
When a display contains dynamic content, it’s necessary to set up a combination
of a clipped parent view working in conjunction with a scrolled child view. This
technique works for both windows and views to support the dynamic behavior
produced by replicated objects. A scrolling display consists of two views in a par-
ent-child relationship: the parent view, with its clip attribute set to true, clips a
larger child view. Since the parent view is clipping another view, its dimension
parameters must be explicitly specified.

 Listing 12.3 shows a vertical scrollbar. The child view’s y and height attributes
are controlled by the scrollbar, so the child view only needs to specify its width.
With a horizontal scrollbar, the reverse is true; the child view must specify its
height and can’t specify its width.

<canvas>
 <dataset name="dsAddress">
 <line>Four score and seven years</line>
 <line>ago our fathers brought </line>
 <line>forth on this continent, a new</line>
 <line>nation conceived in Liberty,</line>
 <line>and dedicated to the</line>
 <line>proposition that all men are</line>

scrollattr string Both Final The attribute of the scroll-
target that is modified by the
scrollbar.

scrollmax number Tag Final Height or width of the scroll-
target.

scrolltarget expression Both Final The view that is controlled by the
scrollbar.

stepsize number Both Setter 10 The distance the scrolltar-
get moves when the scrollbar is
moved or when the step method
is called.

Listing 12.3 Applying a scrollbar to a view

Table 12.1 Scrollbar attributes (continued)

Name Data Type
Tag or
Script

Attribute
Type

Default Description

328 CHAPTER 12

Scoreboarding the shopping cart
 <line>created equal.</line>
 </dataset>
 <view width="200" height="100" clip="true">
 <view width="100%">
 <text width="100%"
 datapath="dsAddress:/line/text()"/>
 <simplelayout/>
 </view>
 <scrollbar/>
 </view>
</canvas>

Executing this example produces the scrolled view in figure 12.2. If you encoun-
ter any problems with a broken scrollbar, examine the key attributes in table 12.1.
They are powerful tools for diagnosing scroll-related problems.

 Once we add a scrollbar to a window, we naturally want to use the mouse’s
scroll wheel to control it.

Adding a scroll wheel
We can easily add scroll-wheel control by setting the clipped parent view to be
focusable and having the scrollbar’s focusview attribute point back to this parent.
The clipped parent view must be focusable and have focus to make the mouse
wheel operational. The scrollbar’s focusview attribute must be set to this clipped
parent, since it has focus. Once focus is established in the display area, it must be
set to the clipped content parent node.

 Listing 12.4 updates the previous example with these focus settings. If you have
problems making your scroll wheel operational, it’s probably because window
focus hasn’t been correctly established. Remember that some browsers (Firefox
and Safari) require that the browser’s display area first be clicked to transfer focus
from the browser to its display area.

<canvas>
 ...
 <window name="content" width="200"
 height="100" clip="true"
 focusable="true">
 <view width="100%">
 <text width="100%" datapath="dsAddress:/line/text()"/>
 <simplelayout/>
 </view>
 <scrollbar focusview="$once{parent}"/>
 </window>

Listing 12.4 Adding a scroll wheel to a window

Clips child
view

Follows clipping parent

Replicates
text object

Clips child
view

Refers to
clipping parent

Reimplementing the Product List window 329
 <handler name="oninit">
 LzFocus.setFocus(content);
 </handler>
</canvas>

There is no limit to the number of scrollbars that can be controlled through the
scroll wheel. It’s only necessary to follow a similar procedure for each scrolling
window.

Supporting a scroll wheel in the Laszlo Market
The productwin class can easily be updated to support a scroll wheel. Listing 12.5
shows the updated class definition.

<class name="productwin">
 <simplelayout axis="y"/>
 <titleheader width="100%"/>
 <view name="container" width="100%" height="${parent.height-30}"
 clip="true" focusable="true">
 <view width="100%">
 <productrow width="100%"
 datapath="dsProducts:/products/product"/>
 <simplelayout axis="y" spacing="2"/>
 </view>
 <scrollbar focusview="$once{parent}"/>
 </view>
 <handler name="oninit">
 LzFocus.setFocus(productlist.container);
 </handler>
</class>

We’ve added scroll-wheel support B by adding the clip and focusable attributes
to the parent view. The next piece of functionality required by our window is
selection support. The window must support both selection and drag-and-drop
operations, so it must handle both onselect and mouse-related events.

12.2.5 Creating a selection manager

A selection manager provides a way to manipulate a list of choices. It can add to,
modify, or clear the selections in the list. Additionally, the selection manager sup-
ports the Ctrl and Shift modifiers to perform multiple and range selections.
Table 12.2 lists the selectionmanager attributes to access selections in a list.

Listing 12.5 Adding scrolling to the Laszlo Market

Sets focus to
content window

Makes clipping parent
view focusableB

Points back to
parent view

Sets
focus

330 CHAPTER 12

Scoreboarding the shopping cart
Table 12.3 contains the LzSelectionManager methods to change the selected
state for standard, multiple, and range selections.

Listing 12.6 contains a list of text objects available to be selected. This example
demonstrates a cross section of the selectionmanager attributes and methods
that include choosing single, multiple, or range selections and then clearing
those selections.

<canvas>
 <include href="myData.lzx"/>

 <view name ="fruitlist"
 datapath="myData:/fruit"
 bgcolor="0xDDDDDD">

Table 12.2 LzSelectionManager attributes

Name Data Type Attribute Description

sel string Settable The name of the method on an object to call when the
object’s select state changes; the method is called
with a single boolean argument. The default value for
this field is setSelected.

selected array Read-only An array representing the current selection.

toggle boolean Settable If true, a reselected element loses the selection.

Table 12.3 LzSelectionManager methods

Name Description

clearSelection() Unselects any selected objects

getSelection() Returns an array representing the current selections

isMultiSelect() Determines whether an additional selection should be mul-
tiselected or should replace the existing selection

isRangeSelect() Determines whether an additional selection should be
range-selected or should replace the existing selection

isSelected(o) Tests select state of input

select(o) Called with a new member to be selected

unselect(o) Deselects the given object

Listing 12.6 Creating a selection manager for the Laszlo Market

Reimplementing the Product List window 331
 <selectionmanager name="selector"
 toggle="true">
 <handler name="oninit">
 this.sel = "our_selector";
 </handler>
 </selectionmanager>
 <text name="txt" datapath="*/name()"
 onclick=
 "parent.selector.select(this)">
 <method name="our_selector"
 args="selected">
 Debug.write("isMultiSelect: " +
 parent.selector.isMultiSelect());
 Debug.write("isRangeSelect: " +
 parent.selector.isRangeSelect());
 Debug.write("isSelected: " +
 parent.selector.isSelected(this));
 Debug.write("==================");
 if (selected) {
 var txtColor = 0xFFFFFF;
 var bgcolor = 0x999999;}
 else {
 var txtColor = 0x000000;
 var bgcolor = 0xDDDDDD;}
 this.setBGColor(bgcolor);
 this.setAttribute('fgcolor', txtColor);
 </method>
 </text>
 <simplelayout axis="y"/>
 </view>
 <view>
 <button onclick="fruitlist.selector.clearSelection()"
 text="Clear all selections"/>
 <view>
 <edittext width="20">
 <handler name="onblur">
 parent.clear.setAttribute("offset", this.getText());
 </handler>
 </edittext>
 <button x="30" name="clear"
 text="Clear a selection">
 <attribute name="offset" type="number"/>
 <handler name="onclick">
fruitlist.selector.unselect(fruitlist.txt.clones[this.offset]);
 </handler>
 </button>
 </view>
 <simplelayout inset="10" axis="y" spacing="3"/>
 </view>
 <simplelayout axis="x" spacing="3"/>
</canvas>

Declares selection
manager

B

Invokes selection
method

C

Contains selection
method

Sets selection
background color

Clears all
selections

Clears
single
selection

332 CHAPTER 12

Scoreboarding the shopping cart
The toggle attribute B allows selections to be toggled on and off with successive
mouse clicks. The sel attribute changes the name of the default select method
from setSelected to our_selector. The text object’s onclick event is used C to
call the select method with an argument to allow selections to be toggled. This
argument can only be used to support toggling when the toggle attribute is set.
Figure 12.3 shows the results of these selections.

Now that we have some familiarity with selections, we are ready to use them in the
Product List window.

Adding selections to the Product List window
To add selection capabilities to the Product List window, the selectionmanager is
placed on the same level as a replicating set of productrow instances. The selec-
tionmanager’s select method is indirectly invoked when a productrow receives
an onclick event:

<class name="productwin">
 …
 <view name="scroll" width="100%">
 <selectionmanager name="selector"/>
 <productrow width="100%"
 datapath="dsProducts:/products/product"
 onclick="parent.selector.select(this)"/>
 <simplelayout axis="y" spacing="2"/>
 </view>
 …
</class>

We still need to add a setSelected method for this selectionmanager to call (note
listing 12.7). When a user changes a selection, the selectionmanager calls this
method twice: once to turn off the previous selection and once to turn on the new
selection. The selected argument specifies whether or not the view is selected.
Since the background color alternates, the background of a selection is saved in the
lastcolor attribute.

Figure 12.3
The initial selection results
in the isSelected method
returning true. Holding down
the Ctrl key on the
subsequent selection adds to
this initial selection to create
multiple selections.

Controls
product rows

Replicates
product
row

Building the scoreboarding shopping cart 333
<class name="productrow">
 <attribute name="lastcolor" type="color"/>
 …
 <method name="setSelected" args="selected">
 if (selected) {
 productdp.setPointer(this.data);
 this.setAttribute("lastcolor", this.bgcolor);
 setAttribute("bgcolor", 0xBBBBBB);}
 else {
 productdp.setPointer(null);
 setAttribute("bgcolor", this.lastcolor); }
 </method>
</class>

Since the productdp data pointer is still used to generate data events, no
changes to the details class are needed to display selections in the Product
Details window.

 Figure 12.4 shows the final results of reimplementing our Product List window.

Now that we’ve completed building the Product List window, it is ready to be con-
nected to the shopping cart. But first we need to add the scoreboarding features
to the shopping cart.

12.3 Building the scoreboarding shopping cart

We’ll use the scoreboard principle to implement our shopping cart. Because the
scoreboard collects information from a number of sources, the shopping cart
requires a backing dsCart dataset to store this information. This dataset is ini-
tially empty and is populated during execution. The shopping cart controls access

Listing 12.7 Updating the productrow class to support selection

Stores original
color

Sets product
pointer

“Unsets” product
pointer

Figure 12.4
Our Product List window supports
sorting, scrolling, and selection for
the mouse scroll wheel.

334 CHAPTER 12

Scoreboarding the shopping cart
to its backing dataset. This is a totals scoreboard, so it ensures that product items
stored in the shopping cart are unique—each new product creates a new item in
the shopping cart—while each previously entered product increments an existing
item’s quantity. Then, the shopping cart’s contents are tabulated to calculate a
total price.

12.3.1 Designing the Shopping Cart window

Figure 12.5 shows the wireframe used for
the Shopping Cart window layout. The
window has two sections. The top section
contains multiple rows each with a height
of 50 pixels and divided into four dis-
played columns. It also contains a scrollbar
that is enabled when enough items are
entered. The bottom section has a height
of 90 pixels and consists of a 30-pixel gray
square that serves as a trashcan indicator,
a total price field, and a change-state but-
ton labeled “Check out.”

 Listing 12.8 shows the top section, rep-
resented by the shoppingcart object, with
the bottom section in a view container.

<canvas>
 <dataset name="dsCart">
 <items/>
 </dataset>
 …
 <window name="shoppingcart" title="Shopping Cart"
 resizable="true" x="75%" width="25%" height="65%">
 <shoppingcart name="shopcart" width="100%"
 height="${immediateparent.height-90}"
 datapath="dsCart:/"/>
 <view width="100%" height="30" y="${immediateparent.height-80}">
 <view name="trash" width="30" height="30"
 bgcolor="0xBBBBBB"
 clickable="true"/>
 <text fontsize="12" fontstyle="bold" resize="true"
 text="${'Total: $' + main.shoppingcart.
 shopcart.totals}"/>

Listing 12.8 Layout for the shopping cart

Replicates
purchased
items

Displays
trashcan icon

Displays total
purchase value

Figure 12.5 Wireframe of the Shopping Cart
window

Building the scoreboarding shopping cart 335
 <simplelayout inset="20" axis="x" spacing="80"/>
 </view>
 <!-- States containing the button -->
 </window>
</canvas>

The shoppingcart is similar to productwin, consisting of the shop_titleheader,
shoppingcart, and shoprow classes. The columnheader class is reused for the
shop_titleheader class:

<class name="shop_titleheader">
 <columnheader width="60" text="Image"/>
 <columnheader text="Title" options="releasetolayout"/>
 <columnheader width="30" text="Qty"/>
 <columnheader width="60" text="Price"/>
 <resizelayout axis="x"/>
</class>

Since the Title field has a releasetolayout option, it’s stretched by the resize-
layout tag to fill all remaining space within the header—the other fields have
fixed widths.

 In listing 12.9, shoprow is declared with a data path, thereby replicating it for
each matching item in the dsCart dataset. Depending on the number of repli-
cated objects, the display can be larger than the window height. We’ve added a
scrollbar for displaying all items.

<class name="shoppingcart" bgcolor="0xD5D4D3" fontstyle="bold">
 <attribute name="totals" value="0.00" type="string"/>
 <simplelayout axis="y"/>
 <shop_titleheader width="100%"/>
 <view name="container" width="100%"
 height="${parent.height - 20}" clip="true">
 <view width="100%" name="scroll">
 <shoprow datapath="dsCart:/item"
 width="100%"/>
 <simplelayout axis="y" spacing="2"/>
 </view>
 <scrollbar/>
 </view>
</class>

Listing 12.9 Replicated item rows of the shopping cart

Displays titles

Displays
purchased items

Scrolls
purchased items

336 CHAPTER 12

Scoreboarding the shopping cart
The shoprow’s data path causes the shoprow object to be replicated and also estab-
lishes a context, providing objects in the shoprow class with easier access to their
data nodes. Listing 12.10 shows the layout of each row.

<class name="shoprow">
 <thumbnail y="10" maxheight="50" maxwidth="50"
 width="60" datapath="@image">
 <attribute name="imageURL" value="$path{‘@image'}"/>
 <method name="applyData">
 this.setSource(gController.IMAGESFOLDER + this.imageURL);
 </method>
 </thumbnail>
 <text valign="middle" text="$path{'title/text()'}"
 fontsize="10" multiline="true"
 options="releasetolayout"/>
 <edittext name="qty" valign="middle" width="30"
 fontsize="10" datapath="qty/text()"/>
 <text valign="middle" width="60" fontsize="10"
 text="$path{'price/text()'}">
 <handler name="ontext">
 this.setText("$" + this.text);
 </handler>
 </text>
 <resizelayout axis="x"/>
</class>

This provides the basic skeleton for the rows of the shopping cart. Later we’ll
return to this shoppingcart class to enhance it and incorporate it in the drag-and-
drop network.

12.3.2 Implementing scoreboarding techniques

Now we’re ready to implement the shopping cart’s scoreboarding techniques. All
input sources that report product requests for inclusion into the shopping cart
will use the method

updateShopcart(data pointer to product data node)

which contains a data pointer argument that points to a single product data node.
Input sources simply have to report new products without concern about internal
shopping cart operations. The shopping cart determines whether this product
represents a new item or an update to an existing item, and any actions such as
totaling its contents.

Listing 12.10 Layout of each row in a shopping cart

Retrieves
thumbnail image

Stretches
title text

Prepends "$"
to price

Building the scoreboarding shopping cart 337
 Similarly, certain input sources can delete items from the shopping cart by
using the method

deleteItem(data pointer to an item data node)

In the next section, we’ll see an initial example of an input source using these
methods to report a product request to the shopping cart.

12.3.3 Reporting add-to-cart operations

Updating the Product Details window to report product updates to the shopping
cart only requires adding the updateShopcart method. When the user clicks the
Add to Cart button, the product is added to the shopping cart. The productdp
data pointer is the same pointer used earlier to implement the master-detail
design pattern between the Product List and Product Details windows:

<class name="details_window" extends="window">
 …
 <button x="10" y="170" text="Add to Cart"/>
 <handler name="onclick">
 main.shoppingcart.shopcart.updateShopcart(productdp);
 </handler>
</class>

All the information contained in a product data node is now accessible to the
shopping cart.

12.3.4 Building the shopping cart

The updateShopcart method performs the internal operations of adding items to
the shopping cart. Since the shopping cart may already contain items, we need to
determine whether an item for this product already exists. If it does, its quantity
field is incremented. Otherwise, a new item data node representing the product is
added to the dsCart dataset.

 A deleteItem method removes an item from the dsCart dataset. When this
method is called, the value of the quantity field is irrelevant since the item’s data
node is simply deleted. Listing 12.11 shows the code for these operations.

<class name="shoppingcart">
 <datapointer name="dptr" xpath="dsCart:/items"/>
 <attribute name="targets" value="$once{[]}"/>
 …
 <method name="updateShopcart" args="dp">
 <![CDATA[
 var curr = dp.xpathQuery("@sku");

Listing 12.11 Updating an item in the shopping cart

Points to parent
items node

B

Finds SKU for
new item

C

338 CHAPTER 12

Scoreboarding the shopping cart
 var exist = dptr.xpathQuery("item/@sku");
 if (exist != null) {
 if (typeof exist != "object") {
 targets[0] = exist;
 exist = targets; }
 for (i = 0; i < exist.length; i++) {
 if (exist[i] == curr) {
 dptr.setXPath("dsCart:/items/item[@sku='" + curr + "']");
 var qty = dptr.getNodeAttribute("qty");
 dptr.setNodeAttribute("qty", ++qty);
 main.shoppingcart.shopcart._updateTotals();
 return; }}}
 var ele = new LzDataElement("item");
 ele.setAttr("sku", dp.getNodeAttribute("sku"));
 ele.setAttr("title", dp.getNodeAttribute("title"));
 ele.setAttr("image", dp.getNodeAttribute("image"));
 ele.setAttr("qty", 1);
 ele.setAttr("price", dp.getNodeAttribute("price"));
 dptr.p.appendChild(ele);
 main.shoppingcart.shopcart._updateTotals();
 return;
]]>
 </method>
 <method name="deleteItem" args="dp">
 dp.deleteNode();
 this.updateTotals();
 </method>
</class>

A local data pointer B is instantiated to point at the items parent node to estab-
lish a context. The SKU is retrieved C from the product information supplied by
the data pointer. Next, we collect the SKU values D from all items stored in the
dsCart dataset. The xpathQuery method returns a string when only a single item
is contained in this dataset, and an array for multiple items. We want to simplify
our code to only use arrays. So E we’ll check the returned value’s type: if it’s a
string, it’s converted into an array with a single element.

 The items F are searched for an SKU matching the new product. If a match is
found, the matching item in the dsCart dataset is updated. If a matching SKU
isn’t found, it’s necessary to create G a new item data node, use the product data
pointer to initialize its contents and set its quantity to 1, and append this new
node to the items parent node. Finally, the shopping cart’s contents are tabulated
to produce a total value.

 The updateShopcart method either updates or adds new item data nodes to
the dsCart dataset. Because the shopping cart’s contents are bound to the dsCart

Checks for
matching
item

E

Builds SKU
array for
existing itemsD

FUpdates quantity
and total price

Creates a
new item
in dataset

G

Building the scoreboarding shopping cart 339
dataset’s data nodes, the shopping cart’s window reflects the contents of this
dataset. This approach provides a clear separation between presentation and the
underlying model; only the model is updated with the data-binding linkages auto-
matically updating the display.

 We’ll next look at implementing the updateTotals method.

Updating the totals
Listing 12.12 shows the tabulation of the items in a dsCart dataset to produce a
total price.

<class name="shoppingcart" … >
 …
 <method name="updateTotals">
 <![CDATA[
 var total = 0;
 var qty, price;
 dptr.setXPath("dsCart:/items");
 var num = dptr.getNodeCount();
 var prices = dptr.xpathQuery("item/price/text()");
 var qty = dptr.xpathQuery("item/qty/text()");
 if (num == 1) total = prices * qty;
 else {
 for (i = 0; i < num; i++) {
 total += (prices[i] * qty[i]); } }
 if (!isNaN(total)) {
 var str = new String(total);
 if (str.length - str.lastIndexOf(".") == 2) total += "0";
 if (str.length - str.lastIndexOf(".") == 1) total += "00";
 this.setAttribute("totals", total); }
 if (total == 0) this.setAttribute("totals", "0.00");
]]>
 </method>
</class>

The shopping cart’s local data pointer is set B to point to the items parent node.
We know the number of items, so we can multiply the unit price and the quantity
for each item and add that to the total sum. The getNodeCount method returns a
number primitive for a single item and an array object for multiple items, requir-
ing each case to be handled separately. We ensure C that the total has—down to
the penny—two-digit accuracy.

 Figure 12.6 shows the general operation of the shopping cart. On an initial Add
to Cart button click, a new item appears in the shopping cart. Additional button

Listing 12.12 Updating the totals field

Sets to
first item

B

Gets number
of items in
cart

Handles number
primitive case

CFormats
total
price

Handles
array case

340 CHAPTER 12

Scoreboarding the shopping cart
clicks recognize the product and increment the quantity field. When another prod-
uct is displayed and added, another item is added. After each operation the Total
field is updated.

 These methods can be used to support all other types of input operations.

12.3.5 Manually updating the quantity field

Adding multiple units of a product to the shopping cart is a two-step procedure.
First, the product is entered into the shopping cart, and then its quantity input
field is updated. Since this operation occurs within the shopping cart, it’s permis-
sible to directly access the dsCart dataset. Once the quantity is updated, users
must press Enter or Tab to complete entering their value. The onblur event han-
dler leverages the doEnterDown method to support the Tab key:

<class name="shoprow">
 …
 <edittext name="qty" valign="middle" width="30"
 onblur="this.doEnterDown()"
 doesenter="true" fontsize="10" datapath="@qty">
 <method name="doEnterDown">
 this.datapath.setNodeAttribute("qty", this.getText());
 main.shoppingcart.shopcart.updateTotals();
 </method>
 </edittext>
 …
</class>

We now have an infrastructure supporting a drag-and-drop network, as well as
other input methods such as the right-click method. We now need to update the
drag-and-drop network to work with a product data pointer.

Figure 12.6 The first time the user clicks Add to Cart, a new item appears in the shopping cart.
Subsequent clicks increment the quantity field. The user can select another product and click Add
to Cart to make another product appear in the shopping cart.

Is invoked by
Tab or Enter

Gets value
from text field;
updates total

Building the scoreboarding shopping cart 341
12.3.6 Supporting drag-and-drop

We’ll now extend the drag-and-drop network, introduced in chapter 9, to work
with the shopping cart. To implement the scoreboard pattern, all drag-and-drop
operations must have a payload containing a data pointer referencing the cur-
rently selected product. These product attributes will be used to decorate our
draggable icon—with an image icon and title—for the dragged product. All drag-
and-drop operations must still use the shopping cart’s updateShopcart and
deleteItem methods to conform to the scoreboard pattern.

 We’ll demonstrate both types of drag-and-drop operations, copy and move, in
the Laszlo Market. A copy drags a product from the Product List window to the
Shopping Cart window to add an item to the shopping cart. A move drags an item
from the shopping cart to the trashcan—represented as a gray square—to delete
it from the shopping cart. In each case, what really occurs is the addition or dele-
tion of an item child node in the dsCart dataset.

 To support these operations, we need to update the draggable class.

Creating an image icon dragger
When we initially created our drag-and-drop network, back in chapter 9, the drag
source was just a gray square that handled an onmousedown event to initiate a drag-
ging operation by calling the dragger’s startdrag method. Now we have a cloned
set of productrow objects, corresponding to each product row, where each row
consists of a thumbnail image, with title and price text-based objects. To initiate
the dragging operation, each thumbnail must handle onmousedown events to call
the dragger’s startdrag method. This allows each thumbnail image to initiate a
drag-and-drop operation.

 We have several different products, so we’ll update the dragger’s appearance to
reflect the product being dragged. To have the dragger appear as an image icon
with a title, its attributes are updated with data from the product data pointer.

 The existing code for our drag-and-drop network only needs to be augmented
with a datapath argument to the startdrag method to provide access to the cur-
rently selected product data node. This data path represents the data payload for
the dragger:

<class name="productrow" fontstyle="bold" fontsize="14">
 <thumbnail name="image" datapath="@image" valign="middle"
 width="80" maxheight="75" maxwidth="75">
 …
 <handler name="onmousedown">
 targets[0] = "product_target";
 targets[1] = "media_target";

342 CHAPTER 12

Scoreboarding the shopping cart
 dragger.startdrag(targets, this.datapath);
 </handler>
 </thumbnail>
 …
</class>

Although the dragger’s attributes could be updated with the product data
through a method, a more flexible approach is to register the data path with the
dragger. However, because the dragger didn’t create this data path, it’s passed as
an argument. It doesn’t yet possess the vertical communication infrastructure to
handle ondata events. Instead, the dragger must obtain this ability by declaring its
own data path. Although the product’s data path can’t be used to send events to
the dragger, it can be used as an argument to set the dragger’s data path using the
setFromPointer method. When this method executes, it generates an ondata
event that the dragger receives to point its data path to the product data fields.

 Listing 12.13 shows how the default gray square icon has been enhanced into a
more colorful icon containing the image and title text of the dragged product.

<class name="draggable" visible="false">
 …
 <attribute name="label" type="string" value=""/>
 <datapath/>
 <simplelayout spacing="2"/>
 <thumbnail name="image" maxheight="75" maxwidth="75" width="75"/>
 <text name="label" bgcolor="white" x="10" align="left"
 width="75" multiline="true"/>
 <method event="ondata">
 var selectedImage = this.datapath.xpathQuery("@image");
 var title = this.datapath.xpathQuery("@title");
 label.setAttribute("text", title);
 image.setSource(gController.IMAGESFOLDER + selectedImage);
 </method>

 <method name="startdrag" args="target, data">
 <![CDATA[
 this.datapath.setFromPointer(data);
 …
]]>
 </method>
</class>

Figure 12.7 shows how the draggable icon has been updated with the title and
image elements from the product data node.

Listing 12.13 Enhancing the drag-and-drop network with an image icon

Instantiates
a datapath

Contains image
icon fields

Sends ondata
event

Building the scoreboarding shopping cart 343
Now that the drag portion of our application is working, let’s turn our attention to
integrating the shopping cart with the drop.

Performing a drag-and-drop copy operation
Dragging a product from the Product List window and dropping it into the shop-
ping cart is a drag-and-drop copy operation, since the original product isn’t
altered. The previous section dealt with initiating the drag operation from the
Product List window; now we’ll handle the drop operation in the shopping cart.

 The shopping cart must be registered with the product_target tracking group.
In the startdrag method, this tracking group is activated for the shopping cart to
receive onmousetrack events. In the onmousetrack handler, we’ll update the shop-
ping cart with the dragger’s contents by calling updateShopcart with the dragger’s
product data pointer payload. The shoppingcart class is enhanced as follows:

<class name="shoppingcart">
 <handler name="oninit">
 LzTrack.register(this, 'product_target');
 </handler>
 <handler name="onmousetrackup">
 this.updateShopcart(dragger.datapath);
 </handler>
 …
</class>

Let’s review the sequence of events that occur when a new product is added to the
shopping cart. The dragged icon is dropped into the shopping cart, the shopping
cart receives an onmousetrackup event, and updateShopcart adds a new item
node in the dsCart dataset. This item is immediately displayed in the Shopping
Cart window. Meanwhile the dragger finishes completing its enddrag method,
which turns off the visibility of the dragger. This sequence of events happens
quickly enough to appear as though the product is dragged directly into the shop-
ping cart window.

Figure 12.7
The drag-and-drop network is
provided with an informative
draggable image icon.

344 CHAPTER 12

Scoreboarding the shopping cart
 In the next section, with only a few changes we’ll implement a move operation
that results in the deletion of the original view.

Performing a drag-and-drop move operation
Dragging an item from the shopping cart into the trash is a move operation since
it deletes the item from the Shopping Cart window. The differences between a
copy and a move operation appear only in the drop. To drag and drop items
from the shopping cart to the trash requires adding a trash_target tracking
group to the shopping cart:

<class name="shoppingcart">
 …
 <handler name="oninit">
 LzTrack.register(this, "product_target")
 LzTrack.register(this, "trash_target");
 </handler>
 …
</class>

The drag-and-drop operation is initiated by handling the onmousedown event for a
thumbnail image in the shoprow class. A data path for the selected item’s data
node is supplied to the dragger object’s startdrag method with the target:

<class name="shoprow">
 <datapath/>
 <thumbnail y="10" height="50" datapath="image">
 <attribute name="imageURL" value="$path{'text()'}"/>
 <handler name="ondata">
 this.setSource(gController.IMAGESFOLDER + this.imageURL);
 </handler>
 <handler name="onmousedown">
 dragger.startdrag("trash_target", this.datapath);
 </handler>
 </thumbnail>
 …
</class>

So far, this is no different from the drag-and-drop copy. The difference comes in
how the drop is handled.

Receiving a drag-and-drop move
The shoppingcart and trash objects are sibling nodes within the Shopping Cart
window. Since the dragger is a top-level object, it is always globally accessible. List-
ing 12.14 shows the steps in a drag-and-drop move.

Building the scoreboarding shopping cart 345
<canvas>
 …
 <window name="shoppingcart" title="Shopping Cart"
 resizable="true" x="75%" height="65%" width="25%">
 <shoppingcart name="shopcart" width="100%"
 height="${immediateparent.height-60}"
 datapath="dsCart:/items"/>
 <view y="${immediateparent.height-80}" width="100%" height="30">
 <view name="trash" width="30" height="30"
 bgcolor="0xBBBBBB" clickable="true">
 <handler name="oninit">
 LzTrack.register(this, "trash_target");
 </handler>
 <handler name="onmousetrackout">
 this.setAttribute("bgcolor", "0xBBBBBB");
 </handler>
 <handler name="onmousetrackover">
 this.setAttribute("bgcolor", "0x000000");
 </handler>
 <handler name="onmousetrackup">
 this.setAttribute("bgcolor", "0xBBBBBB");
 main.shoppingcart.shopcart.deleteItem(dragger.datapath);
 </handler>
 </view>
 <text fontsize="12" fontstyle="bold" resize="true"
 text="${'Total: $' +
 main.shoppingcart.shopcart.totals}"/>
 <simplelayout inset="20" axis="x" spacing="80"/>
 </view>
 …
 </window>
 …
</canvas>

When an onmousetrackup event is received, the shopping cart calls its deleteItem
method to delete this data node from the dsCart dataset. Once the node is deleted,
the shoprow object that was bound to this node also vanishes from the Shopping
Cart window. Immediately afterward, enddrag completes by turning off the drag-
ger’s visibility. As before, this sequence of events occurs quickly enough to appear
as a single disposal action. Finally, the total price for the items in the shopping cart
is updated. Figure 12.8 shows this sequence of events.

 We’ll complete our scoreboard by exploring the last input method available to
a user for updating a shopping cart: the right-click method.

Listing 12.14 Receiving a drag-and-drop move operation

Points to items
parent node

Displays trash icon

Registers
trash target

Sets background
color on mouseover

Displays
total price

346 CHAPTER 12

Scoreboarding the shopping cart
12.3.7 Supporting the right mouse button

The right mouse button provides access to a menu where commands can be
selected. This menu is context-sensitive, supplying a different selection of com-
mands depending on its location. Support for the right mouse button is provided
by the LzContextMenu class. Table 12.4 lists the methods available to create con-
text menus that are callable through the right mouse button.

An LzContextMenuItem is instantiated with two arguments, caption and dele-
gate, which supply the displayed menu item label and its supporting method.
Each of these arguments can be updated with the setCaption and setDelegate
methods, shown in table 12.5. This menu item can be disabled by calling the set-
Enabled method with a value of false.

 Listing 12.15 shows the methods for the LzContextMenu and LzContextMenu-
Item objects. Context menus are only available under Flash 8, so it’s necessary to

Table 12.4 LzContextMenu methods

Name Description

makeMenuItem(callback) Creates a new menu item for an LzContextMenu

addItem(LzContextMenuItem) Adds a menu item to a menu

hideBuiltInItems() Removes Laszlo-related default menu items

clearItems() Removes all custom items from a menu

getItems() Returns a list of custom items

Figure 12.8 A drag-and-drop move operation to the trashcan deletes the item
from the shopping cart.

Building the scoreboarding shopping cart 347
set the url option to lzr=swf8 to get context menus to work correctly. A context
menu only appears within the view—a context—where it is defined.

<canvas>
 <view width="100" height="100" bgcolor="#cccccc" >
 <attribute name="item2"/>
 <method event="oninit">
 var cm = new LzContextMenu();
 var item1 = cm.makeMenuItem('my item1',
 new LzDelegate(this, "myItem1"));
 cm.addItem(item1);
 var item2 = new LzContextMenuItem('my item2',
 new LzDelegate(this, "myItem2"));
 this.setAttribute("item2", item2);
 item2.setSeparatorBefore(true);
 cm.addItem(item2);
 this.setContextMenu(cm);
 </method>
 <method name="myItem1">
 var item2 = this.getAttribute("item2");
 item2.setEnabled(false);
 </method>
 </view>
</canvas>

When an LzContextMenu is added, it replaces any previous custom menu items
with newly created menu items. Figure 12.9 shows the default menu on the left,
and our context menu on the right. This was designed so that when the user
chooses my item1, it disables the second menu item selection.

 Once again, we can easily update the Laszlo Market code to accommodate
input from the right mouse button.

Table 12.5 LzContextMenuItem methods

Name Description

setCaption(text) Sets the text string that is displayed for the menu item.

setEnabled(boolean) If false, the menu item is grayed out and does not respond to clicks.

setDelegate(delegate) Sets the delegate that is called when the menu item is selected.

Listing 12.15 Adding context menus to the Laszlo Market

Creates
context menu

Creates
first context
menu item

Creates
second
context

menu
item

Adds
separator
between
menu
items

Sets this
context menu

Disables
“my item2”
menu item

348 CHAPTER 12

Scoreboarding the shopping cart
Updating the shopping cart with the right mouse button
To allow products to be added to the shopping cart with the right mouse button,
we’ll update the context menu for a particular product row with an Add to Cart
item when that product is selected. Pressing the right mouse button displays an
Add to Cart menu item at the top. Choosing this menu item adds the product to
the shopping cart. When the product is unselected, the default menu appears and
this item is no longer listed.

 Listing 12.16 shows that since LzContextMenu is not derived from the LzNode
tag, it can’t be used declaratively. Instead we create a declarative attribute and set
its value with a once constraint containing an instantiation of the LzContextMenu
to ensure that only a single instantiation of this object exists. Then, an Add to Cart
menu selection is added to this context menu.

<class name="productrow" fontstyle="bold" fontsize="14">
 …
 <attribute name="cm"
 value="$once{ new LzContextMenu() }"/>
 <attribute name="del"
 value="$once{ new LzDelegate(this,
 'addtoCart') }"/>
 <method name="setSelected" args="selected">
 if (selected) {
 productdp.setPointer(this.data);
 this.setAttribute("lastcolor", this.bgcolor);
 this.setAttribute("bgcolor", 0xBBBBBB);
 var item = cm.makeMenuItem("Add to Cart", this.del);
 cm.addItem(item);
 this.title.setContextMenu(cm); }
 else {
 productdp.setPointer(null);
 setAttribute("bgcolor", this.lastcolor);
 cm.clearItems();
 this.title.setContextMenu(cm); }
 </method>

Listing 12.16 Providing an Add to Cart item to the context menu

Figure 12.9
This output compares the
default menu with our
updated custom menu.

Instantiates
LzContentMenu
once

Instantiates
LzDelegate

Accesses
addtoCart
methodSets context

menu

Clears items
from menu

Summary 349
 <method name="addtoCart">
 main.shoppingcart.shopcart.updateShopcart(productdp);
 </method>
 …
</class>

This completes our scoreboard implementation. Its goal is to provide a standard
interface to collect information from all major input devices. This allows products
to be easily added to the shopping cart.

12.4 Summary

This chapter introduces a scoreboarding technique that provides a standard
method for different input sources, ranging from the Add to Cart button to more
sophisticated methods such as drag and dropping, to easily report product
requests. These input sources only need to report product requests and don’t
have to be involved with any of the shopping cart’s internal operations, such as
whether a product is new or just updates the quantity of an existing product.

 The Product List window was rebuilt using lower-level window components to
supply the flexibility to interface to the shopping cart. We next developed the
Shopping Cart window and added the scoreboarding methods used by input
sources to report their requests. These methods contain the logic for determining
whether new or existing products should be entered into the shopping cart’s
dataset. We updated each of the input sources to use this standard interface and
to support the drag-and-drop and right-click operations.

 In the next chapter, we’ll look at how Laszlo implements animation. To do
this, we’ll take the current skeleton of the Laszlo Market and embellish it with ani-
mated effects, thus providing a sense of physical mass.

Updates
shopping
cart

Part 4

Integrating
DHTML and Flash

One goal of the Laszlo Market is identical operation and appearance
across the Flash and DHTML platforms. Up to this point, we have been work-
ing with the core Laszlo operations. Since every platform must support this
core, platform differences haven’t been an issue. However, in part 4 we work
with the multimedia features that differentiate the Flash and DHTML plat-
forms. Chapter 13 covers the basics of Laszlo animation, which are identical
for both platforms. Chapter 14 covers design strategies for replicating the
differentiating features using alternative solutions available in each plat-
form. Chapter 15 covers those features that can’t be replicated, requiring a
hybrid DHTML/Flash application. By the end of this part, we will have cre-
ated a hybrid application that provides the same operating characteristics
and appearance across both platforms.

Enhancing
 the user experience
This chapter covers
■ Resizing panes
■ Creating multistate buttons
■ Animating sequences
■ Animating complex groups
■ Using animation effectively
353

354 CHAPTER 13

Enhancing the user experience
Illusions are art, for the feeling person, and it is by art that you
live, if you do.

 —Elizabeth Bowen, Irish novelist

This chapter deals with ergonomic features for making users more comfortable
with an application’s interface. These range from splash screens for impatient
users, resizable panes and buttons for a consistent look, and animation to suggest
intuitive physical metaphors. In each case, the desired result is to enhance a user’s
experience through an intuitive interface rather than attempting to impress with
flashy effects.

 The chapter starts with a simple splash screen, whose function is simply to fill
time until the application completes its initialization. We next move to buttons
and some rules for their appearance. Buttons should have a consistent appear-
ance to signify their membership in a group. Buttons should announce them-
selves by changing their appearance when the mouse cursor passes over or is
clicked on them. We’ll demonstrate how to create consistent resizable buttons
with a multistate display that reacts to mouse cursor movement.

 Next, we’ll move to Laszlo’s animator tags and demonstrate how animation
enriches an application’s presentation. We’ll start with simple animation and
develop some useful principles. Our objective is to use animation to endow
objects with properties that correspond to physical laws. Such objects with familiar
behavior are useful building blocks in creating intuitive application interfaces.
For example, we’ll see how temperature can be used as a metaphor to assist users
with drag-and-drop operations.

13.1 Animating transitions

A splash screen is a necessary evil. Hopefully your applications will always start up
fast enough that people can use them immediately. Otherwise, a splash screen is
needed to say “please wait a moment.” For anxious users accustomed to fast-loading
web pages, a splash screen indicates that the application is not frozen, but just in the
process of making itself presentable.

13.1.1 Using Laszlo’s default
splash screen

Laszlo’s splash tag supplies a default splash
screen. Figure 13.1 shows the Laszlo-powered
progress bar that appears during startup:

Figure 13.1 Laszlo’s default splash
image features a “POWERED BY
OPENLASZLO” progress bar.

Building resizable buttons 355
<canvas>
 <splash/>
</canvas>

The progress bar in the splash screen is an animated movie image. Although it
doesn’t accurately reflect the loading state of an application, the video does stop
running when the application completes initialization.

 While this works nicely during development, you’ll eventually want a custom-
ized splash screen for your application.

13.1.2 Customizing a splash screen

A splash screen can be customized by specifying a view with an attached image
resource. However, only a few view attributes are available because the splash
screen is displayed during system initialization. An SWF or animated PNG file can
be used to supply the resource for a splash screen, but animated GIF files
shouldn’t be used, since they aren’t supported by Laszlo’s SOLO mode:

 <canvas>
 <splash>
 <view resource="images/loading.swf"/>
 </splash>
</canvas>

Figure 13.2 shows a custom splash screen
with a progress bar.

 The persistent attribute can be used to
retain the splash screen after the applica-
tion has completed loading and initializa-
tion. This allows the splash screen to be used
as a background image for the application.

 Once an application has completed initialization and startup, it must identify
its operating controls. Traditionally, web applications have used mouse rollover
events for this. Laszlo adopts this approach, which can be used with any clickable
view. For clarity, we’ll refer to any clickable view as a button. In the next section,
we’ll cover general methods for creating these buttons.

13.2 Building resizable buttons

Buttons should be easy to use and have a consistent appearance. A button should
accommodate a variable-length text string, spacing itself appropriately. This should
work for simple buttons as well as those that change state—onmouseup, onmouse-
over, and onmousedown—to reflect the mouse cursor’s position. These buttons also

Figure 13.2 A splash screen can be
customized with an attached image resource.

356 CHAPTER 13

Enhancing the user experience
need to respond to keyboard input by changing state. Finally, some buttons need
to resize both horizontally and vertically. These offer the ultimate in resizability and
are known as nine-piece buttons.

 After completing this section, we’ll have a comprehensive set of classes for
addressing any button-related issue that could arise in application development.

13.2.1 The problem with simple buttons

OK, you have a button image and need a straightforward way to display it. The
simplest approach is to create a view and just attach the image as a resource:

<canvas>
 <view name="poof" resource="images/button.png"/>
<canvas>

This works fine, as we see in figure 13.3, but this simple
approach has a number of limitations.

 The problem is that it tightly couples the physical
dimensions of the image resource to the view declara-
tion. During application design, physical dimensions
inevitably need tweaking. The only way to change the
physical dimensions of the image resource is to set its
stretch attribute:

<canvas>
 <view name="poof" stretches="width" resource="images/button.png"/>
<canvas>

Figure 13.4 shows that, because the
image’s aspect ratio isn’t maintained, the
button distorts.

 This simple approach requires going
back to the designer to modify the orig-
inal artwork every time the button size
or text is changed. Clearly, this approach is not flexible enough for the real world
of numerous design changes. Furthermore, buttons generally appear as a set; so
it’s important to maintain a consistent appearance within the set. What is needed
is a mechanism to decouple the physical dimensions of the button from the art-
work, to allow the artwork to be dynamically resized.

13.2.2 Building resizable buttons

The first step in building a general-purpose button is to decouple the text from the
image. The ideal button automatically stretches itself to accommodate its text label.

Figure 13.3 We start with
a designer’s rendition of the
Poof button, attached to a
view as a resource.

Figure 13.4 A distorted image results from
directly attaching a resource to a view and resizing.

Building resizable buttons 357
To achieve this, we separate the button into three
parts: left, middle, and right. Figure 13.5 shows the
three image slices created by a designer.

 A three-part button contains two fixed-size end
pieces and a stretchable middle piece. This makes it
ideal for configuration by a stableborderlayout
tag. Although the middle image is only one pixel
wide, its stretches attribute is set to width so it
stretches without distortion. Since we don’t want the
text tag to stretch, its options attribute is set to ignorelayout. Button labels are
generally horizontally and vertically centered, so the align and valign attributes
are set to center and middle. Finally, we specify a default style, size, and color for
the font. Of course, you can substitute your own choices. Putting these pieces
together produces this example:

<canvas>
 <class name="sizetext" extends="text">
 <attribute name="height"
 value="${this.fontsize * 1.5}"/>
 </class>
 <class name="unibutton" >
 <attribute name="text" type="string"/>
 <stableborderlayout axis="x" />
 <view resource="images/button/btn_left.png"/>
 <view resource="images/button/btn_center.png"
 stretches="width"/>
 <view resource="images/button/btn_right.png"/>
 <sizetext options="ignorelayout" align="center"
 valign="middle" text="${classroot.text}"
 resize="true" font="Tahoma" fontsize="14"
 fgcolor="0xFFFFFF" fontstyle="bold"/>
 </class>
 <simplelayout axis="x" spacing="25"/>
 <unibutton width="100" text="Checkout"/>
 <unibutton width="200" text="Return to Store"/>
</canvas>

Setting the height of the text object to one-
and-a-half times the font size B ensures that
the object’s height is sized correctly for this
font. The result is a consistent set of buttons,
as shown in figure 13.6.

 This three-part technique is a template
for producing buttons or panes that correctly

Prevents text
clipping

B

Figure 13.5 A stretchable
button has three separate parts:
the left and right ends and a
single-pixel middle section.

Figure 13.6 A stretchable button is
created from three parts. This allows a
single button class to be used with a
variable-length label to produce buttons
that have a consistent appearance.

358 CHAPTER 13

Enhancing the user experience
resize for variable-length text messages. The approach can be extended to pro-
duce multistate buttons.

13.2.3 Building multistate buttons

Now that we have a resizable button, the next step is to add
multiple visual states to indicate the mouse cursor state.
These buttons support three mouse states—mouseout,
mouseover, and mousedown—each with a different
appearance. The mouseout state indicates that the mouse
cursor is positioned outside the button; mouseover
announces that the mouse cursor is over the button; and
mousedown indicates that the mouse button has been
clicked. Because it’s popular to make buttons shiny (and
who doesn’t love a shiny button), a typical multistate button uses a gradient image
to produce the illusion of a shine. In graphics, a gradient refers to a gradual trans-
formation from one color to another. An example gradient is shown in figure 13.7.

 Designers use a gradient along with shadow effects to differentiate among
mouse states. Generally, a lighter button gradient is used in the mouseover state
with a darker gradient for mousedown. Although the differences are often subtle,
they are easily seen in a complete button image.

 Each slice of the three-part button is enhanced to contain a multiframe resource
consisting of three frames whose order is set to reflect the current state of the
mouse cursor. See figure 13.8.

 A button’s mouse states are given priority in the
order of mouseup, mouseover, and mousedown. The
mouseover state has priority over mousedown,
because when the mouse button is pressed, its oper-
ation can be canceled by dragging the mouse out-
side the button. These priorities require that the
resource frames be specified in the following order:

■ mousedown

■ mouseup

■ mouseover

In order for the mouse rollover states to operate
correctly, the mouse-state images (frames) in a
resource declaration must appear in this order:

Figure 13.7 A gradient is
used to produce the illusion
of a shine in a button.

Figure 13.8 Normal, lighter, and
darker images, from top to bottom,
indicate the state of the button.

Building resizable buttons 359
<library>
 <resource name="basic_button_left">
 <frame src="images/basic_button/btn_left_down.png"/>
 <frame src="images/basic_button/btn_left_up.png"/>
 <frame src="images/basic_button/btn_left_over.png"/>
 </resource>
 <resource name="basic_button_center">
 <frame src="images/basic_button/btn_center_down.png"/>
 <frame src="images/basic_button/btn_center_up.png"/>
 <frame src="images/basic_button/btn_center_over.png"/>
 </resource>
 <resource name="basic_button_right">
 <frame src="images/basic_button/btn_right_down.png"/>
 <frame src="images/basic_button/btn_right_up.png"/>
 <frame src="images/basic_button/btn_right_over.png"/>
 </resource>
</library>

When the frames appear in this order, their relationship can be given in the
expression contained in the fnum attribute, where frames have a one-based offset:

<class name="basic_button" focusable="true">
 <attribute name="fnum"
 value="${ min? (mdown ? 3 : 2) : 1 }"/>
 <attribute name="min" value="false"/>
 <attribute name="mdown" value="false"/>

 <method event="onmouseover">
 this.setAttribute("min", true);
 </method>
 <method event="onmouseout">
 this.setAttribute("min", false);
 </method>
 <method event="onmousedown">
 this.setAttribute("mdown", true);
 </method>
 <method event="onmouseup">
 this.setAttribute("mdown", false);
 </method>
 …
</class>

The fnum attribute contains a two-part equation whose meaning is shown in
table 13.1. The fnum attribute uses a tertiary expression to determine the
returned value. Although this expression might appear somewhat complex, it’s
an elegant way to set a constraint from a selection of values. In layman’s terms,
this expression states that when the mouse is over the button, it is necessary to
further determine whether the mouse button is down or up. When the mouse

360 CHAPTER 13

Enhancing the user experience
isn’t over the button, the frame containing the image corresponding to the
mouseup state is displayed. If the first condition is not met, the second condi-
tion is irrelevant, which is shown in table 13.1 with dashes.

The displayed frame image is controlled through the fnum attribute:

<view frame="${classroot.fnum}" resource="basic_button_left"/>
<view frame="${classroot.fnum}" stretches="width"
 resource="basic_button_center"/>
<view frame="${classroot.fnum}" resource="basic_button_right"/>

Although this appears complicated, the good news is that, since we are creating a
button template, it only needs to be set up once in a class definition. Afterward,
you can create an endless series of new button instances from this template, each
with a consistent appearance and operation.

Handling focus and default
When a button has focus, it receives by default all keystroke events—onkeydown

and onkeyup. A button is only concerned with the Enter key (32 ASCII) or the spa-
cebar (13 ASCII). When either key is pressed, an event is sent to the onmousedown
event handler, causing display of the mousedown frame image. When the key is
released, the onmouseup event handler sends an event to display the mouseup
frame. Listing 13.1 shows how to integrate these actions with a button.

</library>
 <class name="basic_button" focusable="true">
 <attribute name="_fnum"
 value="${ min? (mdown ? 3 : 2) : 1 }"/>
 <attribute name="min" value="false"/>

Table 13.1 Mouse state versus frame displayed

Mouse State min mdown Frame Displayed

onmouseover true – Need to check value of mdown

onmouseout false – mouseup

onmousedown – true mousedown

onmouseup – false mouseup

Listing 13.1 Integrating the mouse states with focus and activation-by-keystroke

Building resizable buttons 361
 <attribute name="mdown" value="false"/>
 <attribute name="text" type="string"/>
 <handler name="onmouseover">
 this.setAttribute("min", true);
 </handler>
 <handler name="onmouseout">
 this.setAttribute("min", false);
 </handler>
 <handler name="onmousedown">
 this.setAttribute("mdown", true);
 </handler>
 <handler name="onmouseup">
 this.setAttribute("mdown", false);
 </handler>
 <handler name="onkeydown" args="k">
 if (k == 13 || k == 32) {
 this.onmousedown.sendEvent();
 </handler>
 <handler name="onkeyup" args="k">
 if (k == 13 || k == 32){
 this.onmouseup.sendEvent();
 </handler>
 <view frame="${classroot.fnum}"
 resource="basic_button_left"/>
 <view frame="${classroot.fnum}" stretches="width"
 resource="basic_button_center"/>
 <view frame="${classroot.fnum}"
 resource="basic_button_right"/>
 <stableborderlayout axis="x"/>
 </class>
</library>

<canvas>
 <include href="resources.lzx"/>
 <include href="basic_button.lzx"/>

 <simplelayout axis="x" spacing="3"/>
 <basic_button width="100" text="Checkout"/>
 <basic_button width="200" text="Return to Store"/>
</canvas>

The onkeydown handler B is triggered when the user presses any key. It sends an
event to trigger the onmousedown handler to display the mousedown visual state.
The onkeyup handler C is triggered when the user releases any key. It sends an
event to display the mouseup visual state.

Simulates
mousedown
with keystrokes

B

Simulates
mouseup with
keystrokes

C

362 CHAPTER 13

Enhancing the user experience
13.2.4 Building resizable nine-piece panes

Although the width available for the label of a three-piece button is variable, the font
size is still constrained by the height. A nine-piece pane can stretch both width and
height to accommodate any font size. However, for buttons it’s generally easier to
just maintain different-sized button classes—for example, small_button,
medium_button, and large_button. Otherwise, there would be 27 mouse-state
images to manage.

 Nine-piece panes are generally used only for views containing variable-sized
images. The objective is to allow a window’s dimensions to change during devel-
opment without having to redo the original artwork. To accomplish this, the cor-
ners have a fixed size while the other sections stretch. Because stretching occurs
along both axes, the contents of a pane must be carefully selected to minimize the
effects of distortion. The best case is a pane with a border or frame, since its orien-
tation matches the direction being stretched. Figure 13.9 shows an example.

 The center section is doubly distorted, along both axes, so it must either be a
solid color or be overlaid with another image. Listing 13.2 generates the image
seen in figure 13.9.

Figure 13.9 Borders and frames are good candidates for a nine-piece pane since
the noncorner pieces are oriented to minimize the distortion of stretching.

Building resizable buttons 363
<canvas>
 <class name="sizetext" extends="text">
 <attribute name="height" value="${this.fontsize * 1.5}"/>
 </class>

 <class name="megabutton">
 <attribute name="text" type="string"/>
 <view height="${classroot.height}">
 <view width="${classroot.width}">
 <view resource="images/ninepiece/frame_01.png"/>
 <view resource="images/ninepiece/frame_02.png"
 stretches="width"/>
 <view resource="images/ninepiece/frame_03.png"/>
 <stableborderlayout axis="x"/>
 </view>
 <view width="${classroot.width}"
 stretches="height">
 <view resource="images/ninepiece/frame_04.png"/>
 <view resource="images/ninepiece/frame_05.png"
 stretches="width"/>
 <view resource="images/ninepiece/frame_06.png"/>
 <stableborderlayout axis="x"/>
 </view>
 <view width="${classroot.width}">
 <view resource="images/ninepiece/frame_07.png"/>
 <view resource="images/ninepiece/frame_08.png"
 stretches="width"/>
 <view resource="images/ninepiece/frame_09.png"/>
 <stableborderlayout axis="x"/>
 </view>
 <stableborderlayout axis="y"/>
 </view>
 <sizetext options="ignorelayout"
 align="center" valign="middle"
 text="${classroot.text}" resize="true"
 width="${classroot.width}" font="Tahoma"
 fontsize="24" fgcolor="0xBBBBBB"
 fontstyle="bold"/>
 </class>
 <megabutton width="200" height="200" fontsize="12" text="Poof"/>
 <megabutton width="250" height="250" fontsize="40" text="Poof"/>
</canvas>

When slicing up an image, a designer must ensure that the subimages match cor-
rectly. Corner images are square; the top and bottom pieces are one pixel wide with
a height matching a corner side; the side pieces are one pixel high with a width
matching a corner side; and the center piece is one pixel square. See figure 13.10.

Listing 13.2 Implementing a nine-piece stretchable pane

Creates
first row

Creates
second row

Creates
third row

Creates centered text

364 CHAPTER 13

Enhancing the user experience
We’ve now come to the last item in our discussion about user feedback and con-
trols: mouse-window interactions. Let’s return to the modal window, which blocks
activity in other windows until it is closed. The obvious application is the user
login protocol.

13.3 Modal windows and button interactivity

We introduced the modal window in chapter 9 where we used it for registration in
the Laszlo Market. Because unregistered users shouldn’t be able to access the rest
of the application, this dialog window blocks interactions with other windows until
the user’s input is received and the modal window closed. While a modal window
is displayed, all other views should appear paused, but not locked up and frozen.
Although all operations for these views are disabled, the mouse rollover states
should still be operational. In other words, the application is only paralyzed—that
is, it can’t move—but it’s not frozen—that is, its eyes are still blinking. To do this,
the mouse and keyboard events are filtered by a modal manager’s passModeEvent
method to pass only a controlled set of events to nonmodal views.

 The passModeEvent method determines the combination of events passed and
views receiving these events. In listing 13.3, only the onmouseover and onmouseout
events are passed to the Show Window button, and only the onclick event is
passed to the Close Window button.

Figure 13.10 A nine-piece pane can be resized both horizontally and vertically to
accommodate a center image of any size.

Modal windows and button interactivity 365
<canvas>
 <simplelayout axis="y" inset="10" spacing="3"/>
 <button name="show" text="Show Window">
 <method event="onclick">
 win.open();
 Debug.write("######## makeModal ##########");
 </method>
 <method event="onmouseover">
 Debug.write("Show Window : onmouseover");
 </method>
 <method event="onmouseout">
 Debug.write("Show Window : onmouseout");
 </method>
 </button>
 <button name="close" text="Close Window">
 <method event="onclick">
 Debug.write("Close Window : onclick");
 win.close();
 </method>
 <method event="onmouseover">
 Debug.write("Close Window : onmouseover");
 </method>
 <method event="onmouseout">
 Debug.write("Close Window : onmouseout");
 </method>
 </button>
 <window x="150" name="win"
 visible="false"
 width="250" closeable="true">
 <text multiline="true" width="${parent.width}">
 This window is now modal and has been placed
 on the modal stack. Only the window and its
 subviews can receive mouse and keyboard events.
 This window has a passModeEvent method that
 allows the onmouseover and onmouseout mouse
 events through to the "Show Window" button
 and the onclick event through to the "Close
 Window" button.
 </text>
 <method name="open">
 LzModeManager.makeModal(this);
 super.open();
 </method>
 <method name="close">
 LzModeManager.release(this);
 super.close();
 </method>

Listing 13.3 Managing a modal window

Shows Window
button

B

Closes Window
button

Declares
closeable window

Makes window
modal, opens it

Releases modal
property, closes window

366 CHAPTER 13

Enhancing the user experience
 <method name="passModeEvent"
 args="event, view">
 if (event == "onmouseover" ||
 event == "onmouseout") {
 switch (view.name) {
 case 'show': return true; }}
 if (event == "onclick") {
 switch (view.name) {
 case 'close': return true; }}
 </method>
 </window>
</canvas>

When the modal window isn’t displayed, both buttons respond to mouseover and
mouseout events. When the user clicks the Show Window button B, the ordinary
win window is converted into a modal window and explicitly opened with a call to
the superclass’s open method. Immediately after, Laszlo calls the passModeEvent
method C to allow filtered events to pass through to its specified views. In partic-
ular, onmouseover and onmouseout events are passed to the Show Window button,
but only onclick events can pass to the Close Window button.

 Figure 13.11 shows that initially both buttons receive all mouse events. After
the user clicks the Show Window button, the modal window displays. At that
point, only the Show Window button receives onmouseover and onmouseout
events. But the Close Window button can still receive an onclick event to close
this modal window. The window’s close method is invoked, which releases the
window’s modal properties and explicitly closes the window. Once the window has
been closed, it releases modal control and once again the Close Window button
responds to onmouseout events.

Updates
receivable
mouse events

C

Figure 13.11 The Show Window button causes the modal window to be displayed, while the Close
Window button closes it. The modal window allows the Show Window button to respond to
onmouseover and onmouseout events. The Close Window button responds only to onclick events.

Basics of animation 367
This concludes our discussion of individual resource frames. These static images
are used by interface control components to display different states, signaling to
users their ability to perform actions. In chapter 14, we’ll show you how to cus-
tomize the appearance of these components. In the following section, we move
from static single frames to a sequence of frames to create animated effects.

13.4 Basics of animation

In this section, we’ll describe the basics of Laszlo animation and provide a style
guide on how to use animation effectively. Our goal for using animation in an
effective manner is that it should have a tangible purpose. Animated sequences
that don’t serve a fundamental need—that only dazzle—quickly become annoy-
ing. This type of gratuitous animation is often disparaged as “eye candy.” But what
constitutes a tangible purpose? One answer is to simply ask, “What is the goal of
this animated sequence?” In this section, we outline some of the goals that can be
achieved with animation.

 You have already seen animation used in the Laszlo Market in constructive
ways; it’s been used to support transitions between static screens and to perform
drag-and-drop operations to the shopping cart and trash.

 In particular, we want to use animation to achieve an emotional response from
users by providing a sense of familiarity. This goal is achieved by building psycho-
logical links to the physical world. Rather than trying to exactly mimic the reality,
it’s better to supply subtle hints in unexpected ways. These hints frequently work
as visual jokes or puns on the relationship between the physical and virtual worlds.
They provide a sensation of familiarity within the uncharted waters of interface
navigation to give users a higher comfort level. In short, we want to make the
application fun to use. Although this is more of an art than a science, we’ll show
you some useful general rules.

NOTE A recommendation on how to read this chapter—Although we have illustrated
this section with informative diagrams, the true nature of animation is
impossible to capture in the static confines of a book. To get the most
value from this material, you should run OpenLaszlo and observe these
applications firsthand. Each example has been designed to provide a
particular visual sensation. Merely reading and following the source
code won’t provide the visual feedback necessary to gain the full value of
the concepts.

368 CHAPTER 13

Enhancing the user experience
13.4.1 Selling visual illusions

For a number of psychological and physical reasons, flat animation appears lifeless
and fails to emotionally engage the viewer. To squeeze a three-dimensional activity
into a two-dimensional space, we must sell the visual illusion with a heightened sense
of reality. Think of the theater, where actors wear makeup and act dramatic so their
characters won’t appear lifeless and wooden. Similarly, animation sometimes needs
to be a little “over the top” in order to reach the “back rows” of your audience. Var-
ious tricks can be used to inject a sense of life into this two-dimensional medium—
techniques as simple as using drop shadows in static images.

Why do people like drop shadows?
Although few websites require a sense of depth, drop shadows—those ubiquitous
dark shadows that make images appear to float on the screen—are common.
Although a design purist might decry this overuse, most people accept drop shad-
ows as an enriching design element. Like salt or pepper, a little bit goes a long way.

 People feel most comfortable working in the real world, a world with three
dimensions, governed by the physical laws of nature. When confined within a two-
dimensional screen, our minds search for visual clues to provide a sense of depth,
because it provides a link back to physical reality. Drop shadows provide such clues.

 Drop shadows are used for psychological effect, rather than for esthetics. In
other words, they sell the visual illusion of depth; their overall esthetic value is less
important. This provides a wide latitude for using drop shadows to create a sense
of realism. Even though this might result in shadows where the sun won’t ever
shine, the goal justifies the means. The ultimate goal is to make users comfortable
using an application. If this means using an exaggerated sense of depth, this is an
acceptable trade-off.

 Another link to the real world is a sense of physicality or mass, which can be
suggested through animation.

Implying mass with animation
Animation occurs in a context since, by default, objects float weightlessly. Rather
than settle for this default, a better choice is to supply a context governed by the
physical laws of the real world. To achieve this, we must create the illusion that
animated objects have mass and density. These illusionary attributes provide
objects with base properties that are governed by a set of contrived physical laws.
For example, we could imply a difference in mass by having larger objects fall
faster than smaller objects (let’s just ignore Galileo). Another contrived rule
might be that dark-colored objects have greater density than light-colored objects.

Basics of animation 369
It’s not that the individual rules are so important in themselves but that a consis-
tent set of rules exists. The result for a user should be a psychological link to the
physical world.

 For these properties to be clearly communicated, they must be exaggerated.
An imagined composition of an object can establish some extremes; an object can
be imagined to be composed of soft rubber that is easily deformed, or of steel that
is hard to deform. Objects shouldn’t send an ambiguous message by softly collaps-
ing into one another; rather, they must send a clear message by squashing, bounc-
ing, or slamming shut. In the following sections, we’ll illustrate these principles
with examples using the animator and animatorgroup tags.

13.4.2 Using animators and animatorgroups

In traditional animation, master animators draw the keyframes containing the most
important moments of an action. Junior animators then draw frames connecting
these keyframes with between frames. The act of interpolating between keyframes is
called tweening. Combined with a few simple mathematical functions, it is the cen-
tral concept in most timeline-based animation.

 The role of the animator tag is to create the tweened steps between a pair of
start and end keyframes. The transition between these keyframes is described by
varying the value of an attribute over a range during a time period. The scope of
this attribute can encompass coordinate values, size, colors or any other quantifi-
able entity. We have previously used a JavaScript version of the animation method,
so a natural question is, “What are the benefits of a declarative animator?”

 There are many such benefits. First, the animator object can be reused, while
the animation method requires a new animator instantiation for each use. This
can affect performance if a significant number of animators are used. Second, a
declarative animator can more easily respond to events. And finally, declarative
animators can be grouped into an animatorgroup to perform synchronized ani-
mation. Let’s start with a simple example of animation.

 Consider a dropping ball. The simplest approach to animate this is to describe
a sequence with start and end positions. Although we can’t decompose the anima-
tion into individual frames, let’s suppose that keyframe 1 marks the start and key-
frame 10 marks the end position. In this animated sequence, the ball falls a
distance of 100 units along the x coordinate in a sequence of 10 keyframes dis-
played at a constant rate. We can express this in an informal notation to record
the ball’s position:

keyframe 1: ball is at position = (0, 0) (top)
keyframe 10: ball is at position = (100, 0) (bottom)

370 CHAPTER 13

Enhancing the user experience
If we perform simple tweening, in frame 5 the ball would be halfway between the
top and bottom positions, at position (50, 0). In this scenario, the ball moves the
same amount in every frame, until it hits the bottom. This motion can be
described with an animator tag like this:

<canvas>
 <view resource="images/earth.png" x="70" y="10"
 width="150" height="150" stretches="both">
 <animator id="simpleAnim" start="false" target="${parent}"
 from="30" to="${canvas.height-200}"
 duration="1000" attribute="y"/>
 </view>
 <view name="controls" y="${canvas.height-30}">
 <button onclick="simpleAnim.doStart()" text="Start" />
 </view>
</canvas>

The doStart method starts the animated sequence. Figure 13.12 shows this sim-
ple linear motion of a ball, shown as the earth, in three positions: start, middle,
and end.

 Although the ball does indeed drop from the top to the bottom, the end result
fails to engage us. We see the ball move within the specified duration, but it
doesn’t give us a visceral sensation of falling. If you’ve ever suffered a large fall or
taken a physics course, you perceive at a subconscious level that this isn’t how fall-
ing works. When you start to fall, you begin slowly and continually gather speed
until you reach the bottom. While every falls begins the same way, certain factors
determine how it ends. These factors provide the nuances that help sell the illu-
sion that an object is falling. Let’s start with the beginning of a fall.

Figure 13.12 The linear motion of a ball moving through space doesn’t provide
a convincing depiction of falling.

Complex animated effects 371
Easing motion
Traditional animation uses the notion of ease to deal with the endpoints of
motion. Easing in means slowly accelerating until a top speed is reached, while eas-
ing out means decelerating to a stop. An animated sequence can ease in, ease out,
ease both, or be linear. An important byproduct of easing is the illusion of mass.

 To glide an object to a halt, the animator’s motion attribute is set to either
easeout or easeboth. This makes the element slowly accelerate at its start and
later decelerate to a stop:

<canvas>
 <view resource="images/earth.png" x="100" y="0"
 width="150" height="150" stretches="both">
 <animator id="simpleAnim" start="false"
 target="${parent}"
 motion="easeboth" from="30"
 to="${canvas.height-200}"
 duration="1000" attribute="y"/>
 </view>
 <view name="controls" y="${canvas.height-50}">
 <button onclick="simpleAnim.doStart()" text="Start"/>
 </view>
</canvas>

Although easing provides an illusion of mass, the results still aren’t very convinc-
ing. The biggest problem is that a single animator doesn’t allow us to manipulate
the ease time but only the duration of the sequence. This provides the appear-
ance that all objects have a uniform mass. Normally, larger objects are expected to
have a greater inertia and require a longer ease period. To reach the next level of
complexity with animation, we need to advance to the animatorgroup tag.

 The next effects needed for realistic animation are squash and bounce. A fall
can end several ways: it can glide to a halt, it can destroy itself, or it can squash and
bounce. Since objects that degrade—crumble to pieces—aren’t reusable, we’ll
concentrate on the squash-and-bounce scenario.

13.5 Complex animated effects

An animator group specifies and controls a group of animators. Animator groups are
used to build complex movements by combining several animations, either sequen-
tially or concurrently. An animator group uses declarative properties to maintain a
hierarchical tree of nested animator groups and animators. Although this might
seem to provide limitless animation complexity, animators do consume a significant
amount of resources and when used excessively produce degraded “chunky” ani-
mation. Table 13.2 lists the attributes for the animator and animatorgroup tags.

372 CHAPTER 13

Enhancing the user experience
With an animator group, the ease periods can be individually specified and
combined sequentially. One problem with ease is that its effects are often too
subtle and can be easily overlooked. To effectively imply mass, the effect needs to
be exaggerated.

13.5.1 Simulating a squashed ball

A better way to enhance the illusion of mass is to provide an object with a squashed
appearance upon colliding with another object or boundary. Listing 13.4 illustrates
this illusion of mass through squashing. It features a top-level animator group anim
that contains two sequential animators. The first animates the descent of the ball.
When it completes, a seamless transition to the next animation sequence produces
a squashed appearance for the ball. Since we don’t want an abrupt transition from
one state to the next, the motion attribute is used to help smooth this transition.
The squashing motion is produced by the compound effect of animating across
four attributes: width, height, x, and y.

Table 13.2 animator and animatorgroup attributes

Name Data Type Tag or
Script

Attribute
Type

Description

attribute object Both Setter The name of the attribute whose value is animated.

duration string Both Setter The duration of the animation in milliseconds.

from number Both Setter The start value for the animation.

motion string Both Setter Valid values are linear, easein, easeout,
easeboth, and any.

paused boolean Both Setter Pauses an executing animator.

process string Both Setter Valid values are simultaneous and sequen-
tial.

relative boolean Both Setter If true, the value is relative to the initial value of
the attribute; if false, it is absolute.

repeat number Both Setter The number of times to repeat the animation.

start boolean Both Setter Requires the animator to call start.

target object Both Setter The object to animate.

to number Both Setter The final value for the targeted attribute.

Complex animated effects 373
<canvas>
 <view name="ball" resource="resources/earth.png"
 x="100" y="0" width="150" height="150" stretches="both"/>
 <animatorgroup name="anim" target="ball"
 start="false" process="sequential">
 <animator attribute="y" to="${canvas.height-150}"
 duration="900" motion="easein"/>
 <animatorgroup name="squash" duration="100"
 motion="easein" process="simultaneous">
 <animator attribute="width"
 to="180"/>
 <animator attribute="height"
 to="120" motion="easeout"/>
 <animator attribute="x"
 to="-15" relative="true"/>
 <animator attribute="y"
 to="30" relative="true"
 motion="easeout"/>
 </animatorgroup>
 <animatorgroup name="unsquash" duration="100"
 motion="easein" process="simultaneous">
 <animator attribute="width"
 to="150"/>
 <animator attribute="height"
 to="150" motion="easein"/>
 <animator attribute="x"
 to="15" relative="true"/>
 <animator attribute="y"
 to="-30" relative="true"
 motion="easein"/>
 </animatorgroup>
 </animatorgroup>
 <view x="10" name="controls" y="${canvas.height-40}">
 <button onclick="anim.doStart()">Start</button>
 </view>
</canvas>

To achieve this squashed appearance, the ball’s width is increased and its height is
decreased B. Since the squashed ball is wider, it expands along the x-axis, thus
requiring the x coordinate to be adjusted to the right to keep the center of the
ball on its y-axis. The relative attribute is set to true because the x and y
attributes are relative to the animation and not to the canvas.

 After the ball is squashed, it must be unsquashed C to spring back to its origi-
nal shape. To unsquash the ball, we add the unsquash animator group to the ani-
mator sequence.

Listing 13.4 Creating an illusion of mass by squashing

Sets attributes
for squashing

B

Sets attributes for
unsquashing

C

374 CHAPTER 13

Enhancing the user experience
It’s a worthwhile exercise to change the size of the ball and experiment with other
settings in the squash animator group to find values that produce the most realis-
tic effect. The final result, shown as a time sequence in figure 13.13, is quite con-
vincing and produces the illusion that the ball has a composition type.

 Generally, there are only two composition types: elastic or inelastic. So we are
always dealing with either rubber or steel balls. The most important thing is to
maintain consistency within a composition type. An object should squash and
bounce against all surfaces consistently.

13.5.2 Interactive animation

So far we have been working with what is known as prescripted animation, whereby
an animation runs from start to completion without interruption. An important
Laszlo goal is to design applications that are responsive to a user’s actions. The
ideal Laszlo user interface is always alive, reactive, and fluid. If we don’t want the
ball to hit the floor, there should be a way to stop it.

 The obvious question is, “What happens when a user interrupts an animation
sequence?” The simplest solution is to just pause and freeze the motion. However,
this gives the impression that the system has locked up. In many cases, the best
response is to animate back to the last starting point or to a default home posi-
tion. This provides users with the sensation that they have interrupted an anima-
tion sequence, but the system is still operating normally.

 One situation where it is preferable to pause an animation sequence is when
the animation contains state information. For example, an animator may contain
attributes with dynamically set values, such as trajectory or speed, in which case it
must be paused to maintain the current state.

Figure 13.13 To provide the illusion that an element has mass, it becomes squashed when it reaches
its termination point.

Complex animated effects 375
Pausing and restarting animation
The example in listing 13.5 demonstrates how to pause and restart an animated
sequence. The repeat attribute is used to run the animation sequence in a
repeated loop. Clicking a Pause/Unpause button causes the ball to pause and to
restart on the subsequent click.

<canvas>
 <view resource="resources/earth.gif" id="ball"
 x="100" y="0" width="150" height="150" stretches="both"/>
 <animatorgroup id="anim" target="ball" start="true"
 paused="false" process="sequential"
 repeat="Infinity">
 <animator attribute="y" to="${canvas.height-200}"
 duration="900" motion="easein"/>
 <animatorgroup name="bouncer" duration="1000"
 process="simultaneous">
 <animator attribute="y" to="0" motion="easeout"/>
 </animatorgroup>
 </animatorgroup>
 <view name="controls" y="${canvas.height-40}">
 <button onclick="anim.pause()">Pause/Unpause</button>
 </view>
</canvas>

As you can see in figure 13.14, the earth image is paused in its downward path.
When it restarts, it continues on this path.

Listing 13.5 Pausing and restarting an animation sequence

Figure 13.14 When an animation is paused, it stops in its current position.

376 CHAPTER 13

Enhancing the user experience
Resetting an animation state
As we suggested earlier, a good way to handle a pause is to move the object back to
a home position. This is a reset operation rather than a pause. To implement a
reset, we can establish two states: loop and reset. Loop is the default state, displaying
a continuously bouncing ball.

 An isloop attribute controls the application of the reset state. When the
Pause/Unpause button is clicked, the value of isloop is flipped, causing the reset
state to execute an animator that resets the ball back to its starting position at the
top of the screen. Listing 13.6 shows how to define loop and reset states.

<canvas>
 <view resource="resources/earth.gif"
 id="ball" x="100" y="0" width="150"
 height="150" stretches="both"/>
 <state name="loop" apply="true">
 <animatorgroup id="anim" target="ball"
 start="true" process="sequential"
 repeat="Infinity">
 <animator attribute="y"
 to="${canvas.height-200}"
 duration="900" motion="easein"/>
 <animator attribute="y" to="0"
 duration="1000"
 motion="easeout"/>
 </animatorgroup>
 </state>
 <state name="reset">
 <animator attribute="y" to="0"
 duration="1000"
 motion="easeout"/>
 </state>
 <view name="controls"
 y="${canvas.height-40}">
 <button text="Pause/Unpause">
 <attribute name="isLoop"
 value="true"/>
 <handler name="onclick">
 if (this.isLoop) {
 loop.remove();
 reset.apply(); }
 else { loop.apply();
 reset.remove(); }
 this.isLoop = !this.isLoop;
 </handler>
 </button>
 </view>
</canvas>

Listing 13.6 Implementing a reset operation with loop and reset states

Displays
earth ball

Produces
bouncing motion

Resets ball to
initial position

Controls ball
playing state

Complex animated effects 377
Reset is useful for restarting a feature without having to restart the entire applica-
tion. It’s also useful during development. For example, if an application is a game
requiring some type of coordinated input, it’s useful to be able to get back to a
previous state. Figure 13.15 illustrates a reset for the falling ball.

 While ease suggests that an object has mass by dealing with its inertia, an even
more realistic technique is to imply inertia though a time delay.

13.5.3 Using delay for expressive purposes

Delay is used in many disciplines, such as music, to produce a warmer ambience.
Suppose that a group of panes needs to be displayed in an application. The simplest
way to display them is to just pop them into place. This is the way most user inter-
faces work. But it also results in a one-dimensional user experience. Listing 13.7
shows how this popping action could be produced.

<canvas bgcolor="0xAFAFAF">
 <simplelayout axis="y" spacing="40" />
 <view id="container" layout="axis:y; spacing:-15"
 width="100%" height="300">
 <attribute name="goal_x" value="300"/>

 <method name="pop" args="show">
 rr1.setVisible(show);
 rr2.setVisible(show);
 rr3.setVisible(show);
 rr4.setVisible(show);
 </method>

Listing 13.7 Popping panes into place

Figure 13.15 A reset operation moves an object back to a home position.

Toggles
visibility

378 CHAPTER 13

Enhancing the user experience
 <view id="rr1" resource="resources/roundrect.png"/>
 <view id="rr2" resource="resources/roundrect.png"/>
 <view id="rr3" resource="resources/roundrect.png"/>
 <view id="rr4" resource="resources/roundrect.png"/>
 </view>
 <view id="controls" x="15" layout="axis: x; spacing: 5">
 <button text="Pop Hide"
 onclick="container.pop(false)"/>
 <button text="Pop Show"
 onclick="container.pop(true)"/>
 </view>
</canvas>

Figure 13.16 shows this group of panes
popping into and out of view. The
effect is so simple it doesn’t require an
animator; it’s carried out simply by
setting and resetting the visible at-
tribute for each rounded rectangle.

 The problem with this approach is
that there is no transition, which pro-
duces a jarring effect. In the physical
world, objects normally don’t just pop
into existence. A better approach is to
animate the opacity of the four objects
to produce a smooth transition. The resulting delay materializes the panes slowly
and then gently fades them away to provide a calmer, more relaxed feeling. An anal-
ogous aural situation would be the difference between simply hitting the Stop but-
ton on a music player and first turning down the volume before stopping. Listing
13.8 shows the code for doing this.

<canvas bgcolor="0xAFAFAF">
 <simplelayout name="lay" axis="y" spacing="40"/>
 <view id="container"
 layout="axis:y; spacing:-15"
 width="100%" height="300">
 <view resource="resources/roundrect.png"/>
 <view resource="resources/roundrect.png"/>
 <view resource="resources/roundrect.png"/>
 <view resource="resources/roundrect.png"/>
 </view>

Listing 13.8 Using opacity to smoothly transition objects into view

Handles visibility
buttons

Contains layout
for rectangles

Figure 13.16 Abrupt transitions should be avoided
because they produce a jarring sensation.

Complex animated effects 379
 <view id="controls" x="20" layout="axis: x; spacing: 5">
 <button text="Fade In"
 onclick="container.
 animate('opacity', 1, 500);"/>
 <button text="Fade Out" >
 <handler name="onclick">
 lay.lock();
 container.animate('opacity', 0, 500);
 </handler>
 </button>
 </view>
</canvas>

To make the panes fade away, we animated the opacity attribute to travel from a
full opacity of 1.0 to invisibility at 0. To prevent the control buttons from moving
up, the layout is locked B before fading out the panes. Figure 13.17 shows this
warmer transition.

Although animating an object’s opacity is quite effective in producing a more
relaxing sensation, we can take matters one step further by distributing the delay-
ing effect among objects.

Using layouts to control delay
Up to this point, we have used a single delay effect against either a single object or
group of objects. Now we’ll use an offset to vary the delay for each member of a
group. The easiest way to coordinate objects in a group is through the parent’s

Exposes panes

Fades panesB

Ensures buttons
don't fade

Figure 13.17 A smooth transition is accomplished by animating opacity.

380 CHAPTER 13

Enhancing the user experience
subviews array. We’ll apply an accumulative algorithm to each object in the array.
Listing 13.9 contains a delay algorithm, known as the Simister Slide, written by
Bret Simister of Laszlo Systems.

<canvas bgcolor="0xAFAFAF">
 <simplelayout axis="y" spacing="40"/>
 <view id="container"
 layout="axis:y; spacing:-15"
 width="100%" height="300">
 <attribute name="goal_x" value="100"/>

 <method name="slide">
 var farthest = goal_x;
 var duration = 500;
 var count = 0;
 for (var i in this.subviews) {
 var view = this.subviews[i];
 view.animate("x", farthest+(20*i), duration+(200*i));}
 goal_x = (goal_x == 100 ? -250 : 100);
 </method>
 <view resource="resources/roundrect.png" x="-250"/>
 <view resource="resources/roundrect.png" x="-250"/>
 <view resource="resources/roundrect.png" x="-250"/>
 <view resource="resources/roundrect.png" x="-250"/>
 </view>

 <view id="controls" x="15">
 <button text="Simister Slide" onclick="container.slide()"/>
 </view>
</canvas>

A parent view C called container contains an object group of four views (round
rectangle images) that has a simplelayout B applied to them to keep them con-
sistently positioned. The container view has a goal_x attribute D to indicate
whether or not the objects are visible. The visibility is controlled by positioning
the object group on-screen (100) or off-screen (–250).

 Initially, the object group is located off-screen with the images stacked vertically.
When moved to the right by the method slide E, each object in the subviews array
below the top object moves a further distance over a longer duration than its pre-
decessor. Since there is a fixed relationship between the increased distance and the
duration, each travels at the same speed. The differences among the objects are
manifested as a slight delay as each group member reaches its final position.

Listing 13.9 The Simister Slide delay algorithm

Creates simplelayout
for four panes

B

Contains this
simplelayout

C

Controls onscreen
visibilityDContains slide

algorithm
E

Complex animated effects 381
 In earlier examples, we eased an object into and out of motion. That was a sin-
gle or global sense of ease. But in this example, ease now exists among the objects.
This further distribution provides a realistic impression that the objects accelerate
from the start and glide to a halt. Finally, the goal_x attribute is flipped to ensure
that the objects exit off-screen on a subsequent click of the button. The results of
this application are shown in figure 13.18.

Creating a subtle or fine-grained sense of delay provides the most realistic sensa-
tion that objects have mass. The art of creating compelling animation involves
finding novel ways to emulate the physical laws of the real world.

 We’ll now turn to the Laszlo Market to provide an example of how animation
can be used to provide a visual joke or pun to impart a sense of familiarity to an
application’s operations.

13.5.4 Animating the Market trashcan

We would like to make shopping at the Laszlo Market a more enjoyable experi-
ence. The best way to accomplish this is to make it more entertaining. We’d like to
introduce a visual joke or pun. To ensure that this joke doesn’t become tiresome,
it needs a purpose. We’ll leverage the operation of the physical world to provide
more information to the user. When users are searching for something, they’d
appreciate verbal hints like “you’re getting warmer” or “you’re getting colder.” We
can translate this verbal metaphor into a visual pun that suggests another feature
of the physical world: temperature. It provides feedback to viewers helping them
locate their mouse cursor directly over the trash to dispose of an item.

Figure 13.18 The Simister Slide uses layouts to establish delay among the objects in a group, providing
a realistic sense of acceleration before gliding to a halt.

382 CHAPTER 13

Enhancing the user experience
 Listing 13.10 shows how this visual pun works. When the mouse cursor moves
over the target, it starts an animated sequence that transitions from a light to a
bright yellow to indicate higher temperature. When the cursor leaves the target,
the animation transitions back through a light yellow color to a transparent state
to indicate that the target is now “cold.” When the dragged image is dropped, the
background color abruptly changes to a reddish glow to indicate that the target
was successfully hit. Afterward, it slowly transitions back to the transparent state to
indicate that its contents were digested.

<canvas>
 …
 <view name="shoppingcart" … >
 …
 <view height="90" width="100%" y="${parent.height-90}">
 <view>
 <view resource="trashcan" clickable="true">
 <handler name="oninit">
 LzTrack.register(this, "trash_target");
 </handler>
 <handler name="onmousetrackout">
 parent.anim.
 setResource(null);
 parent.anim.
 dimming.doStart();
 </handler>
 <handler name="onmousetrackover">
 parent.anim.
 setResource("lit_trashcan");
 parent.anim.
 glowing.doStart();
 </handler>
 <handler name="onmousetrackup">
 parent.anim.
 setResource("red_trashcan");
 parent.anim.
 dimming.doStart();
 main.shoppingcart.shopcart.deleteItem();
 </handler>
 </view>
 <view name="anim">
 <animator name="glowing" attribute="opacity"
 from="0" to="1.0" duration="700"/>

 <animator name="dimming" attribute="opacity"
 from="1.0" to="0" duration="1000"/>
 </view>

Listing 13.10 Animating the mouse cursor over the trashcan for user feedback

Removes
glow

Displays
glowing image

Increases opacity

Displays
red image

Decreases opacity

Summary 383
 </view>
 …
 </view>
 …
</canvas>

We can easily add these animated sequences
by replacing the changing background colors
in the mouse event handlers with calls to the
anim animator (indicated in bold). The ani-
mator changes the opacity of different
resource images over 700 milliseconds to pro-
duce the gradual glow and fade of the trash-
can. Figure 13.19 shows the trashcan images
that correspond to the different mouse states.

 Although we previously provided feedback to indicate when the mouse cursor
was over the target, that information was binary. Here we use the incremental
nature of animation to add another dimension. With a binary “off” or “on,” there
is no difference between a close miss and a mile. There is no way to gauge the rel-
ative position of the mouse. Animation creates a convincing display of tempera-
ture, which is further twisted into a metaphor for positioning to allow the effect to
work at several levels simultaneously.

 Because novice store customers are already familiar with temperature, they
have a sense of confidence that they are using the application correctly. A confi-
dent user is a happy user, one who feels that shopping at our store is an enjoyable
experience (at least, so we hope).

13.6 Summary

This chapter introduced techniques to enhance an application’s interface with
visual design and animation elements that produce a more comfortable working
environment. We want to avoid splashy effects that might initially enthrall users but
that would quickly become tiresome. Instead we based the design of our interface
elements on providing informative and functional services to users. We had already
started this process in the earlier chapters, when animation was used to support mul-
tiple virtual screens in the Laszlo Market and to perform drag-and-drop operations.
We have extended these principles to other interface elements, such as buttons and

Figure 13.19 These figures illustrate the
visual states involved with the disposal of a
shopping cart item. First, the target is cold,
then it is warm, and finally it lights up to
dispose of the trash.

384 CHAPTER 13

Enhancing the user experience
panes, to maintain a consistent appearance that corresponds to the actions of a
user’s mouse.

 This chapter also introduced animation techniques that can be used to
enhance presentation. These techniques are based on a set of principles that pro-
vide objects with physical properties governed by physical laws. The advantage of
this technique is that it leverages existing user knowledge to provide an interface
that appears intuitive. We also covered emotional issues that involve delay to pro-
duce a warmer ambience to our interface. Instead of providing abrupt state
changes, the sensations of ease and delay are used to provide more relaxed inter-
actions among objects. It is hoped that collectively these techniques result in an
application interface that users find more enjoyable to use.

Branding an application
This chapter covers
■ Handling cross-platform font issues
■ Creating cross-platform source files
■ Creating a simple customized component
■ Creating a photo-realistic customized scrollbar
385

386 CHAPTER 14

Branding an application
Your first appearance… is the gauge by which you will be
measured; try to manage that you may go beyond yourself
in after times, but beware of ever doing less.

 —Jean-Jacques Rousseau,
 philosopher

Any product intended for general release requires a branded identity to distinguish
it from competing products. Familiar brand identifications include McDonald’s
golden arches and Nike’s swoosh. The previous chapter focused on providing a dis-
tinctive feel to the Laszlo Market; we now complement that with a tailored appear-
ance. Not simply a sales-related tool, branding makes an application more
accessible. And it’s more than just an icon; the features that distinguish a Mac are
more important than the Apple icon alone. Although we can’t claim to produce
anything as polished as an Apple product, we can still produce an identifiable per-
sonality for the Laszlo Market—one that’s appropriate for our needs.

 Achieving a unique identity requires outside creative design skills that develop-
ers generally don’t possess. The skills of developers and designers are different
enough to reliably produce divergent views. This generally results in more cre-
ative ideas and fresh approaches than can be produced by a single individual
working alone.

 All large-scale projects—those with budgets—are initiated in the same way: by
gathering customer and focus group input to establish the application’s tone. Estab-
lishing a correct tone is determined by the answers to questions such as these:

■ Who is the target audience?

■ Why do they need this application?

■ What makes this application different from others?

■ How, when, and where will this application be used?

Answering these questions is the engine propelling a design process. Our continu-
ally refined prototype methodology is intended to open the design process to
input from a wide circle of outsiders. In many cases they have inside knowledge
that is otherwise unobtainable, so their input is critical in avoiding the familiar
trap of “a solution in search of a problem.”

14.1 Creating an application-specific look

Since we’re building a store to sell action-based videos, we need to identify the emo-
tional qualities that customers associate with this genre. From sales research, we

Creating an application-specific look 387
know our target demographic: males between the ages of 12 and 32. Ideally, our
overall tone should so clearly identify this genre that we could remove all the store’s
products and the store would still be identifiable with action-based products. To
achieve this, we choose the high-tech/comic book appearance shown in figure 14.1.

 The tools that we’ll use to create this branded appearance are font and color
selection, logos, stylized components, and animation. We’ve left out one addi-
tional design element, video, which we’ll discuss in chapter 15.

 Up to this point, we’ve worked with core Laszlo features to avoid differences
between the Laszlo Flash and DHTML implementations. One of our initial design
goals for the Laszlo Market was to create a single set of source files that support
common operations and appearance across both platforms. But now we begin to
encounter some roadblocks with this approach. The problem is that Flash offers a
wider range of graphical capabilities than DHTML. In particular, Flash supports
these features not available in DHTML:

■ Embedded fonts

■ Vector images

■ Audio and video media

We’ll cover ways to simulate the first two features in DHTML using alternative
methods. Although this simulation process won’t provide the flexibility available
to Flash, the final appearance will be indistinguishable. In the next chapter, we’ll

Figure 14.1 The Laszlo Market is branded to project a high-tech/comic book theme.

388 CHAPTER 14

Branding an application
examine DHTML and Flash features, including audio and video media, that
require a hybrid application.

 Let’s start with the differences between the vector and bitmapped graphical
capabilities of Flash and DHTML.

14.1.1 Vector and bitmapped graphics

Two major graphic systems, vector and bitmapped, are used to display images.
Vector-based graphics use geometrical primitives such as points, lines, and curves
to represent an image. Vector images are constructed mathematically so that an
image can be numerically rotated, skewed, or stretched without causing distor-
tion. Vector graphics are ideal for simple drawings such as line drawings and font
character sets.

 A bitmapped image, consisting of pixel building blocks, is characterized by its
width and height in pixels and the number of bits (8, 16, or 24) per pixel. The num-
ber of bits per pixel determines the number
of displayable colors, which, along with the
total number of pixels—the resolution—deter-
mines the quality of a bitmapped image. Bit-
mapped images display more quickly and
require less processing, but unlike vector
images, they can’t be resized without distor-
tion, as shown in figure 14.2.

 While Flash supports both vector and bit-
mapped graphics, DHTML only supports bit-
mapped graphics. In the next section, we’ll
explore the font-related ramifications of
DHTML’s inability to support vector images.

14.1.2 Font differences

In typography, a glyph is the shape of a particular character in a typeface. Fonts
can be represented as either vector-outlined or bitmapped. A bitmapped font
stores each glyph as a bitmap. Since bitmapped images aren’t resizable, bitmapped
fonts require separate bitmaps for each size.

 In contrast, vector-outlined fonts use Bézier curves and other mathematical tools
to represent each glyph. These fonts are resized by applying a mathematical func-
tion to each point in a glyph, thus allowing a single vector-outlined font to display
equally well across all sizes. Mathematical transformations can be applied to a glyph
to achieve a wide range of special effects, such as rotation and varying opacity. While

Figure 14.2 Vector images can be resized
without the ragged distortion characteristic
of resized bitmapped images.

Creating an application-specific look 389
a vector font supports multiple sizes, it only supports a single style; additional styles
such as bold or italic require another font package. The most popular font fami-
lies—PostScript, TrueType, and OpenType—are based on vector-outlined fonts.

 Browsers come prepackaged with a small collection of fonts from the underly-
ing operating system, such as Verdana, Helvetica, and Courier, also known as client
or device fonts. Because each font reflects the physical characteristics of its plat-
form, there’s no guarantee of identical display across different platforms.

 Laszlo Flash can access both the browser’s client fonts and any installed vector-
outlined fonts. Since no two computers have the same set of installed vector fonts,
we have to compile these fonts into our application and download them to the
browser (hence the name embedded font). Any TrueType font file, identified by a
.ttf suffix, can be used as an embedded font. TrueType fonts were originally intro-
duced by Apple, and subsequently licensed by Microsoft; as a result, TrueType is a
popular format containing both open source and commercial fonts.

 Laszlo DHTML is subject to the limitations of DHTML, so its font selection is
limited to a browser’s set of client fonts. Another solution to expand the variety of
available fonts in DHTML is simply to capture the font in an image. Capturing a
font in a bitmapped image requires an image editor, such as Photoshop or GIMP.
This approach significantly reduces flexibility since text can’t be updated by
changing a character string; instead, the graphical image must be updated.
Despite its clumsiness, this approach allows a DHTML application to display a par-
ticular font. In the following section, we’ll use this technique to display Copper-
plate fonts in the Laszlo Market’s section headers.

14.1.3 Selecting a font

Although you may never consciously notice the fonts in an application, they do sub-
consciously affect your attitude toward it. Fonts can subtly establish a mood, rang-
ing from formal to casual, modern to traditional, cool to warm. For our purposes,
fonts are used either for decoration or for information. We simplify things by lim-
iting decorative fonts to the main title. There are no rules governing the use of a
decorative font; a designer has complete freedom to run wild with it.

 Informative fonts are used for labels and other text that needs to be read and
thus are subject to the cardinal rule of design: text must be legible. Although it’s
tempting to use distinctive fonts to stylize an application, we’ll limit ourselves to
fonts with a clean style, meaning they must be sans serif. Serifs are the decorative
details at the end of letters, and sans means without. The result is a font that’s phys-
ically less taxing to read, especially at small sizes.

390 CHAPTER 14

Branding an application
 To further increase legibility, be sure to limit the number of font styles in your
application to one or two, and distinguish your sections by the font size instead.
This approach results in a hierarchical appearance, with prominence indicated by
a larger font. The haphazard use of different fonts generally produces a disorga-
nized appearance. In the next section, you’ll see how carefully selected fonts in
combination can effectively complement one another.

Selecting a font for the Laszlo Market
For the Laszlo Market, we’ll use a combination of sans serif Copperplate and Ver-
dana for titles and text. This provides a classic appearance that works across a
wide variety of genres. Copperplate complements Verdana by supporting built-in
capitalization for titles; a word’s initial letter is slightly enlarged and the remain-
ing characters print in uppercase. This effect is subtle enough that it can’t be
accomplished by simply increasing the font size. This combination also uses an
embedded and a client font to demonstrate their respective uses.

 Verdana, a widely available client font, is installed on most computers. Copper-
plate is an open source embedded TrueType font freely downloadable from
www.fonts.com and other websites. Copperplate comes in a variety of different
styles, from which we select its Gothic style. Since DHMTL doesn’t support embed-
ded fonts, we’ll develop classes to hide its implementation. But first, let’s see how
to use embedded fonts.

Declaring an embedded font with Laszlo Flash
Copperplate is added to Laszlo Flash as a font resource. This code can’t be com-
piled for Laszlo DHTML; it would produce the error message “DHTMLWriter does
not support importing fonts.”

<font name="copperplate" style="bold"
 src="resources/Copperplate_Gothic_Bold.ttf"/>

Once this font resource has been added, any view-based object can access it. List-
ing 14.1 uses the resource with text objects.

<canvas>
 <font name="copperplate" style="plain"
 src="resources/Copperplate_Gothic_Condensed_BT.ttf" />
 <font name="copperplate" style="bold"
 src="resources/Copperplate_Gothic_Bold.ttf" />
 <simplelayout axis="y"/>
 <text font="copperplate" fontsize="22">Hello World</text>
 <text font="copperplate" fontsize="32"

Listing 14.1 Creating and accessing a TrueType font resource

Creating an application-specific look 391
 fontstyle="bold" text="Hello World"/>
 <text font="copperplate" fontsize="22"
 fontstyle="italic" text="Hello World"/>
</canvas>

Figure 14.3 shows the results of the Gothic plain
and bold font styles for the Copperplate font, along
with a Copperplate italic font style that doesn’t
seem to match the others. The italic font displays so
differently because Laszlo, upon encountering an
unsupported font style, silently substitutes a
default font, in this case Geneva. Laszlo does this
because there’s no telling which fonts a browser
might possess for a particular platform.

 Because embedded vector fonts support special
text effects, let’s take a look at how to use them.

The advantages of embedded fonts
Embedded vector fonts support many text effects such as stretching, rotating, or
varying opacity. In contrast, a client font can’t be manipulated and can support only
the opacity states of one (fully visible) or zero (invisible) with nonzero values dis-
played as fully visible. Listing 14.2 uses both font types to illustrate their differences.

<canvas>
 <font name="copperplate" style="plain"
 src="resources/Copperplate_Gothic_Condensed_BT.ttf"/>
 <simplelayout axis="y"/>
 <text font="copperplate" fontsize="22"
 opacity=".5" text="Hello World"/>
 <text font="Verdana" fontsize="22"
 opacity=".5" text="Hello World"/>
</canvas>

Figure 14.4 compares the results of setting a font’s
opacity to 0.5 for both an embedded and client font. An
embedded font’s ability to vary opacity allows text to be
animated so it slowly fades away or becomes visible.

Listing 14.2 Using special text effects with embedded vector fonts

Figure 14.3 The top two lines are
examples of the Copperplate font,
plain and bold. The third line shows
the result of attempting to display an
unsupported Copperplate italic font.

Figure 14.4 A client font
cannot vary its opacity; it’s
either visible or invisible.

392 CHAPTER 14

Branding an application
 Embedded fonts do have one disadvantage, however. Since they are packaged
with an application, download size and time increases. But generally the addi-
tional size isn’t large enough to be critical.

 Now that you’ve seen how to use embedded fonts with the Flash platform, we’ll
show you how to capture this font representation for the DHTML implementation
of the Laszlo Market.

Replicating embedded fonts in DHTML
We’ll organize the Laszlo Market screens into labeled sections composed of a title
against a solid gray background with a black outline. Let’s start with a Flash imple-
mentation using a sectionheader class to support multiple instances, which are
differentiated with a title attribute. Listing 14.3 defines the title font, which is
the embedded Copperplate font.

<library>
 <font name="copperplate" style="plain"
 src="resources/Copperplate_Gothic_Condensed_BT.ttf"/>

 <class name="sectionheader">
 <attribute name="title" type="string"/>
 <view resource="section_header" width="${classroot.width}"
 stretches="width"/>
 <text x="10" y="5" font="copperplate" fontsize="18"
 text="${classroot.title}" resize="true"/>
 </class>
</library>

Our updated section header can easily be examined with a small test program:

<canvas>
 <simplelayout axis="y" spacing="4"/>
 <section_header title="Product Details" width="${canvas.width}"/>
 <section_header title="Product List" width="${canvas.width}"/>
</canvas>

which adds the titles to the stretched view to produce the consistent set of section
headers shown in figure 14.5.

Listing 14.3 Laszlo Flash section header

Figure 14.5
The Copperplate font permits
capitalization with uppercase
letters, providing a title style
complementary to the Verdana font.

Creating an application-specific look 393
To replicate this with DHTML, we’ll create a series of bitmapped images contain-
ing these Copperplate titles and store them in files with matching names. These
titles are given a transparent background, using an image editor such as Photo-
shop or GIMP. Then, they can be applied like a decal to the stretched
section_header image. Listing 14.4 shows the section header template that we’ll
use to produce our titles.

<library>
 <class name="sectionheader">
 <attribute name="title" type="string"/>
 <view x="10" y="5">
 <method name="init">
 this.setSource(classroot.title + '.png');
 </method>
 </view>
<view resource="section_header"
 width="${classroot.width}"
 stretches="width"/>
 </class>
</library>

Despite the inconvenience, this produces an appearance and interface identical
to that of the section_header object. The two can be packaged into two libraries,
flash_class.lzx and dhtml_classes.lzx. Then, it’s only necessary to invoke the cor-
rect runtime library.

14.1.4 Choosing between DHTML and Flash implementations

Maintaining a single set of source files that encompasses both platforms requires a
way to dynamically select between these implementations at runtime. The lzr
request type parameter in the URL query string can be used to set the runtime
attribute to a selected platform:

http://localhost:8080/lps/Test/main.lzx?lzr=dhtml

When this runtime attribute is set, it enables the switch, when, and otherwise
tags to select platform-specific code. Listing 14.5 shows how to include the appro-
priate libraries for a selected implementation.

Listing 14.4 Laszlo DHTML section header

Stretches section
header image

394 CHAPTER 14

Branding an application
<canvas >
 <switch>
 <when runtime="dhtml">
 <include href="dhtml_classes.lzx/>
 </when>
 <when runtime="swf7">
 <include href="flash_classes.lzx"/>
 </when>
 <when runtime="swf8">
 <include href="flash_classes.lzx"/>
 </when>
 <otherwise>
 <include href="flash_classes.lzx"/>
 </otherwise>
 </switch>
</canvas>

Although Laszlo defaults to an swf8 runtime, its matching when branch is trig-
gered only when an lzr request type has been explicitly set. When the URL
doesn’t contain an lzr parameter, the otherwise tag is executed.

 Although the DHTML approach for supporting vector fonts is less elegant than
Flash’s, it can still be used to duplicate the appearance of a Flash implementation.
This allows us to maintain a single code base that provides an identical appear-
ance across both platforms.

 We’ll next design a set of custom components that can be used by both the
Flash and DHTML implementations.

14.2 Branding with custom components

Just as chrome trim on a car gives a distinctive appearance, custom components
give an identity to an application. More important, they can draw the viewer’s
attention to important interface controls. Consequently, design time spent on cus-
tom components is more important than time spent on background images. For-
tunately, Laszlo includes all component code and image files in a distribution,
which simplifies the development of custom components.

 For the Laszlo Market, we’ll use the behavior of existing components, but cus-
tomize their appearance. We’ll demonstrate how to leverage the design of exist-
ing components to create a photo-realistic appearance.

 All Laszlo components are written in LZX, with their source code stored in the
$LPS_HOME/lps/components directory. A component’s code is separated into a

Listing 14.5 Including the correct runtime library based on the URL parameter

Branding with custom components 395
base directory, dealing with behavior, and an lz directory, dealing with appear-
ance. Because we’re just changing the appearance, we’re concerned only with the
lz directory.

 The image resources supporting a component’s appearance aren’t available as
attributes, so we can’t override them with a subclass. Instead, it’s necessary to cre-
ate a new class for a custom component. Since bitmapped images are supported
in both platforms, we’ll choose the bitmapped PNG format for our resources.

 We’ll focus on custom tabelement and scrollbar components. A custom
component needs a unique name to avoid conflicts with the stock Laszlo compo-
nents. We’ll add a my prefix to the class name, resulting in mytabelement and
myscrollbar components. To house our new components, we’ll need a local com-
ponents directory. All component source files are neatly packaged for easy copy-
ing. Here are the steps to do this:

1 Create a local components directory.

2 Copy the tabelement and scrollbar source files from $LPS_HOME/lps/
components into this directory and rename them by adding the my prefix.

3 Create a local resources directory.

4 Copy the tabelement and scrollbar resource files from $LPS_HOME/lps/
components/resources into this directory. It isn’t necessary to rename any
of these files, since they now have a unique path.

Now we’re ready to start constructing our custom components; let’s begin with
mytabelement, the simpler of the two.

14.2.1 Customizing the tabelement component

Before we start, let’s review how a tabslider works. It’s composed of two element
types: a tabslider and multiple tabelements. The tabslider’s appearance is
minimal since its purpose is to contain and control the tabelement. Conse-
quently, only the tabelement’s appearance
needs to be altered.

 By default, a tabelement has a height of 22
pixels; its width is inherited from the tabslider
and its text is left-aligned. These values and the
font settings can be changed through its
attributes. A tabelement consists of these three
views, also shown in figure 14.6:

Figure 14.6 Three design elements
in a tabelement are available for
modification.

396 CHAPTER 14

Branding an application
■ The tab element contains a title against a background image.

■ The tab shadow is positioned below the open tab.

■ The content area is positioned at the bottom.

A tabelement has three visible mouse states: up, over,
and down. These states correspond to frames within a
resource. To create our custom component, we’ll change
the tabelement’s resources to match the appearance
shown in figure 14.7.

 Laszlo has a single address space and resources are
globally defined at the top level so it’s also necessary to
update resource definitions to have a my prefix. List-
ing 14.6 indicates in bold all renamed resources along
with their updated PNG image files.

<library>
 <include href="utils/layouts/resizelayout.lzx"/>
 <include href="../base/basebutton.lzx"/>
 <include href="../base/basetabelement.lzx"/>

 <!--- Tabelement button resource -->
 <resource name="mytabrsrc">
 <frame src="resources/tabslider/tab_slider_up.png"/>
 <frame src="resources/tabslider/tab_slider_over.png"/>
 <frame src="resources/tabslider/tab_slider_down.png"/>
 </resource>

 <!--- Tabelement shadow resource -->
 <resource name="mytabshadow"
 src="resources/tabslider/
 tab_element_shdw.png"/>

 <class name="mytabelement" extends="basetabelement"
 styleable="true">
 ...
 <basebutton name="bkgnd"
 resource="mytabrsrc"
 styleable="true" … />
 …
 <view name="shdw" resource="mytabshadow" stretches="both" … />
 …
 </class>
</library>

Listing 14.6 Customizing the tabelement

Contains multiframe
image resource

Uses local stock
shadow image

Defines
mytabelement class

Accesses new images
for tabelements

Figure 14.7 The updated
tabelement appears more in
tune with the overall look of
the Laszlo Market.

Branding with custom components 397
We’ll update our library.lzx file to make this new customized mytablement compo-
nent available to our application. Listing 14.7 contains the updated checkout
class that includes it in the Laszlo Market.

<class name="checkout">
 …
 <tabslider height="${parent.height}"
 width="${immediateparent.width}"
 spacing="2" slideduration="300">
 <mytabelement text="Shipping Information"
 font="copperplate" fontsize="16">
 <shippinginfo name="shiptab"/>
 </mytabelement>
 <mytabelement text="Billing Information"
 font="copperplate" fontsize="16">
 <billinginfo name="billtab"/>
 </mytabelement>
 <mytabelement text="Order Confirmation"
 font="copperplate" fontsize="16"/>
 <orderconfirm/>
 </mytabelement>
 </tabslider>
</class>

Figure 14.8 shows the result of our custom mytabele-
ment. Since we only changed its appearance, it still oper-
ates like a standard tabelement in a tabslider.

 Titles appear in the Copperplate font, which
means we still need to update the font resource for
the DHTML implementation. Listing 14.8 shows how a
DHTML implementation would access this title font.

<when runtime="dhtml">
 …
 <mytabelement minheight="30">
 <handler name="oninit">
 this.top.header.setSource("Shipping Information" + ".png");
 </handler>
 </mytabelement>
 …
</when>

Listing 14.7 Including the custom mytabelement component

Listing 14.8 Font resource substitution for DHTML

Figure 14.8 The Checkout
window of the Laszlo Market is
updated to include the custom
tabelement.

398 CHAPTER 14

Branding an application
Now we’re ready to tackle more complex components that use interacting image
resources to produce dynamic lighting effects.

14.2.2 Creating a custom scrollbar

When creating a custom scrollbar, your natural inclination may be to hire a
designer to create something ornate. Unfortunately, you’d probably be disap-
pointed; an image that looks great on paper can appear lifeless in an application.
The key step in creating realistic custom components is to ensure that its parts are
illuminated by a common light source. Although the light source can come from
any direction, Laszlo’s components default to the upper-left corner. Laszlo design-
ers have already done the hardest part for you—the logic interconnecting the
scrollbar parts.

 It’s easiest to conform to the default lighting source. We only have to put light
colors on the top and left and darker colors on the bottom and right. This turns
out to be pretty easy, doesn’t require artistic training, provides flexibility for
changes, and produces very professional results.

 A stock scrollbar consists of 15 images, illustrated in figure 14.9, contained in
three groupings: eight arrow-button images supporting the top and bottom but-
ton mouse states for up, over, down, and disabled; three track images for the states
of up, down, and disabled; and finally, three handle images for the top, middle,
and bottom, along with the gripper.

 Although a scrollbar can be vertical or horizontal, we’ll work only with a verti-
cal scrollbar to simplify things. These concepts can easily be applied to a horizon-
tal scrollbar. Let’s start by looking at each of the parts.

Figure 14.9
Fifteen parts contribute to the
construction of a scrollbar conforming
to a common lighting source,
represented by the lightbulb in the
upper-left corner. The top and bottom
buttons each contain four pieces, the
track contains three, and the handle
consists of four pieces—top, middle
gradient, bottom, and a gripper to fit
over the gradient.

Branding with custom components 399
It’s necessary to understand how the different parts
fit together. The width of a stock Laszlo scrollbar is 14
pixels minus a single-pixel black border, leaving 12
pixels for the lower track, which cradles the handle.
To conform to our light source, the track image,
shown in figure 14.10, has a dark pixel on the left
side, representing a shadow, and a light pixel on the
right side, representing a lighted region. The image
file is stretched along its length to produce the track.
The track’s color pattern indicates that the lighting
source is on the left.

 Enlarging the Laszlo arrow-button images shows
how buttons are aligned to a common light source.
Figure 14.11 compares the vector art for the default
set of buttons with the bitmapped art for our updated
buttons. The arrows have a dark region under each
button, and the angle of the triangle’s white edges
indicates that the lighting source is above. In addi-
tion, the images for the up and over states use an
angled gradient, whereby the lightest region corre-
sponds to the upper-left corner. This pattern is
reversed for the down state to provide a sense of
depth. The same lighting pattern is used for our bit-
mapped versions of these arrow-button images.

 Let’s now move to the three pieces of the han-
dle, shown on the left in figure 14.12: the top
angled edge, the middle flat surface with angled
side edges, and the bottom angled edge. The
design of the handle is consistent with a single light
source. The top and bottom edges have contrasting
gray shades representing light and shadow, while
the middle piece has a highlighted left edge and a
darkened right edge bracketing a gradient. The
top and bottom pieces are one pixel high and work
as end caps, while the middle piece is stretched ver-
tically. When put together, they create the slab
shown on the right.

Figure 14.10 When stretched,
the dark and light pixels are seen
as strips of shadow and highlight
the track bed for the handle.

Figure 14.11 These images
compare the vector and bitmap-
based scrollbar buttons
representing the mouse states
up, over, down, and disabled.

Figure 14.12 The three parts
comprising the scrollbar’s handle
are shown enlarged and out of
scale on the left and together as
a unit in scale on the right. The
top and bottom sections have a
height of one pixel. The light
lines mark vertical pixels.

400 CHAPTER 14

Branding an application
 All that remains is to attach the gripper.
The gripper image is a consistent pattern of
white and gray stripes on a transparent back-
ground displaying a background gradient.
This provides each stripe with a subtle differ-
ence in shadowing, as shown in figure 14.13,
while still conforming to the light source.

 The length of the gripper image is fixed to
prevent it from being stretched; otherwise,
the symmetry of the alternating sequence
would be lost and the strip would distort.
Since a tall window requires a long gripper, its
image is a long (440-pixel) PNG file clipped to
the parent’s height. The end result is a gripper that resizes to the window’s height.

 Now that we understand the relationship of the parts, we can use this architec-
ture to build our custom scrollbar.

Customizing the scrollbar
The default Laszlo scrollbar has an art deco
look that isn’t appropriate for our target audi-
ence. We want to tweak the default scrollbar to
create a fatter, jazzier scrollbar that works with
both Flash and DHTML. For the fatter look,
we’ll increase the gripper width to 20 pixels.
This is easily done by updating the gripper
image using an image editor. We’ll create a
more elaborate grip with a small hook along the
right side, as shown in figure 14.14. This hook
shape continues to face toward the light source,
but now contains a rich shadow for more depth.

 Since the gradient background is no longer
a vector image that can be continuously stretched, we’ll need to increase the size of
the gradient pattern to match the 440-pixel length of the gripper. The top and bot-
tom images are also enlarged to spread across the additional width.

Figure 14.13 The gripper is an
alternating sequence of white and gray
bars on a transparent background,
represented here with a checkerboard. The
image on the right demonstrates the visual
effect of a gradient against a pattern.

Figure 14.14 A bitmapped image
enhances the gripper with a short, right-
aligned hook and color gradations.

Branding with custom components 401
 The scrollbar has myscrollbar_xresources.lzx and myscrollbar_yresources.lzx
files listing its resource image files. We just have a vertical scrollbar, so we only have
to update the myscrollbar_yresources.lzx file. So altogether there are 15 PNG files
to be updated with new images. Listing 14.9 shows the updated library code.

<library>
 <resource name="myscrollbar_ythumbtop_rsc"
 src="resources/scrollbar/scrollthumb_y_top.png"/>
 <resource name="myscrollbar_ythumbmiddle_rsc"
 src="resources/scrollbar/scrollthumb_y_mid.png"/>
 <resource name="myscrollbar_ythumbbottom_rsc"
 src="resources/scrollbar/scrollthumb_y_bot.png"/>
 <resource name="myscrollbar_ythumbgripper_rsc"
 src="resources/scrollbar/thumb_y_gripper.png"/>

 <resource name="myscrollbar_ybuttontop_rsc">
 <frame src="resources/scrollbar/scrollbtn_y_top_up.png"/>
 <frame src="resources/scrollbar/scrollbtn_y_top_mo.png"/>
 <frame src="resources/scrollbar/scrollbtn_y_top_dn.png"/>
 <frame src="resources/scrollbar/scrollbtn_y_top_dsbl.png"/>
 </resource>
 <resource name="myscrollbar_ybuttonbottom_rsc">
 <frame src="resources/scrollbar/scrollbtn_y_bot_up.png"/>
 <frame src="resources/scrollbar/scrollbtn_y_bot_mo.png"/>
 <frame src="resources/scrollbar/scrollbtn_y_bot_dn.png"/>
 <frame src="resources/scrollbar/scrollbtn_y_bot_dsbl.png"/>
 </resource>
 <resource name="myscrollbar_ytrack_rsc">
 <frame src="resources/scrollbar/y_scrolltrack.png"/>
 <frame src="resources/scrollbar/y_scrolltrack_dn.png"/>
 <frame src="resources/scrollbar/y_scrolltrack_dsbl.png"/>
 </resource>
</library>

The next step is to update the myscrollbar class with these new resources. This
class contains two main states corresponding to the x- and y-axes for horizontal
and vertical scrolling. Because our scrollbar is vertical, we need only to change the
y state. Stylizing a scrollbar doesn’t require that you understand every detail of its
operation; it’s only necessary to know which resource and width settings—shown
in bold in listing 14.10—must be updated.

Listing 14.9 Updated vertical scrollbar resources in myscrollbar_yresources.lzx

402 CHAPTER 14

Branding an application
<class name="myscrollbar" extends="basescrollbar" bgcolor="0x595959">
 …
 <state apply="${parent.axis == 'y'}">
 <attribute name="width" value="20"/>

 <view name="toparrow">
 <basescrollarrow x="1" y="1"
 resource="myscrollbar_ybuttontop_rsc"
 direction="-1"/>
 </view>
 <view name="scrolltrack">
 <basescrolltrack name="top" x="1"
 resource="myscrollbar_ytrack_rsc" stretches="height"
 overResourceNumber="0" downResourceNumber="2"
 disabledResourceNumber="3" direction="-1">
 <attribute name="height" value="${parent.thumb.y}"/>
 <attribute name="width" value="${parent.width}"/>
 </basescrolltrack>
 <basescrollthumb name="thumb" x="1">
 <view resource="myscrollbar_ythumbtop_rsc"/>
 <view resource="myscrollbar_ythumbmiddle_rsc"
 stretches="both"/>
 <view resource="myscrollbar_ythumbbottom_rsc"/>
 <stableborderlayout axis="y"/>
 <view resource="myscrollbar_ythumbgripper_rsc"
 y="4" x="1" width="20"
 height="${Math.min(200, parent.height-46)}"
 clip="true" valign="middle"/>
 </basescrollthumb>
 <basescrolltrack name="bottom" x="1"
 resource="myscrollbar_ytrack_rsc" stretches="height"
 overResourceNumber="0" downResourceNumber="2"
 disabledResourceNumber="3">
 <attribute name="y"
 value="${parent.thumb.y+parent.thumb.height}"/>
 <attribute name="height"
 value="${parent.height - parent.thumb.y –
 parent.thumb.height}"/>
 <attribute name="width" value="${parent.width}"/>
 </basescrolltrack>
 </view>
 <view height="20" name="bottomarrow">
 <basescrollarrow x="1"
 resource="myscrollbar_ybuttonbottom_rsc"/>
 </view>
 <stableborderlayout axis="y"/>
 </state>
</class>

Listing 14.10 Updating resources for vertical scrolling in myscrollbar.lzx

Updates scrollbar
width to 20 pixels

Displays
up arrow

Displays track cradling handle

Displays
top track
segment

Displays
handle with
gripper

Displays bottom
track segment

Displays
down arrow

Summary 403
Although this might seem like a lot
of work, it’s actually quite easy; our
updated scrollbar, you can see in fig-
ure 14.15, shows that our efforts are
well rewarded. We can easily test this
custom scrollbar by adding it to the
Laszlo Market.

 Tweaking components is a great
way to produce an individual look
that differentiates your work from
competitors. You can easily create a
library of different custom compo-
nents with a tailored appearance
appropriate for different markets. Since you are leveraging the design logic in the
existing assets, created by the professional designers at Laszlo, you’ll generally have
impressive results.

14.3 Summary

In this chapter we examined our application’s purpose and identified its target
audience. We used this information to create a branded appearance that hope-
fully resonates with that audience. We selected, based on our product offerings
and our customer base, a high-tech/comic book theme. Our goal was to provide
an identical operation and appearance with both Flash and DHTML.

 To achieve this goal, we explored the properties of bitmapped and vector
images to arrive at a suitable design compromise. We then examined how each
platform can implement this design compromise to provide identical functional-
ity and appearance.

 Finally, we used these principles to create stylized components for tabelements
and scrollbars. We showed how components are based on a number of moving
parts and how the interaction of these parts provides a dynamic appearance. The
operation of these parts ensures that a component’s appearance is always consis-
tent with a common lighting source, which is the secret to creating components
with a photo-realistic appearance. The source code and image files provide a
strong base to create tweaked versions of components, since we only need to
maintain a common lighting source.

 In the next chapter, we’ll cover platform features that can’t be simulated using
alternative means. This requires the creation of a hybrid application so that one
platform can access features of the other.

Figure 14.15 By conforming to a consistent light
source, both the multistate button and the scrollbar
provide a realistic sense of depth. This produces the
illusion that these controls are protruding as
foreground controls against a flat background.

Integrating
 DHTML and Flash
This chapter covers
■ Embedding Laszlo applications in HTML
■ Intermixing Laszlo Flash and DHTML
■ Building a search engine–accessible application
■ Streaming with the Red5 server
■ Accessing Flash video from DHTML
404

Advantages of a hybrid approach 405
If scientific reasoning were limited to the logical processes of arithmetic,
we should not get very far in our understanding of the physical world.
One might as well attempt to grasp the game of poker entirely by the use
of the mathematics of probability.

 —Vannevar Bush (1890–1974),
 academic, engineer, and visionary

So far, we’ve managed to preserve a level of compatibility between our Laszlo
Flash and DHTML implementations and still maintain a single set of source code
files. Where a platform is missing a feature, we improvised with workarounds.
Although this requires some artistic compromises, with careful planning we were
able to minimize any sacrifices in quality. In this chapter, we’ll address features for
which there are no workarounds. These features can only be supplied by melding
Laszlo Flash and DHTML modules into a hybrid application.

15.1 Advantages of a hybrid approach

The Flash and DHTML platforms have relative strengths and weaknesses. Depend-
ing on your particular need, you might find that one is better suited for your appli-
cation than the other. But rather than picking one or the other, we prefer packaging
Laszlo Flash and DHTML modules into a single, hybrid application, since each
implementation is missing critical features available in the other. Let’s look at some
of these critical issues and later we’ll show you how they can be overcome.

 A critical problem facing Flash-based applications is that its SWF file format is
binary, while the Internet is composed of text-based HTML applications. The Web
is so large that finding anything requires it to be prominently listed by a search
engine such as Google. But the web crawlers that build these listings are only
designed to work with text-based applications and can’t index or rank the content
of Flash applications. This situation isn’t likely to change in the immediate future.
We’ll resolve this issue by packaging Laszlo Flash applications in an HTML wrap-
per to make them accessible to web crawlers. Later we’ll demonstrate how the Las-
zlo Market can easily be made accessible to search engines.

 A critical shortcoming facing DHTML applications is their limited multimedia
capability. Today’s users expect audio and video presentation tightly integrated
within their web applications. But browsers don’t possess audio or video capabili-
ties, instead relying on plug-in software modules. We’ll use a Laszlo Flash module
to supply streaming video capabilities to a Laszlo DHTML implementation of the
Laszlo Market.

http://www.quotationspage.com/quotes/Vannevar_Bush/
http://www.quotationspage.com/quotes/Vannevar_Bush/

406 CHAPTER 15

Integrating DHTML and Flash
 Having seen the advantages of these implementations working together, the
next step is to find a common environment for combining their features.

15.2 Using an HTML wrapper

All programming environments, from Unix to Java, employ the same model to
provide a common environment for application packaging and deployment. They
enclose or wrap their a.out or Java class executables within a Unix shell or Win-
dows BAT file, an approach we’ll refer to as wrapping. This is the model that we’ll
use as well.

 Using a shell or Windows BAT wrapper to contain executables provides an
outer meta-layer that allows you to control execution by setting environmental
variables. It also provides an enclosure to package multiple executables in a single
application body. We’ll do something similar by wrapping our Laszlo DHTML and
Flash executables in an HTML file. In a shell or Windows BAT wrapper, users and
other programs can set or alter environmental variables to control an applica-
tion’s processing. In our HTML wrapper, we’ll use browser JavaScript variables to
function as web-based environmental variables.

 A shell or Windows BAT wrapper allows applications to execute a new shell
wrapper to initiate a recursive application sequence. Similarly, Laszlo applications
can execute a new HTML file to initiate this recursive sequence. Later, we’ll dem-
onstrate each of these topics.

 But to understand the mechanics of this approach, let’s start by examining
how a browser executes a Laszlo application.

15.2.1 Embedding Laszlo applications in HTML

Browsers are designed to render HTML documents. Although they can render com-
mon data types such as text, GIF, and JPEG images, and fonts, they require an exter-
nal application, or plug-in, for unsupported data types such as audio, video,
applets, or Flash SWF files. HTML supports several tags to work with these unsup-
ported data objects; the embed tag supports external plug-in programs. HTML 4.0.1
introduced the object tag to support any generic data object. They may use differ-
ent tags, but all browsers require these unsupported data type objects to be identi-
fied and transferred to the appropriate plug-in to be executed.

 A Flash-enabled browser contains separate DHTML and Flash rendering
engines that process JavaScript or ActionScript (a JavaScript derivative). As fig-
ure 15.1 shows, all Laszlo applications consist of an HTML file containing either

Using an HTML wrapper 407
an embedded Flash SWF or DHTML JavaScript object that executes in one of the
browser’s rendering engines.

 A Laszlo DHTML application acts like a natural extension of its surrounding
HTML page and is mapped directly to the web page’s Document Object Model
(DOM). In contrast, a Flash executable acts more like a foreign body encased
within an HTML membrane. Despite these differences, Laszlo provides a common
set of interface methods to support both application types.

 To demonstrate how all Laszlo applications are contained within HTML, let’s
start by examining how a browser handles a SOLO Flash application contained in
an SWF file. You’ll need to display a sample SOLO executable like the OpenLaszlo
clockblox in your browser:

http://www.openlaszlo.org/apps/clockblox.lzx.swf

This should display a clock. While all browsers provide a View Source window, this
facility is of limited use as it only shows the static HTML source for a URL. When a
browser displays a data object, it needs to dynamically generate HTML for the
object. To view all HTML statements, you must use a special browser extension
program such as Firebug, the DOM Inspector, or one of several others. These tools
are necessary for creating Laszlo hybrid applications. You can download and
install them from either of the following:

https://addons.mozilla.org/en-US/firefox/addon/1843
http://www.mozilla.org/projects/inspector/

Since these are browser plug-ins, the browser will automatically ask to install them
when they are downloaded. Each of these plug-ins contains extensive documenta-
tion. Although they provide a wide assortment of features, we only need them to
display a complete HTML source listing.

 We’ll walk through the steps to activate and use Firebug to display the HTML
for the clockblox URL. After Firebug has been downloaded and installed, and
the clockblox URL is accessed, you only have to press F12 to toggle Firebug on
and off. The complete HTML source listing for this clockblox SWF object, view-
able under Firebug’s HTML menu, will look like this:

Figure 15.1
Laszlo applications consist of an HTML
file containing an embedded SWF data
object or DHTML object. The browser
processes the HTML and delivers the
Laszlo application to either the DHTML
or Flash rendering engine.

408 CHAPTER 15

Integrating DHTML and Flash
<html>
 <body marginwidth="0" marginheight="0">
 <embed width="100%" height="100%" name="plugin"
 src="http://www.openlaszlo.org/apps/clockblox.lzx.swf"
 type="application/x-shockwave-flash"/>
 </body>
</html>

The wrapped object is encased in an embed tag that identifies it as an x-shock-
wave-flash data object to prepare it for execution by the Flash engine. Microsoft
Internet Explorer would also dynamically generate HTML, but it would instead
encase the object within an object tag. The upcoming sections will demonstrate
the advantages of using Laszlo’s application-embedding features to manually
enclose these executables in an HTML wrapper.

15.2.2 Examining HTML files created by Laszlo

Let’s look at a Laszlo application delivered from an OpenLaszlo server. An Open-
Laszlo server always delivers a Flash or DHTML application enclosed in an HTML
file, consisting of two sections: head and body. The head section is used for declar-
ing libraries and setting configuration values, while the body section makes the
calls to generate the presentation of the web page.

 The content of our head section is shown in listing 15.1. Because this section can
be reused by many applications, we’ll put it into an included header file. There are
numerous ways to include the header, but we’ll use two solutions: server-side
includes (SSIs)—to include a header.ini file for SOLO applications; and JSP
includes—to include a header.jsp file for OpenLaszlo server-delivered applications.

 The header.ini file can be included in an HTML page like this:

<!-- include virtual="header.ini"-->

while the header.jsp file can be included like this:

<%@ include file="header.jsp"/>

For now, we have to hard-code the OpenLaszlo Server version of 4.1 into the call.
This value should reflect the OpenLaszlo Server version that you are using. In a
later section, we’ll show how this can be dynamically set.

 <head>
 <noscript>
 Please enable JavaScript in order to use this application.
 </noscript>
 <script type="text/javascript"

Listing 15.1 Laszlo DHTML head section (header.jsp or header.ini)

Using an HTML wrapper 409
 src="lps-4.1/lps/includes/
 embed-compressed.js">
 </script>
 <script type="text/javascript">
 lzOptions={"lps-4.1/lps/resources"};
 </script>
 <script type="text/javascript">
 Lz.dhtmlEmbedLFC("lps-4.1/lps/" +
 "includes/lfc/LFCdhtml.js");
 </script>
 <style type="text/css">
 html, body {
 height: 100%; width: 100%;
 margin: 0; padding: 0;
 border: 0 none; overflow: hidden;
 }
 </style>
 </head>

The first step is to use the noscript tag to check that JavaScript hasn’t been turned
off in the browser. If it is off, an appropriate message is displayed. Next we include
the Lz library contained in the embed-compressed.js file. The Lz API, described in
table 15.1, provides JavaScript methods to embed Flash or DHTML applications
and support additional methods that allow the output to be manipulated.

The next step is to use the dhtmlEmbedLFC method to load the Laszlo LFC library
for DHTML applications. The DHTML implementation requires two steps for
embedding since it has a separate LFC library. Laszlo created a separate LFC library
that it needs to load only once; after that, it is cached in the browser so it doesn’t
have to be reloaded for subsequent applications. This decreases the download
time when multiple applications are being loaded.

 Next, we set the lzOptions variable to provide specific values required by
either implementation for certain operations. In this case, DHTML needs the root
path set to support display components.

Table 15.1 Lz calls to embed a Laszlo DHTML or Flash application

Name Target Description

dhtmlEmbed DHTML Loads a Laszlo DHTML application

dhtmlEmbedLFC DHTML Loads the Laszlo LFC library; only necessary for DHTML

swfEmbed Flash Loads a Laszlo SWF application

Includes Lz
library Specifies root

location

Includes LFC
for DHTML

Sizes application
to browser

410 CHAPTER 15

Integrating DHTML and Flash
 Finally, we use Cascading Style Sheets (CSS) to set the browser’s display charac-
teristics. This ensures that applications are sized to the browser’s maximum screen
space, removes any padding or margins, and prevents the browser from scrolling.

 Now that we’ve set everything up in the head section, we’ll demonstrate the
application type combinations by embedding DHTML or Flash applications for
SOLO and server implementations. We’ve created a set of simple applications,
dhtml.lzx and flash.lzx, consisting of a labeled shaded box, to illustrate how to
embed an application. Since our example applications differ only in background
color, we’ll only display the listing for the DHTML version:

<canvas>
 <attribute name="message" value="no label" type="string"/>
 <view id="main" height="100" width="100" bgcolor="0xBBBBBB">
 <method name="setMsg" args="str">
 msg.setText(str);
 </method>
 <text name="msg" text="${canvas.message}" resize="true"
 align="center" valign="middle"
 fontsize="14" fontstyle="bold"/>
 </view>
</canvas>

The first step is to get the OpenLaszlo server to compile the example applications,
dhtml.lzx and flash.lzx, into corresponding SOLO files for each platform. To per-
form this compilation for the DHTML platform, we’ll enter the OpenLaszlo
server’s URL along with the file path, application (dhtml.lzx), and the prox-
ied=false and lzr=dhtml URL parameters:

http://localhost:8080/lps-4.1/book/dhmtl.lzx?proxied=false&lzr=dhtml

The second step is compiling for the Flash platform by entering the OpenLaszlo
server’s URL along with the file path, application name (flash.lzx), and the prox-
ied=false and lzr=swf8 URL parameters:

http://localhost:8080/lps-4.1/book/flash.lzx?proxied=false&lzr=swf8

Now we have SOLO applications, dhtml.lzx.js and flash.lzx.swf?lzr=swf8, for the
Flash and DHTML platforms.

15.2.3 Embedding Laszlo applications in HTML

In this section, we’ll demonstrate how to embed every type of Laszlo application,
Flash SOLO, DHTML SOLO, and those delivered directly from an OpenLaszlo
server, in an HTML file. This is the first step in eventually combining multiple exe-
cutables in an HTML file.

Using an HTML wrapper 411
 We can’t execute DHTML SOLO applications directly through a browser URL,
as we can SWF files, because their LFC library has been removed. Instead, a
DHTML SOLO application must be embedded in an HTML file. We’ll assume that
these SOLO applications are being served from a web server, so we can use SSIs
(JSP includes for those served by an OpenLaszlo server) to include the header:

<html>
 <!-- include virtual="header.ini"-->
 <body>
 <script type="text/javascript">
 Lz.dhtmlEmbed({url: 'dhtml.lzx.js?lzr=dhtml',
 width: '100%', height: '100%', id: 'dhtml'});
 </script>
 </body>
</html>

This HTML output contains the results of our Laszlo
application, a simple gray box with our default label of
“no label,” as shown in figure 15.2.

 Embedding a Flash SOLO application, flash.lzx.swf,
requires that swfEmbed be called with the url parameter
set to the Flash SOLO application name:

<html>
 <!-- include virtual="header.ini"-->
 <body>
 <script type="text/javascript">
 Lz.swfEmbed({url: 'flash.lzx.swf?lzr=swf8',
 width: '100%', height: '100%', id: 'flash'});
 </script>
 </body>
</html>

Using dhtmlEmbed and updating the url parameter causes it to refer to an embed-
ded DHTML application delivered from an OpenLaszlo server:

<html>
 <%@ include file="header.jsp"/>
 <body>
 <script type="text/javascript">
 Lz.dhtmlEmbed({url: 'dhtml.lzx?lzr=dhtml',
 width: '100%', height: '100%', id: 'dhtml'});
 </script>
 </body>
</html>

Finally, embedding a Flash application delivered from an OpenLaszlo server is
just as simple. We just change to swfEmbed and update the URL parameter for

Figure 15.2 Both the
DHTML and Flash embedded
applications display a gray
square of varying shades.

412 CHAPTER 15

Integrating DHTML and Flash
Flash. But since there are multiple Flash executables (swf7 and swf8), we’ll
instead update the lzt request type parameter to swf to cover them all:

<html>
 <%@ include file="header.jsp"/>
 <body>
 <script type="text/javascript">
 Lz.swfEmbed({url: 'flash.lzx?lzt=swf',
 width: '100%', height: '100%', id: 'flash'});
 </script>
 <body>
</html>

Now that we can embed any type of Laszlo application within an HTML file, let’s see
how to apply these techniques to make Flash applications behave more like HTML.

15.2.4 Creating default web pages

It’s common web practice to specify a URL ending with a directory path instead of
naming an explicit HTML file. The HTTP server defaults to displaying either an
index.html or an index.jsp file. By embedding the main.lzx file, containing the
canvas tag, in either of these default HTML files, we can invoke our Laszlo Market
application through the following URL:

http://localhost:8080/lps-4.1/book

This approach results in a cleaner URL that hides internal implementation infor-
mation such as SOLO or server implementation, request type, and platform settings.

 An additional benefit of serving applications from an OpenLaszlo server is that
the HTML page can be updated with JSP variables. This provides an additional
level of flexibility. The HTTP request can be accessed using JSP to find the value of
the contextPath parameter. This parameter contains the context or relative file
path of our request URL—in our case, this translates into the lps-4.1 string. We
don’t have to hard-code the file path for our JavaScript libraries; their starting
location is derived from the request URL. Now when it’s necessary to switch to a
different release of Laszlo, we won’t have to update our header file. Listing 15.2
shows how to update the head section to access the contextPath parameter.

<head>
 <script type="text/javascript"
 src="<%=request.getContextPath()%>" +
 "/lps/includes/embed-compressed.js">
 </script>

Listing 15.2 Using the contextPath parameter to configure flexibility (header.jsp)

Sets the
resources path

Intermixing DHTML and Flash applications 413
 <script type="text/javascript">
 lzOptions = { "<%=request.getContextPath()%>" +
 "/lps/resources" };
 </script>
 <script type="text/javascript">
 Lz.dhtmlEmbedLFC("<%=request." +
 "getContextPath()%> lps/includes/
lfc/LFCdhtml.js");
 </script>
 <style type="text/css">
 html, body {
 height: 100%; width: 100%; margin: 0; padding: 0;
 border: 0 none; overflow: hidden;
 }
 </style>
</head>

Now that we can embed every application type, we can intermix any combination
of Laszlo DHTML and Flash applications in a single HTML file.

15.3 Intermixing DHTML and Flash applications

Now that we have multiple Laszlo applications embedded within HTML output,
they have to stake out their separate display areas. By default, embedded Laszlo
applications are displayed in sequential order in HTML output and identified by
an application id. When each Laszlo application is embedded, its Lz call returns
an object containing the name of its application id. If an application id isn’t sup-
plied, the default name “lzapp” is used. It’s considered good programming prac-
tice to always provide application ids for your embedded applications, since
multiple applications using a default name will overwrite one another.

 In listing 15.3, we specify an id name for each application. The height of the
first application is updated to 200 pixels. HTML displays the Laszlo applications
sequentially, a height of 200 pixels for the DHTML application immediately fol-
lowed by the Flash application with a height of 100 pixels.

<html>
 <%@ include file="header.jsp"/>
 <body>
 <script type="text/javascript">
 Lz.dhtmlEmbed({url: 'dhtml.lzx?lzr=dhtml',
 width: '100%', height: '200', id : 'dhtml'});
 </script>

Listing 15.3 HTML that combines Laszlo DHTML and Flash applications

414 CHAPTER 15

Integrating DHTML and Flash
 <script type="text/javascript">
 Lz.swfEmbed({url: 'flash.lzx?lzt=swf',
 width: '100%', height: '100', id : 'flash'});
 </script>
 </body>
</html>

The returned object is named after its application id and is accessible through Lz.
It can be used in slightly different ways depending on its target platform. For
Flash and DHTML applications, it provides access to the calls listed in table 15.2.
In upcoming examples, we’ll use these calls to access any node in an application.

The setCanvasAttribute and getCanvasAttribute calls provide access to the
top-level attributes in an application. When a Laszlo attribute is changed using the
setCanvasAttribute call, it results in an on+attribute event being sent to regis-
tered event handlers.

 callMethod, which can only be used by embedded Flash applications, navi-
gates through the levels of Laszlo’s node structure to call a method from any
object. DHTML applications have direct access to the browser’s DOM, with their
returned object serving as the root node. As a result, a Laszlo application is an
extension of the DOM tree, so we can navigate through this tree to access any
node’s attributes and methods.

 Embedded applications have a lifecycle separate from the loading and execu-
tion of the HTML page, so we have to ensure that an application has completed its
initialization before any calls are made to it. The object’s onload event handler
signals that an application has completed its initialization and is ready for use. In
that event handler, we’ll insert a function to contain the code to execute the appli-
cation. Listing 15.4 shows an example of using the onload event to update the
message attribute and display the correct label for each implementation.

Table 15.2 Lz calls to communicate with embedded applications

Name Target Description

callMethod Flash Calls a method to an embedded SWF
application and returns the result

getCanvasAttribute Both Reads a value from a top-level
attribute of the canvas element

setCanvasAttribute Both Writes a value to a top-level attribute
of the canvas element

Intermixing DHTML and Flash applications 415
<html>
 <%@ include file="header.jsp"/>
 <body>
 <script type="text/javascript">
 Lz.swfEmbed({url: 'flash.lzx?lzt=swf',
 width: '100%', height: '100',
 id : 'flash'});
 Lz.flashapp.onload = function() {
 Lz.flashapp.setCanvasAttribute('message',
 'Flash');
 }
 </script>
 <script type="text/javascript">
 Lz.dhtmlEmbed({url: 'dhtml.lzx?lzr=dhtml',
 width: '100%', height: '100',
 id : 'dhtml'});
 Lz.dhtmlapp.onload = function() {
 Lz.dhtmlapp.setCanvasAttribute('message',
 'DHTML');
 }
 </script>
 </body>
</html>

The result, shown in figure 15.3, demonstrates that
setting the message attribute results in an event being
sent to trigger the constraint in the text element that
produces an updated label.

 We can also use callMethod for Flash and specify
the path for DHTML to update these text labels.
Instead of being limited to accessing only top-level
variables, these calls can navigate the node hierarchy
to access methods at any level. Listing 15.5 shows the
different ways in which the Flash and DHTML imple-
mentations call a method.

<html>
 <%@ include file="header.jsp"/>
 <body>
 <script type="text/javascript">
 Lz.swfEmbed({url: 'flash.lzx?lzt=swf',
 width: '100%', height: '200', id : 'flash'});

Listing 15.4 The onload event, triggered when its application has completed
 initialization

Listing 15.5 Equivalent ways to call a method for Flash and DHTML

Sets label
to Flash

Sets label
to DHTML

Figure 15.3 The
HTML web page contains two
embedded Laszlo applications;
each displays a label to
indicate their output area.

416 CHAPTER 15

Integrating DHTML and Flash
 Lz.flashapp.onload = function() {
 Lz.flashapp.callMethod

 ("main.setMessage('Flash')");
 }
 </script>
 <script type="text/javascript">
 Lz.dhtmlEmbed({url: 'dhtml.lzx?lzr=dhtml',
 width: '100%', height: '200', id : 'dhtml'});
 Lz.dhtmlapp.onload = function() {
 Lz.dhtmlapp.canvas.setMessage

 ('DHTML');
 }
 </script>
 </body>
</html>

In the next section, you’ll learn how to use HTML statements to control the place-
ment of the Laszlo applications in the HTML output.

15.3.1 Controlling Laszlo output placement in HTML

We can use div tags to control the placement of embedded Laszlo applications in
the HTML output. A byproduct of using the Lz embed calls is that a div tag is
dynamically created, unless a div with a matching name already exists, whose
name is the id field plus a Container suffix. This div tag serves as a container for
other tags and provides an area to display Laszlo output. Since these div tags are
dynamically generated, they won’t appear in the View Source output and can only
be seen using an add-on tool such as Firebug or the DOM Inspector.

 Listing 15.6. contains Laszlo DHTML and Flash applications whose output is
intermixed with the output from HTML text tags.

<html>
 <%@ include file="header.jsp"/>
 <body>
 <h2>Flash Container</h2>
 <div id="flashContainer"></div>
 <h2>Flash Container</h2>
 <div id="dhtmlContainer"></div>
 <script type="text/javascript">
 Lz.swfEmbed({url: 'flash.lzx?lzt=swf',
 width: '100%', height: '100', id : 'flash'});
 </script>
 <script type="text/javascript">
 Lz.dhtmlEmbed({url: 'dhtml.lzx?lzr=dhtml',

Listing 15.6 Intermixing HTML with Laszlo output

Updates
Flash label

Updates
DHTML label

Contains Laszlo
Flash output
Contains Laszlo
DHTML output

Intermixing DHTML and Flash applications 417
 width: '100%', height: '100', id : 'dhtml'});
 </script>
 </body>
</html>

We can control the placement of our Laszlo output in the
HTML page by defining our own div tags. As figure 15.4
shows, this allows the Laszlo output to be placed immedi-
ately following each of the HTML labels.

 There are also situations where we want our applica-
tion output to be redirected to a different div tag. We can
do this by adding an appenddivid argument containing
the target div name to the input string. Listing 15.7 shows
an appenddivid argument that directs the application
output to the designated div area. This produces the
same output as seen in figure 15.4, but these div tags now
have our specified names.

<html>
 <%@ include file="header.jsp"/>
 <body>
 <div id="flashapp">
 <h2>Flash Container</h2>
 </div>
 <div id="dhtmlapp">
 <h2>DHTML Container</h2>
 </div>
 <script type="text/javascript">
 Lz.swfEmbed({
 url: 'flash.lzx?lzt=swf',
 width: '100%', height: '200',
 id: 'flash', appenddivid: 'flashapp'});
 </script>
 <script type="text/javascript">
 Lz.dhtmlEmbed({
 url: 'dhtml.lzx.js',
 width: '100%', height: '200',
 id: 'dhtm', appenddivid: 'dhtmlapp'});
 </script>
 </body>
</html>

Listing 15.7 Redirecting Laszlo to specific HTML divs

Directs
output to
first div

Directs
output to
second div

Figure 5.4 HTML text is
used to label Laszlo output.

418 CHAPTER 15

Integrating DHTML and Flash
You’ll now learn how to use div tags to make applications accessible to search
engines like Google.

15.3.2 Building a search engine–accessible application
The key to bridging the mismatch between search engines, oriented to indexing
HTML pages, and the continuous user experience of RIAs is to supplement an RIA
with a cluster of supporting HTML pages. Search engines require a different page
for each product, so for the Laszlo Market we’ll provide a special “home page” of
the most popular products for them. Because web crawlers don’t understand Java-
Script, Flash, or complex DHTML tags, we’ll create a simplified HTML version.

 Let’s start by removing the noscript tag from our header.jsp file to allow a web
crawler to scan the file. This page will also include an embedded application that
displays a specific product. We’ll use LzBrowser.getInitArg to pass in a product
ID and set the application’s initial state to display that product. We’ll simulta-
neously support a default HTML display of the selected product information for
JavaScript-impaired users and web crawlers, as well as the Laszlo Market, which
displays the selected product for JavaScript-enabled users.

 To accomplish both these displays, we’ll store all product information in a div
whose name matches the appendivid id for our embedded application. Now,
when JavaScript is enabled, our embedded application will be executed and the
HTML will display the Laszlo application’s output. For users whose JavaScript is
turned off, only the default HTML in the div tag is displayed. Listing 15.8 shows
the HTML content for a sample product. We’ve used the ellipsis to indicate con-
tinuing description and specs information.

<html>
 <%@ include file="header.jsp"/>
 <body>
 <div id="productcontent">
 <h1>Spider Man 2</h1>
 <div id="price">$19.99</div>
 <div id="description">Peter Parker is having a rough…</div>
 <div id="specs"><p>Regional Code: 2 (Japan,…</p></div>
 </div>
 <script type="text/javascript">
 Lz.swfEmbed({ url: 'main.lzx?lzt=swf&productid=SKU-001',
 width: '100%', height: '100%',
 appenddivid: 'productcontent'});
 </script>
 </body>
</html>

Listing 15.8 Creating the HTML/Laszlo web page for web crawlers

Provides HTML
for web crawlers

Replaces HTML
content with
Laszlo Market

Intermixing DHTML and Flash applications 419
Supporting this new feature in the Laszlo Market is easy. We just need to check for
the existence of a URL productid parameter in the init method for the canvas. If
it exists, then we’ll update the state controller attribute to the Splash to Display
Product state transition. To simplify the presentation, we’ll ignore security issues
relating to login, and as listing 15.9 shows, we’ll just immediately move to that state.

<canvas>
 <attribute name="productid" type="string"/>
 <handler name="onproductid">
 gController.setAttribute("appstate", "Login to Main");
 logwin.close();
 </handler>
 ...
 <method name="init">
 var sku = LzBrowser.getInitArg('productid');
 if (sku != null)
 canvas.setAttribute(
 'productid', sku);
 ...
 </method>
 ...
</canvas>

The Splash to Display Product state transition displays the main screen with the
appropriate product information. We use the showProduct method in listing 15.10
to find the corresponding product from the dsProducts dataset and then update
the productdp data pointer to update the Product Display window with this prod-
uct information.

<node name="gController">
 <handler name="onappstate" args="state">
 switch (state) {
 case "Display Product ID":
 this.showProduct(canvas.productid);
 this.setAttribute("currstate", "Main");
 break;
 ...
 </handler>

 <method name="showProduct" args="sku">
 if (sku == null) return;

Listing 15.9 Updated the state controller (gController.lzx)

Listing 15.10 Update state controller to display products (gController.lzx)

Updates state
controller

420 CHAPTER 15

Integrating DHTML and Flash
 var plist =
 dsProducts.getPointer().xpathQuery
 ("dsProducts:/products/
 product[@sku='" + sku + "']");
 if (plist) productdp.setPointer(plist);
 </method>
 ...
</node>

The techniques outlined in this section allow the contents of Flash-based applica-
tions to be searched by web crawlers and listed by search engines.

 We now move on to complete the browser/embedded application relation-
ship.

15.4 Calling browser JavaScript from Laszlo

In the previous section, we covered communication from the browser to embed-
ded applications. Now it’s time to complete this relationship with the reverse,
communicating from Laszlo to the browser. Laszlo provides the LzBrowser service
to access a browser or Flash environment. Table 15.3 provides the complete list of
LzBrowser methods.

Table 15.3 LzBrowser methods

Name Target Description

callJS Browser Runs a JavaScript method in the browser; returns a value

getInitArg Browser Returns a key value from the initiating request string

getLoadURL Browser Returns the URL from which the application was loaded

getVersion Flash Gets the version number of the Flash player

loadJS Browser Runs a JavaScript method in the browser; doesn’t return a value

loadURL Browser Loads a URL in the browser

setClipboard Flash Sets the system clipboard to the specified string

urlEscape Browser Escapes a string using URL encoding

urlUnescape Browser Unescapes a string using URL encoding

xmlEscape Browser Escapes XML special characters such as & and <

Finds
product in
dataset

Updates Product
Details window

Calling browser JavaScript from Laszlo 421
Laszlo provides two methods, loadJS and callJS, to call browser JavaScript from
within an application. The loadJS method easily makes calls to JavaScript func-
tions, but has the limitation of not returning a value. Here’s an example of loadJS
invoking the JavaScript alert function:

<canvas>
 <button>Alert
 <handler name="onclick">
 LzBrowser.loadJS("alert('Hello!')");
 </handler>
 </button>
</canvas>

Although the callJS method requires more setup, it is more capable since it can
return a value. This method takes two or more arguments: the name of the
browser JavaScript function to call, a reference to the LZX method to receive the
return value, and any arguments that need to be passed to the JavaScript function.

 We can use callJS to invoke the confirm browser function, but it can also be
used to call user-defined functions. This browser function displays a dialog box
that contains our argument string and, after executing it, returns a boolean indi-
cating the user’s selection:

<canvas debug="true">
 <button>Confirm
 <handler name="onclick">
 LzBrowser.callJS('confirm', this.gotReturn,
 'Would you like to proceed?');
 </handler>
 <method name="gotReturn" args="r">
 Debug.write('gotReturn', r);
 </method>
 </button>
</canvas>

Figure 15.5 shows the familiar browser dialog box that appears when a Laszlo
application calls a browser JavaScript function.

Figure 15.5 In this example, invoking a browser-level JavaScript dialog box that returns a value,
we have shown the returned debug value after the dialog window’s OK button has been clicked.

422 CHAPTER 15

Integrating DHTML and Flash
Although a Laszlo DHTML application can directly call browser JavaScript func-
tions and directly access variables, this practice is strongly discouraged since the
result of doing so is an implementation-specific application. In the next section,
we’ll look at situations where implementation-specific features are needed and
show you how to access them.

15.5 Calling Flash from Laszlo

Just as Laszlo can execute browser JavaScript functions, it can also execute Flash
functionality. This allows a Laszlo application to be augmented with Flash-specific
functionality, such as accessing the system clipboard or calling any primitive Flash
ActionScript object.

15.5.1 Using Flash to set the system clipboard

Flash can store and retrieve character strings to the system clipboard, using the
setClipboard method, for all major operating systems. Text saved to the clip-
board is thereby accessible to desktop applications. There is no comparable way to
do this using DHTML:

<canvas>
 <edittext name="input" width="200"/>
 <button x="210">Copy to System Clipboard
 <handler name="onclick">
 LzBrowser.setClipboard(parent.input.getValue());
 </handler>
 </button>
</canvas>

Figure 15.6 shows how the user’s input
value is retrieved from an input field,
passed to the system clipboard, and finally
accessed by the Notepad application.

 For those situations where Laszlo
hasn’t already created a method or tag
for a desired Flash capability, Laszlo
allows the Flash ActionScript object to be
called directly.

15.5.2 Accessing Flash ActionScript objects

Laszlo’s tags and methods are designed to limit the need to access implementation-
specific libraries. But for those cases when a Flash-specific feature is necessary, Flash

Figure 15.6 Laszlo Flash supports the
setClipboard method, thus allowing
images or text to be copied.

Embedding HTML in Laszlo 423
ActionScript objects supported by a particular release (Flash 7 or Flash 8) can be
called directly. The following example demonstrates how a Flash Action object can
be instantiated in Laszlo to display a Select File to Upload menu:

<canvas>
 <script>
 var fr;
 function getReference() {
 if (global['fr'] == undefined) {
 fr = new flash.net.FileReference();
 }
 return fr;
 }
 </script>
 <button text="Select File" onclick="(getReference()).browse()"/>
</canvas>

We invoke the browse function from
the Flash ActionScript flash.net.File-
Reference object to produce the Select
File to Upload dialog box shown in fig-
ure 15.7.

 Although additional work is required
on both the server and client side to get
file uploading to work, we’ve provided a
client-side window for selecting this file.

15.6 Embedding HTML in Laszlo

The final step to complete the functionality provided by a shell wrapper is to have
a Laszlo application complete the circuit by embedding an HTML web page. Las-
zlo’s view-based html object provides HTML-based content to a parent view, which
can be used in both Laszlo Flash and DHTML applications. While it’s intended to
be used in a nested visible object, its operation is the reverse of other view-based
objects. Instead of causing its parent to size itself to its physical dimensions, the
html object adopts its parent’s dimensions. This new usage requires some new
attributes, listed in table 15.4, to describe this relationship.

Table 15.4 html object attributes

Name Data Type Attribute Description

heightoffset number Setter Trims an HTML image’s height to fit within a view

iframe string Read-only Name of the containing iframe

Figure 15.7 This client-side file-selection
window is produced by a native Flash call.

424 CHAPTER 15

Integrating DHTML and Flash
The reason for this unusual relationship is that, unlike regular nested views,
where the child initializes first, the html object needs its parent to initialize first.
The parent must be completely initialized before it can set its src attribute. This
attribute setting is the initial URL for the html object and it can’t complete its ini-
tialization without it.

 We can display a Google web page in a Laszlo application. It will be contained
in a window component that features automatic scrolling both horizontally and
vertically. We use the xoffset and yoffset attributes to maneuver the HTML
image directly over the window, and the widthoffset and heightoffset
attributes to trim the HTML image in the window. When the HTML image is cor-
rectly sized using these settings, the window’s scrollbar operates correctly:

<canvas>
 <window width="400" height="400"
 oninit="this.win.setSrc('http://www.google.com/')">
 <html xoffset="8" yoffset="25" widthoffset="-20"
 heightoffset="-45" name="win"
 oninit="this.bringToFront()"/>
 </window>
</canvas>

Another consequence of not being nested in the normal way is the fact that the
bringToFront method must be used to place the HTML image in front of the win-
dow. Table 15.5 contains the complete set of html methods.

loading boolean Read-only States whether the HTML application is still loading

src string Setter Specifies the URL to be loaded

target LzNode Setter Name of the parent view

visible boolean Setter Controls the visibility of the HTML display

widthoffset number Setter Trims an HTML image’s height to fit within a view

xoffset number Setter Sets the horizontal offset of the HTML image

yoffset number Setter Sets the vertical offset of the HTML image

Table 15.5 html object methods

Name Description

bringToFront Brings the HTML view to the front

sendToBack Sends the HTML view to the back

Table 15.4 html object attributes (continued)

Name Data Type Attribute Description

http://www.google.com/')

Embedding HTML in Laszlo 425
While a DHTML application can use the default HTML wrapper, a Flash applica-
tion requires some additional customization. We need to specify its LzOptions set-
ting to set its wmode parameter to transparent. The wmode parameter is an internal
Flash setting that allows the Flash content to be layered with DHTML. We create
another header file especially for Flash applications using the html object:

<head>
 <script type="text/javascript">
 lzOptions = { "wmode: transparent" };
 </script>
 ...
</head>

Now our embedded Flash application pro-
duces the “live” web page seen in figure 15.8.
This isn’t simply a static display but is a fully
operational web page. If you click any of its
links, a new web page appears in its place.

 Of course, there is nothing to prevent you
from displaying web pages that contain embed-
ded Laszlo applications; you just need to be
careful not to set up an endless loop!

 Now that we’ve replicated the functionality
of a shell wrapper in Laszlo, it’s time to put
these tools to use by embellishing DHTML
applications with the audio and video capabili-
ties found only in Flash. This provides develop-
ers with the best of both worlds: taking advantage of the open standard
compliance of DHTML, while customizing with the hottest features from Flash.
We’ll demonstrate these techniques by completing the Media Player window for
the Laszlo Market and supporting it under different combinations of embedded
application types.

 But first we’ll explore how Laszlo works with video.

setSrc Sets the URL source

setTarget Sets the parent node

setVisible Changes the visibility of the HTML view

Table 15.5 html object methods (continued)

Name Description

Figure 15.8 A live HTML web page is
displayed in a window.

426 CHAPTER 15

Integrating DHTML and Flash
15.7 Working with video

Laszlo currently supports Flash FLV (Flash Video), a binary file format delivering
bit-mapped video to a Flash player. This allows Flash to execute SWF files to dis-
play animated vector graphics and FLV files for bit-mapped video. When an FLV
file is displayed, these two file formats are complementary—the SWF file controls
the display of FLV files. Although an FLV file is limited to a single video, several
FLV connections can be simultaneously opened. Flash provides multiple ways to
deliver video:

■ Embedded video (requires SWF)

■ Progressive download (requires SWF and FLV)

■ Streaming video (requires SWF and FLV)

SWF and FLV files can be used to deliver both video and audio (MP3). The calling
methodology is the same; the only difference is that the content is audio instead
of video.

15.7.1 Using streaming media

With streaming media, audio and video data is delivered in real time to support
“live” broadcasting. But streaming offers much more than just broadcasting ser-
vices. Unlike HTML, it provides a persistent connection to support bidirectional
service, transferring both media content and control messages. Users can transmit
audio and video data as well as receive it and interact as equal participants,
instead of simply being passive viewers.

 The player can send control messages to the streaming server to have its data
rate adjusted to account for changing network conditions. If a user’s network con-
nection becomes congested, a streamed webcast can downgrade the quality to still
allow a continuous viewing experience. Control messages can also be sent to
dynamically access any frame within an FLV file.

 Streaming is a property of the delivery system rather than of the media. A per-
sistent connection is required to support streaming, so the HTTP protocol can’t be
used. A persistent connection also relieves the need for a server to maintain a ses-
sion. Since these requirements are beyond the capabilities of HTTP, another pro-
tocol is needed along with special server software. Various companies support
their own proprietary streaming media file formats: Adobe Flash, Apple Quick-
Time, and Microsoft’s Window Media, among others. Of course, none of these file
formats or protocols are compatible with one another, and they all require a player

Working with video 427
plug-in to be installed. Each of these companies also sells its own streaming media
server. Since Laszlo currently only supports Flash, we’ll default to using FLV.

 Flash uses the Real-Time Messaging Protocol (RTMP) with the Flash Communi-
cation Server. Although RTMP is proprietary, Adobe has slowly begun to make its
core Flash platform protocols and file formats available to open-source groups to
encourage a larger audience. One of these is the Red5 project, which provides an
open source version of Adobe’s Flash server. We’ll use the Red5 streaming server
to provide streaming video for our Laszlo Market application.

15.7.2 Using the Red5 server

Red5 is an open source project providing an RTMP server to support real-time
streaming data transfer services for Flash players. Red5 eventually will support all
the major features available from the Adobe Flash Communication Server. You
can download Red5 at www.osflash.org/red5. While it is still a few releases away
from a 1.0 version, it already provides the fundamental services.

 Since Red5 is a Java-based server-side application, you can install it as easily as
you would a web server. Red5 listens for TCP connections on port 1935, which
means it can reside on the same hardware as a web server. Before it can download
videos, a Laszlo application first needs to establish a persistent RTMP connection
with the Red5 server. Once this connection has been established, a Laszlo applica-
tion can begin using Red5’s downloading services.

Accessing Red5 server through RTMP
A Red5 server request is made through an RTMP URL. This has the familiar form
of an HTTP URL, except that the RTMP protocol is used:

rtmp://host:port/app

Although oflaDemo is referred to as an application, it specifies this directory:

$RED5_HOME/webapps/oflaDemo/streams

which contains the collection of video files.
 In this request, app specifies the application; Red5’s default port setting is

1935. Now we’ll access some demo FLV videos supplied with Red5 that are con-
tained in the oflaDemo application through this RTMP URL:

rtmp://localhost:1935/oflaDemo/Spiderman3.flv

We can’t simply enter this URL into the browser window to display the Spiderman
3 movie trailer; instead, we need a Flash player to initiate the connection. In the
next section, we’ll construct our Laszlo application that displays this movie trailer.

428 CHAPTER 15

Integrating DHTML and Flash
15.7.3 Interfacing Laszlo to a Red5 server

Laszlo has created a number of classes to simplify access to streaming media. These
classes are contained in the $LASZLO_HOME/lps/components/extensions/av
directory and supply the fundamental interfaces to the Red5 streaming media
server. Before you can use any of the other classes, you must first establish a con-
nection using the rtmpconnection class. The attributes for this class are listed in
table 15.6.

We only need to set the src and autoconnect attributes to display a video. We’ll
also add the rtmpstatus component to provide status information telling us
whether a successful connection was established with the Red5 server. This com-
ponent displays a “status light” showing red, yellow, or green to indicate the con-
nection state:

<canvas>
 <rtmpconnection src="rtmp://localhost:1935/oflaDemo"
 autoconnect="true"/>
 <rtmpstatus/>
</canvas>

When the rtmpstatus component displays a green light (indicating it has success-
fully connected to the Red5 server), we’re ready to access our demo video.

 The videoview can be used to show a video:

<canvas>
 <rtmpconnection src="rtmp://localhost:1935/oflaDemo"
 autoconnect="true"/>
 <videoview url="Spiderman3.flv" type="rtmp" autoplay="true"/>
</canvas>

Although this creates a simple video display, useful for many applications, most
people expect a minimum video interface that provides stop, rewind, fast-forward,
and volume controls. Laszlo’s videoplayer class supplies these functions:

Table 15.6 rtmpconnection attributes

Name Data Type Attribute Description

src string Setter Application URL.

autoconnect boolean Setter Connect automatically during initialization. If false, you
need to explicitly call connect(). The default is true.

status string Read-only String that indicates connection status.

stage number Read-only Number that indicates the current connection stage—
0: disconnected, 1: connecting, 2: connected.

Working with video 429
<canvas>
 <include href="av"/>
 <rtmpconnection src="rtmp://localhost:1935/oflaDemo"
 autoconnect="true"/>
 <videoplayer height="300" width="400"
 url="Spiderman3_trailer_300.flv" type="rtmp"
 autoplay="true"/>
</canvas>

Since the autoplay attribute is set to true,
the videoplayer immediately begins play-
ing the Spiderman 3 trailer. We can also
use the url attribute to trigger the playing
of a video. Figure 15.9 shows the video
player with its control interface. There is a
Pause button to momentarily stop play-
back and a knob that supports fast-forward
and rewind. Additionally, the user can
control the volume through the audio
icon in the right corner.

 Now that you know how to display
Flash video in Laszlo, let’s add these video capabilities to our Laszlo Market
application so that the video is accessible from both Laszlo DHTML- and Flash-
based implementations.

15.7.4 Adding video to the Laszlo Market

At first glance, making Flash-based services accessible to a DHTML-based applica-
tion would appear to require highly specialized surgical procedures. But by build-
ing on the techniques described earlier in this chapter, adding Flash-based
services—in this case, video—turns out to be remarkably easy.

 The Laszlo Market requires a mediaplayer class to display a customer’s video
when it is dragged and dropped into the Media Player window. For a Flash imple-
mentation, we can build this functionality directly into the application. However, a
DHTML implementation requires a separate Laszlo Flash application, which we’ll
call mediaplay.lzx, to contain this video functionality. We’ll use an HTML wrapper
to bundle the DHTML and Flash applications together into a seamless whole. We
can add Flash video to the Laszlo Market by including the mediaplayer:

<canvas>
 <include href="lzmodules/mediaplayer.lzx"/>
 <mediaplayer width="100%" height="100%"/>
</canvas>

Figure 15.9 A video player is shown with its
control interface.

430 CHAPTER 15

Integrating DHTML and Flash
The mediaplayer is divided into Flash and DHTML sections. Because video func-
tionality is only available in Flash, the Flash segment implements the video player.
A DHTML application embeds the output from the Flash-based video player using
the html object. Let’s start by looking at the Flash portion, shown in listing 15.11.

 The mediaplayer must be able to operate in two different modes: when used
in a Laszlo Flash application and also when embedded in Laszlo DHTML. The Las-
zlo Flash application only implements mouse-tracking functionality to drop videos
onto the player. When it is embedded in Laszlo DHTML, the DHTML handles all
mouse tracking. It registers itself in the media_target tracking group and only
needs to handle the onmousetrackup event to load the video url.

 As listing 15.11 shows, the videoplayer listens for the canvas.playurl
attribute, which specifies the name of the requested video.

<library>
 <switch>
 <when runtime="dhtml">
 <class name="mediaplayer">
 ...
 </class>
 </when>
 </when>
 <otherwise>
 <include href="av"/>
 <attribute name="playurl" value="" type="text"/>
 <class name="mediaplayer">
 <videoplayer id="vid"
 width="$once{classroot.width-10}"
 height="$once{classroot.height}">
 <method name="playurl" args="url">
 if (url == null) return;
 this.setAttribute('url', url);
 </method>
 <handler name="oninit">
 LzTrack.register(this, "media_target");
 </handler>
 <handler name="onmousetrackup" args="t">
 var d = dragger.data;
 var url = d.attributes.video;
 canvas.setAttribute(
 'playurl', url);
 </handler>
 <handler name="onplayurl" args="l" reference="canvas">
 this.playurl(l);
 </handler>
 </videoplayer>

Listing 15.11 Laszlo Flash section containing video player

Displays
videoplayer

Sets video
title

Loads
video

Working with video 431
 </class>
 </otherwise>
 </switch>
</library>

Now we’ll take a look at the DHTML side in listing 15.12, which needs to perform
all the mouse tracking. Since there are multiple applications, we’ll also need to
control the z-axis placement of these applications; this determines which applica-
tion receives keyboard and mouse input. The Laszlo DHTML application will gen-
erally be the frontmost application, but the Laszlo Flash application should move
to the front when a user needs access to the control buttons. This requires that
both local and tracking-group mouse events be handled. Now the control buttons
are accessible when an onmouseover event occurs and no tracking is occurring.

<library>
 <switch>
 <when runtime="dhtml">
 <class name="mediaplayer">
 <view id="vid" width="100%" height="100%">
 <attribute name="url" type="text" value=""/>
 <handler name="onurl" args="u">
 this.playurl(u);
 </handler>
 <method name="playurl" args="url">
 if (url == null) return;
 Lz.mediaplayer.
 setCanvasAttribute
 ('playurl', url);
 </method>
 <handler name="oninit">
 LzTrack.register(this, "media_target");
 parent.videoplayer.sendToBack();
 </handler>
 <handler name="onmousetrackover">
 this.tracking = true;
 parent.videoplayer.sendToBack();
 </handler>
 <handler name="onmousetrackout">
 this.tracking = false;
 </handler>
 <handler name="onmousetrackup">
 this.tracking = false;
 var d = dragger.data;
 var video_url = d.attributes.video;
 vid.playVideo(video_url);
 </handler>

Listing 15.12 Laszlo DHTML section embedding a video player

Sets video for
videoplayer

Handles
dragging
operations
in DHTML

432 CHAPTER 15

Integrating DHTML and Flash
 <method event="onmouseover">
 if (this.tracking != true)
 parent.videoplayer.
 bringToFront();
 </method>
 <method event="onmouseover"
 reference="LzGlobalMouse" args="e">
 if (e == this) return;
 parent.videoplayer.sendToBack();
 </method>
 </view>
 <html name="videoplayer"
 visible="${gController.currstate == 'Main'}"
 src="mediaplayer.jsp"/>
 </class>
 </when>
 <otherwise>
 ...
 </otherwise>
 </switch>
</library>

The display of the video player is provided by the html tag. Its display is produced
from the HTML output returned by mediaplayer.jsp. This file also communicates
the video name from DHTML to Flash. Because the video player is a complete Las-
zlo application, we can set attributes on its canvas to pass the video name from
DHTML to Flash. Use the following code to configure the embedded Laszlo Flash
application so it can be easily referenced within the DHTML application:

<html>
 <%@ include file="header.jsp"/>
 <body>
 <script type="text/javascript">
 Lz.swfEmbed({url: 'mediaplayer.lzx?lzt=swf',
 width: '100%',
 height: '100%', id: 'mediaplayer',
 wmode: 'transparent'});
 window.parent.Lz.mediaplayer = Lz.mediaplayer;
 </script>
 </body>
</html>

Because we are working in DHTML, we can directly access the browser’s DOM.
This allows us to store a reference to the embedded mediaplayer in the parent
frame. Now the embedded Flash video player can be easily accessed by the Laszlo
DHTML application through Lz.mediaplayer. We can then use setCanvas-
Attribute to pass the video name from DHTML to the embedded video player.

Brings videoplayer
to front to access
playback controls

Displays
video output

Summary 433
 Congratulations, we’ve now added video-playing capabilities to both our Laszlo
Flash and DHTML applications. We achieved this so seamlessly that it is now diffi-
cult to distinguish one application from the other. This frees developers to
develop and deploy applications on their preferred target platform.

15.8 Summary

You don’t have to choose between the DHTML and Flash platforms—Laszlo lets
you develop hybrid applications that combine the best features from both plat-
forms. Developers who prefer the open source environment provided by DHTML
can now supplement its functionality with proprietary Flash features on an as-
needed basis. This allows them to keep the majority of their application in DHTML
and isolate these features until future open source solutions are available. Devel-
opers who prefer working with Flash benefit since their applications can now be
listed in Google and other popular search engines to attract a larger audience.

 We’ve now concluded all client-side development that is possible without server-
side support. The remaining chapters will address server-related issues. At this point,
we’ve created a full-featured prototype application that allows all client-side func-
tionality to be exercised. The advantage of this approach is that client-side devel-
opment is completely isolated from server development. In this way, developers can
proceed independently without having to deal with coordination issues between var-
ious development groups. This dramatically simplifies project management, since
issues in one group don’t impact the other.

Part 5

Server and
 optimization issues

The previous parts of this book promoted postponing server-side devel-
opment by relying on resident datasets for early testing. This approach sev-
ers dependencies between the front-end and server-side development
groups. Consequently, each group can work independently toward a com-
mon API, which serves as the bridge between their efforts. Although some
development groups might find it more productive to work jointly in early
development, that choice should be an option and not imposed by the work-
ing environment.

 Our next objective is to make the transition to an integrated development
effort as seamless as possible. Chapter 16 provides a methodical approach to
update resident datasets into HTTP-supported datasets. Once we have access
to large server-supported databases, we’ll need to worry about performance
optimization issues. The Laszlo Market will be updated to support sessioned
data—that is, to maintain shopping cart contents between sessions. Chapter 17
demonstrates methods for managing large datasets in Laszlo to ensure that
resources aren’t wasted. In particular, the Market will be updated to display
large amounts of data using paged datasets. Chapter 18 deals with optimizing
an application’s startup time with dynamic libraries and redistribution of ini-
tialization costs over time.

Networked data sources
This chapter covers
■ Converting resident to HTTP datasets
■ Building data services
■ Building a sessioned application
■ Maintaining server domains
437

438 CHAPTER 16

Networked data sources
Be silent as to services you have rendered, but speak of favors
you have received.

 —Seneca, Roman philosopher

We’ve arrived at a point where the major Laszlo design issues have been resolved
and further development requires access to a networked data source. Up to this
point, we’ve used resident datasets to supply all of our data-related needs.
Although networked data could have been introduced earlier, we’ve purposely
postponed it. Decoupling client and back-end development allows each to proceed
independently, an approach that has a number of advantages. We enjoyed unlim-
ited freedom to experiment with interface development without support from a
server development group. Our client development front end was also isolated
from any possible back-end problems, which simplified and sped up development.
Finally, although we didn’t use this capability, this approach allows extensive unit
testing early in development, which can be reused for the server implementation.

 Although local datasets initially sped up our development, they are con-
strained by capacity and nonpermanent persistence. To remove these constraints,
it’s necessary to work with networked resources. Unfortunately, this transition
complicates processing. Since our data resources are no longer compiled into the
application, we can’t be assured that our data is always available. We must now
deal with the fallibility issues of networked data, including server failure and con-
gestion issues that result in error and timeout conditions.

 This transition must be as effortless and seamless as possible. In chapters 8
and 12, we used local datasets to establish the XML data structure for the
dsProducts and dsCart datasets. This XML data structure was used as a model
for creating our data path’s XPath expressions. Now, we must ensure that data
returned by the server has an identical XML structure, as any differences will
cause these expressions to return incorrect matches. We want to avoid the pain
of debugging broken XPath expressions. The best approach is to add unit test-
ing to ensure compliance.

 In this chapter, we’ll demonstrate how to create supporting classes that allow
an easy transition from local to networked data. These classes can be added to our
existing application with minimal code changes. While it isn’t quite as easy as flip-
ping a switch, this transition is easily applied to most applications with minimal
pain and heartache.

http://www.quotationspage.com/quotes/Seneca/

Interfacing to web servers 439
16.1 Interfacing to web servers

To interface to a web server, Laszlo requires only an XML-over-HTTP service,
which returns an XML document for a resident dataset. XML-over-HTTP is sup-
ported by most servers.

 The equivalence between resident- and HTTP-server-supplied data makes com-
parison easy. If an HTTP-supplied dataset matches a resident datset that was used
in early development, then the data path XPath statements in the application
remain valid. But before we can start the transition from resident to HTTP
datasets, we need to review XML-over-HTTP and dataset operation.

 The HTTP standard specifies that all HTTP servers return a response whose
content type can be set to text/xml. This allows Laszlo to interface to any HTTP
web server—ranging from basic HTTP web servers such as Apache, Jetty, or
Microsoft’s Internet Information Services (IIS) to the various web frameworks
such as Struts, Tapestry, Ruby on Rails, and Microsoft .NET—that work with servlet
containers to provide enterprise-class services.

 There are two approaches to providing XML-over-HTTP web services: they can
be either activity or resource oriented. An activity-oriented approach views the
Internet in terms of available services. A popular example of this approach is Sim-
ple Object Access Protocol (SOAP). The resource-oriented approach, also known as
Representational State Transfer (REST), takes the opposite approach and views
the Internet in terms of resources. These REST resources can be manipulated with
standard HTTP commands: POST, GET, PUT, and DELETE. We’ve decided to use
the REST approach in this book, since it’s an extension of existing best practices
and provides the simplest way to interface Laszlo to an HTTP server.

 A good example of a REST-based web service is Really Simple Syndication
(RSS). RSS newsfeeds are a familiar feature on the Web as they aggregate syndi-
cated web content such as news reports into a list of headlines. These aggregated
headlines provide coverage to almost any topic of interest. RSS output is a dialect
of XML, which can be retrieved through a standard URL. For example, to access
the top stories from Yahoo!, we’d type in the following URL:

http://rss.news.yahoo.com/rss/topstories

It will return an XML document whose data composition is defined by the RSS 2.0
specification:

<?xml version="1.0" encoding="iso-8859-1" ?>
<rss version="2.0" xmlns:media="http://search.yahoo.com/mrss/">
 <channel>
 <title>Yahoo! News: Top Stories</title>

440 CHAPTER 16

Networked data sources
 <item>
 <title>Populations of 20 common birds
 declining (AP)</title>
 <link>
http://us.rd.yahoo.com/dailynews/rss/topstories
 </link>
 ...
 </item>
 <item>
 ...
 </item>
</rss>

This ensures that the XML document delivered by any RSS 2.0–compliant server
has a compliant composition.

 We’ll start by demonstrating how a dataset can be used to directly retrieve data
from a short list of RSS websites and then examine the limits of this approach.
Next, we’ll see the benefits of using buffered datasets. Finally, we’ll implement a
framework that can be used across different datasets to easily generate and send
HTTP requests that automatically invoke its response handler methods. By the
end of this chapter, we’ll have a general approach for handling HTTP data that is
easily extended to work with any request.

16.1.1 Using datasets with HTTP

Before you can make the transition from static resident to dynamic HTTP datasets,
you need a good grasp of dataset properties, particularly those concerned with
HTTP. These properties are needed to deal with the dynamic timing involved in
loading data from an HTTP server. With that understanding, we’ll start with the
simplest type of HTTP connection, interfacing to an RSS server.

 A dataset can store local data compiled into an application or HTTP data
returned by a web server. From Laszlo’s viewpoint, data is data; its origin is
immaterial.

 An application can have any number of datasets. While datasets support every
configuration feature in the HTTP standard, we’ll cover only their most important
features.

 A dataset is an unusual Laszlo object since it is descended from multiple par-
ents. It’s derived from the LzNode object, which means it can be used as a declara-
tive tag, as well as from the LzDataElement object (to gain access to its data-access
methods). A dataset is flexible enough to supply a simple interface for accessing
local data while also supporting all the optional settings defined by the HTTP

Interfacing to web servers 441
standard. A dataset’s src attribute, which determines the location of the data,
can have these values:

■ none: Data is contained in the dataset.

■ pathname: A local XML file is compiled into the application.

■ url: An absolute or relative URL points to HTTP-based data.

A dataset’s operating mode is based on its src attribute. If the attribute is omitted
or set to a local file, then it’s a local dataset; when set to a URL, it interfaces to
HTTP-based data. This allows an application’s development cycle to easily transi-
tion from local test data to networking with an HTTP server.

 By default, Laszlo sends HTTP GET requests, but a dataset’s setQueryType
method can be used to change this. Requests with a large number of query param-
eters should be sent with HTTP POST to ensure that data is sent as part of the
request body, since some servers have limits on the size of a GET query string.
Tables 16.1 and 16.2 list some of the most commonly used dataset attributes and
methods. To see the complete listing of attributes and methods for a dataset, view
the latest reference manual at the Laszlo website at http://www.Laszlo.org/lps4/
docs/reference.

Table 16.1 Commonly used dataset attributes

Name Data Type Attribute Default Description

querystring string Read-only A string appended to a dataset request.

request boolean Setter When true, the dataset makes a request
when it begins the init stage.

secure boolean Setter false Specifies whether or not the app-LPS
connection is secure.

secureport number Setter 443 The port number to use to connect to the
LPS for a secure connection.

Src string Setter The source for requests made by this
dataset.

timeout number Setter 30000 The timeout period in milliseconds for load
requests.

type string Setter If set to http, the dataset interprets its src
attribute as a URL from which to load its con-
tent, rather than a static XML file to inline.

http://www.Laszlo.org/lps4/docs/reference

442 CHAPTER 16

Networked data sources
To ensure that an application is initially populated with data, the request
attribute for its datasets should be set to true. This sends a series of initial HTTP
requests to populate each dataset when application initialization completes. An
HTTP dataset can be manually populated by calling its doRequest method.

 We’ll now use the attributes and methods listed in tables 16.1 and 16.2 to dem-
onstrate how easy it is to implement an RSS newsfeed with Laszlo.

Implementing an RSS newsfeed
Data paths and datasets make accessing RSS information simple. Listing 16.1 sets
the request attribute for the newsfeed dataset, so it’s initialized with data to create
a headline listing display. Since the data contained in these feeds is RSS-compliant,

Table 16.2 Commonly used dataset methods

Name Description

abort() Stops loading the dataset’s current request.

doRequest() Issues a request immediately using the current values; if
autorequest is true, this method is called automatically
when values change.

getResponseHeader(name)* Returns the value for the specified response header, or
false if there is no header with that name; if name is omit-
ted, all response headers are returned as an object of
name/value pairs.

getSrc() Returns the src attribute of the dataset.

setHeader(key, val)* Sets a header for the next request.

setQueryParam(key, val) Sets a named query parameter to the given value.

setQueryParams(assoc array) Sets multiple query parameters using the keys in the argu-
ment as keys and the values of those keys as values.

setQueryString(string) Sets the querystring parameter of the dataset to the
given string.

setQueryType(reqtype) Sets the query type for the parent data source to either POST
or GET by calling the method of the same name on this
dataset’s data source.

setRequest(boolean) Specifies whether or not the dataset makes its request on
initialization.

setSrc(src) Sets the src attribute of the dataset’s parent data source.

*Subject to platform capabilities (not available on Flash unless in proxy mode)

Interfacing to web servers 443
their data composition can be expressed with a single set of data path expressions.
We can change the src attribute of our dataset to point to any other RSS 2.0–
compliant newsfeed with the assurance that our data path expressions still work
correctly. In our example, we’ll toggle between the CNN and Yahoo! newsfeeds by
clicking the Change button. This example could easily be expanded to include
additional selections.

<canvas>
 <dataset name="newsfeed" request="true"
 src="http://rss.news.yahoo.com/rss/topstories"/>
 <button y="50" text="Change">
 <attribute name="cnt" value="1" type="number"/>
 <handler name="onclick">
 if (this.cnt % 2) {
newsfeed.setSrc(
"http://rss.cnn.com/rss/cnn_topstories.rss"
);}
 else
newsfeed.setSrc("http://rss.news.yahoo.com/rss/topstories");
 newsfeed.doRequest();
 this.setAttribute("cnt", this.cnt+1);
 </handler>
 </button>
 <window title="RSS Reader" x="80" height="150" width="350">
 <view>
 <view datapath="newsfeed:/rss/channel/item">
 <text name="txt" fontsize="9" resize="true"
 text="$path{'title/text()'}" fgcolor="blue"/>
 </view>
 <simplelayout axis="y"/>
 </view>
 <scrollbar/>
 </window>
</canvas>

The dataset’s request attribute B generates the initial display of the Yahoo! RSS
news headlines, as seen in figure 16.1. Clicking the Change button updates the
src attribute C to display the URL for CNN’s RSS feed. After this update, the
doRequest method D sends the request to the server.

 Although a single dataset works adequately in this trivial example to demonstrate
the basic dataset features, the shortcoming of this approach becomes apparent
when we deal with real-world Internet problems such as HTTP servers timing out or

Listing 16.1 Accessing RSS newsfeeds

Generates
initial display

B

Changes
news source

C

Sends request
to serverD

444 CHAPTER 16

Networked data sources
being down. In these cases, our RSS reader would lose its current display listing, and
only an HTTP server exception code such as HTTP 404 or HTTP 500 would be
returned. Providing a seamless viewing experience requires that buffered datasets
be used to handle HTTP transfers.

16.1.2 Buffered HTTP datasets

Before an application discards its current display, it must have an acceptable next
state. So, when an error or timeout blocks meaningful data, a supplemental error
message should appear. But the current data state should be maintained. This
allows a degraded but still usable application.

 Maintaining this visual continuity requires multiple datasets: a buffering dataset
to handle data transfers and a destination dataset for interfacing and binding to
visual objects. Only when a data transmission successfully completes is the destina-
tion dataset updated with the buffered contents. This approach centralizes error
processing and simplifies processing since the destination dataset is guaranteed to
always receive valid data.

 Here’s a typical set of declarations for a pair of buffering and destination
datasets. The buffering dataset provides handlers for the three possible outcomes
of a request-response sequence: data, error, or timeout. In this case, valid data is
handled in a handleData method, errors in a handleErrors method, and timeout
situations in a handleTimeout method:

<dataset name="dsBuffer" type="http"
 ondata="this.handleData(this);"
 onerror="this.handleError(this);"
 ontimeout="this.handleTimeout(this);">
</dataset>
<dataset name="dsProducts"/>

The HTTP standard specifies that any response status containing a numeric value
between 200 and 299 is considered to be valid, resulting in a call to the ondata
handler. A response in the 400 to 599 range is an error, resulting in a call to the

Figure 16.1
Titles from the Yahoo! RSS
newsfeed are displayed
initially. A click of the
Change button switches
the RSS newsfeed to CNN.

Specifies the
buffering dataset

Specifies the destination dataset

Interfacing to web servers 445
onerror handler. An example of a typical error response is the 404 error gener-
ated when an HTML page can’t be found. The delay invoking ontimeout is config-
urable in the timeout attribute, defaulting to 30 seconds.

 Although this provides a workable system for communicating with an HTTP
server, it requires a buffering dataset for every destination dataset. With a large
number of datasets, this is a significant overhead. A better solution is to pool the
buffering datasets among the display datasets. This is the rationale behind the
LzHttpDatasetPool service.

16.1.3 Pooling buffering datasets

The LzHttpDatasetPool service maintains a pool of buffering datasets for sharing
among any number of destination datasets. Datasets are not preallocated to the
pool; an additional dataset is created whenever required. Consequently, the num-
ber of pooled datasets increases to handle the highest level of traffic. Released
datasets are put back into the pool for the next HTTP connection.

 The LzHttpDatasetPool object has two methods: get retrieves a pooled
dataset and recycle releases this dataset back into the pool. This call obtains a
buffering dataset:

var ds = LzHttpDatasetPool.get(this.dataDel, this.errorDel,
 this.timeoutDel);

where

■ dataDel is a delegate for the ondata event.

■ errorDel is a delegate for the onerror event.

■ timeoutDel is a delegate for the ontimeout event.

A delegate associates a method with each event. The once qualifier ensures that
the dsLoad, dsError, and dsTimeout methods are set up only once:

<attribute name="dataDel"
 value="$once{new LzDelegate(this, 'dsLoad')}"/>
<attribute name="errorDel"
 value="$once{new LzDelegate(this, 'dsError')}"/>
<attribute name="timeoutDel"
 value="$once{new LzDelegate(this, 'dsTimeout')}"/>

The LzHttpDatasetPool service ensures that all buffered datasets are always
clean, empty, and ready for use to communicate with an HTTP server.

446 CHAPTER 16

Networked data sources
16.1.4 Building a data service

A data service is a global object providing an HTTP-based service that is easily
accessible by other Laszlo objects. For example, a useful place for a data service
is the use of getProducts to populate the Product List window in the Laszlo
Market. A data service isolates lower-level HTTP-based communications within a
convenient interface.

 HTTP server communications are built on requests and responses. We’ll want
to keep the server implementation isolated in a class, for easy revising to work
with other networking technologies such as SOAP or XML-RPC. Instead of directly
invoking the methods of a dataset, we’ll create a data service object to encapsulate
the HTTP communication details for the dataset.

 A data service interface consists of a matching pair of request and response
methods corresponding to each server-related service required by a dataset. The
request method retrieves data from the HTTP server and the response method handles
the server’s response. A further level of encapsulation behind the interface con-
tains the common data transfer operations for buffered datasets.

 Let’s suppose that we have a dsProducts dataset contained in a product-
DataService object whose request method is called getProducts. The pro-
ductDataService’s getProducts method, used to populate the dsProducts
dataset, looks like this:

productDataService.getProducts("New");

The advantage of data service objects is that they can easily be integrated into an
application. Suppose we are controlling an application with a state controller. We
could control the populating of a product listing for a particular screen by adding
a call to the productDataService’s getProducts method (see listing 16.2).

<node id="gController">
 <handler name="onappstate" args="state">
 var title = "";
 switch (state) {
 …
 case "Login to Main":
 this.setAttribute("currstate", "Main");
 productDataService.getProducts("new");
 break;
 … }
 </handler>
 …
</node>

Listing 16.2 Sample application state controller

Interfacing to web servers 447
Listing 16.3 shows a supporting gDataService library to handle the buffering
dataset issues required to handle HTTP requests and responses. The dataset’s
pathurl attribute provides a base URL. We’ll construct a request from the base
URL and an associate array to hold the URL parameters. An error attribute is used
to alert other view objects about network problems; this allows any visual object to
easily provide an error indicator.

<library>
 <dataset name="dsProducts"/>
 <node name="productDataService">
 <attribute name="error" type="string" value=""/>
 <attribute name="pathurl" type="string"
 value="http://www.laszlomarket.com/store/"/>
 …
 </node>
 …
</library>

Listing 16.4 shows a getProductParams method for packaging the URL parame-
ters into an associative array. Although Laszlo provides an LzParams utility for
handling HTTP parameters, a JavaScript associative array works just as well.

<method name="getProductParams">
 var params = {};
 params.action = "list";
 params.category = "new";
 return params;
</method>

Listing 16.5 shows the data service object’s request and response methods to
retrieve all products from the HTTP server for the dsProducts dataset. Although
any name can be used for the response, we adopt a convention of using the
request name and appending Result.

<method name="getProducts">
 var requesturl = pathurl + "products.do";
 var params = getProductParams();

Listing 16.3 productDataService.lzx handles server-related interaction for
 the dsProducts dataset

Listing 16.4 productDataService.lzx: building a query string

Listing 16.5 productDataService.lzx: getting a product listing

448 CHAPTER 16

Networked data sources
 gDataService.sendRequest(this,
 requesturl, params,
 "getProductsResult");
</method>
<method name="getProductsResult" args="status, data">
 if (status == true)
 this.appendChild(
 data.getFirstChild());
 else
 Debug.write("getProductsResult Failed: " + data);
</method>

All that remains is to encapsulate the common data transfer operations for using
buffering datasets, and to connect the request and response methods.

Implementing data transfer operations
For a clean interface to our data services, we package the common underlying
methods into a globally accessible node-based object called gDataService, which

■ Obtains and disposes of a buffering dataset

■ Transfers data from the buffering to the destination dataset

■ Provides an asynchronous response method

■ Provides standard error handling

To make it globally accessible, we define the gDataService object as a top-level
variable in a library in listing 16.6. It uses the LzHttpDatasetPool service with a
set of delegate attributes to attach methods for the data, error, and timeout
events. The sender argument of sendRequest corresponds to the object, in this
case to the dsProducts dataset that invokes the request. The buffering dataset
stores the names of both the sending object and the response method to set up
the automatic invocation of the response method.

<library>
 <node name="gDataService">
 <attribute name="loadDel"
 value="$once{new LzDelegate(this,
 'dsLoad')}"/>
 <attribute name="errorDel"
 value="$once{new LzDelegate(this,
 'dsError')}"/>
 <attribute name="timeoutDel"
 value="$once{new LzDelegate(this,
 'dsTimeout')}"/>

Listing 16.6 gDataService.lzx: encapsulating common HTTP functionality

Establishes
request-response link

Updates
dataset

Sets up data,
error, timeout
delegates

Interfacing to web servers 449
 <method name="sendRequest" args="sender, url,
 params, response">
 var ds = LzHttpDatasetPool.get(this.loadDel, this.errorDel,
 this.timeoutDel);
 ds.setAttribute("sender",sender);
 ds.setAttribute("response",response);
 ds.setSrc(url);
 ds.setQueryType('POST');
 ds.setQueryParams(params);
 ds.doRequest();
 </method>
 …
 </node>
 …
</library>

When a valid HTTP response arrives, the dataset receives an ondata event, which
is handled by the dsLoad method with the buffering dataset as an argument.
Although the response is valid, it must still be checked for a status message indi-
cating server-side processing errors. When the HTTP server returns an error, the
returned XML response consists of a status element with error and message
attributes containing an error description:

<response>
 status error="true" message="Can't find any products"/>
</response>

This approach, shown in listing 16.7, centralizes error processing and simplifies
the response method since it is now guaranteed to receive only valid data.

<method name="dsLoad" args="ds">
 var ebyt = ds.getFirstChild().
 getElementsByTagName("status");
 if (ebyt.length){
 if (ebyt.getAttr("error") == true) {
 var msg = ebyt.getAttr("message");
 this.setAttribute("error",
 "Request Failure: " + msg);
 LzHttpDatasetPool.recycle(ds);
 return; } }
 ds.callback[ds.response]
 (ds.getFirstChild());
 LzHttpDatasetPool.recycle(ds);
 return;
</method>

Listing 16.7 gDataService.lzx (cont): associating the response with the request

Saves sender name,
response method

Updates
HTTP settings

Sends
HTTP request

Finds status
code

B

Checks error attributeC

Displays error
message

D

Invokes response
handler

E

450 CHAPTER 16

Networked data sources
The method dsLoad first checks the status code B by searching through the first
child node for a status node. If a status node C is found, its error attribute is
checked and its message attribute D is displayed in an error window. Remember
that getAttr retrieves XML attributes, while setAttribute sets dataset attributes.
Next, we invoke the response handler E. This line of code requires an extra bit
of explanation.

 An object in JavaScript is represented by a name-value associative array. Since
JavaScript treats functions as data—they are used anywhere a data value can be
used—a value in this array can be a function. This is important here because the
response string can be an identifier to access the response method. Because this is
a method, it can naturally take an argument, which is an LzDataElement object
containing the data returned by the server, minus its wrapping node:

ds.sender[ds.response](ds.getFirstChild());

When a valid HTTP response arrives, the productDataService’s getProducts-
DataResult method is automatically invoked with an argument containing the
returned XML data. This allows the appropriate response handler to be automati-
cally called.

 Finally, standardized methods for handling the error and timeout conditions
are required. When one of these conditions occurs, the gDataService’s error
attribute is set with the failure reason and the buffered dataset is released back
into the pool (see listing 16.8).

<method name="dsError" args="ds">
 this.setAttribute('error', 'The request failed ' + ds.src);
 LzHttpDatasetPool.recycle(ds);
</method>
<method name="dsTimeout" args="ds">
 this.setAttribute('error', 'The request timed out. ' + ds.src);
 LzHttpDatasetPool.recycle(ds);
</method>

Any visual object can use the error attribute as a constraint to ensure that error
messages are automatically displayed. This provides a wide latitude for how
these messages are displayed. Now that you’ve seen how to communicate with
an HTTP server, let’s use it to save our application state.

Listing 16.8 gDataService.lzx: handling error and timeout conditions

Accessing sessioned data 451
16.2 Accessing sessioned data

Although a Laszlo application can operate independently by maintaining state in
its datasets, this data is released and lost when the application terminates. Longer
persistence requires an outside server to store its state. Since HTTP is a stateless
protocol, a server uses a session object to maintain state for each client. A session
generally has a time limit, 30 days for example, before it needs reinitializing.

 Associating a server’s session with a particular browser requires a way to associ-
ate it with a particular client browser. Each session contains a session id that
allows it to be easily located. Including this session id with each request from a cli-
ent browser identifies its corresponding session state. Several techniques have
been developed to transfer a session id: cookies, URL encoding, and SSL sessions.
Cookies are the most popular method, so we’ll look at them. A web server initially
inserts a cookie containing a unique session identifier into a response header and
sends it to the browser. Assuming that the browser supports cookies, it processes
the cookie header and stores it for later use. On subsequent requests, the browser
includes this cookie. When the server processes a request, it checks the cookie for
the session id to identify the browser.

 Laszlo uses this same mechanism for both its Flash and DHTML applications.
Because the browser automatically performs the processing, Laszlo doesn’t have
to perform any special processing. Everything works just as with regular HTML
applications. Although Flash has its own session mechanisms such as Flash cook-
ies, there’s no reason not to use the cookie facilities available in the browser.

16.2.1 Building a sessioned shopping cart

Whenever a shopping cart’s contents are updated, we call the shopping cart data
service to update the server’s session to reflect the changes. This data service con-
tains the CRUD (create, replace, update, and delete) methods to update a ses-
sion’s contents to reflect these actions:

■ Populating a shopping cart from a session

■ Updating a sessioned shopping

■ Deleting from the shopping cart

The following sections examine each of these operations.

Populating a shopping cart from a session
At application startup, the shopping cart needs to be initialized with any previ-
ously saved contents. These contents are obtained through the cartDataService’s

452 CHAPTER 16

Networked data sources
getShopCart method. In listing 16.9, this method is added to the state controller’s
Login to Main state to ensure the shopping cart window is updated before the
main screen is first displayed.

<library>
 <node id="gController">
 …
 <handler name="onappstate" args="state">
 …
 case "Login to Main":
 title = "Login to Main";
 productDataService.getProducts();
 cartDataService.getShopCart();
 break;
 </handler>
 </node>
</library>

Listing 16.10 shows that when valid data is received by the response method, it is
copied to the dsCart dataset. Since this data conforms to the shopping cart
object’s data path XPath expressions, the shopping cart’s display is automatically
updated to reflect the contents. Afterward, the total amount for the shopping cart
items can be calculated by the shopping cart object’s updateTotals method.

<library>
 <dataset name="dsCart"/>

 <node name="cartDataService">
 <attribute name="pathurl"
 value="$once{canvas.apiurl + '/store/'}"
 type="string"/>
 <method name="getShopCart">
 var params = null;
 var requesturl = pathurl + "xcart";
 gDataservice.doRequest(this, requesturl, params,
 "getShopCartResult");
 </method>

 <method name="getShopCartResult"
 args="status, data">
 if (status == true) {
 dsCart.setChildNodes([data.getFirstChild()]);
 main.shoppingcart.shopcart.

Listing 16.9 controller.lzx: retrieving the initial shopping cart contents at startup

Listing 16.10 cartDataService.lzx: retrieving initial contents

Builds request for cart contents

Receives cart
contents

Accessing sessioned data 453
 updateTotals();
 Debug.write("ShopCartData returned: ", data);
 } else {
 Debug.write("getShopCartDataFailed: "+data);
 }
 </method>
 ...
 </node>
</library>

Now that we know how to populate a shopping cart, let’s look at the other CRUD-
related methods supported by the cart data service to manage a sessioned shop-
ping cart.

Updating a sessioned shopping cart
In chapter 12, we added a set of scoreboarding methods to enable all input
sources to easily update the shopping cart. One of these methods, updateShop-
cart, now needs to be updated from operating with a local dataset to communi-
cating its changes to an HTTP server. Because adding and updating a shopping
cart item both occur in this method, we’ll handle them together. In either case,
the server must update its stored session. Listing 16.11 shows updateShopcart
updated with additional persistence-related methods.

<class name="shoppingcart" … >
 …
 <method name="updateShopcart" args="dp">
 <![CDATA[
 var curr = dp.xpathQuery("@sku");
 var exist = dptr.xpathQuery("item/@sku");
 if (exist != null) {
 if (typeof exist != "object") {
 var items = new Array();
 items[0] = exist;
 exist = items; }
 for (i = 0; i < exist.length; i++) {
 if (exist[i] == curr) {
 dptr.setXPath("dsCart:/items/item[@sku='"
 + curr + "']");
 var qty = dptr.getNodeAttribute("qty");
 var sku = dptr.getNodeAttribute("sku");
 dptr.setNodeAttribute("qty", ++qty);
 cartDataService.
 updateShopCartItem(sku,qty);
 main.shoppingcart.shopcart.update_totals();
 return; }}}

Listing 16.11 shoppingcart.lzx: telling the server to add or update an item to a session

Calculates
shopping
cart totals

Updates quantity
of existing item

B

454 CHAPTER 16

Networked data sources
 var ele = new LzDataElement("item");
 var sku =
 dp.getNodeAttribute("sku");
 var title =
 dp.getNodeAttribute("title");
 var image =
 dp.getNodeAttribute("image");
 var price =
 dp.getNodeAttribute("price");
 ele.setAttr("sku", sku);
 dptr.p.appendChild(ele);
 cartDataService.addShopCartItem(sku);
 main.shoppingcart.shopcart.update_totals();
 return;
]]>
 </method>
</class>

When a matching SKU isn’t found in the shopping cart, a new item is created C
with a default quantity of 1. The addShopCartItem method updates the session D
with this new item. When a matching SKU is found, only its quantity B is updated.
The SKU is used to find the matching item in the stored session.

 To support persistence in the shopping cart, we only need to add calls to the cart
data service’s updateShopCartItem and addShopCartItem methods. Listing 16.12
shows the implementation of these methods.

<method name="addShopCartItem" args="sku">
 <![CDATA[
 var requesturl=pathurl + "add_to_cart/";
 var params=this.getShopCartParams(sku,1);
 gDataservice.doRequest(this, requesturl,
 params, "getStatusResult");
]]>
</method>
<method name="updateShopCartItem" args="sku, qty">
 <![CDATA[
 var requesturl = pathurl + "update_cart/";
 var params =
 this.getShopCartParams(sku, quantity);
 gDataservice.doRequest(this, requesturl,
 params, "getStatusResult");
]]>
</method>
<method name="getShopCartParams"
 args="sku, qty">
 var params = {};

Listing 16.12 cartDataService.lzx: adding and updating items

Creates new
item for cart

C

Adds new
item to cartD

Builds request
for new item

Builds request
to update item

Builds
parameter array

Accessing sessioned data 455
 params.sku = sku;
 params.qty = qty;
 return params;
</method>
<method name="getStatusResult"
 args="status">
 if (status == false)
 Debug.write("getShopCartDataFailed: "+data);
</method>

addShopCartItem and updateShopCartItem only return a status response, so we’ll
create a single response method called getStatusResult to handle them. Also,
the supporting getShopCartParams method is used to convert arguments into
URL parameters to be included in an HTTP request to the server.

 Since a shopping cart’s quantity field can be directly updated through its input
field, this is another spot where the server’s saved shopping cart must be updated
with the updateShopCartItem method (see listing 16.13).

<edittext name="qty" valign="middle" width="30" fontstyle="bold"
 doesenter="true" fontsize="10" datapath="qty/text()">
 <method name="doEnterDown">
 var qty = this.datapath.setNodeText(this.getText());
 var sku = this.datapath.getNodeAttribute("sku");
 cartDataService.updateShopCartItem(sku, qty);
 </method>
</edittext>

In a complete implementation, we’d check for negative or non-numeric values,
and enforce an upper limit on the item number. We omit these details here to
focus on the central HTTP issues.

16.2.2 Deleting from the shopping cart

We’ve shown how an item can be deleted from the shopping cart by dragging
and dropping it into the trash. Listing 16.14 updates this with a call to the cart
data service’s deleteProduct method to instruct the server to delete this item
from its session.

<handler name="onmousetrackup">
 …
 var sku = dragger.datapath.getNodeAttribute("sku");

Listing 16.13 shoppingcart.lzx: updating the number of items

Listing 16.14 main.lzx: deleting a shopping cart item when it’s dropped into the trashcan

Contains common
status response

456 CHAPTER 16

Networked data sources
 cartDataService.deleteProduct(sku);
</handler>

Listing 16.15 shows the deleteProduct and its supporting parameters method
that sends a request to the server to delete this product from its session.

<method name="deleteProduct" args="sku">
 <![CDATA[
 var requesturl =
 pathurl + "delete_product/";
 var params =
 this.getDeleteProductParams(sku);
 gDataservice.doRequest(this,
 requesturl, params, "getStatusResult");
]]>
</method>
<method name="getDeleteProductParams"
 args="sku">
 var params = {};
 params.sku = sku;
 return params;
</method>

This completes the CRUD-related data services for managing the server’s ses-
sioned shopping cart. Whenever the contents of a shopping cart are modified,
one of the cartDataService methods is called to build and send an HTTP request
to the server. Although other data services, such as login and order completion,
are required in a real application, we’ve omitted them here since they’re just
another set of data services.

 As Figure 16.2 shows, determining the API marks the end of user-centered
design. To understand how a back-end server implementation, such as Struts or
Ruby on Rails, supports the Laszlo Market with XML-over-HTTP services, please
take a look at appendix A or B online.

Listing 16.15 cartDataService.lzx: deleting a product

Builds HTTP
request to delete
item from cart

Builds
parameter list

Wireframes/
Storyboards Prototype Determination of

Local Datasets
Determination

of API
User- Centered

Design

Figure 16.2 In our top-down development framework, we have advanced to the final stage of
determining the API.

Maintaining server domains 457
16.3 Maintaining server domains

Real-world application development requires an application to be deployed in dif-
ferent domains during its development lifecycle. An application typically moves
from its initial development platform to a staging environment for testing and QA.
After successfully completing its QA phase, an application is ready for production
deployment. A server domain is an HTTP server designed specifically to support a
particular phase of application development. For the Laszlo Market, we’ll move
through three phases: initial development, staging, and deployment. An applica-
tion needs to be able to easily switch domains. To do this, we’ll create a config.xml
file to supplement the main controller.lzx file. An url_env attribute is added to
the gController object to control the definition of an apiurl attribute contain-
ing the current deployment environment: dev, staging, or www (for production):

<library>
 <attribute name="apiurl"
 value="http://localhost:8082" type="text"/>

 <state apply="${gController.url_env == 'dev'}">
 <attribute name="apiurl" value="http://localhost:8082"
 type="text"/>
 </state>
 <state apply="${gController.url_env == 'staging'}">
 <attribute name="apiurl" value="http://localhost:8080"
 type="text"/>
 </state>
 <state apply="${gController.url_env == 'www'}">
 <attribute name="apiurl" value="http://www.laszloinaction.com"
 type="text"/>
 </state>
</library>

The current deployment environment is easily changed by updating the value of
the gController’s url_env attribute. Instead of a static value, a browser’s URL
query string can be used in a constraint to dynamically set the HTTP server
domain. Now this value is propagated throughout the application, updating all
the URLs.

 In this chapter, we’ve shown how a Laszlo application can easily transition from
working with local datasets to network-supplied data. This approach delays integra-
tion issues to the end of application development to minimize their impact. Using
the supporting classes shown in this chapter provides an easy path for this integra-
tion. This approach can also be supplemented with server domain settings, provid-
ing a migration path for an application from development to final deployment.

458 CHAPTER 16

Networked data sources
16.4 Summary

This chapter demonstrated the ease with which a local dataset implementation
can be converted to interface to an HTTP server. Our initial code base was transi-
tioned to a networked environment by adding a handful of data service calls that
handle all HTTP-related communication with the server. Since these data services
are methods in a dataset object, they update that dataset. This isolation of a Laszlo
application from implementation details made the transition relatively easy.

 Because we ensure that the composition of an XML document returned by the
server is compliant with the reference composition established by the local
dataset, none of the data path XPath statements for the view-based objects need
updating. Thus, the application’s operation is identical for local and networked
datasets. This development strategy relaxes the coupling between the client and
server development groups, allowing each to work independently. It also encour-
ages experimentation with different data compositions and APIs without impact-
ing the other side’s efforts.

 Using XML-over-HTTP as the communication medium allows Laszlo to work with
any HTTP-based web server since, by definition, all HTTP servers must support this
capability. In this chapter, we only explored Laszlo’s role in this exchange. Appendix
A and appendix B, online, feature two server-specific implementations, Java-based
Struts and Ruby on Rails, creating a complete client-to-server implementation.

 Using an HTTP server with database access provides a volume of data that can’t
be replicated using local datasets. While this provides new capabilities, it also
introduces optimization issues that are dealt with in the upcoming chapters. In
the next chapter, we examine data-related optimization issues. The final chapter
deals with application-level optimization issues.

Managing large datasets
This chapter covers
■ Building sorting filters with setNodes
■ Building mapping and merging filters with setNodes
■ Optimizing with lazy replication
■ Creating expandable displays with resize replication
■ Creating paged datasets
459

460 CHAPTER 17

Managing large datasets
One of the nicest things about being big is the luxury of
thinking little.

 —Marshall McLuhan,
 communications theorist

In Laszlo’s context, a large dataset is one with a large number of matching data
node names. Up to now, we have only dealt with small datasets. This provided us
with some luxurious working habits, such as allocating view resources to every dis-
played dataset element. This simplified our presentation so we could focus on
fundamentals. But this freedom causes problems in dealing with web servers con-
nected to databases delivering large datasets. Now, we need to learn how optimiza-
tion replication managers can be used to rein in our resource consumption.

 Laszlo’s vertical communication system is built on the datapath. With its default
setting, a datapath creates a replication manager when its XPath returns multiple
data nodes. As a result, Laszlo’s comprehensive set of optimization replication man-
agers are all invoked through different datapath attribute settings. Their general
approach to optimization is to trade performance for size in order to retain flexi-
bility. Laszlo doesn’t employ a single approach; rather, lazy replication, pooling, and
paged datasets handle different aspects of the problem. We’ll demonstrate how easily
the Laszlo Market can be converted to use all these optimization techniques.

 We’ll start by taking another look at the operations of the replication manager
to observe how the data path’s setNodes method provides a backdoor into its
operations. This allows alternative processing filters to be inserted into the data
binding system. These filters can provide common filtering capabilities such as
sorting, mapping, and merging of datasets.

17.1 Processing with alternative filters

The setNodes method is such a useful tool that it probably deserves its own tag.
Instead, its powerful capabilities are buried as a method within the datapath. As a
result, many developers aren’t familiar with how to use it to build alternative process-
ing filters. These filters supplement standard dataset processing with specialized
capabilities such as sorting and merging. These capabilities can be transparently
added without modifying the relationship between a view and its bound dataset. For
example, if a sorting filter is added, an object’s existing datapath expression still
works but now returns sorted matching data nodes. A merging filter could be added
on top of this to return a larger set of sorted data nodes from more than one source.

 We’ll start with an overview of the data path/replication manager system and
setNodes’ role within it.

Processing with alternative filters 461
17.1.1 The setNodes backdoor

Building processing filters doesn’t modify a dataset’s data nodes. Instead, a static
copy of these data nodes is maintained and all modifications occur to this copy.
This approach allows any number of alternative processing filters to be added or
even stacked. Figure 17.1 illustrates how the setNodes method is the missing step
to register this static copy with the replication manager that maintains the data
path binding.

 Once the updated data nodes are registered back with the data replication man-
ager, the data path mechanism works normally to bind these data elements to
visual objects. The setNodes method is a clever way to supplement the normal
operation of the data path replication manager system. It provides the best of both
worlds: the flexibility of JavaScript and compatibility with Laszlo’s data-binding
communication system.

 In this next section, we’ll demonstrate some of setNodes’ capabilities with a
multikey sorting example.

Figure 17.1 The setNodes method is a convenient backdoor mechanism for
manipulating data nodes with JavaScript and re-registering them with a data replication
manager. This introduces alternative processing into the data path replication system.

462 CHAPTER 17

Managing large datasets
17.1.2 Multikey sorting with setNodes

One shortcoming of previously discussed sorting methods is that fact that they are
applied only at the display level. Although displayed results are sorted, the XML
data is unchanged. Since a static copy of the data nodes isn’t maintained, adding a
new item results in a re-sort of the dataset. If a static copy were available, the addi-
tional item could simply be inserted into its correct place. We’ll now demonstrate
how to create a static copy of the data nodes, sort its contents, and use setNodes
to register these contents with a replication manager. In addition, this technique
supports more complex sorts such as multikey sorting.

 Listing 17.1 demonstrates a multikey sort where matching titles are further
sorted by price.

<canvas>
 <script>
 <![CDATA[
 function sortByTitlePrice(a, b){
 var title_a = a.getAttr('title');
 var title_b = b.getAttr('title');
 if (title_a == title_b) {
 if (a.getAttr('price') ==
 b.getAttr('price')) return 0;
 return a.getAttr('price') <
 b.getAttr('price') ? -1 : 1;}
 else if (title_a > title_b) {
 return 1; }
 return -1; }
]]>
 </script>
 <dataset name="dsProducts">
 <products>
 <product sku="SKU-001" title="Die Hard" price="29.95"/>
 <product sku="SKU-002" title="Speed" price="34.95"/>
 <product sku="SKU-003" title="Speed" price="31.95"/>
 <product sku="SKU-004" title="Die Hard" price="33.99"/>
 <product sku="SKU-005" title="Wizard of Oz" price="19.95"/>
 </products>
 </dataset>
 <method event="oninit">
 list = dsProducts.
 getFirstChild().childNodes;
 list.sort(sortByTitlePrice);
 repMgr.datapath.setNodes(list);
 </method>
 <window title="Product Listing" width="200">

Listing 17.1 Multikey sorting with setNodes

Sorts by
title and
price

B

Gets all product
entries

C

Calls customized sortD

Contains
resultsE

Processing with alternative filters 463
 <view id="repMgr" datapath="dsProducts:/products/product">
 <text width="100" datapath="@title"/>
 <text width="100" datapath="@price"/>
 <simplelayout axis="x"/>
 </view>
 <simplelayout/>
 </window>
</canvas>

A JavaScript array named list is assigned C all the product tags from the dataset.
This is the static copy of the dataset’s data node that will be sorted. Next, the Java-
Script library function sort is used D to sort the contents of the list array. The
JavaScript sort library can’t call Laszlo methods, so the JavaScript function sort-
ByTitlePrice B is called. It first sorts by title and then by price. Once it com-
pletes, setNodes E registers the contents of the
sorted list back with the replication manager. Now
all of the replicated clones are updated with these
sorted data nodes. Figure 17.2 shows the multikey
sorted output.

 But this is only one type of processing filter that
can be inserted into a data-binding stream. We’ll
now look at other filters to merge and map multi-
ple datasets into a single virtual dataset.

17.1.3 Merging and mapping datasets

Suppose the Laszlo Market makes a 20 percent margin on its products, and has an
agreement with another store to supplement its stock with their products—per-
haps they specialize in foreign videos—at a 10 percent margin. However, this
other store’s XML data is structured differently from ours. In fact, suppose there
are many such stores, each with potentially different XML data. This is a common
situation as smaller stores use the Web to collectively compete against larger
stores. These differing data streams need to be merged into a single stream.

 We can solve this problem in one of two ways: either we introduce an interme-
diate server to merge the streams or, even better, we use mapping filters. Map-
ping filters provides a more flexible and inexpensive solution to this problem.
Listing 17.2 demonstrates how a mapping filter can be used. The composition of
product data from our store, contained in a file called our_store.xml, is
expressed using node attributes:

Figure 17.2 In this output from the
two-column sort in listing 17.1, the
results are sorted first on title and
second on price.

464 CHAPTER 17

Managing large datasets
<products>
 <product image="dvd/spiderman_II.jpg" title="Spiderman II"
 price="11.99" sku="SKU-001"/>
 <product image="dvd/speed.jpg" title="Speed"
 price="10.99" sku="SKU-002"/>
</products>

while the composition of product data arriving from another store, contained in a
file called other_store.xml, is expressed with child nodes:

<products>
 <product sku="SKU-003">
 <title>Bourne Supremacy</title>
 <price>9.99</price>
 
 </product>
 <product sku="SKU-004">
 <title>The Terminator</title>
 <price>9.99</price>
 
 </product>
</products>

Since we prefer our data composition, because it can be processed slightly faster,
the other store’s data is mapped and merged to match that of our store.

<canvas>
 <dataset name="dsOurStore" src="our_store.xml"/>
 <dataset name="dsOtherStore" src="other_store.xml"/>

 <method name="init">
 var list = dsOtherStore.getPointer().
 xpathQuery(
 "dsOtherStore:/products/product");
 list = fixNodes(list);
 list = appendDatasets(list);
 repMgr.datapath.setNodes(list);
 </method>

 <datapointer name="dp"/>
 <method name="fixNodes" args="list">
 <![CDATA[
 for (var i = 0; i < list.length; i++) {

 dp.setPointer(list[i]);
 var title = dp.xpathQuery("title/text()");
 var price = dp.xpathQuery("price/text()");
 var image = dp.xpathQuery("image/text()");
 var sku = dp.xpathQuery("@sku");

Listing 17.2 A mapping filter for the Laszlo Market

Gets other
store’s data

B

C

Rearranges
other store’s
data to match
ours

D
Appends store
datasets togetherE

Registers
JavaScript
array with
replication
manager

Processing with alternative filters 465
 list[i] = new LzDataElement("product",
 {sku: sku, title: title, price: price, image: image},
 [new LzDataElement("desc")]); }
 return list;
]]>
 </method>
 <method name="appendDatasets" args="list">
 <![CDATA[
 var map = dsOurStore.getPointer().
 xpathQuery("dsOurStore:/products/product");
 var last = map.length+1;
 for (var i = 0; i < list.length; i++) {
 map[last+i] = list[i]; }
 return map;
]]>
 </method>

 <window title="Product Listing" width="400">
 <view id="repMgr"
 datapath=
 "dsOurStore:/products/product">
 <text width="150" datapath="@title"/>
 <text width="50" datapath="@price"/>
 <text width="200" datapath="@image"/>
 <simplelayout axis="x"/>
 </view>
 <simplelayout/>
 </window>
</canvas>

First, a copy of the other store’s product data nodes B is obtained. This data is
rearranged C to match our data layout; its individual data elements are collected
and a new DataElement with the correct layout is stored as an element in a Java-
Script array. The two datasets with identical layouts are merged D into a single
JavaScript array. The setNodes method registers E this JavaScript array with the
replication manager. The contents of the array are now accessible by the data
path F as a single dataset.

 Figure 17.3 displays the combined contents of these dissimilar datasets.

Creates data path to
access merged data

F

Figure 17.3
A mapping filter can be used in
the Laszlo Market to merge
output from disparate datasets.

466 CHAPTER 17

Managing large datasets
Mapping filters greatly expand the capabilities of Laszlo, allowing any web server
that delivers XML data to be interwoven with other XML data sources to form a
combined data stream.

 We have only scratched the surface of applying processing filters. Filtering
takes mashups to a whole new level. A mashup is a website or web application that
mixes and matches content from many sources to create a completely new service.
Normally, a mashup occurs at the view level, but the same concepts can be applied
at a data level to build composite data streams.

 Now that we can build large composite datasets, we’ll investigate ways to opti-
mize their display.

17.2 Optimizing data display

Once we connect to an HTTP-supplied dataset, we lose the ability to control its size.
Since we don’t know how large a dataset may become, we must plan for a worst-case
scenario. Instead of a single approach, Laszlo uses a combination of techniques to
handle different aspects of this problem. The replication manager is extended to
support lazy replication managers that optimize the allocation of resources for the
current display. Lazy replication limits the replicated clones to those that are cur-
rently visible. Lazy resize replication extends this to support dissimilarly sized listings.
Pooling recycles clone resources when adding or removing entries.

 But this solves only half the problem of displaying large datasets. The other
half is solved with paged datasets. The contents of a paged dataset are incremen-
tally retrieved rather than downloaded all at once. This relieves users of having to
wait for an entire dataset to be downloaded before being able to use it.

 We’ll illustrate each of these techniques with the Laszlo Market.

17.2.1 Lazy replication

Lazy replication is used to display large datasets in a view or window with a scroll-
bar. It’s called lazy because only visible clone objects have view resources allo-
cated for them. The lazy replication manager allocates resources for all its
matching data node objects, because they are relatively lightweight. However, its
cloned objects have large resource requirements, so their resource allocation is
controlled. A pool of clone objects, corresponding to the number of displayable
objects, is created. When the scrollbar moves, resources are recycled by transfer-
ring them from the scrolled off to the newly visible clones. Since lazy replication
is so simple to use, it should always be used in a scrolled window displaying
dynamic content.

Optimizing data display 467
 A lazy replication manager object, LzLazyReplicationManager, is created
when the data path’s replication attribute is set to lazy and its XPath query
returns multiple matching data nodes. There are a couple of restrictions on the
LzLazyReplicationManager:

■ The physical size of each replicated view must be identical.

■ Selections are made through the dataSelectionManager rather than the
selectionManager.

The dataselectionmanager must be used, because it operates on the data nodes,
rather than on a cloned object, which would no longer exist if it should scroll out
of view.

 Although lazy replication is activated with a single attribute setting, it requires
other modifications to its surrounding declarative statements. Let’s examine
what’s involved in converting from normal to lazy replication.

Converting from normal to lazy replication
Converting an application from normal to lazy replication requires some adjust-
ments to its declarative tag layout. With normal replication, a data path is nor-
mally attached to a view-based object as an attribute. Lazy replication requires that
the data path be converted into a child node of the view-based object. This pro-
vides access to the data path’s attributes so they can be set for different replication
types. Layout for normal replication is generally handled by a simplelayout tag
through its spacing attribute. When lazy replication is used, the axis and spac-
ing attributes are used instead, as shown in table 17.1, to control its layout. Also
the layout tag used for normal replication must be removed.

Listing 17.3 shows how the number of allocated clone resources is controlled by
the display size.

<canvas>
 <dataset name="numbers">
 <num>1</num><num>2</num><num>3</num><num>4</num>
 <num>5</num><num>6</num><num>7</num><num>8</num><num>9</num>

Table 17.1 LzLazyReplicationManager attributes

Name Data Type Attribute Description

axis x or y Settable The axis for layout of replicated views

spacing number Settable The spacing between replicated views

Listing 17.3 Effects of lazy replication

468 CHAPTER 17

Managing large datasets
 </dataset>
 <view name="one" height="50" width="100" clip="true">
 <view name="two" bgcolor="0xBBBBBB">
 <text name="three">
 <datapath name="four"
 xpath="numbers:/num/text()"
 replication="lazy" spacing="1"/>
 <handler name="onclick">
 one.setHeight("105");
 Debug.inspect(parent.subnodes);
 </handler>
 </text>
 <handler name="oninit">
 Debug.inspect(subnodes);
 </handler>
 </view>
 <scrollbar/>
 </view>
</canvas>

Figure 17.4 shows that setting a data path’s replication attribute to lazy turns
on the lazy replication manager. While nine replicated node objects are created,
only the three view objects necessary to populate the display are created. A nor-
mal replication manager would create nine replicated node and view objects.

Clicking the displayed numbers causes the containing view’s height to expand to
100 pixels to accommodate three additional view objects. Figure 17.5 shows how
this causes the LzLazyReplicationManager to increase the size of its view object
pool to six.

Replaces
simplelayout with
spacing attribute

Figure 17.4 The recycling of views in the pool of available views can be observed after moving
the scrollbar.

Optimizing data display 469
One limitation of lazy replication is that displayed items must have identical
heights. Although this isn’t a problem for our current prototype of the Market, we
would like to add built-in outline display for a selected product; this requires an
expanded product selection to accommodate this outline. To support this feature,
we need to use the LzResizeReplicationManager.

17.2.2 Handling expansible listings

LzResizeReplicationManager extends LzLazyReplicationManager with the capa-
bility to handle variable-sized replicated elements. All that is necessary to switch
managers is to set the data path’s replication attribute to resize. Listing 17.4 dem-
onstrates using the resize replication manager to create expandable listings.

<canvas>
 <dataset name="numbers">
 <num>1</num><num>2</num><num>3</num><num>4</num>
 <num>5</num><num>6</num><num>7</num><num>8</num><num>9</num>
 </dataset>
 <view height="100" width="100" clip="true">
 <view bgcolor="0xBBBBBB">
 <dataselectionmanager name="selector" toggle="true"/>
 <text datapath="numbers:/num/text()"
 onclick="parent.selector.select(this)">
 <datapath replication="resize"
 spacing="1"/>
 <method name="setSelected" args="selected">
 if (selected) {
 this.setAttribute("bgcolor", 0xCCCCCC);
 this.setHeight(40);
 this.setAttribute("fontsize", "16"); }
 else {
 this.setAttribute("bgcolor", 0xBBBBBB);

Listing 17.4 Expandable listing with LzLazyReplicationManager

Figure 17.5 Changing the height of the clipped view requires additional clones to display the text views.

Creates a resize
replication manager

Expands
height for
selected entry

470 CHAPTER 17

Managing large datasets
 this.setHeight(15);
 this.setAttribute("fontsize", "11"); }
 </method>
 </text>
 </view>
 <scrollbar/>
 </view>
</canvas>

Figure 17.6 shows how selected views are resized, with a large font size, to make
them even more distinctive.

In this example, selected views simply change size abruptly. This size change can
be made more relaxing by delaying its presentation. We’ll add this feature as we
update the Laszlo Market with expandable displays.

17.2.3 Expandable displays in the Laszlo Market

An expandable display is an elegant way to give users selection information.
When a short outline is embedded in the selection, a user can quickly assess a
product and go to the Product Details window for more information. Rather
than having the display jump from one size to another, we have it gently expand
and collapse. Listing 17.5 shows the steps for updating the productwin class
(defined in chapter 12) to contain an expandable Product List display.

<class name="productwin">
 …
 <view name="container" width="100%"
 height="${immediateparent.height}"
 clip="true" focusable="true">
 <view name="scroll" width="100%">
 <dataselectionmanager name="selector"
 toggle="true"/>

Listing 17.5 Creating an expandable product listing

Collapses
height for
unselected entry

Figure 17.6 LzResizeReplicationManager allows lazy-replicated list
entries to have different sizes.

Replaces selectionmanager
with dataselectionmanager

B

Optimizing data display 471
 <productrow name="products" width="100%"

 onclick="parent.selector.select(this)">

 <datapath xpath=

 "dsProducts:/products/product"

 replication="resize"

 spacing="2"/>

 </productrow>

 </view>

 <myscrollbar focusview="$once{parent}"/>

 </view>

</class>

First, the selectionmanager tag is replaced B with a dataselectionmanager tag;
then the datapath is converted from a productrow attribute into a stand-alone
object C so the data path’s replication attribute can be set to resize. The exist-
ing simplelayout tag is no longer needed, as the layout is now specified through
the data path’s spacing attribute.

 When clone resources are recycled, the dataselectionmanager saves the selec-
tion and reapplies it when the original clone reappears. Although this works fine
for ensuring that selections remain selected, it causes a problem for the master-
detail relationship between the Product List and Product Details windows. When-
ever a product selection scrolls out of view, it loses selection, along with its
resources—resulting in an ondata event causing the Product Details window to go
blank. Listing 17.6 shows how to animate the expandable product list and fix this
selection problem.

<class name="productrow" fontstyle="bold" fontsize="12">
 <attribute name="selected" value="false" type="boolean"/>
 <attribute name="title" valign="middle" datapath="@title"
 multiline="true" resize="true"/>
 ...
 <handler name="onmouseover">
 this.setAttribute("selected", true);
 </handler>
 <handler name="onmouseout">
 this.setAttribute("selected", false);
 </handler>
 <method name="setSelected" args="isselected">
 if (isselected) {
 if (select)
 productdp.setPointer(this.data);

Listing 17.6 Animating the expandable product listing

Converts datapath
from attribute to
stand-alone object

C

Tracks mouse
position

B

Updates productdp
when mouse over
selection

C

472 CHAPTER 17

Managing large datasets
 this.setAttribute("lastcolor", this.bgcolor);
 setAttribute("bgcolor", 0xBBBBBB);
 this.title.setAttribute("datapath",
 "outline/text()");
 this.title.setAttribute("fontsize",
 "10");
 this.animate("height", 100, 1000);
 this.image.setAttribute("valign",
 "middle"); }
 else {
 if (select) productdp.setPointer(null);
 setAttribute("bgcolor",
 this.lastcolor);
 this.title.setAttribute("datapath","@title");
 this.title.setAttribute("fontsize","12");
 this.image.setAttribue("valign","top");
 this.animate("height", 80, 1000); }
 </method>
 ...
</class>

We’ll use a pair of onmouseover and onmouseout event handlers B that manage a
selected attribute that reflects the current mouse position. We distinguish
between user- and dataselectionmanger-initiated selections by requiring that the
mouse be over the product row to update the productdp data pointer C. Since
this can’t occur when a row scrolls onto and off the scrolling area, it prevents
updating of the Product Details window.

 Figure 17.7 shows how selecting a product causes it to expand and switch to
displaying an outline, instead of a title. The title text field’s data path D is
updated to point to the outline data node. To fit the contents into the available

Displays outline
data node

D

Expands height
to accommodate
outline

E

Adjusts image to middle
of available spaceF

Restores
original
display

G

Figure 17.7
The top image shows a
product listing in an
unselected state. The height
of the listing is 80 pixels. The
bottom image shows it in a
selected state. The height
attribute is slowly animated
from 80 to 100 pixels. This
provides extra space to
display a short outline.

Optimizing data display 473
space, its font size E is decreased to 10 pt. Instead of simply changing the height
of the entry, it is animated to slowly expand to 100 pixels. Also, the position of the
image is moved F to fill the middle of the frame. When an item is deselected, the
attributes return to their original values G to reset the product.

 Now that you are familiar with optimizing listings, let’s look at how to optimize
the insertion and deletion of list entries to minimize screen flicker.

17.2.4 Pooling

If the data nodes bound to the cloned objects change at runtime, the replication
manager normally destroys and re-creates the clones. This can cause a noticeable
flicker, as the new cloned objects are instantiated. To address this problem, the data
path’s pooling attribute can be turned on to recycle the existing cloned objects.
Since the replication manager only needs to remap the updated data nodes to the
existing clones, data updates are faster, with no flicker. The pooling attribute can
be added to normal replication and is automatically set with lazy replication.

 Listing 17.7 shows a view that switches from one bound dataset to another
when clicked on its displayed contents. One dataset contains numbers and the
other letters. Under normal replication, when the switch occurs the displayed
views are destroyed and a new set of view objects is instantiated. With pooling,
these views are recycled for reuse. A button labeled Pool toggles the data path’s
pooling attribute to allow us to observe the effects.

<canvas>
 <dataset name="letters">
 <item>A</item>
 …
 <item>Z</item>
 </dataset>
 <dataset name="numbers">
 <item>1</item>
 …
 <item>26</item>
 </dataset>

 <method name="toggle" args="list">
 var xpath = list.datapath.xpath;
 if (xpath == "letters:/")
 list.setDatapath("numbers:/");
 else
 list.setDatapath("letters:/");
 </method>

Listing 17.7 Comparing normal and pooled replication

Switches
datasets

474 CHAPTER 17

Managing large datasets
 <simplelayout axis="x" spacing="5"/>
 <button text="Pool">
 <attribute name="pool" value="false" type="boolean"/>
 <handler name="onclick">
 this.pool = !this.pool;
 one.two.three.datapath.setAttribute("pooling", this.pool);
 if (this.pool) parent.msg.setText("pooling");
 else parent.msg.setText("Not Pooled");
 </handler>
 </button>
 <text name="msg" text="Not pooled"/>
 <view name="one" datapath="letters:/">
 <view name="two" bgcolor="0xBBBBBB">
 <text name="three" text="$path{'text()'}">
 <datapath xpath="/item"/>
 <method event="onclick">
 canvas.toggle(one);
 </method>
 </text>
 <simplelayout axis="y" spacing="3"/>
 </view>
 </view>
</canvas>

With the pooling attribute turned on, the fluidity of the dataset switch improves.
This effect is even more noticeable when the clones contain memory-intensive
resources with graphics. In the next section, we’ll add both lazy replication and
pooling to the Laszlo Market’s shopping cart to help remove some of its choppiness.

Pooling in the shopping cart
Inserting or deleting from the shopping cart produces a momentary pause as the
replication manager processes the updated data nodes and instantiates or releases
resources for the clone. We can fix this by setting the replication attribute to
lazy, since this also sets pooling:

<view name="container" width="100%"
 height="${parent.height - 20}" clip="true">
 <view width="100%" name="scroll">
 <shop_row datapath="item" width="100%">
 <datapath xpath="item"
 replication="lazy"
 spacing="30"/>
 </shop_row>
 </view>
 <scrollbar/>
</view>

Toggles
pooling

Dynamically
switches
pooled and
unpooled
datapaths

Defaults
pooling to on

Paging datasets for long listings 475
Although the difference is too subtle to be displayed in this book, it is still observ-
able to the eye. Although this is a small detail, attention to small details adds up to
a superior overall viewing experience.

 These different replication managers have all focused on optimizations
designed to handle the page case, where a page represents enough displayable
items to populate several screens or less. But how do you handle larger datasets con-
taining significantly larger amounts of data? For that, you need paged datasets.

17.3 Paging datasets for long listings

Paged datasets complement the recycling techniques of lazy replication by incre-
mentally loading large datasets. The returned results are divided into fixed-size
pages, each page holding a fixed number of records and each record containing a
product row. The response time for loading a large dataset is reduced by initially
loading only the first page. Additional pages are loaded only on an “as-needed”
basis, when they are referenced. If a page is never referenced, it’s never down-
loaded. This strategy is also known as lazy loading.

 Data display is controlled through a scrollbar’s arrow buttons to move stepwise,
or via a gripper to move in larger steps. In either case, moving through the dis-
played results eventually references nonresident data, which results in a request to
a back-end server to retrieve a data page. Although a page can be of any size, it
typically holds several screens’ worth of rows. This utilizes locality, where it’s
assumed that a user will generally access information within a local area. This use
of localization helps reduce the number of nonresident page hits. Pages are accu-
mulated, so the dataset’s complete contents are accumulated over time, which
also causes page requests to decrease over time.

 We’ll start to design this paging system by examining the relationship between
the scrollbar and its display. Figure 17.8 shows that when the scrollbar is moved,
through either its gripper or its arrows, it generates an ony event as a scrolling
child view is moved against its parent view. The scrolling child view starts at zero
and generates progressively larger negative y values as we scroll forward.

 As the scrollbar moves down, the scrolled view’s y attribute grows negatively,
causing it to move upward, and expose a new row in the display. What is now
needed is an algorithm to retrieve a new page just when an otherwise blank row
would appear at the bottom of the display.

 Since scrolling occurs both forward and backward, it’s necessary to check for
nonresident page rows at both the top and bottom of the displayed area. When
a nonresident page is detected, a request is generated to retrieve it. Generally only

476 CHAPTER 17

Managing large datasets
a single page needs to be retrieved, but when the scrollbar is positioned so that a
page boundary is displayed, both pages must be checked and possibly retrieved.

 The first step in this check is to convert the backing view’s y displacement to an
absolute row number in the dataset, using zero-origin indexing:

top_row = Math.floor(-y / row_height);

Because the y value is always negative, it’s negated to make it positive. It’s then
divided by the row height and rounded down to an integer. Next we find the win-
dow size in rows:

window_rows = Math.ceil(window_height / row_height);

The value is rounded up to give the minimum number of rows displayed at one
time. Also, note that if the window size is not an integral number of rows, one row
is always partly obscured. The maximum number of rows displayable is one more
than window_rows, in which case two rows are partly obscured.

 The page numbers corresponding to these top and bottom rows are found by
dividing their row numbers by the page size; these values are rounded down to
give a page number using zero-origin indexing:

top = Math.floor(top_row / page_size);
bottom = Math.floor((top_row + window_rows) / page_size);

Figure 17.8 Initially, as the parent clipping view displays only the top portion of the circle,
the y attribute for the scrolled view is 0. Pressing the scrollbar’s down arrow five times
causes the scrolled view’s y attribute to move stepwise by a default value of 10 pixels for
each click. This moves the scrolled view upward by 50 pixels, exposing the entire circle.

Paging datasets for long listings 477
Both top and bottom now contain page numbers, in most cases the same page. We
also maintain a loaded array that stores whether a page is resident or needs to be
loaded. It is still necessary to check both the top and bottom values to determine
if these pages are resident, because occasionally a page boundary appears. When-
ever a page isn’t found in the loaded array, the product data service’s loadpage
method needs to be called to load it:

 Let’s illustrate with a simple example. Suppose there are 10 five-row pages,
where each row is 20 pixels high, and rows and pages start at zero. So each page
contains 100 pixels. If the scrollbar is moved to a value of –218, then, as shown in
figure 17.9 on the left, rows 12 through 15 are displayed (they appear within the
dark outline). Since all these rows reside within the third page, only page 3 needs
to be retrieved. In the figure on the right, rows 28 through 31 are displayed. Since
these rows cover two pages or, put another way, a page boundary is displayed, it
requires that two pages (pages 6 and 7) must be retrieved. When a page needs to
be retrieved, loadPage is called to load it. So in this case, it will be called twice
with each page number.

Now that we have all the pieces, let’s put them together in the Laszlo Market to
handle paging for the product rows.

17.3.1 Adding paged datasets to the Market

Let’s consider the steps to update the Market’s Product List window with paged
datasets. The productwin class already contains the replicated product rows and
accompanying scrollbar. The container view defines the physical parameters for

Figure 17.9 The ceil and floor methods are used to include top and bottom rows that only partially
appear within the display area, indicated by the heavy black square. In the left example, the display area
is filled with the rows of a single page, resulting in a single page retrieval. In the right example, the
display area straddles two pages, resulting in retrieval of both pages.

478 CHAPTER 17

Managing large datasets
the display area, while the scroll view serves as the backing view populated with
paged data. The scroll view also handles the ony events, generated by moving
the scrollbar, to initiate the retrieval of new pages. Listing 17.8 shows the modifi-
cations to add paged datasets to the productwin class.

<class name="productwin">
 …
 <view name="container" width="100%"
 height="${immediateparent.height}"
 clip="true" focusable="true">
 <view name="scroll" width="100%">
 <dataselectionmanager name="selector" toggle="true">
 <handler name="oninit">
 this.sel = "setSelected";
 </handler>
 </dataselectionmanager>
 <productrow name="products" width="100%" height="79"
 onclick="parent.selector.select(this)">
 <datapath xpath="dsProducts:/products/product"
 axis="20" spacing="20" replication="lazy">
 <handler name="ondata"
 if(main.contents.rowheight
 == 0) return;
 productDataService.
 rowheight =
 this.clones[0].height;
 </handler>
 </datapath>
 </productrow>
 <handler name="ony">
 if (typeof this.del ==
 "undefined")
 this.loadDel = new LzDelegate(
 this, 'loadPage');
 LzTimer.addTimer(loadDel, 500);
 </handler>
 </view>
 <myscrollbar focusview="$once{parent}"/>
 </view>
 ...
</class>

To determine the row offset for the top row, we need to find a product’s row
height. This information is best obtained B from the product itself, so that it is
automatically updated to handle future design changes.

Listing 17.8 Adding paged datasets to the Laszlo Market

Finds row
height
from data

B

Prevents
interim page
requests

C

Paging datasets for long listings 479
 We can’t allow every change in y to generate a page request; as this would gen-
erate spurious page requests as the scrollbar moves through interim positions.
Instead, we require the scrollbar to remain stationary in one position for a fixed
amount of time, say half a second, to indicate a selected position. A delegate is
added C with a delay timer to ensure that a page isn’t called for half a second. If
any subsequent ony events occur during this period, then the timer is reset.

 Let’s now look at implementing the paging logic. Implementing paged
datasets is a collaborative effort between a Laszlo client and an HTTP server. The
server must support paged datasets and be able to respond to a request for a page.
Appendix B online contains a Ruby on Rails implementation that supports pag-
ing. Additionally, the server must supply information that describes the contents
of each returned page. This information consists of the current page number, the
total number of pages, and a count of the total number of records. In the exam-
ple page response, this information is contained in attributes of the parent node:

<response>
 <products page="0" totalpages="10" recordcount="98">
 <product id="1" sku="SKU-001" … />
 …
 </products>
</response>

In this example page response, each page contains ten product data nodes or
records, with the exception of the last page, which contains eight. All paging-
related parameters are stored as attributes in the dsProducts dataset to make
them easily accessible:

<library>
 <dataset name="dsProducts"/>
 <node name="productdataservice">
 <attribute name="url" type="string"
 value="http://localhost:3000/store/list"/>
 <attribute name="loading" value="false" type="boolean"/>
 <attribute name="row_height" value="0" type="number"/>
 <attribute name="loaded" value="[]"/>
 <attribute name="total_pages" type="number"/>
 <attribute name="page" value="0" type="number"/>
 <attribute name="record_count" value="0" type="number"/>
 …
 </node>
</library>

Now the productwin class, shown in listing 17.9, has the necessary information to
implement this paging algorithm. Whenever a page needs to be checked for resi-
dency, the product window’s loadPage method is called. If it determines that a

480 CHAPTER 17

Managing large datasets
new page needs to be loaded, then it calls the product’s loadPagedData data ser-
vice to perform the low-level paging operations.

<class name="productwin">
 …
 <method name="loadPage">
 <![CDATA[
 if (productDataService.loading)
 return;
 if (this.row_height == 0) {
 this.row_height = this.products.height;
 productDataService.loadPagedData(0);
 return; }
 var top = Math.floor(-products.y /
 productDataService.row_height);
 var display_area =
 Math.ceil(main.height /
 productDataService.row_height);
 bottom = Math.floor(top +
 display_area);
 bottom = Math.floor(bottom /
 productDataService.total_pages);
 top = Math.floor(top /
 productDataService.total_pages);
 if (bottom >
 productDataService.total_pages)
 bottom =
 productDataService.total_pages;
 if (productdataservice.loaded[top] &&
 productDataService.loaded[bottom])
 return;
 if (!productDataService.loaded[top])
 productDataService.loadPagedData(top);
 if (!productDataService.loaded[bottom])
 productDataService.loadPagedData(bottom);
]]>
 </method>
</class>

To avoid B multiple outstanding page requests, the productDataService has a
loading attribute that is turned on when the request is sent and turned off when
its response is received. This permits two outstanding page requests for top and
bottom. If no pages are loaded, then we make an initial page request C to collect
page-related information such as the height of each row, the number of records in

Listing 17.9 Implementing the paging algorithm

Avoids multiple
outstanding requests

B

Checks for
initial request

C

Implements
paging
algorithm

D

Checks top
and bottom
for residency

E

Paging datasets for long listings 481
a page, and the maximum number of pages. This information is used D to check
the top and bottom rows for nonresident pages E. If they haven’t been loaded,
the loadPagedData data service is called to load them.

 While the loaded array maintains state among the pages, the product-
DataService maintains state among the data records. The dataset is initially pop-
ulated to contain record_count number of empty product data nodes:

<dataset name="dsProducts">
 <products>
 <product/> <!-- 1 -->
 …
 <product/> <!-- 98 -->
 </products>
</dataset>

When a page of data is loaded, a page of empty product data nodes is updated with
this newly loaded data. Over time the entire contents of the dataset will be loaded.

 Listing 17.10 shows the implementation of the loadPagedData data service. It
creates the request that is sent to the back-end server and updates the dsProducts
dataset with the returned data nodes contained in the response.

<library>
 <dataset name="dsProducts">
 <node name="productDataService">
 ...
 <method name="loadPagedData" args="page">
 <![CDATA[
 this.setAttribute('loading', true);
 var src = url +"?page=" + page";
 gDataservice.sendRequest
 (this, src, null,
 "loadPagedDataResults");
]]>
 </method>

 <method name="loadPagedDataResults" args="status, data">
 <![CDATA[
 if (status == true) {
 data = data.getFirstChild();
 this.page = data.getAttr("page");
 this.total_pages =
 data.getAttr("total_pages");

 loaded[page] = true;

Listing 17.10 Implementing the request and response for the loadPagedData
 data service

Creates page
request

Discards wrapper,
gets attributes

482 CHAPTER 17

Managing large datasets
 if (this.record_count == 0) {
 record_count = data.getAttr(
 "record_count");
 var empty_nodes =
 LzDataElement.makeNodeList(
 record_count, "product");
 dsProducts.data.setChildNodes(
 empty_nodes); }

 var per_page = Math.floor(
 record_count / total_pages);
 var cn =
 dsProducts.data.childNodes;
 var start = page * per_page;
 for (var i = 0; i <
 per_page; i++) {
 cn[start + i] =
 data.childNodes[i]; }
 dsProducts.data.
 setChildNodes(cn);
 this.setAttribute('loading',
 false); }
 else {
 Debug.write("getPagedDataFailed: "+data); }
]]>
 </method>
 </node>
</library>

The dsProducts dataset is large enough that it’s faster to perform a bulk update
than to individually update each XML data node. The entire contents of the
dataset are first copied into a JavaScript array. The page number is multiplied by
the calculated number of records per page to determine where the page of data
should be loaded within this array. Next, the entire updated array is moved back
into the dataset.

 The loading attribute is used to inform users that data is in the process of
being loaded. It’s used in a constraint to control the parent view’s background
color:

<view name="container" width="100%"
 bgcolor="${productDataService.loading ? 0xcccccc : 0xffffff}" … >

The scrolled display has a gray background while the application is loading data;
then, it returns to its normal background color.

 Paged datasets greatly facilitate the viewing of large collections of data by split-
ting a dataset into smaller sections. In many cases, the entire dataset is large

Contains count
of empty
product nodes

Updates one
page using array

Summary 483
enough that it isn’t practical to download all of it. In these cases, since a user is
normally only interested in accessing a small portion of the dataset, only those
pages of interest need to be downloaded.

17.4 Summary

This chapter capped our discussion of data paths. These last features addressed
sorting, optimization of large datasets, and alternative processing filters. Each of
these built on the underlying features of the data path replication manager archi-
tecture described in earlier chapters.

 No system is complete without sorting. The data path uses its XPath features to
define keys and other attributes for specifying sorting criteria. Custom sorting can
be specified to provide nonalphabetical sorts or sorts on multiple keys.

 We saw how the data path can be used to spawn a replication manager; it can
also spawn a lazy replication manger to control the creation of view object clones,
so that a user’s computer isn’t overwhelmed with demands for resources. Lazy
replication limits the number of view-based objects by restricting their use to cur-
rently observable objects.

 The paged dataset is an additional optimization technique that can be layered
on top of lazy replication to make large datasets quickly available without down-
loading the entire dataset. This breaks the total download time into segments
based on pages, whereby each page is loaded on an as-needed basis.

 Finally, the data path’s setNodes method can be used to loosen the tight cou-
pling between bound objects and their XML data nodes, by introducing alternate
processing filters into the data path replication manager architecture. These fil-
ters can provide many types of specialized processing, including the mapping and
merging of disparate XML data feeds into a single XML data feed. This provides a
powerful mechanism for integrating data from many different sources.

 In many ways, the data path is the “main thoroughfare” of Laszlo; it permeates
so many facets of the system that describing all its features has consumed several
chapters. This chapter focused on optimization at the data-loading level; the next
chapter looks at optimization at the system level.

Laszlo
 system optimization
This chapter covers:
■ Creating dynamic libraries
■ Understanding object initialization
■ Controlling an object’s initialization
■ Using performance utilities
484

Dynamically loading optional elements 485
After all, all he did was string together a lot of old,
well-known quotations.

 —H. L. Mencken, journalist and satirist,
 writing about Shakespeare

Once your application is behaving the way you want, it may seem that you should
be able to sit back, congratulate yourself on a job well done, and enjoy a cold
drink. We’re afraid not. The most difficult part of development comes next; your
application must be optimized for acceptable performance across a wide array of
target platforms. In fact, we already started this process in the previous chapter,
with data display optimizations.

 Although we use the general term optimizing here, it embodies two separate
goals: startup time and responsiveness. Startup time is the delay until the application
is ready to use. Responsiveness is the time from a user action until an indication
of response appears. Overall performance involves a trade-off between these two.
Performance goals for web-based applications have different trade-offs than for
desktop applications. A desktop application has a captive audience, so it can tilt
this trade-off toward a longer startup time to preload resources in exchange for
better responsiveness. On the Web, users have a wider choice and are condi-
tioned by HTML-based web applications that load quickly. If a Laszlo application
doesn’t start up quickly, a significant number of users will go elsewhere. Conse-
quently, an optimized web application has a different trade-off between startup
time and responsiveness.

 In this chapter, we focus only on general system optimization strategies. The
reason is that one goal of Laszlo is a single source-code distribution across Flash
and DHTML targets. Consequently, we won’t cover Flash and browser-specific opti-
mization techniques here. General system optimization strategies work across all
target platforms and deliver the largest return. Target-specific optimization tech-
niques should be a last resort.

 We’ll begin by focusing on initialization. Once an application has a reasonable
startup time, you can tackle responsiveness issues.

18.1 Dynamically loading optional elements

In the previous chapter, paged datasets were used to redistribute data-loading
costs. Now we’ll use a similar approach to redistribute an application’s startup
time. We’ll start by segmenting our application into critical and optional ele-
ments. Critical elements are objects necessary for the core operation of the appli-
cation. Optional elements include such things as unit testing, help sections, and
other auxiliary functions. In this case, the critical elements will be loaded first,

486 CHAPTER 18

Laszlo system optimization
with the optional elements loaded on an “as-needed” basis. This makes them good
candidates for being loaded as dynamic libraries.

18.1.1 Importing dynamic libraries
A dynamic library contains a library file whose loading can be deferred. A
dynamic library can contain any Laszlo assets normally stored in a static library:
classes, instances, scripts, datasets, and resource or font definitions. It works iden-
tically for applications implemented in either server or SOLO mode. Laszlo
doesn’t automatically keep track of loaded libraries, so you’ll need to maintain a
private record of downloaded libraries to prevent repeated downloads. Dynamic
loading works best with relatively small libraries. Loading a large library can make
an application momentarily unresponsive.

 The import tag is used to dynamically import a library file. The attributes for
the import tag are shown in table 18.1.

The href attribute, which is required, can refer to a local file on the server, a
SOLO file, or a URL for a networked resource. The stage attribute, also required,
contains a late or defer string. A late setting imports the library at an oppor-
tune time, after the rest of the application has completed loading. With a defer
setting, the library is loaded programmatically through a load method. When the
defer setting is specified, the name attribute also must be specified to provide this
object with a name. An onload event is always sent when the library is loaded, and
onerror and ontimeout events are sent when a network error prevents a library
from being returned.

 Let’s start with an example that dynamically loads the library modules corre-
sponding to a menu of items. A dynamic library should only be loaded on the first
access. After loading, the resident class definitions are used to instantiate the
objects. Laszlo doesn’t keep track of loaded libraries, so it’s your responsibility to
maintain a record.

Table 18.1 Import attributes

Name Data Type
Tag or
Script

Attribute
Type

Description

href URL Both Setter A reference to a target file whose content is
treated as a loadable module.

name string Both Setter The name used to bind an object for invoking the
load method on a defer library.

stage string:
"late" or
"defer"

Both Setter A late library is loaded after the main application
file has completed loading. A defer library is
loaded programmatically through JavaScript.

Dynamically loading optional elements 487
18.1.2 Loading optional elements with dynamic libraries
Suppose we have an application containing a Modules menu with Fish and Cows
menu items. In this application, the menu items are resident but a selected item’s
action is dynamically loaded. Since this menu could contain any number of menu
items, our approach needs to scale to easily support a larger numbers of items.
Each library consists of a fish and cows class respectively, stored in the files
fish.lzx and cows.lzx, where each class defines a labeled rectangle.

 Only one menu item can be in use at one time. This is a textbook example for
using a generic object. Instead of maintaining a collection of objects, one for each
menu item—and there can easily be tens, or even hundreds, of them—a single
generic object is recycled for each item. When a new menu item is selected, the
memory resources associated with the generic object are freed with the destroy
method and reused for the new object.

 Listing 18.1 shows a single menu with two items, labeled Fish and Cows.

<canvas>
 <include href="load.lzx"/>
 <script>
 obj = null
 </script>
 <menubar>
 <menu text="Modules" width="100">
 <menuitem text="Fish">
 <method event="onselect">
 if (obj) {
 if (obj.name == "fish")
 return;
 Debug.write(
 "obj cows destroyed");
 obj.destroy(); }
 if (loadedModules["fish"]
 == 1) {
 obj = new fish(canvas);
 Debug.write(
 "Local fish: ", obj); }
 else {
 Debug.write("load fish");
 importFish.load(); }
 </method>
 </menuitem>
 <menuitem text="Cows">
 <method event="onselect">

Listing 18.1 Initializing optional functions with dynamic libraries

Contains generic
object handleB

Checks for
existing fish
object

C

Checks if
fish library
is loaded

D

Loads library on
first Fish selection

E

488 CHAPTER 18

Laszlo system optimization
 if (obj) {
 if (obj.name == "cows")
 return;
 Debug.write(
 "obj fish destroy");
 obj.destroy(); }
 if (loadedModules["cows"]
 == 1) {
 obj = new cows(canvas);
 Debug.write(
 "Local cows: ", obj); }
 else {
 Debug.write("load cows");
 importCows.load(); }
 </method>
 </menuitem>
 </menu>
 </menubar>
</canvas>

Assuming that a Fish item is initially selected C, the generic object handle is
checked B to see if it points to an object. Since it doesn’t, the loadedModules
array is checked D to determine whether the fish library has been downloaded.
Since it hasn’t, the import object’s load method is executed E to load the library.

 Later, if Cows is selected, the generic object is checked F. Because it’s no
longer null, the object name is checked. If its name is cows, we just return. But
since it isn’t, the object’s memory is released. Now it’s necessary to check G
whether the cows library has been downloaded. Since it hasn’t, it needs to be
downloaded H.

 Because both libraries have now been downloaded, on subsequent selections
of either menu item, depending on the object’s name, control either returns or
the memory for the existing object is released and allocated to the other object.

 We next need a scalable architecture to organize all these library modules:

<library>
 <script>
 loadedModules = new Array();
 loadedModules["fish"] = 0;
 loadedModules["cows"] = 0;
 </script>

 <import name="importFish" href="fish.lzx"
 stage="defer">
 <handler name="onload">
 loadedModules["fish"] = 1;

Checks for
existing
cows object

F

Checks if
cows library
is loaded

G

Loads library on
first Cows selectionH

Records
downloaded
libraries

B

Specifies deferred
loading for fish library

C

Marks fish
library as loaded

D

Dynamically loading optional elements 489
 if (obj) obj.destroy();
 obj = new fish(canvas);
 </handler>
 <handler name="onerror">
 …
 </handler>
 <handler name="ontimeout">
 …
 </handler>
 </import>

 <import name="importCows" href="cows.lzx"
 stage="defer">
 <handler name="onload">
 loadedModules["cows"] = 1;
 if (obj) obj.destroy();
 obj = new cows(canvas) ;
 </handler>
 <handler name="onerror">
 …
 </handler>
 <handler name="ontimeout">
 …
 </handler>
 </import>
</library>

First we allocate the loadModules array B, stating whether a particular download-
able object has been loaded. Then we specify a dynamic library C referencing the
fish.lzx file that is to be programmatically imported. The event handler D is trig-
gered when the dynamic library has been loaded over the network. The record of
loaded dynamic libraries is updated to ensure that no library is loaded twice. If a
generic view object already exists E, then we destroy it to release its memory and
re-create it as a fish view object. All the previous steps are repeated for cows.
Since these libraries are loaded only once, this creates the initial object.

 Finally, the two downloaded classes in fish.lzx and cows.lzx must be defined:

<library>
 <class name="fish" x="40" y="50" width="150"
 height="40" bgcolor="0xCCCCCC">
 <text align="center" valign="middle"
 fontsize="20" text="FISH"/>
 </class>
</library>

<library>
 <class name="cows" x="40" y="70" width="150"
 height="40" bgcolor="0xBBBBBB">

Checks for
existing object

E

490 CHAPTER 18

Laszlo system optimization
 <text align="center" valign="middle"
 fontsize="20" text="COWS"/>
 </class>
</library>

The first time a menu item is accessed,
the associated library module is
dynamically loaded, as shown in fig-
ure 18.1. On subsequent accesses, the
class library is resident so an instance
is simply created. The total startup
time is shown as 1.495 seconds, an
acceptable startup loading time.

 Any optional code module is a
candidate for dynamic loading. The extra cost of dynamic loading, compared to a
static library, is small enough to justify extensive use of dynamic libraries.

 Now let’s turn to the harder task of dealing with the initialization times for crit-
ical elements. Since an application relies on these elements for base functionality,
they can’t simply be dynamically loaded. To redistribute their startup costs, we’ll
modify their initstage attribute. But before we can do this, we need a better
understanding of initialization of a Laszlo object.

18.2 Optimizing critical elements

Our strategy to reduce startup time for critical elements is to redistribute their
loading to a later period. But since critical elements typically must be available for
an application’s initial display, there is less latitude for manipulating their initial-
ization timing than with dynamic libraries. To help redistribute their initialization
costs, all declarative objects have an initstage attribute to control their initial-
ization. Knowing how to use this attribute correctly requires understanding the
instantiation sequence for Laszlo objects.

18.2.1 Instantiating objects
The instantiation of a Laszlo application begins with the construction of the can-
vas tag and ends with the initialization of the canvas tag. The progression of
instantiation traverses through the tags comprising the application, instantiating a
parent tag’s entire tree of child tags before moving to the next parent. The instan-
tiation process is a continuing sequence in which a parent node completes its con-
struction phase and then begins its initialization phase. The initialization phase
consists of three sections: object initialization, creation of its children through the

Figure 18.1 On the initial access, the library is
loaded. Subsequently, the object is just instantiated.

Optimizing critical elements 491
createChildren method, and, finally, its local initialization (contained within its
init method). After creating its children, the parent must wait for all its children
to complete their initialization before moving to its local initialization phase. This
creates a chain of parents, as shown in figure 18.2, waiting for the last child node
to fully complete, so the completions can propagate upward and allow each par-
ent to complete.

Controlling the setting of the initstage attribute is the key for supporting differ-
ent strategies to achieve initialization trade-offs.

18.2.2 Manipulating instantiation with initstage
To demonstrate how the initialization period of a Laszlo application can be
manipulated by its initstage settings, we’ll simulate the performance of a slug-
gish application, which we’ll call sluggishApp, by adding a time delay into its
init method (the final step of initialization). This delay is created by repeatedly
looping until 1,000 milliseconds (one second) has passed. To more easily demon-
strate these results, we’ll work in the debugger. Although normally you shouldn’t
run the debugger to obtain timing results, the values are large enough not to be
unduly affected by the debugger.

 The inittimer tag measures an application’s total startup time; it can be
added right after the canvas tag. Although the debugger doesn’t normally pro-
duce accurate timing, the time differences are large enough to be meaningful.
The following example results in three instances of the sluggishApp class dis-
played in a window and produces a 3-second delay:

Figure 18.2
A parent tag can’t
complete its initialization until
all its children have completed
their initialization. So the
construction phases occur top-
down from parent to child, and
the initialization phases occur
in the reverse direction, from
the last child to the parent.

492 CHAPTER 18

Laszlo system optimization
<canvas>
 <inittimer fontstyle="bold"/>
 <script>ts = (new Date()).getTime()</script>

 <class name="sluggishApp" width="150" height="16"
 bgcolor="gray">
 <attribute name="spin" value="1000"/>
 <attribute name="num"/>
 <method name="init">
 <![CDATA[
 Debug.write("sluggishApp#" + num + " init: " +
 ((new Date()).getTime()-ts) + " ms");
 var d = new Date();
 while ((new Date()) - d < spin){};
 super.init();
]]>
 </method>
 </class>

 <button y="25"
 onclick="container.show()">Show window</button>
 <window name="container" x="130" width="150"
 height="125" visible="false">
 <method name="show">
 this.setVisible(true);
 </method>
 <simplelayout inset="5" axis="y" spacing="10"/>
 <sluggishApp num="1"/>
 <sluggishApp num="2"/>
 <sluggishApp num="3" />
 <method name="init">
 Debug.write("container init: " +
 ((new Date()).getTime()-ts) + " ms");
 super.init();
 </method>
 </window>
</canvas>

When this application is executed, the inittimer tag informs us that initialization
required over 4 seconds to complete (see figure 18.3).

Figure 18.3 This figure shows the elapsed time for the unoptimized version of the
application. Our objective is to significantly decrease this startup time of over 4 seconds.

Optimizing critical elements 493
Since this application doesn’t require that all objects be immediately available for
display—the window isn’t displayed until the button is clicked—our strategy focuses
on deferring the initialization of these nondisplayed objects until they are needed.

18.2.3 Controlling initialization through initstage
Objects are entered into the LzInstantiator queue in the order established by
their instantiation, and normally initialized in that sequence. However, each
object has a priority, specified by its initstage attribute, that can modify this
order. Table 18.2. shows the values for this initstage attribute.

When this attribute is set to normal, the instances have equal priority and their
init method is executed in order. But this order can be changed by setting an
instance’s initstage to early, like this:

<sluggishApp num="2" initstage="early"/>

As you can see in figure 18.4, the priority of the second sluggishApp has been
raised, so its init method will be executed prior to the other instances. Although
we were able to modify the execution order, this didn’t result in any time savings.

Table 18.2 initstage values

Attribute value Description

immediate Initialization occurs with highest priority. Invoked by completeInstantiation.

early Initialization occurs with a high priority.

normal Initialization occurs with a normal priority.

late Allows the parent to complete their initialization. Child node initialization occurs with
a low priority.

defer Instantiation does not happen automatically. The object’s parent must call the com-
pleteInstantiation method.

Figure 18.4 The effect of setting the initstage attribute for the second instance is to
increase its priority and allow it to execute before the other instances. But this doesn’t change
the application’s startup time.

494 CHAPTER 18

Laszlo system optimization
All this setting does is change the order; it doesn’t save any time. A parent still
must wait for all its children to complete.

 The problem is the sequential nature of the node hierarchy processing. The
key to decreasing startup time is to break the sequence of this processing.

Breaking the initialization sequence
Since the window isn’t displayed until the Show Window button is clicked, its ini-
tialization can be deferred until needed. Changing the window’s initstage
attribute to defer breaks the initialization sequence by freeing its parent to com-
plete without waiting for the window and its children to complete.

 When the defer option is set, the child nodes are entered into the LzInstan-
tiator queue, but their priority is set below the runnable level. When it is time
for the child nodes to execute, the parent node calls its completeInstantiation
method to raise their priority level, to ensure they are immediately executed.
Once the child nodes have completed their initialization, the parent node is
finally able to complete its initialization and display the window with the three
gray bar instances.

 To switch to deferred instantiation, we need to make these two changes in the
parent node called container:

<window name="container" x="120" width="150" height="135"
 visible="false" initstage="defer">
 <method name="show">
 this.setVisible(true);
 this.completeInstantiation();
 </method>
 <simplelayout inset="5" axis="y" spacing="10"/>
 <sluggishApp num="/>
 <sluggishApp/>
 <sluggishApp/>
</window>

Figure 18.5 shows that the startup initialization period has decreased from 4-plus
seconds down to 1.5 seconds. Now the 3-second delay has been redistributed to

Figure 18.5 Setting initstage to defer allows the application to decrease its startup time
from over 4 seconds to 1.5 seconds. The startup time still exists; it has just been redistributed
onto the display of the window and its three instances.

Optimizing critical elements 495
start when the button is clicked. The total amount of time necessary for the entire
display to be rendered is still approximately the same. The extra time is attribut-
able to the amount of time spent moving the mouse to click the button.

 There is still room for improvement. Currently, when the user clicks the but-
ton there is a long pause before the window with the gray bar instances appears.
This display can be further enhanced by uncoupling the display of the window
from the results of the sluggishApp instances. Setting initstage to late allows
this uncoupling to occur.

Uncoupling a component from its contents
An entire component and its children can be uncoupled from an application by giv-
ing it a defer setting; when needed, its completeInstantiation method is called
to force its contents to immediately initialize, thus freeing the component itself.

 In this section, we take this one step further by uncoupling the component from
its contents. This allows the component to appear immediately, while the contents
appear later. To do this, we set each child’s initstage attribute to late. This frees
their parent component, in this case the window, to complete immediately.

 Setting an object’s initstage attribute to late is akin to a child telling its par-
ent not to wait up because it will be staying out late. In technical terms, a child
with a late setting has a low priority, causing it to execute slowly in the back-
ground. At the same time, its parent needn’t wait for it.

 We update our sluggishApp instances like this:

<sluggishApp num="1" initstage="late"/>
<sluggishApp num="2" initstage="late"/>
<sluggishApp num="3" initstage="late"/>

This frees the window to display, but there is still a problem. When the window
issues its completeInstantiation command, it forces the immediate instantiation
of its sluggishApp children. A sluggishApp consists only of a single child node, so
this just recouples the contents back with the container. But here’s a solution: we
only need to add an intermediary container node inside sluggishApp:

<class name="sluggishApp" width="150" height="16"
 bgcolor="gray">
 …
 <node name="intermediary">
 <attribute name="spin" value="1000"/>
 <method name="init">
 <![CDATA[
 Debug.write("sluggishApp init: " +
 ((new Date()).getTime()-ts) + " ms");
 var d = new Date();
 while ((new Date()) - d < spin){};

496 CHAPTER 18

Laszlo system optimization
 super.init();
]]>
 </method>
 </node>
</class>

Since the low priority specified by the late setting for a sluggishApp instance also
applies to its contents, both the sluggishApp and its intermediary node initialize
with low priority. However, when the parent window’s completeInstantiation
method is called, it affects only the outer sluggishApp instance, which heeds the
order for immediate instantiation. Their inner intermediary nodes are free to ini-
tialize slowly in the background.

 Although this sounds like a stratagem from some “prison escape” movie, it
allows both sides to carry out their function. The window component immediately
appears, with the gray stripes appearing later.

 Figure 18.6 shows that the container has been decoupled by printing its init
debug message before any of the sluggishApp class instances. Controlling the
instantiation order decreases the display time from 4.5 seconds to 1.5 seconds. It
also displays the window contents incrementally as the individual components
are instantiated.

It’s not so important to understand the intricacies of Laszlo instantiation; what is
important is how to apply them. These techniques allow almost any application,
no matter how large and ungainly, to be optimized with a reasonable startup time.

18.3 Reducing the Market’s startup time

We would like to reduce the Laszlo Market’s startup time to be comparable with
HTML-based web applications. This startup time reduction will be achieved by
redistributing its initialization costs and moving noncritical application sections
into dynamic libraries. Unit testing is auxiliary functionality and is always a good

Figure 18.6 The parent container is now decoupled from its children, so it is able to complete
its initialization prior to the contained instances. This allows the window to appear quickly,
and each instance appears sequentially in the window at one-second intervals.

Reducing the Market’s startup time 497
candidate for dynamic loading. Performing these optimizations on our applica-
tion should significantly reduce its startup time.

18.3.1 Redistributing the Market’s initialization
We’ll redistribute the initialization time by decoupling the display of the Login win-
dow and its children from the rest of the application. This reduces our startup
period to only the time needed by these objects to complete their initialization.
We’ll assume that users must first be authenticated before they can access the Laszlo
Market, and authentication involves a round-trip visit to the HTTP server. The time
spent waiting for authentication provides a convenient time slot to execute the
application’s remaining initialization.

 To separate the initialization of the Login window from these other nodes,
we’ll set their initstage attribute to defer to ensure they aren’t instantiated until
completeInstantiation is called:

<canvas>
 ...
 <view name="main" width="100%" height="100%"
 opacity="0" initstage="defer">
 ...
 </view>
 <view name="checkout" x="${main.x+main.width}"
 width="75%" height="100%" initstage="defer">
 ...
 </view>
 <node name="operators" initstage="defer">
 ...
 </node>
 ...
</canvas>

After login completion, the doLogin method sends a request to the HTTP server.
While waiting for the authentication result to be returned in getLoginResult,
we’ll complete the instantiation of these deferred top-level nodes with com-
pleteInstantiation:

<class name="login" … >
 …
 <method name="doLogin">
 gDataservice.sendRequest(this,
 src, null, "getLoginResult");
 canvas.main.completeInstantiation();
 canvas.checkout.completeInstantiation();
 canvas.operators.completeInstantation();
 this.close();
 </method>

Sends login
to server

Uses delay to instantiate
critical parts

498 CHAPTER 18

Laszlo system optimization
</class>

The authentication response determines whether users stay at the Login window
or continue to the next state in the state controller:

<method name="getLoginResult" args="status, data">
 var status = ds.getFirstChild().
 getElementsByTagName("status");
 if (status == true)
 gController.setAttribute("appstate",
 "Login to Main");
 else {
 login.message("text",
 "Invalid Login");
 gController.setAttribute("appstate",
 "Splash to Login"); }
</method>

Although our results are platform-specific and probably won’t be the same on
your system, inittimer indicates that this decoupling reduced our startup time
from roughly 5.5 to 2.8 seconds, which is approximately a 50 percent reduction.

18.3.2 Dynamically loading noncritical elements

Unit-testing code is an auxiliary element that is always a good candidate for
dynamic loading, since it’s not needed for regular operation. We first need to
move the unit-testing interface inside the doLogin method to ensure that all
access is authenticated; otherwise we’d have a bad security hole:

<method name="getLoginResult" args="status, data">
 var status = ds.getFirstChild().
 getElementsByTagName("status");
 if (status == true)
 if (LzBrowser.getInitArg("lzunit") == "true")
 importUnitTest.load();
 else
 gController.setAttribute("appstate", "Login to Main");
 …
</method>

We only have unit-testing code that tests a small fraction of our application’s func-
tionality. A real-world application would contain significantly larger and more
encompassing unit-testing code modules. This unit-testing code can easily be
moved from the main file into a separate library file:

Gets login
validity

Displays
main screen

Redisplays
login
screen

Reducing the Market’s startup time 499
<library>
 <class name="unitTest" extends="TestSuite">
 <TestCase name="testcase">
 <method name="testCheckout">
 gController.setAttribute("appstate",
 "Main to Checkout");
 </method>
 <method name="checkout_test">
 assertEquals(-(canvas.width*.75), main.x);
 gController.setAttribute("currstate",
 "Checkout to Main");
 </method>
 <method name="main_test">
 assertEquals(0, main.x);
 Debug.write('test complete');
 </method>
 </TestCase>
 </class>
</library>

We’ll use a separate load.lzx file to organize our loaded libraries:

<script>
 loadedModules = new Array();
 loadedModules["testsuite"] = 0;
</script>

<import name="importUnitTest"
 href="testsuite.lzx"
 stage="defer">
 <handler name="onload">
 loadedModules["testsuite"] = 1;
 new unitTest(canvas, { name : "testsuite" });
 testsuite.run();
 </handler>
</import>

To ensure that our unit-testing library is loaded B only when it has been explicitly
requested, we set its initstage attribute to defer. The library is instantiated
directly under the canvas with the name testsuite to conform to its original
placement. Since testsuite is dynamically instantiated, it must be manually
started with a run method C.

 Although our unit-testing code module is small enough not to significantly
impact our startup time, real-world unit-testing code would have a considerable
impact on an application’s startup and should always be dynamically loaded.

 We’ll next look at ways to measure the performance of the Laszlo Market.

Defers loading unit-
testing library

B

Starts unit
testingC

500 CHAPTER 18

Laszlo system optimization
18.4 Performance utilities

To optimize an application, we need a quantitative measurement of its perfor-
mance. A set of base values forms a performance snapshot known as an initial
benchmark. Benchmarks serve as a gauge to determine whether subsequent opti-
mizing efforts yield significant improvements. An issue that arises with bench-
marks is their validity and the limits of their accuracy. For instance, when a series
of benchmarks is performed, it generates a distributed set of results. The distribu-
tion of these results is described through its mean, range, and standard deviation.

 Before we start, it might be helpful to have a short review of some statistical ter-
minology. The mean is the mathematical average of all the benchmark results. The
range is the difference between the maximum and minimum value in these
results. The standard deviation measures the statistical dispersion and indicates
how tightly the values are clustered around the mean. When the standard devia-
tion is large, this indicates that extremes on either side of the mean are canceling
each other out and the result isn’t statistically meaningful. If the standard devia-
tion is large, this indicates that the benchmarking procedures are not returning
reliable results and need to be reconsidered.

 Different situations require different levels of accuracy. In the next sections,
we’ll start with a simple timing measurement demonstration, useful for rough
development estimates, and progress to the Laszlo performance utilities designed
for more accurate timing measurements.

18.4.1 Measuring time with getTime
In many development situations, a simple and quick timing measurement is
needed to get a ballpark estimate of performance. The easiest way to get this type
of information is to use JavaScript’s date object and its getTime method.

 The getTime method returns the number of milliseconds that have elapsed
since January 1, 1970. Laszlo applications run in a single-threaded environment
(both DHTML and the Flash player only use one thread for script execution),
which means that we can use the difference of these timestamps to measure the
time taken by any sequence of JavaScript calls. Here’s an example using getTime
to measure the amount of time to execute a loop:

<canvas>
 <handler name="oninit">
 measureTime(50000);
 </handler>
 <method name="measureTime" args="iters">
 <![CDATA[

Performance utilities 501
 var t = (new Date()).getTime();
 for (var i = 0; i < iters;) { i++; }
 Debug.write((new Date()).getTime() - t + " ms");
]]>
 </method>
</canvas>

Although this provides useful information, it is important to understand its limita-
tions. Code compiled for debugging runs slower than regular compiled code. To
obtain more accurate timing information, you can add a timing framework to
your application. This provides an adequate display and minimally impacts the
application’s performance. A timing framework is centralized, so measurement
code doesn’t need to be distributed throughout the application.

18.4.2 Building a simple timing framework
The following timing framework provides more flexibility by allowing any Laszlo
object, method, or iteration count to be passed as an argument. Our benchmark
consists of an object’s increment method being executed 5,000 times:

<canvas>
 <simplelayout/>
 <button>Test
 <method event="onclick">
 TimingFramework.doTest(top, "increment", 5000);
 </method>
 </button>
 <node name="timingFramework">
 <method name="doTest" args="caller, method, reps">
 <![CDATA[
 var a = 0;
 var t = (new Date()).getTime();
 for (var i = reps; i >=0; i--){
 a = caller[method](a); }
 t = (new Date()).getTime() - t;
 report.addText(' ' + (t/reps));
]]>
 </method>
 </node>

 <view name="top">
 <method name="increment" args="a">
 return a + 1;
 </method>
 </view>
 <text name="report" resize="true">
 Avg function time:
 </text>
</canvas>

502 CHAPTER 18

Laszlo system optimization
Our timing framework is executed when-
ever we click the Test button. Multiple exe-
cutions can be performed and the results
appear in sequential order on our screen
(see figure 18.7). Then, we can enter these
values into a calculator to determine the
mean and standard deviation.

 But when you need the most accurate performance measurements to bench-
mark small-scale routines, you need to turn to the Laszlo performance utilities,
which are covered in the next section.

18.4.3 Using the Laszlo performance utilities
The Laszlo performance utilities are the tools you should use when you need direct
benchmarking comparisons between individual Flash and DHTML elements. They
are most suitable for checking different optimization scenarios, such as the relative
cost of using a function (approximately the cost of three assignment statements in
Flash) or the cost of local versus global variables. Statistics are accumulated in two
loops: a short-term loop to correct for the overhead of getting the time, and a long-
term loop to minimize the perturbation due to background or other processes. To
minimize outside interference, all measurements are performed in a JavaScript
function during the script phase, before any of the Laszlo nodes have been instan-
tiated. The long-term loop, by default, has 30 trials of 500 iterations:

<canvas>
 <include href="utils/performance"/>
 <script>
 var iterations = Measurement.defaultIterations;
 function empty () {
 for (var i = 0; i < iterations; i++) {} }
 function measureIncrement () {
 var a = 0;
 for (var i = 0; i < iterations; i++) {
 a = increment(a); } }
 function increment(a) {
 return a + 1; }
 (new Measurement({'empty': empty,
 'Increment': measureIncrement})).run();
 </script>
</canvas>

The empty function is created to account for the overhead of obtaining the time
information:

Figure 18.7 The timing framework lists a
series of timing values.

Performance utilities 503
iterations = 500
 empty: 24.80us ±16.40 [0.00..60.00]/30
 Increment: 78.73us ±37.12 [0.00..120.00]/30

After we correct and convert this value, the value from our previous timing frame-
work is within the standard deviation. This deviation is expected, since times were
obtained in different execution states. We isolated this value so it would be mea-
sured before the rest of the application is initialized, whereas the previous results
were recorded in the midst of full application execution.

18.4.4 Using the developer console
The developer console for an application (see figure 18.8) appears at the bottom
of the browser window. On the top line, it displays the uncompressed and gzipped
sizes of an application. To the right is a link to the size profiler.

The size profiler contains statistics for the uncompressed size of the application
and is a useful tool for finding size-related hot spots in your application. The size
profiler breaks down the application into the groupings displayed in figure 18.9.
These values are the same whether the application is implemented with dynamic
or statically linked libraries. Laszlo checks for the existence of a dynamic library
during compilation and updates the statistics at that time.

 Each of these major sections is further broken up to allow the size of individual
class definitions, instances, resources, and fonts to be viewed. Size reports provide
a quick way to check the application
for unneeded classes or resources that
were accidentally left behind from
development.

 Size profiles are generated by view-
ing the application with a ?lzt=info
appended to the URL. There is a link
at the bottom of the generated devel-
opment page labeled “Size profile”
that refers to compilation statistics.

Figure 18.8
The developer console contains
uncompressed and gzipped
application sizes, as well as a link to
the size profiler.

Figure 18.9 The size profiler maintains a record
of sizes for all of the class definitions, instances,
resources, and fonts.

504 CHAPTER 18

Laszlo system optimization
18.5 Summary

We have seen how an application that was considered feature-complete was made
ready for deployment on the Web. Being “made ready” involves two steps: making
the application responsive enough to have a short startup time, and optimizing its
overall performance. Laszlo possesses a rich set of tools to assist in completing
these steps.

 Dynamic libraries can be used to postpone the loading of noncritical objects on
an “as-needed” basis. Modifications to an object’s initstage attribute provide a
means for redistributing its initialization time costs until a later period to shorten
startup time. A wide array of benchmarking and profiling tools are provided to
spotlight any potential performance bottlenecks. The result is that even large Las-
zlo applications can be optimized to start quickly.

 This brings us to the end of the development of our Laszlo Market application.
Its development started in chapter 5 with some rough scribbling on paper and
continued throughout the book. It has served us well as a vehicle for illustrating
the subject material for each chapter by providing concrete examples of their use
and also for demonstrating stylistic concepts. Its incremental construction allowed
features to be added in one chapter and later extended in other chapters. But
now, this application’s construction has completed, and this also marks the end of
our book.

index
A

abandonment 7
absolute positioning 79
absolute reference 56–57
abstract service 221
activity-oriented web server 439
Add to Cart button 336, 339
addDelegate method 212
addNodeFromPointer

method 302
addSubview method 214
addtimer method 226
agile development 115
aircraft formation example 32

animation 41
custom layout 165
data binding 43
dynamic resizing 213
flat hierarchy 42, 45

Ajax 9
align attribute 120, 164, 357
alternative processing

filter 460–461
animation 9, 13, 19, 40, 354, 367

between frame 369
complex effects 371
coordinated group 379
easing motion 371
frame 369
implying mass 368
interactive 374
keyframe 369
Laszlo Market 381

expanding product
entry 473

trash can 383
method 138, 369
opacity 379
pausing and restarting 375
prescripted 374
progress bar 355
scripting 137
splash screen 354
state 376
system 21
temperature metaphor 381
transition smoothing 378
tweening 369
using delay 377
visibility control 84
visual illusion 368
width and height 85

animator 40
ease period 372
resource limitations 371

animator tag 13, 138, 369, 371
animator-based class 139
Apache 439
appendChild method 286
Apple QuickTime 426
applets 406
application

initialization 355
interface elements 49
mode 52
sluggish example 491
startup 355
state 135
static layout 49

applied attribute 205

apply attribute 135
applyData method 263, 274
appstate attribute 130
argument

passing by reference 68
passing by value 67

array
delegateList 212
JavaScript type 62
loaded 481
loadedModules 488
subnodes 59

aspect ratio 274
associative array 285, 293
asynchronoustests flag 140
attached image 88
attribute 61, 186

align 120, 164, 357
applied 205
apply 135
appstate 130
base 60
clip 82, 327, 329
confirm 186
currstate 130
cursor 97
dataControlsVisibility 257
datapath 257, 295, 460
debug 50
defaultplacement 182
defaulttext 193
doesenter 175, 230
downKeysArray 236
downKeysHash 236
dynamic 61
505

506 INDEX
attribute (continued)
editable 193
enabled 196
end 156
error 447, 449
errorcount 185
final 61
fnum 359
focusable 100, 175, 329
focustrap 100
focusview 328
frame 93
framesloadratio 94
handling 70
hasdefault 176
height 52
hierarchical propagation 34
href 124, 486
id 55, 61
immediateparent 182
initstage 490, 493
inset 153
isdefault 176, 230
labelwidth 168
lastcolor 332
layout 189
loading 480
loadratio 94
message 449
motion 371–372
name 56, 61, 89, 486
nodeType 284
opacity 84, 379
options 164, 357
ownerDocument 284, 286
parent 61, 182
parentNode 284
pathurl 447
persistent 355
pixellock 88
play 93
pooling 473
read-only 61
relative 373
repeat 375
replication 467, 469, 474
request 442–443
requiredErrorstring 186
rerunxpath 306–307
resource 89

resourceheight 90
resourcewidth 90
rotation 86, 159
runtime 393
sameas 195
scrollable 326
scrollattr 326
scrollmax 326
scrolltarget 326
sel 332
slideduration 128
sortorder 268–269
sortpath 268
spacing 128, 153, 193, 213
speed 217
src 441, 443
stage 486
stepsize 326
storing a value 60
stretch 356
stretches 90, 122, 357, 362
subnodes 61
tag-JavaScript

communication 61
target 138
text 97, 174, 192
timeout 445
tipalign 231
title 324
toggle 332
totalframes 92
type 124
unstretched 90, 275
user-specified 60
valign 120, 357
value 177
value expressed as

constraint 64
visible 84, 213, 378
width 52
xinset 158
xoffset 87
xpath 295
xspacing 158
yinset 158
yoffset 87
yspacing 158

attribute tag 60
audio 79, 406
autoconnect 428

B

background color 53, 79
base attribute 60
basecomponent 173–175
basevalidator class 185
basevaluecomponent 173–178
basic layout 153
benchmark, standard

deviation of results 500
between frame 369
Bézier curve 388
Billing Information

page 191
tabelement 179

billing information 117
Billing Method pane 193
billingAddress class 195
billingMethod class 193
bitmap 388
<body> 411, 415
boolean 62
bound visible object 21
branding 386–387, 395
bringToFront 83, 424
Browse Search view 121
browser 4, 51

Cascading Style Sheets 410
Firefox 175
font support 389
margins 410
measuring size 52
plug-in 10
render HTML

documents 406
scrolling 410
transfering focus 328
using plug-in 406

browser plug-ins
DOM Inspector 407, 416
Firebug 407, 416

buffered dataset 440
buffering dataset 444
building an application 50
built-in event handling 19
bulk updating of paged

dataset 482
button 355–360, 362

changing label 135
default 176

INDEX 507
button state 358
button tag 12

C

callJS 420
callMethod 414
callOnKeyCombo method 224
canvas 50, 119

derived from LzView 28
keyword 57
tag 12, 50

canvas tag 50
attribute, proxied 16
initialization 490

Cascading Style Sheets 410
case sensitivity 57
case statement 136
CDATA escape 54
central controller 134
Change button 134
check box 173
checkNumber class 187
checkout

class 397
state 131
view 132
window 117, 178

page stack 118
checkstring class 196
child declarative tag 50
child node 80, 253

instantiation priority 494
childNodes array 285
class

animator-based 139
base 24
basevalidator 185
basevaluecomponent 173
billingAddress 180, 195
billingInfo 179
billingMethod 180
checkNumber 187
checkout 397
checkstring 196
columnheader 322, 335
datapath 303
datapointer 303
data-pointer-derived 282
datepicker 190
definition 29

derived 24
draggable 245
dynamic instantiation 111
extending a definition 30
formlayout 168
inheritance 107
instantiation 30
listitem 192
logwin 233
lview 120
LzContextMenu 346
LzDataElement 282–283,

285, 292
LzDataNode 282–283
LzDataPointer 294
LzDataText 282–283, 290
LzLayout 152, 165
LzNode 19, 26, 55, 59,

79–80, 282–283
LzSelectionManager 329
LzView 27, 79–80, 174
myscrollbar 401
naming conventions 29
orderConfirm 179
productgrid 276
productlist 273
productrow 323
productwin 322, 329, 470, 477
shippingAddress 180
shippingInfo 179
shippingMethod 180
shoppingcart 343
shoprow 344
stringvalidator 196
titleheader 323
user-defined 107
zipcodevalidator 187

class tag 29, 277
extends 29
stretches 41

class-based
inheritance 19, 24
languages 24

classroot qualifier 109
clearFocus method 228
clickable view 100
client font 389
client-side programming 115
clip attribute 82, 327, 329
clipping 82

clone 265
instantiation 309
timing issues 312

cloneManager 265
cloning 290
close method 366
columnheader class 322, 335
combobox tag 192
command debug window 51
commenting 50, 53
communication

data-binding 23
data-binding system 253
event-based 200
event-delegate 23

comparePointer method 298
compiler, LZX 49
completeInstantiation

method 494, 497
complex data structure 293
component 173–174

custom 394
interface 122
modaldialog 228
scrollbar 395, 398
storage of code 394
tabelement 178, 395
tabslider 126, 395
window 122
with data 177

components directory 395
confirm attribute 186, 197
constantlayout tag 159
constraint 39, 73, 119

$path notation 259
currstate 138
notation 19

constraints 14
content development 115
context attribute c 206
context datapath 259
controller 23

layer 20
convenience method 86
conversion

data node-data pointer 282
datapointer and

datanode 304
coordinates, absolute 103
Copperplate font 389–390, 392
copy operation 341

508 INDEX
Courier font 389
createChildren method 491
critical element

initialization 490
CSS

LZX data type 62
mouse event 79
See also Cascading Style Sheets

Ctrl key 329
curr_state constraint 200
currstate 130, 138
cursor 221

attribute 97
control 97, 230
method 298

custom
layout 165
scrollbar 398
setter method 217

custom component 394–395
customized sorting 269

D

data
binding to tags 43
binding to view 252
control of view 252
multiple nodes 252
networked 438
persistence 451
presentation 252

data binding 19, 253, 314
flicker when changing 473

data element, displaying
characteristics 296

data loader and binder 21
data node 282

addition, deletion 306
XML 253

data object 258, 283
data path

path constraint 259
replication attribute 469

data pointer 282
productdp 472
sharing 314

data service 446
loadPagedData 480

data-binding communication 23
bi-directional 253

dataControlsVisibility
attribute 257

datanode, converting to
datapointer 304

datapath 44
applyData method 263
as standalone object 471
attribute 257, 295, 460
class 303
comparing single and

multiple matches 308
context 259
object 260
restrictions on use 303
returned context 257

datapath tag 269, 294, 303, 308
attribute replication

467–468, 471
datapointer

accessing node
information 296

class 303
converting to datanode 304
dynamic creation 295
navigation 295
rerunxpath attribute 306
single-match limitation 295
tag 294

dataselectionmanager tag
467, 471

dataset 21, 253
attaching XML data 286
buffered 440
buffering 444

pooling 445
creation and modifying 300
custom sorting 269
designing 272
destination 444
dsCart 333
dsProducts 272, 313, 446, 481
dsproducts 276
dynamic binding 282
dynamic HTTP 440
filtering 311
filters 460
HTTP, valid response 450
inherited properties 440
inserting XML data 286
introduction 252
lazy replication 466

library file and 254
local 253, 264, 438
mapping filter 463
matching multiple

elements 264
merging 463
myData example 284
navigation 298
newsfeed 442
node terminology 254
page records 475
paged 475, 482

scrolling 475
persistence 451
populating using LzData-

Element methods 289
resident 438
resident for development 271
returned data 283
sorting 267, 462
transition to networked

data 438
updating 260
with many matching

nodes 460
XPath referencing 253

dataset tag
attribute

pathurl 447
request 442
src 441

method, doRequest 442
datepicker class 190
deactivate method 243
debug

attribute 50
window 51

debugger 50
DOM contents 58
obtaining timing from 491
tips for using 129
updating values 53
verifying values 52

debugging 50
declarative

animator 138
approach, limited number of

states 200
language 21, 49
notation 49
programming 9, 18

INDEX 509
declaring a resource 89
defaultplacement attribute 182
defaulttext attribute 193
defer 486
defer option 494
delay

in animation 377
Simister Slide algorithm 380
through layout 379

delegate
as anonymous function 206
attributes 206
changing behavior 209
constructor 206
context attribute c 206
for delay in scrolling paged

datasets 479
for valid server response

444, 449
function pointer f 206
instantiation 206, 225
list 202
manual instantiation 207
methods 210
object 23, 200
pooled dataset events 445
registration 206, 225
subscriber 201
unregistering 208
use for dynamic behavior 209

delegate-centric
communication 209, 212

delegateList array 212
deleteItem method 337, 341
deleteNode method 345
deployment 14

web-server domain 457
design pattern,

publisher-subscriber 23
design specification 115
destination dataset 444
destroy method 207–208, 487
determining page residency 476
developer console 503
development

decoupling client
and back-end 438

strategy 115
device font 389
device interface 21

DHTML 5, 10, 405
embedded font 392
features not available 387
Flash differences 387
graphics support 388
replicating embedded

font 392
selecting platform 14
selecting platform at

runtime 393
simulating Flash features 387

dhtmlEmbed
appendivid parameter 417
LFC library 409
method 409
url parameter 411

dhtmlEmbedLFC 409, 413
diagnostic tool 50
dimensions 79
directory components 395
display placement 79
documentation 81
doEnterDown method

175, 261, 340
doEnterUp method 175
doesenter attribute 175, 230
doLogin method 497–498
DOM 52

display in debugger 58
tree 414

Domain Specific Language
(DSL) 18

doRequest method 442–443
doSpaceDown method 175
doSpaceUp method 175
doStart method 370
doValidate method 196
doValidation method 185
downKeysArray attribute 236
downKeysHash attribute 236
drag and drop

handling the drop 343
in Laszlo Market 341
move operation 344
network 238, 341

applicability of
scoreboard 321

with LzIdle and
LzGlobalMouse 239

with LzTrack 242
draggable class 245

draggable icon 342
dragger appearance 341
dragstate tag 241
drop shadow 368
dsCart dataset 333, 338, 345
dsError method 445
DSL. See Domain Specific

Language (DSL)
dsLoad method 445, 449
dsProducts dataset 272, 276,

313, 446, 481
dsTimeout method 445
dupePointer method 298
dynamic

loading 486
candidates for 490
critical code 497
menu items 487

resizing 213
typing 62
updating 23

dynamic attribute 61
dynamic behavior 200
dynamic HTTP dataset 440
dynamic library 486

recording 489
dynamic node creation 57
dynamic view instantiation 80

E

easing motion in animation 371
ECMAScript 19
editable attribute 193
edittext object 196
element 21
embed-compressed.js 409
embedded applications 414
embedded audio 79
embedded font 387, 389, 392
embedded vector font 391
embedded video 79, 94
enabled attribute 196
encapsulation data service 446
end attribute 156
end node 21
endDrag method 240, 245
entity 138
error attribute 447, 449
error checking 51
errorcount attribute 185

510 INDEX
escape character 197
event

adding with attribute
setter 217

attribute event 69
attributes 202
automatic instantiation 202
constraint 39
default handlers 38
handler 32, 200
handling 39
instantiation with

delegate 201
list of attributes 202
list of methods 212
local 130
locked attribute 202
manual instantiation 207
methods 212
object 23, 200, 202
on+attribute 201, 217
onaddsubresource 91
onblur 100
onclick 58, 135, 161,

209, 226, 332, 364
onclones 309
ondata 258, 275, 282,

297–298, 300, 305, 307–308,
314, 342, 449, 471

onerror 91, 486
onfocus 100
onframe 95
onheight 214
onidle 239
oninit 51, 309, 312
onkeydown 101, 360
onkeyup 101, 360
onlastframe 95
onload 91, 94, 275, 486
onmousedown 162, 240, 341
onmouseout 230, 364, 472
onmouseover 230, 355, 364,

472
onmousetrackout 242
onmousetrackover 242
onmousetrackup

242, 343, 345
onmouseup 162, 355
onnodes 309
onplay 93, 95
onselect 193, 278
onstop 95, 141

ontext 262
ontimeout 486
onwidth 214
onx 201
ony 475
property change 39
publisher 201
publisher-subscriber

pattern 23
service 223–224
system 21, 69
use for dynamic behavior 209
user 99

event handler 51, 66
execution order 205
onblur 340
onclick 130
ondata 258, 311, 324
onkeydown 361
onkeyup 361
onmousedown 360–361
onmouseup 360
onnodes 311
onselecteddate 190
ontext 311
reference field 224
stopTimer 226
writing 69

event handling 19
built-in 37
from other tags 72
relative timing 71

event-based
communication 200

event-delegate
communication 201

delegate-centric 209
event-centric 212

expression 64
extreme programming 139

F

field validation 185
file path 21
filter 460–461
filtering a dataset 311
final attribute 61
Firefox 175

transfering focus 328
first 56

Flash 5, 10
audio capabilities 425
Communication Server 427
DHTML and 387
embedded font 390
embedding 425, 432
Flash ActionScript 422
FLV 427
graphics support 388
internal settings 425
RTMP 427
selecting platform 14
selecting platform at

runtime 393
setClipboard method 422
SOLO 410
streaming media 426
SWF 406
SWF file format 405
video capabilities 425
videos 94
wmode 425

Flash ActionScript 406, 423
Flex 9–10
flicker 473
FLV. See Flash
fnum attribute 359
focus 79, 100, 228

component 174
in Firefox and Safari 328
keyboard interaction 175
trapping 100
with button 360

focus group 386
focusable attribute

100, 175, 329
focustrap attribute 100
focusview attribute 328
font 79, 97

Bezier curve 388
bit-mapped 388
client 389
Copperplate 389–390, 392
device 389
embedded 387, 389, 391
families 389
for Laszlo Market 390
Gothic 391
Helvetica 389
image capture 389
OpenLaszlo default 391

INDEX 511
font (continued)
OpenType 389
PostScript 389
sans-serif 389
selection 389
specification 79
style support 389
TrueType 389
use of Bézier curve 388
variable-sized elements 470
vector-outlined 388
Verdana 389–390

foreground color 79
form

laying out 167
validation 197

formlayout class 168
formlayout tag 167, 183
frame 92
frame attribute 93
framesloadratio attribute 94
function 255

instanceof 169
sort 463
sortByTitlePrice 463

function pointer attribute f 206

G

gController 130
gDataService library 447
getAttr method 450
getAttributeRelative

method 103
getCanvasAttribute 414
getCloneNumber method 267
getDepthList method 104
getDownKeys method 236
getElementsByTagName

method 290
getFocus method 228
getInitArg 420
getLoadURL 420
getLoginResult method 497
getMouse method 100
getNext method 228
getNextSibling method 305
getNodeCount method 339
getPrev method 228
getProductParams method 447
getProducts data service 446

getProducts method 446
getShape method 24
getTime method 500
getValue method 177
getVersion 420
global controller 23, 136
global identifier 55–56
global singleton 221

service 223
global state controller 130
glyph 388
Google 405
Gothic font 391
gradient image 358
graphics 388
grid

event handling 278
use in prototyping 276

grid component 322
grid tag 276
gridcolumn tag 276
gridtext tag 276
gripper 400

H

handleData method 444
handleErrors method 444
handler tag 201
handleTimeout method 444
hasdefault attribute 176
<head> 425
height attribute 52
heightoffset 423
Helvetica font 389
hierarchical parent-child

addressing 19
hierarchical tree structure 253
hierarchy

attribute propagation 34
flat 32, 36
object 55
parent-child 18, 32, 56
sibling 18

horizontal prototyping 271
hot key 237
href attribute 124, 486
HTML 4

as a DSL 18
commenting 53

file
<div> 416–417
<embed> 406
<head> 408

LZX data type 62
HTML 4.0.1 406
HTML file

<body> 408
common environment 406
embedded 406–407, 411
JavaScript 406
JSP variables. 412
multiple executables 410
<object> 406
server-side includes 408

html object 423–424
BringToFront 424
heightoffset 423
iframe 423
loading 424
SendToBack 424
SetSrc 425
SetTarget 425
SetVisible 425
src 424
target 424
visible 424
widthoffset 424
xoffset 424
yoffset 424

HTTP request, response
contextPath 412

HTTP server
index.html 412
index.jsp 412
support for paged

datasets 479
hybrid application 388, 405

I

icon, draggable 342
iconitem object 193
iconitem tag 192
id attribute 55, 61
iframe 423
ignore instruction 54
ignorelayout 164
ignorelayout option 357
IIS. See Internet Information Ser-

vices (IIS)

512 INDEX
illusion 368
drop shadow 368
implying mass 368
squash and bounce 372
with delay 377

image 79
attached to view 88
bit-mapped 388
constructing a border 362
distortion 388
distortion in button 356
for custom component 395
gradient 358
multipane, matching

subimages 363
opacity, varying 388
resizability 388
resizing 274, 388
resolution 388
rotation 388
stretching 362
vector 387
vector-based 388

immediateparent attribute 182
imperative language 49
import object 488
import tag 486
<!-- include> 411
<%@ include> 415, 418
include file, tag 124
include tag 124
increment method 501
inheritance 19

class-based 19, 24
prototype-based 24

init method 207, 491
initialization

control over sequencing 494
Laszlo object 490
of critical element 490
uncoupling object

contents 495
waiting by parent 491

initstage attribute 490, 493
defer setting 493–494, 497
early setting 493
late setting 495
normal setting 493

inittimer 491
input

devices 221–222

from keyboard 236
keyboard, handling focus 360
LzGlobalMouse service 238

input field
labeled 167
validating 187

input service 221
inset attribute 153
inspect method 52
instance-first development 26,

28, 120
instanceof function 169
instantiating

deferred 494
event-delegate pair 201

instrumentation 51
interface 49
interface widget 173
Internet Information Services

(IIS) 439
isdefault attribute 176, 230
isKeyDown method 236

J

J2EE 6, 9
Java 5, 61, 107
Java Virtual Machine 9
JavaScript 9, 19, 49, 137

array, mapping filter 465
attribute referencing 31
CDATA escape 55
commenting 53
composite data type 62
declarative progamming 19
dynamic class

instantiation 111
dynamic node creation 57
encapsulation 32
functions are data 450
mynode variable 58
new operator 57
object 24
object instantiation 27
object-oriented 19
primitive data type 61
script tag 76
sort 463
tag communication 61

updating paged dataset 482
zero-based indexing 256

JavaServer Faces (JSF) 9
JDBC 25
JEE 6
Jetty 439
JSF. See JavaServer Faces (JSF)
JSP

includes 408, 411
Standard Tag Library

(JSTL) 9
JSTL. See JSP Standard Tag

Library (JSTL)
JVM. See Java Virtual Machine

K

keyboard 79, 221
keyboard input 174, 236
keyframe 369
keyword 57

L

labeled input field 167
labelwidth attribute 168
lastcolor attribute 332
Laszlo

application 50
three-tiered structure 20

architecture 139
browser JavaScript 420
client 22
client-side architecture 20
compiler 49
component interface 122
custom component 394
data manages code 252
documentation 81
one-based indexing 256
performance utilities 502
server 22
using Flash ActionScript 422

Laszlo API 19
Laszlo DHTML 408

adding audio and video 405
DHTML JavaScript object 407
dhtmlEmbed 411
dhtmlEmbedLFC 409
embedded HTML object 423
extension of HTML page 407

INDEX 513
Laszlo DHTML (continued)
hybrid application 405
lzOptions 409
lzr parameter 410
mapped to DOM 407
using Lz 409

Laszlo Flash
embedded HTML object 423
hybrid application 405
lzOptions 409
lzt request type 412
search engine issues 405
SWF file format 405
swfEmbed 411

Laszlo Market 5, 115
Add to Cart button 316
adding a scrollbar 325
adding context menu 347
add-to-cart operations 336
and LzKeys 237
animation, trash can 381
authentication, using the

delay time 497
billing information 117
Billing Information page 191
Billing Method pane 193
billingAddress class 180
billingInfo class 179
billingMethod class 180
branding 386
Browse Search view 121
checkout screen 125
checkout screen layout 128
Checkout window

117, 178, 186
complete prototype 144
Complete

Purchase button 197
coordinating pages 194
copy and move

operations 341
custom component 394–395
dataset design 272
dataset, data services 446–447
datasets 313
development framework 272
drag-and-drop

operations 341, 343
drag-and-drop using

LzTrack 243
dragger appearance 341

dsCart dataset 338
events in adding to shopping

cart 343
expandable display 470
expanding product entry 472
font selection 390
high-tech look 387
implementing

scoreboarding 336
input form 117
input services 222
layout 152
library files 125
Login window 227, 497
main functions 116
main screen 123, 125
main-screen 116
managing selections 330
mapping filter 463
master-detail design

pattern 313
modules 119
orderConfirm class 179
paging product rows 477
pooling in shopping cart 474
processing user selection 278
Product Details view 121
Product Details window

314, 337
Product List window

273, 313–314, 322, 343
adding selections 332
paging dataset 477
populating rows 323

product selection 469
productwin class 322, 329
puchase confirmation 117
purchasing an item 117
reducing startup time 496
sample data 272
scoreboard pattern 320
screen storyboard 118
screen transitions 118, 132
scrolling 329
Shipping Address pane

183, 187
shipping information 117
Shipping Method pane 189
shippingAddress class 180
shippingInfo class 179
shippingMethod class 180

shopping cart
adding multiple units 340
as scoreboard 320
common interface 321
copy and move

operations 341
data services 452
deleting items 455
drag-and-drop

operations 341
events when adding

item 343
populating 451
right-mouse-button

support 348
sessioned 451
updating 453
updating total price 345

Shopping Cart window
333, 345

shoppingcart class 343
shoprow class 344
shoprow object 345
sorting table columns 324
state controller 131, 498
state transitions 130
stock-keeping unit 272, 338
supporting a scroll wheel 329
testing 139, 141
updating total price 339
use of grid component 322
window

checkout 125
Media Player 132
media player 126
Shopping Cart 126, 132

wireframe 118
Laszlo object initialization 490
Laszlo service 21

input service 221
LzGlobalMouse 238
LzHttpDatasetPool 445

Laszlo SOLO 410
Laszlo Systems history 10
late setting 486, 495
layout 119

API for creation 152
attribute 189
basic 153
common problems 152
compound 152

514 INDEX
layout (continued)
conflicting x and y

attributes 154
controlling delay 379
custom 152, 165
interaction with visibility 155
Laszlo Market 152
modifier 152–153, 162
modifying 159
multiple-row 154
non-updating 156
opting out 164
placement issues 181
reversing 154, 156
rotational 158
simplelayout 153
static 316
stretchable 153, 160
system 21
tag 152, 214
tool source code 153
update method 154, 165
using delegates 215
view attachment 153

lazy loading 475
lazy replication 460, 466

effects 467
setting of pooling

attribute 473
library

dynamic 486
gDataService 447
large, loading 490
LzUnit 140
organizing modules 488

library file 124
unit-testing code 498

library tag 124
lighting effect 398
line wrapping 157
listitem class 192
load method 486
loaded array 481
loadedModules array 488
loading 424

critical elements 490
deferred 486
dynamic 486

candidates for 490
dynamic library 486

large datasets 460
large libraries 490
unit-testing code 498

loading attribute 480
for loading hint 482

loadJS 420
loadPagedData data service 480
loadURL 420
local controller, state 23
local dataset 264

constraints 438
local event 130
local identifier 56
local mouse event 238
local namespace 55
local resource 92
locality in paged dataset 475
location path 21, 255

syntax 255
locked attribute 202
Login state 130
Login window 227, 230
logwin class 233
lview class 120
Lz 409, 413
Lz communication

methods 414
Lz embed methods 409
LzBrowser 420–421
LzCanvas object 51
LzContextMenu class 346
LzContextMenuItem class 346
LzContextMenuItem object 346
LzCursor 222
LzCursor service 230
LzDataElement class

282–283, 292
attributes 285
building datasets 285

LzDataElement constructor 285
LzDataElement object 440
LzDataNode class 282–283

attributes 284
methods 287

LzDataNode derived object 304
LzDatapath class method,

setNodes 460
LzDatapath object 258
LzDatapointer class 294

attributes 295

converting between
datapointer and
datanode 304

methods 287, 296
methods for tree

manipulation 300
using the p attribute 304
XML navigation methods 298

LzDataSelectionManager 467
LzDataText class 282–283, 290
LzDataText object

constructor 291
LzDelegate constructor 207
LzFocus 222

methods 228
LzFocus service 228
LzGlobalMouse service 238
LzHttpDatasetPool service 445

in gDataService 448
method

get 445
recycle 445

LzIdle 221
LzIdle service 238–239
LzInstantiator queue 493
LzKeys 222
LzKeys service 236
LzLayout class 152, 165

attributes 153
extending 165

LzLazyReplicationManager 467
LzModeManager 222
LzModeManager service

232–233
LzNode class 19, 26, 55,

59, 79–80, 282–283
datapath 44
derived objects 27
initstage attribute 495

LzNode object 57, 257, 440
LzNode-derived object 60
LzReplicationManager 264–265

initialization 309
LzResizeReplicationManager

469
LzSelectionManager 467
LzSelectionManager class
329–330
LzTimer 221
LzTimer service 225

stopwatch example 226

INDEX 515
LzTrack service 238, 242
LzView class 27, 79–80, 174
LZX 5, 9, 49

attributes 61
case sensitivity 57
classes 24, 26
commenting 53
component 173
custom component 394
declarative nature 18
defining classes 28
introduction 12

M

Main state 130
makeModal method 232
makeNodeList method 292
mapping datasets 463
mapping filter 463
markup language 21
mashup 466
master-detail pattern

in Laszlo Market 315
similar to scoreboard 321

measuring browser window 52
Media Player 122
Media Player window 132
media, audio and video 387
menu 487

dynamic loading 490
support 346

merging datasets 463
message attribute 449
meta-operator 139
method 24, 66

addDelegate 212
addNodeFromPointer 302
addSubview 214
addtimer 226
animation 138, 369
appendChild 286
apply 135
applyData 263, 274
arguments 67
bringToFront 83
callOnKeyCombo 224
clearFocus 228
close 366
comparePointer 298

completeInstantiation
494, 497

createChildren 491
deactivate 243
deleteItem 337, 341
deleteNode 345
destroy 207–208
doEnterDown 175, 261, 340
doEnterUp 175
doLogin 497–498
doRequest 442–443
doSpaceDown 175
doSpaceUp 175
doStart 370
doValidate 196
doValidation 185
dsError 445
dsLoad 445
dsload 449
dsTimeout 445
dupePointer 298
endDrag 240
enddrag 245
general 66
getAttr 450
getAttributeRelative 103
getCloneNumber 267
getDepthList 104
getDownKeys 236
getElementsByTagName 290
getFocus 228
getLoginResult 497
getMouse 100
getNext 228
getNextSibling 305
getNodeCount 339
getPrev 228
getProductParams 447
getProducts 446
getShape 24
getter 24
getTime 500
getValue 177
handleData 444
handleErrors 444
handleTimeout 444
increment 501
init 207, 491
inspect 52
makeModal 232
makeNodeList 292

next 228
open 229
overriding 108
passModeEvent 364
prev 228
register 243
registration 224
release 235
resetTimer 225
restartTimer 227
searchParents 104
searchSubviews 104
select 332
selectChild 298
selectNext 298
selectParent 298
selectPrev 298
sendBehind 83
sendEvent 217
sendInFront 83
sendToBack 83
setAttribute 32, 65,

201, 216, 450
setByDate 190
setCaption 346
setComparator 270, 324
setDelegate 346
setEnabled 346
setFocus 223, 228
setFromPointer 314, 342
setMaxheight 215
setMaxwidth 215
setNodes 460–461
setOrder 270
setPointer 304–305
setQueryType 441
setResource 91
setSelected 332
setShape 24
setSpeed 218
setter 24
setText 177
setUp 140
setValue 177
sortBy 324
startDrag 240
startdrag 245, 341
stringToLzData 292–293
tearDown 140
testCheckout 142
unregisterAll 208

516 INDEX
method (continued)
unregisterFrom 208
update 153–154, 165, 213
updateData 260, 282
updateDelegate 214
updatePosition 240
updateShopcart 337–338, 341
updateTimer 225
updateTotals 339
valueToElement 292–293
write 51
writing 66
xpathQuery 299, 307, 338

Microsoft Window Media 426
modal view object 232
modal window 228, 364
modaldialog component 228
modaldialog window 234
mode manager 232
model layer 20

link to view layer 306
model-view-controller pattern

(MVC) 20–21
motion attribute 371–372
mouse 221

button state 358
control 79
controlling a scrollwheel 328
cursor 97, 230

interaction with
buttons 355

input 174
local event 238
state 358
state events 359

mousedown button state 358
mouseout button state 358
mouseover button state 358
mouseup button state 358
multiframe resource 92, 358
multikey sorting 462
multimedia 79
multimedia resource 79, 88
multiple executables 410
multiple-controller 23
multiple-key sorting 270
multistate button 358
MVC. See model-view-controller

(MVC)
myData dataset 284

manipulating 301

myData.lzx library file 254
mynode variable 58
myscrollbar class 401

N

name attribute 56, 61, 89, 486
namespace 55, 57
naming 55

first 56
global 31
local 31
parent 32
this reference 37

.NET 439
newsfeed dataset 442
next method 228
nine-piece button 356
node tag 31, 56
nodeType attribute 284
<noscript> 418
notification 23
number 61
numbervalidator tag 187

O

object
data 258
datapath 260
delegate 23
event 23
hierarchy 31, 55
import 488
initialization, uncoupling

contents 495
JavaScript 24
JavaScript type 62
LzCanvas 51
LzDataElement 440
LzDatapath 258
LzNode 57, 257, 440
LzNode-derived 60
LzReplicationManager 264
modal view 232
productDataService 446
prototype 24
runtime modification 200
view 79

object-oriented 49
observer pattern 23

on+attribute argument 201
on+attribute event 217
onaddsubresource event 91
onblur event 100

handler 340
once modifier 74
once qualifier 445
onclick event 58, 161, 209, 226,

332, 364
handler 130, 135

onclones event 309, 312
ondata event 258, 260, 275, 282,

300, 305, 307–308, 314, 342,
449, 471

generated by datapointer 298
handler 258, 311, 324
LzDataPointer methods 297

ondata handler 444
one-based indexing 256
onerror event 91, 486
onerror handler 445
one-to-many communication 23
onfocus event 100
onframe event 95
onheight event 214
onidle event 239
oninit event 32, 51, 309, 312
onkeydown event 101, 360

handler 361
onkeyup event 101, 360

handler 361
onlastframe event 95
online store 7
onload event 91, 94–95,

275, 486
onmousedown event 162, 240,

341, 355
handler 360

onmouseout event 230, 364, 472
onmouseover event 230, 355,

364, 472
onmousetrackout event 242
onmousetrackover event 242
onmousetrackup event

242, 343, 345
onmouseup event 162, 355

handler 360
onnodes event 309

handler 311
onplay event 93, 95

INDEX 517
onselect event 193, 278
onselecteddate event

handler 190
onstop event 95, 141
ontext event 262

handler 311
ontimeout event 91, 486
onwidth event 214
onx event 201
ony event 475
opacity 84

animating 379
of font 391

open method 229, 366
OpenLaszlo 4, 11

compiling to Flash or
DHTML 15

default font 391
deployment 14
downloading 11
license 11
runtime library 19
selecting platform 393
server mode 14
standalone mode 15

OpenLaszlo clockblox 407
OpenLaszlo Runtime Library

(ORL) 19, 51
OpenLaszlo Server build

number 52
OpenType font 389
operator 138
optimizing performance 485
options attribute 164, 357
Order Confirmation

tabelement 179
ORL. See OpenLaszlo Runtime

Library (ORL)
otherwise tag 393
overriding superclass

method 205
ownerDocument attribute

284, 286

P

padding 173
page stacking 118, 126
paged dataset 460

paging algorithm 479

pane
nine-piece 362
tabelement 179

parent
attribute 61, 182
keyword 57
node 21
prefix 60
view resizing 81

parent-child
attribute propagation 19
hierarchy 50, 56, 60
tree 490

parentNode attribute 284
passModeEvent method 364
path constraint 259
path expression 255
pathurl attribute 447
performance 6, 485

Laszlo utilities 502
size profiler 503

persistent attribute 355
perspective 209
physical dimension 79
pixel 388
pixellock attribute 88
pixelruler 52
placement 79
platform, selecting at

runtime 393
platform-specific code 393
play attribute 93
pooling

datasets 460
replicated views 473
view objects 466

pooling attribute 473
position function 324
PostScript font 389
predicate 255

operator 21
pre-order traversal 493
prev method 228
priority of node

instantiation 494
product branding 386
Product Details view 121
Product Details window 337
Product List window

273, 322–323, 343
product target audience 387

productDataService object 446
productdp data pointer 472
productgrid class 276
productlist class 273
productrow class 323
productrow clone 323
productrow objects 341
productwin class 322, 329,

470, 477
progress bar 355
progressive video 94
property 24
prototype object 24
prototype scenario 271
prototype-based inheritance 24
prototyping 115

coding 119
horizontal and vertical 271
window component 122
with grids 276
with views 120

publisher event delegate list 202
publisher object 200
publisher-subscriber design

pattern 200
applied vertically 253

Q

queue, LzInstantiator 493

R

radio button 173
radiogroup tag 189–190
rapid prototyping 118
read-only attributes 61
Really Simple Syndication

(RSS) 439–440
Red5 server 427
refactoring code 137
reference 57
reference field event

handler 224
reference implementation 139
register method 243
registering event-delegate

pair 201
registration method 224
regression testing 139
relational offsets 31

518 INDEX
relative attribute 373
relative positioning 79
relative reference 56–57
release method 235
releasetolayout 162

option 335
remove method 135
repeat attribute 375
replicated object, dynamic

behavior 327
replication

comparing normal and
pooled 473

normal 467
variable-sized elements 469

replication attribute
467, 469, 474

replication manager
265–266, 308

populating table rows 323
registering updates with 461
setNodes method 461
timing issues 309

Representational State Transfer
(RST) 22, 439

request attribute 442–443
required attribute 186
requiredErrorstring

attribute 186
requirements specification 115
rerunxpath attribute 306–307
resetTimer method 225
resizable button 355
resizelayout tag 161–162, 335
resizestate tag 162–163
resizing parent view 81
resolution 388
resource 89, 92

attribute 89
file 88
frame 79
multiframe 358
multi-media 88

resource tag 33, 89, 192
src 39

resourceheight attribute 90
resource-oriented web

server 439
resource-related attribute 89, 91
resources directory 395
resources.lzx 125

resourcewidth attribute 90
responsiveness 485
REST. See Representational State

Transfer (RST)
restartTimer method 227
reusable component 173
reverselayout tag 156
RIA. See rich internet application

(RIA)
rich internet application

(RIA) 4, 9
right mouse button 346
root node 21, 253
root tag 50
rotation 86

subview 154
supporting attributes 88
text 391

rotation attribute 86, 159
rotational layout 158
rotational placement 79
RSS. See Really Simple
Syndication (RSS)
RTMP server 427
rtmpconnection attributes 428
Ruby on Rails (RoR) 439
runtime attribute 393
runtime file, version number 52

S

Safari, transfering focus 328
sameas attribute 195
sans serif font 389
scenario prototype 271
scoreboard pattern 320

similar to master-detail 321
scoreboarding implementation

in Laszlo Market 336
screen interface 21
screen transition 118, 125
screen-based ruler 52
<script> 411–416
script tag 76
scroll wheel 79

establish focus 328
focusable parent view 328
Laszlo Market support 329

scrollable attribute 326
scrollattr attribute 326

scrollbar 173
adding to Laszlo Market

window 325
attaching to view 327
custom 398
diagnosing problems 328
enabling and disabling

325–326
horizontal 327
list of attributes 326
vertical 327

scrollbar component 395, 398
gripper 400
images 398

scrolling
ony event 475
paged dataset 475–476

calculating page
number 476

preventing spurious
requests 479

virtual screen 132
with lazy replication 466

scrollmax attribute 326
scrolltarget attribute 326
scrollwheel 328
search engines

Google 405
issues 405
resolving Flash issues 418
web crawlers 405

searchParents method 104
searchSubviews method 104
select method 332
selectChild method 298
selection

adding to Product List
window 332

in scrolled window 471
selection manager 329
selectionmanager class 329
selectionmanager tag 330, 471
selectNext method 298
selectParent method 298
selectPrev method 298
sendBehind method 83
sendEvent method 217
sendInFront method 83
sendInFrontOf method 83
SendToBack 424
sendToBack method 83

INDEX 519
server 4
server side includes (SSIs) 408
server-side programming 115
service 221

abstract 221
as a global singleton 223
calling 223
contacting 223
data 446
in the Laszlo Market 222
list of those covered 221
LzCursor 222, 230
LzFocus 222
LzGlobalMouse 238
LzHttpDatasetPool 445
LzIdle 221, 238–239
LzKeys 222, 236
LzModeManager 222, 232
LzTimer 221, 225
LzTrack 238, 242
method 223
registering to send event 224
sending an event 223

service event 224
set prefix 217
setAttribute method 32, 65, 86,

201, 216, 450
setByDate method 190
setCanvasAttribute 414
setCaption method 346
setClipboard 420
setComparator method

270, 324
setDelegate method 346
setEnabled method 346
setFocus method 223, 228
setFromPointer method

314, 342
setMaxheight method 215
setMaxwidth method 215
setNodes method 460–461
setOrder method 270
setPointer method 304–305
setQueryType method 441
setResource method 91
setSelected method 332
setShape method 24
setSpeed method 218
SetSrc 425
SetTarget 425
setter option 217

setText method 177
setUp method 140
setValue method 177
SetVisible 425
shadow effect, with gradient 358
shadow length 173
shell wrapper 406
Shift key 329
Shipping Address pane 183, 187
shipping information 117
Shipping Information page 179
Shipping Information

tabelement 179
Shipping Method pane 189
shop_titleheader class 335
shopping cart

adding multiple units 340
common interface 321
drag-and-drop operations 341
updating total price 345

shopping cart abandonment 7
Shopping Cart window

132, 333, 345
layout 334

shoppingcart class 335, 343
shoprow class 335, 344

datapath context and
replication 336

shoprow object 345
Silverlight 5
Simister Slide algorithm 380
Simple Object Access Protocol

(SOAP) 22, 439
simpleboundslayout tag

158–159
simplelayout 153
simplelayout tag 183, 380, 467
singleton 221
size profiler 503
SKU. See stock-keeping unit

(SKU)
slideduration attribute 128
smoothing transition 378
SOAP. See Simple Object Access

Protocol (SOAP)
SOLO. See Standalone Open-

Laszlo Output (SOLO)
sort comparator 269
sort function 463
sortBy method 324
sortByTitlePrice function 463

sorting 268, 462
arithmetic 325
ascending and

descending 324
dictionary sort limitation 325
in Laszlo Market 324
JavaScript sort function 463
multi-key 462
multiple-key 270
simple 268

sortorder attribute 268–269
sortpath attribute 268
source code layout tools 153
spacing attribute 128, 153,

193, 213
special character 54
speed attribute 217
splash screen 354

customizing 355
supplying resource for 355
use of persistent attribute 355

splash tag 354
src 424, 428
src attribute 441, 443
SSI. See Server Side Includes

(SSI)
stableborderlayout 274
stableborderlayout tag

161, 323, 357
stage 428
stage attribute 486
Standalone OpenLaszlo Output

mode 15
startDrag method 240, 245, 341
startup cost, redistributing 490
startup time 485

in Laszlo Market 496
state

Checkout 131
Login 130
Main 130
maintaining 22

state table 129
state tag 135, 138, 200, 205, 241

apply 135
handling many states 136

state transition 130
table 130, 139

status 428
stepsize attribute 326
stick time 7

520 INDEX
stock-keeping unit (SKU)
272, 338

stopTimer event handler 226
storing attribute values 60
storyboarding 118
streaming video 94
stretch attribute 356
stretchable layout 153, 160
stretches attribute 90, 122,

357, 362
stretching text 391
string 62
stringToLzData method

292–293
stringvalidator class 196
Struts 439
<style> 413
subject 23
subnodes array 59, 80
subnodes attribute 61
subscriber object 200
subviews array 80, 104, 153, 380
super keyword 108
swfEmbed

appendivid parameter 417
method 409
OpenLaszlo server 411
SOLO 411
url parameter 411

switch tag 393
system event handling 70
system-centered design 115

T

tab 9
Tab key 340
tabelement 126

pane 179
tabelement component

178, 395
mouse states 396

tabslider 9, 126, 179
tabslider component 395
tag

animator 13, 138, 369, 371
animatorgroup 13, 138,

369, 371
attribute 60
binding to data 43, 257
button 12

canvas 12, 50, 490
class 29
combobox 192
compilation 27
constantlayout 159
datapath 269, 294, 303, 308
datapointer 294
dataselectionmanager
467, 471
dataset 441
dragstate 241
dynamically changing

behavior 200
formlayout 167, 183
fundamentals 30
grid 276
gridcolumn 276
gridtext 276
handler 76, 201
iconitem 192
import 486
include 124
inittimer 491
JavaScript communication 61
layout 152, 214
library 124
method 76
node 31
numbervalidator 187
otherwise 393
radiogroup 189
resizelayout 161, 335
resizesate 162
resource 33, 192
reverselayout 156
root 50
script 76
selectionmanager 330, 471
simpleboundslayout 158
simplelayout 154, 183, 380,

467
splash 354
stableborderlayout

161, 323, 357
state 135, 138, 200, 205, 241
switch 393
TestCase 140
TestSuite 140
text 12, 357
textlistitem 192
tooltip 231

validatingForm 185
view 79, 89
when 393
window 13
wrappinglayout 157
XML 124

tags and objects, loose
equivalence 59

Tapestry 9, 439
target 424
target attribute 138
tearDown method 140
terminal focus 21
terminal selector 257
testCheckout method 142
testing 139

assertions 140
Laszlo Market 141
loading code 498
LzUnit 140
URL query string 143

text
element 254
LZX data type 62
margin 173
varying opacity 391

text attribute 97, 174, 192
text effect, stretching and

rotating 391
text node, instantiating and

initializing 291
text tag 12

align attribute 164
in button 357

textlistitem tag 192
this prefix 61
three-pane button 356
timeout attribute 445
timer 21
timing 491
timing framework 501
tipalign attribute 231
title attribute 324
titleheader class 323
toggle attribute 332
tool tip 231
totalframes attribute 92
totals scoreboard 321
tracking event 242
tracking group 242

trash_target 344

INDEX 521
transition smoothing 378
trapping focus 100
trash can icon, animating 381
tree structure 21
tree, recursive definition 253
tweening 369–370
type

attribute 124
expression 64
option 63

typing, dynamic 62

U

UCD. See user-centered design
(UCD)

UML. See Unified Modeling
Language (UML)

Unified Modeling Language
(UML) 115

Uniform Resource Identifier
(URI) 21, 255

unit testing 140
dynamic loading 497
early in development 438
library file 498
loading 498

unregisterAll method 208
unregisterFrom method 208
unregistering a delegate 208
unstretchedheight attribute

90, 275
unstretchedwidth attribute

90, 275
update method 153–154,

165, 213
updateData method 260, 282
updateDelegate method 214
updateDelegate object 214
updatePosition method 240
updateShopcart method

337–338, 341
updateTimer method 225
updateTotals method 339
URI. See Uniform Resource

Identifier (URI)
urlEscape 420
urlUnescape 420
use case statement 116
user interaction 79
user login protocol 364

user-centered design (UCD)
5–6, 115

user-defined class 80
user-specified attribute 60

V

validatingForm tag 185
validator

creating 187
library 185

valign attribute 120, 357
value attribute 177
valueToElement method

292–293
vector

graphics 388
image 387

vector-outlined font 388
Verdana font 389–390
vertical prototyping 271
video 79, 406
video components 428
videoplayer attributes 429
videoview attributes 428
view

attaching a scrollbar 327
binding to data 252
clickable 100
control by data 252
dimensions 82
dynamic content 327
dynamic instantiation 106
locating 104
relative offset positioning 103
rotated 158
user interactions 98
visibility 81

view attributes 82
view layer 20, 23

link to model layer 306
view object 79

large resource
requirements 466

view tag 79, 89
attribute, stretches 362
audio- and video-related

events 95
audio- and video-related

methods 96
cursor 98

focusable 100
fontrelated 97
frame 93
media-related 93
mouse-related 99
node-search-related 105
play 93
resource 89
resource-related attributes 89
resource-related methods 91
setcursor method 98
user-input-related 100

view-based object 21
virtual screen 9, 125, 132

scrolling 132
visibility 81

control 80
control through

placement 83
control via animation 84
control via z-axis 83
convenience methods 86
interaction with layout 155
methods 83
of bound view 257

visible 424
visible attribute 84, 213, 378
visual continuity 9
visual illusion 368
visual object 79

W

W3C DOM XML
specification 282

Web 2.0 4
web crawlers 405
web server

activity-oriented 439
data service 446
domain 457
HTTP

constructing request
URL 447

handling error and
timeout 450

interfacing 439
Laszlo interface 22
resource-oriented 439

522 INDEX
web server (continued)
saving state 451
support for paged

datasets 479
updating dataset 453
XML-over-HTTP 439

when tag 393
width attribute 52
widthoffset 424
wildcard 255
wildcard operator 21
wildcard predicate, problem for

XPath 306
window

attaching a scrollwheel 328
debug 51
Login 230
modal 228, 364

window component 122
window tag 13, 73
window tracking 21
wireframe 116, 118

Billing Method pane 193
high-fidelity 127
Laszlo Market 178
Shipping Method pane 189

wrappinglayout tag 157, 162
write method 51

X

XAML 10
XAP 9
XForms 9
xinset attribute 158
XML 18, 49–50, 253

building structures 292
converting objects 293
creating sibling nodes 292

data
attaching to dataset 286
building dynamically 293
building with

stringToLzData 293
navigating 294
traversing sibling

nodes 298
data element 254
data node 253
data tree manipulation 300
datapointer access 296
dataset 23
dataset structure 438
escape character 197
file 124
hierarchy 18
hierarchy modification 301
structure manipulation 282
structure, processing

attributes 272
tag 124
text element 254
two purposes 21
updating dataset 253
valid document 253
well-formed file 54

XML data structure 306
XML over HTTP 22, 439
xmlEscape 420
xoffset attribute 87
XPath 21, 253

context 255
equality operator 272
expression 44, 253, 306

matching data 284
list of terminal selectors 257
location path 255
position function 324
predicate forms 256

query 253
relative addressing 259
relative and absolute 257
statement 439
static limitation 294
syntax and semantics 255
wildcard selector 256

xpath attribute 295
XPath expression

dynamic updating 294
matching single data

element 258
multiple-match returns 306
reevaluation on changes 307
situation not handled 306
situations handled 306
updated 306
updating 309
using p attribute to return

data 306
xpathQuery method 299, 307,

338
x-shockwave-flash data

object 408
xspacing attribute 158

Y

yinset attribute 158
yoffset 424
yoffset attribute 87
yspacing attribute 158

Z

z-axis 83
z-axis placement 79
zero-based indexing 256
zipcodevalidator class 187

	Laszlo in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	Roadmap
	Code conventions
	Code downloads
	Author Online
	about the title
	about the cover illustration
	The basics
	Turbocharging web technology
	1.1 Laszlo is for designing and building RIAs
	1.1.1 User-centered design
	1.1.2 Discovering Laszlo: a developer’s tale
	1.1.3 A bit of history
	1.1.4 OpenLaszlo: open source and available to all

	1.2 A first taste of Laszlo LZX
	1.2.1 Animating “Hello Laszlo”
	1.2.2 Executing on Flash or DHTML

	1.3 Deploying a Laszlo application
	1.3.1 Server mode
	1.3.2 Stand-alone mode

	1.4 Summary

	The declarative world of LZX
	2.1 Architectural support
	2.1.1 Laszlo’s three-tiered structure
	2.1.2 Interfacing Laszlo to a web server
	2.1.3 Publisher-subscriber communications
	2.1.4 Combining inheritance models

	2.2 LZX classes
	2.2.1 The LzNode class
	2.2.2 The LzView class
	2.2.3 Defining classes in LZX

	2.3 The fundamentals of tags
	2.3.1 Hierarchical addressing
	2.3.2 Parent-child attribute propagation
	2.3.3 Flat tag hierarchies
	2.3.4 Built-in event handling
	2.3.5 Event handling with constraints
	2.3.6 Animating declarative tags
	2.3.7 Binding tags to XML data

	2.4 Summary

	Core LZX language rules
	3.1 Learning LZX Basics
	3.1.1 Debugging
	3.1.2 Commenting your code
	3.1.3 Well-formed XML files

	3.2 Creating object hierarchies
	3.2.1 Naming objects declaratively
	3.2.2 Creating nodes dynamically with JavaScript
	3.2.3 The subnodes array

	3.3 Storing values in attributes
	3.3.1 Attribute types
	3.3.2 JavaScript type expressions

	3.4 Methods and event handlers
	3.4.1 Writing methods
	3.4.2 Writing event-handler methods

	3.5 Declarative constraints
	3.5.1 The basics of constraints
	3.5.2 The once modifier

	3.6 JavaScript and the script tag
	3.7 Summary

	A grand tour of views and user classes
	4.1 Introducing the basic features of views
	4.1.1 Controlling view visibility
	4.1.2 Controlling visibility with animation
	4.1.3 Animating with rotations
	4.1.4 Adding multimedia resources
	4.1.5 Handling font specifications
	4.1.6 Controlling the cursor

	4.2 Interacting with a view
	4.2.1 Receiving user events

	4.3 Locating views
	4.3.1 Locating absolute and relative screen position
	4.3.2 Locating a view

	4.4 Instantiating LFC-based objects
	4.5 User-defined classes
	4.5.1 Overriding a method in a subclass
	4.5.2 Using the classroot qualifier with classes
	4.5.3 Instantiating LZX-based objects

	4.6 Summary

	Designing the Laszlo Market
	5.1 Prototyping our application
	5.1.1 Creating wireframes
	5.1.2 Storyboard transitions

	5.2 Coding the prototype
	5.2.1 The window as a prototyping tool
	5.2.2 Organizing with libraries

	5.3 Configuring the checkout screen
	5.3.1 Sliding a virtual screen
	5.3.2 Stacking pages

	5.4 Central control of screen display
	5.4.1 Designing the screen transitions
	5.4.2 Triggering screen transitions

	5.5 Refactoring our code
	5.5.1 Replacing the animator
	5.5.2 A general-purpose architecture

	5.6 Testing with LzUnit
	5.6.1 Unit testing with LzUnit
	5.6.2 Testing the Laszlo Market
	5.6.3 Testing from a URL query string

	5.7 Putting it all together
	5.8 Summary

	Prototyping the Laszlo Market
	Laying out the Laszlo Market
	6.1 Common layout problems
	6.1.1 Basic layouts
	6.1.2 Stretchable layouts
	6.1.3 Dynamic layout modifiers
	6.1.4 Opting out of layouts

	6.2 Creating custom layouts
	6.2.1 Extending the LzLayout class
	6.2.2 Building an aircraft formation layout

	6.3 Laying out forms
	6.3.1 Labeled input fields
	6.3.2 Getting to know formlayout
	6.3.3 Identifying class type with instanceof

	6.4 Summary

	Introducing Laszlo components
	7.1 Base component classes
	7.1.1 Controlling focus
	7.1.2 Working with data components

	7.2 Building a multipage window
	7.2.1 Coding the Shipping Information page
	7.2.2 Controlling placement issues
	7.2.3 Creating the Shipping Address pane

	7.3 Validating input fields
	7.3.1 Using validators
	7.3.2 Creating a new validator
	7.3.3 Creating the Shipping Method pane
	7.3.4 Implementing the Billing Information page
	7.3.5 Coding the Billing Method wireframe
	7.3.6 Coordinating multiple pages
	7.3.7 Form validation

	7.4 Summary

	Dynamic behavior of events and delegates
	8.1 Exploring event-handler and constraint operation
	8.1.1 How event handling and constraints work
	8.1.2 Working with events
	8.1.3 Working with delegates

	8.2 Adding dynamic behavior
	8.2.1 Taking a delegate-centric perspective
	8.2.2 Taking an event-centric perspective

	8.3 Using delegates with layouts
	8.4 Dynamically adding attributes
	8.5 Handling complex behavior with attribute setters
	8.6 Summary

	Using Laszlo services
	9.1 Overview of services
	9.2 Different ways to use a service
	9.2.1 Calling a service method
	9.2.2 Receiving service events through registration methods
	9.2.3 Receiving service events through declarative references

	9.3 Building a stopwatch
	9.4 Demonstrating services with a login window example
	9.4.1 Controlling the mouse cursor
	9.4.2 Sequencing windows with LzModeManager
	9.4.3 Capturing keyboard input with LzKeys

	9.5 Building a drag-and-drop network
	9.5.1 Detecting local and global mouse events
	9.5.2 Generating continuous tracking with LzIdle
	9.5.3 Advanced drag-and-drop with LzTrack

	9.6 Summary

	Laszlo datasets
	Working with XML datasets
	10.1 Introducing XML-based datasets
	10.1.1 Exploring XML elements
	10.1.2 Using XPath to select data elements
	10.1.3 Binding declarative tags to XML elements
	10.1.4 Establishing a data path context
	10.1.5 The $path{} constraint notation
	10.1.6 Updating a dataset
	10.1.7 Handling ontext events
	10.1.8 Updating with the applyData method
	10.1.9 Using local datasets

	10.2 Matching multiple data elements
	10.3 Sorting datasets
	10.3.1 Simple sorting
	10.3.2 Custom sorting

	10.4 Prototyping datasets for the Laszlo Market
	10.4.1 Designing a dataset
	10.4.2 Resizing images using aspect ratio

	10.5 Prototyping with grids
	10.5.1 Using grids
	10.5.2 Processing a user selection

	10.6 Summary

	Using dynamic dataset bindings
	11.1 Linking data nodes and data pointers
	11.2 The LzDataNode classes
	11.2.1 The abstract LzDataNode superclass
	11.2.2 Building datasets with LzDataElements
	11.2.3 Core methods of LzDataElement
	11.2.4 Working with LzDataText text nodes
	11.2.5 Building XML structures with power tools

	11.3 Navigating with LzDatapointer and LzDatapath
	11.3.1 Navigating with data pointers
	11.3.2 Accessing data and text nodes
	11.3.3 Navigating a dataset
	11.3.4 Creating and modifying datasets
	11.3.5 Working with the datapath tag
	11.3.6 Converting between data pointers and data nodes
	11.3.7 Checking updates with rerunxpath

	11.4 Advanced replication manager issues
	11.4.1 Filtering with onnodes
	11.4.2 Checking clone instantiation with onclones

	11.5 Master-detail design pattern
	11.5.1 Implementing master-detail in Laszlo Market
	11.5.2 When to use a static layout

	11.6 Summary

	Scoreboarding the shopping cart
	12.1 How a scoreboard works
	12.2 Reimplementing the Product List window
	12.2.1 Creating the title header
	12.2.2 Populating a table row
	12.2.3 Sorting table columns
	12.2.4 Basics of a scrollbar
	12.2.5 Creating a selection manager

	12.3 Building the scoreboarding shopping cart
	12.3.1 Designing the Shopping Cart window
	12.3.2 Implementing scoreboarding techniques
	12.3.3 Reporting add-to-cart operations
	12.3.4 Building the shopping cart
	12.3.5 Manually updating the quantity field
	12.3.6 Supporting drag-and-drop
	12.3.7 Supporting the right mouse button

	12.4 Summary

	Integrating DHTML and Flash
	Enhancing the user experience
	13.1 Animating transitions
	13.1.1 Using Laszlo’s default splash screen
	13.1.2 Customizing a splash screen

	13.2 Building resizable buttons
	13.2.1 The problem with simple buttons
	13.2.2 Building resizable buttons
	13.2.3 Building multistate buttons
	13.2.4 Building resizable nine-piece panes

	13.3 Modal windows and button interactivity
	13.4 Basics of animation
	13.4.1 Selling visual illusions
	13.4.2 Using animators and animatorgroups

	13.5 Complex animated effects
	13.5.1 Simulating a squashed ball
	13.5.2 Interactive animation
	13.5.3 Using delay for expressive purposes
	13.5.4 Animating the Market trashcan

	13.6 Summary

	Branding an application
	14.1 Creating an application-specific look
	14.1.1 Vector and bitmapped graphics
	14.1.2 Font differences
	14.1.3 Selecting a font
	14.1.4 Choosing between DHTML and Flash implementations

	14.2 Branding with custom components
	14.2.1 Customizing the tabelement component
	14.2.2 Creating a custom scrollbar

	14.3 Summary

	Integrating DHTML and Flash
	15.1 Advantages of a hybrid approach
	15.2 Using an HTML wrapper
	15.2.1 Embedding Laszlo applications in HTML
	15.2.2 Examining HTML files created by Laszlo
	15.2.3 Embedding Laszlo applications in HTML
	15.2.4 Creating default web pages

	15.3 Intermixing DHTML and Flash applications
	15.3.1 Controlling Laszlo output placement in HTML
	15.3.2 Building a search engine-accessible application

	15.4 Calling browser JavaScript from Laszlo
	15.5 Calling Flash from Laszlo
	15.5.1 Using Flash to set the system clipboard
	15.5.2 Accessing Flash ActionScript objects

	15.6 Embedding HTML in Laszlo
	15.7 Working with video
	15.7.1 Using streaming media
	15.7.2 Using the Red5 server
	15.7.3 Interfacing Laszlo to a Red5 server
	15.7.4 Adding video to the Laszlo Market

	15.8 Summary

	Server and optimization issues
	Networked data sources
	16.1 Interfacing to web servers
	16.1.1 Using datasets with HTTP
	16.1.2 Buffered HTTP datasets
	16.1.3 Pooling buffering datasets
	16.1.4 Building a data service

	16.2 Accessing sessioned data
	16.2.1 Building a sessioned shopping cart
	16.2.2 Deleting from the shopping cart

	16.3 Maintaining server domains
	16.4 Summary

	Managing large datasets
	17.1 Processing with alternative filters
	17.1.1 The setNodes backdoor
	17.1.2 Multikey sorting with setNodes
	17.1.3 Merging and mapping datasets

	17.2 Optimizing data display
	17.2.1 Lazy replication
	17.2.2 Handling expansible listings
	17.2.3 Expandable displays in the Laszlo Market
	17.2.4 Pooling

	17.3 Paging datasets for long listings
	17.3.1 Adding paged datasets to the Market

	17.4 Summary

	Laszlo system optimization
	18.1 Dynamically loading optional elements
	18.1.1 Importing dynamic libraries
	18.1.2 Loading optional elements with dynamic libraries

	18.2 Optimizing critical elements
	18.2.1 Instantiating objects
	18.2.2 Manipulating instantiation with initstage
	18.2.3 Controlling initialization through initstage

	18.3 Reducing the Market’s startup time
	18.3.1 Redistributing the Market’s initialization
	18.3.2 Dynamically loading noncritical elements

	18.4 Performance utilities
	18.4.1 Measuring time with getTime
	18.4.2 Building a simple timing framework
	18.4.3 Using the Laszlo performance utilities
	18.4.4 Using the developer console

	18.5 Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

