
www.allitebooks.com

http://www.allitebooks.org

Learning Google Apps Script

Customize and automate Google Applications using
Apps Script

Ramalingam Ganapathy

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Google Apps Script

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 1140316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-251-7

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Ramalingam Ganapathy

Reviewer
Serge Gabet

Commissioning Editor
Priya Singh

Acquisition Editors
Vinay Argekar

Pratik Shah

Content Development Editor
Sachin Karnani

Technical Editor
Prajakta Mhatre

Copy Editor
Charlotte Carneiro

Project Coordinator
Neha Bhatnagar

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Ramalingam Ganapathy is an independent computer software professional with
more than 15 years of working experience of JavaScript and Google Apps Script. In
1985, he started his career as a digital electronic circuit designer and service engineer.
Highly interested in reading technical books and building electronic projects, he is
a detail-oriented and logical person. Since 2001, he has been freelancing with Elance
and Upwork (formerly oDesk). He earned a good reputation on the Upwork portal,
and most of his clients are satisfied.

I must thank and dedicate this book to my wife, Thiripurasundari,
who served me coffee late at night. Also my son, Muhilan, and
daughter, Rajalakshmi, who tested the code from the beginner's
point of view.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Serge Gabet has been a professional audio equipment manufacturer for 20 years
and is now working for an artistic upper school in Brussels, Belgium, as a teacher
and technical manager. He is also in charge of the Google Apps administration of
this school. He develops custom applications using Google Apps Script mainly for
his school, though he also works in other areas.

He has been designated a top contributor by Google since June 2011. He was active
on the Google Group Help forum until 2012, then on the Stack Overflow forum
(the Google Help Group forum was closed in June 2012), and became a first ranker
and an all-time contributor on the Stack Overflow forum a few months ago.

I'd like to thank all the forum contributors who were on the same
forum at the time that I was new to the forum and helped me take
my first steps. Most of them are now top contributors too, and even
if their knowledge was (and still is) greater than mine, they never
make me feel it. Thanks for that.

Also, thanks to Google collaborators for their day-to-day presence
and for listening to our concerns.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Introducing Google Apps Scripts	 1

Google Applications	 1
Google Apps Script	 2

Visual Basic for Applications	 2
The advantages of GAS over VBA	 3
The limitations of GAS	 3

Google Drive	 3
Gmail	 4
Google Calendar	 6
Google Docs	 6
Google Sheets	 6
Google Apps services	 6

Creating Google Sheets in Drive and sharing them with your friends
and the public	 7

Script projects	 9
Creating standalone script projects	 9
Creating new projects in Sheets	 11
Creating a custom formula in Sheets	 12

Google Forms	 14
Creating Forms within Google Sheet	 14
Some research	 15

Summary	 15

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Creating Basic Elements	 17
Creating a clickable button	 17
Showing toast when a button is clicked	 22
Creating a custom menu	 22
Creating a sidebar	 24
Creating an Add-ons menu	 25
Creating a modal dialog	 27
Creating a modeless dialog	 28
Debugging your script	 28
Summary	 31

Chapter 3: Parsing and Sending E-mails	 33
Creating Gmail Contacts by script	 33
Accessing Sheet, cell, range, and offset	 34
Reading and writing the Sheet data	 35
Building a Gmail Contact search application	 35
Building the Gmail parser application	 40
Properties service	 41
Downloading Gmail attachments to Drive	 41
Sending e-mails using the MailApp service	 44
Sending an e-mail notification on Form submission	 44
Creating triggers manually	 46
Creating and deleting triggers by script	 47
Forwarding e-mails if the specific keyword is found in the
message body	 48
Sending e-mail with attachments	 49
Embedding inline images in an e-mail message	 50
Building an e-mail merger application	 50
Summary	 53

Chapter 4: Creating Interactive Forms	 55
Creating Forms using script	 55
Publishing the script as a web application	 60
HtmlService	 62
Creating a Form using HtmlService	 63
Submitting form using Google script API method	 67
Creating forms using add-ons CSS and jQuery libraries	 70
Creating an e-voting application	 72
Creating a ticket reservation application	 76
Summary	 80

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 5: Creating Google Calendar and Drive Applications	 81
The CalendarApp class	 81

Creating Calendar events from a simple description	 81
Creating simple Calendar events	 82
Creating events with options	 82
Creating events from Sheets data	 83
Creating events from an external CSV file's contents	 84

Enabling advanced Google services	 86
Listing all the Calendars	 88
Listing Calendar events in Sheets	 89
Syncing events from one Calendar to another Calendar	 91

The DriveApp class	 95
Creating customized PDF files	 95
Creating a Drive file routing application	 98
Creating a Drive file search application	 100

Summary	 104
Chapter 6: Creating Feed Reader and Translator Applications	 105

The UrlFetchApp class	 105
Creating a Google search application	 108
Creating a stock quote ticker application	 110
Logging Bitcoin quotes	 113

RSS and Atom feeds	 115
Skeleton of a RSS feed document	 116
Creating an RSS reader application	 117
Skeleton of an Atom feed document	 118
Creating an Atom feed reader application	 119
Using optional parameters with the UrlFetchApp class	 121

The LanguageApp class	 121
Creating the language translator application	 122

Creating a document reviewing and instant inline
commenting application	 131
Summary	 140

Chapter 7: Creating Interactive Webpages	 141
Creating a web app to render Sheet data as HTML	 142
Creating a web app to return JSON	 144
Converting Sheet data as a PDF file	 146
Sending an HTTP/HTTPS request with query string	 148
Creating RSS feed using ContentService	 150

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Creating a file upload application	 152
Creating an employee timesheet application	 155
Summary	 165

Chapter 8: Building a Workflow Application	 167
Order processing workflow – steps explained	 168
Configuring Google Sheets	 169
Creating the Order form	 171
Enhancing the Order form	 174
Creating the dispatch form	 183
Dispatching the articles	 187
Enabling the user to acknowledge the article delivery	 188
Summary	 190

Chapter 9: More Tips and Tricks and Creating an Add-on	 191
Overcoming the "script exceeded maximum execution time" error	 191
Configuring your script project to use external libraries	 194
Using JSDoc annotations	 196
Using the OAuth open source library	 197
Creating, testing, and publishing add-ons	 198

Installing add-ons from Chrome Web Store	 198
Creating custom add-ons	 199
Testing your add-on	 200
Creating an add-on that uses an OAuth2 external library	 201

Other useful links	 209
Summary	 209

Index	 211

[v]

Preface
Google Apps is a collection of applications, namely, Gmail, Calendar, Drive, Docs,
Sheets, and Forms. You can customize or automate Google Apps using the scripting
language JavaScript with Google's defined classes. Google implements Google Apps
Script (GAS) based on JavaScript.

Almost all Google Apps provide one or more services. GAS services and APIs
provide easy access to automate tasks across Google products and third-party
services. You can use these service classes in your GAS code to customize or
automate Google Apps.

This book introduces basic things first before moving to advanced concepts
step by step with practical code and examples. By reading this book, you'll
gather expertise in Google Apps Script. Happy reading!

What this book covers
Chapter 1, Introducing Google Apps Scripts, tells you about Google Apps and gives
you an introduction to Apps Scripts, explains how to create a project, and introduces
custom formulas.

Chapter 2, Creating Basic Elements, covers many types of dialog and how to create
and display them, how to use the Logger class to log values, and how to debug
your script.

Chapter 3, Parsing and Sending E-mails, talks about the ContactApp, MailApp, and
GmailApp services. Using these services, you'll create many useful real-world
applications, including an e-mail merger application.

Chapter 4, Creating Interactive Forms, deals with creating Forms dynamically by
script, publishing the script as a web application, creating Forms using HtmlService,
creating an e-voting application, and creating a ticket reservation application.

Preface

[vi]

Chapter 5, Creating Google Calendar and Drive Applications, teaches the reader to create
Calendar events and sync events from one Calendar to another Calendar. This
chapter also teaches how to enable GAS advanced services.

Chapter 6, Creating Feed Reader and Translator Applications, is about learning and
creating many useful applications, including RSS/Atom reader and language
translator applications.

Chapter 7, Creating Interactive Webpages, tells how to create an RSS feed/publisher, a
file uploading application, and a full-blown timesheet application using HtmlService.

Chapter 8, Building a Workflow Application, explains how to create a workflow
application and proceeds create a useful real-world order processing application.

Chapter 9, More Tips and Tricks and Creating an Add-on, is all about using external
libraries including OAuth2, and Apps Script add-ons.

What you need for this book
You will need any modern browser and basic working or theoretical knowledge
of HTML, CSS, and JavaScript.

Who this book is for
This book is for newbies to Google Apps Script who have less practical experience of
web development and curious to gather expertise in customizing Google Apps and
developing web apps.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"A default myFunction function will be there in the editor."

A block of code is set as follows:

function greeting() {
 Browser
}

Preface

[vii]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 </head>
 <body>
 <button onclick="alert('Hello World!');">Click Me</button>
 </body>
</html>

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Go to
Add-ons | Chapter 2 | Show Dialog and a modal dialog will pop up."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[viii]

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[ix]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Introducing Google
Apps Scripts

I know there may not be a single person in the world who has access to the Internet
who has not used at least one of Google's products or services in their lifetime.

Google is known for its famous search engine, the video serving portal YouTube, and
now by its numerous web applications, namely Gmail, Calendar, Drive, Docs, Sheets,
and Forms. It also provides cloud computing and other software services.

The word "Google" has even become a verb, referring to conducting a web search.
Nowadays, you hear people saying "I Googled something" rather than "I searched
the web for something". In this chapter, you will learn about Google Applications,
Application Scripts, and how to create a custom formula/function.

Google Applications
Google Applications are a collection of applications, namely Gmail, Calendar,
Drive, Docs, Sheets, and Forms. From now on, we will use the term "Google Apps"
or just "Apps".

Before we start, I'll quickly answer a few questions you may have:

•	 Where do all these Apps run? On your computer?
No, all these Apps run on Google's Cloud-based servers.

Introducing Google Apps Scripts

[2]

•	 How can you get access to these applications?
You can interact with these Apps through web browsers. No special
hardware or software installations are required except for a modern web
browser installed on your desktop, laptop, tablet, or smartphone.

Google Apps Script
You can customize or automate Google Apps using the JavaScript scripting
language with Google-defined classes, known as Google Apps Script (GAS). Google
implements GAS based on JavaScript 1.6 with some portions of 1.7 and 1.8. The GAS
services and APIs provide easy access so users can automate tasks across Google
products and third-party services.

You can write code in Google Docs, Sheets, and Forms using GAS and can automate
tasks similar to what Visual Basic for Applications does in Microsoft Office.
However, GAS runs on Google's server and the results are rendered in your browser.
The integrated script editor allows you to edit and debug your scripts within your
browser, and you do need not install anything. You can activate your debugged and
tested script functions to run either based on your interactions or based on a trigger
in response to an event or timed intervals (in minutes, hours, days, weeks, future
dates, and so on). These events include onOpen, onEdit, onInstall, and many more.
GAS is also used to create add-ons for Docs, Sheets, and Forms.

GAS can help you with every aspect of automating a task—you can even use it
to order a pizza at predetermined date/time!

Visual Basic for Applications
Microsoft implements Visual Basic for Applications (VBA) to help automate Office
applications such as Excel and Word. For each respective application, VBA is known
as Excel VBA or Word VBA and so on. Using Excel VBA, you can create macros for
Excel known as "Excel macros". GAS is for Google Applications, and operates in the
same way as VBA does for Microsoft Office applications. Although both VBA and
GAS do not require a separate compilation process, they are very different scripting
languages and use different programming APIs, methods, and properties.

Chapter 1

[3]

I hope many of you are familiar with using VBA for Office applications; if not, then
never mind—that's not an obstacle to learning GAS.

The advantages of GAS over VBA
•	 Version-independence: Sheets/Docs along with scripts are automatically

saved in the cloud, attached to your Google account, and accessible from
any computer with a browser. There is no need to worry whether the other
computer has the same version of Sheets/Docs installed or not, whereas we
can never be sure that one version of the Excel/Word macros will work on
another version.

•	 Platform-independence: When you create VBA macros in Excel/Word on
the Windows platform, they may not work on the Mac platform and vice
versa. With Google Sheets/Docs, it doesn't matter what platform you're
working on—it'll work.

The limitations of GAS
GAS runs on Google's server, so it cannot run continuously for more than six
minutes (this may vary in the future). All of your functions should finish running
and should return results within this time limit. Don't panic, as you'll learn how to
use triggers effectively to overcome these limitations later.

In the following sections, we will take a look at the most popular Google Apps and
how we can use GAS to customize and/or automate tasks.

Google Drive
Google Drive is a file storage application, which from now on we will just refer
to as "Drive", where you can store and synchronize your files on Google's server.
Let's look at some of the advantages of using Drive:

•	 You can edit and share Google Docs, Sheets, and Forms with your friends or
collaborators in real time.

•	 You can even stop editing a document on one of your desktops and continue
with your smartphone or tablet, and vice versa, no matter where you are and
what device you are using. This is possible because your files are stored on
Google's Cloud server.

•	 Files created with Google Apps are stored in Drive with Google's native
formats and extensions. For example, Google Docs (documents) files are
.gdoc, Google Sheets (spreadsheets) are .gsheet, and so on.

Introducing Google Apps Scripts

[4]

•	 In addition to Google's native files, you can also store or upload any other
type of file from your desktop to Google Drive.

If you would like to synchronize files on your computer or devices
with Drive, then you can install special software called Google
Drive Client Application. While this application is running on
your computer or device, it synchronizes files stored locally with
the same files in Drive.

You may be wondering, what is the purpose of synchronizing files? Sometimes you
may need to, or someone may ask you to, parse a CSV file stored on a desktop using
GAS to process the data and organize it into a Sheet. In this case, GAS won't execute
on the desktop, but it can on the Google server. This way you can access your Drive
files and parse data within your synchronized CSV file. You don't have to upload the
CSV file manually every time to Drive.

The following screenshot shows the Drive folder view:

Gmail
Gmail is the most popular web-based e-mail service and is provided by Google. With
it, occasionally composing and sending e-mail messages manually to one or a few
people is not a problem. But what if you want to send an e-mail at a predefined time
when you are not awake or to multiple recipients? Consider the following scenarios:

•	 You want to send a surprise birthday greeting to your friend at a fixed time;
neither earlier nor later

•	 You need to send customized e-mails to hundreds of people at a time

Chapter 1

[5]

•	 You need to send e-mails periodically

For all these scenarios, GAS has the answers:

•	 Using GAS, you can build a mail merger application to send e-mails with
customized greetings or messages to n number of people.

•	 You can extract information buried in e-mails from your inbox and store and
organize them in Google Sheets or Docs.

•	 You can even convert the data or contents of a Google Sheet or Docs to a
PDF or any other file format and send it as an e-mail attachment, or just
save the created file in Drive and include only the file's URL as a hyperlink
in e-mail messages.

•	 In addition, GAS also allows you to mark selected messages as important, or
starred. You can also add, delete, and update your Gmail Contacts using the
Contacts service.

The following screenshot shows how Gmail classifies or groups messages with labels:

Introducing Google Apps Scripts

[6]

Google Calendar
Google's online Calendar service is integrated with Gmail. GAS provides access to
Calendar service by using the CalendarApp class. Using GAS code, you can access
and modify your Calendar and those you have subscribed to. Using GAS, you can
create Calendar events and invite your friends programmatically. Alternatively,
you can grab event details and populate them in Sheets.

Google Docs
Google Docs is a word processing program, and runs on web-based software within
the Google Drive service. Docs allows you to create and edit documents online while
collaborating with other users in real time. Using GAS, you can create documents,
format the contents, translate them to other language, save them in Drive, or e-mail
them to your friends.

Google Sheets
Google Sheets is a spreadsheet program much like Microsoft Excel. You can
create Sheets, share them with others, and edit them in real time. Google provides
built-in formulae/functions in Sheets. You can also create your own simple to
complex formulae. In other words, you can create custom formulae. Using the
SpreadsheetApp class in your GAS code, you can interact with other applications.

Google Apps services
Google provides Apps services to enable GAS to interact with the Apps. Almost
all of the Apps provide one or more services. You can use these service classes in
your GAS code to customize or automate Apps. Services are grouped as basic and
advanced. You can use basic services directly, but for advanced services you need
to enable them before using them. You will see how to enable them later on.

Chapter 1

[7]

Creating Google Sheets in Drive and sharing
them with your friends and the public
Here are the steps to create a Google Sheet:

1.	 Run your favorite browser and type https://drive.google.com/ in the
address bar.

In order to use Google Drive, you should have a Google account. If
you don't have an account, then create one.

2.	 Now the Google Drive page will open. In the left pane, click on the NEW
button and on Google Sheets:

https://drive.google.com/

Introducing Google Apps Scripts

[8]

3.	 After creating a new Sheet, right-click on it (Windows) or context click (Mac)
and select the Share... option:

4.	 A new pop-up window will open as shown in the following screenshot. After
that, enter the e-mail address, or addresses, with which you would like to
share the document. Finally, click on the Done button:

Google will send a share notification to your friend(s). When your friend(s)
click on the access link provided, they will get access to your document.

Congratulations! You have created a new Sheet and successfully shared it with your
friend(s).

Chapter 1

[9]

Script projects
Scripts are organized as projects. Projects can be of two types, standalone and
bounded to a gtype (Google Drive native file type, such as Sheets, Docs, and Forms)
file. Standalone scripts are created in a separate script file, you can see these files
listed among other files in Drive. Bounded scripts are embedded within individual
gtype files and created using the respective applications. As you can see, the
standalone script files, among other files in Drive, you can open directly from Drive,
but bounded script can be opened within respective applications only. However,
bounded script will have more privileges over parent file than standalone scripts. For
example, you can get access to the active document within bounded scripts, but not
within standalone scripts.

Creating standalone script projects
To create a standalone script file follow these steps:

1.	 Follow the steps as described in the Creating Google Sheets in Drive and sharing
them with your friends and the public section.

2.	 Navigate to NEW | More | Google Apps Script rather than the spreadsheet,
as shown in the following screenshot:

Introducing Google Apps Scripts

[10]

3.	 A new untitled project will open in a new browser tab or window. The new
project includes one code file, Code.gs, with a blank function, myFunction,
as shown in the following screenshot:

4.	 To save or rename the new project, press Ctrl + S on your keyboard or click
on the Save icon (floppy disk) in the editor. If you are saving the project for
the first time then a prompt will appear to enter a new project name. Enter
the project name (whatever you like) and click on the OK button. The new
script file will be saved in the current folder:

Chapter 1

[11]

Creating new projects in Sheets
Create a new Sheet or open the existing one. You will see a number of menu items at
the top of the window. Now, follow these steps:

1.	 Click on Tools and select Script editor..., as shown in the following screenshot:

2.	 A new browser tab or window with a new project selection dialog will
appear, as shown in the following screenshot:

Introducing Google Apps Scripts

[12]

3.	 Click on Blank Project or close the dialog (you do not need to always select
Blank Project, just this time). A new untitled project will open in a new
browser tab/window.

4.	 Save the project as described in the preceding section.

Although you can create as many bounded projects as you like,
one project per file is enough. Creating just one project per file
may help you to avoid problems with duplicate function and
variable names.

Congratulations! You have created a new script project. By following the preceding
steps you can create script projects in Docs and Forms too.

Creating a custom formula in Sheets
Open the spreadsheet you created earlier and make the following changes:

1.	 In columns A and B, type a few first and last names.
2.	 In cell C2, type (including the equals sign) =CONCATENATE(A2," ", B2).

Now you can see the first name and last name in cells A2 and B2 respectively,
concatenated with a space in between.

CONCATENATE is Google Sheet's built-in formula. You can also create your own, called
custom formula:

1.	 Open the script editor and copy-paste this code:
function myFunction(s1,s2) {
 return s1 + " " + s2;
}

Here is the screenshot for the same:

Chapter 1

[13]

2.	 Press Ctrl + S on your keyboard or click on the Save icon in the editor to save
the script.

3.	 Now return to the spreadsheet, and in cell C2, type =myFunction(A2,B2).
This works in exactly the same way as the built-in formula. You can extend
your formula to other cells below C2. This is a simple formula, but you can
create complex formulae as per your requirements.

4.	 Your custom formula should return a single value or a two-dimensional
array. The following screenshot shows how a custom function will work:

Congratulations! You have created a custom formula.

To add code completion and/or tooltips for your custom function, add
the following comments at the preceding lines of code in the function:

/**
 * Concatenates two strings
 *
 * @customfunction
 */
function myFunction(s1,s2){
 …

www.allitebooks.com

http://www.allitebooks.org

Introducing Google Apps Scripts

[14]

Google Forms
Google Forms is a Google App that you can use to collect information from your
users. User responses or answers are collected and stored as responses in the Form
itself and then can be populated in the connected Sheet. You can also change the
response's target Sheet when required. You can create Google Forms dynamically
using GAS.

Creating Forms within Google Sheet
In the spreadsheet you created earlier, click on the Tools menu and select the Create a
form option. A new Form will be created and is bound to a new Sheet automatically.
The new Sheet's name will be similar to Form Responses 1. In the new Form, create
form fields with headings exactly same as in the Sheet's column headers:

On completion, try submitting the data using a live Form.

Chapter 1

[15]

Some research
If you are given a document's ID or key, something like
11CEeHWygGKqxGS7jmQzLpeO7Fs3cjetT4HTrWXHTDSU, can you open the document,
provided it has been shared with the public?

Every Google Doc, Sheet, folder, and project has an ID or key, which you
can get from the corresponding item's URL.

Summary
In this chapter, you learned about Google Apps and got an introduction to GAS, as
well as how to create a project and custom formulas. There are many more Google
Apps available but we just covered the most popular ones. It will not be hard to
adopt the same scripting concepts and principles for other Apps. In the next chapter,
you will learn to create basic elements such as custom menus, dialogs, and sidebars.

[17]

Creating Basic Elements
In the previous chapter, you learned about Google Apps Script (GAS) and how to
create a script project. In this chapter, you will learn how to create a clickable button,
a custom menu, a message box, a sidebar and dialogs, as well as how to debug your
script. We will use Sheets for the first two tasks and Docs for all the other tasks.

Creating a clickable button
In the previous chapter, you learned how to open the script editor in Google Sheets.
For this task, open the script editor in a newly created or any existing Google Sheet
and follow these steps:

1.	 Select cell B3 or any other cell. Click on Insert and select Drawing...,
as shown in the following screenshot:

Creating Basic Elements

[18]

2.	 A drawing editor window will open. Click on the Text box icon and then
click anywhere within the canvas area. Type Click Me. Resize the object
to enclose the text only, as shown in the following screenshot:

3.	 Click on Save & Close to exit the drawing editor. Now, the Click Me image
will be inserted into the active cell (B3), as shown in the following screenshot:

You can drag this image anywhere around the spreadsheet except in the
menu bar.

In Google Sheets, images are not anchored to a particular cell,
and they can be dragged or moved around.

Chapter 2

[19]

If you click on the image, a drop-down arrow on the top-right corner
will be visible:

4.	 Click on the Assign script… menu item. A script assignment window
will open. Type greeting or any other name you like, but remember the
name as the same name will be used to create a function in the next steps.
Click on OK:

5.	 Now open the script editor in the same spreadsheet. When you open the
script editor, a project selector dialog will open. You can close it or select
Blank Project. A default function, myFunction, will be there in the editor.
Delete everything in the editor and insert the following code:
function greeting() {
 Browser
}

Creating Basic Elements

[20]

When you type . next to Browser, the code completion hint will open as
shown:

If you click on msgBox(String title, String prompt, ButtonSet
buttons):String, then msgBox(title, prompt, buttons) will be
inserted automatically.

In addition to the code hint feature, you can use the auto-
indent feature. Ensure that the Indent icon, on the left
side of the Save icon, is pressed. Select the few lines of
code you would like to indent, then press the Tab key on
your keyboard. Now you can see that these lines of code
indented automatically.

In this code, Browser denotes that you are calling the Browser class from
the Base (or basic) script services. msgBox is the Browser class's method with
three parameters. The names of the parameters are self-explanatory. The
title parameter denotes the title of the message box, prompt denotes your
message to the user, and buttons denotes what category or sets of buttons
you would like to include in your message box.

6.	 Now edit or replace the code with the following:
function greeting() {
 Browser.msgBox("Greeting", "Hello World!",
 Browser.Buttons.OK);
}

7.	 Click on the Save icon and enter a project name if asked. You have completed
the coding of your greeting function.

Chapter 2

[21]

8.	 Now, activate the spreadsheet tab/window and click on your Click Me
button. An authorization window will open and you need to click Continue.
In the successive Request for Permission window, click on Allow, as shown
in the following screenshot:

You only need to do this once for this particular scope. The scopes will
be shown in the concerned permission dialog/window. In this script, the
scope is View and manage your spreadsheets in Google Drive. Above the
scope, you can see the title Chapter 2 would like to:, which means your
script project (project name Chapter 2) or application would like to get your
permission for that particular scope.
As soon as you click Allow, the permission dialog will close, and your actual
greeting message box will open as shown here:

Click Ok to close the message box. Whenever you click on your button, this
message box will open.

Congratulations! You have created a clickable button and associated a GAS function
with it.

Creating Basic Elements

[22]

Showing toast when a button is clicked
Toast appears as a popup window in the lower-right corner of the active spreadsheet
with a title and message. To create a toast dialog, edit or replace the greeting
function as follows:

function greeting() {
 SpreadsheetApp.getActiveSpreadsheet()
 .toast("Hello World!", "Greeting");
}

Now if you click the button, then a toast dialog will appear as shown in the following
screenshot, and it disappears within 5 seconds (the default):

You can include a third argument, that is, timeout seconds, in the toast method.
This means how long the toast will be visible for. Put a negative number if you want
it to show up forever. For example, toast("Hello World!", "Greeting", -1).

Toast only works in Sheets.

Creating a custom menu
You might be wondering whether you can execute the greeting function without
the help of the button. The answer is yes. In the script editor, there is a Run menu.
If you click on Run | greeting, then the greeting function will be executed and
the message box will open.

Creating a button for every function may not be feasible. Although you cannot alter
or add items to the application's standard menu (except the Add-ons menu) such as
File, Edit, View, and so on, you can add custom menus and menu items.

Chapter 2

[23]

For this task, create a new Google Docs document or open an existing document.
Open the script editor and type these two functions:

function createMenu() {
 DocumentApp.getUi()
 .createMenu("PACKT")
 .addItem("Greeting","greeting")
 .addToUi();
}

function greeting() {
 var ui = DocumentApp.getUi();
 ui.alert("Greeting", "Hello World!", ui.ButtonSet.OK);
}

In the first function, you are using the DocumentApp class, invoking the getUi
method, and consecutively invoking the createMenu, addItem, and addToUi
methods by method chaining. The second function should be familiar to you, as
you created it in the previous task, but this time with the DocumentApp class and
associated methods.

Do not copy-paste these functions or codes; create/edit them yourself line
by line. This will help you become familiar with the script editor's code
hinting and completion features.

Now run the createMenu function and flip to the document window/tab. You will
see a new menu item called PACKT added next to the Help menu. You can see the
custom menu PACKT with an item Greeting as shown in the following screenshot.
The item label Greeting is associated with the function greeting.

Creating Basic Elements

[24]

The menu item Greeting works the same way as the button created in the previous
task. The drawback with this method of inserting the custom menu is that to get the
custom menu to show up, you need to run createMenu every time within the script
editor. Consider how your user would be able to use this greeting function if they
didn't know about GAS and the script editor. Think about how your user may not be
a programmer like you. To enable your users to execute selected GAS functions, you
should create a custom menu and make it visible as soon as the document opens. To
do so, rename the createMenu function onOpen, and that's all.

The onOpen function is a special function name. Whenever a user opens
a document, the GAS interpreter executes this function first. Other similar
function names are onEdit, onInstall, doGet, and doPost. The
first two are spreadsheet event-related functions and the next two are
published script service's get and post callback functions. You should
not use these function names other than for the intended purposes.

Creating a sidebar
A sidebar is a static dialog box and is included on the right-hand side of the
document editor window. To create a sidebar, type the following code in the editor:

function onOpen() {
 var htmlOutput = HtmlService
 .createHtmlOutput('<button onclick="alert(\'Hello
 World!\');">Click Me</button>')
 .setTitle('My Sidebar');

 DocumentApp.getUi().showSidebar(htmlOutput);
}

In the preceding code, you are using HtmlService and invoking its method
createHtmlOutput then consecutively invoking the setTitle method. To test this
code, run the onOpen function or reload the document. The sidebar will open in the
right-hand side of the document window as shown in the following screenshot. The
sidebar layout size is a fixed one, which means you cannot change, alter, or resize it.

Chapter 2

[25]

The button in the sidebar is an HTML element, not a GAS element, and if clicked, it
opens the browser interface's alert box.

Creating an Add-ons menu
In the previous task, you included the HTML code inline as a string argument
to the createHtmlOutput method. Alternatively, you can put this HTML snippet
in a separate HTML file.

To create a new HTML file, in the script editor, go to File | New | Html file, as
shown in the following screenshot:

Then in the Create File box, enter your preferred name for the new HTML file.
For this task, enter Index and click on the OK button. The .html extension will be
added automatically.

Creating Basic Elements

[26]

A new Index.html file will be created with a few lines of default HTML code, as
shown in the following screenshot:

Insert your button tags between the body tags as shown here:

<!DOCTYPE html>
<html>
 <head>
 <base target="_top">
 </head>
 <body>
 <button onclick="alert('Hello World!');">Click Me</button>
 </body>
</html>

Insert the code shown here in the Code.gs file:

function onOpen(){
 DocumentApp.getUi()
 .createAddonMenu()
 .addItem("Show Sidebar", "showSidebar")
 .addToUi();
}

function showSidebar() {
 DocumentApp.getUi()
 .showSidebar(
 HtmlService.createHtmlOutputFromFile('Index')
 .setTitle('Greetings')
);
}

Chapter 2

[27]

To test the code, run the onOpen function or reload the document. In the Add-ons
menu, a new item, called Chapter 2 (the project name), will be added, as shown here:

Show Sidebar is the label for the showSidebar function; click on it to show
your sidebar.

Creating a modal dialog
To create a modal dialog, which prevents the user from updating anything in the
spreadsheet or document, update the code in the Code.gs file as shown here:

function onOpen(){
 DocumentApp.getUi()
 .createAddonMenu()
 .addItem("Show Dialog", "showDialog")
 .addToUi();
}

function showDialog() {
 var html = HtmlService
 .createHtmlOutputFromFile('Index');
 DocumentApp.getUi()
 .showModalDialog(html, 'Greeting');
}

Go to Add-ons | Chapter 2 | Show Dialog and a modal dialog will pop up:

Creating Basic Elements

[28]

Creating a modeless dialog
Now we will create a modeless dialog and see the difference between modal and
modeless dialogs. Update the showDialog function as shown here:

function showDialog() {
 var html = HtmlService.createHtmlOutputFromFile('Index');
 DocumentApp.getUi()
 .showModelessDialog(html, 'Greeting');
}

Note that the showModalDialog method has been changed to showModelessDialog.

Modeless dialogs do not prevent you from doing other things, such as editing the
document, and you can drag the dialog around as shown here:

Debugging your script
Logging the values of variables at a few points is essential when testing and
debugging your code. The Logger class is a helpful tool to do this and has
a few methods that are essential to debug your code.

Update the showDialog function as shown here:

function showDialog() {
 var ui = DocumentApp.getUi();

 var response = ui.prompt(
 'Greeting',
 'Will you enter your name below?',
 ui.ButtonSet.YES_NO
);

 if (response.getSelectedButton() == ui.Button.YES) {
 Logger.log('Your name is %s.', response.getResponseText());
 } else if (response.getSelectedButton() == ui.Button.NO) {

Chapter 2

[29]

 Logger.log('You clicked \'NO\' button');
 } else {
 Logger.log('You closed the dialog.');
 }
}

Run the showDialog function as usual from the Add-ons menu. Do anything, for
example, enter your name and click on Yes or No or close the dialog.

Now within the script editor, press Ctrl + Enter (Windows) or Command + Enter
(Mac) or from the View menu, select Logs, then you can see the logged text with
a timestamp as shown here:

For a more detailed study of the Logger future, create the function debug
as shown here:

function debug(){
 var square = 0;
 for(var i = 0; i < 10; i++){
 square = i * i;
 Logger.log(square);
 }
}

Creating Basic Elements

[30]

Run the debug function and see the Logger result as shown here:

In addition to logging, you can use the debug feature of the editor. In the editor,
you set break points at one or more lines. To do so, click once on the line number on
which you want to set a break point. A red dot will be toggled just on the left-hand
side of the line number, as shown here:

Select the debug function that you want to debug in the Select function selector if it
is not already selected. Click on the Debug button (shown as an insect) to the left of
the function selector. The function is executed up to the break point and then pauses.
The edit window is split horizontally and shows the object and its values in the
bottom part of the window as shown here:

Chapter 2

[31]

Click on the Continue debugging button to see the values on every cycle of the
for loop.

You can experiment with the other features such as step into, step over,
and step out.

To exit the debugging session, click on the Stop debugging button and remember
to remove (toggle) all the break points.

Summary
In this chapter, you learned about many type of dialog and how to create and
display them, you found out how to use the Logger class to log values, and you
also saw how to debug your script. In the next chapter, you will learn about Gmail
and Contacts.

Creating Basic Elements

[32]

Downloading the example code
You can download the example code files for this book from your account
at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.
You can download the code files by following these steps:

•	 Log in or register to our website using your e-mail address
and password.

•	 Hover the mouse pointer on the SUPPORT tab at the top.
•	 Click on Code Downloads & Errata.
•	 Enter the name of the book in the Search box.
•	 Select the book for which you're looking to download the

code files.
•	 Choose from the drop-down menu where you purchased this

book from.
•	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract
the folder using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

http://www.packtpub.com
http://www.packtpub.com/support

[33]

Parsing and Sending E-mails
In the previous chapter, you learned how to create basic GAS elements such as
custom menu, dialog, and toast. You also learned how to debug your script codes.
In this chapter, you will learn many real-world Gmail and Contacts applications
including a mail merger application.

In this chapter, if you go through left and right square brackets inside
code like [[value]], then replace value with the actual value
including the brackets.
For example, if the e-mail ID is example@emample.com and you go
through My email id [[emailid]] \n, then replace it with My
email id example@example.com \n.

Creating Gmail Contacts by script
You can create Gmail Contacts by script using the createContact method of the
ContactsApp class. For example, if the name is Anika Sumi and the e-mail ID is
anika@example.com, then the ContactsApp.createContact("Anika", "Sumi",
"anika@example.com") code will create the expected contact.

www.allitebooks.com

http://www.allitebooks.org

Parsing and Sending E-mails

[34]

To know more available methods of the ContactsApp class, in the code editor, type
ContactsApp and . (a dot) next to it. Then, you can view all the available methods
with parameter details in code hint as shown in the following screenshot:

You can see deprecated methods struck out in the preceding screenshot; you are
advised not to use those methods.

Accessing Sheet, cell, range, and offset
A Google Sheet's spreadsheet has one or more Sheets or tabs in it. Sheets are indexed
from left to right starting from 0. For example, the left-most Sheet is referred to by
the index 0, the next one by 1, and so on. In GAS, we can refer to a Sheet by its index
or by its name.

For example:

•	 The getSheets() method returns an array of Sheet objects. From the array,
we can refer to an individual Sheet by its index.

•	 The getSheetByName("Contacts") function returns a Sheet object with the
name Contacts.

In Google Sheets, column label starts from the letter A, and is counted in a
programmatic point of view, from left to right starting with the number 1. For
example, column A is 1, B is 2, and so on. Rows are identified by their respective
label numbers. In GAS, we can reference a cell or a range of cells by A1 notation or
by separate row and column numbers.

Chapter 3

[35]

For example:

•	 The getRange('D1:F10') method returns a Range object referencing the
cells from D1 to F10

•	 The getRange(1,4,10,3) method returns a Range object referencing the
same range D1:F10

Offset is an indirect referencing method to refer to a cell/range from a base cell
reference. An offset reference is determined by how many rows and columns it
shifted from the base cell.

For example, if the base cell is D1, then the offset(10,3) method returns the range
D1:F10.

Reading and writing the Sheet data
Often you need to read and/or write data to/from the Sheet. Usually, use the
getValue method to read a value from a cell and the getValues method to read
values from a range. The getValue method returns a single value and the getValues
method returns a 2-dimensional array of values. To write single value and
2-dimensional array of values, use setValue and setValues methods respectively.

Building a Gmail Contact search
application
Now, we will create an application to search existing contacts. This application is
able to search and list your Gmail Contacts in Sheets. Create a new Sheet and rename
Sheet1 to Contacts and set it up as shown in the following screenshot. Create a
button and assign the function name searchContacts to it, as you learned in the
previous chapter.

Parsing and Sending E-mails

[36]

Create the searchContacts function as listed here:

function searchContacts(){

 var SheetContacts = SpreadsheetApp.getActiveSpreadsheet()
 .getSheetByName("Contacts");

 // Read input from cell A3
 var searchCriteria = SheetContacts.getRange("A3").getValue();

 // First 10 contacts.
 // [You can change this limit, but advised to keep small.]
 var numOfContacts = 10;

 // Clear existing sheet data
 SheetContacts.getRange(7,1,numOfContacts,4).clear();

Here, clear is the Range object's method to clear everything including format and
formula, in a range of cells. You can use the clear method of the Sheet object to
clear the entire Sheet. Alternatively, you can use the clearContent method to clear
content only.

 // Returns an array of contacts where
 // contacts name matches with search text.
 var contacts = ContactsApp.getContactsByName(searchCriteria);

 // Limit number of contacts.
 if(contacts.length > numOfContacts) contacts.length =
 numOfContacts;

 var cell = SheetContacts.getRange("A7");

 for(var i in contacts){
 var name = contacts[i].getFullName();
 var email = contacts[i].getEmails()[0];

 if(email) email = email.getAddress();
 else email = "";

 // For simplicity get the first phone number
 var phone = contacts[i].getPhones()[0];

 if (phone) phone = phone.getPhoneNumber();
 else phone = "";

Chapter 3

[37]

 // For simplicity get the first address
 var address = contacts[i].getAddresses()[0];

 if(address) address = address.getAddress();
 else address = "";

 // cell.offset(rowOffset, columnOffset)
 cell.offset(i,0).setValue(name);
 cell.offset(i,1).setValue(email);
 cell.offset(i,2).setValue(phone);
 cell.offset(i,3).setValue(address);
 }
};

Do not copy paste the preceding code, but edit it yourself. By doing
so, you'll be aware of available method signatures (method names and
parameters) of classes such as SpreadsheetApp, ContactApp, and
Contact with the help of the script editor's code hint feature.

After you have edited and saved code without error, turn to the spreadsheet
window. If you enter a search term in the A3 cell (search box) and click on Search,
then the first 10 contacts will be listed as shown in the following screenshot (the
listed contacts details vary as per your Gmail username and contacts):

Parsing and Sending E-mails

[38]

What if you want to update the listed contacts by the searchContacts function? For
example, you may want to update the phone number and/or address of a contact. To
update contact fields, we will create another function called updateContacts. Before
creating that, in the Contacts Sheet, add a button next to Search named Update and
assign function name updateContacts as shown in the following screenshot:

Update those field values you would like to update. Now create the function
listed here:

function updateContacts(){
 var SheetContacts = SpreadsheetApp.getActiveSpreadsheet()
 .getSheetByName("Contacts");

 var cell = SheetContacts.getRange("A7");

 var numOfContacts = 10;

 for(var i = 0; i < numOfContacts; i++){

 var email = cell.offset(0, 1).getValue();

 // Skip if email field is null
 if(!email) continue;

 var contact = ContactsApp.getContact(email);

 // Skip if contact is null or undefined
 if(!contact) continue;

 var name = cell.offset(i, 0).getValue();

Chapter 3

[39]

 // Skip if name field is null
 if(!name) continue;
 contact.setFullName(name);

 var phone = cell.offset(i, 2).getValue().toString();

 // Returns phone numbers as an array
 var contPhone =
 contact.getPhones(ContactsApp.Field.MAIN_PHONE)[0];

 // Update main phone number if exist otherwise add.
 if(phone){

 if(contPhone){
 contPhone.setPhoneNumber(phone);
 } else {
 contact.addPhone(ContactsApp.Field.MAIN_PHONE, phone);
 }

 }

 var address = cell.offset(i, 3).getValue().toString();

 // Returns address as an array
 var contAddress = contact
 .getAddresses(ContactsApp.Field.HOME_ADDRESS)[0];

 // Update home address if exist otherwise add.
 if(address){

 if(contAddress) {
 contAddress.setAddress(address);
 } else {
 contact.addAddress(ContactsApp.Field.HOME_ADDRESS,
 address);
 }

 }

 }
};

Parsing and Sending E-mails

[40]

The preceding function retrieves contacts by the given e-mail ID; and, for each
contact, it also retrieves field values and updates/adds those field values with the
Sheet values. This function can update/add full name, phone, and address fields
but not the e-mail ID.

Building the Gmail parser application
The parseEmail function is able to check 10 latest inbox threads, extract the
from field and body text from unread messages, and put the gathered data in
the left-most tab of the Sheet. Create the parseEmail function as listed here:

/**
 * Gets content of latest unread message in Gmail inbox
 * and puts gathered data in left most tab of Sheets.
 *
 */
function parseEmail(){

 // Left most sheet/tab
 var emailSheet = SpreadsheetApp.getActiveSpreadsheet()
 .getSheets()[0];

 // Clear the entire sheet.
 emailSheet.clear();

 // Checks maximum 10 threads
 var thread = GmailApp.getInboxThreads(0,10);

 var row = 1;

 for(var thrd in thread){
 var messages = thread[thrd].getMessages();

 for (var msg in messages) {
 var message = messages[msg];

 if(message && message.isUnread())
 emailSheet.getRange(row,1).setValue(message.getFrom());

 emailSheet.getRange(row++,2)
 .setValue(message.getPlainBody());
 }
 }

};

You can use RegExp to extract only the required data from the message body text.

Chapter 3

[41]

Properties service
GAS provides the properties service to store and/or to retrieve project-related data.
The data organized as key/value pairs, can be set manually or by script codes. The
following screenshot shows how you can set properties manually. To see this dialog,
click on the File menu and select Project properties:

You can use manually created project properties in script codes, but
the properties created by code sometimes may not be visible in the
Project properties dialog. You can create, update, or delete project
properties in codes.

In the next task, we are going to use project properties.

Downloading Gmail attachments to Drive
The saveEmailAttachmentsToDrive function can download Gmail attachments to
Drive. In this function PropertiesService is used to avoid repeated downloading
of the same attachment. The createFolder_ function is used to create folders, if not
already exist, with the given name in Drive.

Parsing and Sending E-mails

[42]

If any function name is appended with _, then it will not be listed under
the Run menu. You cannot run these functions directly, but they can be
called from the other functions. These are called private functions.

You can create the createFolder_ function in the same script file along with
the saveEmailAttachmentsToDrive function or in a separate script file such
as Library.gs:

/**
 * Checks latest 100 inbox threads,
 * saves attachments in 'Gmail attachments' folder,
 *
 */
function saveEmailAttachmentsToDrive(){

 // Create 'Gmail Attachments' folder if not exists.
 createFolder_('Gmail attachments');

 // Get inbox threads starting from the latest one to 100.
 var threads = GmailApp.getInboxThreads(0, 100);

 var messages = GmailApp.getMessagesForThreads(threads);

 var folderID = PropertiesService.getUserProperties()
 .getProperty("FOLDER");

 var file, folder = DriveApp.getFolderById(folderID);

 for (var i = 0 ; i < messages.length; i++) {
 for (var j = 0; j < messages[i].length; j++) {
 if(!messages[i][j].isUnread()){

 var msgId = messages[i][j].getId();

 // Assign '' if MSG_ID is undefined.
 var oldMsgId = PropertiesService.getUserProperties()
 .getProperty('MSG_ID') || '';

 if(msgId > oldMsgId){
 var attachments = messages[i][j].getAttachments();

Chapter 3

[43]

 for (var k = 0; k < attachments.length; k++) {
 PropertiesService.getUserProperties()
 .setProperty('MSG_ID', messages[i][j].getId());

 try {
 file = folder.createFile(attachments[k]);
 Utilities.sleep(1000);// Wait before next iteration.
 } catch (e) {
 Logger.log(e);
 }
 }

 }
 else return;

 }
 }
 }

};

The preceding function calls the following createFolder_ function with the folder
name as an argument. The function createFolder_ looks for the given folder,
creates if it does not exist, and returns its unique ID:

function createFolder_(name) {
 var folder, folderID, found = false;

 /*
 * Returns collection of all user folders as an iterator.
 * That means it do not return all folder names at once,
 * but you should get them one by one.
 *
 */
 var folders = DriveApp.getFolders();

 while (folders.hasNext()) {
 folder = folders.next();
 if (folder.getName() == name) {
 folderID = folder.getId();
 found = true;
 break;
 }
 };

Parsing and Sending E-mails

[44]

 if (!found) {
 folder = DriveApp.createFolder(name);
 folderID = folder.getId();
 };

 PropertiesService.getUserProperties()
 .setProperty("FOLDER", folderID);

 return folderID;
}

In the preceding function the getFolders method is an iterator method. An iterator
does not return all the data in one go, but only the current data. To get successive
data, you should call next method repeatedly until hasNext became false.

Sending e-mails using the MailApp
service
The sendEmail function is able to send e-mails with prefixed messages. Remember to
replace e-mail ID and message text. This service is mainly used to send e-mails with
limited methods (only sendEmail and getRemainingDailyQuota), and it cannot
access your Gmail account. You can use the GmailApp class for more methods:

function sendEmail(){
 var to = "[[reciever email id]]";
 var message = "[[message]]\n";

 MailApp.sendEmail(to, "Chapter 3", message);
}

Sending an e-mail notification on Form
submission
Imagine if you created a Form and presented it to many users. It would be tedious
to open the response Sheet every time to verify whether any user has submitted the
Form or not. The problem would be worse if you created many Forms and sent them
to many users. It will be helpful receiving a notification e-mail whenever there is a
Form submission.

Chapter 3

[45]

For this task, create a Form with three fields as shown in the following screenshot:

Submit the test data from a live form. Your submitted data will be saved in a
response Sheet named something like Form Responses 1. The column headers will
be as per your Form fields as shown in the following screenshot. Data may vary as
per your input.

In the script file, you need to make the following changes:

1.	 Enter the sendEmail function mentioned from the following code.
2.	 Replace the receiver's e-mail ID. If you run this function, then it will send an

e-mail with the last submitted data (bottom-most row) in the response Sheet.
3.	 Check the Sheet's actual name and the name used in the code; they should

be exactly the same. If you are not sure, right-click on the Sheet name and
select Rename....

Parsing and Sending E-mails

[46]

4.	 Copy the Sheet name from the Rename dialog and paste it in the
following code:
function sendEmail(){
 var sheet = SpreadsheetApp.getActiveSpreadsheet()
 .getSheetByName("Form Responses 1");

 var lastRow = sheet.getLastRow();
 var lastCol = sheet.getLastColumn();
 var data = sheet.getRange(lastRow,1,1,lastCol)
 .getValues()[0];

 var to = "[[receiver email id]]";
 var message = "Name: " + data[1] + "\n";

 message += "Phone: " + data[2] + "\n";
 message += "Question: " + data[3] + "\n";

 // MailApp.sendEmail(recipient, subject, body);
 MailApp.sendEmail(to, "Chapter 3", message);
}

You created a Form and a function to send response data to an e-mail ID. Creating
a trigger so as to run the sendEmail function as soon as a Form is submitted will
complete this task.

Creating triggers manually
To create a trigger, in the code editor click on Resources and select Current project's
triggers then the Current project's triggers dialog will open. Already created triggers
will be listed in this dialog, otherwise a link to create a new trigger will appear. Click
on the No triggers set up. Click here to add one now link. Select the options from
the dropdowns as shown in the following screenshot:

Chapter 3

[47]

Under the Run heading, select the sendEmail function for which you want to create
the trigger. Select From spreadsheet and On form submit under the Events heading
as shown in the preceding screenshot.

If a Form user submits data to the spreadsheet, the trigger will run the sendEmail
function.

For more info on triggers, please go to https://developers.google.com/apps-
script/guides/triggers/.

Creating and deleting triggers by script
You can create or delete triggers programmatically as shown in the following
sample code:

/**
 * Deletes all the triggers.
 *
 */
function deleteTriggers(){
 var triggers = ScriptApp.getProjectTriggers();

 triggers.forEach(function(trigger){

 try{
 ScriptApp.deleteTrigger(trigger);
 } catch(e) {
 throw e.message;
 };

 Utilities.sleep(1000);

 });

};

function createTrigger(){
 var ss = SpreadsheetApp.getActiveSpreadsheet();

 // Create new trigger
 ScriptApp.newTrigger("sendEmail")
 .forSpreadsheet(ss).onFormSubmit().create();
};

https://developers.google.com/apps-script/guides/triggers/
https://developers.google.com/apps-script/guides/triggers/

Parsing and Sending E-mails

[48]

In the deleteTriggers function, the Utilities service's sleep
method is used to pause the script temporarily for the specified
milliseconds. Otherwise, you may experience the Too many service
invocation… error.

Forwarding e-mails if the specific
keyword is found in the message body
The forwardEmails function is able to forward e-mail messages, if a specific
keyword is found in the body text to a prefixed e-mail ID. Be cautious about the
number of iterations of the for loop while testing your code so that you can avoid
lot of messages forwarded in error:

/**
 * 1. Checks all unread inbox threads and messages.
 *
 * 2. If specific keyword found then forwards it to another
 * recipient.
 *
 * 3. Marks that message as Read.
 *
 */
function forwardEmails() {
 var recipient = "[[forward email id]]";
 /*
 * Use keywords separated by '|'.
 * For example: "purchase | invoice"
 *
 */
 var words = "keywords list";
 var regExp = new RegExp(words,'g');

 var len = GmailApp.getInboxUnreadCount();

 for (var i = 0; i < len; i++) {
 // get 'i'th thread in inbox
 var thread = GmailApp.getInboxThreads(i,1)[0];

 // get all messages in 'i'th thread
 var messages = thread.getMessages();

Chapter 3

[49]

 var msgLen = messages.length;
 var isAllMarkedRead = true;

 // iterate over each message
 // CAUTION: limit loop iterations for initial testing.
 for (var j = 0; j < 5 /* msgLen */; j++) {
 var message = messages[j];

 if(message.isUnread()){
 var bodyText = message.getPlainBody();
 var test = regExp.exec(bodyText);
 message.forward(recipient);
 isAllMarkedRead = false;
 message.markRead();
 }

 };

 if(isAllMarkedRead) len++;
 Utilities.sleep(1000);
 }

};

Sending e-mail with attachments
You can attach any type of file to your e-mail message by setting options as shown
in the following code. The following code attaches the active spreadsheet's left-most
Sheet content as PDF.

function sendEmailWithAttachments(){
 var file = SpreadsheetApp.getActiveSpreadsheet()
 .getAs(MimeType.PDF);

 // MailApp.sendEmail(recipient, subject, body, options)
 MailApp.sendEmail(
 "[[Recipient email id]]",
 "Chapter 3",
 "",
 {
 attachments: [file],
 name: 'Chapter 3 test attachment'
 }
);

}

Parsing and Sending E-mails

[50]

Embedding inline images in an e-mail
message
To embed images such as a logo in your e-mail message, you may use HTML code
instead of plain text. Upload your image to Google Drive, retrieve, and use that file
ID in code:

function sendEmail(){
 var sheet = SpreadsheetApp.getActiveSpreadsheet()
 .getSheetByName("Form Responses 1");

 var lastRow = sheet.getLastRow();
 var lastCol = sheet.getLastColumn();
 var data = sheet.getRange(lastRow,1,1,lastCol).getValues()[0];

 var image = DriveApp.getFileById("[[image file's id in Drive
]]").getBlob();

 var to = "[[Recipient email id]]";
 var message = '';

 message += "<p>Name: " + data[1] + "</p>";
 message += "<p>Phone: " + data[2] + "</p>";
 message += "<p>Question: " + data[3] + "</p>";

 MailApp.sendEmail(
 to,
 "Chapter 3 inline image example",
 "",
 {
 inlineImages:{ logo:image },
 htmlBody:message
 }
);
}

Building an e-mail merger application
Sending personalized e-mails to hundreds of recipients at a time might be a time
consuming task. Composing the draft and entering the subject and recipient's e-mail
ID for each message might be tedious too. Using this mail merger application, you
can send the same kind of information to all recipients, but customized to some
extent. For example, greeting an individual.

Chapter 3

[51]

The first step is creating a draft in your Gmail as shown in the following screenshot.
The draft is used as a template. You can use any special character to enclose the text
to be replaced. In the draft, the code shown in the following screenshot uses left (<<)
and right (>>) angled brackets to replace the first name with the First Name column
data in an EmailList Sheet. You can include any other placeholder or field as per
your requirement. Set up the draft, but don't send it now:

Create a Sheet with the name as EmailList in a new Sheet or existing Sheet. Create
the column headers as shown here:

Parsing and Sending E-mails

[52]

Create functions as shown in the following code, in the script editor. Replace the
draft and sender name with actual values. Set maxEmails (this code uses 50) by
considering your daily e-mail sending quota:

// Returns your draft text.
function getDraftBody(draftName){
 var drafts = GmailApp.getDraftMessages();

 for(var i in drafts)
 if(drafts[i].getSubject() == draftName)
 return drafts[i].getPlainBody();
}

function sendEmails(){
 // EmailList sheet column numbers, 0 based.
 const FIRST_NAME_COL = 0;
 const EMAIL_IDS_COL = 1;
 const SUB_COL = 2;
 const DATE_COL = 3;

 var maxEmails = 50;
 var draftName = "Chapter 3";// Draft's subject name

 var draftBody = getDraftBody(draftName);
 var quotaLeft = MailApp.getRemainingDailyQuota();

 var ss = SpreadsheetApp.getActive();
 var sheet = ss.getSheetByName("EmailList");

 // Gets all sheet data as a 2-dimensional array.
 var data = sheet.getDataRange().getValues();
 var header = data.shift();

 for(var i=0,count=0; count < maxEmails && count < quotaLeft
 && i < data.length; ++i){
 var firstName = data[i][FIRST_NAME_COL];
 var recipient = data[i][EMAIL_IDS_COL];
 var subject = data[i][SUB_COL];
 var htmlBody = draftBody.replace("<<FirstName>>", firstName);

 if(recipient){
 GmailApp.sendEmail(
 recipient,

Chapter 3

[53]

 subject,
 "",
 {
 name:"[[Sender Name]]",
 htmlBody:htmlBody
 }
);

 data[i][DATE_COL] = new Date();

 ++count;
 }
 };

 // Inserts header at top of the array.
 data.unshift(header);

 // Stores values of array in sheet.
 sheet.getRange(1, 1, data.length, header.length)
 .setValues(data);
}

Populate data in the EmailList Sheet. To send e-mails, run the sendEmails function.
The <<FirstName>> field in your draft will be replaced as per your First Name
column data in the EmailList Sheet. That's it!

Congratulations! You have created a working e-mail merger application.

Summary
In this chapter, you learned about ContactsApp, MailApp, and GmailApp classes and
their methods. Using these classes, you created many useful real-world applications
including an e-mail merger application. In the next chapter, you will learn how to
create Forms programmatically using FormApp and HtmlService classes. Also you
will learn about doGet and doPost simple trigger functions.

Chapter 4

[55]

Creating Interactive Forms
In the previous chapter, you learned about many of the features of GmailApp and
ContactApp and you built lots of real-world applications. In this chapter, you will
learn how to create Forms programmatically using FormApp and HtmlService. Also,
you will learn about the doGet and doPost functions.

Creating Forms using script
In Chapter 1, Introducing Google Apps Scripts, you created a Form manually, but this
time we will create Forms programmatically by script. First of all, we will create a
Form with four choices and an Other option choice. For simplicity, we add places
as a multiple choice radio group. Each choice is exclusively selectable. Create the
function createForm as shown here in a spreadsheet code file:

function createForm() {

 var places = ["Place 1","Place 2","Place 3","Place 4"];

 var form = FormApp.create("Vacation Form");

 form.addMultipleChoiceItem()
 .setTitle('Where will you go for vacation?')
 .setChoiceValues(places)
 .showOtherOption(true);

}

Creating Interactive Forms

[56]

The places variable holds a few random places, and you can assign any place name
and any number of places as an array of strings. The create method of FormApp
class creates a form titled Vacation Form in your Drive's root folder (My Drive).
On running the function, the created Form will look like this:

The choices are hardcoded in the code. If you would like to change any choice or add
more choices, then you should edit the code to make the required changes. If you
need to change the choices frequently, it might become irritating or hard to edit the
code every time. Now we will add place names from spreadsheet's data rather than
them being hardcoded. Add or rename an existing sheet as Places and add a few
place names in it as shown here:

Chapter 4

[57]

Now update the createForm function as shown here:

function createForm() {

 var ThisSpreadsheet = SpreadsheetApp.getActive();
 var SheetPlaces = ThisSpreadsheet.getSheetByName("Places");

 // Load 'Places' sheet data as a 2-dimensional array.
 var data = SheetPlaces.getDataRange().getValues();

 // remove the header row
 data.shift();

 var places = [];

 // Populate the places array with the first column's data
 data.forEach(function(row){
 places.push(row[0]);
 });

 // Create a new form
 var form = FormApp.create("Vacation Form");

 form.addMultipleChoiceItem()
 .setTitle('Where will you go for a vacation?')
 .setChoiceValues(places)
 .showOtherOption(true);

}

The preceding function will create a Form with the choices' text retrieved from the
Sheet's data. The choices' text and/or number of choices can be varied as per your
Sheet's data. If you would like to make any changes in the choices' text, then it is
enough to edit the Sheet's data, and you do not need to edit the code.

Creating Interactive Forms

[58]

When you run the function just mentioned, it will create a Form named Vacation
Form in the My Drive folder. To open the Form in edit mode, double-click or right-click
(context click) on Form name and go to Open with | Google Forms. The following
screenshot shows what the Form would look like in edit mode. You can make any
adjustments and/or perform formatting in edit mode:

Chapter 4

[59]

To open the live Form, right-click (context click) on the Form name, click on Get link,
copy the link, and then paste the link in your browser's address bar. The following
screenshot shows what the live Form will look like:

You can share the live Form link with your users. Your user's responses are stored in
the Form itself. You can see responses in the Form editor, or link a spreadsheet to it
to view the responses, as shown:

Creating Interactive Forms

[60]

You can link Form responses to a spreadsheet manually by clicking on the icon in
the top right-hand corner of the Form editor. A new Form Responses Sheet will be
created in the selected spreadsheet.

To programmatically link a spreadsheet, use the following code:

form.setDestination(FormApp.DestinationType.SPREADSHEET,
ThisSpreadsheet.getId()); // Replace with your spreadsheet's ID

Publishing the script as a web
application
You can create awesome web pages/applications by publishing your script as a web
application. In this section, you'll see how to publish a script. Start by creating a new
Sheet and entering the following code in the script editor:

function doGet(){
 var str = "Hello world!";
 return ContentService.createTextOutput(str);
}

The doGet function will be executed whenever a HTTP/HTTPS request is sent to
the script. In the preceding code, ContentService is used to return a string to the
browser. Content service can be used to return any type of content including simple
text, HTML, XML, JSON, CSV, and so on.

To publish the script, within the script editor, navigate to Publish | Deploy as web
app…. A new Deploy as web app dialog will open as shown here:

Chapter 4

[61]

Select any one of the existing project versions or select New to create a new project
version. There will be two choices under the Execute the app as option, Me and User,
accessing the web app. For this application, select Me (your user ID). This means the
script will run on behalf of your user ID. If you had selected the second option then the
script would run on behalf of the user who is accessing the application. Select Anyone,
even anonymous under the Who has access to the app option.

There are two more choices Only myself and Anyone available under the
Who has access to the app option. Select Only myself if you would only
like to get access to the published app. Select Anyone if you would like to
give access to others, but please be aware that the others should be logged
in with their Google user ID. If you select Anyone, even anonymous, then
your user can be anyone and does not need to be logged in. They do not
even need to be a Google user.

Creating Interactive Forms

[62]

Finally, click on the Deploy button. Then another dialog will open as shown in the
following screenshot:

If you are publishing the script for the first time, then you need
to authorize the script. Authorization is initiated before web app
deployment. Click Allow in the authorization dialog.

In this dialog, you can see the published URL under the Current web app URL
textbox. You can copy and paste this URL in a new browser window/tab address bar
to see the working of your web application. For the preceding code, the text returned
will be Hello world! Click OK to close the dialog.

If you make any changes in your code, then you should publish the new
version again, otherwise the updates will not take effect. Alternatively,
you can use the latest code URL for development purposes.

HtmlService
At the beginning of this chapter, you created a Form using script codes. However,
this Form is a static one, meaning you cannot add dynamic formatting or script on
the client side. You can perform formatting and calculations, if there are any to be
done, on the server side only.

HtmlService allows scripts to return HTML or web pages to clients. For security
reasons the HTML content, including CSS and JavaScript, are compiled and sandboxed
by Caja compiler before returning to the client browser. The returned web page(s) can
interact with server-side GAS functions using the google.script.run API methods.

Chapter 4

[63]

The advantages of using HtmlService are:

•	 You can use CSS and client-side JavaScript
•	 You can create dynamic HTML forms rather than static Forms
•	 You can work on client-side HTML and server-side script codes separately

HtmlService can create HTML codes from templates. The templates are HTML files
mixed with HTML markup and scripts (these are called scriptlets and are executed
on the server side).

Scriptlets enclosed by <? and ?> execute but output nothing to the enclosing HTML.
In other words, they do not alter the surrounding HTML code. Scriptlets enclosed by
<?= and ?> return the output to the surrounding HTML code. Any functions inside
scriptlets can call functions of other scriptlets or server-script functions, but server
functions cannot call functions within scriptlets.

For further reading on scriptlet tags, visit: https://developers.google.com/apps-
script/guides/html/templates.

Creating a Form using HtmlService
Create a Form.html file, which we are going to use as an HTML template and enter
the following code in it:

<!-- Form.html -->
<!DOCTYPE html>
<html>

 <head>
 <base target="_top">
 </head>

 <body>
 <form>
 <h4>Where will you go for vacation?</h4>

 <input type="radio" name="places" value="Place 1" />Place 1

 <input type="radio" name="places" value="Place 2" />Place 2

https://developers.google.com/apps-script/guides/html/templates
https://developers.google.com/apps-script/guides/html/templates

Creating Interactive Forms

[64]

 <input type="radio" name="places" value="Place 3" />Place 3

 <input type="radio" name="places" value="Place 4" />Place 4

 <input type="submit" value="SUBMIT" />
 </form>
 </body>
</html>

Use the same name attribute value for radio type input fields so that they are all
grouped together. This means they will work exclusively. Update the doGet function
in the Code.gs file to render the previously mentioned HTML form, as follows:

// Code.gs
function doGet() {
 var template = HtmlService.createTemplateFromFile("Form.html");
 var html = template.evaluate();

 return HtmlService.createHtmlOutput(html);
}

Publish the script and enter the published URL in your browser's address bar. The
basic HTML form returned is shown here:

Chapter 4

[65]

To populate places automatically from spreadsheet data, update the HTML code as
shown here:

 <form>
 <h4>Where will you go for vacation?</h4>
 <? for (var i in places) { ?>
 <input type="radio" name="places"
 value="<?= places[i] ?>" /><?= places[i] ?>

 <? } ?>

 <input type="submit" value="SUBMIT" />
 </form>

The scriptlet <?= places[i] ?> returns the ith element from the places array. You
also need to update the doGet function as shown here:

function doGet() {
 // Replace with your spreadsheet's ID.
 var ss = SpreadsheetApp.openById("spreadsheet's id");
 var SheetPlaces = ss.getSheetByName("Places");

 var data = SheetPlaces.getDataRange().getValues();

 // Remove header row.
 data.shift();

 var places = [];

 // Populate the places array with the first column's data.
 data.forEach(function(row){
 places.push(row[0]);
 });

 var template = HtmlService.createTemplateFromFile("Form.html");

 // Assign the places array to the template object.
 template.places = places;

 var html = template.evaluate();
 return HtmlService.createHtmlOutput(html);
}

Creating Interactive Forms

[66]

The places array is assigned to the template in the doGet function and referenced in
the HTML template. Then, the output becomes the following:

To submit this Form data to the spreadsheet, you need to add method and action
attributes to the Form element:

 <form method="post" action="<?= pubUrl ?>" >

Assign the published URL to the template object in the doGet function, for example:

template.pubUrl =
"https://script.google.com/macros/s/AKfycbzMqmOaaD-
TTDbycMl2AxF7dtn9EqxqZTwozcQBNHxe9hg4Kbc/exec";

You could also assign it as follows:

template.pubUrl = ScriptApp.getService().getUrl();

To process the submitted Form data, add a doPost function. The doGet or doPost
functions execute as per the HTTP/HTTPS request method (GET and POST):

function doPost(e){
 // Replace with your spreadsheet's ID.
 var ss = SpreadsheetApp.openById("spreadsheet's id");

 var SheetResponses = ss.getSheetByName("Responses");

 // Create a 'Responses' sheet if it does not exist.
 if(!SheetResponses){
 SheetResponses = ss.insertSheet("Responses");

Chapter 4

[67]

 };

 SheetResponses.appendRow([e.parameter.places]);

 return ContentService.createTextOutput(
 "Your response submitted successfully. Thank you!"
);

}

After the Form is submitted, a thank you message is returned as the normal
text content:

Submitting form using Google script
API method
To submit data using the google.script.run API methods, add onclick property
to the Submit button:

<input type="submit" value="SUBMIT"
onclick="google.script.run.postFormDataToSheet(this.parentNode);"
/>
<!-- this.parentNode is the 'form' element -->

Create the postFormDataToSheet function as shown here:

function postFormDataToSheet(e){
 // Replace with your spreadsheet's ID.
 var ss = SpreadsheetApp.openById("spreadsheet's id");

 var SheetResponses = ss.getSheetByName("Responses");

 // Create a 'Responses' sheet if it does not exist.
 if(!SheetResponses){
 SheetResponses = ss.insertSheet("Responses");
 }

 SheetResponses.appendRow([e.places]);
}

Creating Interactive Forms

[68]

To show Form submission result or error message, insert the postData function in a
separate <script> tag and add success and failure handlers with a callback function
as shown here:

 <script>
 function postData(form){
 google.script.run
 .withSuccessHandler(callback)
 .withFailureHandler(callback)
 .postFormDataToSheet(form);
 }

 function callback(msg){
 alert(msg);
 }
 </script>

Insert a return statement with a message to the user at the end of the
postFormDataToSheet function.

To add the User object to the google.script.run API calls, add the
withUserObject method along with the success and failure handlers:

The complete HTML code with the user object is shown here:

<!DOCTYPE html>
<html>
 <head>
 <base target="_top">

 <script>
 function postData(form){
 google.script.run
 .withSuccessHandler(showSuccess)
 .withFailureHandler(showError)
 .withUserObject(form)
 .postFormDataToSheet(form);
 }

 /*
 * msg - the error or success message returned
 * from the server.
 *
 * elem - the reference to the user object (form).
 *

Chapter 4

[69]

 */
 function showSuccess(msg,elem) {
 var newElement = document.createElement("div");
 newElement.innerHTML = ''
 + msg + '';
 elem.appendChild(newElement);
 }

 /*
 * msg - the error or success message returned
 * from the server.
 *
 * elem - the reference to the user object (form).
 *
 */
 function showError(msg,elem){
 var newElement = document.createElement("div");

 newElement.innerHTML = ''
 + msg + '';

 elem.appendChild(newElement);
 }

 </script>
 </head>

 <body>
 <form>
 <h4>Where will you go for vacation?</h4>

 <? for (var i in places) { ?>
 <input type="radio" name="places"
 value="<?= places[i] ?>" /><?= places[i] ?>

 <? } ?>

 <input type="button" value="SUBMIT"
 onclick="postData(this.parentNode);" />
 </form>
 </body>
</html>

Creating Interactive Forms

[70]

The complete version of the postFormDataToSheet function is listed here:

function postFormDataToSheet(e){
 // Replace with your spreadsheet's ID.
 var ss = SpreadsheetApp.openById("spreadsheet's id");
 var SheetResponses = ss.getSheetByName("Responses");

 // Create 'Responses' sheet if it does not exist.
 if(!SheetResponses){
 SheetResponses = ss.insertSheet("Responses");
 }

 SheetResponses.appendRow([e.places]);

 return "Your response submitted successfully. Thank you!";
}

In this script, you used HTML code in a separate file, namely Form.html. This file
is used as a template in the GAS server, and only the resulted markup and script
code are returned to the user's browser. From the browser (the client side), we use
the Google client-side JavaScript API (google.script.run) to interact with the GAS
server. This is an AJAX-like interaction between the client and server. Here, the client
and server are your browser and GAS server respectively.

Referencing HTML tags/elements (DOM elements) using plain JavaScript most of
the time is a tedious task. To make life easier, you can use jQuery libraries. Also,
you need not define CSS styles in the <style> tag yourself; rather you can use any
officially-supported (by Google) third-party style sheets.

Creating forms using add-ons CSS and
jQuery libraries
The same HTML code using the Google add-on CSS and jQuery libraries is as follows:

<!DOCTYPE html>
<html>
 <head>
 <base target="_top">

 <!-- Google's Add-ons stylesheet //-->
 <link rel="stylesheet"
 href="https://ssl.gstatic.com/docs/
 script/css/add-ons1.css" />

Chapter 4

[71]

 <script
 src="//ajax.googleapis.com/ajax/libs/
 jquery/1.10.2/jquery.min.js"></script>

 <script>
 // on document load, assign postData function to submit
 // button's onclick property.
 $(function(){
 $("#btnSubmit").click(postData);
 });

 // Calls server side function 'postFormDataToSheet'
 // with form as the argument.
 function postData(){
 google.script.run
 .withSuccessHandler(showSuccess)
 .withFailureHandler(showError)
 .withUserObject(this)
 .postFormDataToSheet(this.parentNode);
 }

 /*
 * msg - the error or success message returned
 * from the server.
 *
 * elem - the reference to the user object (form).
 *
 */
 function showSuccess(msg,elem) {
 var div = $('<div id="error">
 ' + msg + '</div>');
 $(elem).after(div);
 }

 /*
 * msg - the error or success message returned
 * from the server.
 *
 * elem - the reference to the user object (form).
 *
 */
 function showError(msg,elem) {
 var div = $('<div id="error"
 class="error">' + msg + '</div>');
 $(elem).after(div);
 }
 </script>
 </head>

 <body>

Creating Interactive Forms

[72]

 <form>
 <h4>Where will you go for vacation?</h4>

 <? for (var i in places) { ?>
 <input type="radio" name="places"
 value="<?= places[i] ?>" /><?= places[i] ?>

 <? } ?>

 <input class="submit" id="btnSubmit"
 type="button" value="SUBMIT" />
 </form>
 </body>
</html>

Creating an e-voting application
The previous application appends each response to the Responses Sheet. But, we
need to update the count against each choice. If we can make the selected choices
increment by a counter then we can use the same application for e-voting purposes.

Edit the labels/headers for column A and B in the Places sheet as follows:

Update the HTML code in the Form.html file as shown here:

<!DOCTYPE html>
<html>
 <head>
 <base target="_top">

 <link rel="stylesheet"
 href="https://ssl.gstatic.com/docs/
 script/css/add-ons1.css" />

Chapter 4

[73]

 <script
 src="//ajax.googleapis.com/ajax/libs
 /jquery/1.10.2/jquery.min.js"></script>

 <script>
 $(function(){
 $("#btnSubmit").click(postData);
 });

 function postData(){
 // Remove previous messages if any
 $("#error,#success").remove();

 // Disable the submit button until server returns
 // anything.
 this.disabled = true;

 // Call server function
 google.script.run
 .withSuccessHandler(showSuccess)
 .withFailureHandler(showError)
 .withUserObject(this)
 .postFormDataToSheet(this.parentNode);
 }

 /*
 * msg - the error or success message returned
 * from the server.
 *
 * elem - the reference to the user object (form).
 *
 */
 function showSuccess(msg,elem) {
 elem.disabled = false;
 var div = $('<div id="success">
 ' + msg + '</div>');
 $(elem).after(div);
 }

 /*
 * msg - the error or success message returned
 * from the server.
 *
 * elem - the reference to the user object (form).
 *

Creating Interactive Forms

[74]

 */
 function showError(msg,elem) {
 elem.disabled = false;
 var div = $('<div id="error" class="error">'
 + msg + '</div>');
 $(elem).after(div);
 }
 </script>
 </head>

 <body>
 <form>
 <h4>Where will you go for vacation?</h4>

 <? for (var i in places) { ?>
 <input type="radio" name="places"
 value="<?= i ?>" /><?= places[i] ?>

 <? } ?>

 <input class="blue" id="btnSubmit" type="button"
 value="SUBMIT" />
 </form>
 </body>
</html>

For this application keep the Form.html code as it is, but update the doGet and
postFormDataToSheet functions as shown here:

function doGet() {
 // Replace with your spreadsheet's ID.
 var ss = SpreadsheetApp.openById("spreadsheet's id");
 var SheetPlaces = ss.getSheetByName("Places");

 var data = SheetPlaces.getDataRange().getValues();
 data.shift();

 var places = [];
 data.forEach(function(row){
 places.push(row[0]);
 });

 var template = HtmlService.createTemplateFromFile("Form.html");

Chapter 4

[75]

 template.places = places;

 var html = template.evaluate();
 html.setTitle("eVoting");

 return HtmlService.createHtmlOutput(html);
}

function postFormDataToSheet(e){
 // Replace with your spreadsheet's ID.
 var ss = SpreadsheetApp.openById("spreadsheet's id");
 var SheetPlaces = ss.getSheetByName("Places");

 var data = SheetPlaces.getDataRange().getValues();

 var i = Number(e.places)+1;
 data[i][1]++;

 SheetPlaces.getRange(1, 1, data.length,
 data[0].length).setValues(data);

 return "Your response submitted successfully. Thank you!";
}

In this application, the responses are not appended, but the counts are incremented
on every submission. A sample output is shown here:

Creating Interactive Forms

[76]

Creating a ticket reservation application
This application serves as an HTML form to the user to let them submit values to the
server. This could be to reserve a ticket for a show, book a seat in a venue, book a
room in a hotel, and many more purposes.

Create a spreadsheet and create column labels as shown in the following screenshot:

In the code file, create the doGet, doPost and cancelReservation functions:

function doGet(e) {
 // Maximum available
 const MAX_TICKETS = 25;

 // 'cancel' is a query string appended with the published URL.
 var cancel = e.parameter.cancel;

 if(cancel){
 var msg = cancelReservation(cancel);
 return ContentService.createTextOutput(msg);
 }

 // Replace with your spreadsheet's ID.
 var ss = SpreadsheetApp.openById("spreadsheet's id");
 var SheetReservations = ss.getSheetByName("Reservations");

 var data = SheetReservations.getDataRange().getValues();
 data.shift();

 var template = HtmlService.createTemplateFromFile("Form.html");
 template.available = MAX_TICKETS - data.length;

 if(template.available < 1)
 return ContentService.createTextOutput
 ("All tickets reserved, sorry!");

 // Use the following line of code for testing purposes only

Chapter 4

[77]

 // Replace with your development URL.
 template.pubUrl =
 "https://script.google.com/macros/s/ "
 + " AKfycbzIkrLEaMMRRYwOA_d_Tiy1TFtxUylaotB07HB4wZGW/dev";

 // Uncomment the following line for the production use.
 //template.pubUrl = ScriptApp.getService().getUrl();

 var html = template.evaluate();
 return HtmlService.createHtmlOutput(html);

}

In the preceding code, the doGet function initially checks for any query such as
cancel, appended with the URL. If cancel is present, then the cancelReservation
function is called, otherwise the HTML form is returned:

/**
 * This function post the form data to the
 * spreadsheet.
 *
 */
function doPost(e){
 // Replace with your spreadsheet's ID.
 var ss = SpreadsheetApp.openById("spreadsheet's id");
 var SheetReservations = ss.getSheetByName("Reservations");

 // name, phone_number and e-mail are form elements.
 var name = e.parameter.name;
 var phoneNumber = e.parameter.phone_number;
 var email = e.parameter.email;
 var ticketNumber = +new Date(); // current date as epoch number

 SheetReservations.appendRow(
 [name, phoneNumber, email, ticketNumber, "Reserved"]
);

 // Use the following line of code for testing purposes only.
 // Replace with your development URl.
 var pubUrl =
 "https://script.google.com/macros/s/ "
 + " AKfycbzIkrLEaMMRRYwOA_d_Tiy1TFtxUylaotB07HB4wZGW/dev";

 // Uncomment the following line for production use.

Creating Interactive Forms

[78]

 //pubUrl = ScriptApp.getService().getUrl();

 var emailBody = '<p>Thank you for registering. Your ticket
 number: ' + ticketNumber + '</p>';

 emailBody += '<p>You can <a href="'+ pubUrl +'?cancel=' +
 ticketNumber + '">click here to cancel reservation.</p>';

 // Send confirmation e-mail with cancel link
 MailApp.sendEmail({
 to: email,
 subject: "Reservation Confirmation",
 htmlBody: emailBody
 });

 // Return confirmation text message to the browser.
 return ContentService.createTextOutput("Your ticket
 reserved and confirmation email has been sent.\nThank you!");
}

function cancelReservation(timestamp){

 // Replace with your spreadsheet id.
 var ss = SpreadsheetApp.openById("spreadsheet's id");

 var SheetReservations = ss.getSheetByName("Reservations");

 var data = SheetReservations.getDataRange().getValues();

 /*
 * Identify sheet row by timestamp if it matches
 * then mark as cancelled.
 *
 */
 for(var i = 0; i < data.length; i++){
 if(data[i][3] == timestamp) data[i][4] = "Cancelled";
 }

 // Replace the updated data in sheet
 SheetReservations.getRange(1, 1, data.length,
 data[0].length).setValues(data);

 return "Your reservation cancelled.";
}

Chapter 4

[79]

The preceding function compares the ticket number (timestamp) with the existing
data and, if that ticket number is present, then it is marked as cancelled.

Insert the following code in the Form.html file:

<!DOCTYPE html>
<html>
 <head>
 <base target="_top">
 <link rel="stylesheet"
 href="https://ssl.gstatic.com/docs/script/
 css/add-ons1.css" />
 <script
 src="//ajax.googleapis.com/ajax/libs/
 jquery/1.10.2/jquery.min.js"></script>
 </head>

 <body>
 <form method="post" action="<?= pubUrl ?>" >

 <h4>Reservation Form</h4>
 <p>Available: <?= available ?></p>

 <input type="text" name="name"
 placeholder="Enter your name"/>

 <input type="text" name="phone_number"
 placeholder="Enter phone number"/>

 <input type="text" name="email"
 placeholder="Enter email id"/>

 <input class="blue" id="btnSubmit"
 type="submit" value="Reserve"/>

 </form>
 </body>
</html>

Creating Interactive Forms

[80]

A sample e-mail's body text is shown in the following screenshot:

A sample output of the Reservations sheet is shown here:

Summary
In this chapter, you learned how to create many useful real-life applications
including a reservation system application. The next chapter will be focused on
Google Calendar. You will learn how to create Calendar events and how to enable
Google's advanced services. You will also learn to create Drive file routing and
search applications.

Chapter 5

[81]

Creating Google Calendar
and Drive Applications

In the previous chapter, you learned how to create Forms programmatically using
FormApp, ContentService, and HtmlService. Also, you learned how to use the
doGet and doPost functions.

In this chapter, you will learn to:

•	 Create Calendar events
•	 Enable Google's advanced services
•	 Create a few Drive applications

The CalendarApp class
The CalendarApp class provides direct access to Calendar's basic service. This service
allows you to read and update your default as well as subscribed Calendars. Using
GAS, you can create Calendar events, and invite your friends programmatically. You
can even grab event details and populate them in Sheets.

Creating Calendar events from a simple
description
You can create an event by just passing a description as an argument to the
createEventFromDescription method of the CalendarApp class:

function createCalendarEventFromDescription(){
 CalendarApp.getDefaultCalendar()

Creating Google Calendar and Drive Applications

[82]

 .createEventFromDescription('Team Meeting,
 Monday from 3 PM to 4 PM');
}

Creating simple Calendar events
You can also create events by specifying the title, start time, and end time:

function createCalendarEvents() {
 var title = "Title of the event";
 var startTime = new Date("October 21, 2015 21:00:00");
 var endTime = new Date("October 21, 2015 21:30:00");

 CalendarApp.getDefaultCalendar()
 .createEvent(title, startTime, endTime);
}

Creating events with options
The following code shows how to create an event with the specified options, such as
the description and location. Uncomment the sendInvites line only if you insert the
guest's e-mail ID(s). Use a comma to separate them if there is more than one e-mail ID:

function createCalendarEventsWithOptions() {
 var options = {
 description : 'Description of the event',
 location : 'Event Location',
 //sendInvites : true,
 //guests : 'Comma-separated list of guest email IDs.'
 };

 var title = "Title of the event";
 var startTime = new Date("October 21, 2015 21:00:00");
 var endTime = new Date("October 21, 2015 21:30:00");

 CalendarApp.getDefaultCalendar()
 .createEvent(title, startTime, endTime, options);
}

Chapter 5

[83]

Creating events from Sheets data
To create events from prepopulated Sheets data, create a Sheet named Events and
create column headers as shown here:

Create the function createCalendarEventsFromSheetData as shown here:

function createCalendarEventsFromSheetData() {
 /*
 * 'Events' sheet column numbers,
 * use 0 for column 'A',
 * 1 for column 'B' and so on.
 * This makes life easy to use in '0' indexed JS arrays.
 *
 */
 const TITLE = 0;
 const START_TIME = 1;
 const END_TIME = 2;
 const DESCRIPTION = 3;
 const LOCATION = 4;
 const SEND_INVITES = 5;
 const GUESTS = 6;

 var sheet = SpreadsheetApp.getActiveSpreadsheet()
 .getSheetByName("Events");

 var data = sheet.getDataRange().getValues();

 // Remove header
 var header = data.shift();

 var options = {
 description : '',
 location : '',

www.allitebooks.com

http://www.allitebooks.org

Creating Google Calendar and Drive Applications

[84]

 sendInvites : false,
 guests : ''
 };

 for(var i in data){
 /*
 * 'data' is a 2-dim array.
 * First index for row numbers and
 * second index for column numbers.
 *
 */
 options.description = data[i][DESCRIPTION];
 options.location = data[i][LOCATION];
 options.sendInvites = data[i][SEND_INVITES];
 options.guests = data[i][GUESTS];

 var title = data[i][TITLE];
 var startTime = data[i][START_TIME];
 var endTime = data[i][END_TIME];

 CalendarApp.getDefaultCalendar()
 .createEvent(title, startTime, endTime, options);
 }
}

Creating events from an external CSV file's
contents
Instead of creating events from Sheet data, you can create them from an external
CSV file uploaded to the Drive. Upload a CSV file with the same headers as in the
previous task.

Get the key/ID of the uploaded file and replace it with the following code:

function createEventsFromCsvData(){
 // CSV columns, 0 based.
 const TITLE = 0;
 const START_TIME = 1;
 const END_TIME = 2;
 const DESCRIPTION = 3;
 const LOCATION = 4;
 const SEND_INVITES = 5;
 const GUESTS = 6;

Chapter 5

[85]

 // Put the key/ID of the CSV file placed in Drive.
 var blob = DriveApp.getFileById("[[CSV file id]]").getBlob();
 var str = blob.getDataAsString();

 var data = Utilities.parseCsv(str);
 // Now the data is a two-dimensional array

 // Remove header
 data.shift();

 var options = {
 description : '',
 location : '',
 sendInvites : false,
 guests : ''
 };

 for(var i in data){

 // Skip if no title
 if(!data[i][0]) continue;

 // Populate the options object
 options.description = data[i][DESCRIPTION];
 options.location = data[i][LOCATION];
 options.sendInvites = data[i][SEND_INVITES];
 options.guests = data[i][GUESTS];

 var title = data[i][TITLE];
 var startTime = data[i][START_TIME];
 var endTime = data[i][END_TIME];

 CalendarApp.getDefaultCalendar()
 .createEvent(title, startTime, endTime, options);

 }
}

Creating Google Calendar and Drive Applications

[86]

Enabling advanced Google services
Until now, you have been using GAS's basic services, such as GmailApp and
ContactsApp. Now it is time to learn how to enable advanced services.

In this task, we are going to use a Calendar service, which is an advanced service, so
we have to enable it before using it.

In the script editor, click on Resources, and then on Advanced Google services…,
and a pop-up window will open:

In the Advanced Google Services pop-up window, all the GAS advanced services
will be listed. Look for the Calendar API service, select the latest version (it is
selected by default), and then enable it if is not already enabled. In the following
screenshot, you can see that the Calendar API service is enabled:

Chapter 5

[87]

Enabling advanced services only in scripts is not enough, you also need to enable
it in the Google Developers Console, as indicated in the pop-up window. To do so,
click on the link provided in the pop-window.

Then a new browser window or tab will open with popular APIs listed as groups.
You can see Calendar API under the Google Apps APIs group. If not listed, search
the word calendar using the search option provided at the top of the page.

Click on Calendar API (highlighted in yellow in the preceding screenshot), then on
the follow-up web page, click on Enable API:

That's all; you have enabled Calendar advanced services.

Creating Google Calendar and Drive Applications

[88]

Listing all the Calendars
After enabling Calendar advanced services, you can use the listCalendars function
to log all of your Calendars:

/**
 * Logs all of your calendars with IDs.
 *
 */
function listCalendars() {
 var calendars, pageToken = null;

 do {
 calendars = Calendar.CalendarList.list({
 maxResults: 100,
 pageToken: pageToken
 });

 if (calendars.items && calendars.items.length > 0) {
 for (var i = 0; i < calendars.items.length; i++) {
 var calendar = calendars.items[i];
 Logger.log('%s (ID: %s)', calendar.summary, calendar.id);
 }
 } else {
 Logger.log('No calendars found.');
 };

 // If more than one page, then return a token, else null.
 pageToken = calendars.nextPageToken;

 } while (pageToken);
}

The Calendar.CalendarList.list object returns a list of all the Calendars,
provided that the number of Calendars is less than the value of maxResults. If the
number of Calendars is greater than this value, then the nextPageToken value is
used as a page token for the next iteration. A sample output of the log is shown here:

Chapter 5

[89]

Listing Calendar events in Sheets
To list events from any one Calendar into Sheets, create a new Sheet named
ExistingEvents and add the following function:

function listEventsFromOneCalendar() {
 var sheet = SpreadsheetApp.getActiveSpreadsheet()
 .getSheetByName("ExistingEvents");

 var source = "Replace with source calendar email id";
 var srcCalId = Calendar.Calendars.get(source).id;

 var syncdays = 30;
 var now = new Date();
 var min = new Date(now.getFullYear(), now.getMonth(),
 now.getDate());
 var max = new Date(now.getFullYear(), now.getMonth(),
 now.getDate() + syncdays);

 var srcEvents = Calendar.Events.list(srcCalId, {
 timeMin: min.toISOString(),
 timeMax: max.toISOString(),

Creating Google Calendar and Drive Applications

[90]

 singleEvents: true,
 orderBy: 'startTime',
 }).items;

 /*
 * To store events data in a spreadsheet we need
 * to construct a 2-dim array
 *
 */
 var output = [];

 /*
 * 'srcEvents' is an array of event objects.
 *
 * Every event object is passed as 'e' to the anonymous
 * function.
 *
 */
 srcEvents.forEach(function(e){
 // Construct an event array (1-dim)
 var event = [];

 /*
 * Returns "" if object value is 'null' or 'undefined'
 * otherwise returns the object value.
 *
 */
 event.push(e.summary || "");
 event.push(e.start.dateTime || "");
 event.push(e.end.dateTime || "");
 event.push(e.description || "");
 event.push(e.location || "");

 // Push each event array to output (2-dim array).
 output.push(event);
 });

 var header = [
 "Title/Subject",
 "Start Time",
 "End Time",
 "Description",
 "Location"

Chapter 5

[91]

];

 // Insert header at the top of the output.
 output.unshift(header);

 sheet.clearContents();

 sheet.getRange(1, 1, output.length, header.length)
 .setValues(output);
};

The function we just mentioned collects all the events from the Calendar, constructs
a 2-dimensional array, and stores that array in the ExistingEvents sheet. A sample
output of the preceding code is shown here:

Syncing events from one Calendar to another
Calendar
The syncEvents function (listed in the following code) syncs the last 30 days events
from the source Calendar to the destination Calendar. To test this application, create
the main function syncEvents and other helper functions such as updateEvent_,
deleteEvent_, and insertEvent_. We are marking those events synced from the
source to the destination by prefixing sync: and enclosing an event title/summary
in square brackets. For example, if the source event is Example event, then it will be
marked as [sync:Example event] and inserted/updated in the destination Calendar:

/**
 * Replace Source and Destination with your own Calendars name.
 *
 * You should have write access in the destination Calendar,
 * in other words it should have been created by you.
 *
 */

Creating Google Calendar and Drive Applications

[92]

function syncEvents() {
 const RATE_LIMIT = 10; // Milliseconds

 var source = "[[Source]]"; // Source calendar email id.
 var destination = "Destination"; // Destination calendar name.

 var srcCalId = Calendar.Calendars.get(source).id;

 // Returns calendars (matching with the name) as an array
 var dstCal = CalendarApp
 .getCalendarsByName(destination)[0];

 var dstCalId = dstCal.getId();

 var syncdays = 30;
 var now = new Date();

 var min = new Date(now.getFullYear(), now.getMonth(),
 now.getDate());
 var max = new Date(now.getFullYear(), now.getMonth(),
 now.getDate() + syncdays);

 // Get all source events as an array of objects.
 var srcEvents = Calendar.Events.list(srcCalId, {
 timeMin: min.toISOString(),
 timeMax: max.toISOString(),
 singleEvents: true,
 orderBy: 'startTime',
 }).items;

 // Get all destination events as an array of objects.
 var allDstEvents = Calendar.Events.list(dstCalId, {
 timeMin: min.toISOString(),
 timeMax: max.toISOString(),
 singleEvents: true,
 orderBy: 'startTime',
 }).items;

 /*
 * Get all destination events already synced from source
 * identified with the help of prefix '[sync:'
 *
 */
 var dstEvents = allDstEvents.filter(function(event){
 return /\[sync:\w+/.test(event.summary)?true:false;

Chapter 5

[93]

 });

 // UPDATE all dstEvents with the corresponding srcEvents.
 for(var d in dstEvents){
 for(var s in srcEvents){

 if(dstEvents[d] && srcEvents[s] && dstEvents[d].id ==
 srcEvents[s].id){
 /*
 * Update srcEvents with 'sync:' marking in the
 * destination calendar.
 *
 */
 srcEvents[s].summary = srcEvents[s].summary||'' + "
 [sync:"+source+"]";

 updateEvent_(srcEvents[s],dstCalId);

 // Delete updated dstEvents and srcEvents.
 srcEvents.splice(s,1);
 dstEvents.splice(d,1);
 Utilities.sleep(RATE_LIMIT);
 }

 }
 };

 /*
 * DELETE remaining dstEvents (those that do not exist in
 * srcEvents).
 *
 */
 for(var d in dstEvents){
 deleteEvent_(dstEvents[d],dstCalId);
 Utilities.sleep(RATE_LIMIT);
 };

 // INSERT remaining srcEvents (those do not exist in dstEvents).
 for(var s in srcEvents){
 srcEvents[s].summary = srcEvents[s].summary||''
+ " [sync:"+source+"]";
 insertEvent_(srcEvents[s],dstCalId);
 Utilities.sleep(RATE_LIMIT);
 }
};

Creating Google Calendar and Drive Applications

[94]

The previously mentioned syncEvents function collects events from the Source and
Destination events and processes them as follows:

•	 It updates all the events that appear in both the source and destination
(common to both arrays)

•	 It deletes all the events that are not present in the source but are present in
the destination (that is, they are present in the destination only)

•	 It inserts all the events that appear in the source but not in the destination
(that is, they are present in the source only)

The helper functions are listed here:

function updateEvent_(evt,calId){
 Calendar.Events.update(evt, calId, evt.id);
};

function deleteEvent_(evt,calId){
 Calendar.Events.remove(calId, evt.id);
};

function insertEvent_(evt,calId){
 try{
 Calendar.Events.insert(evt, calId);
 } catch(e) {
 var err = e.message;
 var newEvt = {
 summary:evt.summary,
 start:evt.start,
 end:evt.end,
 attachments:evt.attachments,
 attendees:evt.attendees,
 reminders:evt.reminders
 };

 if(err.search(/identifier already exists/gi) >= 0){
 updateEvent_(evt,calId);
 } else if(err.search(/Not Found/gi) >= 0){
 insertEvent_(newEvt,calId);
 } else if(err.search(/Invalid resource/gi) >= 0){
 insertEvent_(newEvt,calId);
 } else {

Chapter 5

[95]

 Logger.log("%s [%s]\n",evt,err);
 };
 }
};

Congratulations! You have created a working Calendar sync application.

The DriveApp class
This class allows you to create, search, and modify files and folders in your Drive.

For reference documentation on the DriveApp class, refer to the website:
https://developers.google.com/apps-script/reference/drive/drive-
app?hl=en.

Creating customized PDF files
Imagine that you need to create customized PDF files from the Sheet or external
data. We can create PDF files from the HTML template. You simply need to format
column headers and put some sample data in a new Sheet (AddressBook) as shown
in the following screenshot:

Create the createPdfs function in the Code.gs file as listed here:

function createPdfs(){

 // 0 based column numbers
 const NAME = 0;
 const TITLE = 1;
 const COMPANY = 2;
 const ADDRESS = 3;

https://developers.google.com/apps-script/reference/drive/drive-app?hl=en
https://developers.google.com/apps-script/reference/drive/drive-app?hl=en

Creating Google Calendar and Drive Applications

[96]

 const CITY = 4;
 const ZIP_PIN = 5;

 /* Get data from the sheet */
 var sheet = SpreadsheetApp.getActiveSheet();
 var data = sheet.getDataRange().getValues();
 /*
 * Alternatively you can get data
 * from an external CSV file or anything else.
 *
 * Example:
 * var blob = DriveApp.getFileById(id).getBlob();
 * var text = blob.getDataAsString();
 * var data = JSON.parse(text);
 *
 */

 // Remove headers
 data.shift();

 var folderName = "Letters";
 var folder, folders = DriveApp.getFoldersByName(folderName);

 // 'folders' is an iterator
 if (folders.hasNext()){
 // Get first folder if more than 1 with same name.
 folder = folders.next();
 } else {
 // Create folder if it does not exist.
 folder = DriveApp.createFolder(folderName);
 }

 for(var i in data){
 /*
 * Set as global variables so that we will be able to access
 * in the Template.html code.
 *
 */
 name = data[i][NAME];
 title = data[i][TITLE];
 company = data[i][COMPANY];
 address = data[i][ADDRESS];

Chapter 5

[97]

 city = data[i][CITY];
 zip_pin = data[i][ZIP_PIN];

 var html =
 HtmlService.createTemplateFromFile
 ("Template.html").evaluate();

 // Convert HTML to PDF
 var pdf = html.getAs("application/pdf")
.setName(name + ".pdf");

 // Save in the 'My Drive | Letter' folder.
 folder.createFile(pdf);
 }

}

The createPdfs function gets data from a Sheet, or you can modify it to get data
from an external source. It creates an HTML template for each row of data, converts
it to a PDF, and stores it in a Drive folder. Let's assign the name, title, company,
address, city, and zip_pin variables as global variables. Only then can we get
those values in an HTML template.

Create an HTML file called Template.html and enter the code listed here:

<!DOCTYPE html>
<html>
 <body>
 <p>To</p>
 <p>
 <?= name ?>

 <?= title ?>

 <?= company ?>

 <?= address ?>

 <?= city ?>

 <?= zip_pin ?>

 </p>
 <p> </p>
 <p>Dear <?= name ?>,</p>
 <p>Your message goes here...</p>

 <p>Regards,
[Your name]</p>
 </body>
</html>

Creating Google Calendar and Drive Applications

[98]

This code gets the global variable values as we described and returns customized
HTML. Update your message and name in the appropriate places. From this HTML
template, the createPdfs function creates PDF files, each of which is customized
with individual row data from the Sheet. All the PDF files created are saved in Drive
(My Drive | Letter) folder.

The content of one of the PDF files (Aaron.pdf) created as per the Sheet data (row 2)
is shown in the following screenshot:

For a sample, we used this template for a simple letter, but you can use any type
of template, such as an invoice, resume, job application, and more, as per your
requirements and imagination.

Creating a Drive file routing application
This application can move files by matching the name with the criteria terms in the
Settings tab. First of all, create a new Sheet or tab named Settings and column
headings as shown here:

Chapter 5

[99]

Also, create the moveDriveFiles function as shown in the following code snippet.
If you run this function, then it moves files from the root folder to the appropriate
folder as per the settings in the Settings Sheet. The destination folder is created
if it does not already exist. You can also create a trigger to run this function at a
predefined time or periodically:

function moveDriveFiles(){
 var SheetSettings = SpreadsheetApp.getActiveSpreadsheet()
 .getSheetByName("Settings");

 // Open the root folder.
 var rootFolderName = "Replace with root folder name.";
 var rootFolder, destFolder, folders = DriveApp
 .getFoldersByName(rootFolderName);

 // 'folders' is an iterator
 if (folders.hasNext()) rootFolder = folders.next();
 else {
 // Show warning "Folder does not exist."
 Browser.msgBox(
 "The root folder " + rootFolderName + " not exist."
);

 return;
 }

 var data = SheetSettings.getDataRange().getValues();
 data.shift();// Remove header row

 for(var i in data){
 var fileName = data[i][0];
 var folderName = data[i][1];

 // Open or create the destination folder
 folders = rootFolder.getFoldersByName(folderName);

 if (folders.hasNext()) destFolder = folders.next();
 else destFolder = rootFolder.createFolder(folderName);

 /*
 * Move matching files to the destination folder
 * The filename should be enclosed in quotes.
 *
 */
 var dest, file, files = rootFolder
 .searchFiles('title contains "' + fileName + '"');
 /*

Creating Google Calendar and Drive Applications

[100]

 * In the above line, the searchFiles method's argument should
 * be a string (SQL-like query), so take care to escape special
 * characters.
 * Here is an alternative way to write the method:
 * searchFiles("title contains \"" + fileName + "\"")
 *
 */

 /*
 * We cannot move files directly,
 * so copy file to the destination and remove in source.
 *
 */
 while (files.hasNext()){
 dest = destFolder;
 file = files.next();

 file.makeCopy(file, dest);
 rootFolder.removeFile(file);
 }
 }
}

Creating a Drive file search application
Now you are going to create a file search application. It can search files in Drive
with certain criteria in a text field. Create the functions onOpen, showSidebar,
and listDriveFiles in the Code.gs file as listed here:

function onOpen(){
 SpreadsheetApp.getUi().createAddonMenu()
 .addItem("File Search", "showSidebar")
 .addToUi();
 showSidebar();
}

/**
 * Opens sidebar containing the user interface.
 *
 */
function showSidebar() {
 SpreadsheetApp.getUi().showSidebar(
 HtmlService.createHtmlOutputFromFile('Sidebar')
 .setTitle('Search Files in Drive')
);
}

Chapter 5

[101]

The onOpen function creates an add-ons menu and calls the showSidebar function.
This means whenever the spreadsheet is opened, the add-ons menu is added and
the sidebar is displayed:

/**
 * Lists files matching with arg 'txt', in the Settings sheet.
 *
 */
function listDriveFiles(txt){
 // 'Files' sheet column heading.
 var header = ["File", "URL"];

 var output = [header];

 var file, files = DriveApp.searchFiles
 ('title contains "' + txt + '"');

 // 'files' is an iterator.
 while (files.hasNext()){
 file = files.next();
 var name = file.getName();
 var link = file.getUrl();

 output.push([name,link]);
 };

 var sheet = SpreadsheetApp.getActiveSpreadsheet()
 .getSheetByName("Files");

 sheet.clearContents();

 /*
 * output.length for number of rows and
 * header.length for number of columns
 *
 */
 sheet.getRange(1, 1, output.length, header.length)
 .setValues(output);
}

Creating Google Calendar and Drive Applications

[102]

Create a new HTML file named Sidebar.html and put the following code in it:

<!DOCTYPE html>
<html>
 <head>
 <base target="_top">
 <link rel="stylesheet"
 href="https://ssl.gstatic.com/docs/script
 /css/add-ons1.css" />
 <script
 src="//ajax.googleapis.com/ajax/libs/jquery/
 1.9.1/jquery.min.js">
 </script>

 </head>

 <body>
 <input type="text" id="txt" />
 <button class="green" id="btn">Search</button>
 </body>

 <script>
 // On document load, assign click handler to the search
 // button.
 $(function() {
 $('#btn').click(listFiles);
 });

 function listFiles() {
 this.disabled = true;
 $('#error,#success').remove();
 google.script.run
 .withSuccessHandler(function(msg,elm){
 elm.disabled = false;
 })
 .withFailureHandler(function(err,elm){
 elm.disabled = false;
 showError(err,elm);
 })
 .withUserObject(this)

Chapter 5

[103]

 .listDriveFiles($('#txt').val());
 }

 /**
 * Inserts a div that contains success message after a given
 * element.
 *
 * @param {string} msg - The message to display.
 * @param {object} element - The element after which to
 * display the message.
 *
 */
 function showSuccess(msg,element) {
 var div = $('<div id="success">'
 + msg + '</div>');
 $(element).after(div);
 }

 /**
 * Inserts a div that contains error message after a given
 * element.
 *
 * @param {string} msg - The error message to display.
 * @param {object} element - The element after which to
 * display the error.
 *
 */
 function showError(msg, element) {
 var div = $('<div id="error" class="error">'
 + msg + '</div>');
 $(element).after(div);
 }

 </script>
</html>

On opening the spreadsheet or running the showSidebar function, the sidebar
opens as shown in the following screenshot, except the text Chapter in the text field.
You can type any other text to search files. On clicking the Search button, the script
searches the Drive for those files whose name contains the text and populates data in
the Files Sheet.

Creating Google Calendar and Drive Applications

[104]

The following screenshot shows the sidebar and sample output:

Summary
In this chapter, you learned about, and created, many useful real-world applications,
including an event sync application. In the next chapter, you will learn how to create
RSS/Atom readers and language translator applications.

[105]

Creating Feed Reader and
Translator Applications

In the previous chapter, you learned to create Calendar events and Drive
applications. You built many real-world applications.

In this chapter, you will learn to

•	 Create a Google search
•	 Create a stock quote ticker
•	 Create an RSS feed reader
•	 Create an Atom feed reader
•	 Create a language translator application
•	 Creating a document reviewing and instant inline commenting application

The UrlFetchApp class
The UrlFetchApp class can be used to issue HTTP/HTTPS request and get responses
to/from any websites/URL. For example, the UrlFetchApp.fetch ("https://
ajax.googleapis.com/ajax/services/search/web?v=1.0&q=PACKT") code
returns the search result with the search term PACKT. The response will be a raw
content along with HTTP headers.

If the communication between the UrlFetchApp class's fetch method and the
URL is okay then the URL should return a response code 200. Otherwise, any other
number corresponds to the type of error. We can check the response code before
proceeding further using the getResponseCode method.

Creating Feed Reader and Translator Applications

[106]

You can get the content text using the getContentText method and parsing it to
JSON objects. The following code snippet pulls the content text and parses to JSON:

var url = "https://ajax.googleapis.com/ajax/services/search
/web?v=1.0&q=PACKT";
try{
 var resp = UrlFetchApp.fetch(url);
 if(resp.getResponseCode() == 200){
 var text = resp.getContentText();
 var json = JSON.parse(text);
 Logger.log(json);
 }
 } catch(e){
 Logger.log(e);
 };

For your understanding the logged output is furnished here (text might be truncated
and formatted for brevity):

{
 responseDetails=null,
 responseData={
 cursor={
 moreResultsUrl=http://www.google.com/search?oe=utf8&ie=utf8
 &source=uds&start=0&hl=en&q=PACKT,
 resultCount=800,000,
 pages=[{start=0, label=1}, {start=4, label=2}, {start=8,
 label=3}, {start=12, label=4}, {start=16, label=5},
 {start=20, label=6}, {start=24, label=7}, {start=28,
 label=8}],
 searchResultTime=0.29,
 currentPageIndex=0,
 estimatedResultCount=800000
 },
 results=[
 {
 visibleUrl=www.packtpub.com,
 cacheUrl=http://www.google.com/search?q=cache:rbL6l6pFt8…,
 GsearchResultClass=GwebSearch,
 title=Packt Publishing | Technology Books, eBook…,
 titleNoFormatting=Packt Publishing | Technology Books…,
 url=https://www.packtpub.com/,
 content=Packt Publishing is the leading UK provid…,
 unescapedUrl=https://www.packtpub.com/

Chapter 6

[107]

 }, {
 visibleUrl=www.packtpub.com,
 cacheUrl=http://www.google.com/search?q=cache:wo2TeIpsCG…,
 GsearchResultClass=GwebSearch,
 title=Free Learning | PACKT Books - Packt …,
 titleNoFormatting=Free Learning | PACKT Books - Packt Pu…,
 url=https://www.packtpub.com/packt/offers/free-learning,
 content=A new free programming tutorial book every day...,
 }, {
 visibleUrl=www.packtpub.com,
 cacheUrl=http://www.google.com/search?q=cache:D7qMTpx1Nu…,
 GsearchResultClass=GwebSearch,
 title=All Books and eBooks | PACKT Books - Pac…,
 titleNoFormatting=All Books and eBooks | PACKT Books – P…,
 url=https://www.packtpub.com/all,
 content=Packt Publishing provides technology eBooks, boo…,
 unescapedUrl=https://www.packtpub.com/all
 }
]
 },
 responseStatus=200
 }

The top-level objects of the JSON are responseDetails, responseData,
and responseStatus. If Google has returned the correct response, then the
responseStatus value should be 200. This is returned by the Google search service
not the UrlFetchApp status. You can also check whether the responseStatus
value equals to 200 or not, to confirm if the response content is okay.

You need to dig into the responseData object, which contains the result as an array
of object. To get the array, use json.responseData.results and then cycle through
the array to get the required result data. We will create an application to search
Google and to populate the result in Sheet.

Creating Feed Reader and Translator Applications

[108]

Creating a Google search application
Create a new Sheet, rename it as Google and create headers as shown in the
following screenshot:

Then, enter the following code in the Code.gs file:

function searchGoogle(){

 var ss = SpreadsheetApp.getActiveSpreadsheet();
 var SheetGoogle = ss.getSheetByName("Google");
 var kwd = SheetGoogle.getRange("B2").getValue();

 // Encode URI components if any in kwd
 kwd = encodeURIComponent(kwd);

 // Replace space with '+'
 kwd = kwd.replace(/%20/gi, "+");

 // Remove '?' marks
 kwd = kwd.replace(/%3F/gi, "");

 var url =
 "https://ajax.googleapis.com/ajax/services/
 search/web?v=3.0&q=" + kwd;

 try{
 var resp = UrlFetchApp.fetch(url).getContentText();
 var json = JSON.parse(resp);
 var result = json.responseData.results;
 } catch(e){
 Logger.log(e);
 };

Chapter 6

[109]

 // We require a 2-dimensional array to store data in sheet
 var output = [];
 var visibleUrl,title,url,content;

 for(var i=0; i<result.length; i++){
 visibleUrl = result[i].visibleUrl;
 title = result[i].title;
 url = result[i].url;
 content = result[i].content;

 output.push([visibleUrl,title,url,content]);
 };

 /*
 * output.length for number of rows and output[0].length for
 * number of columns
 *
 */
 SheetGoogle.getRange(5, 1, output.length, output[0].length)
 .setValues(output);
}

A sample output of the application is shown in the following screenshot:

You can test the code using other keywords in cell B2. You can create a button or
custom menu for the searchGoogle function, so that you can search frequently.

Creating Feed Reader and Translator Applications

[110]

Creating a stock quote ticker application
A simple function to get stock quotes from Google Finance is shown in the following
screenshot. The query string (q) specifies NASDAQ as the stock exchange and GOOG
(Google) as the scrip name.

function getStockQuote1(){
 var url =
 "http://finance.google.com/finance/info?q=NASDAQ:GOOG";

 var resp = UrlFetchApp.fetch(url).getContentText();
 Logger.log(resp);
}

In the preceding code, we are using the UrlFetchApp class's fetch method. The
logged response is as follows:

 // [
{
"id": "304466804484872"
,"t" : "GOOG"
,"e" : "NASDAQ"
,"l" : "717.00"
,"l_fix" : "717.00"
,"l_cur" : "717.00"
,"s": "0"
,"ltt":"4:00PM EST"
,"lt" : "Nov 13, 4:00PM EST"
,"lt_dts" : "2015-11-13T16:00:01Z"
,"c" : "-14.23"
,"c_fix" : "-14.23"
,"cp" : "-1.95"
,"cp_fix" : "-1.95"
,"ccol" : "chr"
,"pcls_fix" : "731.23"
}
]

In the returned response text, you can see that the first four characters are a line
break, two slashes (//), and a space character, so you have to remove them before
parsing the required JSON object. Striping out the first four characters from the
returned string makes things easier. You can use the substr method to strip the first
four characters. The parse method of JavaScript JSON (JavaScript Object Notation)
object parses the string to the JSON object.

Chapter 6

[111]

The modified code to retrieve Last Traded Price (LTP) of Google scrip is:

function getStockQuote2(){
 var url =
 "http://finance.google.com/finance/info?q=NASDAQ:GOOG";

 var resp = UrlFetchApp.fetch(url).getContentText().substr(4);
 var json = JSON.parse(resp);
 Logger.log(json[0].l);
}

You can use multiple scrips (comma separated) in the query string. For example,
http://finance.google.com/finance/info?q=NASDAQ:GOOG,AMD,MCHP. Then,
the response would be an array of stock quote objects. You will have to cycle
through the array to get each scrip data.

We will create a complete working stock quote application. Create or add a new
Sheet and rename it as Quotes, populate the SYMBOL column, and format it as
shown here:

Edit the getStockQuotes function in the Code.gs file as listed here:

function getStockQuotes(){
 var SheetQuotes = SpreadsheetApp.getActiveSpreadsheet()
 .getSheetByName("Quotes");

 var data = SheetQuotes.getDataRange().getValues();

 // Remove the header from data.
 var header = data.shift();

 // Extracts all symbols from sheet data.
 var aScrips = [];
 for(var i in data) aScrips.push(data[i][0]);

 // Join all scrip names with comma.
 var sScrips = aScrips.join(",");

Creating Feed Reader and Translator Applications

[112]

 // Fetch data with scrip names as query.
 var url =
 "http://finance.google.com/finance/info?q=NASDAQ:"+sScrips;

 // Send the request to the url
 try{
 var resp = UrlFetchApp.fetch(url).getContentText().substr(4);
 var json = JSON.parse(resp);
 } catch (e) {
 Logger.log(e.message);
 return;
 }

 // We require a 2-dimensional array to store data in sheet.
 var output = [];

 // Traverse through all JSON objects.
 for(var i in json){
 var q = json[i];

 // Symbol, price and traded time.
 output.push([q.t,q.l,q.ltt]);
 };

 // Restore the header again.
 output.unshift(header);

 // Save the output in sheet.
 SheetQuotes.getDataRange().setValues(output);
}

The following is a sample output of the application:

For a repeated quote tick, you can create a minutes trigger for the getStockQuotes
function.

Chapter 6

[113]

Logging Bitcoin quotes
Have you ever heard about Bitcoin, digital, or virtual currency, and ever watched
Bitcoin price ticks to buy/sell Bitcoins? Bitcoin is a digital asset and trending a new
payment system spreading all over the world. Here is an interesting application
to log real-time Bitcoin prices. In this application, we will log prices from the
Bitstamp trading platform. https://www.bitstamp.net provides API to get
Bitcoin real-time price ticks.

function getBitCoinPrice(){
 // BitStamp api url
 var url = "https://www.bitstamp.net/api/ticker/";

 var resp = UrlFetchApp.fetch(url);

 if(resp.getResponseCode() == 200){
 var json = JSON.parse(resp);
 Logger.log(json);
 }
}

The response from the Bitstamp API which is parsed as JSON is provided here:

{volume=6209.19457553, high=422.00, last=420.39, low=414.00,
vwap=419.15, ask=421.48, bid=420.23, open=421.15,
timestamp=1455894447}

The complete code to parse the said JSON objects to Sheet is provided here:

/**
 * Log bitcoin price ticks in sheet
 *
 */
function getBitCoinData(){
 var ss = SpreadsheetApp.getActiveSpreadsheet();
 var SheetBitCoin = ss.getSheetByName("Bitcoin");

 // Header labels at the top row of the sheet.
 var header = [
 "Timestamp",
 "High",
 "Low",
 "Volume",
 "Bid",
 "Ask"
];

https://www.bitstamp.net

Creating Feed Reader and Translator Applications

[114]

 // Insert headers at the top row of the Bitcoin sheet.
 SheetBitCoin.getRange(1,1,1,6).setValues([header]);
 // setValues accept 2-dim array

 // BitStamp api url
 var url = "https://www.bitstamp.net/api/ticker/";

 try{
 var resp = UrlFetchApp.fetch(url);

 // Proceed if no errors returned.
 if(resp.getResponseCode() == 200){

 var json = JSON.parse(resp);

 var output = [];

 /*
 * Bitstamp returns timestamp in seconds
 * (elapsed since epoch), but JavaScript Date accepts in
 * milliseconds, so multiply by 1000.
 *
 */
 output.push(new Date(json.timestamp *= 1000));

 // last 24 hours high.
 output.push(json.high);

 // last 24 hours low.
 output.push(json.low);

 // last 24 hours volume.
 output.push(json.volume);

 // highest buy order.
 output.push(json.bid);

 // lowest sell order.
 output.push(json.ask);

 // Append output to Bitcoin sheet.
 SheetBitCoin.appendRow(output);
 }

Chapter 6

[115]

 } catch(e){
 // Log errors to examine and debug it later.
 Logger.log(e);

 throw e;
 }
};

A sample logged Bitcoin data is given here. The High, Low, and Volume values are
the highest price, lowest price, and total volume in the last 24 hours. The Bid and
Ask values are real-time values. Create a trigger for the repeated execution of the
getBitCoinData function.

RSS and Atom feeds
RSS stands for Rich Site Summary. It is used to publish frequently updated
information. Users need standalone special software applications or browser
add-ons called RSS readers to read information from any feeds.

Feed documents contain summarized or full text, metadata, publishing date, author
name, and so on. Using feed, users can receive timely website updates or aggregate
data from many websites. User need not check manually for any updates from those
websites frequently, but subscribe for feeds. Feed reader checks the subscribed
website frequently for any new data and retrieves them.

Creating Feed Reader and Translator Applications

[116]

Skeleton of a RSS feed document
An example of a RSS feed document is listed here:

<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">
 <channel>
 <title>Title of the channel</title>
 <description>A brief description of the channel</description>
 <language>en-US</language>
 <item>
 <title>Item title</title>
 <link>Link to the item</link>
 <pubDate>Fri, 30 Oct 2015 19:41:00 +0000</pubDate>
 <creator><![CDATA[Author Name]]></creator>
 <category><![CDATA[NEWS]]></category>
 <description><![CDATA[encoded description…]]></description>
 </item>
 <item> … </item>
 <item> … </item>
 <item> … </item>
 </channel>
</rss>

The first line specifies the version, as this one is an XML document, to the processing
software application.

All other elements are enclosed within the rss root element.

The title, description, and language elements inside the channel element
specify the title, description, and in which language the channel is published,
respectively.

The item element is a repeated one, and it contains the individual feed item
information, such as title (title of the item), link (link to the item), comments
(comment about the item), pubDate (item published date), creator (creator of the
item), category (specifying to which category the item belongs), description
(a brief description about the item), and many more.

Chapter 6

[117]

Creating an RSS reader application
You have to parse the required content from the XML document returned by
UrlFetchApp using XmlService. The actual code is furnished here:

function readRssFeedContents(){
 var SheetData = SpreadsheetApp.getActiveSpreadsheet()
 .getSheets()[0];

 var title, posturl, author, row, output = [];

 // Prefix namespace.
 var dc =
 XmlService.getNamespace('http://purl.org/dc/elements/1.1/');

 // Fetch feed document.
 var xml = UrlFetchApp.fetch("http://siliconangle.com/feed/")
 .getContentText();

 // Parse the response text from the URL.
 var doc = XmlService.parse(xml);

 // Get child elements from the root element.
 var items = doc.getRootElement().getChild('channel')
 .getChildren('item');

 // Process the required data.
 for(var i=0; i<items.length; i++){
 title = items[i].getChild('title').getText();
 posturl = items[i].getChild('link').getText();
 author = items[i].getChild('creator', dc).getText();
 row = [title].concat(posturl, author);

 output.push(row);
 };

 // Write new data to sheet
 SheetData.getRange(2, 1, output.length, output[0].length)
 .setValues(output);
}

Creating Feed Reader and Translator Applications

[118]

In the preceding code, XmlService is used to parse any well-structured XML
content. In the mentioned sample source, we concentrated on channel elements
and one or more item elements. The item element itself contains more information.
To get the required data, you have to dig into the contents in the order of channel
| item | title | link | creator. The creator element is prefixed with dc, so we
have to assign the dc namespace URL at the top lines of the code.

A sample output of this application is shown here:

Skeleton of an Atom feed document
Atom feeds are similar to RSS feeds with many advanced features. The root element
is feed instead of channel. An example of an Atom feed document is shown here:

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
 <title>Atom Feed</title>
 <subtitle>Subtitle of the feed</subtitle>
 <link href="http://example.com/" />
 <updated>2015-11-13T06:30:02Z</updated>
 <entry>
 <title>Title of the item</title>
 <link href="http://example.com" />
 <updated>2015-11-13T06:30:22Z</updated>
 <summary>Summary text of the item</summary>
 <author>

Chapter 6

[119]

 <name>Author name</name>
 <email>example@example.com</email>
 </author>
 </entry>
 <entry>...</entry>
 <entry>...</entry>
 <entry>...</entry>
</feed>

Creating an Atom feed reader application
This application parses Google Hot Trends Atom Feed. The following is the code
to read Google Trends Atom Feed content:

function readAtomFeedContents(){
 // SheetData refers left most sheet.
 var SheetData = SpreadsheetApp.getActiveSpreadsheet()
 .getSheets()[0];

 // Set column titles.
 var title, description, output = [["Trends", "Related
 Searches"]];

 // Fetch data from the feed url.
 var xml = UrlFetchApp.fetch("http://www.google.com/trends/
 hottrends/atom/feed").getContentText();

 // Parse the result as xml content.
 var doc = XmlService.parse(xml);

 // Get item elements from the root element.
 var items = doc.getRootElement().getChild('channel')
 .getChildren('item');

 // Clear existing sheet data and sets new values.
 SheetData.clearContents();

 // Store new data.
 SheetData.getRange(1, 1, 1,output[0].length).setValues(output);

 /*
 * Dig into 'item' element and parse all the required data.
 * Get other related search terms.
 *

Creating Feed Reader and Translator Applications

[120]

 */
 for(var i=0; i<items.length; i++){
 title = items[i].getChild('title').getText();
 description = items[i].getChild('description').getText();
 output = [title].concat(description.split(','));

 // Sets output data in sheet.
 SheetData.getRange(i+2, 1, 1, output.length)
 .setValues([output]);
 }
};

A sample output of the application is shown here:

Chapter 6

[121]

Using optional parameters with the
UrlFetchApp class
All foresaid applications fetch results from public URLs; this means that they do not
require credentials. What if a website requires your credentials, such as username
and password, before sending a response? You can provide credentials and other
parameters as an optional parameter of the UrlFetchApp class, for example,
UrlFetchApp.fetch(url, params). The params parameter is similar to this:

var params = {
 method: "GET",
 headers: headers
}

The headers variable (the HTTP/HTTPS request headers) can be a JavaScript key/
value map. You can provide your login credentials as headers:

var headers = {
 // Basic authentication
 Authorization: "Basic "
 + Utilities.base64Encode("username:password");
}

Your username and password will be encoded but not encrypted, so prefer HTTPS
over HTTP.

Not all websites support basic authentication; they mostly
support OAuth. The UrlFetchApp class's built-in OAuth service
is deprecated and moved to the open source library called the
GAS library. More information on how to import the external
library and use the OAuth2 open source library is provided in
Chapter 9, More Tips and Tricks and Creating an Add-on.

The LanguageApp class
The LanguageApp class provides the translate method to translate any text from
one language to another language.

For example, to translate Google apps script for beginners to French use the
following code:

function translateToFrench(){
 var text = "Google apps script for beginners";
 var sourceLanguage = "en";

Creating Feed Reader and Translator Applications

[122]

 var targetLanguage = "fr";
 var french = LanguageApp
 .translate(text, sourceLanguage, targetLanguage);

 Logger.log(french);
}

The logged output would be: Google Apps Script pour les débutants.

Google Translate service supports many languages. For more
information on supported languages, visit:
https://cloud.google.com/translate/v2/using_
rest#language-params

Creating the language translator application
This application translates text from one language to another. We will use one
document as an origin/source document and the other one as a destination/target
document. We are going to develop this application as an add-on. Although there
is a built-in translate service available (in Docs application navigate to Tools |
Translate document…), we have provided the language translator application to
explore the capabilities of GAS.

Enter the following code in the source document's (Docs) Code.gs file:

/*
 * Replace with the id/key of the target document in which the
 * translated text to be saved.
 *
 */
var targetDocumentId = "Replace with target document id";

The preceding code sets the target document's ID to the targetDocumentId global
variable. The target document is the document to which you are going to transfer the
translated text. Replace the text within double quotes with the target document's ID
as a string:

/**
 * Creates a menu entry in the Google Docs UI when the document
 * is opened.
 *
 */
function onOpen(e) {

https://cloud.google.com/translate/v2/using_rest#language-params
https://cloud.google.com/translate/v2/using_rest#language-params

Chapter 6

[123]

 DocumentApp.getUi().createAddonMenu()
 .addItem('Start', 'showSidebar')
 .addToUi();
}

The preceding onOpen function creates an Add-ons menu with a menu item called
Start. It is associated with the showSidebar function:

/**
 * Opens a sidebar in the document containing the add-on's user
 * interface.
 *
 */
function showSidebar() {
 var ui = HtmlService.createTemplateFromFile('Sidebar')
 .evaluate()
 .setTitle('Translate');

 DocumentApp.getUi().showSidebar(ui);
}

The preceding showSidebar function creates the sidebar with the required control
elements.

/**
 * Gets the stored user preferences for the destination language,
 * if exist.
 *
 */
function getPreferences() {
 var userProperties = PropertiesService.getUserProperties();

 var languagePrefs = {
 destLang: userProperties.getProperty('destLang')
 };

 return languagePrefs;
};

Creating Feed Reader and Translator Applications

[124]

The getPreferences function gets and returns the user's language preferences. The
runTranslation function shown here translates the text from the source language to
the destination language. The languages are notated by their two-letter short form.
For example, English is en, German is de, and the default is auto, which means the
Google Translate service will detect the source language itself. If the savePrefs
argument is true, then the user language preference will be saved:

function runTranslation(dest, savePrefs) {
 if (savePrefs == true) {
 var userProperties = PropertiesService.getUserProperties();
 userProperties.setProperty('originLang', 'en');
 userProperties.setProperty('destLang', dest);
 }

 var srcFile = DocumentApp.getActiveDocument();
 var tgtFile = DocumentApp.openById(targetDocumentId);

 var srcBody = srcFile.getBody();
 var tgtBody = tgtFile.getBody();

 tgtBody.appendParagraph("");
 tgtBody.clear();

 var item = srcBody.getChild(0);

 while(item){
 var type = item.getType();

 if(type == "LIST_ITEM"){
 var attrib = item.getAttributes();
var srcText = item.getText();
var transText = LanguageApp.translate(srcText, "en", dest);
tgtBody.appendParagraph(transText).setAttributes(attrib);

 item = item.getNextSibling();
 };

 tgtBody.getChild(0).removeFromParent();
};

Chapter 6

[125]

The following include helper function puts external JS/CSS contents from other
files (filename given as argument) into the HTML file:

function include(filename) {
 return HtmlService.createHtmlOutputFromFile(filename)
 .getContent();
}

Create a new HTML file (Sidebar.html) from the File menu and enter the
following code:

<!DOCTYPE html>
<html>
 <head>
 <base target="_top">
 <script src="//polymerstaticfiles.appspot.com/bower_components
 /webcomponentsjs/webcomponents.js"></script>

 <link rel="import"
 href="//polymerstaticfiles.appspot.com/bower_components
 /polymer/polymer.html">

 <link rel="import"
 href="//polymerstaticfiles.appspot.com/
 bower_components/font-roboto/roboto.html">

 <link rel="import"
 href="//polymerstaticfiles.appspot.com/
 bower_components/paper-input/paper-input.html">

 <link rel="import"
 href="//polymerstaticfiles.appspot.com/
 bower_components/paper-button/paper-button.html">

 <link rel="import"
 href="//polymerstaticfiles.appspot.com/
 bower_components/paper-checkbox/paper-checkbox.html">

 <link rel="import"
 href="//polymerstaticfiles.appspot.com/
 bower_components/paper-radio-group/paper-radio-group.html">

 <link rel="import"
 href="//polymerstaticfiles.appspot.com/
 bower_components/paper-radio-button/paper-radio-button.html">

Creating Feed Reader and Translator Applications

[126]

 <link rel="import"
 href="//polymerstaticfiles.appspot.com/
 bower_components/paper-input/paper-input-decorator.html">

 <!-- Insert CSS code -->
 <?!= include('Sidebar.css.html'); ?>
 </head>

 <body>
 <div class="sidebar">
 <h4>Translate into</h4>
 <paper-radio-group id="dest">
 <paper-radio-button name="en" id="radio-dest-en"
 label="English"></paper-radio-button>

 <paper-radio-button name="fr" id="radio-dest-fr"
 label="French"></paper-radio-button>

 <paper-radio-button name="de" id="radio-dest-de"
 label="German"></paper-radio-button>

 <paper-radio-button name="ja" id="radio-dest-ja"
 label="Japanese"></paper-radio-button>

 <paper-radio-button name="es" id="radio-dest-es"
 label="Spanish"></paper-radio-button>
 </paper-radio-group>

 <hr />

 <paper-checkbox id="save-prefs" label="Use this
 language by default"></paper-checkbox>

 <div id="button-bar">
 <paper-button raised class="colored" id="run-
 translation">Translate</paper-button>
 </div>
 </div>

 <!-- Insert JS code -->
 <?!= include('Sidebar.js.html'); ?>
 </body>
</html>

Chapter 6

[127]

In the preceding code, Google's polymer components library is used. Although
we could have used simple HTML elements, we used polymer components for an
aesthetic look and feel of the sidebar. You need not worry about the functioning
of that library, you just need to include the URLs as shown. The include helper
function inserts the respective file, given as argument, contents.

Create another HTML file and name it as Sidebar.css, including .css. The script
editor will add .html extension, so the filename will be Sidebar.css.html. Enter
the following code in it:

<style>
 body {
 font-family: 'RobotoDraft', sans-serif;
 margin: 0;
 padding: 0;
 }

 h4 {
 text-align: center;
 margin: 0;
 }

 paper-button {
 margin: 0;
 margin-top: 10px;
 }

 .sidebar {
 -moz-box-sizing: border-box;
 box-sizing: border-box;
 overflow-y: auto;
 padding: 12px;
 position: absolute;
 width: 100%;
 }

 #dest {
 margin-top: 5px;
 }

 .error {
 color: #dd4b39;
 font-size: small;

Creating Feed Reader and Translator Applications

[128]

 margin-top: 8px;
 }

 .colored {
 background: #4285f4;
 color: #ffffff;
 }
</style>

The preceding CSS code defines styles for the HTML elements in the Sidebar.html
file. CSS defines element styles within associated braces.

For example:

•	 The body style name defines styles for the body element
•	 h4 defines styles for fourth-level heading elements
•	 The style name prefixed with a dot (.) defines styles for the elements, which

belong to that class
•	 The name prefixed with the hash symbol (#) defines styles for element whose

ID is same as the style name

For further reading on CSS, refer to https://developer.
mozilla.org/en-US/Learn/CSS.

Create another HTML file and name it Sidebar.js. Enter the following code in the
newly created Sidebar.js.html file:

<script
src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></
script>

<script>
 /**
 * On document load, assign click handlers to each button and
 * try to load the user's origin and destination language
 * preferences, if previously set.
 *
 */
 $(function() {
 $('#run-translation').click(runTranslation);

 google.script.run
 .withSuccessHandler(loadPreferences)

https://developer.mozilla.org/en-US/Learn/CSS
https://developer.mozilla.org/en-US/Learn/CSS

Chapter 6

[129]

 .withFailureHandler(showError).getPreferences();
 });

 /**
 * Callback function that populates the origin and destination
 * selection boxes with user preferences from the server.
 *
 */
 function loadPreferences(languagePrefs) {
 if (languagePrefs.destLang){
 $('#dest').prop('selected', languagePrefs.destLang);
 }
 }

 /**
 * Runs a server-side function to translate the text.
 *
 */
 function runTranslation() {
 this.disabled = true;
 $('#error').remove();

 var dest = $('#dest').prop('selected');
 var savePrefs = $('#save-prefs').prop('checked');

 google.script.run
 .withSuccessHandler(
 function(msg, element) {
 element.disabled = false;
 })
 .withFailureHandler(
 function(msg, element) {
 showError(msg, $('#button-bar'));
 element.disabled = false;
 })
 .withUserObject(this)
 .runTranslation(dest, savePrefs);
 }

Creating Feed Reader and Translator Applications

[130]

 /**
 * Inserts a div that contains an error message after a given
 * element.
 *
 */
 function showError(msg, element) {
 var div = $('<div id="error" class="error">' + msg +
 '</div>');

 $(element).after(div);
 }
</script>

After typing all the code without errors, reload the document. A new entry Translate
under the Add-ons menu will appear. Click on start to open the sidebar, which will
have all the controls you need to run the application. To test the application, enter
some text in the source document (in which you have entered code). Select language
into which you would like to translate the text, then click on the TRANSLATE button.

The translated text will be placed in the destination document whose ID you entered
in the code. Open that document to see the translated text.

The following screenshot shows the sidebar:

Chapter 6

[131]

The following screenshot shows the source document text in English before translation:

Now if you open the target document, then you can view the translated text saved
in it. The sample text shown in the preceding screenshot is translated to Japanese as
shown here:

Creating a document reviewing and
instant inline commenting application
We will create a document reviewing and commenting application. The document
can be an article submission, a comprehension submitted by a student, a thesis
paper submitted by a researcher, or anything else that should be reviewed before
acceptance. The reviewer can review and insert predefined comments or his/her
own custom comments, instantly. The reviewer selects some text in the document,
and clicks on any one button (predefined comments) to highlight. Then, the script
will highlight the text and insert the comment text inline along with creating an
actual comment. You can see the created comments in the Comment panel
(at the top right-hand side). Finally, the reviewer can insert score at the end
of the document.

Creating Feed Reader and Translator Applications

[132]

As usual, create the onOpen trigger function in the code file, and it will open
the sidebar:

function onOpen() {
 var ui = HtmlService.createHtmlOutputFromFile('Sidebar')
 .setTitle('Review and Comment');

 DocumentApp.getUi().showSidebar(ui);
}

The insertComment function inserts the actual comment into the document. Drive is
an advanced service, so you should enable the Drive API before using it. I hope you
remember how to enable advanced services. If you don't, then revise from Chapter 5,
Creating Google Calendar and Drive Applications:

function insertComment(comment, selectedText){
 // You should enable this advanced service (Drive API).
 Drive.Comments.insert(
 {
 "content": comment,
 "context": {"type":"text/html", "value":selectedText},
 },
 DocumentApp.getActiveDocument().getId()
);
}

The insertText function uses the selected text or the text where the cursor is
pointed to as an argument:

/**
 * Replaces the text of the current selection with the provided
 * text, or inserts text at the current cursor location.
 * (There will always be either a selection or a cursor.)
 * If multiple elements are selected, only inserts the text in the
 * first element that can contain text.
 *
 * @param {string} newText The text with which to replace the
 * current selection.
 *
 */
function insertText(newText) {
 var selection = DocumentApp.getActiveDocument().getSelection();

 // If any text selected then get selected text else cursor.
 if (selection) {

Chapter 6

[133]

 var elements = selection.getRangeElements();
 for (var i = 0; i < elements.length; i++) {
 var startIndex = elements[i].getStartOffset();
 var endIndex = elements[i].getEndOffsetInclusive();

 // If picture/image element selected.
 if(startIndex == endIndex) throw "Error: Select text only.";

 // Highlight the selected text.
 var element = elements[i].getElement()
 .setBackgroundColor(startIndex, endIndex, '#f6d2ab');

 // Insert selected comment next to the selected text.
 element.insertText(endIndex+1, '[' + newText +']')
 .setBackgroundColor(
 endIndex+1, endIndex+newText.length+2, '#bbffbb'
);

 var text = element.getText()
 .substring(
 startIndex,endIndex+1
);

 // Call insertComment function
 insertComment(newText,text);
 }

 } else {

 var curr = DocumentApp.getActiveDocument().getCursor();

 // Exit if document not active or cursor not in document.
 if(!curr) return;

 // Insert comment and call insertComment function.
 curr.insertText('[' + newText +']')
 .setBackgroundColor('#bbffbb');

 insertComment(newText);
 }
}

Creating Feed Reader and Translator Applications

[134]

This insertScore function inserts a horizontal line at the end of the document, and
it also inserts the score based on whether the document meets the expectation or not:

function insertScore(newText){
 var doc = DocumentApp.getActiveDocument();
 var body = doc.getBody();

 body.appendHorizontalRule();
 body.appendParagraph(newText)
 .setAttributes({FONT_SIZE:24,FOREGROUND_COLOR:'#6aa84f'});
}

Create the following code in the Sidebar.html file:

<!-- Sidebar.html -->
<!DOCTYPE html>
<html>
 <head>
 <base target="_top">

 <!-- Google's add-on stylesheet -->
 <link rel="stylesheet"
 href="https://ssl.gstatic.com/docs/script/css/add-ons1.css" />

 <!-- jQuery UI stylesheet -->
 <link rel="stylesheet"
 href="//ajax.googleapis.com/ajax/libs/jqueryui/
 1.10.4/themes/smoothness/jquery-ui.css" />

 <!-- jQuery base library -->
 <script
 src="//ajax.googleapis.com/ajax/libs/jquery/
 1.10.2/jquery.min.js"></script>

 <!-- jQuery UI library -->
 <script
 src="//ajax.googleapis.com/ajax/libs/
 jqueryui/1.10.2/jquery-ui.min.js"></script>

 <!-- Add additional styles -->
 <style>
 select{ height:35px; }

 textarea{
 width:100%;

Chapter 6

[135]

 margin-top: 3px;
 margin-bottom: 3px;
 }

 .blue{
 -moz-border-radius: 3px;
 -webkit-border-radius: 3px;
 border-radius: 3px;
 }

 .blue + .blue{
 margin: .5px -.5px;
 }

 .ui-accordion .ui-accordion-header {
 display: block;
 cursor: pointer;
 position: relative;
 margin-top: 1px;
 padding: .4em .25em .4em .25em;
 min-height: 0; /* support: IE7 */
 }

 .ui-accordion .ui-accordion-icons {
 padding-left: 2em;
 }

 .ui-accordion .ui-accordion-content {
 padding: .5em .5em;
 overflow: auto;
 }
 </style>
 </head>

The accordion block's structure is provided in the code comment:

 <body>
 <!-- To comply with the jQuery UI library,
 The accordion should be in the form:
 <div id="accordion">
 <h3>Section 1</h3>
 <div>
 ...
 </div>

Creating Feed Reader and Translator Applications

[136]

 <h3>Section 2</h3>
 <div>
 ...
 </div>
 </div>
 -->

 <div id="accordion">

 <h3>Comments</h3>
 <div>
 Highlight text and click the appropriate comment
 <div id="button-bar">
 <button class="blue comment-button"
 value = "Awkward">Awkward</button>

 <button class="blue comment-button"
 value = "Citation Needed">Citation Needed</button>

 <button class="blue comment-button"
 value="Improper Citation">Improper Citation</button>

 <button class="blue comment-button"
 value="Commonly Confused">Commonly Confused</button>

 <button class="blue comment-button"
 value="Delete">Delete</button>

 <button class="blue comment-button"
 value="Run-on">Run-on</button>

 <button class="blue comment-button"
 value="Vague">Vague</button>
 </div>

 <div>
 <textarea rows="3" id="insert-text"
 placeholder="Type your comment here"></textarea>
 </div>

 <div>
 <button class="blue" id="insert-button">Comment</button>
 </div>
 </div>

Chapter 6

[137]

 <h3>Scores</h3>
 <div>
 <div id="score-bar">
 Does the document meet the expectation?

 <button class="green insert-score" value="Meets"
 >Yes</button>

 <button class="green insert-score" value="Not Yet"
 >No</button>
 </div>
 </div>
 </div>

 <script>
 // On document load assign the events.
 $(function(){

 /**
 * Which accordion block should be active/expanded by
 * default, here the first one.
 *
 */
 $("#accordion").accordion({ active: 0 });

 // Assign a click event to buttons.
 $(".comment-button").click(insertButtonComment);
 $("#insert-button").click(insertCustomComment);
 $(".insert-score").click(insertScore);

 });

 /**
 * Runs a server-side function to insert pre-defined
 * comment into the document at the cursor
 * or after the selection.
 *
 */
 function insertButtonComment() {
 this.disabled = true;
 $('#error').remove();

Creating Feed Reader and Translator Applications

[138]

 google.script.run
 .withSuccessHandler(
 function(returnSuccess, element) {
 element.disabled = false;
 }
)
 .withFailureHandler(
 function(msg, element) {
 showError(msg, $('#button-bar'));
 element.disabled = false;
 }
)
 .withUserObject(this)
 .insertText($(this).val());
 }

 /**
 * Runs a server-side function to insert custom comment
 * into the document on pointing the cursor or
 * after the selection.
 *
 */
 function insertCustomComment() {
 this.disabled = true;
 $('#error').remove();

 google.script.run
 .withSuccessHandler(
 function(returnSuccess, element) {
 element.disabled = false;
 }
)
 .withFailureHandler(
 function(msg, element) {
 showError(msg, $('#button-bar'));
 element.disabled = false;
 }
)
 .withUserObject(this)
 .insertText($('#insert-text').val());
 }

Chapter 6

[139]

 /**
 * Runs a server-side function to insert the score
 *
 */
 function insertScore() {
 this.disabled = true;
 $('#error').remove();

 google.script.run
 .withSuccessHandler(
 function(returnSuccess, element) {
 element.disabled = false;
 }
)
 .withFailureHandler(
 function(msg, element) {
 showError(msg, $('#score-bar'));
 element.disabled = false;
 }
)
 .withUserObject(this)
 .insertScore($(this).val());
 }

 /**
 * Inserts a div that contains an error message after a
 * given element.
 *
 * @param msg-The error message to display.
 * @param element-The element after which to display the
 * error.
 *
 */
 function showError(msg, element) {
 var div = $('<div id="error" class="error">'
 + msg + '</div>');

 $(element).after(div);
 }
 </script>
 </body>
</html>

Creating Feed Reader and Translator Applications

[140]

The following screenshot shows the sidebar and document:

You can see the inserted comments by clicking on the Comment button at the top
right-hand side corner of the document's window.

Summary
In this chapter, you learned and created many useful applications, including an
RSS/Atom reader, the language translator applications, and the document reviewing
and commenting application. In the next chapter, you will learn to create interactive
web pages, an RSS feed, a file upload, and a timesheet application.

[141]

Creating Interactive
Webpages

In the previous chapter, you learned to create an RSS/Atom feed reader, stock quote
ticker, language translator, and to create a document reviewing and commenting
application.

In this chapter, you will learn:

•	 To create web applications that return Sheet data as HTML, JSON, and PDF
•	 To send HTTP/HTTPS request with the query string
•	 To create an RSS feed
•	 To create a file upload application
•	 To create a timesheet application

Creating Interactive Webpages

[142]

Creating a web app to render Sheet data
as HTML
We will create an application to return Sheet data as HTML in the browser. Create
a Sheet, rename it as Data, and populate it with some test data as shown in the
next screenshot. You can populate the Sheet with any random data with the three
columns named First Name, Last Name, and Full Name:

In the Code.gs file, create the doGet function as shown here:

function doGet() {
 /*
 * This spreadsheet may not be active while this function
 * executes, so you cannot get access to active spreadsheet,
 * use open by id.
 *
 */
 var ss = SpreadsheetApp
 .openById("Replace with this spreadsheet id");

 var SheetData = ss.getSheetByName("Data");

 var data = SheetData.getDataRange().getValues();

 var html = '<!DOCTYPE html><html><body><table border=1>';

 // Each row data passed as argument to the anonymous function.
 data.forEach(function(row){
 html += '<tr>';
 html += '<td>' + row[0] + '</td>';

Chapter 7

[143]

 html += '<td>' + row[1] + '</td>';
 html += '<td>' + row[2] + '</td>';
 html += '</tr>';
 });

 // Let's close table, body and html tags.
 html += '</table></body></html>';

 // Return as HTML document.
 Return HtmlService.createHtmlOutput(html);

}

The HtmlService function can be used to create any HTML content. The preceding
doGet function returns HTML content created by HtmlService to the browser.
Publish the script as explained earlier, and enter the URL in the browser's address
bar. You can see the result as shown in the following screenshot. The data shown
may vary as per your input data.

Creating Interactive Webpages

[144]

Creating a web app to return JSON
Now, we will see how to return JSON string instead of HTML content. In the Data
Sheet, add another column named DOB as shown here:

Create the doGet function as shown here:

function doGet(){
 /*
 * This spreadsheet may not be active while this function
 * executes, so you cannot get access to active spreadsheet,
 * use open by id.
 *
 */
 var ss = SpreadsheetApp
 .openById("Replace with this spreadsheet id");

 var SheetData = ss.getSheetByName("Data");

 var data = SheetData.getDataRange().getValues();

 // Remove header
 data.shift();

 var date = new Date();
 var currYear = date.getFullYear();

 var output = {};

 data.forEach(function(row){
 var dob = new Date(row[3]);
 var dobYear = dob.getFullYear();

Chapter 7

[145]

 /*
 * Create full name property within output object.
 * Again the full name property is an object.
 *
 */
 output[row[2]] = {};

 /*
 * Assign DOB property to full name object.
 * Change time zone and date format as per your preference.
 *
 */
 output[row[2]].dob = Utilities
 .formatDate(row[3], "UTC", "MM/dd/yyyy");

 // Let's calculate age.
 output[row[2]].age = currYear - dobYear;
 });

 // We can return only string to browser, so convert to string.
 var json = JSON.stringify(output);

 return ContentService.createTextOutput(json);
}

The output in the browser will be JSON string as follows:

Creating Interactive Webpages

[146]

Converting Sheet data as a PDF file
You can create an application to convert Sheet data into a PDF file and store it in
Drive, and return the PDF file's URL to the user:

In the Code.gs file, create the doGet function as listed here:

function doGet() {
 /*
 * This spreadsheet may not be active while this function
 * executes, so you cannot get access to active spreadsheet,
 * use open by id.
 *
 */
 var ss = SpreadsheetApp.openById("[[this spreadsheet id]]");

 var SheetData = ss.getSheetByName("Data");

 var template = HtmlService
 .createTemplateFromFile("Template.html");

 // Assign 'data' to the template object
 template.data = SheetData.getDataRange().getValues();

 // Evaluate template object as html content
 var html = template.evaluate();

 // Convert html content to pdf
 // var pdf = html.getAs("application/pdf")
 // .setName("Test_Data.pdf");

 // Or use this code
 var pdf = html.getAs(MimeType.PDF).setName("Test_Data.pdf");

 // Create pdf file in the "My Drive" folder and share it with
 //public.
 var file = DriveApp.createFile(pdf);

 // Let's set sharing access as anyone can view the pdf.
 file.setSharing(
 DriveApp.Access.ANYONE_WITH_LINK, DriveApp.Permission.VIEW
);

Chapter 7

[147]

 // Create and return html content with link to the pdf file.
 return HtmlService.createHtmlOutput(
 'Click <a target="_top" href="'
 + file.getUrl()
 +'">here to view pdf file.'
);
}

Create a new HTML file, Template.html, and enter the following HTML code. In
this code, the data array is a 2-dimensional array already assigned to the template
object in the doGet function:

<!DOCTYPE html>
<html>
 <body>
 <table>
 <? for(var i in data) {?>
 <tr>
 <? for(var j in data[i]) { ?>
 <td><?= data[i][j] ?></td>
 <? } ?>
 </tr>
 <? } ?>
 </table>
 </body>
</html>

In the mentioned code, the template markers <? and ?> enclose the script code,
which is identical to the script tag in the normal HTML code. The enclosed code
executes, but does not return anything. The markers <?= and ?> return the result of
the enclosed code. For example, <?= data[i][j] ?> returns the ith row jth column
value of a 2-dimensional data array.

For your understanding the server script without template markup in the previous
code is reproduced here:

for(var i in data) {
 for(var j in data[i]) {
 data[i][j]
 }
}

Creating Interactive Webpages

[148]

Publish and enter the published URL in a browser's address bar. The result will be
as shown in the following screenshot. Click on the hyperlink to open the PDF file
in Drive:

A sample output of the created PDF as per the Sheet data is shown in the following
screenshot. The output may vary as per your input data:

Sending an HTTP/HTTPS request with
query string
You can send an HTTP/HTTPS request along with the query string. To do this,
append the published URL with your query string.

For example: https://script.google.com/macros/s/AKfycbxa4ErKHiX_0gQ0JUU-
Q1qMhvRrOsrx3HXuVZp7pzX8UVxMu4w/exec?fname=John

function doGet(e){
 Logger.log(e);
}

Chapter 7

[149]

A sample of the logged HTTP/HTTPS request's event object is shown here:

The doGet function listed in the following code snippet shows how you can use the
event object to get the required parameters for further processing:

function doGet(e){

 // Get the fname value from the query string.
 var firstName = e.parameter.fname;

 /*
 * There is no active spreadsheet, so you should open by id.
 * Use the id of the spreadsheet in which your script resides.
 *
 */
 var ss = SpreadsheetApp.openById("Replace spreadsheet id");

 var SheetData = ss.getSheetByName("Data");

 var data = SheetData.getDataRange().getValues();

 // Remove header
 data.shift();

 var date = new Date();

 // Let's get the year in 4 digits.
 var currYear = date.getFullYear();

 var output = {};

 // Let's populate output with dob and age properties.
 data.forEach(function(row){

Creating Interactive Webpages

[150]

 // Skip if first name not match.
 if(firstName !== row[0]) return;

 var dob = new Date(row[3]);
 var dobYear = dob.getFullYear();

 output[row[2]] = {};
 output[row[2]].dob = Utilities
 .formatDate(row[3], "UTC", "MM/dd/yyyy");

 output[row[2]].age = currYear - dobYear;
 });

 var json = JSON.stringify(output);

 return ContentService.createTextOutput(json);
}

The mentioned doGet function gets the fname parameter from the query string and
returns the calculated age value along with dob for matching fname.

Creating RSS feed using ContentService
You created an RSS reader application in Chapter 6, Creating Feed Reader and Translator
Applications. Now, you can create an application to publish an RSS feed. Put the RSS
data in a Sheet as shown here:

Chapter 7

[151]

Also, edit/enter the following doGet function:

function doGet() {
 /*
 * There is no active spreadsheet, so you should open by id.
 * Use the id of the spreadsheet in which your script resides.
 *
 */
 var ss = SpreadsheetApp.openById([[this spreadsheet id]]);

 var SheetRss = ss.getSheetByName("RSS Data");

 var rssData = SheetRss.getDataRange().getValues();

 // Remove header.
 rssData.shift();

 var strRss = '<?xml version="1.0" encoding="UTF-8"?>';

 // Root element.
 strRss += '<rss>';

 // Open channel element.
 strRss += '<channel>';

 // Add description and language elements.
 strRss += '<description>A brief description of the
 channel</description>';
 strRss += '<language>en-US</language>';

Creating Interactive Webpages

[152]

 // Each row data is passed as an argument to the anonymous
 //function.
 rssData.forEach(function(row){
 strRss += '<item>';
 strRss += '<title>' + row[0] + '</title>';
 strRss += '<link>' + row[1] + '</link>';
 strRss += '<creator>' + row[2] + '</creator>';
 strRss += '</item>';
 });

 // Close channel and root (rss) elements.
 strRss += '</channel></rss>';

 // Return as RSS xml document.
 return ContentService
 .createTextOutput(strRss)
 .setMimeType(ContentService.MimeType.RSS);
}

Publish the script as you did before. You can use the published URL as the RSS URL
in your RSS reader application built in the previous chapter.

Creating a file upload application
You can create an application to upload any file to Drive from the browser. Create
the doGet and uploadFiles functions in the Code.gs file as listed here:

In the Code.gs file, add this code:

function doGet() {
 // Let's return html page created from the Form.html file.
 return HtmlService.createHtmlOutputFromFile('Form.html')
 .setTitle("File Upload");
};

function uploadFiles(form) {
 // You can change the folder name as you like.
 var folderName = "Uploaded Files";

 var folder, folders = DriveApp.getFoldersByName(folderName);

 // folders is an iterator.
 if (folders.hasNext()) folder = folders.next();

Chapter 7

[153]

 // Let's create a folder if it does not exist.
 else folder = DriveApp.createFolder(folderName);

 // Let's create the file, got from the form, within the folder.
 var file = folder.createFile(form.file);

 // Let's return the file's url
 return file.getUrl();
}

The uploadFiles function looks for an existing folder with the name Uploaded
Files. If not found, then it creates the same within root, My Drive, folder.
Subsequently, it creates the file passed with the argument and returns the
created file's URL.

Update the code in the Form.html file:

<!DOCTYPE html>
<html>
 <head>
 <base target="_top">

 <link rel="stylesheet"
 href="//ssl.gstatic.com/docs/script/css/add-ons1.css"/>
 <script
 src="//ajax.googleapis.com/ajax/libs/jquery
 /1.10.2/jquery.min.js"></script>
 </head>

 <body>
 <div class="sidebar">
 <form>
 <input type="file" name="file">

 <input type="button" id="upload"
 class="submit" value="Upload">
 </form>
 </div>

 <script>
 $(function(){
 $("#upload").click(fileUpload);
 });

Creating Interactive Webpages

[154]

 function fileUpload(){
 this.disabled = true;
 google.script.run
 .withSuccessHandler(function(msg, element){
 element.disabled = false;
 showSucces(msg);
 })
 .withFailureHandler(function(msg, element) {
 element.disabled = false;
 showError(msg, element);
 })
 .withUserObject(this)
 .uploadFiles(this.parentNode);
 }

 function showSucces(msg) {
 alert("File uploaded successfully.
 \n The file url is: " + msg);
 }

 function showError(msg, element) {
 var div = $('<div id="error" class="error">'
 + msg + '</div>');

 $(element).after(div);
 }

 </script>
 </body>
</html>

The preceding code renders the upload form controls, and if Upload is clicked, then
it calls the uploadFiles server function.

A sample of the file upload form's controls is shown here:

Chapter 7

[155]

Click on the Browse… button to select any file stored locally. Then, click on
the Upload button to upload to Drive. The selected file will be uploaded to the
Uploaded Files folder within the My Drive folder.

After a successful upload, an alert box with the uploaded file's URL will be displayed
as shown in the following screenshot. You can use the URL to verify the successful
file upload.

Creating an employee timesheet
application
From the knowledge and experience gathered by creating the preceding applications,
you can create this full blown timesheet application. This application can be used in
an organization or company to log employees, worked hours in a day or shift. The
daily attendance data will be backed in the Backup Sheet for future reference.

Create a new spreadsheet with a Sheet named EmployeesList and populate it with
employee names. All these names will be listed as a dropdown automatically in the
user interface.

Creating Interactive Webpages

[156]

Create another Sheet named TimeSheet and arrange the column headers as shown
in the following screenshot. Ensure columns C, D, E, and F are formatted as date,
otherwise date may be shown as epoch number. Leave column A blank as it
will be used by the script to mark the status of a shift such as sb (shift begin),
bb (break begin), be (break end), and se (shift end).

Create another Sheet with the name Backup, which is used to back up every day's
shift data from the TimeSheet Sheet. Arrange the columns as shown here. Remember
to format columns B, C, D, and E as date.

Create another new Sheet and name it as Message, which will be used to pass
a message, if any, to employees:

Chapter 7

[157]

In the Code.gs file, create the global variables as well as the doGet and getEmpNames
functions. Replace [[this spreadsheet id]] with the actual ID/key (as a string)
of the spreadsheet in which you are editing the code:

var ssid = "[[this spreadsheet id]]";

// Change date format as per your preference.
var DF = "MM/dd/yyyy HH:mm:ss";
var TZ = Session.getScriptTimeZone();

var ss = SpreadsheetApp.openById(ssid);
var TimeSheet = ss.getSheetByName("TimeSheet");
var EmpSheet = ss.getSheetByName("EmployeesList");
var BackupSheet = ss.getSheetByName("Backup");
var MessageSheet = ss.getSheetByName("Message");

This getEmpList function creates and returns employee names as an array:

/**
 * Get employee names from the EmployeesList sheet,
 * construct the data as an array and return.
 *
 */
function getEmpList(){
 var emp = [];
 var data = EmpSheet.getDataRange().getValues();

 for(var i in data) if(data[i][0]) emp.push(data[i][0]);

 return emp;
}

In the doGet function, the message and employee list are assigned to the template
object and returns evaluated HTML content:

function doGet(){
 var template = HtmlService.createTemplateFromFile("Timesheet");
 template.message = MessageSheet.getRange("A2").getValue();
 template.empList = getEmpList();

 var html = template.evaluate();
 return html;
}

Creating Interactive Webpages

[158]

This getEmpStatus function returns employee shift status as an array:

// Returns employee shift status as an array [status, name].
function getEmpStatus(emp){
 var empData = EmpSheet.getDataRange().getValues();
 var timeData = TimeSheet.getDataRange().getValues();

 // Remove header
 timeData.shift();

 for(var i in timeData){
 if(timeData[i][1] == emp)
 return [timeData[i][0],empData[j][1]];
 }

 // Return null if employee not in shift
 return ["",""];
}

The fmtDate_ function is a helper function that returns the formatted date string:

function fmtDate_(d, format){
 // Set the default date format, if 'format' not passed.
 var fmt = format || DF;

 return Utilities.formatDate(d, TZ, fmt);
}

The postTime function populates timesheet with respect to the employee name
and what button he/she has clicked and these values are supplied as an argument
(name and val). This function also throws errors, if any.

The keyword throw returns an error object and terminates the execution.

function postTime(name, val){
 var time = fmtDate_(new Date());
 var data = TimeSheet.getDataRange().getValues();

 // If 'shift start' clicked
 if(val == "sb"){
 // Update start time if clicked again.
 for(var i in data){
 if(data[i][1] == name && data[i][0] == "sb"){

Chapter 7

[159]

 data[i][2] = time;
 TimeSheet.getRange(1, 1, data.length, data[0].length)
 .setValues(data);
 return [val,name];
 }
 };

 // Else insert new name and update start time.
 TimeSheet.appendRow([val,name,time]);

 return [val,name];
 }

 // If 'break start' clicked.
 if(val == "bb"){
 for(var i in data){
 // Update break start time only if employee is in shift.
 if(data[i][0] == "sb" && data[i][1] == name){
 data[i][0] = val;
 data[i][3] = time;

 TimeSheet.getRange(1, 1, data.length, data[0].length)
 .setValues(data);

 return [val,name];
 }
 };

 // If 'break start' clicked before 'shift start'.
 throw "Please start your shift.";
 }

 // If 'break end' clicked
 if(val == "be"){
 for(var i in data){
 if(data[i][0] == "bb" && data[i][1] == name){
 data[i][0] = val;
 data[i][4] = time;
 TimeSheet.getRange(1, 1, data.length, data[0].length)
 .setValues(data);
 return [val,name];
 }
 };

Creating Interactive Webpages

[160]

 // If 'break end' clicked before 'break start'.
 throw "Please start your break.";
 }

 // If shift end clicked
 if(val == "se"){
 for(var i in data){
 if(data[i][1] == name
 && (data[i][0] == "sb"|| data[i][0] == "be")){
 var backup = [];
 backup.push(
 data[i][1], // Name
 data[i][2], // Shift Start
 data[i][3], // Break Start
 data[i][4], // Break End
 time, // Shift end
 '=(E2-B2)*24', // Col F formula,
 '=(D2-C2)*24', // Col G formula
 '=F2-G2' // Col H formula
);

 /*
 * Copy Timesheet data to Backup sheet.
 * Insert a new row before row 2,
 * so that the inserted formulas ever work.
 *
 */
 BackupSheet.insertRowBefore(2);

 BackupSheet.getRange(2, 1, 1, backup.length)
 .setValues([backup]);

 /*
 * Tidy timesheet.
 * Ensure at least one data row before deleting,
 * to avoid error.
 *
 */
 if(i<2) TimeSheet.appendRow(['']);

 // Delete copied row
 TimeSheet.deleteRow(Number(i)+1);

Chapter 7

[161]

 return [val,name];
 }
 };

 // If 'shift end' clicked before 'break end'.
 if(data[i][0] == "bb")
 throw "Please end your break.";

 // If 'shift end' clicked without starting shift.
 throw "Please start your shift.";
 }
}

The preceding postTime function populates data to the TimeSheet Sheet as per the
button clicked by the user. Also, it throws errors if there are any conflicts in the shift
time. For example, a user cannot click on Break End before Break Start and cannot
click on Shift Start without ending the previous shift, and so on.

Create a new HTML file named as Timesheet and enter the following code in it:

<!DOCTYPE html>
<html>
 <head>
 <base target="_top">
 <link rel="stylesheet"
 href="https://ssl.gstatic.com/docs/script/css/add-ons.css" />
 <script
 src="https://ajax.googleapis.com/ajax/libs
 /jquery/1.10.1/jquery.min.js"></script>
 </head>

 <body>
 <div>
 <fieldset style="padding-bottom:25px;">
 <legend>Timesheet</legend>
 <select id="employee" name="employee">
 <? for(var i in empList){ ?>
 <option value="<?= empList[i] ?>" >
 <?= empList[i] ?></option>
 <? } ?>
 </select>

 <button id="sb" value="sb">Shift
 Start</button>

Creating Interactive Webpages

[162]

 <button id="bb" value="bb">Break
 Start</button>

 <button id="be" value="be">Break End</button>
 <button id="se" value="se">Shift End</button>
 </fieldset>

 <fieldset>
 <div id="message"><?!= message ?></div>
 </fieldset>
 </div>

 <script>
 $(function() {
 // Disable all buttons.
 $('#sb,#bb,#be,#se').prop("disabled", true);

 // Set drop-down change event.
 $('#employee').change(getStatus);

 // Set buttons click event.
 $('#sb,#bb,#be,#se').click(postTime);

 getStatus();
 });

 function getStatus(){
 // Remove all previous error messages.
 $('#error,#success').remove();

 // Disable all buttons.
 $('#sb,#bb,#be,#se').prop("disabled", true);

 // Get employee shift status.
 google.script.run
 .withSuccessHandler(function(status){
 updateStatus(status);
 })
 .getEmpStatus($("#employee").val());
 }

 function postTime(){
 // Remove all previous error messages.

Chapter 7

[163]

 $('#error,#success').remove();

 // Disable all buttons.
 $('#sb,#bb,#be,#se').prop("disabled", true);

 // Post shift time to sheet.
 google.script.run
 .withSuccessHandler(function(msg){
 updateStatus(msg[0]);
 })
 .withFailureHandler(function(msg, elm){
 showError(msg, elm);
 })
 .withUserObject(this)
 .postTime($("#employee").val(),$(this).val());
 }

 function updateStatus(status){
 // Enable appropriate buttons only.
 switch(status){
 case "sb": $('#bb,#se').prop("disabled", false); break;
 case "bb": $('#be').prop("disabled", false); break;
 case "be": $('#se').prop("disabled", false); break;
 default: $('#sb').prop("disabled", false);
 }
 }

 function showError(msg, elm) {
 var span = $(''
 + msg + '');
 $(elm).after(span);
 }

 </script>
 </body>
</html>

Creating Interactive Webpages

[164]

Publish the script and enter the published URL in the browser's address bar, then
you will get the timesheet application loaded as shown in the screenshot. Experiment
by selecting employee names from the dropdown and by clicking on buttons next to
it. For every user action, the Timesheet and/or Backup Sheet data will be updated.

A sample output of the Timesheet data is shown here:

Chapter 7

[165]

As soon as the user clicks on Shift End, then the corresponding data from the
TimeSheet Sheet will be transferred to the Backup Sheet and formulas will be created
for the Shift Hours, Break Time, and Worked Hours columns. These formulas
calculate the date difference and multiply it by 24 to show it as an hour value.
A sample output of the Backup Sheet is shown here:

Summary
In this chapter, you learned and created many useful real-life applications including
RSS publisher and a full-blown timesheet application. In the next chapter, you will
create an order processing workflow application.

[167]

Building a Workflow
Application

In the previous chapter, you learned to create interactive web pages using
ContentService, HtmlService, doGet, and doPost functions. You also
built RSS feed and timesheet applications.

In this chapter, you will learn:

•	 To create a workflow application
•	 The workflow involved in an order processing system

A Google Sheet holds all data, needed to create a workflow application, on various
steps. It acts as the backbone of the order processing system.

While working on published web applications, keep in mind that the
following script code versions are independent of each other:

•	 The already saved versions
•	 The published version
•	 The last saved codes

So remember to publish the App every time you make updates to the code.

Building a Workflow Application

[168]

Order processing workflow – steps
explained
The following are the steps involved in the order processing workflow:

1.	 The user opens an online form and sends an order by mentioning the item,
quantity, delivery address, and mode of payment.

2.	 The Google Sheet sends a confirmation e-mail to both the User and
Accounts section.

3.	 The Accounts section verifies the payment and forwards it to the Order
Processing section.

4.	 The Order Processing section dispatches the order to the delivery address
and updates shipment details.

5.	 The user confirms the delivery.

You can also refer to the pictorial representation of these steps in the following image:

Chapter 8

[169]

Configuring Google Sheets
Various forms, e-mails, and their components are explained here:

•	 User form:
°° Item
°° Unit price
°° Quantity
°° Total price (calculated)
°° Delivery address
°° Phone
°° E-mail
°° Payment details

Upon the order submission, the script sends confirmation
e-mails to both the User and Accounts section.

•	 Confirmation e-mail to the user:
°° Order number
°° Item
°° Unit price
°° Quantity
°° Total price
°° Delivery address
°° Phone number
°° Payment details

•	 E-mail to the Accounts section:
It is same as the user confirmation e-mail; however, an additional link to the
dispatch form is included.

On receiving order e-mails, the Accounts section verifies if
the payment details are okay, and then forwards that e-mail
to the Order Processing section. The Order Processing/
Dispatch section clicks on the link to open the dispatch form,
fills in shipment details, and submits the form.

Building a Workflow Application

[170]

•	 The dispatch form:
°° Order number
°° Item
°° Quantity
°° Delivery address
°° Shipment details

On the dispatch form submission, the script updates
shipment details in the spreadsheet and sends a dispatch
notification e-mail to the user.

•	 Post-dispatch e-mail to the user:

°° Order number
°° Delivery address
°° Shipment details
°° Acknowledge the delivery (link)

The user clicks on the acknowledgement link, and then
the script updates the delivery date corresponding to the
order number row in the spreadsheet.

Now, create a new Google Sheet with two Sheets/tabs named Orders and Stock.
Format the Orders Sheet column headers as shown in the following screenshot:

Chapter 8

[171]

Format the Stock Sheet columns and populate the test data in it as shown here:

The items and corresponding unit prices will be populated in the Orders form.

Creating the Order form
In the Code.gs file, define the following global variables:

// Replace with your spreadsheet's ID.
var ss = SpreadsheetApp
 .openById("spreadsheet's id");

var SheetOrders = ss.getSheetByName("Orders");
var SheetStock = ss.getSheetByName("Stock");

Create the doGet function:

function doGet(){
 var template = HtmlService.createTemplateFromFile("Order");
 var html = template.evaluate();
 return HtmlService.createHtmlOutput(html);
}

Building a Workflow Application

[172]

The preceding function returns the Order form from the Order.html template.
Create a new HTML file named Order and enter the following code in it:

<!-- Order.html -->
<!DOCTYPE html>
<html>

 <head>
 <base target="_top">
 </head>

 <body>
 <form>
 <table>
 <tr>
 <td><label>Select Item:</label></td>
 <td>
 <select>
 <option value="Item 1">Item 1</option>
 <option value="Item 2">Item 2</option>
 <option value="Item 3">Item 3</option>
 <option value="Item 4">Item 4</option>
 <option value="Item 5">Item 5</option>
 </select>
 </td>
 </tr>

 <tr>
 <td><label>Unit price:</label></td>
 <td><input type="text" /></td>
 </tr>

 <tr>
 <td><label>Quantity:</label></td>
 <td><input type="number" value="1" /></td>
 </tr>

 <tr>
 <td><label>Total price:</label></td>
 <td><input type="text" /></td>
 </tr>

Chapter 8

[173]

 <tr>
 <td><label>Deliver to:</label></td>
 <td><textarea placeholder="Enter delivery address.">
 </textarea></td>
 </tr>

 <tr>
 <td><label>Phone:</label></td>
 <td><input placeholder="Enter phone number." /></td>
 </tr>

 <tr>
 <td><label>E-Mail:</label></td>
 <td><input placeholder="Enter email address." /></td>
 </tr>

 <tr>
 <td><label>Payment details:</label></td>
 <td><input type="text"
 placeholder="Enter payment details." /></td>
 </tr>
 </table>

 <input type="button" value="Submit" />
 </form>
 </body>

</html>

Publish the script using the following settings:

•	 Execute the app as:
Me (your e-mail ID)

•	 Who has access to the app:
Anyone, even anonymous

Building a Workflow Application

[174]

Click on the Deploy button, authorize if asked. The rendered application will be
similar to the following screenshot:

This form is a basic one and not fancy. The item's selections are hard coded; only five
fixed items. The user may not know the items which are currently available with the
supplier, any new items that have been added to the list, or the current unit price for
each item. Above all, we did not add any functionality to the Submit button.

Enhancing the Order form
To enhance the Order form, update the doGet function as follows:

function doGet(){
 var template = HtmlService.createTemplateFromFile("Order");
 template.pricelist = getPrice();

 var html = template.evaluate();
 return HtmlService.createHtmlOutput(html);
}

Chapter 8

[175]

The price list is assigned to the template as a 2-dimensional array and is returned
by the function shown here:

function getPrice(){
 var data = SheetStock.getDataRange().getValues();

 // remove header row.
 data.shift();

 return data;
}

In the Order.html file, update the select tag markup as shown in this code snippet:

<td>
 <select id="item" name="item">
 <? for(var i in pricelist){ ?>
 <option value="<?= pricelist[i][0] ?>" >
 <?= pricelist[i][0] ?></option>
 <? } ?>
 </select>
</td>

The drop-down items will reflect whatever is included or updated in the Stock
Sheet. The default item will be the top-most or the first item in the list. So we have
to put a default unit price for that item. Hence, update the Unit price input field
as shown here:

<td><input id="unit_price" name="unit_price"
type="text" readonly value="<?= pricelist[0][1] ?>" /></td>

The Order form users are not going to enter the unit price, so it can be read only.
We set default value for quantity as 1 and the default value for the total price as
the unit price.

Update the body tag as follows:

 <body>
 <form>
 <table>
 <tr>
 <td><label>Select Item:</label></td>
 <td><select id="item" name="item">
 <? for(var i in pricelist){ ?>
 <option value="<?= pricelist[i][0] ?>" ><?=
 pricelist[i][0] ?></option>
 <? } ?>

Building a Workflow Application

[176]

 </select></td>
 </tr>

 <tr>
 <td><label>Unit price:</label></td>
 <td><input id="unit_price" name="unit_price" type="text"
 readonly value="<?= pricelist[0][1] ?>" /></td>
 </tr>

 <tr>
 <td><label>Quantity:</label></td>
 <td><input id="quantity" name="quantity" type="number"
 value="1" /></td>
 </tr>

 <tr>
 <td><label>Total price:</label></td>
 <td><input id="total_price" name="total_price" type="text"
 readonly value="<?= pricelist[0][1] ?>" /></td>
 </tr>

 <tr>
 <td><label>Deliver to:</label></td>
 <td><textarea name="delivery_address"
 placeholder="Enter delivery address.">
 </textarea></td>
 </tr>

 <tr>
 <td><label>Phone:</label></td>
 <td><input name="phone" type="phone"
 placeholder="Enter phone number." /></td>
 </tr>

 <tr>
 <td><label>E-Mail:</label></td>
 <td><input name="email" type="email"
 placeholder="Enter email address." /></td>
 </tr>

 <tr>
 <td><label>Payment details:</label></td>
 <td><input name="payment_details" type="text"
 placeholder="Enter payment details." /></td>

Chapter 8

[177]

 </tr>
 </table>

 <input class="blue" id="btnSubmit" type="button"
 value="Submit" />
 </form>
 </body>

For the select element, we need an onchange event handler so that, if the user
selects any item, the corresponding unit price should be retrieved from the
spreadsheet and displayed in the Unit price input field. At the same time, the total
price should be calculated as per quantity and unit price. Add script handlers along
with the CSS style sheet in the head element. Update the code for the head tag as
shown here:

 <head>
 <base target="_top">

 <link rel="stylesheet"
 href="//ssl.gstatic.com/docs/script/css/add-ons1.css" />

 <script src="//ajax.googleapis.com/ajax/libs/
 jquery/1.10.2/jquery.min.js"></script>

 <script>
 // On document load, assigns events to elements.
 $(function(){
 $("#item").change(getUnitPrice);
 $("#quantity").change(calcTotalPrice);
 $("#btnSubmit").click(submit);
 });

 /*
 * Retrieves corresponding unit price for the selected item
 * and calculates the total price.
 *
 */
 function getUnitPrice(){
 google.script.run
 .withSuccessHandler(function(price){
 $("#unit_price").val(price);
 calcTotalPrice();
 })

Building a Workflow Application

[178]

 .getPrice($("#item").prop("selectedIndex"));
 };

 function calcTotalPrice(){
 $("#total_price").val($("#unit_price").val() *
 $("#quantity").val());
 };

 function submit(){
 // Remove already displayed messages, if any.
 $("#success,#error").remove();

 this.disabled = true;

 google.script.run
 .withSuccessHandler(function(msg,elm){
 elm.disabled = false;
 showSuccess(msg,elm);
 })
 .withFailureHandler(function(msg, elm){
 elm.disabled = false;
 showError(msg, elm);
 })
 .withUserObject(this)
 .postOrder(this.parentNode);
 // submit button's parent, i.e. form.
 }

 function showSuccess(msg,elm) {
 var span = $('
 ' + msg + '');

 $(elm).after(span);
 }

 function showError(msg,elm) {
 var span = $(' '
 + msg + '');

 $(elm).after(span);
 }
 </script>
 </head>

Chapter 8

[179]

The getPrice server function needs to recognize the selected item index as an
argument, so we will update it as shown here:

function getPrice(index){
 var data = SheetStock.getDataRange().getValues();

 // remove header row.
 data.shift();

 return typeof index == "undefined" ? data : data[index][1];
}

Now, this function works when called from the doGet function as well as from
the preceding HTML client code. When called from the doGet function, it returns
the complete price list, otherwise just the unit price of a selected item.

This helper function validates an e-mail. Returns true if valid otherwise false:

function isValidEmail_(email) {
 var regex = /^([\w-\.]+@([\w-]+\.)+[\w-]{2,6})?$/;
 return regex.test(email);
}

Next, add a form submission handler function (postOrder). If the order is placed,
then this handler should update the spreadsheet and send an e-mail confirmation
to the user as well as to the Accounts department:

function postOrder(form){

 // Validate user email
 if(!isValidEmail_(form.email))
 throw "please provide a valid email id.";

 /*
 * Date used as order number,
 * which helps to have distinctive number.
 * However, you may use any other number or string.
 *
 * Prepend 'new' with '+' to get 'value' (number) of the date.
 *
 */
 var orderNumber = +new Date();

 // Construct form element values in an array.
 var order = [
 orderNumber,
 form.item,

Building a Workflow Application

[180]

 form.unit_price,
 form.quantity,
 form.total_price,
 form.delivery_address,
 form.phone,
 form.email,
 form.payment_details
];

 SheetOrders.appendRow(order);

 var htmlBody = "<p>Order number: " + orderNumber + "</p>";
 htmlBody += "<p>Item: " + form.item + "</p>";
 htmlBody += "<p>Unit price: " + form.unit_price + "</p>";
 htmlBody += "<p>Quantity: " + form.quantity + "</p>";
 htmlBody += "<p>Total price: " + form.total_price + "</p>";
 htmlBody += "<p>Delivery address: " + form.delivery_address
 + "</p>";

 htmlBody += "<p>Phone number: " + form.phone + "</p>";
 htmlBody += "<p>Payment details: " + form.payment_details
 + "</p>";

 htmlBody += "<p>Please quote the order number in your "
 + "correspondence.</p>";

 // Send an e-mail to the user.
 MailApp.sendEmail({
 to: form.email,
 subject: "Order placed",
 htmlBody: htmlBody
 });

 htmlBody += "<p> </p>";
 htmlBody += '<p>Click <a href="'
 + ScriptApp.getService().getUrl()
 + '?order_number=' + orderNumber
 + '" >here to dispatch the order.</p>';

 /*
 * Send an e-mail to the Accounts department with the same
 * content as to the user e-mail, additionally a clickable URL
 * with the order number appended as a query to the published
 * URL.
 *
 */
 MailApp.sendEmail({

Chapter 8

[181]

 to: "Accounts department email id",
 subject: "Order - " + orderNumber,
 htmlBody: htmlBody
 });

 // Return confirmation message to user.
 return "Order placed successfully and more details " \
 + "has been sent to " + form.email;
};

Remember to publish the script again with a new version. Now, the form should
look like this:

The sample submitted data in the spreadsheet looks as follows:

Building a Workflow Application

[182]

The sample content of the user e-mail looks as follows:

The only difference of the e-mail content to the Accounts section is an additional
link (which you can see in the sample e-mail content screenshot as follows) of the
dispatch form (we will create this form next).

Up to this point, what we have set up is:

•	 The user can submit the Order form
•	 Script appends the submitted data to the spreadsheet
•	 Script sends confirmation e-mails both to the user and the Accounts

department

Chapter 8

[183]

Creating the dispatch form
As mentioned earlier, we will create the dispatch form now. Create a new HTML file
named as Dispatch and enter the following code in it:

<!-- Dispatch.html -->
<!DOCTYPE html>
<html>
 <head>
 <base target="_top">
 <link rel="stylesheet"
 href="//ssl.gstatic.com/docs/script/css/add-ons1.css" />
 <script
 src="//ajax.googleapis.com/ajax/libs/jquery/
 1.10.2/jquery.min.js"></script>

 <script>
 // On document load, assign submit function to the submit
 // button's click event
 $(function(){
 $("#btnSubmit").click(submit);
 });

 function submit(){
 // Remove already displayed messages, if any.
 $("#success,#error").remove();
 this.disabled = true;

 google.script.run
 .withSuccessHandler(function(msg,elem){
 elem.disabled = false;
 showSuccess(msg,elem);
 })
 .withFailureHandler(function(msg, elm){
 elm.disabled = false;
 showError(msg, elm);
 })
 .withUserObject(this)
 .dispatchOrder(this.parentNode);
 }

Building a Workflow Application

[184]

 function showSuccess(msg,elm) {
 var span = $('
 ' + msg + '');
 $(elm).after(span);
 }

 function showError(msg,elm) {
 var span = $(' '
 + msg + '');
 $(elm).after(span);
 }
 </script>
 </head>

 <body>
 <form>
 <table>
 <tr>
 <td><label>Order number:</label></td>
 <td><input name="order_number"
 type="text" readonly value="<?= order[0] ?>" /></td>
 </tr>

 <tr>
 <td><label>Item:</label></td>
 <td><input type="text" readonly
 value="<?= order[1] ?>" /></td>
 </tr>

 <tr>
 <td><label>Quantity:</label></td>
 <td><input type="number" readonly
 value="<?= order[3] ?>" /></td>
 </tr>

 <tr>
 <td><label>Deliver to:</label></td>
 <td><textarea readonly value="<?= order[5] ?>">
 </textarea></td>
 </tr>

 <tr>
 <td><label>Shipment details:</label></td>

Chapter 8

[185]

 <td><textarea name="shipment_details"
 placeholder="Enter shipment details." >
 </textarea></td>
 </tr>

 <tr>
 <td><input name="email" type="hidden"
 value="<?= order[7] ?>" /></td>
 </tr>
 </table>

 <input class="blue"
 id="btnSubmit" type="button" value="Submit" />
 </form>
 </body>
</html>

The script handlers are a subset of the Order form handlers, and most of the HTML
elements are read-only, except the shipment details. The dispatch form looks like:

We can use only one doGet function in a script project or web application, but
we have to use two forms with the same published URL. How can we open two
different forms with the same published URL?

Building a Workflow Application

[186]

You remember that we appended the order number to the published URL in the
postOrder handler. An example of the dispatch URL with the order number as
a query string will look as follows:

https://script.google.com/macros/s/AKfycbwRUVS6z5rjrAw8M-
au9_ICYzixTVB3msLOCmoF5JCBVFNzY_7k/exec?order_number=1451875765851

The preceding URL is nothing but the published URL with the order number
appended as a query string.

We will update the doGet function to parse this query string. If the order number is
present, then return the dispatch form; otherwise, return the Order form:

function doGet(e){
 var orderNumber = e.parameter.order_number;

 if(orderNumber){

 /*
 * If order number present in query string
 * then serve dispatch form to order processing unit.
 *
 */
 var template = HtmlService.createTemplateFromFile("Dispatch");
 var data = SheetOrders.getDataRange().getValues();

 for(var i in data){
 if(data[i][0] == orderNumber){
 template.order = data[i];
 break;
 }
 };

 } else {

 /*
 * If order number not present in query string
 * then serve order form to the user.
 *
 */
 var template = HtmlService.createTemplateFromFile("Order");
 template.pricelist = getPrice();

Chapter 8

[187]

 };

 var html = template.evaluate();
 return HtmlService.createHtmlOutput(html);
}

Now, the doGet function can handle both situations.

Dispatching the articles
As soon as the dispatch person enters the shipment details in the dispatch form and
submits it, the script should update the shipment details in the spreadsheet and
should send a notification e-mail to the user. So, we will add the dispatchOrder
server function to handle these tasks:

function dispatchOrder(form){
 // Shipment details column number minus 1.
 const SHIPMENT_DETAILS = 9;

 var orderNumber = form.order_number;
 var deliveryAddress = form.delivery_address;
 var userEmail = form.email;
 var shipmentDetails = form.shipment_details;

 var data = SheetOrders.getDataRange().getValues();

 for(var i = 0; i < data.length; i++){
 if(data[i][0] == orderNumber){
 SheetOrders.getRange(i+1, SHIPMENT_DETAILS+1)
 .setValue(shipmentDetails);

 var htmlBody = "<p>Order number: "
 + orderNumber + " has been dispatched to </p>"
 + "<p>" + deliveryAddress + "</p>"
 + "<p>By " + shipmentDetails + "</p>"
 + "<p> </p>"
 + '<p>Click <a href="' + ScriptApp.getService().getUrl()
 + '?order_number=' + orderNumber
 + '&delivered=true" >here '
 + 'to acknowledge the delivery.</p>';

 // Send email to the user
 MailApp.sendEmail({
 to: userEmail,

Building a Workflow Application

[188]

 subject: "Order dispatched",
 htmlBody: htmlBody
 });

 // Return confirmation to the dispatch team.
 return "Shipment details updated and user notified by " \
 + "an e-mail.";
 }
 };

 // Displays error if query order_number not found in sheet.
 throw "Order number not found.";
};

A sample dispatch notification e-mail content is shown here:

Enabling the user to acknowledge the
article delivery
If the user receives the items, then he/she clicks on the link to acknowledge. The
same published URL is used this time too with an additional delivered query string.

For example:

https://script.google.com/macros/s/AKfycbwaqlj_kBAn9LLav0qv6GmXlWk-
hwIosHA-
1_1YoMutiiuGy84/exec?order_number=1451875765851&delivered=true

To handle this query, the doGet function should be updated again as follows:

function doGet(e){
 var delivered = e.parameter.delivered;

 if(delivered){
 // If order delivered then just update delivery date.

Chapter 8

[189]

 updateDelivery(e);

 // Returning text content is enough, HtmlService not needed.
 return ContentService.createTextOutput("Thank you!");
 }

 var orderNumber = e.parameter.order_number;

 if(orderNumber){

 /*
 * If order number present in query string
 * then serve dispatch form to order processing unit.
 *
 */
 var template = HtmlService.createTemplateFromFile("Dispatch");
 var data = SheetOrders.getDataRange().getValues();

 for(var i in data){
 if(data[i][0] == orderNumber){
 template.order = data[i];
 break;
 }
 };

 } else {

 /*
 * If order number not present in query string
 * then serve order form to the user.
 *
 */
 var template = HtmlService.createTemplateFromFile("Order");
 template.pricelist = getPrice();

 };

 var html = template.evaluate();
 return HtmlService.createHtmlOutput(html);
}

Building a Workflow Application

[190]

Another handler, the updateDelivery function, should be added as follows:

function updateDelivery(e){
 // Delivery date column number minus one.
 const DELIVERED_ON = 10;

 var orderNumber = e.parameter.order_number;
 var deliveryDate = new Date();
 var data = SheetOrders.getDataRange().getValues();

 // Update delivery date on matched order number.
 for(var i = 0; i < data.length; i++){
 if(""+data[i][0] == orderNumber){
 SheetOrders.getRange(i+1, DELIVERED_ON+1)
 .setValue(deliveryDate);
 }
 };
}

This function updates the current date as the delivered date. A sample spreadsheet
with the Delivered on column updated is shown as follows:

Congratulations! You have created a full-blown, real-world order processing
workflow application.

Summary
In this chapter, you learned and created a useful real-world order processing
application. In the next chapter, you will learn to overcome script in maximum
execution time and learn to use script code from other script files or libraries
including OAuth library. You will also learn to create add-ons.

[191]

More Tips and Tricks and
Creating an Add-on

In the previous chapter, you built an order processing workflow application. In this
chapter, you will learn:

•	 To overcome script maximum execution time restriction
•	 To use script codes from other script files or libraries
•	 Create add-ons that use the OAuth2 external library

Overcoming the "script exceeded
maximum execution time" error
What if one of your script functions has a bug that causes endless (not terminating)
execution, for example, an endless for loop and/or while loop. There are no remedies
other than carefully examining the loop terminating statements.

Sometimes, your script may be flawless or bug free, but if it needs to handle a large
spreadsheet or external data, it may take a long time to complete the execution. The
maximum allowed time for your script to run continuously is 6 minutes. If it exceeds
that limit, GAS would throw the "Exceeded maximum execution time" exception.

For a list of other limitations, please visit: https://developers.
google.com/apps-script/guides/services/quotas#current_
limitations.

https://developers.google.com/apps-script/guides/services/quotas#current_limitations
https://developers.google.com/apps-script/guides/services/quotas#current_limitations
https://developers.google.com/apps-script/guides/services/quotas#current_limitations

More Tips and Tricks and Creating an Add-on

[192]

To overcome this bottleneck, you can follow these steps. For example, if your
doLengthyProcess function takes a long time to finish, then manually create a
minute's trigger for the doLengthyProcess function so that it executes every 10
minutes. Your function should periodically check the elapsed time since the start.
If the function completes successfully within the time limit then, at the end of the
function, it deletes the trigger. Otherwise, the trigger value is stored in a loop counter
in a dedicated Sheet or in script properties. This value should be read and assigned
to the loop counter, when the function is triggered again.

A sample skeleton of such a function is given here:

var ss = SpreadsheetApp.getActiveSpreadsheet();

// A dedicated sheet to store values temporarily.
var sheet = ss.getSheetByName("Settings");

function doLengthyProcess() {
 // Prefix '+' to get date as epochy number.
 var elapsedTime, startTime = +new Date();

 // Loop variable.
 // Load value of 'i' from spreadsheet cell, or default 0.
 var i = sheet.getRange("A1").getValue() || 0;

 for(; i<1000; i++){
 // Your time consuming process goes here.
 …
 …
 …
 …

 // Recalculate elapsedTime.
 elapsedTime = +new Date() - startTime;

 if(elapsedTime> 300000){ // 300000 ms or 5 minutes.
 sheet.getRange("A1").setValue(i);
 return;
 }
 };

 // Loop completed successfully, so delete trigger.
 deleteTriggers_();
}

Chapter 9

[193]

// Helper function
function deleteTriggers_(){
 var triggers = ScriptApp.getProjectTriggers();
 triggers.forEach(function(trigger){
 ScriptApp.deleteTrigger(trigger);
 /*
 * Wait a moment before calling deleteTrigger again.
 * Otherwise you may get warning message something like
 * "Service invoked too many times..."
 *
 */
 Utilities.sleep(1000); // In millisecond.
 });

};

To sum up, you create an "every minutes" trigger manually, and then the function
executes until it completes successfully.

If you feel hesitant to create triggers manually, you can create them by script as
we discussed in Chapter 3, Parsing and Sending E-mails but this time, create every
minute's trigger:

function createTrigger_(funcName,minutes){
// Delete already created triggers if any.
deleteTriggers_();
 ScriptApp.newTrigger(funcName).timeBased()
 .everyMinutes(minutes).create();
}

Here you created a trigger for the functions which do not start immediately but
with a delay. However, if you want to automate everything, it means creating a
trigger and calling the function immediately. Create another function startProcess
as shown here:

function startProcess(){
 createTrigger_("doLengthyProcess",10);
 doLengthyProcess();
}

Now, you just need to run the startProcess function. Also, you can assign a menu
for this function.

More Tips and Tricks and Creating an Add-on

[194]

Configuring your script project to use
external libraries
Sometimes you would like to reuse code from other script project(s) or other
programmer's code in your projects. You can import external code as it resides in the
current project. You need to make a simple configuration in your current project.

For an example, we will explain how to import the previous chapter's code into the
current project.

1.	 Open any one of your previously created scripts (for example, Chapter 8,
Building a Workflow Application) in the script editor, save a version if
you haven't already.

2.	 Now, click on the File menu and then Project properties. The Project
properties dialog will open as shown here:

3.	 Copy the Project key value (this value should be different for your project).

Chapter 9

[195]

4.	 Open the current script, navigate to Resources | Libraries…, and then the
Included Libraries dialog will open as shown here:

5.	 Paste Project key (you already copied in step 1) into the Find a Library
textbox and click on the Select button.

Now, the Chapter 8 project will be included in the libraries list as shown here:

More Tips and Tricks and Creating an Add-on

[196]

Select the version (the version you are going to use in this current project); and if you
like, you can change the identifier (Chapter8) too. Leave Development Mode off
means using a selected version; set it to on to override the selected version and
use the current version. Click on the Save button to save the changes.

Now all the functions (except private functions, that is, function names appended
with "_") and the global variables are available to use in the current project. For
example, you can use the doGet function from Chapter 8, Building a Workflow
Application here by prefixing with the identifier. It means that you can use the doGet
function as Chapter8.doGet(), the getPrice function as Chapter8.getPrice(),
and so on.

If you need more explanation, then here is a sample usage:

function test(){

 var pricelist = Chapter8.getPrice();

 Logger.log(pricelist);
}

Using JSDoc annotations
In the preceding test function, you can see that the code hint became active as soon
as you type a '.' next to the identifier name (Chapter8). This shows all the functions
and global variables available in the external library as shown here:

The preceding code hints are generic, for example, index shown as Object. For
detailed code hints, you should use the JSDoc style documentations (annotations
or comments at top lines of function definitions).

Chapter 9

[197]

For example, if you used the following annotations to the getPrice function in
Chapter 8, Building a Workflow Application:

/**
 * Returns price list data from the Stock tab/sheet
 *
 * @param {number} index
 * @return {array}
 *
 */
function getPrice(index){
 …
}

Then the code hint would be as shown here:

Now, you can notice how the code hint returns with useful information for the
getPrice function.

For further reading on JSDoc, visit: https://developers.
google.com/closure/compiler/docs/js-for-compiler.

Using the OAuth open source library
If your application interacts with external libraries other than Google's basic services,
then it should be authenticated. In other words, if your application runs on behalf
of a user, then that user should authorize your application to grant access to his/her
data. GAS does not provide any built-in authentication service, but you can use an
open source OAuth library.

https://developers.google.com/closure/compiler/docs/js-for-compiler
https://developers.google.com/closure/compiler/docs/js-for-compiler

More Tips and Tricks and Creating an Add-on

[198]

Creating, testing, and publishing add-ons
If you need to use other external libraries in your current project, you need to know the
project key and you should have at least read access to that project. At the same time,
every new version of the master project will not reflect in the client project unless the
client selects the current version. Add-ons override this configuration hassle.

Add-ons are installable scripts by the click of a button, no configuration required.
You can install add-ons in Sheets, Docs, and/or Forms published by the other
programmer or from the Google Chrome Web Store.

Installing add-ons from Chrome Web Store
To install an add-on from Chrome Web Store, open the document (Sheets, Docs, or
Forms) and click on Get add-ons… from the Add-ons menu. Select any one of your
favorite add-ons from the Add-ons dialog (if you hover your mouse over any add-
on, then a plus symbol will appear on the application; click on it and authorize if
required). A sample Add-ons dialog is shown here, but the actual add-ons included
may vary from time to time.

Chapter 9

[199]

You will get that add-on installed and added to your document's Add-ons menu.
Each add-on comes with easy-to-use menu items. For example, if you installed
autoCrat then the menu item would look like in the screenshot shown here:

Creating custom add-ons
You can create add-ons by yourself, use within your other documents, or share with
other users. Your users can use your add-ons but cannot see the code. So, you can
keep your intellectual property (that is, code and data) confidential.

Add menu items to the Add-on menu such that:

function onOpen(e){
 SpreadsheetApp.getUi().createAddonMenu()
 .addItem("Show Sidebar", "showSidebar")
 .addToUi();
}

The addItem method's first argument is the label for the menu item and the next one
is the function name. Add the onInstall event function if you are going to publish
an add-on for Chrome Web Store such that:

function onInstall(e){
 onOpen(e);
}

More Tips and Tricks and Creating an Add-on

[200]

The preceding function invokes the onOpen function while the add-on is installed
for the first time in Sheets, Docs, or Forms. If your add-on needs a user interface,
then create the sidebar dialog:

/**
 * Opens sidebar in the document containing the add-on's
 * user interface.
 *
 */
function showSidebar() {
 SpreadsheetApp.getUi().showSidebar(
 HtmlService.createHtmlOutputFromFile('Sidebar')
);
}

To style the sidebar (create Sidebar.html), you can use the officially supported CSS
package from the https://ssl.gstatic.com/docs/script/css/add-ons1.css
URL.

For more help on this package visit https://developers.
google.com/apps-script/add-ons/css.

Testing your add-on
To test your add-on within the script editor, navigate to the Publish | Test as
add-on… menu and then within the resulting dialog select the document in
which you want to test the add-on as shown here:

https://ssl.gstatic.com/docs/script/css/add-ons1.css
https://developers.google.com/apps-script/add-ons/css
https://developers.google.com/apps-script/add-ons/css

Chapter 9

[201]

To share your add-on with others, it is enough to share the document. More than
that, if you would like to publish the script, follow the Publish | Deploy as an
add-on menu. In the resulting dialog, fill the required fields and follow the
guidelines provided. Your add-on should strictly adhere to the Chrome Web Store's
content and style guidelines and undergo a review process before being listed and
made available to the public.

For more information on add-ons, visit https://developers.
google.com/apps-script/add-ons/.

Creating an add-on that uses an OAuth2
external library
To get hands-on experience on all aforesaid concepts, we will create an add-on that
can send an active spreadsheet as a PDF attachment to the active user's e-mail ID.

Create a new script project in Sheets. In the script editor, we will first create a few
global variables as shown here:

var ss = SpreadsheetApp.getActiveSpreadsheet();
var activeSheet = ss.getActiveSheet();
var activeSheetName = activeSheet.getSheetName();

Next, take a look at the onOpen and onInstall trigger functions.

/**
 * Creates a menu entry in the Google Sheets UI when the document
 * is opened.
 *
 * @param {object} e The event parameter for a simple onOpen
 * trigger.
 *
 */
function onOpen(e){
 // Create an Add-on menu item and associate a function.
 SpreadsheetApp.getUi().createAddonMenu()
 .addItem("Sheet To PDF", "sendSheetAsPdfToActiveUser")
 .addToUi();
}

More Tips and Tricks and Creating an Add-on

[202]

/**
 * Runs when the add-on is installed.
 *
 * @param {object} e The event parameter for a simple onInstall
 * trigger.
 *
 */
function onInstall(e){
 onOpen(e);
}

In the onOpen trigger, we have associated the function sendSheetAsPdfToActiveUser
to the Sheet To PDF menu item. We will create that function now:

/**
* Sends PDF attachment to the active user e-mail id.
*
*/
function sendSheetAsPdfToActiveUser(){
 // Get active user's email id.
 var mailTo = Session.getActiveUser().getEmail();
 // Returns either pdf or false.
 var attachments = getAttachments();
 // Send only if there is attachment.
 if(attachments){
 MailApp.sendEmail(
 mailTo, activeSheetName, '', {attachments:attachments}
);
 }
}

The said function sends an e-mail with the PDF attachment, which is returned from
the getAttachments function. An example is given here:

/**
 * Authorizes the application for the first time or the token
 * expires. If authentication token is valid then returns the pdf
 * file with other attachment parameter otherwise prompts the
 * user to authorize.
 *
 * @return {Object} Array of attachment objects.
 */

Chapter 9

[203]

function getAttachments(){
 // Authenticated service object.
 var service = getGoogleService();

 // Proceed further only if authenticated, otherwise prompt for
 // authentication.
 if (service.hasAccess()) {

 // The url to download activesheet as pdf.
 var url = ss.getUrl()
 .replace("edit", "export?gid=" + activeSheet.getSheetId()
 + "&format=pdf&attachment=false");

 // The access token should be sent on every request.
 var headers = {
 Authorization:'Bearer ' + service.getAccessToken()
 };

 // Send request to the pdf url with the access token.
 var response = UrlFetchApp.fetch(url, { headers:headers });

 // Returned content.
 var content = response.getContent();

 // Returns as an array of objects.
 return [{
 fileName: activeSheetName + ".pdf",
 content: content,
 mimeType:"application/pdf"
 }];

 } else {

 // Authorization url from the service object.
 var authorizationUrl = service.getAuthorizationUrl();

 // Side bar with the authorization link.
var template = HtmlService
 .createTemplate(
 '<a href="<?= authorizationUrl ?>"
 target="_blank">Authorize.'
);

More Tips and Tricks and Creating an Add-on

[204]

 // Authorization url assigned to template
 template.authorizationUrl = authorizationUrl;

 // Finally evaluate the template and show sidebar.
 var page = template.evaluate();
 SpreadsheetApp.getUi().showSidebar(page);

 // Attracting user attention.
 Browser.msgBox('Authorize on sidebar and run again.');

 // Return false, so no need to send e-mail.
 return false;
 }
}

The said function prompts the user to authenticate the application if he is using
it for the first time or already has an authenticated token but it is expired. If
the authenticated token is valid, then it returns the PDF attachment, otherwise
it returns false.

Now, the only thing we have left to do is implementing OAuth2 flow. We will
create a function for the same:

/**
 * Executes OAuth2 flow.
 *
 * @return {Object} Authentication service object.
 *
 */
function getGoogleService(){
 /*
 * Create a new service with the given name (here 'PACKT').
 * The name will be used when persisting the authorized token,
 * so ensure it is unique within the scope of the property
 * store.
 *
 */
 return OAuth2.createService("PACKT")

// Endpoint URLs are same for all Google services.
.setAuthorizationBaseUrl(
'https://accounts.google.com/o/oauth2/auth'
)
.setTokenUrl('https://accounts.google.com/o/oauth2/token')

Chapter 9

[205]

 /*
 * Replace with your client ID and secret got from developers
 * console.
 *
 */
 .setClientId('...')
 .setClientSecret('...')

 // A callback function to complete the OAuth2 flow.
 .setCallbackFunction('authCallback')

 // A place to store authenticated tokens.
 .setPropertyStore(PropertiesService.getUserProperties())

 /*
 * Scopes to request, separate with space if more than one
 * scope.
 *
 */
 .setScope('https://docs.google.com/feeds/')

 /*
 * Google-specific parameters.
 *
 * Sets the login hint, which will prevent the account chooser
 * screen from being shown to users if logged in with multiple
 * accounts.
 *
 */
 .setParam('login_hint', Session.getActiveUser().getEmail())

 // Requests offline access.
 .setParam('access_type', 'offline')

 /*
 * Forces the approval prompt every time to show up.
 * This is useful for testing, but not desirable in a production
 * application.
 *
 */
 .setParam('approval_prompt', 'force');
}

More Tips and Tricks and Creating an Add-on

[206]

Don't forget to replace your own client ID and secret. We will see how to get them.
Can you remember what you did to enable advanced services in Chapter 5, Creating
Google Calendar and Drive Applications? Use the same steps here, but with a few
additional tasks.

Within the script editor, navigate to Resources | Developers Console Project… and
click on View Developers Console on the dialog that opens:

That should take you to the developer's console dashboard where you can click on
the Enable and manage APIs option.

Chapter 9

[207]

Once enabled, click on Credentials on the left pane of the console dashboard:

To complete the OAuth2 flow, this callback function will be invoked, and it shows a
message to the user. Then, the OAuth2 client IDs are listed as Apps Script. Click on
Apps Script to see the details as shown here:

More Tips and Tricks and Creating an Add-on

[208]

You need to add an authorized redirect URL for this project. Enter the URL as shown
here, but replaced with your project key:

https://script.google.com/macros/d/[[PROJECT KEY]]/usercallback

Before clicking on Save, a copy of the client ID and client secret is required in
the getGoogleService function. Once this is done, click on Save; you can return
to this dashboard anytime afterwards.

Also add the authCallback function as shown here:

function authCallback(request) {
 var service = getGoogleService();
 var isAuthorized = service.handleCallback(request);

 if (isAuthorized) {
return HtmlService
 .createHtmlOutput('Success! You can close this tab.');
 } else {
return HtmlService
 .createHtmlOutput('Denied. You can close this tab');
 }
}

Before testing the add-on, import the OAuth2 client library using the project key:

MswhXl8fVhTFUH_Q3UOJbXvxhMjh3Sh48

The following are some sample keys:
•	 OAuth1 Lib Key: Mb2Vpd5nfD3Pz-_a-39Q4VfxhMjh3Sh48
•	 OAuth2 Lib Key: MswhXl8fVhTFUH_Q3UOJbXvxhMjh3Sh48

For more information on open source OAuth2 external library, visit
https://github.com/googlesamples/apps-script-oauth2.

Now, you have completed all the setup steps. Refresh the spreadsheet window so
that your add-on appears in an Add-on menu.

https://github.com/googlesamples/apps-script-oauth2

Chapter 9

[209]

In addition, once authenticated, you can reset or revoke the authentication using
this function:

function clearService(){
 OAuth2.createService('PACKT')
 .setPropertyStore(PropertiesService.getUserProperties())
 .reset();
}

Notice the same service name (PACKT) used here.

Other useful links
•	 Tutorials: https://developers.google.com/apps-script/articles
•	 Documentation: https://developers.google.com/apps-script/
•	 Blog: http://googleappsdeveloper.blogspot.in/search/label/

Apps%20Script

Summary
In this chapter, you learned how to overcome script maximum run time restrictions,
how to import external libraries, how to use OAuth, and how to create an add-on.
We hope you enjoyed reading this book, learning, and gathering hands-on skills
on most aspects of the Google Apps Script. Happy coding and enjoy!

https://developers.google.com/apps-script/articles
https://developers.google.com/apps-script/
http://googleappsdeveloper.blogspot.in/search/label/Apps%20Script
http://googleappsdeveloper.blogspot.in/search/label/Apps%20Script

[211]

Index
A
add-ons

creating 198
custom add-ons, creating 199, 200
installing, from Chrome

Web Store 198, 199
menu, creating 25-27
publishing 198
reference link 201, 209
testing 198-201
with OAuth2 external library,

creating 201-208
advanced Google services

Calendar events, listing in Sheets 89-91
Calendars, listing 88
enabling 86, 87
events, syncing from one Calendar to

another Calendar 91-95
article delivery

acknowledging for user 188, 190
articles

dispatching 187, 188
Atom feed

about 115
document, skeleton 118
reader application, creating 119, 120

B
Bitcoin 113
Bitcoin quotes

logging 113-115

Bitstamp trading platform
reference link 113

blog
reference link 209

button click
toast, displaying on 22

C
CalendarApp class

about 81
Calendar events, creating from

simple description 81
events, creating from external

CSV file contents 84
events, creating from Sheets data 83
events, creating with options 82
simple Calendar events, creating 82

cell
accessing 34, 35

Chrome Web Store
add-ons, installing 198, 199

clickable button
creating 17-21

ContentService
used, for creating RSS feed 150-152

createContact method 33
CSS package

reference link 200
custom add-ons

creating 199, 200
custom menu

creating 22, 23

[212]

D
data, Google Sheets

reading 35
writing 35

dispatch form
creating 183-186

document reviewing application
creating 131-140

DriveApp class
about 95
customized PDF files, creating 95-98
Drive file routing application,

creating 98, 99
Drive file search application,

creating 100-103
URL 95

E
e-mail merger application

building 50-53
e-mails

inline image, embedding 50
notification, sending on Form

submission 44, 45
sending, with MailApp service 44
with attachments, sending 49
with specific keywords in

message body, forwarding 48
employee timesheet application

creating 155-165
e-voting application

creating 72-75
external libraries

using, by script project
configuration 194-196

F
file upload application

creating 152-155
Form

creating, HtmlService used 63-70
creating, script used 55-60

Form submission
e-mail notification, sending on 44-46

G
getSheets() method 34
getValue method 35
getValues method 35
Gmail

about 4, 5
attachments, downloading to

Google Drive 41-44
Gmail Contacts, by script

creating 33, 34
Gmail Contact search application

building 35-40
Gmail parser application

building 40
Google Applications 1, 2
Google Apps Script (GAS)

about 2, 17
advantages 3
limitations 3
platform-independent 3
using 5
version-independent 3
Visual Basic for Applications (VBA) 2, 3

Google Apps services
about 6
Google Sheets, creating 7

Google Calendar 6
Google Cloud 2
Google Docs 6
Google Drive

about 3, 4
advantages 3
Gmail attachments, downloading to 41-44
Google Sheets, creating 7, 8

Google Forms
about 14
creating, within Google Sheets 14
research 15

Google search application
creating 108, 109

[213]

Google Sheet data
converting, as PDF file 146-148
rendering, as HTML with web

app 142, 143
Google Sheets

about 6
accessing 34, 35
configuring 169-171
creating, in Google Drive 7, 8
custom formula, creating 12, 13
data, reading 35
data, writing 35
Google Forms, creating 14
new projects, creating 11, 12
sharing 7, 8
URL 7

Google Translate service
supported languages, URL 122

H
HtmlService

defining 62
used, for creating Form 63-70

HTTP/HTTPS request
sending, with query string 148-150

I
inline commenting application

creating 131-140
inline image

embedding, in e-mail message 50

J
JSDoc annotations

reference link 197
using 196, 197

JSON
returning, by creating web app 144, 145

L
LanguageApp class

about 121
language translator application,

creating 122-131

language translator application
creating 122-131

Last Traded Price (LTP) 111
limitations

reference link 191

M
MailApp service

used, for sending e-mails 44
modal dialog

creating 27
modeless dialog

creating 28

O
OAuth open source library

using 197
offset

accessing 34, 35
Order form

creating 171-174
enhancing 174-182

order processing workflow application,
building

articles, dispatching 187, 188
dispatch form, creating 183-186
Google Sheets, configuring 169-171
Order form, creating 171-174
Order form, enhancing 174-182
steps 168

P
PDF file

Google Sheet data, converting as 146-148
private functions 42
properties service 41

Q
query string

HTTP/HTTPS request, sending
with 148-150

[214]

R
range

accessing 34, 35
Rich Site Summary (RSS)

about 115
feed document, skeleton 116
reader application, creating 117, 118

RSS feed
creating, ContentService used 150
document, skeleton 116

RSS reader application
creating 117, 118

S
script

debugging 28-31
publishing, as web application 60-62
used, for creating Forms 55-60

script exceeded maximum execution
time error

overcoming 191-193
scriptlets 63
script projects

about 9
configuration, for using external

libraries 194-196
creating, in Google Sheets 11, 12
custom formula, creating in Google

Sheets 12, 13
standalone script projects, creating 9, 10

sidebar
creating 24

stock quote ticker application
creating 110-112

T
templates 63
throw keyword 158
ticket reservation application

creating 76-80

toast
displaying, on button click 22

triggers
creating, manually 46
reference link 47

triggers by script
creating 47, 48
deleting 47, 48

U
UrlFetchApp class

about 105-107
Bitcoin quotes, logging 113
fetch method 105
Google search application,

creating 108, 109
optional parameters, using with 121
stock quote ticker application,

creating 110-112
user

enabling, for article delivery
acknowledgments 188-190

V
Visual Basic for Applications (VBA)

about 2, 3
advantages 3
platform-independent 3
version-independent 3

W
web app

creating, for rendering Google Sheet
data as HTML 142, 143

creating, to return JSON 144, 145
web application

script, publishing as 60-62

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Google Apps Scripts
	Google Applications
	Google Apps Script
	Visual Basic for Applications
	The advantages of GAS over VBA
	The limitations of GAS

	Google Drive
	Gmail
	Google Calendar
	Google Docs
	Google Sheets
	Google Apps services
	Creating Google Sheets in Drive and sharing them with your friends and the public

	Script projects
	Creating standalone script projects
	Creating new projects in Sheets
	Creating a custom formula in Sheets

	Google Forms
	Creating Forms within Google Sheet
	Some research

	Summary

	Chapter 2: Creating Basic Elements
	Creating a clickable button
	Showing toast when a button is clicked
	Creating a custom menu
	Creating a sidebar
	Creating an Add-ons menu
	Creating a modal dialog
	Creating a modeless dialog
	Debugging your script
	Summary

	Chapter 3: Parsing and Sending E-mails
	Creating Gmail Contacts by script
	Accessing Sheet, cell, range, and offset
	Reading and writing the Sheet data
	Building a Gmail Contact search application
	Building the Gmail parser application
	Properties service
	Downloading Gmail attachments to Drive
	Sending e-mails using the MailApp service
	Sending an e-mail notification on Form submission
	Creating triggers manually
	Creating and deleting triggers by script
	Forwarding e-mails if the specific keyword is found in the message body
	Sending e-mail with attachments
	Embedding inline images in an e-mail message
	Building an e-mail merger application
	Summary

	Chapter 4: Creating Interactive Forms
	Creating Forms using script
	Publishing the script as a web application
	HtmlService
	Creating a Form using HtmlService
	Submitting form using Google script
API method
	Creating forms using add-ons CSS and jQuery libraries
	Creating an e-voting application
	Creating a ticket reservation application
	Summary

	Chapter 5: Creating Google Calendar and Drive Applications
	The CalendarApp class
	Creating Calendar events from a simple description
	Creating simple Calendar events
	Creating events with options
	Creating events from Sheets data
	Creating events from an external CSV file's contents

	Enabling advanced Google services
	Listing all the Calendars
	Listing Calendar events in Sheets
	Syncing events from one Calendar to another Calendar

	The DriveApp class
	Creating customized PDF files
	Creating a Drive file routing application
	Creating a Drive file search application

	Summary

	Chapter 6: Creating Feed Reader and Translator Applications
	The UrlFetchApp class
	Creating a Google search application
	Creating a stock quote ticker application
	Logging Bitcoin quotes

	RSS and Atom feeds
	Skeleton of a RSS feed document
	Creating an RSS reader application
	Skeleton of an Atom feed document
	Creating an Atom feed reader application
	Using optional parameters with the UrlFetchApp class

	The LanguageApp class
	Creating the language translator application

	Creating a document reviewing and instant inline commenting application
	Summary

	Chapter 7: Creating Interactive Webpages
	Creating a web app to render Sheet data as HTML
	Creating a web app to return JSON
	Converting Sheet data as a PDF file
	Sending an HTTP/HTTPS request with
query string
	Creating RSS feed using ContentService
	Creating a file upload application
	Creating an employee timesheet application
	Summary

	Chapter 8: Building a Workflow Application
	Order processing workflow – steps explained
	Configuring Google Sheets
	Creating the Order form
	Enhancing the Order form
	Creating the dispatch form
	Dispatching the articles
	Enabling the user to acknowledge the article delivery
	Summary

	Chapter 9: More Tips and Tricks and Creating an Add-on
	Overcoming the "script exceeded maximum execution time" error
	Configuring your script project to use external libraries
	Using JSDoc annotations
	Using the OAuth open source library
	Creating, testing, and publishing add-ons
	Installing add-ons from Chrome Web Store
	Creating custom add-ons
	Testing your add-on
	Creating an add-on that uses an OAuth2 external library

	Other useful links
	Summary

	Index

