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Preface
The defining feature of spatial data analysis is the reference within the data being 
analyzed to locations on the surface of the earth. This is a very broad subject 
encompassing distinct areas of expertise such as spatial statistics, geometric 
computation, and image processing.

In practice, spatial data is commonly stored, viewed, and analyzed in Geographic 
Information System (GIS) software, of which the most well-known example is ArcGIS. 
However, most often, menu-based interfaces of GIS software are too narrow in scope 
to meet specialized demands or too inflexible to feasibly accomplish customized 
repetitive tasks. Writing scripts rather than using menus or working in combination 
with external software are two commonly used paths to solve such problems. 
However, what if we can use a single environment, combining the advantages of 
programming and spatial data analysis capabilities with a comprehensive ecosystem  
of computational tools that are readily implementable in customized procedures?

This book will demonstrate that the R programming language is indeed such an 
environment and teach you how to use it in order to perform various spatial data 
analysis tasks.

Most currently available books on this subject are focused on advanced applications 
such as spatial statistics, assuming you have prior knowledge of R and the respective 
scientific domains. Yet, introductory material on R from the point of view of a spatial 
data analyst, which is focused on introductory topics such as spatial data handling, 
computation, and visualization, is scarce. This book aims to fill that gap.
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What this book covers
Chapter 1, The R Environment, introduces the R environment, shows how to  
install R, and how to use it. Some of the basic concepts related to writing R code  
are introduced.

Chapter 2, Working with Vectors and Time Series, covers the basic data structure in R, 
which is vector. The main types of vectors (numeric, character, and logical) as well as 
basic operations on vectors (such as subsetting and summarizing vector properties) are 
reviewed. Working with dates and displaying a graphical output, two highly relevant 
abilities commonly applied later in the book, are also introduced in this chapter.

Chapter 3, Working with Tables, focuses on tables and automated calculations in R. 
This chapter teaches you how tabular data can be handled and how calculations 
of a repetitive nature based on tabular data can be carried out using loops and 
conditional statements. Reshaping and joining tables (vital skills for any data 
analysis) are also covered.

Chapter 4, Working with Rasters, brings the reader into the realm of spatial data 
analysis in R, starting with the raster data structure. Basic operations such as 
import and export, visualization and summary, and subsetting and extraction of 
raster values are covered here. Simple manipulations of raster values, including 
assignment, raster algebra, and reclassification are also presented.

Chapter 5, Working with Points, Lines, and Polygons, covers the second type of spatial 
data structures—vector layers. The basic methodology of working with point, line, and 
polygon layers is reviewed, followed by the coverage of more advanced operations, 
including reprojection, geometric calculations, spatial querying, and joining new data 
to existing layers.

Chapter 6, Modifying Rasters and Analyzing Raster Time Series, covers several advanced 
themes associated with raster data analysis in R. Geometric modifications of raster 
data, such as cropping, mosaicking, and aggregating are reviewed. Operations related 
to cell neighborhoods, including focal filtering, clumping, and topography-related 
calculations are covered next. Additional themes include resampling, reprojection,  
and handling of spatio-temporal raster data.

Chapter 7, Combining Vector and Raster Datasets, integrates the material presented in 
Chapter 5, Working with Points, Lines, and Polygons, and Chapter 6, Modifying Rasters 
and Analyzing Raster Time Series, by demonstrating how rasters and vector layers can 
be combined in a single analysis. Transformation between raster and vector data 
structures as well as data extraction from a raster based on vector layers are covered 
in this chapter.
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Chapter 8, Spatial Interpolation of Point Data, presents the subject of spatial 
interpolation in R from a practical point of view. Using a real-world case study, 
several common interpolation methods are applied and evaluated. An automated 
interpolation procedure is then constructed in order to create a series of interpolated 
maps from point data.

Chapter 9, Advanced Visualization of Spatial Data, shows readers how to produce 
publication-quality maps mainly using the popular ggplot2 R package.

Appendix A, External Datasets Used in Examples, provides a summary of the datasets 
used in the examples.

Appendix B, Cited References, lists the cited resources.

What you need for this book
To follow through the examples in this book, all you need to do is install R (which 
is available for free) and download the example datasets from the book's website. 
Some of the examples also require you to have an Internet connection to download 
additional datasets and R packages from the R environment.

Who this book is for
This book is intended for anyone who wants to learn how to efficiently analyze 
geospatial data with R. This book primarily targets GIS analysts, researchers, 
educators, and students who are working with spatial data and are interested in 
expanding their capabilities through programming. The book assumes familiarity 
with basic geographic information concepts (such as spatial coordinates) and no 
prior experience with R and/or programming.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles and an 
explanation of their meaning.

Code words in text, folder names, filenames, file extensions, and pathnames are 
shown as follows: "Here, we created a data.frame object named df by combining 
the vectors num, lower, and upper."
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A block of code is set as follows:

> num = 1:4
> lower = c("a","b","c","d")
> upper = c("A","B","C","D")
> df = data.frame(num, lower, upper)
> df
  num lower upper
1   1     a     A
2   2     b     B
3   3     c     C
4   4     d     D

New terms and important words are shown in bold. Words that you see on the screen, 
in menus or dialog boxes for example, appear in the text like this: "Under the Getting 
Started section, select the download R link."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code and data
You can download the example code and data files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you purchased this 
book elsewhere, you can visit http://www.packtpub.com/support and register to 
have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams 
used in this book. The color images will help you better understand the changes in 
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/4367OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the 
code—we would be grateful if you could report this to us. By doing so, you can save 
other readers from frustration and help us improve subsequent versions of this book. 
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the Errata Submission Form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded to our website or added to any list of 
existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.
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Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.
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The R Environment
In this chapter, we are going to introduce the R environment, learn how to install and 
use it, and introduce some of the main concepts related to writing R code. First, the 
technical issues of setting up the work environment are covered. After that, we will 
have R running and ready to receive instructions from the user. The basic concepts 
related to working in the R environment are also introduced.

In this chapter, we'll cover the following topics:

• Installing R
• Using R's command line
• Editing code using text editors
• Executing simple commands
• Arithmetic operations
• Logical operations
• Calling functions
• Understanding errors and warning messages
• Checking which class a given object belongs to

Installing R and using the command line
In this section, we'll cover the installation of R before getting started with the  
R command line.
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Downloading R
The R software can be downloaded from the R Project website at http://www.r-
project.org/. The following screenshot shows the main page of this website:

Perform the following steps to download R from the R Project website:

1. Under the Getting Started section, select the download R link.
2. Select one of the download sources (it does not matter which one).
3. Choose the appropriate version for your operating system, such as Linux, 

Mac OS, or Windows.
4. If you are using Windows, which is the option we will cover from now on, 

select install R for the first time.
5. Finally, click on the download link. This may vary according to the name of 

the current R version, such as Download R 3.1.0 for Windows.

Installing R
After downloading the file, follow the installation instructions. Note that if you are 
using a 64-bit version of Windows, you will be asked to select whether to install a 32-
bit version, 64-bit version, or both. It is recommended that you use the 64-bit version 
in this case since it allows a single process to take advantage of more than 4 GB of 
RAM (this is helpful, for example, when loading a large raster file into memory).
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Using R as a calculator 
Start R by navigating to Start | All Programs | R and choose the appropriate 
shortcut from there (such as R x64 3.1.0 when running the 3.1.0 64-bit version of R).

The main screen of the R Graphical User Interface (RGui) looks like the  
following screenshot:

The window you see when starting the program, R Console, is the command line. 
The > symbol followed by a flashing cursor indicates that the system is waiting for 
instructions from the user. When the user types an expression into the command 
line and presses Enter, that expression is interpreted from the R language into the 
language that the computer processor understands, and the respective operation that 
expression entails is performed. As you may have noted, very few point-and-click 
menu options are found within the R environment as almost all operations are only 
accessible through code.
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First, we will try simple calculations. For example, type the expression 5+5. The 
result 10 will appear on the next line followed by the > symbol, indicating that all 
instructions have been executed and the system is waiting for new ones:

> 5+5
[1] 10

What has just happened is that the expression 5+5 was interpreted and the respective 
instruction (add 5 and 5) was sent to the processor. The processor found the result 
(which is 10), which was then returned and printed in the command-line window. 
As we will see later, the result was saved neither in the RAM nor in the long-term 
computer memory, such as the hard disk. The meaning of the [1] part is that the 
result is a vector, with the first member being the number 10. Vectors will be covered 
in the next chapter.

Note that an R expression can be several lines long. For example, if we type 5*  
and press Enter, the symbol + appears on the next line, indicating that R is  
waiting for the remaining part of the expression (5 multiplied by ...):

> 5*
+ 2
[1] 10

If you change your mind and do not wish to complete the expression, you can press 
Esc to cancel the + mode and return to the command line. Pressing Esc can also be 
used to terminate the current process that is being executed. (We didn't get a chance 
to try that out yet since simple operations such as 5+5 are executed very quickly.)

While using the command line, you can scroll through the history 
of previously executed expressions with the ↑  and ↓  keys. For 
example, this can be useful to modify a previously executed 
expression and run it once more.
You can clear all text from the command-line window by  
pressing Ctrl + L.
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Throughout this book, code sections display both the expressions that the user enters 
(following the > symbol) and the resulting output. Reading both the inputs and the 
outputs will make it easier to follow the code examples. If you wish to execute the 
code examples in R and to investigate what happens when modifying them (which 
is highly recommended), only the input expressions should be entered into the R 
interpreter (these are the expressions followed by the >, or + if the expression spans 
several lines, symbols). Therefore, copying and pasting the entire content of code 
sections directly from the book into the interpreter will result in errors, since R will 
try to execute the output lines. The input, in fact, will not be correctly interpreted 
either since input expressions include > and + symbols that are not part of the code. 
To make things easier, all code sections from this book are provided on the book's 
website as plain R code files.

Coding with R beyond the command line 
Working in R exclusively through the command line is rarely appropriate in practice, 
except when running short and simple commands (such as those introduced in 
this chapter) or when experimenting with new functions. For more complicated 
operations, we will save our code to a file in order to have the capability, for 
example, to work on it on several instances or to share it with other users. This 
section introduces approaches to editing and saving R code.

Approaches to editing R code
Typing the expression 5+5 into the command line was easy enough. However, if we 
perform more complicated operations, we'll have to edit and save our code for later 
use. There are three main approaches to edit R code:

• Using R's built-in editor
• Using a text editor
• Using an Integrated Development Environment (IDE)

Using R's built-in editor is the simplest way to edit R code. In this case, you don't 
need to use any software other than R. To open the code editor, simply navigate to 
File | New script from R's menu. A blank text window will open. You can type code 
in this window and execute it by clicking on Ctrl + R, either after selecting the code 
section that you want to execute (the selected section will be sent to the interpreter) 
or by placing the cursor on the line that you want to execute (that line will be sent to 
the interpreter).
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The following screenshot shows the way RGui appears with both a command-line 
window and a code editor window:

You can save the R code that you have written to a file at any time (File | Save 
as...) in order to be able to work on it another day. An R code file is a plain text 
file, usually with the suffix .R. To open an existing R code file, simply select it after 
navigating to the File | Open script... menu.

It is sometimes easier to use other text editors since they provide more options 
than R's basic text editor. For example, one can edit R code in the all-purpose 
Notepad++ text editor, which is available for free at http://notepad-plus-plus.
org/. Notepad++ can be customized to edit code written in different programming 
languages (including R). By selecting the appropriate language, the specific function 
names and operators of that language will be highlighted in different colors for 
easier interpretation by the user. 
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The following screenshot shows Notepad++ with the menus used to select the R 
programming language:

A code section can be transferred to the R interpreter simply by copying it from the 
text editor and then pasting into the R command line. To automatically pass code 
into the R interpreter (such as by clicking Ctrl + R), it might be necessary to install 
an add-on component such as the NppToR software for Notepad++ (which is freely 
available at http://sourceforge.net/projects/npptor/), or use a text editor 
such as Tinn-R (which is freely available at http://sourceforge.net/projects/
tinn-r/) that has this capability built in.

The most sophisticated way of editing R code is to use an IDE, where an advanced 
text editor and the R interpreter portions are combined within a single window 
(much like in RGui itself), in addition to many other advanced functions that may 
be of help in programming and are not found in RGui. These can include automatic 
code completion, listings of libraries and functions, automatic syntax highlighting (to 
read code and output more easily), debugging tools, and much more.

Note that word processors such as Microsoft Word or OpenOffice 
Writer are not appropriate to edit computer code. The reason is that 
they include many styles and symbols that will not be recognized by 
R (or by any programming language for that matter), and this may 
cause problems. For example, the quote symbol “ (into which the 
word processor may automatically convert to the symbol ") will not be 
recognized by R, resulting in an error.
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Installation of RStudio
RStudio is an IDE designed specifically for R, and it is the recommended way 
of editing R code. You will quickly discover that even without using any of the 
advanced options, code editing in RStudio is more convenient than the previously 
mentioned alternatives. RStudio can be freely downloaded from www.rstudio.com.

Using RStudio
When you open RStudio, you will see the R command-line window and several 
additional utility panes that can display the code editor, help files, graphic output, 
and so on, during the course of working in R. To open a new R code file, navigate 
to File | New File | R Script. A code editing window, such as the one shown in the 
following screenshot, will appear:

In RStudio, code can be sent from the editor window into the command-line window 
in the same way as in RGui, that is, by pressing Ctrl + R either on a code section 
or on a single line of code. You can quickly switch to the code editor or to the 
command-line pane by clicking on it with the mouse or by pressing Ctrl + 1 or Ctrl 
+ 2, respectively. You can also have several R code files open in different tabs within 
the code editor pane.
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More details can be found on the RStudio website (www.rstudio.com) or in other 
resources such as Mark P.J. van der Loo and Edwin de Jonge's book Learning RStudio 
for R Statistical Computing, Packt Publishing (2012).

All references mentioned in this book are collectively provided in 
Appendix B, Cited References.

Evaluating expressions
We now know how to enter code for R to interpret, whether directly entering it 
into R's command line or sending it to the command line from a code editor. Our 
next step will be to see how to use the simplest operations: arithmetic and logical 
operators and functions.

Using arithmetic and logical operators
The standard arithmetic operators in R are as follows:

• +: Addition
• -: Subtraction
• *: Multiplication
• /: Division
• ^: Power

The following examples demonstrate the usage of these operators:

> 5+3
[1] 8
> 4-5
[1] -1
> 1*10
[1] 10
> 1/10
[1] 0.1
> 2^3
[1] 8
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Parentheses can be used to construct more elaborate expressions, as follows:

> 2*(3+1)
[1] 8
> 5^(1+1)
[1] 25

It is better to use parentheses even when it is not required to make the code clearer.

Another very useful symbol is #. All code to the right of this symbol is not 
interpreted. Let's take a look at the following example:

> 1*2 # *3
[1] 2

The # symbol is helpful for adding comments within the code to explain what  
each code segment does, for other people (or oneself, at a later time of reference)  
to understand it:

> 5+5 # Adding 5 and 5
[1] 10

Note that R ignores spaces between the components of an expression:

> 1+  1
[1] 2

Conditions are expressions that have a yes/no answer (the statement can be either 
true or false). When interpreting a conditional expression, R returns a logical value, 
either TRUE for a true expression or FALSE for a false expression. A third option, NA, 
which stands for Not Available, is used when there is not enough information to 
determine whether the expression is true or false (NA values will be discussed in the 
next chapter).

The logical operators in R are summarized as follows:

• ==: Equal to
• >: Greater than
• >=: Greater than or equal to
• <: Smaller than
• <=: Smaller than or equal to
• !=: Not equal to
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• &: and
• |: or
• !: not

For example, we can use condition operators to compare between two numbers  
as follows:

> 1<2
[1] TRUE
> 1>2
[1] FALSE
> 2>2
[1] FALSE
> 2>=2
[1] TRUE
> 2!=2
[1] FALSE

The and (&) and or (|) operators can be used to construct more complex expressions 
as follows:

> (1<10) & (10<100)
[1] TRUE
> (1<10) & (10>100)
[1] FALSE
> (1<10) | (10<100)
[1] TRUE
> (1<10) | (10>100)
[1] TRUE

As you can see in the preceding examples, when the expressions at both the sides 
of the & operator are true, TRUE is returned; otherwise, FALSE is returned (refer to 
the first two expressions). When at least one of the expressions at either side of the | 
operator is true, TRUE is returned; otherwise, FALSE is returned (refer to the last  
two expressions).

                           

http://                           /


The R Environment

[ 18 ]

Two other useful conditional operators (== and !=) are used for testing equality and 
inequality, respectively. These operators are opposites from one another since a pair 
of objects can be either equal or non-equal to each other.

> 1 == 1
[1] TRUE
> 1 == 2
[1] FALSE
> 1 != 1
[1] FALSE
> 1 != 2
[1] TRUE

As you can see in the preceding examples, when using the == operator, TRUE is 
returned if the compared objects are equal; otherwise FALSE is returned (refer to 
expressions 1 and 2). With != it is the other way around (refer to expressions 3 and 4).

The last operator that we are going to cover is the not operator (!). This operator 
reverses the resulting logical value, from TRUE to FALSE or from FALSE to TRUE. This 
is used in cases when it is more convenient to ask whether a condition is not satisfied. 
Let's take a look at the following example:

> 1 == 1
[1] TRUE
> !(1 == 1)
[1] FALSE
> (1 == 1) & (2 == 2)
[1] TRUE
> (1 == 1) & !(2 == 2)
[1] FALSE

Using functions
In mathematics, a function is a relation between a set of inputs and a set of outputs 
with the property that each input is related to exactly one output. For example, the 
function y=2*x relates every input x with the output y, which is equal to x multiplied 
by 2. The function concept in R (and in programming in general) is very similar:

• The function is composed of a code section that knows how to perform a 
certain operation.

• Employing the function is done by calling the function.
• The function receives one object, or several objects, as input (for example,  

the number 9).
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• The function returns a single object as output (for example, the number 18). 
Optionally, it can perform other operations called side effects in addition  
to returning the output.

• The type and quantity of the objects that a function receives as input  
has to be defined in advance. These are called the function's parameters  
(for example, a single number).

• The objects that a function receives in reality, at a given function call, are 
called the function's arguments (for example, the number 9).

The most common (and the most useful) expressions in R are function calls. In 
fact, we have been using function calls all along, since the arithmetic operators are 
functions as well, which becomes apparent when using a different notation:

> 3*3
[1] 9
> "*"(3,3)
[1] 9

A function is essentially a predefined set of instructions. There are plenty of built-in 
functions in R (functions that are automatically loaded into memory when starting 
R). Later, you will also learn how to use functions that are not automatically loaded, 
and how to define your own functions.

As you might have guessed from the previous example, a function call is composed 
of the function name, followed by the function's arguments within parentheses and 
separated by commas. For example, the function sqrt returns the square root of  
its argument:

> sqrt(16)
[1] 4

R is case sensitive. For example, Sqrt and sqrt are treated as two 
different names:

> Sqrt(16)

Error: could not find function "Sqrt"

When trying the first option, we receive an error message stating that 
there is no function named Sqrt in memory.
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Dealing with warning and error messages
Error messages are printed when for some reason it is impossible to execute the 
expression that we have sent to the interpreter. For example, this can happen when 
one of the objects we refer to does not exist (refer to the preceding information box). 
Another example is trying to pass an inappropriate argument to a function. In R, 
character values are delimited by quotes. Trying to call a mathematical function on a 
character understandably produces an error:

> "oranges" + "apples"
Error in "oranges" + "apples" : non-numeric argument to binary op$

The $ symbol at the end of the text message indicates that we 
need to scroll rightwards in the command-line window to see 
the whole message.

Warning messages are returned when an expression can be interpreted but the 
system suspects that the respective employed method is inappropriate. For example, 
the square root of a negative number does not yield a number within the real 
number system. A Not a Number (NaN) value is returned in such a case, along  
with a warning:

> sqrt(-2)
[1] NaN
Warning message:
In sqrt(-2) : NaNs produced

R has a set of predefined symbols to represent special constant values, most of  
which we already mentioned:

• NaN: Not a number
• NA: Not available
• NULL: An empty object
• TRUE and FALSE: Logical values
• Inf: Infinity (for example, try typing 1/0)

Unnecessary warnings and information messages, such as an 
indication that a given operation has been successfully carried out, are 
omitted from the code sections in this book to save space. However, 
readers who reproduce the examples will occasionally see such 
messages on the screen.
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Getting help
A help page on every function in R can be reached by using the ? operator (or the 
help function). For example, the following expression opens the help page for the 
sqrt function:

> ?sqrt

The same result is achieved by typing help(sqrt).

On the other hand, the ?? operator searches the available help pages 
for a given keyword (corresponding to the help.search function).
Another useful expression regarding the official R help pages is  
help.start() that opens a page with links to R's official 
introductory manuals.

The structure of all help files on functions is similar, usually including a short 
description of what the function does, the list of its arguments, usage details, a 
description of the returned object, references, and examples. The help pages can 
seem intimidating at first, but with time they become clearer and more helpful for 
reminding oneself of the functions' usage details.

Another important source of information on R is the Internet. Entering a question or a 
task that we would like to perform (such as Googling r read raster file) into a web search 
engine usually yields a surprising amount of information from forums, blogs, and 
articles. Using these resources is inevitable when investigating new ways to utilize R.

Exploring the basic object types in R
So far, we have encountered two types of objects in R: numeric values (numeric 
vectors, to be precise, as we will see in Chapter 2, Working with Vectors and Time 
Series) and functions. In this section, we are going to introduce the key concept that 
an object is an instance of a certain class. Then, we will distinguish between, for 
operational purposes, the classes that are used to store data (data structures) and 
classes that are used to perform operations (functions). Finally, a short sample code 
that performs a simple GIS operation in R will be presented to demonstrate the 
way themes introduced in this chapter (and those that will be introduced in Chapter 
2, Working with Vectors and Time Series, and Chapter 3, Working with Tables) will be 
applied for spatial data analysis in the later chapters of this book.
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Everything is an object
R is an object-oriented language; accordingly, everything in R is an object. Objects 
belong to classes, with each class characterized by certain properties. The class to 
which an object belongs to determines the object's properties and the actions we can 
do with that object. To use an analogy, a gray Mitsubishi Super-Lancer model 1996 
object belongs to the class car. It has specific attributes (such as color, model, and 
manufacturer) for each of the data fields a car object has. It satisfies all criteria that 
the car class entails; thus, the actions that are applicable to cars (such as igniting the 
engine and accelerating or using the breaks) are also meaningful with that particular 
object. In much the same way, a multi-band raster object in R will obligatorily have 
certain properties (such as the number of rows and columns, and resolution) and 
applicable actions (such as creating a subset of only the first band or calculating an 
overlay based on all bands).

All objects that are stored in memory can be accessed using their names, which begin 
with a character (without quotes; some functions, such as all arithmetic and logical 
operators can be called using their respective symbol within quotes, such as in "*" 
as we saw earlier). For example, sqrt is the name of the square root function object; 
the class to which this object belongs is function. When starting R, a predefined set 
of objects is loaded into memory, for example, the sqrt function and logical constant 
values TRUE and FALSE. Another example of a preloaded object is the number π :

> pi
[1] 3.141593

The class function returns the class name of the object that it receives as  
an argument:

> class(TRUE)
[1] "logical"
> class(1)
[1] "numeric"
> class(pi)
[1] "numeric"
> class("a")
[1] "character"
> class(sqrt)
[1] "function"
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Storing data in data structures
From the point of view of a typical R user, all objects we handle in R can be divided 
into two groups: data structures (which hold data) and functions (which are used to 
perform operations on the data).

The basic components of all data structures are constant values, usually numeric, 
character, or logical (the last code section shows examples of all three). The simplest 
data structure in R is a vector, which is covered in Chapter 2, Working with Vectors 
and Time Series. Later, we'll see how more complex data structures are essentially 
collections of the simpler data structures. For example, a raster object in R may 
include two numeric vectors (holding the raster values and its dimensions) and a 
character vector (holding the Coordinate Reference System (CRS) information). 
The object-oriented nature of the language makes things easier both for the people 
who define the data structure classes (since they can build upon predefined simpler 
classes, rather than starting from the beginning) and for the users (since they can 
utilize their previous knowledge of the simpler data structure components to quickly  
understand more complex ones).

Calling functions to perform operations
Objects of the second type—functions—are typically used to perform operations on 
data structures. A function may have its influence limited to the R environment, or 
it may invoke side effects affecting the environment outside of R. All functions we 
have used until now affect only the R environment; a function to save a raster file, for 
example, has an external effect—it influences the data content of the hard drive.

A short sample session
Finally, let's take a look at a complete code section that performs a simple spatial 
analysis operation:

> library(raster)
> r = raster("C:\\Data\\rainfall.tif")
> r[120, 120] = 1000
> writeRaster(r, "C:\\Data\\rainfall2.tif")

                           

http://                           /


The R Environment

[ 24 ]

The task that this code performs is to read a raster file, rainfall.tif, from the disk 
(look at the following screenshot to see its visualization in QGIS), change one of 
its values (the one at row 120 line 120, into 1000) and write the resulting raster to a 
different file.

The rainfall.tif file, as well as all other external data files used in this 
book, is provided on the book's website so that the reader can reproduce 
the examples and experiment with them. Refer to Appendix A, External 
Datasets Used in Examples, for a summary of all data files encountered 
throughout the book. R code files, containing all code sections that appear 
in the book, are also provided on the book's website for convenience.

Do not worry if you do not understand all the lines of code given in the beginning of 
this section. They will become clear by the time you finish reading Chapter 4, Working 
with Rasters. Briefly, the first line of code tells R to load the set of functions that are 
used to work with rasters (called the raster package), such as the raster and 
writeRaster functions that we use here to read and write raster files. In the second 
line, we read the requested file and load it into memory. In the third line of code, 
we assign the value 1000 to the specified pixel of that raster. The fourth line of code 
writes the new (modified) raster to the disk.
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The task indeed sounds simple, but when we use desktop GIS software, it may not 
be easy to perform through the menus and dialog box system (where direct access to 
raster values may be unavailable). For example, we may have to create a new point 
feature over the pixel that we want to change (120,120) in raster A, convert it to a 
raster B (with the value of 1 at the (120,120) pixel and 0 in all other pixels), and then 
use an overlay tool to say that we want the pixel in raster A that overlays the value 
of 1 in raster B to have the value of 1000, while all other pixels retain their original 
values. Finally, we might need to use an additional toolbox to export the new raster. 
However, what if we need to perform this operation on several files or repeatedly on 
a given file as new information comes in?

Generally speaking, when we use programming rather than menu-based interfaces, 
the steps we have to take may seem less intuitive (writing code rather than scrolling, 
clicking with the mouse, and filling out dialog boxes). However, we have much 
more power with giving the computer specific instructions. The beauty of using 
programming for data analysis, and using R for geospatial analysis in particular, 
is not only that we gain greater efficiency through automation, but also that we get 
closer to the data and discover a wide range of new possibilities to analyze it, some 
of which may not even come to mind when we use a predefined set of tools  
or menus.

Summary
In this chapter, we covered the basics of using R. At this point, you should have R 
installed and you should be able to write and execute several basic commands from 
the command line or from the text editor of your preference. The concepts of classes 
and objects were also introduced, which are both important for the rest of the topics 
that you will learn in this book. We are now ready to proceed to more complex data 
structures and operations used in spatial data analysis.

The next chapter will be devoted to vectors, the basic data structures in R. Then,  
we will introduce more complex data structures to represent nonspatial data in 
Chapter 3, Working with Tables, and spatial data in Chapter 4, Working with Rasters,  
and Chapter 5, Working with Points, Lines, and Polygons.
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Working with Vectors and 
Time Series

In this chapter, we are going to cover the basic data structure in R—a vector. 
Understanding vectors is the foundation for all the subsequent chapters. You will 
learn how to perform efficient operations on numeric and logical vectors and how 
to create subsets. After this, you will learn how to write custom functions in order to 
expand and customize R's capabilities. Working with dates and time series and the 
use of graphical functions are introduced at the end of this chapter.

In this chapter, we'll cover the following topics:

• Creating, saving, and examining the three main types of vectors
• The principles of performing operations on vectors in R
• Using functions that have more than one argument
• Creating subsets of vectors
• Dealing with missing values in vectors
• Writing new functions
• Working with dates
• Displaying and saving graphical output
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Vectors – the basic data structures in R
A vector is an ordered collection of values of the same type (or mode, in R 
terminology). As mentioned in the previous chapter, the three types of values 
that are useful for most purposes (including the topics of this book) are numeric, 
character, and logical. In this section, you are going to learn about several methods 
to create vectors, check the properties of interest for the given vectors, and perform 
operations involving pairs of vectors. You are also going to learn how to save the 
objects we create in the temporary computer memory via assignment.

Different types of vectors
Vectors are the most basic data structures in R since single elements (such as the 
number 10) are also represented in R by vectors (of length 1). As we have previously 
seen, when we enter a numeric value on the command line, it is printed on the 
screen. The number in square brackets to the left of the value is, in fact, the position 
of the leftmost element in the respective printed line. For example, the [1] part in 
the following output means the first (and only) printed element, 10, of the particular 
vector is at position 1:

> 10
[1] 10

Entering a value on the command line is, in fact, a shortcut for the  
print function:

> print(10)

[1] 10

Vectors can be created from individual elements with the c function, which stands 
for combine. Let's take a look at the following examples:

> c(1,5,10,4)
[1]  1  5 10  4
> c("cat","dog","mouse","apple")
[1] "cat"   "dog"   "mouse" "apple"

Sequential numeric vectors can be easily created with the : operator. Such vectors 
have many uses in R. The : operator creates an ordered vector starting at the value to 
the left of the : symbol and ending at the value to the right of the : symbol, as follows:

> 7:20
[1]  7  8  9 10 11 12 13 14 15 16 17 18 19 20
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Or, when the first argument is larger than the second one:

> 33:24
[1] 33 32 31 30 29 28 27 26 25 24

A logical vector can also be created with the c function. Remember that TRUE and 
FALSE are special values and not characters. Therefore, these values should be  
typed without quotes:

> c(TRUE,FALSE,TRUE,TRUE)
[1]  TRUE FALSE  TRUE  TRUE

However, in practice, the creation of logical vectors is usually associated with 
employing a conditional operator on a vector rather than manually typing a 
sequence of logical values. We will elaborate on this later.

There are several functions that we can use to convert between vector types. The 
two most useful ones are as.numeric and as.character, which are used to convert 
a vector to a numeric or character vector, respectively. There are other functions 
to convert objects of a particular class into another, which we'll see in subsequent 
chapters. Let's take a look at the following examples:

> 33:24
[1] 33 32 31 30 29 28 27 26 25 24
> as.character(33:24)
[1] "33" "32" "31" "30" "29" "28" "27" "26" "25" "24"
> as.numeric(as.character(33:24))
[1] 33 32 31 30 29 28 27 26 25 24

A factor is a special type of encoding for a vector, where the vector has a defined 
set of acceptable values or levels. Such an encoding is most common in statistical 
uses of R, for example, when defining categorical variables to identify treatments in 
an experiment. Using factors is not essential for the purposes of this book. However, 
encountering factors is inevitable when working with R (for example, when reading 
a table from a file, character columns are encoded as factors by default), so at the 
very least, we need to be aware of this data structure.

The factor function can be used to convert a vector into a factor:

> factor(c("cat","dog","dog"))
[1] cat dog dog
Levels: cat dog
> factor(c("cat","dog","dog","mouse"))
[1] cat   dog   dog   mouse
Levels: cat dog mouse
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As you can see, the acceptable levels of the resulting factor object (which are, by 
default, defined as a set of unique values that the vector has) are printed along  
with its values.

Using the assignment operator to save  
an object
So far we have used R by entering standalone expressions on the command line. 
As mentioned in the previous chapter, the returned objects are not saved anywhere 
this way. Therefore, we cannot make sequential operations with each created object 
serving as an input for the next step(s). However, saving intermediate result is 
essential to automate processes.

Saving objects to the temporary memory is called assignment. By temporary, 
we mean that the objects are deleted when we shut down the computer (or quit 
R), as opposed to writing to a file on the hard drive, where the information will 
permanently remain unless it's deleted. Assignment is performed by an assignment 
expression, which is composed of the object we would like to save, the assignment 
operator =, and the name we would like to give the new object. For example, we can 
save the 1:10 sequential vector to an object named v as follows:

> v = 1:10

We can then access our newly created object using its name the same way we 
accessed predefined objects (such as pi) in the previous chapter:

> v
[1]  1  2  3  4  5  6  7  8  9 10
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There is another assignment operator in R, namely <-:
> v <- 1:10

Throughout this book, the = operator is used since it is easier to type.
Also, note the difference between the assignment operator = and the 
equality conditional operator == (see the previous chapter). The = 
operator is used for assignment:
> one = 1

> two = 2

> one = two

> one

[1] 2

> two

[1] 2

The == operator is used to compare:
> one = 1

> two = 2

> one == two

[1] FALSE

When assigning an object with a name that already exists in memory, the older object 
is deleted and replaced by the new one:

> x = 55
> x
[1] 55
> x = "Hello"
> x
[1] "Hello"

The ls function returns a character vector with the names of all the user-
defined objects (in a given environment, with the default one being the global R 
environment). For example, so far we have assigned four objects in memory:

> ls()
[1] "one" "two" "v"   "x"
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Removing objects from memory
We can remove objects from memory by using the rm function. Let's take a look at 
the following examples:

> rm("v")
> ls()
[1] "one" "two" "x"

It is sometimes useful to remove all objects from memory. For example, 
if we want to run a given code section without worrying that the 
previously defined objects will interfere, this can be done by passing the 
whole list of objects currently in memory to the rm function as follows:
> rm(list = ls())

> ls()

character(0)

The character(0) output indicates an empty character vector.
Removing all objects can be achieved by navigating to Misc | Remove 
all objects (RGui) or Session | Clear workspace… (RStudio). The reason 
for writing the list=ls() part will become evident after reading the 
Using functions with several parameters section in this chapter.

Summarizing vector properties
Many functions in R are intended to work with vectors. The current section reviews 
some commonly used functions that are used to find out vectors' properties.

For example, we may be interested in the mean, minimal, and maximal values of a 
given vector. To get these, we can use the mean, min, and max functions, respectively:

> v = 1:10
> mean(v)
[1] 5.5
> min(v)
[1] 1
> max(v)
[1] 10

We can also get both the minimal and maximal values at once with the  
range function:

> range(v)
[1] 1 10
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The length function returns the number of elements a given vector has:

> v = c(4,2,3,9,1)
> length(v)
[1] 5

With logical vectors, we sometimes would like to know whether they contain at least 
one TRUE value or whether all of their values are TRUE. This can be achieved with the 
any and all functions, respectively:

> l = c(TRUE, FALSE, FALSE, TRUE)
> any(l)
[1] TRUE
> all(l)
[1] FALSE

If we would like to know how many TRUE values a vector contains, we can utilize the 
default transformation from logical to numeric vectors when arithmetic functions are 
used on the former:

> l = c(TRUE, FALSE, FALSE, TRUE)
> sum(l)
[1] 2

In this example, each TRUE value was first converted to 1 and each FALSE value to 0. 
Therefore, the vector c(TRUE,FALSE,FALSE,TRUE) became the vector c(1,0,0,1) 
and the sum of this vector's elements is 2.

The which function returns the positions of all the TRUE elements within a  
logical vector:

> which(l)
[1] 1 4

Here, a vector of length 2 was returned since there are two TRUE values in the  
vector l. The two values of this vector are 1 and 4 since the first TRUE value  
occupies the first position in the vector l, while the second TRUE value occupies  
the fourth position.
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The related functions which.min and which.max return the position of 
the minimal or maximal element in a numeric vector:
> which.min(v)

[1] 5

> which.max(v)

[1] 4

We are going to see another example with which.min later in this book.

The last useful function we will mention is the unique function, which returns the 
unique elements of a vector; that is, it returns a set of elements the vector consists of 
without repetitions. Let's take a look at the following examples:

> v = c(5,6,2,2,3,0,-1,2,5,6)
> unique(v)
[1]  5  6  2  3  0 -1

Element-by-element operations on vectors
As opposed to functions that treat the vector as a single entity (as seen in the 
previous section), some functions work on each element of the vector as if it was 
a separate entity and return a vector of the results (which, therefore, has the same 
number of elements as the input vector). In fact, all arithmetic and logical operators 
work this way, as shown in the following examples (we did not have a chance to 
witness this since we always used vectors of length 1):

> 1:10 * 2
 [1]  2  4  6  8 10 12 14 16 18 20
> 1:10 - 10
 [1] -9 -8 -7 -6 -5 -4 -3 -2 -1  0
> sqrt(c(4,16,64))
[1] 2 4 8

In the first expression, we multiplied the vector (1, 2, ..., 10) by 2, which resulted in 
a vector of 10 elements where the first element is equal to 1*2, the second is equal to 
2*2, the third is equal to 3*2, and so on, up to 10*2.

Logical operators function in the same way, shown as follows:

> x = 1:5
> x
[1] 1 2 3 4 5
> x >= 3
[1] FALSE FALSE  TRUE  TRUE  TRUE
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Here, for each of the values 1, 2, 3, 4, 5, it has been evaluated whether the value is 
larger or equal to 3, giving FALSE for 1 and 2 and TRUE for 3, 4, and 5.

If we want to check whether a given value from one vector is present in another, 
we can use the %in% operator. With %in%, we basically ask whether the value(s) of a 
vector on the left match any of the values of a vector on the right:

> 1 %in% 1:10
[1] TRUE
> 11 %in% 1:10
[1] FALSE

For these simple examples, we can do without the %in% operator (see the following 
examples). Its utility will become apparent towards the end of this chapter, when we 
want, for instance, to look for each element of a long vector A and check whether it 
has a match in a long vector B. Here are the alternatives to the preceding expressions:

> any(1:10 == 1)
[1] TRUE
> any(1:10 == 11)
[1] FALSE

In these two examples, we encompass the logical operation within the any function 
to check whether the resulting logical vector has at least one TRUE value.

Now, let's move on to character vectors. When working with character values, the 
paste function can be useful to combine separate elements into a single character 
string. The sep parameter of this function determines which characters will be  
used to separate the values (a single space is the default). Let's take a look at the 
following example:

> paste("There are", "5", "books.")
[1] "There are 5 books."

The paste function also works with vectors that have more than one element:

> paste("Image", 1:5)
[1] "Image 1" "Image 2" "Image 3" "Image 4" "Image 5"

Note that the paste function automatically converts numeric values into characters if 
characters are supplied:

> x = 80
> paste("There are", x, "books.")
[1] "There are 80 books."
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The paste0 function does the same thing as paste, with the default 
value for the sep parameter being nothing:
> paste(1, 2, 3, sep = "")

[1] "123"

> paste0(1, 2, 3)

[1] "123"

The recycling principle
In the previous chapter, we only used operators on two vectors of length 1. In this 
chapter, so far, we have used operations involving one vector of length 1 and another 
of length >1. What happens when we perform an operation involving two vectors of 
length >1?

If we have two vectors of exactly the same length, the operation is performed on each 
consecutive pair of elements taken from the two vectors, as follows:

> c(1,2,3) * c(10,20,30)
[1] 10 40 90

In this example, 1 is multiplied by 10, 2 is multiplied by 20, and 3 is multiplied  
by 30, and the three results are combined into a single vector of length 3.

In case when the lengths of the two vectors are unequal, the shorter vector is recycled 
before the operation is performed. In other words, values at the beginning of the 
shorter vector are attached to its end, sequentially and as many times as necessary, 
until the lengths of both vectors match. The simplest case, which we witnessed in the 
previous section, is the one that involves one vector of length 1 and another vector of 
length greater than 1. We can describe what happens in such a case as the recycling 
of the vector that has one element until it matches the length of the longer vector. 
For example, when executing the first of these two expressions, it is as if we are 
performing the second:

> 1:4 * 3
[1]  3  6  9 12
> 1:4 * c(3,3,3,3)
[1]  3  6  9 12

The same way, in the following example, the vector c(3,5) is recycled until it is of 
length 4, to c(3,5,3,5). The result is c(1,2,3,4) multiplied by c(3,5,3,5):

> c(1,2,3,4) * c(3,5)
[1]  3 10  9 20

                           

http://                           /


Chapter 2

[ 37 ]

When the length of the longer vector is not a multiple of the shorter vector, recycling 
is incomplete and we receive a warning message. Nevertheless, the operation is 
carried out. In the next example, the vector c(1,10,100) is of length 3, while the 
vector 1:5 is of length 5. The vector c(1,10,100) is recycled to c(1,10,100,1,10), 
which is the same length as the vector c(1,2,3,4,5), as follows:

> 1:5 * c(1,10,100)
[1]   1  20 300   4  50
Warning message:
In 1:5 * c(1, 10, 100) :
  longer object length is not a multiple of shorter object length

Using functions with several parameters
A function in R can have more than one parameter. In this section, we are going to 
get acquainted with supplying several arguments to such functions. At the same 
time, several new functions that take more than one argument will be introduced.

Supplying more than one argument in a 
function call
When specifying several arguments in a function, we need to assign each argument 
to the respective parameter using the usual assignment operator = during the 
function call, separating the assignment expressions for different parameters  
with commas.

For example, let's examine the seq function. Its most useful three parameters are 
from, to, and by (you can see in the function's help page that it has several more 
parameters). The seq function creates a sequential vector based on the input,  
as follows:

• from: This parameter specifies from where to begin
• to: This parameter specifies where to end
• by: This parameter specifies the step size

Let's take a look at the following examples:

> seq(from = 100, to = 150, by = 10)
[1] 100 110 120 130 140 150
> seq(from = 190, to = 150, by = -10)
[1] 190 180 170 160 150
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The : operator we previously encountered is, in fact, used to create 
sequences of special cases (where the step size is 1 or -1), while the 
seq function is more general.

There are several important rules regarding function calls involving more than  
one argument:

• The names of the parameters can be omitted as long as the arguments are 
entered in the default order, which is specified in the function definition. 
Therefore, the following two expressions are equivalent:
> seq(from = 5, to = 10, by = 1)
[1]  5  6  7  8  9 10
> seq(5, 10, 1)
[1]  5  6  7  8  9 10

We have, in fact, used this property already. For example, the name of the 
first argument of the mean function (the vector to compute the mean for) is x, 
but we can omit it during the function call:

> mean(1:10)
[1] 5.5
> mean(x = 1:10)
[1] 5.5

• On the contrary, if the parameter names are specified, the arguments order 
can be altered:
> seq(to = 10, by = 1, from = 5)
[1]  5  6  7  8  9 10

• Arguments can be skipped as long as they have a default value in the 
function definition. For example, the by parameter has the default argument 
of 1, therefore the following two expressions are equivalent:
> seq(5, 10, 1)
[1]  5  6  7  8  9 10
> seq(5, 10)
[1]  5  6  7  8  9 10
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Creating default vectors
New vectors populated with default values (0 for numeric, "" for characters, and 
FALSE for logical vectors) can be created via the vector function, specifying the mode 
(vector type) and length:

> vector(mode = "numeric", length = 2)
[1] 0 0
> vector(mode = "character", length = 10)
 [1] "" "" "" "" "" "" "" "" "" ""
> vector(mode = "logical", length = 3)
[1] FALSE FALSE FALSE

Creating repetitive vectors
You have already learned the two ways to create consecutive vectors with : and 
seq. Another special type of vector, a repetitive vector, can be created with the rep 
function (which stands for replicate). We simply need to specify what to replicate 
and how many times to replicate it:

> rep(x = 22, times = 10)
[1] 22 22 22 22 22 22 22 22 22 22

The rep function can operate on vectors longer than 1 as well:

> x = c(18, 0, 9)
> rep(x, 3)
[1] 18  0  9 18  0  9 18  0  9

Substrings
Another useful function with characters is substr, which is used to extract subsets 
of character strings, that is, we create a subset of the characters within an individual 
element of a vector (substring), rather than a subset of the vectors elements (see the 
next section). The function requires the start and stop values. Let's take a look at 
the following examples:

> x = "Subsetting strings"
> substr(x, start = 1, stop = 14)
[1] "Subsetting str"
> substr(x, 6, 14)
[1] "tting str"
> substr(x, 1, 3)
[1] "Sub"
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As we can see, the start and stop values are considered inclusive. For example, the 
last expression, where start is equal to 1 and stop is equal to 3, gives us the three 
characters occupying places 1 to 3 within the character string x.

Creating subsets of vectors
Creating subsets of data is one of the fundamental operations in data analysis. In 
this section, we will cover the two basic ways to create subsets of a vector. The first 
way involves numeric vectors, which specify the requested indices to be included 
in the subset. The second way involves using logical vectors, which specify for each 
element whether we would like to keep it or not.

Subsetting with numeric vectors of indices
Subsetting using numeric vectors of indices is done using the square brackets 
operator [, by providing the vector of indices within the square brackets. For 
example, we can select a single element of a vector by putting the value of the 
required index within brackets, as follows:

> x = c(5,6,1,2,3,7)
> x[3]
[1] 1
> x[1]
[1] 5
> x[6]
[1] 7

If we would like to, for example, find out the value of the last element in a given 
vector, we can use the length function, which returns its length (the index of the 
vectors' last element), as follows:

> x[length(x)]
[1] 7

We can also assign new values to a subset of a vector, as follows:

> x = 1:3
> x
[1] 1 2 3
> x[2] = 300
> x
[1]   1 300   3
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We can create a subset that is more than one element long, when the length of our 
vector of indices is larger than 1:

> x = c(43,85,10)
> x[1:2]
[1] 43 85
> x[c(3,1)]
[1] 10 43

As seen in the last expression, the indices vector, which we placed in the square 
brackets, does not need to be composed of consecutive values, nor do its values  
need to have an increasing order. For example, we can reverse the order of values  
in a vector by using a vector of indices going from the position of the last element 
down to 1:

> x = 33:24
> x
 [1] 33 32 31 30 29 28 27 26 25 24
> x[length(x):1]
[1] 24 25 26 27 28 29 30 31 32 33

The vector of indices can also include repetitive values, as follows:

> x = c(43,85,10)
> x[rep(3,4)]
[1] 10 10 10 10

In this example, the rep(3,4) expression creates the vector c(3,3,3,3). The latter 
then results in the creation of a subset (which is longer than the original vector), 
where the third element of the vector is repeated four times.

The recycling rule also applies to assignment into subsets:

> x = 1:10
> x[3:8] = c(15,16)
> x
[1]  1  2 15 16 15 16 15 16  9 10

In this example, the values 15 and 16 were alternated until the six-element long 
subset in the vector x is filled.
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Subsetting with logical vectors
Another method to create a subset of a vector is by supplying a logical vector within 
the [ operator. The logical vector points out to the elements that need to be kept 
within the subset; the elements to be kept are those whose indices match the indices 
of the TRUE values in the logical vector. It is frequently useful to create the logical 
vector that is used for subsetting by applying a conditional operator on the same 
vector we wish to subset. Let's take a look at the following example:

> x = seq(85, 100, 2)
> x
[1] 85 87 89 91 93 95 97 99
> x > 90
[1] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
> x[x > 90]
[1] 91 93 95 97 99

Here, we created a logical vector x>90, which like the vector x has eight elements 
(since the operation was carried out element by element as we saw previously). The 
values in this vector are either TRUE or FALSE depending on whether the vector x 
has a value larger than 90 at the respective position. When we create a subset of the 
vector x using the logical vector x>90, we get a vector containing those five values 
in x that occupy the same position that the TRUE values occupy in the x>90 vector. 
These are the positions where the values of x are greater than 90.

We can even apply more complex conditions to select some very specific values:

> x
[1] 85 87 89 91 93 95 97 99
> x[x>85 & x<90]
[1] 87 89
> x[x>92 | x<86]
[1] 85 93 95 97 99

Note that when subsetting with logical vectors, the order of values in the subset 
matches their order in the original vector, since the first element in the subset will 
be the first element that has TRUE in the logical vector, the second will be the second 
element that has TRUE in the logical vector, and so on.
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If none of the elements satisfies the required condition (which results in the logical 
vector having all FALSE values), we will get an empty vector as a result. For example, 
no values in the vector x (or in any other vector) are larger as well as smaller than 90 
at the same time:

> x>90 & x<90
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
> x[x>90 & x<90]
numeric(0)

Dealing with missing values
In this section, we are going to introduce the representation of missing values in R 
and ways to deal with them. Missing values can arise in many situations during data 
collection and analysis, either when the required information could not be acquired 
for some reason or when, due to certain circumstances, we would like to exclude 
some data from an analysis by marking them as missing. In the spatial data analysis 
context, it can be that some districts in an area we surveyed were inaccessible for 
data collection by the researcher or some parts of an aerial image were clouded and 
we could not digitize features of interest there.

Missing values and their effect on data
The special value that marks missing values in R is NA. As briefly mentioned in the 
previous chapter, NaN values represent cases when the resulting value cannot be 
represented within the real system number. NaN values function in the same way as 
NA in all respects that are relevant here.

The same way that NaN values can result from inappropriate calculations (such as 0 
divided by 0), NA values are created when there is not enough information to provide 
a result. For example, the 100th element of a vector that has only 10 elements is  
not available:

> x = 1:10
> x[100]
[1] NA

                           

http://                           /


Working with Vectors and Time Series

[ 44 ]

The average of a set of numbers including at least one NA is NA since the average can 
be ascertained only when all of the values it is based upon are known:

> x = c(2,5,1,0)
> mean(x)
[1] 2
> x[2] = NA
> x
[1]  2 NA  1  0
> mean(x)
[1] NA

At times, we will be interested in marking certain types of values as NA. For example, 
if we have a dataset of a car's driving speeds with one of the values being 900 km/h 
we will likely mark it as a typing error. Other times, the data we get to analyze will 
have a specific encoding to mark the missing values that people who created the data 
decided upon (for example -9999), and we would like to convert those values to NA 
in R. We will see an example of this later.

Detecting missing values in vectors
The is.na function indicates whether a given element of a vector is NA (in which case 
TRUE is returned) or not (in which case FALSE is returned). Let's take a look at the 
following examples:

> x = c(2,5,1,0)
> x[2] = NA
> x
[1]  2 NA  1  0
> is.na(x)
[1] FALSE  TRUE FALSE FALSE

At times, it is more convenient to check which values in a vector are not NA, 
rather than to check which are. To do this, we can use the ! operator, which we 
encountered in the previous chapter, to transpose the resulting logical vector:

> !is.na(x)
[1]  TRUE FALSE  TRUE  TRUE

For example, if we would like to have a subset of only the non-missing elements in x, 
we can type the following code:

> x[!is.na(x)]
[1] 2 1 0
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Performing calculations on vectors with 
missing values
Continuing the previous example, the mean of the non-missing elements in x can be 
computed if we subset only the non-missing values:

> mean(x[!is.na(x)])
[1] 1

To save us the need of manually removing missing values from a vector prior to such 
calculations, many functions that require all values to be non-missing (such as mean, 
min, and max) have a parameter called na.rm to indicate whether we would like 
to remove the missing values before executing the calculation. The default for this 
parameter is FALSE (which means that we do not remove the NA values); if we  
would like the opposite, we need to specify na.rm=TRUE:

> x = c(3,8,2,NA,1,7,5,NA,9)
> mean(x)
[1] NA
> mean(x, na.rm = TRUE)
[1] 5
> max(x)
[1] NA
> max(x, na.rm = TRUE)
[1] 9

Writing new functions
A function is an object loaded into the computer's temporary memory and can 
be activated (usually with specific arguments) to perform a certain action. So far, 
we have used predefined functions (from R's base packages; starting in Chapter 3, 
Working with Tables, we are going to use functions from other contributed packages). 
In this section, we will describe the structure of a function's definition and see how 
we can write our own functions.

Note that in this book you are not going to define that many functions and the 
functions you will define are going to be rather simple. The reason for this is that 
most of the time you will be learning new methods, rather than repeatedly applying 
a given method you developed (which would justify writing a function for it). 
However, in practice, wrapping your code to a function form is frequently useful 
in cases where you have developed a certain procedure you would like to apply 
routinely to different datasets.
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Defining our own functions
Let's review the components of a function's definition using an example. In the 
following example, we define a new function called add_five, which adds 5 to  
the provided argument and returns the result:

> add_five = function(x) {
+ x_plus_five = x + 5
+ return(x_plus_five)
+ }

The components of the definition are as follows:

• The function's name (for example, add_five)
• The assignment operator (=)
• The function definition operator (function)
• The function's parameters, possibly with default values, within brackets  

(for example, (x))
• Opening brackets for the code section ({)
• The function's body of code (for example, x_plus_five=x+5)
• The definition of the returned value (for example, return(x_plus_five))
• Closing brackets for the code section (})

The idea is that the code that constitutes the function's body will run every time the 
function is called:

> add_five(5)
[1] 10
> add_five(7)
[1] 12

When we perform a function call, the objects that we provide as arguments are 
assigned to local objects within the function's environment so that the function's code 
can use them. These objects exist only while the function runs and are inaccessible 
from the global environment after the function is terminated:

> x_plus_five
Error: object 'x_plus_five' not found

Every function returns a value that we would frequently like to preserve for 
subsequent calculations. This is done by assignment in the same way we saw  
earlier in this chapter for predefined functions:

> result = add_five(3)
> result
[1] 8
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The return(x_plus_five) expression can be skipped since by default, the function 
returns the last created object (which is x_plus_five). Therefore, in fact, we do not 
even need to assign the result to the x_plus_five object. In addition, when the code 
section contains a single expression, we can omit the parentheses. Therefore, an 
identical function can be defined simply, as follows:

> add_five = function(x) x + 5

Setting default values for the arguments
We can assign default arguments to parameters during the function's definition. This 
way, we will be able to skip some (or all) of the parameters during a function call. In 
other words, we can provide no arguments for some of the parameters, in which case 
the function will use the default arguments:

> add_five = function(x) x + 5
> add_five()
Error in add_five() : argument "x" is missing, with no default
> add_five = function(x = 1) x + 5
> add_five()
[1] 6

In the preceding example, in the first case, we got an error message since we tried 
calling the add_five function without providing an argument for the x parameter, 
which had no default value. In the second case, the function call was successful since 
this time the function was defined with a default value for x (which was equal to 1 
and thus, the returned value was 6).

Many of the predefined functions in R have default arguments for some of the 
parameters. For example, the default arguments for the mode and length  
parameters of the vector function are "logical" and 0:

> vector()
logical(0)

Therefore, by default, it creates an empty logical vector (the default arguments can 
be found on the respective function's help page). There are no limitations for the 
class each argument in a function call must belong to as long as we (or the person 
who wrote the function) have not defined such limitations. However, if one of the 
expressions in the function's code results in an error given the particular set of 
arguments, the execution of the function will terminate and we will get no returned 
value. For example, our add_five function will trigger an error when supplying a 
character vector as an argument:

> add_five("one")
Error in x + 5 : non-numeric argument to binary operator
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Working with dates and time series
In this section, we'll cover a concept closely related to vectors—time series. A time 
series is a sequence of values, each associated with a time index. For convenience, the 
values are usually ordered from the earliest to latest. The time difference between 
consecutive time indices can be fixed (in which case we have a regular time series) or 
variable (in which case we have an irregular time series), although an irregular time 
series can also be considered as a regular time series with missing data. For example, 
daily rainfall amounts in New York or Dollar to Euro currency exchange rates for the 
period of January 1, 2014 to January 15, 2014 would comprise two different time series.

Following its definition, the simplest way to represent a time series would be to have 
a separate vector of data values and a separate vector of time, with the same length, 
with each element of the data values vector corresponding to the respective element 
in the time vector. The only thing you need to learn in order to do this in R is to 
represent time, which is the topic of the present section.

Specialized time series classes in R
Several special classes to represent time series exist in R. Basically, such classes 
encompass the time and data values parts of a time series within a single object. 
For example, ts, zoo, and xts are different time series classes in R. The ts class is 
defined in the base packages, whereas the zoo and xts classes are defined in the 
contributed packages of the same respective names. The concept of working with 
packages in R will be introduced in the next chapter.

Working with time series objects has certain advantages such as having the ability 
to use specialized functions (for example, linear or spline interpolation of missing 
values in a time series using a single function call) or making sure that every object 
satisfies the class rules (for example, the number of data values and time indices 
in a time series must be equal). For the purposes of this book, we will stick to the 
basic manual representation of a time series. This way, we will have a chance to 
gain a better understanding of R's general principles, while the next step towards 
specialized time series classes would be easily executed by interested readers. There 
are numerous resources devoted to the time series analysis with R; for example, Paul 
S.P. Cowpertwait and Andrew V. Metcalfe in their book Introductory Time Series with 
R, Springer, (2009), provide an excellent applied introduction on this subject.
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Reading climatic data from a CSV file
You are now going to learn how to use dates in R using our very first real-world 
example. We are going to use the comma separated values (CSV) file named 
338284.csv, which was downloaded from the National Oceanic and Atmospheric 
Administration (NOAA) National Climatic Data Center. This file contains daily 
rainfall and temperature data from a meteorological station at the Albuquerque 
International Airport, New Mexico, from March 1, 1931 to May 15, 2014.

A CSV file is used to store plain tabular data with no additional features that are 
common in spreadsheet files such as XLS. This is how the file looks when opened  
in Excel:

The following three lines of code read the file into R and assign the values in the 
DATE and TMAX columns to two separate vectors named time (since the data in the 
DATE column represents time) and tmax (which stands for maximum temperature). 
This involves operations on tables, which will be explained in the next chapter. They 
are provided here only for completeness:

> dat = read.csv("C:\\Data\\338284.csv", stringsAsFactors = FALSE)
> time = dat$DATE
> tmax = dat$TMAX

The important point is that we now have two vectors to work with, time and tmax, 
as an exercise summarizing most of the topics we dealt with in this chapter.
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Converting character values to dates
Dates can be represented in R (as in many other types of software) using a special 
format. This allows certain special operations (such as finding the time difference 
between two dates) to be performed, which is not possible when dates are 
represented by simply using characters. There are several classes for date and time 
data in R. The simplest class (and the only one we will use in this book) is called 
Date, and it is used to represent calendar dates. Other classes exist to represent 
longer intervals of time (for example, monthly) or shorter (for example, date plus the 
time of day) intervals.

Note that the Date and factor objects are not vectors in R terminology 
since they have additional attributes not present in the vector class. 
However, from the user's perspective, working with them often follows 
the same principles as seen in vectors. For example, creating subsets of 
Date objects works the same way as creating subsets of vectors.

For example, the Sys.Date and Sys.time functions return the current date or date 
plus the time of day, respectively. The object returned by Sys.Date belongs to 
class Date, while the object returned by Sys.time is an object of a different class 
(POSIXct). Let's take a look at the following examples:

> x = Sys.Date()
> x
[1] "2014-05-22"
> class(x)
[1] "Date"
> y = Sys.time()
> y
[1] "2014-05-22 10:04:56 IDT"
> class(y)
[1] "POSIXct" "POSIXt"

As we can see in the first half of the previous example, a Date object is printed the 
same way as a character vector holding the value "2014-05-22" would. However, 
as already mentioned, we can conduct calculations involving time intervals with the 
Date class, which make it worthwhile to represent dates in such a specialized format. 
For example, we can tell what date it will be seven days from today or what the date 
was 1,000 days ago:

> x + 7
[1] "2014-05-29"
> x - 1000
[1] "2011-08-26"
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We can switch between the character vector and Date classes, using the 
as.character and as.Date functions. For example, we can convert our Date object 
x to a character vector using as.character:

> x = as.character(x)
> x
[1] "2014-05-22"
> class(x)
[1] "character"

We can convert the character vector back to Date using as.Date:

> x = as.Date(x)
> x
[1] "2014-05-22"
> class(x)
[1] "Date"

We can create a sequence of consecutive dates using seq, since this function accepts 
Date objects as well:

> seq(from = as.Date("2013-01-01"), 
+ to = as.Date("2013-02-01"), 
+ by = 3)
 [1] "2013-01-01" "2013-01-04" "2013-01-07" "2013-01-10"
 [5] "2013-01-13" "2013-01-16" "2013-01-19" "2013-01-22"
 [9] "2013-01-25" "2013-01-28" "2013-01-31"

This gives us consecutive dates separated by three days from each other, from 
January 1, 2013 to February 1, 2013.

The latter conversions, from character to date, were made possible so easily since 
the "2014-05-22" configuration is a default one. This way, the as.Date function 
knew that the first four characters in "2014-05-22" represent the year, the next two 
characters (following a hyphen) represent the month, and the last two characters 
represent the day. When we have characters representing a date in a different 
configuration, we need to use the format parameter of as.Date, where we specify the 
encoding types of the elements, their order, and the characters separating them (if any). 
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The common encoding types of the year, month, and day elements, and their 
respective symbols in R, are summarized in the following table:

Symbol Meaning
%d Day (for example, 15)
%m Months in number (for example, 08)
%b The first three characters of a month (for example, Aug)
%B The full name of a month (for example, August)
%y The last two digits of a year (for example, 14)
%Y The full year (for example, 2014)

Using this symbology, along with the format parameter of the as.Date function, 
we can convert character values of other formats to dates. Let's take a look at the 
following examples:

> as.Date("07/Aug/12")
Error in charToDate(x) : 
  character string is not in a standard unambiguous format
> as.Date("07/Aug/12", format = "%d/%b/%y")
[1] "2012-08-07"
> as.Date("2012-August-07")
Error in charToDate(x) : 
  character string is not in a standard unambiguous format
> as.Date("2012-August-07", format = "%Y-%B-%d")
[1] "2012-08-07"

In each of these two example pairs, the first expression resulted in an error since we 
were trying to convert a character value of a non-standard date format to a Date 
without specifying the format, while the second expression worked since we did 
specify the format.

Once we have a Date object, we can extract one or two (or all) of its three elements 
(year, month, and day), and encode them as we wish using the format function, 
specifying the required format the same way as shown earlier. Note that the results 
are no longer Date objects, but character vectors:

> d = as.Date("1955-11-30")
> d
[1] "1955-11-30"
> format(d, "%d")
[1] "30"
> format(d, "%B")
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[1] "November"
> format(d, "%Y")
[1] "1955"
> format(d, "%m/%Y")
[1] "11/1955"

We are now ready to proceed with our example involving the time and tmax vectors. 
First, we can find out that both vectors are numeric (integers, numbers without a 
fractional component, to be precise) as follows:

> class(time)
[1] "integer"
> class(tmax)
[1] "integer"

Then, let's see what the values of these vectors look like by printing the first 10 values 
from each one of them:

> time[1:10]
 [1] 19310301 19310302 19310303 19310304 19310305 19310306
 [7] 19310307 19310308 19310309 19310310
> tmax[1:10]
 [1]  72 133 178 183 111  67  78  83 139 156

The time vector contains dates in the %Y%m%d configuration (year, month, and day 
indicated by full numeric values, without separating characters). Therefore, we can 
convert it to a Date object, as follows:

> time = as.Date(as.character(time), format = "%Y%m%d")
> time[1:10]
 [1] "1931-03-01" "1931-03-02" "1931-03-03" "1931-03-04"
 [5] "1931-03-05" "1931-03-06" "1931-03-07" "1931-03-08"
 [9] "1931-03-09" "1931-03-10"
> class(time)
[1] "Date"

Note that we first needed to convert the time vector from numeric to character since 
the as.Date function works on character vectors. Now that time is a vector of dates, 
we have more freedom to treat the data as a time series.
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Examining our time series
Looking into the documentation on climatic data from NOAA (which is also 
provided on the book's website), we can see that the temperature is provided in 
tenths of Celsius degree, with missing values marked as -9999. First, we will convert 
the -9999 values to NA by selecting the respective subset and making an assignment:

> tmax[tmax == -9999] = NA

Then, to convert the data into degrees Celsius units, we will divide each of the values 
by 10:

> tmax = tmax / 10
> tmax[1:10]
 [1]  7.2 13.3 17.8 18.3 11.1  6.7  7.8  8.3 13.9 15.6

Now, let's check the range of values each vector contains:

> range(time)
[1] "1931-03-01" "2014-05-15"
> range(tmax, na.rm = TRUE)
[1] -14.4  41.7

This means that the range of the measured maximum daily temperatures from 
March 1, 1931 to May 15, 2014 was -14.4 to 41.7 degrees Celsius.

Regarding the dates of measurement, looking at the first few values of the time 
vector (or at the original CSV file in a spreadsheet, for that matter), it seems that 
the days are consecutive. However, we may want to make sure that all days of the 
respective period are indeed present in the file. We can do this by comparing a 
consecutive sequence all_dates covering the time period from March 1, 1931 to 
May 15, 2014 with our time vector:

> range_t = range(time)
> all_dates = seq(range_t[1], range_t[length(range_t)], 1)
> length(all_dates)
[1] 30392
> length(time)
[1] 30391

This already indicates that we have an incomplete agreement. Our time vector 
contains the 30391 values, while there are 30392 dates during the time period from 
March 1, 1931 to May 15, 2014. Therefore, the CSV file is missing at least one date.
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We will next check how many dates (and which ones) are missing. First, we will 
verify that, indeed, not all dates appear in the time vector using the %in% operator 
(asking for each element in all_dates whether it appears in the time vector) and  
the all function (asking whether all of the values in the resulting logical vector  
are TRUE).

> all(all_dates %in% time)
[1] FALSE

The answer is no; at least one of the dates in the range of March 1, 1931 to May 15, 
2014 is indeed missing from the time vector. The next question would be which one 
is missing, or which ones are missing? We can get the indices of the dates that appear 
in all_dates but not in time with the which function:

> which(!(all_dates %in% time))
[1] 5499

The missing date is the 5499th element of the all_dates vector. Its value is  
as follows:

> all_dates[which(!(all_dates %in% time))]
[1] "1946-03-20"

Manually examining the CSV file in a spreadsheet software will confirm that indeed 
the date March 20, 1946 was skipped for some reason.

Another interesting question we can ask is on what day the highest temperature 
(which was 41.7 degree Celsius, as we saw earlier) has been observed:

> max(tmax, na.rm = TRUE)
[1] 41.7
time[which.max(tmax)]
[1] "1994-06-26"

The highest maximum daily temperature was observed on June 6, 1994.

Creating subsets based on dates
If we are interested in a particular subset of the time series, say the period from 
December 31, 2005 to January 1, 2014, we could create a subset of the dates in that 
period based on the time vector and a respective subset of data values based on 
the tmax vector. We can do this in two steps. First, we will create a logical vector, w, 
pointing at those dates we would like to keep:

> w = time > as.Date("2005-12-31") & time < as.Date("2014-1-1")
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To find out the ratio between the number of days we would like to keep in the subset 
and the number of days in the complete series, we can type the following expression:

> sum(w) / length(w)
[1] 0.09614689

The amount of data within the subset we are interested in (December 31, 2005 to 
January 1, 2014) is about 9.6 percent of the total amount of data since the proportion 
of the TRUE values count in the logical vector, w, from the total number of values is 
0.096 (remember that before summing a logical vector, it is converted to a numeric 
one with ones instead of TRUE and zeroes instead of FALSE).

Secondly, we will use the w vector to create subsets of both the time and tmax vectors:

> time = time[w]
> tmax = tmax[w]

Note that the selection was non-inclusive of the end dates since we used the > and < 
operators:

> range(time)
[1] "2006-01-01" "2013-12-31"

If we wanted to include the first and last dates (December 31, 2005 and January 1, 
2014), we would rather use the >= and <= operators.

Introducing graphical functions
The graphical representation of data is a central feature, or even the main purpose, of 
data analysis in general and of spatial data analysis in particular. This section serves 
as a basic introduction to the procedure of creating graphical output in R. Such an 
introduction is necessary before moving on to the later chapters, where we would 
like to quickly be able to display intermediate products during various spatial data 
analysis steps. In Chapter 9, Advanced Visualization of Spatial Data, we will devote 
some additional time to the subject of visualization in R, and see how graphical 
output can be customized when producing publication-quality plots as the end 
product of spatial data analysis.

Displaying vectors using base graphics
We can graphically display a vector's values using the plot function. For example, 
the following expression opens a new window within the R environment with a plot 
of the vector values:

> plot(tmax)
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The following screenshot shows what the graphical output looks like, and where it 
appears, when using RGui and RStudio:

This output is the default one for the plot function; the values of the tmax vector 
are plotted on the y axis as a function of their index on the x axis, with open circles 
marking data points.

When plotting a time series, we would usually like to have the time of observation 
on the x axis (rather than the indices) and see a line connecting the data points from 
left to right (rather than unconnected circles). This can be done as follows:

> plot(time, tmax, type = "l")
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When plotted, we will see what is shown in the following screenshot:

The "l" argument for the type parameter indicates we want a line plot, while the 
first and second arguments are treated as vectors of coordinates on the x and y 
axes, respectively. We also see that the time vector is automatically formatted so 
that year breakpoints are labeled on the x axis. There are many additional ways in 
which we can further customize this plot (and other types of plots we will produce 
in subsequent chapters). However, we will usually limit ourselves to the default 
plots until we reach Chapter 9, Advanced Visualization of Spatial Data, where we will 
elaborate on the subject of graphical output customization within the context of 
spatial data.

The last plot can also be produced using the following expression:

> plot(tmax ~ time, type = "l")
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In this form of calling the plot function, the specification of the x and y axes is 
indicated by the tmax~time expression. The ~ operator creates a special type of 
object, a formula object. In this particular case, the formula indicates that tmax is the 
dependent variable (to the left of the ~ operator and thus plotted on the y axis) and 
time is the independent variable (to the right of the ~ operator and thus, plotted on 
the x axis). Formula objects are most common in statistical applications of R (we shall 
see an example of this in Chapter 8, Spatial Interpolation of Point Data), and in some 
other cases as well (as we shall see in the next chapter).

Saving graphical output
With the graphical window selected, we can save the image we see in a file through 
the menus (by navigating to File | Save as in RGui). Several raster (such as *.png) 
and vector (such as *.pdf) file formats are available for the output. However, 
sometimes we would like to embed the instructions to save a graphical output 
within our code to save ourselves the trouble of clicking on the menu buttons when 
constantly updating an image or when saving multiple images. This is possible  
by specifying a different graphical device—a file—instead of the graphical  
window—and closing it afterward. For example, the following code creates a PDF 
file (named time_series.pdf) with the plot we just saw in the C:\Data directory:

> pdf("C:\\Data\\time_series.pdf")
> plot(tmax ~ time, type = "l")
> dev.off()

The last expression, dev.off(), turns the PDF graphics device off, thereby returning 
to the default device (which is the graphical window) for the subsequent plots.

Note that path indications in R are character values with 
directories separated by \\. The / symbol can also be 
used, but not the usual Windows symbol \ (which is used 
for a different purpose in R).

There are several functions analogous to the pdf function to write graphical output in 
other formats, such as bmp, jpeg, png, and tiff. All of these functions have several 
parameters (in addition to the file path) to modify the output, such as specifying 
image width, height, and resolution; see the help pages of these functions for more 
information.
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The main graphical systems in R
There are three main graphics systems in R: base graphics (which we just used to create 
the previous plot), lattice, and ggplot2. For example, the following code produces 
the previous plot as well as two analogous plots using lattice and ggplot2. The 
code includes some functions that will be made clear later, and requires installation of 
additional packages (which we will cover in the next chapter).

> dat = data.frame(time = time, tmax = tmax)
# Base graphics
> plot(tmax ~ time, dat, type = "l")
# lattice
> library(lattice)
> xyplot(tmax ~ time, data = dat, type = "l")
# ggplot2
> library(ggplot2)
> ggplot(dat, aes(x = time, y = tmax)) + 
+ geom_line()

The graphs this code produces are sequentially shown in the following screenshot, 
from left to right, with the name of the respective graphics system indicated at the 
top of each panel:
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Many types of plots (such as the time series plot we just created) can be produced 
using any of the three systems. Therefore, choosing one in many cases is a matter of 
taste. However, some non-overlapping features do exist among the graphics systems. 
For example, faceting (which produces a series of plots for different portions of the 
data side by side) cannot be achieved using base graphics, while 3D plots cannot be 
produced using ggplot2. As seen in the preceding screenshot, there are also some 
small differences in the default styling of the plots. Finally, as we can see in the 
preceding code section, the ggplot2 system has quite a different syntax compared  
to base graphics and lattice.

In the upcoming chapters, we are going to use base graphics (and sometimes 
lattice) to quickly visualize the products we get at various steps of spatial 
data analysis. In Chapter 9, Advanced Visualization of Spatial Data, we are going to 
concentrate on customizing graphical output in R, mostly using ggplot2.

Summary
In this chapter, we covered the basic subjects that we are going to use in almost every 
operation from now on. First, you learned the fundamental methods of working with 
vectors, including the creation of three common types of vectors, subsetting them, 
and dealing with missing values in them. You also saw how dates are represented 
in R, and how such a representation can be useful when working with time series. In 
addition, we expanded on the function call structure in R, discussed how to define 
custom functions, and saw how a graphical output can be produced and saved.

In the next chapter, we are going to discuss working with tables in R. We will see that 
the common tabular data class in R (data.frame) is a direct extension of the vector 
class. Thus, many of the operations to work with tables will be intuitive once we know 
how to work with vectors. Later, we will move on to working with spatial data classes, 
where the principles of working with vectors and tables are also directly applicable.
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Working with Tables
Working with tables is central to programming in R, both with regards to spatial 
analysis (for example, working with attribute tables of geometries) and more 
generally. In this chapter, we will learn how to work with tables on their own, while 
in the subsequent chapters, we will see the ways that spatial data analysis involves 
dealing with tables. At the same time, two central subjects, which we will have to 
be familiar with for the subsequent chapters, will be introduced. These are working 
with contributed packages in R and controlling code execution.

As a central example, we will work with real-world data (monthly climatic records 
for Spain, which were downloaded from the NOAA archive) so that we can witness 
several very common cleaning and reshaping procedures of tables.

In this chapter, we'll cover the following topics:

• Working with data.frame objects to represent tables in R
• Controlling code execution through conditional statements and loops
• Automated calculations on tables and vectors using the apply functions
• Installing and using contributed packages in R
• Reshaping tables into different forms
• Joining tables
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Using the data.frame class to represent 
tabular data
In this section, you will learn how tables are represented in R and how you can work 
with tabular objects. In particular, you will learn two common ways to create table 
objects (from vectors or by reading a file from the disk). Afterwards, you will learn 
how to examine, subset, and make calculations with tables.

Creating a table from separate vectors
The data.frame class is the basic class to represent tabular data in R. A data.frame 
object is essentially a collection of vectors, all with the same length. However, the 
vectors do not have to be of the same type. They may also include one-dimensional 
objects that are not strictly vectors, such as Date or factor objects (see the previous 
chapter). Therefore, data.frame objects are particularly suitable to represent data 
with different variables in columns and different cases in rows. Thus, variables 
may be of different types; for example, a table storing climatic data may have one 
character variable to store meteorological station names, another Date variable 
to represent measurement dates, and a third numeric variable to represent the 
measured values such as rainfall amounts or temperatures.

One way to create a data.frame object is to combine several vectors that are already 
present in the R environment. This can be achieved with the data.frame function 
with the arguments being the names of the vector objects we would like to combine. 
Let's take a look at the following examples:

> num = 1:4
> lower = c("a","b","c","d")
> upper = c("A","B","C","D")
> df = data.frame(num, lower, upper)
> df
  num lower upper
1   1     a     A
2   2     b     B
3   3     c     C
4   4     d     D
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Here, we created a data.frame object named df by combining the vectors num, 
lower, and upper. The previously independent vectors now comprise columns in 
df. As we can see, the names of the columns appear on the first line of the printed 
output of a data.frame object. These are the names of the original vectors, num, 
lower, and upper. Rows have names as well; these are automatically assigned with 
the characters 1, 2, 3, and 4 (as it appears to the left of the first column in the printed 
output).

We can also create the data.frame object in a single step by performing 
the vector assignments within the data.frame function call itself:

> df = data.frame(

+ num = 1:4,

+ lower = c("a","b","c","d"),

+ upper = c("A","B","C","D"))

Note that in this example, vector types were different (num is numeric, whereas 
lower and upper are characters). However, the vectors had the same length; 
otherwise, an error would have occurred since all columns of data.frame must  
have the same length.

An important parameter of the data.frame function (and several other 
functions such as read.csv, which will be introduced in the next section) 
is stringsAsFactors. The stringsAsFactors parameter controls 
whether character columns are automatically converted to factors (the 
default value is TRUE). Within the context of this book, we would usually 
like to keep the character vectors as characters for greater flexibility (we 
can always make the conversion to factors ourselves when necessary with 
the factor function; see the previous chapter for more information). 
Therefore, a function call preserving character columns will be as follows:

> df = data.frame(num, lower, upper, 

+ stringsAsFactors = FALSE)

> df

  num lower upper

1   1     a     A

2   2     b     B

3   3     c     C

4   4     d     D

The way our table is printed on screen is identical when compared to the 
previous example. However, using methods, which will be introduced 
later, we will be able to see that columns 2 and 3 now consist of character 
vectors rather than factors.

                           

http://                           /


Working with Tables

[ 66 ]

We can add rows or columns to an existing data.frame object using the rbind (row 
bind) and cbind (column bind) functions, respectively. For example, we can add a 
fifth row to our df table using rbind as follows:

> row5 = c(5,"e","E")
> rbind(df, row5)
  num lower upper
1   1     a     A
2   2     b     B
3   3     c     C
4   4     d     D
5   5     e     E

Alternatively, we could add a fourth column using cbind as follows:

> word = c("One","Two","Three","Four")
> cbind(df, word, stringsAsFactors = FALSE)
  num lower upper  word
1   1     a     A   One
2   2     b     B   Two
3   3     c     C Three
4   4     d     D  Four

In the previous example, we had to specify, once again, that we do not want the 
character vector, word, to be converted into a factor vector.

Creating a table from a CSV file
Another common method to create a data.frame object is to read tabular data from 
the disk. For example, we can read a CSV file using the read.csv function (which 
was briefly mentioned earlier). The first parameter of this function, and the one with 
no defaults, is a file indicating the path to the CSV file. For example, the following 
expression reads the contents of the 343452.csv file and assigns it to a data.frame 
object called dat (remember that directories should be separated with \\ or /):

> dat = read.csv("C:\\Data\\343452.csv")
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The 343452.csv file contains monthly records of precipitation, minimum 
temperature, and maximum temperature from Spain for a period of 30 years. It was 
downloaded from the NOAA climatic archive and provided as is. Since we will use 
data from this file in several of our examples, in this and the upcoming chapters, let's 
examine its contents. Because the table is very large, to see what it looks like, we can 
print only the first several rows with the head function, as follows (similarly, with 
the tail function, we can print the several last rows):

> head(dat)
            STATION STATION_NAME ELEVATION LATITUDE LONGITUDE
1 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
2 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
3 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
4 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
5 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
6 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
      DATE TPCP MMXT MMNT
1 19840101  514   56   -5
2 19840201    0   98   28
3 19840301  687   72    2
4 19840401  136  122   35
5 19840501  214  118   30
6 19840601   65  196  105

The column's contents are as follows:

• STATION: This is the meteorological station identification code
• STATION_NAME: This is the meteorological station name
• ELEVATION: This is the elevation of the station above sea level (meters)
• LATITUDE: This is the latitude of the station (decimal degrees)
• LONGITUDE: This is the longitude of the station (decimal degrees)
• DATE: This is the date of measurement
• TPCP: This is the total monthly precipitation (0.1 mm units)
• MMXT: This is the mean monthly maximum temperature (0.1 degree  

Celsius units)
• MMNT: This is the mean monthly minimum temperature (0.1 degree  

Celsius units)

The complete documentation for the CSV file is provided along with the data from 
NOAA (and can also be downloaded from the book's website).
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According to what you learned in the previous chapter, the dates are recorded in  
the %Y%m%d format (in Date objects terminology). However, since the data is  
monthly, the day component is not informative (we can see that all days are coded 
as 01). The missing values of measurements are marked as -9999, a commonly 
encountered convention.

Examining the structure of a data.frame 
object
We can get the number of rows and columns in our data.frame object using the 
nrow and ncol functions, respectively. For example, our small table df has four rows 
and three columns, while dat (containing the monthly climatic data) has 28,536 rows 
and nine columns:

> nrow(df)
[1] 4
> ncol(df)
[1] 3
> nrow(dat)
[1] 28536
> ncol(dat)
[1] 9

We can, if the table is not too long, print the table's contents and see how many 
columns (or rows) are there, according to the row names. However, it is generally 
advisable to get the properties of an object using functions (such as ncol), rather 
than typing a specific number manually (such as 9). This way, our code is going to 
be transferable to an analysis of any object and not just the specific object we are 
currently working on.

We can get the lengths of both row and column dimensions using the dim function. 
If our argument is a data.frame object (we will see later that the dim function 
works with other classes as well; such a function is called a generic function in R 
terminology), a vector of length 2 is returned with the first element being the number 
of rows and the second being the number of columns, as follows:

> dim(dat)
[1] 28536     9
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We can also get the names of the rows and columns (getting column names is often 
more useful) as a character vector using the functions rownames and colnames, as 
shown in the following example:

> colnames(dat)
[1] "STATION"      "STATION_NAME" "ELEVATION"    "LATITUDE"    
[5] "LONGITUDE"    "DATE"         "TPCP"         "MMXT"        
[9] "MMNT"

Assignment into column names can be made to replace the existing names with new 
ones. For example, to change the name of the third column from ELEVATION to Elev, 
we can use the colnames(dat)[3]="Elev" expression. Similarly, we can convert 
all column names of the data.frame object from uppercase to lowercase using the 
tolower function so that it will be easier to type:

> colnames(dat) = tolower(colnames(dat))
> colnames(dat)
[1] "station"      "station_name" "elevation"    "latitude"    
[5] "longitude"    "date"         "tpcp"         "mmxt"        
[9] "mmnt"

It is frequently useful to examine the structure of a given object using the str function. 
This function (which is also generic) prints the structure of its argument showing the 
data types of its components and the relations between them. In the case of a data.
frame object, a list of the column names and types is printed, along with the table 
dimensions, and the first several values (or all values, if the table is very short). For 
example, the output for the small table df shows that we have a table with three 
columns (the variables) and four rows (the observations). It also shows that the first 
column is numeric and the last two are characters. Here is how the output looks like:

> str(df)
'data.frame':   4 obs. of  3 variables:
 $ num  : int  1 2 3 4
 $ lower: chr  "a" "b" "c" "d"
 $ upper: chr  "A" "B" "C" "D"
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Subsetting data.frame objects
There are two principal ways to create a subset of a data.frame object. The first 
involves accessing separate columns, using the column names, with the $ operator. 
The second involves providing the two vectors of indices, names or logical values, 
with the [ operator.

Using the $ operator, we can gain access to separate columns in a data.frame object. 
To do this, we simply insert the name of the data.frame to the left of the $ operator 
and the name of the required column to the right, as follows:

> df$num
[1] 1 2 3 4
> df$lower
[1] "a" "b" "c" "d"
> df$upper
[1] "A" "B" "C" "D"

Since the columns of a data.frame object are basically vectors, we can employ all the 
previously presented vector methods in columns of a data.frame object the same 
way we would in independent vectors. For example, we can replace the -9999 values 
(which mark the missing data) with NA, for each of the three measured variables in 
dat, as follows:

> dat$tpcp[dat$tpcp == -9999] = NA
> dat$mmxt[dat$mmxt == -9999] = NA
> dat$mmnt[dat$mmnt == -9999] = NA

The only difference from how we did this operation in the previous chapter is the 
dat$ part. This means that we refer to columns of the data.frame object (dat), 
rather than independent vectors. Now, let's convert the tpcp values to mm units 
and mmxt and mmnt values to degree Celsius units by dividing each value in the 
respective columns by 10, as follows:

> dat$tpcp = dat$tpcp / 10
> dat$mmxt = dat$mmxt/ 10
> dat$mmnt = dat$mmnt / 10

Note that if we would have made the division by 10 before encoding the -9999 
values as NA, we would have got the -999.9 values, while now that we have NA 
values, they will remain NA since NA/10 gives NA. This highlights the importance of 
representing missing data with NA to reduce the chance of mistakes.
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Using the [ operator, we can obtain a subset of a data.frame object, which will 
include the intersection of any number of rows and columns. This works the same 
way as vectors subsetting with one difference, that is, a data.frame is a two-
dimensional object while a vector is a one-dimensional object. Therefore, we need to 
provide two indices rather than just one.

Remember that when subsetting with the [ operator in data.frame, the first index 
refers to rows and the second index refers to columns. This arrangement is going to 
appear in other contexts as well (for example, in matrices and rasters).

The two vectors of indices, used in order to create a subset of a data.frame object, 
can include any combination of the following:

• A numeric vector, in which case the numeric vector refers to the indices of 
rows/columns to retain in the subset

• A character vector, in which case the character vector indicates the names of 
rows/columns to retain

• A logical vector, in which case the logical vector indicates whether to retain 
each row/column of data.frame

We have been extensively using methods 1 and 3 in vectors (see the previous 
chapter), so extending the methods to the two-dimensional case should be intuitive. 
In fact, method 2 can also be used with vectors since vectors can have element names 
the same way that a data.frame object has row names and column names (but we 
are not going to use that here).

For example, the following expression gives us the element populating the second 
row and the third column of df:

> df[2, 3]
[1] "B"

Leaving an empty space instead of the row's or column's index indicates we are 
interested in all the elements of the respective dimension (all rows or all columns). 
For example, the following expressions return all elements of the second row and the 
third column of df:

> df[2, ]
  num lower upper
2   2     b     B
> df[ ,3]
[1] "A" "B" "C" "D"
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By default, a subset of a data.frame object is converted into a simpler class if 
values from a single column are involved. For example, the df[2, 3] and df[ ,3] 
expressions returned (character) vectors. The df[2, ] expression returned a data.
frame object since three columns are involved. In fact, the second row of df contains 
both numeric and character values, while we already know that a vector can only 
contain values of the same type. If we wish, we can suppress the data.frame 
simplification by using the drop parameter, indicating FALSE (instead of the default 
value, TRUE), and then the subset will remain a data.frame object no matter what:

> df[ ,3, drop = FALSE]
  upper
1     A
2     B
3     C
4     D

Compare the output to the one from the previous example. Using drop=FALSE in the 
previous expression, we got a data.frame object (with four rows and one column) 
instead of a vector.

The other two methods of subsetting a data.frame object are using logical and 
character vectors as indices. Let's take a look at the following example:

> df[df$lower %in% c("a","d"), c("lower","upper")]
  lower upper
1     a     A
4     d     D

In this expression, if we put it in plain language, we are requesting to get the subset 
of df with the rows being where the values of the lower column are either "a" or 
"d", and the columns are both lower and upper.

One very helpful function to use with data.frame objects is complete.cases. This 
function returns a logical vector, the same length as the number of rows in the data.
frame object, indicating whether each row (case) is complete (has no NA values in it). 
When a given row is complete, the respective element in the logical vector will be 
TRUE; when a row is incomplete, the value will be FALSE. Then, the resulting logical 
vector can be used to remove the incomplete rows from a table as follows (note that 
the output is not printed here to save space):

> dat[complete.cases(dat), ]

Note that in this expression, we use the vector returned by complete.cases as a 
logical vector indicating the selection of rows in dat to be retained.
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Calculating new data fields
As previously shown, we can assign new values to a column of a table (or to a subset 
of a column) using the $ operator. If the column name we assign does not exist in the 
table, a new column will be created to accommodate the data. Let's take a look at the 
following examples:

> df
  num lower upper
1   1     a     A
2   2     b     B
3   3     c     C
4   4     d     D
> df$word[df$num == 2] = "Two"
> df
  num lower upper word
1   1     a     A <NA>
2   2     b     B  Two
3   3     c     C <NA>
4   4     d     D <NA>

Here, we made an assignment of the character value "Two" to a subset of the word 
column (which did not previously exist in df) corresponding to the rows where the 
value of column num is equal to 2. As a result, a new column has been created, which 
contains the assigned value (and NA for all the other elements). Note that <NA> is 
simply the character representation of NA (the column word is a character vector).

As another example with our climatic data, we are going to create two new columns, 
holding the year and month of each measurement. For this purpose, we will first 
convert the date column to a Date object. Then, we will extract the years and months 
from the data in this column as follows (see the previous chapter for details):

> dat$date = as.Date(as.character(dat$date), format = "%Y%m%d")
> dat$month = as.numeric(format(dat$date, "%m"))
> dat$year = as.numeric(format(dat$date, "%Y"))
> head(dat)
            station station_name elevation latitude longitude
1 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
2 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
3 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
4 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
5 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
6 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
        date tpcp mmxt mmnt month year
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1 1984-01-01 51.4  5.6 -0.5     1 1984
2 1984-02-01  0.0  9.8  2.8     2 1984
3 1984-03-01 68.7  7.2  0.2     3 1984
4 1984-04-01 13.6 12.2  3.5     4 1984
5 1984-05-01 21.4 11.8  3.0     5 1984
6 1984-06-01  6.5 19.6 10.5     6 1984

Using the first expression, we converted the dat$date vector to a Date object (and 
assigned it back to dat$date). In the second and third expressions, we extracted 
the month and year components, as numeric vectors, out of dat$date and assigned 
them to the new columns, dat$month and dat$year, respectively.

Writing a data.frame object to a CSV file
A data.frame object can be written to a CSV file with the write.csv function. The 
two first (and most important) parameters for this function indicate the name of 
the data.frame object, which we would like to save, and the path to the new file 
(including the new filename). These parameters have no defaults, so we need to 
specify them. For example, the following expression writes the data.frame object df 
to the df.csv file in the C:\Data directory:

> write.csv(df, "C:\\Data\\df.csv")

The newly created file when opened in Excel looks like the following screenshot:

Note that row names (the numbers 1 to 4 in column A) and column names have been 
added; this behavior can be disabled when required.
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Controlling code execution
So far, all of the code sections we have written were executed once in the same 
order as they were sent to the command line. However, one of the most important 
themes in programming is the flow control—operations that are used to control the 
sequences of our code execution. For example, we may want to induce the execution 
of a certain code section only if a condition is met (these are called conditional 
statements), or we may wish to execute a code section several times, over and over 
again (these are called loops). In this section, you will learn about three flow control 
commands: two to construct conditional statements and one to construct loops.

Conditioning execution with conditional 
statements
The purpose of conditional statements is to condition the execution of a given 
code section. For example, the second expression in the following code section is a 
conditional statement using the if operator:

> x = 3
> if(x > 2) {print("x is large!")}
[1] "x is large!"

A conditional statement is composed of the following elements:

• The conditional statement operator (if)
• The condition in parentheses (for example, (x>2))
• Code section opening brackets ({)
• The code section to execute when the condition is met (for example, 

print("x is large!"))
• Code section closing brackets (})
• Optionally, the else operator (else)
• Optionally, code section opening brackets ({)
• Optionally, the code to execute when the condition is not met
• Optionally, code section closing brackets (})
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Importantly, the condition should be an expression that returns a single logical 
value. The code section following this condition will then be executed if the value is 
TRUE or ignored if the value is FALSE. For example, if x is not larger than 2, nothing 
will happen since the print("x is large!") expression will not be executed:

> x = 0
> if(x > 2) {print("x is large!")}

Nothing is printed on screen.

The same way as with function definitions (see the previous chapter) 
and for loops (see the next section), code with only one expression 
does not have to be encompassed in parentheses {.

Optionally, we can use the else operator to add another code section. The code 
section after the else operator will be executed when the condition in if is FALSE  
as follows:

> x = 3
> if(x > 2) {print("x is large!")} else {print("x is small!")}
[1] "x is large!"
> x = 1
> if(x > 2) {print("x is large!")} else {print("x is small!")}
[1] "x is small!"

There is another conditional operator, specialized in working on vectors element 
by element, called ifelse. With ifelse, we need to supply three arguments: a 
logical vector, a value for TRUE (the yes parameter), and a value for FALSE (the 
no parameter). What we receive is a new vector with the same length as the input 
logical vector, where the TRUE and FALSE values have been replaced with the 
alternative values we supplied.

Regarding the replacement values for TRUE and FALSE, the most useful modes of 
operation are either to have them as vectors of length 1 (and then they are recycled 
to fill the entire length of the logical vector) or to have them as vectors of the same 
length as the logical vector (and then the elements of the logical vector are replaced 
with the respective elements either from the yes or no vector).

For example, the first mode of operation is useful when we want to classify the 
values of a given vector into two categories, according to a condition:

> dat$mmxt[1:7]
[1]  5.6  9.8  7.2 12.2 11.8 19.6 24.1
> ifelse(dat$mmxt[1:7] < 10, "cold", "warm")
[1] "cold" "cold" "cold" "warm" "warm" "warm" "warm"
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Here, we used a condition on the first seven values of the mmxt column in dat, to 
produce a logical vector, and then classified its values into "cold" (temperature 
below 10 degrees) or "warm".

The second mode of operation is useful, for example, when we would like to perform 
either one of the two operations on each element of a vector (and to select which one, 
according to the value of the respective element). For example, we can use ifelse to 
get a vector of absolute values, if we reverse the sign of only the negative values in 
that vector as follows:

> x = c(-1,-8,2,5,-3,5,-9)
> ifelse(x < 0, -x, x)
[1] 1 8 2 5 3 5 9

Here, each element of x that is smaller than 0 (that is, negative) has been replaced  
by its respective opposite -x, while positive values were left as is, giving a vector  
of absolute values for all elements. By the way, a function to find the absolute values 
of a vector already exists (the abs function).

Repeatedly executing code sections with 
loops
Loops are used when we need a code section to be executed repeatedly. The way 
the number of times a code section is to be executed is determined distinguishes the 
different types of loops. We are going to introduce the for loop, which is especially 
useful in many data analysis tasks.

In a for loop, a code section is executed a predetermined number of times. This 
number of times is equal to the number of elements in a vector that we supply when 
we initiate the loop. The code section is thus executed once for each element in the 
vector; in each such run of the loop, the assignment of the current element in that 
vector is made to an object that we can then use in the code within the loop.

For example, the following expression executes a for loop:

> for(i in 1:5) {print(i)}
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
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A for loop expression includes the following components:

• The for loop operator (for)
• The name of the object that will get the consecutive vector elements in each 

run (for example, i)
• The in operator (in)
• The loop vector (for example, 1:5)
• The code section to be executed repeatedly (for example, print(i))

In the preceding example, the code print(i) was executed five times as the number 
of elements in the vector 1:5. In each run, the i object was assigned to the next 
element in 1:5, and since the code section consists of the expression print(i), we 
got the integers 1 to 5 printed consecutively.

Using conditional expressions and loops, we can construct more complex code 
where operations are applied to numerous objects (using loops) and adjustments of 
these operations are automatically being made, on the fly, for each of these objects 
(using conditional statements). However, as we shall see in the upcoming sections of 
this chapter, there are many functions in R that can bypass the necessity of explicitly 
defining loops in situations when a (simple) function needs to be repeatedly applied 
on subsets of our data. It is advisable to use such functions when possible, instead of 
loops, for the sake of code compactness and clarity. In situations when the operation 
we would like to repeatedly execute is more complex, however, possibly having 
several branches of decisions, using loops and conditional statements again becomes 
essential. We shall see such examples in Chapter 8, Spatial Interpolation of Point Data.

Automated calculations using the apply 
family of functions
In this section, you are going to learn about two very useful functions to apply an 
operation on the subsets of data. The two functions, tapply and apply, along with 
a few others, form a collection of functions called apply functions. The functions in 
the collection are used to apply (hence the name) a function we choose over subsets 
of an object, and then join the results to form a single object once again. The apply 
functions are a defining feature of R; they replace the necessity to write explicit loops 
in many common situations in data analysis, which makes the code shorter and  
more elegant.
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Applying a function on separate parts of a 
vector
The tapply function is used to apply a function over different sections of a vector 
and then combine the results into a single object. To do this, we need to provide 
three arguments for the following three parameters:

• Vector A, which the function will operate upon (X)
• Vector B, which defines the subsets of vector A (INDEX)
• A function that will be applied to the subsets of vector A (FUN)

As an example, we shall use a short table, which is a random subset of six rows (out 
of the original 150) in the iris dataset (available in R by typing iris). These are 
measurements of four floral traits (first four columns) on different plants (rows) that 
belong to three different iris species (fifth column, Species). You can create a data.
frame object such as the following example with iris=iris[sample(1:nrow(ir
is),6),] (note that since it is a random sample, the exact values will be different 
each time). The exact table being used in the examples is provided on the book's 
website (iris2.csv). Here is the iris dataset subset we are going to use:

> iris
    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
100          5.7         2.8          4.1         1.3 versicolor
45           5.1         3.8          1.9         0.4     setosa
90           5.5         2.5          4.0         1.3 versicolor
34           5.5         4.2          1.4         0.2     setosa
38           4.9         3.6          1.4         0.1     setosa
101          6.3         3.3          6.0         2.5  virginica

Using tapply, we can quickly find out, for example, the average petal width per 
species, as follows:

> x = tapply(iris$Petal.Width, iris$Species, mean)
> x
    setosa versicolor  virginica
 0.2333333  1.3000000  2.5000000

The first argument, iris$Petal.Width, is the vector on which we apply our 
function. The second argument, iris$Species, is the vector that defines the subsets 
in iris$Petal.Width. Basically, all elements in iris$Petal.Width at the positions 
with a unique value in iris$Species are treated as groups. The last argument is the 
function that we apply on the subsets of iris$Petal.Width; in this case, the mean 
function. Thus, the iris$Petal.Width vector was split into three subsets, a mean 
was calculated for each subset, and the results were combined once again.
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The returned object of tapply is an array, which is a vector with an additional 
attribute stating the number and size of its dimensions. A one-dimensional array, 
which is what we have here, is identical to a vector in its usage. The reason that the 
returned object of tapply is an array, however, is that in some cases (which we will not 
cover here), the returned object will have more than one dimension, and thus cannot be 
represented by a vector (for example, when the function we apply returns more than 
one value, such as the range function). We will further elaborate on two-dimensional 
(matrix) and three-dimensional (array) vector-like objects in the next chapter.

Note that the array is named using the values in the grouping vector, so we can 
access any value of interest using its name as follows:

> x["setosa"]
   setosa 
0.2333333

Also, if we wish, we can transform the result to a vector using as.numeric  
as follows:

> as.numeric(x)
[1] 0.2333333 1.3000000 2.5000000

As previously mentioned, the apply functions are similar to loops in 
purpose and concept, although simpler and clearer in their syntax. For 
example, the preceding operation can be performed using a for loop, 
although the code would be longer (and, arguably, less clear):

> x = NULL
> for(i in unique(iris$Species)) {
+ x = c(x, mean(iris$Petal.Width[iris$Species == i]))
+ }
> names(x) = unique(iris$Species)
> x
versicolor     setosa  virginica
 1.3000000  0.2333333  2.5000000

Here, we create an empty object (with NULL, the special value that 
denotes an empty object in R) and then go through the unique values 
in iris$Species using a loop, each time adding the mean of 
iris$Petal.width to the respective species in x. Finally, we edit the 
names attribute of the resulting vector, using the names function, to add 
the unique species names.
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Let's see another  example with tapply involving our climatic data. Say we are 
interested in finding out how many stations are there (and which ones) with at least 
one missing value within its respective time series of precipitation amount. For an 
individual station (such as the one named "IZANA SP"), we could check whether its 
tpcp column contains at least one NA value as follows:

> any(is.na(dat[dat$station_name == "IZANA SP", "tpcp"]))
[1] TRUE

The returned value is TRUE, meaning the answer is yes. Note that the operation 
consisted of three steps. We first created a subset of dat (consisting of the rows for 
which the station name is "IZANA SP" and the column name is "tpcp"). Since the 
subset is created from a single column, it was automatically simplified to a vector. 
Secondly, we looked for each element whether it is NA with the is.na function. 
Finally, we checked whether at least one element in the resulting logical vector is 
TRUE, with the any function.

To instantly perform this operation on all stations, we can use tapply:

> result = tapply(
+ dat$tpcp,
+ dat$station_name,
+ function(x) any(is.na(x)))

This time the values vector we use the tapply function upon is dat$tpcp (since we 
want to look for missing values in the precipitation data) and the vector that defines 
the subsets is dat$station_name (since we want to apply the function on data from 
each station separately). Finally, the function that we apply is a user-defined one; 
its definition is encompassed within the tapply function call for compactness. The 
function takes one argument (x) and returns TRUE or FALSE depending on whether x 
does or does not contain at least one NA value, respectively, the same way that we did 
in the previous code section.

The resulting array indicates, for each station, whether at least one precipitation 
measurement is missing. Here are its first ten elements:

> result[1:10]
        A CORUNA ALVEDRO SP                 A CORUNA SP
                      FALSE                       FALSE
     ALBACETE LOS LLANOS SP            ALBACETE OBS. SP
                      FALSE                       FALSE
      ALMERIA AEROPUERTO SP          ASTURIAS AVILES SP
                      FALSE                       FALSE
                   AVILA SP BADAJOZ TALAVERA LA REAL SP
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                      FALSE                       FALSE
    BARCELONA AEROPUERTO SP                BARCELONA SP
                      FALSE                       FALSE

To check how many stations have at least one missing value, we can simply use the 
sum function (see the previous chapter):

> sum(result)
[1] 11

The answer is that 11 stations have at least one NA value in their tpcp column. To see 
which stations these are, we can subset the result array with the array itself (NOT) 
since the TRUE values in that array exactly define the subset we are looking for:

> result[result]
 COLMENAR VIEJO FAMET SP    CORDOBA AEROPUERTO SP
                    TRUE                     TRUE
          GUADALAJARA SP                 IZANA SP
                    TRUE                     TRUE
                 JAEN SP PALENCIA OBSERVATORIO SP
                    TRUE                     TRUE
PAMPLONA OBSERVATORIO SP              PAMPLONA SP
                    TRUE                     TRUE
                 ROTA SP      SANTANDER CENTRO SP
                    TRUE                     TRUE
               TARIFA SP
                    TRUE

The values of the array are now unimportant (since they are all TRUE); we are 
actually interested only in the elements' names. The names attribute of an array (or of 
a vector for that matter) can be extracted with the names function, which we already 
met, as follows:

> names(result[result])
 [1] "COLMENAR VIEJO FAMET SP"  "CORDOBA AEROPUERTO SP"   
 [3] "GUADALAJARA SP"           "IZANA SP"                
 [5] "JAEN SP"                  "PALENCIA OBSERVATORIO SP"
 [7] "PAMPLONA OBSERVATORIO SP" "PAMPLONA SP"             
 [9] "ROTA SP"                  "SANTANDER CENTRO SP"     
[11] "TARIFA SP"

These are the names of the stations we were looking for, in the form of a  
character vector.
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Applying a function on rows or columns of a 
table
The second function of the apply family that we will meet is apply. This function is 
also used to apply a certain function on subsets of data, but instead of operating on 
subsets defined by a grouping object, it does this on the margins of an array (or an 
object that is analogous to an array, such as a data.frame object with numeric values 
only). Applying a function on each row or each column of a table is, for example, 
such an operation. We will limit ourselves to this type of two-dimensional operation 
for now. In Chapter 6, Modifying Rasters and Analyzing Raster Time Series, we will see 
an example of apply involving three dimensions.

Similar to tapply, the first parameter of apply is the object we would like to base 
our calculation on (X), and the third parameter is the function we would like to 
apply (FUN). The second parameter (MARGIN), however, defines the dimension 
across which we would like to apply the function (rather than which subsets of the 
input, as in tapply). For example, the data.frame objects (and matrices, which 
will be introduced in the next chapter) have two dimensions: rows (dimension 
number 1) and columns (dimension number 2). When the input has more than two 
dimensions (such as in a three-dimensional array), we can apply a function on the 
third dimension as well and so on, although having an array of more than three 
dimensions is not common in practice.

Let's return to our iris example to see how apply works. Using apply, we can find 
out the mean measured value for each of the five individual plants by averaging the 
values on the first dimension (that is, the rows) as follows:

> apply(iris[, 1:4], 1, mean)
  100    45    90    34    38   101
3.475 2.800 3.325 2.825 2.500 4.525

We can also find the mean measured value for each of the four measured traits by 
averaging the values of the second dimension (that is, the columns) as follows:

> apply(iris[, 1:4], 2, mean)
Sepal.Length  Sepal.Width Petal.Length  Petal.Width
   5.5000000    3.3666667    3.1333333    0.9666667

Note that we are working only with the numeric part of the iris object (columns 1 
to 4) since the function that we apply (mean) operates on numeric vectors.
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We can also pass additional arguments to apply, which will, in turn, be passed to 
the specific function that we apply. For example, the mean function has an additional 
parameter, na.rm, which we can set to FALSE within the apply function call. In 
that case, we will be able to, for example, find out the column means excluding the 
missing values:

> iris[3,2] = NA
> iris
    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
100          5.7         2.8          4.1         1.3 versicolor
45           5.1         3.8          1.9         0.4     setosa
90           5.5          NA          4.0         1.3 versicolor
34           5.5         4.2          1.4         0.2     setosa
38           4.9         3.6          1.4         0.1     setosa
101          6.3         3.3          6.0         2.5  virginica
> apply(iris[, 1:4], 2, mean)
Sepal.Length  Sepal.Width Petal.Length  Petal.Width
   5.5000000           NA    3.1333333    0.9666667
> apply(iris[, 1:4], 2, mean, na.rm = TRUE)
Sepal.Length  Sepal.Width Petal.Length  Petal.Width
   5.5000000    3.5400000    3.1333333    0.9666667

Here, we first introduced an NA value to our iris table and then applied the mean 
function on the columns, first with the default arguments (na.rm=FALSE) and then 
with na.rm set to TRUE. Note that passing additional arguments can be done the 
same way in tapply as well.

Inference from tables by joining, 
reshaping, and aggregating
In this section, you will learn several more advanced operations involving tables. 
These include, in particular, reshaping of tables and joining the information from 
table pairs. The presented methods, together with the ones presented earlier, will 
compose quite a powerful toolbox, which will suffice for all table-related operations 
that you will use in this book. Since you will be using functions from contributed 
packages, you will first learn how to download and install them. The following  
three sections will then introduce functions to reshape, aggregate, and join  
tables, respectively.
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Using contributed packages
All predefined objects in R (such as the functions and classes we have been using so 
far) are collected in libraries or packages (in R terminology). In order to use an object 
defined in a certain package, it first needs to be loaded into memory. This is done 
using the library function. So far, we did not use the library function, so how 
come we could use all of the functions we have been using? The answer is that several 
packages are distributed with the R installation file (~30 of them as of May 2014), and 
some of them are automatically loaded into computer memory when starting R (these 
are called base R packages); otherwise, we will need to load a package into memory 
if we would like to use its functions. For example, if we would like to use graphical 
functions from the lattice package (see the previous chapter), which is automatically 
installed with R, we need to execute the following expression first:

> library("lattice")

The argument for the library function is the name of the required package that we 
would like to load.

By default, the library function can also accept package names 
without parentheses, so we can type library(lattice) instead 
of the previous expression.

In addition to the preinstalled packages, many contributed packages (~5500 as of 
May 2014) are located on the Comprehensive R Archive Network (CRAN), which is 
a network of FTP and web servers storing up-to-date versions of official R packages 
(unofficial packages or packages currently under development are available from 
various other online sources, such as GitHub). To use one of the packages on CRAN, 
we first have to download it to our computer, which can be automatically done in R 
using the install.packages function. For example, to install the reshape2 package 
(which we are going to use shortly), we need to execute the following expression:

> install.packages("reshape2")

Another contributed package we are going to use in this chapter is called plyr. Thus, 
it is necessary that you download both reshape2 and plyr (using the install.
packages function for each one) and load them into memory (using the library 
function, again for each one) before executing the upcoming examples of code.
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To save space, from now on, the install.packages commands 
will not be written as part of the code sections, nor will commands 
loading packages using library be replicated in each and every 
instance the package is used. Instead, every time a code section 
requires a newly contributed package, you should make sure the 
respective package is loaded.

Remember that downloading a package (using the install.packages function) is 
a one-time procedure (unless a new version of the package came out and we would 
like to reinstall it). On the other hand, loading the package into memory (using the 
library function) is something we need to do in each new R session.

Here are a few more tips concerning the installation of packages:
• Packages installation is also accessible through the menus in both 

RGui and RStudio
• When packages installation is triggered, the user is prompted to 

select one of the CRAN Mirrors to download the package from
• When installing a new version of R, all packages will need to be 

reinstalled

Shifting between long and wide formats using 
melt and dcast
In this section, and the following one, you are going to learn several useful 
methods to reshape data. Reshaping operations are an inevitable step of every 
data analysis process since a lot (if not most) of the time, data we get to work with 
will be structured differently from what is required to use a given function or type 
of software. In data reshaping, we change the form our data takes (possibly also 
reducing its amount, by aggregation), but not the data itself. An example of a tool 
used for data reshaping, from other software, is the PivotTable tool in Excel.
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The functions we are going to use in this and the upcoming sections 
belong to the contributed packages reshape2 and plyr. There are other 
ways to perform the presented operations in R; some of them use only 
base packages. However, the methods shown here are considered more 
intuitive and flexible. Introduction to these two packages, by their author 
Hadley Wickham, can be found in the Journal of Statistical Software (see 
Appendix B, Cited References). Note that one of these papers addresses 
the reshape package (rather than the more efficient reshape2 
package, which was developed later), but the principles of reshape 
and reshape2 are the same, so the paper is well relevant to reshape2 
users. A good introduction to data manipulation with R using (mostly) 
base packages can be found in the excellent book Introduction to Data 
Technologies (2009) by Paul Murrell (which is also available online).

The first operation you are going to learn about is the transformation between wide 
and long formats. A wide table consists of columns for each measured variable. For 
example, our dat table is in a wide format since it has a column for the station name, 
a column for the precipitation amount, a column for the minimum temperature, 
and so on. A long table is one where a single column holds the variable names and 
another holds the measured values. When switching from wide to long formats, we 
will usually be interested in intermediate forms, where some of the variables are in 
columns, and others are identified in a single column holding variables names. In 
reshape2 terminology, the former are called identifier variables (id.vars), while the 
latter are called measured variables (measure.vars). This will become clearer using 
an example.

The iris dataset we saw earlier is also in a wide format. To convert it to a long 
format, we can use the melt function, which is used to convert wide formats to long 
formats. When using melt, we need to specify the data.frame object to reshape, and 
the identity of the ID and measure variables (as character vectors). In fact, we can 
specify either the ID or measure variables, and the function will assume that the rest 
of the columns belong to the other kind. For example, the most reasonable approach 
in this particular case would be to use the species as an ID variable (since it describes 
each measured unit) and the flower dimensions traits as measure variables (since 
they are independent measurements conducted on each measured unit). Let's take a 
look at the following example:

> library(reshape2)
> iris_melt = melt(iris, id.vars = "Species")
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The first several rows of the resulting table are printed as follows:

> head(iris_melt)
     Species     variable value
1 versicolor Sepal.Length   5.7
2     setosa Sepal.Length   5.1
3 versicolor Sepal.Length   5.5
4     setosa Sepal.Length   5.5
5     setosa Sepal.Length   4.9
6  virginica Sepal.Length   6.3

We can see that the ID variable (in this case there was only one, Species) retained 
its status as one of the columns. The rest of the columns, the measure variables 
(in this case there were four), disappeared; instead, two new columns were 
created (variable and value), holding the measure variables names and values, 
respectively. The number of rows is now 24 (four times the original number of rows, 
six), since the ID part is replicated four times, once for each of the measure variables.

Similarly, we can use the melt function to convert the climatic data table dat to a 
long format, specifying that the tpcp, mmxt, and mmnt columns contain measured 
variables. We shall assign it to a different object named dat_melt:

> dat_melt = melt(dat, measure.vars = c("tpcp","mmxt","mmnt"))
> head(dat_melt)
            station station_name elevation latitude longitude
1 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
2 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
3 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
4 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
5 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
6 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
        date month year variable value
1 1984-01-01     1 1984     tpcp  51.4
2 1984-02-01     2 1984     tpcp   0.0
3 1984-03-01     3 1984     tpcp  68.7
4 1984-04-01     4 1984     tpcp  13.6
5 1984-05-01     5 1984     tpcp  21.4
6 1984-06-01     6 1984     tpcp   6.5

We can check and see that the molten table dat_melt has exactly three times more 
rows than the original table dat.
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The long format is useful in its own right in many cases; for example, when we make 
a plot with three panels, one for each measured variable, we need to have the panel 
IDs in a single column, which is exactly what we have now. In addition, molten tables 
serve as an input to another function in the reshape2 package called dcast, which is 
used to cast the data back into a wide format. However, this time we do not have to 
return exactly to the original table (on which we previously applied melt). Instead, we 
can specify exactly what we would like to have in the rows and columns. The way we 
specify the variables to appear in rows and columns is through a formula object (see 
the previous chapter), which may have the form: var1+var2+var3~var4+var5. The 
variables to the left of the ~ operator (in this case, var1, var2, and var3) are going to 
appear as single columns in the new table; the variables to the right of the ~ operator 
(in this case, var4 and var5) are going to populate new columns, with the values going 
back from the value column to these new columns. For convenience, we can use the 
. symbol to indicate no variable or the ... symbol to indicate all remaining variables, 
either to the left or right of the ~ operator.

The behavior of dcast can be best demonstrated through examples (for additional 
examples, see the 2007 paper by Hadley Wickham). For example, to get back our 
original table, we can indicate that we would like the values in the variable column 
to form new columns as follows:

> dat2 = dcast(dat_melt, ... ~ variable)

The order of the columns in the resulting table is slightly different; otherwise, the 
table is identical to the original dat table:

> head(dat2)
            station station_name elevation latitude longitude
1 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
2 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
3 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
4 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
5 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
6 GHCND:SP000060010     IZANA SP      2371  28.3089  -16.4992
        date month year tpcp mmxt mmnt
1 1984-01-01     1 1984 51.4  5.6 -0.5
2 1984-02-01     2 1984  0.0  9.8  2.8
3 1984-03-01     3 1984 68.7  7.2  0.2
4 1984-04-01     4 1984 13.6 12.2  3.5
5 1984-05-01     5 1984 21.4 11.8  3.0
6 1984-06-01     6 1984  6.5 19.6 10.5
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Alternately, we can have the months form new columns, as follows:

> dat2 = dcast(dat_melt, station+station_name+variable+year~month)
> head(dat2)
            station     station_name variable year    1    2    3
1 GHCND:SP000003195 MADRID RETIRO SP     tpcp 1984 25.3 37.2 58.0
2 GHCND:SP000003195 MADRID RETIRO SP     tpcp 1985 67.8 45.1  6.0
3 GHCND:SP000003195 MADRID RETIRO SP     tpcp 1986 10.6 57.0 22.2
4 GHCND:SP000003195 MADRID RETIRO SP     tpcp 1987 93.3 42.9  6.7
5 GHCND:SP000003195 MADRID RETIRO SP     tpcp 1988 60.0 20.9  1.1
6 GHCND:SP000003195 MADRID RETIRO SP     tpcp 1989  9.9 19.5 23.8
     4    5    6    7    8    9   10    11    12
1 39.2 82.4 35.6  0.0  7.1  7.1 30.1 161.0  11.3
2 36.8 29.9 24.1  5.4  0.0  0.0  0.0  39.9  83.8
3 57.3 12.0  1.0 37.1 16.4 47.5 93.8  13.6  19.0
4 63.1 58.4  7.8 43.9 14.5 11.9 58.5  64.8  79.1
5 96.6 46.5 49.8  9.5  0.0  0.0 79.2  50.1   0.2
6 52.2 97.7 12.7 13.3  3.2 37.5  5.9 146.4 138.6

Note that this time we omitted some of the variables from the resulting 
table (elevation, latitude, and so on), and made the months' levels 
(there are 12 of these) appear in separate columns, with the values of 
the respective climatic variable for each month in the cells of the given 
column. This form is ideal to answer questions such as which month is 
the warmest in each station (using apply, for example).

The casting operations we have performed so far involved the retention of all 
original data in the resulting table. What happens when we instruct the creation of a 
table that cannot contain all of our original data? In this case, aggregation takes place 
and we need to specify the function that will be used for aggregation (otherwise, 
the default function length will be used). For example, we can calculate the mean 
climatic conditions in Spain per year, as follows:

> dat2 = dcast(dat_melt, year ~ variable, mean, na.rm = TRUE)
> head(dat2)
  year     tpcp     mmxt      mmnt
1 1984 54.34180 19.38194  9.381115
2 1985 45.13103 20.31096  9.793890
3 1986 47.55329 19.75327  9.681250
4 1987 57.09826 20.31684 10.350206
5 1988 47.78863 20.07662  9.934514
6 1989 54.82944 20.97615 10.654617
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A disadvantage of aggregation with dcast is that we must apply the same function 
across all variables. In the next section, you will learn about a more flexible 
aggregation method.

Aggregating with ddply
There are several functions in the plyr package that are used to apply operations 
on the subsets of data and then combine the subsets once again into a single object. 
This may sound familiar; indeed the plyr package was intended to comprise an 
alternative, in many cases an easier one, to apply and other base R functions. One of 
the most commonly used functions from this package, and the one you are going to 
learn about in this section, is called ddply.

New packages namely dplyr and tidyr have recently appeared on 
CRAN; they are intended to serve as even faster and more efficient 
alternatives to plyr and (partially) reshape2. Since these packages 
are currently under development, they are not used in the examples 
in this book.

The ddply function operates on a data.frame object returning a new data.frame. It 
first splits the table to subsets according to the unique levels in one or more columns. 
The data from each subset is then used to calculate a single value, for each of the 
new columns in the new data.frame object. The user specifies exactly how this will 
be done; more importantly, the new columns in the resulting table can be calculated 
based on values from more than one column in the original table.

Let's demonstrate the functionality of ddply on iris. We will calculate the average 
area size of a flower's petals and sepals, as per species:

> library(plyr)
> ddply(iris,
+ .(Species),
+ summarize,
+ sepal_area = mean(Sepal.Length * Sepal.Width),
+ petal_area = mean(Petal.Length * Petal.Width))
     Species sepal_area petal_area
1     setosa      20.04  0.3933333
2 versicolor         NA  5.2650000
3  virginica      20.79 15.0000000
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As we can see, the ddply function call contains several arguments:

• The input data.frame (for example, iris).
• The name(s) of the column(s), which defines subsets, in parentheses and 

preceded by . (for example, .(Species)). If there is more than one name, 
they will be separated by commas.

• The mode of operation; possible methods are as follows:
 ° summarize: The new columns form a new, aggregated, table
 ° transform: The new columns are appended back to the input table

• The fourth argument and onward (fifth, sixth, and so on) are the user-
specified expressions for calculation of new columns based on values in the 
original columns.

The preceding function call thus indicates that we would like to break the iris  
table into subsets based on the unique values in the Species column, and create a 
new data.frame object with a column that specifies the levels (Species) and two 
new columns, sepal_area and petal_area. These columns will contain the means 
of the products of length and width for the respective trait. Note that the NA value  
for the sepal_area column of species, versicolor, is due to the NA value we 
previously inserted.

The instruction to create a new table is given by the word summarize. If we would 
have replaced the word summarize with transform, the values from the new 
columns would have been added to the input table, rather than creating a new 
(aggregated) table, as follows:

> ddply(iris,
+ .(Species),
+ transform,
+ sepal_area = mean(Sepal.Length * Sepal.Width),
+ petal_area = mean(Petal.Length * Petal.Width))
  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1          5.1         3.8          1.9         0.4     setosa
2          5.5         4.2          1.4         0.2     setosa
3          4.9         3.6          1.4         0.1     setosa
4          5.7         2.8          4.1         1.3 versicolor
5          5.5          NA          4.0         1.3 versicolor
6          6.3         3.3          6.0         2.5  virginica
  sepal_area petal_area
1      20.04  0.3933333
2      20.04  0.3933333
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3      20.04  0.3933333
4         NA  5.2650000
5         NA  5.2650000
6      20.79 15.0000000

As you can see, the original table has been preserved; just that our two newly 
calculated columns (sepal_area and petal_area) have been joined to it on the 
right. Note that the values in these columns are the averages of the subsets (the 
species). Thus, within each subset, the values are duplicated.

As another example, we will now use ddply in order to aggregate our climatic data 
table, from a monthly to an annual timescale. In other words, we would like to obtain 
annual averages (in case of temperature) or annual sums (in case of precipitation) for 
climatic variables. For this, we will first filter out those variable/year combinations 
where not all the 12 months are present. For example, if the minimum monthly 
temperature data at the "IZANA SP" station for 1985 is available only for 11 (rather 
than 12) months, we would like to remove the minimum temperature data for that 
year and from that station altogether, to reduce the bias in the annual average. To do 
this, we need to find out how many non-missing values we have for every station/
year/variable combination. We will use ddply to our molten dat_melt table:

> dat3 = ddply(dat_melt,
+ .(station, year, variable),
+ transform,
+ months_available = length(value[!is.na(value)]))
> head(dat3)
            station     station_name elevation latitude longitude
1 GHCND:SP000003195 MADRID RETIRO SP       667  40.4117   -3.6781
2 GHCND:SP000003195 MADRID RETIRO SP       667  40.4117   -3.6781
3 GHCND:SP000003195 MADRID RETIRO SP       667  40.4117   -3.6781
4 GHCND:SP000003195 MADRID RETIRO SP       667  40.4117   -3.6781
5 GHCND:SP000003195 MADRID RETIRO SP       667  40.4117   -3.6781
6 GHCND:SP000003195 MADRID RETIRO SP       667  40.4117   -3.6781
        date month year variable value months_available
1 1984-01-01     1 1984     tpcp  25.3               12
2 1984-02-01     2 1984     tpcp  37.2               12
3 1984-03-01     3 1984     tpcp  58.0               12
4 1984-04-01     4 1984     tpcp  39.2               12
5 1984-05-01     5 1984     tpcp  82.4               12
6 1984-06-01     6 1984     tpcp  35.6               12
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The new table dat3, which we just created, contains all of the data from dat_
melt (since transform was used), in addition to the new months_available 
column, which contains the number of non-NA elements for the respective 
.(station,year,variable) subset. Using this column, we can now remove  
those station/year/variable subsets that have less than 12 months of data:

> nrow(dat3)
[1] 85608
> dat3 = dat3[dat3$months_available == 12, ]
> nrow(dat3)
[1] 80976

Overall 4,632 rows have been removed. Now we can aggregate the dat3 table, 
knowing that the annual values will always be based on 12 months of data. We will 
do it in two steps.

First, we will create a table to only hold the location data (latitude, longitude, and 
elevation columns) for each meteorological station. It is frequently useful to have 
a table such as this, for example, to plot the stations' spatial locations (which we are 
going to do in Chapter 7, Combining Vector and Raster Datasets):

> spain_stations = ddply(dat3,
+ .(station),
+ summarize,
+ latitude = latitude[1],
+ longitude = longitude[1],
+ elevation = elevation[1])
> head(spain_stations)
            station latitude longitude elevation
1 GHCND:SP000003195  40.4117   -3.6781       667
2 GHCND:SP000004452  38.8831   -6.8292       185
3 GHCND:SP000006155  36.6667   -4.4881         7
4 GHCND:SP000008027  43.3075   -2.0392       251
5 GHCND:SP000008181  41.2928    2.0697         4
6 GHCND:SP000008202  40.9592   -5.4981       790

Here, the aggregation was performed by the station column only; therefore,  
we obtain a rather short table with one row for each meteorological station  
(96 rows in total):

> nrow(spain_stations)
[1] 96
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Note that with latitude=latitude[1] we say, in plain language: take the first 
latitude value you see and assign it to the aggregated table, per station. Since 
the location of a given station should be constant over time, we can take any of 
the latitude values. However, we do not know exactly how many rows of data 
each station has (actually, in this particular case, we do know it is at least 12 since 
otherwise the data for that station could not have formed a complete 12 months 
series and would have been removed altogether); therefore, selecting the first one  
is a reasonable option.

We will save this data.frame object to a file since we will use it in subsequent 
chapters:

> write.csv(spain_stations, "C:\\Data\\spain_stations.csv",
+ row.names = FALSE)

The additional parameter row.names indicates whether we would like row names to 
be saved as an additional column in the CSV file (in this case, we do not).

Next, we will aggregate the climatic data itself, per station/variable/year 
combination. Here, our purpose is to find the sum of each month (in case of rainfall) 
or the average of each month (in case of temperature). We will use ifelse to assign 
a sum of the 12 values when the variable is tpcp or the average otherwise (when the 
variable is either mmxt or mmnt). Let's take a look at the following example:

> spain_annual = ddply(dat3,
+ .(station, variable, year),
+ summarize,
+ value = ifelse(variable[1] == "tpcp",
+ sum(value, na.rm = TRUE),
+ mean(value, na.rm = TRUE)))
> head(spain_annual)
            station variable year value
1 GHCND:SP000003195     tpcp 1984 494.3
2 GHCND:SP000003195     tpcp 1985 338.8
3 GHCND:SP000003195     tpcp 1986 387.5
4 GHCND:SP000003195     tpcp 1987 544.9
5 GHCND:SP000003195     tpcp 1988 413.9
6 GHCND:SP000003195     tpcp 1989 560.7

Note that, once again, we consider only the first element in the variable column 
(variable[1]) to make the decision on whether to use the sum or mean function since 
all values of the column variable are, by definition, identical within a given station/
year/variable combination.
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We will save this data.frame object to a file for later use:

> write.csv(spain_annual, "C:\\Data\\spain_annual.csv",
+ row.names = FALSE)

Our final exercise related to the processing of tabular data would be to see how we 
can join the spain_stations and spain_annual tables into a single table, containing 
both the station coordinates and climatic data. For this, you first have to learn how to 
join tables, which we shall do in the next section.

Joining tables with join
Joining tables is another common operation in data analysis. Those working with 
spatial data may be familiar with the task of joining data from an external table (such 
as an Excel file) with the attribute table of a spatial dataset (such an ESRI Shapefile), 
which is an example of a join operation.

The plyr library offers a very convenient function called join, to join data.frame 
objects. Note, once again, that there are other ways to perform the task in R, such 
as using the merge function from the base packages. However, in addition to its 
simplicity, an important advantage of join is that it always preserves the original 
order of rows in the data.frame object we join to. This feature will be especially 
important later, when performing the previously mentioned task of joining tables to 
attributes of spatial datasets (see Chapter 5, Working with Points, Lines, and Polygons).

The first two parameters of the join function are x and y, which indicate the names 
of the two data.frame objects to join, and the third parameter is by, which indicates 
by which column(s) to join. The other two parameters indicate, by default, that we 
would like to perform a left join (type="left", retaining all rows of x, as opposed 
to a "right" join where we retain all rows of y) and retain all records if there are 
duplicates (match="all"), which is what we would like to do in most cases (see 
?join for more details).

For example, let's say we have a table where each row corresponds to a date, and 
we would like to create a new column that indicates the season that date belongs to 
(winter, spring, summer, or fall). One way of doing this is to create a table indicating 
the season each month belongs to, and then join the second table to the first one, 
according to the common month columns.
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For this example, we will read another CSV file with a series of dates. The dates 
table looks as follows:

> dates = read.csv("C:\\Data\\modis_dates.csv")
> head(dates)
  image day month year
1     1  18     2 2000
2     2   5     3 2000
3     3  21     3 2000
4     4   6     4 2000
5     5  22     4 2000
6     6   8     5 2000

This table indicates the dates of the MODIS satellite images acquisition with the 
image column corresponding to bands in a multiband raster, which we will work 
with later (see the next chapter).

As another exercise of working with dates, we will create a column of the Date class 
from the day, month, and year columns as follows:

> dates$date = as.Date(
+ paste(dates$year, dates$month, dates$day, sep = "-"))
> head(dates)
  image day month year       date
1     1  18     2 2000 2000-02-18
2     2   5     3 2000 2000-03-05
3     3  21     3 2000 2000-03-21
4     4   6     4 2000 2000-04-06
5     5  22     4 2000 2000-04-22
6     6   8     5 2000 2000-05-08

Let's now create a table of seasons. To do this, we will use the rep function with a 
parameter we have not used so far, each, which indicates that we want to repeat 
each element of a given vector several times (rather than repeat the whole vector):

> month = c(12, 1:11)
> month
 [1] 12  1  2  3  4  5  6  7  8  9 10 11
> season = rep(c("winter","spring","summer","fall"), each = 3)
> season
 [1] "winter" "winter" "winter" "spring" "spring" "spring"
 [7] "summer" "summer" "summer" "fall"   "fall"   "fall"  
> seasons = data.frame(month, season)
> seasons
   month season
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1     12 winter
2      1 winter
3      2 winter
4      3 spring
5      4 spring
6      5 spring
7      6 summer
8      7 summer
9      8 summer
10     9   fall
11    10   fall
12    11   fall

The seasons table now indicates which season a given month belongs to. The final 
step will be to join the two tables: dates and seasons. The following expression 
states that we would like to join the seasons table to the dates table by month:

> dates = join(dates, seasons, "month")
> head(dates)
  image day month year       date season
1     1  18     2 2000 2000-02-18 winter
2     2   5     3 2000 2000-03-05 spring
3     3  21     3 2000 2000-03-21 spring
4     4   6     4 2000 2000-04-06 spring
5     5  22     4 2000 2000-04-22 spring
6     6   8     5 2000 2000-05-08 spring

We will use this table in several examples in the subsequent chapters.

Returning to our climatic data example, we will now join the two tables we got in 
the previous section: the stations, coordinates summary (spain_stations) and the 
aggregated annual climatic data (spain_annual). The resulting data.frame object 
will be named combined, as shown in the following expression:

> combined = join(spain_stations, 
+ spain_annual, 
+ by = "station", 
+ type = "right")

Note that here we use the type="right" option since we would like to retain all 
rows in the second table spain_annual (rather than retain all the rows in the first 
table, as shown in the previous example).
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The table looks as follows:

> head(combined)
            station latitude longitude elevation variable year
1 GHCND:SP000003195  40.4117   -3.6781       667     tpcp 1984
2 GHCND:SP000003195  40.4117   -3.6781       667     tpcp 1985
3 GHCND:SP000003195  40.4117   -3.6781       667     tpcp 1986
4 GHCND:SP000003195  40.4117   -3.6781       667     tpcp 1987
5 GHCND:SP000003195  40.4117   -3.6781       667     tpcp 1988
6 GHCND:SP000003195  40.4117   -3.6781       667     tpcp 1989
  value
1 494.3
2 338.8
3 387.5
4 544.9
5 413.9
6 560.7

As the output shows, this table contains duplicated data since the latitude, 
longitude, and elevation records are identical in each station/variable/year 
combination. In such cases, it is more efficient to keep two separate tables (such as 
spain_stations and spain_annual) rather than join all the data into a single table 
(such as combined).

Summary
In this chapter, you learned how tabular data is represented in R. We covered many 
of the basic (such as subsetting and calculating new columns) and more advanced 
(such as reshaping and joining) techniques related to tables. We also met several 
operators used to control code execution, specifically to condition code execution or 
induce repeated code execution.

In the remaining chapters of this book, we are going to focus on working with  
spatial data in R. However, we shall utilize the methods presented in this chapter 
regarding the data.frame class, the flow control functions and the apply functions, 
quite frequently.
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Working with Rasters
In this chapter, we move on to the realm of spatial data analysis in R. We begin by 
introducing the properties and usage principles of the classes used to store raster 
data in R. For that matter, we are going to first introduce the simpler (nonspatial) 
structures that are conceptually related to rasters: matrices and arrays. We then cover 
the more sophisticated classes defined in the raster package to represent spatial 
raster data. You will learn to create, subset, and save objects of these classes as well 
as to query the characteristics of rasters we have at hand. Afterwards, you will learn 
two basic operations involving rasters: overlay and reclassification. At the same 
time, we will see some examples of visualizing raster data in R to help us get a better 
understanding of the data we have.

In this chapter, we'll cover the following topics:

• Using matrices to represent two-dimensional sets of numeric values
• Using arrays to represent three-dimensional sets of numeric values
• Using classes for single band and multiband rasters in the raster package
• Reading and writing raster files
• Exploring the properties of a given raster object
• Basic visualization of rasters in R
• Subsetting rasters
• Converting raster objects to simpler data structures and vice versa
• Performing raster algebra operations
• Reclassifying raster values
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Using the matrix and array classes
A raster is essentially a matrix with spatial reference information. Similarly, a 
multiband raster is essentially a three-dimensional array with spatial reference 
information. Therefore, before proceeding with spatial rasters, we will cover some 
prerequisite material on working with these (simpler) objects in this section—matrices 
and arrays. Moreover, as we shall see later, matrices and arrays are common data 
structures with many uses in R.

Representing two-dimensional data with a 
matrix
A matrix object is a two-dimensional collection of elements, all of the same type (as 
opposed to a data.frame object; see the previous chapter), where the number of 
elements in all rows (and, naturally, all columns) is identical. Matrix objects have many 
uses in R. For example, certain functions take matrices as their arguments (such as the 
focal function to filter rasters) or return matrices (such as the extract function to 
extract raster values; we will meet both these functions in the subsequent chapters).

A matrix object can be created with the matrix function by specifying its values (in 
the form of a vector) and dimensions as follows:

> matrix(1:6, ncol = 3)
     [,1] [,2] [,3]
[1,]    1    3    5
[2,]    2    4    6

The first four parameters of the matrix function are as follows:

• data: The vector of values for the matrix (for example, 1:6)
• nrow: The number of rows
• ncol: The number of columns (for example, 3)
• byrow: Whether the matrix is filled column by column (FALSE, which is the 

default value) or row by row (TRUE)

The nrow and ncol parameters determine the number of rows and columns, 
respectively. We can specify either one of these parameters, and the other will be 
calculated taking into account the overall number of elements. Let's take a look at the 
following example:

> matrix(1:6, nrow = 3)
     [,1] [,2]
[1,]    1    4
[2,]    2    5
[3,]    3    6
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> matrix(1:6, nrow = 2)
     [,1] [,2] [,3]
[1,]    1    3    5
[2,]    2    4    6

Note that when the allocated number of cells is smaller or larger than the number 
of values in the vector that is being used to populate the matrix, the vector is either 
deprecated or recycled, respectively. Let's take a look at the following examples:

> matrix(12:1, ncol = 4, nrow = 2)
     [,1] [,2] [,3] [,4]
[1,]   12   10    8    6
[2,]   11    9    7    5
> matrix(12:1, ncol = 4, nrow = 4)
     [,1] [,2] [,3] [,4]
[1,]   12    8    4   12
[2,]   11    7    3   11
[3,]   10    6    2   10
[4,]    9    5    1    9

There are several useful functions to examine the properties of a matrix. You are 
familiar with them from Chapter 1, The R Environment, and Chapter 2, Working with 
Vectors and Time Series, since they are analogous to the functions we used with 
vectors and data.frame objects. For example, the length function returns the 
number of elements a matrix has as follows:

> x = matrix(7:12, ncol = 3, byrow = TRUE)
> x
     [,1] [,2] [,3]
[1,]    7    8    9
[2,]   10   11   12
> length(x)
[1] 6

The nrow and ncol functions return the number of rows and columns as follows:

> nrow(x)
[1] 2
> ncol(x)
[1] 3

The dim function returns both (the number of rows and columns) at the same time:

> dim(x)
[1] 2 3
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Using the as.vector function, we can convert a matrix into a vector as follows (note 
that the values in the vector will always be ordered by columns):

> as.vector(x)
[1]  7 10  8 11  9 12

Similar to what we saw regarding data.frame objects, we can subset matrices using 
two-dimensional indices. For example, to get the values that occupy the first and 
third columns in matrix x, we will use the following expression:

> x[, c(1,3)]
     [,1] [,2]
[1,]    7    9
[2,]   10   12

To get the values that occupy the second row in matrix x, we will use the  
following expression:

> x[2, ]
[1] 10 11 12

The previous example demonstrates that the resulting object is simplified to a vector 
if the values are retrieved from a single row or column. Setting the drop parameter 
to FALSE will suppress this behavior, similar to what we saw for the data.frame 
objects (see the previous chapter):

> x[2, , drop = FALSE]
     [,1] [,2] [,3]
[1,]   10   11   12

The assignment of new values to subsets of a given matrix is also possible using the 
assignment operator. For example, we can create an empty 3 x 3 matrix m and then 
populate some of its cells as follows:

> m = matrix(NA, ncol = 3, nrow = 3)
> m
     [,1] [,2] [,3]
[1,]   NA   NA   NA
[2,]   NA   NA   NA
[3,]   NA   NA   NA
> m[2:3, 1:2] = matrix(1:4, nrow = 2)
> m
     [,1] [,2] [,3]
[1,]   NA   NA   NA
[2,]    1    3   NA
[3,]    2    4   NA
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We can also use the apply function to make calculations on rows or columns of a 
matrix, in exactly the same way as with the data.frame objects (see the previous 
chapter). For example, we can calculate the means of all columns in matrix x  
as follows:

> apply(x, 2, mean)
[1]  8.5  9.5 10.5

In fact, there are two specialized functions named rowMeans and colMeans for the 
specific tasks of calculating row and column means, respectively. Thus, for example, 
the following expression gives exactly the same result as the previous one:

> colMeans(x)
[1]  8.5  9.5 10.5

Representing more than two dimensions with 
an array
While vectors are used to represent one-dimensional sets of elements (see Chapter 2, 
Working with Vectors and Time Series), and matrix is a specialized class to represent 
two-dimensional sets of elements (see the previous section), the array class is more 
general. It is used to represent sets of elements having any number of dimensions 
(including one and two).

We can create an array object (a three-dimensional one, for example) using the 
array function:

> y = array(1:24, c(2,2,3))
> y
, , 1

     [,1] [,2]
[1,]    1    3
[2,]    2    4

, , 2

     [,1] [,2]
[1,]    5    7
[2,]    6    8

, , 3

     [,1] [,2]
[1,]    9   11
[2,]   10   12
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The first argument we entered (1:24) defined the values, while the second argument 
(c(2,2,3)) defined the number of dimensions and their lengths. As opposed to 
creating a matrix with the matrix function, we need to explicitly specify the lengths 
of all dimensions (or else a one-dimensional object will be created by default) with 
the array function. In the previous example, we were interested in having three 
dimensions—two rows, two columns, and three layers (using raster terminology; see 
the following section). Thus, we specified their lengths as (2,2,3) using a vector  
of length 3.

Naturally, a three-dimensional array has a three-dimensional indexing system. For 
example, we can reach the (2,1,3) element in our array y as follows:

> y[2,1,3]
[1] 10

Working with arrays is very similar to working with vectors and matrices, and 
the application of many of the functions we have previously seen is intuitive. For 
example, we can use the apply function to find the means of all elements in each 
layer (or third dimension):

> apply(y, 3, mean)
[1]  2.5  6.5 10.5

We will see an example involving the rowMeans function and three-dimensional 
array objects in Chapter 6, Modifying Rasters and Analyzing Raster Time Series.

Data structures for rasters in the raster 
package
A raster is a rectangular grid of numeric values, referenced to a certain geographical 
extent. As previously mentioned, spatial referencing is what differentiates a raster 
from the simpler data structures (matrices and arrays) we have seen previously. A 
raster can have a single value in each cell (a single band, or single layer, raster—
analogous to a matrix) or several values (a multiband, or multilayer, raster—
analogous to an array). Rasters conceptually differ from vector layers, which are 
data structures to represent non-gridded objects such as spatial points, lines, and 
polygons (these will be covered in the next chapter).
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In this book, we are going to work with classes to represent rasters from the raster 
package. This package does not come with the R installation, so we first have to 
install it using install.packages (see the previous chapter). We will also need 
to install the rgdal package since functions in the raster package use functions 
defined in rgdal for certain tasks, such as input/output operations. Taking a look 
at the official overview of R packages for spatial data analysis (http://cran.r-
project.org/web/views/Spatial.html) is highly recommended at this stage. 
This web page is useful to find out how the previously mentioned packages raster 
and rgdal (and the ones to be introduced in the upcoming chapters) fit within the 
broader ecosystem of spatial data analysis tools available in R.

The rgdal package, which stands for Geospatial Data Abstraction 
Library (GDAL) extensions to R, is a very important one to work 
with spatial data, and we will cover it in several contexts. The name 
GDAL may be familiar to some readers; GDAL is a C library frequently 
used in other software (such as QGIS) and programming languages 
(such as Python). In fact, there are four C libraries providing the core 
functionality to work with spatial data in R interfaced through R 
functions. They are GDAL, OGR, PROJ.4 (which are available using 
functions in the rgdal package), and GEOS (which is available 
through functions in the rgeos package).

The remaining part of this chapter is going to introduce the basic usage of the raster 
package with two real-world examples of remote sensing data. More advanced 
functionality of this package, as well as examples with another common type of 
raster data, Digital Elevation Model (DEM), will be introduced in subsequent 
chapters. We'll be creating a third type of raster—predicted surfaces from spatial 
interpolation—in Chapter 8, Spatial Interpolation of Point Data.

Similarly to the GIS software, the raster package has the capability of 
working with big rasters that cannot be accommodated in the RAM (in 
such cases, for example, the data are automatically processed in chunks 
and the results are written to temporary files on disk).

A comprehensive overview of the range of capabilities the raster package offers can 
also be found in its accompanying introductory tutorial (http://cran.r-project.
org/web/packages/raster/vignettes/Raster.pdf).
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Creating single band rasters
There are three classes to represent spatial rasters in the raster packages. These are 
RasterLayer, RasterStack, and RasterBrick. The first class is used to represent 
single band rasters (see the following examples), whereas the last two classes are 
used to represent multiband rasters (see the next section).

The RasterLayer class represents a single band raster. A new RasterLayer object 
can be created using the raster function in several ways. For example, a matrix 
object can be converted to a RasterLayer object as follows:

> library(raster)
> r1 = raster(x)
> r1
class       : RasterLayer
dimensions  : 2, 3, 6  (nrow, ncol, ncell)
resolution  : 0.3333333, 0.5  (x, y)
extent      : 0, 1, 0, 1  (xmin, xmax, ymin, ymax)
coord. ref. : NA
data source : in memory
names       : layer
values      : 7, 12  (min, max)

We see that the print method for RasterLayer objects does something different from 
what we have seen so far. Rather than printing all values the object is composed of, 
a summary of certain properties of the particular RasterLayer object is given. We 
will see how to directly access some of these properties later. For now, it is worth 
repeating that a RasterLayer object (as opposed to a matrix) has spatial reference 
information, that is, a certain resolution, extent, and Coordinate Reference System 
(CRS). Naturally, the particular raster r, which we just created from a plain numeric 
matrix, has no CRS, and its resolution and extent have been automatically generated 
by the raster function (the extent is between 0 and 1 on both the x and y axes; the 
resolution is calculated accordingly).

A more common way to create a raster object in R is to read the raster data from 
a file. For example, given that the raster and rgdal packages are installed on our 
system and the raster file landsat_15_10_1998.tif exists in the C:\Data directory, 
the following expression will read the contents of its first band and assign it to an 
object named band1 of class RasterLayer:

> band1 = raster("C:\\Data\\landsat_15_10_1998.tif")

                           

http://                           /


Chapter 4

[ 109 ]

Reading files from disk, as mentioned earlier, is done through the rgdal package 
(which is automatically loaded, if it was not already, when trying to read a file using 
the raster function). At present, there are ~100 supported input formats (you can get 
a list of these by typing getGDALDriverNames()$name once rgdal is loaded). These 
include, for example, the frequently used GeoTIFF (*.tif or *.tiff), which we will 
use in the examples in this book, and ERDAS IMAGINE image (*.img) formats.

Printing the properties of raster band1 and comparing them to those of r1 from  
the previous example will demonstrate that this time we do have meaningful  
spatial reference information in the RasterLayer object band1, as shown in the 
following example:

> band1
class       : RasterLayer
band        : 1  (of  6  bands)
dimensions  : 960, 791, 759360  (nrow, ncol, ncell)
resolution  : 30, 30  (x, y)
extent      : 663945, 687675, 3459375, 3488175  (xmin, xmax, ymin$
coord. ref. : +proj=utm +zone=36 +ellps=WGS84 +units=m +no_defs
data source : C:\Data\landsat_15_10_1998.tif
names       : landsat_15_10_1998
values      : 0.01737053, 0.5723241  (min, max)

Spatial reference information is stored in the GeoTIFF file and incorporated in the 
RasterLayer object when it is created. We can see that raster band1 has a projected 
CRS, specifically the UTM Zone 36N coordinate system. Thus, its resolution, 30 x 30, 
is in meters. We can also see that it is one of the six bands the landsat_15_10_1998.
tif file contains.

The input file landsat_15_10_1998.tif is, in fact, a subset of a Landsat satellite 
image of central Israel, where the original values were converted to reflectance (the 
fraction of incident electromagnetic radiation that is reflected from the surface, for 
a given wavelength). The original image, taken on October 15, 1998, is available for 
free at http://earthexplorer.usgs.gov/. The landsat_15_10_1998.tif file 
has six bands (Landsat bands 1-5 and 7) and covers an area of ~24 x ~29 kilometers 
(out of the 170 x 183 kilometers covered by the original image). The first four bands 
correspond to blue, green, red, and Near Infrared (NIR), while the last two belong 
to the Short Wave Infrared (SWIR) portion of the electromagnetic spectrum. Two 
additional Landsat images of the same area, taken about 2 and 5 years after 1998, are 
also available as sample datasets along with this book (the landsat_04_10_2000.
tif and landsat_11_09_2003.tif files).
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Since the raster function reads, by default, the first band of a multiband raster file, 
object band1 that we just created contains reflectance data from the blue band. We 
can point to a different band with the band parameter of the raster function. For 
example, we can create another RasterLayer object, named band4, that will hold the 
NIR data as follows:

> band4 = raster("C:\\Data\\landsat_15_10_1998.tif", band = 4)

Creating multiband rasters
Two classes to represent multiband rasters are defined in the raster package: 
RasterStack and RasterBrick. The only difference between these classes is in the 
flexibility of data sources. While a RasterBrick object must refer to a single file 
(either in the RAM or on disk), each layer in a RasterStack object can come from a 
different file (or a layer in a multiband file). The advantage of RasterBrick is in the 
potentially faster processing time.

A RasterStack object can be created using the stack function, for example, by 
combining several RasterLayer objects as follows:

> stack(band1, band4)
class       : RasterStack
dimensions  : 960, 791, 759360, 2  (nrow, ncol, ncell, nlayers)
resolution  : 30, 30  (x, y)
extent      : 663945, 687675, 3459375, 3488175  (xmin, xmax, ymin$
coord. ref. : +proj=utm +zone=36 +ellps=WGS84 +units=m +no_defs
names       : landsat_15_10_1998.1, landsat_15_10_1998.2
min values  :           0.01737053,           0.04885371
max values  :            0.5723241,            0.7096972

Here, we combined the two RasterLayer objects band1 and band4 into a single 
RasterStack object. We can see that a RasterStack object has an additional 
dimension: the bands or layers (in this case, there are two). A RasterBrick object 
can be created using the brick function in exactly the same way.

We can also use the stack or brick function to read a multiband raster file into a 
RasterStack or RasterBrick object. Let's read the Landsat image from 2000 into a 
RasterBrick object named l_00:

> l_00 = brick("C:\\Data\\landsat_04_10_2000.tif")
> l_00
class       : RasterBrick 
dimensions  : 960, 791, 759360, 6  (nrow, ncol, ncell, nlayers)
resolution  : 30, 30  (x, y)
extent      : 663945, 687675, 3459375, 3488175  (xmin, xmax, ymin$
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coord. ref. : +proj=utm +zone=36 +ellps=WGS84 +units=m +no_defs 
data source : C:\Data\landsat_04_10_2000.tif 
names       : landsat_04_10_2000.1, landsat_04_10_2000.2, landsat$
min values  :         3.109737e-05,         2.019792e-02,        $
max values  :            0.6080654,            0.6905138,        $

This time, our RasterBrick object l_00 holds all six bands the landsat_04_10_2000.
tif file contains.

The following table summarizes the previously mentioned properties of the  
three classes:

Class Function Bands Storage
RasterLayer raster 1 Disk/RAM
RasterStack stack Greater than 1 Disk/RAM
RasterBrick brick Greater than 1 Disk/RAM, single file

Once we have a multiband raster object (such as RasterStack), we can access 
individual bands using the double square brackets [[ operator. By supplying a 
numeric vector of band indices within double brackets, we can get a subset of bands 
from the multiband raster. When the index has a length of 1, we get a RasterLayer 
object holding a single band. For example, using the expression l_00[[2]], we get a 
RasterLayer object that holds the second band as follows:

> class(l_00[[2]])
[1] "RasterLayer"
attr(,"package")
[1] "raster"

When the length of the index is greater than 1, we get a multiband object that holds 
the specific bands we selected. For example, using the expression l_00[[1:3]], we 
get a RasterStack object containing only bands 1-3:

> class(l_00[[1:3]])
[1] "RasterStack"
attr(,"package")
[1] "raster"
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Writing raster files
Raster objects can be written to disk with the writeRaster function. Writing in 
nine formats is currently supported. For example, to write our recently created 
RasterStack object back to disk, in a different format (say, an ERDAS IMAGINE 
image, *.img), we will run the following expression:

> writeRaster(l_00,
+ "C:\\Data\\landsat_04_10_2000.img",
+ format = "HFA",
+ overwrite = FALSE)

Note that we specified the values of four parameters:

• The object to be written (l_00)
• The path and name for the file to be written ("C:\\Data\\

landsat_04_10_2000.img")
• The format of choice (see ?writeRaster for the list of abbreviations) 

(format="HFA")
• Whether to overwrite when the file already exists (overwrite=FALSE)

Exploring a raster's properties
In this section, we are going to review some of the functions used to query the 
properties of raster objects, and modify those properties when appropriate. 
Accessing and modifying the raster values (these can also be viewed as a property 
the raster has) is going to be covered in the next sections.

The number of rows, columns, and layers of a raster can be obtained using functions 
nrow, ncol, and nlayers, respectively:

> nrow(l_00)
[1] 960
> ncol(l_00)
[1] 791
> nlayers(l_00)
[1] 6

As we have seen previously in other contexts, the dim function returns the lengths of 
all dimensions at once as follows:

> dim(l_00)
[1] 960 791   6
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The number of cells (equal to the number of rows multiplied by the number of 
columns) can be obtained using the ncell function:

> ncell(l_00)
[1] 759360

As for the spatial reference properties, the res and extent functions return the 
resolution and extent of the raster, while the proj4string function returns the  
CRS information. Let's see how these functions work, one function at a time:

> res(l_00)
[1] 30 30

The output of res is a vector of length 2, and its values denote the resolutions on the 
x and y axes, respectively (these are usually equal). Here is an example of querying 
the raster's extent:

> extent(l_00)
class       : Extent 
xmin        : 663945 
xmax        : 687675 
ymin        : 3459375 
ymax        : 3488175

The returned object from the extent function is an object of the Extent class. Objects 
of this class define a rectangular bounding box and have several uses, such as 
cropping a raster according to the extent of another raster (using the crop function, 
as we shall see in upcoming chapters).

The returned object from the proj4string function is a character vector (of length 
1), holding the CRS information in the PROJ.4 format:

> proj4string(l_00)
[1] "+proj=utm +zone=36 +ellps=WGS84 +units=m +no_defs"

Certain methods (such as reprojection of vector layers, which will be introduced in 
the next chapter), require CRS information as an object of class CRS rather than a 
character value. A CRS object can be created in a straightforward manner, namely 
applying function CRS to a PROJ.4 character string. The CRS function is defined in 
the sp package—another very important package to work with spatial data in R (it 
is automatically loaded along with the raster package) and one that is going to be 
covered in the next chapter.
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The CRS object contains exactly the same information, only in a different form:

> CRS(proj4string(l_00))
CRS arguments:
 +proj=utm +zone=36 +ellps=WGS84 +units=m +no_defs

One of the advantages of using the CRS class is that the correspondence of a specific 
character string to a valid CRS is ensured (otherwise the CRS function will trigger  
an error).

Sometimes, we would like to modify the CRS information of a spatial object (or 
assign one if it is missing). For example, assignment of NA to the CRS component is 
equivalent to clearing the CRS information:

> proj4string(l_00) = NA
> proj4string(l_00)
[1] NA

When a raster does not have a CRS specified, we can assign it one. One way to 
do this is by using the appropriate PROJ.4 character string (which, in turn, can be 
obtained from another resource, such as http://www.spatialreference.org/). 
Here is an example of how this can be done:

> proj4string(l_00) =
+ CRS("+proj=utm +zone=36 +ellps=WGS84 +units=m +no_defs")
> proj4string(l_00)
[1] "+proj=utm +zone=36 +ellps=WGS84 +units=m +no_defs"

It is frequently more convenient to transfer CRS information from another spatial 
object (which is analogous to importing a CRS from another layer, a common 
procedure in a GIS software), rather than looking up its specific parameters. For 
example, we can assign our raster object l_00 the CRS data from another Landsat 
satellite image we read from the disk:

> l1 = raster("C:\\Data\\landsat_15_10_1998.tif")
> proj4string(l_00) = CRS(proj4string(l1))

A graphical display is often the most helpful way to perceive the properties of a 
given raster. For example, the two basic functions plot and hist can give a first 
impression of the raster values' distribution. The plot function, when applied to a 
raster object, generates a simple map of the values in each band. For more advanced 
visualization of this sort, we are going to use the levelplot function (in the 
following example) and the ggplot2 package (in Chapter 9, Advanced Visualization of 
Spatial Data). The hist function displays a histogram of the values in each band of 
the raster.
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Prior to plotting, we will modify another property the raster l_00 has—its band 
names—using the names function, so that more appropriate names will appear along 
with each respective image in the graphical output. The automatically generated 
names are often inconvenient; for example, they may be composed of the filename 
with sequential numbers for the different bands:

> names(l_00)
[1] "landsat_04_10_2000.1" "landsat_04_10_2000.2"
[3] "landsat_04_10_2000.3" "landsat_04_10_2000.4"
[5] "landsat_04_10_2000.5" "landsat_04_10_2000.6"

We can assign shorter names as follows:

> names(l_00) = paste("Band", 1:6, sep = "_")
> names(l_00)
[1] "Band_1" "Band_2" "Band_3" "Band_4" "Band_5" "Band_6"

Now, using the expression hist(l_00), we will generate histograms of values in 
each band of raster l_00, which are shown in the following screenshot:
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Expanded functionality in the visualization of raster data in R is available through 
several contributed packages. For example, the levelplot function from the 
rasterVis package (which is a modified version of the levelplot function from 
the lattice package) by default displays all bands of a given raster using a single 
color scale (unlike plot), which is something we usually want to do. Note that 
the levelplot function has numerous additional parameters to modify the plot 
appearance, and the rasterVis package contains several other useful functions 
to visualize rasters, that we are not going to cover (instead, you will learn how 
to produce customized graphical output using the ggplot2 package in Chapter 9, 
Advanced Visualization of Spatial Data). The interested reader is referred to the tutorial 
of the rasterVis package (http://oscarperpinan.github.io/rastervis/) and 
the related book by the package author Oscar Perpinan Lamigueiro, Displaying Time 
Series, Spatial, and Space-Time Data with R, CRC Press (2014).

Two very useful parameters of levelplot are par.settings, which determines 
the color scale (for example, the blue-red scale is available using RdBuTheme), and 
contour, which determines whether to display contours. Let's take a look at the 
following example:

> library(rasterVis)
> levelplot(l_00, par.settings = RdBuTheme, contour = FALSE)

The following graphical output is generated:
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The previous screenshot shows reflectance values between 0 (completely dark) to 
1 (completely reflective) for each Landsat band. To produce a so-called true color 
image, we would have to combine bands 1-3 (blue, green, and red), as will be shown 
in the next chapter.

Subsetting rasters
In many situations, we would like to access the values of a given raster either to 
perform calculations involving these values (for example, to calculate a frequency 
table) or to make an assignment (for example, to change a certain value in the raster; 
see the previous code section in Chapter 1, The R Environment). In this section, we are 
going to cover the different ways to do this.

As an example, we are going to use another multiband raster, modis.tif. First, we 
will assign it to a RasterBrick object named r and print its properties, as follows:

> r = brick("C:\\Data\\modis.tif")
> r
class       : RasterBrick
dimensions  : 100, 100, 10000, 280  (nrow, ncol, ncell, nlayers)
resolution  : 500, 500  (x, y)
extent      : 660000, 710000, 3445000, 3495000  (xmin, xmax, ymin$
coord. ref. : +proj=utm +zone=36 +datum=WGS84 +units=m +no_defs +$
data source : C:\Data\modis.tif
names       : modis.1, modis.2, modis.3, modis.4, modis.5, modis.$

The modis.tif file contains Normalized Difference Vegetation Index (NDVI) 
values from the MOD13A1 product of the Terra-MODIS satellite. As with Landsat, 
the original MOD13A1 data is available for free at http://earthexplorer.usgs.
gov/. The modis.tif image covers an area of 2,500 km2 at 500 meters spatial 
resolution. Unlike with Landsat, the bands do not refer to different wavelengths 
of the satellite sensor, but rather to different dates of image acquisition. In other 
words, we have a time series of NDVI images. There are 280 bands, corresponding 
to the period between February 18, 2000 and April 6, 2012 (23 images per year, each 
corresponding to approximately a 16-day time interval). Pixels (raster cells) with 
unreliable data (due to clouds, for example) were assigned with NA as part of  
the preprocessing.

The NDVI is a commonly used remote sensing index, quantifying the abundance of 
green vegetation (it has a range of -1 to 1, with values closer to 1 corresponding to 
more abundant vegetation). The NDVI is calculated based on reflectance in the red 
and NIR bands. We are going to see exactly how it is done, using the Landsat image 
as an example, later on in this chapter.
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To examine the geographical location of the modis.tif raster, we can use the 
plotKML package that has a suite of functions to export the spatial data from R in 
the KML or KMZ formats and automatically display it in Google Earth. The simplest 
possible example, using nothing but defaults, would be to call the plotKML function 
on one of the bands in the raster r (for example, on band 1) in order to open Google 
Earth and display it there. The expression plotKML(r[[1]]) will thus automatically 
open Google Earth, zoom in on the location of the raster r[[1]], and display its 
values using a color scale (assuming the R packages plotKML and animation 
are loaded and the Google Earth software is installed). The following screenshot 
demonstrates what we see as a result:

To subsequently display the result in Google Earth, the plotKML function 
has, in fact, written a KML file in the current working directory. The 
working directory is the default path that R uses to import and export 
files. It can be queried or modified using functions getwd and setwd, 
respectively. For example:

> getwd()

[1] "C:/Users/Michael Dorman/Documents"

> setwd("C:\\Data")

> getwd()

[1] "C:/Data"

Utilizing working directories can save the time spent in writing absolute 
file paths, but it can also make the code less concrete, so we will not use it 
in the present book.
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Interactive visualization, over informative reference layers (for example, in Google 
Earth), is very helpful for the initial examination of spatial data we have at hand. 
For example, we can now see clearly that the NDVI gradient within the raster, from 
relatively high values towards north-west direction to relatively low values towards 
south-east direction, is due to its positioning in the transition zone between the 
relatively humid Mediterranean climatic region (where vegetation is more abundant) 
and the arid Negev desert (where vegetation is scarce).

The interested reader can refer to the paper in the Journal of Statistical Software by 
Hengl, Roudier, Beaudette, and Pebesma (2014), or to the online tutorial (http://
gsif.isric.org/doku.php?id=wiki:tutorial_plotkml) for further details and 
inspirational examples on the wide range of methods the plotKML package offers.

Accessing raster values as a vector
Returning to the subject of raster value access, the simplest way of doing that is 
with the [ operator, exactly the same way we would with a vector. When accessing 
the values of a raster with [, the values will be ordered from the top-left corner 
rightwards, then along the second row, and so on, until the lower-right corner is 
reached. For example, to find out the first five values of the first layer in the r raster, 
we will use the following expression:

> r[[1]][1:5]
[1] 0.4242 0.3995 0.4190 0.4272 0.4285

Note that indices referring to bands with [[ come first, and indices referring to cells 
with [ come second. Either can be omitted, and then all elements from the respective 
dimension will be returned rather than a subset (for example, as we have seen 
previously, r[[1]] returns the whole first band).

When the [ operator is used, but the cell value's index is omitted (as in []), we get 
a vector containing all of the raster values. We can use this vector, for example, to 
calculate the mean NDVI on the first date of acquisition (February 18, 2000).

> mean(r[[1]][], na.rm = TRUE)
[1] 0.2302056

The result is 0.23.
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Accessing raster values with the matrix 
notation
Since a raster band is a two-dimensional object, it is frequently more useful to 
access its values using a two-dimensional notation. As with matrix objects, the first 
element of the two-dimensional index refers to rows and the second element refers 
to columns. For example, values 1-5 (in vector terms) of raster r[[1]] occupy row 1, 
columns 1-5. We can refer to these same values using a two-dimensional notation  
as follows:

> r[[1]][1, 1:5]
[1] 0.4242 0.3995 0.4190 0.4272 0.4285

Note that, even though we are using a two-dimensional notation to subset the raster, 
the values are still returned in the form of a one-dimensional numeric vector.

Subsets involving more than one layer
In the last two sections, we accessed a subset of raster values confined to a  
single layer. What happens when we subset both the row/column and layer 
dimensions of a raster? In that case, we get a matrix object, rather than a vector,  
with columns referring to layers and rows referring to raster cells. For example, 
using the following expression, we are referring to the values occupying row 1, 
columns 1-5, and layers 1-3:

 > r[[1:3]][1, 1:5]
     modis.1 modis.2 modis.3
[1,]  0.4242  0.4518  0.4211
[2,]  0.3995  0.3334  0.4123
[3,]  0.4190  0.3430  0.4314
[4,]  0.4272  0.3430  0.4761
[5,]  0.4285  0.5814  0.4761

As a result, we get a matrix with three columns (corresponding to layers 1-3) and 
five rows (corresponding to the requested five cells, ordered from the top-left corner 
rightwards). Indeed, the values in the first column of the matrix are identical to the 
values of the vector we got in the previous two examples.

As another example, we can examine the course of NDVI over time at a single 
pixel—for example, in row 45, column 33—by omitting the band index this time  
(and thus referring to all bands at once):

> v = r[45, 33][1, ]
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Note that with r[45,33], we get a matrix object with 280 columns (since we access 
all 280 bands of raster r) and a single row (since we access a single cell). Then, with 
the [1,] part, we select the first (and only) row in that matrix, containing the values 
of the (45,33) cell across all bands. As we witnessed earlier, a single matrix row is by 
default simplified to a vector. Finally, we assign the vector of NDVI values to v.

To plot the resulting NDVI time series, now held in v, we will use the date column 
in the dates table (see the previous chapter), which lists the dates of acquisition for 
each band in r. We will also specify the labels for the x and y axes, using parameters 
xlab and ylab of the plot function, respectively:

> plot(v ~ dates$date, type = "l", xlab = "Time", ylab = "NDVI")

The resulting graphical output is shown in the following screenshot:

We can clearly see the periodical behavior of NDVI at the annual scale; NDVI 
increases in winter (the wet season), when vegetation is more abundant, and declines 
in summer (the dry season), when vegetation desiccates. Lower-than-usual NDVI 
values have been observed from 2009 to 2011 due to a drought period the region 
experienced at the time.

In all subset methods we have seen in the last three sections, the result was 
automatically converted to a simpler object, either to a vector (when dealing with 
values from a single band) or a matrix (when dealing with values form several 
bands). If we want to suppress the simplification, we can specify drop=FALSE, the 
same way we have seen regarding subsets of a data.frame object (see the previous 
chapter) and a matrix object. In the following example, using drop=FALSE yields a 
subset RasterBrick object named u that has the first two rows, two columns, and 
three layers of the original raster r:

> u = r[[1:3]][1:2, 1:2, drop = FALSE]
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Plotting the object will demonstrate that u is indeed a 2 x 2 raster with three layers. 
The following expression plots the raster u:

> levelplot(u, layout = c(3,1), par.settings = RdBuTheme)

Using the parameter layout, we specified that the bands should be arranged in a 
single row and three columns within the plot area. The following screenshot shows 
what the plot will look like:

Transforming a raster into a matrix or an array
At times, it can be useful to transform a raster into a simpler data structure, such as a 
matrix or an array. One of the reasons to do that is to perform faster calculations (see 
Chapter 6, Modifying Rasters and Analyzing Raster Time Series). The transformations can 
be achieved using functions such as as.matrix and as.array, respectively.

For example, a single layer of a raster can be transformed into a matrix as follows:

> as.matrix(u[[1]])
       [,1]   [,2]
[1,] 0.4242 0.3995
[2,] 0.4495 0.2925

A multiband raster can be transformed into an array as follows:

> as.array(u[[1:2]])
, , 1

       [,1]   [,2]
[1,] 0.4242 0.3995
[2,] 0.4495 0.2925
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, , 2

       [,1]   [,2]
[1,] 0.4518 0.3334
[2,] 0.4846 0.3223

If we try to convert a multiband raster into a matrix with as.matrix, we will get a 
matrix with rows representing cells and columns representing layers, as we have 
seen earlier in the context of raster subsetting:

> as.matrix(u[[1:2]])
     layer.1 layer.2
[1,]  0.4242  0.4518
[2,]  0.3995  0.3334
[3,]  0.4495  0.4846
[4,]  0.2925  0.3223

Overlay and reclassification of rasters
In this section, we will introduce two basic operations involving rasters: performing 
mathematical operations between overlapping rasters and reclassifying the values of 
a raster into new aggregated categories.

Raster algebra and overlay operations
In many cases, when we have two or more overlapping rasters, we would like to 
apply a certain function on each pair, triplet, and so on of overlapping pixels in 
those rasters. As a result, we will get a new raster, where the value of each pixel is 
the result of the latter function on the respective pixels in the input rasters. Such 
operations are also referred to as raster algebra, usually when using straightforward 
arithmetic notation (such as r+s, where r and s are rasters) or overlay operations.

There are numerous functions that can be used in raster algebra expressions, 
including arithmetic operators (such as +, -, *, and /), logical operators (such as 
>, >=, <, <=, ==, and !), and several simple functions (such as min, max, and sum). 
Numeric values can also be combined with rasters (as long as the first object in the 
expression is a raster), in which case the numeric values are recycled as if to form a 
raster where all the values are equal to the given numeric value. For example, if r 
is a raster, r+1 would yield a new raster, where 1 is recycled and added to each of 
the values in raster r. Similarly, the expression r*2 would yield a raster where each 
value is multiplied by 2. A single band raster can also be combined with a multiband 
raster, in which case the single band raster is recycled.
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For example, the following expression will give us a new raster with the minimal 
NDVI values observed in each pixel over the 280 layers of raster r, excluding  
NA values:

> min_ndvi = min(r, na.rm = TRUE)

In cases where we would like to apply a certain function on the values 
of the raster (rather than performing an overlay operation), we need to 
apply the respective function on the vector of raster values, rather than on 
the raster object itself.
For example, to find out the minimum value among all cells in the first 
band of raster r, we will have to use the following expression:

> min(r[[1]][], na.rm = TRUE)

[1] 0.007

Applying the min function on the raster itself, with min(r[[1]],na.
rm=TRUE), is an overlay operation. It is not what we want to do in this 
case since an overlay would give us a new raster where each cell contains 
the minimal observed value among all bands of the input raster. The 
result will be r[[1]] itself since there is only one band to choose from.

Using the range function on the multiband raster r would give us a new raster with 
two bands (since the function returns a vector of length 2), one with the minimal 
values observed in each pixel and the other with the maximal values observed in 
each pixel:

> range_ndvi = range(r, na.rm = TRUE)

We can examine the range_ndvi result by plotting it with the levelplot function 
(this time, showing contours with contour=TRUE):

> levelplot(range_ndvi, par.settings = RdBuTheme, contour = TRUE)
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The following screenshot shows the graphical output:

The resulting graphical output shows that NDVI minima are more spatially uniform 
than NDVI maxima.

Though slightly less straightforward than the raster algebra notation, the overlay 
and calc functions provide a more flexible way to perform overlay operations on 
rasters. Their main advantage is that we can supply any function (built-in or  
user-defined) to define the overlay operation, rather than choosing from the 
predefined set of functions that are applicable using the raster algebra notation. 
The main difference between calc and overlay is that calc is intended for overlay 
operations involving the bands of a single (multiband) raster, while overlay is 
intended to be used with several separate raster objects, although in many cases 
these functions are interchangeable (since we can always stack individual rasters 
into a single multiband raster). In both cases, we supply the overlay function as an 
argument to the fun parameter. The only requirement for the function we supply is 
that it should accept a vector and return a vector of a fixed length.
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For example, we can write a function called prop_na that takes a numeric vector 
and returns the proportion of the NA values that vector contains (from 0, if the vector 
has no NA values, to 1, if the vector is entirely composed of the NA values). The 
following code section defines the prop_na function and demonstrates that it works 
as expected using a simple example:

> prop_na = function(x) length(x[is.na(x)]) / length(x)
> prop_na(c(10,3,NA,2))
[1] 0.25

We can now utilize calc to perform an overlay operation on all layers in r with the 
function prop_na, as follows:

> prop_na_r = calc(r, fun = prop_na)

The resulting object prop_na_r is a single band raster, where the value of each pixel 
reflects the proportion of missing values among the bands of the multiband raster r.

As another example, we will calculate an NDVI image based on our Landsat image 
l_00. NDVI is defined as the difference between NIR and red reflectances (which 
in Landsat correspond to bands 4 and 3, respectively) divided by their sum. We 
can perform the calculation by first defining a function called ndvi that, given a 
vector, calculates the NDVI based on its fourth and third elements (assuming they 
correspond to NIR and red, respectively).

> ndvi = function(x) (x[4] - x[3]) / (x[4] + x[3])

Then, we can apply the function on the Landsat multiband raster l_00 with calc:

> ndvi_00 = calc(l_00, fun = ndvi)

We will display the result using levelplot. Note that when plotting a single layer, 
an average profile of mean values is shown for rows and columns along plot margins 
(this behavior can be disabled by specifying margin=FALSE):

> levelplot(ndvi_00, par.settings = RdBuTheme, contour = FALSE)
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The following graphical output is produced:

The Landsat image was taken during the dry season, and the area has a semiarid 
climate; thus, the green vegetation cover is scarce except in a few spots. For example, 
the two larger white/light blue patches, roughly in the middle of the preceding 
screenshot, are planted pine (mainly Aleppo pine) forests named Lahav and 
Kramim. Aleppo pine is an evergreen tree species; thus, the forested area retains 
relatively high NDVI values even during the dry season. We are going to return to 
these two forests in other examples later.
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When applying logical operators on rasters, we get rasters with logical values 
(TRUE or FALSE). However, the same way as we have seen regarding logical vectors 
(Chapter 2, Working with Vectors and Time Series), when we apply an arithmetic 
operation on a logical raster, the logical values are converted to numeric values  
(1 or 0) before the operation is carried out. For example, if we would like to find out 
how many missing values the first layer of raster r contains, we can use the  
following expression:

> sum(is.na(r[[1]])[])
[1] 721

Note that with is.na(r[[1]]), we first created a logical raster, where the values are 
TRUE in pixels with NA in r[[1]], or FALSE otherwise. Then, with [], we obtained the 
vector of values from this logical raster. Finally, with sum, we found out how many 
TRUE values the vector contains. The answer is 721 NA values in the first layer of r.

Logical rasters can also be used to select a subset of the values of another 
overlapping raster and assign new values to the resulting subset. For example, if we 
wanted to fill the missing values in r[[1]], say with the mean of all non-missing 
values, we could do so as follows:

> temp = r[[1]]
> temp[is.na(temp)] = mean(temp[], na.rm = TRUE)

Note that we first assigned the first band of r to a new object named temp so that we 
will not alter the values of the original raster object. Then, we created a logical raster 
named is.na(temp) to subset the NA values in temp and assign the mean value of all 
the other cells to that subset. Plotting the new raster temp alongside the original one 
r[[1]] indeed shows that the missing values—appearing white in the left panel of 
the following screenshot (and transparent in the Google Earth visualization as seen 
in the previous screenshot)—were uniformly filled:

> levelplot(stack(r[[1]], temp),
+ par.settings = RdBuTheme, contour = FALSE)
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The resulting graphical output is shown in the following screenshot:

Reclassifying raster values
Reducing the amount of information a raster has for easier interpretation often 
involves reclassifying the values of the raster from a continuous scale into a set of 
discrete categories. In fact, we have already seen one method that we can use to do 
this in the previous section— the assignment to subsets of raster values defined by 
a condition. For example, we can reclassify the ndvi_00 raster by assigning 0 to all 
cells where NDVI≤0.2 and 1 to all cells where NDVI>0.2, as follows:

> l_rec = ndvi_00
> l_rec[l_rec <= 0.2] = 0
> l_rec[l_rec > 0.2] = 1

The following expression that uses plot will show an image of l_rec:

> plot(l_rec)
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This following screenshot shows the graphical output:

In fact, there is a specialized function for reclassification in the raster package called 
reclassify. The function accepts a raster (which we would like to reclassify) and 
a numeric vector or matrix (specifying the rules of reclassification). For example, 
if we supply a numeric vector, it should be composed of triplets of numeric values 
specifying the classification rules: from-, to-, new value, from-, to-, new value, and 
so on. It is often convenient to use the special value Inf (which stands for infinity) 
to specify unlimited from- or to- edges for a given range. For example, to specify the 
≤0.2 range, we will say from -Inf to 0.2. Therefore, for example, we could create the 
l_rec raster with the following expression, instead of the three expressions shown in 
the previous example:

> l_rec = reclassify(ndvi_00, c(-Inf, 0.2, 0, 0.2, Inf, 1))
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Here, in plain language, we request the values from -∞ to 0.2 (closed on the right by 
default, thus including 0.2, as in ≤0.2) to be converted to 0, and the values from  
0.2 to ∞ to be converted to 1.

Summary
In this chapter, we covered the basic methods for working with raster data in R. We 
now know how to import and export raster data to and from the R environment, 
how to examine the raster objects at hand, and how to perform simple calculations to 
modify these objects. We also covered several ways to visually display raster data in R.

The next chapter is going to be very similar in structure and purpose to the  
present one; it's just that we are going to cover the other main type of  
spatial data—vector layers.
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Working with Points, Lines, 
and Polygons

In this chapter, we will cover the basic usage of the second major type of spatial 
data—vector layers (points, lines, and polygons). In GIS terminology, these data are 
sometimes referred to as vectors, but we will use the term vector layers to distinguish 
them from vectors in R (see Chapter 2, Working with Vectors and Time Series). We 
will review the architecture of the vector layer classes defined in the sp package. 
Examples of the most common operations involving vector layers will then be 
presented using the sp, rgdal, and rgeos packages.

In this chapter, we'll cover the following topics:

• Classes for spatial vector layers (points, lines, and polygons) in the  
sp package

• Creating point layers by geocoding
• Reading and writing vector layer files
• Exploring the properties of vector layers
• Accessing and modifying attribute tables
• Reprojecting vector layers
• Calculating derived geometrical properties (for example, polygon area)
• Querying relations (for example, intersection) between a pair of layers
• Creating new layers based on a single layer or a pair of layers
• Joining data to an attribute table based on the location or common columns
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Data structures for vector layers in R
Spatial vector layers have two components: the geometry and the attribute table. 
The geometry component holds the spatial coordinates and information regarding 
their arrangement in separate features, while the attribute table holds additional 
information regarding each feature. For example, in a point layer of capital cities, the 
record for London may be composed of a geometric component (a point coordinate, 
such as 51.5072°N, 0.1275°W) and a row in an attribute table holding additional data 
regarding each city (for example, population size, built area, and so on).

The geometry part in a vector layer is obligatory and there are three types of 
geometries: points, lines, and polygons. The attribute table is optional. Classes for 
the six spatial vector layers types, constituting all possible combinations of these 
two properties, have been defined in the sp package. They are summarized in the 
following table:

Geometry type Attribute table Class
Points No SpatialPoints

Yes SpatialPointsDataFrame

Lines No SpatialLines

Yes SpatialLinesDataFrame

Polygons No SpatialPolygons

Yes SpatialPolygonsDataFrame

Together with the three raster classes from the raster package (presented in the 
previous chapter), these constitute a commonly used set of classes suitable for a wide 
range of spatial analysis applications in R.

Additional classes for spatial vector layers (and rasters) do exist in R. 
They are often associated with packages intended for specialized data 
analysis tasks. Conveniently, however, there are usually established 
methods of converting objects to and from such classes, with respect to 
the highly popular classes in the sp and raster packages (which we've 
used throughout this book). For example, the ppp class (the spatstat 
package) is used to represent a point pattern (event locations and the 
window where the pattern has been observed) to employ statistical 
analysis tools for such patterns. A SpatialPoints object can be 
converted to a ppp object and vice versa using the maptools package.
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In this section, we will see an example of how to create a vector layer for each of the 
three types of geometries—points, lines, and polygons. In the next section, methods 
to examine spatial vector layers will be presented, while in the last three sections of 
this chapter, we will see how some more advanced operations on vector layers are 
performed. Additional information regarding the sp package and its spatial vector 
classes can be found in the book Applied Spatial Data Analysis with R, Springer, whose 
second edition was published in 2013, by Roger Bivand, Edzer Pebesma, and Virgilio 
Gómez-Rubio.

Points
Points are the simplest type of spatial objects since the geometrical component of 
a point is just a single (x,y) coordinate. A set of (x,y) coordinates, along with CRS 
information, constitutes a spatial point layer, which can be represented in R with a 
SpatialPoints object. If we also have an attribute table where each row corresponds 
to a single point, the layer can be represented with a SpatialPointsDataFrame object.

In our first example, we are going to create a SpatialPointsDataFrame object 
by geocoding, the procedure to convert addresses to geographic coordinates. The 
intermediate steps we will go through are as follows:

1. Creating a vector of addresses we want to geocode.
2. Geocoding the addresses to get a data.frame object of geographic 

coordinates for each address.
3. Adding location names as an additional column.
4. Converting the data.frame object to a SpatialPointsDataFrame object.
5. Adding CRS information.

In the example, we will geocode the addresses of three airports in New Mexico:

• Albuquerque International Airport
• Double Eagle II Airport
• Santa Fe Municipal Airport

For the geocoding step (step 2), we are going to use the Google Maps API, accessible  
from R through the ggmap package. Additional functionality of the ggmap package 
for visualization of spatial data will be presented in Chapter 9, Advanced Visualization 
of Spatial Data. For an overview of package capabilities, refer to the introductory 
paper on ggmap (ggmap: Spatial Visualization with ggplot2) by Kahle, D. and Wickham, 
H. 2013.
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Our first step is to create a character vector with the airports addresses. The 
addresses are ordered in accordance with the airport names listed earlier:

> addresses = c(
+ "2200 Sunport Blvd, Albuquerque, NM 87106, USA",
+ "7401 Paseo Del Volcan Northwest Albuquerque, NM 87121, USA",
+ "121 Aviation Dr, Santa Fe, NM 87507, USA")

Note that the Google Maps API (which we will use for geocoding) can 
also search for location names (such as the White House) or partial 
addresses, but the result will be less determinate (two different places 
can be go by the same name, but not the same address). The exact 
addresses are used here to ensure that the reader will obtain the same 
results as in the book's text.

We are ready for the second step and will now load the ggmap package and geocode 
the addresses using the geocode function. This function accepts a vector of addresses 
(such as addresses that we just created) and returns a data.frame object of the 
matched geographic coordinates:

> library(ggmap)
> airports = geocode(addresses)
> airports
        lon      lat
1 -106.6168 35.04918
2 -106.7947 35.15559
3 -106.0731 35.62866

The geocode function accesses the Google Maps API. Therefore, 
an Internet connection is required. Using the Google Maps API 
also implies agreement with the Google Maps API Terms of 
Service (https://developers.google.com/maps/terms) 
and is limited to 2,500 queries in a 24-hour time period (using the 
free service option). A promising alternative can be found in the 
geocodeHERE package providing access to the HERE Geocoding 
API (https://developer.here.com/geocoder) that has a 
higher threshold of 10,000 queries per day.

We now have a data.frame object named airports that holds the longitudes (lon) 
and latitudes (lat) of the three airports.
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In our third step, we will add the airport names in an additional column called  
name in airports as follows:

> airports$name = c("Albuquerque International",
+ "Double Eagle II",
+ "Santa Fe Municipal")
> airports
        lon      lat                      name
1 -106.6168 35.04918 Albuquerque International
2 -106.7947 35.15559           Double Eagle II
3 -106.0731 35.62866        Santa Fe Municipal

The resulting data.frame object has everything we need to create a 
SpatialPointsDataFrame object, where the geometry components will be the 
airports' coordinates, and the attribute table will have a single column that holds 
the airport names. This is our fourth step. It is performed using the coordinates 
function of the sp package by specifying the columns that hold the coordinates with 
a formula object of the structure ~x_coord+y_coord. In our case, the x coordinate is 
the longitude (lon) and the y coordinate is the latitude (lat), therefore the formula 
takes the following form:

> library(sp)
> coordinates(airports) = ~ lon + lat

The last expression converts airports from a data.frame object to a 
SpatialPointsDataFrame object. We can confirm the conversion took place using 
the class function as follows:

> class(airports)
[1] "SpatialPointsDataFrame"
attr(,"package")
[1] "sp"

Using the print method on the object shows that it holds exactly the same 
information as before; just that the lon and lat columns are now identified as spatial 
coordinates, as shown in the following output:

> airports
            coordinates                      name
1 (-106.6168, 35.04918) Albuquerque International
2 (-106.7947, 35.15559)           Double Eagle II
3 (-106.0731, 35.62866)        Santa Fe Municipal

Our last step is to specify the CRS of airports, which is a geographic CRS:

> proj4string(airports) = CRS("+proj=longlat +datum=WGS84")

The airports vector layer is now complete.
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Writing of Spatial*DataFrame objects (that is, the SpatialPointsDataFrame, 
SpatialLinesDataFrame, and SpatialPolygonsDataFrame objects) can be done 
with the writeOGR function from the rgdal package. In the following example, as 
well as in most other examples in this book, we will use the popular ESRI Shapefile 
format for the input and output of vector layers.

We can export our SpatialPointsDataFrame object airports to a Shapefile on the 
disk as follows:

> library(rgdal)
> writeOGR(airports, "C:\\Data", "airports", "ESRI Shapefile")

The four arguments that were supplied to the first four parameters of the writeOGR 
function are as follows:

• obj: The name of the object to be written (for example, airports)
• dsn: The path of the directory where the file(s) will be written (for example, 

"C:\\Data")
• layer: The layer name (for example, "airports")
• driver: The driver name (for example, "ESRI Shapefile")

Since Shapefile datasets are composed of several separate files (at 
least three: *.shp, *.shx, and *.dbf), when reading and writing 
with the ESRI Shapefile driver, we specify the directory (dsn) and 
filename without the extension (layer). In the previous example, with 
dsn="C:\\Data" and layer="airports", four files were written to 
the C:\Data directory: airports.dbf, airports.prj, airports.
shp, and airports.shx. The meaning of the dsn and layer 
parameters can be different with other drivers (see the next section and 
?writeOGR).

To read the file we just wrote back into a SpatialPointsDataFrame object in R, 
we can use the readOGR function (also available in the rgdal package). When 
reading vector layers, we need to provide only the dsn and layer arguments (the 
path and layer name, respectively). In addition, we can specify that we do not 
want character values in the attribute table to be converted to factors by specifying 
stringsAsFactors=FALSE (see Chapter 3, Working with Tables):

> airports = readOGR("C:\\Data",
+ "airports",
+ stringsAsFactors = FALSE)
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Obviously, all the airports.* files that constitute the Shapefile need to be found  
in the same directory (in this case, in the C:\Data directory) for the layer to be 
properly read.

Lines
Line and polygon layers are more complex than point layers in two principal aspects. 
First, individual lines or polygons are defined with a set of points, rather than a 
single one. Specifically, a line is a set of points connected to each other from the first 
point to the last one. A polygon is defined similarly; just that the last point is equal 
to the first. The number of points in each line or polygon is not fixed, but dependable 
on the shape complexity (a more complex shape will be defined with more points). 
Secondly, a single line or polygon feature (corresponding to a single entry in an 
attribute table) can be composed of more than one individual line or more than one 
individual polygon. For example, in a layer of countries' boundaries, the USA feature 
will be composed of more than one polygon since the contiguous United States, 
Alaska, and each of the Hawaii Islands are separate from one another.

An additional complication, specific to polygonal layers, is the existence 
of holes. A single feature can be composed of an external boundary 
polygon and hole polygons. For example, in a layer of North America's 
land area, hole polygons may represent the Great Lakes. Hole polygons 
can once again have internal polygons (such as islands inside the Great 
Lakes) and so on.

Due to their complexity, it is much less common to manually define line and polygon 
layers from raw coordinates. Instead, they are usually either imported from an 
external source (for example, reading a Shapefile) or created from another object (for 
example, contour lines created based on a DEM raster).

As an example for SpatialLinesDataFrame, we will read a GPS Exchange Format 
(GPX) file with a track record from a GPS device. With GPX files, unlike with 
Shapefiles, the dsn argument is the file itself, while the layer argument points to the 
data component we would like to read (such as "tracks" or "track_points"; see 
?readOGR). The particular file GPS_log.gpx contains the GPS log, from driving around 
the Lahav and Dvira forests with the GPS device in recording mode. Let's read the  
file as follows:

> track = readOGR("C:\\Data\\GPS_log.gpx","tracks")
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Using the class function, we can demonstrate that track is a 
SpatialLinesDataFrame object:

> class(track)
[1] "SpatialLinesDataFrame"
attr(,"package")
[1] "sp"

Polygons
As an example of polygonal data, we are going to read another external file; this 
time it's a Shapefile named USA_2_GADM_fips. The file is composed of polygons 
corresponding to the second level administrative division (counties) of the USA, 
with several attributes such as county names and Federal Information Processing 
Standards (FIPS) codes. We will assign the resulting SpatialPolygonsDataFrame to 
an object named county to use in the subsequent examples in this chapter:

> county = readOGR("C:\\Data", "USA_2_GADM_fips",
+ stringsAsFactors = FALSE)

To summarize, so far we have witnessed two ways to create spatial vector layers 
in R: from a set of (x,y) coordinates (relevant to points) and from a file (relevant to 
points, lines, and polygons). A third way—deriving vector layers from raster data—
will be presented in Chapter 7, Combining Vector and Raster Datasets.

Exploring vector layer properties and 
subsetting
This section is going to be devoted to the examination of spatial vector layer 
properties, and to subsetting them based on their attribute tables. Some of the 
presented procedures will be analogous to those presented for rasters in the previous 
chapter (for example, plotting and querying CRS information), while others are 
generally relevant only to vector layers (for example, calculating areas and creating 
subsets according to the attribute table). As will quickly become apparent, many 
operations involving attribute tables of vector layers are conveniently analogous to 
operations on data.frame objects.
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Examining vector layer properties
The summary function produces a useful textual summary of the properties of a 
vector layer, including its class, bounding box coordinates, CRS, and attribute table 
column types. For example, using summary on airports produces the following 
textual output:

> summary(airports)
Object of class SpatialPointsDataFrame
Coordinates:
                 min        max
lon -106.79467 -106.07308
lat   35.04918   35.62866
Is projected: FALSE 
proj4string : [+proj=longlat +datum=WGS84]
Number of points: 3
Data attributes:
   Length     Class      Mode
        3 character character

All of the properties listed in this output can also be accessed, and in some cases 
modified, using functions. For example, similar to what we already saw for rasters 
in the previous chapter, the proj4stpring function returns the CRS definition of 
a vector layer in the PROJ.4 format. Using proj4string on airports returns the 
definition of the WGS84 CRS:

> proj4string(airports)
[1] "+proj=longlat +datum=WGS84"

Referring to the geometry part, the length function returns the number of  
features the layer consists of. For example, airports contains three points  
(the three airports), as the following output shows:

> length(airports)
[1] 3

A spatial layer also always has row names that internally serve as ID variables to 
match the geometries with attribute table entries. The number of row names is thus 
equal to the number of features:

> row.names(airports)
[1] "1" "2" "3"
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The dimensions function returns the number of spatial dimensions:

> dimensions(airports)
[1] 2

In this book, we only deal with two-dimensional vector layers 
(geometries on a plane). Three-dimensional layers can also be 
useful to represent certain types of data, such as points with (x,y) 
coordinates and (z) elevation.

Accessing the attribute table of vector layers
The attribute table of a vector layer is, in fact, a data.frame object and some of the 
functions that work with data.frame objects have been defined to consistently work 
directly on vector layers as well. For example, the nrow, ncol, and dim functions 
applied to a vector layer refer to its attribute table to return its dimensions:

> nrow(county)
[1] 3145
> ncol(county)
[1] 4
> dim(county)
[1] 3145    4

We see that the attribute table of county has 3,145 rows (thus, the layer has 3,145 
features) and four columns. The columns contain the following information:

• NAME_1: The first-level name (for example, the state name)
• NAME_2: The second-level name (for example, the county name)
• TYPE_2: The feature type (for example "County" or "Water body")
• FIPS: The FIPS code

Individual columns of an attribute table, or subsets of these, can be accessed with the 
$ and [ operators. For example, the second-level names (held in the NAME_2 column) 
of the first 10 features in county can be obtained as follows:

> county$NAME_2[1:10]
 [1] "Litchfield" "Hartford"   "Tolland"    "Windham"   
 [5] "Siskiyou"   "Del Norte"  "Modoc"      "New London"
 [9] "Fairfield"  "Middlesex"  
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As another example, we can check the types of features the county layer contains by 
listing the unique values in the TYPE_2 column:

> unique(county$TYPE_2)
 [1] "County"           "District"         "Borough"         
 [4] "Census Area"      "Municipality"     "City And Borough"
 [7] "City And County"  "Water body"       "Parish"          
[10] "Independent City"

The whole attribute table of a spatial vector layer can be accessed directly using the 
@ operator. The @ operator is used to extract a slot, by its name, from an object, using 
the notation object_name@slot_name.

More specifically, the @ operator is applicable to objects of the so-
called S4 classes, which all raster and vector layers we deal with are, as 
opposed to S3 classes whose components are accessed with a different 
method (using the $ operator). The distinction between S3 and S4 
concerns the internal class structure and is beyond the scope of this 
book. For more information, refer to Advanced R, Wickham, H., CRC 
Press, 2014 (http://adv-r.had.co.nz/OO-essentials.html).

The attribute table slot of spatial vector classes defined in the sp package is called 
data. Therefore, adding @data after a vector layer name will yield its attribute table 
(if it has one).

For example, the following expression returns the attribute table of airports:

> airports@data
                       name
1 Albuquerque International
2           Double Eagle II
3        Santa Fe Municipal

As another example, we can print the first few rows in the attribute table of county 
using the head function applied to county@data:

> head(county@data)
       NAME_1     NAME_2 TYPE_2  FIPS
0 Connecticut Litchfield County 09005
1 Connecticut   Hartford County 09003
2 Connecticut    Tolland County 09013
3 Connecticut    Windham County 09015
4  California   Siskiyou County 06093
5  California  Del Norte County 06015
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As we shall see later in this chapter, the attribute table of a vector layer can also be 
modified using assignment, similar to a separate data.frame object. New attribute 
table columns can be created and populated using the $ operator, or the whole 
attribute table can be modified (for example, certain columns can be deleted or 
joined) and reassigned to the data slot.

All other components of spatial vector (and raster, for that matter) objects are 
also contained in slots and thus, are accessible with the @ operator. Using the str 
function, we can obtain a tree describing the object's structure. Let's take a look  
at the following example:

> str(airports)
Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
  ..@ data       :'data.frame': 3 obs. of  1 variable:
  .. ..$ name: chr [1:3] "Albuquerque International" "Double Eagl$
  ..@ coords.nrs : int [1:2] 1 2
  ..@ coords     : num [1:3, 1:2] -106.6 -106.8 -106.1 35 35.2 ...
  .. ..- attr(*, "dimnames")=List of 2
  .. .. ..$ : NULL
  .. .. ..$ : chr [1:2] "lon" "lat"
  ..@ bbox       : num [1:2, 1:2] -106.8 35 -106.1 35.6
  .. ..- attr(*, "dimnames")=List of 2
  .. .. ..$ : chr [1:2] "lon" "lat"
  .. .. ..$ : chr [1:2] "min" "max"
  ..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot
  .. .. ..@ projargs: chr "+proj=longlat +datum=WGS84"

Using such a tree, we can find our way to all the data components 
of an object. Then, why is the use of specialized functions (such as 
proj4string), rather than direct access to the relevant property 
(such as airports@proj4string@projargs), usually advocated in 
R? One reason is that working through functions makes our code more 
robust in the face of changes in class definition. In other words, if the 
internal architecture of a certain class changes in a future version of 
a given package (so that, for instance, the slot x is now named y), the 
user may not even notice since the code for all the relevant functions 
operating on the class will also be changed accordingly while access 
with @x will no longer work. Accessing the attribute table of a vector 
layer (with @data) is going to be the only direct access we have in 
this book. The exception is necessary since certain operations on an 
attribute table are unfeasible otherwise.
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The attribute table of a vector layer can also be removed altogether, by converting a 
Spatial*DataFrame object into a Spatial* object. Such a conversion can be done 
with the as function, specifying the object name and the class we want to convert it 
to. For example, we can convert airports, a SpatialPointsDataFrame object, to a 
SpatialPoints object as follows:

> airports_sp = as(airports, "SpatialPoints")

Since a SpatialPoints object does not have a data slot, an error occurs when  
trying to access it:

> airports_sp@data
Error: no slot of name "data" for this object of class "SpatialPo$

We can also use the as function to perform the reverse conversion from a 
SpatialPoints object to a SpatialPointsDataFrame object. Naturally, the attribute 
table of the resulting object is going to be empty (since SpatialPoints objects do not 
have one):

> as(airports_sp, "SpatialPointsDataFrame")@data
data frame with 0 columns and 0 rows

Subsetting vector layers
We can subset a vector layer according to its attribute table using the same notation 
as in subsetting data.frame objects. Selecting which features to retain can be done 
by supplying a numeric or logical vector within the [ operator.

For example, to get a subset of only those county features that belong to the 
contiguous U.S., we need to exclude those features corresponding to the states 
of Alaska and Hawaii. This can be done by creating a logical vector (applying a 
condition to the county$NAME_1 column holding state names) and supplying that 
vector as the rows index of county with the [ operator, as follows:

> county = county[
+ county$NAME_1 != "Alaska" &
+ county$NAME_1 != "Hawaii", ]

Keep in mind the following alternative that utilizes the %in% operator:
> county = county[

+ !(county$NAME_1 %in% 

+ c("Alaska", "Hawaii")), ]
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Similarly, we can retain only the land area by excluding water body polygons:

> county = county[county$TYPE_2 != "Water body", ]

Let's examine the resulting layer using the plot function. The expression 
plot(county) produces the graphical output as shown in the following screenshot:

As we can see, the plot function, by default, draws polygon borders using black 
lines. In subsequent examples, we will experiment a little bit with several parameters 
of this function to modify the appearance of the plot.
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Geometrical calculations on vector layers
In previous sections, we covered the querying of the immediately available 
properties of vector layers (for example, the CRS definition or attribute table), and 
the modification of vector layers involving only the attribute table component (for 
example, removing the attribute table or subsetting the layer according to it). In the 
next two sections, you will learn to examine and modify the geometrical component 
of vector layers. In this section, operations involving a single vector layer, such as 
reprojection and area calculation, will be covered. In the next section, we will deal 
with operations involving pairs of vector layers.

Reprojecting vector layers
Reprojection is the conversion of all the coordinates of a spatial object from one CRS 
to another. Note the distinction when specifying a CRS (which we previously did 
with airports), where only the CRS definition associated with the layer is modified, 
leaving the coordinates unaltered. The reprojection of a vector layer is done with the 
spTransform function from the rgdal package. The function accepts two arguments: 
the layer to be reprojected and the target CRS.

For example, the following expression transforms the county layer (currently 
defined in a geographical CRS) to the US National Atlas Equal Area projection:

> newProj = CRS("+proj=laea +lat_0=45 +lon_0=-100
+ +x_0=0 +y_0=0 +a=6370997 +b=6370997 +units=m +no_defs")
> county = spTransform(county, newProj)

Note that the preceding operation consisted of two steps. The first expression created 
an object named newProj of the class CRS by applying the CRS function on a PROJ.4 
character string corresponding to the US National Atlas Equal Area projection. 
Second, the county layer has been reprojected to the newProj CRS using the 
spTransform function.

The PROJ.4 strings can be obtained from other objects (see the previous 
chapter) or from databases such as http://www.spatialreference.
org/. The PROJ.4 string used earlier, for example, was copied from 
http://spatialreference.org/ref/epsg/us-national-
atlas-equal-area/proj4/.

                           

http://www.spatialreference.org/
http://www.spatialreference.org/
http://spatialreference.org/ref/epsg/us-national-atlas-equal-area/proj4/
http://spatialreference.org/ref/epsg/us-national-atlas-equal-area/proj4/
http://                           /


Working with Points, Lines, and Polygons

[ 148 ]

We can evaluate the effect of reprojection by visualizing the new county layer with 
plot(county). The following screenshot shows the graphical output:

Reprojection is often used in spatial data analysis since any operation involving 
multiple layers (such as an overlay or map production) requires all layers to be 
projected onto the same CRS. For example, in order for us to display the GPS track 
object (see the Lines section in this chapter) on top of the Landsat satellite image 
landsat_11_09_2003.tif (see the previous chapter), we first need to bring them 
into the same CRS. For that, we can either reproject the raster to the CRS of the vector 
layer (WGS84, in this case) or reproject the vector layer to the CRS of the raster (UTM 
Zone 36N, in this case). Unless we have a special reason to prefer the CRS of the vector 
layer(s), it is usually better to reproject the vector layers into the CRS of the raster 
and leave the raster unmodified; the reason is that raster reprojection also involves 
resampling and thus, potential modification of its values (see the next chapter).
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To plot the GPS track on top of the Landsat image, we will first read the latter into a 
RasterBrick object named l_03:

> library(raster)
> l_03 = brick("C:\\Data\\landsat_11_09_2003.tif")

Then, we will reproject track, supplying the CRS parameters of l_03 to 
spTransform, with a single step this time:

> track = spTransform(track, CRS(proj4string(l_03)))

With the l_03 and track objects in the same CRS, we can now plot them one on top 
of the other using two function calls. In the second function call, we need to specify 
add=TRUE so that the second layer will be plotted on top of the first, in the same 
graphical window (two or more layers can be plotted this way).

Regarding the satellite image, rather than plotting the values of an individual  
band, we will produce a true color image, using the red, green, and blue bands 
(which correspond to bands 3, 2, and 1 in Landsat, respectively), using the plotRGB 
function. This is done by assigning the appropriate bands to the r (red), g (green), 
and b (blue) parameters:

> plotRGB(l_03, r = 3, g = 2, b = 1, stretch = "lin",
+ ext = extent(track) + 10000)
> plot(track, add = TRUE, col = "yellow")
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The following screenshot shows the graphical output with the GPS route (in yellow) 
on top of the true-color Landsat image, which is generated as a result of the last  
two expressions:

The additional plotRGB parameters we used, stretch and ext, specify the type of 
stretch and the required extent, respectively. Stretching is essentially a transformation 
from a raster value (which in this case is between 0 and 1) to an RGB color model 
value (between 0, which is the darkest, and 255, which is the brightest). The simplest 
option is lin, which specifies a linear stretch. Supplying an Extent object to the ext 
parameter allows us to zoom in and plot only a portion of the raster. In this case, 
we use the extent of the track layer, plus a 10 kilometer buffer on all sides, with the 
expression extent(track)+10000 (note that all distance-related calculations are in 
CRS units; in this case, meters). When adding the second layer (track), we use the col 
parameter to specify the required line color; in this case, "yellow".
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R has excellent capabilities to use colors and color gradients in the 
graphical output, which are mostly beyond the scope of this book. In 
short, there are three main methods to specify colors in R:

• Color name: For example, "yellow"
• Position on a color palette: For example, rainbow(12)[3], 

which gives the third color in a 12-color rainbow palette, which 
is a kind of yellow

• Position within the RGB color model: For example, 
rgb(1,1,0), which returns the hex code "#FFFF00" that 
corresponds to pure yellow

For the purposes of this book, the first method, involving the 
predefined color names, will mostly be sufficient (a list of available 
colors can be obtained using the expression colors()). We are, in 
fact, also using color palettes although indirectly through graphical 
functions such as levelplot (see the previous chapter). We will see 
an example of how to directly use a color palette in Chapter 9, Advanced 
Visualization of Spatial Data.

Working with the geometrical properties of 
vector layers
Spatial objects have a wide range of properties related to their geometry; some are 
instantly available as part of the data structure itself (for example, the coordinates 
of points in a point layer); others are derivable via geometrical calculations (for 
example, the area sizes of polygons).

The coordinates of a point layer can be obtained using the coordinates function:

> coordinates(airports)
           lon      lat
[1,] -106.6168 35.04918
[2,] -106.7947 35.15559
[3,] -106.0731 35.62866

The result is a matrix object with the number of rows corresponding to the number 
of points the layer consists of.
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To derive more complex properties, the rgeos package, which stands for R 
interface to Geometry Engine Open Source (GEOS), offers a range of functions for 
geometrical operations involving vector layers. The available geometrical operations 
can conceptually be divided into three groups according to the output they produce:

• Numeric values: Obtained from functions that summarize geometrical 
properties (for example, calculating area sizes)

• Logical values: Obtained from functions that evaluate whether a certain 
geometrical property (for example, whether the given geometry is valid), or 
the relation between objects (for example, whether feature A intersects with 
feature B), holds true

• Spatial layers: Obtained from functions that create a new layer based on an 
input layer (for example, finding polygon centroids) or a pair of layers (for 
example, finding the intersecting area of feature A with feature B)

Several examples of functions for each type of these operations will be provided  
in this chapter, while some of the additional functions will only be mentioned  
for reference.

For a complete list of functions that the rgeos package offers, refer 
to the help pages of the package available at http://cran.r-
project.org/web/packages/rgeos/rgeos.pdf.

As an example of a function that returns numeric values, the gArea function can be 
used to calculate the area size of polygons. For example, we can calculate the area 
covered by the county polygons as follows:

> library(rgeos)
> gArea(county) / 1000^2
[1] 7784859

The area is given in the units of the projection, in this case m2; dividing the result by 
10002 transformed the area figure to km2 units. According to Wikipedia, the land area 
of the contiguous U.S. is 7,663,942 km2, which is close enough to our result (given 
that the CRS and level of detail affect the calculation).
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If we want to calculate the area of each feature (each county, in this case), rather than 
the area of the layer as a whole, we need to specify byid=TRUE. The byid parameter 
determines whether we wish to perform the calculation by ID, that is, for each feature 
separately. This parameter is present in many of the functions in the rgeos package 
with the same functionality, as we shall see in the subsequent examples. The following 
expression returns a numeric vector with the area of each feature in the county layer  
in km2. The vector is immediately assigned to a new column in the county layer, 
named area:

> county$area = gArea(county, byid = TRUE) / 1000^2

Now the attribute table of a county contains an extra column with the area size for 
each county. We can confirm this by printing the first few rows of the attribute table:

> head(county@data)
       NAME_1     NAME_2 TYPE_2  FIPS      area
0 Connecticut Litchfield County 09005  2451.876
1 Connecticut   Hartford County 09003  1941.110
2 Connecticut    Tolland County 09013  1077.789
3 Connecticut    Windham County 09015  1350.476
4  California   Siskiyou County 06093 16416.572
5  California  Del Norte County 06015  2626.707

As an example of an operation where a new spatial layer is created, we will dissolve 
the county polygons into state polygons. For simplicity, we will perform the 
dissolving on a subset of county, including only two states: Nevada and Utah. At 
first, we will create the subset and assign it to a new object named county_nv_ut:

> county_nv_ut = county[county$NAME_1 %in% c("Nevada", "Utah"), ]

Now, we will dissolve the county_nv_ut polygons using the gUnaryUnion function. 
The two arguments transferred to this function are the layer to be dissolved and 
the ID, a vector defining the features that should be aggregated (all features with 
identical levels will be dissolved into one). If the id argument is omitted, all 
polygons are dissolved into one, as we shall see in subsequent examples. Here is the 
code for dissolving our current layer:

> states = gUnaryUnion(county_nv_ut, id = county_nv_ut$NAME_1)
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In the present case, the state name column (NAME_1) was passed as the ID and 
thus, all the counties that form a single state were dissolved into state polygons. 
Since rgeos deals with the geometrical component of vector layers, the returned 
object of gUnaryUnion (and, as we shall see, of other functions in this package) has 
no attribute table. In this case, for example, while the input county_nv_ut was a 
SpatialPolygonsDataFrame object, the output states is a SpatialPolygons object. 
Then, how will we be able to tell which polygon corresponds to which state? The 
answer is that the information is recorded in the ID codes of the resulting layer and 
can be obtained using the row.names function. Using this function, we can find out 
that the first feature in states corresponds to "Nevada" and the second to "Utah":

> row.names(states)
[1] "Nevada" "Utah"

To get a better understanding of what we just did, it would be helpful to visualize 
the dissolved states' polygons on top of the original county_nv_ut polygons.  
We can produce a simple plot using two plot function calls (specifying add=TRUE 
the second time):

> plot(county_nv_ut, border = "lightgrey", lty = "dotted")
> plot(states, add = TRUE)

Note that the border parameter of plot is used to indicate the polygon border color 
(rather than col, which, in the case of polygons, refers to fill color). An additional 
argument is lty (which stands for the line type), which specifies that we want the 
county borders to be dotted.

There are six line types available in R. See the full list at the entry 
concerning the lty parameter on the ?par help page.

The resulting output is not presented since we are not done just yet. An additional 
layer in our plot is going to consist of labels for county names. Text labels can be 
added to an image created with a plot using the text function. With text, we need 
to supply a set of coordinates defining where the labels will be plotted (for example, 
using a matrix object with two columns, for x and y), and the text to be written at 
each coordinate (for example, using a character vector).

The most straightforward option would be to place the labels at the centroids of  
each county. For this, we first have to find the centroid coordinates using yet  
another function from rgeos that returns a new layer based on a single input  
layer called gCentroid:

> county_ctr = gCentroid(county_nv_ut, byid = TRUE)
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The resulting SpatialPoints object was assigned to county_ctr. Since byid=TRUE 
was specified, the layer contains the centroids of the individual counties, rather than 
the centroid of the whole county_nv_ut layer.

We can supply county_ctr along with the vector of labels (which we get from the 
NAME_2 column of county_nv_ut) to the text function. The additional parameter 
cex defines the labels font size in relative units (1.5 times the default size):

> text(county_ctr, county_nv_ut$NAME_2, cex = 1.5)

The final graphical output, produced by the two plot functions and one text 
function call, is shown in the following screenshot:

The plot shows the dissolved state polygons (in black), the original county polygons 
(in dotted gray), and county names (as text labels).
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Many of the functions in the rgeos package cannot handle geometries 
that are invalid from the topological point of view. For example, when 
referring to polygons, a valid layer does not contain self-intersecting 
polygons (polygons whose boundary crosses itself). Examining whether 
a given layer is valid or not can be done using the gIsValid function, 
which returns TRUE for valid features (either for the layer as a whole, 
by default, or for each feature separately when specifying byid=TRUE). 
Searching for and resolving topological errors, however, is best done 
interactively. Thus, GIS software (such as QGIS) is more suitable for this 
task than R.

Spatial relations between vector layers
In this section, you will learn how to perform operations involving pairs of vector 
layers. These types of operations are very common in spatial data analysis. We often 
want to know, for instance:

• What are the distances of different resorts from the nearest coastline?
• Which houses are within a radius x of the epicenter of an earthquake?
• Which parts of the habitat of an endangered species are contained within 

protected nature reserves?

All of these operations require the overlay of features from two distinct layers, 
although, as we have seen earlier, the result can be:

• A numeric value (the distance from a resort to the nearest coastline is  
50 meters)

• A logical value (the house is within a distance of 10 kilometers of the 
earthquake epicenter)

• A spatial layer (a polygon defining the intersecting area between the natural 
distribution of the endangered species and nature reserves)

In this section, we will see examples of all three kinds of operations.
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Querying relations between vector layers
Querying relations between two layers is required when we would like to do one of 
the following:

• Assign data from the attribute table of one feature to another (for example, 
polygon A gets the attribute table entry of polygon B it intersects with)

• Examine whether a specific relation exists between features (for example, we 
get TRUE if polygon A is completely within polygon B, or FALSE otherwise)

In GIS terminology, the first type of operation is sometimes referred to as a spatial 
join or a join by spatial location. The way it can be done in R will be demonstrated 
using the airports and county layers. The second type of operation (examining 
relations) will be demonstrated using another example, involving layers of buildings 
and natural areas in London.

The over function provides consistent functionality to join the attribute table data 
from one spatial object to another based on their intersection. All nine possible types 
of relations are permitted (point/line/polygon with point/line/polygon), either via 
the sp package (point-point, point-polygon, and polygon-point) or rgeos (all other 
combinations). The over function accepts two spatial layers (parameters x and y). 
The function call over(x,y) then returns—for all features in the first layer (x)—the 
attribute table entries (or indices, if the layer has no attribute table) of the second 
layer (y) that intersect it. The related syntax x[y,], when both x and y are vector 
layers, serves as a shortcut to over when we are interested in subsetting the vector 
layer x according to intersection. The latter function call returns only those features 
in x that intersect with a feature in y.

As already mentioned, our first example of querying relations between layers will 
involve the airports and county layers. The first preliminary step, as always, is to 
bring both layers to a common CRS. In this case, we will reproject airports to the 
CRS of county:

> airports = spTransform(airports, CRS(proj4string(county)))

We will now plot airports on top of the county layer to visually examine their 
relation so that we know what to expect later. Since we already know that all three 
airports are located in New Mexico, we will work with a subset of county, called nm, 
containing only the counties of New Mexico:

> nm = county[county$NAME_1 == "New Mexico", ]
> plot(nm)
> plot(airports, col = "red", pch = 16, add = TRUE)
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Note that we used yet another parameter of the plot function, pch, to choose a 
different point shape (16 corresponds to the filled circles, while the default argument 
is a plus symbol +).

There are 26 point shapes available. The possible shapes and their 
code are listed in the ?points help page.

The following screenshot shows the graphical output that is produced:

We can see that two of the airports fall within (thus, by definition, also intersect) a 
single county, while the third airports falls within a different county. Using over 
with airports and nm (in that order) will return the following output:

> over(airports, nm)
      NAME_1     NAME_2 TYPE_2  FIPS     area
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1 New Mexico Bernalillo County 35001 3023.909
2 New Mexico Bernalillo County 35001 3023.909
3 New Mexico   Santa Fe County 35049 4944.339

Indeed, we see that the first two rows are identical since the first two airports are 
located in the same county (Bernalillo county). To examine specifically which  
airport falls within each county, we can bind the result of over with the attribute 
table of airports:

> cbind(airports@data, over(airports, nm))
                       name     NAME_1     NAME_2 TYPE_2  FIPS
1 Albuquerque International New Mexico Bernalillo County 35001
2           Double Eagle II New Mexico Bernalillo County 35001
3        Santa Fe Municipal New Mexico   Santa Fe County 35049
      area
1 3023.909
2 3023.909
3 4944.339

Now we can tell that the Albuquerque International and Double Eagle II airports 
are located within Bernalillo County, while the Santa Fe Municipal airport is located 
within Santa Fe County. To permanently incorporate the county information 
into the attribute table of airports, we can assign the combined table back 
to the attribute table slot of airports, with an expression such as airports@
data=cbind(airports@data,over(airports,nm)).

Examining the opposite relation (when nm is x and airports is y), we can, for 
example, subset those counties that intersect with at least one airport using the 
expression nm[airports,]. As noted earlier, using [ with two vector layers is in 
fact a shortcut used to retain those features of x that intersect with y. In this case, an 
equivalent over expression would be nm[!is.na(over(nm,airports)$name),], 
but using nm[airports,] is obviously more convenient.

We can plot the nm[airports,] subset to demonstrate the behavior:

> plot(nm[airports, ])
> plot(airports, add = TRUE, col = "red", pch = 16, cex = 1.5)
> text(airports, airports$name, pos = 1)
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The additional pos parameter of the text function controls the position of the text 
with respect to the point coordinates (the default behavior we previously witnessed 
is to place the text centered on the coordinates point itself, with pos=1 the text is 
placed below the point; see ?text for all options). The following screenshot shows 
the graphical output that is produced as a result of the three function calls:

We can see that nm[airports,] indeed consists of only those nm features  
that intersect airports.
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If we try to match the airports attribute table entries to nm (with 
over(nm,airports)), only the first airport that intersects each county 
will be returned in cases where there are multiple matches. If we wish 
to preserve all matches, we need to specify returnList=TRUE in the 
over function call. However, the returned object will be a list object 
since holding sets of elements with variable lengths requires a list 
rather than a data.frame object. Many of the more advanced uses 
of R that require such flexibility involve list objects. However, the 
subject is beyond the scope of this book. More information on lists can 
be found in the official R's introduction document at http://cran.r-
project.org/doc/manuals/r-release/R-intro.pdf and in 
most introductory books on R.

As an example of querying polygon-polygon relations, we will use another example 
involving three polygonal Shapefiles:

• Administrative areas of England and Wales (CTYUA_DEC_2013_EW_BFE.shp)
• Buildings in Greater London (london_buildings.shp)
• Natural areas in Greater London (london_natural.shp)

The datasets were downloaded from freely accessible online resources, 
either from the Office of National Statistics at https://geoportal.
statistics.gov.uk/ (administrative areas) or OpenStreetMap 
(buildings and natural areas).

First, we will read the files into R and bring them to a common CRS. We will begin 
with the administrative areas layer, reading it from the disk and naming it boundary:

> boundary = readOGR("C:\\Data", "CTYUA_DEC_2013_EW_BFE")

Using the proj4string function reveals the CRS of boundary—the British National 
Grid. Note that the resulting string is abbreviated in the following output since it 
does not fit in a single line:

> proj4string(boundary)
[1] "+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 $

Next, we will read the two OpenStreetMap layers:

> buildings = readOGR("C:\\Data", "london_buildings")
> natural = readOGR("C:\\Data", "london_natural")
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Both these layers are defined in a geographical CRS, as the following output 
demonstrates:

> proj4string(buildings)
[1] "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,$
> proj4string(natural)
[1] "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,$

We will reproject the buildings and natural layers to the CRS of boundary:

> buildings = spTransform(buildings, CRS(proj4string(boundary)))
> natural = spTransform(natural, CRS(proj4string(boundary)))

Now that the preliminary preparations are complete, we can continue with the 
exercise. Our goal will be to assign the distance to the River Thames to each of the 
buildings within the City of London. For this, we will go through the following 
intermediate steps:

1. Create a subset of buildings with only those in the City of London.
2. Create a subset of natural with only the riverbanks.
3. Dissolve the riverbank features into a single one.
4. Calculate the distance between each feature in buildings and the riverbank.

The administrative boundaries layer comes with an explanatory file (Product 
Specification for CTYUA_2013_EW_BFE.docx, which is also provided on the 
book's website), where we can find out that the names of the different administrative 
areas are defined in the CTYUA13NM column of the attribute table of this layer. Using 
this column, we will create a subset, named city, containing only the polygon 
defining the city of the London administrative area:

> city = boundary[boundary$CTYUA13NM == "City of London", ]

Using the city polygon, we will create a subset of only those buildings that are 
within the City of London. If we were interested in intersection (in other words, 
buildings that are completely or incompletely within the city polygon), we could 
use the [ or over methods as already shown earlier. To evaluate other types of 
relationships, the rgeos package provides a dozen additional functions: gContains, 
gContainsProperly, gCovers, gCoveredBy, gCrosses, gDisjoint, gEquals, 
gEqualsExact, gIntersects, gTouches, gOverlaps, and gWithin. The names of 
these functions already provide a clue for the relationship they are used to evaluate; 
the exact definitions are provided in the respective help page of each function.
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Since in our example we are interested in creating a subset of the buildings features 
that are contained within city, we are going to use the function that evaluates 
containment—gContains. According to the help page of gContains, the expression 
gContains(city,buildings) will return TRUE for buildings features that are 
contained within city. Specifying byid=TRUE is necessary to evaluate the relation 
separately for each feature:

> in_city = gContains(city, buildings, byid = TRUE)

The result, in_city, is a two-dimensional matrix with rows corresponding to 
the buildings features (210,937 buildings in Greater London) and columns 
corresponding to the city features (there is only one, the City of London; if we had 
more than one feature in city, we would have had more columns):

> class(in_city)
[1] "matrix"
> head(in_city)
    119
0 FALSE
1 FALSE
2 FALSE
3 FALSE
4 FALSE
5 FALSE

The first (and only) column of this matrix is a logical vector specifying the 
containment status of each building within the city polygon. Using this vector as a 
rows index for buildings creates a subset of only those buildings within city:

> buildings = buildings[in_city[, 1], ]

The first step is now complete. Returning to the natural layer, we will now subset 
the polygons of type "riverbank" (which in the vicinity of the City of London 
corresponds to the River Thames):

> river = natural[natural$type == "riverbank", ]

As the third step, we will dissolve the separate river segments since we will be 
interested in the shortest distance to any section of the river, rather than the distances 
to its specific parts. As previously shown in the county example, dissolving can be 
achieved with gUnaryUnion. This time, the id parameter is left unspecified so that all 
geometries will be dissolved into a single one:

> river = gUnaryUnion(river)
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Before continuing with the fourth step (calculating distances, which we'll see later in 
this chapter), we will visually review the processed buildings and river layers we 
have at this point, with respect to the administrative boundaries layer boundary:

> plot(buildings, col = "sandybrown")
> plot(river, col = "lightblue", add = TRUE)
> plot(boundary, border = "dimgrey", add = TRUE)

The resulting graphical output is shown in the following screenshot:

In this preceding screenshot, we see the buildings of the City of London (in brown), 
the dissolved riverbanks polygon (in blue), and the administrative areas boundaries 
(in gray).
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Creating new geometries
The rgeos package provides four functions to create new layers based on a pair of 
existing ones: gDifference, gIntersection, gSymdifference, and gUnion. The 
usage of these functions is very similar to that of functions to query relationships 
since their main parameters are also a pair of layers and the byid parameter. The 
difference is that they do not return logical values or matched attribute table entries 
(based on whether the examined relationship holds), but rather a new layer. The 
following diagram demonstrates how new geometries are generated in each case:

Note that the gUnion function operates in a similar way to 
gUnaryUnion—just that the gUnioun function dissolves 
geometries from two different layers, while the gUnaryUnion 
function operates upon the geometries of a single layer.
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Our next example will utilize two of these functions: gIntersection and 
gDifference. We will also use three new layers: buildings, natural areas, and 
administrative borders in Haifa. The buildings and natural areas layers originate 
from OpenStreetMap data, the same way as in the London example, while the 
administrative borders of Israel will be downloaded from a global administrative 
borders dataset directly through R. The buildings and natural areas layers will be 
named haifa_buildings and haifa_natural in order to not be confused with the 
analogous objects buildings and natural from the London example.

Our goal will be to create a polygon encompassing the natural areas in the vicinity of 
the buildings in Haifa, excluding those natural areas that are within 50 meters of the 
nearest building. We will follow four intermediate steps:

1. Read the layers into R and bring them to a common CRS.
2. Create a bounding polygon (convex hull) encompassing the buildings.
3. Clip the natural areas according to the bounding polygon.
4. Remove the natural areas that are 50 meters away from buildings.

As a first step, we will read the Haifa buildings and natural areas layers:

> haifa_buildings = readOGR("C:\\Data", "haifa_buildings")
> haifa_natural = readOGR("C:\\Data", "haifa_natural")

The third layer involved, the administrative boundaries, will be downloaded from 
the GADM database of Global Administrative Areas at http://www.gadm.org/, 
which is accessible using the getData function from the raster package:

> israel_adm = getData("GADM", country = "ISR", level = 1)

The hereby used arguments of getData are as follows:

• name: The dataset name (for example, "GADM", which stands for the  
GADM dataset; using another dataset, "SRTM", will be demonstrated  
in the next chapter)

• country (relevant for the name="GADM" option): The country ISO3 code (a list 
of country codes can be obtained with getData("ISO3"))

• level (relevant for the name="GADM" option): The level of administrative 
subdivision (0: country, 1: first subdivision, and so on)
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In fact, the county layer we used earlier comes from the GADM dataset as well (only 
that FIPS codes have been added to its attribute table). The reason GADM was not 
used in the London example is that it is less accurate than the Office of National 
Statistics layer.

We will not need the whole israel_adm layer, but only a subset consisting of the 
Haifa administrative area, which includes the city of Haifa:

> haifa_adm = israel_adm[israel_adm$NAME_1 == "Haifa", ]

Before proceeding with geometrical calculations, as usual, all three layers (haifa_
adm, haifa_buildings, and haifa_natural) will be reprojected to the same CRS. In 
this case, we are going to use the UTM Zone 36N CRS. We can obtain its parameters 
from the Landsat image object l_03 we read into R in one of the previous examples:

> haifa_adm = 
+spTransform(haifa_adm, CRS(proj4string(l_03)))
> haifa_buildings =
+ spTransform(haifa_buildings, CRS(proj4string(l_03)))
> haifa_natural =
+ spTransform(haifa_natural, CRS(proj4string(l_03)))

Having completed the first step, we will take a moment to plot the three layers and 
see what they look like:

> plot(haifa_natural, col = "lightgreen")
> plot(haifa_buildings, add = TRUE)
> plot(haifa_adm, add = TRUE)
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The resulting graphical output (in the following screenshot) shows the Haifa 
administrative area border (haifa_adm, in this case marking the Mediterranean sea 
coastline), the Haifa buildings (haifa_buildings), and the natural areas (haifa_
natural, shown in green):

Proceeding with the second step, we will create a convex hull polygon, assigned to 
buildings_ch, in order to define our area of interest surrounding the buildings. A 
convex hull is the smallest convex polygon encompassing a certain set of features 
(see the gray polygon in the next screenshot). A convex hull can be created using the 
gConvexHull function:

> buildings_ch = gConvexHull(haifa_buildings)
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The convex hull crosses the Mediterranean sea. We would like to, however, retain 
only those areas of buildings_ch that are within haifa_adm (in other words, on 
land). This can be achieved by using the gIntersection function on buildings_ch 
and haifa_adm:

> buildings_ch = gIntersection(buildings_ch, haifa_adm)

Now that the bounding polygon buildings_ch is set, we proceed to our third step. 
Turning to the haifa_natural layer, we will merge all of its polygons into one 
polygon (since we are not interested in discerning different types of natural areas) 
using gUnaryUnion, similarly to what we did in the London example:

> haifa_natural = gUnaryUnion(haifa_natural)

Then, we will use buildings_ch to retain only those natural areas that are within 
our area of interest, using another gIntersection function call:

> haifa_natural = gIntersection(haifa_natural, buildings_ch)

What remains to be done is our fourth step, which is removing the areas in haifa_
natural that are within 50 meters of the nearest building. To do this, we will first 
create a 50 meter buffer polygon surrounding haifa_buildings, using the gBuffer 
function (specifying the buffer size with width):

> buildings_50m = gBuffer(haifa_buildings, width = 50)

Then, using the gDifference function, we will calculate the area in haifa_natural 
that is not within the 50 meters buffer of haifa_buildings:

> haifa_natural = gDifference(haifa_natural, buildings_50m)

We are done. To see the resulting layers, we will plot all four of them (buildings_
ch, haifa_adm, haifa_natural, and haifa_buildings) together, with the following 
series of plot function calls:

> plot(buildings_ch, col = "lightgrey", border = "lightgrey")
> plot(haifa_adm, add = TRUE)
> plot(haifa_natural, col = "lightgreen", add = TRUE)
> plot(haifa_buildings, add = TRUE)

                           

http://                           /


Working with Points, Lines, and Polygons

[ 170 ]

The resulting graphical output is shown in the following screenshot:

In the preceding screenshot, we can see the bounding polygon buildings_ch in 
gray, the administrative borders, as well as the buildings, in black, and natural 
areas (those within the bounding polygon and excluding areas within 50 meters of 
buildings) in green. We will continue working with the Haifa layers we have hereby 
created in several additional examples in subsequent chapters.
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Calculating distances between geometries
Let's now return to the London example, to complete its fourth step (which is 
distance calculation). Distances between each feature from one layer to each feature 
in a second layer can be calculated with the gDistance function, setting byid 
to TRUE. The following expression calculates the distance from each feature in 
buildings to each feature in river:

> dist = gDistance(buildings, river, byid = TRUE)

As seen in the gContains example, the result is a matrix:

> class(dist)
[1] "matrix"

The matrix rows correspond to river features, whereas its columns correspond to 
buildings features. As the following output of dim demonstrates, we have 1,583 
buildings features in the City of London and one river feature (remember that we 
dissolved the separate riverbank parts into one):

> dim(dist)
[1]    1 1583

Selecting the first (and only) row of dist will yield a numeric vector with the 
distances of each building to the nearest riverbank. With the following expression, 
we can assign the distances to a new column, named dist_river, in the attribute 
table of buildings:

> buildings$dist_river = dist[1, ]

Examining the attribute table will demonstrate that, indeed, we now have a distance-
to-river entry for each of the buildings in the City of London:

> head(buildings@data)
     osm_id                    name             type dist_river
16  4076420               St Brides place_of_worship   313.1239
56  4364085 Sainsbury's Head Office            block   683.5640
137 4959489          30 St Mary Axe       attraction   653.4159
138 4959510         Bank of England           office   503.7244
139 4959544     St Paul's Cathedral        cathedral   287.7122
140 4959629        Liverpool Street    train_station  1009.8070

We are going to wait until Chapter 9, Advanced Visualization of Spatial Data, to 
graphically display this result while learning some additional visualization methods.
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Joining geometries with tabular data
In this section, we are going to join an attribute table of a spatial vector layer with 
plain tabular data (as opposed to joining with the attribute table of another layer 
based on spatial location). In spatial analysis practice, we often have, at hand, a 
spatial layer and supplementary tabular data as separate objects, while we would 
like to work with them in combination. For instance, in the present example, USA 
Census data regarding county population sizes (a CSV file) will be linked to the 
county layer defining county geometries, in order to calculate county population 
densities. To do the latter, we need to know both the population size (from the 
census table) and area size (from the vector layer) for each county, and the only way 
to do that is to join both datasets.

The intermediate steps we will perform are as follows:

1. Read the USA Census data.
2. Subset the portion of the data we are interested in.
3. Prepare a common key to join the census data with the county layer.
4. Join!
5. Calculate the population density.

Our first step is to read the USA Census data into R.

The USA Census data was downloaded from the United States Census 
Bureau available at https://www.census.gov/popest/data/
counties/totals/2012/CO-EST2012-alldata.html.

The CSV file, CO-EST2012-Alldata.csv, is provided on the book's website in its 
original form. The following expression reads its contents and assigns it to a data.
frame object named dat:

> dat = read.csv("C:\\Data\\CO-EST2012-Alldata.csv")

The expression colnames(dat) reveals that we have as many as 52 variables in this 
table. To save space, only the first 15 values are printed here:

> colnames(dat)[1:15]
 [1] "SUMLEV"            "REGION"            "DIVISION"         
 [4] "STATE"             "COUNTY"            "STNAME"           
 [7] "CTYNAME"           "CENSUS2010POP"     "ESTIMATESBASE2010"
[10] "POPESTIMATE2010"   "POPESTIMATE2011"   "POPESTIMATE2012"  
[13] "NPOPCHG_2010"      "NPOPCHG_2011"      "NPOPCHG_2012"
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As the accompanying file CO-EST2012-alldata.pdf informs, the first seven 
variables are geographical identifiers such as STATE (state FIPS code) or CTYNAME 
(county name), while the other 45 are measured variables related to demography, 
such as CENSUS2010POP (April 4, 2010 resident Census 2010 population) or 
BIRTHS2011 (births between July 1, 2010 to June 30, 2011). For our example, we will 
use only one of the measured variables (CENSUS2010POP), which is found in the 8th 
column. When joining the data with the county layer, however, we will also require 
the STATE column (the fourth column) and COUNTY column (the fifth column). Using 
the latter two columns, we will create a FIPS code column in dat that we will use to 
join dat to the attribute table of county.

We could subset the three columns of interest by simply using the expression 
dat[,c(4,5,8)]. However, it is recommended you refer to the column names 
themselves rather than to their numeric indices, to make the code more general (so 
that it will still work if the column order is altered):

> selected_cols = c("STATE", "COUNTY", "CENSUS2010POP")
> dat = dat[, colnames(dat) %in% selected_cols]

Note that here, we first created a vector with the column names of interest 
(selected_cols), used it to create a logical vector pointing to the indices of the 
respective columns (colnames(dat) %in% selected_cols), and finally used this 
logical vector as the column index of dat to create the subset.

The first few rows of dat now appear as follows:

> head(dat)
  STATE COUNTY CENSUS2010POP
1     1      0       4779736
2     1      1         54571
3     1      3        182265
4     1      5         27457
5     1      7         22915
6     1      9         57322

For convenience, we can convert the column names to lowercase using the  
tolower function:

> colnames(dat) = tolower(colnames(dat))
> colnames(dat)
[1] "state"         "county"        "census2010pop"
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Examining the table will also reveal that it contains subtotal entries, for entire states, 
in addition to the county entries. These entries are marked with the value 0 in the 
county column. Since we are interested in counties, not states, these entries need to 
be removed:

> dat = dat[dat$county != 0, ]

With the first and second steps now complete, we are going to create a key with 
which the county layer and the dat table will be joined. The least problematic  
option is to use the FIPS codes as a key since county names may be slightly  
different among datasets.

We already have a FIPS column in the county layer. For example, the FIPS codes of 
the first 10 features are as follows:

> county$FIPS[1:10]
 [1] "09005" "09003" "09013" "09015" "06093" "06015" "06049"
 [8] "09011" "09001" "09007"

These five-digit codes encompass the state code (digits 1 to 2) and county code (digits 
3 to 5). As we can see, when the state or county code is fewer than two or three 
digits, it is preceded by zeros. For example, the first county polygon has the FIPS 
code 09005, which means its state code is 9 (state of Connecticut) and county code 
is 5 (Litchfield County). However, in the dat table, the state and county FIPS codes 
are kept as separate numeric values without leading zeros (9 and 5). In order to get 
matching values with the county layer, we need to perform the following steps:

1. Add leading zeros in the state column to get uniform two-digit codes.
2. Add leading zeros in the county column to get uniform three-digit codes.
3. Paste the state and county columns together to get the FIPS codes.

The first two steps can be performed using the formatC function. This function can 
deal with several formatting tasks including the one we need—padding the values of 
a vector with leading zeros, to obtain a common character length. In this particular 
case, we need to specify three arguments: the vector to work upon, the required 
final character count (the width parameter), and the format modifier "0" (the flag 
parameter, where "0" marks the pad with leading zeros scenario; see ?formatC):

> dat$state = formatC(dat$state, width = 2, flag = "0")
> dat$county = formatC(dat$county, width = 3, flag = "0")
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We can examine the first few values of the modified state and county columns to 
make sure the expected outcome was obtained:

> dat$state[1:10]
 [1] "01" "01" "01" "01" "01" "01" "01" "01" "01" "01"
> dat$county[1:10]
 [1] "001" "003" "005" "007" "009" "011" "013" "015" "017" "019"

Note that the numeric values have been automatically converted to characters since a 
numeric value cannot have leading zeros.

Finally, we will paste the state and county codes into county FIPS codes and assign 
them to a new column called FIPS:

> dat$FIPS = paste0(dat$state, dat$county)

Now, we have in dat$FIPS an identical format as seen in county$FIPS:

> dat$FIPS[1:10]
 [1] "01001" "01003" "01005" "01007" "01009" "01011" "01013"
 [8] "01015" "01017" "01019"

We are ready to move on to the fourth step—joining the attribute table of county 
with the dat table. In fact, we are going to use a subset of dat, containing only two 
columns: FIPS (since the join will be based upon it) and census2010pop (since these 
are the data we are interested in) because the state and county columns are of no 
use to us at this stage. The join operation is done using the join function from the 
plyr package (see Chapter 3, Working with Tables):

> library(plyr)
> county@data = join(county@data,
+ dat[, colnames(dat) %in% c("FIPS", "census2010pop")],
+ by = "FIPS")

Using county@data as the first argument in join and the type of 
join that is being used ("left", by default), ensures that all entries 
in county@data are preserved in their original order (regardless of 
whether they have a match in dat). This is extremely important since 
the rows of county@data correspond to the county polygons. Thus, 
changing the order of rows would result in a discrepancy between 
the attribute table and the spatial features. Concerning vector layers, 
operations such as join(county@data,x,type="left") are 
safe to perform, while manual modification of the @data component 
involving altering the row order (for example, deleting a single row) 
should be generally avoided.
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As a result, we now have the matching census2010pop entries in the attribute table 
of county:

> head(county@data)
       NAME_1     NAME_2 TYPE_2  FIPS      area census2010pop
1 Connecticut Litchfield County 09005  2451.876        189927
2 Connecticut   Hartford County 09003  1941.110        894014
3 Connecticut    Tolland County 09013  1077.789        152691
4 Connecticut    Windham County 09015  1350.476        118428
5  California   Siskiyou County 06093 16416.572         44900
6  California  Del Norte County 06015  2626.707         28610

We can check and see that only one entry in the county layer could not be matched 
with a census2010pop entry from dat (and thus, has NA in the census2010pop 
column). This entry corresponds to Clifton Forge City, Virginia:

> county@data[is.na(county$census2010pop),
+ c("NAME_1", "NAME_2")]
       NAME_1             NAME_2
2591 Virginia Clifton Forge City

Our fifth and final step will be to calculate population densities for each county, 
by dividing the population size (the census2010pop column) by county area (the 
area column). The result can be assigned to a new column, named density, in the 
attribute table of county:

> county$density = county$census2010pop / county$area

Examining the attribute table shows that the new column, holding average 
population density per km2, has indeed been added to the county layer:

> head(county@data)
       NAME_1     NAME_2 TYPE_2  FIPS      area census2010pop
1 Connecticut Litchfield County 09005  2451.876        189927
2 Connecticut   Hartford County 09003  1941.110        894014
3 Connecticut    Tolland County 09013  1077.789        152691
4 Connecticut    Windham County 09015  1350.476        118428
5  California   Siskiyou County 06093 16416.572         44900
6  California  Del Norte County 06015  2626.707         28610
     density
1  77.461920
2 460.568482
3 141.670638
4  87.693548
5   2.735041
6  10.891965
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Preparing a map of population densities per county is postponed until we reach 
Chapter 9, Advanced Visualization of Spatial Data.

Summary
In this chapter, we covered the basic operations involved in working with vector 
layers in R. First, we reviewed the classes used to represent spatial vector layers in 
R, and explored two ways to bring spatial vector data into R (geocoding and reading 
from a file). Second, we discussed how to examine and modify the attribute tables of 
vector layers, how to create subsets of layers according to their attribute tables, and 
how to join new data to an attribute table (either from a separate table or from another 
vector layer). Third, the major types of geometry-related operations with vector layers, 
including the calculation of geometrical properties, evaluation of relations between 
layers, and the creation of new layers based on the existing ones, were presented.

In the next chapter, we will delve into rasters in more detail, examining geometry-
related modification of rasters (such as reprojection), utilizing elevation rasters (such 
as DEMs), and working with spatio-temporal raster data (such as time series data 
from satellite images). Later, in Chapter 7, Combining Vector and Raster Datasets, we are 
going to discuss several common procedures associated with interrelations between 
raster and vector data. 
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Modifying Rasters and 
Analyzing Raster Time Series
In this chapter, we will continue with the material presented in Chapter 4, Working 
with Rasters, moving on to more advanced operations. These involve either the 
modification of the geometric properties of a raster or direction- and distance-related 
calculations on rasters; mostly using additional functions in the raster package. 
Examples related to the analysis of spatio-temporal remote sensing data will be 
presented in the last section of this chapter, to demonstrate how more complex, 
custom-made procedures of raster processing can be constructed.

In this chapter, we will use objects that we previously created in Chapter 3, Working 
with Tables, and Chapter 4, Working with Rasters.

In this chapter, we'll cover the following topics:

• Modifying the geometry of raster layers
• Applying focal filters
• Clumping patches of connected cells
• Resampling and reprojection of rasters
• Performing topography-related calculations on elevation data
• Aggregating spatio-temporal raster data
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Changing the spatial extent or resolution 
of rasters
With reference to raster geometry, so far we have only dealt with operations where 
the raster extent is manually reduced by selecting a certain combination of rows 
and columns to retain (refer to Chapter 4, Working with Rasters). In this chapter, we 
will review more operations that provide us with the freedom to modify the raster 
geometry of datasets according to our specific requirements.

In this section, we will see how we can change the extent or resolution of rasters 
without modifying the underlying grid arrangement. This category includes 
operations such as merging rasters, cropping, or aggregating/disaggregating raster 
cells. In the next section, we will see how the underlying grid (and possibly the CRS) 
can be modified through resampling and reprojection.

In the first few examples of this chapter, we will work with a DEM of the area 
surrounding Haifa, and experiment with the modification of raster extent and 
resolution. A DEM is a raster holding elevation values, thus representing the 
topography of the specific area that it covers. There are many ways of creating a 
DEM, including interpolation from a limited set of elevation measurements (such 
as points or contours) or conducting continuous measurements of the surface (with 
instruments such as Light Detection and Ranging (LIDAR) or stereoscopy). Here, 
we will use a part of the near-global DEM created in 2000, in an effort called the 
Shuttle Radar Topography Mission (SRTM). In this mission, elevation data has 
been collected using an instrument on board the Space Shuttle Endeavour, covering 
the Earth's surface up to 60 degrees latitude, north and south.

SRTM data is available online for free (visit http://srtm.csi.cgiar.org/). It 
is also directly accessible through R, using the getData function of the raster 
package (we already used this function in the previous chapter to obtain the Haifa 
administrative borders layer). The SRTM DEM is divided into tiles of 5 x 5 degrees of 
longitude/latitude that can be downloaded separately. With getData, we need to set 
the dataset name to "SRTM" and specify geographic coordinates of interest (longitude 
and latitude). The returned object is a RasterLayer covering the corresponding tile.

Incidentally, the longitude of Haifa is 34.99 degrees (you can check this quickly 
with geocode("Haifa"); refer to the previous chapter), and thus it is located at the 
intersection of two 5 x 5 degrees tiles. To cover Haifa, we will download both tiles:

• longitude 30-35, latitude 30-35
• longitude 35-40, latitude 30-35
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As mentioned earlier, we can specify a given tile by entering any point that falls in 
it, for example, (33,33) for the first tile and (38,33) for the second. The following code 
downloads the two tiles and assigns them to the RasterLayer objects named dem1 
and dem2, respectively:

> library(raster)
> dem1 = getData("SRTM", lon=33, lat=33)
> dem2 = getData("SRTM", lon=38, lat=33)

Note that rgdal is automatically loaded (if it hasn't been already) 
since it is necessary to execute getData.

We now have two DEMs covering adjacent areas, which we will use to demonstrate 
several operations involving the modification of raster spatial extent or resolution.

Merging rasters
Separate rasters can be merged into a single one using the merge or mosaic 
functions. Both accept two (or more) rasters and return a merged raster.

The difference between merge and mosaic is in the way they deal with 
overlaps of input rasters. The merge function assigns the values of the 
first raster in cases of overlap, whereas in mosaic, we supply a function 
(such as mean, min, or max) to calculate the values in areas of overlap 
based on all input layers.

With both merge and mosaic, the rasters must have the same resolution, origin, and 
CRS; in other words, they need to constitute parts of the same grid. When rasters 
that do not belong to the same grid need to be combined, resampling is a necessary 
preliminary step to bring them to a single grid before employing merge or mosaic.

Our rasters dem1 and dem2 do not overlap at all, so we do not need to worry about 
ways to resolve assignment of values in areas of overlap. Therefore, we can use the 
merge function to combine dem1 and dem2 and create a single raster named dem:

> dem = merge(dem1, dem2)
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Certain operations with rasters (such as merging or reprojection) can be 
time-consuming. A useful additional parameter to the merge function, 
and many other functions in the raster package, is progress. Setting 
progress="text" or progress="window" will show a progress 
bar (in the textual output or in a separate window) while the function 
code runs. This way, the user can assess how much time a given 
operation will take (and perhaps modify the code to bypass extremely 
time-consuming steps). The rasterOptions(progress="text") 
expression sets the progress parameter to "text" globally for the 
current R session.

We now have a DEM of the whole area of longitude 30-40 and latitude 30-35 (as 
shown in the following screenshot). Our next step will be to isolate the area of 
interest surrounding Haifa. We will define the area as the bounding box of haifa_
buildings (refer to the previous chapter), supplemented with 0.25 degrees on all 
four sides. For this purpose, we will calculate the bounding box of haifa_buildings 
(using the extent function) and then add 0.25 degrees to it, as follows. Beforehand, 
we will read the haifa_buildings layer once again to have it in a geographic CRS:

> haifa_buildings = readOGR("C:\\Data", "haifa_buildings")
> haifa_surrounding = extent(haifa_buildings) + 0.25

The created object haifa_surrounding is an Extent object defining our  
rectangular area of interest. Let's plot dem and the Extent object using a pair  
of plot function calls:

> plot(dem)
> plot(haifa_surrounding, add = TRUE)

The graphical output is shown in the following screenshot:
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The two merged tiles seem in perfect alignment, which is expected as they originate 
from the same (larger) DEM. The black rectangle delineates our areas of interest 
centered on Haifa, which indeed intersects the 35 degrees meridian.

Cropping and trimming
Cropping is the production of a smaller raster from an existing one by selecting a 
certain range of rows and columns. While the manual subset methods we used in 
Chapter 4, Working with Rasters, are also considered cropping, in practice we usually 
would like to select the required range of rows and columns by overlaying the raster 
with another spatial layer, rather than by manually entering row and column indices.

The crop function, given a raster and an Extent object, returns a smaller raster with 
the required extent. Instead of an Extent object, a raster or a vector layer can also be 
provided, in which case their extent is extracted and used in cropping. For example, 
the following expression crops dem according to haifa_surrounding:

> dem = crop(dem, haifa_surrounding)

To examine the effect, we can visualize the raster once again using the plot(dem) 
expression. The following screenshot shows the graphical output that is produced  
as a result:
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The high-elevation area in the lower half of the preceding screenshot is Mount 
Carmel. The city of Haifa is located on its northern slopes.

Another useful function within the context of raster cropping is trim. This function 
removes the outer rows and columns of a raster that all have the same value. For 
example, using trim(x), we can automatically remove unnecessary NA margins from 
the raster x.

A raster (in R, and in general) is by definition rectangular; rasters where 
values cover a non-rectangular area are obtained by surrounding the 
area of interest with NA values (such as the Mediterranean sea area 
in the preceding screenshot). Both crop and trim are used to carve 
smaller rectangular extents from existing rasters by removing whole 
rows and columns from their margins. When we are interested in 
carving non-rectangular shapes, we need, in fact, to fill the unnecessary 
areas with NA, which is made possible with the mask function (we'll see 
this in the next chapter).

Aggregating and disaggregating
Aggregation is the creation of a lower-resolution raster by grouping rectangular 
sets of cells in the original raster into individual, larger cells in the new raster. 
Aggregation might be necessary when we are ready to lose detail to gain processing 
efficiency or noise reduction. For example, MODIS satellite data products are 
distributed in several spatial (and temporal) resolutions, from 250 to 5600 m, with the 
lower-resolution products usually being the results of aggregation from the original 
higher-resolution data. The lower-resolution images are useful since as we increase 
the spatial and temporal extent that is being analyzed, it becomes increasingly 
unfeasible (and unnecessary) to work with high resolutions. For example, an analysis 
of NDVI trends over time at a 250 meter resolution on a global scale would involve 
huge amounts of data; a 5,600 meter resolution is more reasonable for such a task (it 
would reduce the amount of data 500-fold!). In addition, lower-resolution products 
are typically associated with greater confidence since noisy pixels are averaged out 
during aggregation.
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The aggregate function performs aggregation by grouping adjacent pixels into new 
ones, given an input raster and the aggregation factor fact. The aggregation factor 
controls the size of the new raster cells in units of the original cells. It can either be a 
single integer (in which case, aggregation is equal on both axes) or a vector of length 
2 (in which case, different levels of aggregation are applied on the x and y axes). For 
example, using fact=8 means that each set of 8*8 cells in the original raster becomes 
a single cell in the new raster. Using fact=c(5,10) means that each rectangle of 
5*10 cells (5 along the x axis, 10 along the y axis) becomes a single cell. In addition, 
the fun parameter specifies which function will be used to calculate the new values 
based on existing ones (the default is mean), and the na.rm parameter specifies 
whether NA values are removed from each set prior to calculation (the default is 
TRUE). To demonstrate the behavior of aggregate, we will apply it on our dem raster, 
aggregating 8*8 and 16*16 sets of cells:

> dem_agg8 = aggregate(dem, fact = 8)
> dem_agg16 = aggregate(dem, fact = 16)

The following expressions sequentially plot the original dem, and the aggregation 
results dem_agg8 and dem_agg16, along with the appropriate plot titles specified 
using the main parameter:

> plot(dem, main = "Original image")
> plot(dem_agg8, main = "8x8 aggregated")
> plot(dem_agg16, main = "16x16 aggregated")

The following  screenshot shows the resulting individual plots from left to right:

We can see that the preceding screenshot becomes increasingly blurred as the degree 
of aggregation increases.
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The opposite operation from aggregation is disaggregation; it can be performed with 
the disaggregate function. For example, the disaggregate(dem_agg8,fact=8) 
expression would yield back a higher-resolution raster with the same resolution of 
dem. However, the information that has been lost in aggregation is not recovered (each 
set of 8*8 adjacent cells would have the same value) and the disaggregated raster will 
visually appear identical to dem_agg8.

Raster resampling and reprojection
In this section, we are going to transfer the values of a given raster from its own grid 
to a different grid. This operation is known as resampling. Raster reprojection is a 
closely related operation; it is basically resampling to a grid having a different CRS 
than that of the original raster.

Raster resampling
Raster resampling can be performed using the resample function. The required 
parameters of this function are as follows:

• The raster whose values are to be resampled (x)
• A raster that defines the grid to which the values will be transferred (y)
• The resampling method (method)

The resample function currently provides two resampling methods. The method 
that we use determines the way in which a cell in the new raster gets its value, based 
on the old raster's values:

• "ngb": Nearest-neighbor; assigns the value of the nearest cell
• "bilinear": Bilinear interpolation; assigns a weighted average of the four 

nearest cells (the default)

Other resampling methods exist. For instance, in the bicubic 
interpolation a weighted average of the nearest 16 cells is 
assigned in each cell.
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The nearest-neighbor interpolation retains the original values, only transferring 
them to the new grid according to proximity, while resampling methods that use 
weighted averages from several cells (such as bilinear interpolation) inevitably involve 
modification of the original values thus producing a smoother image. Therefore, in 
cases where the original values should be preserved, the nearest-neighbor resampling 
method is recommended. In categorical rasters with integers representing different 
cover types, for example, it would make no sense to calculate a weighted average 
of categories. For instance, in a raster with two categories, say 1 for forest and 2 for 
pasture, the average of the four cell values is frequently not going to be equal to either 
1 or 2, making the resulting image meaningless. On the other hand, when visual 
appearance is the primary consideration, bilinear interpolation and similar  
weighted-average methods are recommended.

For our resampling examples, we will use two NDVI images: one from Landsat 
and one from MODIS. As the Landsat and MODIS images are defined in the same 
CRS and they overlap (the MODIS image extent encompasses the Landsat image 
extent)—although they have very different resolutions (the Landsat image resolution 
is 30 m while the MODIS resolution is 500 m)—we can resample each one with the 
other. In the following three examples, we will perform these steps:

1. Compare the original Landsat image with the one resampled according to  
the MODIS grid.

2. Compare the original MODIS image with the one resampled according to  
the Landsat grid.

3. Compare the MODIS image resampling results using two methods:  
nearest-neighbor and bilinear interpolation.

For a Landsat NDVI image, we will use the ndvi_00 raster that we previously 
calculated based on an image obtained on October 4, 2000. As for MODIS, the raster 
r contains 280 NDVI images for the period between February 18, 2000 and April 
6, 2012 (refer to Chapter 4, Working with Rasters). To make the comparison more 
interesting, we will select the date of acquisition closest to October 4, 2000. Using the 
dates$date vector of MODIS acquisition dates (as we saw in Chapter 3, Working with 
Tables), we can find out the index of the date closest to October 4, 2000 by performing 
the following steps:

1. Find the vector of differences between each date in dates$date  
and October 4, 2000.

2. Calculate absolute differences using the abs function.
3. Find the index of the minimal difference value using which.min.
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These three steps can be accomplished with a single line of code, as follows:

> l_date = which.min(abs(dates$date - as.Date("2000-10-04")))

The result, assigned to l_date, is the index of the MODIS image closest in its 
acquisition date to October 4, 2000. It is equal to 15:

> l_date
[1] 15

Thus, for the examples, we will use r[[l_date]], the fifteenth layer of the 
multiband raster r (the corresponding date of acquisition is September 29, 2000, as 
dates$date[l_date] will show).

In our first example, we will resample the Landsat image ndvi_00 to the MODIS grid 
of the r[[l_date]] image using the nearest-neighbor method as follows:

> l_resample = resample(ndvi_00, r[[l_date]], method = "ngb")

Let's compare the original Landsat image ndvi_00 and the resampled image l_
resample by plotting both as follows:

> plot(ndvi_00, main = "Original Landsat image")
> plot(l_resample, ext = extent(ndvi_00),
+ main = "Resampled to MODIS")

Note that when plotting l_resample, we supply the ext parameter with the extent 
of the original Landsat image ndvi_00 to zoom in on the area of overlap. The 
l_resample image is, in fact, larger than ndvi_00 (it has the same extent as r[[l_
date]]) but all cells that do not overlap with ndvi_00 are assigned with NA.

The resulting two images are shown in the following screenshot:
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On the left, we can see the detailed 30 meter resolution ndvi_00 image and on the 
right we see the rough 500 meter resolution image where the values of the nearest 
pixels of ndvi_00 were assigned to each of the pixels in r[[l_date]].

When the original raster is much more detailed than the resampled 
result (such as in the previous example), considerable data loss takes 
place. This happens due to the fact that the value of only a single (in 
nearest-neighbor) or a few (in bilinear interpolation) 30 meter pixel(s) 
determines the value of a much larger 500 meter pixel in the new 
image, in our particular example for instance. Aggregation and zonal 
extraction according to polygons (as we will see in the next chapter) 
are more desired solutions when raster resolution is greatly reduced 
as part of resampling.

The opposite operation is to resample the MODIS NDVI values from r[[l_date]] to 
the Landsat grid of the ndvi_00, again using the nearest-neighbor method:

> r_resample = resample(r[[l_date]], ndvi_00, method = "ngb")

In this case, the result r_resample is smaller in its extent than the original MODIS 
image r[[l_date]]; it has the same extent as ndvi_00. To show them side-by-
side more conveniently, we will first extend r_resample to match the extent of 
r[[l_date]]. This can be done using the extend function that extends the raster 
according to and an Extent object (or an object from which an Extent object can be 
derived, such as a RasterLayer). The extend function adds NA rows and columns as 
necessary to increase the raster extent; it is therefore, in a way, the opposite of trim:

> r_resample = extend(r_resample, r[[l_date]])

We will now plot the results of our second resampling example: the original  
MODIS image r[[l_date]] and the resampled image r_resample. While plotting 
r[[l_date]], we will add a rectangle surrounding the extent of ndvi_00 to aid  
in the comparison:

> plot(r[[l_date]], main = "Original MODIS image")
> plot(extent(ndvi_00), add = TRUE)
> plot(r_resample, main = "Resampled to Landsat")
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The two resulting images are shown in the following screenshot:

As we can see, the resampled image is identical in its appearance to the respective 
portion of the original image, although it has a 30 meter resolution unlike the 
original image that has a 500 meter resolution. The reason is that each set of 30 m 
Landsat pixels that coincides with a single 500 meter pixel in the MODIS image gets 
the value of that single pixel. Thus, it appears as if we have 500 meter pixels even if 
the underlying resolution is much higher.

What if we want to make the image look smoother? In such a case, we can use the 
bilinear interpolation method instead of the nearest-neighbor method. Let's perform 
the resampling operation from the last example twice, using the nearest-neighbor 
method (the same way we just did, assigning the result to r_resample_ngb this time) 
and the bilinear interpolation method (assigning the result to r_resample_bil). 
The results will then be combined in a two-band raster with layer names specifying 
resampling method:

> r_resample_ngb = resample(r[[l_date]], ndvi_00, method = "ngb")
> r_resample_bil = resample(r[[l_date]], ndvi_00,
+ method = "bilinear")
> resample_results = stack(r_resample_ngb, r_resample_bil)
> names(resample_results) = c("Nearest neighbor",
+ "Bilinear interpolation")
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We will plot the results using the levelplot function of the rasterVis package. 
Contours are enabled with contour=TRUE to highlight the differences  
between methods:

> library(rasterVis)
> levelplot(resample_results,
+ par.settings = RdBuTheme,
+ contour = TRUE)

The following screenshot shows the graphical output:

As we saw in the previous example with nearest-neighbor resampling (the left image), 
sets of adjacent cells that overlap with a single 500 meter pixel get the same value, and 
thus the contours follow the coarse-grained pattern of MODIS pixels. With bilinear 
interpolation (the right image), on the other hand, each 30 m cell gets the average of 
four MODIS pixels closest to it, weighted according to their respective distances; thus, 
most (if not all) cell values are unique and the image is much smoother.
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Raster reprojection
As mentioned earlier, raster reprojection—unlike vector layers reprojection—
involves resampling. Unlike vector layers, where all points are independent and 
thus their coordinates can be individually transformed to a new CRS (refer to the 
previous chapter), raster pixel coordinates that are transformed to a different CRS 
will not form a legitimate grid on that CRS (that is, a grid with equal distances 
between all adjacent pixels and parallel to the CRS x and y axes); rasters therefore 
require resampling. Thus, raster reprojection consists of two steps: reprojection of the 
raster pixel coordinates to the new CRS (analogous to reprojecting a vector layer) and 
resampling of the pixel values to a grid defined in the new CRS.

There are two main ways of defining the new grid in raster reprojection: we 
can either provide only the new CRS definition and let the grid be generated 
automatically, or we can provide a specific grid of our own. In the latter case, the 
process is very similar to resampling; the only change is that the new grid has a 
different CRS from that of the original raster.

In R, the projectRaster function provides raster reprojection functionality and 
supports both previously mentioned ways of defining a new grid. In the first case, 
when we want the grid to be automatically generated, we need to supply:

• The raster to be reprojected (from)
• The target CRS, as a PROJ.4 string (crs)
• Optionally, the required resolution (res)

In the second case, when we want to define the grid ourselves, we need to supply:

• The raster to be reprojected (from)
• The raster defining the target grid (to)

In both scenarios, we also need to specify the resampling method, either "ngb" or 
"bilinear" (the default).

As an example, we will reproject dem from its geographic CRS to the UTM Zone 
36N projection. The corresponding PROJ.4 string, as we have already done in the 
previous chapters, will be obtained from another raster (r). Prior to reprojection, 
let's print out the current properties of dem in order to compare them later with the 
properties of the reprojection result:

> dem
class       : RasterLayer
dimensions  : 390, 384, 149760  (nrow, ncol, ncell)
resolution  : 0.0008333333, 0.0008333333  (x, y)
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extent      : 34.83083, 35.15083, 32.63583, 32.96083  (xmin, xmax$
coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,$
data source : in memory
names       : layer
values      : -14, 541  (min, max)

We see that, indeed, dem is defined in a geographic CRS, and has a resolution of 
0.0008333333 degrees, longitude and latitude.

In case we do not have any special requirements for the projected dem to align with 
an existing layer, we can follow the first reprojection approach, supplying only the 
CRS and letting the grid be generated automatically. We can also supply the optional 
res argument, primarily to make sure the x and y axes resolution will be equal (90 m, 
for example). You can try and execute the following expression without specifying 
res, to verify that the default grid generated in this case will have a resolution of  
78 m and 92.4 m on the x and y axes respectively:

> dem = projectRaster(from = dem,
+ crs = proj4string(r),
+ method = "ngb",
+ res = 90)

Printing the properties of the reprojected dem reveals several differences:

> dem
class       : RasterLayer
dimensions  : 417, 351, 146367  (nrow, ncol, ncell)
resolution  : 90, 90  (x, y)
extent      : 670666.3, 702256.3, 3611918, 3649448  (xmin, xmax, $
coord. ref. : +proj=utm +zone=36 +datum=WGS84 +units=m +no_defs +$
data source : in memory
names       : layer
values      : -14, 541  (min, max)

We can see that the CRS definition has changed to UTM Zone 36N. Also, the extent, 
resolution, and dimensions are now different and characterize the new grid that has 
been generated.
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Plotting the new raster with plot(dem) produces the following graphical output:

UTM Zone 36N coordinates are now shown along the axes. In addition, you may 
have noticed that the projected dem image is not exactly parallel to the axes, as the 
UTM grid was not strictly parallel to the geographic one. Since a raster must be 
rectangular (refer to the preceding screenshot), empty areas around image margins, 
consisting of NA values, have been generated.
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Filtering and clumping
In this section, and the following one, we move on from the subject of changing raster 
geometry to the subject of relations between neighboring raster cell values. These 
relations can be summarized in the form of a new raster using a variety of methods. In 
this section, we will introduce two such methods: focal filtering and clumping.

Focal filtering involves assigning in each cell of a raster (the focal cell) the result of a 
function, whose input is the set of values from a neighborhood of cells surrounding 
the focal one (including itself). The neighborhood size is predetermined (for example, 
a neighborhood of 3*3 cells is commonly used), and the input raster is scanned in 
a moving window manner until complete coverage has been reached. There are 
many appropriate functions that can be implemented in filters for various purposes. 
For example, using the mean function (also known as a low-pass filter) makes an 
image look smoother, while using a function that finds the most common value (also 
known as a majority filter) is useful for reducing noise in a categorical raster.

The focal function is used to apply a focal filter on a RasterLayer object. The three 
major parameters of this function are as follows:

• The RasterLayer object to be filtered (x)
• A matrix defining the neighborhood and the cell weights (w)
• A function to be applied on the neighborhood (fun)

The w argument should be a matrix defining the neighborhood. It should have odd 
dimensions (such as a 3*3 or 7*5), since its center defines the focal cell position. The 
matrix values define the weights that are applied on cell values before these are 
transferred to the focal function. However, using weights is optional—a matrix where 
all values are equal to 1 would imply having no weights. Weights of 0 can also be used 
to create a non-symmetric and/or non-rectangular window. The fun argument should 
be a function to be applied on the neighborhood values (the default is sum).

For the filtering example, we will return to l_rec, a reclassified NDVI raster (0 for 
NDVI≤0.2 and 1 for NDVI>0.2) based on the Landsat image obtained on October 
4, 2000 (refer to Chapter 4, Working with Rasters, for more information). This raster 
shows the locations of the more densely vegetated areas (such as planted pine 
forests); however, the image is quite grained, with 0 values appearing within the 
otherwise continuous high-vegetation (1) zones. 
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To increase continuity, we will buffer the NDVI>0.2 zone by converting all cells 
having at least one immediate 1 neighbor to 1, thus reducing gaps of 0s between or 
within vegetated areas. This operation can be carried out by applying a focal filter 
with a 3*3 window and the max function with no weights. With max, each cell gets 
the maximal value of its 3*3 neighborhood. Thus, a 0 cell either retains its value (if 
all nine neighbors are 0) or converts to 1 (in case at least one of its neighbors is 1). 
All 1 cells retain their value, since they have at least one 1 neighbor (the cell itself). 
Since we do not need weights, we will use a 3*3 matrix consisting of plain 1s for the w 
argument. This can be created as follows:

> matrix(1, nrow = 3, ncol = 3)
     [,1] [,2] [,3]
[1,]    1    1    1
[2,]    1    1    1
[3,]    1    1    1

Therefore, the complete expression that applies the filter on l_rec is as follows:

> l_rec_focal = focal(l_rec,
+ w = matrix(1, nrow = 3, ncol = 3),
+ fun = max)

The result is assigned to l_rec_focal; comparing it with the original l_rec raster 
shows the buffering of vegetated areas that took place (refer to the next screenshot).

Our second example of an operation concerning cell neighbors is clumping. In 
clumping, we are interested in the detection of cell patches that have the same value. 
For example, you may wish to learn how many patches there are, what their size 
distribution is, what properties they have with respect to the values of other rasters, 
and so on. Clumping can be performed with function clump, which returns a new 
raster where a unique ID is assigned to every connected patch of cells that have 
the same value in the input raster (except for values of 0 or NA, which are ignored 
and used as background). The operation is only useful with categorical rasters—in 
continuous rasters, all (or most) cells usually have unique values. Thus, no patches 
larger than one cell can be formed.

The clump function accepts a RasterLayer object and returns a raster where each 
patch of similar-valued cells has a unique ID. Specifying gaps=FALSE will force these 
IDs to be consecutive integers, starting with 1 and going to n (where n is the total 
number of patches). For example, let's clump the l_rec_focal regions of 1:

> l_rec_focal_clump = clump(l_rec_focal, gaps = FALSE)
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The result l_rec_focal_clump is a raster where 0 regions were converted to NA (and 
used as background), while all cells that are part of a continuous patch of 1s received 
a unique ID. Checking out how many unique non-NA values l_rec_focal_clump 
contains (for example, with the expression max(l_rec_focal_clump[],na.rm=TRUE)) 
will show that we have 507 separate NDVI>0.2 patches. Had we skipped the filtering 
step and performed the clumping on l_rec, we would have got 1,258 patches.

The igraph package is required for running clump, so 
make sure it is installed.

Let's visualize the filtering and clumping results along with the original raster:

> plot(l_rec, main = "Original image")
> plot(l_rec_focal, main = "Filtered")
> plot(l_rec_focal_clump, main = "Clumped")

The following screenshot shows the plots of l_rec, l_rec_focal, and l_rec_
focal_clump, respectively from left to right:

We can see that filtering has thickened the NDVI>0.2 areas, while clumping has 
assigned IDs (going from 1 to 507) in each patch. In the next chapter, we will 
continue working with l_rec_focal_clump to see how these patches can be 
converted to polygons and how patches of interest can be isolated.
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Topography-related calculations with 
elevation data
Deriving topography-related variables from a DEM is a central task in terrain 
analysis. Many functions and algorithms have been developed for this purpose, 
and different GIS software packages include different sets of such tools. The raster 
package currently provides several basic terrain analysis functions (of which three 
examples will be shown in this section).

A variety of terrain analysis (and other) algorithms are available in 
R through interfacing with open source GIS software, such as SAGA 
GIS (using the RSAGA package) and GRASS GIS (using the spgrass6 
package). To use these, you will require to download and install the 
(freely available) respective software, but the subject is beyond the scope 
of the present book, which focuses on standalone R functionality.

Slope and aspect calculation
Calculation of topographic slope and aspect is among the most basic DEM analysis 
procedures. These two variables have many uses in their own right (for example, 
aspect is an important environmental measure due to its association with solar 
radiation load), and as inputs for subsequent calculations (for example, slope is 
one of the parameters in the calculation of Topographic Wetness Index). Both are 
calculated for each cell in an elevation raster by comparing focal cell elevation with 
the elevations of its eight neighbors (in a 3*3 neighborhood).

The terrain function can calculate slope and aspect (and several other terrain 
characteristics), when provided with a DEM raster and the respective option 
("slope" or "aspect"). Let's take a look at the following example:

> slope = terrain(dem, "slope")
> aspect = terrain(dem, "aspect")

We now have slope and aspect rasters, by default in radians (using 
units="degrees" will give results in degrees instead). We can check what the 
results look like using the following expression:

> plot(stack(slope, aspect))
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The following screenshot shows the graphical output:

As expected, slope shows higher values across Mount Carmel and moderate values 
in the lowlands on both of its sides. The most prominent features in the aspect raster 
are the opposing aspects of the east-facing and west-facing slopes of Mount Carmel.

Hillshade
A hillshade layer is a hypothetical illumination appearance, as viewed from above, 
based on topography and the sun's position. Shaded relief maps, used to display 
topography in an intuitive manner, were traditionally prepared with manual 
shading (by an artist or a cartographer). Today, such maps can be generated by 
calculating a hillshade layer based on a DEM; this will be demonstrated in the 
following example.

The hillShade function can calculate a hillshade layer based on four parameters (the 
first two characterizing the topography and the last two characterizing the  
sun's position):

• slope: Slope (in radians)
• aspect: Aspect (in radians)
• angle: The sun's elevation angle (in degrees)
• direction: The sun's direction (in degrees)
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For example, using the slope and aspect layers that we previously calculated, the 
following expression creates a hillshade layer according to the sun's elevation of 20 
degrees and the sun's direction of 235 degrees:

> hill = hillShade(slope, aspect, 20, 235)

Now, with the following expression, we will plot the resulting hill raster using 
grayscale (as indicated by the par.settings argument GrTheme):

> levelplot(hill, par.settings = GrTheme, margin = FALSE)

The following screenshot shows the graphical output:

                           

http://                           /


Chapter 6

[ 201 ]

This image clearly shows the relief of Mount Carmel. Since the light source is located 
in the South-west (sun direction: 235°) and at quite a low angle above the horizon 
(sun elevation: 20°), the north-eastern slopes of the mountain are in shade while the 
western slopes are lighted.

Aggregating spatio-temporal raster data
Spatio-temporal data, such as MODIS images, time series, or meteorological records 
from several stations (see Chapter 3, Working with Tables) pose a challenge for analysis 
and visualization due to their three-dimensional nature. One approach to simplify 
such data is to perform aggregation in spatial and/or temporal dimensions (another 
approach to simplify spatio-temporal data is, for example, cluster analysis).

In this section, we will experiment with two approaches to aggregate the data held in 
the multiband raster r in order to get additional perspectives on the spatio-temporal 
behavior of NDVI within the geographic area this raster covers.

More specialized classes and methods (including aggregation) 
for various types of spatio-temporal data are defined in the 
spacetime package. An overview of this package can be found in 
the introductory paper "spacetime: Spatio-Temporal Data in R" by its 
creator Pebesma E. 2012.

The time dimension
In our first example, we will aggregate r along the temporal dimension (that is, 
the layers). In fact, the previous example where we mapped the minimum and 
maximum values for each pixel in r using overlay with the range function 
(see Chapter 4, Working with Rasters, for more information) is also an example of 
aggregation. However, instead of aggregating all layers, what if you want to learn 
the properties of different time series portions? In such cases, you have to perform 
several overlay operations, and then combine the results into a multiband raster. 
That is exactly what we are going to do next.

Let's say we are interested in examining the seasonal NDVI averages across the 
studied area. In such cases, we need to perform an overlay of all layers for each 
season using the mean function, and then combine the results into a four-band raster 
(where each layer corresponds to one of the four seasons). Conceptually, the simplest 
way of doing this is with a for loop that goes through the four seasons, selecting the 
appropriate layers of r each time, applying overlay on those layers, and keeping the 
result to form a final multiband raster in the end.

                           

http://                           /


Modifying Rasters and Analyzing Raster Time Series

[ 202 ]

As a preliminary step to construct the loop, we will define a character vector with 
season names (seasons) and an empty RasterStack object (season_means). The 
seasons vector will define loop iterations, while season_means will be used to hold 
the results:

> seasons = c("winter", "spring", "summer", "fall")
> season_means = stack()

Now, we are ready to execute the for loop:

> for(i in seasons) {
+ season_means = stack(season_means,
+ overlay(r[[which(dates$season == i)]],
+ fun = function(x) mean(x, na.rm = TRUE)))
+ }

The loop code section is executed four times (since the number of elements in seasons 
is four), each time assigning the next season name into i. The code adds the mean of 
the relevant layers in r (selected using the dates$season vector that we previously 
created; refer to Chapter 3, Working with Tables) to season_means. Therefore, in the first 
loop iteration, the mean of the "winter" layers in r is added to the empty season_
means; in the second iteration, the mean of "spring" is added to season_means 
(which already has one layer), and so on until all four seasons are covered.

Now that the result season_means is ready, we can add season names to the 
respective layers for convenience:

> names(season_means) = seasons

We will view the result using the levelplot function:

> levelplot(season_means, par.settings=RdBuTheme, contour=TRUE)

                           

http://                           /


Chapter 6

[ 203 ]

The following screenshot shows the graphical output:

The preceding screenshot shows average NDVI for each season. We can see that 
NDVI is generally high during winter and spring and low during summer and 
fall. The image also shows that certain areas (such as the north-west corner of the 
image) have much higher NDVI in the wet season than in the dry one, while other 
areas (such as the three patches in the center of the image) maintain relatively high 
NDVI values in the summer months as well. The former are, in fact, areas where 
agricultural crops and natural herbaceous vegetation proliferate due to the relatively 
more abundant rainfall in the wet season, while the latter are planted evergreen pine 
forests where vegetation activity is maintained even in the dry season.
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Another way of aggregating raster layers, bypassing the necessity to construct a 
loop, is with the stackApply function. Similar to the way in which tapply can be 
used to apply a function on different portions of a vector (as we discussed in Chapter 
3, Working with Tables), the function stackApply has been defined to apply a function 
on different portions of layers in a multiband raster. Analogous to tapply, the main 
three parameters of stackApply are as follows:

• The input multiband raster (x)
• A vector of indices defining the layers grouping (indices)
• The function to be applied on each group (fun)

Unlike tapply, the indices vector must be composed of consecutive integers, starting 
with 1. An additional parameter of stackApply is na.rm, which controls whether NA 
values are removed from calculations.

For example, we can calculate the monthly NDVI means as follows:

> month_means = stackApply(r,
+ indices = dates$month,
+ fun = mean,
+ na.rm = TRUE)

As in the previous example, we will name the layers of the result month_means:

> names(month_means) = month.abb

The character vector month.abb is a predefined one in R; it 
holds the three-letter abbreviated month names: "Jan", "Feb", 
"Mar", and so on.

We can visualize the result with levelplot:

> levelplot(month_means, par.settings = RdBuTheme, contour = TRUE)
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The following screenshot shows the graphical output:

The preceding screenshot shows NDVI dynamics with greater detail on a monthly 
scale rather than a seasonal scale. We can see that NDVI starts to increase around 
October-November and declines around February-March. During April-September 
(the dry season), NDVI is just about constant.

Using the monthly averages, we can derive other informative products. 
For example, with the following overlay function call, we can create a 
raster that shows the month in which the lowest NDVI value is observed 
at each location:
> min_month = overlay(month_means, fun = which.min)

To save space, we will not plot the result here.
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As mentioned earlier, the indices parameter in stackApply accepts a vector 
of integers starting with 1, which the dates$months vector conveniently was. 
However, how should we deal with other grouping vectors—character vectors or 
numeric vectors—that are not consecutive or that do not start with 1? We must first 
encode these as consecutive integer vectors, for example, by converting them to a 
factor (with the factor function) and then extracting the factor level indices (with 
the as.numeric function). Let's take a look at the following example:

> dates$year[1:30]
 [1] 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000
[13] 2000 2000 2000 2000 2000 2000 2000 2000 2001 2001 2001 2001
[25] 2001 2001 2001 2001 2001 2001
> as.numeric(factor(dates$year))[1:30]
 [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

Here, we reclassified the dates$year vector (which contains 13 unique years) to a 
vector of integers from 1 to 13 (only the first 30 values were printed to save space).

Spatial dimensions
In our second example, we will aggregate r along the y axis spatial dimension. Doing 
this will allow us to observe the average NDVI at a given position on the north-south 
axis over time. In other words, we will reduce the number of dimensions from three 
to two by averaging all values of a given y axis/date position into a single value. The 
following schematic diagram describes our action plan:
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As we can see in the preceding diagram, our goal is to create a new raster s, where 
each column holds the vector of row averages from r. In other words, each s row 
is going to represent an r row (or y axis positions in space), while each s column is 
going to represent an r layer (or positions in time). We will perform the operation 
in two steps: first, creating an empty raster s (with the required dimensions) 
and second, populating it with values. We will also see two different ways of 
accomplishing the task: using a for loop and using apply.
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As we can see in the preceding diagram, the number of rows in s should be equal 
to the number of rows in r, while the number of columns in s should be equal 
to the number of layers in r. In addition to setting row and column numbers, 
using parameters xmn, xmx, ymn, and ymx, we will set the minimum and maximum 
coordinates on the x and y axes (to avoid the default, where the extent is -180 to 180 
on the x axis and -90 to 90 on the y axis). The coordinate ranges on the x and y axes 
are going to be 0 to 280 and 0 to 100, respectively; moreover, since the number of 
columns and rows is accordingly 280 and 100, the raster resolution will be 1  
(an arbitrary unit) on both axes:

> s = raster(nrows = nrow(r), ncols = nlayers(r),
+ xmn = 0, xmx =  nlayers(r), ymn = 0, ymx = nrow(r))

Now that raster s is ready, we need to populate it with values. Following our first 
for loop method, we will define a new function called raster_rowMeans that, when 
provided with a raster (x) and the layer index (layer), returns a vector of row means 
in that layer. This function actually consists of a single expression as it simply applies 
the base function rowMeans on the matrix of values from a given layer, obtained with 
as.matrix:

> raster_rowMeans = function(x, layer) {
+ rowMeans(as.matrix(x[[layer]]),
+ na.rm = TRUE)
+ }

Now, all is left to be done is to go over the layers of r, each time calculating the  
row means in the current layer (with the raster_rowMeans function) and assigning 
the resulting vector to the appropriate column of s (exactly as depicted in the 
preceding diagram):

> for(i in 1:nlayers(r)) {
+ s[ ,i] = raster_rowMeans(r, i)
+ }

Now s is filled with the appropriate values, and we can use the levelplot function 
to display it. The additional at parameter of the levelplot function sets the breaks 
between color levels and contours. We use it to slightly reduce the quantity of 
contours and make the image clearer:

> levelplot(s,
+ par.settings = RdBuTheme,
+ contour = TRUE,
+ margin = FALSE,
+ at = seq(0,0.6,0.05))
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The graphical output is shown in the following screenshot:

The preceding screenshot shows the average NDVI at each point in time (x axis) and 
north-south position in space (y axis). Two main patterns are evident: first, along the 
x axis (time) we can see the periodical behavior of NDVI between the interchanging 
wet and dry seasons. However, there are also inter-annual differences—in certain 
years, NDVI is higher or lower than average—due to variation in climatic conditions 
and therefore in vegetation activity. Second, along the y axis (the north-south 
position), we can see the NDVI gradient from the relatively wet conditions, and thus 
a higher NDVI to the north, compared to drier conditions; consequently, we can also 
see a lower and more stable NDVI to the south.

The second method of obtaining the same result will be defined with less code, 
although it might be conceptually more difficult to grasp. The first step of the task, 
defining the empty raster s, is identical:

> s = raster(nrows = nrow(r), ncols = nlayers(r),
+ xmn = 0, xmx =  nlayers(r), ymn = 0, ymx = nrow(r))

However, the second step is different. Instead of going over the layers of r with a for 
loop, we will convert r to a three-dimensional array and utilize the apply function. 
The former is accomplished with the as.array function:

> r_array = as.array(r)
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The result, r_array, is an array object where the first dimension corresponds to r 
rows, the second dimension to r columns, and the third dimension to r layers. We 
can therefore use apply to utilize rowMeans on the third dimension, obtaining the 
vector of row means for each third-dimension element (layer), which is exactly what 
we need. The values of the resulting matrix can be directly transferred to s:

> s[] = apply(r_array, 3, rowMeans, na.rm = TRUE)

The raster s we just created is identical to the one created (and plotted) earlier. 
Although the same results were produced, an important difference between the two 
methods is in the speed of execution. Accessing one raster layer at a time using a loop 
is slow compared to an apply operation on an array, which is generally very fast. For 
example, on the computer this book is written on, calculating the values of s using 
the first method is performed in about 1.8 minutes as compared to 2.6 seconds using 
the second method (that is ~40 times faster!). It is therefore often useful to transform a 
raster into a simpler object (matrix or array) before doing intensive calculations.

Summary
In this chapter, you learned additional methods and procedures for working with 
raster layers in R. We now know how to crop, aggregate, or reproject a raster to 
bring it to the desired extent, resolution, and CRS. We discussed how focal filtering 
and clumping can be applied to highlight patterns of interest in a raster. We also 
discussed how topography-related variables can be derived from a DEM, and how 
spatio-temporal raster data can be aggregated.

In the next chapter, you will learn about the interface between rasters and vector 
layers, and the different ways in which both can be combined in a spatial analysis.
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Generating new insight by overlaying several layers of spatial information, one 
on top of the other, constitutes one of the main concepts of spatial data analysis, 
as we have already seen in the previous chapters. So far, however, we have 
only used operations involving either rasters alone or vector layers alone, but 
not a combination of both. Although the two types of spatial layers have their 
characteristic uses (such as rasters for DEMs and vector layers for administrative 
borders), combining them in a single analysis is often desired. As we shall see, this is 
a less straightforward task, characterized by specific procedures and decisions.

In this chapter, we are going to explore the interplay between vector and raster 
layers, and the way it is implemented in the raster package. The way rasters and 
vector layers can be interchanged and queried, one according to the other, will be 
demonstrated through examples.

In this chapter, we are going to use objects that were created in the 
previous chapters and the packages we used to do that (plyr, raster, 
and rgeos). Make sure these are loaded before running the code sections 
in this chapter. For convenience, this chapter's code file on the book's 
website repeats the relevant code sections from the previous chapters.

In this chapter, we'll cover the following topics:

• Creating rasters from vector layers and vice versa
• Masking rasters with vector layers
• Extracting raster values according to vector layers
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Creating rasters from vector layers
One of the main reasons to convert a vector layer to a raster is that we are interested 
in employing raster analysis tools or procedures on data that is currently held in 
vector form (and vice versa). For example, when preparing a multiband raster with 
various environmental characteristics of a given area, such as slope or NDVI, we 
may wish to add layers that are commonly given in the vector format, such as built 
area polygons or road lines. To do this, we first need to convert these vector layers to 
rasters, and then supplement the multiband raster with the additional layers.

The process of converting a vector layer to a raster is called rasterizing, in the 
raster package terminology, and it is performed with the rasterize function. In 
this section, we will see an example of how to rasterize a point vector layer, while 
keeping in mind that the procedures to rasterize lines and polygons are analogous. 
You will also learn the related operations of raster masking using a vector layer, 
which conceptually is a special case of rasterizing and overlay.

Rasterizing vector layers
Creating a raster out of a vector layer is quite simple in concept. Given a vector 
layer and a raster grid, the new raster cells get filled with values in places where the 
raster overlaps with the vector layer. The rest of the raster cells (those that are not in 
contact with the vector layer) are left with NA. Those raster cells that overlap with an 
individual feature in the vector layer are assigned unique values. These values can 
simply be consecutive integers, or they can come from any vector corresponding to 
the number of features (such as an attribute table column). The procedure will be 
made clearer with the following example.

In our first example, we will use a simple point layer with the locations of two  
towns: Lahav Kibbutz and Lehavim. We will first create a layer named towns,  
using geocoding as follows (see Chapter 5, Working with Points, Lines, and Polygons,  
for more information):

> library(ggmap)
> towns_names = c("Lahav Kibbutz", "Lehavim")
> towns = geocode(towns_names)
> coordinates(towns) = ~ lon + lat
> proj4string(towns) = CRS("+proj=longlat +datum=WGS84")
> towns = spTransform(towns, CRS(proj4string(l_00)))
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Note that in the last expression, the layer is transformed to the CRS of the Landsat 
image l_00, which we assume is in memory (see Chapter 4, Working with Rasters, 
for more information). Let's visualize the towns layer using the l_00 image as the 
background:

> plotRGB(l_00, r = 3, g = 2, b = 1, stretch = "lin")
> plot(towns, col = "red", pch = 16, add = TRUE)
> text(coordinates(towns), towns_names, pos = 3, col = "white")

The resulting graphical output is shown in the following screenshot:

Note that the dark patch of green vegetation neighboring Lahav Kibbutz to the west 
is Lahav forest. Another forest, Kramim, can be seen to the South-East of the Kibbutz. 
We will return to these two forests in the examples later.
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Now let's see how the vector layer towns can be converted to a raster. Since we have 
two points, our result is going to be a raster with two cells having a non-NA value, no 
matter which grid we use, as long as both points are within its extent and the cell size 
is not large enough to encompass both points within a single cell. The rasterize 
function, to convert a vector to a raster, requires two main arguments:

• The vector layer to rasterize (x)
• The raster defining the grid (y)

Note that the role of y is only to provide a raster grid definition; its values do not 
participate in the operation in any way (similar to the role of the to parameter in 
raster reprojection; see the previous chapter). In this example, we will use the MODIS 
raster r (see Chapter 4, Working with Rasters) to transfer towns onto its 500 meter grid, 
as follows:

> towns_r = rasterize(towns, r)

The result, towns_r, is a RasterLayer object with two non-NA values, 1 and 2, since 
the raster values are defined as the feature indices (numbers from 1 to n, where n is 
the total number of features) by default:

> towns_r[!is.na(towns_r)]
[1] 1 2

In our case, the 1 cell corresponds to the first feature in towns (Lahav Kibbutz) and 
the 2 cell corresponds to the second one (Lehavim).

To display towns_r, we will first crop it according to the extent of towns plus a 
3-kilometer buffer:

> towns_r = crop(towns_r, extent(towns) + 3000)

Let's plot the resulting raster, and the original vector layer on top of it, including the 
relevant labels. We will use the col parameter of plot to specify a two-color scale 
with "lightblue" (this color will be used for 1) and "brown" (this color will be  
used for 2):

> plot(towns_r, col = c("lightblue", "brown"))
> plot(towns, add = TRUE)
> text(coordinates(towns), towns_names, pos = 3)
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The resulting graphical output is shown in the following screenshot:

The white background we see corresponds to the NA-filled area in towns_r. These are 
the raster cells where no point in towns falls. The two colored pixels are the two cells 
that have been assigned with values. The light blue pixel is the one assigned with 
the value of 1 (corresponding to Lahav Kibbutz), while the brown pixel is the one 
assigned with 2 (Lehavim).

Two other useful parameters of rasterize are field and fun.
Using field, we can override the default assignment of raster values 
and provide a single number, vector, or the name of an attribute table 
column determining the values (see Chapter 8, Spatial Interpolation 
of Point Data, for an example of the latter). For example, using the 
rasterize(towns,r,field=c(3,4)) expression will yield a raster 
with the value of 3 for Lahav Kibbutz and 4 for Lehavim.
The fun parameter determines the method to assign the raster values, 
and is only relevant when some raster cells overlap with more than 
one feature. It can be provided either with a function or one of the 
predefined character values: "first", "last", "count", "sum", 
"min", or "max" (the default value is "last"). For example, the 
rasterize(towns,r,fun="count") expression yields a raster stating 
how many towns are in each of the 500 meter cells (in our case, this is not 
very instructive—the raster will have two 1 values because there is only 
one town in each of the two individual cells).
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Masking values in a raster
As mentioned in the previous chapter, a raster is always rectangular. However, in 
raster subsetting, we are often interested in going beyond the selection of rectangular 
extents. Non-rectangular rasters can be created by assigning all cells, excluding those 
we are interested in, with NA. This operation is called masking, again in the raster 
package terminology.

Masking is most often performed using a polygonal layer defining an area of interest. 
Therefore, conceptually, masking can be viewed as a two-step operation. The first 
step consists of a vector-to-raster conversion, where the area of interest is rasterized 
according to the raster we would like to mask. The second step consists of an overlay 
to construct the masked raster, with NA in those cells where the area-of-interest raster 
has NA or the original value otherwise. In practice, the operation may be performed 
with a single step, using the mask function.

In the following example, we will mask the Haifa slope raster from the previous 
chapter to create two new rasters—first masking all areas other than those coinciding 
with buildings (the haifa_buildings polygonal layer), and then all areas other than 
natural areas (the haifa_natural polygonal layer). The latter two layers should be 
in the same CRS of slope; see Chapters 5, Working with Points, Lines, and Polygons,  
and Chapter 6, Modifying Rasters and Analyzing Raster Time Series, to learn how they 
were created.

Since we would like to focus on the Haifa area, we will first create an Extent object 
encompassing haifa_buildings and a 2-kilometer buffer. Later, we will use this 
object (named haifa_ext) to clip our results and display them more conveniently:

> haifa_ext = extent(haifa_buildings) + 2000

Before proceeding, let's review the layers involved—slope, haifa_buildings, and 
haifa_natural—by plotting them as follows (zooming in to haifa_ext):

> plot(slope, ext = haifa_ext)
> plot(haifa_buildings, add = TRUE)
> plot(haifa_natural, col = "lightgreen", add = TRUE)
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The resulting graphical output is shown in the following screenshot:

The preceding graphical output is familiar from Chapter 5, Working with Points, Lines, 
and Polygons (see the last screenshot in that chapter); the only difference is that now 
the slope raster appears in the background. The area appears to be characterized 
by variable topography. Are the natural and built areas characterized by different 
topographic slopes? This question motivates our next task—subsetting the slope 
pixels covered by natural areas and buildings, separately, to compare their  
value distributions.

The mask function that we will use to do this task expects two main arguments:

• The raster to be masked (x)
• The object determining which values to mask (mask)
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The mask argument can either be an overlapping raster (in which case the values in x 
corresponding to NA in mask are assigned with NA) or a vector layer (in which case the 
values in x not coinciding with any feature in mask are assigned with NA). Therefore, 
the following expression yields a new raster based on slope where all pixels not 
covered by haifa_natural are masked (that is, assigned with NA):

> natural_mask = mask(slope, haifa_natural)

The previous expression is analogous to the following expression:
> natural_mask = mask(slope, 

+ rasterize(haifa_natural, slope))

For convenience, we will crop the result, natural_mask, using haifa_ext:

> natural_mask = crop(natural_mask, haifa_ext)

We will repeat the exact same procedure with haifa_buildings to get the 
buildings_mask raster as well:

> buildings_mask = mask(slope, haifa_buildings)
> buildings_mask = crop(buildings_mask, haifa_ext)

Now let's plot both natural_mask and buildings_mask, side-by-side, to observe 
how masking has been carried out:

> plot(stack(natural_mask, buildings_mask))

The resulting graphical output is shown in the following screenshot:
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After observing the two results, we can see that while natural_mask (the left 
panel) mostly consists of continuous patches of non-NA areas, buildings_mask 
(the right panel) is composed of very small non-NA patches containing a few pixels. 
The reason for such behavior is that masking with a polygonal layer retains the 
values of only those cells whose cell center falls within a polygon. This behavior is 
appropriate for haifa_natural, which is mainly composed of large polygons, each 
one encompassing many cells. However, for haifa_buildings, the pixels that are 
retained are only those whose center falls within either one of the building polygons 
in haifa_buildings. This clearly underestimates the built area. A simple solution 
would be to mask using building centroids instead, in which case those pixels where 
a centroid of haifa_buildings falls will be retained. For this purpose, we will create 
a point layer to build centroids named buildings_ctr:

> buildings_ctr = gCentroid(haifa_buildings, byid = TRUE)

Now, we will repeat the masking procedure using this layer:

> buildings_mask = mask(slope, buildings_ctr)
> buildings_mask = crop(buildings_mask, haifa_ext)

Let's plot the result once again to see the difference:

> plot(stack(natural_mask, buildings_mask))

The graphical output is shown in the following screenshot:

This time, many more pixels remained unmasked in buildings_mask since all pixels 
coinciding with a centroid of at least one building were retained (as in the previous 
example of towns rasterization).

We will proceed with this example in Chapter 9, Advanced Visualization of Spatial Data, 
displaying the value distribution of both rasters with histograms.

                           

http://                           /


Combining Vector and Raster Datasets

[ 220 ]

Creating vector layers from a raster
The opposite operation to rasterization, which has been presented in the previous 
section, is the creation of vector layers from raster data. The procedure of extracting 
features of interest out of rasters, in the form of vector layers, is often necessary for 
analogous reasons underlying rasterization—when the data held in a raster is better 
represented using a vector layer, within the context of specific subsequent analysis 
or visualization tasks. Scenarios where we need to create points, lines, and polygons 
from a raster can all be encountered. In this section, we are going to see an example 
of each.

Raster-to-points conversion
In raster-to-points conversion conversion, each raster cell center (excluding NA cells) 
is converted to a point. The resulting point layer has an attribute table with the 
values of the respective raster cells in it.

Conversion to points can be done with the rasterToPoints function. This function 
has a parameter named spatial that determines whether the returned object is 
going to be SpatialPointsDataFrame or simply a matrix holding the coordinates 
and the respective cell values (spatial=FALSE, the default value). For our purposes, 
it is thus important to remember to specify spatial=TRUE.

As an example of a raster, let's create a subset of the raster r, with only layers 1-2, 
rows 1-3, and columns 1-3:

> u = r[[1:2]][1:3, 1:3, drop = FALSE]

To make the example more instructive, we will place NA in some of the cells and see 
how this affects the raster-to-point conversion:

> u[2, 3] = NA
> u[[1]][3, 2] = NA

Now, we will apply rasterToPoints to create a SpatialPointsDataFrame object 
named u_pnt out of u:

> u_pnt = rasterToPoints(u, spatial = TRUE)

Let's visually examine the result we got with the first layer of u serving as the 
background:

> plot(u[[1]])
> plot(u_pnt, add = TRUE)
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The graphical output is shown in the following screenshot:

We can see that a point has been produced at the center of each raster cell, except for 
the cell at position (2,3), where we assigned NA to both layers. However, at the (3,2) 
position, NA has been assigned to only one of the layers (the first one); therefore, a 
point feature has been generated there nevertheless.

The attribute table of u_pnt has eight rows (since there are eight points) and two 
columns (corresponding to the raster layers).

> u_pnt@data
  layer.1 layer.2
1  0.4242  0.4518
2  0.3995  0.3334
3  0.4190  0.3430
4  0.4495  0.4846
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5  0.2925  0.3223
6  0.4998  0.5841
7      NA  0.5841
8  0.7126  0.5086

We can see that the seventh point feature, the one corresponding to the (3,2) raster 
position, indeed contains an NA value corresponding to layer 1.

Raster-to-contours conversion
Creating points (see the previous section) and polygons (see the next section) from 
a raster is relatively straightforward. In the former case, points are generated at 
cell centroids, while in the latter, rectangular polygons are drawn according to cell 
boundaries. On the other hand, lines can be created from a raster using various 
different algorithms designed for more specific purposes. Two common procedures 
where lines are generated based on a raster are constructing contours (lines 
connecting locations of equal value on the raster) and finding least-cost paths (lines 
going from one location to another along the easiest route when cost of passage is 
defined by raster values). In this section, we will see an example of how to create 
contours (readers interested in least-cost path calculation can refer to the gdistance 
package, which provides this capability in R).

As an example, we will create contours from the DEM of Haifa (dem; see the previous 
chapter). Creating contours can be done using the rasterToContour function. This 
function accepts a RasterLayer object and returns a SpatialLinesDataFrame 
object with the contour lines. The rasterToContour function internally uses the 
base function contourLines, and arguments can be passed to the latter as part of 
the rasterToContour function call. For example, using the levels parameter, we 
can specify the breaks where contours will be generated (rather than letting them be 
determined automatically).

The raster dem consists of elevation values ranging between -14 meters and  
541 meters:

> range(dem[], na.rm = TRUE)
[1] -14 541

Therefore, we may choose to generate six contour lines, at 0, 100, 200, …,  
500 meter levels:

> dem_contour = rasterToContour(dem, levels = seq(0, 500, 100))
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Now, we will plot the resulting SpatialLinesDataFrame object on top of the  
dem raster:

> plot(dem)
> plot(dem_contour, add = TRUE)

The graphical output is shown in the following screenshot:

Mount Carmel is densely covered with elevation contours compared to the plains 
surrounding it, which are mostly within the 0-100 meter elevation range and thus 
have only few a contour lines.
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Let's take a look at the attribute table of dem_contour:

> dem_contour@data
    level
C_1     0
C_2   100
C_3   200
C_4   300
C_5   400
C_6   500

Indeed, the layer consists of six line features—one for each break we specified with 
the levels argument.

Raster-to-polygons conversion
As mentioned previously, raster to polygon conversion involves the generation of 
rectangular polygons in the place of each raster cell (once again, excluding NA cells). 
Similar to the raster-to-point conversion, the resulting attribute table contains the 
respective raster values for each polygon created. The conversion to polygons is most 
useful with categorical rasters when we would like to generate polygons defining 
certain areas in order to exploit the analysis tools this type of data is associated with 
(such as extraction of values from other rasters, geometry editing, and overlay).

Creation of polygons from a raster can be performed with a function whose name 
the reader may have already guessed, rasterToPolygons. A useful option in 
this function is to immediately dissolve the resulting polygons according to their 
attribute table values; that is, all polygons having the same value are dissolved into 
a single feature. This functionality internally utilizes the rgeos package and it can be 
triggered by specifying dissolve=TRUE.

In the previous chapter, we prepared a raster named l_rec_focal_clump, a 
categorical raster with consecutively numbered NDVI>0.2 patches. In our next 
example, which we will begin in this chapter and finish in Chapter 9, Advanced 
Visualization of Spatial Data, we will visually compare the average NDVI time series 
of Lahav and Kramim forests (see earlier), based on all of our Landsat (three dates) 
and MODIS (280 dates) satellite images. In this chapter, we will only prepare the 
necessary data by going through the following intermediate steps:

1. Creating the Lahav and Kramim forests polygonal layer.
2. Extracting NDVI values from the satellite images.
3. Creating a data.frame object that can be passed to graphical functions later.
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Commencing with the first step, using l_rec_focal_clump, we will first create 
a polygonal layer holding all NDVI>0.2 patches, then subset only those two 
polygons corresponding to Lahav and Kramim forests. The former is achieved using 
rasterToPolygons with dissolve=TRUE, converting the patches in l_rec_focal_
clump to 507 individual polygons in a new SpatialPolygonsDataFrame that we 
hereby name pol:

> pol = rasterToPolygons(l_rec_focal_clump, dissolve = TRUE)

Plotting pol will show that we have quite a few large patches and many small ones. 
Since the Lahav and Kramim forests are relatively large, to make things easier we 
can omit all polygons with area less than or equal to 1 km2:

> pol$area = gArea(pol, byid = TRUE) / 1000^2
> pol = pol[pol$area > 1, ]

The attribute table shows that we are left with eight polygons, with area sizes of 1-10 
km2. The clumps column, by the way, is where the original l_rec_focal_clump 
raster value (the clump ID) has been kept ("clumps" is the name of the l_rec_
focal_clump raster layer from which the values came).

> pol@data
    clumps    area
112      2  1.2231
114    200  1.3284
137    221  1.9314
203    281  9.5274
240    314  6.7842
371    432  2.0007
445      5 10.2159
460     56  1.0998

Let's make a map of pol:

> plotRGB(l_00, r = 3, g = 2, b = 1, stretch = "lin")
> plot(pol, border = "yellow", lty = "dotted", add = TRUE)
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The graphical output is shown in the following screenshot:

The preceding screenshot shows the continuous NDVI>0.2 patches, which are 1 
km2 or larger, within the studied area. Two of these, as expected, are the forests we 
would like to examine. How can we select them? Obviously, we could export pol 
to a Shapefile and select the features of interest interactively in a GIS software (such 
as QGIS), then import the result back into R to continue our analysis. The raster 
package also offers some capabilities for interactive selection (that we do not cover 
here); for example, a function named click can be used to obtain the properties 
of the pol features we click in a graphical window such as the one shown in the 
preceding screenshot. However, given the purpose of this book, we will try to write a 
code to make the selection automatically without further user input.
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To write a code that makes the selection, we must choose a certain criterion (either 
spatial or nonspatial), that separates the features of interest. In this case, for example, 
we can see that the pol features we wish to select are those closest to Lahav Kibbutz. 
Therefore, we can utilize the towns point layer (see earlier) to find the distance of each 
polygon from Lahav Kibbutz, and select the two most proximate ones.

Using the gDistance function (see Chapter 5, Working with Points, Lines, and 
Polygons), we will first find out the distances between each polygon in pol and each 
point in towns:

> dist_towns = gDistance(towns, pol, byid = TRUE)
> dist_towns
              1         2
112 14524.94060 12697.151
114  5484.66695  7529.195
137  3863.12168  5308.062
203    29.48651  1119.090
240  1910.61525  6372.634
371 11687.63594 11276.683
445 12751.21123 14371.268
460 14860.25487 12300.319

The returned matrix, named dist_towns, contains the pairwise distances, with rows 
corresponding to the pol feature and columns corresponding to the towns feature. 
Since Lahav Kibbutz corresponds to the first towns feature (column "1"), we can 
already see that the fourth and fifth pol features (rows "203" and "240") are the 
most proximate ones, thus corresponding to the Lahav and Kramim forests. We could 
subset both forests by simply using their IDs—pol[c("203","240"),]. However, 
as always, we are looking for general code that will select, in this case, the two closest 
features irrespective of the specific IDs or row indices. For this purpose, we can use the 
order function, which we have not encountered so far. This function, given a numeric 
vector, returns the element indices in an increasing order according to element values. 
For example, applying order to the first column of dist_towns, we can see that the 
smallest element in this column is in the fourth row, the second smallest is in the fifth 
row, the third smallest is in the third row, and so on:

> dist_order = order(dist_towns[, 1])
> dist_order
[1] 4 5 3 2 6 7 1 8
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We can use this result to select the relevant features of pol as follows:

> forests = pol[dist_order[1:2], ]

The subset SpatialPolygonsDataFrame, named forests, now contains only the 
two features from pol corresponding to the Lahav and Kramim forests.

> forests@data
    clumps   area
203    281 9.5274
240    314 6.7842

Let's visualize forests within the context of the other data we have by now. We will 
plot, once again, l_00 as the RGB background and pol on top of it. In addition, we 
will plot forests (in red) and the location of Lahav Kibbutz (as a red point). We will 
also add labels for each feature in pol, corresponding to its distance (in meters) from 
Lahav Kibbutz:

> plotRGB(l_00, r = 3, g = 2, b = 1, stretch = "lin")
> plot(towns[1, ], col = "red", pch = 16, add = TRUE)
> plot(pol, border = "yellow", lty = "dotted", add = TRUE)
> plot(forests, border = "red", lty = "dotted", add = TRUE)
> text(gCentroid(pol, byid = TRUE),
+ round(dist_towns[,1]),
+ col = "White")
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The graphical output is shown in the following screenshot:

The preceding screenshot demonstrates that we did indeed correctly select the 
features of interest.

We can also assign the forest names to the attribute table of forests, relying on our 
knowledge that the first feature of forests (ID "203") is larger and more proximate 
to Lahav Kibbutz and corresponds to the Lahav forest, while the second feature (ID 
"240") corresponds to Kramim.

> forests$name = c("Lahav", "Kramim")
> forests@data
    clumps   area   name
203    281 9.5274  Lahav
240    314 6.7842 Kramim
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We now have a polygonal layer named forests, with two features delineating the 
Lahav and Kramim forests, named accordingly in the attribute table. In the next 
section, we will proceed with extracting the NDVI data for these forests.

Extracting raster values based on vector 
layers
So far, we have covered operations to transform a vector layer to a raster and vice 
versa. The third operation involving vector layers and rasters, and the focus of this 
final section, is the extraction of raster values according to vector layers. We are 
often interested in reducing or summarizing raster data using point, line, or polygon 
features, which is when this operation comes in handy. For example, we may wish to 
calculate the elevation profile covered by a GPS track (raster-to-line extraction) or the 
average NDVI of a given forest (raster to polygon extraction). In this section, we will 
see two examples involving extraction by points and extraction by polygons.

Extracting by points
Extraction of raster values, according to a vector layer of any kind, can be done with 
the extract function. The first two parameters of this function are as follows:

• The raster whose values are to be extracted (x)
• The object (usually a vector layer) defining the locations to extract values (y) 

from

When extracting values according to points, which is the simplest extract scenario, 
the returned object may be either of the following:

• Vector—when extracting values from a single band raster
• Matrix—when extracting values from a multiband raster

As an example of extracting single band raster values to points, we will use the 
spain_stations.csv file we previously created (see Chapter 3, Working with Tables), 
which contains a table with the spatial location records of 96 meteorological stations 
in Spain. We will create a SpatialPointsDataFrame object based on this table, 
and then use it to extract elevation values from a DEM of Spain. The DEM will be 
obtained from a file (available on the book's website) named spain_elev.tif.
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First, we will read the DEM file into R. This file, by the way, was created by merging 
SRTM tiles downloaded with getData—exactly as we did to create the Haifa DEM in 
the previous chapter—followed by reprojection, masking, and aggregation to a 900 
meter resolution.

> dem_spain = raster("C:\\Data\\spain_elev.tif")

Now, we will read the station records from spain_stations.csv:

> stations = read.csv("C:\\Data\\spain_stations.csv",
+ stringsAsFactors = FALSE)

As you remember, the station locations are stored in the longitude and 
latitude columns; therefore, the data.frame object can be promoted to a 
SpatialPointsDataFrame object as follows:

> coordinates(stations) = ~ longitude + latitude

The station coordinates are given in degrees according to a geographic CRS. 
Therefore, we will define this CRS, and then reproject stations to match the CRS of 
dem_spain (UTM zone 30N) as follows:

> proj4string(stations) = CRS("+proj=longlat +datum=WGS84")
> stations = spTransform(stations, CRS(proj4string(dem_spain)))

Let's plot stations on top of dem_spain to see that they indeed match in location:

> plot(dem_spain)
> plot(stations, add = TRUE)
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The graphical output is shown in the following screenshot:

What we see here is the elevation map of Spain (the dem_spain raster), with station 
locations on top (stations point layer). The stations seem to cover the whole area of 
the country, more or less evenly. Note that some of the stations are not shown since 
they are located on the Canary Islands and thus they are beyond the scope of the 
dem_spain raster.

To extract the elevation values underlying each station, we employ the extract 
function with the raster and the points as the first two arguments, respectively. Since 
the returned object is going to be a numeric vector with the respective elevation 
values for each station, we can directly assign it to a new column in stations named 
elev_dem:

> stations$elev_dem = extract(dem_spain, stations)
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Examining the attribute table of stations shows that now we have two elevation 
entries per station. These are the elevation values originally provided along with 
the meteorological records (the elevation column) and the elevation values we just 
obtained from the DEM (the elev_dem column):

> head(stations@data)
            station elevation elev_dem
1 GHCND:SP000003195       667   651.96
2 GHCND:SP000004452       185   184.24
3 GHCND:SP000006155         7     5.80
4 GHCND:SP000008027       251   212.44
5 GHCND:SP000008181         4     3.55
6 GHCND:SP000008202       790   787.28

Examining this table more closely will show that some of the stations were assigned 
with NA in the elev_dem column either since they are located near Spain's border 
(and incidentally outside the DEM scope) or since they are located in the Canary 
Islands (which the dem_spain raster does not cover at all).

It would be interesting to see the degree of agreement between the two sources of 
information by plotting one vector as a function of the other:

> plot(elev_dem ~ elevation, stations,
+ xlim = c(0, 2000),
+ ylim = c(0, 2000),
+ xlab = "Elevation from station record (m)",
+ ylab = "Elevation from DEM (m)")

Note that the plot(elev_dem~elevation,stations) expression is 
analogous to plot(stations$elev_dem~stations$elevation). 
In the latter syntax, the vector names are provided explicitly; while in the 
former (often more convenient), the formula addresses columns from a 
data.frame object, provided as a second argument.

To make the assessment more convenient, we will also use the abline function that 
can add a straight line to an existing plot. One way of specifying the line's location is 
providing its intercept (a) and slope (b). We are going to add a 1:1 line (that is, a line 
with an intercept of 0 and a slope of 1), in order to see how well the elevation and 
elev_dem records match:

> abline(a = 0, b = 1, lty = "dotted")
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The graphical output is shown in the following screenshot:

Each point corresponds to a single station, and we can see the respective elevation 
and elev_dem values on the x and y axes, respectively. The agreement between the 
two sources of information is, unsurprisingly, very good, except for a few stations 
that lie slightly farther from the 1:1 line.

                           

http://                           /


Chapter 7

[ 235 ]

Extracting by polygons
When extracting raster values using line or polygon layers, each feature may 
correspond to more than one value in each raster layer (unlike with points, where 
each feature always corresponds to a single value). In fact, a variable number of 
values may be extracted for each feature, depending upon its shape. For example, 
the polygon delineating the Lahav forest, which we created earlier, covers 10,586 
Landsat pixels and 38 MODIS pixels, while the Kramim polygon covers 7,538 
Landsat pixels and 28 MODIS pixels. We have two ways to deal with this variation:

• Reducing the vector of values from each feature into a single value 
(specifying a function to do that, with the fun parameter), in which case the 
returned object may be, just as with point layers:

 ° A vector—when extracting from a single-band raster
 ° A matrix—when extracting from a multiband raster

• Keeping all values (specifying no function with fun=NULL, the default value), 
in which case the returned object will be a list (with df=FALSE, the default 
value) or a data.frame object (with df=TRUE)

When a function is provided with the fun parameter, the additional parameter na.rm 
determines whether NA cells are included in the calculation.

Proceeding with the forest example, we will now complete the two remaining 
steps: extracting the NDVI data and arranging it in a table. We are going to extract 
NDVI values according to the forests layer with the first alternative—summarizing 
the values (specifically with fun=mean, giving a mean NDVI per forest). Our ultimate 
goal is to have, by the end of this chapter, a table with three ID columns (date, sat 
– satellite, and forest) and a fourth column (ndvi) holding the measured average 
NDVI values.

Starting with the assembly of NDVI images (ndvi_98, ndvi_00, ndvi_03, and r), 
we will read the Landsat images from 1998 and 2003 and calculate NDVI (assuming 
that r and ndvi_00 are already in memory, as is our custom-made ndvi function; see 
Chapter 4, Working with Rasters).

> l_98 = brick("C:\\Data\\landsat_15_10_1998.tif")
> l_03 = brick("C:\\Data\\landsat_11_09_2003.tif")
> ndvi_98 = calc(l_98, fun = ndvi)
> ndvi_03 = calc(l_03, fun = ndvi)
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Next, we will create a Date object, named l_dates, holding the Landsat image dates 
(see the filenames). We will use this object later when creating a table of results.

> l_dates = as.Date(c("1998-10-15", "2000-10-04", "2003-09-11"))

We are ready to proceed with the extraction—employing the extract function on 
the three Landsat NDVI images to obtain the mean NDVI values per forest, per date:

> l_forests = extract(stack(ndvi_98, ndvi_00, ndvi_03),
+ forests,
+ fun = mean,
+ na.rm = TRUE)

Note that to make things clearer, we first apply extract on a 
RasterStack object of the three Landsat images. The MODIS 
data will be extracted from r in a separate step.

Since we are extracting values from a multiband raster, yet employing a function 
(mean) to summarize those values; the returned object, assigned to l_forests, is a 
matrix. Its two rows correspond to the forests features, while its three columns 
correspond to the layers of stack(ndvi_98,ndvi_00,ndvi_03). For example, we 
can see that the average NDVI observed by Landsat on October 15, 1998 in the Lahav 
forest was 0.3053538:

> l_forests
       layer.1   layer.2  layer.3
[1,] 0.3053538 0.2487563 0.284487
[2,] 0.2840073 0.2190098 0.243326

Right now we can already tell that, in both forests, NDVI decreased between 1998-
2000 and then (incompletely) recovered between 2000-2003.

By repeating the same procedure with r, we will create the analogous r_forests 
matrix:

> r_forests = extract(r,   
+ forests,
+ fun = mean,
+ na.rm = TRUE)

This time the matrix has 280 columns since r has 280 layers:

> dim(r_forests)
[1]   2 280

                           

http://                           /


Chapter 7

[ 237 ]

Proceeding with the third step, we would like to have the information from l_forests 
and r_forests in a single data.frame object with all NDVI values in a single column, 
and additional columns characterizing the measurements (date, sat, and forest). 
Starting with the l_forests matrix, we will first transpose it (using the t function) and 
convert it to a data.frame object (using the as.data.frame function):

> l_forests = as.data.frame(t(l_forests))
> l_forests
               V1        V2
layer.1 0.3053538 0.2840073
layer.2 0.2487563 0.2190098
layer.3 0.2844870 0.2433260

Now, we can set the appropriate column names (the forest names) and create new 
columns for dates (obtained from l_date) and satellite ("Landsat") as follows:

> colnames(l_forests) = forests$name
> l_forests$date = l_dates
> l_forests$sat = "Landsat"

The new l_forests matrix looks as follows:

> l_forests
            Lahav    Kramim       date     sat
layer.1 0.3053538 0.2840073 1998-10-15 Landsat
layer.2 0.2487563 0.2190098 2000-10-04 Landsat
layer.3 0.2844870 0.2433260 2003-09-11 Landsat

Exactly the same procedure is repeated for r_forests (with acquisition dates taken 
from dates$date and the satellite name set to "MODIS"):

> r_forests = as.data.frame(t(r_forests))
> colnames(r_forests) = forests$name
> r_forests$date = dates$date
> r_forests$sat = "MODIS"

Now, we can combine the two data.frame objects using rbind:

> forests_ndvi = rbind(l_forests, r_forests)
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The combined data.frame object, which we named forests_ndvi, contains all 
average NDVI records for the two forests from the two satellites, collectively for 283 
dates (three dates from Landsat and 280 dates from MODIS). Its first few rows are 
printed as follows:

> head(forests_ndvi)
            Lahav    Kramim       date     sat
layer.1 0.3053538 0.2840073 1998-10-15 Landsat
layer.2 0.2487563 0.2190098 2000-10-04 Landsat
layer.3 0.2844870 0.2433260 2003-09-11 Landsat
modis.1 0.3725111 0.3416607 2000-02-18   MODIS
modis.2 0.3959158 0.3850857 2000-03-05   MODIS
modis.3 0.4102210 0.3956179 2000-03-21   MODIS

What is left to be done is transform the data.frame object to a longer form (see 
Chapter 3, Working with Tables), creating another column for forest identity and to 
transfer the NDVI values to a designated values column. This can be performed with 
the melt function from the reshape2 package:

> library(reshape2)
> forests_ndvi = melt(forests_ndvi,
+ measure.vars = forests$name,
+ variable.name = "forest",
+ value.name = "ndvi")

Note that the measured variables here are "Lahav" and "Kramim", while the rest are 
treated as ID variables. Instead of typing the measure variable column names, we 
passed the forests$name vector, which already contains the necessary names:

> forests$name
[1] "Lahav"  "Kramim"

The additional parameters variable.name and value.name in the melt function 
call are used to specify the names of the newly created variable and value columns 
(to replace the default names "variable" and "value", respectively). The final table 
looks as follows:

> head(forests_ndvi)
        date     sat forest      ndvi
1 1998-10-15 Landsat  Lahav 0.3053538
2 2000-10-04 Landsat  Lahav 0.2487563
3 2003-09-11 Landsat  Lahav 0.2844870
4 2000-02-18   MODIS  Lahav 0.3725111
5 2000-03-05   MODIS  Lahav 0.3959158
6 2000-03-21   MODIS  Lahav 0.4102210
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In Chapter 9, Advanced Visualization of Spatial Data, we are going to use this table to 
create a plot of the NDVI evolution over time in these two forests. A table of this 
form, where:

• Each variable forms a column
• Each observation forms a row
• There is only one type of observational unit

constitutes a so-called tidy data table (see the paper by Hadley Wickham on this 
subject, 2014). As we shall see, bringing our data to such a form is often required to 
use more sophisticated graphical functions such as those in the ggplot2 package.

Summary
In this chapter, we closed the gap between the two main spatial data types (rasters 
and vector layers) that we dealt with separately in the previous three chapters. 
We now know how to make the conversion from a vector layer to raster and vice 
versa, and we can transfer the geometry and data components from one data model 
to another when the need arises. We also saw how raster values can be extracted 
from a raster according to a vector layer, a fundamental step in many analysis tasks 
involving raster data.

At this point, we conclude the review of basic spatial data analysis tool implementation 
in R. We now know how to work with—including import, transform, and combine in 
various ways—rasters and vector layers in R. In the next two chapters, examples of 
more specialized applications of R for spatial data analysis are going to be presented; 
specifically, spatial interpolation and visualization of spatial data. 
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Spatial Interpolation of  
Point Data

Spatial interpolation is an example of a geostatistical analysis technique with a wide 
range of applications. In this chapter, we are going to learn how spatial interpolation 
can be carried out in R through examples of interpolating meteorological point 
measurements to create annual temperature maps of Spain.

The purpose of this exercise is two-fold. First, we will see how several common 
interpolation methods are applied in practice in R. We will see, for instance, that 
specialized classes are used to represent the input data and/or the results of 
statistical analyses in R, and witness the advantages of such an approach. Second, 
we will see how, through the use of loops, we can automate complex tasks such as 
spatial interpolation, and perform them repeatedly in order to accomplish otherwise 
unfeasible tasks.

In this chapter, we are going to use objects previously 
created in Chapter 3, Working with Tables.

In this chapter, we'll cover the following topics:

• Spatially interpolating point data
• Calculating an empirical variogram
• Automatically fitting variogram models
• Calculating the root mean square error (RMSE) of prediction
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Spatially interpolating point data
Spatial interpolation is the procedure by which the behavior of a certain 
phenomenon of interest is predicted in locations where it has not been measured. For 
this purpose, we need a spatial prediction model—a set of procedures to obtain the 
predicted values given the calibration data. The two types of calibration data usually 
encountered are:

• Field measurements: Available for a limited set of locations (usually points), 
for example, meteorological data from stations in Spain

• Covariates: Available for each location within the area of interest, for 
example, elevation data from Spain's DEM

The spatial prediction model of our choice is calibrated using the calibration data. 
This model can then be used to calculate the predicted level of the phenomenon of 
interest in any location (usually points). The two main types of spatial interpolation 
methods recognized are:

• Deterministic model: In this model, model parameter values are  
arbitrarily determined

• Statistical model: In this model, model parameter values are objectively 
estimated from specific calibration data

Simply put, while both types of models use the calibration data to make predictions, 
deterministic models are predefined using fixed formulas to calculate predicted 
values given the calibration data; on the other hand, statistical models use the 
calibration data twice, first to fine-tune the model itself and then (as in the 
deterministic models) to calculate the predicted values. Examples of deterministic 
models are inverse distance weighted (IDW) interpolation and splines. Examples of 
statistical models are kriging and ordinary regression.

Our purpose in this chapter is to present spatial interpolation from a 
practical point of view. Comprehensively covering the statistical theory 
and equations behind spatial interpolation techniques is well beyond 
the scope of this book. Readers familiar with the subject of spatial 
interpolation will, hopefully, get a perspective from this chapter on the 
way statistical tools such as these are applied in R. Readers unfamiliar 
with the subject of spatial interpolation are referred to the not-too-
technical overview in the first two chapters of Tomislav Hengl's book 
A Practical Guide to Geostatistical Mapping, published in 2009 (available 
online), for supplementary reference. Those uninterested in this 
particular subject may skip to the last image in this chapter, and the few 
paragraphs that follow, where a dataset that we are going to use in the 
next chapter is described.
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Two different approaches, or point of views, in selecting the appropriate spatial 
prediction model are also worth mentioning:

• If we wish to prepare the most accurate predictions of a certain phenomenon 
(for example, to produce a map), we will be mainly interested in selecting the 
model that minimizes prediction error (and may not care very much what 
kind of model that is)

• If we are interested in better understanding the phenomenon itself, we 
will seek to find the best model characterizing the observed pattern and 
estimating its parameters and our confidence in them (while prediction error 
will be of secondary interest)

Here, we strictly follow the first approach; we will test several commonly used 
models to see which one produces the least number of prediction errors, and then 
use it to produce continuous maps of temperature in Spain. However, we should 
remember that we are not investigating the mechanisms underlying the behavior 
of temperature in space, which would suggest the second approach. Diggle and 
Ribeiro's book Model-based Geostatistics (2007) is a good example that focuses on the 
latter approach utilizing another R package (geoR) for geostatistical analysis, which 
we do not cover here.

In the examples in this chapter, we will be working with three data sources: the 
spain_stations.csv and spain_annual.csv tables that hold the annual climatic 
data from Spain (see Chapter 3, Working with Tables), and the spain_elev.tif raster 
with Spain's DEM (see the previous chapter). The first thing we will do is assemble 
these objects into memory. We will also perform a four-fold aggregation of the DEM, 
from a 900 meter resolution to a 3,600 meter resolution, in order to make subsequent 
calculations faster:

> library(raster)
> dem_spain = raster("C:\\Data\\spain_elev.tif")
> dem_spain = aggregate(dem_spain, 4)
> spain_stations = read.csv("C:\\Data\\spain_stations.csv",
+ stringsAsFactors = FALSE)
> spain_annual = read.csv("C:\\Data\\spain_annual.csv",
+ stringsAsFactors = FALSE)

As we have already seen in previous chapters, spain_stations holds spatial 
location information for the 96 meteorological stations of Spain, while spain_annual 
holds the meteorological data itself. The tables can be joined by the common station 
column. The meteorological data consists of average measurements of three variables 
(precipitation, minimum temperature, and maximum temperature) obtained in 
different years (1984-2013). We are going to interpolate measurements for different 
year/variable combinations. 
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Therefore, it will be useful to write a function that accepts the variable and year we are 
currently interested in, and returns a point layer with the required data. The code for 
such a function consists of procedures already familiar to the reader from the previous 
chapters, so we will review its contents briefly. The function accepts five arguments:

• stations: A data.frame object with location data for stations (in our case, 
spain_stations)

• annual: A data.frame object with the annual meteorological data (in our 
case, spain_annual)

• year: The year we would like to get meteorological data for
• variable: The meteorological variable we would like to get data for
• new_proj: The CRS for the output SpatialPointsDataFrame object as a 

PROJ.4 string

Utilizing these arguments, the function performs the following steps:

1. Takes the stations table and converts it to a SpatialPointsDataFrame object.
2. Defines the CRS of stations (geographical CRS).
3. Removes Canary Islands stations (retaining stations eastwards to the 20°W 

meridian, that is, stations with x coordinate > -10; see the map of Spain's 
mainland and the Canary Islands to understand why).

4. Subsets the meteorological variable and the required year.
5. Joins the meteorological data with the attribute table of stations.
6. Removes stations with NA for the respective year/variable combination.
7. Transforms stations to the CRS defined by new_proj and returns the 

resulting object.

The function code is as follows:

> create_pnt = function(stations,annual,year,variable,new_proj) {
+ library(plyr)
+ # (1) Promoting stations to SpatialPointsDataFrame
+ coordinates(stations) = ~ longitude + latitude
+ # (2) Defining geographic CRS
+ proj4string(stations) = CRS("+proj=longlat +datum=WGS84")
+ # (3) Removing Canary Islands stations
+ stations = stations[coordinates(stations)[, 1] > -10, ]
+ # (4) Subsetting climatic data
+ annual = annual[
+ annual$year == year &
+ annual$variable == variable, ]
+ # (5) Joining meteorological data with stations layer
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+ stations@data = join(stations@data, annual, by = "station")
+ # (6) Removing incomplete records
+ stations = stations[complete.cases(stations@data), ]
+ # (7) transforming to the required CRS
+ spTransform(stations, CRS(new_proj))
+ }

Note that the stations and annual arguments are local objects 
that exist only when the function code is executed; they are not 
related to the spain_annual and spain_stations objects of the 
global environment, which are left unaltered (see Chapter 2, Working 
with Vectors and Time Series).

After reading the function into memory, let's give it a try. The following function call 
creates, for example, a SpatialPointsDataFrame object containing average annual 
minimum temperature for 2002 defined in the CRS of dem_spain:

> dat = create_pnt(stations = spain_stations,
+ annual = spain_annual,
+ year = 2002,
+ variable = "mmnt",
+ new_proj = proj4string(dem_spain))

We can examine the first few rows of the attribute table of the resulting object dat  
to see that it, indeed, contains minimum temperature values ("mmnt") from the  
year 2002:

> head(dat@data)
            station elevation variable year     value
1 GHCND:SP000003195       667     mmnt 2002 10.475000
2 GHCND:SP000004452       185     mmnt 2002 10.775000
3 GHCND:SP000006155         7     mmnt 2002 14.491667
4 GHCND:SP000008027       251     mmnt 2002 11.100000
5 GHCND:SP000008181         4     mmnt 2002 11.608333
6 GHCND:SP000008202       790     mmnt 2002  5.983333

Since the Canary Island stations were removed altogether (see step 3), and stations 
that do not have a minimum temperature record for 2002 were subsequently filtered 
out (see step 6), the number of features in the point layer is always smaller than 96 and 
differs between year/variable combinations. For example, dat consists of 75 points:

> nrow(dat)
[1] 75
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In the following sections, you are going to learn how to interpolate the dat 
temperature records using different methods. Afterwards, we are going to write 
code to automatically evaluate the prediction error for each model. Finally, we will 
interpolate data for several years and variables at once using a loop.

Nearest-neighbor interpolation
Before we begin our journey through the three main interpolation methods featured 
in this chapter (see the next three sections), it is worth pointing out the principle 
common to most spatial interpolation methods: that the states of the phenomenon 
of interest are more similar among locations nearer to each other than among 
locations further apart. In other words, the phenomenon is autocorrelated in space 
(otherwise predictions should simply be reduced to a global mean, or calculated 
based on a nonspatial prediction model, such as ordinary regression). With spatial 
autocorrelation present, it makes sense for predicted values to be more similar 
to measured values that are nearest to them, and less similar to measured values 
further apart. For example, if we have a temperature measurement of 20°C at 
location A, it would be reasonable to assume that the temperature in location B, 
which is, say, 100 meters away from A, will be fairly similar to 20°C since the air 
temperature is a spatially autocorrelated phenomenon. The way and the degree 
to which measured values affect predictions as a function of distance is the main 
feature that differentiates the various interpolation methods.

The simplest interpolation method based on spatial autocorrelation is nearest-neighbor 
interpolation. However, it is rarely used in practice in the context of mapping for 
reasons that will become apparent shortly. It is hereby presented only to demonstrate 
the concept of spatial interpolation in its simplest form.

In nearest-neighbor interpolation, each predicted location simply takes the value of 
the nearest measured location. For instance, returning to the previous temperature 
example, location B will receive a predicted value of exactly 20°C unless there is 
another measured point within fewer than 100 meters from B (and then it will 
determine B's predicted value instead of A). We will now perform nearest-neighbor 
interpolation of the temperature data in dat to understand this point more clearly. 
We will hereby write code that performs nearest-neighbor interpolation. It is going to 
consist of the following steps:

1. Creating a set of points for which we would like to make predictions (grid).
2. Finding out which point in dat is the one closest to each point in grid.
3. Assigning nearest-neighbor values of dat to the grid points.
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As for the first step, prediction points are most commonly determined using a regular 
grid (that is, a raster) so that as a result of interpolation we would get a continuous 
predicted surface. Following this approach, we will use dem_spain for our grid of 
prediction points. However, since we are going to calculate distances between pairs 
of points using the gDistance function (which operates on vector layers; see Chapter 
5, Working with Points, Lines, and Polygons), the raster cells should first be converted to 
points with rasterToPoints (see the previous chapter) as follows:

> grid = rasterToPoints(dem_spain, spatial = TRUE)

Moving on to the second step, now we can calculate the distance matrix between 
each point in dat and each point in grid:

> library(rgeos)
> dist = gDistance(dat, grid, byid = TRUE)

The resulting object, dist, is a matrix with 39,250 rows (corresponding to the grid 
features, that is, the number of cells of dem_spain that are not NA) and 75 columns 
(corresponding to the dat features):

> dim(dist)
[1] 39250    75

The values of this matrix are the pairwise distances, in meters, between the dat 
and grid features. In order to assign the value of the nearest points in dat to grid, 
we need to find out which point is the nearest neighbor in each case. This can be 
achieved with apply and which.min. The following expression yields a vector of 
indices indicating the minimal element in each row of dist:

> nearest_dat = apply(dist, 1, which.min)

Since nearest_dat now holds the indices of the dat features from which we need to 
obtain the temperature value for each predicted point in grid, the following expression 
assigns those values to a new column, named nn, in the attribute table of grid:

> grid$nn = dat$value[nearest_dat]

We have now completed the third step. What is left is to convert grid back to a 
raster, that is, to rasterize it (see the previous chapter) for easier visualization. The 
following expression rasterizes grid, with the field parameter set to the "nn" 
attribute table column, thus transferring its values to the dem_spain raster:

> grid = rasterize(grid, dem_spain, "nn")
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The result is a nearest-neighbor predicted surface with the value of each pixel being 
the predicted temperature at the respective location. Let's see what it looks like using 
the following expressions:

> plot(grid)
> plot(dat, add = TRUE)

The graphical output is shown in the following screenshot:
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The preceding screenshot clearly shows that the nearest-neighbor interpolation 
method has, in practice, divided the area of interest into discrete subareas. Each 
subarea includes all the locations that are more proximate to a given measured point 
(that is, a given meteorological station) than to any other. In fact, we could have 
also carried out nearest-neighbor interpolation by creating polygons defining such 
subareas and rasterized them, to produce the same result. Within the context of GIS, 
such polygons are known as Thiessen or Voronoi polygons (interested readers will 
find at least one way to create them in R; for example, using the dirichlet function 
of the spatstat package).

As mentioned earlier, nearest-neighbor interpolation is rarely useful to predict the 
behavior of natural phenomena in space. For example, it is clearly unrealistic to 
assume that discrete polygonal areas surrounding each meteorological station have 
uniform temperatures, with a sharp increase or decrease in temperature, along 
the borders between them (as the previous screenshot suggests). In reality, the 
temperature changes more or less gradually from place to place. To describe such 
gradual transitions, we need to use more elaborate methods, such as those described 
in the upcoming sections.

IDW interpolation
The three interpolation methods we will employ next—IDW, Ordinary Kriging 
(OK), and Universal Kriging (UK)—all utilize the same principal procedure, where 
the predicted value of a given point is determined as a weighted average of the 
values from the measured points. Moreover, the weight of each measured value is 
always a function of its distance from the point we are trying to predict (a nearby 
point usually having a higher weight, or influence, on the predicted value than a 
point further away). Within this framework, nearest-neighbor interpolation is, in 
fact, an extreme private case, where the weight of the nearest point is 1 while the 
weights of all other points are 0.

To better understand the subsequent material in this chapter, we can already state 
that the differences between the three methods concern two properties: the trend and 
the weights definition. The trend is basically an additional function, independent 
of the measured points values, added to the weighted average of the latter. In 
IDW, the trend is 0 and in OK it is a constant value, thus having no effect on the 
predicted pattern in either case. However, in UK, the trend is a function of additional 
covariates. Regarding the weights, in IDW they are arbitrarily determined (thus the 
method is considered deterministic); in OK and UK, conversely, they are estimated 
from the data itself (thus the methods are considered statistical).
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As noted earlier, the predicted values in all three methods are the weighted averages 
of measured points:
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Here, ( )0ẑ x  is the predicted value at location 0, ( )iz x  is the measured value i, and ( )0i xλ  
is the weight for the measured value i, while n is the total number of  
measured points.

In IDW, the weight ( )0i xλ  is a function of the inverse distance, shown as follows:
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Here, ( )0 , id x xβ−  is the geographic distance between the measured point i and the 
predicted point at location 0 to the power β− , and n is the total number of measured 
points. The default value for β  is 2. This means that the importance of each 
measured point in determining a predicted value diminishes as a function of squared 
distance. When β  is smaller, the predicted surface will be smoother; when β  is 
larger, the predicted surface will be less smooth, giving more emphasis to the  
nearest neighbor.

We will now interpolate the temperature data in dat using the IDW method. To 
apply this method, and subsequent ones later in this chapter, we will use functions 
in the gstat package. This package provides extensive capability for univariate and 
multivariate geostatistical analysis, of which we will see a few examples.

For an overview of gstat, see the official introductory document 
at http://cran.r-project.org/web/packages/gstat/
vignettes/gstat.pdf.
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The core of the gstat package is a function named gstat, which is used to produce 
objects (of a class also named gstat) that hold all necessary information to perform 
spatial interpolation (as well as other operations such as cross-validation). Among 
the numerous parameters that the gstat function accepts, there is, in fact, no 
parameter where we can specify the desired interpolation method. Instead, when 
interpolation is triggered on a gstat object, the method is determined based on the 
input data the object contains. In this chapter, we are going to explore only a portion 
of the functionality of gstat, utilizing three of its parameters:

• formula: The formula that defines the dependent and independent variables 
(an object of the formula class)

• data: The measured point data (a SpatialPointsDataFrame object; it can 
also be a data.frame object but we will not use this option)

• model: The variogram model (an object of the variogramModel class)

These three parameters determine whether IDW, OK, or UK is used based on the 
following decision tree:

• If there is no variogram model (model=NULL, the default), IDW is used
• If a variogram model is passed to model, and the formula:

 ° contains no independent variables, OK is used
 ° contains at least one independent variable, UK is used

Our dependent variable column is value and an intercept-only model (that is, a model 
with no independent variables) formula in R is, by convention, specified by ~1. 
Therefore, the following expression creates a gstat object (named g) that holds the 
necessary information to predict the minimum temperature based on the measured 
data in dat using IDW:

> library(gstat)
> g = gstat(formula = value ~ 1, data = dat)

Printing g shows a summary of the information it contains as follows:

> print(g)
data:
var1 : formula = value`~`1 ; data dim = 75 x 5

Note that this is just a summary; g, in fact, also contains the dat 
object itself, with the measured values and independent variables 
(if any), since it serves as the calibration data necessary to actually 
perform the interpolation.
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To interpolate, what we now need is to provide the points for which we would like 
to make predictions. Conveniently, the raster function includes a function named 
interpolate that, given a raster (the object parameter) and a spatial prediction 
model (the model parameter), yields a new raster with predicted values. This way, 
we do not need to make the manual conversions to and from a raster, as we did 
in nearest-neighbor interpolation. For example, the following expression uses the 
model and calibration data held in g to make temperature predictions for the grid 
defined by dem_spain:

> z = interpolate(dem_spain, g)

There are two things to note here:

• First, as you remember, text messages are omitted in this book to save 
space. However, readers who run the preceding expression in R will see the 
message [inverse distance weighted interpolation] appearing on the 
screen. This reassures the user that indeed the expected type of model has 
been chosen by gstat.

• Second, it is important to understand that, if we do not use covariates (that 
is, independent variables in the model formula), the dem_spain raster serves 
only as a grid pointing to the locations where we would like to calculate 
predicted values (the raster values play no role in the interpolation). This 
is opposed to UK interpolation, where the raster serves both to point at 
predicted locations and provide covariate values for each location.

Plotting the predicted surface z will show that predicted values were generated for 
all raster cells (including NA cells). It is usually reasonable to make predictions for a 
more specific extent, such as the land area of Spain. We can use mask to remove the 
unnecessary predictions:

> z = mask(z, dem_spain)

Now let's plot the predicted value raster, and the station locations on top of it, with 
the following pair of expressions:

> plot(z)
> plot(dat, add = TRUE)
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The graphical output is shown in the following screenshot:

In the preceding screenshot, we see the predicted average minimum temperature 
for 2002 in Spain. It seems the central-northern parts of the country were generally 
colder, while the south was warmer (this general pattern was also evident in the 
nearest-neighbor interpolation image). The effect of the station locations on the 
predicted surface is also notable. As you remember, the weight of a given station 
increases as the predicted point is nearer. Therefore, each point generates a sort of 
circular zone of influence around itself, especially if its value markedly differs from 
the values of its proximate neighbors.
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To understand the role of the β  parameter (see equation (2)) more vividly, let's 
produce two more IDW-predicted surfaces: one with β  set to a very small value 
(say, 0.3) and one with β  set to a very large value (say, 30). Then, we will compare 
the results with the preceding graphical output (where β  was set to 2, which is the 
default value). The following code generates the two additional predicted surfaces 
and assigns them to objects z1 and z2, respectively:

> g1 = gstat(formula = value ~ 1, data = dat, set = list(idp=0.3))
> g2 = gstat(formula = value ~ 1, data = dat, set = list(idp=30))
> z1 = interpolate(dem_spain, g1)
> z2 = interpolate(dem_spain, g2)
> z1 = mask(z1, dem_spain)
> z2 = mask(z2, dem_spain)

Note that the set=list(idp=0.3) part determines the value of β  in gstat. Using 
the following expression, we can visualize the three rasters: z1, z, and z2 (the pch 
and cex parameters are used to control the symbol type and size, respectively, when 
drawing the dat points):

> plot(z1, main = c("beta = 0.3"))
> plot(dat, add = TRUE, pch = 20, cex = 0.5)
> plot(z, main = c("beta = 2"))
> plot(dat, add = TRUE, pch = 20, cex = 0.5)
> plot(z2, main = c("beta = 30"))
> plot(dat, add = TRUE, pch = 20, cex = 0.5)

The graphical outputs shown here, side by side, are produced as a result. The 
respective values of β  are stated above each output:
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These images demonstrate the previously stated expectations. Decreasing β  (the 
leftmost image) results in a smoother surface due to more homogeneous weight 
distribution among the measured points. On the other hand, increasing β  (the 
rightmost image), results in sharper boundaries between the zones of influence of 
each point, resembling nearest-neighbor interpolation results in appearance.

Now that we have produced several interpolation results, how can we assess the 
predictive ability of this (or any other) interpolation method? The obvious way 
is to compare predicted values to observed ones, preferably when the validation 
points come from an independent dataset—one that did not participate in model 
calibration. Since measurements are usually scarce and valuable (we do not have 
an infinite number of meteorological stations), however, we would like to include 
each and every measurement in the model calibration, leaving no measurements 
for validation. The compromise approach to this problem is the process of cross-
validation, where we set aside some of the observed points for validation. In the 
process of cross-validation, we then try to predict their values using the remaining 
points and compare the predicted values to the observed ones. A special case of 
cross-validation is leave-one-out cross-validation (LOOCV), where every observed 
point is removed in turn, its value being predicted based on the remaining points to 
obtain a table with observed and predicted values for all observations. Assessing the 
differences between observed and predicted values based on such a table gives us a 
measure of the accuracy of our prediction model.

The gstat.cv function can automatically perform cross-validation given an object 
of the gstat class. The default method is LOOCV; therefore, in the following 
expression, all we need to do is perform LOOCV on the IDW interpolation of 
temperature data:

> cv = gstat.cv(g)

This expression, in practice, triggers the execution of 75 spatial interpolation 
operations, each time leaving out one meteorological station and trying to 
predict its temperature value using the 74 remaining ones. The result is a 
SpatialPointsDataFrame object with the same number of features as dat and with 
the same spatial locations. Only the attribute table is different, now containing the 
cross-validation results:

> head(cv@data)
  var1.pred var1.var  observed   residual zscore fold
1  8.971923       NA 10.475000  1.5030771     NA    1
2 10.244447       NA 10.775000  0.5305532     NA    2
3 10.914591       NA 14.491667  3.5770756     NA    3
4  9.992180       NA 11.100000  1.1078202     NA    4
5 12.024766       NA 11.608333 -0.4164331     NA    5
6  7.435642       NA  5.983333 -1.4523087     NA    6
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The attribute table columns of the cross-validation result refer to the  
following information:

• var1.pred: Predicted value
• var1.var: Variance (only for kriging)
• observed: Observed value
• residual: Residual, the difference between observed and predicted values
• zscore: Z-score (only for kriging)
• fold: Cross-validation count

The important column, for our purpose here, is residual—the difference between 
the observed and predicted values. Based on the residuals, we can assess how far 
predicted values are from the observed ones, or in other words, prediction accuracy. 
One of the simplest and most common metrics of agreement between observed and 
predicted values is the RMSE. Given a set of predicted-observed value pairs, the 
RMSE is calculated as follows:
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Here, RMSE is the root mean square error, n is the overall number of points, and 
ipred  and iobs  are the predicted and observed values at point i, respectively. As 

the difference between predicted and observed values is smaller, the RMSE will be 
lower, indicating that the model is more accurate. Given the same input data, we 
can compare the RMSE values among different models to select the most accurate 
one. Translating equation (3) to the R syntax, we can calculate RMSE based on the 
attribute table of cv as follows:

> sqrt(sum((-cv$residual)^2)/nrow(cv))
[1] 1.88049

The RMSE in this case is equal to 1.88049. Note that the expression consists of the 
-cv$residual vector (equivalent to cv$var1.pred-cv$observed) squared, then 
summed, and divided by the total number of points. Finally, the square root of the 
result is extracted.
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For convenience, we can wrap this expression into our own function, which 
calculates RMSE, given a gstat.cv output:

> rmse = function(x) sqrt(sum((-x$residual)^2)/nrow(x))
> rmse(cv)
[1] 1.88049

We will use this function later.

You may have noticed that the gstat object we initially defined (g) 
was hereby used for two distinct and independent purposes. First, to 
calculate predicted values (using the interpolate function), then 
to perform cross-validation (using the gstat.cv function). This is 
not incidental, but rather a characteristic object-oriented behavior 
common to all, or most, of R's statistical procedures. This approach is 
advantageous over the menu-based approach commonly encountered 
in statistical or GIS software, where we carry out a given analysis by 
making selections in a set of dialog boxes, and receive a set of results 
(some of which we do not need, while others are lacking since the tool's 
creator did not include them). Conversely, when a statistical function 
is applied in R, we usually get an object that holds all the data that is 
necessary to carry out the analysis (such as g) or an object that holds 
a comprehensive set of results (such as cv). From such objects, we 
can then derive the results we are interested in by applying specific 
functions. Moreover, we can create functions of our own to carry out 
calculations or extract meaningful data, for which no built-in methods 
have been defined (such as the rmse function we defined earlier). 
Readers who are interested in using R as a general statistical analysis 
toolbox will repeatedly encounter this approach. For example, the 
lm function is used to perform ordinary linear regression in R; on its 
returned object, of class lm, numerous functions (such as summary, 
residuals, and plot) may be applied to derive the information we 
are interested in.
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Interpolation using Ordinary Kriging
In kriging, as mentioned earlier, the weight ( )0i xλ  given to each measurement when 
calculating a predicted value (see equation (1)) is determined statistically, rather 
than arbitrarily (such as by choosing the value of β  ourselves in equation (2)). The 
function determining weights in kriging is called a variogram model. The variogram 
model is a function fitted to the empirical variogram, which in turn describes 
the spatial autocorrelation structure of the observed pattern. What is important 
to understand is that the empirical variogram describes the average degree of 
autocorrelation between observed values, and the variogram model is a continuous 
function fitted to these data. The variogram model determines, in plain terms, the 
importance of points nearby and further away in the calculation of predicted values. 
For example, if autocorrelation is high over short distances, it would make sense 
to let nearby points largely determine the predicted value, making the predicted 
surface rougher; when autocorrelation is low, the weight distribution over distance 
may be more uniform and the predicted surface smoother. Elaborating on the subject 
of variogram modeling is beyond the scope of this book; interested readers can find 
more information in A practical guide to geostatistical mapping of environmental variables, 
Hengle, T. (2007) or in any textbook on geostatistics.

An empirical variogram can be calculated using the variogram function, once again 
based on a gstat object. Let's take a look at the following example:

> ev = variogram(g)

The returned object of the gstatVariogram class contains semivariance values 
(expressing the degree of correlation) for different distance bins. Note that there are 
numerous optional parameters controlling the way a variogram is computed, that we 
will not go into, such as the way the latter bins are determined (see ?variogram). The 
plot method for a gstatVariogram object plots the empirical variogram as follows:

> plot(ev)
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The following screenshot shows how the plot appears in our case:

We can see that semivariance increases with distance. This means that temperature 
values are more diverse when considering stations further apart. In other words, 
temperature is spatially autocorrelated.
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As mentioned earlier, a variogram model is a function fitted to the empirical 
variogram. There are several specific functions that are adequate to describe the 
characteristic behavior of an empirical variogram (increasing semivariance with 
distance, usually reaching saturation at some point). These functions, such as the 
spherical and exponential functions, are generally used for a variogram model  
(type vgm() for a list of the functions implemented in gstat or show.vgms() for 
a visual). In addition to choosing one of these functions, we need to decide on its 
specific parameters. There are three main approaches, not mutually exclusive, to 
select a variogram model: a function plus its set of parameters (based on an  
empirical variogram):

• Setting the function and its parameters by hand (for example, using the vgm 
function from the gstat package)

• Visually fitting a function to the empirical variogram by interactively varying 
the function type and its parameters and seeing how its appearance changes 
(for example, using the eyefit function from the geoR package)

• Statistically selecting the function and parameters that minimize some 
goodness-of-fit criterion (for example, using the fit.variogram function 
from the gstat package, the variofit function from the geoR package, or 
the autofitVariogram function from the automap package)

Since we are hereby taking a simple, practical approach, we will use the third option 
of letting the computer select the function that follows the empirical variogram most 
closely. Moreover, we are going to bypass the requirement to supply the function 
type and initial parameter estimates (as required, for example, in fit.variogram) 
and use a wrapper function named autofitVariogram that automatically optimizes 
this decision for us.

The autofitVariogram function is defined in the automap package. It accepts the 
formula and data arguments (named input_data) analogously for gstat. The 
following expression, therefore, fits a variogram model to our data:

> library(automap)
> v = autofitVariogram(formula = value ~ 1, input_data = dat)

Plotting the returned object of the autofitVariogram class generates a plot with an 
empirical variogram and the fitted variogram model on top of it:

> plot(v)
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The resulting output is shown in the following screenshot:

The points, once again, show an empirical variogram, while the continuous line is the 
fitted variogram model. In this case, for instance, the selected model was "Matern, M. 
Stein's parameterization" (code name "Ste"), with the four parameter values stated 
in the bottom-right corner of the image. The object v contains several components, 
such as the empirical variogram data points and the sums of squares between the 
sample variogram and the fitted variogram model. The component we are interested 
in is the fitted variogram model. This components' name is var_model, and it can be 
accessed with the $ operator, using the expression v$var_model (this behavior stems 
from the fact that an autofitVariogram class is built upon a list, and list elements 
can be accessed the same way as data.frame columns with $). 
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The important point here is that the v$var_model component of v is an object of class 
variogramModel, containing the function type and parameters defining a variogram 
model. A variogramModel object can be passed to the gstat function to indicate 
a variogram model. Therefore, we can create an object containing all the necessary 
information to perform the OK interpolation as follows:

> g = gstat(formula = value ~ 1, data = dat, model = v$var_model)
> g
data:
var1 : formula = value`~`1 ; data dim = 75 x 5
variograms:
        model      psill    range kappa
var1[1]   Nug  0.4594258      0.0   0.0
var1[2]   Ste 10.9549186 626562.4   0.3

The printed output shows that the object indeed contains a variogram model. We  
can now use the interpolate function to produce the predicted OK surface, and  
the mask function to clip the area of interest, exactly the same way we did in  
IDW interpolation:

> z = interpolate(dem_spain, g)
> z = mask(z, dem_spain)

Those readers who execute the above expression in R should see, this time, the 
message [using ordinary kriging] on screen.

Let's plot the interpolation result with the following expressions:

> plot(z)
> plot(dat, add = TRUE)
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The graphical output is shown in the following screenshot:

One of the notable visual differences in predicted rasters between IDW and kriging, 
in general, is that the weight of a given measured point always approaches 1 in  
IDW as we get nearer. Therefore, the values around each measurement point tend 
to approach the measured value itself (see the previous screenshot); in kriging, 
however, this is not necessarily so.

We can now perform LOOCV of the OK prediction model in order to compare the 
resulting RMSE with that of IDW:

> cv = gstat.cv(g)
> rmse(cv)
[1] 1.680153

The RMSE is smaller in this case, which suggests that OK produces more accurate 
prediction than IDW interpolation.
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Using covariates in Universal Kriging 
interpolation
Universal Kriging (also referred to as Kriging with External Drift or Regression 
Kriging) is, in fact, a general model of which OK is a special case. While both 
methods involve spatial autocorrelation modeling, they differ in the definition of the 
trend. In OK, the trend is a constant value, while the trend is a linear function of one 
or more covariates in UK. In other words, in OK the predicted value is some constant 
plus a weighted function of neighboring measurements, while it is a predicted value 
based on covariates plus a weighted function of neighboring measurements in UK.

For instance, it is well known that temperature is negatively correlated with 
elevation (it gets colder as we climb to a higher altitude). Using a simple scatterplot, 
we can see that this rule holds true in the present case as well:

> plot(value ~ elevation, dat@data, 
+ xlab = "Elevation (m)", 
+ ylab = "Temperature (degrees Celsius)")

The resulting plot clearly shows the negative relationship between elevation and 
temperature, although the relation is not perfect:
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Sometimes the temperature for a given altitude is lower than usual and sometimes 
higher. Can we create a model where the temperature is predicted using elevation 
and then fine-tuned using nearby meteorological measurements? UK does exactly 
this by adding a weighted average of stations values (as OK does) to a general trend 
surface defined by a linear function based on covariates (in this case, elevation).

To interpolate the temperature data using UK with elevation as a covariate, we need 
to make two principal alterations compared to the OK procedure:

• The variogram model is constructed according to the so-called residual 
variogram, which portrays the spatial autocorrelation of the residuals from 
the chosen trend

• The predicted values are calculated based on both the neighboring measured 
values (as in OK) and the covariates; thus, each point we would like to 
predict must be accompanied by its respective set of covariate values

Starting with the variogram model, as opposed to OK, our formula now contains 
elevation as an independent variable:

> v = autofitVariogram(formula = value ~ elevation,
+ input_data = dat)

Plotting the new v object will show that both the empirical variogram and the 
variogram model are different from what we previously had since they now 
concern the residuals from the elevation trend. Next, we need to create the gstat 
object, which contains the information to perform UK interpolation, supplying 
value~elevation as the formula and v$var_model as the variogram model:

> g = gstat(formula = value ~ elevation,
+ data = dat,
+ model = v$var_model)
> g
data:
var1 : formula = value`~`elevation ; data dim = 75 x 5
variograms:
        model     psill    range kappa
var1[1]   Nug 0.7410872     0.00   0.0
var1[2]   Ste 0.9696567 35781.93   0.2
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By supplying the appropriate formula in the variogram fitting stage and in the gstat 
function call, we dealt with the first issue. As for the second issue, it is necessary 
for us to provide an elevation value for each point where we try to predict the 
temperature (otherwise the trend cannot be calculated). Since the points are specified 
in the form of a raster, it is only natural that the covariate values will come from the 
raster values themselves. This is exactly what the interpolate function expects, but 
in order for this function to correctly identify which raster layers contain the values 
of the covariates, the respective layers must be named exactly the same way as the 
covariates are (in the formula passed to autofitVariogram and gstat, as well as in 
the measurements point layer). In our case, there is only one covariate (elevation) 
and one layer in the dem_spain raster. Therefore, we just need to make sure that 
layer is named "elevation":

> names(dem_spain)
[1] "spain_elev"
> names(dem_spain) = "elevation"
> names(dem_spain)
[1] "elevation"

In addition, we need to make one final adjustment to the interpolate function 
call—setting xyOnly=FALSE, which instructs the interpolate function to consider 
the raster values as covariates (rather than just coordinates of prediction points). 
The option xyOnly=FALSE should be specified whenever we have a model with 
covariates:

> z = interpolate(dem_spain, g, xyOnly = FALSE)

When running the previous expression, you should see the [using universal 
kriging] message on screen. Let's plot the UK predictions:

> z = mask(z, dem_spain)
> plot(z)
> plot(dat, add = TRUE)
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The graphical output is shown in the following screenshot:

The preceding screenshot quite obviously resembles Spain's DEM. In fact, it shows 
the elevation profile of Spain transposed to temperature units (using a linear relation 
based on the data from meteorological stations) and locally calibrated using, once 
again, the stations data. This is what UK results commonly look like.

Let's examine the RMSE of the UK prediction model as well:

> cv = gstat.cv(g)
> rmse(cv)
[1] 1.455196

We see that the RMSE of UK, in this case, is even lower than that of OK. This  
result suggests that utilizing the value~elevation trend has further improved 
prediction accuracy.

                           

http://                           /


Spatial Interpolation of Point Data

[ 268 ]

Mapping the annual temperature in Spain
In the previous sections, we saw how to perform spatial interpolation of point data 
in R using several methods, including IDW, OK, and UK. We also learned that, in the 
case of minimum temperature in 2002, UK outperformed the other two methods in 
terms of accuracy, with a LOOCV RMSE value of 1.46, compared to 1.88 and 1.68 for 
IDW and OK, respectively. In this section, we are going to see how we can automate 
spatial interpolation in order to produce a set of temperature maps for different years 
with a single code execution command. For this purpose, we are going to construct 
two loops:

• The first loop will go through 20 point layers (10 years * 2 variables), each 
time calculating the RMSE of LOOCV in prediction using each of the three 
methods (IDW, OK, and UK). Based on the results, we will select the most 
accurate method (on average) out of these three.

• We will then construct the second loop to produce predicted temperature 
maps of Spain (for 5 years—2006-2010) using the selected method.

We will begin with the first task of systematically evaluating RMSE among the 
different years, variables, and methods. A very useful function for such tasks, named 
expand.grid, will help us keep track of the examination. Given a set of vectors, 
expand.grid returns a data.frame object with all possible combinations of the 
elements from each vector. The following expression, for example, creates a data.
frame object, named cv_results, with four columns (variable, year, method,  
and rmse):

> cv_results = expand.grid(
+ variable = c("mmnt", "mmxt"),
+ year = 2001:2010,
+ method = c("IDW", "OK", "UK"),
+ rmse = NA)

Since only three of the columns have more than one possible element, and there are 2 
variables * 10 years * 3 methods = 60 unique ways to combine them, cv_results has 
60 rows. The first few rows of this data.frame object look as follows:

> head(cv_results)
  variable year method rmse
1     mmnt 2001    IDW   NA
2     mmxt 2001    IDW   NA
3     mmnt 2002    IDW   NA
4     mmxt 2002    IDW   NA
5     mmnt 2003    IDW   NA
6     mmxt 2003    IDW   NA
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This table is going to help us in two ways:
• First, we are going to go through its rows, each time performing LOOCV 

for yet another prediction model defined with the respective values in the 
variable, year, and method columns. This way, we can be sure that all the 
possible combinations are covered.

• Second, the resulting RMSE values will be assigned in the respective position 
in the rmse column so that, by the time the loop execution is complete, we 
will conveniently have a table with all of the results.

The loop will be defined to go through all rows of cv_results, with i being 
assigned the current row index each time. The code within the loop will then 
perform the following operations:

1. Create a point layer named dat (using the create_pnt function we 
previously defined) with the variable and year set according to the current 
row of cv_results (rather than at fixed values such as 2002 and "mmnt").

2. Create an object defining the prediction formula (form) and variogram  
model (v_mod).

3. Create a gstat object based on the appropriate point layer (dat), formula 
(form), and variogram model (v_mod).

4. Perform LOOCV.
5. Calculate RMSE and assign the result in the appropriate position in the  

rmse column of cv_results.

The code snippet, with the code sections for each of the preceding steps marked by a 
comment, is as follows:

> for(i in row(cv_results)) {
+ # (1) Create point layer as required
+ dat = create_pnt(stations = spain_stations,
+ annual = spain_annual,
+ year = cv_results$year[i],
+ variable = cv_results$variable[i],
+ new_proj = proj4string(dem_spain))
+ # (2) Create *form* and *v_mod* objects
+ if(cv_results$method[i] == "IDW") {
+ form = value ~ 1
+ v_mod = NULL} else {
+ if(cv_results$method[i] == "OK") {
+ form = value ~ 1}
+ if(cv_results$method[i] == "UK") {
+ form = value ~ elevation}

                           

http://                           /


Spatial Interpolation of Point Data

[ 270 ]

+ v_mod =
+ autofitVariogram(
+ formula = form,
+ input_data = dat)$var_model}
+ # (3) Create gstat object
+ g = gstat(formula = form, data = dat, model = v_mod)
+ # (4) Perform cross-validation
+ cv = gstat.cv(g)
+ # (5) Calculate RMSE and assign to cv_results
+ cv_results$rmse[i] = rmse(cv)
+ }

Note that, in step 2, nested conditional statements are used in order to determine 
form and v_mod according to the interpolation method that is being used. We can 
write down the procedure this particular code section performs in the form of a 
decision tree:

• If the method is "IDW", then form is value~1 and v_mod is NULL
• Otherwise:

 ° If the method is "OK", then form is value~1
 ° If the method is "UK", then form is value~elevation
 ° The v_mod is calculated according to form

Once the loop execution is completed (this may take a few moments), the rmse 
column of cv_results will be filled with the resulting RMSE values instead of  
NA values:

> head(cv_results)
  variable year method     rmse
1     mmnt 2001    IDW 1.942872
2     mmxt 2001    IDW 1.594996
3     mmnt 2002    IDW 1.880490
4     mmxt 2002    IDW 1.570574
5     mmnt 2003    IDW 1.912887
6     mmxt 2003    IDW 1.605938
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Note that, for instance, the RMSE value at the third row table (1.880490), which 
corresponds to the IDW interpolation of "mmnt" for 2002 as expected, is identical to 
the result we have previously obtained manually. Several interesting comparisons 
can be made using this RMSE table. As previously stated, we are mainly interested in 
seeing which interpolation method is the most accurate, on average, across 10 years 
and the two variables. To find out, we can use tapply:

> tapply(cv_results$rmse, cv_results$method, mean)
     IDW       OK       UK
1.773243 1.908957 1.458997

The result shows that, on average, UK yields the lowest prediction error among the 
three methods. Interestingly, OK is less accurate, on average, than IDW although in 
the particular example we previously saw it was the other way around. Based on this 
result, UK is going to be our method of choice to produce annual temperature maps 
of Spain.

It should be noted that comparing cross-validation RMSE is only 
meaningful among different spatial prediction models of the same data. 
Otherwise, RMSE may be higher or lower not only because the prediction 
error is different but also because the predicted values themselves are on 
different scales. For example, RMSE of the precipitation amount ("tpcp") 
prediction would have been much higher than RMSE of temperature 
prediction in our case (you can try and see this), simply because the 
generally observed annual precipitation amounts in Spain (in mm) are 
higher by an order of magnitude than temperatures (in Celsius degrees). 
However, this does not mean that the prediction models of precipitation 
are less accurate with respect to the scale of the measured variable itself.

We are ready to move on and produce annual temperature maps using another 
loop that calculates the predicted values (rather than performing cross-validation, 
which we just did). Once again, a well-organized way of doing this is to construct a 
table describing the set of parameters we need for each spatial interpolation, then go 
through that table and perform the required operations in turn. We will once again 
use the expand.grid function, producing all combinations of just two variables this 
time: year (the 5 years 2006-2010) and variable ("mmnt" and "mmxt"). The method 
will be left unspecified as we have already decided it should be invariably UK.

> spainT_tab = expand.grid(
+ year = 2006:2010,
+ variable = c("mmnt", "mmxt"))

                           

http://                           /


Spatial Interpolation of Point Data

[ 272 ]

The resulting table, named spainT_tab, looks as follows:

> spainT_tab
   year variable
1  2006     mmnt
2  2007     mmnt
3  2008     mmnt
4  2009     mmnt
5  2010     mmnt
6  2006     mmxt
7  2007     mmxt
8  2008     mmxt
9  2009     mmxt
10 2010     mmxt

We are ready to create the second loop that will go through the rows of spainT_tab 
and spatially interpolate the respective temperature data. Since our results are going 
to be rasters (rather than numeric values, as was the case with the cross-validation 
loop) in this case, they cannot be appended to the table itself. Instead, we are going 
to stack the results in a multiband raster where each layer is going to correspond 
to a row in spainT_tab. In other words, spainT_tab is going to function as a 
supplementary table for the resulting multiband raster (much as dates served the 
same purpose for the raster r; see Chapter 4, Working with Rasters). To construct the 
raster, we will first create an empty RasterStack to which the interpolation results 
will be appended during loop execution:

> spainT = stack()

The loop will go through the rows of spainT_tab, each time performing the 
following set of operations:

1. Creating a point layer named dat with the variable and year set according to 
the current row of spainT_tab.

2. Fitting a variogram model (v).
3. Creating a gstat object (g) according to dat and v.
4. Calculating the raster of predicted values (z) with interpolate, based on g 

and dem_spain.
5. Masking z according to dem_spain and attaching the result to spainT.

                           

http://                           /


Chapter 8

[ 273 ]

The loop code appears as follows:

> for(i in 1:nrow(spainT_tab)) {
+ # (1) Create point layer as required
+ dat = create_pnt(stations = spain_stations,
+ annual = spain_annual,
+ year = spainT_tab$year[i],
+ variable = spainT_tab$variable[i],
+ new_proj = proj4string(dem_spain))
+ # (2) Automatically fit variogram model
+ v = autofitVariogram(formula = value ~ elevation,
+ input_data = dat)
+ # (3) Create gstat object
+ g = gstat(formula = value ~ elevation,
+ model = v$var_model,
+ data = dat)
+ # (4) Interpolate!
+ z = interpolate(dem_spain, g, xyOnly = FALSE)
+ # (5) Mask and add predicted surface to results stack
+ spainT = stack(spainT, mask(z, dem_spain))
+ }

Once loop execution is complete, interpolation results are stored as individual layers 
of the spainT raster. The raster should consist of 10 layers, corresponding to the 10 
rows in spainT_tab. Right now, the layer names are not very informative:

> names(spainT)
 [1] "var1.pred.1.1.1" "var1.pred.2.1.1" "var1.pred.1.2.1"
 [4] "var1.pred.2.2.1" "var1.pred.1.1.2" "var1.pred.2.1.2"
 [7] "var1.pred.1.2.2" "var1.pred.2.2.2" "var1.pred.1"    
[10] "var1.pred.2"

However, with spainT_tab at our disposal, we can easily change this as follows:

> names(spainT) = paste(spainT_tab$variable,
+ spainT_tab$year,
+ sep = "_")
> names(spainT)
 [1] "mmnt_2006" "mmnt_2007" "mmnt_2008" "mmnt_2009" "mmnt_2010"
 [6] "mmxt_2006" "mmxt_2007" "mmxt_2008" "mmxt_2009" "mmxt_2010"

                           

http://                           /


Spatial Interpolation of Point Data

[ 274 ]

Let's now plot spainT using the levelplot function. With layout=c(5,2), we make 
sure that the minimum and maximum temperature maps are plotted in  
distinct rows:

> library(rasterVis)
> levelplot(spainT, par.settings = "BuRdTheme", layout = c(5,2))

The graphical output is shown in the following screenshot:

The preceding screenshot shows predicted minimum (top row) and maximum 
(bottom row) temperatures in Spain for each of the years from 2006 to 2010. 
As can be expected, maximum temperatures are always higher than minimum 
temperatures. The predicted spatial pattern of temperature is fairly similar over the 
years, which also makes sense—colder areas are generally colder repeatedly, in all 
years, as are warmer areas. However, the latter poses a problem when interpreting 
this type of result, as the characteristic temperature pattern within each year 
overwhelms the differences among years and makes it difficult for us to notice the 
year-to-year variation. This can be partially addressed by plotting minimum and 
maximum temperature rasters separately (in order to use a wider color scale each 
time). The interested reader can see for himself that it does little to solve the problem.
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When we are interested in interannual differences only, the most reasonable course 
of action is to find out what is the characteristic annual temperature state, find out 
the deviation of each individual year's state from the characteristic state, and then 
compare the deviation images rather than the original ones. Calculating deviations 
from a general trend is a very common practice to highlight patterns of interest in 
our data, and there are many ways to find both the general trend and the deviations 
of each observation from it. Here, we will employ the simplest possible approach—
the characteristic temperature in each pixel will be defined as the 5-year average 
observed in that pixel, and the deviations will be equal to arithmetic differences of 
each observation from the average.

Since we need to treat the minimum and maximum temperature data separately, we 
will first create two vectors identifying the relevant spainT layers for each case:

> mmnt_layers = which(spainT_tab$variable == "mmnt")
> mmnt_layers
[1] 1 2 3 4 5
> mmxt_layers = which(spainT_tab$variable == "mmxt")
> mmxt_layers
[1]  6  7  8  9 10

We will also create a new two-band RasterStack, named means, to hold the 
minimum and maximum mean temperature pattern in its first and second layers, 
respectively. The two layers will also be named accordingly ("mmnt" and "mmxt"):

> means = stack(mean(spainT[[mmnt_layers]]),
+ mean(spainT[[mmxt_layers]]))
> names(means) = c("mmnt", "mmxt")

Now that we have the means, all we need to do is subtract the appropriate mean 
from each set of layers in spainT (the mean of the minimum temperatures from 
layers 1-5 and the mean of the maximum temperatures from layers 6-10). There 
are numerous ways to do this. For example, we can divide the spainT raster into 
two, subtract the respective mean from each substack, and then combine them once 
again. A more elegant way, extendable to any number of categories, however, is to 
create a new means raster with the same number of layers as spainT, by means of 
duplication, with the relevant means occupying its layers. In other words, we need a 
raster with means[[1]] duplicated five times (occupying layers 1-5) and means[[2]] 
duplicated five times (occupying layers 6-10). To do this, we can utilize the fact that 
raster layers can also be selected by their names. The following expression therefore 
takes the "mmnt" and "mmxt" layers and duplicates them in agreement with the 
spainT_tab$variable column:

> means = means[[spainT_tab$variable]]
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This gives us the desired result, a 10-band raster with temperature means  
for either the minimum or maximum temperature, according to spainT_tab  
(and thus matching spainT). The layer names reveal that indeed the first five  
layers correspond to the minimum temperature and the last five layers correspond  
to the maximum temperature:

> names(means)
 [1] "mmnt.1" "mmnt.2" "mmnt.3" "mmnt.4" "mmnt.5" "mmxt.1"
 [7] "mmxt.2" "mmxt.3" "mmxt.4" "mmxt.5"

What is left to be done is just to subtract one 10-band raster from the other:

> spainT = spainT - means

The data we now have in the new spainT raster is the temperature deviations from 
the five-year average pattern of either the minimum or maximum temperature. 
We can check and see that the deviations are within the range of -4 and +4 degrees 
Celsius around the respective 5-year mean of 2006-2010:

> range(spainT[], na.rm = TRUE)
[1] -4.020094  3.200148

Plotting these deviations will help us see more clearly where exactly the temperature 
was high or low, with respect to the average pattern, and what the magnitude of  
the departure was. This time, we will also indicate that contours should be drawn at 
1°C intervals:

> levelplot(spainT,
+ par.settings = "BuRdTheme",
+ layout = c(5,2),
+ contour = TRUE,
+ at = c(-4:-1,1:4))

The graphical output is shown in the following screenshot:
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This time, we can easily notice, for example, that the minimum temperatures in 2010 
were higher than average in southern Spain while the maximum temperatures were 
lower than average in the north of the country.

This is the final product we were looking for, according to the goals specified at the 
beginning of this section. However, we are not done yet. In the next chapter, we will 
use spainT as one of the sample datasets while discussing how to produce plots with 
the ggplot2 package. Since ggplot2 is a general-purpose graphical package, the 
input data must come as a data.frame object. Moreover, the data table should be 
tidy (see the previous chapter) in order to conveniently exploit all of the possibilities 
this package offers. What does that mean in the present case? It means that we need 
to have a data.frame object with all the data currently held in spainT, with each 
column corresponding to a variable and each row corresponding to an observation. 
In this case, the variables are as follows:

• x-coordinate
• y-coordinate
• Variable
• Year
• Predicted temperature

Each row in such a data.frame object will correspond to one pixel of an individual 
layer in spainT.

Luckily, the as.data.frame function (that we encountered in the previous chapter, 
when converting a matrix to a data.frame) also has a method to convert rasters to 
the data.frame objects. By setting xy=TRUE, we are specifying that we would like to 
have a table not only with the raster values (from all of its layers) but also with the 
respective spatial coordinates:

> spainT = as.data.frame(spainT, xy = TRUE)
> head(spainT)
           x       y mmnt_2006 mmnt_2007 mmnt_2008 mmnt_2009
1 -11957.925 4857128        NA        NA        NA        NA
2  -8357.925 4857128        NA        NA        NA        NA
3  -4757.925 4857128        NA        NA        NA        NA
4  -1157.925 4857128        NA        NA        NA        NA
5   2442.075 4857128        NA        NA        NA        NA
6   6042.075 4857128        NA        NA        NA        NA
  mmnt_2010 mmxt_2006 mmxt_2007 mmxt_2008 mmxt_2009 mmxt_2010
1        NA        NA        NA        NA        NA        NA

                           

http://                           /


Spatial Interpolation of Point Data

[ 278 ]

2        NA        NA        NA        NA        NA        NA
3        NA        NA        NA        NA        NA        NA
4        NA        NA        NA        NA        NA        NA
5        NA        NA        NA        NA        NA        NA
6        NA        NA        NA        NA        NA        NA

Each row in this table represents a single pixel, while its spatial coordinates and 
values in each layer are specified in the respective columns. However, from the first 
few rows, we can see that NA cells were also included. Since they will not be plotted 
anyway, we can readily exclude them:

> spainT = spainT[complete.cases(spainT), ]
> head(spainT)
            x       y mmnt_2006    mmnt_2007   mmnt_2008 mmnt_2009
33  103242.08 4857128 0.7383187 -0.070727914 0.008270229 0.5218489
34  106842.08 4857128 0.7392765 -0.055515954 0.024604441 0.5227165
38  121242.08 4857128 0.7458803 -0.018719502 0.063198494 0.5252469
39  124842.08 4857128 0.7456079  0.002858330 0.084895939 0.5240072
40  128442.08 4857128 0.7454912  0.023069161 0.105275777 0.5226526
347  92442.08 4853528 0.7061661 -0.006305609 0.051584103 0.5112048
    mmnt_2010 mmxt_2006 mmxt_2007 mmxt_2008 mmxt_2009 mmxt_2010
33  -1.197710  2.012048 -2.361182  1.122896  1.941084 -2.714846
34  -1.231081  1.988164 -2.341944  1.118404  1.918249 -2.682873
38  -1.315606  1.932082 -2.291416  1.103507  1.857861 -2.602034
39  -1.357369  1.894492 -2.252492  1.094646  1.809158 -2.545804
40  -1.396489  1.859306 -2.215895  1.086683  1.763085 -2.493179
347 -1.262649  1.870778 -2.157029  1.059672  1.696265 -2.469685

Two things are left to be done to bring this data.frame object to the desired form:

• First, we need to transform the table into a long form, creating a value 
column and keeping all other variables in separate individual columns. This 
can be achieved with the melt function (see Chapter 3, Working with Tables, for 
more details), specifying "x" and "y" columns as the ID variables so that the 
other columns are transferred into a single variable column:
> library(reshape2)
> spainT = melt(spainT, id.vars = c("x", "y"))
> head(spainT)
          x       y  variable     value
1 103242.08 4857128 mmnt_2006 0.7383187
2 106842.08 4857128 mmnt_2006 0.7392765
3 121242.08 4857128 mmnt_2006 0.7458803
4 124842.08 4857128 mmnt_2006 0.7456079
5 128442.08 4857128 mmnt_2006 0.7454912
6  92442.08 4853528 mmnt_2006 0.7061661
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• Second, we need to split the variable column into two: the variable itself 
("mmnt" or "mmxt") and the year (2006, 2007, 2008, 2009, or 2010). Substring 
extraction with substr (see Chapter 2, Working with Vectors and Time Series, 
for more information) comes in handy for this purpose since we can see that 
characters 1-4 in each element of spainT$variable consistently correspond 
to the variable, and characters 6-9 correspond to the year (to be sure, there 
are other ways to extract substrings in less convenient scenarios; for instance, 
the strsplit function can be used in the present context). Using the 
following two expressions, we first create a new (numeric) column holding 
the year values, and then modify the variable column to retain just the 
variable names:
> spainT$year = as.numeric(substr(spainT$variable, 6, 9))
> spainT$variable = substr(spainT$variable, 1, 4)
> head(spainT)
          x       y variable     value year
1 103242.08 4857128     mmnt 0.7383187 2006
2 106842.08 4857128     mmnt 0.7392765 2006
3 121242.08 4857128     mmnt 0.7458803 2006
4 124842.08 4857128     mmnt 0.7456079 2006
5 128442.08 4857128     mmnt 0.7454912 2006
6  92442.08 4853528     mmnt 0.7061661 2006

The final data.frame object is now complete.

Summary
To summarize, in this chapter you learned how to interpolate point data in space  
to produce continuous rasters using four different methods. The first of these, 
nearest-neighbor interpolation, we coded ourselves, while the other three (IDW, OK, 
and UK) were applied using functions in the gstat and automap packages. You also 
learned how to perform LOOCV to calculate RMSE and assess prediction accuracy. 
Finally, we saw two examples of how to automate a complex procedure to perform it 
repeatedly over an array of parameter sets.

In the next chapter, you are going to learn how to produce more elaborate plots 
involving spatial data in R with ggplot2.
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Advanced Visualization of 
Spatial Data

Visualization of spatial data is vital both during intermediate analysis steps (to 
examine preliminary results and make sure we are on the right track) and as the final 
product (to present our results to colleagues or in a publication). In this chapter, we 
are going to visualize various datasets we created in the previous chapters, bringing 
closure to the previously presented case studies. While doing this, you will learn 
how to produce an elaborate and customized graphical output in R.

Most of this chapter is going to concentrate on the popular graphical package ggplot2. 
We will begin by presenting the logic behind the special syntax this package follows. 
Afterwards, we will review, through examples, the way spatial and nonspatial plots 
can be produced and customized using this package. The ggmap package, which 
automates downloading static maps from the Web and can be used to complement 
plots produced with ggplot2, will then be presented. Finally, we will experiment a 
little bit with three-dimensional (3D) visualization using the lattice package.

In this chapter, we'll cover the following topics:

• Using ggplot2 to produce publication-quality plots
• Using ggmap to add static maps as the background
• Using lattice to produce 3D plots

In this chapter, we are going to use objects created in the 
previous chapters.
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Plotting with ggplot2 and ggmap
In this section, you are going to learn how to use ggplot2 and ggmap to visualize 
spatial data. The section is structured as follows. First, we will review the ggplot2 
framework using a simple example of a time series plot since (as you will see right 
away) the syntax is quite different from that of other plotting methods we used until 
now. After that, we will practice a little bit more with producing ordinary, nonspatial 
plots. Next, we will see how the ggplot2 plots can be saved for subsequent use, both 
within the R environment and in external files. Finally, the last two sections will deal 
with the most important material from this book's perspective. In these two sections, 
we will see how spatial data can be incorporated into ggplot2 visualizations to 
produce maps, and how we can conveniently download reference background 
images for such maps using ggmap.

Before going into the details of ggplot2, it is important to state that to use this 
package, our input data needs to be contained in a data.frame object and it needs 
to be tidy (see Chapter 7, Combining Vector and Raster Datasets, for more information). 
Therefore, in practice, there are two steps when plotting with ggplot2:

• Bringing the data to the appropriate form
• Creating the plot

In some of the following examples, when the data is already in the right shape, we 
will skip the first step and move on to creating the plot right away. Otherwise, we 
will first have to reshape our data (using methods already familiar to us from the 
previous chapters) and only then utilize ggplot2 to create the plot itself.

An overview of ggplot2
The best way to understand the underlying logic of ggplot2 is through examples. 
Our first example is going to reproduce the time series plot we created in Chapter 
2, Working with Vectors and Time Series, when demonstrating the difference between 
the three graphics systems in R. As you remember, we used the following data.
frame object (although not knowing that it was a data.frame object at the time) that 
represents a time series of temperature measurements. The time column of this  
data.frame object contains dates, while the tmax column contains the daily 
temperature maxima:

> head(dat)
        time tmax
1 2006-01-01 13.3
2 2006-01-02 14.4
3 2006-01-03 15.6
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4 2006-01-04 14.4
5 2006-01-05 10.6
6 2006-01-06 12.8

We used the following expression to produce the simplest possible line plot of this 
time series with ggplot2:

> library(ggplot2)
> ggplot(dat, aes(x = time, y = tmax)) + 
+ geom_line()

Although the following screenshot already appeared, in Chapter 2, Working with 
Vectors and Time Series, it is provided again here since we are going to discuss the 
example for some time now:

We will now briefly go over the main characteristics of the ggplot2 syntax, referring 
to the previous example. Later in this chapter, we will produce additional plots 
using other datasets from the previous chapters. This way, by the end of this chapter, 
we'll have reviewed the most important concepts and methods of operation for 
visualization of spatial data with ggplot2.
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The ggplot2 package is extremely flexible. Due the abundance 
of functions and usage options, the variety of plots it is capable of 
producing is mainly limited by the users' knowledge and expertise. 
However, this abundance can be overwhelming for beginners. In 
addition, the ggplot2 syntax is hard to grasp at first, both conceptually 
and practically. Nevertheless, those who overcome the initial difficulties 
are greatly rewarded.
The purpose of this chapter is to present, through examples, some of 
the most important points to note when using ggplot2 to display 
spatial data. Obviously, we cannot cover all plot types and their optional 
modifications (even a standalone book cannot accomplish such a 
task). What we can do is provide the initial knowledge sufficient for 
orientation. The subsequent usage of ggplot2 will inevitably require 
trial and error, as well as looking for help online. In addition, the 
following sources of information on ggplot2 are highly recommended:

• The ggplot2 package is fortunately accompanied by a  
highly comprehensive collection of help pages (http://
docs.ggplot2.org/), where all functions and arguments 
are reviewed—in most cases with code and graphical output 
examples.

• Winston Chang's book R Graphics Cookbook, O'Reilly Media,  
which was published in 2012, is notable for providing an 
extensive coverage in the form of precise recipes for  
visualization using ggplot2 (although there are relatively  
few examples involving spatial data).

• Readers interested in more information on the theoretical 
background of ggplot2 can refer to the absorbing book by the 
package author Wickham, H. ggplot2: Elegant Graphics for Data 
Analysis, Springer, 2009. Some of the code sections in that book 
are slightly outdated (the package has evolved since the book 
was published), but this does not affects the book's utility.

Each expression used to create a plot with ggplot2 is made up of several components 
as we shall see shortly. It starts with the ggplot function call (such as ggplot(dat,aes
(x=time,y=tmax))), followed by additional layers' definitions and settings.

At the core of each plot created with ggplot2 are the layers, with each layer 
necessarily associated with a given geometry and the data used to draw the layer. A 
plot with no layers cannot be produced since there will be nothing to show:

> ggplot(dat, aes(x = time, y = tmax))
Error: No layers in plot
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Layers are added to a plot using the + operator, and the data used to create the 
layer, as well as the aesthetic mapping (the link between the data and layers' aesthetic 
appearance), are specified as arguments either in the ggplot function (setting them 
as global arguments for this particular plot) or in the respective layer function (setting 
them as local arguments for the particular layer only).

The most straightforward way to create a layer is to use the layer function, where 
we can (rather verbosely) specify all of the layer characteristics. The preceding 
plot, for instance, can also be produced with the following expression, which 
demonstrates that geom_line is a layer with a predefined "line" geometry 
and "identity" statistical transformation (this means that there is no statistical 
transformation; the values are taken as is), among other default definitions that  
remain hidden (such as colour="black" for line color):

> ggplot(data = dat, aes(x = time, y = tmax)) + 
+ layer(geom = "line", stat = "identity")

However, in practice, layers are most often specified using predefined layer 
functions rather than the layer function. These functions' names start with geom 
(such as geom_line) or stat (such as stat_contour). There is no conceptual 
difference between these two types of functions; the difference is just in their 
defaults—the latter emphasizes statistical transformations while the former does not; 
therefore, each type of function may be easier to use for a given purpose. However, 
it should be remembered that the settings of any given layer can be overridden, so 
in many cases the geom and stat layers are redundant in terms of the desired result. 
For example, exactly the same layer of contours can be produced with either geom_
contour or stat_contour.

In general, each layer is composed of the following five components:

• The geometry the layer follows (this is already encompassed in the layer 
function name, for example, geom_line)

• The data.frame object where the data come from (for example, dat)
• The definition of the link between the data and layer appearance, 

that is, aesthetic mapping inside the aes function (for example, 
aes(x=time,y=tmax)) or the definition of appearance unrelated to the data, 
that is, aesthetic setting outside the aes function

• The statistical transformation that manipulates the data prior to aesthetic 
mapping (we will not use this here)

• A position adjustment to deal with overlapping graphical objects (we will not 
use this here)
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A function to create a layer (such as geom_line) already encompasses defaults for 
the geom (geometry) and stat (statistical transformation) parameters; it is rarely 
necessary to override these in practice. For our purposes in this chapter, we will 
also not have to deal with position adjustments; these are most useful in nonspatial 
plots such as histograms and boxplots. Therefore, there are just two parameters we 
will usually modify in the ggplot2 layers—the data and aesthetic mappings (and, 
optionally, aesthetic settings). For example, the previous plot of tmax as a function of 
time has only one layer and the geometry type of that layer is "line". The function 
used to create the layer is named geom_line, accordingly. The data.frame object 
from where the time and tmax values come is dat, with time mapped to x (the x axis 
aesthetic) and tmax mapped to y (the y axis aesthetic).

The following table lists the specific layer functions we will use in this chapter in 
order to produce several common types of layers. The table also shows the set of 
required and optional parameters of each function. The required parameters (or 
aesthetics) of a given layer control its geometry and so, a layer cannot be drawn 
without them. For example, the geom_line function requires a set of x and y 
coordinates since no line can be drawn without these. As we shall see, in practice 
the required parameters are always mapped to variables in our data (in the form 
of an assignment within an aes function call). On the other hand, the optional 
parameters can either be mapped to variables in our data, set at constant values or 
left unspecified (in which case, they are set to their default constant values, such as 
colour="black" for geom_line, giving the line its default black color).

Function name Required 
parameters

Optional parameters

geom_line x, y alpha, colour, linetype, size
geom_
histogram

x alpha, colour, fill, linetype, size, weight

geom_point x, y alpha, colour, fill, shape, size
geom_text label, x, y alpha, angle, colour, family, fontface, 

hjust, lineheight, size, vjust
geom_path x, y alpha, colour, linetype, size
geom_contour x, y alpha, colour, linetype, size, weight
geom_
density2d

x, y alpha, colour, linetype, size

geom_polygon x, y alpha, colour, fill, linetype, size
geom_raster x, y alpha, fill
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There are, at the time of writing, 37 geom and 21 stat functions (visit http://docs.
ggplot2.org/ for the complete list). In this chapter, we will limit ourselves to just 
these nine geom functions, which are highly relevant with respect to spatial data.

Most of the names of the geometries are self-explanatory. For example, geom_line is 
used to draw lines, geom_histogram is used to draw histograms, and geom_raster 
is used to draw rasters. The geom_contour and geom_density2d functions are used 
to create contours based on raster values or point density, respectively, as we shall 
see later in this chapter. The difference between geom_line and geom_path requires 
clarification. While both functions are used to create a line layer, the series of (x,y) 
points is connected according to their order along the x axis in geom_line. On the 
other hand, in geom_path, the points are connected according to their original order 
in the source data.frame object. Therefore, the first is useful when plotting time 
series or mathematical functions (such as the temperature time series), while the 
second is useful to plot spatial line layers (such as a GPS track).

In addition to layer functions and their settings, which we briefly reviewed, three 
other types of components are used to control plot appearances in ggplot2:

• scales: Used to control the conversion, or mapping, between the data values 
and aesthetics we see on the screen (these functions' names start with scale, 
for example, scale_x_date)

• faceting: Used to produce multiple plots of different data subsets, side by 
side (these start with facet, for example, facet_grid)

• themes: Used to modify the general appearance of the plot (these start with 
theme, for example, theme_bw)

How are all of these components specified in practice? The first component, as we 
have already seen, is always a ggplot function call that initializes a ggplot object 
used to store all the necessary information to produce a plot. It usually takes the 
ggplot(data,aes(...)) form, where data is the default data.frame object to be 
taken into account when plotting, and aes(...) is the default aesthetic mapping 
to be used. These are passed to all of the other layers, unless the respective layer 
definition specifies its own data and/or aesthetic mapping, in which case they 
override those within ggplot(). Next, the layers, scales, faceting definitions, and 
themes are added with each two components separated by a + symbol. In our last 
example, the ggplot(dat,aes(x=time,y=tmax)) part specified that the default 
dataset is dat, and the default aesthetic mapping is to plot time on the x axis and 
tmax on the y axis. The geom_line() part then added a line layer; no arguments 
were specified, therefore the layer used the default dataset and the default aesthetic 
mapping. Scales, faceting, and theme settings were also left unspecified.
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It is important to understand that in order to produce a minimal plot, we need 
to specify only a dataset, a single layer, and mappings for the layers' required 
parameters (such as x and y in geom_line). Other layer parameters (such as colour 
or size), scales, faceting, and themes are optional. For example, the following 
expression adds a colour setting and two scale definitions, but it produces exactly 
the same plot as shown in the preceding screenshot, since all of the components we 
added were already specified by default:

> ggplot(dat, aes(x = time, y = tmax)) + 
+ geom_line(colour = "black") +
+ scale_x_date() +
+ scale_y_continuous()

The two scale settings used in the preceding expression (scale_x_date() and 
scale_y_continuous()) had no effect since a continuous variable (such as tmax) 
is by default plotted on a continuous scale, while a Date variable (such as time) 
is by default plotted on a dates scale. In addition, we have an aesthetic setting 
(colour="black") that had no effect either. As opposed to an aesthetic mapping 
(which is always encompassed in the aes function), the aesthetic setting links the 
layer to a constant aesthetic value, irrespective of the data in a given column. In the 
preceding expression, we set the line color to black in the geom_line layer, with 
colour="black". Again, since "black" is the default value for the line color in 
ggplot2, this setting does not affect the plot appearance.

The plot we produced still needs a little polishing if we would like to include it in 
a publication. In general, certain plot adjustments are not related to the data (for 
example, changing the background color), while others are indirectly related to 
the data (for example, changing the color scale of a raster). First of all, we would 
like to have proper axis titles (for example, "Time" instead of "time" for the x axis), 
preferably without changing the data column names themselves. In many cases a 
journal may require a cleaner appearance, so we may also wish to remove the gray 
background and grid lines. The latter two properties can be modified using the scales 
and themes specifications, respectively.

Through the theme functions, we can control the general appearance of the plots' 
nondata elements, such as plot title, axis labels style, tick marks length, background 
color, and so on. This can be done in two ways, which are not mutually exclusive  
but additive:

• The so-called complete themes can be specified to control all of the elements 
at once, in a predefined way. The predefined themes in ggplot2 currently 
include theme_grey, theme_bw, theme_linedraw, theme_light, theme_
minimal, and theme_classic. You are welcome to replace theme_bw with 
each of these in the following code section, to see what each theme looks like.
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• Modifying individual elements can be done using the theme function, 
specifying the element names and the required arguments. For example, 
adding theme(panel.grid=element_blank()) eliminates grid lines. 
There are currently 50 theme elements (such as panel.grid), which can 
be modified through the theme function (see ?theme for the complete list). 
Three important things to note about themes are:

 ° The value of each theme element can be set using the appropriate 
function (element_blank, element_line, element_rect, or 
element_text). For example, to set axis.title, we will use 
element_text, but to modify panel_grid, we will use element_
line (unless we want to eliminate it altogether, in which case we will 
use element_blank). Consult ?theme to see which element function 
is appropriate in specific cases.

 ° Within the element function, we can supply a list of characteristics 
we want to modify for that particular element. For example, 
element_line(colour="red",linetype="dotted") for panel.
grid will make the grid lines red and dotted. As always, all 
unspecified properties remain at their default values.

 ° Some element properties inherit from others. For example, with 
panel.grid=element_blank(), there is no point modifying the 
panel.grid.minor and panel.grid.major (minor and major grid 
lines, respectively) characteristics since the properties of both are 
overridden by panel.grid.

Functions to modify the scales start with scale, followed by the aesthetic property 
and the scale type. For example, scale_x_date sets the x axis position aesthetic 
property to the date type. Arguments within a scale function control additional 
properties of the scale, other than scale type which is determined by the function's 
name. For example, the name parameter determines the scale name that appears 
along the respective axis or legend. Each aesthetic we would like to set a scale for 
requires an individual scale function (for example, scale_x_date() and scale_y_
continuous()).

                           

http://                           /


Advanced Visualization of Spatial Data

[ 290 ]

As an example, in the following code we modify several theme and scale properties 
of the time series plot:

> ggplot(dat, aes(x = time, y = tmax)) + 
+ geom_line() +
+ scale_x_date(name = "Time") +
+ scale_y_continuous(
+ name = 
+ expression(paste("Maximum temperature (", degree, "C)"))) +
+ theme_bw() +
+ theme(panel.grid = element_blank())

As you may have noticed, the y axis label is specified in a special 
way in the preceding code with expression(paste("Maximum 
temperature (", degree, "C)")). The reason for doing this is 
to introduce the degree (º) symbol in the y axis title (see the following 
screenshot). The expression function returns an object of class 
expression, which can be used to print mathematical symbols and 
annotations in R. It is combined with paste in order to include both 
regular characters and mathematical symbols. In this case, the text 
consists of the "Maximum temperature (" and "C)" parts, while 
the mathematical part is degree, which stands for the º symbol. The 
complete list of possible annotations and their syntax is available on 
the ?plotmath help page.

The following screenshot shows what the new version of our plot looks like:
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We can see that the plot is now black and white (thanks to theme_bw) with no grid 
lines (thanks to theme(panel.grid=element_blank())) and it has appropriate axis  
labels (thanks to the scale specifications).

At times, a touch of interactive fine-tuning is required to introduce 
nonstandard elements or formatting into the graphical output from R. For 
instance, we may wish to put an arrow mark (such as ↓ ) with annotation 
(such as this was an especially cold day) on the preceding plot. Although 
it is possible to accomplish almost everything through the ggplot2 
syntax (including the latter example), in some situations it may be 
advantageous to make final adjustments by hand using a graphical editor 
such as Inkscape (freely available from http://www.inkscape.org/) 
or Adobe Illustrator. For this purpose, it is best to export the plot with 
ggsave to a vector graphics file (such as PDF or SVG), and then work on 
it in a graphical editor.

Plotting nonspatial data
Since our main focus is on plotting spatial data, in this section, we will go over just 
two examples of ordinary (nonspatial) plots. Most of the subsequent examples in this 
chapter will deal with producing spatial plots, or in other words, maps.

We will begin with a line plot, but a more elaborate one than in the previous 
example. As promised in Chapter 7, Combining Vector and Raster Datasets, we are 
going to compare, visually, the NDVI trajectory in two forests (Lahav and Kramim) 
according to two data sources (the Landsat and MODIS satellites). To do this, we will 
display the four relevant time series in a single plot. We will mark the data for each 
forest with a different color in order to distinguish them. In addition, we will use 
different geom functions for the data from each of the two satellites—the data from 
MODIS (where we have 280 data points for each forest) is best displayed with geom_
line, while the data from Landsat (where we have only three data points for each 
forest) will be displayed with geom_point.

In terms of the ggplot2 syntax, the data from our input table forests_ndvi will be 
divided into two parts:

• forests_ndvi[forests_ndvi$sat == "MODIS", ]

• forests_ndvi[forests_ndvi$sat == "Landsat", ]
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The first subset of forests_ndvi will be passed as the data argument to geom_
line, while the second will be passed as the data argument to geom_point. As for 
the aesthetic mapping (the assignment expressions within the aes function), x is 
going to be mapped to date and y to ndvi, in both layers (NDVI is plotted as the 
function of time). In addition, the colour (in geom_line) and fill (in geom_point) 
are mapped to forest since we want to display the time series for each forest with 
a different color. One instance of the aesthetic setting is used in the point layer 
(shape=21), defining the points shape as 21 (which corresponds to a filled circle; see 
?points). In addition to these two layers, six ggplot components are supplied to 
specify the various scale settings (just their names, in this case) and theme settings 
(no grid lines and "top" for the legend position). Note that the scales for fill and 
colour are discrete (scale_fill_discrete and scale_colour_discrete), which is 
appropriate for categorical variables such as the forest name.

The assigned colors are generated automatically. There is also a 
way to explicitly specify the color each group will take, using a 
manual scale. We will not go into that here; interested readers can 
follow the examples on ?scale_colour_manual to see how 
individual colors of choice can be specified.

The entire expression to produce the plot thus takes the following form:

> ggplot() +
+ geom_line(
+ data = forests_ndvi[forests_ndvi$sat == "MODIS", ],
+ aes(x = date, y = ndvi, colour = forest)) +
+ geom_point(
+ data = forests_ndvi[forests_ndvi$sat == "Landsat", ],
+ aes(x = date, y = ndvi, fill = forest), shape = 21) +
+ scale_x_date("Time") +
+ scale_y_continuous("NDVI") +
+ scale_fill_discrete("Forest") +
+ scale_colour_discrete("Forest") +
+ theme_bw() +
+ theme(panel.grid = element_blank(),
+ legend.position = "top")
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The time series plot, as shown in the following screenshot, is produced as a result:

Notably, the same legend has been generated for the points fill aesthetic and the 
lines colour aesthetic (and so, the legend symbols are composed of both line and 
point geometries). The fact that the same color scale is generated by ggplot2 for both 
aesthetics makes things easier.

As for the NDVI pattern the plot portrays, we can clearly see that the Kramim forest 
has consistently lower NDVI than Lahav and that the data from both satellites is in 
agreement on this. The seasonal NDVI pattern, which we have already witnessed on 
several occasions in previous chapters, is also apparent in the MODIS data.

In the second nonspatial example, we will plot the distribution of topographic slopes 
in built versus natural areas in Haifa, based on the buildings_mask and natural_
mask rasters we created in Chapter 7, Combining Vector and Raster Datasets. This time, 
the data come in the form of rasters. Since ggplot2 requires data.frame objects, 
the first thing to do is bring the data into one. We will transfer the (non-NA) values 
of each raster to a table with two columns: one containing the raster values and the 
other identifying the cover type ("Buildings" or "Natural"):

> build = data.frame(cover = "Buildings", 
+ slope = buildings_mask[!is.na(buildings_mask)])
> nat = data.frame(cover = "Natural", 
+ slope = natural_mask[!is.na(natural_mask)])
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Then, we will bind both tables into a single one with rbind:

> slopes = rbind(nat, build)
> head(slopes)
    cover     slope
1 Natural 0.3740864
2 Natural 0.3918563
3 Natural 0.4300925
4 Natural 0.4843213
5 Natural 0.5266151
6 Natural 0.3173897

The data is ready to be plotted. This time, what we are interested in is visually 
comparing distributions. The most obvious way of doing this is to plot histograms 
of the two variables side by side. In ggplot2, a histogram layer can be created with 
geom_histogram, specifying only a single aesthetic—x. In order to produce two 
histograms in a single plot, we will also use faceting.

Faceting, as previously mentioned, is the generation of numerous plots of the same 
type for different subsets of the data, within a single graphical output. For example, 
in the present context we would like to create two histograms side by side: one for 
the "Buildings" cover type and another for the "Natural" cover type. The reason 
for using faceting—in addition to saving the trouble of running the same code several 
times—is having a similar appearance and common axes in all subplots and thereby, 
making the comparison easier. There are two functions to produce facets in ggplot2; 
the difference between them is in the way the subplots are geometrically arranged:

• facet_wrap: Used to create a continuous ribbon of panels, while (optionally) 
specifying the number of rows or columns (with nrow and ncol). This is most 
useful to create numerous subplots of the same type.

• facet_grid: Used to create a two-dimensional grid of panels with the rows 
and columns defining different levels of a given variable. This is most useful 
when subplots are defined by combinations of two variables.

The most important parameter of both facet_wrap and facet_grid is the formula 
defining the grouping factor(s) to create the facets. With facet_wrap, we can specify 
only a single factor (for example, facet_wrap(~group)) since the facets form a one-
dimensional ribbon. With facet_grid, we can specify two factors: one for the rows 
and another one for the columns (for example, facet_grid(group_row~group_
column)). If we wish to create facets with facet_grid according to a single factor, 
we can replace one of the variables with a dot (.). For example, facet_grid(group_
row~.) will result in a vertical ribbon of facets (since there is no factor for the 
columns), while facet_grid(.~group_column) will result in a horizontal ribbon of 
facets (since there are no factors for the rows).
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To clarify things, it is best to show an example. The following code produces two 
histogram facets, according to the grouping variable cover, using facet_grid. Since 
we have only one grouping factor, we mark the column grouping as . to obtain a 
vertical ribbon (later in this chapter, in the Spain temperature maps example, we will 
use facet_grid with two grouping factors):

> ggplot(slopes, aes(x = slope)) +
+ geom_histogram() +
+ facet_grid(cover ~ .) +
+ scale_x_continuous("Slope (radians)") +
+ scale_y_continuous("Count") +
+ theme_bw()

The resulting plot is shown on the left in the following screenshot. Since in this case 
we have a single grouping variable, the same kind of plot can also be produced with 
facet_wrap. Replacing facet_grid(cover~.) with facet_wrap(~cover,ncol=1) 
produces an identical plot, except for a slightly different facet labeling scheme; the 
latter plot is shown on the right in the following screenshot. Note that in both cases, 
the facets share a common x axis.
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Looking at these histograms, we can see that most buildings are located on relatively 
flat terrain while most natural areas occupy steeper slopes, which makes sense.

Quantitatively comparing the properties of slopes' distributions is 
straightforward using tapply and the slopes table. For example, 
tapply(slopes$slope,slopes$cover,mean) will show that 
the mean slopes for the "Natural" and "Buildings" cover types 
are 0.23 and 0.15, respectively. Substituting mean with other 
functions (such as min, max, and sd) will yield other properties.

Saving the ggplot2 plots
In addition to the usual method of saving a graphical output in a file (see Chapter 2, 
Working with Vectors and Time Series), there is a specialized function called ggsave for 
saving ggplot2 plots. For example, the first image in this chapter was incorporated 
into this book from a PNG file, obtained with ggsave as follows:

> ggplot(dat, aes(x = time, y = tmax)) + 
+ geom_line()
> ggsave("C:\\Data\\4367OS_09_01.png", width = 5.5, height = 3.5)

The ggsave function, by default, saves the last ggplot object that has been plotted in 
the graphical window. Therefore, the only mandatory parameter is the file path. The 
file extension provided in the path determines the file format (a PNG image in this 
case; see ?ggsave for a list of possible formats). The figure dimensions are taken as 
those of the currently active graphical window, unless explicitly specified through 
the width and height parameters. For instance, in this case, the width is equal to 
5.5 inches (inches are the default unit, cm and mm are also possible) since this is a 
commonly used text width in the letter page format.

When saving the ggplot2 output to PDF, it is recommended to 
specify useDingbats=FALSE. This avoids potential problems 
associated with plot rendering, due to the default conversion 
of circles to text objects, when we prefer to leave the former as 
geometric objects.

A ggplot object can also be assigned and kept in memory:

> tmax_line = ggplot(dat, aes(x = time, y = tmax)) + 
+ geom_line()
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It is already apparent, from the last few examples, that the print method applied to 
such an object induces drawing it in a graphical window. Assignment of a complete 
ggplot2 plot, or individual layers (which we will see later), may serve at least two 
useful purposes:

• We can save a plot with ggsave providing the plot object as an argument so 
that we do not have to wait for the plot to be drawn in the graphical window 
for no good reason. This way, we also do not need to keep in mind which 
plot was produced last. For example, after the tmax_line object has been 
created, we can save the plot it describes as follows:
> ggsave(plot = tmax_line, 
+ filename = "C:\\Data\\4367OS_09_01.png", 
+ width = 5.5, 
+ height = 3.5) 

• We can define useful combinations of layers and/or settings, which we 
will repeatedly use to save us the trouble of typing the whole collection of 
components when producing a series of plots that have some components in 
common. Complete themes, such as theme_bw, also serve this purpose. For 
example, the following expression produces the same plot we saw in the first 
image in this chapter:
> tmax1 = ggplot(dat, aes(x = time, y = tmax)) 
> tmax2 = geom_line()
> tmax1 + tmax2

Plotting spatial data
So far in this chapter, we introduced the ggplot2 package and briefly reviewed its 
syntax using a few simple, nonspatial examples. In the next two sections, we will 
move on to slightly more complicated examples, now involving spatial data. What 
you will see right away is that producing a map with ggplot2 is conceptually no 
different from producing any other kind of plot (because spatial data, in turn, is not 
conceptually different from any other type of data).
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A map is, in fact, simply a two-dimensional plot with points, lines, polygons and/
or rasters, with plot space corresponding to geographical space through a given 
CRS. Since plot space is tied to geographical space, a map has a specific aspect ratio 
between the x and y axes (1:1). In other words, we cannot stretch a map to be wider 
or narrower since this would distort the correct proportion between distances in the 
x and y directions (unlike the tmax time series plot we saw earlier in this chapter, for 
example, which can be stretched any way we like and still remain meaningful). As 
you may have noticed, the plot method, applied on spatial vector layers or rasters in 
previous chapters, also produces plots with a constant 1:1 aspect ratio. The difference 
is that in ggplot2, the input data comes as a data.frame object so the function has 
no way of knowing that the data is spatial. Therefore, we need to manually specify 
that the aspect ratio should be constant using the coord_equal function.

To summarize these considerations, a map produced with ggplot2 is just like any 
other plot produced with this package, except for the following two characteristics:

• The plot represents geographical space through a given CRS and includes 
spatial data in the form of points, lines, polygons, and/or rasters

• The x and y axes scale ratio is fixed at 1:1 (using coord_equal)

It should be noted that ggplot2 (along with ggmap, which will be 
introduced in the next section) is not the best choice for all spatial 
data visualization tasks. Maps that require, for example, substantial 
annotation (such as labels, scale bars, and north arrows) or special 
display-optimization algorithms (such as reduced overlap between street 
name labels and other map elements) are easier to handle in traditional 
GIS software. The advantage of ggplot2, with respect to map making, 
becomes decisive in fairly analogous situations to those when R itself is 
advantageous:

• Automation: When we want to automatically produce a large 
number of high-quality maps, for example, using facets or loops

• Reproducibility: When we want to make sure exactly the same 
map is replicated with different datasets, at different times, or 
among different users

• All-in-one environment: When we want to show certain 
elements computed in R on a map (such as spatial interpolation 
predictions) or integrate other capabilities that R has (such as 
downloading real-time data from the Web) without needing to 
transfer the data between different software

                           

http://                           /


Chapter 9

[ 299 ]

Now that the framework to use ggplot2 with spatial data is defined in general 
terms, let's proceed to the practical application. So far, we witnessed that spatial 
vector layers and rasters are best represented in R using special classes such as 
SpatialPolygonsDataFrame or RasterLayer. How can we convert these data 
structures to data.frame objects to be passed to ggplot? Point and raster layers are 
readily convertible to a data.frame object using the as.data.frame function (for 
example, we converted the spainT raster to a data.frame object in the previous 
chapter). As already mentioned, however, lines and polygons are more complex than 
points and rasters due to the fact that each line or polygon geometry is composed of 
a variable number of points. The order in which the points are connected is also an 
integral part of the data, responsible for the correct geometry drawing. Therefore, a 
data.frame object representing a line or polygon layer must have x and y coordinate 
columns (as do data.frame objects for points and rasters), but also a grouping 
column (to denote which set of points forms a given line or polygon) and an ordering 
column (to specify the order by which the points are connected when drawing the 
given line or polygon). Conveniently, a function called fortify is already defined 
in ggplot2 to convert line and polygon layers into data.frame objects while 
preserving these properties.

For example, at the end of Chapter 5, Working with Points, Lines, and Polygons, we 
created a SpatialPolygonsDataFrame object named county that contains the 
borders of US counties along with average population densities for each county in 
the attribute table (the density column). In order to bring the data in county to 
a data.frame form, readily available to be used by ggplot, we need to apply the 
fortify function. The "regions" parameter of fortify is used to specify which 
attribute table column corresponds to individual features. Since the FIPS column 
identifies unique counties in the attribute table, we can use it as the region:

> county_f = fortify(county, region = "FIPS")
> head(county_f)
     long      lat order  hole piece   group    id
1 1225972 -1274991     1 FALSE     1 01001.1 01001
2 1234371 -1274114     2 FALSE     1 01001.1 01001
3 1244907 -1272280     3 FALSE     1 01001.1 01001
4 1244132 -1267496     4 FALSE     1 01001.1 01001
5 1265116 -1263940     5 FALSE     1 01001.1 01001
6 1265318 -1263907     6 FALSE     1 01001.1 01001
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This is a typical output of fortify. The table contains processed spatial information 
from the county layer plus the id column corresponding to the region variable  
(in this case, FIPS). The important columns, for our purposes, are as follows:

• long and lat: The spatial coordinates. Note that these are the default x and y 
coordinate column names, respectively, created by fortify, even when the 
layer is not in a geographical CRS.

• group: Individual geometries identifier.
• id: Individual features identifier.

Since all other attribute data columns are removed by fortify, we need to append 
the density column manually by joining the attribute table of county back to 
county_f. However, before that, we need to change the name of the id column to 
"FIPS", to match the FIPS column in the attribute table:

> colnames(county_f)[which(colnames(county_f) == "id")] = "FIPS"
> county_f = join(county_f, county@data, "FIPS")
> head(county_f)
     long      lat order  hole piece   group  FIPS  NAME_1  NAME_2
1 1225972 -1274991     1 FALSE     1 01001.1 01001 Alabama Autauga
2 1234371 -1274114     2 FALSE     1 01001.1 01001 Alabama Autauga
3 1244907 -1272280     3 FALSE     1 01001.1 01001 Alabama Autauga
4 1244132 -1267496     4 FALSE     1 01001.1 01001 Alabama Autauga
5 1265116 -1263940     5 FALSE     1 01001.1 01001 Alabama Autauga
6 1265318 -1263907     6 FALSE     1 01001.1 01001 Alabama Autauga
  TYPE_2     area census2010pop  density
1 County 1562.805         54571 34.91863
2 County 1562.805         54571 34.91863
3 County 1562.805         54571 34.91863
4 County 1562.805         54571 34.91863
5 County 1562.805         54571 34.91863
6 County 1562.805         54571 34.91863

Using this table, we are ready to create a map showing population densities per 
county. However, it would be nice to add state borders as well to aid in map 
apprehension. To obtain states borders layer, we will download it from the GADM 
database (see Chapter 5, Working with Points, Lines, and Polygons). We will then use 
fortify on it as well:

> states = getData("GADM", country = "USA", level = 1)
> states = states[!(states$NAME_1 %in% c("Alaska", "Hawaii")), ]
> states = spTransform(states, CRS(proj4string(county)))
> states_f = fortify(states, region = "NAME_1")
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> head(states_f)
     long      lat order  hole piece     group      id
1 1076104 -1034268     1 FALSE     1 Alabama.1 Alabama
2 1085410 -1033146     2 FALSE     1 Alabama.1 Alabama
3 1093749 -1031892     3 FALSE     1 Alabama.1 Alabama
4 1107308 -1030032     4 FALSE     1 Alabama.1 Alabama
5 1108666 -1029851     5 FALSE     1 Alabama.1 Alabama
6 1112841 -1029288     6 FALSE     1 Alabama.1 Alabama

To plot a spatial layer created with fortify (either lines, as we shall see later, or 
polygons), we need to map the x and y aesthetics to the long and lat columns, 
respectively. In addition, we need to map the group column to the group aesthetic 
so that each geometry will be drawn separately. For example, the California feature 
is composed of several geometries (the mainland plus several islands in the Pacific 
Ocean), and ggplot needs to know which points form separate polygons according 
to the group column ("California.1", "California.2", and so on). If we want to 
give certain aesthetics to each state, we can do that using the id column (where all 
California polygons share the "California" label).

The group aesthetic can also be implemented in nonspatial layers and 
in layers other than geom_polygon. It is used to identify individual 
geometries in order to draw them separately, when no other aesthetic 
(such as colour or fill) does the job. For example, in the following 
screenshot, we do not want each geometry (such as each island of 
California) to have a unique appearance, but we still want these 
geometries to be drawn separately rather than with a line going through 
all of them one by one. Try removing the group=group part from the 
following expression and you will see what a mess the result is. You 
can also try group=id to see that it messes up only those states that are 
composed of more than one geometry, where grouping by the group 
column is indeed essential.

Another helpful feature we will experiment with in the present example is to save 
a collection of the ggplot2 components in order to integrate them in several plots 
and not have to type the expressions each time. We will create an object named sp_
minimal, defining our own custom theme (based on theme_bw, with the axis name, 
labels, and tick marks removed):

> sp_minimal =
+ theme_bw() +
+ theme(axis.text = element_blank(),
+ axis.title = element_blank(),
+ axis.ticks = element_blank())
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Before we plot county densities, we will start with a simpler example—drawing just 
the states_f layer—to see how spatial polygon layers are drawn in ggplot2:

> ggplot() + 
+ geom_polygon(data = states_f, 
+ aes(x = long, y = lat, group = group), 
+ colour = "black", fill = NA) +
+ coord_equal() +
+ sp_minimal

A map of the states is produced as follows:

As you can see in the previous syntax, the polygons are drawn using geom_polygon 
according to the long, lat, and group data columns (mapped to the x, y, and group 
aesthetics, respectively), with the colour and fill polygons set to constant values 
("black" for colour and NA for fill, respectively; this means empty polygons with 
black borders). The other two plot elements are coord_equal (which makes sure the 
1:1 aspect ratio is maintained) and the sp_minimal theme we just defined.
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Now, we will make things slightly more complicated by plotting both the states_f 
and county_f layers together. Let's first view the code and output. Afterwards, we 
will discuss the different components involved. Here's the code that produces a 
county population density map:

> ggplot() + 
+ geom_polygon(data = county_f, 
+ colour = NA, 
+ aes(x = long, y = lat, group = group, fill = density)) +
+ geom_polygon(data = states_f, 
+ colour = "white", size = 0.25, fill = NA,
+ aes(x = long, y = lat, group = group)) +
+ scale_fill_gradientn(
+ name = expression(paste("Density (",km^-2,")")), 
+ colours = rev(rainbow(7)), 
+ trans = "log10", 
+ labels = as.character,
+ breaks = 10^(-1:5)) +
+ coord_equal() +
+ sp_minimal

The following screenshot shows how the resulting plot looks:
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Reading the preceding code reveals, first of all, that the plot is made by combining 
the following five components:

• geom_polygon (with county_f)
• geom_polygon (with states_f)
• scale_fill_gradientn

• coord_equal

• sp_minimal

The two geom_polygon layers, representing "states" and county layers, are 
drawn differently according to our needs in this visualization. The first thing to 
note about these layers is their order of appearance: the county_f layer is added 
before states_f. This is not a coincidence; the layers are drawn on the screen in the 
same order in which they are provided in the code. Since state and county borders 
obviously overlap, and we wish to draw the states borders on top of the counties 
borders (otherwise the states borders will not be visible), it is important to specify the 
layers in the right order.

The states_f layer arguments are identical to those in the previous example; except 
that, we made the polygon borders white (with colour="white") and thin (with 
size=0.25). As for the county_f layer, the color of the borders (rather than fill) 
was set to NA, resulting in borderless polygons, and fill was mapped to density. 
The latter is indeed the defining feature of the map we made: mapping the county_f 
polygons fill aesthetic to density is what gives different population densities 
different colors, and that was the whole purpose of making this plot.

We mapped fill to density, but which color gets assigned to which density level? 
As already mentioned, the scale function determines the way values in the data 
are matched with the aesthetic appearance. So unless we are happy with the default 
scale (which is frequently not the case), we have to set the scale characteristics 
ourselves. For example, we already used scale_colour_discrete in the forests 
NDVI time series example (applicable for discrete variables). In the present example, 
the scale_fill_gradientn function, as the name suggests, was used to set the fill 
scale type to gradientn. The latter is just one out of several possible fill scale types 
(applicable to the colour aesthetic as well; see http://docs.ggplot2.org/ for a 
complete list). For continuous variables, ggplot2 offers three types of color scales, 
which can be specified using the following functions:
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• scale_fill_gradient: A two-color gradient, with the gradient end colors 
specified with high and low (see the Haifa buildings density example later  
in this chapter)

• scale_fill_gradient2: A three-color gradient, with the low, med, and high 
colors specified (see the London buildings distance to river example later in 
this chapter)

• scale_fill_gradientn: A custom n-color gradient, specified with a 
colours vector

There are several ways to create a vector of colors in R to be supplied to 
the colours parameter of scale_colour_gradientn as well as to 
other graphical functions. The simplest way, which we used in the present 
example, is to employ one of the predefined color palette functions that 
can take a numeric value as an argument and produce a series of colors 
(returned as RGB codes) at equal intervals. These functions can be used 
for many purposes:

• rainbow

• heat.colors

• terrain.colors

• topo.colors

• cm.colors

In the examples in this chapter, we employ rainbow and terrain.
colors. You are welcomed to experiment with the other three palettes to 
see what they look like. The color codes these functions return are rarely 
useful in their own right. Instead, they are passed as color palettes to 
graphical functions such as scale_colour_gradientn.

> rainbow(3)

[1] "#FF0000FF" "#00FF00FF" "#0000FFFF"

In cases when you have a different palette in mind which is not covered 
by these functions, you can use the RColorBrewer package (which 
provides many more palettes) or the colorRampPalette function 
available in base R (which can be used to create custom-made color 
palettes; see the last example in this chapter).

A short explanation of the arguments of the scale_fill_gradientn function we 
used is in order:

• name=expression(paste("Density (",km^-2"",")")): The name 
argument specifies the scale name and the way it will appear on the plot 
legend. We once again used the expression function, this time to add -2 in 
superscript (see the preceding screenshot).
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• colours=rainbow(7): Specifies the vector of colors to create a color palette 
with. Here, specifying seven colors gives a good result, with the whole 
variability the rainbow palette provides represented. It may require trial and 
error to find out how many colors are sufficient in each case.

• trans="log10": The trans parameter can be passed to any continuous scale 
function in ggplot2. It is used to specify a mathematical transformation for 
the data. In this particular example, we use a logarithmic scale ("log10") 
to highlight the differences in the population density between different 
counties, which is necessary since the distribution of county densities is 
highly nonhomogeneous, with many low-density counties and few high-
density counties. You can try deleting the trans, labels, and breaks 
arguments, and running the previous code once more to see why the default 
linear scale is inappropriate in this case. There are many useful built-in types 
of transformations, as well as methods to define custom transformations but 
this is beyond the scope of this book.

• labels=as.character and breaks=10^(-1:5): The breaks argument 
specifies the breakpoints where tick marks and labels are generated, while 
the labels argument specifies the labels themselves or (as in this case) a 
function to format the labels with. In this case, by default, R prints the 10^(-
1:5) labels vector in mathematical notation (1e-01, 1e+00, 1e+01, and so 
on). This is evaded by converting the numeric values to characters (using 
as.character) to receive more comprehensive labels (0.1, 1, 10, and so on).

The last two components in the code section that produces the preceding plot—
coord_equal and sp_minimal—were already used in the previous plot, so we will 
not repeat their meaning here.

Finally, referring to the plot itself, we can see the concentration of densely populated 
counties in the eastern half of the USA and along the coast of the Pacific Ocean. 
Further inland in the Western USA, population density is generally low.

Moving on to the second type of spatial data structure, a raster, we are going to 
experiment with different variations of the Haifa DEM map in the following few 
examples. As the data source, we will take the dem and hill rasters (see Chapter 6, 
Modifying Rasters and Analyzing Raster Time Series). Data from these two rasters will 
be transferred into a single data.frame object with four columns: cell coordinates 
(x and y), elevation value (elev), and hillshade value (hill). Note that in this case, 
we use the data.frame function to do this, supplying the coordinates and the 
vector of values from each raster separately (relying on the fact that the two rasters 
are geometrically identical, since hill was derived from dem). An equally good 
approach would have been to stack the two rasters and then convert the result to a 
data.frame object with as.data.frame(...,xy=TRUE):
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> dem_hill = data.frame(coordinates(dem), 
+ elev = dem[],
+ hill = hill[])
> dem_hill = dem_hill[complete.cases(dem_hill), ]
> head(dem_hill)
            x       y elev      hill
2421 698971.3 3648863   19 0.3533017
2422 699061.3 3648863   20 0.3408402
2423 699151.3 3648863   19 0.3402018
2424 699241.3 3648863   19 0.3451085
2425 699331.3 3648863   20 0.3439193
2426 699421.3 3648863   21 0.3368811

Now that we have the dem_hill table, we can plot the data using a geom_raster 
layer. The geom_raster function requires the x, y, and fill aesthetics to draw a 
raster, as the following code and images demonstrate. In addition, since we are going 
to make several versions of the Haifa DEM plot, it would be best to save this basic 
plot as a ggplot object (hereby named haifa_relief) so that we can later update it 
by incorporating additional layers:

> haifa_relief = ggplot(dem_hill, aes(x = x, y = y)) + 
+ geom_raster(aes(fill = elev)) +
+ scale_fill_gradientn("Elevation (m)", 
+ colours = terrain.colors(10)) +
+ coord_equal() + 
+ theme_bw() +
+ theme(axis.title = element_blank(),
+ axis.text.y = element_text(angle = 90, hjust = 0.5))
> haifa_relief

The syntax being used is analogous to the previous example, except that we 
use geom_raster instead of geom_polygon; x and y are mapped to spatial 
coordinates, while fill is mapped to raster values. Note that geom_raster takes 
aes(fill=elev) as an argument, while the missing parts (data, x, and y) are 
passed, by default, from the ggplot set of arguments. As we shall see right away, 
this mode of operation is very convenient when we would like to add another layer 
(in this case, the hillshade) with the same arguments so that we do not have to 
type them once again. The theme components this time specify that the y axis labels 
should be rotated by 90º (which is often used in maps). The resulting plot is shown 
on the left panel in the following screenshot. Note that the color scale used (terrain.
colors) is particularly useful to display the topography.
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Now that we have our basic relief image, we can experiment with various additional 
components that we may wish to show on top of it. For instance, the hillshade 
calculation gave us a layer of theoretical shading degree for the given topography 
and sun position (see Chapter 6, Modifying Rasters and Analyzing Raster Time 
Series). We can add the shading values as an all-black raster with various levels of 
transparency (making the shaded areas less transparent and thus darker). This will 
create an illusion of a three-dimensional image, which is also known as a shaded relief 
in cartography. To create shading, we need to add another raster layer with black 
pixels whose transparency aesthetic is mapped to the hill values. Transparency, in 
ggplot2 as well as in other graphical functions in R, is determined by a parameter 
named alpha, ranging from 0 to 1, with 0 being completely transparent and 1 being 
completely opaque. Limiting the maximum of the alpha scale to 0.5, using the range 
parameter makes sure we do not get completely black pixels in heavily shaded areas:

> haifa_relief_shade = haifa_relief + 
+ geom_raster(aes(alpha = hill), fill = "black") +
+ scale_alpha_continuous("Hillshade", range = c(0.5, 0))
> haifa_relief_shade

The resulting plot is shown on the right panel in the following screenshot. Viewing 
the two images side by side demonstrates the effect that shading has.
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Talking about topography, another feature we may wish to add to this plot is 
contour lines. We already calculated contour lines from rasters both indirectly 
(displaying them using levelplot, in Chapter 4, Working with Rasters, for instance) 
and directly (creating a contour lines layer with rasterToContour, in Chapter 7, 
Combining Vector and Raster Datasets). Here, we are looking at yet another indirect 
way to calculate contour lines based on a raster using ggplot2. To add a contour 
lines layer, we can use the geom_contour function, mapping its z aesthetic to 
elevation so that contour lines are calculated according to it:

> haifa_relief_shade + 
+ geom_contour(aes(z = elev), colour = "black", alpha = 0.3)

The following screenshot shows the graphical output that is produced, showing 
semi-transparent contour lines on top of the shaded relief of Haifa:
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In the previous example, we generated a contour plot based on the values of 
an existing raster (the Haifa DEM in this case). Another common type of plot 
showing contours is one where contours denote the average density of events in a 
point pattern. Creating density contours is a common way to reduce the amount 
of information and make point pattern visualization more comprehensible. For 
example, when we have so many points that they overlap each other, it may be 
difficult to discern denser and sparser locations. Drawing contours is one possible 
solution to this problem.

A commonly used procedure to create density contours out of a point pattern is two-
dimensional kernel density estimation, available through the base R function named 
kde2d. The geom_density2d function is a ggplot2 adaptation of the latter function, 
creating contours out of a density surface calculated with kde2d.

As an example of geom_density2d, we will draw contours showing the average 
density of buildings in Haifa.

It should be noted that, in practice, density estimation is only meaningful 
for mapped point patterns, that is, point patterns where all events in the 
studied area have been detected. When detection is incomplete, density 
estimates will obviously be biased to an unknown degree in each location. 
In our case, for example, if the OpenStreetMap layer of Haifa buildings is 
incomplete, then a density estimate based on it will not be very useful as 
it will encompass underestimation to an unknown and variable degree.

Since density estimation requires a point pattern, we need to convert the buildings 
layer to a point layer by finding building centroids:

> haifa_buildings_ctr = gCentroid(haifa_buildings, byid = TRUE)
> haifa_buildings_ctr = as.data.frame(haifa_buildings_ctr)
> head(haifa_buildings_ctr)
         x       y
1 684013.4 3629679
2 688023.0 3629752
3 687645.0 3627410
4 685913.9 3631217
5 683144.4 3633649
6 683515.3 3628980
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Taking the haifa_relief_shade plot, we will now add both the buildings point 
pattern (using geom_point) and the density contours based on that pattern 
(using geom_density2d). Using the limits parameter of scale_x_continuous 
and scale_y_continuous, we will also limit our scope to a window centered at 
haifa_buildings_ctr. In addition, the colour aesthetic of the contours is mapped 
to ..level.., which corresponds to the contour breaks. The level variable is 
surrounded by .., which is a special way to signal to ggplot2 that we are referring to 
a variable generated by the layer itself, rather than a variable present in data.frame:

> haifa_relief_shade + 
+ geom_contour(aes(z = elev), colour = "black", alpha = 0.3) +
+ geom_point(data = haifa_buildings_ctr, size = 0.5) +
+ geom_density2d(data = haifa_buildings_ctr, 
+ aes(colour = ..level..)) +
+ scale_colour_gradient("Density", low = "blue", high = "red") +
+ scale_x_continuous(
+ limits = c(min(haifa_buildings_ctr$x)-2000, 
+ max(haifa_buildings_ctr$x)+2000)) +
+ scale_y_continuous(
+ limits = c(min(haifa_buildings_ctr$y)-2000, 
+ max(haifa_buildings_ctr$y)+2000))

The following screenshot shows the graphical output:
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In the preceding screenshot, we see three different legends as there are three 
different scales: elevation, hillshade, and buildings density. According to this map 
(again, assuming that all buildings have been mapped), we can see that the highest 
density of individual buildings per unit area is found on the eastern slopes  
of Mount Carmel.

Our final example in this section will be to plot the time series of interpolated 
standardized temperature maps, which we created in the previous chapter. We 
already took the trouble of reshaping the data into a tidy table; therefore, we do 
not need to take any preliminary processing steps. Using the spainT table and the 
following code section, we recreate a plot similar to the rasterVis version from the 
previous chapter with ggplot2:

> ggplot(spainT, aes(x = x, y = y, fill = value)) +
+ geom_raster() +
+ scale_fill_gradient2(
+ expression(paste("Value (", degree, "C)")), 
+ low = "blue", high = "red", limits = c(-4,4)) +
+ geom_contour(
+ aes(z = value), 
+ colour = "black", size = 0.1, breaks = c(-4:-1,1:4)) +
+ coord_equal() +
+ facet_grid(variable ~ year) +
+ sp_minimal

The following screenshot shows the graphical output:
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Note that we have once again utilized our sp_minimal custom-made theme to 
eliminate the axis annotation. The geom_contour function has been used to generate 
contour lines, similar to the Haifa DEM elevation contours, only that now we 
specified the exact vector of breaks, specifying where contour lines will be generated. 
Using facet_grid(variable~year), we arranged the facets in rows according to 
variable and in columns according to year.

Adding static maps from the Web
Nowadays, cartographers and spatial analysts are lucky to have a variety of online 
resources for map creation. We already used freely available satellite imagery, 
DEMs, and administrative border datasets, for example. However, to recover and 
process such datasets is not always a quick and straightforward task. We may need 
to figure out the spatial location in question, search for available resources, import 
them into R, and so on. On the other hand, several applications, such as Google Maps 
and OpenStreetMap, provide readily available maps of the entire earth with a variety 
of features that can be unreasonable to collect ourselves each time we want to create 
a background for a quick visualization (satellite and aerial imagery, roads, borders, 
town names, and so on).

The ggmap package is an extension to ggplot2, providing a simple interface to 
download static maps from such online resources and easily incorporate them as 
the background when creating maps within the ggplot2 framework. We already 
used the ggmap package for geocoding (see Chapter 5, Working with Points, Lines, 
and Polygons), and mentioned the introductory paper on this package by Kahle and 
Wickham (2013).

By static maps, we refer to maps that cannot be manipulated by scrolling, 
zooming in and zooming out, and so on, as opposed to dynamic maps 
that respond to such user feedback. The whole ggplot2 framework, 
in that sense, may be referred to as static plotting. It should be noted 
that dynamic plots and maps (and even entire web applications; see the 
shiny package) can also be produced in R. As for dynamic maps, for 
instance, we have already seen a short example of using the Google Earth 
software as a platform for dynamic spatial data display from R using the 
plotKML package (see Chapter 4, Working with Rasters). Another example 
is the plotGoogleMaps package, which can be used to display spatial 
data from R on top of interactive Google Maps in a web browser.

                           

http://                           /


Advanced Visualization of Spatial Data

[ 314 ]

The static maps incorporation with ggmap is quite simple in practice. Using the 
get_map function of the ggmap package, we first need to download the required 
background image. Then, we can use that image as a background layer with the ggmap 
function of the same package. Any additional layers and components can be added to 
the plot initiated with ggmap the same way as to a plot initiated with ggplot.

Our first example featuring ggmap will be to display the City of London buildings 
and their distances to the River Thames, as promised in Chapter 5, Working with 
Points, Lines, and Polygons. Since layers obtained with ggmap are always defined in a 
geographical CRS, we must first reproject the two relevant layers that we will plot to 
such a CRS as well. The layers we are going to plot, in this case, are as follows:

• buildings: City of London buildings
• city: City of London boundary polygon

The following expressions reproject these layers and save them as new objects 
buildings_geo and city_geo, respectively:

> buildings_geo = spTransform(buildings, 
+ CRS("+proj=longlat +datum=WGS84"))
> city_geo = spTransform(city, 
+ CRS("+proj=longlat +datum=WGS84"))

To specify the location for which we would like to download a map with get_map, 
we can use the coordinates of the buildings layer centroid, obtained in the  
following manner:

> buildings_ctr = coordinates(gCentroid(buildings_geo))
> buildings_ctr
            x        y
1 -0.09222641 51.51499

Next, we will fortify the buildings_geo layer, to make the data available in the 
form of a data.frame object. The region in this case is the osm_id attribute table 
column, which holds unique building identifiers:

> buildings_f = fortify(buildings_geo, region = "osm_id")
> head(buildings_f)
         long      lat order  hole piece       group        id
1 -0.09962729 51.51428     1 FALSE     1 100684524.1 100684524
2 -0.09952849 51.51429     2 FALSE     1 100684524.1 100684524
3 -0.09942449 51.51429     3 FALSE     1 100684524.1 100684524
4 -0.09941299 51.51424     4 FALSE     1 100684524.1 100684524
5 -0.09951839 51.51423     5 FALSE     1 100684524.1 100684524
6 -0.09961579 51.51422     6 FALSE     1 100684524.1 100684524
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Similar to what we saw in the county example, fortify removes the attribute table; 
therefore, we need to attach it back manually:

> colnames(buildings_f)[which(colnames(buildings_f) == "id")] = 
+ "osm_id"
> buildings_f = join(buildings_f, buildings@data, "osm_id")
> head(buildings_f)
         long      lat order  hole piece       group    osm_id
1 -0.09962729 51.51428     1 FALSE     1 100684524.1 100684524
2 -0.09952849 51.51429     2 FALSE     1 100684524.1 100684524
3 -0.09942449 51.51429     3 FALSE     1 100684524.1 100684524
4 -0.09941299 51.51424     4 FALSE     1 100684524.1 100684524
5 -0.09951839 51.51423     5 FALSE     1 100684524.1 100684524
6 -0.09961579 51.51422     6 FALSE     1 100684524.1 100684524
        name type dist_river
1 Temple Bar <NA>   378.7606
2 Temple Bar <NA>   378.7606
3 Temple Bar <NA>   378.7606
4 Temple Bar <NA>   378.7606
5 Temple Bar <NA>   378.7606
6 Temple Bar <NA>   378.7606

As the output shows, each building is now, once again, associated with a dist_
river value.

Finally, we will fortify the city_geo polygon as well. Since there is no attribute 
data of interest along with it, we do not have to join anything to the resulting data.
frame object in this case:

> city_f = fortify(city_geo, region = "CTYUA13NM")
> head(city_f)
         long      lat order  hole piece            group
1 -0.09671385 51.52319     1 FALSE     1 City of London.1
2 -0.09669776 51.52316     2 FALSE     1 City of London.1
3 -0.09668468 51.52317     3 FALSE     1 City of London.1
4 -0.09662369 51.52318     4 FALSE     1 City of London.1
5 -0.09646984 51.52282     5 FALSE     1 City of London.1
6 -0.09601742 51.52295     6 FALSE     1 City of London.1
              id
1 City of London
2 City of London
3 City of London
4 City of London
5 City of London
6 City of London
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Examining the group column in this particular case will reveal that it has the same 
value ("City of London.1") in all rows since the city layer is composed of a  
single polygon.

The layers are ready. What is left to be done is download the background and 
produce the map. To download the background, we will employ the get_map 
function. In order to efficiently work with this function, we need to provide 
arguments for just these three parameters:

• location: The center of the map to be downloaded, which can be a 
longitude/latitude pair.

• maptype: The type of map to be downloaded. This is source-specific, but 
for Google Maps (the default data source), "terrain", "satellite", 
"roadmap", and "hybrid" are applicable. See the following screenshot for an 
example of a "hybrid" map; for a "satellite" example, see the screenshot 
after the following screenshot.

The default data source, and the one we use here, is Google Maps. Note 
that the Google Static Maps API is used by get_map to download the 
images in such cases, and that by using this function, you are agreeing to 
the Google Maps API Terms of Service (https://developers.google.
com/maps/terms). Other data sources can be selected by modifying the 
source parameter of get_map, with possible sources being Google Maps 
("google"), OpenStreetMap ("osm"), Stamen Maps ("stamen"), or 
CloudMade maps ("cloudmade"). See ?get_map for details.

• zoom: The zoom level; an integer between 3 and 21 (the default value is 10). 
The best zoom value for a given map is determined by trying higher or lower 
magnifications and examining the result.

In our case, to get a static map of the City of London composed of a photographic 
map with roads and other features marked on top (a "hybrid" map), we can use the 
following expression:

> city_map = get_map(location = buildings_ctr, 
+ maptype = "hybrid", 
+ zoom = 14)
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Now, plotting this map on its own (to inspect the zoom argument's effect, for 
instance) can be done by simply typing ggmap(city_map), that returns a ggplot 
object by default, plotted in the graphical window—as we have already seen earlier. 
However, to add our supplementary layers based on the buildings_f and city_f 
objects, we need to incorporate them using two geom_polygon function calls. A few 
minor settings are also introduced in this particular example, which are as follows:

• To use muted colors, for a prettier color scale, the muted function of the 
scales package is being used

• Forcing the legend heading "Distance to river (m)" to be split over two 
lines is achieved using the new line symbol \n

• The labs function is used to easily modify axis titles, instead of modifying 
the scale itself with the scale functions

The code to produce the City of London buildings map appears as follows:

> library(scales)
> ggmap(city_map) + 
+ geom_polygon(data = buildings_f,
+ aes(x = long, y = lat, group = group, 
+ fill = dist_river), 
+ size = 0.1, colour = "black") +
+ geom_polygon(data = city_f, 
+ aes(x = long, y = lat, group = group), 
+ colour = "yellow", fill = NA) +
+ scale_fill_gradient2("Distance\nto river (m)", 
+ low = muted("blue"), high = muted("red"), 
+ midpoint = 500) +
+ labs(x = "Longitude", y = "Latitude")
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The resulting map looks like the following screenshot:

The map shows an up-to-date "hybrid" map of London downloaded from Google 
Maps, with the City of London boundary (in yellow) and buildings (in blue to red 
colors, according to their distance to the River Thames) on top of it.

To practice using ggmap some more, we will create another map with the following 
components encompassing all three vector layer types—points, lines, and 
polygons—along with a static map downloaded from the Web:

• A "satellite" static map background
• towns: A point layer of two towns' locations (see Chapter 7, Combining Vector 

and Raster Datasets)
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• track: A line layer of a GPS track (see Chapter 5, Working with Points, Lines, 
and Polygons)

• forests: A polygonal layer of two planted forests (see Chapter 7, Combining 
Vector and Raster Datasets)

As in the previous example, we first need to bring all of these layers to a  
geographic CRS:

> towns_geo = spTransform(towns, 
+ CRS("+proj=longlat +datum=WGS84"))
> track_geo = spTransform(track, 
+ CRS("+proj=longlat +datum=WGS84"))
> forests_geo = spTransform(forests, 
+ CRS("+proj=longlat +datum=WGS84"))

Next, we need to use fortify on the line and polygonal layers (track_geo and 
forests_geo) in order to bring them to a data.frame form. Point layers, as 
previously mentioned, have a much simpler structure than lines and polygons, so no 
fortify method exists for them. Instead, we can always manually construct a data.
frame object to represent a point layer. In the present case, for example, towns_
geo is a SpatialPoints object and towns_names is a character vector. Using the 
coordinates functions and data.frame, we can combine them into a data.frame 
object:

> towns_f = data.frame(coordinates(towns_geo), name = towns_names)
> towns_f
       lon      lat          name
1 34.87131 31.37936 Lahav Kibbutz
2 34.81695 31.37383       Lehavim
> track_f = fortify(track_geo)
> head(track_f)
      long      lat order piece group id
1 34.85472 31.36520     1     1   0.1  0
2 34.85464 31.36540     2     1   0.1  0
3 34.85458 31.36559     3     1   0.1  0
4 34.85454 31.36519     4     1   0.1  0
5 34.85443 31.36639     5     1   0.1  0
6 34.85445 31.36733     6     1   0.1  0
> forests_f = fortify(forests_geo, region = "name")
> head(forests_f)
      long      lat order  hole piece    group     id
1 34.87591 31.33830     1 FALSE     1 Kramim.1 Kramim
2 34.87559 31.33831     2 FALSE     1 Kramim.1 Kramim
3 34.87560 31.33858     3 FALSE     1 Kramim.1 Kramim
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4 34.87528 31.33858     4 FALSE     1 Kramim.1 Kramim
5 34.87529 31.33885     5 FALSE     1 Kramim.1 Kramim
6 34.87529 31.33912     6 FALSE     1 Kramim.1 Kramim

The three data.frame objects (towns_f, track_f, and forests_f) are now in 
memory. The missing component is just the background static map, which can be 
downloaded with get_map as follows:

> forests_ctr = coordinates(gCentroid(forests_geo))
> forests_map = get_map(location = forests_ctr, 
+ maptype = "satellite", 
+ zoom = 12)

The following code is used to combine all of these components into a single 
plot. Note that track_f is introduced through a geom_path layer (which is the 
appropriate geometry for spatial lines) and forests_f is introduced using geom_
polygon. The point layer towns_f is added as a geom_text layer, rather than geom_
point, in order to display the towns' locations as name labels instead of points. The 
label aesthetic of geom_text controls the text that each point is associated with, 
which in our case is the name column that holds town names.

> ggmap(forests_map) + 
+ geom_polygon(data = forests_f, 
+ aes(x = long, y = lat, group = group, colour = id), 
+ fill = NA) +
+ geom_path(data = track_f, 
+ aes(x = long, y = lat), 
+ colour = "yellow") +
+ geom_text(data = towns_f, 
+ aes(x = lon, y = lat, label = name), 
+ colour = "white", size = 2.5, fontface = "bold") +
+ scale_colour_discrete("Forest") +
+ labs(x = "Longitude", y = "Latitude")
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The resulting map is shown in the following screenshot:

This map shows the towns' locations (as white text labels), the GPS track (as a  
yellow line), and the forest borders (as polygons, with border colors according to  
the forest identity).
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Making 3D plots with lattice
Three-dimensional visualization, although undesirable for certain purposes 
(where precise interpretation is important, such as in the scientific literature), 
can nevertheless be particularly impressive and aesthetically appealing. In this 
section, we are going to use lattice to create three-dimensional plots of spatial 
and nonspatial data, which is not possible to do with ggplot2 since it only 
allows two-dimensional plotting. The lattice graphics framework and syntax 
are no less complex than those of ggplot2, and a single section is far too short to 
comprehensibly review the subject. Our purpose here is much more modest: to show 
some of the things that can be achieved and inspire interested readers to investigate 
further. For more information on lattice, readers are referred to the authoritative 
overview in the book by package author Deepayan Sarkar, Lattice: Multivariate Data 
Visualization with R, Springer, which was published in 2008.

As already mentioned in Chapter 2, Working with Vectors and Time Series, lattice is 
an R package defining a graphics system in R (in addition to base R and ggplot2). 
We have already been using lattice indirectly, in fact, since the levelplot function 
from the rasterVis package is an adaptation of a function with the same name  
from lattice.

It is worth noting that lattice is not the only package that can 
be used for three-dimensional visualization in R. The most notable 
alternatives are the base R function called persp, which can be 
used to create plots analogous to the ones we are going to create 
with lattice, and the rgl package, which allows you to create 
dynamic, rotatable 3D plots.

There are, generally speaking, two main types of three-dimensional plots. We can 
plot points (also known as point clouds or 3D scatterplots) or grids/surfaces. In both 
cases, the input data comes in the form of (x,y,z) coordinate sets, but to create a grid, 
these points need to be equally spaced along the x and y axes, while in point clouds 
there is no such restriction. For example, in statistics, we may have a dataset with 
two independent variables and one dependent one, and we may wish to plot the 
observed data points (as points in 3D space), the predicted surface generated by a 
regression model (as a 3D grid), or both. In lattice, the cloud function can be used 
to create a three-dimensional scatterplot, while the wireframe function can be used 
to plot three-dimensional grids. In the following two examples, we will concentrate 
on wireframe, but keep in mind that points can be plotted essentially the same way 
with cloud.
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Our first example will involve the already familiar Haifa DEM, and this time we 
are going to create a three-dimensional representation of this raster. The best way 
to pass data on to lattice is through a data.frame object (although, unlike with 
ggplot2, other options are also possible). To create a three-dimensional plot, the 
data.frame needs to contain three columns, holding the x, y, and z coordinates. The 
following code section creates a data.frame, named dem_df, after the DEM is five-
fold aggregated (to make the grid sparser and visually simpler):

> dem_df = as.data.frame(aggregate(dem, 5), xy = TRUE)
> dem_df = dem_df[complete.cases(dem_df), ]
> colnames(dem_df)[3] = "z"
> head(dem_df)
           x       y         z
123 693841.3 3648773  4.000000
124 694291.3 3648773  5.647059
125 694741.3 3648773  7.250000
126 695191.3 3648773  6.500000
127 695641.3 3648773  9.550000
128 696091.3 3648773 11.300000

Before applying wireframe, we need to figure out the right aspect ratio for our 3D 
plot. The default aspect ratio for the dimensions of the 3D box encompassing the 
plot is 1:1:1, referring to the x, y, and z axis lengths, so that the box forms a cube. This 
ratio is specified with the aspect parameter of wireframe, which accepts a two-
element vector specifying the y/x and z/x ratios (with the default being c(1,1)). 
In the case of dem_df, the data represents geographical distances on all three axes. 
Unless our DEM, by any chance, represents a cubical geographic extent, these aspect 
ratios are inappropriate. For example, similar to 2D plots produced with ggplot2, 
we are usually interested in equal cell dimensions on the x and y axes. To accomplish 
this, we need the y/x ratio to correspond to the ratio of the coordinates' range of y 
and x. For example, if our DEM represents a rectangle of 100 meters on the x axis and 
200 meters on the y axis, to correctly represent it with wireframe, we would have 
to specify a y/x aspect ratio of 2 (200/100). In our case, the ranges of values on each 
axis are as follows:

> x_range = diff(range(dem_df$x, na.rm = TRUE))
> x_range
[1] 21600
> y_range = diff(range(dem_df$y, na.rm = TRUE))
> y_range
[1] 36000
> z_range = diff(range(dem_df$z, na.rm = TRUE))
> z_range
[1] 527.0933
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The correct y/x ratio is thus equal to y_range/x_range or 1.666667. As for the 
z/x ratio, since the z axis range of 527.0933 (the difference, in meters, between the 
lowest and highest points of the DEM) is much smaller than either the x or y axes 
ranges, drawing the 3D plot with realistic proportions between elevation and x-y 
distances (z_range/x_range or 0.02440247) would result in a very flat image, 
with the relief hardly protruding. Unless we make an image of a small area with 
very steep topography, it is very common to use an exaggerated z to x-y distance 
ratio in 3D topographic plots, thus making the topography more tangible. Choosing 
a z/x aspect ratio is really a matter of taste. For this particular plot, a seven-fold 
exaggeration was chosen, but lower or higher values are also appropriate. It is 
obviously important to declare the fact that exaggeration has been used when such 
an image is used in a publication.

Now that we have decided which aspect ratios we are going to use, we are ready to 
apply wireframe on dem_df. Let's first see the code and the image produced and 
then review its components:

> library(lattice)
> wireframe(z ~ x * y, 
+ data = dem_df,
+ drape = TRUE, 
+ colorkey = TRUE,
+ col.regions = terrain.colors(100),
+ screen = list(z = 165, x = -60, y = 0),
+ aspect = c(y_range/x_range, 7*(z_range/x_range)),
+ zoom = 1.1)
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The following screenshot shows the graphical output:

The first thing to note is that the lattice syntax is analogous to the base R plotting, 
in the sense that we have distinct plotting functions for each type of plot (such 
as plot or wireframe), and each function has a set of parameters covering all 
modifiable elements of the respective plot type. This is very different from the 
ggplot2 approach, where a plot is constructed layer by layer using numerous 
function calls rather than just one.
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As for the set of parameters we used in this case (which is only a small fraction of all 
parameters that wireframe has), here is a short explanation for each one:

• x: In case the data is a data.frame object, this argument should be a formula 
specifying the columns to use, as a formula object with the dependent 
variable to the left of the ~ operator and the independent variables to the right, 
separated by * (for example, z~x*y means we plot z as a function of x and y).

• data: The data.frame where the values come from.
• drape: Determines whether the surface will be covered with color (TRUE) or 

remain a simple skeleton of intersecting lines (FALSE).
• colorkey: Determines whether a legend is drawn (TRUE) or not (FALSE) 

alongside the plot.
• col.regions: The vector of colors used to draw the surface, analogous to the 

colours parameter in ggplot2.
• screen: A set of parameters defining the viewing direction by specifying the 

x, y, and z rotation with respect to the origin (it is really a matter of trial and 
error to come up with a list of arguments giving the desired perspective).

• aspect: The aspect ratios of the three-dimensional box encompassing the 
plot. The effect of this parameter was discussed earlier. In this case, a seven-
fold exaggeration of the z axis is specified by multiplying the true z/x ratio 
by 7 in 7*(z_range/x_range).

• zoom: A scale factor to magnify or shrink the plot.

It is important to keep in mind that three-dimensional plots are useful to display any 
kind of three-dimensional dataset and not just topographic surfaces. For example, 
returning to the spatio-temporal dataset s that we created from the MODIS images 
time series (see Chapter 6, Modifying Rasters and Analyzing Raster Time Series), we can 
produce a three-dimensional image with:

• Time on the x axis
• Space (y coordinate, in this case) on the y axis
• NDVI on the z axis
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Similarly to the previous example, we first have to create a data.frame object, which 
we will name s_df, out of the raster s. Using the combination of as.matrix and 
as.data.frame, we can convert s to a data.frame with columns corresponding to 
s columns and rows corresponding to s rows (remember that using as.data.frame 
directly on a raster results in data.frame with rows representing raster cells, which 
is not what we want in this case):

> s_df = as.data.frame(as.matrix(s))

Since we know that the columns of s represent dates of image acquisition, we can 
assign dates as the column names:

> colnames(s_df) = dates$date
> s_df[1:5, 1:5]
  2000-02-18 2000-03-05 2000-03-21 2000-04-06 2000-04-22
1   0.341684   0.397015   0.408640   0.416793   0.359633
2   0.341664   0.396391   0.428758   0.427817   0.352741
3   0.349044   0.405022   0.426911   0.429224   0.352297
4   0.351129   0.413696   0.434334   0.417303   0.344761
5   0.358012   0.408954   0.439244   0.411540   0.344320

Since we also know that the rows of s correspond to y axis spatial coordinates, we 
can assign these coordinates to an additional column (named coord). To obtain the 
vector of y coordinates of a raster, we can use the yFromRow function of the raster 
package. All that is left to do after that is to melt the data.frame in order to move 
the dates from separate columns into a single one:

> s_df$coord = yFromRow(r)
> s_df = melt(s_df, 
+ id.vars = "coord", 
+ variable.name = "date", 
+ value.name = "ndvi")
> head(s_df)
    coord       date     ndvi
1 3494750 2000-02-18 0.341684
2 3494250 2000-02-18 0.341664
3 3493750 2000-02-18 0.349044
4 3493250 2000-02-18 0.351129
5 3492750 2000-02-18 0.358012
6 3492250 2000-02-18 0.342920
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What we have here is a data.frame representing a regular (in the x-y direction) 
three-dimensional grid, so in principle everything is ready to apply wireframe. 
Unfortunately, however, lattice does not have an automatic method to format date 
values and draw an appropriate set of tick marks and labels (such as what we have 
seen in ggplot2 with scale_x_date earlier). Therefore, we are compelled to give up 
the Date formatting of the date column in s_df. Since what we have is an annual-
scale series, a simple way to make proper labels is to convert the dates to numeric 
values representing year fractions. For example, 2000-1-1 can become 2000, 2000-1-2 
can become 2000+1/365=2000.003, and so on. Although it would not be difficult to 
write our own function to make such a calculation, there already is a function in the 
lubridate package that does exactly that, called decimal_date:

> library(lubridate)
> s_df$date = decimal_date(as.Date(s_df$date))
> head(s_df)
    coord     date     ndvi
1 3494750 2000.131 0.341684
2 3494250 2000.131 0.341664
3 3493750 2000.131 0.349044
4 3493250 2000.131 0.351129
5 3492750 2000.131 0.358012
6 3492250 2000.131 0.342920

The lubridate package contains a very helpful set of convenience 
functions to work with dates and times more easily than through 
base R packages. For more information on this package, see the 
introductory paper by Grolemund and Wickham (2011).

The resulting data.frame can now be passed to wireframe:

> wireframe(ndvi ~ date * coord, 
+ data = s_df, 
+ drape = TRUE, 
+ arrows = FALSE,
+ col.regions = 
+ colorRampPalette(c("darkred","white","darkblue"))(100),
+ screen = list(z = 15, x = -55, y = 10),
+ aspect = c(0.3, 0.2),
+ panel.aspect = c(0.45),
+ lty = 0,
+ scales = list(arrows = FALSE, cex = 0.6),
+ xlab = list("Time"),
+ ylab = list("Y", cex = 0),
+ zlab = list("NDVI", cex = 0),
+ zoom = 0.95)
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The graphical output is shown in the following screenshot:

This time, the colorRampPalette function was used within the wireframe function 
call to create a custom color scale (going from dark red, through white, and to dark 
blue). An interesting point to note in this respect is that the function call colorRamp
Palette(c("darkred","white","darkblue")) in fact returns a function. Indeed, 
there is no reason why the returned object of a function cannot be another function. 
The returned function is then used to create a vector of color codes (analogous to 
the way we did so with built-in functions such as terrain.colors). The other 
parameters used in the latter wireframe function call (arrows, panel.aspect, lty, 
scales, xlab, ylab, and zlab) refer to minor details regarding plot appearance and 
we will not discuss them here (see ?wireframe for more information).

The plot itself shows the periodic behavior of NDVI, which we already visualized 
in Chapter 6, Modifying Rasters and Analyzing Raster Time Series, where NDVI was 
mapped to color alone (rather than to both colors and the z axis position, as in the 
present visualization), and so the plot was two-dimensional. We will leave it up to 
the reader to decide which version is prettier or easier to interpret. The important 
point here is that spatio-temporal data is inherently three-dimensional and therefore 
it is only natural to consider three-dimensional visualization of such data.
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Summary
In this chapter, you learned some of the most useful methods for advanced 
visualization of spatial data in R, using the packages ggplot2, ggmap, and lattice. 
It was shown how these tools can be used to conclude a spatial analysis procedure 
and create publishable maps and plots of the results, all within the R environment. 
In this context, it has been noted that not everything can be accomplished in R, 
and at times we need to migrate to traditional GIS software or graphic editors 
for interactive customization of the graphic output. Nevertheless, visualization 
in R is extremely flexible, while at the same time bringing all of the benefits of 
programming. Once you become more familiar with the techniques presented in this 
chapter, it is almost inevitable that R will become the primary tool of choice for data 
visualization. I sincerely hope that after completing this book you feel the same way 
about geospatial data analysis in R.
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External Datasets  
Used in Examples

Most of the code examples in this book use data from external files. To reproduce the 
examples, you are encouraged to download these files from the book's website and 
then copy them to a single directory on the hard drive. In the example code, the files 
are assumed to reside in C:\Data. To use a different directory, the examples code 
should be modified accordingly.

The external files in this book's examples, in an alphabetical order of first filenames, 
are listed in the following table:

Dataset Associated files Description
Daily meteorological 
data for Albuquerque 
International Airport

338284.csv

GHCND_documentation.pdf

Daily climatic records 
from the Albuquerque 
International Airport, 
New Mexico, United 
States meteorological 
station. Downloaded 
from the NOAA Climate 
Data Online website at 
http://www.ncdc.
noaa.gov/cdo-web. 
Accessed May 2014.
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Dataset Associated files Description
Monthly 
meteorological data 
for Spain

343452.csv

GHCNDMS_documentation.pdf

Monthly climatic records 
from meteorological 
stations in Spain. 
Downloaded from 
the NOAA Climate 
Data Online website at 
http://www.ncdc.
noaa.gov/cdo-web. 
Accessed May 2014.

US Census data CO-EST2012-Alldata.csv

CO-EST2012-alldata.pdf

US Census County 
Population Change 
2012 data. Downloaded 
from the United 
States Census Bureau 
at https://www.
census.gov/popest/
data/counties/
totals/2012/CO-
EST2012-alldata.
html. Accessed  
May 2014.

Administrative areas 
of England and Wales

CTYUA_2013_EW_BFE.docx

CTYUA_DEC_2013_EW_BFE.dbf

CTYUA_DEC_2013_EW_BFE.prj

CTYUA_DEC_2013_EW_BFE.sbn

CTYUA_DEC_2013_EW_BFE.sbx

CTYUA_DEC_2013_EW_BFE.shp

CTYUA_DEC_2013_EW_BFE.shp.
xml

CTYUA_DEC_2013_EW_BFE.shx

Shapefile of 
administrative area 
boundaries in England 
and Wales. Downloaded 
from the Office for 
National Statistics at 
https://geoportal.
statistics.gov.uk. 
Accessed May 2014.

GPS log GPS_log.gpx GPS track record from a 
trip in Lahav and Dvira 
forests. Downloaded 
from a GPS device.
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Dataset Associated files Description
OpenStreetMap 
Shapefile of buildings 
in Haifa

haifa_buildings.cpg

haifa_buildings.dbf

haifa_buildings.prj

haifa_buildings.qpj

haifa_buildings.shp

haifa_buildings.shx

A polygonal Shapefile 
of buildings based 
on OpenStreetMap 
data (http://www.
openstreetmap.org). 
Accessed May 2014.

OpenStreetMap 
Shapefile of natural 
areas in Haifa

haifa_natural.cpg

haifa_natural.dbf

haifa_natural.prj

haifa_natural.qpj

haifa_natural.shp

haifa_natural.shx

A polygonal Shapefile 
of natural areas, based 
on OpenStreetMap 
data (http://www.
openstreetmap.org). 
Accessed May 2014.

Portion of Landsat 
satellite image of 
central Israel obtained 
on October 15, 1998

landsat_15_10_1998.tif A six-band raster, 
corresponding to 
Landsat bands 1-5 and 7. 
Image taken on October 
15, 1998. Downloaded 
from http://
earthexplorer.
usgs.gov/ and 
preprocessed to obtain 
reflectance values.

Portion of Landsat 
satellite image of 
central Israel obtained 
on October 4, 2000

landsat_04_10_2000.tif A six-band raster, 
corresponding to 
Landsat bands 1-5 and 7. 
Image taken on October 
4, 2000. Downloaded 
from http://
earthexplorer.
usgs.gov/ and 
preprocessed to obtain 
reflectance values.
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Dataset Associated files Description
Portion of Landsat 
satellite image of 
central Israel obtained 
on September 11, 2003

landsat_11_09_2003.tif A six-band raster, 
corresponding to 
Landsat bands 1-5 
and 7. Image taken 
on September 11, 
2003. Downloaded 
from http://
earthexplorer.
usgs.gov/ and 
preprocessed to obtain 
reflectance values.

OpenStreetMap 
Shapefile of buildings 
in London

london_buildings.CPG

london_buildings.dbf

london_buildings.prj

london_buildings.shp

london_buildings.shx

A polygonal Shapefile 
of buildings based 
on OpenStreetMap 
data (http://www.
openstreetmap.org). 
Accessed May 2014.

OpenStreetMap 
Shapefile of natural 
areas in London

london_natural.CPG

london_natural.dbf

london_natural.prj

london_natural.shp

london_natural.shx

A polygonal Shapefile 
of natural areas based 
on OpenStreetMap 
data (http://www.
openstreetmap.org). 
Accessed May 2014.

A portion of NDVI 
images of central 
Israel from MODIS 
satellite data from 
February 18, 2000 to 
April 6, 2012

modis.tif A 280-band raster,with 
NDVI images for the 
period February 18, 
2000 to April 6, 2012. 
Data obtained from 
the MODIS product 
MOD13A1. Downloaded 
from http://
earthexplorer.
usgs.gov/.

Dates of acquisition of 
images in each layer 
in modis.tif

modis_dates.csv Table with 
supplementary 
information (dates) 
regarding each layer in 
modis.tif.
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Dataset Associated files Description
A sample raster file 
for demonstration 
in Chapter 1, The R 
Environment

rainfall.tif Annual rainfall amount 
in northern and central 
Israel, interpolated from 
meteorological stations 
data.

Digital Elevation 
Model (DEM) layer of 
Spain

spain_elev.tif DEM data from the 
SRTM dataset (see 
http://srtm.
csi.cgiar.org/). 
Downloaded through 
R and preprocessed by 
reprojection, masking, 
and aggregation to 900 
meters resolution.

GADM Shapefile of 
the USA counties with 
FIPS codes

USA_2_GADM_fips.cpg

USA_2_GADM_fips.dbf

USA_2_GADM_fips.prj

USA_2_GADM_fips.qpj

USA_2_GADM_fips.shp

USA_2_GADM_fips.shx

Polygons corresponding 
to the second level 
administrative division 
(counties) of the USA 
with several attributes 
such as county names 
and Federal Information 
Processing Standards 
(FIPS) code.
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arguments
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using, in Universal Kriging (UK)  
interpolation  264-267

CSV file
climatic data, reading from  49
data.frame object, writing  74
table, creating from  67, 68

D
data fields

calculating  73
data.frame class

using, for tabular data representation  64
data.frame object

object structure, examining  68, 69
subsetting  70-72
writing, to CSV file  74

data structures, R
data, storing in  23
vectors  28

dates series
character values, converting to dates  50
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subsetting, based on dates  55
working with  48

dcast
used, for shifting between long and wide 

formats  86-90
ddply function

used, for aggregation  91-96
default vectors

creating  39
deterministic model

about  242
examples  242

Digital Elevation Model (DEM)  107, 335

E
equality conditional operator (==)  31
error messages

dealing with  20
expressions

arithmetic operators  15, 18
error messages  20

evaluating  15
functions, using  18
help page  21
logical operators  15-18
warning  20

extend function  189
external datasets  331-335
external references  337
extract function  232

F
facet_grid function  294
faceting  287
facet_wrap function  294
Federal Information Processing Standards 

(FIPS)  140
focal filtering  196
focal function  195
fortify function  299
function

about  45
calling, for operation performance  23
default values, setting for arguments  47
defining  46
using  18
using, with several parameters  37

function call
multiple argument, supplying  37, 38

G
gDifference function  165, 169
gDistance function  171, 227
geocode function  136
geom_contour function  287
geom_density2d function  287
geometrical properties, vector layers

logical values  152
numeric values  152
spatial layers  152
working with  151-155

geometries, vector layers
joining, with tabular data  172-177
lines  139
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points  135
polygons  140

Geometry Engine Open Source (GEOS)  152
Geospatial Data Abstraction Library 

(GDAL)  107
ggmap

used, for plotting  282
ggplot2

all-in-one environment  298
automation  298
overview  282-291
predefined themes  288
reproducibility  298
saving  296, 297
URL  284
used, for plotting  282

ggsave function  296
gIntersection function  165-169
gIsValid function  156
GPS Exchange Format (GPX)  139
graphical functions

about  56
graphics systems, in R  60, 61
output, saving  59
used, for displaying vectors  58, 59

graphics systems, in R
base graphics  60
ggplot2  60
lattice  60

gstat.cv function  255

H
hillShade function  199, 201
hillshade layer  199

I
Inkscape

URL  291
Integrated Development  

Environment (IDE)  11
interpolation method

inverse distance weighted (IDW)  
interpolation  249

Ordinary Kriging (OK) interpolation  249
Universal Kriging (UK) interpolation  249

inverse distance weighted (IDW)  
interpolation

using  249-257

J
join operation

used, for joining tables  96-99

L
lattice

about  60, 61
used, for creating 3D plots  322-329

layer
components  285
functions  286

leave-one-out  
cross-validation (LOOCV)  255

length function  40
levelplot function  116
Light Detection and Ranging (LIDAR)  180
lines  139
logical operators, R  16, 17
logical vectors

used, for vector subsetting  42
loops

used, for executing code section  77, 78

M
mask function  217
matrix

raster, transforming  122, 123
used, for representing two-dimensional 

data  102-105
using  102

matrix function, parameters
byrow  102
data  102
ncol  102
nrow  102
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melt function
used, for shifting between long and wide 

formats  86-90
merge function  181
missing values

dealing with  43
detecting, in vectors  44
effect, on data  43
used, for performing calculations  

on vectors  45
multiband rasters

creating  110, 111

N
nearest-neighbor interpolation

using  246-249
Near Infrared (NIR)  109
nonspatial data

plotting  291-296
Normalized Difference Vegetation Index 

(NDVI)  117
Not A Number (NaN)  20
numeric vectors of indices

used, for vector subsetting  40, 41

O
object

removing, from memory  32
saving, with assignment operator  30, 31

object types, R
about  21, 22
data, storing in data structures  23
functions  23
sample session  23-25

Ordinary Kriging (OK) interpolation
about  249
using  258-262

overlay operations, raster  123-128

P
paste function  35
plotRGB function  149

point data
spatial interpolation  242-245

points
about  135-138
used, for raster value extraction  230-234

polygons
about  140
used, for raster value extraction  235-238

predefined symbols, R
FALSE  20
Inf  20
NA  20
NULL  20

projectRaster function  192

R
R

downloading  8
installing  7, 8
object types  21
URL  8
using, as calculator  9, 10

R symbols
%b 52
%B 52
%d 52
%m 52
%y 52
%Y 52

raster
about  102
aggregating  184, 185
algebra  123
creating, from vector layers  212
cropping  183, 184
data structures  107
disaggregating  184, 186
files, writing  112
merging  182
multiband rasters, creating  110
multiple layer subsets  120, 121
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overlay operations  123
properties, exploring  112-116
reclassification  123
resolution, changing  180, 181
single band rasters, creating  108
spatial extent, changing  180, 181
subsetting  117-119
transforming, into array  122, 123
transforming, into matrix  122, 123
trimming  183, 184
values, accessing as vector  119
values, accessing with matrix notation  120
values, masking  216-219
values, reclassifying  129-131
vector layers, creating from  220

raster algebra  123-128
raster files

writing  112
rasterize function

about  212, 214
field parameter  215
fun parameter  215

raster reprojection
about  186, 192-194
projectRaster function, using  192

raster resampling
about  186-191
resample function, using  186, 187

raster-to-contours conversion  222-224
raster-to-points conversion  220-222
raster-to-polygons conversion  224-230
raster value extraction

points, using  230-234
polygons, using  235-238

rasterVis package
URL  116

raster values
accessing, as vector  119
accessing, with matrix notation  120
reclassifying  129-131

R code
editing, approaches  11-13

recycling principle, vectors  36, 37
repetitive vectors

creating  39
resample function  186
R Graphical User Interface (RGui)  9
root mean square error (RMSE)  241
row.names function  154
RStudio

installing  14
URL  14, 15
using  14

S
scales  287
sep parameter  35
seq function  37
several parameters

using, with functions  37
Short Wave Infrared (SWIR)  109
Shuttle Radar Topography  

Mission (SRTM)  180
single band rasters

creating  108, 109
spatial data

plotting  297-313
spatial dimensions  206-210
spatial interpolation, of point data

about  242
covariates, using in Universal Kriging (UK) 

interpolation  264
inverse distance weighted (IDW), using  249
nearest-neighbor interpolation, using  246
Ordinary Kriging (OK)  

interpolation, using  258
performing  242-245

spatial prediction model
calibrating  242
deterministic model  242
selecting  243
statistical model  242

spatial rasters
representing  108
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spatial relations, between vector layer
about  156
distances between  

geometries, calculating  171
new geometries, creating  165-170
relations, querying  157-164

spatio-temporal raster data
aggregating  201
spatial dimensions  206-209
time dimension  201-206

SRTM data
URL  180

static maps
adding, from Web  313-321

statistical model
about  242
examples  242

stringsAsFactors parameter  65
substrings  39

T
table

creating, from CSV file  66-68
creating, from separate vectors  64, 65
data fields, calculating  73
data.frame object structure,  

examining  68, 69
data.frame object, subsetting  70-72
data.frame object, writing to CSV file  74

tables
aggregating  84
contributed packages, using  85, 86
joining, with join operation  96-99
reshaping  84

tabular data
geometries, joining with  172
representing, with data.frame class  64

tapply function
used, for applying function  79-82
used, for automated calculations  78

text function  154
themes  287

Thiessen polygon  249
time dimension  201-206
time series

examining  54
working with  48

Tinn-R text editor
URL  13

topographic aspect
calculating  198

topographic slope
calculating  198

topography-related calculations
aspect, calculating  198
elevation data, using  198
hillshade layer  199, 201
slope, calculating  198

trim function  184
two-dimensional data

representing, with matrix  102-105

U
Universal Kriging (UK) interpolation

about  249
covariates, using  264-267

V
values

masking, in raster  216-219
vector layer

attribute table, accessing  142-145
geometrical calculations  147
geometrical properties,  

working with  151-156
relations, querying between  157-163
reprojecting  147-151
spatial relations  156
subsetting  145, 146

vector layer, properties
attribute table  134
attribute table, accessing  143
creating, from raster  220
data structures  134
examining  141
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exploring  140
geometry component  134
properties, exploring  140
raster, creating from  212
rasterizing  212-215
raster-to-contours conversion  222, 223
raster-to-points conversion  220-222
raster-to-polygons conversion  224-230
subsetting  140

vectors
about  28
assignment operator, used for  

saving object  30, 31
default vectors, creating  39
displaying, with base graphics  56-59
element-by-element operations  34, 35
missing values, detecting  44
missing values, used for performing  

calculations  45
objects, removing from memory  32
properties, summarizing  32-34

raster values, accessing as  119
recycling principle  36, 37
repetitive vectors, creating  39
subsetting  40
subsetting, with logical vectors  42
subsetting, with numeric  

vectors of indices  40, 41
types  28, 29

vectors, types
logical vector  29
sequential numeric vectors   28

Voronoi polygon  249

W
warning

dealing with  20
Web

static maps, adding  313-321
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Hadoop
ISBN: 978-1-78216-328-2              Paperback: 238 pages

Set up an integrated infrastructure of R and Hadoop 
to turn your data analytics into Big Data analytics

1. Write Hadoop MapReduce within R.

2. Learn data analytics with R and the  
Hadoop platform.

3. Handle HDFS data within R.

4. Understand Hadoop streaming with R.

Bioinformatics with R Cookbook
ISBN: 978-1-78328-313-2             Paperback: 340 pages

Over 90 practical recipes for computational biologists 
to model and handle real-life data using R

1. Use the existing R packages to handle  
biological data.

2. Represent biological data with attractive 
visualizations.

3. An easy-to-follow guide to handle  
real-life problems in bioinformatics such as  
next-generation sequencing and  
microarray analysis.

Please check www.PacktPub.com for information on our titles
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Machine Learning with R
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Learn how to use R to apply powerful machine 
learning methods and gain an insight into  
real-world applications

1. Harness the power of R for statistical 
computing and data science.

2. Use R to apply common machine learning 
algorithms with real-world applications.

3. Prepare, examine, and visualize data  
for analysis.

4. Understand how to choose between  
machine learning models.

Statistical Analysis with R
ISBN: 978-1-84951-208-4             Paperback: 300 pages

Take control of your data and produce superior 
statistical analyses with R

1. An easy introduction for people who are new  
to R, with plenty of strong examples for you  
to work through.

2. This book will take you on a journey to  
learn R as the strategist for an ancient  
Chinese kingdom!

3. A step-by-step guide to understand R, its 
benefits, and how to use it to maximize  
the impact of your data analysis.

Please check www.PacktPub.com for information on our titles
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