
 www.allitebooks.com

http:// /
http://www.allitebooks.org

Learning R for Geospatial
Analysis

Leverage the power of R to elegantly manage crucial
geospatial analysis tasks

Michael Dorman

BIRMINGHAM - MUMBAI

 www.allitebooks.com

http:// /
http://www.allitebooks.org

Learning R for Geospatial Analysis

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014

Production reference: 1191214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-436-7

www.packtpub.com

 www.allitebooks.com

http:// /
http://www.allitebooks.org

Credits

Author
Michael Dorman

Reviewers
Dr. Amrinder Arora

Dan Hammer

Baburao Kamble

Dr. Robin Lovelace

Dipanjan Sarkar

Dr. Makhan Virdi

Commissioning Editor
Akram Hussain

Acquisition Editor
Greg Wild

Content Development Editor
Mohammed Fahad

Technical Editor
Ankita Thakur

Copy Editors
Pranjali Chury

Adithi Shetty

Project Coordinator
Rashi Khivansara

Proofreaders
Simran Bhogal

Stephen Copestake

Maria Gould

Ameesha Green

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

 www.allitebooks.com

http:// /
http://www.allitebooks.org

About the Author

Michael Dorman is currently a PhD candidate at the Department of Geography
and Environmental Development, Ben-Gurion University of the Negev. His research
explores the response of planted pine forests to changing climate through remote
sensing and dendrochronology. He uses R extensively for time series and spatial
statistical analyses and visualization. In spring 2013, he prepared and taught a
course named Introduction to Programming for Spatial Data Analysis at the Ben-Gurion
University of the Negev, introducing R as an environment for spatial data analysis to
undergraduate Geography students. The course material served as a foundation for
this book.

Michael holds a Master's degree in Life Sciences from the Ben-Gurion University of
the Negev and a Bachelor's degree in Plant Sciences in Agriculture from The Hebrew
University of Jerusalem. He has authored or coauthored eight papers in scientific
literature and actively participated in 18 scientific conferences.

I would like to express my gratitude to all the people from whom
I have learned more about R and to those who have created this
wonderful programming language. A special thanks goes to the
excellent team at Packt Publishing for making this book possible.

This book is dedicated to my wife, Hila, who unconditionally
supported me every step of the way.

 www.allitebooks.com

http:// /
http://www.allitebooks.org

About the Reviewers

Dr. Amrinder Arora is an adjunct faculty member in the Department of
Computer Science at the George Washington University. He teaches graduate and
undergraduate courses in Computer Science, mostly related to the design and
analysis of computer algorithms and the design of data structures. He is also the
author of the book Analysis and Design of Algorithms, Cognella Academic Publishing.
He has been conferred the Instructor of the Year Award by the Department of
Computer Science at the George Washington University and has received a VIP
Grants Award by the Bowie State University. You can read more about his research
at http://www.standardwisdom.com.

As part of his industry experience, he has served in the management teams of
leading technology companies, including BizMerlin, Edifecs, and NTELX. As part of
the Affordable Care Act, Dr. Arora designed a health exchange connector, a leading
product in the $200 million market to connect insurance companies (payers) to the
health insurance exchanges. As a leading expert in risk targeting, Dr. Arora led the
technical design for US FDA's PREDICT system, which currently screens more than
16 million imports a year. His efforts in supporting FDA's PREDICT program were
recognized by the FDA commissioner, Dr. Margaret Hamburg. The transportation
management system designed by Dr. Arora for the port of Aqaba in Jordan won the
award for the most innovative product by the Intelligent Transportation Society
of America.

Dr. Arora earned an undergraduate degree in Computer Science from the Indian
Institute of Technology, Delhi, and a Master's degree and doctorate, both in
Computer Science, from the George Washington University. He served as a reviewer
for numerous journals and conferences and many of his reviews have also been
published in ACM Computing Reviews.

 www.allitebooks.com

http:// /
http://www.allitebooks.org

Dan Hammer is a data scientist and environmental economist who served as a
Presidential Innovation Fellow at NASA as part of the White House program. He is
a PhD student at University of California, Berkeley, and was formerly the Chief Data
Scientist at the World Resources Institute, where he led the technical team behind
Global Forest Watch. Dan writes code in Python, R, and Clojure on subjects ranging
from spatial econometrics to information theory. He is currently reviewing Clojure for
Data Science, Packt Publishing.

Baburao Kamble is an assistant research professor of Remote Sensing and
Geospatial Data Analytics at the University of Nebraska-Lincoln (UNL). Currently,
he works at UNL on developing machine learning and data mining algorithms using
Big Data tools and techniques for climate and weather data. He has been involved
in teaching Geospatial Information Sciences, Data Analysis using R, Python for
Geospatial Data Analytics, and MATLAB courses at the graduate level. He is also
the author of the upcoming book Practical Data Analysis Cookbook, Packt Publishing. He
likes to spend his free time with new and interesting data science developments.

Dr. Robin Lovelace is an environmental geographer with 5 years of experience
using R for spatial analysis, map making, and statistics. He has coauthored the
popular free and open source online tutorial Introduction to visualising spatial
data in R (2014), and teaches R to a range of professional and academic audiences.

Robin's latest book Spatial microsimulation with R, CRC Press (which will be published
in 2015) demonstrates methods to generate and analyze multilevel data. By
combining individual and geographical-level data, the technique can provide new
insights into complex behaviors, for example, as an input into agent-based models.

Robin believes passionately in using open source technology to empower people
to create a sustainable, post-carbon world—one in which we no longer depend on
burning fossil fuels for a high quality of life.

 www.allitebooks.com

http:// /
http://www.allitebooks.org

Dipanjan Sarkar is a data engineer at DataWeave, one of India's top Big Data
analytics start-ups, where he works on data semantics, information extraction, natural
language processing, and machine learning. Prior to joining DataWeave, he worked
as a graduate technical intern at Intel and received a Master's degree in Information
Technology from the International Institute of Information Technology, Bangalore.
Dipanjan is a technology enthusiast and loves Python and the start-up culture.

Dr. Makhan Virdi is a researcher at the Oak Ridge National Laboratory. He
received his PhD from the University of South Florida in 2013. His current research
interests include management and visualization of geospatial and time series data
from satellite imagery for biogeochemical dynamics.

Dr. Virdi is also an independent researcher with a passion for using embedded
electronics, robotics, and knowledge discovery to create machine augmented
intelligence systems. In his spare time, he works on robots, ambient intelligence, and
smart homes. You can read more about his research at TheXLabs.com.

 www.allitebooks.com

http:// /
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

 www.allitebooks.com

http:// /
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: The R Environment 7

Installing R and using the command line 7
Downloading R 8
Installing R 8
Using R as a calculator 9

Coding with R beyond the command line 11
Approaches to editing R code 11
Installation of RStudio 14
Using RStudio 14

Evaluating expressions 15
Using arithmetic and logical operators 15
Using functions 18
Dealing with warning and error messages 20
Getting help 21

Exploring the basic object types in R 21
Everything is an object 22
Storing data in data structures 23
Calling functions to perform operations 23
A short sample session 23

Summary 25
Chapter 2: Working with Vectors and Time Series 27

Vectors – the basic data structures in R 28
Different types of vectors 28
Using the assignment operator to save an object 30
Removing objects from memory 32
Summarizing vector properties 32

 www.allitebooks.com

http:// /
http://www.allitebooks.org

Table of Contents

[ii]

Element-by-element operations on vectors 34
The recycling principle 36

Using functions with several parameters 37
Supplying more than one argument in a function call 37
Creating default vectors 39
Creating repetitive vectors 39
Substrings 39

Creating subsets of vectors 40
Subsetting with numeric vectors of indices 40
Subsetting with logical vectors 42

Dealing with missing values 43
Missing values and their effect on data 43
Detecting missing values in vectors 44
Performing calculations on vectors with missing values 45

Writing new functions 45
Defining our own functions 46
Setting default values for the arguments 47

Working with dates and time series 48
Specialized time series classes in R 48
Reading climatic data from a CSV file 49
Converting character values to dates 50
Examining our time series 54
Creating subsets based on dates 55

Introducing graphical functions 56
Displaying vectors using base graphics 56
Saving graphical output 59
The main graphical systems in R 60

Summary 61
Chapter 3: Working with Tables 63

Using the data.frame class to represent tabular data 64
Creating a table from separate vectors 64
Creating a table from a CSV file 66
Examining the structure of a data.frame object 68
Subsetting data.frame objects 70
Calculating new data fields 73
Writing a data.frame object to a CSV file 74

Controlling code execution 75
Conditioning execution with conditional statements 75
Repeatedly executing code sections with loops 77

http:// /

Table of Contents

[iii]

Automated calculations using the apply family of functions 78
Applying a function on separate parts of a vector 79
Applying a function on rows or columns of a table 83

Inference from tables by joining, reshaping, and aggregating 84
Using contributed packages 85
Shifting between long and wide formats using melt and dcast 86
Aggregating with ddply 91
Joining tables with join 96

Summary 99
Chapter 4: Working with Rasters 101

Using the matrix and array classes 102
Representing two-dimensional data with a matrix 102
Representing more than two dimensions with an array 105

Data structures for rasters in the raster package 106
Creating single band rasters 108
Creating multiband rasters 110
Writing raster files 112
Exploring a raster's properties 112

Subsetting rasters 117
Accessing raster values as a vector 119
Accessing raster values with the matrix notation 120
Subsets involving more than one layer 120
Transforming a raster into a matrix or an array 122

Overlay and reclassification of rasters 123
Raster algebra and overlay operations 123
Reclassifying raster values 129

Summary 131
Chapter 5: Working with Points, Lines, and Polygons 133

Data structures for vector layers in R 134
Points 135
Lines 139
Polygons 140

Exploring vector layer properties and subsetting 140
Examining vector layer properties 141
Accessing the attribute table of vector layers 142
Subsetting vector layers 145

Geometrical calculations on vector layers 147
Reprojecting vector layers 147
Working with the geometrical properties of vector layers 151

http:// /

Table of Contents

[iv]

Spatial relations between vector layers 156
Querying relations between vector layers 157
Creating new geometries 165
Calculating distances between geometries 171

Joining geometries with tabular data 172
Summary 177

Chapter 6: Modifying Rasters and Analyzing Raster
Time Series 179

Changing the spatial extent or resolution of rasters 180
Merging rasters 181
Cropping and trimming 183
Aggregating and disaggregating 184

Raster resampling and reprojection 186
Raster resampling 186
Raster reprojection 192

Filtering and clumping 195
Topography-related calculations with elevation data 198

Slope and aspect calculation 198
Hillshade 199

Aggregating spatio-temporal raster data 201
The time dimension 201
Spatial dimensions 206

Summary 210
Chapter 7: Combining Vector and Raster Datasets 211

Creating rasters from vector layers 212
Rasterizing vector layers 212
Masking values in a raster 216

Creating vector layers from a raster 220
Raster-to-points conversion 220
Raster-to-contours conversion 222
Raster-to-polygons conversion 224

Extracting raster values based on vector layers 230
Extracting by points 230
Extracting by polygons 235

Summary 239
Chapter 8: Spatial Interpolation of Point Data 241

Spatially interpolating point data 242
Nearest-neighbor interpolation 246
IDW interpolation 249

http:// /

Table of Contents

[v]

Interpolation using Ordinary Kriging 258
Using covariates in Universal Kriging interpolation 264

Mapping the annual temperature in Spain 268
Summary 279

Chapter 9: Advanced Visualization of Spatial Data 281
Plotting with ggplot2 and ggmap 282

An overview of ggplot2 282
Plotting nonspatial data 291
Saving the ggplot2 plots 296
Plotting spatial data 297
Adding static maps from the Web 313

Making 3D plots with lattice 322
Summary 330

Appendix A: External Datasets Used in Examples 331
Appendix B: Cited References 337
Index 339

http:// /

http:// /

Preface
The defining feature of spatial data analysis is the reference within the data being
analyzed to locations on the surface of the earth. This is a very broad subject
encompassing distinct areas of expertise such as spatial statistics, geometric
computation, and image processing.

In practice, spatial data is commonly stored, viewed, and analyzed in Geographic
Information System (GIS) software, of which the most well-known example is ArcGIS.
However, most often, menu-based interfaces of GIS software are too narrow in scope
to meet specialized demands or too inflexible to feasibly accomplish customized
repetitive tasks. Writing scripts rather than using menus or working in combination
with external software are two commonly used paths to solve such problems.
However, what if we can use a single environment, combining the advantages of
programming and spatial data analysis capabilities with a comprehensive ecosystem
of computational tools that are readily implementable in customized procedures?

This book will demonstrate that the R programming language is indeed such an
environment and teach you how to use it in order to perform various spatial data
analysis tasks.

Most currently available books on this subject are focused on advanced applications
such as spatial statistics, assuming you have prior knowledge of R and the respective
scientific domains. Yet, introductory material on R from the point of view of a spatial
data analyst, which is focused on introductory topics such as spatial data handling,
computation, and visualization, is scarce. This book aims to fill that gap.

http:// /

Preface

[2]

What this book covers
Chapter 1, The R Environment, introduces the R environment, shows how to
install R, and how to use it. Some of the basic concepts related to writing R code
are introduced.

Chapter 2, Working with Vectors and Time Series, covers the basic data structure in R,
which is vector. The main types of vectors (numeric, character, and logical) as well as
basic operations on vectors (such as subsetting and summarizing vector properties) are
reviewed. Working with dates and displaying a graphical output, two highly relevant
abilities commonly applied later in the book, are also introduced in this chapter.

Chapter 3, Working with Tables, focuses on tables and automated calculations in R.
This chapter teaches you how tabular data can be handled and how calculations
of a repetitive nature based on tabular data can be carried out using loops and
conditional statements. Reshaping and joining tables (vital skills for any data
analysis) are also covered.

Chapter 4, Working with Rasters, brings the reader into the realm of spatial data
analysis in R, starting with the raster data structure. Basic operations such as
import and export, visualization and summary, and subsetting and extraction of
raster values are covered here. Simple manipulations of raster values, including
assignment, raster algebra, and reclassification are also presented.

Chapter 5, Working with Points, Lines, and Polygons, covers the second type of spatial
data structures—vector layers. The basic methodology of working with point, line, and
polygon layers is reviewed, followed by the coverage of more advanced operations,
including reprojection, geometric calculations, spatial querying, and joining new data
to existing layers.

Chapter 6, Modifying Rasters and Analyzing Raster Time Series, covers several advanced
themes associated with raster data analysis in R. Geometric modifications of raster
data, such as cropping, mosaicking, and aggregating are reviewed. Operations related
to cell neighborhoods, including focal filtering, clumping, and topography-related
calculations are covered next. Additional themes include resampling, reprojection,
and handling of spatio-temporal raster data.

Chapter 7, Combining Vector and Raster Datasets, integrates the material presented in
Chapter 5, Working with Points, Lines, and Polygons, and Chapter 6, Modifying Rasters
and Analyzing Raster Time Series, by demonstrating how rasters and vector layers can
be combined in a single analysis. Transformation between raster and vector data
structures as well as data extraction from a raster based on vector layers are covered
in this chapter.

http:// /

Preface

[3]

Chapter 8, Spatial Interpolation of Point Data, presents the subject of spatial
interpolation in R from a practical point of view. Using a real-world case study,
several common interpolation methods are applied and evaluated. An automated
interpolation procedure is then constructed in order to create a series of interpolated
maps from point data.

Chapter 9, Advanced Visualization of Spatial Data, shows readers how to produce
publication-quality maps mainly using the popular ggplot2 R package.

Appendix A, External Datasets Used in Examples, provides a summary of the datasets
used in the examples.

Appendix B, Cited References, lists the cited resources.

What you need for this book
To follow through the examples in this book, all you need to do is install R (which
is available for free) and download the example datasets from the book's website.
Some of the examples also require you to have an Internet connection to download
additional datasets and R packages from the R environment.

Who this book is for
This book is intended for anyone who wants to learn how to efficiently analyze
geospatial data with R. This book primarily targets GIS analysts, researchers,
educators, and students who are working with spatial data and are interested in
expanding their capabilities through programming. The book assumes familiarity
with basic geographic information concepts (such as spatial coordinates) and no
prior experience with R and/or programming.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, folder names, filenames, file extensions, and pathnames are
shown as follows: "Here, we created a data.frame object named df by combining
the vectors num, lower, and upper."

http:// /

Preface

[4]

A block of code is set as follows:

> num = 1:4
> lower = c("a","b","c","d")
> upper = c("A","B","C","D")
> df = data.frame(num, lower, upper)
> df
 num lower upper
1 1 a A
2 2 b B
3 3 c C
4 4 d D

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Under the Getting
Started section, select the download R link."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors
http:// /

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code and data
You can download the example code and data files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you purchased this
book elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/4367OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http:// /

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http:// /

The R Environment
In this chapter, we are going to introduce the R environment, learn how to install and
use it, and introduce some of the main concepts related to writing R code. First, the
technical issues of setting up the work environment are covered. After that, we will
have R running and ready to receive instructions from the user. The basic concepts
related to working in the R environment are also introduced.

In this chapter, we'll cover the following topics:

• Installing R
• Using R's command line
• Editing code using text editors
• Executing simple commands
• Arithmetic operations
• Logical operations
• Calling functions
• Understanding errors and warning messages
• Checking which class a given object belongs to

Installing R and using the command line
In this section, we'll cover the installation of R before getting started with the
R command line.

http:// /

The R Environment

[8]

Downloading R
The R software can be downloaded from the R Project website at http://www.r-
project.org/. The following screenshot shows the main page of this website:

Perform the following steps to download R from the R Project website:

1. Under the Getting Started section, select the download R link.
2. Select one of the download sources (it does not matter which one).
3. Choose the appropriate version for your operating system, such as Linux,

Mac OS, or Windows.
4. If you are using Windows, which is the option we will cover from now on,

select install R for the first time.
5. Finally, click on the download link. This may vary according to the name of

the current R version, such as Download R 3.1.0 for Windows.

Installing R
After downloading the file, follow the installation instructions. Note that if you are
using a 64-bit version of Windows, you will be asked to select whether to install a 32-
bit version, 64-bit version, or both. It is recommended that you use the 64-bit version
in this case since it allows a single process to take advantage of more than 4 GB of
RAM (this is helpful, for example, when loading a large raster file into memory).

http://www.r-project.org/
http://www.r-project.org/
http:// /

Chapter 1

[9]

Using R as a calculator
Start R by navigating to Start | All Programs | R and choose the appropriate
shortcut from there (such as R x64 3.1.0 when running the 3.1.0 64-bit version of R).

The main screen of the R Graphical User Interface (RGui) looks like the
following screenshot:

The window you see when starting the program, R Console, is the command line.
The > symbol followed by a flashing cursor indicates that the system is waiting for
instructions from the user. When the user types an expression into the command
line and presses Enter, that expression is interpreted from the R language into the
language that the computer processor understands, and the respective operation that
expression entails is performed. As you may have noted, very few point-and-click
menu options are found within the R environment as almost all operations are only
accessible through code.

http:// /

The R Environment

[10]

First, we will try simple calculations. For example, type the expression 5+5. The
result 10 will appear on the next line followed by the > symbol, indicating that all
instructions have been executed and the system is waiting for new ones:

> 5+5
[1] 10

What has just happened is that the expression 5+5 was interpreted and the respective
instruction (add 5 and 5) was sent to the processor. The processor found the result
(which is 10), which was then returned and printed in the command-line window.
As we will see later, the result was saved neither in the RAM nor in the long-term
computer memory, such as the hard disk. The meaning of the [1] part is that the
result is a vector, with the first member being the number 10. Vectors will be covered
in the next chapter.

Note that an R expression can be several lines long. For example, if we type 5*
and press Enter, the symbol + appears on the next line, indicating that R is
waiting for the remaining part of the expression (5 multiplied by ...):

> 5*
+ 2
[1] 10

If you change your mind and do not wish to complete the expression, you can press
Esc to cancel the + mode and return to the command line. Pressing Esc can also be
used to terminate the current process that is being executed. (We didn't get a chance
to try that out yet since simple operations such as 5+5 are executed very quickly.)

While using the command line, you can scroll through the history
of previously executed expressions with the ↑ and ↓ keys. For
example, this can be useful to modify a previously executed
expression and run it once more.
You can clear all text from the command-line window by
pressing Ctrl + L.

http:// /

Chapter 1

[11]

Throughout this book, code sections display both the expressions that the user enters
(following the > symbol) and the resulting output. Reading both the inputs and the
outputs will make it easier to follow the code examples. If you wish to execute the
code examples in R and to investigate what happens when modifying them (which
is highly recommended), only the input expressions should be entered into the R
interpreter (these are the expressions followed by the >, or + if the expression spans
several lines, symbols). Therefore, copying and pasting the entire content of code
sections directly from the book into the interpreter will result in errors, since R will
try to execute the output lines. The input, in fact, will not be correctly interpreted
either since input expressions include > and + symbols that are not part of the code.
To make things easier, all code sections from this book are provided on the book's
website as plain R code files.

Coding with R beyond the command line
Working in R exclusively through the command line is rarely appropriate in practice,
except when running short and simple commands (such as those introduced in
this chapter) or when experimenting with new functions. For more complicated
operations, we will save our code to a file in order to have the capability, for
example, to work on it on several instances or to share it with other users. This
section introduces approaches to editing and saving R code.

Approaches to editing R code
Typing the expression 5+5 into the command line was easy enough. However, if we
perform more complicated operations, we'll have to edit and save our code for later
use. There are three main approaches to edit R code:

• Using R's built-in editor
• Using a text editor
• Using an Integrated Development Environment (IDE)

Using R's built-in editor is the simplest way to edit R code. In this case, you don't
need to use any software other than R. To open the code editor, simply navigate to
File | New script from R's menu. A blank text window will open. You can type code
in this window and execute it by clicking on Ctrl + R, either after selecting the code
section that you want to execute (the selected section will be sent to the interpreter)
or by placing the cursor on the line that you want to execute (that line will be sent to
the interpreter).

http:// /

The R Environment

[12]

The following screenshot shows the way RGui appears with both a command-line
window and a code editor window:

You can save the R code that you have written to a file at any time (File | Save
as...) in order to be able to work on it another day. An R code file is a plain text
file, usually with the suffix .R. To open an existing R code file, simply select it after
navigating to the File | Open script... menu.

It is sometimes easier to use other text editors since they provide more options
than R's basic text editor. For example, one can edit R code in the all-purpose
Notepad++ text editor, which is available for free at http://notepad-plus-plus.
org/. Notepad++ can be customized to edit code written in different programming
languages (including R). By selecting the appropriate language, the specific function
names and operators of that language will be highlighted in different colors for
easier interpretation by the user.

http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http:// /

Chapter 1

[13]

The following screenshot shows Notepad++ with the menus used to select the R
programming language:

A code section can be transferred to the R interpreter simply by copying it from the
text editor and then pasting into the R command line. To automatically pass code
into the R interpreter (such as by clicking Ctrl + R), it might be necessary to install
an add-on component such as the NppToR software for Notepad++ (which is freely
available at http://sourceforge.net/projects/npptor/), or use a text editor
such as Tinn-R (which is freely available at http://sourceforge.net/projects/
tinn-r/) that has this capability built in.

The most sophisticated way of editing R code is to use an IDE, where an advanced
text editor and the R interpreter portions are combined within a single window
(much like in RGui itself), in addition to many other advanced functions that may
be of help in programming and are not found in RGui. These can include automatic
code completion, listings of libraries and functions, automatic syntax highlighting (to
read code and output more easily), debugging tools, and much more.

Note that word processors such as Microsoft Word or OpenOffice
Writer are not appropriate to edit computer code. The reason is that
they include many styles and symbols that will not be recognized by
R (or by any programming language for that matter), and this may
cause problems. For example, the quote symbol “ (into which the
word processor may automatically convert to the symbol ") will not be
recognized by R, resulting in an error.

http://sourceforge.net/projects/npptor/
http://sourceforge.net/projects/tinn-r/
http://sourceforge.net/projects/tinn-r/
http:// /

The R Environment

[14]

Installation of RStudio
RStudio is an IDE designed specifically for R, and it is the recommended way
of editing R code. You will quickly discover that even without using any of the
advanced options, code editing in RStudio is more convenient than the previously
mentioned alternatives. RStudio can be freely downloaded from www.rstudio.com.

Using RStudio
When you open RStudio, you will see the R command-line window and several
additional utility panes that can display the code editor, help files, graphic output,
and so on, during the course of working in R. To open a new R code file, navigate
to File | New File | R Script. A code editing window, such as the one shown in the
following screenshot, will appear:

In RStudio, code can be sent from the editor window into the command-line window
in the same way as in RGui, that is, by pressing Ctrl + R either on a code section
or on a single line of code. You can quickly switch to the code editor or to the
command-line pane by clicking on it with the mouse or by pressing Ctrl + 1 or Ctrl
+ 2, respectively. You can also have several R code files open in different tabs within
the code editor pane.

www.rstudio.com
http:// /

Chapter 1

[15]

More details can be found on the RStudio website (www.rstudio.com) or in other
resources such as Mark P.J. van der Loo and Edwin de Jonge's book Learning RStudio
for R Statistical Computing, Packt Publishing (2012).

All references mentioned in this book are collectively provided in
Appendix B, Cited References.

Evaluating expressions
We now know how to enter code for R to interpret, whether directly entering it
into R's command line or sending it to the command line from a code editor. Our
next step will be to see how to use the simplest operations: arithmetic and logical
operators and functions.

Using arithmetic and logical operators
The standard arithmetic operators in R are as follows:

• +: Addition
• -: Subtraction
• *: Multiplication
• /: Division
• ^: Power

The following examples demonstrate the usage of these operators:

> 5+3
[1] 8
> 4-5
[1] -1
> 1*10
[1] 10
> 1/10
[1] 0.1
> 2^3
[1] 8

 www.allitebooks.com

www.rstudio.com
http:// /
http://www.allitebooks.org

The R Environment

[16]

Parentheses can be used to construct more elaborate expressions, as follows:

> 2*(3+1)
[1] 8
> 5^(1+1)
[1] 25

It is better to use parentheses even when it is not required to make the code clearer.

Another very useful symbol is #. All code to the right of this symbol is not
interpreted. Let's take a look at the following example:

> 1*2 # *3
[1] 2

The # symbol is helpful for adding comments within the code to explain what
each code segment does, for other people (or oneself, at a later time of reference)
to understand it:

> 5+5 # Adding 5 and 5
[1] 10

Note that R ignores spaces between the components of an expression:

> 1+ 1
[1] 2

Conditions are expressions that have a yes/no answer (the statement can be either
true or false). When interpreting a conditional expression, R returns a logical value,
either TRUE for a true expression or FALSE for a false expression. A third option, NA,
which stands for Not Available, is used when there is not enough information to
determine whether the expression is true or false (NA values will be discussed in the
next chapter).

The logical operators in R are summarized as follows:

• ==: Equal to
• >: Greater than
• >=: Greater than or equal to
• <: Smaller than
• <=: Smaller than or equal to
• !=: Not equal to

http:// /

Chapter 1

[17]

• &: and
• |: or
• !: not

For example, we can use condition operators to compare between two numbers
as follows:

> 1<2
[1] TRUE
> 1>2
[1] FALSE
> 2>2
[1] FALSE
> 2>=2
[1] TRUE
> 2!=2
[1] FALSE

The and (&) and or (|) operators can be used to construct more complex expressions
as follows:

> (1<10) & (10<100)
[1] TRUE
> (1<10) & (10>100)
[1] FALSE
> (1<10) | (10<100)
[1] TRUE
> (1<10) | (10>100)
[1] TRUE

As you can see in the preceding examples, when the expressions at both the sides
of the & operator are true, TRUE is returned; otherwise, FALSE is returned (refer to
the first two expressions). When at least one of the expressions at either side of the |
operator is true, TRUE is returned; otherwise, FALSE is returned (refer to the last
two expressions).

http:// /

The R Environment

[18]

Two other useful conditional operators (== and !=) are used for testing equality and
inequality, respectively. These operators are opposites from one another since a pair
of objects can be either equal or non-equal to each other.

> 1 == 1
[1] TRUE
> 1 == 2
[1] FALSE
> 1 != 1
[1] FALSE
> 1 != 2
[1] TRUE

As you can see in the preceding examples, when using the == operator, TRUE is
returned if the compared objects are equal; otherwise FALSE is returned (refer to
expressions 1 and 2). With != it is the other way around (refer to expressions 3 and 4).

The last operator that we are going to cover is the not operator (!). This operator
reverses the resulting logical value, from TRUE to FALSE or from FALSE to TRUE. This
is used in cases when it is more convenient to ask whether a condition is not satisfied.
Let's take a look at the following example:

> 1 == 1
[1] TRUE
> !(1 == 1)
[1] FALSE
> (1 == 1) & (2 == 2)
[1] TRUE
> (1 == 1) & !(2 == 2)
[1] FALSE

Using functions
In mathematics, a function is a relation between a set of inputs and a set of outputs
with the property that each input is related to exactly one output. For example, the
function y=2*x relates every input x with the output y, which is equal to x multiplied
by 2. The function concept in R (and in programming in general) is very similar:

• The function is composed of a code section that knows how to perform a
certain operation.

• Employing the function is done by calling the function.
• The function receives one object, or several objects, as input (for example,

the number 9).

http:// /

Chapter 1

[19]

• The function returns a single object as output (for example, the number 18).
Optionally, it can perform other operations called side effects in addition
to returning the output.

• The type and quantity of the objects that a function receives as input
has to be defined in advance. These are called the function's parameters
(for example, a single number).

• The objects that a function receives in reality, at a given function call, are
called the function's arguments (for example, the number 9).

The most common (and the most useful) expressions in R are function calls. In
fact, we have been using function calls all along, since the arithmetic operators are
functions as well, which becomes apparent when using a different notation:

> 3*3
[1] 9
> "*"(3,3)
[1] 9

A function is essentially a predefined set of instructions. There are plenty of built-in
functions in R (functions that are automatically loaded into memory when starting
R). Later, you will also learn how to use functions that are not automatically loaded,
and how to define your own functions.

As you might have guessed from the previous example, a function call is composed
of the function name, followed by the function's arguments within parentheses and
separated by commas. For example, the function sqrt returns the square root of
its argument:

> sqrt(16)
[1] 4

R is case sensitive. For example, Sqrt and sqrt are treated as two
different names:

> Sqrt(16)

Error: could not find function "Sqrt"

When trying the first option, we receive an error message stating that
there is no function named Sqrt in memory.

http:// /

The R Environment

[20]

Dealing with warning and error messages
Error messages are printed when for some reason it is impossible to execute the
expression that we have sent to the interpreter. For example, this can happen when
one of the objects we refer to does not exist (refer to the preceding information box).
Another example is trying to pass an inappropriate argument to a function. In R,
character values are delimited by quotes. Trying to call a mathematical function on a
character understandably produces an error:

> "oranges" + "apples"
Error in "oranges" + "apples" : non-numeric argument to binary op$

The $ symbol at the end of the text message indicates that we
need to scroll rightwards in the command-line window to see
the whole message.

Warning messages are returned when an expression can be interpreted but the
system suspects that the respective employed method is inappropriate. For example,
the square root of a negative number does not yield a number within the real
number system. A Not a Number (NaN) value is returned in such a case, along
with a warning:

> sqrt(-2)
[1] NaN
Warning message:
In sqrt(-2) : NaNs produced

R has a set of predefined symbols to represent special constant values, most of
which we already mentioned:

• NaN: Not a number
• NA: Not available
• NULL: An empty object
• TRUE and FALSE: Logical values
• Inf: Infinity (for example, try typing 1/0)

Unnecessary warnings and information messages, such as an
indication that a given operation has been successfully carried out, are
omitted from the code sections in this book to save space. However,
readers who reproduce the examples will occasionally see such
messages on the screen.

http:// /

Chapter 1

[21]

Getting help
A help page on every function in R can be reached by using the ? operator (or the
help function). For example, the following expression opens the help page for the
sqrt function:

> ?sqrt

The same result is achieved by typing help(sqrt).

On the other hand, the ?? operator searches the available help pages
for a given keyword (corresponding to the help.search function).
Another useful expression regarding the official R help pages is
help.start() that opens a page with links to R's official
introductory manuals.

The structure of all help files on functions is similar, usually including a short
description of what the function does, the list of its arguments, usage details, a
description of the returned object, references, and examples. The help pages can
seem intimidating at first, but with time they become clearer and more helpful for
reminding oneself of the functions' usage details.

Another important source of information on R is the Internet. Entering a question or a
task that we would like to perform (such as Googling r read raster file) into a web search
engine usually yields a surprising amount of information from forums, blogs, and
articles. Using these resources is inevitable when investigating new ways to utilize R.

Exploring the basic object types in R
So far, we have encountered two types of objects in R: numeric values (numeric
vectors, to be precise, as we will see in Chapter 2, Working with Vectors and Time
Series) and functions. In this section, we are going to introduce the key concept that
an object is an instance of a certain class. Then, we will distinguish between, for
operational purposes, the classes that are used to store data (data structures) and
classes that are used to perform operations (functions). Finally, a short sample code
that performs a simple GIS operation in R will be presented to demonstrate the
way themes introduced in this chapter (and those that will be introduced in Chapter
2, Working with Vectors and Time Series, and Chapter 3, Working with Tables) will be
applied for spatial data analysis in the later chapters of this book.

http:// /

The R Environment

[22]

Everything is an object
R is an object-oriented language; accordingly, everything in R is an object. Objects
belong to classes, with each class characterized by certain properties. The class to
which an object belongs to determines the object's properties and the actions we can
do with that object. To use an analogy, a gray Mitsubishi Super-Lancer model 1996
object belongs to the class car. It has specific attributes (such as color, model, and
manufacturer) for each of the data fields a car object has. It satisfies all criteria that
the car class entails; thus, the actions that are applicable to cars (such as igniting the
engine and accelerating or using the breaks) are also meaningful with that particular
object. In much the same way, a multi-band raster object in R will obligatorily have
certain properties (such as the number of rows and columns, and resolution) and
applicable actions (such as creating a subset of only the first band or calculating an
overlay based on all bands).

All objects that are stored in memory can be accessed using their names, which begin
with a character (without quotes; some functions, such as all arithmetic and logical
operators can be called using their respective symbol within quotes, such as in "*"
as we saw earlier). For example, sqrt is the name of the square root function object;
the class to which this object belongs is function. When starting R, a predefined set
of objects is loaded into memory, for example, the sqrt function and logical constant
values TRUE and FALSE. Another example of a preloaded object is the number π :

> pi
[1] 3.141593

The class function returns the class name of the object that it receives as
an argument:

> class(TRUE)
[1] "logical"
> class(1)
[1] "numeric"
> class(pi)
[1] "numeric"
> class("a")
[1] "character"
> class(sqrt)
[1] "function"

http:// /

Chapter 1

[23]

Storing data in data structures
From the point of view of a typical R user, all objects we handle in R can be divided
into two groups: data structures (which hold data) and functions (which are used to
perform operations on the data).

The basic components of all data structures are constant values, usually numeric,
character, or logical (the last code section shows examples of all three). The simplest
data structure in R is a vector, which is covered in Chapter 2, Working with Vectors
and Time Series. Later, we'll see how more complex data structures are essentially
collections of the simpler data structures. For example, a raster object in R may
include two numeric vectors (holding the raster values and its dimensions) and a
character vector (holding the Coordinate Reference System (CRS) information).
The object-oriented nature of the language makes things easier both for the people
who define the data structure classes (since they can build upon predefined simpler
classes, rather than starting from the beginning) and for the users (since they can
utilize their previous knowledge of the simpler data structure components to quickly
understand more complex ones).

Calling functions to perform operations
Objects of the second type—functions—are typically used to perform operations on
data structures. A function may have its influence limited to the R environment, or
it may invoke side effects affecting the environment outside of R. All functions we
have used until now affect only the R environment; a function to save a raster file, for
example, has an external effect—it influences the data content of the hard drive.

A short sample session
Finally, let's take a look at a complete code section that performs a simple spatial
analysis operation:

> library(raster)
> r = raster("C:\\Data\\rainfall.tif")
> r[120, 120] = 1000
> writeRaster(r, "C:\\Data\\rainfall2.tif")

http:// /

The R Environment

[24]

The task that this code performs is to read a raster file, rainfall.tif, from the disk
(look at the following screenshot to see its visualization in QGIS), change one of
its values (the one at row 120 line 120, into 1000) and write the resulting raster to a
different file.

The rainfall.tif file, as well as all other external data files used in this
book, is provided on the book's website so that the reader can reproduce
the examples and experiment with them. Refer to Appendix A, External
Datasets Used in Examples, for a summary of all data files encountered
throughout the book. R code files, containing all code sections that appear
in the book, are also provided on the book's website for convenience.

Do not worry if you do not understand all the lines of code given in the beginning of
this section. They will become clear by the time you finish reading Chapter 4, Working
with Rasters. Briefly, the first line of code tells R to load the set of functions that are
used to work with rasters (called the raster package), such as the raster and
writeRaster functions that we use here to read and write raster files. In the second
line, we read the requested file and load it into memory. In the third line of code,
we assign the value 1000 to the specified pixel of that raster. The fourth line of code
writes the new (modified) raster to the disk.

http:// /

Chapter 1

[25]

The task indeed sounds simple, but when we use desktop GIS software, it may not
be easy to perform through the menus and dialog box system (where direct access to
raster values may be unavailable). For example, we may have to create a new point
feature over the pixel that we want to change (120,120) in raster A, convert it to a
raster B (with the value of 1 at the (120,120) pixel and 0 in all other pixels), and then
use an overlay tool to say that we want the pixel in raster A that overlays the value
of 1 in raster B to have the value of 1000, while all other pixels retain their original
values. Finally, we might need to use an additional toolbox to export the new raster.
However, what if we need to perform this operation on several files or repeatedly on
a given file as new information comes in?

Generally speaking, when we use programming rather than menu-based interfaces,
the steps we have to take may seem less intuitive (writing code rather than scrolling,
clicking with the mouse, and filling out dialog boxes). However, we have much
more power with giving the computer specific instructions. The beauty of using
programming for data analysis, and using R for geospatial analysis in particular,
is not only that we gain greater efficiency through automation, but also that we get
closer to the data and discover a wide range of new possibilities to analyze it, some
of which may not even come to mind when we use a predefined set of tools
or menus.

Summary
In this chapter, we covered the basics of using R. At this point, you should have R
installed and you should be able to write and execute several basic commands from
the command line or from the text editor of your preference. The concepts of classes
and objects were also introduced, which are both important for the rest of the topics
that you will learn in this book. We are now ready to proceed to more complex data
structures and operations used in spatial data analysis.

The next chapter will be devoted to vectors, the basic data structures in R. Then,
we will introduce more complex data structures to represent nonspatial data in
Chapter 3, Working with Tables, and spatial data in Chapter 4, Working with Rasters,
and Chapter 5, Working with Points, Lines, and Polygons.

http:// /

http:// /

Working with Vectors and
Time Series

In this chapter, we are going to cover the basic data structure in R—a vector.
Understanding vectors is the foundation for all the subsequent chapters. You will
learn how to perform efficient operations on numeric and logical vectors and how
to create subsets. After this, you will learn how to write custom functions in order to
expand and customize R's capabilities. Working with dates and time series and the
use of graphical functions are introduced at the end of this chapter.

In this chapter, we'll cover the following topics:

• Creating, saving, and examining the three main types of vectors
• The principles of performing operations on vectors in R
• Using functions that have more than one argument
• Creating subsets of vectors
• Dealing with missing values in vectors
• Writing new functions
• Working with dates
• Displaying and saving graphical output

http:// /

Working with Vectors and Time Series

[28]

Vectors – the basic data structures in R
A vector is an ordered collection of values of the same type (or mode, in R
terminology). As mentioned in the previous chapter, the three types of values
that are useful for most purposes (including the topics of this book) are numeric,
character, and logical. In this section, you are going to learn about several methods
to create vectors, check the properties of interest for the given vectors, and perform
operations involving pairs of vectors. You are also going to learn how to save the
objects we create in the temporary computer memory via assignment.

Different types of vectors
Vectors are the most basic data structures in R since single elements (such as the
number 10) are also represented in R by vectors (of length 1). As we have previously
seen, when we enter a numeric value on the command line, it is printed on the
screen. The number in square brackets to the left of the value is, in fact, the position
of the leftmost element in the respective printed line. For example, the [1] part in
the following output means the first (and only) printed element, 10, of the particular
vector is at position 1:

> 10
[1] 10

Entering a value on the command line is, in fact, a shortcut for the
print function:

> print(10)

[1] 10

Vectors can be created from individual elements with the c function, which stands
for combine. Let's take a look at the following examples:

> c(1,5,10,4)
[1] 1 5 10 4
> c("cat","dog","mouse","apple")
[1] "cat" "dog" "mouse" "apple"

Sequential numeric vectors can be easily created with the : operator. Such vectors
have many uses in R. The : operator creates an ordered vector starting at the value to
the left of the : symbol and ending at the value to the right of the : symbol, as follows:

> 7:20
[1] 7 8 9 10 11 12 13 14 15 16 17 18 19 20

http:// /

Chapter 2

[29]

Or, when the first argument is larger than the second one:

> 33:24
[1] 33 32 31 30 29 28 27 26 25 24

A logical vector can also be created with the c function. Remember that TRUE and
FALSE are special values and not characters. Therefore, these values should be
typed without quotes:

> c(TRUE,FALSE,TRUE,TRUE)
[1] TRUE FALSE TRUE TRUE

However, in practice, the creation of logical vectors is usually associated with
employing a conditional operator on a vector rather than manually typing a
sequence of logical values. We will elaborate on this later.

There are several functions that we can use to convert between vector types. The
two most useful ones are as.numeric and as.character, which are used to convert
a vector to a numeric or character vector, respectively. There are other functions
to convert objects of a particular class into another, which we'll see in subsequent
chapters. Let's take a look at the following examples:

> 33:24
[1] 33 32 31 30 29 28 27 26 25 24
> as.character(33:24)
[1] "33" "32" "31" "30" "29" "28" "27" "26" "25" "24"
> as.numeric(as.character(33:24))
[1] 33 32 31 30 29 28 27 26 25 24

A factor is a special type of encoding for a vector, where the vector has a defined
set of acceptable values or levels. Such an encoding is most common in statistical
uses of R, for example, when defining categorical variables to identify treatments in
an experiment. Using factors is not essential for the purposes of this book. However,
encountering factors is inevitable when working with R (for example, when reading
a table from a file, character columns are encoded as factors by default), so at the
very least, we need to be aware of this data structure.

The factor function can be used to convert a vector into a factor:

> factor(c("cat","dog","dog"))
[1] cat dog dog
Levels: cat dog
> factor(c("cat","dog","dog","mouse"))
[1] cat dog dog mouse
Levels: cat dog mouse

http:// /

Working with Vectors and Time Series

[30]

As you can see, the acceptable levels of the resulting factor object (which are, by
default, defined as a set of unique values that the vector has) are printed along
with its values.

Using the assignment operator to save
an object
So far we have used R by entering standalone expressions on the command line.
As mentioned in the previous chapter, the returned objects are not saved anywhere
this way. Therefore, we cannot make sequential operations with each created object
serving as an input for the next step(s). However, saving intermediate result is
essential to automate processes.

Saving objects to the temporary memory is called assignment. By temporary,
we mean that the objects are deleted when we shut down the computer (or quit
R), as opposed to writing to a file on the hard drive, where the information will
permanently remain unless it's deleted. Assignment is performed by an assignment
expression, which is composed of the object we would like to save, the assignment
operator =, and the name we would like to give the new object. For example, we can
save the 1:10 sequential vector to an object named v as follows:

> v = 1:10

We can then access our newly created object using its name the same way we
accessed predefined objects (such as pi) in the previous chapter:

> v
[1] 1 2 3 4 5 6 7 8 9 10

http:// /

Chapter 2

[31]

There is another assignment operator in R, namely <-:
> v <- 1:10

Throughout this book, the = operator is used since it is easier to type.
Also, note the difference between the assignment operator = and the
equality conditional operator == (see the previous chapter). The =
operator is used for assignment:
> one = 1

> two = 2

> one = two

> one

[1] 2

> two

[1] 2

The == operator is used to compare:
> one = 1

> two = 2

> one == two

[1] FALSE

When assigning an object with a name that already exists in memory, the older object
is deleted and replaced by the new one:

> x = 55
> x
[1] 55
> x = "Hello"
> x
[1] "Hello"

The ls function returns a character vector with the names of all the user-
defined objects (in a given environment, with the default one being the global R
environment). For example, so far we have assigned four objects in memory:

> ls()
[1] "one" "two" "v" "x"

http:// /

Working with Vectors and Time Series

[32]

Removing objects from memory
We can remove objects from memory by using the rm function. Let's take a look at
the following examples:

> rm("v")
> ls()
[1] "one" "two" "x"

It is sometimes useful to remove all objects from memory. For example,
if we want to run a given code section without worrying that the
previously defined objects will interfere, this can be done by passing the
whole list of objects currently in memory to the rm function as follows:
> rm(list = ls())

> ls()

character(0)

The character(0) output indicates an empty character vector.
Removing all objects can be achieved by navigating to Misc | Remove
all objects (RGui) or Session | Clear workspace… (RStudio). The reason
for writing the list=ls() part will become evident after reading the
Using functions with several parameters section in this chapter.

Summarizing vector properties
Many functions in R are intended to work with vectors. The current section reviews
some commonly used functions that are used to find out vectors' properties.

For example, we may be interested in the mean, minimal, and maximal values of a
given vector. To get these, we can use the mean, min, and max functions, respectively:

> v = 1:10
> mean(v)
[1] 5.5
> min(v)
[1] 1
> max(v)
[1] 10

We can also get both the minimal and maximal values at once with the
range function:

> range(v)
[1] 1 10

http:// /

Chapter 2

[33]

The length function returns the number of elements a given vector has:

> v = c(4,2,3,9,1)
> length(v)
[1] 5

With logical vectors, we sometimes would like to know whether they contain at least
one TRUE value or whether all of their values are TRUE. This can be achieved with the
any and all functions, respectively:

> l = c(TRUE, FALSE, FALSE, TRUE)
> any(l)
[1] TRUE
> all(l)
[1] FALSE

If we would like to know how many TRUE values a vector contains, we can utilize the
default transformation from logical to numeric vectors when arithmetic functions are
used on the former:

> l = c(TRUE, FALSE, FALSE, TRUE)
> sum(l)
[1] 2

In this example, each TRUE value was first converted to 1 and each FALSE value to 0.
Therefore, the vector c(TRUE,FALSE,FALSE,TRUE) became the vector c(1,0,0,1)
and the sum of this vector's elements is 2.

The which function returns the positions of all the TRUE elements within a
logical vector:

> which(l)
[1] 1 4

Here, a vector of length 2 was returned since there are two TRUE values in the
vector l. The two values of this vector are 1 and 4 since the first TRUE value
occupies the first position in the vector l, while the second TRUE value occupies
the fourth position.

http:// /

Working with Vectors and Time Series

[34]

The related functions which.min and which.max return the position of
the minimal or maximal element in a numeric vector:
> which.min(v)

[1] 5

> which.max(v)

[1] 4

We are going to see another example with which.min later in this book.

The last useful function we will mention is the unique function, which returns the
unique elements of a vector; that is, it returns a set of elements the vector consists of
without repetitions. Let's take a look at the following examples:

> v = c(5,6,2,2,3,0,-1,2,5,6)
> unique(v)
[1] 5 6 2 3 0 -1

Element-by-element operations on vectors
As opposed to functions that treat the vector as a single entity (as seen in the
previous section), some functions work on each element of the vector as if it was
a separate entity and return a vector of the results (which, therefore, has the same
number of elements as the input vector). In fact, all arithmetic and logical operators
work this way, as shown in the following examples (we did not have a chance to
witness this since we always used vectors of length 1):

> 1:10 * 2
 [1] 2 4 6 8 10 12 14 16 18 20
> 1:10 - 10
 [1] -9 -8 -7 -6 -5 -4 -3 -2 -1 0
> sqrt(c(4,16,64))
[1] 2 4 8

In the first expression, we multiplied the vector (1, 2, ..., 10) by 2, which resulted in
a vector of 10 elements where the first element is equal to 1*2, the second is equal to
2*2, the third is equal to 3*2, and so on, up to 10*2.

Logical operators function in the same way, shown as follows:

> x = 1:5
> x
[1] 1 2 3 4 5
> x >= 3
[1] FALSE FALSE TRUE TRUE TRUE

http:// /

Chapter 2

[35]

Here, for each of the values 1, 2, 3, 4, 5, it has been evaluated whether the value is
larger or equal to 3, giving FALSE for 1 and 2 and TRUE for 3, 4, and 5.

If we want to check whether a given value from one vector is present in another,
we can use the %in% operator. With %in%, we basically ask whether the value(s) of a
vector on the left match any of the values of a vector on the right:

> 1 %in% 1:10
[1] TRUE
> 11 %in% 1:10
[1] FALSE

For these simple examples, we can do without the %in% operator (see the following
examples). Its utility will become apparent towards the end of this chapter, when we
want, for instance, to look for each element of a long vector A and check whether it
has a match in a long vector B. Here are the alternatives to the preceding expressions:

> any(1:10 == 1)
[1] TRUE
> any(1:10 == 11)
[1] FALSE

In these two examples, we encompass the logical operation within the any function
to check whether the resulting logical vector has at least one TRUE value.

Now, let's move on to character vectors. When working with character values, the
paste function can be useful to combine separate elements into a single character
string. The sep parameter of this function determines which characters will be
used to separate the values (a single space is the default). Let's take a look at the
following example:

> paste("There are", "5", "books.")
[1] "There are 5 books."

The paste function also works with vectors that have more than one element:

> paste("Image", 1:5)
[1] "Image 1" "Image 2" "Image 3" "Image 4" "Image 5"

Note that the paste function automatically converts numeric values into characters if
characters are supplied:

> x = 80
> paste("There are", x, "books.")
[1] "There are 80 books."

 www.allitebooks.com

http:// /
http://www.allitebooks.org

Working with Vectors and Time Series

[36]

The paste0 function does the same thing as paste, with the default
value for the sep parameter being nothing:
> paste(1, 2, 3, sep = "")

[1] "123"

> paste0(1, 2, 3)

[1] "123"

The recycling principle
In the previous chapter, we only used operators on two vectors of length 1. In this
chapter, so far, we have used operations involving one vector of length 1 and another
of length >1. What happens when we perform an operation involving two vectors of
length >1?

If we have two vectors of exactly the same length, the operation is performed on each
consecutive pair of elements taken from the two vectors, as follows:

> c(1,2,3) * c(10,20,30)
[1] 10 40 90

In this example, 1 is multiplied by 10, 2 is multiplied by 20, and 3 is multiplied
by 30, and the three results are combined into a single vector of length 3.

In case when the lengths of the two vectors are unequal, the shorter vector is recycled
before the operation is performed. In other words, values at the beginning of the
shorter vector are attached to its end, sequentially and as many times as necessary,
until the lengths of both vectors match. The simplest case, which we witnessed in the
previous section, is the one that involves one vector of length 1 and another vector of
length greater than 1. We can describe what happens in such a case as the recycling
of the vector that has one element until it matches the length of the longer vector.
For example, when executing the first of these two expressions, it is as if we are
performing the second:

> 1:4 * 3
[1] 3 6 9 12
> 1:4 * c(3,3,3,3)
[1] 3 6 9 12

The same way, in the following example, the vector c(3,5) is recycled until it is of
length 4, to c(3,5,3,5). The result is c(1,2,3,4) multiplied by c(3,5,3,5):

> c(1,2,3,4) * c(3,5)
[1] 3 10 9 20

http:// /

Chapter 2

[37]

When the length of the longer vector is not a multiple of the shorter vector, recycling
is incomplete and we receive a warning message. Nevertheless, the operation is
carried out. In the next example, the vector c(1,10,100) is of length 3, while the
vector 1:5 is of length 5. The vector c(1,10,100) is recycled to c(1,10,100,1,10),
which is the same length as the vector c(1,2,3,4,5), as follows:

> 1:5 * c(1,10,100)
[1] 1 20 300 4 50
Warning message:
In 1:5 * c(1, 10, 100) :
 longer object length is not a multiple of shorter object length

Using functions with several parameters
A function in R can have more than one parameter. In this section, we are going to
get acquainted with supplying several arguments to such functions. At the same
time, several new functions that take more than one argument will be introduced.

Supplying more than one argument in a
function call
When specifying several arguments in a function, we need to assign each argument
to the respective parameter using the usual assignment operator = during the
function call, separating the assignment expressions for different parameters
with commas.

For example, let's examine the seq function. Its most useful three parameters are
from, to, and by (you can see in the function's help page that it has several more
parameters). The seq function creates a sequential vector based on the input,
as follows:

• from: This parameter specifies from where to begin
• to: This parameter specifies where to end
• by: This parameter specifies the step size

Let's take a look at the following examples:

> seq(from = 100, to = 150, by = 10)
[1] 100 110 120 130 140 150
> seq(from = 190, to = 150, by = -10)
[1] 190 180 170 160 150

http:// /

Working with Vectors and Time Series

[38]

The : operator we previously encountered is, in fact, used to create
sequences of special cases (where the step size is 1 or -1), while the
seq function is more general.

There are several important rules regarding function calls involving more than
one argument:

• The names of the parameters can be omitted as long as the arguments are
entered in the default order, which is specified in the function definition.
Therefore, the following two expressions are equivalent:
> seq(from = 5, to = 10, by = 1)
[1] 5 6 7 8 9 10
> seq(5, 10, 1)
[1] 5 6 7 8 9 10

We have, in fact, used this property already. For example, the name of the
first argument of the mean function (the vector to compute the mean for) is x,
but we can omit it during the function call:

> mean(1:10)
[1] 5.5
> mean(x = 1:10)
[1] 5.5

• On the contrary, if the parameter names are specified, the arguments order
can be altered:
> seq(to = 10, by = 1, from = 5)
[1] 5 6 7 8 9 10

• Arguments can be skipped as long as they have a default value in the
function definition. For example, the by parameter has the default argument
of 1, therefore the following two expressions are equivalent:
> seq(5, 10, 1)
[1] 5 6 7 8 9 10
> seq(5, 10)
[1] 5 6 7 8 9 10

http:// /

Chapter 2

[39]

Creating default vectors
New vectors populated with default values (0 for numeric, "" for characters, and
FALSE for logical vectors) can be created via the vector function, specifying the mode
(vector type) and length:

> vector(mode = "numeric", length = 2)
[1] 0 0
> vector(mode = "character", length = 10)
 [1] "" "" "" "" "" "" "" "" "" ""
> vector(mode = "logical", length = 3)
[1] FALSE FALSE FALSE

Creating repetitive vectors
You have already learned the two ways to create consecutive vectors with : and
seq. Another special type of vector, a repetitive vector, can be created with the rep
function (which stands for replicate). We simply need to specify what to replicate
and how many times to replicate it:

> rep(x = 22, times = 10)
[1] 22 22 22 22 22 22 22 22 22 22

The rep function can operate on vectors longer than 1 as well:

> x = c(18, 0, 9)
> rep(x, 3)
[1] 18 0 9 18 0 9 18 0 9

Substrings
Another useful function with characters is substr, which is used to extract subsets
of character strings, that is, we create a subset of the characters within an individual
element of a vector (substring), rather than a subset of the vectors elements (see the
next section). The function requires the start and stop values. Let's take a look at
the following examples:

> x = "Subsetting strings"
> substr(x, start = 1, stop = 14)
[1] "Subsetting str"
> substr(x, 6, 14)
[1] "tting str"
> substr(x, 1, 3)
[1] "Sub"

http:// /

Working with Vectors and Time Series

[40]

As we can see, the start and stop values are considered inclusive. For example, the
last expression, where start is equal to 1 and stop is equal to 3, gives us the three
characters occupying places 1 to 3 within the character string x.

Creating subsets of vectors
Creating subsets of data is one of the fundamental operations in data analysis. In
this section, we will cover the two basic ways to create subsets of a vector. The first
way involves numeric vectors, which specify the requested indices to be included
in the subset. The second way involves using logical vectors, which specify for each
element whether we would like to keep it or not.

Subsetting with numeric vectors of indices
Subsetting using numeric vectors of indices is done using the square brackets
operator [, by providing the vector of indices within the square brackets. For
example, we can select a single element of a vector by putting the value of the
required index within brackets, as follows:

> x = c(5,6,1,2,3,7)
> x[3]
[1] 1
> x[1]
[1] 5
> x[6]
[1] 7

If we would like to, for example, find out the value of the last element in a given
vector, we can use the length function, which returns its length (the index of the
vectors' last element), as follows:

> x[length(x)]
[1] 7

We can also assign new values to a subset of a vector, as follows:

> x = 1:3
> x
[1] 1 2 3
> x[2] = 300
> x
[1] 1 300 3

http:// /

Chapter 2

[41]

We can create a subset that is more than one element long, when the length of our
vector of indices is larger than 1:

> x = c(43,85,10)
> x[1:2]
[1] 43 85
> x[c(3,1)]
[1] 10 43

As seen in the last expression, the indices vector, which we placed in the square
brackets, does not need to be composed of consecutive values, nor do its values
need to have an increasing order. For example, we can reverse the order of values
in a vector by using a vector of indices going from the position of the last element
down to 1:

> x = 33:24
> x
 [1] 33 32 31 30 29 28 27 26 25 24
> x[length(x):1]
[1] 24 25 26 27 28 29 30 31 32 33

The vector of indices can also include repetitive values, as follows:

> x = c(43,85,10)
> x[rep(3,4)]
[1] 10 10 10 10

In this example, the rep(3,4) expression creates the vector c(3,3,3,3). The latter
then results in the creation of a subset (which is longer than the original vector),
where the third element of the vector is repeated four times.

The recycling rule also applies to assignment into subsets:

> x = 1:10
> x[3:8] = c(15,16)
> x
[1] 1 2 15 16 15 16 15 16 9 10

In this example, the values 15 and 16 were alternated until the six-element long
subset in the vector x is filled.

http:// /

Working with Vectors and Time Series

[42]

Subsetting with logical vectors
Another method to create a subset of a vector is by supplying a logical vector within
the [operator. The logical vector points out to the elements that need to be kept
within the subset; the elements to be kept are those whose indices match the indices
of the TRUE values in the logical vector. It is frequently useful to create the logical
vector that is used for subsetting by applying a conditional operator on the same
vector we wish to subset. Let's take a look at the following example:

> x = seq(85, 100, 2)
> x
[1] 85 87 89 91 93 95 97 99
> x > 90
[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
> x[x > 90]
[1] 91 93 95 97 99

Here, we created a logical vector x>90, which like the vector x has eight elements
(since the operation was carried out element by element as we saw previously). The
values in this vector are either TRUE or FALSE depending on whether the vector x
has a value larger than 90 at the respective position. When we create a subset of the
vector x using the logical vector x>90, we get a vector containing those five values
in x that occupy the same position that the TRUE values occupy in the x>90 vector.
These are the positions where the values of x are greater than 90.

We can even apply more complex conditions to select some very specific values:

> x
[1] 85 87 89 91 93 95 97 99
> x[x>85 & x<90]
[1] 87 89
> x[x>92 | x<86]
[1] 85 93 95 97 99

Note that when subsetting with logical vectors, the order of values in the subset
matches their order in the original vector, since the first element in the subset will
be the first element that has TRUE in the logical vector, the second will be the second
element that has TRUE in the logical vector, and so on.

http:// /

Chapter 2

[43]

If none of the elements satisfies the required condition (which results in the logical
vector having all FALSE values), we will get an empty vector as a result. For example,
no values in the vector x (or in any other vector) are larger as well as smaller than 90
at the same time:

> x>90 & x<90
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
> x[x>90 & x<90]
numeric(0)

Dealing with missing values
In this section, we are going to introduce the representation of missing values in R
and ways to deal with them. Missing values can arise in many situations during data
collection and analysis, either when the required information could not be acquired
for some reason or when, due to certain circumstances, we would like to exclude
some data from an analysis by marking them as missing. In the spatial data analysis
context, it can be that some districts in an area we surveyed were inaccessible for
data collection by the researcher or some parts of an aerial image were clouded and
we could not digitize features of interest there.

Missing values and their effect on data
The special value that marks missing values in R is NA. As briefly mentioned in the
previous chapter, NaN values represent cases when the resulting value cannot be
represented within the real system number. NaN values function in the same way as
NA in all respects that are relevant here.

The same way that NaN values can result from inappropriate calculations (such as 0
divided by 0), NA values are created when there is not enough information to provide
a result. For example, the 100th element of a vector that has only 10 elements is
not available:

> x = 1:10
> x[100]
[1] NA

http:// /

Working with Vectors and Time Series

[44]

The average of a set of numbers including at least one NA is NA since the average can
be ascertained only when all of the values it is based upon are known:

> x = c(2,5,1,0)
> mean(x)
[1] 2
> x[2] = NA
> x
[1] 2 NA 1 0
> mean(x)
[1] NA

At times, we will be interested in marking certain types of values as NA. For example,
if we have a dataset of a car's driving speeds with one of the values being 900 km/h
we will likely mark it as a typing error. Other times, the data we get to analyze will
have a specific encoding to mark the missing values that people who created the data
decided upon (for example -9999), and we would like to convert those values to NA
in R. We will see an example of this later.

Detecting missing values in vectors
The is.na function indicates whether a given element of a vector is NA (in which case
TRUE is returned) or not (in which case FALSE is returned). Let's take a look at the
following examples:

> x = c(2,5,1,0)
> x[2] = NA
> x
[1] 2 NA 1 0
> is.na(x)
[1] FALSE TRUE FALSE FALSE

At times, it is more convenient to check which values in a vector are not NA,
rather than to check which are. To do this, we can use the ! operator, which we
encountered in the previous chapter, to transpose the resulting logical vector:

> !is.na(x)
[1] TRUE FALSE TRUE TRUE

For example, if we would like to have a subset of only the non-missing elements in x,
we can type the following code:

> x[!is.na(x)]
[1] 2 1 0

http:// /

Chapter 2

[45]

Performing calculations on vectors with
missing values
Continuing the previous example, the mean of the non-missing elements in x can be
computed if we subset only the non-missing values:

> mean(x[!is.na(x)])
[1] 1

To save us the need of manually removing missing values from a vector prior to such
calculations, many functions that require all values to be non-missing (such as mean,
min, and max) have a parameter called na.rm to indicate whether we would like
to remove the missing values before executing the calculation. The default for this
parameter is FALSE (which means that we do not remove the NA values); if we
would like the opposite, we need to specify na.rm=TRUE:

> x = c(3,8,2,NA,1,7,5,NA,9)
> mean(x)
[1] NA
> mean(x, na.rm = TRUE)
[1] 5
> max(x)
[1] NA
> max(x, na.rm = TRUE)
[1] 9

Writing new functions
A function is an object loaded into the computer's temporary memory and can
be activated (usually with specific arguments) to perform a certain action. So far,
we have used predefined functions (from R's base packages; starting in Chapter 3,
Working with Tables, we are going to use functions from other contributed packages).
In this section, we will describe the structure of a function's definition and see how
we can write our own functions.

Note that in this book you are not going to define that many functions and the
functions you will define are going to be rather simple. The reason for this is that
most of the time you will be learning new methods, rather than repeatedly applying
a given method you developed (which would justify writing a function for it).
However, in practice, wrapping your code to a function form is frequently useful
in cases where you have developed a certain procedure you would like to apply
routinely to different datasets.

http:// /

Working with Vectors and Time Series

[46]

Defining our own functions
Let's review the components of a function's definition using an example. In the
following example, we define a new function called add_five, which adds 5 to
the provided argument and returns the result:

> add_five = function(x) {
+ x_plus_five = x + 5
+ return(x_plus_five)
+ }

The components of the definition are as follows:

• The function's name (for example, add_five)
• The assignment operator (=)
• The function definition operator (function)
• The function's parameters, possibly with default values, within brackets

(for example, (x))
• Opening brackets for the code section ({)
• The function's body of code (for example, x_plus_five=x+5)
• The definition of the returned value (for example, return(x_plus_five))
• Closing brackets for the code section (})

The idea is that the code that constitutes the function's body will run every time the
function is called:

> add_five(5)
[1] 10
> add_five(7)
[1] 12

When we perform a function call, the objects that we provide as arguments are
assigned to local objects within the function's environment so that the function's code
can use them. These objects exist only while the function runs and are inaccessible
from the global environment after the function is terminated:

> x_plus_five
Error: object 'x_plus_five' not found

Every function returns a value that we would frequently like to preserve for
subsequent calculations. This is done by assignment in the same way we saw
earlier in this chapter for predefined functions:

> result = add_five(3)
> result
[1] 8

http:// /

Chapter 2

[47]

The return(x_plus_five) expression can be skipped since by default, the function
returns the last created object (which is x_plus_five). Therefore, in fact, we do not
even need to assign the result to the x_plus_five object. In addition, when the code
section contains a single expression, we can omit the parentheses. Therefore, an
identical function can be defined simply, as follows:

> add_five = function(x) x + 5

Setting default values for the arguments
We can assign default arguments to parameters during the function's definition. This
way, we will be able to skip some (or all) of the parameters during a function call. In
other words, we can provide no arguments for some of the parameters, in which case
the function will use the default arguments:

> add_five = function(x) x + 5
> add_five()
Error in add_five() : argument "x" is missing, with no default
> add_five = function(x = 1) x + 5
> add_five()
[1] 6

In the preceding example, in the first case, we got an error message since we tried
calling the add_five function without providing an argument for the x parameter,
which had no default value. In the second case, the function call was successful since
this time the function was defined with a default value for x (which was equal to 1
and thus, the returned value was 6).

Many of the predefined functions in R have default arguments for some of the
parameters. For example, the default arguments for the mode and length
parameters of the vector function are "logical" and 0:

> vector()
logical(0)

Therefore, by default, it creates an empty logical vector (the default arguments can
be found on the respective function's help page). There are no limitations for the
class each argument in a function call must belong to as long as we (or the person
who wrote the function) have not defined such limitations. However, if one of the
expressions in the function's code results in an error given the particular set of
arguments, the execution of the function will terminate and we will get no returned
value. For example, our add_five function will trigger an error when supplying a
character vector as an argument:

> add_five("one")
Error in x + 5 : non-numeric argument to binary operator

http:// /

Working with Vectors and Time Series

[48]

Working with dates and time series
In this section, we'll cover a concept closely related to vectors—time series. A time
series is a sequence of values, each associated with a time index. For convenience, the
values are usually ordered from the earliest to latest. The time difference between
consecutive time indices can be fixed (in which case we have a regular time series) or
variable (in which case we have an irregular time series), although an irregular time
series can also be considered as a regular time series with missing data. For example,
daily rainfall amounts in New York or Dollar to Euro currency exchange rates for the
period of January 1, 2014 to January 15, 2014 would comprise two different time series.

Following its definition, the simplest way to represent a time series would be to have
a separate vector of data values and a separate vector of time, with the same length,
with each element of the data values vector corresponding to the respective element
in the time vector. The only thing you need to learn in order to do this in R is to
represent time, which is the topic of the present section.

Specialized time series classes in R
Several special classes to represent time series exist in R. Basically, such classes
encompass the time and data values parts of a time series within a single object.
For example, ts, zoo, and xts are different time series classes in R. The ts class is
defined in the base packages, whereas the zoo and xts classes are defined in the
contributed packages of the same respective names. The concept of working with
packages in R will be introduced in the next chapter.

Working with time series objects has certain advantages such as having the ability
to use specialized functions (for example, linear or spline interpolation of missing
values in a time series using a single function call) or making sure that every object
satisfies the class rules (for example, the number of data values and time indices
in a time series must be equal). For the purposes of this book, we will stick to the
basic manual representation of a time series. This way, we will have a chance to
gain a better understanding of R's general principles, while the next step towards
specialized time series classes would be easily executed by interested readers. There
are numerous resources devoted to the time series analysis with R; for example, Paul
S.P. Cowpertwait and Andrew V. Metcalfe in their book Introductory Time Series with
R, Springer, (2009), provide an excellent applied introduction on this subject.

http:// /

Chapter 2

[49]

Reading climatic data from a CSV file
You are now going to learn how to use dates in R using our very first real-world
example. We are going to use the comma separated values (CSV) file named
338284.csv, which was downloaded from the National Oceanic and Atmospheric
Administration (NOAA) National Climatic Data Center. This file contains daily
rainfall and temperature data from a meteorological station at the Albuquerque
International Airport, New Mexico, from March 1, 1931 to May 15, 2014.

A CSV file is used to store plain tabular data with no additional features that are
common in spreadsheet files such as XLS. This is how the file looks when opened
in Excel:

The following three lines of code read the file into R and assign the values in the
DATE and TMAX columns to two separate vectors named time (since the data in the
DATE column represents time) and tmax (which stands for maximum temperature).
This involves operations on tables, which will be explained in the next chapter. They
are provided here only for completeness:

> dat = read.csv("C:\\Data\\338284.csv", stringsAsFactors = FALSE)
> time = dat$DATE
> tmax = dat$TMAX

The important point is that we now have two vectors to work with, time and tmax,
as an exercise summarizing most of the topics we dealt with in this chapter.

http:// /

Working with Vectors and Time Series

[50]

Converting character values to dates
Dates can be represented in R (as in many other types of software) using a special
format. This allows certain special operations (such as finding the time difference
between two dates) to be performed, which is not possible when dates are
represented by simply using characters. There are several classes for date and time
data in R. The simplest class (and the only one we will use in this book) is called
Date, and it is used to represent calendar dates. Other classes exist to represent
longer intervals of time (for example, monthly) or shorter (for example, date plus the
time of day) intervals.

Note that the Date and factor objects are not vectors in R terminology
since they have additional attributes not present in the vector class.
However, from the user's perspective, working with them often follows
the same principles as seen in vectors. For example, creating subsets of
Date objects works the same way as creating subsets of vectors.

For example, the Sys.Date and Sys.time functions return the current date or date
plus the time of day, respectively. The object returned by Sys.Date belongs to
class Date, while the object returned by Sys.time is an object of a different class
(POSIXct). Let's take a look at the following examples:

> x = Sys.Date()
> x
[1] "2014-05-22"
> class(x)
[1] "Date"
> y = Sys.time()
> y
[1] "2014-05-22 10:04:56 IDT"
> class(y)
[1] "POSIXct" "POSIXt"

As we can see in the first half of the previous example, a Date object is printed the
same way as a character vector holding the value "2014-05-22" would. However,
as already mentioned, we can conduct calculations involving time intervals with the
Date class, which make it worthwhile to represent dates in such a specialized format.
For example, we can tell what date it will be seven days from today or what the date
was 1,000 days ago:

> x + 7
[1] "2014-05-29"
> x - 1000
[1] "2011-08-26"

http:// /

Chapter 2

[51]

We can switch between the character vector and Date classes, using the
as.character and as.Date functions. For example, we can convert our Date object
x to a character vector using as.character:

> x = as.character(x)
> x
[1] "2014-05-22"
> class(x)
[1] "character"

We can convert the character vector back to Date using as.Date:

> x = as.Date(x)
> x
[1] "2014-05-22"
> class(x)
[1] "Date"

We can create a sequence of consecutive dates using seq, since this function accepts
Date objects as well:

> seq(from = as.Date("2013-01-01"),
+ to = as.Date("2013-02-01"),
+ by = 3)
 [1] "2013-01-01" "2013-01-04" "2013-01-07" "2013-01-10"
 [5] "2013-01-13" "2013-01-16" "2013-01-19" "2013-01-22"
 [9] "2013-01-25" "2013-01-28" "2013-01-31"

This gives us consecutive dates separated by three days from each other, from
January 1, 2013 to February 1, 2013.

The latter conversions, from character to date, were made possible so easily since
the "2014-05-22" configuration is a default one. This way, the as.Date function
knew that the first four characters in "2014-05-22" represent the year, the next two
characters (following a hyphen) represent the month, and the last two characters
represent the day. When we have characters representing a date in a different
configuration, we need to use the format parameter of as.Date, where we specify the
encoding types of the elements, their order, and the characters separating them (if any).

http:// /

Working with Vectors and Time Series

[52]

The common encoding types of the year, month, and day elements, and their
respective symbols in R, are summarized in the following table:

Symbol Meaning
%d Day (for example, 15)
%m Months in number (for example, 08)
%b The first three characters of a month (for example, Aug)
%B The full name of a month (for example, August)
%y The last two digits of a year (for example, 14)
%Y The full year (for example, 2014)

Using this symbology, along with the format parameter of the as.Date function,
we can convert character values of other formats to dates. Let's take a look at the
following examples:

> as.Date("07/Aug/12")
Error in charToDate(x) :
 character string is not in a standard unambiguous format
> as.Date("07/Aug/12", format = "%d/%b/%y")
[1] "2012-08-07"
> as.Date("2012-August-07")
Error in charToDate(x) :
 character string is not in a standard unambiguous format
> as.Date("2012-August-07", format = "%Y-%B-%d")
[1] "2012-08-07"

In each of these two example pairs, the first expression resulted in an error since we
were trying to convert a character value of a non-standard date format to a Date
without specifying the format, while the second expression worked since we did
specify the format.

Once we have a Date object, we can extract one or two (or all) of its three elements
(year, month, and day), and encode them as we wish using the format function,
specifying the required format the same way as shown earlier. Note that the results
are no longer Date objects, but character vectors:

> d = as.Date("1955-11-30")
> d
[1] "1955-11-30"
> format(d, "%d")
[1] "30"
> format(d, "%B")

http:// /

Chapter 2

[53]

[1] "November"
> format(d, "%Y")
[1] "1955"
> format(d, "%m/%Y")
[1] "11/1955"

We are now ready to proceed with our example involving the time and tmax vectors.
First, we can find out that both vectors are numeric (integers, numbers without a
fractional component, to be precise) as follows:

> class(time)
[1] "integer"
> class(tmax)
[1] "integer"

Then, let's see what the values of these vectors look like by printing the first 10 values
from each one of them:

> time[1:10]
 [1] 19310301 19310302 19310303 19310304 19310305 19310306
 [7] 19310307 19310308 19310309 19310310
> tmax[1:10]
 [1] 72 133 178 183 111 67 78 83 139 156

The time vector contains dates in the %Y%m%d configuration (year, month, and day
indicated by full numeric values, without separating characters). Therefore, we can
convert it to a Date object, as follows:

> time = as.Date(as.character(time), format = "%Y%m%d")
> time[1:10]
 [1] "1931-03-01" "1931-03-02" "1931-03-03" "1931-03-04"
 [5] "1931-03-05" "1931-03-06" "1931-03-07" "1931-03-08"
 [9] "1931-03-09" "1931-03-10"
> class(time)
[1] "Date"

Note that we first needed to convert the time vector from numeric to character since
the as.Date function works on character vectors. Now that time is a vector of dates,
we have more freedom to treat the data as a time series.

http:// /

Working with Vectors and Time Series

[54]

Examining our time series
Looking into the documentation on climatic data from NOAA (which is also
provided on the book's website), we can see that the temperature is provided in
tenths of Celsius degree, with missing values marked as -9999. First, we will convert
the -9999 values to NA by selecting the respective subset and making an assignment:

> tmax[tmax == -9999] = NA

Then, to convert the data into degrees Celsius units, we will divide each of the values
by 10:

> tmax = tmax / 10
> tmax[1:10]
 [1] 7.2 13.3 17.8 18.3 11.1 6.7 7.8 8.3 13.9 15.6

Now, let's check the range of values each vector contains:

> range(time)
[1] "1931-03-01" "2014-05-15"
> range(tmax, na.rm = TRUE)
[1] -14.4 41.7

This means that the range of the measured maximum daily temperatures from
March 1, 1931 to May 15, 2014 was -14.4 to 41.7 degrees Celsius.

Regarding the dates of measurement, looking at the first few values of the time
vector (or at the original CSV file in a spreadsheet, for that matter), it seems that
the days are consecutive. However, we may want to make sure that all days of the
respective period are indeed present in the file. We can do this by comparing a
consecutive sequence all_dates covering the time period from March 1, 1931 to
May 15, 2014 with our time vector:

> range_t = range(time)
> all_dates = seq(range_t[1], range_t[length(range_t)], 1)
> length(all_dates)
[1] 30392
> length(time)
[1] 30391

This already indicates that we have an incomplete agreement. Our time vector
contains the 30391 values, while there are 30392 dates during the time period from
March 1, 1931 to May 15, 2014. Therefore, the CSV file is missing at least one date.

http:// /

Chapter 2

[55]

We will next check how many dates (and which ones) are missing. First, we will
verify that, indeed, not all dates appear in the time vector using the %in% operator
(asking for each element in all_dates whether it appears in the time vector) and
the all function (asking whether all of the values in the resulting logical vector
are TRUE).

> all(all_dates %in% time)
[1] FALSE

The answer is no; at least one of the dates in the range of March 1, 1931 to May 15,
2014 is indeed missing from the time vector. The next question would be which one
is missing, or which ones are missing? We can get the indices of the dates that appear
in all_dates but not in time with the which function:

> which(!(all_dates %in% time))
[1] 5499

The missing date is the 5499th element of the all_dates vector. Its value is
as follows:

> all_dates[which(!(all_dates %in% time))]
[1] "1946-03-20"

Manually examining the CSV file in a spreadsheet software will confirm that indeed
the date March 20, 1946 was skipped for some reason.

Another interesting question we can ask is on what day the highest temperature
(which was 41.7 degree Celsius, as we saw earlier) has been observed:

> max(tmax, na.rm = TRUE)
[1] 41.7
time[which.max(tmax)]
[1] "1994-06-26"

The highest maximum daily temperature was observed on June 6, 1994.

Creating subsets based on dates
If we are interested in a particular subset of the time series, say the period from
December 31, 2005 to January 1, 2014, we could create a subset of the dates in that
period based on the time vector and a respective subset of data values based on
the tmax vector. We can do this in two steps. First, we will create a logical vector, w,
pointing at those dates we would like to keep:

> w = time > as.Date("2005-12-31") & time < as.Date("2014-1-1")

http:// /

Working with Vectors and Time Series

[56]

To find out the ratio between the number of days we would like to keep in the subset
and the number of days in the complete series, we can type the following expression:

> sum(w) / length(w)
[1] 0.09614689

The amount of data within the subset we are interested in (December 31, 2005 to
January 1, 2014) is about 9.6 percent of the total amount of data since the proportion
of the TRUE values count in the logical vector, w, from the total number of values is
0.096 (remember that before summing a logical vector, it is converted to a numeric
one with ones instead of TRUE and zeroes instead of FALSE).

Secondly, we will use the w vector to create subsets of both the time and tmax vectors:

> time = time[w]
> tmax = tmax[w]

Note that the selection was non-inclusive of the end dates since we used the > and <
operators:

> range(time)
[1] "2006-01-01" "2013-12-31"

If we wanted to include the first and last dates (December 31, 2005 and January 1,
2014), we would rather use the >= and <= operators.

Introducing graphical functions
The graphical representation of data is a central feature, or even the main purpose, of
data analysis in general and of spatial data analysis in particular. This section serves
as a basic introduction to the procedure of creating graphical output in R. Such an
introduction is necessary before moving on to the later chapters, where we would
like to quickly be able to display intermediate products during various spatial data
analysis steps. In Chapter 9, Advanced Visualization of Spatial Data, we will devote
some additional time to the subject of visualization in R, and see how graphical
output can be customized when producing publication-quality plots as the end
product of spatial data analysis.

Displaying vectors using base graphics
We can graphically display a vector's values using the plot function. For example,
the following expression opens a new window within the R environment with a plot
of the vector values:

> plot(tmax)

http:// /

Chapter 2

[57]

The following screenshot shows what the graphical output looks like, and where it
appears, when using RGui and RStudio:

This output is the default one for the plot function; the values of the tmax vector
are plotted on the y axis as a function of their index on the x axis, with open circles
marking data points.

When plotting a time series, we would usually like to have the time of observation
on the x axis (rather than the indices) and see a line connecting the data points from
left to right (rather than unconnected circles). This can be done as follows:

> plot(time, tmax, type = "l")

http:// /

Working with Vectors and Time Series

[58]

When plotted, we will see what is shown in the following screenshot:

The "l" argument for the type parameter indicates we want a line plot, while the
first and second arguments are treated as vectors of coordinates on the x and y
axes, respectively. We also see that the time vector is automatically formatted so
that year breakpoints are labeled on the x axis. There are many additional ways in
which we can further customize this plot (and other types of plots we will produce
in subsequent chapters). However, we will usually limit ourselves to the default
plots until we reach Chapter 9, Advanced Visualization of Spatial Data, where we will
elaborate on the subject of graphical output customization within the context of
spatial data.

The last plot can also be produced using the following expression:

> plot(tmax ~ time, type = "l")

http:// /

Chapter 2

[59]

In this form of calling the plot function, the specification of the x and y axes is
indicated by the tmax~time expression. The ~ operator creates a special type of
object, a formula object. In this particular case, the formula indicates that tmax is the
dependent variable (to the left of the ~ operator and thus plotted on the y axis) and
time is the independent variable (to the right of the ~ operator and thus, plotted on
the x axis). Formula objects are most common in statistical applications of R (we shall
see an example of this in Chapter 8, Spatial Interpolation of Point Data), and in some
other cases as well (as we shall see in the next chapter).

Saving graphical output
With the graphical window selected, we can save the image we see in a file through
the menus (by navigating to File | Save as in RGui). Several raster (such as *.png)
and vector (such as *.pdf) file formats are available for the output. However,
sometimes we would like to embed the instructions to save a graphical output
within our code to save ourselves the trouble of clicking on the menu buttons when
constantly updating an image or when saving multiple images. This is possible
by specifying a different graphical device—a file—instead of the graphical
window—and closing it afterward. For example, the following code creates a PDF
file (named time_series.pdf) with the plot we just saw in the C:\Data directory:

> pdf("C:\\Data\\time_series.pdf")
> plot(tmax ~ time, type = "l")
> dev.off()

The last expression, dev.off(), turns the PDF graphics device off, thereby returning
to the default device (which is the graphical window) for the subsequent plots.

Note that path indications in R are character values with
directories separated by \\. The / symbol can also be
used, but not the usual Windows symbol \ (which is used
for a different purpose in R).

There are several functions analogous to the pdf function to write graphical output in
other formats, such as bmp, jpeg, png, and tiff. All of these functions have several
parameters (in addition to the file path) to modify the output, such as specifying
image width, height, and resolution; see the help pages of these functions for more
information.

http:// /

Working with Vectors and Time Series

[60]

The main graphical systems in R
There are three main graphics systems in R: base graphics (which we just used to create
the previous plot), lattice, and ggplot2. For example, the following code produces
the previous plot as well as two analogous plots using lattice and ggplot2. The
code includes some functions that will be made clear later, and requires installation of
additional packages (which we will cover in the next chapter).

> dat = data.frame(time = time, tmax = tmax)
Base graphics
> plot(tmax ~ time, dat, type = "l")
lattice
> library(lattice)
> xyplot(tmax ~ time, data = dat, type = "l")
ggplot2
> library(ggplot2)
> ggplot(dat, aes(x = time, y = tmax)) +
+ geom_line()

The graphs this code produces are sequentially shown in the following screenshot,
from left to right, with the name of the respective graphics system indicated at the
top of each panel:

http:// /

Chapter 2

[61]

Many types of plots (such as the time series plot we just created) can be produced
using any of the three systems. Therefore, choosing one in many cases is a matter of
taste. However, some non-overlapping features do exist among the graphics systems.
For example, faceting (which produces a series of plots for different portions of the
data side by side) cannot be achieved using base graphics, while 3D plots cannot be
produced using ggplot2. As seen in the preceding screenshot, there are also some
small differences in the default styling of the plots. Finally, as we can see in the
preceding code section, the ggplot2 system has quite a different syntax compared
to base graphics and lattice.

In the upcoming chapters, we are going to use base graphics (and sometimes
lattice) to quickly visualize the products we get at various steps of spatial
data analysis. In Chapter 9, Advanced Visualization of Spatial Data, we are going to
concentrate on customizing graphical output in R, mostly using ggplot2.

Summary
In this chapter, we covered the basic subjects that we are going to use in almost every
operation from now on. First, you learned the fundamental methods of working with
vectors, including the creation of three common types of vectors, subsetting them,
and dealing with missing values in them. You also saw how dates are represented
in R, and how such a representation can be useful when working with time series. In
addition, we expanded on the function call structure in R, discussed how to define
custom functions, and saw how a graphical output can be produced and saved.

In the next chapter, we are going to discuss working with tables in R. We will see that
the common tabular data class in R (data.frame) is a direct extension of the vector
class. Thus, many of the operations to work with tables will be intuitive once we know
how to work with vectors. Later, we will move on to working with spatial data classes,
where the principles of working with vectors and tables are also directly applicable.

http:// /

http:// /

Working with Tables
Working with tables is central to programming in R, both with regards to spatial
analysis (for example, working with attribute tables of geometries) and more
generally. In this chapter, we will learn how to work with tables on their own, while
in the subsequent chapters, we will see the ways that spatial data analysis involves
dealing with tables. At the same time, two central subjects, which we will have to
be familiar with for the subsequent chapters, will be introduced. These are working
with contributed packages in R and controlling code execution.

As a central example, we will work with real-world data (monthly climatic records
for Spain, which were downloaded from the NOAA archive) so that we can witness
several very common cleaning and reshaping procedures of tables.

In this chapter, we'll cover the following topics:

• Working with data.frame objects to represent tables in R
• Controlling code execution through conditional statements and loops
• Automated calculations on tables and vectors using the apply functions
• Installing and using contributed packages in R
• Reshaping tables into different forms
• Joining tables

http:// /

Working with Tables

[64]

Using the data.frame class to represent
tabular data
In this section, you will learn how tables are represented in R and how you can work
with tabular objects. In particular, you will learn two common ways to create table
objects (from vectors or by reading a file from the disk). Afterwards, you will learn
how to examine, subset, and make calculations with tables.

Creating a table from separate vectors
The data.frame class is the basic class to represent tabular data in R. A data.frame
object is essentially a collection of vectors, all with the same length. However, the
vectors do not have to be of the same type. They may also include one-dimensional
objects that are not strictly vectors, such as Date or factor objects (see the previous
chapter). Therefore, data.frame objects are particularly suitable to represent data
with different variables in columns and different cases in rows. Thus, variables
may be of different types; for example, a table storing climatic data may have one
character variable to store meteorological station names, another Date variable
to represent measurement dates, and a third numeric variable to represent the
measured values such as rainfall amounts or temperatures.

One way to create a data.frame object is to combine several vectors that are already
present in the R environment. This can be achieved with the data.frame function
with the arguments being the names of the vector objects we would like to combine.
Let's take a look at the following examples:

> num = 1:4
> lower = c("a","b","c","d")
> upper = c("A","B","C","D")
> df = data.frame(num, lower, upper)
> df
 num lower upper
1 1 a A
2 2 b B
3 3 c C
4 4 d D

http:// /

Chapter 3

[65]

Here, we created a data.frame object named df by combining the vectors num,
lower, and upper. The previously independent vectors now comprise columns in
df. As we can see, the names of the columns appear on the first line of the printed
output of a data.frame object. These are the names of the original vectors, num,
lower, and upper. Rows have names as well; these are automatically assigned with
the characters 1, 2, 3, and 4 (as it appears to the left of the first column in the printed
output).

We can also create the data.frame object in a single step by performing
the vector assignments within the data.frame function call itself:

> df = data.frame(

+ num = 1:4,

+ lower = c("a","b","c","d"),

+ upper = c("A","B","C","D"))

Note that in this example, vector types were different (num is numeric, whereas
lower and upper are characters). However, the vectors had the same length;
otherwise, an error would have occurred since all columns of data.frame must
have the same length.

An important parameter of the data.frame function (and several other
functions such as read.csv, which will be introduced in the next section)
is stringsAsFactors. The stringsAsFactors parameter controls
whether character columns are automatically converted to factors (the
default value is TRUE). Within the context of this book, we would usually
like to keep the character vectors as characters for greater flexibility (we
can always make the conversion to factors ourselves when necessary with
the factor function; see the previous chapter for more information).
Therefore, a function call preserving character columns will be as follows:

> df = data.frame(num, lower, upper,

+ stringsAsFactors = FALSE)

> df

 num lower upper

1 1 a A

2 2 b B

3 3 c C

4 4 d D

The way our table is printed on screen is identical when compared to the
previous example. However, using methods, which will be introduced
later, we will be able to see that columns 2 and 3 now consist of character
vectors rather than factors.

http:// /

Working with Tables

[66]

We can add rows or columns to an existing data.frame object using the rbind (row
bind) and cbind (column bind) functions, respectively. For example, we can add a
fifth row to our df table using rbind as follows:

> row5 = c(5,"e","E")
> rbind(df, row5)
 num lower upper
1 1 a A
2 2 b B
3 3 c C
4 4 d D
5 5 e E

Alternatively, we could add a fourth column using cbind as follows:

> word = c("One","Two","Three","Four")
> cbind(df, word, stringsAsFactors = FALSE)
 num lower upper word
1 1 a A One
2 2 b B Two
3 3 c C Three
4 4 d D Four

In the previous example, we had to specify, once again, that we do not want the
character vector, word, to be converted into a factor vector.

Creating a table from a CSV file
Another common method to create a data.frame object is to read tabular data from
the disk. For example, we can read a CSV file using the read.csv function (which
was briefly mentioned earlier). The first parameter of this function, and the one with
no defaults, is a file indicating the path to the CSV file. For example, the following
expression reads the contents of the 343452.csv file and assigns it to a data.frame
object called dat (remember that directories should be separated with \\ or /):

> dat = read.csv("C:\\Data\\343452.csv")

http:// /

Chapter 3

[67]

The 343452.csv file contains monthly records of precipitation, minimum
temperature, and maximum temperature from Spain for a period of 30 years. It was
downloaded from the NOAA climatic archive and provided as is. Since we will use
data from this file in several of our examples, in this and the upcoming chapters, let's
examine its contents. Because the table is very large, to see what it looks like, we can
print only the first several rows with the head function, as follows (similarly, with
the tail function, we can print the several last rows):

> head(dat)
 STATION STATION_NAME ELEVATION LATITUDE LONGITUDE
1 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
2 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
3 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
4 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
5 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
6 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
 DATE TPCP MMXT MMNT
1 19840101 514 56 -5
2 19840201 0 98 28
3 19840301 687 72 2
4 19840401 136 122 35
5 19840501 214 118 30
6 19840601 65 196 105

The column's contents are as follows:

• STATION: This is the meteorological station identification code
• STATION_NAME: This is the meteorological station name
• ELEVATION: This is the elevation of the station above sea level (meters)
• LATITUDE: This is the latitude of the station (decimal degrees)
• LONGITUDE: This is the longitude of the station (decimal degrees)
• DATE: This is the date of measurement
• TPCP: This is the total monthly precipitation (0.1 mm units)
• MMXT: This is the mean monthly maximum temperature (0.1 degree

Celsius units)
• MMNT: This is the mean monthly minimum temperature (0.1 degree

Celsius units)

The complete documentation for the CSV file is provided along with the data from
NOAA (and can also be downloaded from the book's website).

http:// /

Working with Tables

[68]

According to what you learned in the previous chapter, the dates are recorded in
the %Y%m%d format (in Date objects terminology). However, since the data is
monthly, the day component is not informative (we can see that all days are coded
as 01). The missing values of measurements are marked as -9999, a commonly
encountered convention.

Examining the structure of a data.frame
object
We can get the number of rows and columns in our data.frame object using the
nrow and ncol functions, respectively. For example, our small table df has four rows
and three columns, while dat (containing the monthly climatic data) has 28,536 rows
and nine columns:

> nrow(df)
[1] 4
> ncol(df)
[1] 3
> nrow(dat)
[1] 28536
> ncol(dat)
[1] 9

We can, if the table is not too long, print the table's contents and see how many
columns (or rows) are there, according to the row names. However, it is generally
advisable to get the properties of an object using functions (such as ncol), rather
than typing a specific number manually (such as 9). This way, our code is going to
be transferable to an analysis of any object and not just the specific object we are
currently working on.

We can get the lengths of both row and column dimensions using the dim function.
If our argument is a data.frame object (we will see later that the dim function
works with other classes as well; such a function is called a generic function in R
terminology), a vector of length 2 is returned with the first element being the number
of rows and the second being the number of columns, as follows:

> dim(dat)
[1] 28536 9

http:// /

Chapter 3

[69]

We can also get the names of the rows and columns (getting column names is often
more useful) as a character vector using the functions rownames and colnames, as
shown in the following example:

> colnames(dat)
[1] "STATION" "STATION_NAME" "ELEVATION" "LATITUDE"
[5] "LONGITUDE" "DATE" "TPCP" "MMXT"
[9] "MMNT"

Assignment into column names can be made to replace the existing names with new
ones. For example, to change the name of the third column from ELEVATION to Elev,
we can use the colnames(dat)[3]="Elev" expression. Similarly, we can convert
all column names of the data.frame object from uppercase to lowercase using the
tolower function so that it will be easier to type:

> colnames(dat) = tolower(colnames(dat))
> colnames(dat)
[1] "station" "station_name" "elevation" "latitude"
[5] "longitude" "date" "tpcp" "mmxt"
[9] "mmnt"

It is frequently useful to examine the structure of a given object using the str function.
This function (which is also generic) prints the structure of its argument showing the
data types of its components and the relations between them. In the case of a data.
frame object, a list of the column names and types is printed, along with the table
dimensions, and the first several values (or all values, if the table is very short). For
example, the output for the small table df shows that we have a table with three
columns (the variables) and four rows (the observations). It also shows that the first
column is numeric and the last two are characters. Here is how the output looks like:

> str(df)
'data.frame': 4 obs. of 3 variables:
 $ num : int 1 2 3 4
 $ lower: chr "a" "b" "c" "d"
 $ upper: chr "A" "B" "C" "D"

http:// /

Working with Tables

[70]

Subsetting data.frame objects
There are two principal ways to create a subset of a data.frame object. The first
involves accessing separate columns, using the column names, with the $ operator.
The second involves providing the two vectors of indices, names or logical values,
with the [operator.

Using the $ operator, we can gain access to separate columns in a data.frame object.
To do this, we simply insert the name of the data.frame to the left of the $ operator
and the name of the required column to the right, as follows:

> df$num
[1] 1 2 3 4
> df$lower
[1] "a" "b" "c" "d"
> df$upper
[1] "A" "B" "C" "D"

Since the columns of a data.frame object are basically vectors, we can employ all the
previously presented vector methods in columns of a data.frame object the same
way we would in independent vectors. For example, we can replace the -9999 values
(which mark the missing data) with NA, for each of the three measured variables in
dat, as follows:

> dat$tpcp[dat$tpcp == -9999] = NA
> dat$mmxt[dat$mmxt == -9999] = NA
> dat$mmnt[dat$mmnt == -9999] = NA

The only difference from how we did this operation in the previous chapter is the
dat$ part. This means that we refer to columns of the data.frame object (dat),
rather than independent vectors. Now, let's convert the tpcp values to mm units
and mmxt and mmnt values to degree Celsius units by dividing each value in the
respective columns by 10, as follows:

> dat$tpcp = dat$tpcp / 10
> dat$mmxt = dat$mmxt/ 10
> dat$mmnt = dat$mmnt / 10

Note that if we would have made the division by 10 before encoding the -9999
values as NA, we would have got the -999.9 values, while now that we have NA
values, they will remain NA since NA/10 gives NA. This highlights the importance of
representing missing data with NA to reduce the chance of mistakes.

http:// /

Chapter 3

[71]

Using the [operator, we can obtain a subset of a data.frame object, which will
include the intersection of any number of rows and columns. This works the same
way as vectors subsetting with one difference, that is, a data.frame is a two-
dimensional object while a vector is a one-dimensional object. Therefore, we need to
provide two indices rather than just one.

Remember that when subsetting with the [operator in data.frame, the first index
refers to rows and the second index refers to columns. This arrangement is going to
appear in other contexts as well (for example, in matrices and rasters).

The two vectors of indices, used in order to create a subset of a data.frame object,
can include any combination of the following:

• A numeric vector, in which case the numeric vector refers to the indices of
rows/columns to retain in the subset

• A character vector, in which case the character vector indicates the names of
rows/columns to retain

• A logical vector, in which case the logical vector indicates whether to retain
each row/column of data.frame

We have been extensively using methods 1 and 3 in vectors (see the previous
chapter), so extending the methods to the two-dimensional case should be intuitive.
In fact, method 2 can also be used with vectors since vectors can have element names
the same way that a data.frame object has row names and column names (but we
are not going to use that here).

For example, the following expression gives us the element populating the second
row and the third column of df:

> df[2, 3]
[1] "B"

Leaving an empty space instead of the row's or column's index indicates we are
interested in all the elements of the respective dimension (all rows or all columns).
For example, the following expressions return all elements of the second row and the
third column of df:

> df[2,]
 num lower upper
2 2 b B
> df[,3]
[1] "A" "B" "C" "D"

http:// /

Working with Tables

[72]

By default, a subset of a data.frame object is converted into a simpler class if
values from a single column are involved. For example, the df[2, 3] and df[,3]
expressions returned (character) vectors. The df[2,] expression returned a data.
frame object since three columns are involved. In fact, the second row of df contains
both numeric and character values, while we already know that a vector can only
contain values of the same type. If we wish, we can suppress the data.frame
simplification by using the drop parameter, indicating FALSE (instead of the default
value, TRUE), and then the subset will remain a data.frame object no matter what:

> df[,3, drop = FALSE]
 upper
1 A
2 B
3 C
4 D

Compare the output to the one from the previous example. Using drop=FALSE in the
previous expression, we got a data.frame object (with four rows and one column)
instead of a vector.

The other two methods of subsetting a data.frame object are using logical and
character vectors as indices. Let's take a look at the following example:

> df[df$lower %in% c("a","d"), c("lower","upper")]
 lower upper
1 a A
4 d D

In this expression, if we put it in plain language, we are requesting to get the subset
of df with the rows being where the values of the lower column are either "a" or
"d", and the columns are both lower and upper.

One very helpful function to use with data.frame objects is complete.cases. This
function returns a logical vector, the same length as the number of rows in the data.
frame object, indicating whether each row (case) is complete (has no NA values in it).
When a given row is complete, the respective element in the logical vector will be
TRUE; when a row is incomplete, the value will be FALSE. Then, the resulting logical
vector can be used to remove the incomplete rows from a table as follows (note that
the output is not printed here to save space):

> dat[complete.cases(dat),]

Note that in this expression, we use the vector returned by complete.cases as a
logical vector indicating the selection of rows in dat to be retained.

http:// /

Chapter 3

[73]

Calculating new data fields
As previously shown, we can assign new values to a column of a table (or to a subset
of a column) using the $ operator. If the column name we assign does not exist in the
table, a new column will be created to accommodate the data. Let's take a look at the
following examples:

> df
 num lower upper
1 1 a A
2 2 b B
3 3 c C
4 4 d D
> df$word[df$num == 2] = "Two"
> df
 num lower upper word
1 1 a A <NA>
2 2 b B Two
3 3 c C <NA>
4 4 d D <NA>

Here, we made an assignment of the character value "Two" to a subset of the word
column (which did not previously exist in df) corresponding to the rows where the
value of column num is equal to 2. As a result, a new column has been created, which
contains the assigned value (and NA for all the other elements). Note that <NA> is
simply the character representation of NA (the column word is a character vector).

As another example with our climatic data, we are going to create two new columns,
holding the year and month of each measurement. For this purpose, we will first
convert the date column to a Date object. Then, we will extract the years and months
from the data in this column as follows (see the previous chapter for details):

> dat$date = as.Date(as.character(dat$date), format = "%Y%m%d")
> dat$month = as.numeric(format(dat$date, "%m"))
> dat$year = as.numeric(format(dat$date, "%Y"))
> head(dat)
 station station_name elevation latitude longitude
1 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
2 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
3 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
4 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
5 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
6 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
 date tpcp mmxt mmnt month year

http:// /

Working with Tables

[74]

1 1984-01-01 51.4 5.6 -0.5 1 1984
2 1984-02-01 0.0 9.8 2.8 2 1984
3 1984-03-01 68.7 7.2 0.2 3 1984
4 1984-04-01 13.6 12.2 3.5 4 1984
5 1984-05-01 21.4 11.8 3.0 5 1984
6 1984-06-01 6.5 19.6 10.5 6 1984

Using the first expression, we converted the dat$date vector to a Date object (and
assigned it back to dat$date). In the second and third expressions, we extracted
the month and year components, as numeric vectors, out of dat$date and assigned
them to the new columns, dat$month and dat$year, respectively.

Writing a data.frame object to a CSV file
A data.frame object can be written to a CSV file with the write.csv function. The
two first (and most important) parameters for this function indicate the name of
the data.frame object, which we would like to save, and the path to the new file
(including the new filename). These parameters have no defaults, so we need to
specify them. For example, the following expression writes the data.frame object df
to the df.csv file in the C:\Data directory:

> write.csv(df, "C:\\Data\\df.csv")

The newly created file when opened in Excel looks like the following screenshot:

Note that row names (the numbers 1 to 4 in column A) and column names have been
added; this behavior can be disabled when required.

http:// /

Chapter 3

[75]

Controlling code execution
So far, all of the code sections we have written were executed once in the same
order as they were sent to the command line. However, one of the most important
themes in programming is the flow control—operations that are used to control the
sequences of our code execution. For example, we may want to induce the execution
of a certain code section only if a condition is met (these are called conditional
statements), or we may wish to execute a code section several times, over and over
again (these are called loops). In this section, you will learn about three flow control
commands: two to construct conditional statements and one to construct loops.

Conditioning execution with conditional
statements
The purpose of conditional statements is to condition the execution of a given
code section. For example, the second expression in the following code section is a
conditional statement using the if operator:

> x = 3
> if(x > 2) {print("x is large!")}
[1] "x is large!"

A conditional statement is composed of the following elements:

• The conditional statement operator (if)
• The condition in parentheses (for example, (x>2))
• Code section opening brackets ({)
• The code section to execute when the condition is met (for example,

print("x is large!"))
• Code section closing brackets (})
• Optionally, the else operator (else)
• Optionally, code section opening brackets ({)
• Optionally, the code to execute when the condition is not met
• Optionally, code section closing brackets (})

http:// /

Working with Tables

[76]

Importantly, the condition should be an expression that returns a single logical
value. The code section following this condition will then be executed if the value is
TRUE or ignored if the value is FALSE. For example, if x is not larger than 2, nothing
will happen since the print("x is large!") expression will not be executed:

> x = 0
> if(x > 2) {print("x is large!")}

Nothing is printed on screen.

The same way as with function definitions (see the previous chapter)
and for loops (see the next section), code with only one expression
does not have to be encompassed in parentheses {.

Optionally, we can use the else operator to add another code section. The code
section after the else operator will be executed when the condition in if is FALSE
as follows:

> x = 3
> if(x > 2) {print("x is large!")} else {print("x is small!")}
[1] "x is large!"
> x = 1
> if(x > 2) {print("x is large!")} else {print("x is small!")}
[1] "x is small!"

There is another conditional operator, specialized in working on vectors element
by element, called ifelse. With ifelse, we need to supply three arguments: a
logical vector, a value for TRUE (the yes parameter), and a value for FALSE (the
no parameter). What we receive is a new vector with the same length as the input
logical vector, where the TRUE and FALSE values have been replaced with the
alternative values we supplied.

Regarding the replacement values for TRUE and FALSE, the most useful modes of
operation are either to have them as vectors of length 1 (and then they are recycled
to fill the entire length of the logical vector) or to have them as vectors of the same
length as the logical vector (and then the elements of the logical vector are replaced
with the respective elements either from the yes or no vector).

For example, the first mode of operation is useful when we want to classify the
values of a given vector into two categories, according to a condition:

> dat$mmxt[1:7]
[1] 5.6 9.8 7.2 12.2 11.8 19.6 24.1
> ifelse(dat$mmxt[1:7] < 10, "cold", "warm")
[1] "cold" "cold" "cold" "warm" "warm" "warm" "warm"

http:// /

Chapter 3

[77]

Here, we used a condition on the first seven values of the mmxt column in dat, to
produce a logical vector, and then classified its values into "cold" (temperature
below 10 degrees) or "warm".

The second mode of operation is useful, for example, when we would like to perform
either one of the two operations on each element of a vector (and to select which one,
according to the value of the respective element). For example, we can use ifelse to
get a vector of absolute values, if we reverse the sign of only the negative values in
that vector as follows:

> x = c(-1,-8,2,5,-3,5,-9)
> ifelse(x < 0, -x, x)
[1] 1 8 2 5 3 5 9

Here, each element of x that is smaller than 0 (that is, negative) has been replaced
by its respective opposite -x, while positive values were left as is, giving a vector
of absolute values for all elements. By the way, a function to find the absolute values
of a vector already exists (the abs function).

Repeatedly executing code sections with
loops
Loops are used when we need a code section to be executed repeatedly. The way
the number of times a code section is to be executed is determined distinguishes the
different types of loops. We are going to introduce the for loop, which is especially
useful in many data analysis tasks.

In a for loop, a code section is executed a predetermined number of times. This
number of times is equal to the number of elements in a vector that we supply when
we initiate the loop. The code section is thus executed once for each element in the
vector; in each such run of the loop, the assignment of the current element in that
vector is made to an object that we can then use in the code within the loop.

For example, the following expression executes a for loop:

> for(i in 1:5) {print(i)}
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

http:// /

Working with Tables

[78]

A for loop expression includes the following components:

• The for loop operator (for)
• The name of the object that will get the consecutive vector elements in each

run (for example, i)
• The in operator (in)
• The loop vector (for example, 1:5)
• The code section to be executed repeatedly (for example, print(i))

In the preceding example, the code print(i) was executed five times as the number
of elements in the vector 1:5. In each run, the i object was assigned to the next
element in 1:5, and since the code section consists of the expression print(i), we
got the integers 1 to 5 printed consecutively.

Using conditional expressions and loops, we can construct more complex code
where operations are applied to numerous objects (using loops) and adjustments of
these operations are automatically being made, on the fly, for each of these objects
(using conditional statements). However, as we shall see in the upcoming sections of
this chapter, there are many functions in R that can bypass the necessity of explicitly
defining loops in situations when a (simple) function needs to be repeatedly applied
on subsets of our data. It is advisable to use such functions when possible, instead of
loops, for the sake of code compactness and clarity. In situations when the operation
we would like to repeatedly execute is more complex, however, possibly having
several branches of decisions, using loops and conditional statements again becomes
essential. We shall see such examples in Chapter 8, Spatial Interpolation of Point Data.

Automated calculations using the apply
family of functions
In this section, you are going to learn about two very useful functions to apply an
operation on the subsets of data. The two functions, tapply and apply, along with
a few others, form a collection of functions called apply functions. The functions in
the collection are used to apply (hence the name) a function we choose over subsets
of an object, and then join the results to form a single object once again. The apply
functions are a defining feature of R; they replace the necessity to write explicit loops
in many common situations in data analysis, which makes the code shorter and
more elegant.

http:// /

Chapter 3

[79]

Applying a function on separate parts of a
vector
The tapply function is used to apply a function over different sections of a vector
and then combine the results into a single object. To do this, we need to provide
three arguments for the following three parameters:

• Vector A, which the function will operate upon (X)
• Vector B, which defines the subsets of vector A (INDEX)
• A function that will be applied to the subsets of vector A (FUN)

As an example, we shall use a short table, which is a random subset of six rows (out
of the original 150) in the iris dataset (available in R by typing iris). These are
measurements of four floral traits (first four columns) on different plants (rows) that
belong to three different iris species (fifth column, Species). You can create a data.
frame object such as the following example with iris=iris[sample(1:nrow(ir
is),6),] (note that since it is a random sample, the exact values will be different
each time). The exact table being used in the examples is provided on the book's
website (iris2.csv). Here is the iris dataset subset we are going to use:

> iris
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
100 5.7 2.8 4.1 1.3 versicolor
45 5.1 3.8 1.9 0.4 setosa
90 5.5 2.5 4.0 1.3 versicolor
34 5.5 4.2 1.4 0.2 setosa
38 4.9 3.6 1.4 0.1 setosa
101 6.3 3.3 6.0 2.5 virginica

Using tapply, we can quickly find out, for example, the average petal width per
species, as follows:

> x = tapply(iris$Petal.Width, iris$Species, mean)
> x
 setosa versicolor virginica
 0.2333333 1.3000000 2.5000000

The first argument, iris$Petal.Width, is the vector on which we apply our
function. The second argument, iris$Species, is the vector that defines the subsets
in iris$Petal.Width. Basically, all elements in iris$Petal.Width at the positions
with a unique value in iris$Species are treated as groups. The last argument is the
function that we apply on the subsets of iris$Petal.Width; in this case, the mean
function. Thus, the iris$Petal.Width vector was split into three subsets, a mean
was calculated for each subset, and the results were combined once again.

http:// /

Working with Tables

[80]

The returned object of tapply is an array, which is a vector with an additional
attribute stating the number and size of its dimensions. A one-dimensional array,
which is what we have here, is identical to a vector in its usage. The reason that the
returned object of tapply is an array, however, is that in some cases (which we will not
cover here), the returned object will have more than one dimension, and thus cannot be
represented by a vector (for example, when the function we apply returns more than
one value, such as the range function). We will further elaborate on two-dimensional
(matrix) and three-dimensional (array) vector-like objects in the next chapter.

Note that the array is named using the values in the grouping vector, so we can
access any value of interest using its name as follows:

> x["setosa"]
 setosa
0.2333333

Also, if we wish, we can transform the result to a vector using as.numeric
as follows:

> as.numeric(x)
[1] 0.2333333 1.3000000 2.5000000

As previously mentioned, the apply functions are similar to loops in
purpose and concept, although simpler and clearer in their syntax. For
example, the preceding operation can be performed using a for loop,
although the code would be longer (and, arguably, less clear):

> x = NULL
> for(i in unique(iris$Species)) {
+ x = c(x, mean(iris$Petal.Width[iris$Species == i]))
+ }
> names(x) = unique(iris$Species)
> x
versicolor setosa virginica
 1.3000000 0.2333333 2.5000000

Here, we create an empty object (with NULL, the special value that
denotes an empty object in R) and then go through the unique values
in iris$Species using a loop, each time adding the mean of
iris$Petal.width to the respective species in x. Finally, we edit the
names attribute of the resulting vector, using the names function, to add
the unique species names.

http:// /

Chapter 3

[81]

Let's see another example with tapply involving our climatic data. Say we are
interested in finding out how many stations are there (and which ones) with at least
one missing value within its respective time series of precipitation amount. For an
individual station (such as the one named "IZANA SP"), we could check whether its
tpcp column contains at least one NA value as follows:

> any(is.na(dat[dat$station_name == "IZANA SP", "tpcp"]))
[1] TRUE

The returned value is TRUE, meaning the answer is yes. Note that the operation
consisted of three steps. We first created a subset of dat (consisting of the rows for
which the station name is "IZANA SP" and the column name is "tpcp"). Since the
subset is created from a single column, it was automatically simplified to a vector.
Secondly, we looked for each element whether it is NA with the is.na function.
Finally, we checked whether at least one element in the resulting logical vector is
TRUE, with the any function.

To instantly perform this operation on all stations, we can use tapply:

> result = tapply(
+ dat$tpcp,
+ dat$station_name,
+ function(x) any(is.na(x)))

This time the values vector we use the tapply function upon is dat$tpcp (since we
want to look for missing values in the precipitation data) and the vector that defines
the subsets is dat$station_name (since we want to apply the function on data from
each station separately). Finally, the function that we apply is a user-defined one;
its definition is encompassed within the tapply function call for compactness. The
function takes one argument (x) and returns TRUE or FALSE depending on whether x
does or does not contain at least one NA value, respectively, the same way that we did
in the previous code section.

The resulting array indicates, for each station, whether at least one precipitation
measurement is missing. Here are its first ten elements:

> result[1:10]
 A CORUNA ALVEDRO SP A CORUNA SP
 FALSE FALSE
 ALBACETE LOS LLANOS SP ALBACETE OBS. SP
 FALSE FALSE
 ALMERIA AEROPUERTO SP ASTURIAS AVILES SP
 FALSE FALSE
 AVILA SP BADAJOZ TALAVERA LA REAL SP

http:// /

Working with Tables

[82]

 FALSE FALSE
 BARCELONA AEROPUERTO SP BARCELONA SP
 FALSE FALSE

To check how many stations have at least one missing value, we can simply use the
sum function (see the previous chapter):

> sum(result)
[1] 11

The answer is that 11 stations have at least one NA value in their tpcp column. To see
which stations these are, we can subset the result array with the array itself (NOT)
since the TRUE values in that array exactly define the subset we are looking for:

> result[result]
 COLMENAR VIEJO FAMET SP CORDOBA AEROPUERTO SP
 TRUE TRUE
 GUADALAJARA SP IZANA SP
 TRUE TRUE
 JAEN SP PALENCIA OBSERVATORIO SP
 TRUE TRUE
PAMPLONA OBSERVATORIO SP PAMPLONA SP
 TRUE TRUE
 ROTA SP SANTANDER CENTRO SP
 TRUE TRUE
 TARIFA SP
 TRUE

The values of the array are now unimportant (since they are all TRUE); we are
actually interested only in the elements' names. The names attribute of an array (or of
a vector for that matter) can be extracted with the names function, which we already
met, as follows:

> names(result[result])
 [1] "COLMENAR VIEJO FAMET SP" "CORDOBA AEROPUERTO SP"
 [3] "GUADALAJARA SP" "IZANA SP"
 [5] "JAEN SP" "PALENCIA OBSERVATORIO SP"
 [7] "PAMPLONA OBSERVATORIO SP" "PAMPLONA SP"
 [9] "ROTA SP" "SANTANDER CENTRO SP"
[11] "TARIFA SP"

These are the names of the stations we were looking for, in the form of a
character vector.

http:// /

Chapter 3

[83]

Applying a function on rows or columns of a
table
The second function of the apply family that we will meet is apply. This function is
also used to apply a certain function on subsets of data, but instead of operating on
subsets defined by a grouping object, it does this on the margins of an array (or an
object that is analogous to an array, such as a data.frame object with numeric values
only). Applying a function on each row or each column of a table is, for example,
such an operation. We will limit ourselves to this type of two-dimensional operation
for now. In Chapter 6, Modifying Rasters and Analyzing Raster Time Series, we will see
an example of apply involving three dimensions.

Similar to tapply, the first parameter of apply is the object we would like to base
our calculation on (X), and the third parameter is the function we would like to
apply (FUN). The second parameter (MARGIN), however, defines the dimension
across which we would like to apply the function (rather than which subsets of the
input, as in tapply). For example, the data.frame objects (and matrices, which
will be introduced in the next chapter) have two dimensions: rows (dimension
number 1) and columns (dimension number 2). When the input has more than two
dimensions (such as in a three-dimensional array), we can apply a function on the
third dimension as well and so on, although having an array of more than three
dimensions is not common in practice.

Let's return to our iris example to see how apply works. Using apply, we can find
out the mean measured value for each of the five individual plants by averaging the
values on the first dimension (that is, the rows) as follows:

> apply(iris[, 1:4], 1, mean)
 100 45 90 34 38 101
3.475 2.800 3.325 2.825 2.500 4.525

We can also find the mean measured value for each of the four measured traits by
averaging the values of the second dimension (that is, the columns) as follows:

> apply(iris[, 1:4], 2, mean)
Sepal.Length Sepal.Width Petal.Length Petal.Width
 5.5000000 3.3666667 3.1333333 0.9666667

Note that we are working only with the numeric part of the iris object (columns 1
to 4) since the function that we apply (mean) operates on numeric vectors.

http:// /

Working with Tables

[84]

We can also pass additional arguments to apply, which will, in turn, be passed to
the specific function that we apply. For example, the mean function has an additional
parameter, na.rm, which we can set to FALSE within the apply function call. In
that case, we will be able to, for example, find out the column means excluding the
missing values:

> iris[3,2] = NA
> iris
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
100 5.7 2.8 4.1 1.3 versicolor
45 5.1 3.8 1.9 0.4 setosa
90 5.5 NA 4.0 1.3 versicolor
34 5.5 4.2 1.4 0.2 setosa
38 4.9 3.6 1.4 0.1 setosa
101 6.3 3.3 6.0 2.5 virginica
> apply(iris[, 1:4], 2, mean)
Sepal.Length Sepal.Width Petal.Length Petal.Width
 5.5000000 NA 3.1333333 0.9666667
> apply(iris[, 1:4], 2, mean, na.rm = TRUE)
Sepal.Length Sepal.Width Petal.Length Petal.Width
 5.5000000 3.5400000 3.1333333 0.9666667

Here, we first introduced an NA value to our iris table and then applied the mean
function on the columns, first with the default arguments (na.rm=FALSE) and then
with na.rm set to TRUE. Note that passing additional arguments can be done the
same way in tapply as well.

Inference from tables by joining,
reshaping, and aggregating
In this section, you will learn several more advanced operations involving tables.
These include, in particular, reshaping of tables and joining the information from
table pairs. The presented methods, together with the ones presented earlier, will
compose quite a powerful toolbox, which will suffice for all table-related operations
that you will use in this book. Since you will be using functions from contributed
packages, you will first learn how to download and install them. The following
three sections will then introduce functions to reshape, aggregate, and join
tables, respectively.

http:// /

Chapter 3

[85]

Using contributed packages
All predefined objects in R (such as the functions and classes we have been using so
far) are collected in libraries or packages (in R terminology). In order to use an object
defined in a certain package, it first needs to be loaded into memory. This is done
using the library function. So far, we did not use the library function, so how
come we could use all of the functions we have been using? The answer is that several
packages are distributed with the R installation file (~30 of them as of May 2014), and
some of them are automatically loaded into computer memory when starting R (these
are called base R packages); otherwise, we will need to load a package into memory
if we would like to use its functions. For example, if we would like to use graphical
functions from the lattice package (see the previous chapter), which is automatically
installed with R, we need to execute the following expression first:

> library("lattice")

The argument for the library function is the name of the required package that we
would like to load.

By default, the library function can also accept package names
without parentheses, so we can type library(lattice) instead
of the previous expression.

In addition to the preinstalled packages, many contributed packages (~5500 as of
May 2014) are located on the Comprehensive R Archive Network (CRAN), which is
a network of FTP and web servers storing up-to-date versions of official R packages
(unofficial packages or packages currently under development are available from
various other online sources, such as GitHub). To use one of the packages on CRAN,
we first have to download it to our computer, which can be automatically done in R
using the install.packages function. For example, to install the reshape2 package
(which we are going to use shortly), we need to execute the following expression:

> install.packages("reshape2")

Another contributed package we are going to use in this chapter is called plyr. Thus,
it is necessary that you download both reshape2 and plyr (using the install.
packages function for each one) and load them into memory (using the library
function, again for each one) before executing the upcoming examples of code.

 www.allitebooks.com

http:// /
http://www.allitebooks.org

Working with Tables

[86]

To save space, from now on, the install.packages commands
will not be written as part of the code sections, nor will commands
loading packages using library be replicated in each and every
instance the package is used. Instead, every time a code section
requires a newly contributed package, you should make sure the
respective package is loaded.

Remember that downloading a package (using the install.packages function) is
a one-time procedure (unless a new version of the package came out and we would
like to reinstall it). On the other hand, loading the package into memory (using the
library function) is something we need to do in each new R session.

Here are a few more tips concerning the installation of packages:
• Packages installation is also accessible through the menus in both

RGui and RStudio
• When packages installation is triggered, the user is prompted to

select one of the CRAN Mirrors to download the package from
• When installing a new version of R, all packages will need to be

reinstalled

Shifting between long and wide formats using
melt and dcast
In this section, and the following one, you are going to learn several useful
methods to reshape data. Reshaping operations are an inevitable step of every
data analysis process since a lot (if not most) of the time, data we get to work with
will be structured differently from what is required to use a given function or type
of software. In data reshaping, we change the form our data takes (possibly also
reducing its amount, by aggregation), but not the data itself. An example of a tool
used for data reshaping, from other software, is the PivotTable tool in Excel.

http:// /

Chapter 3

[87]

The functions we are going to use in this and the upcoming sections
belong to the contributed packages reshape2 and plyr. There are other
ways to perform the presented operations in R; some of them use only
base packages. However, the methods shown here are considered more
intuitive and flexible. Introduction to these two packages, by their author
Hadley Wickham, can be found in the Journal of Statistical Software (see
Appendix B, Cited References). Note that one of these papers addresses
the reshape package (rather than the more efficient reshape2
package, which was developed later), but the principles of reshape
and reshape2 are the same, so the paper is well relevant to reshape2
users. A good introduction to data manipulation with R using (mostly)
base packages can be found in the excellent book Introduction to Data
Technologies (2009) by Paul Murrell (which is also available online).

The first operation you are going to learn about is the transformation between wide
and long formats. A wide table consists of columns for each measured variable. For
example, our dat table is in a wide format since it has a column for the station name,
a column for the precipitation amount, a column for the minimum temperature,
and so on. A long table is one where a single column holds the variable names and
another holds the measured values. When switching from wide to long formats, we
will usually be interested in intermediate forms, where some of the variables are in
columns, and others are identified in a single column holding variables names. In
reshape2 terminology, the former are called identifier variables (id.vars), while the
latter are called measured variables (measure.vars). This will become clearer using
an example.

The iris dataset we saw earlier is also in a wide format. To convert it to a long
format, we can use the melt function, which is used to convert wide formats to long
formats. When using melt, we need to specify the data.frame object to reshape, and
the identity of the ID and measure variables (as character vectors). In fact, we can
specify either the ID or measure variables, and the function will assume that the rest
of the columns belong to the other kind. For example, the most reasonable approach
in this particular case would be to use the species as an ID variable (since it describes
each measured unit) and the flower dimensions traits as measure variables (since
they are independent measurements conducted on each measured unit). Let's take a
look at the following example:

> library(reshape2)
> iris_melt = melt(iris, id.vars = "Species")

http:// /

Working with Tables

[88]

The first several rows of the resulting table are printed as follows:

> head(iris_melt)
 Species variable value
1 versicolor Sepal.Length 5.7
2 setosa Sepal.Length 5.1
3 versicolor Sepal.Length 5.5
4 setosa Sepal.Length 5.5
5 setosa Sepal.Length 4.9
6 virginica Sepal.Length 6.3

We can see that the ID variable (in this case there was only one, Species) retained
its status as one of the columns. The rest of the columns, the measure variables
(in this case there were four), disappeared; instead, two new columns were
created (variable and value), holding the measure variables names and values,
respectively. The number of rows is now 24 (four times the original number of rows,
six), since the ID part is replicated four times, once for each of the measure variables.

Similarly, we can use the melt function to convert the climatic data table dat to a
long format, specifying that the tpcp, mmxt, and mmnt columns contain measured
variables. We shall assign it to a different object named dat_melt:

> dat_melt = melt(dat, measure.vars = c("tpcp","mmxt","mmnt"))
> head(dat_melt)
 station station_name elevation latitude longitude
1 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
2 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
3 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
4 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
5 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
6 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
 date month year variable value
1 1984-01-01 1 1984 tpcp 51.4
2 1984-02-01 2 1984 tpcp 0.0
3 1984-03-01 3 1984 tpcp 68.7
4 1984-04-01 4 1984 tpcp 13.6
5 1984-05-01 5 1984 tpcp 21.4
6 1984-06-01 6 1984 tpcp 6.5

We can check and see that the molten table dat_melt has exactly three times more
rows than the original table dat.

http:// /

Chapter 3

[89]

The long format is useful in its own right in many cases; for example, when we make
a plot with three panels, one for each measured variable, we need to have the panel
IDs in a single column, which is exactly what we have now. In addition, molten tables
serve as an input to another function in the reshape2 package called dcast, which is
used to cast the data back into a wide format. However, this time we do not have to
return exactly to the original table (on which we previously applied melt). Instead, we
can specify exactly what we would like to have in the rows and columns. The way we
specify the variables to appear in rows and columns is through a formula object (see
the previous chapter), which may have the form: var1+var2+var3~var4+var5. The
variables to the left of the ~ operator (in this case, var1, var2, and var3) are going to
appear as single columns in the new table; the variables to the right of the ~ operator
(in this case, var4 and var5) are going to populate new columns, with the values going
back from the value column to these new columns. For convenience, we can use the
. symbol to indicate no variable or the ... symbol to indicate all remaining variables,
either to the left or right of the ~ operator.

The behavior of dcast can be best demonstrated through examples (for additional
examples, see the 2007 paper by Hadley Wickham). For example, to get back our
original table, we can indicate that we would like the values in the variable column
to form new columns as follows:

> dat2 = dcast(dat_melt, ... ~ variable)

The order of the columns in the resulting table is slightly different; otherwise, the
table is identical to the original dat table:

> head(dat2)
 station station_name elevation latitude longitude
1 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
2 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
3 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
4 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
5 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
6 GHCND:SP000060010 IZANA SP 2371 28.3089 -16.4992
 date month year tpcp mmxt mmnt
1 1984-01-01 1 1984 51.4 5.6 -0.5
2 1984-02-01 2 1984 0.0 9.8 2.8
3 1984-03-01 3 1984 68.7 7.2 0.2
4 1984-04-01 4 1984 13.6 12.2 3.5
5 1984-05-01 5 1984 21.4 11.8 3.0
6 1984-06-01 6 1984 6.5 19.6 10.5

http:// /

Working with Tables

[90]

Alternately, we can have the months form new columns, as follows:

> dat2 = dcast(dat_melt, station+station_name+variable+year~month)
> head(dat2)
 station station_name variable year 1 2 3
1 GHCND:SP000003195 MADRID RETIRO SP tpcp 1984 25.3 37.2 58.0
2 GHCND:SP000003195 MADRID RETIRO SP tpcp 1985 67.8 45.1 6.0
3 GHCND:SP000003195 MADRID RETIRO SP tpcp 1986 10.6 57.0 22.2
4 GHCND:SP000003195 MADRID RETIRO SP tpcp 1987 93.3 42.9 6.7
5 GHCND:SP000003195 MADRID RETIRO SP tpcp 1988 60.0 20.9 1.1
6 GHCND:SP000003195 MADRID RETIRO SP tpcp 1989 9.9 19.5 23.8
 4 5 6 7 8 9 10 11 12
1 39.2 82.4 35.6 0.0 7.1 7.1 30.1 161.0 11.3
2 36.8 29.9 24.1 5.4 0.0 0.0 0.0 39.9 83.8
3 57.3 12.0 1.0 37.1 16.4 47.5 93.8 13.6 19.0
4 63.1 58.4 7.8 43.9 14.5 11.9 58.5 64.8 79.1
5 96.6 46.5 49.8 9.5 0.0 0.0 79.2 50.1 0.2
6 52.2 97.7 12.7 13.3 3.2 37.5 5.9 146.4 138.6

Note that this time we omitted some of the variables from the resulting
table (elevation, latitude, and so on), and made the months' levels
(there are 12 of these) appear in separate columns, with the values of
the respective climatic variable for each month in the cells of the given
column. This form is ideal to answer questions such as which month is
the warmest in each station (using apply, for example).

The casting operations we have performed so far involved the retention of all
original data in the resulting table. What happens when we instruct the creation of a
table that cannot contain all of our original data? In this case, aggregation takes place
and we need to specify the function that will be used for aggregation (otherwise,
the default function length will be used). For example, we can calculate the mean
climatic conditions in Spain per year, as follows:

> dat2 = dcast(dat_melt, year ~ variable, mean, na.rm = TRUE)
> head(dat2)
 year tpcp mmxt mmnt
1 1984 54.34180 19.38194 9.381115
2 1985 45.13103 20.31096 9.793890
3 1986 47.55329 19.75327 9.681250
4 1987 57.09826 20.31684 10.350206
5 1988 47.78863 20.07662 9.934514
6 1989 54.82944 20.97615 10.654617

http:// /

Chapter 3

[91]

A disadvantage of aggregation with dcast is that we must apply the same function
across all variables. In the next section, you will learn about a more flexible
aggregation method.

Aggregating with ddply
There are several functions in the plyr package that are used to apply operations
on the subsets of data and then combine the subsets once again into a single object.
This may sound familiar; indeed the plyr package was intended to comprise an
alternative, in many cases an easier one, to apply and other base R functions. One of
the most commonly used functions from this package, and the one you are going to
learn about in this section, is called ddply.

New packages namely dplyr and tidyr have recently appeared on
CRAN; they are intended to serve as even faster and more efficient
alternatives to plyr and (partially) reshape2. Since these packages
are currently under development, they are not used in the examples
in this book.

The ddply function operates on a data.frame object returning a new data.frame. It
first splits the table to subsets according to the unique levels in one or more columns.
The data from each subset is then used to calculate a single value, for each of the
new columns in the new data.frame object. The user specifies exactly how this will
be done; more importantly, the new columns in the resulting table can be calculated
based on values from more than one column in the original table.

Let's demonstrate the functionality of ddply on iris. We will calculate the average
area size of a flower's petals and sepals, as per species:

> library(plyr)
> ddply(iris,
+ .(Species),
+ summarize,
+ sepal_area = mean(Sepal.Length * Sepal.Width),
+ petal_area = mean(Petal.Length * Petal.Width))
 Species sepal_area petal_area
1 setosa 20.04 0.3933333
2 versicolor NA 5.2650000
3 virginica 20.79 15.0000000

http:// /

Working with Tables

[92]

As we can see, the ddply function call contains several arguments:

• The input data.frame (for example, iris).
• The name(s) of the column(s), which defines subsets, in parentheses and

preceded by . (for example, .(Species)). If there is more than one name,
they will be separated by commas.

• The mode of operation; possible methods are as follows:
 ° summarize: The new columns form a new, aggregated, table
 ° transform: The new columns are appended back to the input table

• The fourth argument and onward (fifth, sixth, and so on) are the user-
specified expressions for calculation of new columns based on values in the
original columns.

The preceding function call thus indicates that we would like to break the iris
table into subsets based on the unique values in the Species column, and create a
new data.frame object with a column that specifies the levels (Species) and two
new columns, sepal_area and petal_area. These columns will contain the means
of the products of length and width for the respective trait. Note that the NA value
for the sepal_area column of species, versicolor, is due to the NA value we
previously inserted.

The instruction to create a new table is given by the word summarize. If we would
have replaced the word summarize with transform, the values from the new
columns would have been added to the input table, rather than creating a new
(aggregated) table, as follows:

> ddply(iris,
+ .(Species),
+ transform,
+ sepal_area = mean(Sepal.Length * Sepal.Width),
+ petal_area = mean(Petal.Length * Petal.Width))
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.8 1.9 0.4 setosa
2 5.5 4.2 1.4 0.2 setosa
3 4.9 3.6 1.4 0.1 setosa
4 5.7 2.8 4.1 1.3 versicolor
5 5.5 NA 4.0 1.3 versicolor
6 6.3 3.3 6.0 2.5 virginica
 sepal_area petal_area
1 20.04 0.3933333
2 20.04 0.3933333

http:// /

Chapter 3

[93]

3 20.04 0.3933333
4 NA 5.2650000
5 NA 5.2650000
6 20.79 15.0000000

As you can see, the original table has been preserved; just that our two newly
calculated columns (sepal_area and petal_area) have been joined to it on the
right. Note that the values in these columns are the averages of the subsets (the
species). Thus, within each subset, the values are duplicated.

As another example, we will now use ddply in order to aggregate our climatic data
table, from a monthly to an annual timescale. In other words, we would like to obtain
annual averages (in case of temperature) or annual sums (in case of precipitation) for
climatic variables. For this, we will first filter out those variable/year combinations
where not all the 12 months are present. For example, if the minimum monthly
temperature data at the "IZANA SP" station for 1985 is available only for 11 (rather
than 12) months, we would like to remove the minimum temperature data for that
year and from that station altogether, to reduce the bias in the annual average. To do
this, we need to find out how many non-missing values we have for every station/
year/variable combination. We will use ddply to our molten dat_melt table:

> dat3 = ddply(dat_melt,
+ .(station, year, variable),
+ transform,
+ months_available = length(value[!is.na(value)]))
> head(dat3)
 station station_name elevation latitude longitude
1 GHCND:SP000003195 MADRID RETIRO SP 667 40.4117 -3.6781
2 GHCND:SP000003195 MADRID RETIRO SP 667 40.4117 -3.6781
3 GHCND:SP000003195 MADRID RETIRO SP 667 40.4117 -3.6781
4 GHCND:SP000003195 MADRID RETIRO SP 667 40.4117 -3.6781
5 GHCND:SP000003195 MADRID RETIRO SP 667 40.4117 -3.6781
6 GHCND:SP000003195 MADRID RETIRO SP 667 40.4117 -3.6781
 date month year variable value months_available
1 1984-01-01 1 1984 tpcp 25.3 12
2 1984-02-01 2 1984 tpcp 37.2 12
3 1984-03-01 3 1984 tpcp 58.0 12
4 1984-04-01 4 1984 tpcp 39.2 12
5 1984-05-01 5 1984 tpcp 82.4 12
6 1984-06-01 6 1984 tpcp 35.6 12

http:// /

Working with Tables

[94]

The new table dat3, which we just created, contains all of the data from dat_
melt (since transform was used), in addition to the new months_available
column, which contains the number of non-NA elements for the respective
.(station,year,variable) subset. Using this column, we can now remove
those station/year/variable subsets that have less than 12 months of data:

> nrow(dat3)
[1] 85608
> dat3 = dat3[dat3$months_available == 12,]
> nrow(dat3)
[1] 80976

Overall 4,632 rows have been removed. Now we can aggregate the dat3 table,
knowing that the annual values will always be based on 12 months of data. We will
do it in two steps.

First, we will create a table to only hold the location data (latitude, longitude, and
elevation columns) for each meteorological station. It is frequently useful to have
a table such as this, for example, to plot the stations' spatial locations (which we are
going to do in Chapter 7, Combining Vector and Raster Datasets):

> spain_stations = ddply(dat3,
+ .(station),
+ summarize,
+ latitude = latitude[1],
+ longitude = longitude[1],
+ elevation = elevation[1])
> head(spain_stations)
 station latitude longitude elevation
1 GHCND:SP000003195 40.4117 -3.6781 667
2 GHCND:SP000004452 38.8831 -6.8292 185
3 GHCND:SP000006155 36.6667 -4.4881 7
4 GHCND:SP000008027 43.3075 -2.0392 251
5 GHCND:SP000008181 41.2928 2.0697 4
6 GHCND:SP000008202 40.9592 -5.4981 790

Here, the aggregation was performed by the station column only; therefore,
we obtain a rather short table with one row for each meteorological station
(96 rows in total):

> nrow(spain_stations)
[1] 96

http:// /

Chapter 3

[95]

Note that with latitude=latitude[1] we say, in plain language: take the first
latitude value you see and assign it to the aggregated table, per station. Since
the location of a given station should be constant over time, we can take any of
the latitude values. However, we do not know exactly how many rows of data
each station has (actually, in this particular case, we do know it is at least 12 since
otherwise the data for that station could not have formed a complete 12 months
series and would have been removed altogether); therefore, selecting the first one
is a reasonable option.

We will save this data.frame object to a file since we will use it in subsequent
chapters:

> write.csv(spain_stations, "C:\\Data\\spain_stations.csv",
+ row.names = FALSE)

The additional parameter row.names indicates whether we would like row names to
be saved as an additional column in the CSV file (in this case, we do not).

Next, we will aggregate the climatic data itself, per station/variable/year
combination. Here, our purpose is to find the sum of each month (in case of rainfall)
or the average of each month (in case of temperature). We will use ifelse to assign
a sum of the 12 values when the variable is tpcp or the average otherwise (when the
variable is either mmxt or mmnt). Let's take a look at the following example:

> spain_annual = ddply(dat3,
+ .(station, variable, year),
+ summarize,
+ value = ifelse(variable[1] == "tpcp",
+ sum(value, na.rm = TRUE),
+ mean(value, na.rm = TRUE)))
> head(spain_annual)
 station variable year value
1 GHCND:SP000003195 tpcp 1984 494.3
2 GHCND:SP000003195 tpcp 1985 338.8
3 GHCND:SP000003195 tpcp 1986 387.5
4 GHCND:SP000003195 tpcp 1987 544.9
5 GHCND:SP000003195 tpcp 1988 413.9
6 GHCND:SP000003195 tpcp 1989 560.7

Note that, once again, we consider only the first element in the variable column
(variable[1]) to make the decision on whether to use the sum or mean function since
all values of the column variable are, by definition, identical within a given station/
year/variable combination.

http:// /

Working with Tables

[96]

We will save this data.frame object to a file for later use:

> write.csv(spain_annual, "C:\\Data\\spain_annual.csv",
+ row.names = FALSE)

Our final exercise related to the processing of tabular data would be to see how we
can join the spain_stations and spain_annual tables into a single table, containing
both the station coordinates and climatic data. For this, you first have to learn how to
join tables, which we shall do in the next section.

Joining tables with join
Joining tables is another common operation in data analysis. Those working with
spatial data may be familiar with the task of joining data from an external table (such
as an Excel file) with the attribute table of a spatial dataset (such an ESRI Shapefile),
which is an example of a join operation.

The plyr library offers a very convenient function called join, to join data.frame
objects. Note, once again, that there are other ways to perform the task in R, such
as using the merge function from the base packages. However, in addition to its
simplicity, an important advantage of join is that it always preserves the original
order of rows in the data.frame object we join to. This feature will be especially
important later, when performing the previously mentioned task of joining tables to
attributes of spatial datasets (see Chapter 5, Working with Points, Lines, and Polygons).

The first two parameters of the join function are x and y, which indicate the names
of the two data.frame objects to join, and the third parameter is by, which indicates
by which column(s) to join. The other two parameters indicate, by default, that we
would like to perform a left join (type="left", retaining all rows of x, as opposed
to a "right" join where we retain all rows of y) and retain all records if there are
duplicates (match="all"), which is what we would like to do in most cases (see
?join for more details).

For example, let's say we have a table where each row corresponds to a date, and
we would like to create a new column that indicates the season that date belongs to
(winter, spring, summer, or fall). One way of doing this is to create a table indicating
the season each month belongs to, and then join the second table to the first one,
according to the common month columns.

http:// /

Chapter 3

[97]

For this example, we will read another CSV file with a series of dates. The dates
table looks as follows:

> dates = read.csv("C:\\Data\\modis_dates.csv")
> head(dates)
 image day month year
1 1 18 2 2000
2 2 5 3 2000
3 3 21 3 2000
4 4 6 4 2000
5 5 22 4 2000
6 6 8 5 2000

This table indicates the dates of the MODIS satellite images acquisition with the
image column corresponding to bands in a multiband raster, which we will work
with later (see the next chapter).

As another exercise of working with dates, we will create a column of the Date class
from the day, month, and year columns as follows:

> dates$date = as.Date(
+ paste(dates$year, dates$month, dates$day, sep = "-"))
> head(dates)
 image day month year date
1 1 18 2 2000 2000-02-18
2 2 5 3 2000 2000-03-05
3 3 21 3 2000 2000-03-21
4 4 6 4 2000 2000-04-06
5 5 22 4 2000 2000-04-22
6 6 8 5 2000 2000-05-08

Let's now create a table of seasons. To do this, we will use the rep function with a
parameter we have not used so far, each, which indicates that we want to repeat
each element of a given vector several times (rather than repeat the whole vector):

> month = c(12, 1:11)
> month
 [1] 12 1 2 3 4 5 6 7 8 9 10 11
> season = rep(c("winter","spring","summer","fall"), each = 3)
> season
 [1] "winter" "winter" "winter" "spring" "spring" "spring"
 [7] "summer" "summer" "summer" "fall" "fall" "fall"
> seasons = data.frame(month, season)
> seasons
 month season

http:// /

Working with Tables

[98]

1 12 winter
2 1 winter
3 2 winter
4 3 spring
5 4 spring
6 5 spring
7 6 summer
8 7 summer
9 8 summer
10 9 fall
11 10 fall
12 11 fall

The seasons table now indicates which season a given month belongs to. The final
step will be to join the two tables: dates and seasons. The following expression
states that we would like to join the seasons table to the dates table by month:

> dates = join(dates, seasons, "month")
> head(dates)
 image day month year date season
1 1 18 2 2000 2000-02-18 winter
2 2 5 3 2000 2000-03-05 spring
3 3 21 3 2000 2000-03-21 spring
4 4 6 4 2000 2000-04-06 spring
5 5 22 4 2000 2000-04-22 spring
6 6 8 5 2000 2000-05-08 spring

We will use this table in several examples in the subsequent chapters.

Returning to our climatic data example, we will now join the two tables we got in
the previous section: the stations, coordinates summary (spain_stations) and the
aggregated annual climatic data (spain_annual). The resulting data.frame object
will be named combined, as shown in the following expression:

> combined = join(spain_stations,
+ spain_annual,
+ by = "station",
+ type = "right")

Note that here we use the type="right" option since we would like to retain all
rows in the second table spain_annual (rather than retain all the rows in the first
table, as shown in the previous example).

http:// /

Chapter 3

[99]

The table looks as follows:

> head(combined)
 station latitude longitude elevation variable year
1 GHCND:SP000003195 40.4117 -3.6781 667 tpcp 1984
2 GHCND:SP000003195 40.4117 -3.6781 667 tpcp 1985
3 GHCND:SP000003195 40.4117 -3.6781 667 tpcp 1986
4 GHCND:SP000003195 40.4117 -3.6781 667 tpcp 1987
5 GHCND:SP000003195 40.4117 -3.6781 667 tpcp 1988
6 GHCND:SP000003195 40.4117 -3.6781 667 tpcp 1989
 value
1 494.3
2 338.8
3 387.5
4 544.9
5 413.9
6 560.7

As the output shows, this table contains duplicated data since the latitude,
longitude, and elevation records are identical in each station/variable/year
combination. In such cases, it is more efficient to keep two separate tables (such as
spain_stations and spain_annual) rather than join all the data into a single table
(such as combined).

Summary
In this chapter, you learned how tabular data is represented in R. We covered many
of the basic (such as subsetting and calculating new columns) and more advanced
(such as reshaping and joining) techniques related to tables. We also met several
operators used to control code execution, specifically to condition code execution or
induce repeated code execution.

In the remaining chapters of this book, we are going to focus on working with
spatial data in R. However, we shall utilize the methods presented in this chapter
regarding the data.frame class, the flow control functions and the apply functions,
quite frequently.

http:// /

http:// /

Working with Rasters
In this chapter, we move on to the realm of spatial data analysis in R. We begin by
introducing the properties and usage principles of the classes used to store raster
data in R. For that matter, we are going to first introduce the simpler (nonspatial)
structures that are conceptually related to rasters: matrices and arrays. We then cover
the more sophisticated classes defined in the raster package to represent spatial
raster data. You will learn to create, subset, and save objects of these classes as well
as to query the characteristics of rasters we have at hand. Afterwards, you will learn
two basic operations involving rasters: overlay and reclassification. At the same
time, we will see some examples of visualizing raster data in R to help us get a better
understanding of the data we have.

In this chapter, we'll cover the following topics:

• Using matrices to represent two-dimensional sets of numeric values
• Using arrays to represent three-dimensional sets of numeric values
• Using classes for single band and multiband rasters in the raster package
• Reading and writing raster files
• Exploring the properties of a given raster object
• Basic visualization of rasters in R
• Subsetting rasters
• Converting raster objects to simpler data structures and vice versa
• Performing raster algebra operations
• Reclassifying raster values

http:// /

Working with Rasters

[102]

Using the matrix and array classes
A raster is essentially a matrix with spatial reference information. Similarly, a
multiband raster is essentially a three-dimensional array with spatial reference
information. Therefore, before proceeding with spatial rasters, we will cover some
prerequisite material on working with these (simpler) objects in this section—matrices
and arrays. Moreover, as we shall see later, matrices and arrays are common data
structures with many uses in R.

Representing two-dimensional data with a
matrix
A matrix object is a two-dimensional collection of elements, all of the same type (as
opposed to a data.frame object; see the previous chapter), where the number of
elements in all rows (and, naturally, all columns) is identical. Matrix objects have many
uses in R. For example, certain functions take matrices as their arguments (such as the
focal function to filter rasters) or return matrices (such as the extract function to
extract raster values; we will meet both these functions in the subsequent chapters).

A matrix object can be created with the matrix function by specifying its values (in
the form of a vector) and dimensions as follows:

> matrix(1:6, ncol = 3)
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

The first four parameters of the matrix function are as follows:

• data: The vector of values for the matrix (for example, 1:6)
• nrow: The number of rows
• ncol: The number of columns (for example, 3)
• byrow: Whether the matrix is filled column by column (FALSE, which is the

default value) or row by row (TRUE)

The nrow and ncol parameters determine the number of rows and columns,
respectively. We can specify either one of these parameters, and the other will be
calculated taking into account the overall number of elements. Let's take a look at the
following example:

> matrix(1:6, nrow = 3)
 [,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

http:// /

Chapter 4

[103]

> matrix(1:6, nrow = 2)
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Note that when the allocated number of cells is smaller or larger than the number
of values in the vector that is being used to populate the matrix, the vector is either
deprecated or recycled, respectively. Let's take a look at the following examples:

> matrix(12:1, ncol = 4, nrow = 2)
 [,1] [,2] [,3] [,4]
[1,] 12 10 8 6
[2,] 11 9 7 5
> matrix(12:1, ncol = 4, nrow = 4)
 [,1] [,2] [,3] [,4]
[1,] 12 8 4 12
[2,] 11 7 3 11
[3,] 10 6 2 10
[4,] 9 5 1 9

There are several useful functions to examine the properties of a matrix. You are
familiar with them from Chapter 1, The R Environment, and Chapter 2, Working with
Vectors and Time Series, since they are analogous to the functions we used with
vectors and data.frame objects. For example, the length function returns the
number of elements a matrix has as follows:

> x = matrix(7:12, ncol = 3, byrow = TRUE)
> x
 [,1] [,2] [,3]
[1,] 7 8 9
[2,] 10 11 12
> length(x)
[1] 6

The nrow and ncol functions return the number of rows and columns as follows:

> nrow(x)
[1] 2
> ncol(x)
[1] 3

The dim function returns both (the number of rows and columns) at the same time:

> dim(x)
[1] 2 3

http:// /

Working with Rasters

[104]

Using the as.vector function, we can convert a matrix into a vector as follows (note
that the values in the vector will always be ordered by columns):

> as.vector(x)
[1] 7 10 8 11 9 12

Similar to what we saw regarding data.frame objects, we can subset matrices using
two-dimensional indices. For example, to get the values that occupy the first and
third columns in matrix x, we will use the following expression:

> x[, c(1,3)]
 [,1] [,2]
[1,] 7 9
[2,] 10 12

To get the values that occupy the second row in matrix x, we will use the
following expression:

> x[2,]
[1] 10 11 12

The previous example demonstrates that the resulting object is simplified to a vector
if the values are retrieved from a single row or column. Setting the drop parameter
to FALSE will suppress this behavior, similar to what we saw for the data.frame
objects (see the previous chapter):

> x[2, , drop = FALSE]
 [,1] [,2] [,3]
[1,] 10 11 12

The assignment of new values to subsets of a given matrix is also possible using the
assignment operator. For example, we can create an empty 3 x 3 matrix m and then
populate some of its cells as follows:

> m = matrix(NA, ncol = 3, nrow = 3)
> m
 [,1] [,2] [,3]
[1,] NA NA NA
[2,] NA NA NA
[3,] NA NA NA
> m[2:3, 1:2] = matrix(1:4, nrow = 2)
> m
 [,1] [,2] [,3]
[1,] NA NA NA
[2,] 1 3 NA
[3,] 2 4 NA

http:// /

Chapter 4

[105]

We can also use the apply function to make calculations on rows or columns of a
matrix, in exactly the same way as with the data.frame objects (see the previous
chapter). For example, we can calculate the means of all columns in matrix x
as follows:

> apply(x, 2, mean)
[1] 8.5 9.5 10.5

In fact, there are two specialized functions named rowMeans and colMeans for the
specific tasks of calculating row and column means, respectively. Thus, for example,
the following expression gives exactly the same result as the previous one:

> colMeans(x)
[1] 8.5 9.5 10.5

Representing more than two dimensions with
an array
While vectors are used to represent one-dimensional sets of elements (see Chapter 2,
Working with Vectors and Time Series), and matrix is a specialized class to represent
two-dimensional sets of elements (see the previous section), the array class is more
general. It is used to represent sets of elements having any number of dimensions
(including one and two).

We can create an array object (a three-dimensional one, for example) using the
array function:

> y = array(1:24, c(2,2,3))
> y
, , 1

 [,1] [,2]
[1,] 1 3
[2,] 2 4

, , 2

 [,1] [,2]
[1,] 5 7
[2,] 6 8

, , 3

 [,1] [,2]
[1,] 9 11
[2,] 10 12

http:// /

Working with Rasters

[106]

The first argument we entered (1:24) defined the values, while the second argument
(c(2,2,3)) defined the number of dimensions and their lengths. As opposed to
creating a matrix with the matrix function, we need to explicitly specify the lengths
of all dimensions (or else a one-dimensional object will be created by default) with
the array function. In the previous example, we were interested in having three
dimensions—two rows, two columns, and three layers (using raster terminology; see
the following section). Thus, we specified their lengths as (2,2,3) using a vector
of length 3.

Naturally, a three-dimensional array has a three-dimensional indexing system. For
example, we can reach the (2,1,3) element in our array y as follows:

> y[2,1,3]
[1] 10

Working with arrays is very similar to working with vectors and matrices, and
the application of many of the functions we have previously seen is intuitive. For
example, we can use the apply function to find the means of all elements in each
layer (or third dimension):

> apply(y, 3, mean)
[1] 2.5 6.5 10.5

We will see an example involving the rowMeans function and three-dimensional
array objects in Chapter 6, Modifying Rasters and Analyzing Raster Time Series.

Data structures for rasters in the raster
package
A raster is a rectangular grid of numeric values, referenced to a certain geographical
extent. As previously mentioned, spatial referencing is what differentiates a raster
from the simpler data structures (matrices and arrays) we have seen previously. A
raster can have a single value in each cell (a single band, or single layer, raster—
analogous to a matrix) or several values (a multiband, or multilayer, raster—
analogous to an array). Rasters conceptually differ from vector layers, which are
data structures to represent non-gridded objects such as spatial points, lines, and
polygons (these will be covered in the next chapter).

http:// /

Chapter 4

[107]

In this book, we are going to work with classes to represent rasters from the raster
package. This package does not come with the R installation, so we first have to
install it using install.packages (see the previous chapter). We will also need
to install the rgdal package since functions in the raster package use functions
defined in rgdal for certain tasks, such as input/output operations. Taking a look
at the official overview of R packages for spatial data analysis (http://cran.r-
project.org/web/views/Spatial.html) is highly recommended at this stage.
This web page is useful to find out how the previously mentioned packages raster
and rgdal (and the ones to be introduced in the upcoming chapters) fit within the
broader ecosystem of spatial data analysis tools available in R.

The rgdal package, which stands for Geospatial Data Abstraction
Library (GDAL) extensions to R, is a very important one to work
with spatial data, and we will cover it in several contexts. The name
GDAL may be familiar to some readers; GDAL is a C library frequently
used in other software (such as QGIS) and programming languages
(such as Python). In fact, there are four C libraries providing the core
functionality to work with spatial data in R interfaced through R
functions. They are GDAL, OGR, PROJ.4 (which are available using
functions in the rgdal package), and GEOS (which is available
through functions in the rgeos package).

The remaining part of this chapter is going to introduce the basic usage of the raster
package with two real-world examples of remote sensing data. More advanced
functionality of this package, as well as examples with another common type of
raster data, Digital Elevation Model (DEM), will be introduced in subsequent
chapters. We'll be creating a third type of raster—predicted surfaces from spatial
interpolation—in Chapter 8, Spatial Interpolation of Point Data.

Similarly to the GIS software, the raster package has the capability of
working with big rasters that cannot be accommodated in the RAM (in
such cases, for example, the data are automatically processed in chunks
and the results are written to temporary files on disk).

A comprehensive overview of the range of capabilities the raster package offers can
also be found in its accompanying introductory tutorial (http://cran.r-project.
org/web/packages/raster/vignettes/Raster.pdf).

http://cran.r-project.org/web/views/Spatial.html
http://cran.r-project.org/web/views/Spatial.html
http://cran.r-project.org/web/packages/raster/vignettes/Raster.pdf
http://cran.r-project.org/web/packages/raster/vignettes/Raster.pdf
http:// /

Working with Rasters

[108]

Creating single band rasters
There are three classes to represent spatial rasters in the raster packages. These are
RasterLayer, RasterStack, and RasterBrick. The first class is used to represent
single band rasters (see the following examples), whereas the last two classes are
used to represent multiband rasters (see the next section).

The RasterLayer class represents a single band raster. A new RasterLayer object
can be created using the raster function in several ways. For example, a matrix
object can be converted to a RasterLayer object as follows:

> library(raster)
> r1 = raster(x)
> r1
class : RasterLayer
dimensions : 2, 3, 6 (nrow, ncol, ncell)
resolution : 0.3333333, 0.5 (x, y)
extent : 0, 1, 0, 1 (xmin, xmax, ymin, ymax)
coord. ref. : NA
data source : in memory
names : layer
values : 7, 12 (min, max)

We see that the print method for RasterLayer objects does something different from
what we have seen so far. Rather than printing all values the object is composed of,
a summary of certain properties of the particular RasterLayer object is given. We
will see how to directly access some of these properties later. For now, it is worth
repeating that a RasterLayer object (as opposed to a matrix) has spatial reference
information, that is, a certain resolution, extent, and Coordinate Reference System
(CRS). Naturally, the particular raster r, which we just created from a plain numeric
matrix, has no CRS, and its resolution and extent have been automatically generated
by the raster function (the extent is between 0 and 1 on both the x and y axes; the
resolution is calculated accordingly).

A more common way to create a raster object in R is to read the raster data from
a file. For example, given that the raster and rgdal packages are installed on our
system and the raster file landsat_15_10_1998.tif exists in the C:\Data directory,
the following expression will read the contents of its first band and assign it to an
object named band1 of class RasterLayer:

> band1 = raster("C:\\Data\\landsat_15_10_1998.tif")

http:// /

Chapter 4

[109]

Reading files from disk, as mentioned earlier, is done through the rgdal package
(which is automatically loaded, if it was not already, when trying to read a file using
the raster function). At present, there are ~100 supported input formats (you can get
a list of these by typing getGDALDriverNames()$name once rgdal is loaded). These
include, for example, the frequently used GeoTIFF (*.tif or *.tiff), which we will
use in the examples in this book, and ERDAS IMAGINE image (*.img) formats.

Printing the properties of raster band1 and comparing them to those of r1 from
the previous example will demonstrate that this time we do have meaningful
spatial reference information in the RasterLayer object band1, as shown in the
following example:

> band1
class : RasterLayer
band : 1 (of 6 bands)
dimensions : 960, 791, 759360 (nrow, ncol, ncell)
resolution : 30, 30 (x, y)
extent : 663945, 687675, 3459375, 3488175 (xmin, xmax, ymin$
coord. ref. : +proj=utm +zone=36 +ellps=WGS84 +units=m +no_defs
data source : C:\Data\landsat_15_10_1998.tif
names : landsat_15_10_1998
values : 0.01737053, 0.5723241 (min, max)

Spatial reference information is stored in the GeoTIFF file and incorporated in the
RasterLayer object when it is created. We can see that raster band1 has a projected
CRS, specifically the UTM Zone 36N coordinate system. Thus, its resolution, 30 x 30,
is in meters. We can also see that it is one of the six bands the landsat_15_10_1998.
tif file contains.

The input file landsat_15_10_1998.tif is, in fact, a subset of a Landsat satellite
image of central Israel, where the original values were converted to reflectance (the
fraction of incident electromagnetic radiation that is reflected from the surface, for
a given wavelength). The original image, taken on October 15, 1998, is available for
free at http://earthexplorer.usgs.gov/. The landsat_15_10_1998.tif file
has six bands (Landsat bands 1-5 and 7) and covers an area of ~24 x ~29 kilometers
(out of the 170 x 183 kilometers covered by the original image). The first four bands
correspond to blue, green, red, and Near Infrared (NIR), while the last two belong
to the Short Wave Infrared (SWIR) portion of the electromagnetic spectrum. Two
additional Landsat images of the same area, taken about 2 and 5 years after 1998, are
also available as sample datasets along with this book (the landsat_04_10_2000.
tif and landsat_11_09_2003.tif files).

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
http:// /

Working with Rasters

[110]

Since the raster function reads, by default, the first band of a multiband raster file,
object band1 that we just created contains reflectance data from the blue band. We
can point to a different band with the band parameter of the raster function. For
example, we can create another RasterLayer object, named band4, that will hold the
NIR data as follows:

> band4 = raster("C:\\Data\\landsat_15_10_1998.tif", band = 4)

Creating multiband rasters
Two classes to represent multiband rasters are defined in the raster package:
RasterStack and RasterBrick. The only difference between these classes is in the
flexibility of data sources. While a RasterBrick object must refer to a single file
(either in the RAM or on disk), each layer in a RasterStack object can come from a
different file (or a layer in a multiband file). The advantage of RasterBrick is in the
potentially faster processing time.

A RasterStack object can be created using the stack function, for example, by
combining several RasterLayer objects as follows:

> stack(band1, band4)
class : RasterStack
dimensions : 960, 791, 759360, 2 (nrow, ncol, ncell, nlayers)
resolution : 30, 30 (x, y)
extent : 663945, 687675, 3459375, 3488175 (xmin, xmax, ymin$
coord. ref. : +proj=utm +zone=36 +ellps=WGS84 +units=m +no_defs
names : landsat_15_10_1998.1, landsat_15_10_1998.2
min values : 0.01737053, 0.04885371
max values : 0.5723241, 0.7096972

Here, we combined the two RasterLayer objects band1 and band4 into a single
RasterStack object. We can see that a RasterStack object has an additional
dimension: the bands or layers (in this case, there are two). A RasterBrick object
can be created using the brick function in exactly the same way.

We can also use the stack or brick function to read a multiband raster file into a
RasterStack or RasterBrick object. Let's read the Landsat image from 2000 into a
RasterBrick object named l_00:

> l_00 = brick("C:\\Data\\landsat_04_10_2000.tif")
> l_00
class : RasterBrick
dimensions : 960, 791, 759360, 6 (nrow, ncol, ncell, nlayers)
resolution : 30, 30 (x, y)
extent : 663945, 687675, 3459375, 3488175 (xmin, xmax, ymin$

http:// /

Chapter 4

[111]

coord. ref. : +proj=utm +zone=36 +ellps=WGS84 +units=m +no_defs
data source : C:\Data\landsat_04_10_2000.tif
names : landsat_04_10_2000.1, landsat_04_10_2000.2, landsat$
min values : 3.109737e-05, 2.019792e-02, $
max values : 0.6080654, 0.6905138, $

This time, our RasterBrick object l_00 holds all six bands the landsat_04_10_2000.
tif file contains.

The following table summarizes the previously mentioned properties of the
three classes:

Class Function Bands Storage
RasterLayer raster 1 Disk/RAM
RasterStack stack Greater than 1 Disk/RAM
RasterBrick brick Greater than 1 Disk/RAM, single file

Once we have a multiband raster object (such as RasterStack), we can access
individual bands using the double square brackets [[operator. By supplying a
numeric vector of band indices within double brackets, we can get a subset of bands
from the multiband raster. When the index has a length of 1, we get a RasterLayer
object holding a single band. For example, using the expression l_00[[2]], we get a
RasterLayer object that holds the second band as follows:

> class(l_00[[2]])
[1] "RasterLayer"
attr(,"package")
[1] "raster"

When the length of the index is greater than 1, we get a multiband object that holds
the specific bands we selected. For example, using the expression l_00[[1:3]], we
get a RasterStack object containing only bands 1-3:

> class(l_00[[1:3]])
[1] "RasterStack"
attr(,"package")
[1] "raster"

http:// /

Working with Rasters

[112]

Writing raster files
Raster objects can be written to disk with the writeRaster function. Writing in
nine formats is currently supported. For example, to write our recently created
RasterStack object back to disk, in a different format (say, an ERDAS IMAGINE
image, *.img), we will run the following expression:

> writeRaster(l_00,
+ "C:\\Data\\landsat_04_10_2000.img",
+ format = "HFA",
+ overwrite = FALSE)

Note that we specified the values of four parameters:

• The object to be written (l_00)
• The path and name for the file to be written ("C:\\Data\\

landsat_04_10_2000.img")
• The format of choice (see ?writeRaster for the list of abbreviations)

(format="HFA")
• Whether to overwrite when the file already exists (overwrite=FALSE)

Exploring a raster's properties
In this section, we are going to review some of the functions used to query the
properties of raster objects, and modify those properties when appropriate.
Accessing and modifying the raster values (these can also be viewed as a property
the raster has) is going to be covered in the next sections.

The number of rows, columns, and layers of a raster can be obtained using functions
nrow, ncol, and nlayers, respectively:

> nrow(l_00)
[1] 960
> ncol(l_00)
[1] 791
> nlayers(l_00)
[1] 6

As we have seen previously in other contexts, the dim function returns the lengths of
all dimensions at once as follows:

> dim(l_00)
[1] 960 791 6

http:// /

Chapter 4

[113]

The number of cells (equal to the number of rows multiplied by the number of
columns) can be obtained using the ncell function:

> ncell(l_00)
[1] 759360

As for the spatial reference properties, the res and extent functions return the
resolution and extent of the raster, while the proj4string function returns the
CRS information. Let's see how these functions work, one function at a time:

> res(l_00)
[1] 30 30

The output of res is a vector of length 2, and its values denote the resolutions on the
x and y axes, respectively (these are usually equal). Here is an example of querying
the raster's extent:

> extent(l_00)
class : Extent
xmin : 663945
xmax : 687675
ymin : 3459375
ymax : 3488175

The returned object from the extent function is an object of the Extent class. Objects
of this class define a rectangular bounding box and have several uses, such as
cropping a raster according to the extent of another raster (using the crop function,
as we shall see in upcoming chapters).

The returned object from the proj4string function is a character vector (of length
1), holding the CRS information in the PROJ.4 format:

> proj4string(l_00)
[1] "+proj=utm +zone=36 +ellps=WGS84 +units=m +no_defs"

Certain methods (such as reprojection of vector layers, which will be introduced in
the next chapter), require CRS information as an object of class CRS rather than a
character value. A CRS object can be created in a straightforward manner, namely
applying function CRS to a PROJ.4 character string. The CRS function is defined in
the sp package—another very important package to work with spatial data in R (it
is automatically loaded along with the raster package) and one that is going to be
covered in the next chapter.

http:// /

Working with Rasters

[114]

The CRS object contains exactly the same information, only in a different form:

> CRS(proj4string(l_00))
CRS arguments:
 +proj=utm +zone=36 +ellps=WGS84 +units=m +no_defs

One of the advantages of using the CRS class is that the correspondence of a specific
character string to a valid CRS is ensured (otherwise the CRS function will trigger
an error).

Sometimes, we would like to modify the CRS information of a spatial object (or
assign one if it is missing). For example, assignment of NA to the CRS component is
equivalent to clearing the CRS information:

> proj4string(l_00) = NA
> proj4string(l_00)
[1] NA

When a raster does not have a CRS specified, we can assign it one. One way to
do this is by using the appropriate PROJ.4 character string (which, in turn, can be
obtained from another resource, such as http://www.spatialreference.org/).
Here is an example of how this can be done:

> proj4string(l_00) =
+ CRS("+proj=utm +zone=36 +ellps=WGS84 +units=m +no_defs")
> proj4string(l_00)
[1] "+proj=utm +zone=36 +ellps=WGS84 +units=m +no_defs"

It is frequently more convenient to transfer CRS information from another spatial
object (which is analogous to importing a CRS from another layer, a common
procedure in a GIS software), rather than looking up its specific parameters. For
example, we can assign our raster object l_00 the CRS data from another Landsat
satellite image we read from the disk:

> l1 = raster("C:\\Data\\landsat_15_10_1998.tif")
> proj4string(l_00) = CRS(proj4string(l1))

A graphical display is often the most helpful way to perceive the properties of a
given raster. For example, the two basic functions plot and hist can give a first
impression of the raster values' distribution. The plot function, when applied to a
raster object, generates a simple map of the values in each band. For more advanced
visualization of this sort, we are going to use the levelplot function (in the
following example) and the ggplot2 package (in Chapter 9, Advanced Visualization of
Spatial Data). The hist function displays a histogram of the values in each band of
the raster.

http://www.spatialreference.org/
http:// /

Chapter 4

[115]

Prior to plotting, we will modify another property the raster l_00 has—its band
names—using the names function, so that more appropriate names will appear along
with each respective image in the graphical output. The automatically generated
names are often inconvenient; for example, they may be composed of the filename
with sequential numbers for the different bands:

> names(l_00)
[1] "landsat_04_10_2000.1" "landsat_04_10_2000.2"
[3] "landsat_04_10_2000.3" "landsat_04_10_2000.4"
[5] "landsat_04_10_2000.5" "landsat_04_10_2000.6"

We can assign shorter names as follows:

> names(l_00) = paste("Band", 1:6, sep = "_")
> names(l_00)
[1] "Band_1" "Band_2" "Band_3" "Band_4" "Band_5" "Band_6"

Now, using the expression hist(l_00), we will generate histograms of values in
each band of raster l_00, which are shown in the following screenshot:

http:// /

Working with Rasters

[116]

Expanded functionality in the visualization of raster data in R is available through
several contributed packages. For example, the levelplot function from the
rasterVis package (which is a modified version of the levelplot function from
the lattice package) by default displays all bands of a given raster using a single
color scale (unlike plot), which is something we usually want to do. Note that
the levelplot function has numerous additional parameters to modify the plot
appearance, and the rasterVis package contains several other useful functions
to visualize rasters, that we are not going to cover (instead, you will learn how
to produce customized graphical output using the ggplot2 package in Chapter 9,
Advanced Visualization of Spatial Data). The interested reader is referred to the tutorial
of the rasterVis package (http://oscarperpinan.github.io/rastervis/) and
the related book by the package author Oscar Perpinan Lamigueiro, Displaying Time
Series, Spatial, and Space-Time Data with R, CRC Press (2014).

Two very useful parameters of levelplot are par.settings, which determines
the color scale (for example, the blue-red scale is available using RdBuTheme), and
contour, which determines whether to display contours. Let's take a look at the
following example:

> library(rasterVis)
> levelplot(l_00, par.settings = RdBuTheme, contour = FALSE)

The following graphical output is generated:

http://oscarperpinan.github.io/rastervis/
http:// /

Chapter 4

[117]

The previous screenshot shows reflectance values between 0 (completely dark) to
1 (completely reflective) for each Landsat band. To produce a so-called true color
image, we would have to combine bands 1-3 (blue, green, and red), as will be shown
in the next chapter.

Subsetting rasters
In many situations, we would like to access the values of a given raster either to
perform calculations involving these values (for example, to calculate a frequency
table) or to make an assignment (for example, to change a certain value in the raster;
see the previous code section in Chapter 1, The R Environment). In this section, we are
going to cover the different ways to do this.

As an example, we are going to use another multiband raster, modis.tif. First, we
will assign it to a RasterBrick object named r and print its properties, as follows:

> r = brick("C:\\Data\\modis.tif")
> r
class : RasterBrick
dimensions : 100, 100, 10000, 280 (nrow, ncol, ncell, nlayers)
resolution : 500, 500 (x, y)
extent : 660000, 710000, 3445000, 3495000 (xmin, xmax, ymin$
coord. ref. : +proj=utm +zone=36 +datum=WGS84 +units=m +no_defs +$
data source : C:\Data\modis.tif
names : modis.1, modis.2, modis.3, modis.4, modis.5, modis.$

The modis.tif file contains Normalized Difference Vegetation Index (NDVI)
values from the MOD13A1 product of the Terra-MODIS satellite. As with Landsat,
the original MOD13A1 data is available for free at http://earthexplorer.usgs.
gov/. The modis.tif image covers an area of 2,500 km2 at 500 meters spatial
resolution. Unlike with Landsat, the bands do not refer to different wavelengths
of the satellite sensor, but rather to different dates of image acquisition. In other
words, we have a time series of NDVI images. There are 280 bands, corresponding
to the period between February 18, 2000 and April 6, 2012 (23 images per year, each
corresponding to approximately a 16-day time interval). Pixels (raster cells) with
unreliable data (due to clouds, for example) were assigned with NA as part of
the preprocessing.

The NDVI is a commonly used remote sensing index, quantifying the abundance of
green vegetation (it has a range of -1 to 1, with values closer to 1 corresponding to
more abundant vegetation). The NDVI is calculated based on reflectance in the red
and NIR bands. We are going to see exactly how it is done, using the Landsat image
as an example, later on in this chapter.

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
http:// /

Working with Rasters

[118]

To examine the geographical location of the modis.tif raster, we can use the
plotKML package that has a suite of functions to export the spatial data from R in
the KML or KMZ formats and automatically display it in Google Earth. The simplest
possible example, using nothing but defaults, would be to call the plotKML function
on one of the bands in the raster r (for example, on band 1) in order to open Google
Earth and display it there. The expression plotKML(r[[1]]) will thus automatically
open Google Earth, zoom in on the location of the raster r[[1]], and display its
values using a color scale (assuming the R packages plotKML and animation
are loaded and the Google Earth software is installed). The following screenshot
demonstrates what we see as a result:

To subsequently display the result in Google Earth, the plotKML function
has, in fact, written a KML file in the current working directory. The
working directory is the default path that R uses to import and export
files. It can be queried or modified using functions getwd and setwd,
respectively. For example:

> getwd()

[1] "C:/Users/Michael Dorman/Documents"

> setwd("C:\\Data")

> getwd()

[1] "C:/Data"

Utilizing working directories can save the time spent in writing absolute
file paths, but it can also make the code less concrete, so we will not use it
in the present book.

http:// /

Chapter 4

[119]

Interactive visualization, over informative reference layers (for example, in Google
Earth), is very helpful for the initial examination of spatial data we have at hand.
For example, we can now see clearly that the NDVI gradient within the raster, from
relatively high values towards north-west direction to relatively low values towards
south-east direction, is due to its positioning in the transition zone between the
relatively humid Mediterranean climatic region (where vegetation is more abundant)
and the arid Negev desert (where vegetation is scarce).

The interested reader can refer to the paper in the Journal of Statistical Software by
Hengl, Roudier, Beaudette, and Pebesma (2014), or to the online tutorial (http://
gsif.isric.org/doku.php?id=wiki:tutorial_plotkml) for further details and
inspirational examples on the wide range of methods the plotKML package offers.

Accessing raster values as a vector
Returning to the subject of raster value access, the simplest way of doing that is
with the [operator, exactly the same way we would with a vector. When accessing
the values of a raster with [, the values will be ordered from the top-left corner
rightwards, then along the second row, and so on, until the lower-right corner is
reached. For example, to find out the first five values of the first layer in the r raster,
we will use the following expression:

> r[[1]][1:5]
[1] 0.4242 0.3995 0.4190 0.4272 0.4285

Note that indices referring to bands with [[come first, and indices referring to cells
with [come second. Either can be omitted, and then all elements from the respective
dimension will be returned rather than a subset (for example, as we have seen
previously, r[[1]] returns the whole first band).

When the [operator is used, but the cell value's index is omitted (as in []), we get
a vector containing all of the raster values. We can use this vector, for example, to
calculate the mean NDVI on the first date of acquisition (February 18, 2000).

> mean(r[[1]][], na.rm = TRUE)
[1] 0.2302056

The result is 0.23.

http://gsif.isric.org/doku.php?id=wiki:tutorial_plotkml
http://gsif.isric.org/doku.php?id=wiki:tutorial_plotkml
http:// /

Working with Rasters

[120]

Accessing raster values with the matrix
notation
Since a raster band is a two-dimensional object, it is frequently more useful to
access its values using a two-dimensional notation. As with matrix objects, the first
element of the two-dimensional index refers to rows and the second element refers
to columns. For example, values 1-5 (in vector terms) of raster r[[1]] occupy row 1,
columns 1-5. We can refer to these same values using a two-dimensional notation
as follows:

> r[[1]][1, 1:5]
[1] 0.4242 0.3995 0.4190 0.4272 0.4285

Note that, even though we are using a two-dimensional notation to subset the raster,
the values are still returned in the form of a one-dimensional numeric vector.

Subsets involving more than one layer
In the last two sections, we accessed a subset of raster values confined to a
single layer. What happens when we subset both the row/column and layer
dimensions of a raster? In that case, we get a matrix object, rather than a vector,
with columns referring to layers and rows referring to raster cells. For example,
using the following expression, we are referring to the values occupying row 1,
columns 1-5, and layers 1-3:

 > r[[1:3]][1, 1:5]
 modis.1 modis.2 modis.3
[1,] 0.4242 0.4518 0.4211
[2,] 0.3995 0.3334 0.4123
[3,] 0.4190 0.3430 0.4314
[4,] 0.4272 0.3430 0.4761
[5,] 0.4285 0.5814 0.4761

As a result, we get a matrix with three columns (corresponding to layers 1-3) and
five rows (corresponding to the requested five cells, ordered from the top-left corner
rightwards). Indeed, the values in the first column of the matrix are identical to the
values of the vector we got in the previous two examples.

As another example, we can examine the course of NDVI over time at a single
pixel—for example, in row 45, column 33—by omitting the band index this time
(and thus referring to all bands at once):

> v = r[45, 33][1,]

http:// /

Chapter 4

[121]

Note that with r[45,33], we get a matrix object with 280 columns (since we access
all 280 bands of raster r) and a single row (since we access a single cell). Then, with
the [1,] part, we select the first (and only) row in that matrix, containing the values
of the (45,33) cell across all bands. As we witnessed earlier, a single matrix row is by
default simplified to a vector. Finally, we assign the vector of NDVI values to v.

To plot the resulting NDVI time series, now held in v, we will use the date column
in the dates table (see the previous chapter), which lists the dates of acquisition for
each band in r. We will also specify the labels for the x and y axes, using parameters
xlab and ylab of the plot function, respectively:

> plot(v ~ dates$date, type = "l", xlab = "Time", ylab = "NDVI")

The resulting graphical output is shown in the following screenshot:

We can clearly see the periodical behavior of NDVI at the annual scale; NDVI
increases in winter (the wet season), when vegetation is more abundant, and declines
in summer (the dry season), when vegetation desiccates. Lower-than-usual NDVI
values have been observed from 2009 to 2011 due to a drought period the region
experienced at the time.

In all subset methods we have seen in the last three sections, the result was
automatically converted to a simpler object, either to a vector (when dealing with
values from a single band) or a matrix (when dealing with values form several
bands). If we want to suppress the simplification, we can specify drop=FALSE, the
same way we have seen regarding subsets of a data.frame object (see the previous
chapter) and a matrix object. In the following example, using drop=FALSE yields a
subset RasterBrick object named u that has the first two rows, two columns, and
three layers of the original raster r:

> u = r[[1:3]][1:2, 1:2, drop = FALSE]

http:// /

Working with Rasters

[122]

Plotting the object will demonstrate that u is indeed a 2 x 2 raster with three layers.
The following expression plots the raster u:

> levelplot(u, layout = c(3,1), par.settings = RdBuTheme)

Using the parameter layout, we specified that the bands should be arranged in a
single row and three columns within the plot area. The following screenshot shows
what the plot will look like:

Transforming a raster into a matrix or an array
At times, it can be useful to transform a raster into a simpler data structure, such as a
matrix or an array. One of the reasons to do that is to perform faster calculations (see
Chapter 6, Modifying Rasters and Analyzing Raster Time Series). The transformations can
be achieved using functions such as as.matrix and as.array, respectively.

For example, a single layer of a raster can be transformed into a matrix as follows:

> as.matrix(u[[1]])
 [,1] [,2]
[1,] 0.4242 0.3995
[2,] 0.4495 0.2925

A multiband raster can be transformed into an array as follows:

> as.array(u[[1:2]])
, , 1

 [,1] [,2]
[1,] 0.4242 0.3995
[2,] 0.4495 0.2925

http:// /

Chapter 4

[123]

, , 2

 [,1] [,2]
[1,] 0.4518 0.3334
[2,] 0.4846 0.3223

If we try to convert a multiband raster into a matrix with as.matrix, we will get a
matrix with rows representing cells and columns representing layers, as we have
seen earlier in the context of raster subsetting:

> as.matrix(u[[1:2]])
 layer.1 layer.2
[1,] 0.4242 0.4518
[2,] 0.3995 0.3334
[3,] 0.4495 0.4846
[4,] 0.2925 0.3223

Overlay and reclassification of rasters
In this section, we will introduce two basic operations involving rasters: performing
mathematical operations between overlapping rasters and reclassifying the values of
a raster into new aggregated categories.

Raster algebra and overlay operations
In many cases, when we have two or more overlapping rasters, we would like to
apply a certain function on each pair, triplet, and so on of overlapping pixels in
those rasters. As a result, we will get a new raster, where the value of each pixel is
the result of the latter function on the respective pixels in the input rasters. Such
operations are also referred to as raster algebra, usually when using straightforward
arithmetic notation (such as r+s, where r and s are rasters) or overlay operations.

There are numerous functions that can be used in raster algebra expressions,
including arithmetic operators (such as +, -, *, and /), logical operators (such as
>, >=, <, <=, ==, and !), and several simple functions (such as min, max, and sum).
Numeric values can also be combined with rasters (as long as the first object in the
expression is a raster), in which case the numeric values are recycled as if to form a
raster where all the values are equal to the given numeric value. For example, if r
is a raster, r+1 would yield a new raster, where 1 is recycled and added to each of
the values in raster r. Similarly, the expression r*2 would yield a raster where each
value is multiplied by 2. A single band raster can also be combined with a multiband
raster, in which case the single band raster is recycled.

http:// /

Working with Rasters

[124]

For example, the following expression will give us a new raster with the minimal
NDVI values observed in each pixel over the 280 layers of raster r, excluding
NA values:

> min_ndvi = min(r, na.rm = TRUE)

In cases where we would like to apply a certain function on the values
of the raster (rather than performing an overlay operation), we need to
apply the respective function on the vector of raster values, rather than on
the raster object itself.
For example, to find out the minimum value among all cells in the first
band of raster r, we will have to use the following expression:

> min(r[[1]][], na.rm = TRUE)

[1] 0.007

Applying the min function on the raster itself, with min(r[[1]],na.
rm=TRUE), is an overlay operation. It is not what we want to do in this
case since an overlay would give us a new raster where each cell contains
the minimal observed value among all bands of the input raster. The
result will be r[[1]] itself since there is only one band to choose from.

Using the range function on the multiband raster r would give us a new raster with
two bands (since the function returns a vector of length 2), one with the minimal
values observed in each pixel and the other with the maximal values observed in
each pixel:

> range_ndvi = range(r, na.rm = TRUE)

We can examine the range_ndvi result by plotting it with the levelplot function
(this time, showing contours with contour=TRUE):

> levelplot(range_ndvi, par.settings = RdBuTheme, contour = TRUE)

http:// /

Chapter 4

[125]

The following screenshot shows the graphical output:

The resulting graphical output shows that NDVI minima are more spatially uniform
than NDVI maxima.

Though slightly less straightforward than the raster algebra notation, the overlay
and calc functions provide a more flexible way to perform overlay operations on
rasters. Their main advantage is that we can supply any function (built-in or
user-defined) to define the overlay operation, rather than choosing from the
predefined set of functions that are applicable using the raster algebra notation.
The main difference between calc and overlay is that calc is intended for overlay
operations involving the bands of a single (multiband) raster, while overlay is
intended to be used with several separate raster objects, although in many cases
these functions are interchangeable (since we can always stack individual rasters
into a single multiband raster). In both cases, we supply the overlay function as an
argument to the fun parameter. The only requirement for the function we supply is
that it should accept a vector and return a vector of a fixed length.

http:// /

Working with Rasters

[126]

For example, we can write a function called prop_na that takes a numeric vector
and returns the proportion of the NA values that vector contains (from 0, if the vector
has no NA values, to 1, if the vector is entirely composed of the NA values). The
following code section defines the prop_na function and demonstrates that it works
as expected using a simple example:

> prop_na = function(x) length(x[is.na(x)]) / length(x)
> prop_na(c(10,3,NA,2))
[1] 0.25

We can now utilize calc to perform an overlay operation on all layers in r with the
function prop_na, as follows:

> prop_na_r = calc(r, fun = prop_na)

The resulting object prop_na_r is a single band raster, where the value of each pixel
reflects the proportion of missing values among the bands of the multiband raster r.

As another example, we will calculate an NDVI image based on our Landsat image
l_00. NDVI is defined as the difference between NIR and red reflectances (which
in Landsat correspond to bands 4 and 3, respectively) divided by their sum. We
can perform the calculation by first defining a function called ndvi that, given a
vector, calculates the NDVI based on its fourth and third elements (assuming they
correspond to NIR and red, respectively).

> ndvi = function(x) (x[4] - x[3]) / (x[4] + x[3])

Then, we can apply the function on the Landsat multiband raster l_00 with calc:

> ndvi_00 = calc(l_00, fun = ndvi)

We will display the result using levelplot. Note that when plotting a single layer,
an average profile of mean values is shown for rows and columns along plot margins
(this behavior can be disabled by specifying margin=FALSE):

> levelplot(ndvi_00, par.settings = RdBuTheme, contour = FALSE)

http:// /

Chapter 4

[127]

The following graphical output is produced:

The Landsat image was taken during the dry season, and the area has a semiarid
climate; thus, the green vegetation cover is scarce except in a few spots. For example,
the two larger white/light blue patches, roughly in the middle of the preceding
screenshot, are planted pine (mainly Aleppo pine) forests named Lahav and
Kramim. Aleppo pine is an evergreen tree species; thus, the forested area retains
relatively high NDVI values even during the dry season. We are going to return to
these two forests in other examples later.

http:// /

Working with Rasters

[128]

When applying logical operators on rasters, we get rasters with logical values
(TRUE or FALSE). However, the same way as we have seen regarding logical vectors
(Chapter 2, Working with Vectors and Time Series), when we apply an arithmetic
operation on a logical raster, the logical values are converted to numeric values
(1 or 0) before the operation is carried out. For example, if we would like to find out
how many missing values the first layer of raster r contains, we can use the
following expression:

> sum(is.na(r[[1]])[])
[1] 721

Note that with is.na(r[[1]]), we first created a logical raster, where the values are
TRUE in pixels with NA in r[[1]], or FALSE otherwise. Then, with [], we obtained the
vector of values from this logical raster. Finally, with sum, we found out how many
TRUE values the vector contains. The answer is 721 NA values in the first layer of r.

Logical rasters can also be used to select a subset of the values of another
overlapping raster and assign new values to the resulting subset. For example, if we
wanted to fill the missing values in r[[1]], say with the mean of all non-missing
values, we could do so as follows:

> temp = r[[1]]
> temp[is.na(temp)] = mean(temp[], na.rm = TRUE)

Note that we first assigned the first band of r to a new object named temp so that we
will not alter the values of the original raster object. Then, we created a logical raster
named is.na(temp) to subset the NA values in temp and assign the mean value of all
the other cells to that subset. Plotting the new raster temp alongside the original one
r[[1]] indeed shows that the missing values—appearing white in the left panel of
the following screenshot (and transparent in the Google Earth visualization as seen
in the previous screenshot)—were uniformly filled:

> levelplot(stack(r[[1]], temp),
+ par.settings = RdBuTheme, contour = FALSE)

http:// /

Chapter 4

[129]

The resulting graphical output is shown in the following screenshot:

Reclassifying raster values
Reducing the amount of information a raster has for easier interpretation often
involves reclassifying the values of the raster from a continuous scale into a set of
discrete categories. In fact, we have already seen one method that we can use to do
this in the previous section— the assignment to subsets of raster values defined by
a condition. For example, we can reclassify the ndvi_00 raster by assigning 0 to all
cells where NDVI≤0.2 and 1 to all cells where NDVI>0.2, as follows:

> l_rec = ndvi_00
> l_rec[l_rec <= 0.2] = 0
> l_rec[l_rec > 0.2] = 1

The following expression that uses plot will show an image of l_rec:

> plot(l_rec)

http:// /

Working with Rasters

[130]

This following screenshot shows the graphical output:

In fact, there is a specialized function for reclassification in the raster package called
reclassify. The function accepts a raster (which we would like to reclassify) and
a numeric vector or matrix (specifying the rules of reclassification). For example,
if we supply a numeric vector, it should be composed of triplets of numeric values
specifying the classification rules: from-, to-, new value, from-, to-, new value, and
so on. It is often convenient to use the special value Inf (which stands for infinity)
to specify unlimited from- or to- edges for a given range. For example, to specify the
≤0.2 range, we will say from -Inf to 0.2. Therefore, for example, we could create the
l_rec raster with the following expression, instead of the three expressions shown in
the previous example:

> l_rec = reclassify(ndvi_00, c(-Inf, 0.2, 0, 0.2, Inf, 1))

http:// /

Chapter 4

[131]

Here, in plain language, we request the values from -∞ to 0.2 (closed on the right by
default, thus including 0.2, as in ≤0.2) to be converted to 0, and the values from
0.2 to ∞ to be converted to 1.

Summary
In this chapter, we covered the basic methods for working with raster data in R. We
now know how to import and export raster data to and from the R environment,
how to examine the raster objects at hand, and how to perform simple calculations to
modify these objects. We also covered several ways to visually display raster data in R.

The next chapter is going to be very similar in structure and purpose to the
present one; it's just that we are going to cover the other main type of
spatial data—vector layers.

http:// /

http:// /

Working with Points, Lines,
and Polygons

In this chapter, we will cover the basic usage of the second major type of spatial
data—vector layers (points, lines, and polygons). In GIS terminology, these data are
sometimes referred to as vectors, but we will use the term vector layers to distinguish
them from vectors in R (see Chapter 2, Working with Vectors and Time Series). We
will review the architecture of the vector layer classes defined in the sp package.
Examples of the most common operations involving vector layers will then be
presented using the sp, rgdal, and rgeos packages.

In this chapter, we'll cover the following topics:

• Classes for spatial vector layers (points, lines, and polygons) in the
sp package

• Creating point layers by geocoding
• Reading and writing vector layer files
• Exploring the properties of vector layers
• Accessing and modifying attribute tables
• Reprojecting vector layers
• Calculating derived geometrical properties (for example, polygon area)
• Querying relations (for example, intersection) between a pair of layers
• Creating new layers based on a single layer or a pair of layers
• Joining data to an attribute table based on the location or common columns

http:// /

Working with Points, Lines, and Polygons

[134]

Data structures for vector layers in R
Spatial vector layers have two components: the geometry and the attribute table.
The geometry component holds the spatial coordinates and information regarding
their arrangement in separate features, while the attribute table holds additional
information regarding each feature. For example, in a point layer of capital cities, the
record for London may be composed of a geometric component (a point coordinate,
such as 51.5072°N, 0.1275°W) and a row in an attribute table holding additional data
regarding each city (for example, population size, built area, and so on).

The geometry part in a vector layer is obligatory and there are three types of
geometries: points, lines, and polygons. The attribute table is optional. Classes for
the six spatial vector layers types, constituting all possible combinations of these
two properties, have been defined in the sp package. They are summarized in the
following table:

Geometry type Attribute table Class
Points No SpatialPoints

Yes SpatialPointsDataFrame

Lines No SpatialLines

Yes SpatialLinesDataFrame

Polygons No SpatialPolygons

Yes SpatialPolygonsDataFrame

Together with the three raster classes from the raster package (presented in the
previous chapter), these constitute a commonly used set of classes suitable for a wide
range of spatial analysis applications in R.

Additional classes for spatial vector layers (and rasters) do exist in R.
They are often associated with packages intended for specialized data
analysis tasks. Conveniently, however, there are usually established
methods of converting objects to and from such classes, with respect to
the highly popular classes in the sp and raster packages (which we've
used throughout this book). For example, the ppp class (the spatstat
package) is used to represent a point pattern (event locations and the
window where the pattern has been observed) to employ statistical
analysis tools for such patterns. A SpatialPoints object can be
converted to a ppp object and vice versa using the maptools package.

http:// /

Chapter 5

[135]

In this section, we will see an example of how to create a vector layer for each of the
three types of geometries—points, lines, and polygons. In the next section, methods
to examine spatial vector layers will be presented, while in the last three sections of
this chapter, we will see how some more advanced operations on vector layers are
performed. Additional information regarding the sp package and its spatial vector
classes can be found in the book Applied Spatial Data Analysis with R, Springer, whose
second edition was published in 2013, by Roger Bivand, Edzer Pebesma, and Virgilio
Gómez-Rubio.

Points
Points are the simplest type of spatial objects since the geometrical component of
a point is just a single (x,y) coordinate. A set of (x,y) coordinates, along with CRS
information, constitutes a spatial point layer, which can be represented in R with a
SpatialPoints object. If we also have an attribute table where each row corresponds
to a single point, the layer can be represented with a SpatialPointsDataFrame object.

In our first example, we are going to create a SpatialPointsDataFrame object
by geocoding, the procedure to convert addresses to geographic coordinates. The
intermediate steps we will go through are as follows:

1. Creating a vector of addresses we want to geocode.
2. Geocoding the addresses to get a data.frame object of geographic

coordinates for each address.
3. Adding location names as an additional column.
4. Converting the data.frame object to a SpatialPointsDataFrame object.
5. Adding CRS information.

In the example, we will geocode the addresses of three airports in New Mexico:

• Albuquerque International Airport
• Double Eagle II Airport
• Santa Fe Municipal Airport

For the geocoding step (step 2), we are going to use the Google Maps API, accessible
from R through the ggmap package. Additional functionality of the ggmap package
for visualization of spatial data will be presented in Chapter 9, Advanced Visualization
of Spatial Data. For an overview of package capabilities, refer to the introductory
paper on ggmap (ggmap: Spatial Visualization with ggplot2) by Kahle, D. and Wickham,
H. 2013.

http:// /

Working with Points, Lines, and Polygons

[136]

Our first step is to create a character vector with the airports addresses. The
addresses are ordered in accordance with the airport names listed earlier:

> addresses = c(
+ "2200 Sunport Blvd, Albuquerque, NM 87106, USA",
+ "7401 Paseo Del Volcan Northwest Albuquerque, NM 87121, USA",
+ "121 Aviation Dr, Santa Fe, NM 87507, USA")

Note that the Google Maps API (which we will use for geocoding) can
also search for location names (such as the White House) or partial
addresses, but the result will be less determinate (two different places
can be go by the same name, but not the same address). The exact
addresses are used here to ensure that the reader will obtain the same
results as in the book's text.

We are ready for the second step and will now load the ggmap package and geocode
the addresses using the geocode function. This function accepts a vector of addresses
(such as addresses that we just created) and returns a data.frame object of the
matched geographic coordinates:

> library(ggmap)
> airports = geocode(addresses)
> airports
 lon lat
1 -106.6168 35.04918
2 -106.7947 35.15559
3 -106.0731 35.62866

The geocode function accesses the Google Maps API. Therefore,
an Internet connection is required. Using the Google Maps API
also implies agreement with the Google Maps API Terms of
Service (https://developers.google.com/maps/terms)
and is limited to 2,500 queries in a 24-hour time period (using the
free service option). A promising alternative can be found in the
geocodeHERE package providing access to the HERE Geocoding
API (https://developer.here.com/geocoder) that has a
higher threshold of 10,000 queries per day.

We now have a data.frame object named airports that holds the longitudes (lon)
and latitudes (lat) of the three airports.

https://developers.google.com/maps/terms
https://developer.here.com/geocoder
http:// /

Chapter 5

[137]

In our third step, we will add the airport names in an additional column called
name in airports as follows:

> airports$name = c("Albuquerque International",
+ "Double Eagle II",
+ "Santa Fe Municipal")
> airports
 lon lat name
1 -106.6168 35.04918 Albuquerque International
2 -106.7947 35.15559 Double Eagle II
3 -106.0731 35.62866 Santa Fe Municipal

The resulting data.frame object has everything we need to create a
SpatialPointsDataFrame object, where the geometry components will be the
airports' coordinates, and the attribute table will have a single column that holds
the airport names. This is our fourth step. It is performed using the coordinates
function of the sp package by specifying the columns that hold the coordinates with
a formula object of the structure ~x_coord+y_coord. In our case, the x coordinate is
the longitude (lon) and the y coordinate is the latitude (lat), therefore the formula
takes the following form:

> library(sp)
> coordinates(airports) = ~ lon + lat

The last expression converts airports from a data.frame object to a
SpatialPointsDataFrame object. We can confirm the conversion took place using
the class function as follows:

> class(airports)
[1] "SpatialPointsDataFrame"
attr(,"package")
[1] "sp"

Using the print method on the object shows that it holds exactly the same
information as before; just that the lon and lat columns are now identified as spatial
coordinates, as shown in the following output:

> airports
 coordinates name
1 (-106.6168, 35.04918) Albuquerque International
2 (-106.7947, 35.15559) Double Eagle II
3 (-106.0731, 35.62866) Santa Fe Municipal

Our last step is to specify the CRS of airports, which is a geographic CRS:

> proj4string(airports) = CRS("+proj=longlat +datum=WGS84")

The airports vector layer is now complete.

http:// /

Working with Points, Lines, and Polygons

[138]

Writing of Spatial*DataFrame objects (that is, the SpatialPointsDataFrame,
SpatialLinesDataFrame, and SpatialPolygonsDataFrame objects) can be done
with the writeOGR function from the rgdal package. In the following example, as
well as in most other examples in this book, we will use the popular ESRI Shapefile
format for the input and output of vector layers.

We can export our SpatialPointsDataFrame object airports to a Shapefile on the
disk as follows:

> library(rgdal)
> writeOGR(airports, "C:\\Data", "airports", "ESRI Shapefile")

The four arguments that were supplied to the first four parameters of the writeOGR
function are as follows:

• obj: The name of the object to be written (for example, airports)
• dsn: The path of the directory where the file(s) will be written (for example,

"C:\\Data")
• layer: The layer name (for example, "airports")
• driver: The driver name (for example, "ESRI Shapefile")

Since Shapefile datasets are composed of several separate files (at
least three: *.shp, *.shx, and *.dbf), when reading and writing
with the ESRI Shapefile driver, we specify the directory (dsn) and
filename without the extension (layer). In the previous example, with
dsn="C:\\Data" and layer="airports", four files were written to
the C:\Data directory: airports.dbf, airports.prj, airports.
shp, and airports.shx. The meaning of the dsn and layer
parameters can be different with other drivers (see the next section and
?writeOGR).

To read the file we just wrote back into a SpatialPointsDataFrame object in R,
we can use the readOGR function (also available in the rgdal package). When
reading vector layers, we need to provide only the dsn and layer arguments (the
path and layer name, respectively). In addition, we can specify that we do not
want character values in the attribute table to be converted to factors by specifying
stringsAsFactors=FALSE (see Chapter 3, Working with Tables):

> airports = readOGR("C:\\Data",
+ "airports",
+ stringsAsFactors = FALSE)

http:// /

Chapter 5

[139]

Obviously, all the airports.* files that constitute the Shapefile need to be found
in the same directory (in this case, in the C:\Data directory) for the layer to be
properly read.

Lines
Line and polygon layers are more complex than point layers in two principal aspects.
First, individual lines or polygons are defined with a set of points, rather than a
single one. Specifically, a line is a set of points connected to each other from the first
point to the last one. A polygon is defined similarly; just that the last point is equal
to the first. The number of points in each line or polygon is not fixed, but dependable
on the shape complexity (a more complex shape will be defined with more points).
Secondly, a single line or polygon feature (corresponding to a single entry in an
attribute table) can be composed of more than one individual line or more than one
individual polygon. For example, in a layer of countries' boundaries, the USA feature
will be composed of more than one polygon since the contiguous United States,
Alaska, and each of the Hawaii Islands are separate from one another.

An additional complication, specific to polygonal layers, is the existence
of holes. A single feature can be composed of an external boundary
polygon and hole polygons. For example, in a layer of North America's
land area, hole polygons may represent the Great Lakes. Hole polygons
can once again have internal polygons (such as islands inside the Great
Lakes) and so on.

Due to their complexity, it is much less common to manually define line and polygon
layers from raw coordinates. Instead, they are usually either imported from an
external source (for example, reading a Shapefile) or created from another object (for
example, contour lines created based on a DEM raster).

As an example for SpatialLinesDataFrame, we will read a GPS Exchange Format
(GPX) file with a track record from a GPS device. With GPX files, unlike with
Shapefiles, the dsn argument is the file itself, while the layer argument points to the
data component we would like to read (such as "tracks" or "track_points"; see
?readOGR). The particular file GPS_log.gpx contains the GPS log, from driving around
the Lahav and Dvira forests with the GPS device in recording mode. Let's read the
file as follows:

> track = readOGR("C:\\Data\\GPS_log.gpx","tracks")

http:// /

Working with Points, Lines, and Polygons

[140]

Using the class function, we can demonstrate that track is a
SpatialLinesDataFrame object:

> class(track)
[1] "SpatialLinesDataFrame"
attr(,"package")
[1] "sp"

Polygons
As an example of polygonal data, we are going to read another external file; this
time it's a Shapefile named USA_2_GADM_fips. The file is composed of polygons
corresponding to the second level administrative division (counties) of the USA,
with several attributes such as county names and Federal Information Processing
Standards (FIPS) codes. We will assign the resulting SpatialPolygonsDataFrame to
an object named county to use in the subsequent examples in this chapter:

> county = readOGR("C:\\Data", "USA_2_GADM_fips",
+ stringsAsFactors = FALSE)

To summarize, so far we have witnessed two ways to create spatial vector layers
in R: from a set of (x,y) coordinates (relevant to points) and from a file (relevant to
points, lines, and polygons). A third way—deriving vector layers from raster data—
will be presented in Chapter 7, Combining Vector and Raster Datasets.

Exploring vector layer properties and
subsetting
This section is going to be devoted to the examination of spatial vector layer
properties, and to subsetting them based on their attribute tables. Some of the
presented procedures will be analogous to those presented for rasters in the previous
chapter (for example, plotting and querying CRS information), while others are
generally relevant only to vector layers (for example, calculating areas and creating
subsets according to the attribute table). As will quickly become apparent, many
operations involving attribute tables of vector layers are conveniently analogous to
operations on data.frame objects.

http:// /

Chapter 5

[141]

Examining vector layer properties
The summary function produces a useful textual summary of the properties of a
vector layer, including its class, bounding box coordinates, CRS, and attribute table
column types. For example, using summary on airports produces the following
textual output:

> summary(airports)
Object of class SpatialPointsDataFrame
Coordinates:
 min max
lon -106.79467 -106.07308
lat 35.04918 35.62866
Is projected: FALSE
proj4string : [+proj=longlat +datum=WGS84]
Number of points: 3
Data attributes:
 Length Class Mode
 3 character character

All of the properties listed in this output can also be accessed, and in some cases
modified, using functions. For example, similar to what we already saw for rasters
in the previous chapter, the proj4stpring function returns the CRS definition of
a vector layer in the PROJ.4 format. Using proj4string on airports returns the
definition of the WGS84 CRS:

> proj4string(airports)
[1] "+proj=longlat +datum=WGS84"

Referring to the geometry part, the length function returns the number of
features the layer consists of. For example, airports contains three points
(the three airports), as the following output shows:

> length(airports)
[1] 3

A spatial layer also always has row names that internally serve as ID variables to
match the geometries with attribute table entries. The number of row names is thus
equal to the number of features:

> row.names(airports)
[1] "1" "2" "3"

http:// /

Working with Points, Lines, and Polygons

[142]

The dimensions function returns the number of spatial dimensions:

> dimensions(airports)
[1] 2

In this book, we only deal with two-dimensional vector layers
(geometries on a plane). Three-dimensional layers can also be
useful to represent certain types of data, such as points with (x,y)
coordinates and (z) elevation.

Accessing the attribute table of vector layers
The attribute table of a vector layer is, in fact, a data.frame object and some of the
functions that work with data.frame objects have been defined to consistently work
directly on vector layers as well. For example, the nrow, ncol, and dim functions
applied to a vector layer refer to its attribute table to return its dimensions:

> nrow(county)
[1] 3145
> ncol(county)
[1] 4
> dim(county)
[1] 3145 4

We see that the attribute table of county has 3,145 rows (thus, the layer has 3,145
features) and four columns. The columns contain the following information:

• NAME_1: The first-level name (for example, the state name)
• NAME_2: The second-level name (for example, the county name)
• TYPE_2: The feature type (for example "County" or "Water body")
• FIPS: The FIPS code

Individual columns of an attribute table, or subsets of these, can be accessed with the
$ and [operators. For example, the second-level names (held in the NAME_2 column)
of the first 10 features in county can be obtained as follows:

> county$NAME_2[1:10]
 [1] "Litchfield" "Hartford" "Tolland" "Windham"
 [5] "Siskiyou" "Del Norte" "Modoc" "New London"
 [9] "Fairfield" "Middlesex"

http:// /

Chapter 5

[143]

As another example, we can check the types of features the county layer contains by
listing the unique values in the TYPE_2 column:

> unique(county$TYPE_2)
 [1] "County" "District" "Borough"
 [4] "Census Area" "Municipality" "City And Borough"
 [7] "City And County" "Water body" "Parish"
[10] "Independent City"

The whole attribute table of a spatial vector layer can be accessed directly using the
@ operator. The @ operator is used to extract a slot, by its name, from an object, using
the notation object_name@slot_name.

More specifically, the @ operator is applicable to objects of the so-
called S4 classes, which all raster and vector layers we deal with are, as
opposed to S3 classes whose components are accessed with a different
method (using the $ operator). The distinction between S3 and S4
concerns the internal class structure and is beyond the scope of this
book. For more information, refer to Advanced R, Wickham, H., CRC
Press, 2014 (http://adv-r.had.co.nz/OO-essentials.html).

The attribute table slot of spatial vector classes defined in the sp package is called
data. Therefore, adding @data after a vector layer name will yield its attribute table
(if it has one).

For example, the following expression returns the attribute table of airports:

> airports@data
 name
1 Albuquerque International
2 Double Eagle II
3 Santa Fe Municipal

As another example, we can print the first few rows in the attribute table of county
using the head function applied to county@data:

> head(county@data)
 NAME_1 NAME_2 TYPE_2 FIPS
0 Connecticut Litchfield County 09005
1 Connecticut Hartford County 09003
2 Connecticut Tolland County 09013
3 Connecticut Windham County 09015
4 California Siskiyou County 06093
5 California Del Norte County 06015

http://adv-r.had.co.nz/OO-essentials.html
http:// /

Working with Points, Lines, and Polygons

[144]

As we shall see later in this chapter, the attribute table of a vector layer can also be
modified using assignment, similar to a separate data.frame object. New attribute
table columns can be created and populated using the $ operator, or the whole
attribute table can be modified (for example, certain columns can be deleted or
joined) and reassigned to the data slot.

All other components of spatial vector (and raster, for that matter) objects are
also contained in slots and thus, are accessible with the @ operator. Using the str
function, we can obtain a tree describing the object's structure. Let's take a look
at the following example:

> str(airports)
Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
 ..@ data :'data.frame': 3 obs. of 1 variable:
 $ name: chr [1:3] "Albuquerque International" "Double Eagl$
 ..@ coords.nrs : int [1:2] 1 2
 ..@ coords : num [1:3, 1:2] -106.6 -106.8 -106.1 35 35.2 ...
 - attr(*, "dimnames")=List of 2
 $: NULL
 $: chr [1:2] "lon" "lat"
 ..@ bbox : num [1:2, 1:2] -106.8 35 -106.1 35.6
 - attr(*, "dimnames")=List of 2
 $: chr [1:2] "lon" "lat"
 $: chr [1:2] "min" "max"
 ..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot
 @ projargs: chr "+proj=longlat +datum=WGS84"

Using such a tree, we can find our way to all the data components
of an object. Then, why is the use of specialized functions (such as
proj4string), rather than direct access to the relevant property
(such as airports@proj4string@projargs), usually advocated in
R? One reason is that working through functions makes our code more
robust in the face of changes in class definition. In other words, if the
internal architecture of a certain class changes in a future version of
a given package (so that, for instance, the slot x is now named y), the
user may not even notice since the code for all the relevant functions
operating on the class will also be changed accordingly while access
with @x will no longer work. Accessing the attribute table of a vector
layer (with @data) is going to be the only direct access we have in
this book. The exception is necessary since certain operations on an
attribute table are unfeasible otherwise.

http:// /

Chapter 5

[145]

The attribute table of a vector layer can also be removed altogether, by converting a
Spatial*DataFrame object into a Spatial* object. Such a conversion can be done
with the as function, specifying the object name and the class we want to convert it
to. For example, we can convert airports, a SpatialPointsDataFrame object, to a
SpatialPoints object as follows:

> airports_sp = as(airports, "SpatialPoints")

Since a SpatialPoints object does not have a data slot, an error occurs when
trying to access it:

> airports_sp@data
Error: no slot of name "data" for this object of class "SpatialPo$

We can also use the as function to perform the reverse conversion from a
SpatialPoints object to a SpatialPointsDataFrame object. Naturally, the attribute
table of the resulting object is going to be empty (since SpatialPoints objects do not
have one):

> as(airports_sp, "SpatialPointsDataFrame")@data
data frame with 0 columns and 0 rows

Subsetting vector layers
We can subset a vector layer according to its attribute table using the same notation
as in subsetting data.frame objects. Selecting which features to retain can be done
by supplying a numeric or logical vector within the [operator.

For example, to get a subset of only those county features that belong to the
contiguous U.S., we need to exclude those features corresponding to the states
of Alaska and Hawaii. This can be done by creating a logical vector (applying a
condition to the county$NAME_1 column holding state names) and supplying that
vector as the rows index of county with the [operator, as follows:

> county = county[
+ county$NAME_1 != "Alaska" &
+ county$NAME_1 != "Hawaii",]

Keep in mind the following alternative that utilizes the %in% operator:
> county = county[

+ !(county$NAME_1 %in%

+ c("Alaska", "Hawaii")),]

http:// /

Working with Points, Lines, and Polygons

[146]

Similarly, we can retain only the land area by excluding water body polygons:

> county = county[county$TYPE_2 != "Water body",]

Let's examine the resulting layer using the plot function. The expression
plot(county) produces the graphical output as shown in the following screenshot:

As we can see, the plot function, by default, draws polygon borders using black
lines. In subsequent examples, we will experiment a little bit with several parameters
of this function to modify the appearance of the plot.

http:// /

Chapter 5

[147]

Geometrical calculations on vector layers
In previous sections, we covered the querying of the immediately available
properties of vector layers (for example, the CRS definition or attribute table), and
the modification of vector layers involving only the attribute table component (for
example, removing the attribute table or subsetting the layer according to it). In the
next two sections, you will learn to examine and modify the geometrical component
of vector layers. In this section, operations involving a single vector layer, such as
reprojection and area calculation, will be covered. In the next section, we will deal
with operations involving pairs of vector layers.

Reprojecting vector layers
Reprojection is the conversion of all the coordinates of a spatial object from one CRS
to another. Note the distinction when specifying a CRS (which we previously did
with airports), where only the CRS definition associated with the layer is modified,
leaving the coordinates unaltered. The reprojection of a vector layer is done with the
spTransform function from the rgdal package. The function accepts two arguments:
the layer to be reprojected and the target CRS.

For example, the following expression transforms the county layer (currently
defined in a geographical CRS) to the US National Atlas Equal Area projection:

> newProj = CRS("+proj=laea +lat_0=45 +lon_0=-100
+ +x_0=0 +y_0=0 +a=6370997 +b=6370997 +units=m +no_defs")
> county = spTransform(county, newProj)

Note that the preceding operation consisted of two steps. The first expression created
an object named newProj of the class CRS by applying the CRS function on a PROJ.4
character string corresponding to the US National Atlas Equal Area projection.
Second, the county layer has been reprojected to the newProj CRS using the
spTransform function.

The PROJ.4 strings can be obtained from other objects (see the previous
chapter) or from databases such as http://www.spatialreference.
org/. The PROJ.4 string used earlier, for example, was copied from
http://spatialreference.org/ref/epsg/us-national-
atlas-equal-area/proj4/.

http://www.spatialreference.org/
http://www.spatialreference.org/
http://spatialreference.org/ref/epsg/us-national-atlas-equal-area/proj4/
http://spatialreference.org/ref/epsg/us-national-atlas-equal-area/proj4/
http:// /

Working with Points, Lines, and Polygons

[148]

We can evaluate the effect of reprojection by visualizing the new county layer with
plot(county). The following screenshot shows the graphical output:

Reprojection is often used in spatial data analysis since any operation involving
multiple layers (such as an overlay or map production) requires all layers to be
projected onto the same CRS. For example, in order for us to display the GPS track
object (see the Lines section in this chapter) on top of the Landsat satellite image
landsat_11_09_2003.tif (see the previous chapter), we first need to bring them
into the same CRS. For that, we can either reproject the raster to the CRS of the vector
layer (WGS84, in this case) or reproject the vector layer to the CRS of the raster (UTM
Zone 36N, in this case). Unless we have a special reason to prefer the CRS of the vector
layer(s), it is usually better to reproject the vector layers into the CRS of the raster
and leave the raster unmodified; the reason is that raster reprojection also involves
resampling and thus, potential modification of its values (see the next chapter).

http:// /

Chapter 5

[149]

To plot the GPS track on top of the Landsat image, we will first read the latter into a
RasterBrick object named l_03:

> library(raster)
> l_03 = brick("C:\\Data\\landsat_11_09_2003.tif")

Then, we will reproject track, supplying the CRS parameters of l_03 to
spTransform, with a single step this time:

> track = spTransform(track, CRS(proj4string(l_03)))

With the l_03 and track objects in the same CRS, we can now plot them one on top
of the other using two function calls. In the second function call, we need to specify
add=TRUE so that the second layer will be plotted on top of the first, in the same
graphical window (two or more layers can be plotted this way).

Regarding the satellite image, rather than plotting the values of an individual
band, we will produce a true color image, using the red, green, and blue bands
(which correspond to bands 3, 2, and 1 in Landsat, respectively), using the plotRGB
function. This is done by assigning the appropriate bands to the r (red), g (green),
and b (blue) parameters:

> plotRGB(l_03, r = 3, g = 2, b = 1, stretch = "lin",
+ ext = extent(track) + 10000)
> plot(track, add = TRUE, col = "yellow")

http:// /

Working with Points, Lines, and Polygons

[150]

The following screenshot shows the graphical output with the GPS route (in yellow)
on top of the true-color Landsat image, which is generated as a result of the last
two expressions:

The additional plotRGB parameters we used, stretch and ext, specify the type of
stretch and the required extent, respectively. Stretching is essentially a transformation
from a raster value (which in this case is between 0 and 1) to an RGB color model
value (between 0, which is the darkest, and 255, which is the brightest). The simplest
option is lin, which specifies a linear stretch. Supplying an Extent object to the ext
parameter allows us to zoom in and plot only a portion of the raster. In this case,
we use the extent of the track layer, plus a 10 kilometer buffer on all sides, with the
expression extent(track)+10000 (note that all distance-related calculations are in
CRS units; in this case, meters). When adding the second layer (track), we use the col
parameter to specify the required line color; in this case, "yellow".

http:// /

Chapter 5

[151]

R has excellent capabilities to use colors and color gradients in the
graphical output, which are mostly beyond the scope of this book. In
short, there are three main methods to specify colors in R:

• Color name: For example, "yellow"
• Position on a color palette: For example, rainbow(12)[3],

which gives the third color in a 12-color rainbow palette, which
is a kind of yellow

• Position within the RGB color model: For example,
rgb(1,1,0), which returns the hex code "#FFFF00" that
corresponds to pure yellow

For the purposes of this book, the first method, involving the
predefined color names, will mostly be sufficient (a list of available
colors can be obtained using the expression colors()). We are, in
fact, also using color palettes although indirectly through graphical
functions such as levelplot (see the previous chapter). We will see
an example of how to directly use a color palette in Chapter 9, Advanced
Visualization of Spatial Data.

Working with the geometrical properties of
vector layers
Spatial objects have a wide range of properties related to their geometry; some are
instantly available as part of the data structure itself (for example, the coordinates
of points in a point layer); others are derivable via geometrical calculations (for
example, the area sizes of polygons).

The coordinates of a point layer can be obtained using the coordinates function:

> coordinates(airports)
 lon lat
[1,] -106.6168 35.04918
[2,] -106.7947 35.15559
[3,] -106.0731 35.62866

The result is a matrix object with the number of rows corresponding to the number
of points the layer consists of.

http:// /

Working with Points, Lines, and Polygons

[152]

To derive more complex properties, the rgeos package, which stands for R
interface to Geometry Engine Open Source (GEOS), offers a range of functions for
geometrical operations involving vector layers. The available geometrical operations
can conceptually be divided into three groups according to the output they produce:

• Numeric values: Obtained from functions that summarize geometrical
properties (for example, calculating area sizes)

• Logical values: Obtained from functions that evaluate whether a certain
geometrical property (for example, whether the given geometry is valid), or
the relation between objects (for example, whether feature A intersects with
feature B), holds true

• Spatial layers: Obtained from functions that create a new layer based on an
input layer (for example, finding polygon centroids) or a pair of layers (for
example, finding the intersecting area of feature A with feature B)

Several examples of functions for each type of these operations will be provided
in this chapter, while some of the additional functions will only be mentioned
for reference.

For a complete list of functions that the rgeos package offers, refer
to the help pages of the package available at http://cran.r-
project.org/web/packages/rgeos/rgeos.pdf.

As an example of a function that returns numeric values, the gArea function can be
used to calculate the area size of polygons. For example, we can calculate the area
covered by the county polygons as follows:

> library(rgeos)
> gArea(county) / 1000^2
[1] 7784859

The area is given in the units of the projection, in this case m2; dividing the result by
10002 transformed the area figure to km2 units. According to Wikipedia, the land area
of the contiguous U.S. is 7,663,942 km2, which is close enough to our result (given
that the CRS and level of detail affect the calculation).

http://cran.r-project.org/web/packages/rgeos/rgeos.pdf
http://cran.r-project.org/web/packages/rgeos/rgeos.pdf
http:// /

Chapter 5

[153]

If we want to calculate the area of each feature (each county, in this case), rather than
the area of the layer as a whole, we need to specify byid=TRUE. The byid parameter
determines whether we wish to perform the calculation by ID, that is, for each feature
separately. This parameter is present in many of the functions in the rgeos package
with the same functionality, as we shall see in the subsequent examples. The following
expression returns a numeric vector with the area of each feature in the county layer
in km2. The vector is immediately assigned to a new column in the county layer,
named area:

> county$area = gArea(county, byid = TRUE) / 1000^2

Now the attribute table of a county contains an extra column with the area size for
each county. We can confirm this by printing the first few rows of the attribute table:

> head(county@data)
 NAME_1 NAME_2 TYPE_2 FIPS area
0 Connecticut Litchfield County 09005 2451.876
1 Connecticut Hartford County 09003 1941.110
2 Connecticut Tolland County 09013 1077.789
3 Connecticut Windham County 09015 1350.476
4 California Siskiyou County 06093 16416.572
5 California Del Norte County 06015 2626.707

As an example of an operation where a new spatial layer is created, we will dissolve
the county polygons into state polygons. For simplicity, we will perform the
dissolving on a subset of county, including only two states: Nevada and Utah. At
first, we will create the subset and assign it to a new object named county_nv_ut:

> county_nv_ut = county[county$NAME_1 %in% c("Nevada", "Utah"),]

Now, we will dissolve the county_nv_ut polygons using the gUnaryUnion function.
The two arguments transferred to this function are the layer to be dissolved and
the ID, a vector defining the features that should be aggregated (all features with
identical levels will be dissolved into one). If the id argument is omitted, all
polygons are dissolved into one, as we shall see in subsequent examples. Here is the
code for dissolving our current layer:

> states = gUnaryUnion(county_nv_ut, id = county_nv_ut$NAME_1)

http:// /

Working with Points, Lines, and Polygons

[154]

In the present case, the state name column (NAME_1) was passed as the ID and
thus, all the counties that form a single state were dissolved into state polygons.
Since rgeos deals with the geometrical component of vector layers, the returned
object of gUnaryUnion (and, as we shall see, of other functions in this package) has
no attribute table. In this case, for example, while the input county_nv_ut was a
SpatialPolygonsDataFrame object, the output states is a SpatialPolygons object.
Then, how will we be able to tell which polygon corresponds to which state? The
answer is that the information is recorded in the ID codes of the resulting layer and
can be obtained using the row.names function. Using this function, we can find out
that the first feature in states corresponds to "Nevada" and the second to "Utah":

> row.names(states)
[1] "Nevada" "Utah"

To get a better understanding of what we just did, it would be helpful to visualize
the dissolved states' polygons on top of the original county_nv_ut polygons.
We can produce a simple plot using two plot function calls (specifying add=TRUE
the second time):

> plot(county_nv_ut, border = "lightgrey", lty = "dotted")
> plot(states, add = TRUE)

Note that the border parameter of plot is used to indicate the polygon border color
(rather than col, which, in the case of polygons, refers to fill color). An additional
argument is lty (which stands for the line type), which specifies that we want the
county borders to be dotted.

There are six line types available in R. See the full list at the entry
concerning the lty parameter on the ?par help page.

The resulting output is not presented since we are not done just yet. An additional
layer in our plot is going to consist of labels for county names. Text labels can be
added to an image created with a plot using the text function. With text, we need
to supply a set of coordinates defining where the labels will be plotted (for example,
using a matrix object with two columns, for x and y), and the text to be written at
each coordinate (for example, using a character vector).

The most straightforward option would be to place the labels at the centroids of
each county. For this, we first have to find the centroid coordinates using yet
another function from rgeos that returns a new layer based on a single input
layer called gCentroid:

> county_ctr = gCentroid(county_nv_ut, byid = TRUE)

http:// /

Chapter 5

[155]

The resulting SpatialPoints object was assigned to county_ctr. Since byid=TRUE
was specified, the layer contains the centroids of the individual counties, rather than
the centroid of the whole county_nv_ut layer.

We can supply county_ctr along with the vector of labels (which we get from the
NAME_2 column of county_nv_ut) to the text function. The additional parameter
cex defines the labels font size in relative units (1.5 times the default size):

> text(county_ctr, county_nv_ut$NAME_2, cex = 1.5)

The final graphical output, produced by the two plot functions and one text
function call, is shown in the following screenshot:

The plot shows the dissolved state polygons (in black), the original county polygons
(in dotted gray), and county names (as text labels).

http:// /

Working with Points, Lines, and Polygons

[156]

Many of the functions in the rgeos package cannot handle geometries
that are invalid from the topological point of view. For example, when
referring to polygons, a valid layer does not contain self-intersecting
polygons (polygons whose boundary crosses itself). Examining whether
a given layer is valid or not can be done using the gIsValid function,
which returns TRUE for valid features (either for the layer as a whole,
by default, or for each feature separately when specifying byid=TRUE).
Searching for and resolving topological errors, however, is best done
interactively. Thus, GIS software (such as QGIS) is more suitable for this
task than R.

Spatial relations between vector layers
In this section, you will learn how to perform operations involving pairs of vector
layers. These types of operations are very common in spatial data analysis. We often
want to know, for instance:

• What are the distances of different resorts from the nearest coastline?
• Which houses are within a radius x of the epicenter of an earthquake?
• Which parts of the habitat of an endangered species are contained within

protected nature reserves?

All of these operations require the overlay of features from two distinct layers,
although, as we have seen earlier, the result can be:

• A numeric value (the distance from a resort to the nearest coastline is
50 meters)

• A logical value (the house is within a distance of 10 kilometers of the
earthquake epicenter)

• A spatial layer (a polygon defining the intersecting area between the natural
distribution of the endangered species and nature reserves)

In this section, we will see examples of all three kinds of operations.

http:// /

Chapter 5

[157]

Querying relations between vector layers
Querying relations between two layers is required when we would like to do one of
the following:

• Assign data from the attribute table of one feature to another (for example,
polygon A gets the attribute table entry of polygon B it intersects with)

• Examine whether a specific relation exists between features (for example, we
get TRUE if polygon A is completely within polygon B, or FALSE otherwise)

In GIS terminology, the first type of operation is sometimes referred to as a spatial
join or a join by spatial location. The way it can be done in R will be demonstrated
using the airports and county layers. The second type of operation (examining
relations) will be demonstrated using another example, involving layers of buildings
and natural areas in London.

The over function provides consistent functionality to join the attribute table data
from one spatial object to another based on their intersection. All nine possible types
of relations are permitted (point/line/polygon with point/line/polygon), either via
the sp package (point-point, point-polygon, and polygon-point) or rgeos (all other
combinations). The over function accepts two spatial layers (parameters x and y).
The function call over(x,y) then returns—for all features in the first layer (x)—the
attribute table entries (or indices, if the layer has no attribute table) of the second
layer (y) that intersect it. The related syntax x[y,], when both x and y are vector
layers, serves as a shortcut to over when we are interested in subsetting the vector
layer x according to intersection. The latter function call returns only those features
in x that intersect with a feature in y.

As already mentioned, our first example of querying relations between layers will
involve the airports and county layers. The first preliminary step, as always, is to
bring both layers to a common CRS. In this case, we will reproject airports to the
CRS of county:

> airports = spTransform(airports, CRS(proj4string(county)))

We will now plot airports on top of the county layer to visually examine their
relation so that we know what to expect later. Since we already know that all three
airports are located in New Mexico, we will work with a subset of county, called nm,
containing only the counties of New Mexico:

> nm = county[county$NAME_1 == "New Mexico",]
> plot(nm)
> plot(airports, col = "red", pch = 16, add = TRUE)

http:// /

Working with Points, Lines, and Polygons

[158]

Note that we used yet another parameter of the plot function, pch, to choose a
different point shape (16 corresponds to the filled circles, while the default argument
is a plus symbol +).

There are 26 point shapes available. The possible shapes and their
code are listed in the ?points help page.

The following screenshot shows the graphical output that is produced:

We can see that two of the airports fall within (thus, by definition, also intersect) a
single county, while the third airports falls within a different county. Using over
with airports and nm (in that order) will return the following output:

> over(airports, nm)
 NAME_1 NAME_2 TYPE_2 FIPS area

http:// /

Chapter 5

[159]

1 New Mexico Bernalillo County 35001 3023.909
2 New Mexico Bernalillo County 35001 3023.909
3 New Mexico Santa Fe County 35049 4944.339

Indeed, we see that the first two rows are identical since the first two airports are
located in the same county (Bernalillo county). To examine specifically which
airport falls within each county, we can bind the result of over with the attribute
table of airports:

> cbind(airports@data, over(airports, nm))
 name NAME_1 NAME_2 TYPE_2 FIPS
1 Albuquerque International New Mexico Bernalillo County 35001
2 Double Eagle II New Mexico Bernalillo County 35001
3 Santa Fe Municipal New Mexico Santa Fe County 35049
 area
1 3023.909
2 3023.909
3 4944.339

Now we can tell that the Albuquerque International and Double Eagle II airports
are located within Bernalillo County, while the Santa Fe Municipal airport is located
within Santa Fe County. To permanently incorporate the county information
into the attribute table of airports, we can assign the combined table back
to the attribute table slot of airports, with an expression such as airports@
data=cbind(airports@data,over(airports,nm)).

Examining the opposite relation (when nm is x and airports is y), we can, for
example, subset those counties that intersect with at least one airport using the
expression nm[airports,]. As noted earlier, using [with two vector layers is in
fact a shortcut used to retain those features of x that intersect with y. In this case, an
equivalent over expression would be nm[!is.na(over(nm,airports)$name),],
but using nm[airports,] is obviously more convenient.

We can plot the nm[airports,] subset to demonstrate the behavior:

> plot(nm[airports,])
> plot(airports, add = TRUE, col = "red", pch = 16, cex = 1.5)
> text(airports, airports$name, pos = 1)

http:// /

Working with Points, Lines, and Polygons

[160]

The additional pos parameter of the text function controls the position of the text
with respect to the point coordinates (the default behavior we previously witnessed
is to place the text centered on the coordinates point itself, with pos=1 the text is
placed below the point; see ?text for all options). The following screenshot shows
the graphical output that is produced as a result of the three function calls:

We can see that nm[airports,] indeed consists of only those nm features
that intersect airports.

http:// /

Chapter 5

[161]

If we try to match the airports attribute table entries to nm (with
over(nm,airports)), only the first airport that intersects each county
will be returned in cases where there are multiple matches. If we wish
to preserve all matches, we need to specify returnList=TRUE in the
over function call. However, the returned object will be a list object
since holding sets of elements with variable lengths requires a list
rather than a data.frame object. Many of the more advanced uses
of R that require such flexibility involve list objects. However, the
subject is beyond the scope of this book. More information on lists can
be found in the official R's introduction document at http://cran.r-
project.org/doc/manuals/r-release/R-intro.pdf and in
most introductory books on R.

As an example of querying polygon-polygon relations, we will use another example
involving three polygonal Shapefiles:

• Administrative areas of England and Wales (CTYUA_DEC_2013_EW_BFE.shp)
• Buildings in Greater London (london_buildings.shp)
• Natural areas in Greater London (london_natural.shp)

The datasets were downloaded from freely accessible online resources,
either from the Office of National Statistics at https://geoportal.
statistics.gov.uk/ (administrative areas) or OpenStreetMap
(buildings and natural areas).

First, we will read the files into R and bring them to a common CRS. We will begin
with the administrative areas layer, reading it from the disk and naming it boundary:

> boundary = readOGR("C:\\Data", "CTYUA_DEC_2013_EW_BFE")

Using the proj4string function reveals the CRS of boundary—the British National
Grid. Note that the resulting string is abbreviated in the following output since it
does not fit in a single line:

> proj4string(boundary)
[1] "+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 $

Next, we will read the two OpenStreetMap layers:

> buildings = readOGR("C:\\Data", "london_buildings")
> natural = readOGR("C:\\Data", "london_natural")

http://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
http://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
https://geoportal.statistics.gov.uk/
https://geoportal.statistics.gov.uk/
http:// /

Working with Points, Lines, and Polygons

[162]

Both these layers are defined in a geographical CRS, as the following output
demonstrates:

> proj4string(buildings)
[1] "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,$
> proj4string(natural)
[1] "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,$

We will reproject the buildings and natural layers to the CRS of boundary:

> buildings = spTransform(buildings, CRS(proj4string(boundary)))
> natural = spTransform(natural, CRS(proj4string(boundary)))

Now that the preliminary preparations are complete, we can continue with the
exercise. Our goal will be to assign the distance to the River Thames to each of the
buildings within the City of London. For this, we will go through the following
intermediate steps:

1. Create a subset of buildings with only those in the City of London.
2. Create a subset of natural with only the riverbanks.
3. Dissolve the riverbank features into a single one.
4. Calculate the distance between each feature in buildings and the riverbank.

The administrative boundaries layer comes with an explanatory file (Product
Specification for CTYUA_2013_EW_BFE.docx, which is also provided on the
book's website), where we can find out that the names of the different administrative
areas are defined in the CTYUA13NM column of the attribute table of this layer. Using
this column, we will create a subset, named city, containing only the polygon
defining the city of the London administrative area:

> city = boundary[boundary$CTYUA13NM == "City of London",]

Using the city polygon, we will create a subset of only those buildings that are
within the City of London. If we were interested in intersection (in other words,
buildings that are completely or incompletely within the city polygon), we could
use the [or over methods as already shown earlier. To evaluate other types of
relationships, the rgeos package provides a dozen additional functions: gContains,
gContainsProperly, gCovers, gCoveredBy, gCrosses, gDisjoint, gEquals,
gEqualsExact, gIntersects, gTouches, gOverlaps, and gWithin. The names of
these functions already provide a clue for the relationship they are used to evaluate;
the exact definitions are provided in the respective help page of each function.

http:// /

Chapter 5

[163]

Since in our example we are interested in creating a subset of the buildings features
that are contained within city, we are going to use the function that evaluates
containment—gContains. According to the help page of gContains, the expression
gContains(city,buildings) will return TRUE for buildings features that are
contained within city. Specifying byid=TRUE is necessary to evaluate the relation
separately for each feature:

> in_city = gContains(city, buildings, byid = TRUE)

The result, in_city, is a two-dimensional matrix with rows corresponding to
the buildings features (210,937 buildings in Greater London) and columns
corresponding to the city features (there is only one, the City of London; if we had
more than one feature in city, we would have had more columns):

> class(in_city)
[1] "matrix"
> head(in_city)
 119
0 FALSE
1 FALSE
2 FALSE
3 FALSE
4 FALSE
5 FALSE

The first (and only) column of this matrix is a logical vector specifying the
containment status of each building within the city polygon. Using this vector as a
rows index for buildings creates a subset of only those buildings within city:

> buildings = buildings[in_city[, 1],]

The first step is now complete. Returning to the natural layer, we will now subset
the polygons of type "riverbank" (which in the vicinity of the City of London
corresponds to the River Thames):

> river = natural[natural$type == "riverbank",]

As the third step, we will dissolve the separate river segments since we will be
interested in the shortest distance to any section of the river, rather than the distances
to its specific parts. As previously shown in the county example, dissolving can be
achieved with gUnaryUnion. This time, the id parameter is left unspecified so that all
geometries will be dissolved into a single one:

> river = gUnaryUnion(river)

http:// /

Working with Points, Lines, and Polygons

[164]

Before continuing with the fourth step (calculating distances, which we'll see later in
this chapter), we will visually review the processed buildings and river layers we
have at this point, with respect to the administrative boundaries layer boundary:

> plot(buildings, col = "sandybrown")
> plot(river, col = "lightblue", add = TRUE)
> plot(boundary, border = "dimgrey", add = TRUE)

The resulting graphical output is shown in the following screenshot:

In this preceding screenshot, we see the buildings of the City of London (in brown),
the dissolved riverbanks polygon (in blue), and the administrative areas boundaries
(in gray).

http:// /

Chapter 5

[165]

Creating new geometries
The rgeos package provides four functions to create new layers based on a pair of
existing ones: gDifference, gIntersection, gSymdifference, and gUnion. The
usage of these functions is very similar to that of functions to query relationships
since their main parameters are also a pair of layers and the byid parameter. The
difference is that they do not return logical values or matched attribute table entries
(based on whether the examined relationship holds), but rather a new layer. The
following diagram demonstrates how new geometries are generated in each case:

Note that the gUnion function operates in a similar way to
gUnaryUnion—just that the gUnioun function dissolves
geometries from two different layers, while the gUnaryUnion
function operates upon the geometries of a single layer.

http:// /

Working with Points, Lines, and Polygons

[166]

Our next example will utilize two of these functions: gIntersection and
gDifference. We will also use three new layers: buildings, natural areas, and
administrative borders in Haifa. The buildings and natural areas layers originate
from OpenStreetMap data, the same way as in the London example, while the
administrative borders of Israel will be downloaded from a global administrative
borders dataset directly through R. The buildings and natural areas layers will be
named haifa_buildings and haifa_natural in order to not be confused with the
analogous objects buildings and natural from the London example.

Our goal will be to create a polygon encompassing the natural areas in the vicinity of
the buildings in Haifa, excluding those natural areas that are within 50 meters of the
nearest building. We will follow four intermediate steps:

1. Read the layers into R and bring them to a common CRS.
2. Create a bounding polygon (convex hull) encompassing the buildings.
3. Clip the natural areas according to the bounding polygon.
4. Remove the natural areas that are 50 meters away from buildings.

As a first step, we will read the Haifa buildings and natural areas layers:

> haifa_buildings = readOGR("C:\\Data", "haifa_buildings")
> haifa_natural = readOGR("C:\\Data", "haifa_natural")

The third layer involved, the administrative boundaries, will be downloaded from
the GADM database of Global Administrative Areas at http://www.gadm.org/,
which is accessible using the getData function from the raster package:

> israel_adm = getData("GADM", country = "ISR", level = 1)

The hereby used arguments of getData are as follows:

• name: The dataset name (for example, "GADM", which stands for the
GADM dataset; using another dataset, "SRTM", will be demonstrated
in the next chapter)

• country (relevant for the name="GADM" option): The country ISO3 code (a list
of country codes can be obtained with getData("ISO3"))

• level (relevant for the name="GADM" option): The level of administrative
subdivision (0: country, 1: first subdivision, and so on)

http://www.gadm.org/
http:// /

Chapter 5

[167]

In fact, the county layer we used earlier comes from the GADM dataset as well (only
that FIPS codes have been added to its attribute table). The reason GADM was not
used in the London example is that it is less accurate than the Office of National
Statistics layer.

We will not need the whole israel_adm layer, but only a subset consisting of the
Haifa administrative area, which includes the city of Haifa:

> haifa_adm = israel_adm[israel_adm$NAME_1 == "Haifa",]

Before proceeding with geometrical calculations, as usual, all three layers (haifa_
adm, haifa_buildings, and haifa_natural) will be reprojected to the same CRS. In
this case, we are going to use the UTM Zone 36N CRS. We can obtain its parameters
from the Landsat image object l_03 we read into R in one of the previous examples:

> haifa_adm =
+spTransform(haifa_adm, CRS(proj4string(l_03)))
> haifa_buildings =
+ spTransform(haifa_buildings, CRS(proj4string(l_03)))
> haifa_natural =
+ spTransform(haifa_natural, CRS(proj4string(l_03)))

Having completed the first step, we will take a moment to plot the three layers and
see what they look like:

> plot(haifa_natural, col = "lightgreen")
> plot(haifa_buildings, add = TRUE)
> plot(haifa_adm, add = TRUE)

http:// /

Working with Points, Lines, and Polygons

[168]

The resulting graphical output (in the following screenshot) shows the Haifa
administrative area border (haifa_adm, in this case marking the Mediterranean sea
coastline), the Haifa buildings (haifa_buildings), and the natural areas (haifa_
natural, shown in green):

Proceeding with the second step, we will create a convex hull polygon, assigned to
buildings_ch, in order to define our area of interest surrounding the buildings. A
convex hull is the smallest convex polygon encompassing a certain set of features
(see the gray polygon in the next screenshot). A convex hull can be created using the
gConvexHull function:

> buildings_ch = gConvexHull(haifa_buildings)

http:// /

Chapter 5

[169]

The convex hull crosses the Mediterranean sea. We would like to, however, retain
only those areas of buildings_ch that are within haifa_adm (in other words, on
land). This can be achieved by using the gIntersection function on buildings_ch
and haifa_adm:

> buildings_ch = gIntersection(buildings_ch, haifa_adm)

Now that the bounding polygon buildings_ch is set, we proceed to our third step.
Turning to the haifa_natural layer, we will merge all of its polygons into one
polygon (since we are not interested in discerning different types of natural areas)
using gUnaryUnion, similarly to what we did in the London example:

> haifa_natural = gUnaryUnion(haifa_natural)

Then, we will use buildings_ch to retain only those natural areas that are within
our area of interest, using another gIntersection function call:

> haifa_natural = gIntersection(haifa_natural, buildings_ch)

What remains to be done is our fourth step, which is removing the areas in haifa_
natural that are within 50 meters of the nearest building. To do this, we will first
create a 50 meter buffer polygon surrounding haifa_buildings, using the gBuffer
function (specifying the buffer size with width):

> buildings_50m = gBuffer(haifa_buildings, width = 50)

Then, using the gDifference function, we will calculate the area in haifa_natural
that is not within the 50 meters buffer of haifa_buildings:

> haifa_natural = gDifference(haifa_natural, buildings_50m)

We are done. To see the resulting layers, we will plot all four of them (buildings_
ch, haifa_adm, haifa_natural, and haifa_buildings) together, with the following
series of plot function calls:

> plot(buildings_ch, col = "lightgrey", border = "lightgrey")
> plot(haifa_adm, add = TRUE)
> plot(haifa_natural, col = "lightgreen", add = TRUE)
> plot(haifa_buildings, add = TRUE)

http:// /

Working with Points, Lines, and Polygons

[170]

The resulting graphical output is shown in the following screenshot:

In the preceding screenshot, we can see the bounding polygon buildings_ch in
gray, the administrative borders, as well as the buildings, in black, and natural
areas (those within the bounding polygon and excluding areas within 50 meters of
buildings) in green. We will continue working with the Haifa layers we have hereby
created in several additional examples in subsequent chapters.

http:// /

Chapter 5

[171]

Calculating distances between geometries
Let's now return to the London example, to complete its fourth step (which is
distance calculation). Distances between each feature from one layer to each feature
in a second layer can be calculated with the gDistance function, setting byid
to TRUE. The following expression calculates the distance from each feature in
buildings to each feature in river:

> dist = gDistance(buildings, river, byid = TRUE)

As seen in the gContains example, the result is a matrix:

> class(dist)
[1] "matrix"

The matrix rows correspond to river features, whereas its columns correspond to
buildings features. As the following output of dim demonstrates, we have 1,583
buildings features in the City of London and one river feature (remember that we
dissolved the separate riverbank parts into one):

> dim(dist)
[1] 1 1583

Selecting the first (and only) row of dist will yield a numeric vector with the
distances of each building to the nearest riverbank. With the following expression,
we can assign the distances to a new column, named dist_river, in the attribute
table of buildings:

> buildings$dist_river = dist[1,]

Examining the attribute table will demonstrate that, indeed, we now have a distance-
to-river entry for each of the buildings in the City of London:

> head(buildings@data)
 osm_id name type dist_river
16 4076420 St Brides place_of_worship 313.1239
56 4364085 Sainsbury's Head Office block 683.5640
137 4959489 30 St Mary Axe attraction 653.4159
138 4959510 Bank of England office 503.7244
139 4959544 St Paul's Cathedral cathedral 287.7122
140 4959629 Liverpool Street train_station 1009.8070

We are going to wait until Chapter 9, Advanced Visualization of Spatial Data, to
graphically display this result while learning some additional visualization methods.

http:// /

Working with Points, Lines, and Polygons

[172]

Joining geometries with tabular data
In this section, we are going to join an attribute table of a spatial vector layer with
plain tabular data (as opposed to joining with the attribute table of another layer
based on spatial location). In spatial analysis practice, we often have, at hand, a
spatial layer and supplementary tabular data as separate objects, while we would
like to work with them in combination. For instance, in the present example, USA
Census data regarding county population sizes (a CSV file) will be linked to the
county layer defining county geometries, in order to calculate county population
densities. To do the latter, we need to know both the population size (from the
census table) and area size (from the vector layer) for each county, and the only way
to do that is to join both datasets.

The intermediate steps we will perform are as follows:

1. Read the USA Census data.
2. Subset the portion of the data we are interested in.
3. Prepare a common key to join the census data with the county layer.
4. Join!
5. Calculate the population density.

Our first step is to read the USA Census data into R.

The USA Census data was downloaded from the United States Census
Bureau available at https://www.census.gov/popest/data/
counties/totals/2012/CO-EST2012-alldata.html.

The CSV file, CO-EST2012-Alldata.csv, is provided on the book's website in its
original form. The following expression reads its contents and assigns it to a data.
frame object named dat:

> dat = read.csv("C:\\Data\\CO-EST2012-Alldata.csv")

The expression colnames(dat) reveals that we have as many as 52 variables in this
table. To save space, only the first 15 values are printed here:

> colnames(dat)[1:15]
 [1] "SUMLEV" "REGION" "DIVISION"
 [4] "STATE" "COUNTY" "STNAME"
 [7] "CTYNAME" "CENSUS2010POP" "ESTIMATESBASE2010"
[10] "POPESTIMATE2010" "POPESTIMATE2011" "POPESTIMATE2012"
[13] "NPOPCHG_2010" "NPOPCHG_2011" "NPOPCHG_2012"

https://www.census.gov/popest/data/counties/totals/2012/CO-EST2012-alldata.html
https://www.census.gov/popest/data/counties/totals/2012/CO-EST2012-alldata.html
http:// /

Chapter 5

[173]

As the accompanying file CO-EST2012-alldata.pdf informs, the first seven
variables are geographical identifiers such as STATE (state FIPS code) or CTYNAME
(county name), while the other 45 are measured variables related to demography,
such as CENSUS2010POP (April 4, 2010 resident Census 2010 population) or
BIRTHS2011 (births between July 1, 2010 to June 30, 2011). For our example, we will
use only one of the measured variables (CENSUS2010POP), which is found in the 8th
column. When joining the data with the county layer, however, we will also require
the STATE column (the fourth column) and COUNTY column (the fifth column). Using
the latter two columns, we will create a FIPS code column in dat that we will use to
join dat to the attribute table of county.

We could subset the three columns of interest by simply using the expression
dat[,c(4,5,8)]. However, it is recommended you refer to the column names
themselves rather than to their numeric indices, to make the code more general (so
that it will still work if the column order is altered):

> selected_cols = c("STATE", "COUNTY", "CENSUS2010POP")
> dat = dat[, colnames(dat) %in% selected_cols]

Note that here, we first created a vector with the column names of interest
(selected_cols), used it to create a logical vector pointing to the indices of the
respective columns (colnames(dat) %in% selected_cols), and finally used this
logical vector as the column index of dat to create the subset.

The first few rows of dat now appear as follows:

> head(dat)
 STATE COUNTY CENSUS2010POP
1 1 0 4779736
2 1 1 54571
3 1 3 182265
4 1 5 27457
5 1 7 22915
6 1 9 57322

For convenience, we can convert the column names to lowercase using the
tolower function:

> colnames(dat) = tolower(colnames(dat))
> colnames(dat)
[1] "state" "county" "census2010pop"

http:// /

Working with Points, Lines, and Polygons

[174]

Examining the table will also reveal that it contains subtotal entries, for entire states,
in addition to the county entries. These entries are marked with the value 0 in the
county column. Since we are interested in counties, not states, these entries need to
be removed:

> dat = dat[dat$county != 0,]

With the first and second steps now complete, we are going to create a key with
which the county layer and the dat table will be joined. The least problematic
option is to use the FIPS codes as a key since county names may be slightly
different among datasets.

We already have a FIPS column in the county layer. For example, the FIPS codes of
the first 10 features are as follows:

> county$FIPS[1:10]
 [1] "09005" "09003" "09013" "09015" "06093" "06015" "06049"
 [8] "09011" "09001" "09007"

These five-digit codes encompass the state code (digits 1 to 2) and county code (digits
3 to 5). As we can see, when the state or county code is fewer than two or three
digits, it is preceded by zeros. For example, the first county polygon has the FIPS
code 09005, which means its state code is 9 (state of Connecticut) and county code
is 5 (Litchfield County). However, in the dat table, the state and county FIPS codes
are kept as separate numeric values without leading zeros (9 and 5). In order to get
matching values with the county layer, we need to perform the following steps:

1. Add leading zeros in the state column to get uniform two-digit codes.
2. Add leading zeros in the county column to get uniform three-digit codes.
3. Paste the state and county columns together to get the FIPS codes.

The first two steps can be performed using the formatC function. This function can
deal with several formatting tasks including the one we need—padding the values of
a vector with leading zeros, to obtain a common character length. In this particular
case, we need to specify three arguments: the vector to work upon, the required
final character count (the width parameter), and the format modifier "0" (the flag
parameter, where "0" marks the pad with leading zeros scenario; see ?formatC):

> dat$state = formatC(dat$state, width = 2, flag = "0")
> dat$county = formatC(dat$county, width = 3, flag = "0")

http:// /

Chapter 5

[175]

We can examine the first few values of the modified state and county columns to
make sure the expected outcome was obtained:

> dat$state[1:10]
 [1] "01" "01" "01" "01" "01" "01" "01" "01" "01" "01"
> dat$county[1:10]
 [1] "001" "003" "005" "007" "009" "011" "013" "015" "017" "019"

Note that the numeric values have been automatically converted to characters since a
numeric value cannot have leading zeros.

Finally, we will paste the state and county codes into county FIPS codes and assign
them to a new column called FIPS:

> dat$FIPS = paste0(dat$state, dat$county)

Now, we have in dat$FIPS an identical format as seen in county$FIPS:

> dat$FIPS[1:10]
 [1] "01001" "01003" "01005" "01007" "01009" "01011" "01013"
 [8] "01015" "01017" "01019"

We are ready to move on to the fourth step—joining the attribute table of county
with the dat table. In fact, we are going to use a subset of dat, containing only two
columns: FIPS (since the join will be based upon it) and census2010pop (since these
are the data we are interested in) because the state and county columns are of no
use to us at this stage. The join operation is done using the join function from the
plyr package (see Chapter 3, Working with Tables):

> library(plyr)
> county@data = join(county@data,
+ dat[, colnames(dat) %in% c("FIPS", "census2010pop")],
+ by = "FIPS")

Using county@data as the first argument in join and the type of
join that is being used ("left", by default), ensures that all entries
in county@data are preserved in their original order (regardless of
whether they have a match in dat). This is extremely important since
the rows of county@data correspond to the county polygons. Thus,
changing the order of rows would result in a discrepancy between
the attribute table and the spatial features. Concerning vector layers,
operations such as join(county@data,x,type="left") are
safe to perform, while manual modification of the @data component
involving altering the row order (for example, deleting a single row)
should be generally avoided.

http:// /

Working with Points, Lines, and Polygons

[176]

As a result, we now have the matching census2010pop entries in the attribute table
of county:

> head(county@data)
 NAME_1 NAME_2 TYPE_2 FIPS area census2010pop
1 Connecticut Litchfield County 09005 2451.876 189927
2 Connecticut Hartford County 09003 1941.110 894014
3 Connecticut Tolland County 09013 1077.789 152691
4 Connecticut Windham County 09015 1350.476 118428
5 California Siskiyou County 06093 16416.572 44900
6 California Del Norte County 06015 2626.707 28610

We can check and see that only one entry in the county layer could not be matched
with a census2010pop entry from dat (and thus, has NA in the census2010pop
column). This entry corresponds to Clifton Forge City, Virginia:

> county@data[is.na(county$census2010pop),
+ c("NAME_1", "NAME_2")]
 NAME_1 NAME_2
2591 Virginia Clifton Forge City

Our fifth and final step will be to calculate population densities for each county,
by dividing the population size (the census2010pop column) by county area (the
area column). The result can be assigned to a new column, named density, in the
attribute table of county:

> county$density = county$census2010pop / county$area

Examining the attribute table shows that the new column, holding average
population density per km2, has indeed been added to the county layer:

> head(county@data)
 NAME_1 NAME_2 TYPE_2 FIPS area census2010pop
1 Connecticut Litchfield County 09005 2451.876 189927
2 Connecticut Hartford County 09003 1941.110 894014
3 Connecticut Tolland County 09013 1077.789 152691
4 Connecticut Windham County 09015 1350.476 118428
5 California Siskiyou County 06093 16416.572 44900
6 California Del Norte County 06015 2626.707 28610
 density
1 77.461920
2 460.568482
3 141.670638
4 87.693548
5 2.735041
6 10.891965

http:// /

Chapter 5

[177]

Preparing a map of population densities per county is postponed until we reach
Chapter 9, Advanced Visualization of Spatial Data.

Summary
In this chapter, we covered the basic operations involved in working with vector
layers in R. First, we reviewed the classes used to represent spatial vector layers in
R, and explored two ways to bring spatial vector data into R (geocoding and reading
from a file). Second, we discussed how to examine and modify the attribute tables of
vector layers, how to create subsets of layers according to their attribute tables, and
how to join new data to an attribute table (either from a separate table or from another
vector layer). Third, the major types of geometry-related operations with vector layers,
including the calculation of geometrical properties, evaluation of relations between
layers, and the creation of new layers based on the existing ones, were presented.

In the next chapter, we will delve into rasters in more detail, examining geometry-
related modification of rasters (such as reprojection), utilizing elevation rasters (such
as DEMs), and working with spatio-temporal raster data (such as time series data
from satellite images). Later, in Chapter 7, Combining Vector and Raster Datasets, we are
going to discuss several common procedures associated with interrelations between
raster and vector data.

http:// /

http:// /

Modifying Rasters and
Analyzing Raster Time Series
In this chapter, we will continue with the material presented in Chapter 4, Working
with Rasters, moving on to more advanced operations. These involve either the
modification of the geometric properties of a raster or direction- and distance-related
calculations on rasters; mostly using additional functions in the raster package.
Examples related to the analysis of spatio-temporal remote sensing data will be
presented in the last section of this chapter, to demonstrate how more complex,
custom-made procedures of raster processing can be constructed.

In this chapter, we will use objects that we previously created in Chapter 3, Working
with Tables, and Chapter 4, Working with Rasters.

In this chapter, we'll cover the following topics:

• Modifying the geometry of raster layers
• Applying focal filters
• Clumping patches of connected cells
• Resampling and reprojection of rasters
• Performing topography-related calculations on elevation data
• Aggregating spatio-temporal raster data

http:// /

Modifying Rasters and Analyzing Raster Time Series

[180]

Changing the spatial extent or resolution
of rasters
With reference to raster geometry, so far we have only dealt with operations where
the raster extent is manually reduced by selecting a certain combination of rows
and columns to retain (refer to Chapter 4, Working with Rasters). In this chapter, we
will review more operations that provide us with the freedom to modify the raster
geometry of datasets according to our specific requirements.

In this section, we will see how we can change the extent or resolution of rasters
without modifying the underlying grid arrangement. This category includes
operations such as merging rasters, cropping, or aggregating/disaggregating raster
cells. In the next section, we will see how the underlying grid (and possibly the CRS)
can be modified through resampling and reprojection.

In the first few examples of this chapter, we will work with a DEM of the area
surrounding Haifa, and experiment with the modification of raster extent and
resolution. A DEM is a raster holding elevation values, thus representing the
topography of the specific area that it covers. There are many ways of creating a
DEM, including interpolation from a limited set of elevation measurements (such
as points or contours) or conducting continuous measurements of the surface (with
instruments such as Light Detection and Ranging (LIDAR) or stereoscopy). Here,
we will use a part of the near-global DEM created in 2000, in an effort called the
Shuttle Radar Topography Mission (SRTM). In this mission, elevation data has
been collected using an instrument on board the Space Shuttle Endeavour, covering
the Earth's surface up to 60 degrees latitude, north and south.

SRTM data is available online for free (visit http://srtm.csi.cgiar.org/). It
is also directly accessible through R, using the getData function of the raster
package (we already used this function in the previous chapter to obtain the Haifa
administrative borders layer). The SRTM DEM is divided into tiles of 5 x 5 degrees of
longitude/latitude that can be downloaded separately. With getData, we need to set
the dataset name to "SRTM" and specify geographic coordinates of interest (longitude
and latitude). The returned object is a RasterLayer covering the corresponding tile.

Incidentally, the longitude of Haifa is 34.99 degrees (you can check this quickly
with geocode("Haifa"); refer to the previous chapter), and thus it is located at the
intersection of two 5 x 5 degrees tiles. To cover Haifa, we will download both tiles:

• longitude 30-35, latitude 30-35
• longitude 35-40, latitude 30-35

http://srtm.csi.cgiar.org/
http:// /

Chapter 6

[181]

As mentioned earlier, we can specify a given tile by entering any point that falls in
it, for example, (33,33) for the first tile and (38,33) for the second. The following code
downloads the two tiles and assigns them to the RasterLayer objects named dem1
and dem2, respectively:

> library(raster)
> dem1 = getData("SRTM", lon=33, lat=33)
> dem2 = getData("SRTM", lon=38, lat=33)

Note that rgdal is automatically loaded (if it hasn't been already)
since it is necessary to execute getData.

We now have two DEMs covering adjacent areas, which we will use to demonstrate
several operations involving the modification of raster spatial extent or resolution.

Merging rasters
Separate rasters can be merged into a single one using the merge or mosaic
functions. Both accept two (or more) rasters and return a merged raster.

The difference between merge and mosaic is in the way they deal with
overlaps of input rasters. The merge function assigns the values of the
first raster in cases of overlap, whereas in mosaic, we supply a function
(such as mean, min, or max) to calculate the values in areas of overlap
based on all input layers.

With both merge and mosaic, the rasters must have the same resolution, origin, and
CRS; in other words, they need to constitute parts of the same grid. When rasters
that do not belong to the same grid need to be combined, resampling is a necessary
preliminary step to bring them to a single grid before employing merge or mosaic.

Our rasters dem1 and dem2 do not overlap at all, so we do not need to worry about
ways to resolve assignment of values in areas of overlap. Therefore, we can use the
merge function to combine dem1 and dem2 and create a single raster named dem:

> dem = merge(dem1, dem2)

http:// /

Modifying Rasters and Analyzing Raster Time Series

[182]

Certain operations with rasters (such as merging or reprojection) can be
time-consuming. A useful additional parameter to the merge function,
and many other functions in the raster package, is progress. Setting
progress="text" or progress="window" will show a progress
bar (in the textual output or in a separate window) while the function
code runs. This way, the user can assess how much time a given
operation will take (and perhaps modify the code to bypass extremely
time-consuming steps). The rasterOptions(progress="text")
expression sets the progress parameter to "text" globally for the
current R session.

We now have a DEM of the whole area of longitude 30-40 and latitude 30-35 (as
shown in the following screenshot). Our next step will be to isolate the area of
interest surrounding Haifa. We will define the area as the bounding box of haifa_
buildings (refer to the previous chapter), supplemented with 0.25 degrees on all
four sides. For this purpose, we will calculate the bounding box of haifa_buildings
(using the extent function) and then add 0.25 degrees to it, as follows. Beforehand,
we will read the haifa_buildings layer once again to have it in a geographic CRS:

> haifa_buildings = readOGR("C:\\Data", "haifa_buildings")
> haifa_surrounding = extent(haifa_buildings) + 0.25

The created object haifa_surrounding is an Extent object defining our
rectangular area of interest. Let's plot dem and the Extent object using a pair
of plot function calls:

> plot(dem)
> plot(haifa_surrounding, add = TRUE)

The graphical output is shown in the following screenshot:

http:// /

Chapter 6

[183]

The two merged tiles seem in perfect alignment, which is expected as they originate
from the same (larger) DEM. The black rectangle delineates our areas of interest
centered on Haifa, which indeed intersects the 35 degrees meridian.

Cropping and trimming
Cropping is the production of a smaller raster from an existing one by selecting a
certain range of rows and columns. While the manual subset methods we used in
Chapter 4, Working with Rasters, are also considered cropping, in practice we usually
would like to select the required range of rows and columns by overlaying the raster
with another spatial layer, rather than by manually entering row and column indices.

The crop function, given a raster and an Extent object, returns a smaller raster with
the required extent. Instead of an Extent object, a raster or a vector layer can also be
provided, in which case their extent is extracted and used in cropping. For example,
the following expression crops dem according to haifa_surrounding:

> dem = crop(dem, haifa_surrounding)

To examine the effect, we can visualize the raster once again using the plot(dem)
expression. The following screenshot shows the graphical output that is produced
as a result:

http:// /

Modifying Rasters and Analyzing Raster Time Series

[184]

The high-elevation area in the lower half of the preceding screenshot is Mount
Carmel. The city of Haifa is located on its northern slopes.

Another useful function within the context of raster cropping is trim. This function
removes the outer rows and columns of a raster that all have the same value. For
example, using trim(x), we can automatically remove unnecessary NA margins from
the raster x.

A raster (in R, and in general) is by definition rectangular; rasters where
values cover a non-rectangular area are obtained by surrounding the
area of interest with NA values (such as the Mediterranean sea area
in the preceding screenshot). Both crop and trim are used to carve
smaller rectangular extents from existing rasters by removing whole
rows and columns from their margins. When we are interested in
carving non-rectangular shapes, we need, in fact, to fill the unnecessary
areas with NA, which is made possible with the mask function (we'll see
this in the next chapter).

Aggregating and disaggregating
Aggregation is the creation of a lower-resolution raster by grouping rectangular
sets of cells in the original raster into individual, larger cells in the new raster.
Aggregation might be necessary when we are ready to lose detail to gain processing
efficiency or noise reduction. For example, MODIS satellite data products are
distributed in several spatial (and temporal) resolutions, from 250 to 5600 m, with the
lower-resolution products usually being the results of aggregation from the original
higher-resolution data. The lower-resolution images are useful since as we increase
the spatial and temporal extent that is being analyzed, it becomes increasingly
unfeasible (and unnecessary) to work with high resolutions. For example, an analysis
of NDVI trends over time at a 250 meter resolution on a global scale would involve
huge amounts of data; a 5,600 meter resolution is more reasonable for such a task (it
would reduce the amount of data 500-fold!). In addition, lower-resolution products
are typically associated with greater confidence since noisy pixels are averaged out
during aggregation.

http:// /

Chapter 6

[185]

The aggregate function performs aggregation by grouping adjacent pixels into new
ones, given an input raster and the aggregation factor fact. The aggregation factor
controls the size of the new raster cells in units of the original cells. It can either be a
single integer (in which case, aggregation is equal on both axes) or a vector of length
2 (in which case, different levels of aggregation are applied on the x and y axes). For
example, using fact=8 means that each set of 8*8 cells in the original raster becomes
a single cell in the new raster. Using fact=c(5,10) means that each rectangle of
5*10 cells (5 along the x axis, 10 along the y axis) becomes a single cell. In addition,
the fun parameter specifies which function will be used to calculate the new values
based on existing ones (the default is mean), and the na.rm parameter specifies
whether NA values are removed from each set prior to calculation (the default is
TRUE). To demonstrate the behavior of aggregate, we will apply it on our dem raster,
aggregating 8*8 and 16*16 sets of cells:

> dem_agg8 = aggregate(dem, fact = 8)
> dem_agg16 = aggregate(dem, fact = 16)

The following expressions sequentially plot the original dem, and the aggregation
results dem_agg8 and dem_agg16, along with the appropriate plot titles specified
using the main parameter:

> plot(dem, main = "Original image")
> plot(dem_agg8, main = "8x8 aggregated")
> plot(dem_agg16, main = "16x16 aggregated")

The following screenshot shows the resulting individual plots from left to right:

We can see that the preceding screenshot becomes increasingly blurred as the degree
of aggregation increases.

http:// /

Modifying Rasters and Analyzing Raster Time Series

[186]

The opposite operation from aggregation is disaggregation; it can be performed with
the disaggregate function. For example, the disaggregate(dem_agg8,fact=8)
expression would yield back a higher-resolution raster with the same resolution of
dem. However, the information that has been lost in aggregation is not recovered (each
set of 8*8 adjacent cells would have the same value) and the disaggregated raster will
visually appear identical to dem_agg8.

Raster resampling and reprojection
In this section, we are going to transfer the values of a given raster from its own grid
to a different grid. This operation is known as resampling. Raster reprojection is a
closely related operation; it is basically resampling to a grid having a different CRS
than that of the original raster.

Raster resampling
Raster resampling can be performed using the resample function. The required
parameters of this function are as follows:

• The raster whose values are to be resampled (x)
• A raster that defines the grid to which the values will be transferred (y)
• The resampling method (method)

The resample function currently provides two resampling methods. The method
that we use determines the way in which a cell in the new raster gets its value, based
on the old raster's values:

• "ngb": Nearest-neighbor; assigns the value of the nearest cell
• "bilinear": Bilinear interpolation; assigns a weighted average of the four

nearest cells (the default)

Other resampling methods exist. For instance, in the bicubic
interpolation a weighted average of the nearest 16 cells is
assigned in each cell.

http:// /

Chapter 6

[187]

The nearest-neighbor interpolation retains the original values, only transferring
them to the new grid according to proximity, while resampling methods that use
weighted averages from several cells (such as bilinear interpolation) inevitably involve
modification of the original values thus producing a smoother image. Therefore, in
cases where the original values should be preserved, the nearest-neighbor resampling
method is recommended. In categorical rasters with integers representing different
cover types, for example, it would make no sense to calculate a weighted average
of categories. For instance, in a raster with two categories, say 1 for forest and 2 for
pasture, the average of the four cell values is frequently not going to be equal to either
1 or 2, making the resulting image meaningless. On the other hand, when visual
appearance is the primary consideration, bilinear interpolation and similar
weighted-average methods are recommended.

For our resampling examples, we will use two NDVI images: one from Landsat
and one from MODIS. As the Landsat and MODIS images are defined in the same
CRS and they overlap (the MODIS image extent encompasses the Landsat image
extent)—although they have very different resolutions (the Landsat image resolution
is 30 m while the MODIS resolution is 500 m)—we can resample each one with the
other. In the following three examples, we will perform these steps:

1. Compare the original Landsat image with the one resampled according to
the MODIS grid.

2. Compare the original MODIS image with the one resampled according to
the Landsat grid.

3. Compare the MODIS image resampling results using two methods:
nearest-neighbor and bilinear interpolation.

For a Landsat NDVI image, we will use the ndvi_00 raster that we previously
calculated based on an image obtained on October 4, 2000. As for MODIS, the raster
r contains 280 NDVI images for the period between February 18, 2000 and April
6, 2012 (refer to Chapter 4, Working with Rasters). To make the comparison more
interesting, we will select the date of acquisition closest to October 4, 2000. Using the
dates$date vector of MODIS acquisition dates (as we saw in Chapter 3, Working with
Tables), we can find out the index of the date closest to October 4, 2000 by performing
the following steps:

1. Find the vector of differences between each date in dates$date
and October 4, 2000.

2. Calculate absolute differences using the abs function.
3. Find the index of the minimal difference value using which.min.

http:// /

Modifying Rasters and Analyzing Raster Time Series

[188]

These three steps can be accomplished with a single line of code, as follows:

> l_date = which.min(abs(dates$date - as.Date("2000-10-04")))

The result, assigned to l_date, is the index of the MODIS image closest in its
acquisition date to October 4, 2000. It is equal to 15:

> l_date
[1] 15

Thus, for the examples, we will use r[[l_date]], the fifteenth layer of the
multiband raster r (the corresponding date of acquisition is September 29, 2000, as
dates$date[l_date] will show).

In our first example, we will resample the Landsat image ndvi_00 to the MODIS grid
of the r[[l_date]] image using the nearest-neighbor method as follows:

> l_resample = resample(ndvi_00, r[[l_date]], method = "ngb")

Let's compare the original Landsat image ndvi_00 and the resampled image l_
resample by plotting both as follows:

> plot(ndvi_00, main = "Original Landsat image")
> plot(l_resample, ext = extent(ndvi_00),
+ main = "Resampled to MODIS")

Note that when plotting l_resample, we supply the ext parameter with the extent
of the original Landsat image ndvi_00 to zoom in on the area of overlap. The
l_resample image is, in fact, larger than ndvi_00 (it has the same extent as r[[l_
date]]) but all cells that do not overlap with ndvi_00 are assigned with NA.

The resulting two images are shown in the following screenshot:

http:// /

Chapter 6

[189]

On the left, we can see the detailed 30 meter resolution ndvi_00 image and on the
right we see the rough 500 meter resolution image where the values of the nearest
pixels of ndvi_00 were assigned to each of the pixels in r[[l_date]].

When the original raster is much more detailed than the resampled
result (such as in the previous example), considerable data loss takes
place. This happens due to the fact that the value of only a single (in
nearest-neighbor) or a few (in bilinear interpolation) 30 meter pixel(s)
determines the value of a much larger 500 meter pixel in the new
image, in our particular example for instance. Aggregation and zonal
extraction according to polygons (as we will see in the next chapter)
are more desired solutions when raster resolution is greatly reduced
as part of resampling.

The opposite operation is to resample the MODIS NDVI values from r[[l_date]] to
the Landsat grid of the ndvi_00, again using the nearest-neighbor method:

> r_resample = resample(r[[l_date]], ndvi_00, method = "ngb")

In this case, the result r_resample is smaller in its extent than the original MODIS
image r[[l_date]]; it has the same extent as ndvi_00. To show them side-by-
side more conveniently, we will first extend r_resample to match the extent of
r[[l_date]]. This can be done using the extend function that extends the raster
according to and an Extent object (or an object from which an Extent object can be
derived, such as a RasterLayer). The extend function adds NA rows and columns as
necessary to increase the raster extent; it is therefore, in a way, the opposite of trim:

> r_resample = extend(r_resample, r[[l_date]])

We will now plot the results of our second resampling example: the original
MODIS image r[[l_date]] and the resampled image r_resample. While plotting
r[[l_date]], we will add a rectangle surrounding the extent of ndvi_00 to aid
in the comparison:

> plot(r[[l_date]], main = "Original MODIS image")
> plot(extent(ndvi_00), add = TRUE)
> plot(r_resample, main = "Resampled to Landsat")

http:// /

Modifying Rasters and Analyzing Raster Time Series

[190]

The two resulting images are shown in the following screenshot:

As we can see, the resampled image is identical in its appearance to the respective
portion of the original image, although it has a 30 meter resolution unlike the
original image that has a 500 meter resolution. The reason is that each set of 30 m
Landsat pixels that coincides with a single 500 meter pixel in the MODIS image gets
the value of that single pixel. Thus, it appears as if we have 500 meter pixels even if
the underlying resolution is much higher.

What if we want to make the image look smoother? In such a case, we can use the
bilinear interpolation method instead of the nearest-neighbor method. Let's perform
the resampling operation from the last example twice, using the nearest-neighbor
method (the same way we just did, assigning the result to r_resample_ngb this time)
and the bilinear interpolation method (assigning the result to r_resample_bil).
The results will then be combined in a two-band raster with layer names specifying
resampling method:

> r_resample_ngb = resample(r[[l_date]], ndvi_00, method = "ngb")
> r_resample_bil = resample(r[[l_date]], ndvi_00,
+ method = "bilinear")
> resample_results = stack(r_resample_ngb, r_resample_bil)
> names(resample_results) = c("Nearest neighbor",
+ "Bilinear interpolation")

http:// /

Chapter 6

[191]

We will plot the results using the levelplot function of the rasterVis package.
Contours are enabled with contour=TRUE to highlight the differences
between methods:

> library(rasterVis)
> levelplot(resample_results,
+ par.settings = RdBuTheme,
+ contour = TRUE)

The following screenshot shows the graphical output:

As we saw in the previous example with nearest-neighbor resampling (the left image),
sets of adjacent cells that overlap with a single 500 meter pixel get the same value, and
thus the contours follow the coarse-grained pattern of MODIS pixels. With bilinear
interpolation (the right image), on the other hand, each 30 m cell gets the average of
four MODIS pixels closest to it, weighted according to their respective distances; thus,
most (if not all) cell values are unique and the image is much smoother.

http:// /

Modifying Rasters and Analyzing Raster Time Series

[192]

Raster reprojection
As mentioned earlier, raster reprojection—unlike vector layers reprojection—
involves resampling. Unlike vector layers, where all points are independent and
thus their coordinates can be individually transformed to a new CRS (refer to the
previous chapter), raster pixel coordinates that are transformed to a different CRS
will not form a legitimate grid on that CRS (that is, a grid with equal distances
between all adjacent pixels and parallel to the CRS x and y axes); rasters therefore
require resampling. Thus, raster reprojection consists of two steps: reprojection of the
raster pixel coordinates to the new CRS (analogous to reprojecting a vector layer) and
resampling of the pixel values to a grid defined in the new CRS.

There are two main ways of defining the new grid in raster reprojection: we
can either provide only the new CRS definition and let the grid be generated
automatically, or we can provide a specific grid of our own. In the latter case, the
process is very similar to resampling; the only change is that the new grid has a
different CRS from that of the original raster.

In R, the projectRaster function provides raster reprojection functionality and
supports both previously mentioned ways of defining a new grid. In the first case,
when we want the grid to be automatically generated, we need to supply:

• The raster to be reprojected (from)
• The target CRS, as a PROJ.4 string (crs)
• Optionally, the required resolution (res)

In the second case, when we want to define the grid ourselves, we need to supply:

• The raster to be reprojected (from)
• The raster defining the target grid (to)

In both scenarios, we also need to specify the resampling method, either "ngb" or
"bilinear" (the default).

As an example, we will reproject dem from its geographic CRS to the UTM Zone
36N projection. The corresponding PROJ.4 string, as we have already done in the
previous chapters, will be obtained from another raster (r). Prior to reprojection,
let's print out the current properties of dem in order to compare them later with the
properties of the reprojection result:

> dem
class : RasterLayer
dimensions : 390, 384, 149760 (nrow, ncol, ncell)
resolution : 0.0008333333, 0.0008333333 (x, y)

http:// /

Chapter 6

[193]

extent : 34.83083, 35.15083, 32.63583, 32.96083 (xmin, xmax$
coord. ref. : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,$
data source : in memory
names : layer
values : -14, 541 (min, max)

We see that, indeed, dem is defined in a geographic CRS, and has a resolution of
0.0008333333 degrees, longitude and latitude.

In case we do not have any special requirements for the projected dem to align with
an existing layer, we can follow the first reprojection approach, supplying only the
CRS and letting the grid be generated automatically. We can also supply the optional
res argument, primarily to make sure the x and y axes resolution will be equal (90 m,
for example). You can try and execute the following expression without specifying
res, to verify that the default grid generated in this case will have a resolution of
78 m and 92.4 m on the x and y axes respectively:

> dem = projectRaster(from = dem,
+ crs = proj4string(r),
+ method = "ngb",
+ res = 90)

Printing the properties of the reprojected dem reveals several differences:

> dem
class : RasterLayer
dimensions : 417, 351, 146367 (nrow, ncol, ncell)
resolution : 90, 90 (x, y)
extent : 670666.3, 702256.3, 3611918, 3649448 (xmin, xmax, $
coord. ref. : +proj=utm +zone=36 +datum=WGS84 +units=m +no_defs +$
data source : in memory
names : layer
values : -14, 541 (min, max)

We can see that the CRS definition has changed to UTM Zone 36N. Also, the extent,
resolution, and dimensions are now different and characterize the new grid that has
been generated.

http:// /

Modifying Rasters and Analyzing Raster Time Series

[194]

Plotting the new raster with plot(dem) produces the following graphical output:

UTM Zone 36N coordinates are now shown along the axes. In addition, you may
have noticed that the projected dem image is not exactly parallel to the axes, as the
UTM grid was not strictly parallel to the geographic one. Since a raster must be
rectangular (refer to the preceding screenshot), empty areas around image margins,
consisting of NA values, have been generated.

http:// /

Chapter 6

[195]

Filtering and clumping
In this section, and the following one, we move on from the subject of changing raster
geometry to the subject of relations between neighboring raster cell values. These
relations can be summarized in the form of a new raster using a variety of methods. In
this section, we will introduce two such methods: focal filtering and clumping.

Focal filtering involves assigning in each cell of a raster (the focal cell) the result of a
function, whose input is the set of values from a neighborhood of cells surrounding
the focal one (including itself). The neighborhood size is predetermined (for example,
a neighborhood of 3*3 cells is commonly used), and the input raster is scanned in
a moving window manner until complete coverage has been reached. There are
many appropriate functions that can be implemented in filters for various purposes.
For example, using the mean function (also known as a low-pass filter) makes an
image look smoother, while using a function that finds the most common value (also
known as a majority filter) is useful for reducing noise in a categorical raster.

The focal function is used to apply a focal filter on a RasterLayer object. The three
major parameters of this function are as follows:

• The RasterLayer object to be filtered (x)
• A matrix defining the neighborhood and the cell weights (w)
• A function to be applied on the neighborhood (fun)

The w argument should be a matrix defining the neighborhood. It should have odd
dimensions (such as a 3*3 or 7*5), since its center defines the focal cell position. The
matrix values define the weights that are applied on cell values before these are
transferred to the focal function. However, using weights is optional—a matrix where
all values are equal to 1 would imply having no weights. Weights of 0 can also be used
to create a non-symmetric and/or non-rectangular window. The fun argument should
be a function to be applied on the neighborhood values (the default is sum).

For the filtering example, we will return to l_rec, a reclassified NDVI raster (0 for
NDVI≤0.2 and 1 for NDVI>0.2) based on the Landsat image obtained on October
4, 2000 (refer to Chapter 4, Working with Rasters, for more information). This raster
shows the locations of the more densely vegetated areas (such as planted pine
forests); however, the image is quite grained, with 0 values appearing within the
otherwise continuous high-vegetation (1) zones.

http:// /

Modifying Rasters and Analyzing Raster Time Series

[196]

To increase continuity, we will buffer the NDVI>0.2 zone by converting all cells
having at least one immediate 1 neighbor to 1, thus reducing gaps of 0s between or
within vegetated areas. This operation can be carried out by applying a focal filter
with a 3*3 window and the max function with no weights. With max, each cell gets
the maximal value of its 3*3 neighborhood. Thus, a 0 cell either retains its value (if
all nine neighbors are 0) or converts to 1 (in case at least one of its neighbors is 1).
All 1 cells retain their value, since they have at least one 1 neighbor (the cell itself).
Since we do not need weights, we will use a 3*3 matrix consisting of plain 1s for the w
argument. This can be created as follows:

> matrix(1, nrow = 3, ncol = 3)
 [,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 1 1
[3,] 1 1 1

Therefore, the complete expression that applies the filter on l_rec is as follows:

> l_rec_focal = focal(l_rec,
+ w = matrix(1, nrow = 3, ncol = 3),
+ fun = max)

The result is assigned to l_rec_focal; comparing it with the original l_rec raster
shows the buffering of vegetated areas that took place (refer to the next screenshot).

Our second example of an operation concerning cell neighbors is clumping. In
clumping, we are interested in the detection of cell patches that have the same value.
For example, you may wish to learn how many patches there are, what their size
distribution is, what properties they have with respect to the values of other rasters,
and so on. Clumping can be performed with function clump, which returns a new
raster where a unique ID is assigned to every connected patch of cells that have
the same value in the input raster (except for values of 0 or NA, which are ignored
and used as background). The operation is only useful with categorical rasters—in
continuous rasters, all (or most) cells usually have unique values. Thus, no patches
larger than one cell can be formed.

The clump function accepts a RasterLayer object and returns a raster where each
patch of similar-valued cells has a unique ID. Specifying gaps=FALSE will force these
IDs to be consecutive integers, starting with 1 and going to n (where n is the total
number of patches). For example, let's clump the l_rec_focal regions of 1:

> l_rec_focal_clump = clump(l_rec_focal, gaps = FALSE)

http:// /

Chapter 6

[197]

The result l_rec_focal_clump is a raster where 0 regions were converted to NA (and
used as background), while all cells that are part of a continuous patch of 1s received
a unique ID. Checking out how many unique non-NA values l_rec_focal_clump
contains (for example, with the expression max(l_rec_focal_clump[],na.rm=TRUE))
will show that we have 507 separate NDVI>0.2 patches. Had we skipped the filtering
step and performed the clumping on l_rec, we would have got 1,258 patches.

The igraph package is required for running clump, so
make sure it is installed.

Let's visualize the filtering and clumping results along with the original raster:

> plot(l_rec, main = "Original image")
> plot(l_rec_focal, main = "Filtered")
> plot(l_rec_focal_clump, main = "Clumped")

The following screenshot shows the plots of l_rec, l_rec_focal, and l_rec_
focal_clump, respectively from left to right:

We can see that filtering has thickened the NDVI>0.2 areas, while clumping has
assigned IDs (going from 1 to 507) in each patch. In the next chapter, we will
continue working with l_rec_focal_clump to see how these patches can be
converted to polygons and how patches of interest can be isolated.

http:// /

Modifying Rasters and Analyzing Raster Time Series

[198]

Topography-related calculations with
elevation data
Deriving topography-related variables from a DEM is a central task in terrain
analysis. Many functions and algorithms have been developed for this purpose,
and different GIS software packages include different sets of such tools. The raster
package currently provides several basic terrain analysis functions (of which three
examples will be shown in this section).

A variety of terrain analysis (and other) algorithms are available in
R through interfacing with open source GIS software, such as SAGA
GIS (using the RSAGA package) and GRASS GIS (using the spgrass6
package). To use these, you will require to download and install the
(freely available) respective software, but the subject is beyond the scope
of the present book, which focuses on standalone R functionality.

Slope and aspect calculation
Calculation of topographic slope and aspect is among the most basic DEM analysis
procedures. These two variables have many uses in their own right (for example,
aspect is an important environmental measure due to its association with solar
radiation load), and as inputs for subsequent calculations (for example, slope is
one of the parameters in the calculation of Topographic Wetness Index). Both are
calculated for each cell in an elevation raster by comparing focal cell elevation with
the elevations of its eight neighbors (in a 3*3 neighborhood).

The terrain function can calculate slope and aspect (and several other terrain
characteristics), when provided with a DEM raster and the respective option
("slope" or "aspect"). Let's take a look at the following example:

> slope = terrain(dem, "slope")
> aspect = terrain(dem, "aspect")

We now have slope and aspect rasters, by default in radians (using
units="degrees" will give results in degrees instead). We can check what the
results look like using the following expression:

> plot(stack(slope, aspect))

http:// /

Chapter 6

[199]

The following screenshot shows the graphical output:

As expected, slope shows higher values across Mount Carmel and moderate values
in the lowlands on both of its sides. The most prominent features in the aspect raster
are the opposing aspects of the east-facing and west-facing slopes of Mount Carmel.

Hillshade
A hillshade layer is a hypothetical illumination appearance, as viewed from above,
based on topography and the sun's position. Shaded relief maps, used to display
topography in an intuitive manner, were traditionally prepared with manual
shading (by an artist or a cartographer). Today, such maps can be generated by
calculating a hillshade layer based on a DEM; this will be demonstrated in the
following example.

The hillShade function can calculate a hillshade layer based on four parameters (the
first two characterizing the topography and the last two characterizing the
sun's position):

• slope: Slope (in radians)
• aspect: Aspect (in radians)
• angle: The sun's elevation angle (in degrees)
• direction: The sun's direction (in degrees)

http:// /

Modifying Rasters and Analyzing Raster Time Series

[200]

For example, using the slope and aspect layers that we previously calculated, the
following expression creates a hillshade layer according to the sun's elevation of 20
degrees and the sun's direction of 235 degrees:

> hill = hillShade(slope, aspect, 20, 235)

Now, with the following expression, we will plot the resulting hill raster using
grayscale (as indicated by the par.settings argument GrTheme):

> levelplot(hill, par.settings = GrTheme, margin = FALSE)

The following screenshot shows the graphical output:

http:// /

Chapter 6

[201]

This image clearly shows the relief of Mount Carmel. Since the light source is located
in the South-west (sun direction: 235°) and at quite a low angle above the horizon
(sun elevation: 20°), the north-eastern slopes of the mountain are in shade while the
western slopes are lighted.

Aggregating spatio-temporal raster data
Spatio-temporal data, such as MODIS images, time series, or meteorological records
from several stations (see Chapter 3, Working with Tables) pose a challenge for analysis
and visualization due to their three-dimensional nature. One approach to simplify
such data is to perform aggregation in spatial and/or temporal dimensions (another
approach to simplify spatio-temporal data is, for example, cluster analysis).

In this section, we will experiment with two approaches to aggregate the data held in
the multiband raster r in order to get additional perspectives on the spatio-temporal
behavior of NDVI within the geographic area this raster covers.

More specialized classes and methods (including aggregation)
for various types of spatio-temporal data are defined in the
spacetime package. An overview of this package can be found in
the introductory paper "spacetime: Spatio-Temporal Data in R" by its
creator Pebesma E. 2012.

The time dimension
In our first example, we will aggregate r along the temporal dimension (that is,
the layers). In fact, the previous example where we mapped the minimum and
maximum values for each pixel in r using overlay with the range function
(see Chapter 4, Working with Rasters, for more information) is also an example of
aggregation. However, instead of aggregating all layers, what if you want to learn
the properties of different time series portions? In such cases, you have to perform
several overlay operations, and then combine the results into a multiband raster.
That is exactly what we are going to do next.

Let's say we are interested in examining the seasonal NDVI averages across the
studied area. In such cases, we need to perform an overlay of all layers for each
season using the mean function, and then combine the results into a four-band raster
(where each layer corresponds to one of the four seasons). Conceptually, the simplest
way of doing this is with a for loop that goes through the four seasons, selecting the
appropriate layers of r each time, applying overlay on those layers, and keeping the
result to form a final multiband raster in the end.

http:// /

Modifying Rasters and Analyzing Raster Time Series

[202]

As a preliminary step to construct the loop, we will define a character vector with
season names (seasons) and an empty RasterStack object (season_means). The
seasons vector will define loop iterations, while season_means will be used to hold
the results:

> seasons = c("winter", "spring", "summer", "fall")
> season_means = stack()

Now, we are ready to execute the for loop:

> for(i in seasons) {
+ season_means = stack(season_means,
+ overlay(r[[which(dates$season == i)]],
+ fun = function(x) mean(x, na.rm = TRUE)))
+ }

The loop code section is executed four times (since the number of elements in seasons
is four), each time assigning the next season name into i. The code adds the mean of
the relevant layers in r (selected using the dates$season vector that we previously
created; refer to Chapter 3, Working with Tables) to season_means. Therefore, in the first
loop iteration, the mean of the "winter" layers in r is added to the empty season_
means; in the second iteration, the mean of "spring" is added to season_means
(which already has one layer), and so on until all four seasons are covered.

Now that the result season_means is ready, we can add season names to the
respective layers for convenience:

> names(season_means) = seasons

We will view the result using the levelplot function:

> levelplot(season_means, par.settings=RdBuTheme, contour=TRUE)

http:// /

Chapter 6

[203]

The following screenshot shows the graphical output:

The preceding screenshot shows average NDVI for each season. We can see that
NDVI is generally high during winter and spring and low during summer and
fall. The image also shows that certain areas (such as the north-west corner of the
image) have much higher NDVI in the wet season than in the dry one, while other
areas (such as the three patches in the center of the image) maintain relatively high
NDVI values in the summer months as well. The former are, in fact, areas where
agricultural crops and natural herbaceous vegetation proliferate due to the relatively
more abundant rainfall in the wet season, while the latter are planted evergreen pine
forests where vegetation activity is maintained even in the dry season.

http:// /

Modifying Rasters and Analyzing Raster Time Series

[204]

Another way of aggregating raster layers, bypassing the necessity to construct a
loop, is with the stackApply function. Similar to the way in which tapply can be
used to apply a function on different portions of a vector (as we discussed in Chapter
3, Working with Tables), the function stackApply has been defined to apply a function
on different portions of layers in a multiband raster. Analogous to tapply, the main
three parameters of stackApply are as follows:

• The input multiband raster (x)
• A vector of indices defining the layers grouping (indices)
• The function to be applied on each group (fun)

Unlike tapply, the indices vector must be composed of consecutive integers, starting
with 1. An additional parameter of stackApply is na.rm, which controls whether NA
values are removed from calculations.

For example, we can calculate the monthly NDVI means as follows:

> month_means = stackApply(r,
+ indices = dates$month,
+ fun = mean,
+ na.rm = TRUE)

As in the previous example, we will name the layers of the result month_means:

> names(month_means) = month.abb

The character vector month.abb is a predefined one in R; it
holds the three-letter abbreviated month names: "Jan", "Feb",
"Mar", and so on.

We can visualize the result with levelplot:

> levelplot(month_means, par.settings = RdBuTheme, contour = TRUE)

http:// /

Chapter 6

[205]

The following screenshot shows the graphical output:

The preceding screenshot shows NDVI dynamics with greater detail on a monthly
scale rather than a seasonal scale. We can see that NDVI starts to increase around
October-November and declines around February-March. During April-September
(the dry season), NDVI is just about constant.

Using the monthly averages, we can derive other informative products.
For example, with the following overlay function call, we can create a
raster that shows the month in which the lowest NDVI value is observed
at each location:
> min_month = overlay(month_means, fun = which.min)

To save space, we will not plot the result here.

http:// /

Modifying Rasters and Analyzing Raster Time Series

[206]

As mentioned earlier, the indices parameter in stackApply accepts a vector
of integers starting with 1, which the dates$months vector conveniently was.
However, how should we deal with other grouping vectors—character vectors or
numeric vectors—that are not consecutive or that do not start with 1? We must first
encode these as consecutive integer vectors, for example, by converting them to a
factor (with the factor function) and then extracting the factor level indices (with
the as.numeric function). Let's take a look at the following example:

> dates$year[1:30]
 [1] 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000
[13] 2000 2000 2000 2000 2000 2000 2000 2000 2001 2001 2001 2001
[25] 2001 2001 2001 2001 2001 2001
> as.numeric(factor(dates$year))[1:30]
 [1] 1 2 2 2 2 2 2 2 2 2 2

Here, we reclassified the dates$year vector (which contains 13 unique years) to a
vector of integers from 1 to 13 (only the first 30 values were printed to save space).

Spatial dimensions
In our second example, we will aggregate r along the y axis spatial dimension. Doing
this will allow us to observe the average NDVI at a given position on the north-south
axis over time. In other words, we will reduce the number of dimensions from three
to two by averaging all values of a given y axis/date position into a single value. The
following schematic diagram describes our action plan:

http:// /

Chapter 6

[207]

As we can see in the preceding diagram, our goal is to create a new raster s, where
each column holds the vector of row averages from r. In other words, each s row
is going to represent an r row (or y axis positions in space), while each s column is
going to represent an r layer (or positions in time). We will perform the operation
in two steps: first, creating an empty raster s (with the required dimensions)
and second, populating it with values. We will also see two different ways of
accomplishing the task: using a for loop and using apply.

http:// /

Modifying Rasters and Analyzing Raster Time Series

[208]

As we can see in the preceding diagram, the number of rows in s should be equal
to the number of rows in r, while the number of columns in s should be equal
to the number of layers in r. In addition to setting row and column numbers,
using parameters xmn, xmx, ymn, and ymx, we will set the minimum and maximum
coordinates on the x and y axes (to avoid the default, where the extent is -180 to 180
on the x axis and -90 to 90 on the y axis). The coordinate ranges on the x and y axes
are going to be 0 to 280 and 0 to 100, respectively; moreover, since the number of
columns and rows is accordingly 280 and 100, the raster resolution will be 1
(an arbitrary unit) on both axes:

> s = raster(nrows = nrow(r), ncols = nlayers(r),
+ xmn = 0, xmx = nlayers(r), ymn = 0, ymx = nrow(r))

Now that raster s is ready, we need to populate it with values. Following our first
for loop method, we will define a new function called raster_rowMeans that, when
provided with a raster (x) and the layer index (layer), returns a vector of row means
in that layer. This function actually consists of a single expression as it simply applies
the base function rowMeans on the matrix of values from a given layer, obtained with
as.matrix:

> raster_rowMeans = function(x, layer) {
+ rowMeans(as.matrix(x[[layer]]),
+ na.rm = TRUE)
+ }

Now, all is left to be done is to go over the layers of r, each time calculating the
row means in the current layer (with the raster_rowMeans function) and assigning
the resulting vector to the appropriate column of s (exactly as depicted in the
preceding diagram):

> for(i in 1:nlayers(r)) {
+ s[,i] = raster_rowMeans(r, i)
+ }

Now s is filled with the appropriate values, and we can use the levelplot function
to display it. The additional at parameter of the levelplot function sets the breaks
between color levels and contours. We use it to slightly reduce the quantity of
contours and make the image clearer:

> levelplot(s,
+ par.settings = RdBuTheme,
+ contour = TRUE,
+ margin = FALSE,
+ at = seq(0,0.6,0.05))

http:// /

Chapter 6

[209]

The graphical output is shown in the following screenshot:

The preceding screenshot shows the average NDVI at each point in time (x axis) and
north-south position in space (y axis). Two main patterns are evident: first, along the
x axis (time) we can see the periodical behavior of NDVI between the interchanging
wet and dry seasons. However, there are also inter-annual differences—in certain
years, NDVI is higher or lower than average—due to variation in climatic conditions
and therefore in vegetation activity. Second, along the y axis (the north-south
position), we can see the NDVI gradient from the relatively wet conditions, and thus
a higher NDVI to the north, compared to drier conditions; consequently, we can also
see a lower and more stable NDVI to the south.

The second method of obtaining the same result will be defined with less code,
although it might be conceptually more difficult to grasp. The first step of the task,
defining the empty raster s, is identical:

> s = raster(nrows = nrow(r), ncols = nlayers(r),
+ xmn = 0, xmx = nlayers(r), ymn = 0, ymx = nrow(r))

However, the second step is different. Instead of going over the layers of r with a for
loop, we will convert r to a three-dimensional array and utilize the apply function.
The former is accomplished with the as.array function:

> r_array = as.array(r)

http:// /

Modifying Rasters and Analyzing Raster Time Series

[210]

The result, r_array, is an array object where the first dimension corresponds to r
rows, the second dimension to r columns, and the third dimension to r layers. We
can therefore use apply to utilize rowMeans on the third dimension, obtaining the
vector of row means for each third-dimension element (layer), which is exactly what
we need. The values of the resulting matrix can be directly transferred to s:

> s[] = apply(r_array, 3, rowMeans, na.rm = TRUE)

The raster s we just created is identical to the one created (and plotted) earlier.
Although the same results were produced, an important difference between the two
methods is in the speed of execution. Accessing one raster layer at a time using a loop
is slow compared to an apply operation on an array, which is generally very fast. For
example, on the computer this book is written on, calculating the values of s using
the first method is performed in about 1.8 minutes as compared to 2.6 seconds using
the second method (that is ~40 times faster!). It is therefore often useful to transform a
raster into a simpler object (matrix or array) before doing intensive calculations.

Summary
In this chapter, you learned additional methods and procedures for working with
raster layers in R. We now know how to crop, aggregate, or reproject a raster to
bring it to the desired extent, resolution, and CRS. We discussed how focal filtering
and clumping can be applied to highlight patterns of interest in a raster. We also
discussed how topography-related variables can be derived from a DEM, and how
spatio-temporal raster data can be aggregated.

In the next chapter, you will learn about the interface between rasters and vector
layers, and the different ways in which both can be combined in a spatial analysis.

http:// /

Combining Vector and
Raster Datasets

Generating new insight by overlaying several layers of spatial information, one
on top of the other, constitutes one of the main concepts of spatial data analysis,
as we have already seen in the previous chapters. So far, however, we have
only used operations involving either rasters alone or vector layers alone, but
not a combination of both. Although the two types of spatial layers have their
characteristic uses (such as rasters for DEMs and vector layers for administrative
borders), combining them in a single analysis is often desired. As we shall see, this is
a less straightforward task, characterized by specific procedures and decisions.

In this chapter, we are going to explore the interplay between vector and raster
layers, and the way it is implemented in the raster package. The way rasters and
vector layers can be interchanged and queried, one according to the other, will be
demonstrated through examples.

In this chapter, we are going to use objects that were created in the
previous chapters and the packages we used to do that (plyr, raster,
and rgeos). Make sure these are loaded before running the code sections
in this chapter. For convenience, this chapter's code file on the book's
website repeats the relevant code sections from the previous chapters.

In this chapter, we'll cover the following topics:

• Creating rasters from vector layers and vice versa
• Masking rasters with vector layers
• Extracting raster values according to vector layers

http:// /

Combining Vector and Raster Datasets

[212]

Creating rasters from vector layers
One of the main reasons to convert a vector layer to a raster is that we are interested
in employing raster analysis tools or procedures on data that is currently held in
vector form (and vice versa). For example, when preparing a multiband raster with
various environmental characteristics of a given area, such as slope or NDVI, we
may wish to add layers that are commonly given in the vector format, such as built
area polygons or road lines. To do this, we first need to convert these vector layers to
rasters, and then supplement the multiband raster with the additional layers.

The process of converting a vector layer to a raster is called rasterizing, in the
raster package terminology, and it is performed with the rasterize function. In
this section, we will see an example of how to rasterize a point vector layer, while
keeping in mind that the procedures to rasterize lines and polygons are analogous.
You will also learn the related operations of raster masking using a vector layer,
which conceptually is a special case of rasterizing and overlay.

Rasterizing vector layers
Creating a raster out of a vector layer is quite simple in concept. Given a vector
layer and a raster grid, the new raster cells get filled with values in places where the
raster overlaps with the vector layer. The rest of the raster cells (those that are not in
contact with the vector layer) are left with NA. Those raster cells that overlap with an
individual feature in the vector layer are assigned unique values. These values can
simply be consecutive integers, or they can come from any vector corresponding to
the number of features (such as an attribute table column). The procedure will be
made clearer with the following example.

In our first example, we will use a simple point layer with the locations of two
towns: Lahav Kibbutz and Lehavim. We will first create a layer named towns,
using geocoding as follows (see Chapter 5, Working with Points, Lines, and Polygons,
for more information):

> library(ggmap)
> towns_names = c("Lahav Kibbutz", "Lehavim")
> towns = geocode(towns_names)
> coordinates(towns) = ~ lon + lat
> proj4string(towns) = CRS("+proj=longlat +datum=WGS84")
> towns = spTransform(towns, CRS(proj4string(l_00)))

http:// /

Chapter 7

[213]

Note that in the last expression, the layer is transformed to the CRS of the Landsat
image l_00, which we assume is in memory (see Chapter 4, Working with Rasters,
for more information). Let's visualize the towns layer using the l_00 image as the
background:

> plotRGB(l_00, r = 3, g = 2, b = 1, stretch = "lin")
> plot(towns, col = "red", pch = 16, add = TRUE)
> text(coordinates(towns), towns_names, pos = 3, col = "white")

The resulting graphical output is shown in the following screenshot:

Note that the dark patch of green vegetation neighboring Lahav Kibbutz to the west
is Lahav forest. Another forest, Kramim, can be seen to the South-East of the Kibbutz.
We will return to these two forests in the examples later.

http:// /

Combining Vector and Raster Datasets

[214]

Now let's see how the vector layer towns can be converted to a raster. Since we have
two points, our result is going to be a raster with two cells having a non-NA value, no
matter which grid we use, as long as both points are within its extent and the cell size
is not large enough to encompass both points within a single cell. The rasterize
function, to convert a vector to a raster, requires two main arguments:

• The vector layer to rasterize (x)
• The raster defining the grid (y)

Note that the role of y is only to provide a raster grid definition; its values do not
participate in the operation in any way (similar to the role of the to parameter in
raster reprojection; see the previous chapter). In this example, we will use the MODIS
raster r (see Chapter 4, Working with Rasters) to transfer towns onto its 500 meter grid,
as follows:

> towns_r = rasterize(towns, r)

The result, towns_r, is a RasterLayer object with two non-NA values, 1 and 2, since
the raster values are defined as the feature indices (numbers from 1 to n, where n is
the total number of features) by default:

> towns_r[!is.na(towns_r)]
[1] 1 2

In our case, the 1 cell corresponds to the first feature in towns (Lahav Kibbutz) and
the 2 cell corresponds to the second one (Lehavim).

To display towns_r, we will first crop it according to the extent of towns plus a
3-kilometer buffer:

> towns_r = crop(towns_r, extent(towns) + 3000)

Let's plot the resulting raster, and the original vector layer on top of it, including the
relevant labels. We will use the col parameter of plot to specify a two-color scale
with "lightblue" (this color will be used for 1) and "brown" (this color will be
used for 2):

> plot(towns_r, col = c("lightblue", "brown"))
> plot(towns, add = TRUE)
> text(coordinates(towns), towns_names, pos = 3)

http:// /

Chapter 7

[215]

The resulting graphical output is shown in the following screenshot:

The white background we see corresponds to the NA-filled area in towns_r. These are
the raster cells where no point in towns falls. The two colored pixels are the two cells
that have been assigned with values. The light blue pixel is the one assigned with
the value of 1 (corresponding to Lahav Kibbutz), while the brown pixel is the one
assigned with 2 (Lehavim).

Two other useful parameters of rasterize are field and fun.
Using field, we can override the default assignment of raster values
and provide a single number, vector, or the name of an attribute table
column determining the values (see Chapter 8, Spatial Interpolation
of Point Data, for an example of the latter). For example, using the
rasterize(towns,r,field=c(3,4)) expression will yield a raster
with the value of 3 for Lahav Kibbutz and 4 for Lehavim.
The fun parameter determines the method to assign the raster values,
and is only relevant when some raster cells overlap with more than
one feature. It can be provided either with a function or one of the
predefined character values: "first", "last", "count", "sum",
"min", or "max" (the default value is "last"). For example, the
rasterize(towns,r,fun="count") expression yields a raster stating
how many towns are in each of the 500 meter cells (in our case, this is not
very instructive—the raster will have two 1 values because there is only
one town in each of the two individual cells).

http:// /

Combining Vector and Raster Datasets

[216]

Masking values in a raster
As mentioned in the previous chapter, a raster is always rectangular. However, in
raster subsetting, we are often interested in going beyond the selection of rectangular
extents. Non-rectangular rasters can be created by assigning all cells, excluding those
we are interested in, with NA. This operation is called masking, again in the raster
package terminology.

Masking is most often performed using a polygonal layer defining an area of interest.
Therefore, conceptually, masking can be viewed as a two-step operation. The first
step consists of a vector-to-raster conversion, where the area of interest is rasterized
according to the raster we would like to mask. The second step consists of an overlay
to construct the masked raster, with NA in those cells where the area-of-interest raster
has NA or the original value otherwise. In practice, the operation may be performed
with a single step, using the mask function.

In the following example, we will mask the Haifa slope raster from the previous
chapter to create two new rasters—first masking all areas other than those coinciding
with buildings (the haifa_buildings polygonal layer), and then all areas other than
natural areas (the haifa_natural polygonal layer). The latter two layers should be
in the same CRS of slope; see Chapters 5, Working with Points, Lines, and Polygons,
and Chapter 6, Modifying Rasters and Analyzing Raster Time Series, to learn how they
were created.

Since we would like to focus on the Haifa area, we will first create an Extent object
encompassing haifa_buildings and a 2-kilometer buffer. Later, we will use this
object (named haifa_ext) to clip our results and display them more conveniently:

> haifa_ext = extent(haifa_buildings) + 2000

Before proceeding, let's review the layers involved—slope, haifa_buildings, and
haifa_natural—by plotting them as follows (zooming in to haifa_ext):

> plot(slope, ext = haifa_ext)
> plot(haifa_buildings, add = TRUE)
> plot(haifa_natural, col = "lightgreen", add = TRUE)

http:// /

Chapter 7

[217]

The resulting graphical output is shown in the following screenshot:

The preceding graphical output is familiar from Chapter 5, Working with Points, Lines,
and Polygons (see the last screenshot in that chapter); the only difference is that now
the slope raster appears in the background. The area appears to be characterized
by variable topography. Are the natural and built areas characterized by different
topographic slopes? This question motivates our next task—subsetting the slope
pixels covered by natural areas and buildings, separately, to compare their
value distributions.

The mask function that we will use to do this task expects two main arguments:

• The raster to be masked (x)
• The object determining which values to mask (mask)

http:// /

Combining Vector and Raster Datasets

[218]

The mask argument can either be an overlapping raster (in which case the values in x
corresponding to NA in mask are assigned with NA) or a vector layer (in which case the
values in x not coinciding with any feature in mask are assigned with NA). Therefore,
the following expression yields a new raster based on slope where all pixels not
covered by haifa_natural are masked (that is, assigned with NA):

> natural_mask = mask(slope, haifa_natural)

The previous expression is analogous to the following expression:
> natural_mask = mask(slope,

+ rasterize(haifa_natural, slope))

For convenience, we will crop the result, natural_mask, using haifa_ext:

> natural_mask = crop(natural_mask, haifa_ext)

We will repeat the exact same procedure with haifa_buildings to get the
buildings_mask raster as well:

> buildings_mask = mask(slope, haifa_buildings)
> buildings_mask = crop(buildings_mask, haifa_ext)

Now let's plot both natural_mask and buildings_mask, side-by-side, to observe
how masking has been carried out:

> plot(stack(natural_mask, buildings_mask))

The resulting graphical output is shown in the following screenshot:

http:// /

Chapter 7

[219]

After observing the two results, we can see that while natural_mask (the left
panel) mostly consists of continuous patches of non-NA areas, buildings_mask
(the right panel) is composed of very small non-NA patches containing a few pixels.
The reason for such behavior is that masking with a polygonal layer retains the
values of only those cells whose cell center falls within a polygon. This behavior is
appropriate for haifa_natural, which is mainly composed of large polygons, each
one encompassing many cells. However, for haifa_buildings, the pixels that are
retained are only those whose center falls within either one of the building polygons
in haifa_buildings. This clearly underestimates the built area. A simple solution
would be to mask using building centroids instead, in which case those pixels where
a centroid of haifa_buildings falls will be retained. For this purpose, we will create
a point layer to build centroids named buildings_ctr:

> buildings_ctr = gCentroid(haifa_buildings, byid = TRUE)

Now, we will repeat the masking procedure using this layer:

> buildings_mask = mask(slope, buildings_ctr)
> buildings_mask = crop(buildings_mask, haifa_ext)

Let's plot the result once again to see the difference:

> plot(stack(natural_mask, buildings_mask))

The graphical output is shown in the following screenshot:

This time, many more pixels remained unmasked in buildings_mask since all pixels
coinciding with a centroid of at least one building were retained (as in the previous
example of towns rasterization).

We will proceed with this example in Chapter 9, Advanced Visualization of Spatial Data,
displaying the value distribution of both rasters with histograms.

http:// /

Combining Vector and Raster Datasets

[220]

Creating vector layers from a raster
The opposite operation to rasterization, which has been presented in the previous
section, is the creation of vector layers from raster data. The procedure of extracting
features of interest out of rasters, in the form of vector layers, is often necessary for
analogous reasons underlying rasterization—when the data held in a raster is better
represented using a vector layer, within the context of specific subsequent analysis
or visualization tasks. Scenarios where we need to create points, lines, and polygons
from a raster can all be encountered. In this section, we are going to see an example
of each.

Raster-to-points conversion
In raster-to-points conversion conversion, each raster cell center (excluding NA cells)
is converted to a point. The resulting point layer has an attribute table with the
values of the respective raster cells in it.

Conversion to points can be done with the rasterToPoints function. This function
has a parameter named spatial that determines whether the returned object is
going to be SpatialPointsDataFrame or simply a matrix holding the coordinates
and the respective cell values (spatial=FALSE, the default value). For our purposes,
it is thus important to remember to specify spatial=TRUE.

As an example of a raster, let's create a subset of the raster r, with only layers 1-2,
rows 1-3, and columns 1-3:

> u = r[[1:2]][1:3, 1:3, drop = FALSE]

To make the example more instructive, we will place NA in some of the cells and see
how this affects the raster-to-point conversion:

> u[2, 3] = NA
> u[[1]][3, 2] = NA

Now, we will apply rasterToPoints to create a SpatialPointsDataFrame object
named u_pnt out of u:

> u_pnt = rasterToPoints(u, spatial = TRUE)

Let's visually examine the result we got with the first layer of u serving as the
background:

> plot(u[[1]])
> plot(u_pnt, add = TRUE)

http:// /

Chapter 7

[221]

The graphical output is shown in the following screenshot:

We can see that a point has been produced at the center of each raster cell, except for
the cell at position (2,3), where we assigned NA to both layers. However, at the (3,2)
position, NA has been assigned to only one of the layers (the first one); therefore, a
point feature has been generated there nevertheless.

The attribute table of u_pnt has eight rows (since there are eight points) and two
columns (corresponding to the raster layers).

> u_pnt@data
 layer.1 layer.2
1 0.4242 0.4518
2 0.3995 0.3334
3 0.4190 0.3430
4 0.4495 0.4846

http:// /

Combining Vector and Raster Datasets

[222]

5 0.2925 0.3223
6 0.4998 0.5841
7 NA 0.5841
8 0.7126 0.5086

We can see that the seventh point feature, the one corresponding to the (3,2) raster
position, indeed contains an NA value corresponding to layer 1.

Raster-to-contours conversion
Creating points (see the previous section) and polygons (see the next section) from
a raster is relatively straightforward. In the former case, points are generated at
cell centroids, while in the latter, rectangular polygons are drawn according to cell
boundaries. On the other hand, lines can be created from a raster using various
different algorithms designed for more specific purposes. Two common procedures
where lines are generated based on a raster are constructing contours (lines
connecting locations of equal value on the raster) and finding least-cost paths (lines
going from one location to another along the easiest route when cost of passage is
defined by raster values). In this section, we will see an example of how to create
contours (readers interested in least-cost path calculation can refer to the gdistance
package, which provides this capability in R).

As an example, we will create contours from the DEM of Haifa (dem; see the previous
chapter). Creating contours can be done using the rasterToContour function. This
function accepts a RasterLayer object and returns a SpatialLinesDataFrame
object with the contour lines. The rasterToContour function internally uses the
base function contourLines, and arguments can be passed to the latter as part of
the rasterToContour function call. For example, using the levels parameter, we
can specify the breaks where contours will be generated (rather than letting them be
determined automatically).

The raster dem consists of elevation values ranging between -14 meters and
541 meters:

> range(dem[], na.rm = TRUE)
[1] -14 541

Therefore, we may choose to generate six contour lines, at 0, 100, 200, …,
500 meter levels:

> dem_contour = rasterToContour(dem, levels = seq(0, 500, 100))

http:// /

Chapter 7

[223]

Now, we will plot the resulting SpatialLinesDataFrame object on top of the
dem raster:

> plot(dem)
> plot(dem_contour, add = TRUE)

The graphical output is shown in the following screenshot:

Mount Carmel is densely covered with elevation contours compared to the plains
surrounding it, which are mostly within the 0-100 meter elevation range and thus
have only few a contour lines.

http:// /

Combining Vector and Raster Datasets

[224]

Let's take a look at the attribute table of dem_contour:

> dem_contour@data
 level
C_1 0
C_2 100
C_3 200
C_4 300
C_5 400
C_6 500

Indeed, the layer consists of six line features—one for each break we specified with
the levels argument.

Raster-to-polygons conversion
As mentioned previously, raster to polygon conversion involves the generation of
rectangular polygons in the place of each raster cell (once again, excluding NA cells).
Similar to the raster-to-point conversion, the resulting attribute table contains the
respective raster values for each polygon created. The conversion to polygons is most
useful with categorical rasters when we would like to generate polygons defining
certain areas in order to exploit the analysis tools this type of data is associated with
(such as extraction of values from other rasters, geometry editing, and overlay).

Creation of polygons from a raster can be performed with a function whose name
the reader may have already guessed, rasterToPolygons. A useful option in
this function is to immediately dissolve the resulting polygons according to their
attribute table values; that is, all polygons having the same value are dissolved into
a single feature. This functionality internally utilizes the rgeos package and it can be
triggered by specifying dissolve=TRUE.

In the previous chapter, we prepared a raster named l_rec_focal_clump, a
categorical raster with consecutively numbered NDVI>0.2 patches. In our next
example, which we will begin in this chapter and finish in Chapter 9, Advanced
Visualization of Spatial Data, we will visually compare the average NDVI time series
of Lahav and Kramim forests (see earlier), based on all of our Landsat (three dates)
and MODIS (280 dates) satellite images. In this chapter, we will only prepare the
necessary data by going through the following intermediate steps:

1. Creating the Lahav and Kramim forests polygonal layer.
2. Extracting NDVI values from the satellite images.
3. Creating a data.frame object that can be passed to graphical functions later.

http:// /

Chapter 7

[225]

Commencing with the first step, using l_rec_focal_clump, we will first create
a polygonal layer holding all NDVI>0.2 patches, then subset only those two
polygons corresponding to Lahav and Kramim forests. The former is achieved using
rasterToPolygons with dissolve=TRUE, converting the patches in l_rec_focal_
clump to 507 individual polygons in a new SpatialPolygonsDataFrame that we
hereby name pol:

> pol = rasterToPolygons(l_rec_focal_clump, dissolve = TRUE)

Plotting pol will show that we have quite a few large patches and many small ones.
Since the Lahav and Kramim forests are relatively large, to make things easier we
can omit all polygons with area less than or equal to 1 km2:

> pol$area = gArea(pol, byid = TRUE) / 1000^2
> pol = pol[pol$area > 1,]

The attribute table shows that we are left with eight polygons, with area sizes of 1-10
km2. The clumps column, by the way, is where the original l_rec_focal_clump
raster value (the clump ID) has been kept ("clumps" is the name of the l_rec_
focal_clump raster layer from which the values came).

> pol@data
 clumps area
112 2 1.2231
114 200 1.3284
137 221 1.9314
203 281 9.5274
240 314 6.7842
371 432 2.0007
445 5 10.2159
460 56 1.0998

Let's make a map of pol:

> plotRGB(l_00, r = 3, g = 2, b = 1, stretch = "lin")
> plot(pol, border = "yellow", lty = "dotted", add = TRUE)

http:// /

Combining Vector and Raster Datasets

[226]

The graphical output is shown in the following screenshot:

The preceding screenshot shows the continuous NDVI>0.2 patches, which are 1
km2 or larger, within the studied area. Two of these, as expected, are the forests we
would like to examine. How can we select them? Obviously, we could export pol
to a Shapefile and select the features of interest interactively in a GIS software (such
as QGIS), then import the result back into R to continue our analysis. The raster
package also offers some capabilities for interactive selection (that we do not cover
here); for example, a function named click can be used to obtain the properties
of the pol features we click in a graphical window such as the one shown in the
preceding screenshot. However, given the purpose of this book, we will try to write a
code to make the selection automatically without further user input.

http:// /

Chapter 7

[227]

To write a code that makes the selection, we must choose a certain criterion (either
spatial or nonspatial), that separates the features of interest. In this case, for example,
we can see that the pol features we wish to select are those closest to Lahav Kibbutz.
Therefore, we can utilize the towns point layer (see earlier) to find the distance of each
polygon from Lahav Kibbutz, and select the two most proximate ones.

Using the gDistance function (see Chapter 5, Working with Points, Lines, and
Polygons), we will first find out the distances between each polygon in pol and each
point in towns:

> dist_towns = gDistance(towns, pol, byid = TRUE)
> dist_towns
 1 2
112 14524.94060 12697.151
114 5484.66695 7529.195
137 3863.12168 5308.062
203 29.48651 1119.090
240 1910.61525 6372.634
371 11687.63594 11276.683
445 12751.21123 14371.268
460 14860.25487 12300.319

The returned matrix, named dist_towns, contains the pairwise distances, with rows
corresponding to the pol feature and columns corresponding to the towns feature.
Since Lahav Kibbutz corresponds to the first towns feature (column "1"), we can
already see that the fourth and fifth pol features (rows "203" and "240") are the
most proximate ones, thus corresponding to the Lahav and Kramim forests. We could
subset both forests by simply using their IDs—pol[c("203","240"),]. However,
as always, we are looking for general code that will select, in this case, the two closest
features irrespective of the specific IDs or row indices. For this purpose, we can use the
order function, which we have not encountered so far. This function, given a numeric
vector, returns the element indices in an increasing order according to element values.
For example, applying order to the first column of dist_towns, we can see that the
smallest element in this column is in the fourth row, the second smallest is in the fifth
row, the third smallest is in the third row, and so on:

> dist_order = order(dist_towns[, 1])
> dist_order
[1] 4 5 3 2 6 7 1 8

http:// /

Combining Vector and Raster Datasets

[228]

We can use this result to select the relevant features of pol as follows:

> forests = pol[dist_order[1:2],]

The subset SpatialPolygonsDataFrame, named forests, now contains only the
two features from pol corresponding to the Lahav and Kramim forests.

> forests@data
 clumps area
203 281 9.5274
240 314 6.7842

Let's visualize forests within the context of the other data we have by now. We will
plot, once again, l_00 as the RGB background and pol on top of it. In addition, we
will plot forests (in red) and the location of Lahav Kibbutz (as a red point). We will
also add labels for each feature in pol, corresponding to its distance (in meters) from
Lahav Kibbutz:

> plotRGB(l_00, r = 3, g = 2, b = 1, stretch = "lin")
> plot(towns[1,], col = "red", pch = 16, add = TRUE)
> plot(pol, border = "yellow", lty = "dotted", add = TRUE)
> plot(forests, border = "red", lty = "dotted", add = TRUE)
> text(gCentroid(pol, byid = TRUE),
+ round(dist_towns[,1]),
+ col = "White")

http:// /

Chapter 7

[229]

The graphical output is shown in the following screenshot:

The preceding screenshot demonstrates that we did indeed correctly select the
features of interest.

We can also assign the forest names to the attribute table of forests, relying on our
knowledge that the first feature of forests (ID "203") is larger and more proximate
to Lahav Kibbutz and corresponds to the Lahav forest, while the second feature (ID
"240") corresponds to Kramim.

> forests$name = c("Lahav", "Kramim")
> forests@data
 clumps area name
203 281 9.5274 Lahav
240 314 6.7842 Kramim

http:// /

Combining Vector and Raster Datasets

[230]

We now have a polygonal layer named forests, with two features delineating the
Lahav and Kramim forests, named accordingly in the attribute table. In the next
section, we will proceed with extracting the NDVI data for these forests.

Extracting raster values based on vector
layers
So far, we have covered operations to transform a vector layer to a raster and vice
versa. The third operation involving vector layers and rasters, and the focus of this
final section, is the extraction of raster values according to vector layers. We are
often interested in reducing or summarizing raster data using point, line, or polygon
features, which is when this operation comes in handy. For example, we may wish to
calculate the elevation profile covered by a GPS track (raster-to-line extraction) or the
average NDVI of a given forest (raster to polygon extraction). In this section, we will
see two examples involving extraction by points and extraction by polygons.

Extracting by points
Extraction of raster values, according to a vector layer of any kind, can be done with
the extract function. The first two parameters of this function are as follows:

• The raster whose values are to be extracted (x)
• The object (usually a vector layer) defining the locations to extract values (y)

from

When extracting values according to points, which is the simplest extract scenario,
the returned object may be either of the following:

• Vector—when extracting values from a single band raster
• Matrix—when extracting values from a multiband raster

As an example of extracting single band raster values to points, we will use the
spain_stations.csv file we previously created (see Chapter 3, Working with Tables),
which contains a table with the spatial location records of 96 meteorological stations
in Spain. We will create a SpatialPointsDataFrame object based on this table,
and then use it to extract elevation values from a DEM of Spain. The DEM will be
obtained from a file (available on the book's website) named spain_elev.tif.

http:// /

Chapter 7

[231]

First, we will read the DEM file into R. This file, by the way, was created by merging
SRTM tiles downloaded with getData—exactly as we did to create the Haifa DEM in
the previous chapter—followed by reprojection, masking, and aggregation to a 900
meter resolution.

> dem_spain = raster("C:\\Data\\spain_elev.tif")

Now, we will read the station records from spain_stations.csv:

> stations = read.csv("C:\\Data\\spain_stations.csv",
+ stringsAsFactors = FALSE)

As you remember, the station locations are stored in the longitude and
latitude columns; therefore, the data.frame object can be promoted to a
SpatialPointsDataFrame object as follows:

> coordinates(stations) = ~ longitude + latitude

The station coordinates are given in degrees according to a geographic CRS.
Therefore, we will define this CRS, and then reproject stations to match the CRS of
dem_spain (UTM zone 30N) as follows:

> proj4string(stations) = CRS("+proj=longlat +datum=WGS84")
> stations = spTransform(stations, CRS(proj4string(dem_spain)))

Let's plot stations on top of dem_spain to see that they indeed match in location:

> plot(dem_spain)
> plot(stations, add = TRUE)

http:// /

Combining Vector and Raster Datasets

[232]

The graphical output is shown in the following screenshot:

What we see here is the elevation map of Spain (the dem_spain raster), with station
locations on top (stations point layer). The stations seem to cover the whole area of
the country, more or less evenly. Note that some of the stations are not shown since
they are located on the Canary Islands and thus they are beyond the scope of the
dem_spain raster.

To extract the elevation values underlying each station, we employ the extract
function with the raster and the points as the first two arguments, respectively. Since
the returned object is going to be a numeric vector with the respective elevation
values for each station, we can directly assign it to a new column in stations named
elev_dem:

> stations$elev_dem = extract(dem_spain, stations)

http:// /

Chapter 7

[233]

Examining the attribute table of stations shows that now we have two elevation
entries per station. These are the elevation values originally provided along with
the meteorological records (the elevation column) and the elevation values we just
obtained from the DEM (the elev_dem column):

> head(stations@data)
 station elevation elev_dem
1 GHCND:SP000003195 667 651.96
2 GHCND:SP000004452 185 184.24
3 GHCND:SP000006155 7 5.80
4 GHCND:SP000008027 251 212.44
5 GHCND:SP000008181 4 3.55
6 GHCND:SP000008202 790 787.28

Examining this table more closely will show that some of the stations were assigned
with NA in the elev_dem column either since they are located near Spain's border
(and incidentally outside the DEM scope) or since they are located in the Canary
Islands (which the dem_spain raster does not cover at all).

It would be interesting to see the degree of agreement between the two sources of
information by plotting one vector as a function of the other:

> plot(elev_dem ~ elevation, stations,
+ xlim = c(0, 2000),
+ ylim = c(0, 2000),
+ xlab = "Elevation from station record (m)",
+ ylab = "Elevation from DEM (m)")

Note that the plot(elev_dem~elevation,stations) expression is
analogous to plot(stations$elev_dem~stations$elevation).
In the latter syntax, the vector names are provided explicitly; while in the
former (often more convenient), the formula addresses columns from a
data.frame object, provided as a second argument.

To make the assessment more convenient, we will also use the abline function that
can add a straight line to an existing plot. One way of specifying the line's location is
providing its intercept (a) and slope (b). We are going to add a 1:1 line (that is, a line
with an intercept of 0 and a slope of 1), in order to see how well the elevation and
elev_dem records match:

> abline(a = 0, b = 1, lty = "dotted")

http:// /

Combining Vector and Raster Datasets

[234]

The graphical output is shown in the following screenshot:

Each point corresponds to a single station, and we can see the respective elevation
and elev_dem values on the x and y axes, respectively. The agreement between the
two sources of information is, unsurprisingly, very good, except for a few stations
that lie slightly farther from the 1:1 line.

http:// /

Chapter 7

[235]

Extracting by polygons
When extracting raster values using line or polygon layers, each feature may
correspond to more than one value in each raster layer (unlike with points, where
each feature always corresponds to a single value). In fact, a variable number of
values may be extracted for each feature, depending upon its shape. For example,
the polygon delineating the Lahav forest, which we created earlier, covers 10,586
Landsat pixels and 38 MODIS pixels, while the Kramim polygon covers 7,538
Landsat pixels and 28 MODIS pixels. We have two ways to deal with this variation:

• Reducing the vector of values from each feature into a single value
(specifying a function to do that, with the fun parameter), in which case the
returned object may be, just as with point layers:

 ° A vector—when extracting from a single-band raster
 ° A matrix—when extracting from a multiband raster

• Keeping all values (specifying no function with fun=NULL, the default value),
in which case the returned object will be a list (with df=FALSE, the default
value) or a data.frame object (with df=TRUE)

When a function is provided with the fun parameter, the additional parameter na.rm
determines whether NA cells are included in the calculation.

Proceeding with the forest example, we will now complete the two remaining
steps: extracting the NDVI data and arranging it in a table. We are going to extract
NDVI values according to the forests layer with the first alternative—summarizing
the values (specifically with fun=mean, giving a mean NDVI per forest). Our ultimate
goal is to have, by the end of this chapter, a table with three ID columns (date, sat
– satellite, and forest) and a fourth column (ndvi) holding the measured average
NDVI values.

Starting with the assembly of NDVI images (ndvi_98, ndvi_00, ndvi_03, and r),
we will read the Landsat images from 1998 and 2003 and calculate NDVI (assuming
that r and ndvi_00 are already in memory, as is our custom-made ndvi function; see
Chapter 4, Working with Rasters).

> l_98 = brick("C:\\Data\\landsat_15_10_1998.tif")
> l_03 = brick("C:\\Data\\landsat_11_09_2003.tif")
> ndvi_98 = calc(l_98, fun = ndvi)
> ndvi_03 = calc(l_03, fun = ndvi)

http:// /

Combining Vector and Raster Datasets

[236]

Next, we will create a Date object, named l_dates, holding the Landsat image dates
(see the filenames). We will use this object later when creating a table of results.

> l_dates = as.Date(c("1998-10-15", "2000-10-04", "2003-09-11"))

We are ready to proceed with the extraction—employing the extract function on
the three Landsat NDVI images to obtain the mean NDVI values per forest, per date:

> l_forests = extract(stack(ndvi_98, ndvi_00, ndvi_03),
+ forests,
+ fun = mean,
+ na.rm = TRUE)

Note that to make things clearer, we first apply extract on a
RasterStack object of the three Landsat images. The MODIS
data will be extracted from r in a separate step.

Since we are extracting values from a multiband raster, yet employing a function
(mean) to summarize those values; the returned object, assigned to l_forests, is a
matrix. Its two rows correspond to the forests features, while its three columns
correspond to the layers of stack(ndvi_98,ndvi_00,ndvi_03). For example, we
can see that the average NDVI observed by Landsat on October 15, 1998 in the Lahav
forest was 0.3053538:

> l_forests
 layer.1 layer.2 layer.3
[1,] 0.3053538 0.2487563 0.284487
[2,] 0.2840073 0.2190098 0.243326

Right now we can already tell that, in both forests, NDVI decreased between 1998-
2000 and then (incompletely) recovered between 2000-2003.

By repeating the same procedure with r, we will create the analogous r_forests
matrix:

> r_forests = extract(r,
+ forests,
+ fun = mean,
+ na.rm = TRUE)

This time the matrix has 280 columns since r has 280 layers:

> dim(r_forests)
[1] 2 280

http:// /

Chapter 7

[237]

Proceeding with the third step, we would like to have the information from l_forests
and r_forests in a single data.frame object with all NDVI values in a single column,
and additional columns characterizing the measurements (date, sat, and forest).
Starting with the l_forests matrix, we will first transpose it (using the t function) and
convert it to a data.frame object (using the as.data.frame function):

> l_forests = as.data.frame(t(l_forests))
> l_forests
 V1 V2
layer.1 0.3053538 0.2840073
layer.2 0.2487563 0.2190098
layer.3 0.2844870 0.2433260

Now, we can set the appropriate column names (the forest names) and create new
columns for dates (obtained from l_date) and satellite ("Landsat") as follows:

> colnames(l_forests) = forests$name
> l_forests$date = l_dates
> l_forests$sat = "Landsat"

The new l_forests matrix looks as follows:

> l_forests
 Lahav Kramim date sat
layer.1 0.3053538 0.2840073 1998-10-15 Landsat
layer.2 0.2487563 0.2190098 2000-10-04 Landsat
layer.3 0.2844870 0.2433260 2003-09-11 Landsat

Exactly the same procedure is repeated for r_forests (with acquisition dates taken
from dates$date and the satellite name set to "MODIS"):

> r_forests = as.data.frame(t(r_forests))
> colnames(r_forests) = forests$name
> r_forests$date = dates$date
> r_forests$sat = "MODIS"

Now, we can combine the two data.frame objects using rbind:

> forests_ndvi = rbind(l_forests, r_forests)

http:// /

Combining Vector and Raster Datasets

[238]

The combined data.frame object, which we named forests_ndvi, contains all
average NDVI records for the two forests from the two satellites, collectively for 283
dates (three dates from Landsat and 280 dates from MODIS). Its first few rows are
printed as follows:

> head(forests_ndvi)
 Lahav Kramim date sat
layer.1 0.3053538 0.2840073 1998-10-15 Landsat
layer.2 0.2487563 0.2190098 2000-10-04 Landsat
layer.3 0.2844870 0.2433260 2003-09-11 Landsat
modis.1 0.3725111 0.3416607 2000-02-18 MODIS
modis.2 0.3959158 0.3850857 2000-03-05 MODIS
modis.3 0.4102210 0.3956179 2000-03-21 MODIS

What is left to be done is transform the data.frame object to a longer form (see
Chapter 3, Working with Tables), creating another column for forest identity and to
transfer the NDVI values to a designated values column. This can be performed with
the melt function from the reshape2 package:

> library(reshape2)
> forests_ndvi = melt(forests_ndvi,
+ measure.vars = forests$name,
+ variable.name = "forest",
+ value.name = "ndvi")

Note that the measured variables here are "Lahav" and "Kramim", while the rest are
treated as ID variables. Instead of typing the measure variable column names, we
passed the forests$name vector, which already contains the necessary names:

> forests$name
[1] "Lahav" "Kramim"

The additional parameters variable.name and value.name in the melt function
call are used to specify the names of the newly created variable and value columns
(to replace the default names "variable" and "value", respectively). The final table
looks as follows:

> head(forests_ndvi)
 date sat forest ndvi
1 1998-10-15 Landsat Lahav 0.3053538
2 2000-10-04 Landsat Lahav 0.2487563
3 2003-09-11 Landsat Lahav 0.2844870
4 2000-02-18 MODIS Lahav 0.3725111
5 2000-03-05 MODIS Lahav 0.3959158
6 2000-03-21 MODIS Lahav 0.4102210

http:// /

Chapter 7

[239]

In Chapter 9, Advanced Visualization of Spatial Data, we are going to use this table to
create a plot of the NDVI evolution over time in these two forests. A table of this
form, where:

• Each variable forms a column
• Each observation forms a row
• There is only one type of observational unit

constitutes a so-called tidy data table (see the paper by Hadley Wickham on this
subject, 2014). As we shall see, bringing our data to such a form is often required to
use more sophisticated graphical functions such as those in the ggplot2 package.

Summary
In this chapter, we closed the gap between the two main spatial data types (rasters
and vector layers) that we dealt with separately in the previous three chapters.
We now know how to make the conversion from a vector layer to raster and vice
versa, and we can transfer the geometry and data components from one data model
to another when the need arises. We also saw how raster values can be extracted
from a raster according to a vector layer, a fundamental step in many analysis tasks
involving raster data.

At this point, we conclude the review of basic spatial data analysis tool implementation
in R. We now know how to work with—including import, transform, and combine in
various ways—rasters and vector layers in R. In the next two chapters, examples of
more specialized applications of R for spatial data analysis are going to be presented;
specifically, spatial interpolation and visualization of spatial data.

http:// /

http:// /

Spatial Interpolation of
Point Data

Spatial interpolation is an example of a geostatistical analysis technique with a wide
range of applications. In this chapter, we are going to learn how spatial interpolation
can be carried out in R through examples of interpolating meteorological point
measurements to create annual temperature maps of Spain.

The purpose of this exercise is two-fold. First, we will see how several common
interpolation methods are applied in practice in R. We will see, for instance, that
specialized classes are used to represent the input data and/or the results of
statistical analyses in R, and witness the advantages of such an approach. Second,
we will see how, through the use of loops, we can automate complex tasks such as
spatial interpolation, and perform them repeatedly in order to accomplish otherwise
unfeasible tasks.

In this chapter, we are going to use objects previously
created in Chapter 3, Working with Tables.

In this chapter, we'll cover the following topics:

• Spatially interpolating point data
• Calculating an empirical variogram
• Automatically fitting variogram models
• Calculating the root mean square error (RMSE) of prediction

http:// /

Spatial Interpolation of Point Data

[242]

Spatially interpolating point data
Spatial interpolation is the procedure by which the behavior of a certain
phenomenon of interest is predicted in locations where it has not been measured. For
this purpose, we need a spatial prediction model—a set of procedures to obtain the
predicted values given the calibration data. The two types of calibration data usually
encountered are:

• Field measurements: Available for a limited set of locations (usually points),
for example, meteorological data from stations in Spain

• Covariates: Available for each location within the area of interest, for
example, elevation data from Spain's DEM

The spatial prediction model of our choice is calibrated using the calibration data.
This model can then be used to calculate the predicted level of the phenomenon of
interest in any location (usually points). The two main types of spatial interpolation
methods recognized are:

• Deterministic model: In this model, model parameter values are
arbitrarily determined

• Statistical model: In this model, model parameter values are objectively
estimated from specific calibration data

Simply put, while both types of models use the calibration data to make predictions,
deterministic models are predefined using fixed formulas to calculate predicted
values given the calibration data; on the other hand, statistical models use the
calibration data twice, first to fine-tune the model itself and then (as in the
deterministic models) to calculate the predicted values. Examples of deterministic
models are inverse distance weighted (IDW) interpolation and splines. Examples of
statistical models are kriging and ordinary regression.

Our purpose in this chapter is to present spatial interpolation from a
practical point of view. Comprehensively covering the statistical theory
and equations behind spatial interpolation techniques is well beyond
the scope of this book. Readers familiar with the subject of spatial
interpolation will, hopefully, get a perspective from this chapter on the
way statistical tools such as these are applied in R. Readers unfamiliar
with the subject of spatial interpolation are referred to the not-too-
technical overview in the first two chapters of Tomislav Hengl's book
A Practical Guide to Geostatistical Mapping, published in 2009 (available
online), for supplementary reference. Those uninterested in this
particular subject may skip to the last image in this chapter, and the few
paragraphs that follow, where a dataset that we are going to use in the
next chapter is described.

http:// /

Chapter 8

[243]

Two different approaches, or point of views, in selecting the appropriate spatial
prediction model are also worth mentioning:

• If we wish to prepare the most accurate predictions of a certain phenomenon
(for example, to produce a map), we will be mainly interested in selecting the
model that minimizes prediction error (and may not care very much what
kind of model that is)

• If we are interested in better understanding the phenomenon itself, we
will seek to find the best model characterizing the observed pattern and
estimating its parameters and our confidence in them (while prediction error
will be of secondary interest)

Here, we strictly follow the first approach; we will test several commonly used
models to see which one produces the least number of prediction errors, and then
use it to produce continuous maps of temperature in Spain. However, we should
remember that we are not investigating the mechanisms underlying the behavior
of temperature in space, which would suggest the second approach. Diggle and
Ribeiro's book Model-based Geostatistics (2007) is a good example that focuses on the
latter approach utilizing another R package (geoR) for geostatistical analysis, which
we do not cover here.

In the examples in this chapter, we will be working with three data sources: the
spain_stations.csv and spain_annual.csv tables that hold the annual climatic
data from Spain (see Chapter 3, Working with Tables), and the spain_elev.tif raster
with Spain's DEM (see the previous chapter). The first thing we will do is assemble
these objects into memory. We will also perform a four-fold aggregation of the DEM,
from a 900 meter resolution to a 3,600 meter resolution, in order to make subsequent
calculations faster:

> library(raster)
> dem_spain = raster("C:\\Data\\spain_elev.tif")
> dem_spain = aggregate(dem_spain, 4)
> spain_stations = read.csv("C:\\Data\\spain_stations.csv",
+ stringsAsFactors = FALSE)
> spain_annual = read.csv("C:\\Data\\spain_annual.csv",
+ stringsAsFactors = FALSE)

As we have already seen in previous chapters, spain_stations holds spatial
location information for the 96 meteorological stations of Spain, while spain_annual
holds the meteorological data itself. The tables can be joined by the common station
column. The meteorological data consists of average measurements of three variables
(precipitation, minimum temperature, and maximum temperature) obtained in
different years (1984-2013). We are going to interpolate measurements for different
year/variable combinations.

http:// /

Spatial Interpolation of Point Data

[244]

Therefore, it will be useful to write a function that accepts the variable and year we are
currently interested in, and returns a point layer with the required data. The code for
such a function consists of procedures already familiar to the reader from the previous
chapters, so we will review its contents briefly. The function accepts five arguments:

• stations: A data.frame object with location data for stations (in our case,
spain_stations)

• annual: A data.frame object with the annual meteorological data (in our
case, spain_annual)

• year: The year we would like to get meteorological data for
• variable: The meteorological variable we would like to get data for
• new_proj: The CRS for the output SpatialPointsDataFrame object as a

PROJ.4 string

Utilizing these arguments, the function performs the following steps:

1. Takes the stations table and converts it to a SpatialPointsDataFrame object.
2. Defines the CRS of stations (geographical CRS).
3. Removes Canary Islands stations (retaining stations eastwards to the 20°W

meridian, that is, stations with x coordinate > -10; see the map of Spain's
mainland and the Canary Islands to understand why).

4. Subsets the meteorological variable and the required year.
5. Joins the meteorological data with the attribute table of stations.
6. Removes stations with NA for the respective year/variable combination.
7. Transforms stations to the CRS defined by new_proj and returns the

resulting object.

The function code is as follows:

> create_pnt = function(stations,annual,year,variable,new_proj) {
+ library(plyr)
+ # (1) Promoting stations to SpatialPointsDataFrame
+ coordinates(stations) = ~ longitude + latitude
+ # (2) Defining geographic CRS
+ proj4string(stations) = CRS("+proj=longlat +datum=WGS84")
+ # (3) Removing Canary Islands stations
+ stations = stations[coordinates(stations)[, 1] > -10,]
+ # (4) Subsetting climatic data
+ annual = annual[
+ annual$year == year &
+ annual$variable == variable,]
+ # (5) Joining meteorological data with stations layer

http:// /

Chapter 8

[245]

+ stations@data = join(stations@data, annual, by = "station")
+ # (6) Removing incomplete records
+ stations = stations[complete.cases(stations@data),]
+ # (7) transforming to the required CRS
+ spTransform(stations, CRS(new_proj))
+ }

Note that the stations and annual arguments are local objects
that exist only when the function code is executed; they are not
related to the spain_annual and spain_stations objects of the
global environment, which are left unaltered (see Chapter 2, Working
with Vectors and Time Series).

After reading the function into memory, let's give it a try. The following function call
creates, for example, a SpatialPointsDataFrame object containing average annual
minimum temperature for 2002 defined in the CRS of dem_spain:

> dat = create_pnt(stations = spain_stations,
+ annual = spain_annual,
+ year = 2002,
+ variable = "mmnt",
+ new_proj = proj4string(dem_spain))

We can examine the first few rows of the attribute table of the resulting object dat
to see that it, indeed, contains minimum temperature values ("mmnt") from the
year 2002:

> head(dat@data)
 station elevation variable year value
1 GHCND:SP000003195 667 mmnt 2002 10.475000
2 GHCND:SP000004452 185 mmnt 2002 10.775000
3 GHCND:SP000006155 7 mmnt 2002 14.491667
4 GHCND:SP000008027 251 mmnt 2002 11.100000
5 GHCND:SP000008181 4 mmnt 2002 11.608333
6 GHCND:SP000008202 790 mmnt 2002 5.983333

Since the Canary Island stations were removed altogether (see step 3), and stations
that do not have a minimum temperature record for 2002 were subsequently filtered
out (see step 6), the number of features in the point layer is always smaller than 96 and
differs between year/variable combinations. For example, dat consists of 75 points:

> nrow(dat)
[1] 75

http:// /

Spatial Interpolation of Point Data

[246]

In the following sections, you are going to learn how to interpolate the dat
temperature records using different methods. Afterwards, we are going to write
code to automatically evaluate the prediction error for each model. Finally, we will
interpolate data for several years and variables at once using a loop.

Nearest-neighbor interpolation
Before we begin our journey through the three main interpolation methods featured
in this chapter (see the next three sections), it is worth pointing out the principle
common to most spatial interpolation methods: that the states of the phenomenon
of interest are more similar among locations nearer to each other than among
locations further apart. In other words, the phenomenon is autocorrelated in space
(otherwise predictions should simply be reduced to a global mean, or calculated
based on a nonspatial prediction model, such as ordinary regression). With spatial
autocorrelation present, it makes sense for predicted values to be more similar
to measured values that are nearest to them, and less similar to measured values
further apart. For example, if we have a temperature measurement of 20°C at
location A, it would be reasonable to assume that the temperature in location B,
which is, say, 100 meters away from A, will be fairly similar to 20°C since the air
temperature is a spatially autocorrelated phenomenon. The way and the degree
to which measured values affect predictions as a function of distance is the main
feature that differentiates the various interpolation methods.

The simplest interpolation method based on spatial autocorrelation is nearest-neighbor
interpolation. However, it is rarely used in practice in the context of mapping for
reasons that will become apparent shortly. It is hereby presented only to demonstrate
the concept of spatial interpolation in its simplest form.

In nearest-neighbor interpolation, each predicted location simply takes the value of
the nearest measured location. For instance, returning to the previous temperature
example, location B will receive a predicted value of exactly 20°C unless there is
another measured point within fewer than 100 meters from B (and then it will
determine B's predicted value instead of A). We will now perform nearest-neighbor
interpolation of the temperature data in dat to understand this point more clearly.
We will hereby write code that performs nearest-neighbor interpolation. It is going to
consist of the following steps:

1. Creating a set of points for which we would like to make predictions (grid).
2. Finding out which point in dat is the one closest to each point in grid.
3. Assigning nearest-neighbor values of dat to the grid points.

http:// /

Chapter 8

[247]

As for the first step, prediction points are most commonly determined using a regular
grid (that is, a raster) so that as a result of interpolation we would get a continuous
predicted surface. Following this approach, we will use dem_spain for our grid of
prediction points. However, since we are going to calculate distances between pairs
of points using the gDistance function (which operates on vector layers; see Chapter
5, Working with Points, Lines, and Polygons), the raster cells should first be converted to
points with rasterToPoints (see the previous chapter) as follows:

> grid = rasterToPoints(dem_spain, spatial = TRUE)

Moving on to the second step, now we can calculate the distance matrix between
each point in dat and each point in grid:

> library(rgeos)
> dist = gDistance(dat, grid, byid = TRUE)

The resulting object, dist, is a matrix with 39,250 rows (corresponding to the grid
features, that is, the number of cells of dem_spain that are not NA) and 75 columns
(corresponding to the dat features):

> dim(dist)
[1] 39250 75

The values of this matrix are the pairwise distances, in meters, between the dat
and grid features. In order to assign the value of the nearest points in dat to grid,
we need to find out which point is the nearest neighbor in each case. This can be
achieved with apply and which.min. The following expression yields a vector of
indices indicating the minimal element in each row of dist:

> nearest_dat = apply(dist, 1, which.min)

Since nearest_dat now holds the indices of the dat features from which we need to
obtain the temperature value for each predicted point in grid, the following expression
assigns those values to a new column, named nn, in the attribute table of grid:

> grid$nn = dat$value[nearest_dat]

We have now completed the third step. What is left is to convert grid back to a
raster, that is, to rasterize it (see the previous chapter) for easier visualization. The
following expression rasterizes grid, with the field parameter set to the "nn"
attribute table column, thus transferring its values to the dem_spain raster:

> grid = rasterize(grid, dem_spain, "nn")

http:// /

Spatial Interpolation of Point Data

[248]

The result is a nearest-neighbor predicted surface with the value of each pixel being
the predicted temperature at the respective location. Let's see what it looks like using
the following expressions:

> plot(grid)
> plot(dat, add = TRUE)

The graphical output is shown in the following screenshot:

http:// /

Chapter 8

[249]

The preceding screenshot clearly shows that the nearest-neighbor interpolation
method has, in practice, divided the area of interest into discrete subareas. Each
subarea includes all the locations that are more proximate to a given measured point
(that is, a given meteorological station) than to any other. In fact, we could have
also carried out nearest-neighbor interpolation by creating polygons defining such
subareas and rasterized them, to produce the same result. Within the context of GIS,
such polygons are known as Thiessen or Voronoi polygons (interested readers will
find at least one way to create them in R; for example, using the dirichlet function
of the spatstat package).

As mentioned earlier, nearest-neighbor interpolation is rarely useful to predict the
behavior of natural phenomena in space. For example, it is clearly unrealistic to
assume that discrete polygonal areas surrounding each meteorological station have
uniform temperatures, with a sharp increase or decrease in temperature, along
the borders between them (as the previous screenshot suggests). In reality, the
temperature changes more or less gradually from place to place. To describe such
gradual transitions, we need to use more elaborate methods, such as those described
in the upcoming sections.

IDW interpolation
The three interpolation methods we will employ next—IDW, Ordinary Kriging
(OK), and Universal Kriging (UK)—all utilize the same principal procedure, where
the predicted value of a given point is determined as a weighted average of the
values from the measured points. Moreover, the weight of each measured value is
always a function of its distance from the point we are trying to predict (a nearby
point usually having a higher weight, or influence, on the predicted value than a
point further away). Within this framework, nearest-neighbor interpolation is, in
fact, an extreme private case, where the weight of the nearest point is 1 while the
weights of all other points are 0.

To better understand the subsequent material in this chapter, we can already state
that the differences between the three methods concern two properties: the trend and
the weights definition. The trend is basically an additional function, independent
of the measured points values, added to the weighted average of the latter. In
IDW, the trend is 0 and in OK it is a constant value, thus having no effect on the
predicted pattern in either case. However, in UK, the trend is a function of additional
covariates. Regarding the weights, in IDW they are arbitrarily determined (thus the
method is considered deterministic); in OK and UK, conversely, they are estimated
from the data itself (thus the methods are considered statistical).

http:// /

Spatial Interpolation of Point Data

[250]

As noted earlier, the predicted values in all three methods are the weighted averages
of measured points:

() () () ()0 0
1

ˆ 1
n

i i
i

z x x z xλ
=

=∑

Here, ()0ẑ x is the predicted value at location 0, ()iz x is the measured value i, and ()0i xλ
is the weight for the measured value i, while n is the total number of
measured points.

In IDW, the weight ()0i xλ is a function of the inverse distance, shown as follows:

() ()

()
()0

0

0
0

,
2

,

i
i n

i
i

d x x
x

d x x

β

β
λ

−

−

=

=

∑

Here, ()0 , id x xβ− is the geographic distance between the measured point i and the
predicted point at location 0 to the power β− , and n is the total number of measured
points. The default value for β is 2. This means that the importance of each
measured point in determining a predicted value diminishes as a function of squared
distance. When β is smaller, the predicted surface will be smoother; when β is
larger, the predicted surface will be less smooth, giving more emphasis to the
nearest neighbor.

We will now interpolate the temperature data in dat using the IDW method. To
apply this method, and subsequent ones later in this chapter, we will use functions
in the gstat package. This package provides extensive capability for univariate and
multivariate geostatistical analysis, of which we will see a few examples.

For an overview of gstat, see the official introductory document
at http://cran.r-project.org/web/packages/gstat/
vignettes/gstat.pdf.

http://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
http://cran.r-project.org/web/packages/gstat/vignettes/gstat.pdf
http:// /

Chapter 8

[251]

The core of the gstat package is a function named gstat, which is used to produce
objects (of a class also named gstat) that hold all necessary information to perform
spatial interpolation (as well as other operations such as cross-validation). Among
the numerous parameters that the gstat function accepts, there is, in fact, no
parameter where we can specify the desired interpolation method. Instead, when
interpolation is triggered on a gstat object, the method is determined based on the
input data the object contains. In this chapter, we are going to explore only a portion
of the functionality of gstat, utilizing three of its parameters:

• formula: The formula that defines the dependent and independent variables
(an object of the formula class)

• data: The measured point data (a SpatialPointsDataFrame object; it can
also be a data.frame object but we will not use this option)

• model: The variogram model (an object of the variogramModel class)

These three parameters determine whether IDW, OK, or UK is used based on the
following decision tree:

• If there is no variogram model (model=NULL, the default), IDW is used
• If a variogram model is passed to model, and the formula:

 ° contains no independent variables, OK is used
 ° contains at least one independent variable, UK is used

Our dependent variable column is value and an intercept-only model (that is, a model
with no independent variables) formula in R is, by convention, specified by ~1.
Therefore, the following expression creates a gstat object (named g) that holds the
necessary information to predict the minimum temperature based on the measured
data in dat using IDW:

> library(gstat)
> g = gstat(formula = value ~ 1, data = dat)

Printing g shows a summary of the information it contains as follows:

> print(g)
data:
var1 : formula = value`~`1 ; data dim = 75 x 5

Note that this is just a summary; g, in fact, also contains the dat
object itself, with the measured values and independent variables
(if any), since it serves as the calibration data necessary to actually
perform the interpolation.

http:// /

Spatial Interpolation of Point Data

[252]

To interpolate, what we now need is to provide the points for which we would like
to make predictions. Conveniently, the raster function includes a function named
interpolate that, given a raster (the object parameter) and a spatial prediction
model (the model parameter), yields a new raster with predicted values. This way,
we do not need to make the manual conversions to and from a raster, as we did
in nearest-neighbor interpolation. For example, the following expression uses the
model and calibration data held in g to make temperature predictions for the grid
defined by dem_spain:

> z = interpolate(dem_spain, g)

There are two things to note here:

• First, as you remember, text messages are omitted in this book to save
space. However, readers who run the preceding expression in R will see the
message [inverse distance weighted interpolation] appearing on the
screen. This reassures the user that indeed the expected type of model has
been chosen by gstat.

• Second, it is important to understand that, if we do not use covariates (that
is, independent variables in the model formula), the dem_spain raster serves
only as a grid pointing to the locations where we would like to calculate
predicted values (the raster values play no role in the interpolation). This
is opposed to UK interpolation, where the raster serves both to point at
predicted locations and provide covariate values for each location.

Plotting the predicted surface z will show that predicted values were generated for
all raster cells (including NA cells). It is usually reasonable to make predictions for a
more specific extent, such as the land area of Spain. We can use mask to remove the
unnecessary predictions:

> z = mask(z, dem_spain)

Now let's plot the predicted value raster, and the station locations on top of it, with
the following pair of expressions:

> plot(z)
> plot(dat, add = TRUE)

http:// /

Chapter 8

[253]

The graphical output is shown in the following screenshot:

In the preceding screenshot, we see the predicted average minimum temperature
for 2002 in Spain. It seems the central-northern parts of the country were generally
colder, while the south was warmer (this general pattern was also evident in the
nearest-neighbor interpolation image). The effect of the station locations on the
predicted surface is also notable. As you remember, the weight of a given station
increases as the predicted point is nearer. Therefore, each point generates a sort of
circular zone of influence around itself, especially if its value markedly differs from
the values of its proximate neighbors.

http:// /

Spatial Interpolation of Point Data

[254]

To understand the role of the β parameter (see equation (2)) more vividly, let's
produce two more IDW-predicted surfaces: one with β set to a very small value
(say, 0.3) and one with β set to a very large value (say, 30). Then, we will compare
the results with the preceding graphical output (where β was set to 2, which is the
default value). The following code generates the two additional predicted surfaces
and assigns them to objects z1 and z2, respectively:

> g1 = gstat(formula = value ~ 1, data = dat, set = list(idp=0.3))
> g2 = gstat(formula = value ~ 1, data = dat, set = list(idp=30))
> z1 = interpolate(dem_spain, g1)
> z2 = interpolate(dem_spain, g2)
> z1 = mask(z1, dem_spain)
> z2 = mask(z2, dem_spain)

Note that the set=list(idp=0.3) part determines the value of β in gstat. Using
the following expression, we can visualize the three rasters: z1, z, and z2 (the pch
and cex parameters are used to control the symbol type and size, respectively, when
drawing the dat points):

> plot(z1, main = c("beta = 0.3"))
> plot(dat, add = TRUE, pch = 20, cex = 0.5)
> plot(z, main = c("beta = 2"))
> plot(dat, add = TRUE, pch = 20, cex = 0.5)
> plot(z2, main = c("beta = 30"))
> plot(dat, add = TRUE, pch = 20, cex = 0.5)

The graphical outputs shown here, side by side, are produced as a result. The
respective values of β are stated above each output:

http:// /

Chapter 8

[255]

These images demonstrate the previously stated expectations. Decreasing β (the
leftmost image) results in a smoother surface due to more homogeneous weight
distribution among the measured points. On the other hand, increasing β (the
rightmost image), results in sharper boundaries between the zones of influence of
each point, resembling nearest-neighbor interpolation results in appearance.

Now that we have produced several interpolation results, how can we assess the
predictive ability of this (or any other) interpolation method? The obvious way
is to compare predicted values to observed ones, preferably when the validation
points come from an independent dataset—one that did not participate in model
calibration. Since measurements are usually scarce and valuable (we do not have
an infinite number of meteorological stations), however, we would like to include
each and every measurement in the model calibration, leaving no measurements
for validation. The compromise approach to this problem is the process of cross-
validation, where we set aside some of the observed points for validation. In the
process of cross-validation, we then try to predict their values using the remaining
points and compare the predicted values to the observed ones. A special case of
cross-validation is leave-one-out cross-validation (LOOCV), where every observed
point is removed in turn, its value being predicted based on the remaining points to
obtain a table with observed and predicted values for all observations. Assessing the
differences between observed and predicted values based on such a table gives us a
measure of the accuracy of our prediction model.

The gstat.cv function can automatically perform cross-validation given an object
of the gstat class. The default method is LOOCV; therefore, in the following
expression, all we need to do is perform LOOCV on the IDW interpolation of
temperature data:

> cv = gstat.cv(g)

This expression, in practice, triggers the execution of 75 spatial interpolation
operations, each time leaving out one meteorological station and trying to
predict its temperature value using the 74 remaining ones. The result is a
SpatialPointsDataFrame object with the same number of features as dat and with
the same spatial locations. Only the attribute table is different, now containing the
cross-validation results:

> head(cv@data)
 var1.pred var1.var observed residual zscore fold
1 8.971923 NA 10.475000 1.5030771 NA 1
2 10.244447 NA 10.775000 0.5305532 NA 2
3 10.914591 NA 14.491667 3.5770756 NA 3
4 9.992180 NA 11.100000 1.1078202 NA 4
5 12.024766 NA 11.608333 -0.4164331 NA 5
6 7.435642 NA 5.983333 -1.4523087 NA 6

http:// /

Spatial Interpolation of Point Data

[256]

The attribute table columns of the cross-validation result refer to the
following information:

• var1.pred: Predicted value
• var1.var: Variance (only for kriging)
• observed: Observed value
• residual: Residual, the difference between observed and predicted values
• zscore: Z-score (only for kriging)
• fold: Cross-validation count

The important column, for our purpose here, is residual—the difference between
the observed and predicted values. Based on the residuals, we can assess how far
predicted values are from the observed ones, or in other words, prediction accuracy.
One of the simplest and most common metrics of agreement between observed and
predicted values is the RMSE. Given a set of predicted-observed value pairs, the
RMSE is calculated as follows:

()
()

2

1 3

n

i i
i
pred obs

RMSE
n

=

−
=
∑

Here, RMSE is the root mean square error, n is the overall number of points, and
ipred and iobs are the predicted and observed values at point i, respectively. As

the difference between predicted and observed values is smaller, the RMSE will be
lower, indicating that the model is more accurate. Given the same input data, we
can compare the RMSE values among different models to select the most accurate
one. Translating equation (3) to the R syntax, we can calculate RMSE based on the
attribute table of cv as follows:

> sqrt(sum((-cv$residual)^2)/nrow(cv))
[1] 1.88049

The RMSE in this case is equal to 1.88049. Note that the expression consists of the
-cv$residual vector (equivalent to cv$var1.pred-cv$observed) squared, then
summed, and divided by the total number of points. Finally, the square root of the
result is extracted.

http:// /

Chapter 8

[257]

For convenience, we can wrap this expression into our own function, which
calculates RMSE, given a gstat.cv output:

> rmse = function(x) sqrt(sum((-x$residual)^2)/nrow(x))
> rmse(cv)
[1] 1.88049

We will use this function later.

You may have noticed that the gstat object we initially defined (g)
was hereby used for two distinct and independent purposes. First, to
calculate predicted values (using the interpolate function), then
to perform cross-validation (using the gstat.cv function). This is
not incidental, but rather a characteristic object-oriented behavior
common to all, or most, of R's statistical procedures. This approach is
advantageous over the menu-based approach commonly encountered
in statistical or GIS software, where we carry out a given analysis by
making selections in a set of dialog boxes, and receive a set of results
(some of which we do not need, while others are lacking since the tool's
creator did not include them). Conversely, when a statistical function
is applied in R, we usually get an object that holds all the data that is
necessary to carry out the analysis (such as g) or an object that holds
a comprehensive set of results (such as cv). From such objects, we
can then derive the results we are interested in by applying specific
functions. Moreover, we can create functions of our own to carry out
calculations or extract meaningful data, for which no built-in methods
have been defined (such as the rmse function we defined earlier).
Readers who are interested in using R as a general statistical analysis
toolbox will repeatedly encounter this approach. For example, the
lm function is used to perform ordinary linear regression in R; on its
returned object, of class lm, numerous functions (such as summary,
residuals, and plot) may be applied to derive the information we
are interested in.

http:// /

Spatial Interpolation of Point Data

[258]

Interpolation using Ordinary Kriging
In kriging, as mentioned earlier, the weight ()0i xλ given to each measurement when
calculating a predicted value (see equation (1)) is determined statistically, rather
than arbitrarily (such as by choosing the value of β ourselves in equation (2)). The
function determining weights in kriging is called a variogram model. The variogram
model is a function fitted to the empirical variogram, which in turn describes
the spatial autocorrelation structure of the observed pattern. What is important
to understand is that the empirical variogram describes the average degree of
autocorrelation between observed values, and the variogram model is a continuous
function fitted to these data. The variogram model determines, in plain terms, the
importance of points nearby and further away in the calculation of predicted values.
For example, if autocorrelation is high over short distances, it would make sense
to let nearby points largely determine the predicted value, making the predicted
surface rougher; when autocorrelation is low, the weight distribution over distance
may be more uniform and the predicted surface smoother. Elaborating on the subject
of variogram modeling is beyond the scope of this book; interested readers can find
more information in A practical guide to geostatistical mapping of environmental variables,
Hengle, T. (2007) or in any textbook on geostatistics.

An empirical variogram can be calculated using the variogram function, once again
based on a gstat object. Let's take a look at the following example:

> ev = variogram(g)

The returned object of the gstatVariogram class contains semivariance values
(expressing the degree of correlation) for different distance bins. Note that there are
numerous optional parameters controlling the way a variogram is computed, that we
will not go into, such as the way the latter bins are determined (see ?variogram). The
plot method for a gstatVariogram object plots the empirical variogram as follows:

> plot(ev)

http:// /

Chapter 8

[259]

The following screenshot shows how the plot appears in our case:

We can see that semivariance increases with distance. This means that temperature
values are more diverse when considering stations further apart. In other words,
temperature is spatially autocorrelated.

http:// /

Spatial Interpolation of Point Data

[260]

As mentioned earlier, a variogram model is a function fitted to the empirical
variogram. There are several specific functions that are adequate to describe the
characteristic behavior of an empirical variogram (increasing semivariance with
distance, usually reaching saturation at some point). These functions, such as the
spherical and exponential functions, are generally used for a variogram model
(type vgm() for a list of the functions implemented in gstat or show.vgms() for
a visual). In addition to choosing one of these functions, we need to decide on its
specific parameters. There are three main approaches, not mutually exclusive, to
select a variogram model: a function plus its set of parameters (based on an
empirical variogram):

• Setting the function and its parameters by hand (for example, using the vgm
function from the gstat package)

• Visually fitting a function to the empirical variogram by interactively varying
the function type and its parameters and seeing how its appearance changes
(for example, using the eyefit function from the geoR package)

• Statistically selecting the function and parameters that minimize some
goodness-of-fit criterion (for example, using the fit.variogram function
from the gstat package, the variofit function from the geoR package, or
the autofitVariogram function from the automap package)

Since we are hereby taking a simple, practical approach, we will use the third option
of letting the computer select the function that follows the empirical variogram most
closely. Moreover, we are going to bypass the requirement to supply the function
type and initial parameter estimates (as required, for example, in fit.variogram)
and use a wrapper function named autofitVariogram that automatically optimizes
this decision for us.

The autofitVariogram function is defined in the automap package. It accepts the
formula and data arguments (named input_data) analogously for gstat. The
following expression, therefore, fits a variogram model to our data:

> library(automap)
> v = autofitVariogram(formula = value ~ 1, input_data = dat)

Plotting the returned object of the autofitVariogram class generates a plot with an
empirical variogram and the fitted variogram model on top of it:

> plot(v)

http:// /

Chapter 8

[261]

The resulting output is shown in the following screenshot:

The points, once again, show an empirical variogram, while the continuous line is the
fitted variogram model. In this case, for instance, the selected model was "Matern, M.
Stein's parameterization" (code name "Ste"), with the four parameter values stated
in the bottom-right corner of the image. The object v contains several components,
such as the empirical variogram data points and the sums of squares between the
sample variogram and the fitted variogram model. The component we are interested
in is the fitted variogram model. This components' name is var_model, and it can be
accessed with the $ operator, using the expression v$var_model (this behavior stems
from the fact that an autofitVariogram class is built upon a list, and list elements
can be accessed the same way as data.frame columns with $).

http:// /

Spatial Interpolation of Point Data

[262]

The important point here is that the v$var_model component of v is an object of class
variogramModel, containing the function type and parameters defining a variogram
model. A variogramModel object can be passed to the gstat function to indicate
a variogram model. Therefore, we can create an object containing all the necessary
information to perform the OK interpolation as follows:

> g = gstat(formula = value ~ 1, data = dat, model = v$var_model)
> g
data:
var1 : formula = value`~`1 ; data dim = 75 x 5
variograms:
 model psill range kappa
var1[1] Nug 0.4594258 0.0 0.0
var1[2] Ste 10.9549186 626562.4 0.3

The printed output shows that the object indeed contains a variogram model. We
can now use the interpolate function to produce the predicted OK surface, and
the mask function to clip the area of interest, exactly the same way we did in
IDW interpolation:

> z = interpolate(dem_spain, g)
> z = mask(z, dem_spain)

Those readers who execute the above expression in R should see, this time, the
message [using ordinary kriging] on screen.

Let's plot the interpolation result with the following expressions:

> plot(z)
> plot(dat, add = TRUE)

http:// /

Chapter 8

[263]

The graphical output is shown in the following screenshot:

One of the notable visual differences in predicted rasters between IDW and kriging,
in general, is that the weight of a given measured point always approaches 1 in
IDW as we get nearer. Therefore, the values around each measurement point tend
to approach the measured value itself (see the previous screenshot); in kriging,
however, this is not necessarily so.

We can now perform LOOCV of the OK prediction model in order to compare the
resulting RMSE with that of IDW:

> cv = gstat.cv(g)
> rmse(cv)
[1] 1.680153

The RMSE is smaller in this case, which suggests that OK produces more accurate
prediction than IDW interpolation.

http:// /

Spatial Interpolation of Point Data

[264]

Using covariates in Universal Kriging
interpolation
Universal Kriging (also referred to as Kriging with External Drift or Regression
Kriging) is, in fact, a general model of which OK is a special case. While both
methods involve spatial autocorrelation modeling, they differ in the definition of the
trend. In OK, the trend is a constant value, while the trend is a linear function of one
or more covariates in UK. In other words, in OK the predicted value is some constant
plus a weighted function of neighboring measurements, while it is a predicted value
based on covariates plus a weighted function of neighboring measurements in UK.

For instance, it is well known that temperature is negatively correlated with
elevation (it gets colder as we climb to a higher altitude). Using a simple scatterplot,
we can see that this rule holds true in the present case as well:

> plot(value ~ elevation, dat@data,
+ xlab = "Elevation (m)",
+ ylab = "Temperature (degrees Celsius)")

The resulting plot clearly shows the negative relationship between elevation and
temperature, although the relation is not perfect:

http:// /

Chapter 8

[265]

Sometimes the temperature for a given altitude is lower than usual and sometimes
higher. Can we create a model where the temperature is predicted using elevation
and then fine-tuned using nearby meteorological measurements? UK does exactly
this by adding a weighted average of stations values (as OK does) to a general trend
surface defined by a linear function based on covariates (in this case, elevation).

To interpolate the temperature data using UK with elevation as a covariate, we need
to make two principal alterations compared to the OK procedure:

• The variogram model is constructed according to the so-called residual
variogram, which portrays the spatial autocorrelation of the residuals from
the chosen trend

• The predicted values are calculated based on both the neighboring measured
values (as in OK) and the covariates; thus, each point we would like to
predict must be accompanied by its respective set of covariate values

Starting with the variogram model, as opposed to OK, our formula now contains
elevation as an independent variable:

> v = autofitVariogram(formula = value ~ elevation,
+ input_data = dat)

Plotting the new v object will show that both the empirical variogram and the
variogram model are different from what we previously had since they now
concern the residuals from the elevation trend. Next, we need to create the gstat
object, which contains the information to perform UK interpolation, supplying
value~elevation as the formula and v$var_model as the variogram model:

> g = gstat(formula = value ~ elevation,
+ data = dat,
+ model = v$var_model)
> g
data:
var1 : formula = value`~`elevation ; data dim = 75 x 5
variograms:
 model psill range kappa
var1[1] Nug 0.7410872 0.00 0.0
var1[2] Ste 0.9696567 35781.93 0.2

http:// /

Spatial Interpolation of Point Data

[266]

By supplying the appropriate formula in the variogram fitting stage and in the gstat
function call, we dealt with the first issue. As for the second issue, it is necessary
for us to provide an elevation value for each point where we try to predict the
temperature (otherwise the trend cannot be calculated). Since the points are specified
in the form of a raster, it is only natural that the covariate values will come from the
raster values themselves. This is exactly what the interpolate function expects, but
in order for this function to correctly identify which raster layers contain the values
of the covariates, the respective layers must be named exactly the same way as the
covariates are (in the formula passed to autofitVariogram and gstat, as well as in
the measurements point layer). In our case, there is only one covariate (elevation)
and one layer in the dem_spain raster. Therefore, we just need to make sure that
layer is named "elevation":

> names(dem_spain)
[1] "spain_elev"
> names(dem_spain) = "elevation"
> names(dem_spain)
[1] "elevation"

In addition, we need to make one final adjustment to the interpolate function
call—setting xyOnly=FALSE, which instructs the interpolate function to consider
the raster values as covariates (rather than just coordinates of prediction points).
The option xyOnly=FALSE should be specified whenever we have a model with
covariates:

> z = interpolate(dem_spain, g, xyOnly = FALSE)

When running the previous expression, you should see the [using universal
kriging] message on screen. Let's plot the UK predictions:

> z = mask(z, dem_spain)
> plot(z)
> plot(dat, add = TRUE)

http:// /

Chapter 8

[267]

The graphical output is shown in the following screenshot:

The preceding screenshot quite obviously resembles Spain's DEM. In fact, it shows
the elevation profile of Spain transposed to temperature units (using a linear relation
based on the data from meteorological stations) and locally calibrated using, once
again, the stations data. This is what UK results commonly look like.

Let's examine the RMSE of the UK prediction model as well:

> cv = gstat.cv(g)
> rmse(cv)
[1] 1.455196

We see that the RMSE of UK, in this case, is even lower than that of OK. This
result suggests that utilizing the value~elevation trend has further improved
prediction accuracy.

http:// /

Spatial Interpolation of Point Data

[268]

Mapping the annual temperature in Spain
In the previous sections, we saw how to perform spatial interpolation of point data
in R using several methods, including IDW, OK, and UK. We also learned that, in the
case of minimum temperature in 2002, UK outperformed the other two methods in
terms of accuracy, with a LOOCV RMSE value of 1.46, compared to 1.88 and 1.68 for
IDW and OK, respectively. In this section, we are going to see how we can automate
spatial interpolation in order to produce a set of temperature maps for different years
with a single code execution command. For this purpose, we are going to construct
two loops:

• The first loop will go through 20 point layers (10 years * 2 variables), each
time calculating the RMSE of LOOCV in prediction using each of the three
methods (IDW, OK, and UK). Based on the results, we will select the most
accurate method (on average) out of these three.

• We will then construct the second loop to produce predicted temperature
maps of Spain (for 5 years—2006-2010) using the selected method.

We will begin with the first task of systematically evaluating RMSE among the
different years, variables, and methods. A very useful function for such tasks, named
expand.grid, will help us keep track of the examination. Given a set of vectors,
expand.grid returns a data.frame object with all possible combinations of the
elements from each vector. The following expression, for example, creates a data.
frame object, named cv_results, with four columns (variable, year, method,
and rmse):

> cv_results = expand.grid(
+ variable = c("mmnt", "mmxt"),
+ year = 2001:2010,
+ method = c("IDW", "OK", "UK"),
+ rmse = NA)

Since only three of the columns have more than one possible element, and there are 2
variables * 10 years * 3 methods = 60 unique ways to combine them, cv_results has
60 rows. The first few rows of this data.frame object look as follows:

> head(cv_results)
 variable year method rmse
1 mmnt 2001 IDW NA
2 mmxt 2001 IDW NA
3 mmnt 2002 IDW NA
4 mmxt 2002 IDW NA
5 mmnt 2003 IDW NA
6 mmxt 2003 IDW NA

http:// /

Chapter 8

[269]

This table is going to help us in two ways:
• First, we are going to go through its rows, each time performing LOOCV

for yet another prediction model defined with the respective values in the
variable, year, and method columns. This way, we can be sure that all the
possible combinations are covered.

• Second, the resulting RMSE values will be assigned in the respective position
in the rmse column so that, by the time the loop execution is complete, we
will conveniently have a table with all of the results.

The loop will be defined to go through all rows of cv_results, with i being
assigned the current row index each time. The code within the loop will then
perform the following operations:

1. Create a point layer named dat (using the create_pnt function we
previously defined) with the variable and year set according to the current
row of cv_results (rather than at fixed values such as 2002 and "mmnt").

2. Create an object defining the prediction formula (form) and variogram
model (v_mod).

3. Create a gstat object based on the appropriate point layer (dat), formula
(form), and variogram model (v_mod).

4. Perform LOOCV.
5. Calculate RMSE and assign the result in the appropriate position in the

rmse column of cv_results.

The code snippet, with the code sections for each of the preceding steps marked by a
comment, is as follows:

> for(i in row(cv_results)) {
+ # (1) Create point layer as required
+ dat = create_pnt(stations = spain_stations,
+ annual = spain_annual,
+ year = cv_results$year[i],
+ variable = cv_results$variable[i],
+ new_proj = proj4string(dem_spain))
+ # (2) Create *form* and *v_mod* objects
+ if(cv_results$method[i] == "IDW") {
+ form = value ~ 1
+ v_mod = NULL} else {
+ if(cv_results$method[i] == "OK") {
+ form = value ~ 1}
+ if(cv_results$method[i] == "UK") {
+ form = value ~ elevation}

http:// /

Spatial Interpolation of Point Data

[270]

+ v_mod =
+ autofitVariogram(
+ formula = form,
+ input_data = dat)$var_model}
+ # (3) Create gstat object
+ g = gstat(formula = form, data = dat, model = v_mod)
+ # (4) Perform cross-validation
+ cv = gstat.cv(g)
+ # (5) Calculate RMSE and assign to cv_results
+ cv_results$rmse[i] = rmse(cv)
+ }

Note that, in step 2, nested conditional statements are used in order to determine
form and v_mod according to the interpolation method that is being used. We can
write down the procedure this particular code section performs in the form of a
decision tree:

• If the method is "IDW", then form is value~1 and v_mod is NULL
• Otherwise:

 ° If the method is "OK", then form is value~1
 ° If the method is "UK", then form is value~elevation
 ° The v_mod is calculated according to form

Once the loop execution is completed (this may take a few moments), the rmse
column of cv_results will be filled with the resulting RMSE values instead of
NA values:

> head(cv_results)
 variable year method rmse
1 mmnt 2001 IDW 1.942872
2 mmxt 2001 IDW 1.594996
3 mmnt 2002 IDW 1.880490
4 mmxt 2002 IDW 1.570574
5 mmnt 2003 IDW 1.912887
6 mmxt 2003 IDW 1.605938

http:// /

Chapter 8

[271]

Note that, for instance, the RMSE value at the third row table (1.880490), which
corresponds to the IDW interpolation of "mmnt" for 2002 as expected, is identical to
the result we have previously obtained manually. Several interesting comparisons
can be made using this RMSE table. As previously stated, we are mainly interested in
seeing which interpolation method is the most accurate, on average, across 10 years
and the two variables. To find out, we can use tapply:

> tapply(cv_results$rmse, cv_results$method, mean)
 IDW OK UK
1.773243 1.908957 1.458997

The result shows that, on average, UK yields the lowest prediction error among the
three methods. Interestingly, OK is less accurate, on average, than IDW although in
the particular example we previously saw it was the other way around. Based on this
result, UK is going to be our method of choice to produce annual temperature maps
of Spain.

It should be noted that comparing cross-validation RMSE is only
meaningful among different spatial prediction models of the same data.
Otherwise, RMSE may be higher or lower not only because the prediction
error is different but also because the predicted values themselves are on
different scales. For example, RMSE of the precipitation amount ("tpcp")
prediction would have been much higher than RMSE of temperature
prediction in our case (you can try and see this), simply because the
generally observed annual precipitation amounts in Spain (in mm) are
higher by an order of magnitude than temperatures (in Celsius degrees).
However, this does not mean that the prediction models of precipitation
are less accurate with respect to the scale of the measured variable itself.

We are ready to move on and produce annual temperature maps using another
loop that calculates the predicted values (rather than performing cross-validation,
which we just did). Once again, a well-organized way of doing this is to construct a
table describing the set of parameters we need for each spatial interpolation, then go
through that table and perform the required operations in turn. We will once again
use the expand.grid function, producing all combinations of just two variables this
time: year (the 5 years 2006-2010) and variable ("mmnt" and "mmxt"). The method
will be left unspecified as we have already decided it should be invariably UK.

> spainT_tab = expand.grid(
+ year = 2006:2010,
+ variable = c("mmnt", "mmxt"))

http:// /

Spatial Interpolation of Point Data

[272]

The resulting table, named spainT_tab, looks as follows:

> spainT_tab
 year variable
1 2006 mmnt
2 2007 mmnt
3 2008 mmnt
4 2009 mmnt
5 2010 mmnt
6 2006 mmxt
7 2007 mmxt
8 2008 mmxt
9 2009 mmxt
10 2010 mmxt

We are ready to create the second loop that will go through the rows of spainT_tab
and spatially interpolate the respective temperature data. Since our results are going
to be rasters (rather than numeric values, as was the case with the cross-validation
loop) in this case, they cannot be appended to the table itself. Instead, we are going
to stack the results in a multiband raster where each layer is going to correspond
to a row in spainT_tab. In other words, spainT_tab is going to function as a
supplementary table for the resulting multiband raster (much as dates served the
same purpose for the raster r; see Chapter 4, Working with Rasters). To construct the
raster, we will first create an empty RasterStack to which the interpolation results
will be appended during loop execution:

> spainT = stack()

The loop will go through the rows of spainT_tab, each time performing the
following set of operations:

1. Creating a point layer named dat with the variable and year set according to
the current row of spainT_tab.

2. Fitting a variogram model (v).
3. Creating a gstat object (g) according to dat and v.
4. Calculating the raster of predicted values (z) with interpolate, based on g

and dem_spain.
5. Masking z according to dem_spain and attaching the result to spainT.

http:// /

Chapter 8

[273]

The loop code appears as follows:

> for(i in 1:nrow(spainT_tab)) {
+ # (1) Create point layer as required
+ dat = create_pnt(stations = spain_stations,
+ annual = spain_annual,
+ year = spainT_tab$year[i],
+ variable = spainT_tab$variable[i],
+ new_proj = proj4string(dem_spain))
+ # (2) Automatically fit variogram model
+ v = autofitVariogram(formula = value ~ elevation,
+ input_data = dat)
+ # (3) Create gstat object
+ g = gstat(formula = value ~ elevation,
+ model = v$var_model,
+ data = dat)
+ # (4) Interpolate!
+ z = interpolate(dem_spain, g, xyOnly = FALSE)
+ # (5) Mask and add predicted surface to results stack
+ spainT = stack(spainT, mask(z, dem_spain))
+ }

Once loop execution is complete, interpolation results are stored as individual layers
of the spainT raster. The raster should consist of 10 layers, corresponding to the 10
rows in spainT_tab. Right now, the layer names are not very informative:

> names(spainT)
 [1] "var1.pred.1.1.1" "var1.pred.2.1.1" "var1.pred.1.2.1"
 [4] "var1.pred.2.2.1" "var1.pred.1.1.2" "var1.pred.2.1.2"
 [7] "var1.pred.1.2.2" "var1.pred.2.2.2" "var1.pred.1"
[10] "var1.pred.2"

However, with spainT_tab at our disposal, we can easily change this as follows:

> names(spainT) = paste(spainT_tab$variable,
+ spainT_tab$year,
+ sep = "_")
> names(spainT)
 [1] "mmnt_2006" "mmnt_2007" "mmnt_2008" "mmnt_2009" "mmnt_2010"
 [6] "mmxt_2006" "mmxt_2007" "mmxt_2008" "mmxt_2009" "mmxt_2010"

http:// /

Spatial Interpolation of Point Data

[274]

Let's now plot spainT using the levelplot function. With layout=c(5,2), we make
sure that the minimum and maximum temperature maps are plotted in
distinct rows:

> library(rasterVis)
> levelplot(spainT, par.settings = "BuRdTheme", layout = c(5,2))

The graphical output is shown in the following screenshot:

The preceding screenshot shows predicted minimum (top row) and maximum
(bottom row) temperatures in Spain for each of the years from 2006 to 2010.
As can be expected, maximum temperatures are always higher than minimum
temperatures. The predicted spatial pattern of temperature is fairly similar over the
years, which also makes sense—colder areas are generally colder repeatedly, in all
years, as are warmer areas. However, the latter poses a problem when interpreting
this type of result, as the characteristic temperature pattern within each year
overwhelms the differences among years and makes it difficult for us to notice the
year-to-year variation. This can be partially addressed by plotting minimum and
maximum temperature rasters separately (in order to use a wider color scale each
time). The interested reader can see for himself that it does little to solve the problem.

http:// /

Chapter 8

[275]

When we are interested in interannual differences only, the most reasonable course
of action is to find out what is the characteristic annual temperature state, find out
the deviation of each individual year's state from the characteristic state, and then
compare the deviation images rather than the original ones. Calculating deviations
from a general trend is a very common practice to highlight patterns of interest in
our data, and there are many ways to find both the general trend and the deviations
of each observation from it. Here, we will employ the simplest possible approach—
the characteristic temperature in each pixel will be defined as the 5-year average
observed in that pixel, and the deviations will be equal to arithmetic differences of
each observation from the average.

Since we need to treat the minimum and maximum temperature data separately, we
will first create two vectors identifying the relevant spainT layers for each case:

> mmnt_layers = which(spainT_tab$variable == "mmnt")
> mmnt_layers
[1] 1 2 3 4 5
> mmxt_layers = which(spainT_tab$variable == "mmxt")
> mmxt_layers
[1] 6 7 8 9 10

We will also create a new two-band RasterStack, named means, to hold the
minimum and maximum mean temperature pattern in its first and second layers,
respectively. The two layers will also be named accordingly ("mmnt" and "mmxt"):

> means = stack(mean(spainT[[mmnt_layers]]),
+ mean(spainT[[mmxt_layers]]))
> names(means) = c("mmnt", "mmxt")

Now that we have the means, all we need to do is subtract the appropriate mean
from each set of layers in spainT (the mean of the minimum temperatures from
layers 1-5 and the mean of the maximum temperatures from layers 6-10). There
are numerous ways to do this. For example, we can divide the spainT raster into
two, subtract the respective mean from each substack, and then combine them once
again. A more elegant way, extendable to any number of categories, however, is to
create a new means raster with the same number of layers as spainT, by means of
duplication, with the relevant means occupying its layers. In other words, we need a
raster with means[[1]] duplicated five times (occupying layers 1-5) and means[[2]]
duplicated five times (occupying layers 6-10). To do this, we can utilize the fact that
raster layers can also be selected by their names. The following expression therefore
takes the "mmnt" and "mmxt" layers and duplicates them in agreement with the
spainT_tab$variable column:

> means = means[[spainT_tab$variable]]

http:// /

Spatial Interpolation of Point Data

[276]

This gives us the desired result, a 10-band raster with temperature means
for either the minimum or maximum temperature, according to spainT_tab
(and thus matching spainT). The layer names reveal that indeed the first five
layers correspond to the minimum temperature and the last five layers correspond
to the maximum temperature:

> names(means)
 [1] "mmnt.1" "mmnt.2" "mmnt.3" "mmnt.4" "mmnt.5" "mmxt.1"
 [7] "mmxt.2" "mmxt.3" "mmxt.4" "mmxt.5"

What is left to be done is just to subtract one 10-band raster from the other:

> spainT = spainT - means

The data we now have in the new spainT raster is the temperature deviations from
the five-year average pattern of either the minimum or maximum temperature.
We can check and see that the deviations are within the range of -4 and +4 degrees
Celsius around the respective 5-year mean of 2006-2010:

> range(spainT[], na.rm = TRUE)
[1] -4.020094 3.200148

Plotting these deviations will help us see more clearly where exactly the temperature
was high or low, with respect to the average pattern, and what the magnitude of
the departure was. This time, we will also indicate that contours should be drawn at
1°C intervals:

> levelplot(spainT,
+ par.settings = "BuRdTheme",
+ layout = c(5,2),
+ contour = TRUE,
+ at = c(-4:-1,1:4))

The graphical output is shown in the following screenshot:

http:// /

Chapter 8

[277]

This time, we can easily notice, for example, that the minimum temperatures in 2010
were higher than average in southern Spain while the maximum temperatures were
lower than average in the north of the country.

This is the final product we were looking for, according to the goals specified at the
beginning of this section. However, we are not done yet. In the next chapter, we will
use spainT as one of the sample datasets while discussing how to produce plots with
the ggplot2 package. Since ggplot2 is a general-purpose graphical package, the
input data must come as a data.frame object. Moreover, the data table should be
tidy (see the previous chapter) in order to conveniently exploit all of the possibilities
this package offers. What does that mean in the present case? It means that we need
to have a data.frame object with all the data currently held in spainT, with each
column corresponding to a variable and each row corresponding to an observation.
In this case, the variables are as follows:

• x-coordinate
• y-coordinate
• Variable
• Year
• Predicted temperature

Each row in such a data.frame object will correspond to one pixel of an individual
layer in spainT.

Luckily, the as.data.frame function (that we encountered in the previous chapter,
when converting a matrix to a data.frame) also has a method to convert rasters to
the data.frame objects. By setting xy=TRUE, we are specifying that we would like to
have a table not only with the raster values (from all of its layers) but also with the
respective spatial coordinates:

> spainT = as.data.frame(spainT, xy = TRUE)
> head(spainT)
 x y mmnt_2006 mmnt_2007 mmnt_2008 mmnt_2009
1 -11957.925 4857128 NA NA NA NA
2 -8357.925 4857128 NA NA NA NA
3 -4757.925 4857128 NA NA NA NA
4 -1157.925 4857128 NA NA NA NA
5 2442.075 4857128 NA NA NA NA
6 6042.075 4857128 NA NA NA NA
 mmnt_2010 mmxt_2006 mmxt_2007 mmxt_2008 mmxt_2009 mmxt_2010
1 NA NA NA NA NA NA

http:// /

Spatial Interpolation of Point Data

[278]

2 NA NA NA NA NA NA
3 NA NA NA NA NA NA
4 NA NA NA NA NA NA
5 NA NA NA NA NA NA
6 NA NA NA NA NA NA

Each row in this table represents a single pixel, while its spatial coordinates and
values in each layer are specified in the respective columns. However, from the first
few rows, we can see that NA cells were also included. Since they will not be plotted
anyway, we can readily exclude them:

> spainT = spainT[complete.cases(spainT),]
> head(spainT)
 x y mmnt_2006 mmnt_2007 mmnt_2008 mmnt_2009
33 103242.08 4857128 0.7383187 -0.070727914 0.008270229 0.5218489
34 106842.08 4857128 0.7392765 -0.055515954 0.024604441 0.5227165
38 121242.08 4857128 0.7458803 -0.018719502 0.063198494 0.5252469
39 124842.08 4857128 0.7456079 0.002858330 0.084895939 0.5240072
40 128442.08 4857128 0.7454912 0.023069161 0.105275777 0.5226526
347 92442.08 4853528 0.7061661 -0.006305609 0.051584103 0.5112048
 mmnt_2010 mmxt_2006 mmxt_2007 mmxt_2008 mmxt_2009 mmxt_2010
33 -1.197710 2.012048 -2.361182 1.122896 1.941084 -2.714846
34 -1.231081 1.988164 -2.341944 1.118404 1.918249 -2.682873
38 -1.315606 1.932082 -2.291416 1.103507 1.857861 -2.602034
39 -1.357369 1.894492 -2.252492 1.094646 1.809158 -2.545804
40 -1.396489 1.859306 -2.215895 1.086683 1.763085 -2.493179
347 -1.262649 1.870778 -2.157029 1.059672 1.696265 -2.469685

Two things are left to be done to bring this data.frame object to the desired form:

• First, we need to transform the table into a long form, creating a value
column and keeping all other variables in separate individual columns. This
can be achieved with the melt function (see Chapter 3, Working with Tables, for
more details), specifying "x" and "y" columns as the ID variables so that the
other columns are transferred into a single variable column:
> library(reshape2)
> spainT = melt(spainT, id.vars = c("x", "y"))
> head(spainT)
 x y variable value
1 103242.08 4857128 mmnt_2006 0.7383187
2 106842.08 4857128 mmnt_2006 0.7392765
3 121242.08 4857128 mmnt_2006 0.7458803
4 124842.08 4857128 mmnt_2006 0.7456079
5 128442.08 4857128 mmnt_2006 0.7454912
6 92442.08 4853528 mmnt_2006 0.7061661

http:// /

Chapter 8

[279]

• Second, we need to split the variable column into two: the variable itself
("mmnt" or "mmxt") and the year (2006, 2007, 2008, 2009, or 2010). Substring
extraction with substr (see Chapter 2, Working with Vectors and Time Series,
for more information) comes in handy for this purpose since we can see that
characters 1-4 in each element of spainT$variable consistently correspond
to the variable, and characters 6-9 correspond to the year (to be sure, there
are other ways to extract substrings in less convenient scenarios; for instance,
the strsplit function can be used in the present context). Using the
following two expressions, we first create a new (numeric) column holding
the year values, and then modify the variable column to retain just the
variable names:
> spainT$year = as.numeric(substr(spainT$variable, 6, 9))
> spainT$variable = substr(spainT$variable, 1, 4)
> head(spainT)
 x y variable value year
1 103242.08 4857128 mmnt 0.7383187 2006
2 106842.08 4857128 mmnt 0.7392765 2006
3 121242.08 4857128 mmnt 0.7458803 2006
4 124842.08 4857128 mmnt 0.7456079 2006
5 128442.08 4857128 mmnt 0.7454912 2006
6 92442.08 4853528 mmnt 0.7061661 2006

The final data.frame object is now complete.

Summary
To summarize, in this chapter you learned how to interpolate point data in space
to produce continuous rasters using four different methods. The first of these,
nearest-neighbor interpolation, we coded ourselves, while the other three (IDW, OK,
and UK) were applied using functions in the gstat and automap packages. You also
learned how to perform LOOCV to calculate RMSE and assess prediction accuracy.
Finally, we saw two examples of how to automate a complex procedure to perform it
repeatedly over an array of parameter sets.

In the next chapter, you are going to learn how to produce more elaborate plots
involving spatial data in R with ggplot2.

http:// /

http:// /

Advanced Visualization of
Spatial Data

Visualization of spatial data is vital both during intermediate analysis steps (to
examine preliminary results and make sure we are on the right track) and as the final
product (to present our results to colleagues or in a publication). In this chapter, we
are going to visualize various datasets we created in the previous chapters, bringing
closure to the previously presented case studies. While doing this, you will learn
how to produce an elaborate and customized graphical output in R.

Most of this chapter is going to concentrate on the popular graphical package ggplot2.
We will begin by presenting the logic behind the special syntax this package follows.
Afterwards, we will review, through examples, the way spatial and nonspatial plots
can be produced and customized using this package. The ggmap package, which
automates downloading static maps from the Web and can be used to complement
plots produced with ggplot2, will then be presented. Finally, we will experiment a
little bit with three-dimensional (3D) visualization using the lattice package.

In this chapter, we'll cover the following topics:

• Using ggplot2 to produce publication-quality plots
• Using ggmap to add static maps as the background
• Using lattice to produce 3D plots

In this chapter, we are going to use objects created in the
previous chapters.

http:// /

Advanced Visualization of Spatial Data

[282]

Plotting with ggplot2 and ggmap
In this section, you are going to learn how to use ggplot2 and ggmap to visualize
spatial data. The section is structured as follows. First, we will review the ggplot2
framework using a simple example of a time series plot since (as you will see right
away) the syntax is quite different from that of other plotting methods we used until
now. After that, we will practice a little bit more with producing ordinary, nonspatial
plots. Next, we will see how the ggplot2 plots can be saved for subsequent use, both
within the R environment and in external files. Finally, the last two sections will deal
with the most important material from this book's perspective. In these two sections,
we will see how spatial data can be incorporated into ggplot2 visualizations to
produce maps, and how we can conveniently download reference background
images for such maps using ggmap.

Before going into the details of ggplot2, it is important to state that to use this
package, our input data needs to be contained in a data.frame object and it needs
to be tidy (see Chapter 7, Combining Vector and Raster Datasets, for more information).
Therefore, in practice, there are two steps when plotting with ggplot2:

• Bringing the data to the appropriate form
• Creating the plot

In some of the following examples, when the data is already in the right shape, we
will skip the first step and move on to creating the plot right away. Otherwise, we
will first have to reshape our data (using methods already familiar to us from the
previous chapters) and only then utilize ggplot2 to create the plot itself.

An overview of ggplot2
The best way to understand the underlying logic of ggplot2 is through examples.
Our first example is going to reproduce the time series plot we created in Chapter
2, Working with Vectors and Time Series, when demonstrating the difference between
the three graphics systems in R. As you remember, we used the following data.
frame object (although not knowing that it was a data.frame object at the time) that
represents a time series of temperature measurements. The time column of this
data.frame object contains dates, while the tmax column contains the daily
temperature maxima:

> head(dat)
 time tmax
1 2006-01-01 13.3
2 2006-01-02 14.4
3 2006-01-03 15.6

http:// /

Chapter 9

[283]

4 2006-01-04 14.4
5 2006-01-05 10.6
6 2006-01-06 12.8

We used the following expression to produce the simplest possible line plot of this
time series with ggplot2:

> library(ggplot2)
> ggplot(dat, aes(x = time, y = tmax)) +
+ geom_line()

Although the following screenshot already appeared, in Chapter 2, Working with
Vectors and Time Series, it is provided again here since we are going to discuss the
example for some time now:

We will now briefly go over the main characteristics of the ggplot2 syntax, referring
to the previous example. Later in this chapter, we will produce additional plots
using other datasets from the previous chapters. This way, by the end of this chapter,
we'll have reviewed the most important concepts and methods of operation for
visualization of spatial data with ggplot2.

http:// /

Advanced Visualization of Spatial Data

[284]

The ggplot2 package is extremely flexible. Due the abundance
of functions and usage options, the variety of plots it is capable of
producing is mainly limited by the users' knowledge and expertise.
However, this abundance can be overwhelming for beginners. In
addition, the ggplot2 syntax is hard to grasp at first, both conceptually
and practically. Nevertheless, those who overcome the initial difficulties
are greatly rewarded.
The purpose of this chapter is to present, through examples, some of
the most important points to note when using ggplot2 to display
spatial data. Obviously, we cannot cover all plot types and their optional
modifications (even a standalone book cannot accomplish such a
task). What we can do is provide the initial knowledge sufficient for
orientation. The subsequent usage of ggplot2 will inevitably require
trial and error, as well as looking for help online. In addition, the
following sources of information on ggplot2 are highly recommended:

• The ggplot2 package is fortunately accompanied by a
highly comprehensive collection of help pages (http://
docs.ggplot2.org/), where all functions and arguments
are reviewed—in most cases with code and graphical output
examples.

• Winston Chang's book R Graphics Cookbook, O'Reilly Media,
which was published in 2012, is notable for providing an
extensive coverage in the form of precise recipes for
visualization using ggplot2 (although there are relatively
few examples involving spatial data).

• Readers interested in more information on the theoretical
background of ggplot2 can refer to the absorbing book by the
package author Wickham, H. ggplot2: Elegant Graphics for Data
Analysis, Springer, 2009. Some of the code sections in that book
are slightly outdated (the package has evolved since the book
was published), but this does not affects the book's utility.

Each expression used to create a plot with ggplot2 is made up of several components
as we shall see shortly. It starts with the ggplot function call (such as ggplot(dat,aes
(x=time,y=tmax))), followed by additional layers' definitions and settings.

At the core of each plot created with ggplot2 are the layers, with each layer
necessarily associated with a given geometry and the data used to draw the layer. A
plot with no layers cannot be produced since there will be nothing to show:

> ggplot(dat, aes(x = time, y = tmax))
Error: No layers in plot

http://docs.ggplot2.org/
http://docs.ggplot2.org/
http:// /

Chapter 9

[285]

Layers are added to a plot using the + operator, and the data used to create the
layer, as well as the aesthetic mapping (the link between the data and layers' aesthetic
appearance), are specified as arguments either in the ggplot function (setting them
as global arguments for this particular plot) or in the respective layer function (setting
them as local arguments for the particular layer only).

The most straightforward way to create a layer is to use the layer function, where
we can (rather verbosely) specify all of the layer characteristics. The preceding
plot, for instance, can also be produced with the following expression, which
demonstrates that geom_line is a layer with a predefined "line" geometry
and "identity" statistical transformation (this means that there is no statistical
transformation; the values are taken as is), among other default definitions that
remain hidden (such as colour="black" for line color):

> ggplot(data = dat, aes(x = time, y = tmax)) +
+ layer(geom = "line", stat = "identity")

However, in practice, layers are most often specified using predefined layer
functions rather than the layer function. These functions' names start with geom
(such as geom_line) or stat (such as stat_contour). There is no conceptual
difference between these two types of functions; the difference is just in their
defaults—the latter emphasizes statistical transformations while the former does not;
therefore, each type of function may be easier to use for a given purpose. However,
it should be remembered that the settings of any given layer can be overridden, so
in many cases the geom and stat layers are redundant in terms of the desired result.
For example, exactly the same layer of contours can be produced with either geom_
contour or stat_contour.

In general, each layer is composed of the following five components:

• The geometry the layer follows (this is already encompassed in the layer
function name, for example, geom_line)

• The data.frame object where the data come from (for example, dat)
• The definition of the link between the data and layer appearance,

that is, aesthetic mapping inside the aes function (for example,
aes(x=time,y=tmax)) or the definition of appearance unrelated to the data,
that is, aesthetic setting outside the aes function

• The statistical transformation that manipulates the data prior to aesthetic
mapping (we will not use this here)

• A position adjustment to deal with overlapping graphical objects (we will not
use this here)

http:// /

Advanced Visualization of Spatial Data

[286]

A function to create a layer (such as geom_line) already encompasses defaults for
the geom (geometry) and stat (statistical transformation) parameters; it is rarely
necessary to override these in practice. For our purposes in this chapter, we will
also not have to deal with position adjustments; these are most useful in nonspatial
plots such as histograms and boxplots. Therefore, there are just two parameters we
will usually modify in the ggplot2 layers—the data and aesthetic mappings (and,
optionally, aesthetic settings). For example, the previous plot of tmax as a function of
time has only one layer and the geometry type of that layer is "line". The function
used to create the layer is named geom_line, accordingly. The data.frame object
from where the time and tmax values come is dat, with time mapped to x (the x axis
aesthetic) and tmax mapped to y (the y axis aesthetic).

The following table lists the specific layer functions we will use in this chapter in
order to produce several common types of layers. The table also shows the set of
required and optional parameters of each function. The required parameters (or
aesthetics) of a given layer control its geometry and so, a layer cannot be drawn
without them. For example, the geom_line function requires a set of x and y
coordinates since no line can be drawn without these. As we shall see, in practice
the required parameters are always mapped to variables in our data (in the form
of an assignment within an aes function call). On the other hand, the optional
parameters can either be mapped to variables in our data, set at constant values or
left unspecified (in which case, they are set to their default constant values, such as
colour="black" for geom_line, giving the line its default black color).

Function name Required
parameters

Optional parameters

geom_line x, y alpha, colour, linetype, size
geom_
histogram

x alpha, colour, fill, linetype, size, weight

geom_point x, y alpha, colour, fill, shape, size
geom_text label, x, y alpha, angle, colour, family, fontface,

hjust, lineheight, size, vjust
geom_path x, y alpha, colour, linetype, size
geom_contour x, y alpha, colour, linetype, size, weight
geom_
density2d

x, y alpha, colour, linetype, size

geom_polygon x, y alpha, colour, fill, linetype, size
geom_raster x, y alpha, fill

http:// /

Chapter 9

[287]

There are, at the time of writing, 37 geom and 21 stat functions (visit http://docs.
ggplot2.org/ for the complete list). In this chapter, we will limit ourselves to just
these nine geom functions, which are highly relevant with respect to spatial data.

Most of the names of the geometries are self-explanatory. For example, geom_line is
used to draw lines, geom_histogram is used to draw histograms, and geom_raster
is used to draw rasters. The geom_contour and geom_density2d functions are used
to create contours based on raster values or point density, respectively, as we shall
see later in this chapter. The difference between geom_line and geom_path requires
clarification. While both functions are used to create a line layer, the series of (x,y)
points is connected according to their order along the x axis in geom_line. On the
other hand, in geom_path, the points are connected according to their original order
in the source data.frame object. Therefore, the first is useful when plotting time
series or mathematical functions (such as the temperature time series), while the
second is useful to plot spatial line layers (such as a GPS track).

In addition to layer functions and their settings, which we briefly reviewed, three
other types of components are used to control plot appearances in ggplot2:

• scales: Used to control the conversion, or mapping, between the data values
and aesthetics we see on the screen (these functions' names start with scale,
for example, scale_x_date)

• faceting: Used to produce multiple plots of different data subsets, side by
side (these start with facet, for example, facet_grid)

• themes: Used to modify the general appearance of the plot (these start with
theme, for example, theme_bw)

How are all of these components specified in practice? The first component, as we
have already seen, is always a ggplot function call that initializes a ggplot object
used to store all the necessary information to produce a plot. It usually takes the
ggplot(data,aes(...)) form, where data is the default data.frame object to be
taken into account when plotting, and aes(...) is the default aesthetic mapping
to be used. These are passed to all of the other layers, unless the respective layer
definition specifies its own data and/or aesthetic mapping, in which case they
override those within ggplot(). Next, the layers, scales, faceting definitions, and
themes are added with each two components separated by a + symbol. In our last
example, the ggplot(dat,aes(x=time,y=tmax)) part specified that the default
dataset is dat, and the default aesthetic mapping is to plot time on the x axis and
tmax on the y axis. The geom_line() part then added a line layer; no arguments
were specified, therefore the layer used the default dataset and the default aesthetic
mapping. Scales, faceting, and theme settings were also left unspecified.

http://docs.ggplot2.org/
http://docs.ggplot2.org/
http:// /

Advanced Visualization of Spatial Data

[288]

It is important to understand that in order to produce a minimal plot, we need
to specify only a dataset, a single layer, and mappings for the layers' required
parameters (such as x and y in geom_line). Other layer parameters (such as colour
or size), scales, faceting, and themes are optional. For example, the following
expression adds a colour setting and two scale definitions, but it produces exactly
the same plot as shown in the preceding screenshot, since all of the components we
added were already specified by default:

> ggplot(dat, aes(x = time, y = tmax)) +
+ geom_line(colour = "black") +
+ scale_x_date() +
+ scale_y_continuous()

The two scale settings used in the preceding expression (scale_x_date() and
scale_y_continuous()) had no effect since a continuous variable (such as tmax)
is by default plotted on a continuous scale, while a Date variable (such as time)
is by default plotted on a dates scale. In addition, we have an aesthetic setting
(colour="black") that had no effect either. As opposed to an aesthetic mapping
(which is always encompassed in the aes function), the aesthetic setting links the
layer to a constant aesthetic value, irrespective of the data in a given column. In the
preceding expression, we set the line color to black in the geom_line layer, with
colour="black". Again, since "black" is the default value for the line color in
ggplot2, this setting does not affect the plot appearance.

The plot we produced still needs a little polishing if we would like to include it in
a publication. In general, certain plot adjustments are not related to the data (for
example, changing the background color), while others are indirectly related to
the data (for example, changing the color scale of a raster). First of all, we would
like to have proper axis titles (for example, "Time" instead of "time" for the x axis),
preferably without changing the data column names themselves. In many cases a
journal may require a cleaner appearance, so we may also wish to remove the gray
background and grid lines. The latter two properties can be modified using the scales
and themes specifications, respectively.

Through the theme functions, we can control the general appearance of the plots'
nondata elements, such as plot title, axis labels style, tick marks length, background
color, and so on. This can be done in two ways, which are not mutually exclusive
but additive:

• The so-called complete themes can be specified to control all of the elements
at once, in a predefined way. The predefined themes in ggplot2 currently
include theme_grey, theme_bw, theme_linedraw, theme_light, theme_
minimal, and theme_classic. You are welcome to replace theme_bw with
each of these in the following code section, to see what each theme looks like.

http:// /

Chapter 9

[289]

• Modifying individual elements can be done using the theme function,
specifying the element names and the required arguments. For example,
adding theme(panel.grid=element_blank()) eliminates grid lines.
There are currently 50 theme elements (such as panel.grid), which can
be modified through the theme function (see ?theme for the complete list).
Three important things to note about themes are:

 ° The value of each theme element can be set using the appropriate
function (element_blank, element_line, element_rect, or
element_text). For example, to set axis.title, we will use
element_text, but to modify panel_grid, we will use element_
line (unless we want to eliminate it altogether, in which case we will
use element_blank). Consult ?theme to see which element function
is appropriate in specific cases.

 ° Within the element function, we can supply a list of characteristics
we want to modify for that particular element. For example,
element_line(colour="red",linetype="dotted") for panel.
grid will make the grid lines red and dotted. As always, all
unspecified properties remain at their default values.

 ° Some element properties inherit from others. For example, with
panel.grid=element_blank(), there is no point modifying the
panel.grid.minor and panel.grid.major (minor and major grid
lines, respectively) characteristics since the properties of both are
overridden by panel.grid.

Functions to modify the scales start with scale, followed by the aesthetic property
and the scale type. For example, scale_x_date sets the x axis position aesthetic
property to the date type. Arguments within a scale function control additional
properties of the scale, other than scale type which is determined by the function's
name. For example, the name parameter determines the scale name that appears
along the respective axis or legend. Each aesthetic we would like to set a scale for
requires an individual scale function (for example, scale_x_date() and scale_y_
continuous()).

http:// /

Advanced Visualization of Spatial Data

[290]

As an example, in the following code we modify several theme and scale properties
of the time series plot:

> ggplot(dat, aes(x = time, y = tmax)) +
+ geom_line() +
+ scale_x_date(name = "Time") +
+ scale_y_continuous(
+ name =
+ expression(paste("Maximum temperature (", degree, "C)"))) +
+ theme_bw() +
+ theme(panel.grid = element_blank())

As you may have noticed, the y axis label is specified in a special
way in the preceding code with expression(paste("Maximum
temperature (", degree, "C)")). The reason for doing this is
to introduce the degree (º) symbol in the y axis title (see the following
screenshot). The expression function returns an object of class
expression, which can be used to print mathematical symbols and
annotations in R. It is combined with paste in order to include both
regular characters and mathematical symbols. In this case, the text
consists of the "Maximum temperature (" and "C)" parts, while
the mathematical part is degree, which stands for the º symbol. The
complete list of possible annotations and their syntax is available on
the ?plotmath help page.

The following screenshot shows what the new version of our plot looks like:

http:// /

Chapter 9

[291]

We can see that the plot is now black and white (thanks to theme_bw) with no grid
lines (thanks to theme(panel.grid=element_blank())) and it has appropriate axis
labels (thanks to the scale specifications).

At times, a touch of interactive fine-tuning is required to introduce
nonstandard elements or formatting into the graphical output from R. For
instance, we may wish to put an arrow mark (such as ↓) with annotation
(such as this was an especially cold day) on the preceding plot. Although
it is possible to accomplish almost everything through the ggplot2
syntax (including the latter example), in some situations it may be
advantageous to make final adjustments by hand using a graphical editor
such as Inkscape (freely available from http://www.inkscape.org/)
or Adobe Illustrator. For this purpose, it is best to export the plot with
ggsave to a vector graphics file (such as PDF or SVG), and then work on
it in a graphical editor.

Plotting nonspatial data
Since our main focus is on plotting spatial data, in this section, we will go over just
two examples of ordinary (nonspatial) plots. Most of the subsequent examples in this
chapter will deal with producing spatial plots, or in other words, maps.

We will begin with a line plot, but a more elaborate one than in the previous
example. As promised in Chapter 7, Combining Vector and Raster Datasets, we are
going to compare, visually, the NDVI trajectory in two forests (Lahav and Kramim)
according to two data sources (the Landsat and MODIS satellites). To do this, we will
display the four relevant time series in a single plot. We will mark the data for each
forest with a different color in order to distinguish them. In addition, we will use
different geom functions for the data from each of the two satellites—the data from
MODIS (where we have 280 data points for each forest) is best displayed with geom_
line, while the data from Landsat (where we have only three data points for each
forest) will be displayed with geom_point.

In terms of the ggplot2 syntax, the data from our input table forests_ndvi will be
divided into two parts:

• forests_ndvi[forests_ndvi$sat == "MODIS",]

• forests_ndvi[forests_ndvi$sat == "Landsat",]

http://www.inkscape.org/
http:// /

Advanced Visualization of Spatial Data

[292]

The first subset of forests_ndvi will be passed as the data argument to geom_
line, while the second will be passed as the data argument to geom_point. As for
the aesthetic mapping (the assignment expressions within the aes function), x is
going to be mapped to date and y to ndvi, in both layers (NDVI is plotted as the
function of time). In addition, the colour (in geom_line) and fill (in geom_point)
are mapped to forest since we want to display the time series for each forest with
a different color. One instance of the aesthetic setting is used in the point layer
(shape=21), defining the points shape as 21 (which corresponds to a filled circle; see
?points). In addition to these two layers, six ggplot components are supplied to
specify the various scale settings (just their names, in this case) and theme settings
(no grid lines and "top" for the legend position). Note that the scales for fill and
colour are discrete (scale_fill_discrete and scale_colour_discrete), which is
appropriate for categorical variables such as the forest name.

The assigned colors are generated automatically. There is also a
way to explicitly specify the color each group will take, using a
manual scale. We will not go into that here; interested readers can
follow the examples on ?scale_colour_manual to see how
individual colors of choice can be specified.

The entire expression to produce the plot thus takes the following form:

> ggplot() +
+ geom_line(
+ data = forests_ndvi[forests_ndvi$sat == "MODIS",],
+ aes(x = date, y = ndvi, colour = forest)) +
+ geom_point(
+ data = forests_ndvi[forests_ndvi$sat == "Landsat",],
+ aes(x = date, y = ndvi, fill = forest), shape = 21) +
+ scale_x_date("Time") +
+ scale_y_continuous("NDVI") +
+ scale_fill_discrete("Forest") +
+ scale_colour_discrete("Forest") +
+ theme_bw() +
+ theme(panel.grid = element_blank(),
+ legend.position = "top")

http:// /

Chapter 9

[293]

The time series plot, as shown in the following screenshot, is produced as a result:

Notably, the same legend has been generated for the points fill aesthetic and the
lines colour aesthetic (and so, the legend symbols are composed of both line and
point geometries). The fact that the same color scale is generated by ggplot2 for both
aesthetics makes things easier.

As for the NDVI pattern the plot portrays, we can clearly see that the Kramim forest
has consistently lower NDVI than Lahav and that the data from both satellites is in
agreement on this. The seasonal NDVI pattern, which we have already witnessed on
several occasions in previous chapters, is also apparent in the MODIS data.

In the second nonspatial example, we will plot the distribution of topographic slopes
in built versus natural areas in Haifa, based on the buildings_mask and natural_
mask rasters we created in Chapter 7, Combining Vector and Raster Datasets. This time,
the data come in the form of rasters. Since ggplot2 requires data.frame objects,
the first thing to do is bring the data into one. We will transfer the (non-NA) values
of each raster to a table with two columns: one containing the raster values and the
other identifying the cover type ("Buildings" or "Natural"):

> build = data.frame(cover = "Buildings",
+ slope = buildings_mask[!is.na(buildings_mask)])
> nat = data.frame(cover = "Natural",
+ slope = natural_mask[!is.na(natural_mask)])

http:// /

Advanced Visualization of Spatial Data

[294]

Then, we will bind both tables into a single one with rbind:

> slopes = rbind(nat, build)
> head(slopes)
 cover slope
1 Natural 0.3740864
2 Natural 0.3918563
3 Natural 0.4300925
4 Natural 0.4843213
5 Natural 0.5266151
6 Natural 0.3173897

The data is ready to be plotted. This time, what we are interested in is visually
comparing distributions. The most obvious way of doing this is to plot histograms
of the two variables side by side. In ggplot2, a histogram layer can be created with
geom_histogram, specifying only a single aesthetic—x. In order to produce two
histograms in a single plot, we will also use faceting.

Faceting, as previously mentioned, is the generation of numerous plots of the same
type for different subsets of the data, within a single graphical output. For example,
in the present context we would like to create two histograms side by side: one for
the "Buildings" cover type and another for the "Natural" cover type. The reason
for using faceting—in addition to saving the trouble of running the same code several
times—is having a similar appearance and common axes in all subplots and thereby,
making the comparison easier. There are two functions to produce facets in ggplot2;
the difference between them is in the way the subplots are geometrically arranged:

• facet_wrap: Used to create a continuous ribbon of panels, while (optionally)
specifying the number of rows or columns (with nrow and ncol). This is most
useful to create numerous subplots of the same type.

• facet_grid: Used to create a two-dimensional grid of panels with the rows
and columns defining different levels of a given variable. This is most useful
when subplots are defined by combinations of two variables.

The most important parameter of both facet_wrap and facet_grid is the formula
defining the grouping factor(s) to create the facets. With facet_wrap, we can specify
only a single factor (for example, facet_wrap(~group)) since the facets form a one-
dimensional ribbon. With facet_grid, we can specify two factors: one for the rows
and another one for the columns (for example, facet_grid(group_row~group_
column)). If we wish to create facets with facet_grid according to a single factor,
we can replace one of the variables with a dot (.). For example, facet_grid(group_
row~.) will result in a vertical ribbon of facets (since there is no factor for the
columns), while facet_grid(.~group_column) will result in a horizontal ribbon of
facets (since there are no factors for the rows).

http:// /

Chapter 9

[295]

To clarify things, it is best to show an example. The following code produces two
histogram facets, according to the grouping variable cover, using facet_grid. Since
we have only one grouping factor, we mark the column grouping as . to obtain a
vertical ribbon (later in this chapter, in the Spain temperature maps example, we will
use facet_grid with two grouping factors):

> ggplot(slopes, aes(x = slope)) +
+ geom_histogram() +
+ facet_grid(cover ~ .) +
+ scale_x_continuous("Slope (radians)") +
+ scale_y_continuous("Count") +
+ theme_bw()

The resulting plot is shown on the left in the following screenshot. Since in this case
we have a single grouping variable, the same kind of plot can also be produced with
facet_wrap. Replacing facet_grid(cover~.) with facet_wrap(~cover,ncol=1)
produces an identical plot, except for a slightly different facet labeling scheme; the
latter plot is shown on the right in the following screenshot. Note that in both cases,
the facets share a common x axis.

http:// /

Advanced Visualization of Spatial Data

[296]

Looking at these histograms, we can see that most buildings are located on relatively
flat terrain while most natural areas occupy steeper slopes, which makes sense.

Quantitatively comparing the properties of slopes' distributions is
straightforward using tapply and the slopes table. For example,
tapply(slopes$slope,slopes$cover,mean) will show that
the mean slopes for the "Natural" and "Buildings" cover types
are 0.23 and 0.15, respectively. Substituting mean with other
functions (such as min, max, and sd) will yield other properties.

Saving the ggplot2 plots
In addition to the usual method of saving a graphical output in a file (see Chapter 2,
Working with Vectors and Time Series), there is a specialized function called ggsave for
saving ggplot2 plots. For example, the first image in this chapter was incorporated
into this book from a PNG file, obtained with ggsave as follows:

> ggplot(dat, aes(x = time, y = tmax)) +
+ geom_line()
> ggsave("C:\\Data\\4367OS_09_01.png", width = 5.5, height = 3.5)

The ggsave function, by default, saves the last ggplot object that has been plotted in
the graphical window. Therefore, the only mandatory parameter is the file path. The
file extension provided in the path determines the file format (a PNG image in this
case; see ?ggsave for a list of possible formats). The figure dimensions are taken as
those of the currently active graphical window, unless explicitly specified through
the width and height parameters. For instance, in this case, the width is equal to
5.5 inches (inches are the default unit, cm and mm are also possible) since this is a
commonly used text width in the letter page format.

When saving the ggplot2 output to PDF, it is recommended to
specify useDingbats=FALSE. This avoids potential problems
associated with plot rendering, due to the default conversion
of circles to text objects, when we prefer to leave the former as
geometric objects.

A ggplot object can also be assigned and kept in memory:

> tmax_line = ggplot(dat, aes(x = time, y = tmax)) +
+ geom_line()

http:// /

Chapter 9

[297]

It is already apparent, from the last few examples, that the print method applied to
such an object induces drawing it in a graphical window. Assignment of a complete
ggplot2 plot, or individual layers (which we will see later), may serve at least two
useful purposes:

• We can save a plot with ggsave providing the plot object as an argument so
that we do not have to wait for the plot to be drawn in the graphical window
for no good reason. This way, we also do not need to keep in mind which
plot was produced last. For example, after the tmax_line object has been
created, we can save the plot it describes as follows:
> ggsave(plot = tmax_line,
+ filename = "C:\\Data\\4367OS_09_01.png",
+ width = 5.5,
+ height = 3.5)

• We can define useful combinations of layers and/or settings, which we
will repeatedly use to save us the trouble of typing the whole collection of
components when producing a series of plots that have some components in
common. Complete themes, such as theme_bw, also serve this purpose. For
example, the following expression produces the same plot we saw in the first
image in this chapter:
> tmax1 = ggplot(dat, aes(x = time, y = tmax))
> tmax2 = geom_line()
> tmax1 + tmax2

Plotting spatial data
So far in this chapter, we introduced the ggplot2 package and briefly reviewed its
syntax using a few simple, nonspatial examples. In the next two sections, we will
move on to slightly more complicated examples, now involving spatial data. What
you will see right away is that producing a map with ggplot2 is conceptually no
different from producing any other kind of plot (because spatial data, in turn, is not
conceptually different from any other type of data).

http:// /

Advanced Visualization of Spatial Data

[298]

A map is, in fact, simply a two-dimensional plot with points, lines, polygons and/
or rasters, with plot space corresponding to geographical space through a given
CRS. Since plot space is tied to geographical space, a map has a specific aspect ratio
between the x and y axes (1:1). In other words, we cannot stretch a map to be wider
or narrower since this would distort the correct proportion between distances in the
x and y directions (unlike the tmax time series plot we saw earlier in this chapter, for
example, which can be stretched any way we like and still remain meaningful). As
you may have noticed, the plot method, applied on spatial vector layers or rasters in
previous chapters, also produces plots with a constant 1:1 aspect ratio. The difference
is that in ggplot2, the input data comes as a data.frame object so the function has
no way of knowing that the data is spatial. Therefore, we need to manually specify
that the aspect ratio should be constant using the coord_equal function.

To summarize these considerations, a map produced with ggplot2 is just like any
other plot produced with this package, except for the following two characteristics:

• The plot represents geographical space through a given CRS and includes
spatial data in the form of points, lines, polygons, and/or rasters

• The x and y axes scale ratio is fixed at 1:1 (using coord_equal)

It should be noted that ggplot2 (along with ggmap, which will be
introduced in the next section) is not the best choice for all spatial
data visualization tasks. Maps that require, for example, substantial
annotation (such as labels, scale bars, and north arrows) or special
display-optimization algorithms (such as reduced overlap between street
name labels and other map elements) are easier to handle in traditional
GIS software. The advantage of ggplot2, with respect to map making,
becomes decisive in fairly analogous situations to those when R itself is
advantageous:

• Automation: When we want to automatically produce a large
number of high-quality maps, for example, using facets or loops

• Reproducibility: When we want to make sure exactly the same
map is replicated with different datasets, at different times, or
among different users

• All-in-one environment: When we want to show certain
elements computed in R on a map (such as spatial interpolation
predictions) or integrate other capabilities that R has (such as
downloading real-time data from the Web) without needing to
transfer the data between different software

http:// /

Chapter 9

[299]

Now that the framework to use ggplot2 with spatial data is defined in general
terms, let's proceed to the practical application. So far, we witnessed that spatial
vector layers and rasters are best represented in R using special classes such as
SpatialPolygonsDataFrame or RasterLayer. How can we convert these data
structures to data.frame objects to be passed to ggplot? Point and raster layers are
readily convertible to a data.frame object using the as.data.frame function (for
example, we converted the spainT raster to a data.frame object in the previous
chapter). As already mentioned, however, lines and polygons are more complex than
points and rasters due to the fact that each line or polygon geometry is composed of
a variable number of points. The order in which the points are connected is also an
integral part of the data, responsible for the correct geometry drawing. Therefore, a
data.frame object representing a line or polygon layer must have x and y coordinate
columns (as do data.frame objects for points and rasters), but also a grouping
column (to denote which set of points forms a given line or polygon) and an ordering
column (to specify the order by which the points are connected when drawing the
given line or polygon). Conveniently, a function called fortify is already defined
in ggplot2 to convert line and polygon layers into data.frame objects while
preserving these properties.

For example, at the end of Chapter 5, Working with Points, Lines, and Polygons, we
created a SpatialPolygonsDataFrame object named county that contains the
borders of US counties along with average population densities for each county in
the attribute table (the density column). In order to bring the data in county to
a data.frame form, readily available to be used by ggplot, we need to apply the
fortify function. The "regions" parameter of fortify is used to specify which
attribute table column corresponds to individual features. Since the FIPS column
identifies unique counties in the attribute table, we can use it as the region:

> county_f = fortify(county, region = "FIPS")
> head(county_f)
 long lat order hole piece group id
1 1225972 -1274991 1 FALSE 1 01001.1 01001
2 1234371 -1274114 2 FALSE 1 01001.1 01001
3 1244907 -1272280 3 FALSE 1 01001.1 01001
4 1244132 -1267496 4 FALSE 1 01001.1 01001
5 1265116 -1263940 5 FALSE 1 01001.1 01001
6 1265318 -1263907 6 FALSE 1 01001.1 01001

http:// /

Advanced Visualization of Spatial Data

[300]

This is a typical output of fortify. The table contains processed spatial information
from the county layer plus the id column corresponding to the region variable
(in this case, FIPS). The important columns, for our purposes, are as follows:

• long and lat: The spatial coordinates. Note that these are the default x and y
coordinate column names, respectively, created by fortify, even when the
layer is not in a geographical CRS.

• group: Individual geometries identifier.
• id: Individual features identifier.

Since all other attribute data columns are removed by fortify, we need to append
the density column manually by joining the attribute table of county back to
county_f. However, before that, we need to change the name of the id column to
"FIPS", to match the FIPS column in the attribute table:

> colnames(county_f)[which(colnames(county_f) == "id")] = "FIPS"
> county_f = join(county_f, county@data, "FIPS")
> head(county_f)
 long lat order hole piece group FIPS NAME_1 NAME_2
1 1225972 -1274991 1 FALSE 1 01001.1 01001 Alabama Autauga
2 1234371 -1274114 2 FALSE 1 01001.1 01001 Alabama Autauga
3 1244907 -1272280 3 FALSE 1 01001.1 01001 Alabama Autauga
4 1244132 -1267496 4 FALSE 1 01001.1 01001 Alabama Autauga
5 1265116 -1263940 5 FALSE 1 01001.1 01001 Alabama Autauga
6 1265318 -1263907 6 FALSE 1 01001.1 01001 Alabama Autauga
 TYPE_2 area census2010pop density
1 County 1562.805 54571 34.91863
2 County 1562.805 54571 34.91863
3 County 1562.805 54571 34.91863
4 County 1562.805 54571 34.91863
5 County 1562.805 54571 34.91863
6 County 1562.805 54571 34.91863

Using this table, we are ready to create a map showing population densities per
county. However, it would be nice to add state borders as well to aid in map
apprehension. To obtain states borders layer, we will download it from the GADM
database (see Chapter 5, Working with Points, Lines, and Polygons). We will then use
fortify on it as well:

> states = getData("GADM", country = "USA", level = 1)
> states = states[!(states$NAME_1 %in% c("Alaska", "Hawaii")),]
> states = spTransform(states, CRS(proj4string(county)))
> states_f = fortify(states, region = "NAME_1")

http:// /

Chapter 9

[301]

> head(states_f)
 long lat order hole piece group id
1 1076104 -1034268 1 FALSE 1 Alabama.1 Alabama
2 1085410 -1033146 2 FALSE 1 Alabama.1 Alabama
3 1093749 -1031892 3 FALSE 1 Alabama.1 Alabama
4 1107308 -1030032 4 FALSE 1 Alabama.1 Alabama
5 1108666 -1029851 5 FALSE 1 Alabama.1 Alabama
6 1112841 -1029288 6 FALSE 1 Alabama.1 Alabama

To plot a spatial layer created with fortify (either lines, as we shall see later, or
polygons), we need to map the x and y aesthetics to the long and lat columns,
respectively. In addition, we need to map the group column to the group aesthetic
so that each geometry will be drawn separately. For example, the California feature
is composed of several geometries (the mainland plus several islands in the Pacific
Ocean), and ggplot needs to know which points form separate polygons according
to the group column ("California.1", "California.2", and so on). If we want to
give certain aesthetics to each state, we can do that using the id column (where all
California polygons share the "California" label).

The group aesthetic can also be implemented in nonspatial layers and
in layers other than geom_polygon. It is used to identify individual
geometries in order to draw them separately, when no other aesthetic
(such as colour or fill) does the job. For example, in the following
screenshot, we do not want each geometry (such as each island of
California) to have a unique appearance, but we still want these
geometries to be drawn separately rather than with a line going through
all of them one by one. Try removing the group=group part from the
following expression and you will see what a mess the result is. You
can also try group=id to see that it messes up only those states that are
composed of more than one geometry, where grouping by the group
column is indeed essential.

Another helpful feature we will experiment with in the present example is to save
a collection of the ggplot2 components in order to integrate them in several plots
and not have to type the expressions each time. We will create an object named sp_
minimal, defining our own custom theme (based on theme_bw, with the axis name,
labels, and tick marks removed):

> sp_minimal =
+ theme_bw() +
+ theme(axis.text = element_blank(),
+ axis.title = element_blank(),
+ axis.ticks = element_blank())

http:// /

Advanced Visualization of Spatial Data

[302]

Before we plot county densities, we will start with a simpler example—drawing just
the states_f layer—to see how spatial polygon layers are drawn in ggplot2:

> ggplot() +
+ geom_polygon(data = states_f,
+ aes(x = long, y = lat, group = group),
+ colour = "black", fill = NA) +
+ coord_equal() +
+ sp_minimal

A map of the states is produced as follows:

As you can see in the previous syntax, the polygons are drawn using geom_polygon
according to the long, lat, and group data columns (mapped to the x, y, and group
aesthetics, respectively), with the colour and fill polygons set to constant values
("black" for colour and NA for fill, respectively; this means empty polygons with
black borders). The other two plot elements are coord_equal (which makes sure the
1:1 aspect ratio is maintained) and the sp_minimal theme we just defined.

http:// /

Chapter 9

[303]

Now, we will make things slightly more complicated by plotting both the states_f
and county_f layers together. Let's first view the code and output. Afterwards, we
will discuss the different components involved. Here's the code that produces a
county population density map:

> ggplot() +
+ geom_polygon(data = county_f,
+ colour = NA,
+ aes(x = long, y = lat, group = group, fill = density)) +
+ geom_polygon(data = states_f,
+ colour = "white", size = 0.25, fill = NA,
+ aes(x = long, y = lat, group = group)) +
+ scale_fill_gradientn(
+ name = expression(paste("Density (",km^-2,")")),
+ colours = rev(rainbow(7)),
+ trans = "log10",
+ labels = as.character,
+ breaks = 10^(-1:5)) +
+ coord_equal() +
+ sp_minimal

The following screenshot shows how the resulting plot looks:

http:// /

Advanced Visualization of Spatial Data

[304]

Reading the preceding code reveals, first of all, that the plot is made by combining
the following five components:

• geom_polygon (with county_f)
• geom_polygon (with states_f)
• scale_fill_gradientn

• coord_equal

• sp_minimal

The two geom_polygon layers, representing "states" and county layers, are
drawn differently according to our needs in this visualization. The first thing to
note about these layers is their order of appearance: the county_f layer is added
before states_f. This is not a coincidence; the layers are drawn on the screen in the
same order in which they are provided in the code. Since state and county borders
obviously overlap, and we wish to draw the states borders on top of the counties
borders (otherwise the states borders will not be visible), it is important to specify the
layers in the right order.

The states_f layer arguments are identical to those in the previous example; except
that, we made the polygon borders white (with colour="white") and thin (with
size=0.25). As for the county_f layer, the color of the borders (rather than fill)
was set to NA, resulting in borderless polygons, and fill was mapped to density.
The latter is indeed the defining feature of the map we made: mapping the county_f
polygons fill aesthetic to density is what gives different population densities
different colors, and that was the whole purpose of making this plot.

We mapped fill to density, but which color gets assigned to which density level?
As already mentioned, the scale function determines the way values in the data
are matched with the aesthetic appearance. So unless we are happy with the default
scale (which is frequently not the case), we have to set the scale characteristics
ourselves. For example, we already used scale_colour_discrete in the forests
NDVI time series example (applicable for discrete variables). In the present example,
the scale_fill_gradientn function, as the name suggests, was used to set the fill
scale type to gradientn. The latter is just one out of several possible fill scale types
(applicable to the colour aesthetic as well; see http://docs.ggplot2.org/ for a
complete list). For continuous variables, ggplot2 offers three types of color scales,
which can be specified using the following functions:

http://docs.ggplot2.org/
http:// /

Chapter 9

[305]

• scale_fill_gradient: A two-color gradient, with the gradient end colors
specified with high and low (see the Haifa buildings density example later
in this chapter)

• scale_fill_gradient2: A three-color gradient, with the low, med, and high
colors specified (see the London buildings distance to river example later in
this chapter)

• scale_fill_gradientn: A custom n-color gradient, specified with a
colours vector

There are several ways to create a vector of colors in R to be supplied to
the colours parameter of scale_colour_gradientn as well as to
other graphical functions. The simplest way, which we used in the present
example, is to employ one of the predefined color palette functions that
can take a numeric value as an argument and produce a series of colors
(returned as RGB codes) at equal intervals. These functions can be used
for many purposes:

• rainbow

• heat.colors

• terrain.colors

• topo.colors

• cm.colors

In the examples in this chapter, we employ rainbow and terrain.
colors. You are welcomed to experiment with the other three palettes to
see what they look like. The color codes these functions return are rarely
useful in their own right. Instead, they are passed as color palettes to
graphical functions such as scale_colour_gradientn.

> rainbow(3)

[1] "#FF0000FF" "#00FF00FF" "#0000FFFF"

In cases when you have a different palette in mind which is not covered
by these functions, you can use the RColorBrewer package (which
provides many more palettes) or the colorRampPalette function
available in base R (which can be used to create custom-made color
palettes; see the last example in this chapter).

A short explanation of the arguments of the scale_fill_gradientn function we
used is in order:

• name=expression(paste("Density (",km^-2"",")")): The name
argument specifies the scale name and the way it will appear on the plot
legend. We once again used the expression function, this time to add -2 in
superscript (see the preceding screenshot).

http:// /

Advanced Visualization of Spatial Data

[306]

• colours=rainbow(7): Specifies the vector of colors to create a color palette
with. Here, specifying seven colors gives a good result, with the whole
variability the rainbow palette provides represented. It may require trial and
error to find out how many colors are sufficient in each case.

• trans="log10": The trans parameter can be passed to any continuous scale
function in ggplot2. It is used to specify a mathematical transformation for
the data. In this particular example, we use a logarithmic scale ("log10")
to highlight the differences in the population density between different
counties, which is necessary since the distribution of county densities is
highly nonhomogeneous, with many low-density counties and few high-
density counties. You can try deleting the trans, labels, and breaks
arguments, and running the previous code once more to see why the default
linear scale is inappropriate in this case. There are many useful built-in types
of transformations, as well as methods to define custom transformations but
this is beyond the scope of this book.

• labels=as.character and breaks=10^(-1:5): The breaks argument
specifies the breakpoints where tick marks and labels are generated, while
the labels argument specifies the labels themselves or (as in this case) a
function to format the labels with. In this case, by default, R prints the 10^(-
1:5) labels vector in mathematical notation (1e-01, 1e+00, 1e+01, and so
on). This is evaded by converting the numeric values to characters (using
as.character) to receive more comprehensive labels (0.1, 1, 10, and so on).

The last two components in the code section that produces the preceding plot—
coord_equal and sp_minimal—were already used in the previous plot, so we will
not repeat their meaning here.

Finally, referring to the plot itself, we can see the concentration of densely populated
counties in the eastern half of the USA and along the coast of the Pacific Ocean.
Further inland in the Western USA, population density is generally low.

Moving on to the second type of spatial data structure, a raster, we are going to
experiment with different variations of the Haifa DEM map in the following few
examples. As the data source, we will take the dem and hill rasters (see Chapter 6,
Modifying Rasters and Analyzing Raster Time Series). Data from these two rasters will
be transferred into a single data.frame object with four columns: cell coordinates
(x and y), elevation value (elev), and hillshade value (hill). Note that in this case,
we use the data.frame function to do this, supplying the coordinates and the
vector of values from each raster separately (relying on the fact that the two rasters
are geometrically identical, since hill was derived from dem). An equally good
approach would have been to stack the two rasters and then convert the result to a
data.frame object with as.data.frame(...,xy=TRUE):

http:// /

Chapter 9

[307]

> dem_hill = data.frame(coordinates(dem),
+ elev = dem[],
+ hill = hill[])
> dem_hill = dem_hill[complete.cases(dem_hill),]
> head(dem_hill)
 x y elev hill
2421 698971.3 3648863 19 0.3533017
2422 699061.3 3648863 20 0.3408402
2423 699151.3 3648863 19 0.3402018
2424 699241.3 3648863 19 0.3451085
2425 699331.3 3648863 20 0.3439193
2426 699421.3 3648863 21 0.3368811

Now that we have the dem_hill table, we can plot the data using a geom_raster
layer. The geom_raster function requires the x, y, and fill aesthetics to draw a
raster, as the following code and images demonstrate. In addition, since we are going
to make several versions of the Haifa DEM plot, it would be best to save this basic
plot as a ggplot object (hereby named haifa_relief) so that we can later update it
by incorporating additional layers:

> haifa_relief = ggplot(dem_hill, aes(x = x, y = y)) +
+ geom_raster(aes(fill = elev)) +
+ scale_fill_gradientn("Elevation (m)",
+ colours = terrain.colors(10)) +
+ coord_equal() +
+ theme_bw() +
+ theme(axis.title = element_blank(),
+ axis.text.y = element_text(angle = 90, hjust = 0.5))
> haifa_relief

The syntax being used is analogous to the previous example, except that we
use geom_raster instead of geom_polygon; x and y are mapped to spatial
coordinates, while fill is mapped to raster values. Note that geom_raster takes
aes(fill=elev) as an argument, while the missing parts (data, x, and y) are
passed, by default, from the ggplot set of arguments. As we shall see right away,
this mode of operation is very convenient when we would like to add another layer
(in this case, the hillshade) with the same arguments so that we do not have to
type them once again. The theme components this time specify that the y axis labels
should be rotated by 90º (which is often used in maps). The resulting plot is shown
on the left panel in the following screenshot. Note that the color scale used (terrain.
colors) is particularly useful to display the topography.

http:// /

Advanced Visualization of Spatial Data

[308]

Now that we have our basic relief image, we can experiment with various additional
components that we may wish to show on top of it. For instance, the hillshade
calculation gave us a layer of theoretical shading degree for the given topography
and sun position (see Chapter 6, Modifying Rasters and Analyzing Raster Time
Series). We can add the shading values as an all-black raster with various levels of
transparency (making the shaded areas less transparent and thus darker). This will
create an illusion of a three-dimensional image, which is also known as a shaded relief
in cartography. To create shading, we need to add another raster layer with black
pixels whose transparency aesthetic is mapped to the hill values. Transparency, in
ggplot2 as well as in other graphical functions in R, is determined by a parameter
named alpha, ranging from 0 to 1, with 0 being completely transparent and 1 being
completely opaque. Limiting the maximum of the alpha scale to 0.5, using the range
parameter makes sure we do not get completely black pixels in heavily shaded areas:

> haifa_relief_shade = haifa_relief +
+ geom_raster(aes(alpha = hill), fill = "black") +
+ scale_alpha_continuous("Hillshade", range = c(0.5, 0))
> haifa_relief_shade

The resulting plot is shown on the right panel in the following screenshot. Viewing
the two images side by side demonstrates the effect that shading has.

http:// /

Chapter 9

[309]

Talking about topography, another feature we may wish to add to this plot is
contour lines. We already calculated contour lines from rasters both indirectly
(displaying them using levelplot, in Chapter 4, Working with Rasters, for instance)
and directly (creating a contour lines layer with rasterToContour, in Chapter 7,
Combining Vector and Raster Datasets). Here, we are looking at yet another indirect
way to calculate contour lines based on a raster using ggplot2. To add a contour
lines layer, we can use the geom_contour function, mapping its z aesthetic to
elevation so that contour lines are calculated according to it:

> haifa_relief_shade +
+ geom_contour(aes(z = elev), colour = "black", alpha = 0.3)

The following screenshot shows the graphical output that is produced, showing
semi-transparent contour lines on top of the shaded relief of Haifa:

http:// /

Advanced Visualization of Spatial Data

[310]

In the previous example, we generated a contour plot based on the values of
an existing raster (the Haifa DEM in this case). Another common type of plot
showing contours is one where contours denote the average density of events in a
point pattern. Creating density contours is a common way to reduce the amount
of information and make point pattern visualization more comprehensible. For
example, when we have so many points that they overlap each other, it may be
difficult to discern denser and sparser locations. Drawing contours is one possible
solution to this problem.

A commonly used procedure to create density contours out of a point pattern is two-
dimensional kernel density estimation, available through the base R function named
kde2d. The geom_density2d function is a ggplot2 adaptation of the latter function,
creating contours out of a density surface calculated with kde2d.

As an example of geom_density2d, we will draw contours showing the average
density of buildings in Haifa.

It should be noted that, in practice, density estimation is only meaningful
for mapped point patterns, that is, point patterns where all events in the
studied area have been detected. When detection is incomplete, density
estimates will obviously be biased to an unknown degree in each location.
In our case, for example, if the OpenStreetMap layer of Haifa buildings is
incomplete, then a density estimate based on it will not be very useful as
it will encompass underestimation to an unknown and variable degree.

Since density estimation requires a point pattern, we need to convert the buildings
layer to a point layer by finding building centroids:

> haifa_buildings_ctr = gCentroid(haifa_buildings, byid = TRUE)
> haifa_buildings_ctr = as.data.frame(haifa_buildings_ctr)
> head(haifa_buildings_ctr)
 x y
1 684013.4 3629679
2 688023.0 3629752
3 687645.0 3627410
4 685913.9 3631217
5 683144.4 3633649
6 683515.3 3628980

http:// /

Chapter 9

[311]

Taking the haifa_relief_shade plot, we will now add both the buildings point
pattern (using geom_point) and the density contours based on that pattern
(using geom_density2d). Using the limits parameter of scale_x_continuous
and scale_y_continuous, we will also limit our scope to a window centered at
haifa_buildings_ctr. In addition, the colour aesthetic of the contours is mapped
to ..level.., which corresponds to the contour breaks. The level variable is
surrounded by .., which is a special way to signal to ggplot2 that we are referring to
a variable generated by the layer itself, rather than a variable present in data.frame:

> haifa_relief_shade +
+ geom_contour(aes(z = elev), colour = "black", alpha = 0.3) +
+ geom_point(data = haifa_buildings_ctr, size = 0.5) +
+ geom_density2d(data = haifa_buildings_ctr,
+ aes(colour = ..level..)) +
+ scale_colour_gradient("Density", low = "blue", high = "red") +
+ scale_x_continuous(
+ limits = c(min(haifa_buildings_ctr$x)-2000,
+ max(haifa_buildings_ctr$x)+2000)) +
+ scale_y_continuous(
+ limits = c(min(haifa_buildings_ctr$y)-2000,
+ max(haifa_buildings_ctr$y)+2000))

The following screenshot shows the graphical output:

http:// /

Advanced Visualization of Spatial Data

[312]

In the preceding screenshot, we see three different legends as there are three
different scales: elevation, hillshade, and buildings density. According to this map
(again, assuming that all buildings have been mapped), we can see that the highest
density of individual buildings per unit area is found on the eastern slopes
of Mount Carmel.

Our final example in this section will be to plot the time series of interpolated
standardized temperature maps, which we created in the previous chapter. We
already took the trouble of reshaping the data into a tidy table; therefore, we do
not need to take any preliminary processing steps. Using the spainT table and the
following code section, we recreate a plot similar to the rasterVis version from the
previous chapter with ggplot2:

> ggplot(spainT, aes(x = x, y = y, fill = value)) +
+ geom_raster() +
+ scale_fill_gradient2(
+ expression(paste("Value (", degree, "C)")),
+ low = "blue", high = "red", limits = c(-4,4)) +
+ geom_contour(
+ aes(z = value),
+ colour = "black", size = 0.1, breaks = c(-4:-1,1:4)) +
+ coord_equal() +
+ facet_grid(variable ~ year) +
+ sp_minimal

The following screenshot shows the graphical output:

http:// /

Chapter 9

[313]

Note that we have once again utilized our sp_minimal custom-made theme to
eliminate the axis annotation. The geom_contour function has been used to generate
contour lines, similar to the Haifa DEM elevation contours, only that now we
specified the exact vector of breaks, specifying where contour lines will be generated.
Using facet_grid(variable~year), we arranged the facets in rows according to
variable and in columns according to year.

Adding static maps from the Web
Nowadays, cartographers and spatial analysts are lucky to have a variety of online
resources for map creation. We already used freely available satellite imagery,
DEMs, and administrative border datasets, for example. However, to recover and
process such datasets is not always a quick and straightforward task. We may need
to figure out the spatial location in question, search for available resources, import
them into R, and so on. On the other hand, several applications, such as Google Maps
and OpenStreetMap, provide readily available maps of the entire earth with a variety
of features that can be unreasonable to collect ourselves each time we want to create
a background for a quick visualization (satellite and aerial imagery, roads, borders,
town names, and so on).

The ggmap package is an extension to ggplot2, providing a simple interface to
download static maps from such online resources and easily incorporate them as
the background when creating maps within the ggplot2 framework. We already
used the ggmap package for geocoding (see Chapter 5, Working with Points, Lines,
and Polygons), and mentioned the introductory paper on this package by Kahle and
Wickham (2013).

By static maps, we refer to maps that cannot be manipulated by scrolling,
zooming in and zooming out, and so on, as opposed to dynamic maps
that respond to such user feedback. The whole ggplot2 framework,
in that sense, may be referred to as static plotting. It should be noted
that dynamic plots and maps (and even entire web applications; see the
shiny package) can also be produced in R. As for dynamic maps, for
instance, we have already seen a short example of using the Google Earth
software as a platform for dynamic spatial data display from R using the
plotKML package (see Chapter 4, Working with Rasters). Another example
is the plotGoogleMaps package, which can be used to display spatial
data from R on top of interactive Google Maps in a web browser.

http:// /

Advanced Visualization of Spatial Data

[314]

The static maps incorporation with ggmap is quite simple in practice. Using the
get_map function of the ggmap package, we first need to download the required
background image. Then, we can use that image as a background layer with the ggmap
function of the same package. Any additional layers and components can be added to
the plot initiated with ggmap the same way as to a plot initiated with ggplot.

Our first example featuring ggmap will be to display the City of London buildings
and their distances to the River Thames, as promised in Chapter 5, Working with
Points, Lines, and Polygons. Since layers obtained with ggmap are always defined in a
geographical CRS, we must first reproject the two relevant layers that we will plot to
such a CRS as well. The layers we are going to plot, in this case, are as follows:

• buildings: City of London buildings
• city: City of London boundary polygon

The following expressions reproject these layers and save them as new objects
buildings_geo and city_geo, respectively:

> buildings_geo = spTransform(buildings,
+ CRS("+proj=longlat +datum=WGS84"))
> city_geo = spTransform(city,
+ CRS("+proj=longlat +datum=WGS84"))

To specify the location for which we would like to download a map with get_map,
we can use the coordinates of the buildings layer centroid, obtained in the
following manner:

> buildings_ctr = coordinates(gCentroid(buildings_geo))
> buildings_ctr
 x y
1 -0.09222641 51.51499

Next, we will fortify the buildings_geo layer, to make the data available in the
form of a data.frame object. The region in this case is the osm_id attribute table
column, which holds unique building identifiers:

> buildings_f = fortify(buildings_geo, region = "osm_id")
> head(buildings_f)
 long lat order hole piece group id
1 -0.09962729 51.51428 1 FALSE 1 100684524.1 100684524
2 -0.09952849 51.51429 2 FALSE 1 100684524.1 100684524
3 -0.09942449 51.51429 3 FALSE 1 100684524.1 100684524
4 -0.09941299 51.51424 4 FALSE 1 100684524.1 100684524
5 -0.09951839 51.51423 5 FALSE 1 100684524.1 100684524
6 -0.09961579 51.51422 6 FALSE 1 100684524.1 100684524

http:// /

Chapter 9

[315]

Similar to what we saw in the county example, fortify removes the attribute table;
therefore, we need to attach it back manually:

> colnames(buildings_f)[which(colnames(buildings_f) == "id")] =
+ "osm_id"
> buildings_f = join(buildings_f, buildings@data, "osm_id")
> head(buildings_f)
 long lat order hole piece group osm_id
1 -0.09962729 51.51428 1 FALSE 1 100684524.1 100684524
2 -0.09952849 51.51429 2 FALSE 1 100684524.1 100684524
3 -0.09942449 51.51429 3 FALSE 1 100684524.1 100684524
4 -0.09941299 51.51424 4 FALSE 1 100684524.1 100684524
5 -0.09951839 51.51423 5 FALSE 1 100684524.1 100684524
6 -0.09961579 51.51422 6 FALSE 1 100684524.1 100684524
 name type dist_river
1 Temple Bar <NA> 378.7606
2 Temple Bar <NA> 378.7606
3 Temple Bar <NA> 378.7606
4 Temple Bar <NA> 378.7606
5 Temple Bar <NA> 378.7606
6 Temple Bar <NA> 378.7606

As the output shows, each building is now, once again, associated with a dist_
river value.

Finally, we will fortify the city_geo polygon as well. Since there is no attribute
data of interest along with it, we do not have to join anything to the resulting data.
frame object in this case:

> city_f = fortify(city_geo, region = "CTYUA13NM")
> head(city_f)
 long lat order hole piece group
1 -0.09671385 51.52319 1 FALSE 1 City of London.1
2 -0.09669776 51.52316 2 FALSE 1 City of London.1
3 -0.09668468 51.52317 3 FALSE 1 City of London.1
4 -0.09662369 51.52318 4 FALSE 1 City of London.1
5 -0.09646984 51.52282 5 FALSE 1 City of London.1
6 -0.09601742 51.52295 6 FALSE 1 City of London.1
 id
1 City of London
2 City of London
3 City of London
4 City of London
5 City of London
6 City of London

http:// /

Advanced Visualization of Spatial Data

[316]

Examining the group column in this particular case will reveal that it has the same
value ("City of London.1") in all rows since the city layer is composed of a
single polygon.

The layers are ready. What is left to be done is download the background and
produce the map. To download the background, we will employ the get_map
function. In order to efficiently work with this function, we need to provide
arguments for just these three parameters:

• location: The center of the map to be downloaded, which can be a
longitude/latitude pair.

• maptype: The type of map to be downloaded. This is source-specific, but
for Google Maps (the default data source), "terrain", "satellite",
"roadmap", and "hybrid" are applicable. See the following screenshot for an
example of a "hybrid" map; for a "satellite" example, see the screenshot
after the following screenshot.

The default data source, and the one we use here, is Google Maps. Note
that the Google Static Maps API is used by get_map to download the
images in such cases, and that by using this function, you are agreeing to
the Google Maps API Terms of Service (https://developers.google.
com/maps/terms). Other data sources can be selected by modifying the
source parameter of get_map, with possible sources being Google Maps
("google"), OpenStreetMap ("osm"), Stamen Maps ("stamen"), or
CloudMade maps ("cloudmade"). See ?get_map for details.

• zoom: The zoom level; an integer between 3 and 21 (the default value is 10).
The best zoom value for a given map is determined by trying higher or lower
magnifications and examining the result.

In our case, to get a static map of the City of London composed of a photographic
map with roads and other features marked on top (a "hybrid" map), we can use the
following expression:

> city_map = get_map(location = buildings_ctr,
+ maptype = "hybrid",
+ zoom = 14)

https://developers.google.com/maps/terms
https://developers.google.com/maps/terms
http:// /

Chapter 9

[317]

Now, plotting this map on its own (to inspect the zoom argument's effect, for
instance) can be done by simply typing ggmap(city_map), that returns a ggplot
object by default, plotted in the graphical window—as we have already seen earlier.
However, to add our supplementary layers based on the buildings_f and city_f
objects, we need to incorporate them using two geom_polygon function calls. A few
minor settings are also introduced in this particular example, which are as follows:

• To use muted colors, for a prettier color scale, the muted function of the
scales package is being used

• Forcing the legend heading "Distance to river (m)" to be split over two
lines is achieved using the new line symbol \n

• The labs function is used to easily modify axis titles, instead of modifying
the scale itself with the scale functions

The code to produce the City of London buildings map appears as follows:

> library(scales)
> ggmap(city_map) +
+ geom_polygon(data = buildings_f,
+ aes(x = long, y = lat, group = group,
+ fill = dist_river),
+ size = 0.1, colour = "black") +
+ geom_polygon(data = city_f,
+ aes(x = long, y = lat, group = group),
+ colour = "yellow", fill = NA) +
+ scale_fill_gradient2("Distance\nto river (m)",
+ low = muted("blue"), high = muted("red"),
+ midpoint = 500) +
+ labs(x = "Longitude", y = "Latitude")

http:// /

Advanced Visualization of Spatial Data

[318]

The resulting map looks like the following screenshot:

The map shows an up-to-date "hybrid" map of London downloaded from Google
Maps, with the City of London boundary (in yellow) and buildings (in blue to red
colors, according to their distance to the River Thames) on top of it.

To practice using ggmap some more, we will create another map with the following
components encompassing all three vector layer types—points, lines, and
polygons—along with a static map downloaded from the Web:

• A "satellite" static map background
• towns: A point layer of two towns' locations (see Chapter 7, Combining Vector

and Raster Datasets)

http:// /

Chapter 9

[319]

• track: A line layer of a GPS track (see Chapter 5, Working with Points, Lines,
and Polygons)

• forests: A polygonal layer of two planted forests (see Chapter 7, Combining
Vector and Raster Datasets)

As in the previous example, we first need to bring all of these layers to a
geographic CRS:

> towns_geo = spTransform(towns,
+ CRS("+proj=longlat +datum=WGS84"))
> track_geo = spTransform(track,
+ CRS("+proj=longlat +datum=WGS84"))
> forests_geo = spTransform(forests,
+ CRS("+proj=longlat +datum=WGS84"))

Next, we need to use fortify on the line and polygonal layers (track_geo and
forests_geo) in order to bring them to a data.frame form. Point layers, as
previously mentioned, have a much simpler structure than lines and polygons, so no
fortify method exists for them. Instead, we can always manually construct a data.
frame object to represent a point layer. In the present case, for example, towns_
geo is a SpatialPoints object and towns_names is a character vector. Using the
coordinates functions and data.frame, we can combine them into a data.frame
object:

> towns_f = data.frame(coordinates(towns_geo), name = towns_names)
> towns_f
 lon lat name
1 34.87131 31.37936 Lahav Kibbutz
2 34.81695 31.37383 Lehavim
> track_f = fortify(track_geo)
> head(track_f)
 long lat order piece group id
1 34.85472 31.36520 1 1 0.1 0
2 34.85464 31.36540 2 1 0.1 0
3 34.85458 31.36559 3 1 0.1 0
4 34.85454 31.36519 4 1 0.1 0
5 34.85443 31.36639 5 1 0.1 0
6 34.85445 31.36733 6 1 0.1 0
> forests_f = fortify(forests_geo, region = "name")
> head(forests_f)
 long lat order hole piece group id
1 34.87591 31.33830 1 FALSE 1 Kramim.1 Kramim
2 34.87559 31.33831 2 FALSE 1 Kramim.1 Kramim
3 34.87560 31.33858 3 FALSE 1 Kramim.1 Kramim

http:// /

Advanced Visualization of Spatial Data

[320]

4 34.87528 31.33858 4 FALSE 1 Kramim.1 Kramim
5 34.87529 31.33885 5 FALSE 1 Kramim.1 Kramim
6 34.87529 31.33912 6 FALSE 1 Kramim.1 Kramim

The three data.frame objects (towns_f, track_f, and forests_f) are now in
memory. The missing component is just the background static map, which can be
downloaded with get_map as follows:

> forests_ctr = coordinates(gCentroid(forests_geo))
> forests_map = get_map(location = forests_ctr,
+ maptype = "satellite",
+ zoom = 12)

The following code is used to combine all of these components into a single
plot. Note that track_f is introduced through a geom_path layer (which is the
appropriate geometry for spatial lines) and forests_f is introduced using geom_
polygon. The point layer towns_f is added as a geom_text layer, rather than geom_
point, in order to display the towns' locations as name labels instead of points. The
label aesthetic of geom_text controls the text that each point is associated with,
which in our case is the name column that holds town names.

> ggmap(forests_map) +
+ geom_polygon(data = forests_f,
+ aes(x = long, y = lat, group = group, colour = id),
+ fill = NA) +
+ geom_path(data = track_f,
+ aes(x = long, y = lat),
+ colour = "yellow") +
+ geom_text(data = towns_f,
+ aes(x = lon, y = lat, label = name),
+ colour = "white", size = 2.5, fontface = "bold") +
+ scale_colour_discrete("Forest") +
+ labs(x = "Longitude", y = "Latitude")

http:// /

Chapter 9

[321]

The resulting map is shown in the following screenshot:

This map shows the towns' locations (as white text labels), the GPS track (as a
yellow line), and the forest borders (as polygons, with border colors according to
the forest identity).

http:// /

Advanced Visualization of Spatial Data

[322]

Making 3D plots with lattice
Three-dimensional visualization, although undesirable for certain purposes
(where precise interpretation is important, such as in the scientific literature),
can nevertheless be particularly impressive and aesthetically appealing. In this
section, we are going to use lattice to create three-dimensional plots of spatial
and nonspatial data, which is not possible to do with ggplot2 since it only
allows two-dimensional plotting. The lattice graphics framework and syntax
are no less complex than those of ggplot2, and a single section is far too short to
comprehensibly review the subject. Our purpose here is much more modest: to show
some of the things that can be achieved and inspire interested readers to investigate
further. For more information on lattice, readers are referred to the authoritative
overview in the book by package author Deepayan Sarkar, Lattice: Multivariate Data
Visualization with R, Springer, which was published in 2008.

As already mentioned in Chapter 2, Working with Vectors and Time Series, lattice is
an R package defining a graphics system in R (in addition to base R and ggplot2).
We have already been using lattice indirectly, in fact, since the levelplot function
from the rasterVis package is an adaptation of a function with the same name
from lattice.

It is worth noting that lattice is not the only package that can
be used for three-dimensional visualization in R. The most notable
alternatives are the base R function called persp, which can be
used to create plots analogous to the ones we are going to create
with lattice, and the rgl package, which allows you to create
dynamic, rotatable 3D plots.

There are, generally speaking, two main types of three-dimensional plots. We can
plot points (also known as point clouds or 3D scatterplots) or grids/surfaces. In both
cases, the input data comes in the form of (x,y,z) coordinate sets, but to create a grid,
these points need to be equally spaced along the x and y axes, while in point clouds
there is no such restriction. For example, in statistics, we may have a dataset with
two independent variables and one dependent one, and we may wish to plot the
observed data points (as points in 3D space), the predicted surface generated by a
regression model (as a 3D grid), or both. In lattice, the cloud function can be used
to create a three-dimensional scatterplot, while the wireframe function can be used
to plot three-dimensional grids. In the following two examples, we will concentrate
on wireframe, but keep in mind that points can be plotted essentially the same way
with cloud.

http:// /

Chapter 9

[323]

Our first example will involve the already familiar Haifa DEM, and this time we
are going to create a three-dimensional representation of this raster. The best way
to pass data on to lattice is through a data.frame object (although, unlike with
ggplot2, other options are also possible). To create a three-dimensional plot, the
data.frame needs to contain three columns, holding the x, y, and z coordinates. The
following code section creates a data.frame, named dem_df, after the DEM is five-
fold aggregated (to make the grid sparser and visually simpler):

> dem_df = as.data.frame(aggregate(dem, 5), xy = TRUE)
> dem_df = dem_df[complete.cases(dem_df),]
> colnames(dem_df)[3] = "z"
> head(dem_df)
 x y z
123 693841.3 3648773 4.000000
124 694291.3 3648773 5.647059
125 694741.3 3648773 7.250000
126 695191.3 3648773 6.500000
127 695641.3 3648773 9.550000
128 696091.3 3648773 11.300000

Before applying wireframe, we need to figure out the right aspect ratio for our 3D
plot. The default aspect ratio for the dimensions of the 3D box encompassing the
plot is 1:1:1, referring to the x, y, and z axis lengths, so that the box forms a cube. This
ratio is specified with the aspect parameter of wireframe, which accepts a two-
element vector specifying the y/x and z/x ratios (with the default being c(1,1)).
In the case of dem_df, the data represents geographical distances on all three axes.
Unless our DEM, by any chance, represents a cubical geographic extent, these aspect
ratios are inappropriate. For example, similar to 2D plots produced with ggplot2,
we are usually interested in equal cell dimensions on the x and y axes. To accomplish
this, we need the y/x ratio to correspond to the ratio of the coordinates' range of y
and x. For example, if our DEM represents a rectangle of 100 meters on the x axis and
200 meters on the y axis, to correctly represent it with wireframe, we would have
to specify a y/x aspect ratio of 2 (200/100). In our case, the ranges of values on each
axis are as follows:

> x_range = diff(range(dem_df$x, na.rm = TRUE))
> x_range
[1] 21600
> y_range = diff(range(dem_df$y, na.rm = TRUE))
> y_range
[1] 36000
> z_range = diff(range(dem_df$z, na.rm = TRUE))
> z_range
[1] 527.0933

http:// /

Advanced Visualization of Spatial Data

[324]

The correct y/x ratio is thus equal to y_range/x_range or 1.666667. As for the
z/x ratio, since the z axis range of 527.0933 (the difference, in meters, between the
lowest and highest points of the DEM) is much smaller than either the x or y axes
ranges, drawing the 3D plot with realistic proportions between elevation and x-y
distances (z_range/x_range or 0.02440247) would result in a very flat image,
with the relief hardly protruding. Unless we make an image of a small area with
very steep topography, it is very common to use an exaggerated z to x-y distance
ratio in 3D topographic plots, thus making the topography more tangible. Choosing
a z/x aspect ratio is really a matter of taste. For this particular plot, a seven-fold
exaggeration was chosen, but lower or higher values are also appropriate. It is
obviously important to declare the fact that exaggeration has been used when such
an image is used in a publication.

Now that we have decided which aspect ratios we are going to use, we are ready to
apply wireframe on dem_df. Let's first see the code and the image produced and
then review its components:

> library(lattice)
> wireframe(z ~ x * y,
+ data = dem_df,
+ drape = TRUE,
+ colorkey = TRUE,
+ col.regions = terrain.colors(100),
+ screen = list(z = 165, x = -60, y = 0),
+ aspect = c(y_range/x_range, 7*(z_range/x_range)),
+ zoom = 1.1)

http:// /

Chapter 9

[325]

The following screenshot shows the graphical output:

The first thing to note is that the lattice syntax is analogous to the base R plotting,
in the sense that we have distinct plotting functions for each type of plot (such
as plot or wireframe), and each function has a set of parameters covering all
modifiable elements of the respective plot type. This is very different from the
ggplot2 approach, where a plot is constructed layer by layer using numerous
function calls rather than just one.

http:// /

Advanced Visualization of Spatial Data

[326]

As for the set of parameters we used in this case (which is only a small fraction of all
parameters that wireframe has), here is a short explanation for each one:

• x: In case the data is a data.frame object, this argument should be a formula
specifying the columns to use, as a formula object with the dependent
variable to the left of the ~ operator and the independent variables to the right,
separated by * (for example, z~x*y means we plot z as a function of x and y).

• data: The data.frame where the values come from.
• drape: Determines whether the surface will be covered with color (TRUE) or

remain a simple skeleton of intersecting lines (FALSE).
• colorkey: Determines whether a legend is drawn (TRUE) or not (FALSE)

alongside the plot.
• col.regions: The vector of colors used to draw the surface, analogous to the

colours parameter in ggplot2.
• screen: A set of parameters defining the viewing direction by specifying the

x, y, and z rotation with respect to the origin (it is really a matter of trial and
error to come up with a list of arguments giving the desired perspective).

• aspect: The aspect ratios of the three-dimensional box encompassing the
plot. The effect of this parameter was discussed earlier. In this case, a seven-
fold exaggeration of the z axis is specified by multiplying the true z/x ratio
by 7 in 7*(z_range/x_range).

• zoom: A scale factor to magnify or shrink the plot.

It is important to keep in mind that three-dimensional plots are useful to display any
kind of three-dimensional dataset and not just topographic surfaces. For example,
returning to the spatio-temporal dataset s that we created from the MODIS images
time series (see Chapter 6, Modifying Rasters and Analyzing Raster Time Series), we can
produce a three-dimensional image with:

• Time on the x axis
• Space (y coordinate, in this case) on the y axis
• NDVI on the z axis

http:// /

Chapter 9

[327]

Similarly to the previous example, we first have to create a data.frame object, which
we will name s_df, out of the raster s. Using the combination of as.matrix and
as.data.frame, we can convert s to a data.frame with columns corresponding to
s columns and rows corresponding to s rows (remember that using as.data.frame
directly on a raster results in data.frame with rows representing raster cells, which
is not what we want in this case):

> s_df = as.data.frame(as.matrix(s))

Since we know that the columns of s represent dates of image acquisition, we can
assign dates as the column names:

> colnames(s_df) = dates$date
> s_df[1:5, 1:5]
 2000-02-18 2000-03-05 2000-03-21 2000-04-06 2000-04-22
1 0.341684 0.397015 0.408640 0.416793 0.359633
2 0.341664 0.396391 0.428758 0.427817 0.352741
3 0.349044 0.405022 0.426911 0.429224 0.352297
4 0.351129 0.413696 0.434334 0.417303 0.344761
5 0.358012 0.408954 0.439244 0.411540 0.344320

Since we also know that the rows of s correspond to y axis spatial coordinates, we
can assign these coordinates to an additional column (named coord). To obtain the
vector of y coordinates of a raster, we can use the yFromRow function of the raster
package. All that is left to do after that is to melt the data.frame in order to move
the dates from separate columns into a single one:

> s_df$coord = yFromRow(r)
> s_df = melt(s_df,
+ id.vars = "coord",
+ variable.name = "date",
+ value.name = "ndvi")
> head(s_df)
 coord date ndvi
1 3494750 2000-02-18 0.341684
2 3494250 2000-02-18 0.341664
3 3493750 2000-02-18 0.349044
4 3493250 2000-02-18 0.351129
5 3492750 2000-02-18 0.358012
6 3492250 2000-02-18 0.342920

http:// /

Advanced Visualization of Spatial Data

[328]

What we have here is a data.frame representing a regular (in the x-y direction)
three-dimensional grid, so in principle everything is ready to apply wireframe.
Unfortunately, however, lattice does not have an automatic method to format date
values and draw an appropriate set of tick marks and labels (such as what we have
seen in ggplot2 with scale_x_date earlier). Therefore, we are compelled to give up
the Date formatting of the date column in s_df. Since what we have is an annual-
scale series, a simple way to make proper labels is to convert the dates to numeric
values representing year fractions. For example, 2000-1-1 can become 2000, 2000-1-2
can become 2000+1/365=2000.003, and so on. Although it would not be difficult to
write our own function to make such a calculation, there already is a function in the
lubridate package that does exactly that, called decimal_date:

> library(lubridate)
> s_df$date = decimal_date(as.Date(s_df$date))
> head(s_df)
 coord date ndvi
1 3494750 2000.131 0.341684
2 3494250 2000.131 0.341664
3 3493750 2000.131 0.349044
4 3493250 2000.131 0.351129
5 3492750 2000.131 0.358012
6 3492250 2000.131 0.342920

The lubridate package contains a very helpful set of convenience
functions to work with dates and times more easily than through
base R packages. For more information on this package, see the
introductory paper by Grolemund and Wickham (2011).

The resulting data.frame can now be passed to wireframe:

> wireframe(ndvi ~ date * coord,
+ data = s_df,
+ drape = TRUE,
+ arrows = FALSE,
+ col.regions =
+ colorRampPalette(c("darkred","white","darkblue"))(100),
+ screen = list(z = 15, x = -55, y = 10),
+ aspect = c(0.3, 0.2),
+ panel.aspect = c(0.45),
+ lty = 0,
+ scales = list(arrows = FALSE, cex = 0.6),
+ xlab = list("Time"),
+ ylab = list("Y", cex = 0),
+ zlab = list("NDVI", cex = 0),
+ zoom = 0.95)

http:// /

Chapter 9

[329]

The graphical output is shown in the following screenshot:

This time, the colorRampPalette function was used within the wireframe function
call to create a custom color scale (going from dark red, through white, and to dark
blue). An interesting point to note in this respect is that the function call colorRamp
Palette(c("darkred","white","darkblue")) in fact returns a function. Indeed,
there is no reason why the returned object of a function cannot be another function.
The returned function is then used to create a vector of color codes (analogous to
the way we did so with built-in functions such as terrain.colors). The other
parameters used in the latter wireframe function call (arrows, panel.aspect, lty,
scales, xlab, ylab, and zlab) refer to minor details regarding plot appearance and
we will not discuss them here (see ?wireframe for more information).

The plot itself shows the periodic behavior of NDVI, which we already visualized
in Chapter 6, Modifying Rasters and Analyzing Raster Time Series, where NDVI was
mapped to color alone (rather than to both colors and the z axis position, as in the
present visualization), and so the plot was two-dimensional. We will leave it up to
the reader to decide which version is prettier or easier to interpret. The important
point here is that spatio-temporal data is inherently three-dimensional and therefore
it is only natural to consider three-dimensional visualization of such data.

http:// /

Advanced Visualization of Spatial Data

[330]

Summary
In this chapter, you learned some of the most useful methods for advanced
visualization of spatial data in R, using the packages ggplot2, ggmap, and lattice.
It was shown how these tools can be used to conclude a spatial analysis procedure
and create publishable maps and plots of the results, all within the R environment.
In this context, it has been noted that not everything can be accomplished in R,
and at times we need to migrate to traditional GIS software or graphic editors
for interactive customization of the graphic output. Nevertheless, visualization
in R is extremely flexible, while at the same time bringing all of the benefits of
programming. Once you become more familiar with the techniques presented in this
chapter, it is almost inevitable that R will become the primary tool of choice for data
visualization. I sincerely hope that after completing this book you feel the same way
about geospatial data analysis in R.

http:// /

External Datasets
Used in Examples

Most of the code examples in this book use data from external files. To reproduce the
examples, you are encouraged to download these files from the book's website and
then copy them to a single directory on the hard drive. In the example code, the files
are assumed to reside in C:\Data. To use a different directory, the examples code
should be modified accordingly.

The external files in this book's examples, in an alphabetical order of first filenames,
are listed in the following table:

Dataset Associated files Description
Daily meteorological
data for Albuquerque
International Airport

338284.csv

GHCND_documentation.pdf

Daily climatic records
from the Albuquerque
International Airport,
New Mexico, United
States meteorological
station. Downloaded
from the NOAA Climate
Data Online website at
http://www.ncdc.
noaa.gov/cdo-web.
Accessed May 2014.

http://www.ncdc.noaa.gov/cdo-web
http://www.ncdc.noaa.gov/cdo-web
http:// /

External Datasets Used in Examples

[332]

Dataset Associated files Description
Monthly
meteorological data
for Spain

343452.csv

GHCNDMS_documentation.pdf

Monthly climatic records
from meteorological
stations in Spain.
Downloaded from
the NOAA Climate
Data Online website at
http://www.ncdc.
noaa.gov/cdo-web.
Accessed May 2014.

US Census data CO-EST2012-Alldata.csv

CO-EST2012-alldata.pdf

US Census County
Population Change
2012 data. Downloaded
from the United
States Census Bureau
at https://www.
census.gov/popest/
data/counties/
totals/2012/CO-
EST2012-alldata.
html. Accessed
May 2014.

Administrative areas
of England and Wales

CTYUA_2013_EW_BFE.docx

CTYUA_DEC_2013_EW_BFE.dbf

CTYUA_DEC_2013_EW_BFE.prj

CTYUA_DEC_2013_EW_BFE.sbn

CTYUA_DEC_2013_EW_BFE.sbx

CTYUA_DEC_2013_EW_BFE.shp

CTYUA_DEC_2013_EW_BFE.shp.
xml

CTYUA_DEC_2013_EW_BFE.shx

Shapefile of
administrative area
boundaries in England
and Wales. Downloaded
from the Office for
National Statistics at
https://geoportal.
statistics.gov.uk.
Accessed May 2014.

GPS log GPS_log.gpx GPS track record from a
trip in Lahav and Dvira
forests. Downloaded
from a GPS device.

http://www.ncdc.noaa.gov/cdo-web
http://www.ncdc.noaa.gov/cdo-web
https://www.census.gov/popest/data/counties/totals/2012/CO-EST2012-alldata.html
https://www.census.gov/popest/data/counties/totals/2012/CO-EST2012-alldata.html
https://www.census.gov/popest/data/counties/totals/2012/CO-EST2012-alldata.html
https://www.census.gov/popest/data/counties/totals/2012/CO-EST2012-alldata.html
https://www.census.gov/popest/data/counties/totals/2012/CO-EST2012-alldata.html
https://www.census.gov/popest/data/counties/totals/2012/CO-EST2012-alldata.html
https://geoportal.statistics.gov.uk
https://geoportal.statistics.gov.uk
http:// /

Appendix A

[333]

Dataset Associated files Description
OpenStreetMap
Shapefile of buildings
in Haifa

haifa_buildings.cpg

haifa_buildings.dbf

haifa_buildings.prj

haifa_buildings.qpj

haifa_buildings.shp

haifa_buildings.shx

A polygonal Shapefile
of buildings based
on OpenStreetMap
data (http://www.
openstreetmap.org).
Accessed May 2014.

OpenStreetMap
Shapefile of natural
areas in Haifa

haifa_natural.cpg

haifa_natural.dbf

haifa_natural.prj

haifa_natural.qpj

haifa_natural.shp

haifa_natural.shx

A polygonal Shapefile
of natural areas, based
on OpenStreetMap
data (http://www.
openstreetmap.org).
Accessed May 2014.

Portion of Landsat
satellite image of
central Israel obtained
on October 15, 1998

landsat_15_10_1998.tif A six-band raster,
corresponding to
Landsat bands 1-5 and 7.
Image taken on October
15, 1998. Downloaded
from http://
earthexplorer.
usgs.gov/ and
preprocessed to obtain
reflectance values.

Portion of Landsat
satellite image of
central Israel obtained
on October 4, 2000

landsat_04_10_2000.tif A six-band raster,
corresponding to
Landsat bands 1-5 and 7.
Image taken on October
4, 2000. Downloaded
from http://
earthexplorer.
usgs.gov/ and
preprocessed to obtain
reflectance values.

http://www.openstreetmap.org
http://www.openstreetmap.org
http://www.openstreetmap.org
http://www.openstreetmap.org
http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
http:// /

External Datasets Used in Examples

[334]

Dataset Associated files Description
Portion of Landsat
satellite image of
central Israel obtained
on September 11, 2003

landsat_11_09_2003.tif A six-band raster,
corresponding to
Landsat bands 1-5
and 7. Image taken
on September 11,
2003. Downloaded
from http://
earthexplorer.
usgs.gov/ and
preprocessed to obtain
reflectance values.

OpenStreetMap
Shapefile of buildings
in London

london_buildings.CPG

london_buildings.dbf

london_buildings.prj

london_buildings.shp

london_buildings.shx

A polygonal Shapefile
of buildings based
on OpenStreetMap
data (http://www.
openstreetmap.org).
Accessed May 2014.

OpenStreetMap
Shapefile of natural
areas in London

london_natural.CPG

london_natural.dbf

london_natural.prj

london_natural.shp

london_natural.shx

A polygonal Shapefile
of natural areas based
on OpenStreetMap
data (http://www.
openstreetmap.org).
Accessed May 2014.

A portion of NDVI
images of central
Israel from MODIS
satellite data from
February 18, 2000 to
April 6, 2012

modis.tif A 280-band raster,with
NDVI images for the
period February 18,
2000 to April 6, 2012.
Data obtained from
the MODIS product
MOD13A1. Downloaded
from http://
earthexplorer.
usgs.gov/.

Dates of acquisition of
images in each layer
in modis.tif

modis_dates.csv Table with
supplementary
information (dates)
regarding each layer in
modis.tif.

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
http://www.openstreetmap.org
http://www.openstreetmap.org
http://www.openstreetmap.org
http://www.openstreetmap.org
http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
http:// /

Appendix A

[335]

Dataset Associated files Description
A sample raster file
for demonstration
in Chapter 1, The R
Environment

rainfall.tif Annual rainfall amount
in northern and central
Israel, interpolated from
meteorological stations
data.

Digital Elevation
Model (DEM) layer of
Spain

spain_elev.tif DEM data from the
SRTM dataset (see
http://srtm.
csi.cgiar.org/).
Downloaded through
R and preprocessed by
reprojection, masking,
and aggregation to 900
meters resolution.

GADM Shapefile of
the USA counties with
FIPS codes

USA_2_GADM_fips.cpg

USA_2_GADM_fips.dbf

USA_2_GADM_fips.prj

USA_2_GADM_fips.qpj

USA_2_GADM_fips.shp

USA_2_GADM_fips.shx

Polygons corresponding
to the second level
administrative division
(counties) of the USA
with several attributes
such as county names
and Federal Information
Processing Standards
(FIPS) code.

http:// /

http:// /

Cited References
Now that we have covered everything, let's take a look at some external references
for further reading:

• Bivand, R. S., Pebesma, E. J., and Gómez-Rubio, V. Applied Spatial Data
Analysis with R Second Edition. Springer. 2013.

• Chang, W. R Graphics Cookbook. O'Reilly Media. 2012.
• Cowpertwait, P. S. P. and Metcalfe, A. V. Introductory Time Series with R.

Springer. 2009.
• Diggle, P. and Ribeiro, P. J. Model-based Geostatistics. Springer. 2007.
• Grolemund, G. and Wickham, H. "Dates and Times Made Easy with

lubridate". Journal of Statistical Software. 2011. http://www.jstatsoft.
org/v40/i03/paper.

• Hengl, T. "A practical guide to geostatistical mapping of environmental
variables". JRC Scientific and Technical Reports. 2007. http://spatial-
analyst.net/book/.

• Hengl, T., Roudier, P., Beaudette, D., and Pebesma, E. "plotKML: Scientific
Visualization of Spatio-Temporal Data". Journal of Statistical Software.
2014. http://cran.r-project.org/web/packages/plotKML/vignettes/
jss1079.pdf.

• Kahle, D. and Wickham, H. "ggmap: Spatial Visualization with ggplot2".
The R Journal. 2013. http://journal.r-project.org/archive/2013-1/
kahle-wickham.pdf.

• Lamigueiro, O. P. Displaying Time Series, Spatial, and Space-Time Data with R.
CRC Press. 2014.

• Murrell, P. Introduction to Data Technologies. CRC Press. 2009. https://www.
stat.auckland.ac.nz/~paul/ItDT/.

http://www.jstatsoft.org/v40/i03/paper
http://www.jstatsoft.org/v40/i03/paper
http://spatial-analyst.net/book/
http://spatial-analyst.net/book/
http://cran.r-project.org/web/packages/plotKML/vignettes/jss1079.pdf
http://cran.r-project.org/web/packages/plotKML/vignettes/jss1079.pdf
http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
https://www.stat.auckland.ac.nz/~paul/ItDT/
https://www.stat.auckland.ac.nz/~paul/ItDT/
http:// /

Cited References

[338]

• Pebesma, E. "spacetime: Spatio-Temporal Data in R". Journal of Statistical
Software. 2012. http://www.jstatsoft.org/v51/i07/paper.

• Sarkar, D. Lattice: Multivariate Data Visualization with R. Springer. 2008.
• Van der Loo, M. P. J. and de Jonge, E. Learning RStudio for R Statistical

Computing. Packt Publishing. 2012.
• Wickham, H. "Reshaping Data with the reshape Package". Journal of

Statistical Software. 2007. http://www.jstatsoft.org/v21/i12/paper.
• Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer. 2009.
• Wickham, H. "The Split-Apply-Combine Strategy for Data Analysis". Journal

of Statistical Software. 2011. http://www.jstatsoft.org/v40/i01/paper.
• Wickham, H. "Tidy Data". Journal of Statistical Software. 2014.

http://www.jstatsoft.org/v59/i10/paper.
• Wickham, H. Advanced R. CRC Press. 2014. http://adv-r.had.co.nz/.

http://www.jstatsoft.org/v51/i07/paper
http://www.jstatsoft.org/v21/i12/paper
http://www.jstatsoft.org/v40/i01/paper
http://www.jstatsoft.org/v59/i10/paper
http://adv-r.had.co.nz/
http:// /

Index
Symbols
3D plots

creating, with lattice 322-329
%in% operator 35
: operator 38

A
abline function 233
aesthetic mapping 285
aggregate function 185
annual temperature, Spain

mapping 268-278
apply function

used, for automated calculations 78
using 83, 84

arguments
default values, setting for 47

array
raster, transforming 122, 123
used, for representing multiple

two dimensions 105, 106
using 102

assignment operator (=)
about 31
used, for saving object 30, 31

as.vector function 104
attribute table, vector layers

accessing 142-145
autofitVariogram function 260

B
base graphics

used, for displaying vectors 56-59

C
calculations

performing, with missing values
on vectors 45

calculator
R, using as 9-11

calibration data, spatial interpolation
covariates 242
field measurements 242

character values
converting, to dates 50-53

clumping 195-197
code execution

conditioning, with
conditional statements 75-77

controlling 75
loops, using 77, 78

comma separated values file. See CSV file
Comprehensive R Archive Network

(CRAN) 85
conditional statements

used, for conditioning code execution 75-77
contributed packages

using 85, 86
Coordinate Reference System (CRS) 108
covariates

about 242

http:// /

[340]

using, in Universal Kriging (UK)
interpolation 264-267

CSV file
climatic data, reading from 49
data.frame object, writing 74
table, creating from 67, 68

D
data fields

calculating 73
data.frame class

using, for tabular data representation 64
data.frame object

object structure, examining 68, 69
subsetting 70-72
writing, to CSV file 74

data structures, R
data, storing in 23
vectors 28

dates series
character values, converting to dates 50
climatic data, reading from CSV file 49
subsetting, based on dates 55
working with 48

dcast
used, for shifting between long and wide

formats 86-90
ddply function

used, for aggregation 91-96
default vectors

creating 39
deterministic model

about 242
examples 242

Digital Elevation Model (DEM) 107, 335

E
equality conditional operator (==) 31
error messages

dealing with 20
expressions

arithmetic operators 15, 18
error messages 20

evaluating 15
functions, using 18
help page 21
logical operators 15-18
warning 20

extend function 189
external datasets 331-335
external references 337
extract function 232

F
facet_grid function 294
faceting 287
facet_wrap function 294
Federal Information Processing Standards

(FIPS) 140
focal filtering 196
focal function 195
fortify function 299
function

about 45
calling, for operation performance 23
default values, setting for arguments 47
defining 46
using 18
using, with several parameters 37

function call
multiple argument, supplying 37, 38

G
gDifference function 165, 169
gDistance function 171, 227
geocode function 136
geom_contour function 287
geom_density2d function 287
geometrical properties, vector layers

logical values 152
numeric values 152
spatial layers 152
working with 151-155

geometries, vector layers
joining, with tabular data 172-177
lines 139

http:// /

[341]

points 135
polygons 140

Geometry Engine Open Source (GEOS) 152
Geospatial Data Abstraction Library

(GDAL) 107
ggmap

used, for plotting 282
ggplot2

all-in-one environment 298
automation 298
overview 282-291
predefined themes 288
reproducibility 298
saving 296, 297
URL 284
used, for plotting 282

ggsave function 296
gIntersection function 165-169
gIsValid function 156
GPS Exchange Format (GPX) 139
graphical functions

about 56
graphics systems, in R 60, 61
output, saving 59
used, for displaying vectors 58, 59

graphics systems, in R
base graphics 60
ggplot2 60
lattice 60

gstat.cv function 255

H
hillShade function 199, 201
hillshade layer 199

I
Inkscape

URL 291
Integrated Development

Environment (IDE) 11
interpolation method

inverse distance weighted (IDW)
interpolation 249

Ordinary Kriging (OK) interpolation 249
Universal Kriging (UK) interpolation 249

inverse distance weighted (IDW)
interpolation

using 249-257

J
join operation

used, for joining tables 96-99

L
lattice

about 60, 61
used, for creating 3D plots 322-329

layer
components 285
functions 286

leave-one-out
cross-validation (LOOCV) 255

length function 40
levelplot function 116
Light Detection and Ranging (LIDAR) 180
lines 139
logical operators, R 16, 17
logical vectors

used, for vector subsetting 42
loops

used, for executing code section 77, 78

M
mask function 217
matrix

raster, transforming 122, 123
used, for representing two-dimensional

data 102-105
using 102

matrix function, parameters
byrow 102
data 102
ncol 102
nrow 102

http:// /

[342]

melt function
used, for shifting between long and wide

formats 86-90
merge function 181
missing values

dealing with 43
detecting, in vectors 44
effect, on data 43
used, for performing calculations

on vectors 45
multiband rasters

creating 110, 111

N
nearest-neighbor interpolation

using 246-249
Near Infrared (NIR) 109
nonspatial data

plotting 291-296
Normalized Difference Vegetation Index

(NDVI) 117
Not A Number (NaN) 20
numeric vectors of indices

used, for vector subsetting 40, 41

O
object

removing, from memory 32
saving, with assignment operator 30, 31

object types, R
about 21, 22
data, storing in data structures 23
functions 23
sample session 23-25

Ordinary Kriging (OK) interpolation
about 249
using 258-262

overlay operations, raster 123-128

P
paste function 35
plotRGB function 149

point data
spatial interpolation 242-245

points
about 135-138
used, for raster value extraction 230-234

polygons
about 140
used, for raster value extraction 235-238

predefined symbols, R
FALSE 20
Inf 20
NA 20
NULL 20

projectRaster function 192

R
R

downloading 8
installing 7, 8
object types 21
URL 8
using, as calculator 9, 10

R symbols
%b 52
%B 52
%d 52
%m 52
%y 52
%Y 52

raster
about 102
aggregating 184, 185
algebra 123
creating, from vector layers 212
cropping 183, 184
data structures 107
disaggregating 184, 186
files, writing 112
merging 182
multiband rasters, creating 110
multiple layer subsets 120, 121

http:// /

[343]

overlay operations 123
properties, exploring 112-116
reclassification 123
resolution, changing 180, 181
single band rasters, creating 108
spatial extent, changing 180, 181
subsetting 117-119
transforming, into array 122, 123
transforming, into matrix 122, 123
trimming 183, 184
values, accessing as vector 119
values, accessing with matrix notation 120
values, masking 216-219
values, reclassifying 129-131
vector layers, creating from 220

raster algebra 123-128
raster files

writing 112
rasterize function

about 212, 214
field parameter 215
fun parameter 215

raster reprojection
about 186, 192-194
projectRaster function, using 192

raster resampling
about 186-191
resample function, using 186, 187

raster-to-contours conversion 222-224
raster-to-points conversion 220-222
raster-to-polygons conversion 224-230
raster value extraction

points, using 230-234
polygons, using 235-238

rasterVis package
URL 116

raster values
accessing, as vector 119
accessing, with matrix notation 120
reclassifying 129-131

R code
editing, approaches 11-13

recycling principle, vectors 36, 37
repetitive vectors

creating 39
resample function 186
R Graphical User Interface (RGui) 9
root mean square error (RMSE) 241
row.names function 154
RStudio

installing 14
URL 14, 15
using 14

S
scales 287
sep parameter 35
seq function 37
several parameters

using, with functions 37
Short Wave Infrared (SWIR) 109
Shuttle Radar Topography

Mission (SRTM) 180
single band rasters

creating 108, 109
spatial data

plotting 297-313
spatial dimensions 206-210
spatial interpolation, of point data

about 242
covariates, using in Universal Kriging (UK)

interpolation 264
inverse distance weighted (IDW), using 249
nearest-neighbor interpolation, using 246
Ordinary Kriging (OK)

interpolation, using 258
performing 242-245

spatial prediction model
calibrating 242
deterministic model 242
selecting 243
statistical model 242

spatial rasters
representing 108

http:// /

[344]

spatial relations, between vector layer
about 156
distances between

geometries, calculating 171
new geometries, creating 165-170
relations, querying 157-164

spatio-temporal raster data
aggregating 201
spatial dimensions 206-209
time dimension 201-206

SRTM data
URL 180

static maps
adding, from Web 313-321

statistical model
about 242
examples 242

stringsAsFactors parameter 65
substrings 39

T
table

creating, from CSV file 66-68
creating, from separate vectors 64, 65
data fields, calculating 73
data.frame object structure,

examining 68, 69
data.frame object, subsetting 70-72
data.frame object, writing to CSV file 74

tables
aggregating 84
contributed packages, using 85, 86
joining, with join operation 96-99
reshaping 84

tabular data
geometries, joining with 172
representing, with data.frame class 64

tapply function
used, for applying function 79-82
used, for automated calculations 78

text function 154
themes 287

Thiessen polygon 249
time dimension 201-206
time series

examining 54
working with 48

Tinn-R text editor
URL 13

topographic aspect
calculating 198

topographic slope
calculating 198

topography-related calculations
aspect, calculating 198
elevation data, using 198
hillshade layer 199, 201
slope, calculating 198

trim function 184
two-dimensional data

representing, with matrix 102-105

U
Universal Kriging (UK) interpolation

about 249
covariates, using 264-267

V
values

masking, in raster 216-219
vector layer

attribute table, accessing 142-145
geometrical calculations 147
geometrical properties,

working with 151-156
relations, querying between 157-163
reprojecting 147-151
spatial relations 156
subsetting 145, 146

vector layer, properties
attribute table 134
attribute table, accessing 143
creating, from raster 220
data structures 134
examining 141

http:// /

[345]

exploring 140
geometry component 134
properties, exploring 140
raster, creating from 212
rasterizing 212-215
raster-to-contours conversion 222, 223
raster-to-points conversion 220-222
raster-to-polygons conversion 224-230
subsetting 140

vectors
about 28
assignment operator, used for

saving object 30, 31
default vectors, creating 39
displaying, with base graphics 56-59
element-by-element operations 34, 35
missing values, detecting 44
missing values, used for performing

calculations 45
objects, removing from memory 32
properties, summarizing 32-34

raster values, accessing as 119
recycling principle 36, 37
repetitive vectors, creating 39
subsetting 40
subsetting, with logical vectors 42
subsetting, with numeric

vectors of indices 40, 41
types 28, 29

vectors, types
logical vector 29
sequential numeric vectors 28

Voronoi polygon 249

W
warning

dealing with 20
Web

static maps, adding 313-321

http:// /

http:// /

Thank you for buying
Learning R for Geospatial Analysis

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

http:// /

Big Data Analytics with R and
Hadoop
ISBN: 978-1-78216-328-2 Paperback: 238 pages

Set up an integrated infrastructure of R and Hadoop
to turn your data analytics into Big Data analytics

1. Write Hadoop MapReduce within R.

2. Learn data analytics with R and the
Hadoop platform.

3. Handle HDFS data within R.

4. Understand Hadoop streaming with R.

Bioinformatics with R Cookbook
ISBN: 978-1-78328-313-2 Paperback: 340 pages

Over 90 practical recipes for computational biologists
to model and handle real-life data using R

1. Use the existing R packages to handle
biological data.

2. Represent biological data with attractive
visualizations.

3. An easy-to-follow guide to handle
real-life problems in bioinformatics such as
next-generation sequencing and
microarray analysis.

Please check www.PacktPub.com for information on our titles

http:// /

Machine Learning with R
ISBN: 978-1-78216-214-8 Paperback: 396 pages

Learn how to use R to apply powerful machine
learning methods and gain an insight into
real-world applications

1. Harness the power of R for statistical
computing and data science.

2. Use R to apply common machine learning
algorithms with real-world applications.

3. Prepare, examine, and visualize data
for analysis.

4. Understand how to choose between
machine learning models.

Statistical Analysis with R
ISBN: 978-1-84951-208-4 Paperback: 300 pages

Take control of your data and produce superior
statistical analyses with R

1. An easy introduction for people who are new
to R, with plenty of strong examples for you
to work through.

2. This book will take you on a journey to
learn R as the strategist for an ancient
Chinese kingdom!

3. A step-by-step guide to understand R, its
benefits, and how to use it to maximize
the impact of your data analysis.

Please check www.PacktPub.com for information on our titles

http:// /

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The R Environment
	Installing R and using the command line
	Downloading R
	Installing R
	Using R as a calculator	

	Coding with R beyond the command line	
	Approaches to editing R code
	Installation of RStudio
	Using RStudio

	Evaluating expressions
	Using arithmetic and logical operators
	Using functions
	Dealing with warning and error messages
	Getting help

	Exploring the basic object types in R
	Everything is an object
	Storing data in data structures
	Calling functions to perform operations
	A short sample session

	Summary

	Chapter 2: Working with Vectors and Time Series
	Vectors – the basic data structures in R
	Different types of vectors
	Using the assignment operator to save
an object
	Removing objects from memory
	Summarizing vector properties
	Element-by-element operations on vectors
	The recycling principle

	Using functions with several parameters
	Supplying more than one argument in a function call
	Creating default vectors
	Creating repetitive vectors
	Substrings

	Creating subsets of vectors
	Subsetting with numeric vectors of indices
	Subsetting with logical vectors

	Dealing with missing values
	Missing values and their effect on data
	Detecting missing values in vectors
	Performing calculations on vectors with missing values

	Writing new functions
	Defining our own functions
	Setting default values for the arguments

	Working with dates and time series
	Specialized time series classes in R
	Reading climatic data from a CSV file
	Converting character values to dates
	Examining our time series
	Creating subsets based on dates

	Introducing graphical functions
	Displaying vectors using base graphics
	Saving graphical output
	The main graphical systems in R

	Summary

	Chapter 3: Working with Tables
	Using the data.frame class to represent tabular data
	Creating a table from separate vectors
	Creating a table from a CSV file
	Examining the structure of a data.frame object
	Subsetting data.frame objects
	Calculating new data fields
	Writing a data.frame object to a CSV file

	Controlling code execution
	Conditioning execution with conditional statements
	Repeatedly executing code sections with loops

	Automated calculations using the apply family of functions
	Applying a function on separate parts of a vector
	Applying a function on rows or columns of a table

	Inference from tables by joining, reshaping, and aggregating
	Using contributed packages
	Shifting between long and wide formats using melt and dcast
	Aggregating with ddply
	Joining tables with join

	Summary

	Chapter 4: Working with Rasters
	Using the matrix and array classes
	Representing two-dimensional data with a matrix
	Representing more than two dimensions with an array

	Data structures for rasters in the raster package
	Creating single band rasters
	Creating multiband rasters
	Writing raster files
	Exploring a raster's properties

	Subsetting rasters
	Accessing raster values as a vector
	Accessing raster values with the matrix notation
	Subsets involving more than one layer
	Transforming a raster into a matrix or an array

	Overlay and reclassification of rasters
	Raster algebra and overlay operations
	Reclassifying raster values

	Summary

	Chapter 5: Working with Points, Lines, and Polygons
	Data structures for vector layers in R
	Points
	Lines
	Polygons

	Exploring vector layer properties and subsetting
	Examining vector layer properties
	Accessing the attribute table of vector layers
	Subsetting vector layers

	Geometrical calculations on vector layers
	Reprojecting vector layers
	Working with the geometrical properties of vector layers

	Spatial relations between vector layers
	Querying relations between vector layers
	Creating new geometries
	Calculating distances between geometries

	Joining geometries with tabular data
	Summary

	Chapter 6: Modifying Rasters and Analyzing Raster Time Series
	Changing the spatial extent or resolution of rasters
	Merging rasters
	Cropping and trimming
	Aggregating and disaggregating

	Raster resampling and reprojection
	Raster resampling
	Raster reprojection

	Filtering and clumping
	Topography-related calculations with elevation data
	Slope and aspect calculation
	Hillshade

	Aggregating spatio-temporal raster data
	The time dimension
	Spatial dimensions

	Summary

	Chapter 7: Combining Vector and
Raster Datasets
	Creating rasters from vector layers
	Rasterizing vector layers
	Masking values in a raster

	Creating vector layers from a raster
	Raster to points
	Raster to contours
	Raster to polygons

	Extracting raster values based on vector layers
	Extracting by points
	Extracting by polygons

	Summary

	Chapter 8: Spatial Interpolation of
Point Data
	Spatially interpolating point data
	Nearest-neighbor interpolation
	IDW interpolation
	Interpolation using ordinary kriging
	Using covariates in Universal Kriging interpolation

	Mapping the annual temperature in Spain
	Summary

	Chapter 9: Advanced Visualization of Spatial Data
	Plotting with ggplot2 and ggmap
	An overview of ggplot2
	Plotting nonspatial data
	Saving the ggplot2 plots
	Plotting spatial data
	Adding static maps from the Web

	Making 3D plots with lattice
	Summary

	Appendix A: External Datasets
Used in Examples
	Appendix B: Cited References
	Index

