
www.allitebooks.com

http://www.allitebooks.org

Learning Swift
Second Edition

Develop the skills required to create compelling,
maintainable, and robust iOS and OS X apps with Swift

Andrew J Wagner

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Swift
Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Second edition: March 2016

Production reference: 1170316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-751-2

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Andrew J Wagner

Reviewer
Guan Gui

Commissioning Editor
Kartikey Pandey

Acquisition Editors
Vivek Anantharaman

Chaitanya Nair

Content Development Editor
Viranchi Shetty

Technical Editor
Saurabh Malhotra

Copy Editors
Kevin McGowan

Sneha Singh

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Hemangini Bari

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Andrew J Wagner is a software developer who concentrates on iOS development
and backend web services. He has a degree in computer engineering from Rensselaer
Polytechnic Institute, New York. Currently, he works for a development shop named
Chronos Interactive based in Denver, CO. He has experience of working with and
for large-scale and small-scale companies, as well as running his own contracting
and app companies. He is passionate about using computers as a creative outlet and
writing software that is beautiful in implementation, functionality, and experience.

When he isn't working or spending time with friends and family, he writes for his
blog at http://drewag.me.

I would like to thank my friends and family for being there for
me as support for both my troubles and triumphs. Without their
encouragement, I would not have finished this book or achieved any
of the other things in my life that make me proud. An especially big
thanks to my parents, Fern and Joe, for continually providing me
with the tools I need to do the things I love.

www.allitebooks.com

http://drewag.me
http://www.allitebooks.org

About the Reviewer

Guan Gui graduated from the University of Melbourne. He implemented the first
system of its kind for beekeepers using satellite sensory data to help them deploy
their honeybees better. He is also a big fan of Apple. He started his own open source
project—Uni Call (unicall.guiguan.net) for OS X. While his research focus is on
machine learning, he enjoys the more practical side of CS: developing apps using
Swift and JavaScript. Currently, he is trying to set his own start-up. Big ideas to
change the world always spin in his head!

www.allitebooks.com

unicall.guiguan.net
http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface	 ix
Chapter 1: Introducing Swift	 1

Defining our goals for this book	 1
Setting up the development environment	 3
Running our first swift code	 3
Understanding playgrounds	 7
Learning with this book	 8
Summary	 9

Chapter 2: Building Blocks – Variables, Collections,
and Flow Control	 11

Core Swift types	 12
Constants and variables	 12
Containers	 12

Tuples	 13
Arrays	 13
Dictionaries	 14

Swift's type system	 15
Printing to the console	 17
Control flow	 18

Conditionals	 18
Switches	 19
Loops	 22

Functions	 25
Basic functions	 25
Parameterized functions	 26
Functions that return values	 27
Functions with default arguments	 29
Guard statement	 30

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Bringing it all together	 31
Summary	 37

Chapter 3: One Piece at a Time – Types, Scopes, and Projects	 39
Structs	 40

Types versus instances	 40
Properties	 41
Member and static methods	 42
Computed properties	 45
Reacting to property changes	 46
Subscripts	 47
Custom initialization	 48

Classes	 51
Inheriting from another class	 51
Initialization	 53

Overriding initializer	 54
Required initializer	 54
Designated and convenience initializers	 56

Overriding methods and computed properties	 57
Methods	 57
Computed properties	 58

Casting	 59
Upcasting	 60
Downcasting	 60

Enumerations	 61
Basic declaration	 61
Testing enumeration values	 62
Raw values	 63
Associated values	 64
Methods and properties	 66

Projects	 67
Setting up a command-line Xcode project	 68
Creating and using an external file	 70
Interfacing with code from other files	 71
File organization and navigation	 74

Extensions	 75
Scope	 76

How scope is defined	 76
Nested types	 76

Access control	 77
Summary	 78

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 4: To Be or Not To Be – Optionals	 81
Defining an optional	 82
Unwrapping an optional	 83

Optional binding	 83
Forced unwrapping	 85
Nil coalescing	 87

Optional chaining	 87
Implicitly unwrapped optionals	 89
Debugging optionals	 91
The underlying implementation	 94
Summary	 95

Chapter 5: A Modern Paradigm – Closures
and Functional Programming	 97

Functional programming philosophy	 98
State and side effects	 98
Declarative versus imperative code	 99

Closures	 101
Closures as variables	 101
Closures as parameters	 102
Syntactic sugar	 103

Building blocks of functional programming in Swift	 104
Filter	 105
Reduce	 105
Map	 107
Sort	 107
How these affect the state and nature of code	 108

Lazy evaluation	 108
Example	 109
Summary	 112

Chapter 6: Make Swift Work For You – Protocols and Generics	 113
Protocols	 113

Defining a protocol	 114
Implementing a protocol	 114
Using type aliases	 117

Generics	 119
Generic function	 119
Generic type	 120

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Type constraints	 122
Protocol constraints	 122
Where clauses for protocols	 124
Where clauses for equality	 125

Extending generics	 125
Adding methods to all forms of a generic	 125
Adding methods to only certain instances of a generic	 127
Extending protocols	 128

Putting protocols and generics to use	 131
Generators	 131
Sequences	 132
Product of Fibonacci numbers under 50	 133

Summary	 136
Chapter 7: Everything Is Connected – Memory Management	 137

Computer data storage	 138
File system	 138
Memory	 138

Value types versus reference types	 139
Determining value type or reference type	 140
Behavior on assignment	 140
Behavior on input	 142
Closure capture behavior	 144

Automatic reference counting	 146
Object relationships	 147

Strong	 147
Weak	 149
Unowned	 150

Strong reference cycles	 150
Between objects	 151

Spotting	 151
Fixing	 155

With closures	 156
Spotting	 156
Fixing	 157

Lost objects	 158
Between objects	 158
With closures	 159

Structures versus classes	 159
Summary	 160

Table of Contents

[v]

Chapter 8: Paths Less Traveled – Error Handling	 161
Throwing errors	 161

Defining an error type	 162
Defining a function that throws an error	 162
Implementing a function that throws an error	 162

Handling errors	 163
Forceful try	 164
Optional try	 164
Catching an error	 165
Propagating errors	 172

Cleaning up in error situations	 173
Order of execution when errors occur	 173
Deferring execution	 174

Summary	 176
Chapter 9: Writing Code the Swift Way – Design Patterns
and Techniques	 177

What is a design pattern?	 178
Behavioral patterns	 179

Iterator	 179
Observer	 180

Callback	 181
Notification center	 182

Structural patterns	 183
Composite	 183

Hierarchies	 183
Alternative to subclassing	 186

Delegate	 187
Model view controller	 188

Creational patterns	 190
Singleton/shared instance	 191
Abstract factory	 193

Using associated values effectively	 194
Replacing class hierarchies	 195
Concisely representing state	 195

Extending system types to reduce code	 196
Lazy properties	 198

Avoiding unnecessary memory usage	 198
Avoiding unnecessary processing	 199
Localizing logic to the concerned property	 199

Summary	 200

Table of Contents

[vi]

Chapter 10: Harnessing the Past – Understanding
and Translating Objective-C	 201

Swift's relationship to Objective-C	 202
Background of Objective-C	 202
Constants and variables	 203

Value types	 203
Reference types	 203

Containers	 205
Arrays	 205
Dictionaries	 207

Control flow	 208
Conditionals	 209
Switches	 209
Loops	 210

Functions	 212
Types	 213

Structures	 214
Enumerations	 214
Classes	 215

Basic class	 216
Initializers	 216
Properties	 217
Methods	 219
Inheritance	 220

Categories	 220
Protocols	 222
Blocks	 223

Projects	 225
Header files	 225
Implementation files	 226
Organization	 227

Calling Objective-C code from Swift	 227
Bridging header	 228

Using functions	 228
Using types	 229
Containers	 229
Annotations	 230

Nullability	 230
Container element types	 230

Summary	 231

Table of Contents

[vii]

Chapter 11: A Whole New World – Developing an App	 233
Conceptualizing the app	 234

Features	 234
Interface	 234
Data	 235

Setting up the app project	 236
Configuring the user interface	 238
Running the app	 246
Allowing picture taking	 247
Temporarily saving a photo	 250
Populating our photo grid	 254
Refactoring to respect model-view-controller	 260
Permanently saving a photo	 263
Summary	 272

Chapter 12: What's Next? – Resources, Advice,
and the Next Steps	 273

Apple's documentation	 273
Forums and blogs	 276

Blog posts	 276
Forums	 276

Prominent figures	 277
Podcasts	 278
Summary	 279

Index	 281

[ix]

Preface
This book will help you to get started with Swift in no time. It helps you understand
the nuances of iOS programming not only from a conceptual but also from an
implementation perspective. This book is an invaluable resource if you are looking
forward to exploring the world of iOS application programming.

What this book covers
Chapter 1, Introducing Swift, will take the reader through the process of installing
Swift and running their first Swift program, in order to expose its power right away.

Chapter 2, Building Blocks - Variables, Collections, and Flow Control, introduces you to
the various built-in mechanisms Swift has for representing complex information in
expressive and accessible ways, with the help of a real-world example.

Chapter 3, One Piece at a Time - Types, Scopes, and Projects, introduces the tools
necessary to closely model the real world with code. It will teach you how to define
your own custom types using structures, classes, and enumerations. It also explores
the concept of scope and access control.

Chapter 4, To Be or Not To Be - Optionals, focuses on a special and critical type in
Swift, called optionals. It includes a detailed explanation of how optionals work
and how they can be used, which turns a seemingly complex topic into a very
intuitive concept.

Chapter 5, A Modern Paradigm - Closures and Functional Programming, introduces you
to a new way of thinking about code called functional programming. We learn how
Swift supports this technique and how we can apply it to our programs to make it
even more understandable and expressive.

Chapter 6, Make Swift Work For You - Protocols and Generics, describes what generics
and protocols are and how they can provide power and safety at the same time.

Preface

[x]

Chapter 7, Everything Is Connected - Memory Management, dives deeper into the inner-
workings of Swift. We discuss how a computer stores information and how we can
use that knowledge in combination with some new tools in Swift, to ensure that our
code remains responsive and minimizes its effect on battery life.

Chapter 8, Paths Less Traveled – Error Handling, goes into gracefully handling error
situations in Swift with error throwing and catching.

Chapter 9, Writing Code the Swift Way - Design Patterns and Techniques, introduces
the reader to the art of programming by taking them through a number of specific
design patterns that help reduce the complexity of code.

Chapter 10, Harnessing the Past - Understanding and Translating Objective-C, develops
a basic understanding of Objective-C with a focus on how it compares to Swift. This
allows the reader to make use of the vast resources that exist in Objective-C to help
with their Swift development.

Chapter 11, A Whole New World - Developing an App, focuses on explaining the process
of creating a real world iOS application, with the help of an example.

Chapter 12, What's Next? - Resources, Advice, and the Next Steps, discusses how to move
forward to become the best app developer you possibly can. It provides a list of
resources and advice the reader can use to continue their Swift and app development
learning process.

What you need for this book
To run the code in this book, you will need Xcode 7.2.

Who this book is for
If you want to build iOS or OS X apps using the most modern technology, this book
is ideal for you. Learning Swift will place you into a small developer community that
will explode in demand when all the development for Apple's platforms transitions
to it. You will find this book especially useful if you are new to programming or if
you have yet to develop for iOS or OS X.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Preface

[xi]

When mentioning pieces of code in text we will use the style as follows: "You can see
that "Hello, playground" was indeed stored in the variable.

If the code is longer it will presented as a block as follows:

if invitees.count > 20 {
 println("Too many people invited")
}
else if invitees.count <= 3 {
 println("Not really a party")
}
else {
 println("Just right")
}

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Now,
click on Connect on the Remote Desktop Viewer". Keyboard shortcuts will be
displayed using the key style.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xii]

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR/7-Zip for Windows
•	 Zipeg/iZip/UnRarX for Mac
•	 7-Zip/PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/LearningSwiftSecondEdition_ColorImages.
pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com/sites/default/files/downloads/LearningSwiftSecondEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearningSwiftSecondEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearningSwiftSecondEdition_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xiii]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Introducing Swift
What are you trying to achieve by reading this book? Learning Swift can be fun, but
most of us are trying to achieve something bigger. There is something we want to
create, a career we want to follow, or maybe something else entirely. Whatever that
goal is, I encourage you to keep it in mind as you read this book. It will be much
easier for you to learn, from this or any other resource, if you can always relate it to
your goal.

With that in mind, before we dive into learning Swift, we have to understand what
it really is and how it will help us in achieving our goals. We also need to move
forward with an effective learning technique and get a taste of what is to come.
To do all of that, we will cover the following topics in this chapter:

•	 Defining our goals for this book
•	 Setting up the development environment
•	 Running our first Swift code
•	 Understanding playgrounds
•	 Learning with this book

Defining our goals for this book
Swift is a programming language developed by Apple primarily to allow developers
to continue to push their platforms forward. It is their attempt to make iOS, OS X,
watchOS, and tvOS app development more modern, safe, and powerful.

Introducing Swift

[2]

However, Apple has also released Swift as Open Source and begun an effort to add
support for Linux with the intent to make Swift even better and a general purpose
programming language available everywhere. Some developers have already begun
using it to create command-line scripts as a replacement/supplement of the existing
scripting languages, such as Python or Ruby and many can't wait to be able to share
some of their app code with Web backend code. Apple's priority, at least for now, is
to make it the best language possible, to facilitate app development. However, the
most important thing to remember is that modern app development almost always
requires pulling together multiple platforms into a single-user experience. If a
language could bridge those gaps and stay enjoyable to write, safe, and performant,
we would have a much easier time making amazing products. Swift is well on its
way to reach that goal.

Now, it is important to note that learning Swift is only the first step towards
developing. To develop for a device, you must learn the programming language
and the frameworks the device maker provides. Being skilled with a programming
language is the foundation of getting better at using frameworks and ultimately
building apps.

Developing software is like building a table. You can learn the basics of
woodworking and nail a few pieces of wood together to make a functional table, but
you are very limited in what you can do because you lack advanced woodworking
skills. If you want to make a truly great table, you need to step away from the table
and focus first on developing your skill set. The better you are at using the tools, the
greater the number of possibilities that open up to you to create a more advanced
and higher quality piece of furniture. Similarly, with a very limited knowledge of
Swift, you can start to piece together a functional app from the code you find online.
However, to really make something great, you have to put the time and effort into
refining your skill set with the language. Every language feature or technique that
you learn opens up more possibilities for your app.

That being said, most developers are driven by a passion to create things and solve
problems. We learn best when we can channel our passions into truly improving
ourselves and the world around us. We don't want to get stuck learning the minutia
of a language with no practical purpose.

The goal of this book is to develop your skills and confidence to dive passionately
into creating compelling, maintainable, and elegant apps in Swift. To do that, we will
introduce the syntax and features of Swift in a practical way. You will build a rich
toolset, while seeing that toolset put to real world usage. So, without further ado,
let's jump right into setting up our development environment.

Chapter 1

[3]

Setting up the development environment
In order to use Swift, you will need to run OS X, the operating system that comes
with all Macs. The only piece of software that you will need is called Xcode (version
7 and higher). This is the environment that Apple provides, which facilitates
development for its platforms. You can download Xcode for free from the
Mac App Store at www.appstore.com/mac/Xcode.

Once downloaded and installed, you can open the app and it will install the rest of
Apple's developer tool components. It is as simple as that! We are now ready to run
our first piece of Swift code.

Running our first swift code
We will start by creating a new Swift playground. As the name suggests, a
playground is a place where you can play around with code. With Xcode open,
navigate to File | New | Playground… from the menu bar, as shown in the
following screenshot:

Name it MyFirstPlayground, leave the platform as iOS, and save it wherever
you wish.

www.appstore.com/mac/Xcode

Introducing Swift

[4]

Once created, a playground window will appear with some code already populated
inside it for you:

You have already run your first Swift code. A playground in Xcode runs your code
every time you make a change and shows you the code results in the sidebar, on the
right-hand side of the screen.

Let's break down what this code is doing. The first line is a comment that is ignored
while being run. It can be really useful in adding extra information about your code
inline with it. In Swift, there are two types of comments: single-line and multi-line.
Single-line comments, such as the preceding one, always start with a //. You can
also write comments that span multiple lines by surrounding them with /* and */.
For example:

/*
 This is a multi-line comment
 that takes up more than one line
 of code
*/

Chapter 1

[5]

As you can see in the preceding screenshot, the second line, import UIKit,
imports a framework called UIKit. UIKit is the name of Apple's framework for
iOS development. For this example, we are not actually making use of the UIKit
framework so it is safe to completely remove that line of code.

Finally, on the last line, the code defines a variable called str that is being assigned
to the text "Hello, playground". In the results sidebar, next to that line, you can see
that "Hello, playground" was indeed stored in the variable. As your code becomes
more complex, this will become incredibly useful to help you track and watch the
state of your code, as it is run. Every time you make a change to the code, the results
will update, showing you the consequences of the change.

If you are familiar with other programming languages, many of them require some
sort of line terminator. In Swift, you do not need anything like that.

The other great thing about Xcode playgrounds is that they will show you errors as
you type them in. Let's add a third line to the playground:

 var str = "Something Else"

On its own, this is completely valid Swift code. It stores the text "Something Else"
into a new variable called str. However, when we add this to the playground, we
are shown an error in the form of a red exclamation mark next to the line number.
If you click on the exclamation mark, you will be shown the full error:

Introducing Swift

[6]

This line is highlighted in red and we are shown the Invalid redeclaration of 'str'
error. This is because you cannot declare two different variables with the exact
same name. Also, notice that the results along the right turned gray instead of black.
This indicates that the result being shown is not from the latest code, but the last
successful run of the code. The code cannot be successfully run to create a new
result because of the error. If we change the second variable to strTwo, the error
goes away:

Downloading the example code
You can download the example code files for this book from your account
at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.
You can download the code files by following these steps:

•	 Log in or register to our website using your e-mail address
and password.

•	 Hover the mouse pointer on the SUPPORT tab at the top.
•	 Click on Code Downloads & Errata.
•	 Enter the name of the book in the Search box.
•	 Select the book for which you're looking to download the

code files.
•	 Choose from the drop-down menu where you purchased this

book from.
•	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract
the folder using the latest version of:

•	 WinRAR/7-Zip for Windows
•	 Zipeg/iZip/UnRarX for Mac
•	 7-Zip/PeaZip for Linux

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

[7]

Now the results are shown in black again, and we can see that they have been
updated according to the latest code. Especially if you have experience with other
programming environments, the reactiveness of the playground may be surprising
to you. Let's take a peek under the hood to get a better understanding of what is
happening and how Swift works.

Understanding playgrounds
A playground is not truly a program. While it does execute code like a program, it is
not really useful outside of the development environment. Before we can understand
what the playground is doing for us, we must first understand how Swift works.

Introducing Swift

[8]

Swift is a compiled language, which means that for Swift code to be run, it must first
be converted into a form that the computer can actually execute. The tool that does
this conversion is called a compiler. A compiler is actually a program and it is also a
way to define a programming language.

The Swift compiler takes the Swift code as input and, if it can properly parse and
understand the code, outputs machine code. Apple developed the Swift compiler to
understand the code according to a series of rules. Those rules are what define the
Swift programming language and those rules are what we are trying to learn, when
we say we are learning Swift.

Once the machine code is generated, Xcode can wrap the machine code up inside an
app that users can run. However, we are running Swift code inside our playground,
so clearly building an app is not the only way to run code; something else is going
on here.

Every time you make a change to a playground, it automatically tries to compile
your code. If it is successful, instead of wrapping up the machine code in an app to
be run later, it runs the code immediately and shows you the results. If you had to do
this process yourself, you would first have to consciously make the decision to build
the code into an app and then run it when you wanted to test something. This would
be a huge waste of time; especially, if you write an error that you don't catch until the
moment you decide to actually run it. The quicker you can see the result of a code
change, the faster you will be at developing the code and the fewer mistakes you
will make.

For now, we will be developing all of our code inside a playground because it is a
fantastic learning environment. Playgrounds are even more powerful than what we
have seen so far and we will see that as we explore deeper into the Swift language.

We are just about ready to get to the meat of learning Swift, but first let's take a
moment to make sure that you can get the most out of this book.

Learning with this book
The learning process of this book follows very closely to the philosophy behind
playgrounds. You will get the most out of this book if you play around with the code
and ideas that we discuss. Instead of just passively reading through this, glancing
at the code, put the code into a playground, and observe how it really works. Make
changes to the code, try to break it, try to extend it, and you will learn far more. If
you have a question, don't default to looking up the answer, try it out.

Chapter 1

[9]

At its core, programming is a creative exercise. Yes, it requires the ability to think
logically through a problem, but nine times out of ten there is no right way there
is no correct answer. Technology is pushed by those of us who won't settle for the
accepted solution, who aren't OK with following a fixed set of instructions, who
want to push the boundaries. As we move forward in learning Swift, make this
book and Swift work for you by not taking everything at face value.

Summary
We're off to a good start. We've gone over how Swift is a language designed
primarily for app development, which often includes multiple different platforms.
We already ran our first code and learned a little bit about how a computer runs
it indirectly by first compiling it into a form it understands how to run. Most
importantly, we've learned that you will learn best from this book by having a
goal to work towards and by playing around with the concepts as you read along.
So let's get started!

Next, we will start breaking down the basics of Swift and then put them together to
make our first program.

www.allitebooks.com

http://www.allitebooks.org

[11]

Building Blocks – Variables,
Collections, and Flow Control

One of the coolest things about programming is the way that concepts build on each
other. If you've never programmed anything before, even the most basic app can
seem very complex. The reality is that, if you analyze everything going on in an app
down to the ones and zeros flowing through the processor, it is incredibly complex.
However, every aspect of using a computer is an abstraction. When you use an app,
the complexity of the programming is being abstracted away for you. Learning to
program is just going one level deeper in making a computer work for you.

As you learn the basic concepts behind programming, they will become second
nature and this will free your mind to grasp even more complex concepts.
When you first learn to read, sounding out each word is challenging. However,
eventually, you reach a level where you glance at a word and you know the meaning
instantaneously. This frees you up to start looking for deeper meaning from the text.

In this chapter, we will build up your knowledge of the building blocks of
programming in Swift. Each of these building blocks is exciting on its own and they
will become even more exciting as we start to see the possibilities they open up. No
matter how complex programming might seem to you now, I guarantee that one
day you will look back and marvel at how all of these concepts have become
second nature.

In this chapter, we will cover:

•	 Core Swift types
•	 Swift's type system
•	 Printing to the console
•	 Controlling the flow of your program
•	 A comprehensive example of all concepts covered

Building Blocks – Variables, Collections, and Flow Control

[12]

Core Swift types
Every programming language needs to name a piece of information so that it can be
referenced later. This is the fundamental way in which code remains readable after
it is written. Swift provides a number of core types that help you represent your
information in a very comprehensible way.

Constants and variables
Swift provides two types of information: a constant and a variable:

// Constant
let pi = 3.14

// Variable
var name = "Sarah"

All constants are defined using the let keyword followed by a name, and all
variables are defined using the var keyword. Both constants and variables in Swift
must contain a value before they are used. This means that, when you define a new
one, you will most likely give it an initial value. You do so by using the assignment
operator (=) followed by a value.

The only difference between the two is that a constant can never be changed,
whereas a variable can be. In the preceding example, the code defines a constant
called pi that stores the information 3.14 and a variable called name that stores the
information "Sarah". It makes sense to make pi a constant because pi will always
be 3.14. However, we need to change the value of name in the future so we defined it
as a variable.

One of the hardest parts of managing a program is the state of all the variables. As
a programmer, it is often impossible to calculate all the different possible values a
variable might have, even in relatively small programs. Since variables can often be
changed by distant, seemingly unrelated code, more states will cause more bugs that
are harder to track down. It is always best to default to using constants until you run
into a practical scenario in which you need to modify the value of the information.

Containers
It is often helpful to give a name to more complex information. We often have to deal
with a collection of related information or a series of similar information like lists.
Swift provides three main collection types called tuples, arrays, and dictionaries.

Chapter 2

[13]

Tuples
A tuple is a fixed sized collection of two or more pieces of information. For example,
a card in a deck of playing cards has three properties: color, suit, and value. We
could use three separate variables to fully describe a card, but it would be better to
express it in one:

var card = (color: "Red", suit: "Hearts", value: 7)

Each piece of information consists of a name and a value separated by a colon (:)
and each is separated by a comma (,). Finally, the whole thing is surrounded by
parentheses (()).

Each part of a tuple can be accessed separately by name using a period (.), otherwise
referred to as a dot:

card.color // "Red"
card.suit // "Hearts"
card.value // 7

You are also able to create a tuple with no names for each part of it. You can
then access them based on where they are in the list, starting with zero as the
first element:

var diceRoll = (4, 6)
diceRoll.0 // 4
diceRoll.1 // 6

Another way to access specific values in a tuple is to capture each of them in a
separate variable:

let (first, second) = diceRoll
first // 4
second // 6

If you want to change a value in a tuple, you can assign every value at once or you
can update a single value, using the same reference as in the preceding code:

diceRoll = (4, 5)
diceRoll.0 = 2

Arrays
An array is essentially a list of information of variable length. For example, we could
create a list of people we want to invite to a party, as follows:

var invitees = ["Sarah", "Jamison", "Marcos", "Roana"]

Building Blocks – Variables, Collections, and Flow Control

[14]

An array always starts and ends with a square bracket and each element is
separated by a comma. You can even declare an empty array with open and
closing brackets: [].

You can then add values to an array by adding another array to it, like this:

invitees += ["Kai", "Naya"]

Note that += is the shorthand for the following:

invitees = invitees + ["Kai", "Naya"]

You can access values in an array based on their position, usually referred to as their
index, as shown:

invitees[2] // Marcos

The index is specified using square brackets ([]) immediately after the name of
the array. Indexes start at 0 and go up from there like tuples. So, in the preceding
example, index 2 returned the third element in the array, Marcos. There is additional
information you can retrieve about an array, like the number of elements that you
can see as we move forward.

Dictionaries
A dictionary is a collection of keys and values. Keys are used to store and look up
specific values in the container. This container type is named after a word dictionary
in which you can look up the definition of a word. In that real life example, the word
would be the key and the definition would be the value. As an example, we can
define a dictionary of television shows organized by their genre:

var showsByGenre = [
 "Comedy": "Modern Family",
 "Drama": "Breaking Bad",
]

A dictionary looks similar to an array but each key and value is separated by a colon
(:). Note that Swift is pretty forgiving with how whitespace is used. The array could
be defined with each element on its own line and the dictionary could be defined
with every element on a single line. It is up to you to use whitespace to make your
code as readable as possible.

With the dictionary defined as shown above, you would get the value Modern
Family if you looked up the key Comedy. You access a value in code similar to how
you would in an array but, instead of providing an index in the square brackets,
you provide the key:

showsByGenre["Comedy"] // Modern Family

Chapter 2

[15]

You can define an empty dictionary in a similar way to an empty array but with a
dictionary you must also include a colon between the brackets: [:].

Adding a value to a dictionary is similar to retrieving a value but you use the
assignment operator (=):

showsByGenre["Variety"] = "The Colbert Report"

As a bonus, this can also be used to change the value for an existing key.

You might have noticed that all of my variable and constant names begin with a
lower case letter and each subsequent word starts with a capital letter. This is called
camel case and it is the widely accepted way of writing variable and constant names.
Following this convention makes it easier for other programmers to understand
your code.

Now that we know about Swift's basic containers, let's explore what they are in a
little more detail.

Swift's type system
Swift is a strongly typed language, which means that every constant and variable is
defined with a specific type. Only values of matching types can be assigned to them.
So far, we have taken advantage of a feature of Swift called Type Inference. This
means that the code does not have to explicitly declare a type if it can be inferred
from the value being assigned to it during the declaration.

Without Type Inference, the name variable declaration from before would be written
as follows:

var name: String = "Sarah"

This code is explicitly declaring name as the type String with the value Sarah.
A constant or variable's type can be specified by adding a colon (:) and a type
after its name.

A string is defined by a series of characters. This is perfect for storing text, as in our
name example. The reason that we don't need to specify the type is that Sarah is
a string literal. Text surrounded by quotation marks is a string literal and can be
inferred to be of the type String. That means that name must be of the type String
if you make its initial value Sarah.

Building Blocks – Variables, Collections, and Flow Control

[16]

Similarly, if we had not used type inference for our other variable declarations,
they would look like this:

let pi: Double = 3.14

var invitees: [String] = ["Sarah", "Jamison", "Roana"]

let showsByGenre: [String:String] = [
 "Comedy": "Modern Family",
 "Drama": "Breaking Bad",
]

Double is a numeric type that can store decimal numbers. An array's type is declared
by putting the type of element it stores in square brackets. Finally, a dictionary's
type is defined in the form [KeyType:ValueType]. All of these types can be
inferred because each of them is assigned to a value that has an inferable type.

The code is much cleaner and easier to understand if we leave the types out as the
original examples showed. Just keep in mind that these types are always implied to
be there, even if they are not written explicitly. If we tried to assign a number to the
name variable, we would get an error, as shown:

Here, we are trying to assign a number, specifically an Int, to a variable that was
inferred to be a String. Swift does not allow that.

When dealing with inferred types, it is extremely useful to ask Xcode what type a
variable is inferred to be. You can do this by holding down the Option key on your
keyboard and clicking on the variable name. This will display a pop-up that looks
like this:

As was expected, the variable was indeed inferred to be of the type String.

Chapter 2

[17]

Types are an integral part of Swift. They are one of the major reasons that Swift is so
safe as a programming language. They help the compiler learn more about your code
and, because of that, the compiler can warn you about bugs automatically without
even running your code.

Printing to the console
It is very useful to write output to a log so that you can trace the behavior of code.
As a codebase grows in complexity, it gets hard to follow the order in which
things happen and exactly what the data looks like as it flows through the code.
Playgrounds help a lot with this but it is not always enough.

In Swift, this process is called printing to the console. To do this, you use
something called print. It is used by writing print followed by text surrounded
by parentheses. For example, to print Hello World! to the console, the code would
look like this:

print("Hello World!")

If you put that code in a playground, you would see Hello World! written in the
results pane. However, this is not truly the console. To view the console, you can go
to View | Debug Area | Show Debug Area. A new view will appear at the bottom
of the window and it will contain all text the code has printed to the console:

Building Blocks – Variables, Collections, and Flow Control

[18]

Not only can you print static text to the console, you can also print out any variable.
For example, if you wanted to print out the name variable, you would write:

print(name)

You can even use a feature of Swift called string interpolation to insert variables into
a string, like this:

print("Hello \(name)!")

At any point in a string literal, even when not printing, you can insert the results of
the code by surrounding the code with \(and). Normally this would be the name
of a variable but it could be any code that returns a value.

Printing to the console is even more useful when we start using more complex code.

Control flow
A program wouldn't be very useful if it were a single fixed list of commands that
always did the same thing. With a single code path, a calculator app would only be
able to perform one operation. There are a number of things we can do to make an
app more powerful and collect the data to make decisions as to what to do next.

Conditionals
The most basic way to control the flow of a program is to specify code that should
only be executed if a certain condition is met. In Swift, we do that with an if
statement. Let's look at an example:

if invitees.count > 20 {
 print("Too many people invited")
}

Semantically, the preceding code reads; if the number of invitees is greater then
20, print 'Too many people invited". This example only executes one line of code
if the condition is true, but you can put as much code as you like inside the curly
brackets ({}).

Anything that can be evaluated as either true or false can be used in an if statement.
You can then chain multiple conditions together using an else if and/or an else:

if invitees.count > 20 {
 print("Too many people invited")
}
else if invitees.count <= 3 {

Chapter 2

[19]

 print("Not really a party")
}
else {
 print("Just right")
}

Each condition is checked from top to bottom until a condition is satisfied. At
that point, the code block is executed and the remaining conditions are skipped,
including the final else block.

As an exercise, I recommend adding an additional scenario to the preceding code
in which, if there were exactly zero invitees, it would print "One is the loneliest
number". You can test out your code by adjusting how many invitees you add to the
invitees declaration. Remember that the order of the conditions is very important.

As useful as conditionals are, they can become very verbose if you have a lot of them
chained together. To solve this type of problem, there is another control structure
called a switch.

Switches
A switch is a more expressive way of writing a series of if statements. A direct
translation of the example from the conditionals section would look like this:

switch invitees.count {
 case let x where x > 20:
 print("Too many people invited")
 case let x where x <= 3:
 print("Not really a party")
 default:
 print("Just right")
}

A switch consists of a value and a list of conditions for that value with the code
to execute if the condition is true. The value to be tested is written immediately
after the switch command and all of the conditions are contained in curly brackets
({}). Each condition is called a case. Using that terminology, the semantics of the
preceding code is "Considering the number of invitees, in the case that it is greater
than 20, print "Too many people invited", otherwise, in the case that it is less than
or equal to three, print "Too many people invited", otherwise, by default print
"Just right".

This works by creating a temporary constant x that is given the value that the switch
is testing. It then performs a test on x. If the condition passes, it executes the code for
that case and then exits the switch.

Building Blocks – Variables, Collections, and Flow Control

[20]

Just like in conditionals, each case is only considered if all of the previous cases are
not satisfied. Unlike conditionals, all the cases need to be exhaustive. That means that
you need to have a case for every possible value that the variable being passed in
could be. For example, invitees.count is an integer, so it could theoretically be
any value from negative infinity to positive infinity.

The most common way to handle that is by using a default case as designated by the
default keyword. Sometimes, you don't actually want to do anything in the default
case, or possibly even in a specific case. For that, you can use the break keyword, as
shown here:

switch invitees.count {
 case let x where x > 20:
 print("Too many people invited")
 case let x where x <= 3:
 print("Not really a party")
 default:
 break
}

Note that the default case must always be the last one.

We have seen so far that switches are nice because they enforce the condition of
being exhaustive. This is great for letting the compiler catch bugs for you. However,
switches can also be much more concise. We can rewrite the preceding code like this:

switch invitees.count {
 case 0...3:
 print("Not really a party")
 case 4...20:
 print("Just right")
 default:
 print("Too many people invited")
}

Here, we have described each case as a range of possible values. The first case
includes all of the values between and including 0 and 3. This is way more
expressive than using a where clause. This example also shows a rethinking of the
logic. Instead of having a case specific for values over 20, we have cases for the
closed ranges that we know and then capture everything for the case above 20 in the
default case. Note that this version of the code does not properly handle the situation
in which the count might be negative, whereas the original version did. In this
version, if the count were -1, it would fall all the way through to the default case
and print out "Too many people invited". For this use case, it is fine because the
count of an array can never be negative.

Chapter 2

[21]

Switches don't only work with numbers. They are great for performing any type
of test:

switch name {
 case "Marcos", "Amy":
 print("\(name) is an honored guest")
 case let x where x.hasPrefix("A"):
 print("\(name) will be invited first")
 fallthrough
 default:
 print("\(name) is someone else")
}

This code shows some other interesting features of switches. The first case is actually
made up of two separate conditions. Each case can have any number of conditions
separated by commas (,). This is useful when you have multiple cases that you want
to use the same code for.

The second case uses a custom test on the name to see if it starts with the letter
A. This is great for demonstrating the way in which switches are executed. Even
though the string Amy would satisfy the second condition, this code would only
print, Amy is an honored guest because the other cases are not evaluated once the
first case is satisfied. For now, don't worry if you don't understand completely how
hasPrefix works.

Lastly, the second case uses the fallthrough keyword. This tells the program
to execute the code in the following case. Importantly, this bypasses the next
case's condition; it does not matter if the value passes the condition, the code is
still executed.

To make sure that you understand how a switch is executed, put the following code
into a playground and try to predict what will be printed out with various names:

let testName = "Andrew"
switch testName {
 case "Marcos", "Amy":
 print("\(testName) is an honored guest")
 case let x where x.hasPrefix("A"):
 print("\(testName) will be invited first")
 fallthrough
 case "Jamison":
 print("\(testName) will help arrange food")
 default:
 print("\(testName) is someone else")
}

Building Blocks – Variables, Collections, and Flow Control

[22]

Some good names to try are Andrew, Amy, and Jamison.

Now we have full control over which code we want executed in which
circumstances. However, a program often requires that we execute the same code
more than once. For example, if we want to perform an operation on every element
in an array, it would not be viable to copy and paste a bunch of code. Instead, we can
use control structures called loops.

Loops
There are many different types of loops but all of them execute the same code
repeatedly until a condition is no longer true. The most basic type of loop is
called a while loop:

var index = 0
while index < invitees.count {
 print("\(invitees[index]) is invited")

 index+=1
}

A while loop consists of a condition to test and code to be run until that condition
fails. In the preceding example, we have looped through every element in the
invitees array. We used the variable index to track which invitee we were
currently on. To move to the next index, we used a new operator += which added
one to the existing value. This is the same as writing index = index + 1.

There are two important things to note about this loop. Firstly, our index starts at 0,
not 1, and it goes on until it is less than the number of invitees, not less than or equal
to them. This is because, if you remember, array indexes start at 0. If we started at
1 we would miss the first element and, if we included invitees.count, the code
would crash because it would try to access an element beyond the end of the array.
Always remember: the last element of an array is at the index one less than the count.

The other thing to note is that, if we were to forget to include index+=1 in the loop,
we would have an infinite loop. The loop would continue to run forever because
index would never go beyond invitees.count.

This pattern of wanting to loop through a list is so common that there is a more
concise and safe loop called a for-in loop:

for invitee in invitees {
 print("\(invitee) is invited")
}

Chapter 2

[23]

Now this is getting pretty cool. We no longer have to worry about indexes. There is
no risk of accidentally starting at 1 or going past the end. Also, we get to give our own
name to the specific element as we go through the array. One thing to note is that we
did not declare the invitee variable with let or var. This is particular to a for-in
loop because the constant used there is newly declared each time through the loop.

for-in loops are great for looping through different types of containers. They can
also be used to loop through a dictionary, as shown:

for (genre, show) in showsByGenre {
 print("\(show) is a great \(genre) series")
}

In this case, we get access to both the key and the value of the dictionary. This should
look familiar because (genre, show) is actually a tuple used for each iteration
through the loop. It may be confusing to determine whether or not you have a single
value from a for-in loop like arrays or a tuple like dictionaries. At this point, it
would be best for you to remember just these two common cases. The underlying
reasons will become clear when we start talking about sequences in Chapter 6, Make
Swift Work For You – Protocols and Generics.

Another feature of for-in loops is the ability to only loop through elements that
pass a given test. You could achieve this with an if statement but Swift provides a
more concise way of writing it using the where keyword:

for invitee in invitees where invitee.hasPrefix("A") {
 print("\(invitee) is invited")
}

Now, the loop will only be run for each of the invitees that start with the letter A.

These loops are great but sometimes we need access to the index we are currently on
and, at other times, we may want to loop through a set of numbers without an array.
To do this, we can use a range similar to a Switch, as shown:

for index in 0 ..< invitees.count {
 print("\(index): \(invitees[index])")
}

This code runs the loop using the variable index from the value 0 up to but not
including invitees.count. There are actually two types of ranges. This one is called
a half open range because it does not include the last value. The other type of range,
which we saw with switches, is called a closed range:

print("Counting to 10:")
for number in 1 ... 10 {
 print(number)
}

Building Blocks – Variables, Collections, and Flow Control

[24]

The closed range includes the last value so that the loop will print out every number
starting with 1 and ending with 10.

All loops have two special keywords that let you modify their behavior, which
are called continue and break. continue is used to skip the rest of the loop and
move back to the condition to see whether or not the loop should be run again. For
example, if we didn't want to print out invitees whose name began with A, we would
use the following:

for invitee in invitees {
 if invitee.hasPrefix("A") {
 continue
 }
 print("\(invitee) is invited")
}

If the condition invitee.hasPrefix("A") were satisfied, the continue command
would be run and it would skip the rest of the loop, moving onto the next invitee.
Because of this, only invitees not starting with A would be printed.

The break keyword is used to immediately exit a loop:

for invitee in invitees {
 print("\(invitee) is invited")

 if invitee == "Tim" {
 print("Oh wait, Tim can't come")
 break
 }
}
print("Jumps here")

As soon as a break is encountered, the execution jumps to after the loop. In this case,
it jumps to the final line.

Loops are great for dealing with variable amounts of data, like our list of invitees.
When writing your code, you probably won't know how many people will be in that
list. Using a loop gives you the flexibility to handle a list of any length.

As an exercise, I recommend you try writing a loop to find the sum of all the
multiples of 3 under 10,000. You should get 16,668,333.

Chapter 2

[25]

Loops are also a great way of reusing code without duplicating it but they are just
the first step towards quality code reuse. Next, we will talk about functions, which
opens up a whole new world of writing understandable and reusable code.

Functions
All of the code we have explored so far is very linear down the file. Each line is
processed one at a time and then the program moves onto the next. This is one of the
great things about programming: everything the program does can be predicted by
stepping through the program yourself mentally, one line at a time.

However, as your program gets larger, you will notice that there are places that reuse
very similar or identical code that you cannot reuse by using loops. Moreover, the
more code you write, the harder it becomes to know exactly what it is doing. Code
comments can help with that but there is an even better solution to both of these
problems and they're called functions. A function is essentially a named collection
of code that can be executed and reused by using that name.

There are various different types of functions but each builds on the previous type.

Basic functions
The most basic type of function simply has a name with some static code to be
executed later. Let's look at a simple example. The following code defines a function
named sayHello:

func sayHello() {
 print("Hello World!")
}

Functions are defined using the keyword func followed by a name and parentheses
(()). The code to be run in the function is surrounded by curly brackets ({}). Just like
in loops, a function can consist of any number of lines of code.

From our knowledge of printing, we know that this function will print out the text
Hello World!. However, when will it do that? The terminology used for telling
a function to execute is "calling a function." You call a function by using its name
followed by parentheses (()):

sayHello() // Prints "Hello World!"

Building Blocks – Variables, Collections, and Flow Control

[26]

This is a very simple function that is not that useful but we can already see some
pretty great benefits of functions. In reality, what happens when you call this
function is that the execution moves into the function and, when it has finished
executing every line of the function, it exits out and continues on from where the
function was called. However, as programmers, we are often not concerned with
what is happening inside a function unless something has gone wrong. If functions
are named well, they tell you what they will do and that is all you need to know to
follow the rest of the code. In fact, well-named functions can almost always take the
place of comments in your code. This really reduces clutter without harming the
legibility of your code.

The other advantage this function has over using print directly is that the code
becomes more maintainable. If you use print in multiple places in your code and
then change your mind about how you want to say Hello, you have to change a lot
of code. However, if you use a function like the one above, you can easily change
how it says Hello by changing the function and it will then be changed in each place
you use that function.

You may have noticed some similarity in how we have named our sayHello
function and how we used print. This is because print is a function that is built
into Swift itself. There is complex code in the print function that makes printing
to the console possible and accessible to all programmers. But hey, print is able to
take in a value and do something with it, how do we write a function like that? The
answer is: parameters.

Parameterized functions
A function can take zero or more parameters, which are input values. Let's modify
our sayHello function to be able to say Hello to an arbitrary name using string
interpolation:

func sayHelloToName(name: String) {
 print("Hello \(name)!")
}

Now our function takes in an arbitrary parameter called name of the type String and
prints hello to it. The name of this function is now sayHelloToName:. We didn't
include the parameter name because, when you call the method, you don't use the
first parameter's name by default:

sayHelloToName("World") // Prints "Hello World!"

Chapter 2

[27]

We included a colon (:) at the end of the name to indicate that it takes a parameter
there. This makes it different from a function named sayHelloToName that does not
take a parameter. The naming may seem unimportant and arbitrary but it is very
important that we are all able to communicate about our code using common and
precise terminology, so that we can more effectively learn from and collaborate with
each other.

As mentioned before, a function can take more than one parameter. A parameter list
looks a lot like a tuple. Each parameter is given a name and a type separated by a
colon (:), and these are then separated by commas (,). On top of that, functions can
not only take in values but can also return values to the calling code.

Functions that return values
The type of value to be returned from a function is defined after the end of all of
the parameters separated by an arrow ->. Let's write a function that takes a list
of invitees and one other person to add to the list. If there are spots available, the
function adds the person to the list and returns the new version. If there are no spots
available, it just returns the original list, as shown here:

func addInviteeToListIfSpotAvailable
 (
 invitees: [String],
 newInvitee: String
)
 -> [String]
{
 if invitees.count >= 20 {
 return invitees
 }
 return invitees + [newInvitee]
}

In this function, we tested the number of names on the invitee list and, if it was
greater than 20, we returned the same list as was passed in to the invitees
parameter. Note that return is used in a function in a similar way to break in a loop.
As soon as the program executes a line that returns, it exits the function and provides
that value to the calling code. So, the final return line is only run if the if statement
does not pass. It then adds the newinvitee parameter to the list and returns that to
the calling code.

Building Blocks – Variables, Collections, and Flow Control

[28]

You would call this function like so:

var list = ["Sarah", "Jamison", "Marcos"]
var newInvite = "Roana"
list = addInviteeToListIfSpotAvailable(list, newInvite: newInvitee)

It is important to note that we must assign list to the value returned from our
function because it is possible that the new value will be changed by the function.
If we did not do this, nothing would happen to the list.

If you try typing this code into a playground, you will notice something very cool.
As you begin typing the name of the function, you will see a small pop-up that
suggests the name of the function you might want to type, as shown:

You can use the arrow keys to move up and down the list to select the function you
want to type and then press the Tab key to make Xcode finish typing the function for
you. Not only that, but it highlights the first parameter so that you can immediately
start typing what you want to pass in. When you are done defining the first
parameter, you can press Tab again to move on to the next parameter.
This greatly increases the speed with which you can write your code.

Chapter 2

[29]

This is a pretty well-named function because it is clear what it does. However,
we can give it a more natural and expressive name by making it read more like
a sentence:

func addInvitee
 (
 invitee: String,
 ifPossibleToList invitees: [String]
)
 -> [String]
{
 if invitees.count >= 20 {
 return invitees
 }
 return invitees + [invitee]
}
list = addInvitee(newInvite, ifPossibleToList: list)

This is a great feature of Swift that allows you to have a function called with named
parameters. We can do this by giving the second parameter two names, separated
by a space. The first name is the one to be used when calling the function, otherwise
referred to as the external name. The second name is the one to be used when
referring to the constant being passed in from within the function, otherwise referred
to as the internal name. As an exercise, try to change the function so that it uses
the same external and internal names and see what Xcode suggests. For more of
a challenge, write a function that takes a list of invitees and an index for a specific
invitee to write a message to ask them to just bring themselves. For example, it
would print Sarah, just bring yourself for the index 0 in the preceding list.

Functions with default arguments
Sometimes we write functions where there is a parameter that commonly has the
same value. It would be great if we could provide a value for a parameter to be used
if the caller did not override that value. Swift has a feature for this called default
arguments. To define a default value for an argument, you simply add an equal sign
after the argument, followed by the value. We can add a default argument to the
sayHelloToName: function, as follows:

func sayHelloToName(name: String = "World") {
 print("Hello \(name)!")
}

www.allitebooks.com

http://www.allitebooks.org

Building Blocks – Variables, Collections, and Flow Control

[30]

This means that we can now call this function with or without specifying a name:

sayHelloToName("World") // Prints "Hello World!"
sayHelloToName() // Also Print "Hello World!"

When using default arguments, the order of the arguments becomes unimportant.
We can add default arguments to our addInvitee:ifPossibleToList: function
and then call it with any combination or order of arguments:

func addInvitee
 (
 invitee: String = "Default Invitee",
 ifPossibleToList invitees: [String] = []
)
 -> [String]
{
 // ...
}
list = addInvitee(ifPossibleToList: list, newInvite)
list = addInvitee(newInvite, ifPossibleToList: list)
list = addInvitee(ifPossibleToList: list)
list = addInvitee(newInvite)
list = addInvitee()

Clearly, the call still reads much better when it is written in the same order but not
all functions are designed in that way. The most important part of this feature is that
you can specify only the arguments that you want to be different from the defaults.

Guard statement
The last feature of functions that we are going to discuss is another type of
conditional called a guard statement. We have not discussed it until now because it
doesn't make much sense unless it is used in a function or loop. A guard statement
acts in a similar way to an if statement but the compiler forces you to provide an
else condition that must exit from the function, loop, or switch case. Let's rework
our addInvitee:ifPossibleToList: function to see what it looks like:

func addInvitee
 (
 invitee: String,
 ifPossibleToList invitees: [String]
)
 -> [String]
{

Chapter 2

[31]

 guard invitees.count < 20 else {
 return invitees
 }
 return invitees + [newInvitee]
}

Semantically, the guard statement instructs us to ensure that the number of invitees
is less than 20 or else return the original list. This is a reversal of the logic we used
before, when we returned the original list if there were 20 or more invitees. This
logic actually makes more sense because we are stipulating a prerequisite and
providing a failure path. The other nice thing about using the guard statement
is that we can't forget to return out of the else condition. If we do, the compiler
will give us an error.

It is important to note that guard statements do not have a block of code that is
executed if it passes. Only an else condition can be specified with the assumption
that any code you want to run for the passing condition will simply come after the
statement. This is safe only because the compiler forces the else condition to exit the
function and, in turn, ensures that the code after the statement will not run.

Overall, guard statements are a great way of defining preconditions to a function or
loop without having to indent your code for the passing case. This is not a big deal
for us yet but, if you have lots of preconditions, it often becomes cumbersome to
indent the code far enough to handle them.

Bringing it all together
At this point, we have learned a lot about the basic workings of Swift. Let's take a
moment to bring many of these concepts together in a single program. We will also
see some new variations on what we have learned.

The goal of the program is to take a list of invitees and a list of television shows and
ask random people to bring a show from each genre. It should also ask the rest to just
bring themselves.

Before we look at the code, I will mention the three small new features that I will use:

•	 Generating a random number
•	 Using a variable to store only true or false
•	 Repeat-while loops

Building Blocks – Variables, Collections, and Flow Control

[32]

The most important feature is the ability to generate a random number. To do this,
we have to import the Foundation framework. This is the most basic framework
made available by Apple. As the name suggests, it forms the basis of the framework
for both OS X and iOS.

Foundation includes a function called rand that returns a random number.
Computers are actually not capable of generating truly random numbers and, by
default, rand always returns the same values in the same order. To make it return
different values each time the program is run, we use a function called srand that
stands for seed random. Seeding random means that we provide a value for rand on
which to base its first value. A common way of seeding the random number is using
the current time. We will use a method called clock that is also from Foundation.

Lastly, rand returns a number anywhere from 0 to a very large number but, as you
will see, we want to restrict the random number to between 0 and the number of
invitees. To do this, we use the remainder operator (%). This operator gives you the
remainder after dividing the first number by the second number. For example, 14
% 4 returns 2 because 4 goes into 14, 3 times with 2 left over. The great feature of
this operator is that it forces a number of any size to always be between 0 and 1 less
than the number you are dividing by. This is perfect for changing all of the possible
random values.

The full code for generating a random number looks like this:

// Import Foundation so that "rand" can be used
import Foundation

// Seed the random number generator
srand(UInt32(clock()))

// Random number between 0 and 9
var randomNumber = Int(rand()) % 10

You may notice one other thing about this code. We are using new syntax UInt32()
and Int(). This is a way of changing one type into another. For example, the clock
function returns a value of the type clock_t but srand takes a parameter of the type
UInt32. Remember, just like with variables, you can hold the option key and click on
a function to see what types it takes and returns.

Chapter 2

[33]

The second feature we will use a variable that can store only true or false. This is
called a Bool, which is short for Boolean. We have used this type many times before
as it is used in all conditionals and loops but this is the first time that we will store a
Bool directly in a variable. At its most basic level, a Boolean variable is defined and
used like this:

var someBool = false
if someBool {
 print("Do This")
}

Note that we can use the Boolean directly in a conditional. This is because a Boolean
is the exact type a conditional is expecting. All of our other tests like <= actually
result in a Bool.

Lastly, the third feature we will use is a variation of the while loop called a
repeat-while loop. The only difference with a repeat-while loop is that the
condition is checked at the end of the loop instead of at the beginning. This is
significant because, unlike with a while loop, a repeat-while loop will always
be executed at least once, as shown:

var inviteeIndex: Int
repeat {
 inviteeIndex = Int(rand()) % 5
} while inviteeIndex != 3

With this loop, we will continue to generate a random number between 0 and 4 until
we get a number that does not equal 3.

Everything else in the code builds off the concepts we already know. I recommend
that you read through the code and try to understand it. Try to not only understand
it from the perspective of how it works but why I wrote it in that way. I included
comments to help explain both what the code is doing and why it is written in
that way:

// Import Foundation so that "rand" can be used
import Foundation

// Seed the random number generator
srand(UInt32(clock()))

Building Blocks – Variables, Collections, and Flow Control

[34]

// -----------------------------
// Input Data
// -----------------------------

// invitees
//
// Each element is a tuple which contains a name
// that is a String and a Bool for if they have been
// invited yet. It is a variable because we will be
// tracking if each invitee has been invited yet.

var invitees = [
 (name: "Sarah", alreadyInvited: false),
 (name: "Jamison", alreadyInvited: false),
 (name: "Marcos", alreadyInvited: false),
 (name: "Roana", alreadyInvited: false),
 (name: "Neena", alreadyInvited: false),
]

// showsByGenre
//
// Constant because we will not need to modify
// the show list at all
let showsByGenre = [
 "Comedy": "Modern Family",
 "Drama": "Breaking Bad",
 "Variety": "The Colbert Report",
]

This first section of code gives us a localized place in which to put all of our data.
We can easily come back to the program and change the data if we want and we
don't have to go searching through the rest of the program to update it:

// -----------------------------
// Helper functions
// -----------------------------

// inviteAtIndex:toBringShow:
//
// Another function to help make future code
// more comprehensible and maintainable
func inviteAtIndex
 (

Chapter 2

[35]

 index: Int,
 toBringShow show: (genre: String, name: String)
)
{
 let name = invitees[index].name
 print("\(name), bring a \(show.genre) show")
 print("\(show.name) is a great \(show.genre)")

 invitees[index].alreadyInvited = true
 }

// inviteToBringThemselvesAtIndex:
//
// Similar to the previous function but this time for
// the remaining invitees
func inviteToBringThemselvesAtIndex(index: Int) {
 let invitee = invitees[index]
 print("\(invitee.name), just bring yourself")

 invitees[index].alreadyInvited = true
 }

Here, I have provided a number of functions that simplify more complex code later
on in the program. Each one is given a meaningful name so that, when they are used,
we do not have to go and look at their code to understand what they are doing:

// -----------------------------
// Now the core logic
// -----------------------------

// First, we want to make sure each genre is assigned
// to an invitee
for show in showsByGenre {
 // We need to pick a random invitee that has not
 // already been invited. With the following loop
 // we will continue to pick an invitee until we
 // find one that has not already been invited
 var inviteeIndex: Int
 repeat {
 inviteeIndex = Int(rand()) % invitees.count
 } while invitees[inviteeIndex].alreadyInvited

Building Blocks – Variables, Collections, and Flow Control

[36]

 // Now that we have found an invitee that has not
 // been invited, we will invite them
 inviteAtIndex(inviteeIndex, toBringShow: (show))
}

// Now that we have assigned each genre, we
// will ask the remaining people to just bring
// themselves
for index in 0 ..< invitees.count {
 let invitee = invitees[index]
 if !invitee.alreadyInvited {
 inviteToBringThemselvesAtIndex(index)
 }
}

This last section contains the real logic of the program, which is commonly referred
to as the business logic. The functions from the previous section are just details and
the final section is the logic that really defines what the program does.

This is far from the only way to organize a program. This will become even clearer
as we learn more advanced organization techniques. However, this breakdown
shows you the general philosophy behind how you should organize your code. You
should strive to write every piece of code as if it were going to be published in a
book. Many of the comments in this example will become excessive as you get better
with Swift but, when in doubt, explain what you are doing using either a comment
or a well-named function. Not only will it help others understand your code, it will
also help you understand it when you come back to it in six months and you are
a stranger to the code again. Not only that, if you force yourself to formalize your
thoughts as you write the code, you will find yourself creating a lot less bugs.

Let's also look at an interesting limitation of this implementation. This program is
going to run into a major problem if the number of invitees is less than the number
of shows. The repeat-while loop will continue forever, never finding an invitee that
was not invited. Your program doesn't have to handle every possible input but you
should at least be aware of its limitations.

Chapter 2

[37]

Summary
In this chapter, we have developed a great basis for Swift knowledge. We have
learned about the various built-in mechanisms Swift has for representing complex
information in expressive and accessible ways. We know that, by default, we should
declare information as a constant until we find a practical need to change it, and then
we should make it a variable. We have explored how every piece of information
in Swift has a type associated with it by the compiler, whether it is through type
inference or declared explicitly. We are familiar with many of the built-in types,
including simple types like String, Int, and Bool as well as containers like tuples,
arrays, and dictionaries. We can use the console output to better investigate our
programs, especially by using string interpolation for dynamic output. We recognize
the power of controlling the flow of our programs with if statements, conditionals,
switches, and loops. We have functions in our skill set to write more legible,
maintainable, and reusable code. Finally, we have seen an example of how
all of these concepts can be combined to write a full program.

As a challenge to you, I suggest you fix the final program so that it stops trying to
assign shows if there are not enough invitees. When you can do that, you are more
than ready to move on to the next topic, which is types, scopes, and projects.

These are all tools that we can use to write even more organized code and they will
become more critical as we write larger and larger projects.

[39]

One Piece at a Time – Types,
Scopes, and Projects

In Chapter 2, Building Blocks – Variables, Collections, and Flow Control, we developed
a very simple program that helped organize a party. Even though we separated
parts of the code in a logical way, everything was written in a single file and our
functions were all lumped together. As projects grow in complexity, this way of
organizing code is not sustainable. In the same way we use functions to separate
out logical components in our code at scale, we also need to be able to separate out
the logical components of our functions and data. To do this, we can define code
in different files and we can also create our own types that contain custom data
and functionality. These types are commonly referred to as objects, as a part of the
programming technique called object-oriented programming. In this chapter we
will cover the following:

•	 Structs
•	 Classes and inheritance
•	 Enumerations
•	 Projects
•	 Extensions
•	 Scope
•	 Access control

One Piece at a Time – Types, Scopes, and Projects

[40]

Structs
The most basic way that we can group together data and functionality into a logical
unit or object is to define something called a structure. Essentially, a structure is
a named collection of data and functions. Actually, we have already seen several
different structures because all of the types such as string, array, and dictionary that
we have seen so far are structures. Now we will learn how to create our own.

Types versus instances
Let's jump straight into defining our first structure to represent a contact:

struct Contact {
 var firstName: String = "First"
 var lastName: String = "Last"
}

Here we have created a structure by using the struct keyword followed by a name
and curly brackets ({}) with code inside them. Just like with a function, everything
about a structure is defined inside its curly brackets. However, code in a structure
is not run directly, it is all part of defining what the structure is. Think of a structure
as a specification for future behavior instead of code to be run, in the same way that
blueprints are the specification for building a house.

Here, we have defined two variables for the first and last name. This code does not
create any actual variables nor does it remember any data. As with a function, this
code is not truly used until another piece of code uses it. Just like with a string, we
have to define a new variable or constant of this type. However, in the past
we have always used literals like Sarah or 10. With our own structures, we will
have to initialize our own instances, which is just like building a house based on
the specifications.

An instance is a specific incarnation of a type. This could be when we create a String
variable and assign it the value Sarah. We have created an instance of a String
variable that has the value Sarah. The string itself is not a piece of data; it simply
defines the nature of instances of String that actually contain data.

Initializing is the formal name for creating a new instance. We initialize a new
Contact like this:

let someone = Contact()

Chapter 3

[41]

You may have noticed that this looks a lot like calling a function and that is because
it is very similar. Every type must have at least one special function called an
initializer. As the name implies, this is a function that initializes a new instance of
the type. All initializers are named after their type and they may or may not have
parameters, just like a function. In our case, we have not provided any parameters so
the first and last names will be left with the default values that we provided in our
specification: First and Last.

You can see this in a playground by clicking on the plus sign next to Contact to the
right of that line. This inserts a result pane after the line where it displays the value
of firstName and lastName. We have just initialized our first custom type!

If we define a second contact structure that does not provide default values, it
changes how we call the initializer. Since there are no default values, we must
provide the values when initializing it:

struct Contact2 {
 var firstName: String
 var lastName: String
}

let someone2 = Contact2(firstName: "Sarah", lastName: "Smith")

Again, this looks just like calling a function that happens to be named after the type
that we defined. Now, someone2 is an instance of Contact2 with firstName equal to
Sarah and lastName equal to Smith.

Properties
The two variables, firstName and lastName, are called member variables and, if we
change them to be constants, they are then called member constants. This is because
they are pieces of information associated with a specific instance of the type. You can
access member constants and variables on any instance of a structure:

print("\(someone.firstName) \(someone.lastName)")

This is in contrast to a static constant. We could add a static constant to our type by
adding the following line to its definition:

struct Contact {
 static let UnitedStatesPhonePrefix = "+1" // "First Last"
}

One Piece at a Time – Types, Scopes, and Projects

[42]

Note the static keyword before the constant declaration. A static constant is
accessed directly from the type and is independent of any instance:

print(Contact.UnitedStatesPhonePrefix) // "+1"

Note that we will be adding code to existing code every so often like this. If you are
following along in a playground, you should have added the static let line to the
existing Contact structure.

Member and static constants and variables all fall under the category of properties.
A property is simply a piece of information associated with an instance or a type.
This helps reinforce the idea that every type is an object. A ball, for example, is an
object that has many properties including its radius, color, and elasticity. We can
represent a ball in code in an object-oriented way by creating a ball structure that has
each of those properties:

struct Ball {
 var radius: Double
 var color: String
 var elasticity: Double
}

Note that this Ball type does not define default values for its properties. If default
values are not provided in the declaration, they are required when initializing an
instance of the type. This means that an empty initializer is not available for that
type. If you try to use one, you will get an error:

Ball() // Missing argument for parameter 'radius' in call

Just like with normal variables and constants, all properties must have a value
once initialized.

Member and static methods
Just as you can define constants and variables within a structure, you can also
define member and static functions. These functions are referred to as methods to
distinguish them from global functions that are not associated with any type. You
declare member methods in a similar way to functions but you do so inside the type
declaration, as shown:

struct Contact {
 var firstName: String = "First"
 var lastName: String = "Last"

Chapter 3

[43]

 func printFullName() {
 print("\(self.firstName) \(self.lastName)")
 }
}

Member methods always act on a specific instance of the type they are defined in.
To access that instance within the method, you use the self keyword. Self acts in a
similar way to any other variable in that you can access properties and methods on
it. The preceding code prints out the firstName and lastName properties. You call
this method in the same way we called methods on any other type:

someone.printFullName()

Within a normal structure method, self is constant, which means you can't modify
any of its properties. If you tried, you would get an error like this:

struct Ball {
 var radius: Double
 var color: String
 var elasticity: Double

 func growByAmount(amount: Double) {
 // Error: Left side of mutating operator
 // isn't mutable: 'self' is immutable
 self.radius += amount
 }
}

In order for a method to modify self, it must be declared as a mutating method
using the mutating keyword:

mutating func growByAmount(amount: Double) {
 self.radius += amount
}

We can define static properties that apply to the type itself but we can also define
static methods that operate on the type by using the static keyword. We can add
a static method to our Contact structure that prints the available phone prefixes, as
shown here:

struct Contact {
 static let UnitedStatesPhonePrefix = "+1"

 static func printAvailablePhonePrefixes() {

One Piece at a Time – Types, Scopes, and Projects

[44]

 print(self.UnitedStatesPhonePrefix)
 }
}

Contact.printAvailablePhonePrefixes() // "+1"

In a static method, self refers to the type instead of an instance of the type.
In the preceding code, we have used the UnitedStatesPhonePrefix static
property through self instead of writing out the type name.

In both static and instance methods, Swift allows you to access properties without
using self, for brevity. self is simply implied:

func printFullName() {
 print("\(firstName) \(lastName)")
}

static func printAvailablePhonePrefixes() {
 print(UnitedStatesPhonePrefix)
}

However, if you create a variable in the method with the same name, you will have
to use self to distinguish which one you want:

func printFirstName() {
 let firstName = "Fake"
 print("\(self.firstName) \(firstName)") // "First Fake"
}

I recommend avoiding this feature of Swift. I want to make you aware of it so you
are not confused when looking at other people's code but I feel that always using
self greatly increases the readability of your code. self makes it instantly clear that
the variable is attached to the instance instead of only defined in the function. You
could also create bugs if you add code that creates a variable that hides a member
variable. For example, you would create a bug if you introduced the firstName
variable to the printFullName method in the preceding code without realizing
you were using firstName to access the member variable later in the code.
Instead of accessing the member variable, the later code would start to only
access the local variable.

Chapter 3

[45]

Computed properties
So far, it seems that properties are used to store information and methods are used
to perform calculations. While this is generally true, Swift has a feature called
computed properties. These are properties that are calculated every time they are
accessed. To do this, you define a property and then provide a method called a getter
that returns the calculated value, as shown:

struct Ball {
 var radius: Double
 var diameter: Double {
 get {
 return self.radius * 2
 }
 }
}

var ball = Ball(radius: 2)
print(ball.diameter) // 4.0

This is a great way to avoid storing data that could potentially conflict with other
data. If, instead, diameter were just another property, it would be possible for it
to be different to the radius. Every time you changed the radius you would have
to remember to change the diameter. Using a computed property eliminates
this concern.

You can even provide a second function called a setter that allows you to assign a
value to this property like normal properties:

var diameter: Double {
 get {
 return self.radius * 2
 }
 set {
 self.radius = diameter / 2
 }
}

var ball = Ball(radius: 2)
ball.diameter = 16
print(ball.radius) // 8.0

One Piece at a Time – Types, Scopes, and Projects

[46]

If you provide a setter then you must also explicitly provide a getter. If you don't,
Swift allows you to leave out the get syntax:

var volume: Double {
 return self.radius * self.radius * self.radius * 4/3 * 4.13
}

This provides a nice concise way of defining read-only computed properties.

Reacting to property changes
It is pretty common to need to perform an action whenever a property is changed.
One way to achieve this is to define a computed property with a setter that performs
the necessary action. However, Swift provides a better way of doing this. You can
define a willSet function or a didSet function on any stored property. WillSet is
called just before the property is changed and it is provided with a variable newValue.
didSet is called just after the property is changed and it is provided with a variable
oldValue, as you can see here:

var radius: Double {
 willSet {
 print("changing from \(self.radius) to \(newValue)")
 }
 didSet {
 print("changed from \(oldValue) to \(self.radius)")
 }
}

Be careful to avoid creating an infinite loop when using didSet and willSet with
multiple properties. For example, if you tried to use this technique to keep diameter
and radius synchronized instead of using a computed property, it would look
like this:

struct Ball {
 var radius: Double {
 didSet {
 self.diameter = self.radius * 2
 }
 }
 var diameter: Double {
 didSet {
 self.radius = self.diameter / 2
 }
 }
}

Chapter 3

[47]

In this scenario, if you set the radius, it triggers a change on the diameter which
triggers another change on the radius and that then continues on forever.

Subscripts
You may also have realized that there is another way that we have interacted with
a structure in the past. We have used square brackets ([]) with both arrays and
dictionaries to access elements. These are called subscripts and we can use them on
our custom types as well. The syntax for them is similar to the computed properties
that we saw before except that you define it more like a method with parameters and
a return type, as you can see here:

struct MovieAssignment {
 var movies: [String:String]

 subscript(invitee: String) -> String? {
 get {
 return self.movies[invitee]
 }

 set {
 self.movies[invitee] = newValue
 }
 }
}

You declare the arguments you want to use as the parameters to the subscript
method in the square brackets. The return type for the subscript function is the type
that will be returned when used to access a value. It is also the type for any value
you assign to the subscript:

var assignment = MovieAssignment(movies: [:])
assignment["Sarah"] = "Modern Family"
print(assignment["Sarah"]) // "Modern Family"

You may have noticed a question mark (?) in the return type. This is called an
optional and we will discuss this more in the next chapter. For now, you only need
to know that this is the type that is returned when accessing a dictionary by key
because a value does not exist for every possible key.

One Piece at a Time – Types, Scopes, and Projects

[48]

Just like with computed properties, you can define a subscript as read-only without
using the get syntax:

struct MovieAssignment {
 var movies: [String:String]

 subscript(invitee: String) -> String? {
 return self.movies[invitee]
 }
}

subscript can have as many arguments as you want if you add additional
parameters to the subscript declaration. You would then separate each parameter
with a comma in the square brackets when using the subscript, as shown:

struct MovieAssignment {
 subscript(param1: String, param2: Int) -> Int {
 return 0
 }
}

print(assignment["Sarah", 2])

Subscripts are a good way to shorten your code but you should always be careful to
avoid sacrificing clarity for brevity. Writing clear code is a balance between being too
wordy and not wordy enough. If your code is too short, it will be hard to understand
because meanings will become ambiguous. It is much better to have a method called
movieForInvitee: rather than using a subscript. However, if all of your code is
too long, there will be too much noise around and you will lose clarity in that way.
Use subscripts sparingly and only when they would appear intuitive to another
programmer based on the type of structure you are creating.

Custom initialization
If you are not satisfied with the default initializers provided to you, you can define
your own. This is done using the init keyword, as shown:

init(contact: Contact) {
 self.firstName = contact.firstName
 self.lastName = contact.lastName
}

Chapter 3

[49]

Just like with a method, an initializer can take any number of parameters including
none at all. However, initializers have other restrictions. One rule is that every
member variable and constant must have a value by the end of the initializer. If we
were to omit a value for lastName in our initializer, we would get an error like this:

struct Contact4 {
 var firstName: String
 var lastName: String

 init(contact: Contact4) {
 self.firstName = contact.firstName
 }// Error: Return from initializer without
 // initializing all stored properties
}

Note that this code did not provide default values for firstName and lastName.
If we add that back, we no longer get an error because a value is then provided:

struct Contact4 {
 var firstName: String
 var lastName: String = "Last"

 init(contact: Contact4) {
 self.firstName = contact.firstName
 }
}

Once you provide your own initializer, Swift no longer provides any default
initializers. In the preceding example, Contact can no longer be initialized with the
firstName and lastName parameters. If we want both, we have to add our own
version of that initializer, as shown:

struct Contact3 {
 var firstName: String
 var lastName: String

 init(contact: Contact3) {
 self.firstName = contact.firstName
 self.lastName = contact.lastName
 }

 init(firstName: String, lastName: String) {
 self.firstName = firstName
 self.lastName = lastName
 }

One Piece at a Time – Types, Scopes, and Projects

[50]

}
var sarah = Contact3(firstName: "Sarah", lastName: "Smith")
var sarahCopy = Contact3(contact: sarah)
var other = Contact3(firstName: "First", lastName: "Last")

Another option for setting up the initial values in an initializer is to call a
different initializer:

init(contact: Contact4) {
 self.init(
 firstName: sarah.firstName,
 lastName: sarah.lastName
)
}

This is a great tool for reducing duplicate code in multiple initializers. However,
when using this, there is an extra rule that you must follow. You cannot access self
before calling the other initializer:

init(contact: Contact4) {
 self.print()
 // Use of 'self' in delegating initializer
 // before self.init is called
 self.init(
 firstName: contact.firstName,
 lastName: contact.lastName
)
}

This is a great example of why the requirement exists. If we were to call print before
calling the other initializer, firstName and lastName would not have a value. What
would be printed in that case? Instead, you can only access self after calling the
other initializer, like this:

init(contact: Contact4) {
 self.init(
 firstName: contact.firstName,
 lastName: contact.lastName
)
 self.print()
}

This guarantees that all the properties have a valid value before any method is called.

Chapter 3

[51]

You may have noticed that initializers follow a different pattern for parameter
naming. By default, initializers require a label for all parameters. However,
remember that this is only the default behavior. You can change the behavior by
either providing an internal and external name or by using an underscore (_) as the
external name.

Structures are an incredibly powerful tool in programming. They are an important
way that we, as programmers, can abstract away more complicated concepts. As
we discussed in Chapter 2, Building Blocks – Variables, Collections, and Flow Control,
this is the way we get better at using computers. Other people can provide these
abstractions to us for concepts that we don't understand yet or in circumstances
where it isn't worth our time to start from scratch. We can also use these abstractions
for ourselves so that we can better understand the high-level logic going on in our
app. This will greatly increase the reliability of our code. Structures make our code
more understandable both for other people and for ourselves in the future.

However, structures are limited in one important way, they don't provide a good
way to express parent-child relationships between types. For example, a dog and a
cat are both animals and share a lot of properties and actions. It would be great if we
only had to implement the common attributes once. We could then split those types
into different species. For this, Swift has a different system of types called classes.

Classes
A class can do everything that a structure can do except that a class can use
something called inheritance. A class can inherit the functionality from another
class and then extend or customize its behavior. Let's jump right into some code.

Inheriting from another class
Firstly, let's define a class called Building that we can inherit from later:

class Building {
 let squareFootage: Int

 init(squareFootage: Int) {
 self.squareFootage = squareFootage
 }
}
var aBuilding = Building(squareFootage: 1000)

One Piece at a Time – Types, Scopes, and Projects

[52]

Predictably, a class is defined using the class keyword instead of struct.
Otherwise, a class looks extremely similar to a structure. However, we can also
see one difference. With a structure, the initializer we created before would not be
necessary because it would have been created for us. With classes, initializers are not
automatically created unless all of the properties have default values.

Now let's look at how to inherit from this building class:

class House: Building {
 let numberOfBedrooms: Int
 let numberOfBathrooms: Double

 init(
 squareFootage: Int,
 numberOfBedrooms: Int,
 numberOfBathrooms: Double
)
 {
 self.numberOfBedrooms = numberOfBedrooms
 self.numberOfBathrooms = numberOfBathrooms

 super.init(squareFootage: squareFootage)
 }
}

Here, we have created a new class called House that inherits from our Building
class. This is denoted by the colon (:) followed by Building in the class declaration.
Formally, we would say that House is a subclass of Building and Building is a
superclass of House.

If we initialize a variable of the type House, we can then access both the properties of
House and those of Building, as shown:

var aHouse = House(
 squareFootage: 800,
 numberOfBedrooms: 2,
 numberOfBathrooms: 1
)
print(aHouse.squareFootage)
print(aHouse.numberOfBedrooms)

This is the beginning of what makes classes powerful. If we need to define ten
different types of buildings, we don't have to add a separate squareFootage
property to each one. This is true for properties as well as methods.

Chapter 3

[53]

Beyond a simple superclass and subclass relationship, we can define an entire
hierarchy of classes with subclasses of subclasses of subclasses, and so on.
It is often helpful to think of a class hierarchy as an upside down tree:

The trunk of the tree is the topmost superclass and each subclass is a separate branch
off of that. The topmost superclass is commonly referred to as the base class as it
forms the foundation for all the other classes.

Initialization
Because of the hierarchical nature of classes, the rules for their initializers are more
complex. The following additional rules are applied:

•	 All initializers in a subclass must call the initializer of its superclass
•	 All properties of a subclass must be initialized before calling the

superclass initializer

The second rule enables us to use self before calling the initializer. However,
you cannot use self for any reason other than to initialize its properties.

You may have noticed the use of the keyword super in our house initializer. super
is used to reference the current instance as if it were its superclass. This is how we
call the superclass initializer. We will see more uses of super when we explore
inheritance further later in the chapter.

Inheritance also creates four types of initializers shown here:

•	 Overriding initializer
•	 Required initializer
•	 Designated initializer
•	 Convenience initializer

One Piece at a Time – Types, Scopes, and Projects

[54]

Overriding initializer
An overriding initializer is used to replace the initializer in a superclass:

class House: Building {
 let numberOfBedrooms: Int
 let numberOfBathrooms: Double

 override init(squareFootage: Int) {
 self.numberOfBedrooms = 0
 self.numberOfBathrooms = 0
 super.init(squareFootage: squareFootage)
 }
}

An initializer that takes only squareFootage as a parameter already exists in
Building. This initializer replaces that initializer so if you try to initialize House
using only squareFootage, this initializer will be called. It will then call the
Building version of the initializer because we asked it to with the super.init call.

This ability is especially important if you want to initialize subclasses using their
superclass initializer. By default, if you don't specify a new initializer in a subclass,
it inherits all of the initializers from its superclass. However, as soon as you declare
an initializer in a subclass, it hides all of the superclass initializers. By using an
overriding initializer, you can expose the superclass version of the initializer again.

Required initializer
A required initializer is a type of initializer for superclasses. If you mark an
initializer as required, it forces all of the subclasses to also define that initializer.
For example, we could make the Building initializer required, as shown:

class Building {
 let squareFootage: Int

 required init(squareFootage: Int) {
 self.squareFootage = squareFootage
 }
}

Chapter 3

[55]

Then, if we implemented our own initializer in House, we would get an error
like this:

class House: Building {
 let numberOfBedrooms: Int
 let numberOfBathrooms: Double

 init(
 squareFootage: Int,
 numberOfBedrooms: Int,
 numberOfBathrooms: Double
)
 {
 self.numberOfBedrooms = numberOfBedrooms
 self.numberOfBathrooms = numberOfBathrooms

 super.init(squareFootage: squareFootage)
 }

 // 'required' initializer 'init(squareFootage:)' must be
 // provided by subclass of 'Building'
}

This time, when declaring this initializer, we repeat the required keyword instead
of using override:

required init(squareFootage: Int) {
 self.numberOfBedrooms = 0
 self.numberOfBathrooms = 0
 super.init(squareFootage: squareFootage)
}

This is an important tool when your superclass has multiple initializers that do
different things. For example, you could have one initializer that creates an instance
of your class from a data file and another one that sets its properties from code.
Essentially, you have two paths for initialization and you can use the required
initializers to make sure that all subclasses take both paths into account. A subclass
should still be able to be initialized from both a file and in code. Marking both of the
superclass initializers as required makes sure that this is the case.

One Piece at a Time – Types, Scopes, and Projects

[56]

Designated and convenience initializers
To discuss designated initializers, we first have to talk about convenience
initializers. The normal initializer that we started with is really called a designated
initializer. This means that they are core ways to initialize the class. You can also
create convenience initializers which, as the name suggests, are there for convenience
and are not a core way to initialize the class.

All convenience initializers must call a designated initializer and they do not have
the ability to manually initialize properties like a designated initializer does. For
example, we can define a convenience initializer on our Building class that takes
another building and makes a copy:

class Building {
 // ...

 convenience init(otherBuilding: Building) {
 self.init(squareFootage: otherBuilding.squareFootage)
 }
}
var aBuilding = Building(squareFootage: 1000)
var defaultBuilding = Building(otherBuilding: aBuilding)

Now, as a convenience, you can create a new building using the properties from an
existing building. The other rule about convenience initializers is that they cannot be
used by a subclass. If you try to do that, you will get an error like this:

class House: Building {

 // ...

 init() {
 self.numberOfBedrooms = 0
 self.numberOfBathrooms = 0
 super.init() // Missing argument for parameter 'squareFootage'
in call
 }
}

Chapter 3

[57]

This is one of the main reasons that convenience initializers exist. Ideally, every class
should only have one designated initializer. The fewer designated initializers you
have, the easier it is to maintain your class hierarchy. This is because you will often
add additional properties and other things that need to be initialized. Every time you
add something like that, you will have to make sure that every designated initializer
sets things up properly and consistently. Using a convenience initializer instead
of a designated initializer ensures that everything is consistent because it must
call a designated initializer that, in turn, is required to set everything up properly.
Basically, you want to funnel all of your initialization through as few designated
initializers as possible.

Generally, your designated initializer is the one with the most arguments, possibly
with all of the possible arguments. In that way, you can call that from all of your
other initializers and mark them as convenience initializers.

Overriding methods and computed properties
Just as with initializers, subclasses can override methods and computed
properties. However, you have to be more careful with these. The compiler
has fewer protections.

Methods
Even though it is possible, there is no requirement that an overriding method calls
its superclass implementation. For example, let's add clean methods to our Building
and House classes:

class Building {
 // ...

 func clean() {
 print(
 "Scrub \(self.squareFootage) square feet of floors"
)
 }
}

class House: Building {
 // ...

One Piece at a Time – Types, Scopes, and Projects

[58]

 override func clean() {
 print("Make \(self.numberOfBedrooms) beds")
 print("Clean \(self.numberOfBathrooms) bathrooms")
 }
}

In our Building superclass, the only thing that we have to clean is the floors.
However, in our House subclass, we also have to make the beds and clean the
bathrooms. As it has been implemented above, when we call clean on House, it will
not clean the floors because we overrode that behavior with the clean method on
House. In this case, we also need to have our Building superclass do any necessary
cleaning, so we must call the superclass version, as shown:

override func clean() {
 super.clean()

 print("Make \(self.numberOfBedrooms) beds")
 print("Clean \(self.numberOfBathrooms) bathrooms")
}

Now, before doing any cleaning based on the house definition, it will first clean
based on the building definition. You can control the order in which things happen
by changing the place in which you call the super version.

This is a great example of the need to override methods. We can provide common
functionality in a superclass that can be extended in each of its subclasses instead of
rewriting the same functionality in multiple classes.

Computed properties
It is also useful to override computed properties using the override keyword again:

class Building {
 // ...

 var estimatedEnergyCost: Int {
 return squareFootage / 10
 }
}

class House: Building {
 // ...

 override var estimatedEnergyCost: Int {
 return 100 + super.estimatedEnergyCost
 }
}

Chapter 3

[59]

In our Building superclass, we have provided an estimate for energy costs based
on $100 per 1000 square feet. That estimate still applies to the house but there are
additional costs related to someone else living in the building. We must therefore
override the estimatedEnergyCost computed property to return the Building
calculation plus $100.

Again, using the super version of an overriding computed property is not required.
A subclass could have a completely different implementation disregarding what is
implemented in its superclass, or it could make use of its superclass implementation.

Casting
We have already talked about how classes are great for sharing functionality
between a hierarchy of types. Another thing that makes classes powerful is that they
allow code to interact with multiple types in a more general way. Any subclass can
be used in code that treats it as if it were its superclass. For example, we might want
to write a function that calculates the total square footage of an array of buildings.
For this function, we don't care what specific type of building it is, we just need to
have access to the squareFootage property that is defined in the superclass. We can
define our function to take an array of buildings and the actual array can contain
House instances:

func totalSquareFootageOfBuildings(buildings: [Building]) -> Int {
 var sum = 0
 for building in buildings {
 sum += building.squareFootage
 }
 return sum
}

var buildings = [
 House(squareFootage: 1000),
 Building(squareFootage: 1200),
 House(squareFootage: 900)
]
print(totalSquareFootageOfBuildings(buildings)) // 3100

Even though this function thinks we are dealing with classes of the type Building,
the program will execute the House implementation of squareFootage. If we had
also created an office subclass of Building, instances of that would also be included
in the array as well with its own implementation.

One Piece at a Time – Types, Scopes, and Projects

[60]

We can also assign an instance of a subclass to a variable that is defined to be one of
its superclasses:

var someBuilding: Building = House(squareFootage: 1000)

This provides us with an even more powerful abstraction tool than the one we had
when using structures. For example, let's consider a hypothetical class hierarchy of
images. We might have a base class called Image with subclasses for the different
types of encodings like JPGImage and PNGImage. It is great to have the subclasses so
that we can cleanly support multiple types of images but, once the image is loaded,
we no longer need to be concerned with the type of encoding the image is saved in.
Every other class that wants to manipulate or display the image can do so with a
well-defined image superclass; the encoding of the image has been abstracted away
from the rest of the code. Not only does this create easier to understand code but it
also makes maintenance much easier. If we need to add another image encoding like
GIF, we can create another subclass and all the existing manipulation and display
code can get GIF support with no changes to that code.

There are actually two different types of casting. So far, we have only seen
the type of casting called upcasting. Predictably, the other type of casting is
called downcasting.

Upcasting
What we have seen so far is called upcasting because we are going up the class
tree that we visualized earlier by treating a subclass as its superclass. Previously,
we upcasted by assigning a subclass instance to a variable that was defined as its
superclass. We could do the same thing using the as operator instead, like this:

var someBuilding2 = House(squareFootage: 1000) as Building

It is really personal preference as to which you should use.

Downcasting
Downcasting means that we treat a superclass as one of its subclasses.

While upcasting can be done implicitly by using it in a function declared to use its
superclass or by assigning it to a variable with its superclass type, downcasting must
be done explicitly. This is because upcasting cannot fail based on the nature of its
inheritance, but downcasting can. You can always treat a subclass as its superclass
but you cannot guarantee that a superclass is, in fact, one of its specific subclasses.
You can only downcast an instance that is, in fact, an instance of that class or one of
its subclasses.

Chapter 3

[61]

We can force downcast by using the as! Operator, like this:

var house = someBuilding as! House
print(house.numberOfBathrooms)

The as! operator has an exclamation point added to it because it is an operation that
can fail. The exclamation point serves as a warning and ensures that you realize that
it can fail. If the forced downcasting fails, for example, if someBuilding were not
actually House, the program would crash as so:

var anotherHouse = aBuilding as! House // Execution was interrupted

A safer way to perform downcasting is using the as? operator in a special if
statement called an optional binding. We will discuss this in detail in the next
chapter, which concerns optionals but, for now, you can just remember the syntax:

if let house = someBuilding as? House {
 // someBuilding is of type House
 print(house.numberOfBathrooms)
}
else {
 print("someBuilding is not a house")
}

This code prints out numberOfBathrooms in the building only if it is of the type
House. The House constant is used as a temporary view of someBuilding with its
type explicitly set to House. With this temporary view, you can access someBuilding
as if it were House instead of just Building.

Enumerations
So far, we have covered two of the three types of classification in Swift: structure and
class. The third classification is called enumeration. Enumerations are used to define
a group of related values for an instance. For example, if we want values to represent
one of the three primary colors, an enumeration is a great tool.

Basic declaration
An enumeration is made up of cases much like a switch and uses the keyword enum
instead of struct or class. An enumeration for primary colors should look like this:

enum PrimaryColor {
 case Red
 case Green
 case Blue
}

One Piece at a Time – Types, Scopes, and Projects

[62]

You can then define a variable with this type and assign it one of the cases:

var color = PrimaryColor.Green

Note that, to use one of the values, we must use the name of the type followed by a
dot (.) and then the specific case. If the type of the variable can be inferred, you can
even leave out the enumeration name and just start with a dot:

var color = PrimaryColor.Green
color = .Red

During the assignment to .Red, the compiler already knows that the color variable
is of the type PrimaryColor so it doesn't need us to specify that again. This is a great
way of making your code more concise but make sure you don't sacrifice legibility. If
you leave out the type name, it should still be obvious from the context of the code.

Testing enumeration values
Enumeration instances can be tested for a specific value as with any other type,
using the equality operator (==):

if color == PrimaryColor.Red {
}
else if color == .Blue {
}

Note that, in the second if statement, where color is checked for if it is blue, the
code takes advantage of type inference and doesn't bother specifying PrimaryColor.

This method of comparison is familiar and useful for one or two possible values.
However, there is a better way to test an enumeration for different values. Instead
of using an if statement, you can use a switch. This is a logical solution considering
that enumerations are made up of cases and switches test for cases:

switch color {
 case .Red:
 print("color is red")
 case .Green:
 print("color is green")
 case .Blue:
 print("color is blue")
}

Chapter 3

[63]

This is great for all the same reasons that switches themselves are great. In fact,
switches work even better with enumerations because the possible values for an
enumeration are always finite, unlike other basic types. You may remember that
switches require that you have a case for every possible value. This means that,
if you don't have a test case for every case of the enumeration, the compiler will
produce an error. This is usually great protection and that is why I recommend using
switches rather than simple if statements in most circumstances. If you ever add
additional cases to an enumeration, it is great to get an error everywhere in your
code that doesn't consider that new case so that you make sure you address it.

Raw values
Enumerations are great because they provide the ability to store information that is
not based on the basic types provided by Swift such as strings, integers, and doubles.
There are many abstract concepts like our color example, that are not at all related to
a basic type. However, you often want each enumeration case to have a raw value
that is another type. For example, if we wanted to represent all of the coins in United
States currency along with their monetary value, we could make our enumeration
have an integer raw value type, like this:

enum USCoins: Int {
 case Quarter = 25
 case Dime = 10
 case Nickel = 5
 case Penny = 1
}

The raw value type is specified in the same way that inheritance is specified with
classes and then each case is individually assigned a specific value of that type.

You can access the raw value of a case at any time by using the rawValue property:

print("A Quarter is worth \(USCoins.Quarter.rawValue) cents.")

Keep in mind that an enumeration can only have raw value types that can be defined
with literals like 10, or String. You cannot define an enumeration with your own
custom type as its raw value.

One Piece at a Time – Types, Scopes, and Projects

[64]

Associated values
Raw values are great for when every case in your enumeration has the same type
of value associated with it and its value never changes. However, there are also
scenarios where each case has different values associated with it and those values
are different for each instance of the enumeration. You may even want a case that
has multiple values associated with it. To do this, we use a feature of enumerations
called associated values.

You can specify zero or several types to be associated separately with each case with
associated values. Then, when creating an instance of the enumeration, you can give
it any value you want, as shown:

enum Height {
 case Imperial(feet: Int, inches: Double)
 case Metric(meters: Double)
 case Other(String)
}
var height1 = Height.Imperial(feet: 6, inches: 2)
var height2 = Height.Metric(meters: 1.72)
var height3 = Height.Other("1.9 × 10-16 light years")

Here, we have defined an enumeration to store a height measurement using various
measurement systems. There is a case for the imperial system that uses feet and
inches and a case for the metric system that is in just meters. Both of these cases have
labels for their associated values which are similar to a tuple. The last case is there to
illustrate that you don't have to provide a label if you don't want to. It simply takes
a string.

Comparing and accessing values of enumerations with associated values is a little
bit more complex than for regular enumerations. We can no longer use the equality
operator (==). Instead, we must always use a case. Within a case, there are multiple
ways that you can handle the associated values. The easiest thing to do is to access
the specific associated value. To do that, you can assign it to a temporary variable:

switch height1 {
 case .Imperial(let feet, var inches):
 print("\(feet)ft \(inches)in")
 case let .Metric(meters):
 print("\(meters) meters")
 case var .Other(text):
 print(text)
}

Chapter 3

[65]

In the imperial case, the preceding code assigned feet to a temporary constant and
inches to a temporary variable. The names match the labels used for the associated
values but that is not necessary. The metric case shows that, if you want all of the
temporary values to be constant, you can declare let before the enumeration case.
No matter how many associated values there are, let only has to be written once
instead of once for every value. The other case is the same as the metric case except
that it creates a temporary variable instead of a constant.

If you wanted to create separate cases for conditions on the associated values, you
could use the where syntax that we saw in the previous chapter:

switch height1 {
 case .Imperial(let feet, var inches) where feet > 1:
 print("\(feet)ft \(inches)in")
 case let .Metric(meters) where meters > 0.3:
 print("\(meters) meters")
 case var .Other(text):
 print(text)
 default:
 print("Too Small")
}

Note that we had to add a default case because our restrictions on the other cases
were no longer exhaustive.

Lastly, if you don't actually care about the associated value, you can use an
underscore (_) to ignore it, as shown:

switch height1 {
 case .Imperial(_, _):
 print("Imperial")
 case .Metric(_):
 print("Metric")
 case .Other(_):
 print("Other")
}

This shows you that, with enumerations, switches have even more power than we
saw previously.

One Piece at a Time – Types, Scopes, and Projects

[66]

Now that you understand how to use associated values, you might have noticed
that they can change the conceptual nature of enumerations. Without associated
values, an enumeration represents a list of abstract and constant possible values.
An enumeration with associated values is different because two instances with the
same case are not necessarily equal; each case could have different associated values.
This means that the conceptual nature of enumerations is really a list of ways to
look at a certain type of information. This is not a concrete rule but it is common
and it gives you a better idea of the different types of information that can best be
represented by enumerations. It will also help you make your own enumerations
more understandable. Each case could theoretically represent a completely unrelated
concept from the rest of the cases using associated values but that should be a sign
that an enumeration may not be the best tool for that particular job.

Methods and properties
Enumerations are actually very similar to structures. As with structures,
enumerations can have methods and properties. To improve the Height
enumeration, we could add methods to access the height in any measurement
system we wanted. As an example, let's implement a meters method, as follows:

enum Distance {
 case Imperial(feet: Int, inches: Double)
 case Metric(meters: Double)

 func meters() -> Double {
 switch self {
 case let .Imperial(feet, inches):
 return Double(feet)*0.3048+inches*0.3048/12
 case let .Metric(meters):
 return meters
 }
 }
}
var distance1 = Distance.Imperial(feet: 6, inches: 2)
distance1.meters() // 1.8796

Chapter 3

[67]

In this method, we have switched on self which tells us which unit of measurement
this instance was created with. If it is in meters we can just return that but, if it is in
feet and inches, we must do the conversion. As an exercise, I recommend you try to
implement a feetAndInches method that returns a tuple with the two values. The
biggest challenge is in handling the mathematical operations using the correct types.
You cannot perform operations with mismatching types mathematically. If you need
to convert from one number type to another, you can do so by initializing a copy
as shown in the code above: Double(feet). Unlike the casting that we discussed
earlier, this process simply creates a new copy of the feet variable that is now
Double instead of Int. This is only possible because the Double type happens to
define an initializer that takes Int. Most number types can be initialized with any of
the other ones.

You now have a great overview of all of the different ways in which we can organize
Swift code in a single file to make the code more understandable and maintainable. It
is now time to discuss how we can separate our code into multiple files to improve it
even more.

Projects
If we want to move away from developing with a single file, we need to move away
from playgrounds and create our first project. In order to simplify the project, we are
going to create a command-line tool. This is a program without a graphical interface.
As an exercise, we will redevelop our example program from Chapter 2, Building
Blocks – Variables, Collections, and Flow Control which managed invitees to a party.
We will develop an app with a graphical interface in Chapter 11, A Whole New
World – Developing an App.

One Piece at a Time – Types, Scopes, and Projects

[68]

Setting up a command-line Xcode project
To create a new command-line tool project, open Xcode and from the menu bar on
the top, select File | New | Project…. A window will appear allowing you to select
a template for the project. You should choose Command Line Tool from the OS X |
Application menu:

From there, click Next and then give the project a name like Learning Swift
Command Line. Any Organization Name and Identifier are fine. Finally, make sure
that Swift is selected from the Language dropdown and click Next again. Now, save
the project somewhere that you can find later and click Create.

Chapter 3

[69]

Xcode will then present you with the project development window. Select the
main.swift file on the left and you should see the Hello, World! code that
Xcode has generated for you:

This should feel pretty similar to a playground except that we can no longer see
the output of the code on the right. In a regular project like this, the code is not run
automatically for you. The code will still be analyzed for errors as you write it, but
you must run it yourself whenever you want to test it. To run the code, you can click
the run button on the toolbar, which looks like a play button.

The program will then build and run. Once it does, Xcode shows the console on the
bottom where you will see the text Hello, World! which is the result of running
this program. This is the same console as we saw in playgrounds.

Unlike a playground, we have the Project Navigator along the left. This is where we
organize all of the source files that go into making the application work.

One Piece at a Time – Types, Scopes, and Projects

[70]

Creating and using an external file
Now that we have successfully created our command-line project, let's create our
first new file. It is common to create a separate file for each type that you create. Let's
start by creating a file for an invitee class. We want to add the file to the same file
group as the main.swift file, so click on that group. You can then click on the plus
sign (+) in the lower left of the window and select New File. From that window,
select OS X | Source | Swift File and click Next:

The new file will be placed in whatever folder was selected before entering the
dialog. You can always drag a file around to organize it however you want. A great
place for this file is next to main.swift. Name your new file Invitee.swift and
click Create. Let's add a simple Invitee structure to this file. We want Invitee to
have a name and to be able to ask them to the party with or without a show:

// Invitee.swift
struct Invitee {
 let name: String

 func askToBringShowFromGenre(genre: ShowGenre) {
 print("\(self.name), bring a \(genre.name) show")
 print("\(genre.example) is a great \(genre.name)")
 }

 func askToBringThemselves() {
 print("\(self.name), just bring yourself")
 }
}

Chapter 3

[71]

This is a very simple type and does not require inheritance, so there is no reason to
use a class. Note that inheritance is not the only reason to use a class, as we will see
in later chapters but, for now, a structure will work great for us. This code provides
simple, well-named methods to print out the two types of invites.

We are already making use of a structure that we have not created yet called
ShowGenre. We would expect it to have a name and example property. Let's
implement that structure now. Create another file called ShowGenre.swift
and add the following code to it:

// ShowGenre.swift
struct ShowGenre {
 let name: String
 let example: String
}

This is an even simpler structure. This is just a small improvement over using a tuple
because it is given a name instead of just properties and it also gives us finer control
over what is constant or not. It may seem like a waste to have an entire file for just
this but this is great for maintainability in the future. It is easier to find the structure
because it is in a well-named file and we may want to add more code to it later.

An important principle in code design is called separation of concerns. The idea is
that every file and every type should have a clear and well-defined concern. You
should avoid having two files or types responsible for the same thing and you want
it to be clear why each file and type exists.

Interfacing with code from other files
Now that we have our basic data structures, we can use a smarter container for our
list of invitees. This list contains the logic for assigning a random invitee a genre.
Let's start by defining the structure with some properties:

// InviteList.swift
struct InviteList {
 var invited: [Invitee] = []
 var pendingInvitees: [Invitee]

 init(invitees: [Invitee]) {
 srand(UInt32(clock()))
 self.pendingInvitees = invitees
 }
}

One Piece at a Time – Types, Scopes, and Projects

[72]

Instead of storing a single list of both invited and pending invitees, we can store
them in two separate arrays. This makes selecting a pending invitee much easier.
This code also provides a custom initializer, so that all we need to provide from
other classes is an invitee list without worrying whether or not it is a list of pending
invitees. We could have just used the default initializer but the parameter would
then have been named pendingInvitees. We also seed the random number
generator for later use.

Note that we did not need to provide a value for invited in our initializer because
we gave it the default value of an empty array.

Note also that we are using our Invitee structure freely in this code. Swift
automatically finds code from other files in the same project and allows you to use it.
Interfacing with code from other files is as simple as that.

Now, let's add a helper function to move an invitee from the pendingInvitee list to
the invited list:

// InviteList.swift
struct InviteList {

 // ...

 // Move invitee from pendingInvitees to invited
 //
 // Must be mutating because we are changing the contents of
 // our array properties
 mutating func invitedPendingInviteeAtIndex(index: Int) {
 // Removing an item from an array returns that item
 let invitee = self.pendingInvitees.removeAtIndex(index)
 self.invited.append(invitee)
 }
}

This makes our other methods cleaner and easier to understand. The first thing we
want to allow is the inviting of a random invitee and then asking them to bring a
show from a specific genre:

// InviteList.swift
struct InviteList {

 // ...

Chapter 3

[73]

 // Must be mutating because it calls another mutating method
 mutating func askRandomInviteeToBringGenre(genre: ShowGenre) {
 if self.pendingInvitees.count > 0 {
 let randomIndex = Int(rand()) % self.pendingInvitees.count
 let invitee = self.pendingInvitees[randomIndex]
 invitee.askToBringShowFromGenre(genre)
 self.invitedPendingInviteeAtIndex(randomIndex)
 }
 }
}

The picking of a random invitee is much cleaner than in our previous
implementation. We can create a random number between 0 and the number of
pending invitees instead of having to keep trying a random invitee until we find one
that hasn't been invited yet. However, before we can pick that random number, we
have to make sure that the number of pending invitees is greater than zero. If there
were no remaining invitees we would have to divide the random number by 0 in
Int(rand()) % self.pendingInvitees.count. This would cause a crash. It has
the extra benefit of allowing us to handle the scenarios where there are more genres
than invitees.

Lastly, we want to be able to invite everyone else to just bring themselves:

// InviteList.swift
struct InviteList {

 // ...

 // Must be mutating because it calls another mutating method
 mutating func inviteeRemainingInvitees() {
 while self.pendingInvitees.count > 0 {
 let invitee = self.pendingInvitees[0]
 invitee.askToBringThemselves()
 self.invitedPendingInviteeAtIndex(0)
 }
 }
}

Here, we have simply repeatedly invited and removed the first pending invitee from
the pendingInvitees array until there are none left.

One Piece at a Time – Types, Scopes, and Projects

[74]

We now have all of our custom types and we can return to the main.swift file to
finish the logic of the program. To switch back, you can just click on the file again in
Project Navigator (the list of files on the left). Here, all we want to do is to create our
invitee list and a list of genres with example shows. Then, we can loop through our
genres and ask our invitee list to do the inviting:

var inviteeList = InviteList(invitees: [
 Invitee(name: "Sarah"),
 Invitee(name: "Jamison"),
 Invitee(name: "Marcos"),
 Invitee(name: "Roana"),
 Invitee(name: "Neena"),
])

let genres = [
 ShowGenre(name: "Comedy", example: "Modern Family"),
 ShowGenre(name: "Drama", example: "Breaking Bad"),
 ShowGenre(name: "Variety", example: "The Colbert Report"),
]

for genre in genres {
 inviteeList.askRandomInviteeToBringGenre(genre)
}
inviteeList.inviteeRemainingInvitees()

That is our complete program. You can now run the program by clicking the Run
button and examine the output. You have just completed your first real Swift project!

File organization and navigation
As your project gets larger, it can be cumbersome to have just one single list of files.
It helps to organize your files into folders to help differentiate which role they are
playing in your app. In Project Navigator, folders are called groups. You can create
a new group by selecting the group you would like to add the new group to, and
going to File | New | Group. It isn't terribly important exactly how you group your
files; the important thing is that you should be able to come up with a relatively
simple system that makes sense. If you are having trouble doing that, you should
consider how you could improve the way you are breaking up your code. If you are
having trouble categorizing your files, then your code is probably not being broken
up in a maintainable way.

Chapter 3

[75]

I would recommend using lots of files and groups to better separate your code.
However, the drawback of that is that Project Navigator can fill up pretty quickly
and become hard to navigate around. A great trick in Xcode to navigate to files more
quickly is to use the keyboard shortcut Command + Shift + O. This displays the Open
Quickly search. Here, you can start to type the name of the file you want to open and
Xcode shows you all of the matching files. Use the arrow keys to navigate up and
down and press Enter to open the file you want.

Extensions
Up until this point, we had to define our entire custom type in a single file. However,
it is sometimes useful to separate out part of our custom types into different files, or
even just in the same file. To achieve this, Swift provides a feature called extensions.
Extensions allow us to add additional functionality to existing types from anywhere.

This functionality is limited to additional functions and additional
computed properties:

extension Building {
 var report: String {
 return "This building is \(self.squareFootage) sq ft"
 }

 func isLargerThanOtherBuilding(building: Building) -> Bool {
 return self.squareFootage > building.squareFootage
 }
}

Note that, to define an extension, we use the extension keyword, followed by the
type that we would like to extend. Extensions can also be used on an existing class,
struct, or enumeration, even those defined within Swift like String. Let's add an
extension to String that allows us to repeat a string any number of times:

extension String {
 func repeatNTimes(nTimes: Int) -> String {
 var output = ""
 for _ in 0..<nTimes {
 output += self
 }
 return output
 }
}
"-".repeatNTimes(4) // ----

One Piece at a Time – Types, Scopes, and Projects

[76]

This is just one simple idea, but it is often incredibly useful to extend the
built-in types.

Now that we have a good overview of what tools we have at our disposal for
organizing our code, it is time to discuss an important concept in programming
called scope.

Scope
Scope is all about which code has access to which other pieces of code. Swift
makes it relatively easy to understand because all scope is defined by curly
brackets ({}). Essentially, code in curly brackets can only access other code
in the same curly brackets.

How scope is defined
To illustrate scope, let's look at some simple code:

var outer = "Hello"
if outer == "Hello" {
 var inner = "World"
 print(outer)
 print(inner)
}
print(outer)
print(inner) // Error: Use of unresolved identifier 'inner'

As you can see, outer can be accessed from both in and out of the if statement.
However, since inner was defined in the curly brackets of the if statement, it cannot
be accessed from outside of them. This is true of structs, classes, loops, functions,
and any other structure that involves curly brackets. Everything that is not in curly
brackets is considered to be at global scope, meaning that anything can access it.

Nested types
Sometimes, it is useful to control scope yourself. To do this, you can define types
within other types:

class OuterClass {
 struct InnerStruct {
 }
}

Chapter 3

[77]

In this scenario, InnerStruct is only directly visible from within OuterClass. This,
however, provides a special scenario that is not there for other control structures like
if statements and loops. If code at the global scope wanted to access InnerStruct, it
could only do so through OuterClass which it does have direct access to, as shown:

var inner = OuterClass.InnerStruct()

This can be useful to better segment your code but it is also great for hiding code that
is not useful to any code outside other code. As you program in bigger projects, you
will start to rely on Xcode's autocomplete feature more and more. In big code bases,
autocomplete offers a lot of options, and nesting types into other types is a great way
to reduce unnecessary clutter in the autocomplete list.

Access control
Swift provides another set of tools that helps to control what code other code
has access to called access controls. All code is actually given three levels of
access control:

•	 Private: Only accessible from within the same file
•	 Internal: Only accessible from within the same module or app
•	 Public: Accessible by any code that imports the module

Before we can really discuss this further, you should understand completely what a
module is. It is beyond the scope of this book to talk about implementing a module
but a module is a collection of code that can be used in other modules and apps. So
far, we have used the Foundation module provided by Apple. A module is anything
that you use when using the import keyword.

All code, by default, is defined to be at the internal level. That means that any given
piece of code in your program can access any piece of code defined in any other file
that is also included in your program as long as it follows the scoping rules we have
already discussed.

As described previously, code declared as private is only accessible from the same
file. This is an even better way to protect outside code from seeing code you don't
want it to see. You can declare any variable or type as private by writing the private
keyword before it, like this:

private var mySecretString = "Hello World"
private struct MyPrivateStruct {
 private var privateProperty: String
 private func privateMethod() {
 }
}

One Piece at a Time – Types, Scopes, and Projects

[78]

Note that access control is independent of the curly bracket scope. It is built on
top of it. All of the existing scope rules apply, with access controls acting as an
additional filter.

This is a fantastic way of improving the idea of abstractions. The simpler the outside
view of your code, the easier it is to understand and use your abstraction. You
should look at every file and every type as a small abstraction. In any abstraction,
you want the outside world to have as little knowledge of the inner workings of it as
possible. You should always keep in mind how you want your abstraction to be used
and hide any code that does not serve that purpose. This is because code becomes
harder and harder to understand and maintain as the walls between different parts
of the code break down. You will end up with code that resembles a bowl of pasta.
In the same way that it can be difficult to find where one noodle starts and ends,
code with lots of interdependencies and minimal barriers between code components
is very hard to make sense of. An abstraction that provides too much knowledge or
access about its internal workings is often called a leaky abstraction.

Public code is defined in the same way, except that you would use the public
keyword instead of private. However, since we will not study designing your own
modules, this is not useful to us. It is good to know it exists for future learning but
the default internal access level is enough for our apps.

Summary
This was a very dense chapter. We have covered a lot of ground. We have
delved deep into defining our own custom types using structures, classes, and
enumerations. Structures are great for simple types, while classes are great for
types that require a hierarchy of related types. Enumerations provide a way
to group related things together and express more abstract concepts through
associated values.

We have also created our first project, which made use of multiple source files
improving the maintainability of our code bases, especially at scale. Extensions can
be used across and within those files to add additional functionality to existing types,
including those not defined by us.

Finally, we developed a good understanding of what scope is and how we can
control it to our advantage, especially with the help of access controls to give us
an even more fine grained filter on what code can interact with other code.

Chapter 3

[79]

Now that you have made it this far, you are well on your way to becoming a quality
Swift programmer. I definitely recommend that you take a breather and experiment
with everything that you have learned so far. We have only a few more concepts left
to learn until we have all the tools necessary for creating a great app.

Once you are ready to move on, we can talk about optionals, which I have already
hinted at. Optionals are somewhat complex but are an integral part of using the Swift
language effectively. In the next chapter, we will dive deep into what they are and
then how to take advantage of them in the most effective ways possible.

www.allitebooks.com

http://www.allitebooks.org

[81]

To Be or Not To
Be – Optionals

As we discussed in Chapter 2, Building Blocks – Variables, Collections, and Flow Control,
all variables and constants must always have a value before they are used. This
is a great safety feature because it prevents you from creating a scenario where
you forget to give a variable an initial value. It may make sense for some number
variables, such as the number of sandwiches ordered to start at zero, but it doesn't
make sense for all variables. For example, the number of bowling pins standing
should start at 10, not zero. In Swift, the compiler forces you to decide what the
variable should start at, instead of providing a default value that could be incorrect.

However, there are other scenarios where you will have to represent the complete
absence of a value. A great example is if you have a dictionary of word definitions
and you try to lookup a word that isn't in the dictionary. Normally, this will return
a String, so you could potentially return an empty String, but what if you also need
to represent the idea that a word exists without a definition? Also, for another
programmer who is using your dictionary, it will not be immediately obvious what
will happen when they look up a word that doesn't exist. To satisfy this need to
represent the absence of a value, Swift has a special type called an optional.

In this chapter, we will cover the following topics:

•	 Defining an optional
•	 Unwrapping an optional
•	 Optional chaining
•	 Implicitly unwrapped optionals
•	 Debugging optionals
•	 The underlying implementation

To Be or Not To Be – Optionals

[82]

Defining an optional
So we know that the purpose of optionals in Swift is to allow the representation
of the absence of a value, but what does that look like and how does it work? An
optional is a special type that can "wrap" any other type. This means that you can
make an optional String, optional Array, and so on. You can do this by adding a
question mark (?) to the type name, as shown:

var possibleString: String?
var possibleArray: [Int]?

Note that this code does not specify any initial values. This is because all optionals,
by default, are set to no value at all. If we want to provide an initial value we can do
so similar to any other variable:

var possibleInt: Int? = 10

Also, note that if we left out the type specification (: Int?), possibleInt would be
inferred to be of type Int instead of an optional Int.

Now, it is pretty verbose to say that a variable lacks a value. Instead, if an optional
lacks a variable, we say it is nil. So both possibleString and possibleArray
are nil, while possibleInt is 10. However, possibleInt is not truly 10. It is still
wrapped in an optional.

You can see all the forms a variable can take by putting the following code into
a playground:

var actualInt = 10
var possibleInt: Int? = 10
var nilInt: Int?
print(actualInt) // 10
print(possibleInt) // Optional(10)
print(nilInt) // nil

As you can see, actualInt prints out just as we expected, but possibleInt prints
out as an optional that contains the value 10 instead of just 10. This is a very
important distinction because an optional cannot be used as the value it is wrapping.
nilInt just reports that it is nil. At any point, you can update the value within an
optional; this includes assigning it a value for the first time, using the assignment
operator (=):

nilInt = 2
print(nilInt) // Optional(2)

Chapter 4

[83]

You can even remove the value within an optional by assigning it to nil:

nilInt = nil
print(nilInt) // nil

So we have this wrapped form of a variable that may or may not contain a value.
What do we do if we need to access the value within an optional? The answer is that
we must unwrap it.

Unwrapping an optional
There are multiple ways to unwrap an optional. All of them essentially assert that
there is truly a value within the optional. This is a wonderful safety feature of Swift.
The compiler forces you to consider the possibility that an optional lacks any value
at all. In other languages, this is a very commonly overlooked scenario that can cause
obscure bugs.

Optional binding
The safest way to unwrap an optional is to use something called optional binding.
With this technique, you can assign a temporary constant or variable to the value
contained within the optional. This process is contained within an if statement, so
that you can use an else statement when there is no value. Optional binding looks
similar to the following code:

if let string = possibleString {
 print("possibleString has a value: \(string)")
}
else {
 print("possibleString has no value")
}

An optional binding is distinguished from an if statement primarily by the if let
syntax. Semantically, this code is saying, "if you can let the constant string be equal
to the value within possibleString, print out its value; otherwise, print that it
has no value." The primary purpose of an optional binding is to create a temporary
constant that is the normal (non-optional) version of the optional.

We can also use a temporary variable in an optional binding:

possibleInt = 10
if var actualInt = possibleInt {
 actualInt *= 2
 print(actualInt) // 20
}
print(possibleInt) // Optional(10)

To Be or Not To Be – Optionals

[84]

Note that an asterisk (*) is used for multiplication in Swift. You should also notice
something important about this code. If you put it into a playground, even though
we multiplied the actualInt by 2, the value within the optional does not change.
When we print out possibleInt later, the value is still Optional(10). This is
because even though we made actualInt a variable (otherwise known as mutable),
it is simply a temporary copy of the value within possibleInt. No matter what we
do with actualInt, nothing will get changed about the value within possibleInt.
If we have to update the actual value stored within possibleInt, we simply assign
possibleInt to actualInt after we are done modifying it:

possibleInt = 10
if var actualInt = possibleInt {
 actualInt *= 2
 possibleInt = actualInt
}
print(possibleInt) // Optional(20)

Now, the value wrapped inside possibleInt has actually been updated.

A common scenario that you will probably come across is the need to unwrap
multiple optional values. One option is to simply nest the optional bindings:

if let actualString = possibleString {
 if let actualArray = possibleArray {
 if let actualInt = possibleInt {
 print(actualString)
 print(actualArray)
 print(actualInt)
 }
 }
}

However, this can be a pain, as it increases the indentation level each time to keep
the code organized. Instead, you can actually list multiple optional bindings into a
single statement separated by commas:

if let actualString = possibleString,
 let actualArray = possibleArray,
 let actualInt = possibleInt
{
 print(actualString)
 print(actualArray)
 print(actualInt)
}

Chapter 4

[85]

This generally produces more readable code.

Another great way to do a concise optional binding within functions is to use the
guard statement. This way, you can do a series of unwrapping without increasing
the indent level of the code at all:

func someFunc2() {
 guard let actualString = possibleString,
 let actualArray = possibleArray,
 let actualInt = possibleInt
 else {
 return
 }

 print(actualString)
 print(actualArray)
 print(actualInt)
}

This construct allows us to access the unwrapped values after the guard statement,
because the guard statement guarantees that we would have exited the function
before reaching that code, if the optional value was nil.

This way of unwrapping is great, but saying that optional binding is the safest way
to access the value within an optional, implies that there is an unsafe way to unwrap
an optional. This way is called forced unwrapping.

Forced unwrapping
The shortest way to unwrap an optional is to use forced unwrapping. It is done using
an exclamation mark (!) after the variable name when being used:

possibleInt = 10
possibleInt! *= 2
print(possibleInt) // "Optional(20)"

However, the reason it is considered unsafe is that your entire program will crash if
you try to unwrap an optional that is currently nil:

nilInt! *= 2 // fatal error

The complete error you get is unexpectedly found nil while unwrapping an
optional value. This is because the forced unwrapping is essentially your personal
guarantee that the optional truly does hold a value. That is why it is called "forced".

To Be or Not To Be – Optionals

[86]

Therefore, forced unwrapping should be used in limited circumstances. It should
never be used just to shorten up the code. Instead, it should only be used when you
can guarantee from the structure of the code that it cannot be nil, even though it is
defined as an optional. Even in that case, you should see if it is possible to use a non-
optional variable instead. The only other place you may use it is if your program
truly could not recover from an optional being nil. In those circumstances, you
should at least consider presenting an error to the user, which is always better than
simply having your program crash.

An example of a scenario where it may be used effectively is with lazily calculated
values. A lazily calculated value is the one that is not created until the first time it
is accessed. To illustrate this, let's consider a hypothetical class that represents a file
system directory. It will have a property listing its contents that is lazily calculated.
The code will look similar to the following code:

class FileSystemItem {}
class File: FileSystemItem {}
class Directory: FileSystemItem {
 private var realContents: [FileSystemItem]?
 var contents: [FileSystemItem] {
 if self.realContents == nil {
 self.realContents = self.loadContents()
 }
 return self.realContents!
 }

 private func loadContents() -> [FileSystemItem] {
 // Do some loading
 return []
 }
}

Here, we have defined a superclass called FileSystemItem that both File and
Directory inherit from. The content of a directory is a list of FileSystemItem.
We define contents as a calculated variable and store the real value within the
realContents property. The calculated property checks if there is a value loaded
for realContents; if there isn't, it loads the contents and puts them into the
realContents property. Based on this logic, we know for 100% certainty that there
will be a value within realContents by the time we get to the return statement, so it
is perfectly safe to use forced unwrapping.

Chapter 4

[87]

Nil coalescing
In addition to optional binding and forced unwrapping, Swift also provides
an operator called the nil coalescing operator to unwrap an optional. This is
represented by a double question mark (??). Basically, this operator lets us provide
a default value for a variable or operation result, in case it is nil. This is a safe way
to turn an optional value into a non-optional value and it would look similar to the
following code:

var possibleString: String? = "An actual string"
print(possibleString ?? "Default String") // "An Actual String"

Here, we are asking the program to print out possibleString unless it is nil; in
which case, it will just print "Default String". Since we did give it a value, it
printed out that value and it is important to note that it printed out as a regular
variable, not an optional. This is because one way or another, an actual value was
going to be printed.

This is a great tool for concisely and safely unwrapping an optional when a default
value makes sense.

Optional chaining
A common scenario in Swift is to have an optional that you must calculate something
from. If the optional has a value, you will want to store the result of the calculation
on it, but if it is nil, the result should just be set to nil:

var invitee: String? = "Sarah"
var uppercaseInvitee: String?
if let actualInvitee = invitee {
 uppercaseInvitee = actualInvitee.uppercaseString
}

This is pretty verbose. To shorten this up in an unsafe way, we could use
forced unwrapping:

uppercaseInvitee = invitee!.uppercaseString

However, optional chaining will allow us to do this safely. Essentially, it allows
optional operations on an optional. When the operation is called, if the optional
is nil, it immediately returns nil; otherwise, it returns the result of performing the
operation on the value within the optional:

uppercaseInvitee = invitee?.uppercaseString

To Be or Not To Be – Optionals

[88]

So in this call, invitee is an optional. Instead of unwrapping it, we use optional
chaining by placing a question mark (?) after it, followed by the optional operation.
In this case, we are asking for the uppercaseInvitee property on it. If invitee
is nil, uppercaseInvitee is immediately set to nil without even trying to access
uppercaseString. If it actually does contain a value, uppercaseInvitee gets set to
the uppercaseString property of the contained value. Note that all optional chains
return an optional result.

You can chain as many calls as you want, both optional and non-optional, together in
this way:

var invitees: [String]? = ["Sarah", "Jamison", "Marcos", "Roana"]
invitees?.first?.uppercaseString.hasPrefix("A")

This code checks if the first element of the invitees-list starts with the letter A, even
if it is a lowercase A. First, it uses an optional chain in case invitees is nil. Then
the call to first uses an additional optional chain because that method returns an
optional String. We then call uppercaseString, which does not return an optional,
allowing us to access hasPrefix on the result without having to use another optional
chain. If at any point any of the optionals are nil, the result will be nil. This can
happen for two different reasons:

•	 invitees is nil
•	 first returns nil because the array is empty

If the chain makes it all the way to uppercaseString, there is no longer a failure
path and it will definitely return an actual value. You will notice that there are
exactly two question marks being used in this chain and there are two possible
failure reasons.

At first, it can be hard to understand when you should and should not use a
question mark to create a chain of calls; the rule is to always use a question mark if
the previous element in the chain returns an optional. However, so you are prepared,
let's take a look at what happens if you use an optional chain improperly:

invitees.first // Error

In this case, we try to call a method directly on an optional without a chain, so we
get an error that says Value of optional type '[String]?' not unwrapped; did you
mean to use '!' or '?'?. Not only does it tell us that the value is not unwrapped, it even
suggests two common ways of dealing with the problem: forced unwrapping or
optional chaining.

Chapter 4

[89]

We also have the case where we try to use an optional chain inappropriately:

var otherInvitees = ["Kai", "Naya"]
otherInvitees?.first // Error

Here, we get an error that says Cannot use optional chaining on non-optional value
of type '[String]'. It is great to have a good sense of the errors you might see when
you make mistakes; so that you can correct them quickly because we all make silly
mistakes from time-to-time.

Another great feature of optional chaining is that it can be used for method calls on
an optional that does not actually return a value:

invitees?.removeAll()

In this case, we only want to call removeAll if there is truly a value within the
optional array. So with this code, if there is a value, all the elements are removed
from it; otherwise, it remains nil.

In the end, option chaining is a great choice for writing a concise code that still
remains expressive and understandable.

Implicitly unwrapped optionals
There is a second type of optional called an implicitly unwrapped optional. There
are really two ways to look at what an implicitly unwrapped optional is; one way is
to say that it is a normal variable that can also be nil; the other way is to say that it is
an optional that you don't have to unwrap to use. The important thing to understand
about them is that, similar to optionals, they can be nil, but you do not have to
unwrap them like a normal variable.

You can define an implicitly unwrapped optional with an exclamation mark (!)
instead of a question mark (?) after the type name:

var name: String!

Similar to regular optionals, implicitly unwrapped optionals do not need to be given
an initial value because they are nil by default.

At first it may sound like it is the best of both worlds, but in reality it is more like the
worst of both worlds. Even though an implicitly unwrapped optional does not have
to be unwrapped, it will crash your entire program if it is nil when used:

name.uppercaseString // Crash

To Be or Not To Be – Optionals

[90]

A great way to think about them is that every time it is used, it is implicitly doing a
forced unwrapping. The exclamation mark is placed in its type declaration, instead
of each time it is used. This can be problematic because it appears the same as any
other variable except for how it is declared. That means it is very unsafe to use,
unlike a normal optional.

So if the implicitly unwrapped optionals are the worst of both worlds and are so
unsafe, why do they even exist? The reality is that in rare circumstances, they are
necessary. They are used in circumstances where a variable is not truly optional,
but you also cannot give an initial value to it. This is almost always the case for
custom types that have a member variable that is non-optional but cannot be set
during initialization.

A rare example of this is with a view in iOS. UIKit, as we discussed before, is the
framework Apple provides for iOS development. In it, Apple has a class called
UIView that is used to display content on the screen. Apple also provides a tool in
Xcode called Interface Builder that lets you design these views in a visual editor
instead of in code. Many views designed in this way will need references to other
views that can be accessed later, programmatically. When one of these views is
loaded, it is initialized without anything connected and then all the connections are
made. Once all of the connections are made, a function called awakeFromNib is called
on the view. This means that these connections are not available to be used during
initialization but are available once awakeFromNib is called. This order of operations
also ensures that awakeFromNib is always called before anything actually uses the
view. This is a circumstance where it is necessary to use an implicitly unwrapped
optional. A member variable may not be able to be defined until after the view is
initialized, when it is completely loaded:

Import UIKit
class MyView: UIView {
 @IBOutlet var button: UIButton!
 var buttonOriginalWidth: CGFloat!

 override func awakeFromNib() {
 self.buttonOriginalWidth = self.button.frame.size.width
 }
}

Chapter 4

[91]

Notice that we have actually declared two implicitly unwrapped optionals. The first
is a connection to a button. We know that this is a connection because it is preceded
by @IBOutlet. This is declared as an implicitly unwrapped optional because
connections are not set up until after initialization, but they are still guaranteed
to be set up before any other methods are called on the view.

This then leads us to unwrapping our second variable, buttonOriginalWidth,
implicitly because we need to wait until the connection is made before we can
determine the width of the button. After awakeFromNib is called, it is safe to treat
both button and buttonOriginalWidth as non-optional.

You may have noticed that we had to dive pretty deep into app development
to find a valid use case for implicitly unwrapped optionals and this is arguably
only because UIKit is implemented in Objective-C, as we will learn more about in
Chapter 10, Harnessing the Past – Understanding and Translating Objective-C. This is
another testament to the fact that they should be used sparingly.

Debugging optionals
We have already seen a couple of the compiler errors we will commonly see because
of optionals. If we try to call a method on an optional that we intended to call on the
wrapped value, we will get an error. If we try to unwrap a value that is not actually
optional, we will also get an error. We also need to be prepared for the runtime
errors that optionals can cause.

As we have discussed, optionals cause runtime errors that are also referred to as
crashes, if you try to forcefully unwrap one that is nil. This can happen with both
explicit and implicitly forced unwrapping. If you have followed my advice so far in
this chapter, this should be a rare occurrence. However, we all end up working with
a third party code and maybe they were lazy or maybe they use forced unwrapping
to enforce their expectations about how their code should be used.

To Be or Not To Be – Optionals

[92]

Also, we all suffer from being lazy from time to time. It can be exhausting or
discouraging to worry about all the edge cases when you are excited about
programming the core functionality of your app. We may use forced unwrapping
temporarily while we worry about that main functionality and plan to come back to
handle it later. After all, during development it is better to have a forced unwrapping
crash the development version of your app than it is for it to fail silently if you have
not yet handled that edge case. We may even decide that an edge case is not worth
the development effort of handling because everything about developing an app is a
trade off. Either way, we need to recognize a crash from forced unwrapping quickly
so we don't waste extra time trying to figure out what went wrong.

When an app tries to unwrap a nil value, if you are currently debugging the app,
Xcode will show you the line that is trying to do the unwrapping. The line will report
that there was an EXC_BAD_INSTRUCTION error and you will also get a message
in the console saying fatal error: unexpectedly found nil while unwrapping an
Optional value:

You will also sometimes have to look at what code is currently calling the code that
failed. To do that, you can use the call stack in Xcode. The call stack is the full path of
all function calls that got to this location. So, if you have function1 call function2,
which then calls function3, function3 will be at the top and function1 will be at
the bottom. Once the execution exits function3, it will be removed from the stack so
you will just have function2 on top of function1.

When your program crashes, Xcode will automatically display the call stack, but
you can also manually show it by navigating to View | Navigators | Show Debug
Navigator. It will look similar to the following screenshot:

Chapter 4

[93]

Here, you can click around different levels of code to see the state of things. This
will become even more important if the program is crashing within one of Apple's
framework, where you do not have access to the code. In that case, you will want to
move up the call stack to the point where your code called into the framework. You
may also be able to look at the names of the functions to help you figure out what
may have gone wrong.

Anywhere on the call stack, you can look at the state of the variables in the debugger,
as shown:

If you do not see this variable's view, you can display it by clicking on the button in
the bottom-right corner of the screen, second from the right that will be grayed out.
Here, you can see that invitee is indeed nil, which is what caused the crash.

To Be or Not To Be – Optionals

[94]

As powerful as the debugger is, if you find that it isn't helping you find the problem,
you can always put print statements in important parts of the code. It is always safe
to print out an optional, as long as you don't forcefully unwrap it as shown in the
preceding example. As we have seen before, when an optional is printed, it will print
nil if it doesn't have a value, or it will print Optional(<value>) if it has a value.

Debugging is an extremely important part of becoming a productive developer
because we all make mistakes and create bugs. Being a great developer means that
you can identify problems quickly and understand how to fix them soon after that.
This will largely come from practice, but it will also come from having a firm grasp
of what is really happening with your code versus simply adapting some code you
find online to fit your needs through trial and error.

The underlying implementation
At this point, you should have a pretty strong grasp of what an optional is and how
to use and debug it, but it will be valuable to look a little deeper at optionals to see
how they actually work.

In reality, the question mark syntax for optionals is just special shorthand. Writing
String? is equivalent to writing Optional<String>. Writing String! is equivalent
to writing ImplicitlyUnwrappedOptional<String>. The Swift compiler has the
shorthand versions because they are so commonly used. This allows the code to be
more concise and readable.

If you declare an optional using the long form, you can see Swift's implementation
by holding Command and clicking on the word Optional. Here, you can see that
Optional is implemented as an enumeration. Simplifying the code a little, we have:

enum Optional<T> {
 case None
 case Some(T)
}

So we can see that an optional really has two cases: None and Some. None stands for
the nil case, while the Some case has an associated value, which is the value wrapped
inside the optional. Unwrapping is the process of retrieving the associated value out
of the Some case.

The one part of this that you have not seen yet is the angled bracket syntax (<T>).
This is called a generic and it essentially allows the enumeration to have an
associated value of any type. We will cover generics in-depth in Chapter 6,
Make Swift Work For You – Protocols and Generics.

Chapter 4

[95]

Realizing that optionals are simply enumerations will help you understand how
to use them. It also gives you some insight into how concepts are built on top of
other concepts. Optionals seem really complex until you realize that they are just a
two case enumeration. Once you understand enumerations, you can pretty easily
understand optionals as well.

Summary
We have only covered a single concept, optionals, in this chapter, but we have seen
that this is a pretty dense topic. We have seen that at the surface level, optionals are
pretty straightforward. They are a way to represent a variable that has no value.
However, there are multiple ways to get access to the value wrapped within an
optional that have very specific use cases. Optional binding is always preferred, as
it is the safest method, but we can also use forced unwrapping if we are confident
that an optional is not nil. We also have a type called implicitly unwrapped optional,
to delay the assigning of a variable that is not intended to be optional; however, we
should use it sparingly because there is almost always a better alternative.

Now that we have a firm understanding of optionals, we can begin to look at
something else that may appear minor on the surface but actually opens up a whole
world of possibilities. All functions in Swift are actually variables or constants
themselves. We will explore what this means in the next chapter.

[97]

A Modern Paradigm –
Closures and Functional

Programming
So far, we have been programming using the paradigm called object-oriented
programming, where everything in a program is represented as an object that can
be manipulated and passed around to other objects. This is the most popular way
to create apps because it is a very intuitive way to think about software and it goes
well with the way Apple has designed their frameworks. However, there are some
drawbacks to this technique. The biggest one is that the state of data can be very hard
to track and reason about. If we have a thousand different objects floating around
in our app, all with different information, it can be hard to track down where the
bugs occurred and it can be hard to understand how the whole system fits together.
Another paradigm of programming that can help with this problem is called
functional programming.

Some programming languages are designed to use only functional programming,
but Swift is designed primarily as an object-oriented language with the ability to use
functional programming concepts. In this chapter, we will explore how to implement
these functional programming concepts in Swift and what they are used for. To do
this, we will cover the following topics:

•	 Functional programming philosophy
•	 Closures
•	 Building blocks of functional programming in Swift
•	 Lazy evaluation
•	 Example

A Modern Paradigm – Closures and Functional Programming

[98]

Functional programming philosophy
Before we jump into writing code, let's discuss the ideas and motivations behind
functional programming.

State and side effects
Functional programming makes it significantly easier to think of each component
in isolation. This includes things such as types, functions, and methods. If we can
wrap our minds around everything that is input into these code components and
everything that should be returned from them, we could analyze the code easily
to ensure that there are no bugs and it performs well. Every type is created with a
certain number of parameters and each method and function in a program has a
certain number of parameters and return values. Normally, we think about these as
the only inputs and outputs, but the reality is that often there are more. We refer to
these extra inputs and outputs as state.

In a more general sense, state is any stored information, however temporary, that can
be changed. Let's consider a simple double function:

func double(input: Int) -> Int {
 return input * 2
}

This is a great example of a stateless function. No matter what else is happening in
the entire universe of the program, this method will always return the same value,
if it is given the same input. An input of 2 will always return 4.

Now, let's look at a method with state:

struct Ball {
 var radius: Double

 mutating func growByAmount(amount: Double) -> Double {
 self.radius = self.radius + amount
 return self.radius
 }
}

Chapter 5

[99]

If you call this method repeatedly, with the same input on the same Ball instance,
you will get a different result every time. This is because there is an additional input
in this method, which is the instance it is being called on. It is otherwise referred to
as self. self is actually both an input and an output of this method, because the
original value of radius affects the output and radius is changed by the end of the
method. This is still not very difficult to reason about, as long as you keep in mind
that self is always another input and output. However, you can imagine that with a
more complex data structure, it can be hard to track every possible input and output
from a piece of code. As soon as that starts to happen, it becomes easier for bugs
to get created, because we will almost certainly have, unexpected inputs causing
unexpected outputs.

Side effects are an even worse type of extra input or output. They are the
unexpected changes to state, seemingly unrelated to the code being run. If we
simply rename our preceding method to something a little less clear, its effect
on the instance becomes unexpected:

mutating func currentRadiusPlusAmount(amount: Double) -> Double {
 self.radius = self.radius + amount
 return self.radius
}

Based on its name, you wouldn't expect this method to change the actual value of
radius. This means that if you didn't see the actual implementation, you would
expect this method to keep returning the same value if called with the same amount
on the same instance. Unpredictability is a terrible thing to have as a programmer.

In its strictest form, functional programming eliminates all state and therefore
side effects. We will never go that far in Swift, but we will often use functional
programming techniques to reduce state and side effects to increase the predictability
of our code, drastically.

Declarative versus imperative code
Besides predictability, the other effect that functional programming has on our code
is that it becomes more declarative. This means that the code shows us how we
expect information to flow through our application. This is in contrast to what we
have been doing with object-oriented programming, which we call imperative code.
This is the difference between writing a code that loops through an array to add only
certain elements to a new array and running a filter on the array. The former would
look similar to this:

var originalArray = [1,2,3,4,5]
var greaterThanThree = [Int]()
for num in originalArray {

A Modern Paradigm – Closures and Functional Programming

[100]

 if num > 3 {
 greaterThanThree.append(num)
 }
}
print(greaterThanThree) // [4,5]

Running a filter on the array would look similar to this:

var originalArray = [1,2,3,4,5]
var greaterThanThree = originalArray.filter {$0 > 3}
print(greaterThanThree) // [4,5]

Don't worry if you don't understand the second example yet. This is what we are
going to cover in the rest of this chapter. The general idea is that with imperative
codes, we are going to issue a series of commands with the intent of the code
as a secondary, subtler idea. To understand that we are creating a copy of
originalArray with only elements greater than 3, we have to read the code and
mentally step through what is happening. In the second example, we are stating in
the code itself that we are filtering the original array. Ultimately, these ideas exist on
a spectrum and it is hard to have something be 100% declarative or imperative, but
the principles of each are important.

So far, with our imperative code, most of it just defines what our data should
look like and how it can be manipulated. Even with high quality abstractions,
understanding a section of code can often involve jumping between lots of methods,
tracing the execution. In declarative code, logic can be more centralized and often
more easily read, based on well-named methods.

You can also think of imperative codes as if it were as a factory where each person
makes a car in its entirety while thinking of declarative code as if it were a factory
with an assembly line. In order to understand what the person is doing in a non-
assembly line factory, you have to watch the whole process unfold one step at a
time. They will probably be pulling in all kinds of tools at different times and it will
be hard to follow. In a factory with an assembly line, you can determine what is
happening by looking at each step in the assembly line one at a time.

Now that we understand some of the motivations of functional programming,
let's look at the Swift features that make it possible.

Chapter 5

[101]

Closures
In Swift, functions are considered first-class citizens, which means that they can be
treated the same as any other type. They can be assigned to variables and be passed
in and out of other functions. When treated this way, we call them closures. This is
an extremely critical piece to write more declarative code because it allows us to treat
functionalities like objects. Instead of thinking of functions as a collection of code to
be executed, we can start to think about them more like a recipe to get something
done. Just like you can give just about any recipe to a chef to cook, you can create
types and methods that take a closure to perform some customizable behavior.

Closures as variables
Let's take a look at how closures work in Swift. The simplest way to capture a closure
in a variable is to define the function and then use its name to assign it to a variable:

func double(input: Int) -> Int {
 return input * 2
}

var doubleClosure = double
print(doubleClosure(2)) // 4

As you can see, doubleClosure can be used just like the normal function name
after being assigned. There is actually no difference between using double and
doubleClosure. Note that we can now think of this closure as an object that will
double anything passed to it.

If you look at the type of doubleClosure by holding the option key and click on the
name, you will see that the type is defined as (Int) -> Int. The basic type of any
closure is (ParamterType1, ParameterType2, …) -> ReturnType.

Using this syntax, we can also define our closure inline, such as:

var doubleClosure2 = { (input: Double) -> Double in
 return input * 2
}

We begin and end any closure with curly brackets ({}). Then, we follow the opening
curly bracket with the type for the closure, which will include input parameters
and a return value. Finally, we separate the type definition from the actual
implementation with the in keyword.

A Modern Paradigm – Closures and Functional Programming

[102]

An absence of a return type is defined as Void or (). Even though you may see that
some programmers use parentheses, Void is preferred for return declarations:

var printDouble = { (input: Double) -> Void in
 print(input * 2)
}

Essentially, () is an empty tuple meaning it holds no value and it is more commonly
used for the input parameters, in case the closure doesn't take any parameters at all:

var makeHelloWorld = { () -> String in
 return "Hello World!"
}

So far, even though we can change our thinking about the block of code by making it
into a closure, it is not terribly useful. To really make closures useful, we need to start
passing them into other functions.

Closures as parameters
We can define a function to take a closure as a parameter, using the same type syntax
we saw previously:

func firstInNumbers(
 numbers: [Int],
 passingTest: (number: Int) -> Bool
) -> Int?
{
 for number in numbers {
 if passingTest(number: number) {
 return number
 }
 }
 return nil
}

Here, we have a function that can find the first number in an array that passes some
arbitrary test. The syntax at the end of the function declaration may be confusing
but it should be clear if you work from the inside out. The type for passingTest
is (number: Int) -> Bool. That is then the second parameter of the whole
firstInNumbers function, which returns an Int?. If we want to use this function to
find the first number greater than three, we can create a custom test and pass that
into the function:

let numbers = [1,2,3,4,5]
func greaterThanThree(number: Int) -> Bool {

Chapter 5

[103]

 return number > 3
}
var firstNumber = firstInNumbers(numbers, greaterThanThree)
print(firstNumber) // "Optional(4)"

Here, we are essentially passing a little bundle of functionality to the
firstInNumbers: function that lets us drastically enhance what a single function
can normally do. This is an incredibly useful technique. Looping through an array
to find an element can be very verbose. Instead, we can use this function to find an
element showing only the important part of the code: the test.

We can even define our test right in a call to the function:

firstNumber = firstInNumbers(numbers, passingTest: { (number: Int) ->
Bool in
 return number > 3
})

Even though this is more concise, it's pretty complex; hence, Swift allows us to cut
out some of the unnecessary syntax.

Syntactic sugar
First, we can make use of type inference for the type of number. The
compiler knows that number needs to be Int based on the definition of
firstInNumbers:passingTest:. It also knows that the closure has to return
Bool. Now, we can rewrite our call, as shown:

firstNumber = firstInNumbers(numbers, passingTest: { (number) in
 return number > 3
})

This looks cleaner, but the parentheses around number are not required; we could
leave those out. In addition, if we have closure as the last parameter of a function,
we can provide the closure outside the parentheses for the function call:

firstNumber = firstInNumbers(numbers) { number in
 return number > 3
}

A Modern Paradigm – Closures and Functional Programming

[104]

Note that the closing parenthesis for the function parameters moved from being
after the closure to before it. This is looking pretty great, but we can go even further.
For a single line closure, we don't even have to write the return keyword because it
is implied:

firstNumber = firstInNumbers(numbers) { number in
 number > 3
}

Lastly, we don't always need to give a name to the parameters of closures. If you
leave out the names altogether, each parameter can be referenced using the syntax
$<ParemterIndex>. Just like with arrays, the index starts at 0. This helps us write
this call very concisely in a single line:

firstNumber = firstInNumbers(numbers) { $0 > 3 }

This is a long way from our original syntax. You can mix and match all of these
different techniques to make sure that your code is as understandable as possible.
As we have discussed before, understandability is a balance between being concise
and clear. It is up to you in each circumstance to decide how much syntax you want
to cut out. To me, it is not immediately clear what the closure is without it having a
name. My preferred syntax for this is to use the parameter name in the call:

firstNumber = firstInNumbers(numbers, passingTest: {$0 > 3})

This makes it clear that the closure is a test to see which number we want to pull out
of the list.

Now that we know what a closure is and how to use one, we can discuss some of the
core features of Swift that allow us to write a functional style code.

Building blocks of functional
programming in Swift
The first thing to realize is that Swift is not a functional programming language. At
its core, it will always be an object-oriented programming language. However, since
functions in Swift are first-class citizens, we can use some of the core techniques.
Swift provides some built-in methods to get us started.

Chapter 5

[105]

Filter
The first method we are going to discuss is called filter. As the name suggests, this
method is used to filter elements in a list. For example, we can filter our numbers
array to include only even numbers:

var evenNumbers = numbers.filter({ element in
 element % 2 == 0
}) // [2, 4]

The closure we provide to filter will be called once for each element in the array. It
is tasked with returning true if the element needs to be included in the result and
false otherwise. The preceding closure takes advantage of the implied return value
and simply returns true if the number has a remainder of zero when being divided
by two.

Note that the filter does not change the numbers variable; it simply returns a filtered
copy. Changing the value will modify the state, which we want to avoid.

This method provides us with a concise way to filter a list in virtually any way
we want. It is also the beginning of building up a vocabulary of transformations,
which we can perform on data. One could argue that all applications just transform
data from one form to another, so this vocabulary helps us achieve the maximum
functionality we want in any app.

Reduce
Swift also provides a method called reduce. The purpose of reduce is to condense
a list down to a single value. Reduce works by iterating over every value and
combining it with a single value that represents all previous elements. This is just
like mixing a bunch of ingredients in a bowl for a recipe. We will take one ingredient
at a time and combine it in the bowl until we are left with just a single bowl of
ingredients.

Let's take a look at what the reduce function looks like in our code. We can use it to
sum up the values in our number array:

var sum = numbers.reduce(0, combine: { previousSum, element in
 previousSum + element
}) // 15

A Modern Paradigm – Closures and Functional Programming

[106]

As you can see, reduce takes two parameters. The first parameter is a value with
which to start combining each item in the list. The second is a closure that will do the
combining. Similar to filter, this closure is called once for each element in the array.
The first parameter of the closure is the value after combing each of the previous
elements with the initial value. The second parameter is the next element.

So the first time the closure is called, it is called with 0 (the initial value) and 1 (the
first element of the list); it then returns 1. This means that it is then called again with
1 (the value from the last call) and 2 (the next element in the list) returning 3. This
will continue until it is combining the running sum of 10, with the last element 5,
returning a final result of 15. It becomes very simple once we break it down.

Reduce is another great vocabulary item to add to our skill-set. It can reduce any list
of information into a single value by analyzing data to generate a document from a
list of images and much more.

Also, we can start to chain our functions together. If we want to find the sum of all
the even numbers in our list, we can run the following code:

var evenSum = numbers.filter({$0 % 2 == 0}).reduce(0, combine: {$0 +
$1}) // 6

Now, we can actually do one more thing to shorten this. Every arithmetic operation,
including addition (+) is really just another function or closure. Addition is a function
that takes two values of the same type and returns their sum. This means that we can
simply pass the addition function as our combine closure:

evenSum = numbers.filter({$0 % 2 == 0}).reduce(0, combine: +) // 6

Now we are getting fancy!

Also, keep in mind that the combined value does not need to be the same type that
is in the original list. Instead of summing the values, we could combine them all into
one string:

let string = numbers.reduce("", combine: {"\($0)\($1)"}) // "12345"

Here I am using string interpolation to create a string that starts with the running
value and ends with the next element.

Chapter 5

[107]

Map
Map is a method to transform every element in a list to another value. For example,
we can add one to every number in the list:

let plusOne = numbers.map({ element -> Int in
 return element + 1
}) // [2, 3, 4, 5, 6]

As you can probably guess, the closure that map takes is called once for each element
in the list. As a parameter, it takes the element and is expected to return the new
value to be added to the resulting array.

Just like with reduce, the transformed type does not need to match. We can convert
all of our numbers to strings:

let strings = numbers.map {String($0)}

Map is incredibly versatile. It can be used to convert a list of data into a list of views
to display the data, convert a list of image paths to their loaded images, and so on.

The map method is a great choice to perform calculations on each element of a list,
but it should be used only when it makes sense to put the result of the calculation
back into a list. You could technically use it to iterate through a list and perform
some other action, but in that case, a for-in loop is more appropriate.

Sort
The last built-in functional method we will discuss is called sorted. As the name
suggests, sorted allows you to change the order of a list. For example, if we want to
reorder our numbers list to go from largest to smallest:

numbers.sort({ element1, element2 in
 element1 > element2
}) // [5, 4, 3, 2, 1]

The closure that is passed into sorted is called isOrderedBefore. This means that it
takes two elements in the list as input and it should return true if the first element is
to be ordered before the second element. We cannot rely on the closure to be called a
certain number of times, nor the elements it will be called with, but it will be called
until the sorting algorithm has enough knowledge to come up with a new order.

In our case, we return true any time the first argument is greater than the second
argument. This results in larger elements always coming before smaller elements.

A Modern Paradigm – Closures and Functional Programming

[108]

This is a great method because sorting is a very common task and often data will
need to be sorted in multiple ways, depending on the user's interaction. Using this
method, you could design multiple sorting closures and change the one being used
based on the user's interaction.

How these affect the state and nature of code
There are more built-in functional methods and we will learn to write our own in the
next chapter on generics, but these are a core few to help you start thinking about
certain problems in a functional way. So how do these methods help us avoid state?

These methods, along with others, can be combined in infinite ways to transform
data and perform actions. No matter how complex the combination is, there is no
way to interfere with each individual step. There are no side effects because the only
inputs are the result of the preceding step and the only outputs are what will be
passed on to the next step.

You can also see that complex transformations can all be declared in a concise and
centralized place. A reader of the code doesn't need to trace the changing values of
many variables; they can simply look at the code and see what processes it will
go through.

Lazy evaluation
A powerful feature of Swift is the ability to make these operations lazily evaluated.
This means that, just like a lazy person would do, a value is only calculated when it
is absolutely necessary and at the latest point possible.

First, it is important to realize the order in which these methods are executed.
For example, what if we only want the first element of our numbers to be mapped
to strings:

var firstString = numbers.map({String($0)}).first

This works well, except that we actually converted every number to a string to get
to just the first one. That is because each step of the chain is completed in its entirety
before the next one can be executed. To prevent this, Swift has a built-in method
called lazy.

Chapter 5

[109]

Lazy creates a new version of a container that only pulls specific values from it when
it is specifically requested. This means that lazy essentially allows each element to
flow through a series of functions one at a time, as it is needed. You can think about
it like a lazy version of a worker. If you ask someone lazy to look up the capital of
Cameroon, they aren't going to compile a list of the capitals of all countries before
they get the answer. They are only going to do the work necessary to get that specific
answer. That work may involve multiple steps, but they would only have to do those
steps for the specific countries you ask for.

Now, let's look at what lazy looks like in code. You use it to convert a normal list into
a lazy list:

firstString = numbers.lazy.map({String($0)}).first

Now, instead of calling map directly on numbers, we called it on the lazy version of
numbers. This makes it so that every time a value is requested from the result, it only
processes a single element out of the input array. In our preceding example, the map
method will only have been performed once.

This even applies to looping through a result:

let lazyStrings = numbers.lazy.map({String($0)})
for string in lazyStrings {
 print(string)
}

Each number is converted to a string only upon the next iteration of the for-in
loop. If we were to break out of that loop early, the rest of the values would not be
calculated. This is a great way to save processing time, especially on large lists.

Example
Let's take a look at what this looks like in practice. We can use some of the techniques
we learned in this chapter to write a different and possibly better implementation of
our party inviter.

We can start by defining the same input data:

//: List of people to invite
let invitees = [
 "Sarah",
 "Jamison",
 "Marcos",
 "Roana",

A Modern Paradigm – Closures and Functional Programming

[110]

 "Neena",
]

//: Dictionary of shows organized by genre
var showsByGenre = [
 "Comedy": "Modern Family",
 "Drama": "Breaking Bad",
 "Variety": "The Colbert Report",
]

In this implementation, we are making the invitees list, which is just a constant list
of names and the shows by genre dictionary variable. This is because we are going
to be mapping our invitees list to a list of invitation text. As we do the mapping, we
will have to pick a random genre to assign to the current invitee, and in order to
avoid assigning the same genre more than once, we can remove the genre from
the dictionary.

So let's write the random genre function:

func pickAndRemoveRandomGenre() -> (genre: String, example: String)? {
 let genres = Array(showsByGenre.keys)
 guard genres.count > 0 else {
 return nil
 }

 let genre = genres[Int(rand()) % genres.count]
 let example = showsByGenre[genre]!
 showsByGenre[genre] = nil
 return (genre: genre, example: example)
}

We start by creating an array of just the keys of the shows by genre dictionary. Then,
if there are no genres left, we simply return nil. Otherwise, we pick out a random
genre, remove it from the dictionary, and return it and the show example.

Now we can use that function to map the invitees to a list of invitations:

let invitations: [String] = invitees
.map({ name in
 guard let (genre, example) = pickAndRemoveRandomGenre() else {
 return "\(name), just bring yourself"
 }
 return "\(name), bring a \(genre) show"
 + "\n\(example) is a great \(genre)"
})

Chapter 5

[111]

Here we try to pick a random genre. If we can't, we return an invitation saying that
the invitee should just bring themselves. If we can, we return an invitation saying
what genre they should bring with the example show. The one new thing to note
here is that we are using the sequence "\n" in our string. This is a newline character
and it signals that a new line should be started in the text.

The last step is to print out the invitations. To do that, we can print out the
invitations as a string joined by newline characters:

print(invitations.joinWithSeparator("\n"))

This works pretty well but there is one problem. The first invitees we listed will
always be assigned a genre because the order they are processed in never changes.
To fix this, we can write a function to shuffle the invitees before we begin to map
the function:

func shuffle(array: [String]) -> [String] {
 return array
 .map({ ($0, Int(rand())) })
 .sort({ $0.1 < $1.1 })
 .map({$0.0})
}

In order to shuffle an array, we go through three steps: First, we map the array to a
tuple with the original element and a random number. Second, we sort the tuples
based on those random numbers. Finally, we map the tuples back to just their
original elements.

Now, all we have to do is add a call to this function to our sequence:

let invitations: [String] = shuffle(invitees)
.map({ name in
 guard let (genre, example) = pickAndRemoveRandomGenre() else {
 return "\(name), just bring yourself"
 }
 return "\(name), bring a \(genre) show"
 + "\n\(example) is a great \(genre)"
})

This implementation is not necessarily better than our previous implementations,
but it definitely has its advantages. We have taken steps towards reducing the state
by implementing it as a series of data transformations. The big hiccup in that is that
we are still maintaining state in the genre dictionary. We can certainly do more to
eliminate that as well, but this gives you a good idea of how we can start to think
about problems in a functional way. The more ways in which we can think about a
problem, the higher our odds of coming up with the best solution.

A Modern Paradigm – Closures and Functional Programming

[112]

Summary
In this chapter, we have had to shift the way we think about code. At the very
least, this is a great exercise so we don't get set in our programming ways. We have
covered the philosophy behind functional programming and how it differs from
object-oriented programming. We have looked into the specifics of closures and how
they enable functional programming techniques in Swift. Lastly, we explored some
of the specific functional methods that Swift has built in.

The sign of a truly great programmer is not someone who knows a lot about one tool,
but one who knows which tool to use when. We get there by learning and practicing
using lots of different tools and techniques without ever becoming too attached to a
specific one.

Once you are comfortable with the concepts of closures and functional
programming, you are ready to move on to our next topic, generics. Generics is our
first opportunity to make the strongly typed nature of Swift really work for us.

[113]

Make Swift Work For
You – Protocols and Generics
As we learned in Chapter 2, Building Blocks – Variables, Collections, and Flow Control,
Swift is a strongly typed language, which means that every piece of data must have
a type. Not only can we take advantage of this to reduce the clutter in our code, we
can also leverage it to let the compiler catch bugs for us. The earlier we catch a bug,
the better. Besides not writing them in the first place, the earliest place where we can
catch a bug is when the compiler reports an error.

Two big tools that Swift provides to achieve this are called protocols and generics.
Both of them use the type system to make our intentions clear to the compiler so that
it can catch more bugs for us.

In this chapter, we will cover the following topics:

•	 Protocols
•	 Generics
•	 Extending existing generics
•	 Extending protocols
•	 Putting protocols and generics to use

Protocols
The first tool we will look at is protocols. A protocol is essentially a contract that a
type can sign, specifying that it will provide a certain interface to other components.
This relationship is significantly looser than the relationship a subclass has with
its superclass. A protocol does not provide any implementation to the types that
implement them. Instead, a type can implement them in any way that they like.

Make Swift Work For You – Protocols and Generics

[114]

Let's take a look at how we define a protocol, in order to understand them better.

Defining a protocol
Let's say we have some code that needs to interact with a collection of strings. We
don't actually care what order they are stored in and we only need to be able to add
and enumerate elements inside the container. One option would be to simply use an
array, but an array does way more than we need it to. What if we decide later that
we would rather write and read the elements from the file system? Furthermore,
what if we want to write a container that would intelligently start using the file
system as it got really large? We can make our code flexible enough to do this in the
future by defining a string container protocol, which is a loose contract that defines
what we need it to do. This protocol might look similar to the following code:

protocol StringContainer {
 var count: Int { get }
 mutating func addString(string: String)
 func enumerateStrings(handler: (string: String) -> Void)
}

Predictably, a protocol is defined using the protocol keyword, similar to a class
or a structure. It also allows you to specify computed properties and methods. You
cannot declare a stored property because it is not possible to create an instance of a
protocol directly. You can only create instances of types that implement the protocol.
Also, you may notice that none of the computed properties or methods provide
implementations. In a protocol, you only provide the interface.

Since protocols cannot be initialized on their own, they are useless until we create
a type that implements them. Let's take a look at how we can create a type that
implements our StringContainer protocol.

Implementing a protocol
A type "signs the contract" of a protocol in the same way that a class inherits from
another class except that structures and enumerations can also implement protocols:

struct StringBag: StringContainer {
 // Error: Type 'StringBag' does not conform to protocol
'StringContainer'
}

Chapter 6

[115]

As you can see, once a type has claimed to implement a specific protocol, the
compiler will give an error if it has not fulfilled the contract by implementing
everything defined in the protocol. To satisfy the compiler, we must now implement
the count computed property, mutating function addString:, and function
enumerateStrings: as they are defined. We will do this by internally holding our
values in an array:

struct StringBag: StringContainer {
 var strings = [String]()
 var count: Int {
 return self.strings.count
 }

 mutating func addString(string: String) {
 self.strings.append(string)
 }

 func enumerateStrings(handler: (string: String) -> Void) {
 for string in self.strings {
 handler(string: string)
 }
 }
}

The count property will always just return the number of elements in our strings
array. The addString: method can simply add the string to our array. Finally, our
enumerateString: method just needs to loop through our array and call the handler
with each element.

At this point, the compiler is satisfied that StringBag is fulfilling its contract with the
StringContainer protocol.

Now, we can similarly create a class that implements the StringContainer protocol.
This time, we will implement it using an internal dictionary instead of an array:

class SomeSuperclass {}
class StringBag2: SomeSuperclass, StringContainer {
 var strings = [String:Void]()
 var count: Int {
 return self.strings.count
 }

Make Swift Work For You – Protocols and Generics

[116]

 func addString(string: String) {
 self.strings[string] = ()
 }

 func enumerateStrings(handler: (string: String) -> Void) {
 for string in self.strings.keys {
 handler(string: string)
 }
 }
}

Here we can see that a class can both inherit from a superclass and implement a
protocol. The superclass always has to come first in the list, but you can implement
as many protocols as you want, separating each one with a comma. In fact, a
structure and enumeration can also implement multiple protocols.

With this implementation we are doing something slightly strange with the
dictionary. We defined it to have no values; it is simply a collection of keys. This
allows us to store our strings without any regard to the order they are in.

Now, when we create instances, we can actually assign any instance of any type that
implements our protocol to a variable that is defined to be our protocol, just like we
can with superclasses:

var someStringBag: StringContainer = StringBag()
someStringBag.addString("Sarah")
someStringBag = StringBag2()
someStringBag.addString("Sarah")

When a variable is defined with our protocol as its type, we can only interact
with it using the interface that the protocol defines. This is a great way to abstract
implementation details and create more flexible code. By being less restrictive on
the type that we want to use, we can easily change our code without affecting how
we use it. Protocols provide the same benefit that superclasses do, but in an even
more flexible and comprehensive way, because they can be implemented by all types
and a type can implement an unlimited number of protocols. The only benefit that
superclasses provide over protocols is that superclasses share their implementations
with their children.

Chapter 6

[117]

Using type aliases
Protocols can be made more flexible using a feature called type aliases. They act
as a placeholder for a type that will be defined later when the protocol is being
implemented. For example, instead of creating an interface that specifically includes
strings, we can create an interface for a container that can hold any type of value,
as shown:

protocol Container {
 typealias Element

 mutating func addElement(element: Element)
 func enumerateElements(handler: (element: Element) -> Void)
}

As you can see, this protocol creates a type alias called Element using the keyword
typealias. It does not actually specify a real type; it is just a placeholder for a type
that will be defined later. Everywhere we have previously used a string, we simply
refer to it as Element.

Now, we can create another string bag that uses the new Container protocol with a
type alias instead of the StringContainer protocol. To do this, we not only need to
implement each of the methods, we also need to give a definition for the type alias,
as shown:

struct StringBag3: Container {
 typealias Element = String

 var elements = [Element:Void]()

 var count: Int {
 return elements.count
 }

 mutating func addElement(element: Element) {
 self.elements[element] = ()
 }

 func enumerateElements(handler: (element: Element) -> Void) {
 for element in self.elements.keys {
 handler(element: element)
 }
 }
}

Make Swift Work For You – Protocols and Generics

[118]

With this code, we have specified that the Element type alias should be a string for
this implementation using an equal sign (=). This code continues to use the type alias
for all of the properties and methods, but you can also use string since they are in
fact the same thing now.

Using the type alias actually makes it really easy for us to create another structure
that can hold integers instead of strings:

struct IntBag: Container {
 typealias Element = Int

 var elements = [Element:Void]()

 var count: Int {
 return elements.count
 }

 mutating func addElement(element: Element) {
 self.elements[element] = ()
 }

 func enumerateElements(handler: (element: Element) -> Void) {
 for element in self.elements.keys {
 handler(element: element)
 }
 }
}

The only difference between these two pieces of code is that the type alias has been
defined to be an integer in the second case instead of a string. We could use copy
and paste to create a container of virtually any type, but as usual, doing a lot of copy
and paste is a sign that there is a better solution. Also, you may notice that our new
Container protocol isn't actually that useful on its own because with our existing
techniques, we can't treat a variable as just a Container. If we are going to interact
with an instance that implements this protocol, we need to know what type it has
assigned the type alias to.

Swift provides a tool called generics to solve both of these problems.

Chapter 6

[119]

Generics
A generic is very similar to a type alias. The difference is that the exact type of a
generic is determined by the context in which it is being used, instead of being
determined by the implementing types. This also means that a generic only has a
single implementation that must support all possible types. Let's start by defining a
generic function.

Generic function
In Chapter 5, A Modern Paradigm – Closures and Functional Programming, we created
a function that helped us find the first number in an array of numbers that passes
a test:

func firstInNumbers(
 numbers: [Int],
 passingTest: (number: Int) -> Bool
) -> Int?
{
 for number in numbers {
 if passingTest(number: number) {
 return number
 }
 }
 return nil
}

This would be great if we only ever dealt with arrays of integers, but clearly it
would be helpful to be able to do this with other types. In fact, dare I say, all types?
We achieve this very simply by making our function generic. A generic function is
declared similar to a normal function, but you include a list of comma-separated
placeholders inside angled brackets (<>) at the end of the function name, as shown:

func firstInArray<ValueType>(
 array: [ValueType],
 passingTest: (value: ValueType) -> Bool
) -> ValueType?
{
 for value in array {
 if passingTest(value: value) {
 return value
 }
 }
 return nil
}

Make Swift Work For You – Protocols and Generics

[120]

In this function, we have declared a single placeholder called ValueType. Just like
with type aliases, we can continue to use this type in our implementation. This will
stand in for a single type that will be determined when we go to use the function.
You can imagine inserting String or any other type into this code instead of
ValueType and it would still work.

We use this function similarly to any other function, as shown:

var strings = ["This", "is", "a", "sentence"]
var numbers = [1, 1, 2, 3, 5, 8, 13]
firstInArray(strings, passingTest: {$0 == "a"}) // "a"
firstInArray(numbers, passingTest: {$0 > 10}) // 13

Here, we have used firstInArray:passingTest: with both an array of strings
and an array of numbers. The compiler figures out what type to substitute in for
the placeholder based on the variables we pass into the function. In the first case,
strings is an array of String. It compares that to [ValueType] and assumes that
we want to replace ValueType with String. The same thing happens with our Int
array in the second case.

So what happens if the type we use in our closure doesn't match the type of array we
pass in?

firstInArray(numbers, passingTest: {$0 == "a"}) // Cannot convert
// value of type '[Int]' to expected argument type'[_]'

As you can see, we get an error that the types don't match.

You may have noticed that we have actually used generic functions before. All of
the built in functions we looked at in Chapter 5, A Modern Paradigm – Closures and
Functional Programming, such as map and filter are generic; they can be used with
any type.

We have even experienced generic types before. Arrays and dictionaries are also
generic. The Swift team didn't have to write a new implementation of array and
dictionary for every type that we might want to use inside the containers; they
created them as generic types.

Generic type
Similar to a generic function, a generic type is defined just like a normal type but it
has a list of placeholders at the end of its name. Earlier in this chapter, we created
our own containers for strings and integers. Let's make a generic version of these
containers, as shown:

struct Bag<ElementType> {
 var elements = [ElementType]()

Chapter 6

[121]

 mutating func addElement(element: ElementType) {
 self.elements.append(element)
 }

 func enumerateElements(
 handler: (element: ElementType) -> ()
)
 {
 for element in self.elements {
 handler(element: element)
 }
 }
}

This implementation looks similar to our type alias versions, but we are using the
ElementType placeholder instead.

While a generic function's placeholders are determined when the function is called, a
generic type's placeholders are determined when initializing new instances:

var stringBag = Bag(elements: ["This", "is", "a", "sentence"])
var numberBag = Bag(elements: [1, 1, 2, 3, 5, 8, 13])

All future interactions with a generic instance must use the same types for its
placeholders. This is actually one of the beauties of generics where the compiler
does work for us. If we create an instance of one type and accidently try to use it as a
different type, the compiler won't let us. This protection does not exist in many other
programming languages, including Apple's previous language: Objective-C.

One interesting case to consider is if we try to initialize a bag with an empty array:

var emptyBag = Bag(elements: []) // Cannot invoke initilaizer for
// type 'Bag<_>' with an argument list of type '(elements: [_])'

As you can see, we get an error that the compiler could not determine the type to
assign to our generic placeholder. We can solve this by giving an explicit type to the
generic we are assigning it to:

var emptyBag: Bag<String> = Bag(elements: [])

This is great because not only can the compiler determine the generic placeholder
types based on the variables we pass to them, it can also determine the type based on
how we are using the result.

Make Swift Work For You – Protocols and Generics

[122]

We have already seen how to use generics in a powerful way. We solved the first
problem we discussed in the type alias section about copying and pasting a bunch of
implementations for different types. However, we have not yet figured out how to
solve the second problem: how do we write a generic function to handle any type of
our Container protocol? The answer is that we can use type constraints.

Type constraints
Before we jump right into solving the problem, let's take a look at a simpler form of
type constraints.

Protocol constraints
Let's say that we want to write a function that can determine the index of an instance
within an array using an equality check. Our first attempt will probably look similar
to the following code:

func indexOfValue<T>(value: T, inArray array: [T]) -> Int? {
 var index = 0
 for testValue in array {
 if testValue == value { // Error: Cannot invoke '=='
 return index
 }
 index++
 }
 return nil
}

With this attempt, we get an error that we cannot invoke the equality operator (==).
This is because our implementation must work for any possible type that might be
assigned to our placeholder. Not every type in Swift can be tested for equality. To
fix this problem, we can use a type constraint to tell the compiler that we only want
to allow our function to be called with types that support the equality operation. We
add type constraints by requiring the placeholder to implement a protocol. In this
case, Swift provides a protocol called Equatable, which we can use:

func indexOfValue<T: Equatable>(
 value: T,
 inArray array: [T]
) -> Int?
{
 var index = 0
 for testValue in array {
 if testValue == value {

Chapter 6

[123]

 return index
 }
 index++
 }
 return nil
}

A type constraint looks similar to a type implementing a protocol using a colon (:)
after a placeholder name. Now, the compiler is satisfied that every possible type can
be compared using the equality operator. If we were to try to call this function with a
type that is not equatable, the compiler would produce an error:

class MyType {}
var typeList = [MyType]()
indexOfValue(MyType(), inArray: typeList)
// Cannot convert value of type '[MyType]' to expected
// argument type '[_]'

This is another case where the compiler can save us from ourselves.

We can also add type constraints to our generic types. For example, if we tried to
create a bag with our dictionary implementation without a constraint, we would get
an error:

struct Bag2<ElementType> {
 var elements: [ElementType:Void]
 // Type 'ElementType' does not conform to protocol 'Hashable'
}

This is because the key of dictionaries has a constraint that it must be Hashable.
Dictionary is defined as struct Dictionary<Key : Hashable, Value>. Hashable
basically means that the type can be represented using an integer. In fact, we can
look at exactly what it means if we write Hashable in Xcode and then click on it
while holding down the Command Key. This brings us to the definition of Hashable,
which has comments that explain that the hash value of two objects that are equal
must be the same. This is important to the way that Dictionary is implemented. So,
if we want to be able to store our elements as keys in a dictionary, we must also add
the Hashable constraint:

struct Bag2<ElementType: Hashable> {
 var elements: [ElementType:Void]

 mutating func addElement(element: ElementType) {
 self.elements[element] = ()
 }

Make Swift Work For You – Protocols and Generics

[124]

 func enumerateElements(
 handler: (element: ElementType) -> ()
)
 {
 for element in self.elements.keys {
 handler(element: element)
 }
 }
}

Now the compiler is happy and we can start to use our Bag2 struct with any type
that is Hashable. We are close to solving our Container problem, but we need a
constraint on the type alias of Container, not Container itself. To do that, we can
use a where clause.

Where clauses for protocols
You can specify any number of where clauses you want after you have defined each
placeholder type. They allow you to represent more complicated relationships. If we
want to write a function that can check if our container contains a particular value,
we can require that the element type is equatable:

func container<C: Container where C.Element: Equatable>(
 container: C,
 hasElement element: C.Element
) -> Bool
{
 var hasElement = false
 container.enumerateElements { testElement in
 if element == testElement {
 hasElement = true
 }
 }
 return hasElement
}

Here, we have specified a placeholder C that must implement the Container
protocol; it must also have an Element type that is Equatable.

Sometimes we may also want to enforce a relationship between multiple
placeholders. To do that, we can use an equality test inside the where clauses.

Chapter 6

[125]

Where clauses for equality
If we want to write a function that can merge one container into another while still
allowing the exact types to vary, we could write a function that would require that
the containers hold the same value:

func merged<C1: Container, C2: Container where C1.Element ==
C2.Element>(
 lhs: C1,
 rhs: C2
) -> C1
{
 var merged = lhs
 rhs.enumerateElements { element in
 merged.addElement(element)
 }
 return merged
}

Here, we have specified two different placeholders: C1 and C2. Both of them must
implement the Container protocol and they must also contain the same Element
type. This allows us to add elements from the second container into a copy of the
first container that we return at the end.

Now that we know how to create our own generic functions and types, let's take a
look at how we can extend existing generics.

Extending generics
The two main generics that we will probably want to extend are arrays and
dictionaries. These are the two most prominent containers provided by Swift and are
used in virtually every app. Extending a generic type is simple once you understand
that an extension itself does not need to be generic.

Adding methods to all forms of a generic
Knowing that an array is declared as struct Array<Element>, your first instinct to
extend an array might look something similar to this:

extension Array<Element> { // Use of undeclared type 'Element'
 // ...
}

Make Swift Work For You – Protocols and Generics

[126]

However, as you can see, you would get an error. Instead, you can simply leave
out the placeholder specification and still use the Element placeholder inside your
implementations. Your other instinct might be to declare Element as a placeholder
for your individual methods:

extension Array {
 func someMethod<Element>(element: Element) {
 // ...
 }
}

This is more dangerous because the compiler doesn't detect an error. This is wrong
because you are actually declaring a new placeholder Element to be used within
the method. This new Element has nothing to do with the Element defined in
Array itself. For example, you might get a confusing error if you tried to compare a
parameter to the method to an element of the Array:

extension Array {
 mutating func addElement<Element>(element: Element) {
 self.append(element)
 // Cannot invoke 'append' with argument list
 // of type '(Element)'
 }
}

This is because the Element defined in Array cannot be guaranteed to be the exact
same type as the new Element defined in addElement:. You are free to declare
additional placeholders in methods on generic types, but it is best to give them
unique names so that they don't hide the type's version of the placeholder.

Now that we understand this, let's add an extension to the array that allows us to test
if it contains an element passing a test:

extension Array {
 func hasElementThatPasses(
 test: (element: Element) -> Bool
) -> Bool
 {
 for element in self {
 if test(element: element) {
 return true
 }
 }
 return false
 }
}

Chapter 6

[127]

As you can see, we continue to use the placeholder Element within our extension.
This allows us to call the passed in test closure for each element in the array. Now,
what if we want to be able to add a method that will check if an element exists using
the equality operator? The problem that we will run into is that array does not place
a type constraint on Element requiring it to be Equatable. To do this, we can add an
extra constraint to our extension.

Adding methods to only certain instances of a
generic
A constraint on an extension is written as a where clause, as shown:

extension Array where Element: Equatable {
 func containsElement(element: Element) -> Bool {
 for testElement in self {
 if testElement == element {
 return true
 }
 }
 return false
 }
}

Here we add a constraint that guarantees that our element is equatable. This means
that we will only be able to call this method on arrays that have equatable elements:

[1,2,3,4,5].containsElement(4) // true
class MyType {}
var typeList = [MyType]()
typeList.containsElement(MyType()) // Type 'MyType' does not
// conform to protocol 'Equtable'

Again, Swift is protecting us from accidently trying to call this method on an array
that it wouldn't work for.

These are the building blocks that we have to play with generics. However, we
actually have one more feature of protocols that we have not discussed, which works
really well in combination with generics.

Make Swift Work For You – Protocols and Generics

[128]

Extending protocols
We first discussed how we can extend existing types in Chapter 3, One Piece at a
Time – Types, Scopes, and Projects. In Swift 2, Apple added the ability to extend
protocols. This has some fascinating implications, but before we dive into those,
let's take a look at an example of adding a method to the Comparable protocol:

extension Comparable {
 func isBetween(a: Self, b: Self) -> Bool {
 return a < self && self < b
 }
}

This adds a method to all types that implement the Comparable. This means that it
will now be available on any of the built-in types that are comparable and any of our
own types that are comparable:

6.isBetween(4, b: 7) // true
"A".isBetween("B", b: "Z") // false

This is a really powerful tool. In fact, this is how the Swift team implemented many
of the functional methods we saw in Chapter 5, A Modern Paradigm – Closures and
Functional Programming. They did not have to implement the map method on arrays,
dictionaries, or on any other sequence that should be mappable; instead, they
implemented it directly on SequenceType.

This shows that similarly, protocol extensions can be used for inheritance, and it
can also be applied to both classes and structures and types can also inherit this
functionality from multiple different protocols because there is no limit to the
number of protocols a type can implement. However, there are two major
differences between the two.

First, types cannot inherit stored properties from protocols, because extensions
cannot define them. Protocols can define read only properties but every instance
will have to redeclare them as properties:

protocol Building {
 var squareFootage: Int {get}
}

struct House: Building {
 let squareFootage: Int
}

struct Factory: Building {
 let squareFootage: Int
}

Chapter 6

[129]

Second, method overriding does not work in the same way with protocol extensions.
With protocols, Swift does not intelligently figure out which version of a method to
call based on the actual type of an instance. With class inheritance, Swift will call the
version of a method that is most directly associated with the instance. Remember,
when we called clean on an instance of our House subclass in Chapter 3, One Piece at a
Time – Types, Scopes, and Projects, it calls the overriding version of clean, as shown:

class Building {
 // ...

 func clean() {
 print(
 "Scrub \(self.squareFootage) square feet of floors"
)
 }
}

class House: Building {
 // ...

 override func clean() {
 print("Make \(self.numberOfBedrooms) beds")
 print("Clean \(self.numberOfBathrooms) bathrooms")
 }
}

let building: Building = House(
 squareFootage: 800,
 numberOfBedrooms: 2,
 numberOfBathrooms: 1
)
building.clean()
// Make 2 beds
// Clean 1 bathroom

Here, even though the building variable is defined as a Building, it is in fact a
house; so Swift will call the house's version of clean. The contrast with protocol
extensions is that it will call the version of the method that is defined by the exact
type the variable is declared as:

protocol Building {
 var squareFootage: Int {get}
}

Make Swift Work For You – Protocols and Generics

[130]

extension Building {
 func clean() {
 print(
 "Scrub \(self.squareFootage) square feet of floors"
)
 }
}

struct House: Building {
 let squareFootage: Int
 let numberOfBedrooms: Int
 let numberOfBathrooms: Double

 func clean() {
 print("Make \(self.numberOfBedrooms) beds")
 print("Clean \(self.numberOfBathrooms) bathrooms")
 }
}

let house = House(
 squareFootage: 1000,
 numberOfBedrooms: 2,
 numberOfBathrooms: 1.5
)
house.clean()
// Make 2 beds
// Clean 1.5 bathrooms

(house as Building).clean()
// Scrub 1000 square feet of floors

When we call clean on the house variable which is of type House, it calls the house
version; however, when we cast the variable to a Building and then call it, it calls
the building version.

All of this shows that it can be hard to choose between using structures and protocols
or class inheritance. We will look at the last piece of that consideration in the next
chapter on memory management, so we will be able to make a fully informed
decision when moving forward.

Now that we have looked at the features available to us with generics and protocols,
let's take this opportunity to explore some more advanced ways protocols and
generics are used in Swift.

Chapter 6

[131]

Putting protocols and generics to use
One cool part of Swift is generators and sequences. They provide an easy way to
iterate over a list of values. Ultimately, they boil down to two different protocols:
GeneratorType and SequenceType. If you implement the SequenceType protocol in
your custom types, it allows you to use the for-in loop over an instance of your type.
In this section, we will look at how we can do that.

Generators
The most critical part of this is the GeneratorType protocol. Essentially, a generator
is an object that you can repeatedly ask for the next object in a series until there are
no objects left. Most of the time you can simply use an array for this, but it is not
always the best solution. For example, you can even make a generator that is infinite.

There is a famous infinite series of numbers called the Fibonacci sequence, where
every number in the series is the sum of the two previous numbers. This is especially
famous because it is found all over nature from the number of bees in a nest to the
most pleasing aspect ratio of a rectangle to look at. Let's create an infinite generator
that will produce this series.

We start by creating a structure that implements the GeneratorType protocol. The
protocol is made up of two pieces. First, it has a type alias for the type of elements in
the sequence and second, it has a mutating method called next that returns the next
object in the sequence.

The implementation looks similar to this:

struct FibonacciGenerator: GeneratorType {
 typealias Element = Int

 var values = (0, 1)

 mutating func next() -> Element? {
 self.values = (
 self.values.1,
 self.values.0 + self.values.1
)
 return self.values.0
 }
}

Make Swift Work For You – Protocols and Generics

[132]

We defined a property called values that is a tuple representing the previous two
values in the sequence. We update values and return the first element of the tuple
each time next is called. This means that there will be no end to the sequence.

We can use this generator on its own by instantiating it and then repeatedly calling
next inside a while loop:

var generator = FibonacciGenerator()
while let next = generator.next() {
 if next > 10 {
 break
 }
 print(next)
}
// 1, 1, 2, 3, 5, 8

We need to set up some sort of a condition so that the loop doesn't go on forever.
In this case, we break out of the loop once the numbers get above 10. However, this
code is pretty ugly, so Swift also defines the protocol called SequenceType to clean
it up.

Sequences
SequenceType is another protocol that is defined as having a type alias for a
GeneratorType and a method called generate that returns a new generator of that
type. We could declare a simple sequence for our FibonacciGenerator, as follows:

struct FibonacciSequence: SequenceType {
 typealias Generator = FibonacciGenerator

 func generate() -> Generator {
 return FibonacciGenerator()
 }
}

Every for-in loop operates on the SequenceType protocol, so now we can use a for-in
loop on our FibonacciSequence:

for next in FibonacciSequence() {
 if next > 10 {
 break
 }
 print(next)
}

Chapter 6

[133]

This is pretty cool; we can easily iterate over the Fibonacci sequence in a very
readable way. It is much easier to understand the preceding code than it would be
to understand a complicated while loop that has to calculate the next value of the
sequence each time. Imagine all of the other type of sequences we can design such as
prime numbers, random name generators, and so on.

However, it is not always ideal to have to define two different types to create a
single sequence. To fix this, we can use generics. Swift provides a generic type called
AnyGenerator with a companion function called anyGenerator:. This function
takes a closure and returns a generator that uses the closure as its next method. This
means that we don't have to explicitly create a generator ourselves; instead we can
use anyGenerator: directly in a sequence:

struct FibonacciSequence2: SequenceType {
 typealias Generator = AnyGenerator<Int>

 func generate() -> Generator {
 var values = (0, 1)
 return anyGenerator({
 values = (values.1, values.0 + values.1)
 return values.0
 })
 }
}

In this version of FibonacciSequence, we create a new generator every time
generate is called that takes a closure that does the same thing that our original
FibonacciGenerator was doing. We declare the values variable outside of the
closure so that we can use it to store the state between calls to the closure. If your
generator is simple and doesn't require a complicated state, using the AnyGenerator
generic is a great way to go.

Now let's use this FibonacciSequence to solve the kind of math problem that
computers are great at.

Product of Fibonacci numbers under 50
What if we want to know what is the result of multiplying every number in the
Fibonacci sequence under 50? We can try to use a calculator and painstakingly enter
in all of the numbers, but it is much more efficient to do it in Swift.

Make Swift Work For You – Protocols and Generics

[134]

Let's start by creating a generic SequenceType that will take another sequence type
and limit it to stop the sequence once it has reached a maximum number. We need to
make sure that the type of the maximum value matches the type in the sequence and
also that the element type is comparable. For that, we can use a where clause on the
element type:

struct SequenceLimiter<
 S: SequenceType where S.Generator.Element: Comparable
 >: SequenceType
{
 typealias Generator = AnyGenerator<S.Generator.Element>
 let sequence: S
 let max: S.Generator.Element

 init(_ sequence: S, max: S.Generator.Element) {
 self.sequence = sequence
 self.max = max
 }

 func generate() -> Generator {
 var g = self.sequence.generate()
 return anyGenerator({
 if let next = g.next() {
 if next <= self.max {
 return next
 }
 }
 return nil
 })
 }
}

Notice that when we refer to the element type, we must go through the
generator type.

When our SequenceLimiter structure is created, it stores the original sequence. This
is so that it can use the result of its generate method each time generate is called on
this parent sequence. Each call to generate needs to start the sequence over again. It
then creates an AnyGenerator with a closure that calls next on the locally initialized
generator of the original sequence. If the value returned by the original generator
is greater than or equal to the maximum value, we return nil, indicating that the
sequence is over.

Chapter 6

[135]

We can even add an extension to SequenceType with a method that will create a
limiter for us:

extension SequenceType where Generator.Element: Comparable {
 func limit(max: Generator.Element) -> SequenceLimiter<Self> {
 return SequenceLimiter(self, max: max)
 }
}

We use Self as a placeholder representing the specific type of the instance the
method is being called on.

Now, we can easily limit our Fibonacci sequence to only values under 50:

FibonacciSequence().limit(50)

The last part we need to solve our problem is the ability to find the product of a
sequence. We can do this with another extension. In this case, we are only going to
support sequences that contain Ints so that we can ensure that the elements can be
multiplied:

extension SequenceType where Generator.Element == Int {
 var product: Generator.Element {
 return self.reduce(1, combine: *)
 }
}

This method takes advantage of the reduce function to start with the value one and
multiply it by every value in the sequence. Now we can do our final calculation
easily:

FibonacciSequence().limit(50).product // 2,227,680

Almost instantaneously, our program will return the result 2,227,680. Now we can
really understand why we call these devices computers.

Make Swift Work For You – Protocols and Generics

[136]

Summary
Protocols and generics are definitely complex, but we have seen that they can be
used to effectively let the compiler protect us from ourselves. In this chapter, we
have covered how protocols are like contracts for types to sign. We have also seen
that protocols can be made more flexible using type aliases. Generics allow us to take
full advantage of protocols with type aliases and also allow us to create powerful and
flexible types that adapt to the contexts in which they are used. Finally, we looked
at how we can use protocols and generics in the form of sequences and generators
to solve a complex math problem in a very clean and understandable way, as an
inspiration to solve other types of problems just as cleanly.

At this point we have covered all of the core features of the Swift language. We are
now ready to look a little bit deeper at how data is actually stored while a program
is run and how we can best manage the resources used by our programs.

[137]

Everything Is Connected –
Memory Management

When using an app, there is nothing worse than it being slow and unresponsive.
Computer users have come to expect every piece of software to respond immediately
to every interaction. Even the most feature-rich app will be ruined if it is unpleasant
to use because it doesn't manage the device resources effectively. Also, with the
growing popularity of mobile computers and devices, it is more important than ever
to write software that uses battery power efficiently. One of the aspects of writing
software that has the largest impact on both responsiveness and battery power is
memory management.

In this chapter, we will discuss techniques specific to Swift that allow us to manage
memory in order to ensure that our code remains responsive and minimizes its effect
on battery life and other apps. We will do so by covering the following topics:

•	 Computer data storage
•	 Value types versus reference types
•	 Automatic reference counting
•	 Strong reference cycles
•	 Lost objects
•	 Structures versus classes

Everything Is Connected – Memory Management

[138]

Computer data storage
Before we start looking at the code, we need to understand in some detail how
data is represented in a computer. The common cliché is that all data in a computer
is in 1s and 0s. This is true, but not so important when talking about memory
management. Instead, we are concerned about where the data is stored. All
computers, whether a desktop, laptop, tablet, or phone, store data in two places.

The first place we normally think of is the file system. It is stored on a dedicated
piece of hardware; this is called a hard disk drive in many computers, but more
recently, some computers have started to use solid-state drives. The other thing we
hear about when buying computers is the amount of "memory" it has. Computer
memory comes in "sticks" which hold less information than normal drives. All
data, even if primarily stored on the Internet somewhere, must be loaded into the
computer's memory so that we can interact with it.

Let's take a look at what that means for us as programmers.

File system
The file system is designed for long-term storage of data. It is far slower to access
than memory, but it is much more cost effective for storing a lot of data. As the name
implies, the file system is simply a hierarchical tree of files, which we as users can
interact with directly using the Finder on a Mac. This file system still exists on iPhones
and iPads but it is hidden from us. However, software can still read and write the file
system, thus allowing us to store data permanently, even after turning the device off.

Memory
Memory is a little more complex than the file system. It is designed to store the
necessary data, temporarily for the software running currently. Unlike with a
file system, all memory is lost as soon as you turn off your device. The analogy is
similar to how we humans have short-term and long-term memory. While we are
having a conversation or thinking about something, we have a certain subset of the
information we are actively thinking about and the rest is in our long-term memory.
In order to actively think about something, we have to recall it from our long-term
memory into our short-term memory.

Chapter 7

[139]

Memory is quick to access, but it is much more expensive. When computers start
to act abnormally slow, it is commonly because it is very close to using up all of its
memory. This is because the operating system will automatically start using the file
system as a backup when memory is low. Information that is meant for short-term
storage is automatically written to the file system instead, making it much slower to
access again.

This is similar to how we humans have a problem processing too much
information at once. If we try to add two 20-digit numbers in our head, it is
going to take us a long time or simply be impossible. Instead, we often write
out the partial solution on paper, as we go along. In this case, the paper is acting as
our file system. It would be faster if we could just remember everything instead of
taking the time to write it down and read it back, but we simply can't process that
much information at one time.

This is important to consider when programming because we want to reduce the
amount of memory that we use at any given time. Using a lot of memory doesn't
only negatively affect our own software; it can negatively affect the entire computer's
performance. Also, when the operating system has to resort to using the file system,
the extra processing and extra access to a second piece of hardware causes more
power usage.

Now that we understand our goal, we can start discussing how we manage memory
better in Swift.

Value types versus reference types
All variables and constants in Swift are stored in memory. In fact, unless you
explicitly write data to the file system, everything you create is going to be in
memory. In Swift, there are two different categories of types. These two categories
are value types and reference types. The only way in which they differ is in the
way they behave when they get assigned to new variables, passed into methods,
or captured in closures. Essentially, they only differ when you try to assign a new
variable or constant to the value of an existing variable or constant.

A value type is always copied when being assigned somewhere new while a
reference type is not. Before we look at exactly what that means in more detail,
let's go over how we determine if a type is a value type or a reference type.

Everything Is Connected – Memory Management

[140]

Determining value type or reference type
A value type is any type that is defined as either a structure or an enumeration, while
all classes are reference types. This is easy to determine for your own custom types
based on how you declared them. Beyond that, all of the built-in types for Swift,
such as strings, arrays, and dictionaries are value types. If you are ever uncertain,
you can test any of the two types you want in a playground, to see if its behavior is
consistent with a value type or a reference type. The simplest behavior to check is
what happens on assignment.

Behavior on assignment
When a value type is reassigned, it is copied so that afterwards each variable or
constant holds a distinct value that can be changed independently. Let's take a look
at a simple example using a string:

var value1 = "Hello"
var value2 = value1
value1 += " World!"
print(value1) // "Hello World!"
print(value2) // "Hello"

As you can see, when value2 is set to value1 a copy gets created. This is so that
when we append " World!" to value1, value2 remains unchanged, as "Hello".
We can visualize them as two completely separate entities:

value1: "Hello World!" value2: "Hello"

On the other hand, let's take a look at what happens with a reference type:

class Person {
 var name: String

 init(name: String) {
 self.name = name
 }
}
var reference1 = Person(name: "Kai")
var reference2 = reference1
reference1.name = "Naya"
print(reference1.name) // "Naya"
print(reference2.name) // "Naya"

Chapter 7

[141]

As you can see, when we changed the name of reference1, reference2 was also
changed. So why is this? As the name implies, reference types are simply references
to an instance. When you assign a reference to another variable or constant, both
are actually referring to the exact same instance. We can visualize it as two separate
objects referencing the same instance:

name: "Naya"

reference1

reference2

In the real world, this would be like two kids sharing a toy. Both can play with the
toy but if one breaks the toy, it is broken for both kids.

However, it is important to realize that if you assign a reference type to a new value,
it does not change the value it was originally referencing:

reference2 = Person(name: "Kai")
print(reference1.name) // "Naya"
print(reference2.name) // "Kai"

As you can see, we assigned reference2 to an entirely different Person instance,
so they can now be manipulated independently. We can then visualize this as two
separate references on two separate instances, as shown in the following image:

name: "Naya"reference1

reference2 name: "Kai"

This will be like buying a new toy for one of the kids.

This shows you that a reference type is actually a special version of a value type. The
difference is that a reference type is not itself an instance of any type. It is simply
a way to refer to another instance, sort of like a placeholder. You can copy the
reference so that you have two variables referencing the same instance, or you can
give a variable a completely new reference to a new instance. With reference types,
there is an extra layer of indirection based on sharing instances between multiple
variables.

Everything Is Connected – Memory Management

[142]

Now that we know this, the simplest way to verify if a type is a value type or a
reference type is to check its behavior when being assigned. If the second value is
changed when you modify the first value, it means that the type you are testing is a
reference type.

Behavior on input
Another place where the behavior of a value type differs from a reference type is
when passing them into functions and methods. However, the behavior is very
simple to remember if you look at passing a variable or constant into a function as
just another assignment. This means that when you pass a value type into a function,
it is copied while a reference type still shares the same instance:

func setNameOfPerson(person: Person, var to name: String) {
 person.name = name
 name = "Other Name"
}

Here we have defined a function that takes both a reference type: Person and a value
type: String. When we update the Person type within the function, the person we
passed in is also changed:

var person = Person(name: "Sarah")
var newName = "Jamison"
setNameOfPerson(person, to: newName)

print(person.name) // "Jamison"
print(newName) // "Jamison"

However, when we change the string within the function, the String passed into it
remains unchanged.

The place where things get a little more complicated is with inout parameters.
An inout parameter is actually a reference to the passed-in instance. This means
that, it will treat a value type as if it were a reference type:

func updateString(inout string: String) {
 string = "Other String"
}

var someString = "Some String"
updateString(&someString)
print(someString) // "Other String"

Chapter 7

[143]

As you can see, when we changed the inout version of string within the function,
it also changed the someString variable outside of the function just as if it were a
reference type.

If we remember that a reference type is just a special version of a value type where
the value is a reference, we can infer what will be possible with an inout version
of a reference type. When we define an inout reference type, we actually have a
reference to a reference; this reference is then the one that is pointing to a reference.
We can visualize the difference between an inout value type and an inout reference
type as shown:

Value TypeInout Value

Inout Reference Reference Type Instance

If we simply change the value of this variable, we will get the same behavior as
if it were not an inout parameter. However, we can also change where the inner
reference is referring to by declaring it as an inout parameter:

func updatePerson(inout insidePerson: Person) {
 insidePerson.name = "New Name"
 insidePerson = Person(name: "New Person")
}

var person2 = person
updatePerson(&person)
print(person.name) // "New Person"
print(person2.name) // "New Name"

We start by creating a second reference: person2 to the same instance as the person
variable that currently has the name "Jamison" from before. After this, we pass the
original person variable into our updatePerson: method and have this:

name: "Jamison"

insidePerson person

person2

Everything Is Connected – Memory Management

[144]

In this method, we first change the name of the existing person to a new name.
We can see in the output that the name of person2 has also changed, because
both insidePerson inside the function and person2 are still referencing the
same instance:

name: "New Name"

insidePerson person

person2

However, we then also assign insidePerson to a completely new instance of the
Person reference type. This results in person and person2 outside of the function
pointing at two completely different instances of Person leaving the name of
person2 to be "New Name" and updating the name of person to "New Person":

name: "New Person"

name: "New Name"

insidePerson person

person2

Here, by defining insidePerson as an inout parameter, we were able to change
where the passed-in variable was referencing. It can help us to visualize all the
different types as one type pointing to another.

At any point, any of these arrows can be pointed at something new using an
assignment and the instance can always be accessed through the references.

Closure capture behavior
The last behavior we have to worry about is when variables are captured within
closures. This is what we did not cover about closures in Chapter 5, A Modern
Paradigm – Closures and Functional Programming. Closures can actually use the
variables that were defined in the same scope as the closure itself:

var nameToPrint = "Kai"
var printName = {
 print(nameToPrint)
}
printName() // "Kai"

Chapter 7

[145]

This is very different from normal parameters that we have seen before. We actually
do not specify nameToPrint as a parameter, nor do we pass it in when calling the
method. Instead, the closure captures the nameToPrint variable that is defined
before it. These types of captures act similarly to inout parameters in functions.

When a value type is captured, it can be changed and it will change the original
value as well:

var outsideName = "Kai"
var setName = {
 outsideName = "New Name"
}
print(outsideName) // "Kai"
setName()
print(outsideName) // "New Name"

As you can see, outsideName was changed after the closure was called. This is
exactly like an inout parameter.

When a reference type is captured, any changes will also be applied to the outside
version of the variable:

var outsidePerson = Person(name: "Kai")
var setPersonName = {
 outsidePerson.name = "New Name"
}
print(outsidePerson.name) // "Kai"
setPersonName()
print(outsidePerson.name) // "New Name"

This is also exactly like an inout parameter.

The other part of closure capture that we need to keep in mind is that changing
the captured value after the closure is defined will still affect the value within the
closure. We can take advantage of this to use the printName closure we defined in
the preceding section to print any name:

nameToPrint = "Kai"
printName() // Kai
nameToPrint = "New Name"
printName() // "New Name"

Everything Is Connected – Memory Management

[146]

As you can see, we can change what printName prints out by changing the value of
nameToPrint. This behavior is actually very hard to track down when it happens
accidently, so it is usually a good idea to avoid capturing variables in closures
whenever possible. In this case, we are taking advantage of the behavior, but more
often than not, it will cause bugs. Here, it would be better to pass what we want to
print as an argument.

Another way to avoid this behavior is to use a feature called capture lists. With this,
you can specify the variables that you want to capture by copying them:

nameToPrint = "Original Name"
var printNameWithCapture = { [nameToPrint] in
 print(nameToPrint)
}
printNameWithCapture() // "Original Name"
nameToPrint = "New Name"
printNameWithCapture() // "Original Name"

A capture list is defined at the beginning of a closure before any parameter. It is a
comma-separated list of all the variables being captured, which we want to copy
within square brackets. In this case, we requested nameToPrint to be copied, so
when we change it later, it does not affect the value that is printed out. We will see
more advanced uses of capture lists later in this chapter.

Automatic reference counting
Now that we understand the different ways in which data is represented in Swift, we
can look into how we can manage the memory better. Every instance that we create
takes up memory. Naturally, it wouldn't make sense to keep all data around forever.
Swift needs to be able to free up memory so that it can be used for other purposes,
once our program doesn't need it anymore. This is the key to managing memory in
our apps. We need to make sure that Swift can free up all the memory that we no
longer need, as soon as possible.

The way that Swift knows it can free up memory is when the code can no longer
access an instance. If there is no longer any variable or constant referencing an
instance, it can be repurposed for another instance. This is called "freeing the
memory" or "deleting the object".

Chapter 7

[147]

In Chapter 3, One Piece at a Time – Types, Scopes, and Projects we already discussed
when a variable is accessible or not in the section about scopes. This makes memory
management very simple for value types. Since value types are always copied when
they are reassigned or passed into functions, they can be immediately deleted once
they go out of scope. We can look at a simple example to get the full picture:

func printSomething() {
 let something = "Hello World!"
 print(something)
}

Here we have a very simple function that prints out "Hello World!". When
printSomething is called, something is assigned to a new instance of String with
the value "Hello World!". After print is called, the function exits and therefore
something is no longer in scope. At that point, the memory being taken up by
something can be freed.

While this is very simple, reference types are much more complex. At a high level,
an instance of a reference type is deleted at the point that there is no longer any
reference to the instance in scope anymore. This is relatively straightforward to
understand but it gets more complex in the details. The Swift feature that manages
this is called Automatic Reference Counting or ARC for short.

Object relationships
The key to ARC is that every object has relationships with one or more variables.
This can be extended to include the idea that all objects have a relationship with
other objects. For example, a car object would contain objects for its four tires, engine,
and so on. It will also have a relationship with its manufacturer, dealership, and
owner. ARC uses these relationships to determine when an object can be deleted. In
Swift, there are three different types of relationships: strong, weak, and unowned.

Strong
The first, and default type of relationship is a strong relationship. It says that a
variable requires the instance it is referring to always exist, as long as the variable is
still in scope. This is the only behavior available for value types. When an instance no
longer has any strong relationships to it, it will be deleted.

Everything Is Connected – Memory Management

[148]

A great example of this type of relationship is with a car that must have a
steering wheel:

class SteeringWheel {}

class Car {
 var steeringWheel: SteeringWheel

 init(steeringWheel: SteeringWheel) {
 self.steeringWheel = steeringWheel
 }
}

By default, the steeringWheel property has a strong relationship to the
SteeringWheel instance it is initialized with. Conceptually, this means that
the car itself has a strong relationship to the steering wheel. As long as a car exists,
it must have a relationship to a steering wheel that exists. Since steeringWheel is
declared as a variable, we could change the steering wheel of the car, which would
remove the old strong relationship and add a new one, but a strong relationship will
always exist.

If we were to create a new instance of Car and store it in a variable, that variable
would have a strong relationship to the car:

let wheel = SteeringWheel()
let car = Car(steeringWheel: wheel)

Lets break down all the relationships in this code. First we create the wheel constant
and assign it to a new instance of SteeringWheel. This sets up a strong relationship
from wheel to the new instance. We do the same thing with the car constant, but
this time we also pass in the wheel constant to the initializer. Now, not only does car
have a strong relationship to the new Car instance, but the Car initializer also creates
a strong relationship from the steeringWheel property to the same instance as the
wheel constant:

name: "New Person"

Car instance

SteeringWheel
instance

wheel

car

Chapter 7

[149]

So what does this relationship graph mean for memory management? At this
time, the Car instance has one strong relationship: the car constant, and the
SteeringWheel instance has two strong relationships: the wheel constant and the
steeringWheel property of the Car instance.

This means that the Car instance will be deleted as soon as the car constant goes out
of scope. On the other hand, the SteeringWheel instance will only be deleted after
both the wheel constant goes out of scope and the Car instance is deleted.

You can envision a strong reference counter on every instance in your program.
Every time a strong relationship is setup to an instance the counter goes up. Every
time an object strongly referencing it gets deleted, the counter goes down. If that
counter ever goes back to zero, the instance is deleted.

The other important thing to realize is that all relationships are only in one direction.
Just because the Car instance has a strong relationship to the SteeringWheel
instance does not mean that the SteeringWheel instance has any relationship
back. You could add your own relationship back by adding a car property to the
SteeringWheel class, but you have to be careful when doing this, as we will see in
the strong reference cycle section coming up.

Weak
The next type of relationship in Swift is a weak relationship. It allows one object to
reference another without enforcing that it always exists. A weak relationship does
not contribute to the reference counter of an instance, which means that the addition
of a weak relationship does not increase the counter nor does it decrease the counter
when removed.

Since a weak relationship cannot guarantee that it will always exist, it must always
be defined as an optional. A weak relationship is defined using the weak keyword
before the variable declaration:

class SteeringWheel {
 weak var car: Car?
}

This allows a SteeringWheel to have a car assigned to it, without enforcing
that the car never be deleted. The car initializer can then assign this backwards
reference to itself:

class Car {
 var steeringWheel: SteeringWheel

Everything Is Connected – Memory Management

[150]

 init(steeringWheel: SteeringWheel) {
 self.steeringWheel = steeringWheel
 self.steeringWheel.car = self
 }
}

If the car is ever deleted, the car property of SteeringWheel will automatically be set
to nil. This allows us to gracefully handle the scenario that a weak relationship refers
to an instance that has been deleted.

Unowned
The final type of relationship is an unowned relationship. This relationship is almost
identical to a weak relationship. It also allows one object to reference another without
contributing to the strong reference count. The only difference is that an unowned
relationship does not need to be declared as optional and it uses the unowned
keyword instead of weak. It acts similar to an implicitly unwrapped optional. You
can interact with an unowned relationship as if it were a strong relationship, but if
the unowned instance has been deleted and you try to access it, your entire program
will crash. This means that you should only use unowned relationships in scenarios
where the unowned object will never actually be deleted while the primary object
still exists.

You may ask then, "Why would we not always use a strong relationship instead?"
The answer is that sometimes unowned or weak references are needed to break
something called a strong reference cycle.

Strong reference cycles
A strong reference cycle is when two instances directly or indirectly hold strong
references to each other. This means that neither object can ever be deleted, because
both are ensuring that the other will always exist.

This scenario is our first really bad memory management scenario. It is one thing to
keep memory around longer than it is needed; it is a whole different level to create
memory that can never be freed up to be reused again. This type of memory problem
is called a memory leak, because the computer will slowly leak memory until there
is no longer any new memory available. This is why you will sometimes see a speed
improvement after restarting your device. Upon restart, all of the memory is freed
up again. Modern operating systems will sometimes find ways to forcefully free up
memory, especially when completely quitting an app, but we cannot rely on this
as programmers.

Chapter 7

[151]

So how can we prevent these strong reference cycles? First, let's take a look at what
they look like. There are two main scenarios where these cycles can exist: between
objects and with closures.

Between objects
A strong reference cycle between objects is when two types directly or indirectly
contain strong references to each other.

Spotting
A great example of a strong reference cycle between objects is if we rewrite our
preceding car example without using a weak reference from SteeringWheel to Car:

class SteeringWheel {
 var car: Car?
}

class Car {
 var steeringWheel: SteeringWheel

 init(steeringWheel: SteeringWheel) {
 self.steeringWheel = steeringWheel
 self.steeringWheel.car = self
 }
}

The only difference between this code and the preceding code is that the car
property on SteeringWheel is no longer declared as weak. This means that when a
car is created, it will set up a strong relationship to the SteeringWheel instance and
then create a strong reference from the SteeringWheel instance back to the car:

Car SteeringWheel

This scenario means that the reference count of both instances can never go down to
zero and therefore they will never be deleted and the memory will be leaked.

Everything Is Connected – Memory Management

[152]

Two objects can also indirectly hold strong references to each other through one or
more third parties:

class Manufacturer {
 var cars: [Car] = []
}

class SteeringWheel {
 var manufacturer: Manufacturer?
}

class Car {
 var steeringWheel: SteeringWheel?
}

Here, we have the scenario where a Car can have a strong reference to a
SteeringWheel that can have a strong reference to a Manufacturer that in
turn has a strong reference to the original Car:

Car SteeringWheel

Manufacturer

This is another strong reference cycle and it illustrates two more important points.
First, optionals, by default, still create strong relationships when not nil. Also,
the built in container types, such as arrays and dictionaries, also create strong
relationships.

Clearly strong reference cycles can be difficult to spot, especially because they are
hard to detect in the first place. An individual memory leak is rarely going to be
noticeable to a user of your program, but if you continuously leak memory over and
over again, it can cause their device to feel sluggish or even crash.

The best way as a developer to detect them is to use a tool built into Xcode called
Instruments. Instruments can do many things, but one of those things is called
Leaks. To run this tool you must have an Xcode Project; you cannot run it on a
Playground. It is run by selecting Product | Profile from the menu bar.

Chapter 7

[153]

This will build your project and display a series of profiling tools:

If you select the Leaks tool and press the record button in the upper-left corner,
it will run your program and warn you of memory leaks which it can detect. A
memory leak will look like a red X icon and will be listed as a leaked object:

Everything Is Connected – Memory Management

[154]

You can even select the Cycles & Roots view for the leaked objects and Instruments
will show you a visual representation of your strong reference cycle. In the following
screenshot, you can see that there is a cycle between SteeringWheel and Car:

Clearly, Leaks is a powerful tool and you should run it periodically on your code,
but it will not catch all strong reference cycles. The last line of defense is going to be
you staying vigilant with your code, always thinking about the ownership graph.

Of course, spotting cycles is only part of the battle. The other part of the battle is
fixing them.

Chapter 7

[155]

Fixing
The easiest way to break a strong reference cycle is to simply remove one of the
relationships completely. However, this is very often not going to be an option.
A lot of the time, it is important to have a two-way relationship.

The way we fix cycles without completely removing a relationship is to make one or
more of the relationships weak or unowned. In fact, this is the main reason that these
other two types of relationships exist.

We fix the strong reference cycle in our original example by changing the car
relationship back to weak:

class SteeringWheel {
 weak var car: Car?
}

class Car {
 var steeringWheel: SteeringWheel

 init(steeringWheel: SteeringWheel) {
 self.steeringWheel = steeringWheel
 self.steeringWheel.car = self
 }
}

Now Car has a strong reference to SteeringWheel but there is only a weak
reference back:

Car SteeringWheel

How you break any given cycle is going to depend on your implementation.
The only important part is that somewhere in the cycle of references there is a
weak or unowned relationship.

Unowned relationships are good for scenarios where the connection will never be
missing. In our example, there are times that a SteeringWheel exists without a car
reference. If we change it so that the SteeringWheel is created in the Car initializer,
we could make the reference unowned:

class SteeringWheel2 {
 unowned var car: Car

Everything Is Connected – Memory Management

[156]

 init(car: Car) {
 self.car = car
 }
}

class Car {
 var steeringWheel: SteeringWheel2!

 init() {
 self.steeringWheel = SteeringWheel2(car: self)
 }
}

Also, note that we had to define the steeringWheel property as an implicitly
unwrapped optional. This is because we had to use self when initializing it but
at the same time we cannot use self until all the properties have a value. Making
it optional allows it to be nil while we are using self to create the steering wheel.
This is safe as long as the SteeringWheel2 initializer doesn't try to access the
steeringWheel property of the passed in car.

With closures
As we found out in Chapter 5, A Modern Paradigm – Closures and Functional
Programming, closures are just another type of object, so they follow the same ARC
rules. However, they are subtler than classes because of their ability to capture
variables from their surrounding scope. These captures create strong references
from the closures to the captured variable that are often overlooked because
capturing variables looks so natural compared to conditionals, for loops and
other similar syntax.

Just as classes can create circular references, so can closures. Something can have a
strong reference to a closure that directly or indirectly has a strong reference back to
the original object. Let's take a look at how we can spot that.

Spotting
It is very common to provide closure properties that will be called whenever
something occurs. These are generally called callbacks. Let's look at a ball class
that has a callback for when the ball bounces:

class Ball {
 var location: (x: Double, y: Double) = (0,0)

 var onBounce: (() -> ())?
}

Chapter 7

[157]

This type of setup makes it easy to inadvertently create a strong reference cycle:

let ball = Ball()
ball.onBounce = {
 print("\(ball.location.x), \(ball.location.y)")
}

Here, we are printing out the location of the ball every time it bounces. However, if
you consider this carefully, you will see that there is a strong reference cycle between
the closure and the ball instance. This is because we are capturing the ball within the
closure. As we have learned already, this creates a strong reference from the closure
to the ball. The ball also has a strong reference to the closure through the onBounce
property. That is our circle.

You should always be conscious of what variables are being captured in your
closures and if that variable directly or indirectly has a strong reference to the
closure itself.

Fixing
To fix these types of strong reference cycles with closures we will again need to make
one part of the circle weak or unowned.

Swift does not allow us to make closure references weak, so we have to find a way to
capture the ball variable weakly instead of strongly.

To capture a variable weakly, we must use a capture list. Using a capture list, we can
capture a weak or unowned copy of the original variable. We do so by specifying the
weak or unowned variables before the capture list variable name:

ball.onBounce = { [weak ball] in
 print("\(ball?.location.x), \(ball?.location.y)")
}

By declaring the ball copy as weak, it automatically makes it optional. This means
that we had to use optional chaining to print out its location. Just like with other
weak variables, ball will be set to nil if the ball is deleted. However, based on the
nature of the code, we know that this closure will never be called if ball is deleted,
since the closure is stored right on the ball instance. In that case, it is probably better
to use the unowned keyword:

ball.onBounce = { [unowned ball] in
 print("\(ball.location.x), \(ball.location.y)")
}

It is always nice to clean up your code by removing unnecessary optionals.

Everything Is Connected – Memory Management

[158]

Lost objects
It is a great idea to always keep strong reference cycles in mind, but if we are too
aggressive with the use of weak and unowned references, we can run into the
opposite problem, where an object is deleted before we intended it to be.

Between objects
With an object this will happen if all of the references to the object are weak or
unowned. This won't be a fatal mistake if we use weak references, but if this happens
with an unowned reference it will crash your program.

For example, let's look at the preceding example with an extra weak reference:

class SteeringWheel {
 weak var car: Car?
}
class Car {
 weak var steeringWheel: SteeringWheel!

 init(steeringWheel: SteeringWheel) {
 self.steeringWheel = steeringWheel
 steeringWheel.car = self
 }
}

let wheel = SteeringWheel()
let car = Car(steeringWheel: wheel)

This code is the same as the preceding one except that both the car property of
SteeringWheel and the steeringWheel property of Car are weak. This means that
as soon as wheel goes out of scope, it will be deleted, resetting the steeringWheel
property of the car to nil. There may be scenarios where you want this behavior, but
often this will be unintentional and create confusing bugs.

The important thing is that you keep in mind all of the relationships an object has.
There should always be at least one strong reference as long as you still want the
object around and of course, there should never be a strong reference cycle.

Chapter 7

[159]

With closures
This actually can't happen with closures because, as we discussed before, you cannot
refer to a closure weakly. If you try, the compiler will give you an error:

class Ball2 {
 weak var onBounce: (() -> ())? // Error: 'weak' cannot be
 // applied to non-class type '() -> ()'
}

Swift saves us from yet another type of bug.

Structures versus classes
Now that we have a good understanding of memory management, we are ready to
discuss the full trade-offs we make when we choose to design a type as a structure
or a class. With our ability to extend protocols like we saw in the previous chapter,
we can achieve very similar functionality to the inheritance we saw with classes
in Chapter 3, One Piece at a Time – Types, Scopes, and Projects. This means that we
are often choosing between using a structure or a class based on the memory
implications, or in other words, whether we want our type to be a value type
or a reference type.

Value types have an advantage because they are very simple to reason about. You
don't have to worry about multiple variables referencing the same instance. Even
better, you don't have to worry about all of the potential problems we have discussed
with strong reference cycles. However, there is still an advantage to reference types.

Reference types are advantageous when it really makes sense to share an instance
between multiple variables. This is especially true when you are representing some
sort of physical resource that makes no sense to copy like a port on the computer or
the main window of an application. Also, some will argue that reference types use
memory more efficiently, because it doesn't take up more memory with lots of copies
floating around. However, the Swift compiler will actually do a lot of optimizing
of our code and reduce or eliminate most of the copying that actually occurs when
possible. For example, if we pass a value type into a function that never modifies the
value, there is no reason to actually create that copy. Ultimately, I don't recommend
optimizing for something like that before it becomes necessary. Sometimes you will
run into memory problems with your application and then it can be appropriate to
convert large types to classes if they are being copied a lot.

Everything Is Connected – Memory Management

[160]

Ultimately, I recommend using structures and protocols as a default, because they
greatly reduce complexity and fall back to classes only when it is required. I even
recommend using protocols instead of super classes when possible, because they
are easier to shift around and make it an easier transition between value types and
reference types.

Summary
Memory management is often considered difficult to understand, but when
you break it down, you can see that it is relatively straightforward. In this chapter,
we have seen that all data in a computer is either stored in the file system that is a
slow permanent storage, or in memory, which is a fast but temporary location. The
file system is used as a backup to memory, slowing down the computer greatly, so
we as programmers want to minimize the amount of memory we are ever using at
one time.

We saw that in Swift there are value types and reference types. These concepts are
critical to understanding how you can reduce memory usage and eliminate memory
leaks. Memory leaks are created when an object has a strong reference to itself,
maybe through a third party, which is called a strong reference cycle. We must also
be careful that we keep at least one strong reference to every object we want to stay
around or we may lose it prematurely.

With practice programming, you will get better with both preventing and fixing
memory problems. You will write streamlined apps that keep your users' computers
running smoothly.

We are now ready to move on to the last feature of Swift that we will discuss before
we get into the more artful side of computer programming called error handling.

[161]

Paths Less Traveled – Error
Handling

One of the biggest changes in Swift 2 is that Apple added a feature called error
handling. Handling error situations is often the least fun part of programming. It
is usually much more exciting to handle a successful case, often referred to as the
happy path because that is where the exciting functionality is. However, to make a
truly great user experience and therefore a truly great piece of software, we must pay
careful attention to what our software does when errors occur. The error-handling
features of Swift help us in handling these situations succinctly and discourage us
from ignoring errors in the first place.

In this chapter, we will discuss exactly what error-handling features Swift has
and how they help us to write better software. We will do so by covering the
following topics:

•	 Throwing errors
•	 Handling errors
•	 Cleaning up in error situations

Throwing errors
Before we talk about handling an error, we need to discuss how we can signal that an
error has occurred in the first place. The term for this is throwing an error.

Paths Less Traveled – Error Handling

[162]

Defining an error type
The first part of throwing an error is defining an error that we can throw.
Any type can be thrown as an error as long as it implements the ErrorType
protocol, as shown:

struct SimpleError: ErrorType {}

This protocol doesn't have any requirements, so the type just needs to list it as a
protocol it implements. It is now ready to be thrown from a function or method.

Defining a function that throws an error
Let's define a function that will take a string and repeat it until it is at least a certain
length. This will be very simple to implement but there will be a problem scenario.
If the passed in string is empty, it will never become longer, no matter how many
times we repeat it. In this scenario, we should throw an error.

Any function or method can throw an error as long as it is marked with the throws
keyword, as shown in the following code:

func repeatString(
 string: String,
 untilLongerThan: Int
) throws -> String
{
 // TODO: Implement
}

The throws keyword always comes after the parameters and before a return type.

Implementing a function that throws an error
Now, we can test if the passed in string is empty and throw an error if it is. To do
this, we use the throw keyword with an instance of our error:

func repeatString(
 string: String,
 untilLongerThan: Int
) throws -> String
{
 if string.isEmpty {

Chapter 8

[163]

 throw SimpleError()
 }

 var output = string
 while output.characters.count <= untilLongerThan {
 output += string
 }
 return output
}

An important thing to note here is that when we throw an error, it immediately
exits the function. In the preceding case, if the string is empty, it goes to the throw
line and then it does not execute the rest of the function. In this case, it is often more
appropriate to use a guard statement instead of a simple if statement, as shown in
the following code:

func repeatString(
 string: String,
 untilLongerThan: Int
) throws -> String
{
 guard !string.isEmpty else {
 throw SimpleError()
 }

 var output = string
 while output.characters.count < untilLongerThan {
 output += string
 }
 return output
}

Ultimately this doesn't act any differently from the previous implementation, but it
reiterates that the rest of the function will not be executed if it fails the condition.
We are now ready to try to use the function.

Handling errors
If we try to call a function, such as normal, Swift is going to give us an error,
as shown in the following example:

let repeated1 = repeatString("Hello", untilLongerThan: 20)
// Error: Call can throw but is not market with 'try'

Paths Less Traveled – Error Handling

[164]

To eliminate this error, we must add the try keyword before the call. However,
before we move forward, I would recommend that you wrap all of your code inside
a function, if you are following along in a playground. This is because throwing
errors at the root level of a playground will not be handled properly and may even
cause the playground to stop working. To wrap your code in a function, you can
simply add the following code:

func main() {
// The rest of your playground code
}
main()

This defines a function called main that contains all the normal playground code that
is called once, at the end of the playground.

Now, let's get back to using the try keyword. There are actually three forms of it:
try, try?, and try!. Let's start by discussing the exclamation point form, as it is the
simplest form.

Forceful try
The try! keyword is called the forceful try. The error will completely go away if
you use it, by using the following code:

let repeated2 = try! repeatString("Hello", untilLongerThan: 20)
print(repeated2) // "HelloHelloHelloHello"

The drawback of this approach might be intuitive, based on the exclamation point
and what it has meant in the past. Just like with forced unwrapping and forced
casting, an exclamation point is a sign that there will be a scenario which will crash
the entire program. In this case, the crash will be caused if an error is thrown from
the function. There may be times when you can really assert that an error will never
be thrown from a call to a throwing function or method, but in general this isn't an
advisable solution, considering the fact that we are trying to gracefully handle our
error situations.

Optional try
We can also use the try? keyword, which is referred to as an optional try. Instead
of allowing for the possibility of a crash, this will turn the result of the function into
an optional:

let repeated3 = try? repeatString("Hello", untilLongerThan: 20)
print(repeated3) // Optional("HelloHelloHelloHello")

Chapter 8

[165]

The advantage here is that if the function throws an error, repeated3 will simply
be set to nil. However, there are a couple strange scenarios with this. First, if the
function already returns an optional, the result will be converted to an optional of
an optional:

func aFailableOptional() throws -> String? {
 return "Hello"
}
print(try? aFailableOptional()) // Optional(Optional("Hello"))

This means that you will have to unwrap the optional twice in order to get to the real
value. The outer optional will be nil if an error is thrown and the inner optional will
be nil if the method returned nil.

The other strange scenario is if the function doesn't return anything at all. In this
case, using an optional try will create an optional void, as shown:

func aFailableVoid() throws {
 print("Hello")
}
print(try? aFailableVoid()) // Optional(())

You can check the result for nil to determine if an error was thrown.

The biggest drawback to this technique is that there is no way to
determine the reason an error was thrown. This isn't a problem for our
repeatString:untilLongerThan: function because there is only one error
scenario, but we will often have functions or methods that can fail in multiple ways.
Especially, if these are called based on user input, we will want to be able to report to
the user exactly why an error occurred.

To allow us to get more precise information on the reason for an error, we can use
the final keyword, which is simply try.

Catching an error
To get an idea of the usefulness of catching an error, let's look at writing a new
function that will create a list of random numbers. Our function will allow the user
to configure how long the list should be and also what the range of possible random
numbers should be.

Paths Less Traveled – Error Handling

[166]

The idea behind catching an error is that you get a chance to look at the error that
was thrown. With our current error type, this wouldn't be terribly useful because
there is no way to create different types of errors. A great option to fix this is to use
an enumeration that implements the ErrorType protocol:

enum RandomListError: ErrorType {
 case NegativeListLength
 case FirstNumberMustBeLower
}

This enumeration has a case for both the errors which we will want to throw, so now
we are ready to implement our function:

func createRandomListContaininingXNumbers(
 xNumbers: Int,
 between low: Int,
 and high: Int
) throws -> [Int]
{
 guard xNumbers >= 0 else {
 throw RandomListError.NegativeListLength
 }
 guard low < high else {
 throw RandomListError.FirstNumberMustBeLower
 }

 var output = [Int]()
 for _ in 0 ..< xNumbers {
 let rangeSize = high - low + 1
 let betweenZero = Int(rand()) % rangeSize
 let number = betweenZero + low
 output.append(number)
 }
 return output
}

This function begins by checking the error scenarios. It first checks to make
sure that we are not trying to create a list of negative length. It then checks to
make sure that the high value of the range is in fact greater than the low one.
After that, we repeatedly add a random number to the output array for the
requested number of times.

Note that this implementation uses the rand function, which we used in Chapter 2,
Building Blocks – Variables, Collections, and Flow Control. To use it, you will need to
import Foundation and also seed the random number with srand again.

Chapter 8

[167]

Also, this use of random is a bit more complicated. Previously, we only needed to
make sure that the random number was between zero and the length of our array;
now, we need it to be between two arbitrary numbers. First, we determine the
amount of different numbers we can generate, which is the difference between the
high and low number plus one, because we want to include the high number. Then,
we generate the random number within that range and finally, shift it to the actual
range we want by adding the low number to the result. To make sure this works, let's
think through a simple scenario. Lets say we want to generate a number between
4 and 10. The range size here will be 10 - 4 + 1 = 7, so we will be generating
random numbers between 0 and 6. Then, when we add 4 to it, it will move that
range to be between 4 and 10.

So, we now have a function that throws a couple of types of errors. If we want
to catch the errors, we have to embed the call inside a do block and also add
the try keyword:

do {
 try createRandomListContaininingXNumbers(
 5,
 between: 5,
 and: 10
)
}

However, if we put this into a playground, within the main function, we will still
get an error that the errors thrown from here are not handled. This will not produce
an error if you put it at the root level of the playground because the playground
will handle any error thrown by default. To handle them within a function, we need
to add catch blocks. A catch block works the same as a switch case, just as if the
switch were being performed on the error:

do {
 try createRandomListContaininingXNumbers(
 5,
 between: 5,
 and: 10
)
}
catch RandomListError.NegativeListLength {
 print("Cannot create with a negative number of elements")
}
catch RandomListError.FirstNumberMustBeLower {
 print("First number must be lower than second number")
}

Paths Less Traveled – Error Handling

[168]

A catch block is defined with the keyword catch followed by the case description
and then curly brackets that contain the code to be run for that case. Each catch
block acts as a separate switch case. In our preceding example, we have defined
two different catch blocks: one for each of the errors where we print out a
user-understandable message.

However, if we add this to our playground, we still get an error that all errors are not
handled because the enclosing catch is not exhaustive. That is because catch blocks
are just like switches in that they have to cover every possible case. There is no way
to say if our function can only throw random list errors, so we need to add a final
catch block that handles any other errors:

do {
 try createRandomListContaininingXNumbers(
 5,
 between: 5,
 and: 10
)
}
catch RandomListError.NegativeListLength {
 print("Cannot create with a negative number of elements")
}
catch RandomListError.FirstNumberMustBeLower {
 print("First number must be lower than second number")
}
catch let error {
 print("Unknown error: \(error)")
}

The last catch block stores the error into a variable that is just of type ErrorType. All
we can really do with that type is print it out. With our current implementation this
will never be called, but it is possible that it will be called if we add a different error
to our function later and forget to add a new catch block.

Note that currently there is no way to specify what type of error can be thrown from
a specific function; so with this implementation there is no way for the compiler to
ensure that we are covering every case of our error enumeration. We could instead
perform a switch within a catch block, so that the compiler will at least force us to
handle every case:

do {
 try createRandomListContaininingXNumbers(
 5,
 between: 5,

Chapter 8

[169]

 and: 10
)
}
catch let error as RandomListError {
 switch error {
 case .NegativeListLength:
 print("Cannot create with a negative number of elements")
 case .FirstNumberMustBeLower:
 print("First number must be lower than second number")
 }
}
catch let error {
 print("Unknown error: \(error)")
}

This technique will not cause the compiler to give us an error if we throw a
completely different type of error from our function, but it will at least give us
an error if we add a new case to our enumeration.

Another technique that we can use would be to define an error type that includes a
description that should be displayed to a user:

struct UserError: ErrorType {
 let userReadableDescription: String
 init(_ description: String) {
 self.userReadableDescription = description
 }
}

func createRandomListContaininingXNumbers2(
 xNumbers: Int,
 between low: Int,
 and high: Int
) throws -> [Int]
{
 guard xNumbers >= 0 else {
 throw UserError(
 "Cannot create with a negative number of elements"
)
 }

 guard low < high else {
 throw UserError(

Paths Less Traveled – Error Handling

[170]

 "First number must be lower than second number"
)
 }

 // ...
}

Instead of throwing enumeration cases, we are creating instances of the UserError
type with a text description of the problem. Now, when we call the function,
we can just catch the error as a UserError type and print out the value of its
userReadableDescription property:

do {
 try createRandomListContaininingXNumbers2(
 5,
 between: 5,
 and: 10
)
}
catch let error as UserError {
 print(error.userReadableDescription)
}
catch let error {
 print("Unknown error: \(error)")
}

This is a pretty attractive technique but it has its own drawback. This doesn't
allow us to easily run certain code if a certain error occurs. This isn't important in a
scenario where we are just reporting the error to the user, but it is very important
for scenarios where we might more intelligently handle errors. For example, if we
have an app that uploads information to the Internet, we will often run into Internet
connection problems. Instead of just telling the user to try again later, we can
save the information locally and automatically try to upload it again later without
having to bother the user. However, Internet connectivity won't be the only reason
an upload might fail. In other error circumstances, we will probably want to do
something else.

A more robust solution might be to create a combination of both of these
techniques. We can start by defining a protocol for errors that can be reported
directly to the user:

protocol UserErrorType: ErrorType {
 var userReadableDescription: String {get}
}

Chapter 8

[171]

Now we can create an enumeration for our specific errors that implements
that protocol:

enum RandomListError: String, UserErrorType {
 case NegativeListLength =
 "Cannot create with a negative number of elements"
 case FirstNumberMustBeLower =
 "First number must be lower than second number"

 var userReadableDescription: String {
 return self.rawValue
 }
}

This enumeration is set up to have a raw type that is a string. This allows us to write
a simpler implementation of the userReadableDescription property that just
returns the raw value.

With this, our implementation of the function looks the same as earlier:

func createRandomListContaininingXNumbers3(
 xNumbers: Int,
 between low: Int,
 and high: Int
) throws -> [Int]
{
 guard xNumbers >= 0 else {
 throw RandomListError.NegativeListLength
 }
 guard low < high else {
 throw RandomListError.FirstNumberMustBeLower
 }

 // ...
}

However, our error handling can now be more advanced. We can always just catch
any UserErrorType and display it to the user, but we can also catch a specific
enumeration case if we want to do something special in this scenario:

do {
 try createRandomListContaininingXNumbers3(
 5,
 between: 5,

Paths Less Traveled – Error Handling

[172]

 and: 10
)
}
catch RandomListError.NegativeListLength {
 // Do something else
}
catch let error as UserErrorType {
 print(error.userReadableDescription)
}
catch let error {
 print("Unknown error: \(error)")
}

Keep in mind that the order of our catch blocks is very important, just like the
order of switch cases is important. If we put our UserErrorType block before the
NegativeListLength block, we would always just report it to the user, because once
a catch block is satisfied, the program will skip every remaining block.

This is a pretty heavy handed solution; so, you may want to use a simpler solution at
times. You may even come up with your own solutions in the future, but this gives
you some options to play around with.

Propagating errors
The last option for handling an error is to allow it to propagate. This is only possible
when the containing function or method is also marked as throwing errors, but it is
simple to implement if that is true:

func parentFunction() throws {
 try createRandomListContaininingXNumbers3(
 5,
 between: 5,
 and: 10
)
}

In this case, the try call does not have to be wrapped in a do-catch, because all
errors thrown by createRandomListContainingXNumbers:between:and: will
be rethrown by parentFunction. In fact, you can still use a do-catch block, but
the catch cases no longer need to be exhaustive, because any errors not caught will
simply be rethrown. This allows you to only catch the errors relevant to you.

Chapter 8

[173]

However, while this can be a useful technique, I would be careful not to do it too
much. The earlier you handle the error situations, the simpler your code can be.
Every possible error thrown is like adding a new road to a highway system; it
becomes harder to determine where someone took a wrong turn if they are going
the wrong way. The earlier we handle errors, the fewer chances we have to create
additional code paths in the parent functions.

Cleaning up in error situations
So far, we have not had to be too concerned about what happens in a function after
we throw an error. There are times when we will need to perform a certain action
before exiting a function, regardless of if we threw an error or not.

Order of execution when errors occur
An important part to remember about throwing errors is that the execution of the
current scope exits. This is easy to think about for functions if you think of it as just a
call to return. Any code after the throw will not be executed. It is a little less intuitive
within do-catch blocks. A do-catch can have multiple calls to functions that may
throw errors, but as soon as a function throws an error, the execution will jump to
the first catch block that matches the error:

do {
 try function1()
 try function2()
 try function3()
}
catch {
 print("Error")
}

Here, if function1 throws an error, function2 and function3 will not be called.
If function1 does not throw but function2 does, then only function3 will not be
called. Also note that we can prevent that skipping behavior using either of the two
other try keywords:

do {
 try! function1()
 try? function2()
 try function3()
}
catch {
 print("Error")
}

Paths Less Traveled – Error Handling

[174]

Now if function1 throws an error, the whole program will crash and if function2
throws an error, it will just continue right on with executing function3.

Deferring execution
Now, as I hinted before, there will be circumstances where we need to perform some
action before exiting a function or method regardless of if we throw an error or not.
You could potentially put that functionality into a function which is called before
throwing each error, but Swift provides a better way called a defer block. A defer
block simply allows you to give some code to be run right before exiting the function
or method. Let's take a look at an example of a personal chef type that must always
clean up after attempting to cook some food:

struct PersonalChef {
 func clean() {
 print("Wash dishes")
 print("Clean counters")
 }

 func addIngredients() throws {}
 func bringToBoil() throws {}
 func removeFromHeat() throws {}
 func allowItToSit() throws {}

 func makeCrèmeBrûlée(URL: NSURL) throws {
 defer {
 self.clean()
 }

 try self.addIngredients()
 try self.bringToBoil()
 try self.removeFromHeat()
 try self.allowItToSit()
 }
}

In the make crème brûlée method, we start out with a defer block that calls the clean
method. This is not executed right away; it's executed immediately after an error is
thrown or immediately before the method exits. This ensures that no matter how the
making of the crème brûlée goes, the personal chef will still clean up after itself.

Chapter 8

[175]

In fact, defer even works when returning from a function or method at any point:

struct Ingredient {
 let name: String
}

struct Pantry {
 private let ingredients: [Ingredient]

 func openDoor() {}
 func closeDoor() {}

 func getIngredientNamed(name: String) -> Ingredient? {
 self.openDoor()

 defer {
 self.closeDoor()
 }

 for ingredient in self.ingredients {
 if ingredient.name == name {
 return ingredient
 }
 }
 return nil
 }
}

Here, we have defined a small ingredient type and a pantry type. The pantry has a
list of ingredients and a method to help us get an ingredient out of it. When we go
to get an ingredient, we first have to open the door, so we need to make sure that
we close the door at the end, whether or not we find an ingredient. This is another
perfect scenario for a defer block.

One last thing to be aware of with defer blocks is that you can define as many defer
blocks as you like. Each defer block will be called in the reverse order to which they
are defined. So, the most recent deferred block will be called first and the oldest
deferred block will be called last. We can take a look at a simple example:

func multipleDefers() {
 defer {
 print("C")
 }

Paths Less Traveled – Error Handling

[176]

 defer {
 print("B")
 }
 defer {
 print("A")
 }
}
multipleDefers()

In this example, "A" will be printed first because it was the last block to be deferred
and "C" will be printed last.

Ultimately, it is a great idea to use defer any time you perform some action that
will require clean-up. You may not have any extra returns or throws when first
implementing it, but it will make it much safer to make updates to your code later.

Summary
Error handling isn't usually the most fun part of programming, but as you can
see, there can absolutely be some interesting design strategies around it. It is also
absolutely critical in developing quality software. We like to think that our users will
never run into any problems or unforeseen scenarios, but you might be amazed at
how often that happens. We want to do the very best we can to make those scenarios
work well, because users will form lasting negative impressions of your product if
they get bogged down in unavoidable error situations.

We saw that Swift provides us with a paradigm to help with this called error
handling. Functions and methods can be marked as possibly throwing errors and
then we can throw any type that implements the ErrorType protocol. We can handle
those thrown errors in different ways. We can assert that an error will never be
thrown using the try! keyword, we can convert a throwing function or method into
an optional with the try? keyword, or we can catch and inspect errors with do-catch
blocks. Lastly, we went over defer blocks, that help us ensure certain actions happen
no matter if we throw an error or return early.

Now that we've got error handling out of the way, we can jump into the more artful
side of computer programming called design patterns.

[177]

Writing Code the Swift
Way – Design Patterns

and Techniques
Unless you are on the cutting edge of computer science, most of the software you
write will be more focused on user experience and maintainability than on any
particular advanced programming language. As you write more and more of this
type of software, you will see a lot of patterns emerge, especially if you focus on
readability and maintainability, as most of us should. However, we don't have to
come up with all of these patterns on our own; people have been programming
and coming up with patterns for years that transfer really well from language
to language.

We call these patterns, design patterns. Design patterns is a massive topic with
countless books, tutorials, and other resources. We spend our entire careers
practicing, shaping, and perfecting the use of these patterns in practical ways.
We give each pattern a name so that we can have smoother conversations with
fellow programmers and also organize them better in our own minds.

In this chapter, we will take a look at some of the most common design patterns,
especially the ones important to understand Apple's frameworks. You will have a
much easier time understanding and making use of that code when you begin to
recognize patterns while using other people's code. It will also help you write better
code yourself. We will focus on the high level ideas behind each pattern and then
how to implement them in Swift. We will then go past the classic design patterns
and look at some advanced features of Swift that allow us to write particularly
clean code.

Writing Code the Swift Way – Design Patterns and Techniques

[178]

To do all that, we will cover the following topics in this chapter:

•	 What is a design pattern?
•	 The behavioral patterns
•	 The structural patterns
•	 The creational patterns
•	 Using associated values effectively
•	 Extending system types to reduce code
•	 The lazy properties

What is a design pattern?
Let's delve a little deeper into what a design pattern is before we dive into the
specific patterns. As you may have begun to understand, there are unlimited ways to
write a program that does even a simple thing. A design pattern is a solution to solve
a recurrent and common problem. These problems are often so ubiquitous, that even
if you don't use a pattern deliberately, you will almost certainly be using one or more
patterns inadvertently; especially, if you are using third-party code.

To better evaluate the use of design patterns, we will look at three high-level
measurements: coupling, cohesion, and complexity.

Coupling is the degree to which individual code components depend on other
components. We want to reduce the coupling in our code so that all our code
components operate as independently as possible. We want to be able to look
at them and understand each component on its own without needing a full
understanding of the entire system. Low coupling also allows us to make
changes to one component without drastically affecting the rest of the code.

Cohesion is a reference to how well different code components fit together. We want
code components that can operate independently, but they should still fit together
with other components in a cohesive and understandable way. This means that to
have low coupling and high cohesion, we want code components that are designed
to have a single purpose and a small interface to the rest of our code. This applies to
every level of our code, from how the different sections of our app fit together, down
to how functions interact with each other.

Chapter 9

[179]

Both of these measurements have a high impact on our final measurement:
complexity. Complexity is basically just how difficult it is to understand the code,
especially when it comes to practical things like adding new features or fixing bugs.
By having low coupling and high cohesion, we will generally be writing much less
complex code. However, taken to their extremes, these principles can sometimes
actually cause greater complexity. Sometimes the simplest solution is the quickest
and most effective one because we don't want to get bogged down into architecting
the perfect solution when we can implement a near perfect solution ten times faster.
Most of us cannot afford to code on an unlimited budget.

Instead of having a single giant list, design patterns are usually organized
according to how they are used into three main categories: behavioral,
structural, and creational.

Behavioral patterns
Behavioral patterns are patterns that describe how objects will communicate
with each other. In other words, it is how one object will send information to
another object, even if that information is just that some event has occurred. They
help to lower the code's coupling by providing a more detached communication
mechanism that allows one object to send information to another, while having as
little knowledge about the other object as possible. The less any type knows about
the rest of the types in the code base, the less it will depend on those types. These
behavior patterns also help to increase cohesion by providing straightforward and
understandable ways to send the information.

This can often be the difference between doing something, such as calling your sister
to ask your mom to ask your grandpa what he wants for his birthday and being able
to ask your grandpa directly because you have a good communication channel open
with him. In general, we will want to have the direct channel of communication open
but sometimes it is actually better design to interact with fewer people, as long as we
don't put too much burden on the other components. Behavioral patterns can help us
with this.

Iterator
The first behavioral pattern we will discuss is called the iterator pattern. We are
starting with this one because we have actually already made use of this pattern in
Chapter 6, Make Swift Work For You – Protocols and Generics. The idea of the iterator
pattern is to provide a way to step through the contents of a container independent
of the way the elements are represented inside the container.

Writing Code the Swift Way – Design Patterns and Techniques

[180]

As we saw, Swift provides us with the basics of this pattern with the GeneratorType
and SequenceType protocols. It even implements those protocols for its array and
dictionary containers. Even though we don't know how the elements are stored
within an array or dictionary, we are still able to step through each value contained
within them. Apple can easily change the way the elements are stored within them
and it would not affect how we loop through the containers at all. This shows a great
decoupling between our code and the container implementations.

If you remember, we were even able to create a generator for the infinite
Fibonacci sequence:

struct FibonacciGenerator: GeneratorType {
 typealias Element = Int

 var values = (0, 1)

 mutating func next() -> Element? {
 self.values = (
 self.values.1,
 self.values.0 + self.values.1
)
 return self.values.0
 }
}

The "container" doesn't even store any elements but we can still iterate through them
as if it did.

The iterator pattern is a great introduction to how we make real world use of design
patterns. Stepping through a list is such a common problem that Apple built the
pattern directly into Swift.

Observer
The other behavioral pattern that we will discuss is called the observer pattern. The
basic idea of this pattern is that you have one object that is designed to allow other
objects to be notified when something occurs.

Chapter 9

[181]

Callback
In Swift, the easiest way to achieve this is to provide a closure property on the object
that you want to be observable and have that object call the closure whenever it
wants to notify its observer. The property will be optional, so that any other object
can set their closure on this property:

class ATM {
 var onCashWithdrawn: ((amount: Double) -> ())?

 func withdrawCash(amount: Double) {
 // other work

 // Notify observer if any
 if let callback = self.onCashWithdrawn {
 callback(amount: amount)
 }
 }
}

Here we have a class that represents an ATM that allows for withdrawing cash. It
provides a closure property called onCashWithdrawn that is called every time cash
is withdrawn. This type of closure property is usually called a callback. It is a good
idea to make its purpose clear by its name. I personally choose to name all event-
based callbacks by starting them with the word "on."

Now, any object can define its own closure on the callback and be notified whenever
cash is withdrawn:

class RecordKeeper {
 var transactions = [Double]()

 func watchATM(atm: ATM) {
 atm.onCashWithdrawn = { [weak self] amount in
 self?.transactions.append(amount)
 }
 }
}

In this case, ATM is considered the observable object and the RecordKeeper is the
observer. The ATM type is completely disconnected from whatever process might be
keeping a record of its transactions. The record keeping mechanism can be changed
without making any changes to the ATM and the ATM can be changed without any
change to the RecordKeeper as long as the new ATM implementation still calls
onCashWithDrawn whenever cash is withdrawn.

Writing Code the Swift Way – Design Patterns and Techniques

[182]

However, the RecordKeeper needs to be passed an ATM instance for this connection
to be made. There can also only ever be one observer at a time. If we need to allow
multiple observers, we can potentially provide an array of callbacks, but that
can make removing observers more difficult. A solution that solves both of those
problems is to implement the observer pattern using a notification center instead.

Notification center
A notification center is a central object that manages events for other types. We can
implement a notification center for ATM withdrawals:

class ATMWithdrawalNotificationCenter {
 typealias Callback = (amount: Double) -> ()
 private var observers: [String:Callback] = [:]

 func trigger(amount: Double) {
 for (_, callback) in self.observers {
 callback(amount: amount)
 }
 }

 func addObserverForKey(key: String, callback: Callback) {
 self.observers[key] = callback
 }

 func removeObserverForKey(key: String) {
 self.observers[key] = nil
 }
}

With this implementation, any object can start observing by passing a unique key
and callback to the addObserverForKey:callback: method. It doesn't have to
have any reference to an instance of an ATM. An observer can also be removed by
passing the same unique key to removeObserverForKey:. At any point, any object
can trigger the notification by calling the trigger: method and all the registered
observers will be notified.

If you really want to challenge yourself with advanced protocols and generics, you
can try to implement a completely generic notification center that can store and
trigger multiple events at once. The ideal notification center in Swift would allow any
object to trigger an arbitrary event and any object to observe that arbitrary event, as
long as it knows about it. The notification center should not have to know anything
about any specific events. It should also allow an event to contain any type of data.

Chapter 9

[183]

Structural patterns
Structural patterns are patterns that describe how objects should relate to each other
so that they can work together to achieve a common goal. They help us lower our
coupling by suggesting an easy and clear way to break down a problem into related
parts and they help raise our cohesion by giving us a predefined way that those
components will fit together.

This is like a sports team defining specific roles for each person on the field so that
they can play together better as a whole.

Composite
The first structural pattern we are going to look at is called the composite pattern.
The concept of this pattern is that you have a single object that can be broken down
into a collection of objects just like itself. This is like the organization of many large
companies. They will have teams that are made up of smaller teams, which are then
made up of even smaller teams. Each sub-team is responsible for a small part and
they come together to be responsible for a larger part of the company.

Hierarchies
A computer ultimately represents what is on the screen with a grid of pixel data.
However, it does not make sense for every program to be concerned with each
individual pixel. Instead, most programmers use frameworks, often provided by
the operating system, to manipulate what is on the screen at a much higher level. A
graphical program is usually given one or more windows to draw within and instead
of drawing pixels within a window; a program will usually set up a series of "views".
A view will have lots of different properties but they will most importantly have a
position, size, and background color.

We can potentially build up an entire window with just a big list of views but
programmers have devised a way of using the composite pattern to make the whole
process much more intuitive. A view can actually contain other views, which are
generally referred to as subviews. In this sense, you can look at any view like a tree
of subviews. If you look at the very root of the tree, you will see a complete image
of what will be displayed on the window. However, you can look at any of the tree
branches or leaves and see a smaller part of that view. This is the same as looking at
a large team as a whole versus looking at a small team within that larger team. In all
of this, there is no difference between a view at the root of the tree and a view at the
leaf of the tree, except the root has more sub-views.

Writing Code the Swift Way – Design Patterns and Techniques

[184]

Let's look at our own implementation of a View class:

class View {
 var color: (red: Float, green: Float, blue: Float)
 = (1, 1, 1) // white
 var position: (x: Float, y: Float) = (0, 0)
 var size: (width: Float, height: Float)
 var subviews = [View]()

 init(size: (width: Float, height: Float)) {
 self.size = size
 }
}

This is a pretty simple class, but by adding the subviews property, which is an array
of additional views, we are using the composite pattern to make this a very powerful
class. You can imagine a virtually infinite hierarchy of views that are all contained
within a single parent view. That single view could be passed to some other class
that could draw the entire hierarchy of views.

As an example, let's set up a view that has red in the left-half, green in the upper-
right half, and blue in the lower-right half:

To produce this with our class, we could write a code similar to:

let rootView = View(size: (width: 100, height: 100))

let leftView = View(size: (width: rootView.size.width / 2, height:
rootView.size.height))
leftView.color = (red: 1, green: 0, blue: 0)
rootView.subviews.append(leftView)

let rightView = View(size: (width: rootView.size.width / 2, height:
rootView.size.height))
rightView.color = (red: 0, green: 0, blue: 1)
rightView.position = (x: rootView.size.width / 2, y: 0)

Chapter 9

[185]

rootView.subviews.append(rightView)

let upperRightView = View(size: (width: rightView.size.width, height:
rootView.size.height / 2))
upperRightView.color = (red: 0, green: 1, blue: 0)
rightView.subviews.append(upperRightView)

In this implementation, we actually have a red left half as defined by leftView and
a blue right half as defined by rightView. The reason the upper-right half is green
instead of blue is that we added upperRightView as a subview to rightView and
only made it half the height. This means that our view hierarchy looks similar to the
following image:

It is important to note that the position of upperRightView is left at 0, 0. That is
because the positioning of all sub-views will always be relative to their immediate
parent view. This allows us to pull any view out of the hierarchy without affecting
any of its sub-views; drawing rightView within rootView will look exactly the same
as if it were drawn on its own.

You could also set up separate objects to manage the contents of different subsections
of the main view. For example, to create a program like Xcode, we might have one
object that manages the contents of the file list on the left and a different object that
manages the display of the selected file. Clearly, Xcode is much more complex than
that, but it gives us an idea of how we can build incredibly powerful and complex
software with relatively simple concepts.

You may, however, have noticed a potential problem with our view class. What
would happen if we added a view to its own subview hierarchy somewhere. That
is most likely going to cause an infinite loop when another part of our code goes to
draw the view. As another challenge to you, try to update our View class to prevent
this from happening. I suggest you start by making subviews private and providing
methods for adding and removing subviews. You will probably also want to add an
optional superview property that will reference the parent view.

Writing Code the Swift Way – Design Patterns and Techniques

[186]

Alternative to subclassing
As you can see, the composite pattern is ideal for any situation where an object can
be broken down into pieces that are just like it. This is great for something seemingly
infinite like a hierarchy of views, but it is also a great alternative to subclassing.
Subclassing is actually the tightest form of coupling. A subclass is extremely
dependent on its superclass. Any change to a superclass is almost certainly going to
affect all of its subclasses. We can often use the composite pattern as a less coupled
alternative to subclassing.

As an example, let's explore the concept of representing a sentence. One way to
look at the problem is to consider the sentence a special kind of string. Any kind of
specialization like this will usually lead us to create a subclass; after all, a subclass is
a specialization of its superclass. So we could create a Sentence subclass of String.
This will be great because we can build strings using our sentence class and then
pass them to methods that are expecting a normal string.

However, there is an important obstacle to this method: we don't have control of the
String code and even worse we can't even look at the code so we don't even know
how the characters are stored. This means that the code can be changed underneath
us with an update from Apple without our knowledge. Even with our knowledge,
this could cause a maintenance headache.

A better solution would be to use the composite pattern and implement a Sentence
type that contains strings:

struct Sentence {
 var words: [String]

 enum Type: String {
 case Statement = "."
 case Question = "?"
 case Exclamation = "!"
 }

 var type: Type
}

Chapter 9

[187]

Here, we were able to give more meaningful names to the parts of the sentence with
various words and we set up a Type enumeration that allows us to use different end
punctuations. As a convenience, we can even add a string calculated property so
that we can use the sentence as a normal string:

struct Sentence {
 // ..

 var string: String {
 return self.words.joinWithSeparator(" ")
 + self.type.rawValue
 }
}

let sentence = Sentence(words: [
 "This", "is",
 "a", "sentence"
], type: .Statement)
print(sentence.string) // "This is a sentence."

This is a much better alternative to subclassing in this scenario.

Delegate
One of the most commonly used design patterns in Apple's frameworks is called the
delegate pattern. The idea behind it is that you set up an object to let another object
handle some of its responsibilities. In other words, one object will delegate some of
its responsibilities to another object. This is like a manager hiring employees to do a
job that the manager cannot or does not want to do themselves.

As a more technical example, on iOS, Apple provides a user interface class called
UITableView. As the name suggest, this class provides us with an easy way to draw
a list of elements. On its own, a UITableView isn't enough to make an interface. It
needs data to display and it needs to be able to handle all kinds of user interactions,
such as tapping, reordering, deleting, and so on.

One instinct is to create your own subclass of UITableView, maybe something like
PeopleTableView. This is an OK option until you remember how we discussed that
subclassing is actually the strongest type of coupling between two objects. In order to
properly subclass a UITableView, you would have to be pretty intimately aware of
how the superclass works. This is especially difficult when you are not even allowed
to see the code of the superclass.

Writing Code the Swift Way – Design Patterns and Techniques

[188]

Another option is to set data on the table view and use the observer pattern to handle
user interactions. This is better than the subclassing option, but most data you will
want to display is not static and therefore it would be cumbersome to make updates
to the table view. It will also still be hard to implement an object that can be reused
easily for other ways of displaying a list of information.

So instead, what Apple did is, they created two different properties on UITableView:
delegate and dataSource. These properties are there so that we can assign our own
objects to handle various responsibilities for the table. The data source is primarily
responsible for providing the information to be shown in the table and the delegate's
responsibility is to handle user interaction. Of course, if these objects could be of
any type, the table view would not really be able to interact with them. Also, if
these objects were of a specific type, we would still run into the same subclassing
problem. Instead, they are defined to implement the UITableViewDelegate and
UITableViewDataSource protocols respectively.

These protocols define only the methods necessary to allow the table view to
properly function. This means that the delegate and dataSource properties can be
any type as long as they implement the necessary methods. For example, one of the
critical methods the data source must implement is tableView:numberOfRowsInSe
ction:. This method provides the table view and an integer referring to the section
that it wants to know about. It requires that an integer be returned for the number of
rows in the referenced section. This is only one of multiple methods that data source
must implement, but it gives you an idea of how the table view no longer has to
figure out what data it contains. It simply asks the data source to figure it out.

This provides a very loosely coupled way to implement a specific table view and
this same pattern is reused all over the programming world. You would be amazed
at what Apple has been able to do with its table view, with very little to no pain
inflicted on third party developers. The table view is incredibly optimized to handle
thousands upon thousands of rows if you really wanted it to. The table has also
changed a lot since the first developer kit for iOS, but these protocols have very
rarely been changed except to add additional features.

Model view controller
Model view controller is one of the highest levels and most abstract design patterns.
Variations of it are pervasive across a huge percentage of software, especially
Apple's frameworks. It really can be considered the foundational pattern for how all
of Apple's code is designed and therefore how most third party developers design
their own code. The core concept of model view controller is that you split all of your
types into three categories, often referred to as layers: model, view, and controller.

Chapter 9

[189]

The model layer is for all of the types that represent and manipulate data. This layer
is the real foundation of what your software can do for its user, so it is also often
referred to as the business logic. For example, the model layer from an address
book app would have types representing contacts, groups, and so on. It would also
contain logic to create, delete, modify, and store those types.

The view layer is for all types involved in the display and interaction of your
software. It consists of types like tables, text view, and buttons. Essentially, this layer
is responsible for displaying information to the user and providing the affordances
for how a user can interact with your application. The view in an address book app
would consist of the displayed list of contacts, groups, and contact information.

The final layer, controller, is mostly just the glue code between the model and view
layers. It will instruct the view of what to display based on the data in the model
layer and it will trigger the right business logic depending on the interactions coming
from the view layer. In our address book example, the controller layer would connect
something such as a contact add button in the view, to the logic defined in the model
for creating a new contact. It will also connect things like the on screen table view to
the list of contacts in the model.

In the ideal implementation of model view controller, no model type should ever
have any knowledge of the existence of a view type and no view type should know
about a model type. Often, a model view controller is visualized sort of like a cake:

The user sees and interacts with the top of the cake and each layer only
communicates with its adjacent layers. This means that all communication between
the view and the model layers should go through the controller layer. At the same
time, the controller layer should be pretty lightweight, because the model layer is
doing the heavy lifting on the logic side of the application and the view layer is
doing the heavy lifting on drawing to the screen and accepting user input.

Writing Code the Swift Way – Design Patterns and Techniques

[190]

One of the main benefits of this design pattern is that it provides a logical and
consistent way to break down many pieces of software. This greatly increases
your ability to share your code with other developers and understand their
code. It gives everyone a frame of reference for when they try to understand
another large code base that they haven't seen before. The naming of classes also
gives strong clues to developers about what role a type will play in the overall
system. Virtually every view class in iOS has the word "view" in it: UITableView,
UIView, UICollectionViewCell, etc. Also, most of the controller layer classes
that Apple provides have the word controller in them: UIViewController,
UITableViewController, MFMailComposeViewController, etc. The model layer
is mostly left to third party developers, other than the basic data types, since
Apple isn't going to be able to help much with the business logic of your software.
However, even among third party developers, these classes are often nouns
named after the data they are representing or manipulating: Person, AddressBook,
Publisher, and so on.

Another huge benefit of model view controller is that most components will be very
reusable. You should be able to easily reuse views with different types of data like
you can use a table view to display virtually any kind of data without changing the
table view type and you should be able to display something like an address book in
lots of different ways without changing the address book type.

As useful as this pattern is, it is also extremely hard to stick to. You will probably
spend your entire development career evolving your sense for how to effectively
breakdown your problems into these layers. It is often helpful to create explicit
folders for each layer, forcing yourself to put every type into only one of the
categories. You will also probably find yourself creating a bloated controller layer,
especially in iOS, because it is often convenient to stick business logic there. More
than any other design pattern, model view controller is probably the one that can be
most described as something you strive for but rarely ever perfectly achieve.

Creational patterns
The final type of design patterns we will discuss is called creational patterns. These
patterns relate to the initialization of new objects. At first, the initialization of an
object probably seems simple and not a very important place to have design patterns.
After all, we already have initializers. However, in certain circumstances, creational
patterns can be extremely helpful.

Chapter 9

[191]

Singleton/shared instance
The first patterns we will discuss are the singleton and shared instance patterns.
We are discussing them together because they are extremely similar. First we will
discuss shared instance, because it is the less strict form of the singleton pattern.

The idea of the shared instance pattern is that you provide an instance of your class
to be used by other parts of your code. Let's look at a quick example of this in Swift:

class AddressBook {
 static let sharedInstance = AddressBook()

 func logContacts() {
 // ...
 }
}

Here, we have a simple address book class but we are providing a static constant
called sharedInstance that any other code can use without having to create its
own instance. This is a very convenient way to allow otherwise separate code to
collaborate. Instead of having to pass around a reference to the same instance all over
your code, any code can refer the shared instance right through the class itself:

AddressBook.sharedInstance.logContacts()

Now, the different thing about the singleton pattern is that you would write your
code in such a way that it is not even possible to create a second instance of your
class. Even though our preceding address book class provides a shared instance,
there is nothing to stop someone from creating their own instance using the normal
initializers. We could pretty easily change our address book class to a singleton
instead of a shared instance, as shown:

class AddressBook {
 static let singleton = AddressBook()

 private init() {}

 func logContacts() {
 // ...
 }
}

AddressBook.singelton.logContacts()

Writing Code the Swift Way – Design Patterns and Techniques

[192]

Besides changing the name of the static constant, the only difference with this code
is that we declared the initializers as private. This makes it so that no code outside of
this file can use the initializer and therefore, no code outside of this file can create a
new instance.

The singleton pattern is great for when multiple instances of the same class are
going to cause a problem. This is especially important for classes that represent a
finite physical resource but it can also be a way to simplify a class that would be
more difficult and unnecessary to implement in a way that would allow multiple
instances. For example, there isn't actually much of a reason to ensure there is
only ever one address book in an application. Perhaps the user will want to have
two address books: one for business and one for personal. They should be able to
operate independently as long as they are working from a different file, but maybe
in your application you know that there will only ever be a single address book and
it always has to be driven by a single file. Instead of requiring your code to create
an address book with a specific file path, and instead of dealing with the danger
of having multiple instances reading and writing to the same file, you can use the
singleton version above and have the file path be fixed.

In fact, the singleton and shared instance patterns are so convenient that many
developers over use them. So let's discuss some of the drawbacks of these patterns.
It is nice to be able to access an instance from anywhere, but when it is easy to do so,
it is also easy to create a very complex web of dependencies on that object. That goes
against the principle of low coupling that we are trying to achieve. Imagine trying
to change a singleton class when you have 20 different pieces of code all using it
directly.

Using these patterns can also create hidden dependencies. Usually, it is pretty clear
what dependencies an instance has based on what it must be initialized with, but a
singleton or shared instance does not get passed into the initializer, so it can often
go unnoticed as a dependency. Even though there is some initial extra overhead to
passing an object into an initializer, it will often reduce the coupling and maintain
a clearer picture of how your types interact. The bottom line is, like with any other
pattern, think carefully about each use of the singleton and shared instance patterns
and be sure it is the best tool for the job.

Chapter 9

[193]

Abstract factory
The final pattern we will discuss here is called abstract factory. It is based on a
simpler pattern called factory. The idea of a factory pattern is that you implement an
object for creating other objects, much like you would create a factory for assembling
cars. The factory pattern is great when the initializing of a type is very complex or
you want to create a bunch of similar objects. Let's take a look at the second scenario.
What if we were creating a two-player ping-pong game and we had some scenario in
the game where we would add additional balls that a specific player needed to keep
in play? The ball class might look something like this:

struct Ball {
 let color: String
 let owningPlayer: Int
}

Every time we needed a new ball we could assign a new color and owning player to
it. Or, we could create a separate ball factory for each player:

struct BallFactory {
 let color: String
 let owningPlayer: Int

 func createNewBall() -> Ball {
 return Ball(
 color: self.color,
 owningPlayer: self.owningPlayer
)
 }
}

let player1Factory = BallFactory(
 color: "Red", owningPlayer: 1
)
let player2Factory = BallFactory(
 color: "Green", owningPlayer: 1
)

let ball1 = player1Factory.createNewBall()

Writing Code the Swift Way – Design Patterns and Techniques

[194]

Now, we could pass this factory into whatever object is responsible for handling
the ball creation event and that object is no longer responsible for determining the
color of the ball or any other properties we might want. This is great for reducing the
number of responsibilities that object has and also keeps the code very flexible to add
additional ball properties in the future without having to change the ball creation
event object.

An abstract factory is a special form of factory where the instances the factory creates
may be one of many subclasses of a single other class. A great example of this would
be an image creation factory. As we discussed in Chapter 3, One Piece at a Time –
Types, Scopes, and Projects, computers have an enormous number of ways to represent
images. In that chapter we hypothesized having a superclass called just "Image" that
would have a subclass for each type of image. This would help us write classes to
handle any type of image very easily by always having them work with the image
superclass. Similarly, we could create an image factory that would virtually eliminate
any need for an external type to know anything about the different types of images.
We could design an abstract factory that takes the path to any image, loads the image
into the appropriate subclass, and returns it simply as the image superclass. Now,
neither the code that loads an image, nor the code that uses the image, needs to know
what type of image they are dealing with. All of the complexity of different image
representations is abstracted away inside the factory and the image class hierarchy.
This is a huge win for making our code easier to understand and more maintainable.

Using associated values effectively
Good programming is about more than just grand, universal concepts of how to
write effective code. The best programmers know how to play to the strengths of
the tools at hand. We are now going to move from looking at the core tenants of
programming design to some of the gritty details of enhancing your code with the
power of Swift.

The first thing we will look at is making effective use of the associated value of an
enumeration. Associated values are a pretty unique feature of Swift, so they open up
some pretty interesting possibilities.

Chapter 9

[195]

Replacing class hierarchies
We have already seen in Chapter 3, One Piece at a Time – Types, Scopes, and Projects that
we can use an enumeration with associated values to represent a measurement like
distance in multiple measurement systems:

enum Height {
 case Imperial(feet: Int, Inches: Double)
 case Metric(meters: Double)
 case Other(String)
}

We can generalize this use case as using an enumeration to flatten out a simple class
hierarchy. Instead of the enumeration, we could have created a height superclass or
protocol with subclasses for each measurement system. However, this would be a
more complex solution and we would lose the benefits of using a value type instead
of a reference type. The enumeration solution is also very compact, making it very
easy to understand at a glance instead of having to analyze how multiple different
classes fit together.

Let's look at an even more complex example. Let's say we want to create a fitness
app and we want to be able to track multiple types of workouts. Sometimes people
workout to do a certain number of repetitions of various movements; other times
they are just going for a certain amount of time. We could create a class hierarchy for
this, but an enumeration with associated values works great:

enum Workout {
 case ForTime(seconds: Int)
 case ForReps(movements: [(name: String, reps: Int)])
}

Now, when we want to create a workout, we only need to define values relevant to
the type of workout we are interested in without having to use any classes at all.

Concisely representing state
Another great use of enumerations with associated values is to represent the state
of something. The simplest example of this would be a result enumeration that can
either contain a value or an error description if an error occurs:

enum NumberResult {
 case Success(value: Int)
 case Failure(reason: String)
}

Writing Code the Swift Way – Design Patterns and Techniques

[196]

This allows us to write a function that can fail and give a reason that it failed:

func divide(first: Int, by second: Int) -> NumberResult {
 guard second != 0 else {
 return .Failure(reason: "Cannot divide by zero")
 }
 return .Success(value: first / second)
}

This is an alternative to normal error handling and can make sense for functions
where the failure case is treated similarly to a success case instead of as a
rare exception.

A slightly more complex idea is to use an enumeration to represent a process that
will go through various stages over time, often called a state machine. We could
write an enumeration for the process of a download:

enum DownloadState {
 case Pending
 case InProgress(percentComplete: Float)
 case Complete(data: String)
}

While the download is in progress we can access how complete it is and once it
is complete we can access the data that it downloaded. This information is only
accessible when it is applicable. This enumeration will also make it easier to make
sure our download is always in a reasonable and clearly defined state. There is no
possibility for a middle ground where, for example, the download might be complete
but the data hasn't been processed yet. If we wanted to represent an additional
processing step, we could easily add another case and it would be clear from then on
out that a download will go through that additional state.

Extending system types to reduce code
Another powerful feature that we briefly covered in Chapter 3, One Piece at a
Time – Types, Scopes, and Projects is the ability to extend existing types. We saw that
we could add an extension to the string type that would allow us to repeat the string
multiple times. Let's look at a more practical use case for this and discuss its benefits
in terms of improving our code.

Chapter 9

[197]

Perhaps we are creating a grade-tracking program where we are going to be printing
out a lot of percentages. A great way to represent percentages is by using a float with
a value between zero and one. Floats are great for percentages because we can use
the built-in math functions and they can represent pretty granular numbers. The
hurdle to cross when using a float to represent a percentage is printing it out. If we
simply print out the value, it will most likely not be formatted the way we would
want. People prefer percentages to be out of 100 and have a percent symbol after it.

Worst case scenario, we are going to write something, such as print("\(myPercent
* 100)%"), every time we need to print out a percentage. This is not very flexible;
what if we wanted to tweak all percentage outputs to have leading spaces, so it
prints out right aligned? We would have to go through and change every print
statement. Instead, we could write our own function like printPercentage. This
will allow us to share the same code in lots of places.

This is a good step, but we can do one better using Swift's ability to extend system
types. If we have an arbitrary function called printPercentage, we are going to
have a hard time remembering it is there and other developers will have a hard
time discovering it in the first place. It would be much nicer if we could easily get a
printable version of a float directly from the float itself. We can make this possible by
adding an extension to Float:

extension Float {
 var percentString: String {
 return "\(self * 100)%"
 }
}
let myPercent: Float = 0.32
print(myPercent.percentString) // 32.0%

Now we can use auto-complete to help us remember what formats we have defined
for a float. Over time, you will probably develop a collection of useful and generic
extensions like this that are extremely reusable because they are independent of any
of your other program specific code. Writing these in such a reusable way makes it
very easy to bring them into a new program, greatly accelerating each new project
you start.

Writing Code the Swift Way – Design Patterns and Techniques

[198]

However, you do want to be careful that you don't end up creating too many
extensions. For more complex situations, it is often more appropriate to use the
composite pattern instead. For example, we could have written this as a Percent
type that can be constructed with a Float:

struct Percent: CustomStringConvertible {
 let value: Float

 var description: String {
 return "\(self.value * 100)%"
 }
}
print(Percent(value: 0.3))

In this case it may not warrant the complexity of its own class, but you should at
least consider how you might want to extend the idea of a percentage in the future.

Lazy properties
One feature we have not yet discussed is the concept of lazy properties. Marking a
property as lazy allows Swift to wait to initialize it until the first time it is accessed.
This can be useful in at least a few important ways.

Avoiding unnecessary memory usage
The most obvious way to use lazy properties is to avoid unnecessary memory usage.
Let's look at a very simple example first:

struct MyType {
 lazy var largeString = "Some String"
}
let instance = MyType()

Even though we created a new instance of MyType in the preceding code,
largeString is not set until we try to access it. This is great if we have a large
variable that may not be needed on every instance. Until it is accessed, it is not taking
up any memory.

Chapter 9

[199]

Avoiding unnecessary processing
We can also take this idea of a lazy property even further using a closure to calculate
the value:

class Directory {
 lazy var subFolders: [Directory] = {
 var loaded = [Directory]()
 // Load subfolders into 'loaded'
 return loaded
 }()
}

Here we are actually making use of a self-evaluating closure. We did this by adding
the open and close parentheses to the end of the closure. By doing this, we are
assigning the subFolders property to the result of executing the closure; because it
is a lazy property, the closure will not be executed until the subFolders property
is accessed for the first time. Just like the plain lazy property that can help us avoid
taking up unnecessary memory, this technique allows us to avoid running time-
consuming operations when we don't have to.

Localizing logic to the concerned property
An alternative to using lazy properties to achieve our goals above would be to use
optional properties instead and simply assign those values later as needed. This is an
OK solution, especially if our only goal is to reduce unnecessary memory usage or
processing. However, there is one other great benefit to the lazy property solution.
It produces more legible code by connecting the logic to calculate a property's
value right by its definition. If we simply had an optional property it would have
to be initialized in either an initializer or by some other method. It would not be
immediately clear when looking at the property what its value will be and when it
will be set, if it will be set at all.

This is a critically important advantage as your code base grows in size and age. It is
very easy to get lost in a code base, even if it is your own. The more straight lines you
can draw from one piece of logic to another, the easier it will be able to find the logic
you are looking for when you come back to your code base later.

Writing Code the Swift Way – Design Patterns and Techniques

[200]

Summary
We have covered a lot of very large design concepts in a short period of time. We
have looked at a number of specific design patterns, that help reduce the complexity
of our code by reducing inter-object dependencies, commonly referred to as low
coupling, and increasing the simplicity in which those objects work together,
otherwise referred to as high cohesion.

We learned that there are three types of design patterns that focus on fixing different
types of problems. Behavioral patterns help objects communicate with each other
better, structural patterns facilitate the breaking down of complex structures into
smaller and simpler ones, and creational patterns help with the initialization of
new objects.

We also looked at some very specific features of Swift and how they can help us
achieve similar goals to the ones we achieve with design patterns. We saw how to
use enumerations with associated values to reduce the complexity of our type system
and represent state better; we used extensions to system types to reduce the amount
of code we write, and we wrote more efficient and understandable code using
lazy properties.

As I said in the beginning, design patterns is a huge topic and not something you
will master quickly, if ever. Figuring out how to best use the feature of a specific
language is also a huge topic. I strongly recommend you use this chapter as a
reference when you start to develop larger software and want to find ways to make
it less complex. I also strongly encourage you to research more patterns and try to
implement them on your own. Each design pattern is another tool in your toolbox.
The more tools you have and the more experienced you are with each of them, the
better you will be able to choose the right tool for the right job. That is the art
of programming.

Now we are ready for the next chapter, where we will take a step back into the
past to look at Objective-C so that we can leverage the vast resources targeted at
Objective-C that are still very relevant to us as Swift developers.

[201]

Harnessing the
Past – Understanding and

Translating Objective-C
While Apple's platforms have been around for many years, Swift is still a very new
language. Even before the release of the first iPhone, Apple's primary language of
choice was Objective-C. This means that there are a vast number of resources in
the world for developing on Apple's platforms using Objective-C. There are many
amazing tutorials, code libraries, articles, and more, that are written in Objective-C
that are still incredibly valuable for a Swift developer.

To take advantage of these resources, you must have at least a basic understanding
of Objective-C, so that you can translate the concepts learned in tutorials and articles
into Swift, as well as make use of the time tested Objective-C libraries.

In this chapter, we will develop a basic understanding of Objective-C with a focus on
how it compares to Swift with the following topics:

•	 Swift's relationship to Objective-C
•	 Background of Objective-C
•	 Constants and variables
•	 Containers
•	 Control flow
•	 Functions
•	 Types
•	 Projects
•	 Calling Objective-C code from Swift

Harnessing the Past – Understanding and Translating Objective-C

[202]

Swift's relationship to Objective-C
As we discussed already, Objective-C was previously the primary language for
developing on Apple's platforms. This means that Objective-C had a lot of influence
on Swift; the largest of which is that Swift was designed to interoperate with
Objective-C. Swift code can call Objective-C code and, likewise, Objective-C code can
call Swift code.

Ultimately, Swift was designed, and is still is being designed, to be the next step in
programming languages, without having to throw away all of our Objective-C code.
Apple's stated goals for the language are for Swift to be more modern, interactive,
safe, fast, and powerful. These words would be pretty much meaningless if we didn't
already have a baseline to compare Swift against. Since Swift was designed primarily
for Apple's platforms, that baseline is largely Objective-C.

Background of Objective-C
Before we can talk about the details of Objective-C, we need to acknowledge its
history. Objective-C is based on a language called simply "C". The C programming
language was one of the first highly portable languages. Portable means that the
same C code could be compiled to run on any processor as long as someone writes
a compiler for that platform. Before that, most of the code was written in Assembly;
which always had to be written specifically for each processor it would run on.

C is what is commonly referred to as a procedural programming language. It is built
on the concept of a series of functions that call each other. It has a very basic support
to create your own types, but it has no built in concept of objects. Objective-C was
developed as an object-oriented extension to C. Just as Swift is backwards compatible
with Objective-C, Objective-C is backwards compatible with C. Really, it simply adds
object-oriented features on top of C with some new syntax and built-in libraries.

The real important thing is that Apple developed their current APIs: Cocoa and
Cocoa Touch, for Objective-C. This is one of the biggest reasons why Objective-C is
still very relevant to us as Swift developers. Even though we are primarily writing
Swift code, we are still going to be regularly interacting with the Cocoa and Cocoa
Touch libraries written in Objective-C.

Chapter 10

[203]

Constants and variables
Now, we are ready to dive into the basics of the Objective-C language. Objective-C
has constants and variables very similar to Swift but they are declared and worked
with slightly differently. Let's take a look at declaring a variable in both Swift and
Objective-C:

var number: Int

int number;

The first line should look familiar, as it is Swift. The Objective-C version doesn't
actually look all that different. The important difference is that the type of the
variable is declared before the name instead of after. It is also important to note that
Objective-C has no concept of type inference. Every time a variable is declared, it
must be given a specific type. You will also see that there is a semicolon after the
name. This is because every line of code in Objective-C must end with a semicolon.
Lastly, you should notice that we have not explicitly declared number as a variable.
This is because all information is assumed to be variable in Objective-C unless
specified otherwise. To define number as a constant, we will add the const keyword
before its type:

let number = 10

const int number = 10;

Objective-C has value and reference types just like Swift. However, in Objective-C,
the difference between them is more conceptual.

Value types
The number we declared above is a value type in both languages. They are copied
if they are passed to another function and there cannot be more than one variable
referencing the exact same instance.

It is actually easier to determine if a variable is a value type or a reference type
in Objective-C because, as we will see, virtually all reference types are declared
with an asterisk (*). If there is an asterisk, you can be safe to assume that it is a
reference type.

Reference types
Objective-C actually allows you to make any type a reference type by adding
an asterisk:

int *number;

Harnessing the Past – Understanding and Translating Objective-C

[204]

This declares a reference to a number variable, more commonly referred to as a
pointer. In a pointer declaration, the asterisk should always come after the type
and before the name.

In Objective-C, reference types are actually loosely mixed with the concept of
optional in Swift. All reference types are optional because a pointer can always
point to nil:

int *number = nil;

A pointer can also always be tested for nil:

number == nil;

To access the referenced value, you must dereference it:

int actualNumber = *number;

You can dereference a pointer by adding an asterisk before it.

This is how pointers are similar to optionals in Swift. The difference is that there
is no way to declare a non-optional reference type in Objective-C. Every reference
type could technically be nil, even if you design it to never actually be nil. This can
often add a lot of unnecessary nil checking and means every function you write that
accepts a reference type should probably deal with the nil case.

Finally, the other difference between reference types in the two languages is that
Objective-C is not very strict when it comes to what type the pointer is referencing.
For example, Objective-C won't complain if we create a new double reference that
points at the same thing as the int pointer:

double *another = (double *)number;

Now, we have two variables: number and another; they are pointing at the same
value but assuming that they both are of different types. One of them is clearly going
to be wrong, but Objective-C will happily try to use the same value as both a double
and an int if you try. This is just one bug that Swift makes impossible by design.

So far, all of the Objective-C code we have looked at is actually strict C. We have
not used any of the features that Objective-C added onto C. The main thing that
Objective-C adds to C is its class system.

Lets take a look at our first actual Objective-C type called NSString compared to the
Swift String type:

var myString = "Hello World!"

NSString *myString = @"Hello World!";

Chapter 10

[205]

Just like in Swift, you can create a string instance using double quotes; however, in
Objective-C you must put an @ sign before it.

One big thing to remember with the Objective-C class system is that it is not possible
to create an instance of a class that is a value type. All instances must be referenced
by a reference type. We cannot create a plain NSString. It must always be an
NSString* pointer.

Containers
Objective-C has the same exact core containers that Swift does, with the two
exceptions being that they are named slightly differently, and all of the containers in
Objective-C are reference types because of the basic requirement that all Objective-C
types must be reference types.

Arrays
In Objective-C arrays are called NSArray. Let's take a look at the initialization of an
array in both Swift and Objective-C side-by-side:

var array = [Int]()

NSArray *array = [NSArray alloc];

array = [array init];

We have defined a variable called array that is a reference to the type NSArray. We
then assign it to a newly allocated instance of NSArray. The square bracket notation
in Objective-C allows us to call methods on a type or on an instance. Each separate
call is always contained within a single set of square brackets. In this case, we are
first calling the alloc method on the NSArray class. This returns a newly allocated
variable that is of the type NSArray.

In contrast to Swift, Objective-C requires a two-step process to initialize a new
instance. First, the memory must be allocated and then it must be initialized.
Allocating means that we are reserving the memory for that object and initializing
it means that we are setting it to its default value. This is what we are doing in the
second line. The second line asks the instance to initialize itself. We reassign the
array to the result of the call to init, because it is possible for init to return nil.
Note that we are not dereferencing the array variable in order to make a call on it.
We actually call the methods directly on the pointer.

Harnessing the Past – Understanding and Translating Objective-C

[206]

Now, it is kind of a waste to use two lines to initialize a new instance, so often the
calls are chained together:

NSArray *array = [[NSArray alloc] init];

This calls alloc on NSArray and then immediately calls on init on the result of that.
The array variable is then assigned to the result of the init call. Be aware that it is
possible for alloc to return nil, in which case we would be calling init on nil. In
Objective-C this is OK; if you call a method on nil, it will simply always return nil.
This is similar to how optional chaining works in Swift.

There is also an alternative to calling alloc and init; it's called simply new:

NSArray *array = [NSArray new];

This class method allocates and initializes the instance at the same time. This is great
when you are not passing any arguments into init, but you will still need to call
alloc separately when you are passing arguments into it. We will see examples of
this later on.

You may have noticed that we have not specified what type this array is supposed to
hold. This is because it is actually not possible. All arrays in Objective-C can contain
any mix of types as long as they are not C types. This means that an NSArray cannot
contain an int (there is an NSNumber class instead), but it can contain any mix of
NSStrings, NSArrays, or any other Objective-C type. The compiler will not do any
form of type checking for you, which means that we can write code expecting the
wrong type to be in the array. This is yet another classification of bug that Swift
makes impossible.

So how do we add objects to our array? The reality is that the NSArray class does not
allow us to add or remove objects from it. In other words, NSArray is immutable.
Instead, there is a version of an array called NSMutableArray that allows us to add
and remove objects. Then we can use the addObject: method:

NSMutableArray *array = [NSMutableArray new];
[array addObject:@"Hello World!"];

Methods in Objective-C and Swift are named in the same way with a colon
indicating each argument. In Objective-C, the colon is also used when calling the
method to indicate the following code is the value to pass into the method.

The existence of a plain NSArray is to serve the same basic purpose as a constant
array in Swift. In fact, we will see that all Objective-C containers are split into
mutable and non-mutable versions. A mutable container can be passed into a
method and treated like the non-mutable version to add some safety by not
allowing unwanted code to modify the array.

Chapter 10

[207]

Now, to access a value in an NSArray we have two options. The full way is to use the
objectAtIndex: method:

NSString *myString = [array objectAtIndex:0];

We can also use square brackets, similar to Swift:

NSString *myString = array[0];

Note that we are just assuming that the type returned from the array is an NSString.
We can just as easily assume that it is another type, say NSArray:

NSArray *myString = array[0];

As we know, this will be wrong and will almost certainly cause bugs later in the code
but the compiler will not complain.

Lastly, to remove an object from a mutable array, we can use the
removeObjectAtIndex: method:

[array removeObjectAtIndex:0];

The other important feature that you will need to be aware of is that Objective-C also
has array literals, so you don't have to build them up dynamically:

NSArray *array = @[@"one", @"two", @"three"];

Array literals start with an @ symbol just like a string, but then it is defined by a list
of objects within square brackets just like Swift.

There is a lot more that arrays can do, but you should be able to understand what
each method does when you see it because most are well named. The methods are
also often named the same in each language or you can look them up online, where
Apple has extensive documentation. The purpose of this chapter is just to get you
comfortable enough to have a high-level understanding of Objective-C code.

Dictionaries
Following the same pattern as arrays, dictionaries in Objective-C are called
NSDictionary and NSMutableDictionary. A dictionary is initialized in the exact
same way as shown:

NSMutableDictionary *dict = [[NSMutableDictionary alloc] init];
NSDictionary *dict2 = [NSDictionary new];

To set a value, we use the setObject:forKey: method:

[dict setObject:@"World" forKey:@"Hello"];

Harnessing the Past – Understanding and Translating Objective-C

[208]

Just like with arrays, we cannot set new objects on non-mutable dictionaries. Also,
this is our first example of a method that takes more than one argument. As you can
see, each argument is contained within the square brackets but separated by a space
and the label for that argument. In this pattern, Objective-C methods can have a
number of arguments.

Now to access a value we can use the objectForKey: method or square
brackets again:

NSString *myString = [dict objectForKey:@"Hello"];
NSString *myString2 = dict[@"Hello"];

Again, we are assuming that the resulting object being returned is a string, because
we know what we just put into the dictionary. This assumption isn't always safe and
we also need to always be aware that this method will return nil if an object does not
exist for that key.

Lastly, to remove an object, we can use the removeObjectForKey: method:

 [dict removeObjectForKey:@"Hello"];

This is all relatively straightforward, especially when you are reading the code. This
verbosity was always a great feature of Objective-C to write understandable code
and this was definitely carried forward into Swift.

Dictionaries also have literals, but unlike NSArrays and Swift array literals,
dictionary literals in Objective-C are declared using curly brackets. Otherwise, it
looks very similar to Swift:

NSDictionary *dict3 = @{@1: @"one", @2: @"two", @3: @"three"};

Again, we have to start our literal with an @ symbol. We can also see that we can use
numbers as objects in our containers as long as we put an @ symbol before each one.
Instead of creating something such as an int type, this creates an NSNumber instance.
You shouldn't need to know much about the NSNumber class except that it is a class
to represent many different forms of numbers as objects.

Control flow
Objective-C has many of the same control flow paradigms as Swift. We will go
through each of them quickly, but before we do, let's take a look at the Objective-C
equivalent of print:

var name = "Sarah"
println("Hello \(name)")

NSString *name = @"Sarah";
NSLog(@"Hello %@", name);

Chapter 10

[209]

Instead of print, we are using a function called NSLog. Objective-C does not have
string interpolation, so NSLog is a somewhat more complex solution than print. The
first argument to NSLog is a string that describes the format to be printed out. This
includes a placeholder for each piece of information we want to log that indicates the
type it should expect. Every placeholder starts with a percent symbol. In this case, we
are using an at-symbol to indicate what we are going to be substituting in a string.
Every argument after the initial format will be substituted for the placeholders in
the same order they are passed in. Here, this means that it will end up logging Hello
Sarah just like the Swift code.

Now, we are ready to look at the different methods of control flow in Objective-C.

Conditionals
A conditional looks exactly the same in both Swift and Objective-C except
parentheses are required in Objective-C:

var invitees = ["Sarah", "Jamison", "Roana"]
if invitees.count > 20 {
 print("Too many people invited")
}

NSArray *invitees = @[@"Sarah", @"Jamison", @"Roana"];
if (invitees.count > 20) {
 NSLog(@"Too many people invited");
}

You can also include those parentheses in Swift, but they are optional. Here, you also
see that Objective-C still has the idea of the dot syntax for calling some methods. In
this case, we have used invitees.count instead of [invitees count]. This is only
an option when we are accessing a property of the instance or we are calling a method
that takes no arguments and returns something, as if it were a calculated property.

Switches
Switches in Objective-C are profoundly less powerful than switches in Swift. In fact,
switches are a feature of strict C and are not enhanced at all by Objective-C. Switches
cannot be used like a series of conditionals; they can only be used to do equality
comparisons:

switch invitees.count {
 case 1:
 print("One person invited")
 case 2:

Harnessing the Past – Understanding and Translating Objective-C

[210]

 print("Two people invited")
 default:
 print("More than two people invited")
}

switch (invitees.count) {
 case 1:
 NSLog(@"One person invited");
 break;

 case 2:
 NSLog(@"Two people invited");
 break;

 default:
 NSLog(@"More than two people invited");
 break;
}

Again, parentheses are required in Objective-C, where they are optional in Swift.
The most important difference with Objective-C switches is that by default, one case
will flow into the next unless you specifically use the break keyword to get out of
the switch. That is the opposite of Swift, where it will only flow into the next case if
you use the fallthrough keyword. In practice, this means that the vast majority of
Objective-C switch cases will need to end with break.

Objective-C switches are not powerful enough to allow us to create cases for ranges
of values and certainly cannot test a list of arbitrary conditionals like we can in Swift.

Loops
Just like conditionals, loops in Objective-C are very similar to Swift. While-loops are
identical except that the parentheses are required:

var index = 0
while index < invitees.count {
 print("\(invitees[index]) is invited");
 index++
}

int index = 0;
while (index < invitees.count) {
 NSLog(@"%@ is invited", invitees[index]);
 index++;
}

Chapter 10

[211]

The for-in loops are slightly different, in this you must specify the type of the
variable you are looping through with the following:

var showsByGenre = [
 "Comedy": "Modern Family",
 "Drama": "Breaking Bad"
]
for (genre, show) in showsByGenre {
 print("\(show) is a great \(genre)")
}

NSDictionary *showsByGenre=@{
 @"Comedy":@"Modern Family",
 @"Drama":@"Breaking Bad"
};
for (NSString *genre in showsByGenre) {
 NSLog(@"%@ is a great %@", showsByGenre[genre], genre);
}

You may have also noticed that when we are looping through an NSDictionary in
Objective-C you only get the key. This is because tuples do not exist in Objective-C.
Instead, you must access the value from the original dictionary, using the key as you
loop through.

The other feature that is missing from Objective-C is ranges. To loop through a range
of numbers, Objective-C programmers must use a different kind of loop called a
for loop:

for number in 1 ... 10 {
 print(number)
}

for (int number = 1; number <= 10; number++) {
 NSLog(@"%i", number);
}

This loop is made up of three parts: an initial value, a condition to run until, and an
operation to perform after each loop. This version loops through the numbers 1 to 10
just like the Swift version. Clearly, it is still possible to translate the Swift code into
Objective-C; it just isn't as clean.

Even with that limitation, you can see that Objective-C and Swift loops are pretty
much the same except for the parentheses requirement.

Harnessing the Past – Understanding and Translating Objective-C

[212]

Functions
So far we have called some Objective-C functions but we have not defined any yet.
Let's see what the Objective-C versions are of the functions we defined in Chapter 2,
Building Blocks – Variables, Collections, and Flow Control.

Our most basic function definition didn't take any arguments and didn't return
anything. The Objective-C version looks similar to the following code:

func sayHello() {
 print("Hello World!");
}
sayHello()

void sayHello() {
 NSLog(@"Hello World!");
}
sayHello();

Objective-C functions always starts with the type that the function returns instead of
the keyword func. In this case, we aren't actually returning anything, so we use the
keyword void to indicate that.

Functions that take arguments and return values have more of a disparity between
the two languages:

func addInviteeToListIfSpotAvailable
 (
 invitees: [String],
 newInvitee: String
)
 -> [String]
{
 if invitees.count >= 20 {
 return invitees
 }
 return invitees + [newInvitee]
}
addInviteeToListIfSpotAvailable(invitees, newInvitee: "Roana")

NSArray *addInviteeToListIfSpotAvailable
 (
 NSArray *invitees,
 NSString *newInvitee
)
{

Chapter 10

[213]

 if (invitees.count >= 20) {
 return invitees;
 }
 NSMutableArray *copy = [invitees mutableCopy];
 [copy addObject:newInvitee];
 return copy;
}
addInviteeToListIfSpotAvailable(invitees, @"Roana");

Again, the Objective-C version defines what it is returning at the beginning of the
function. Also, just like variables, parameters to functions must have their type
defined before their name instead of after. The rest however, is pretty similar: the
arguments are contained within parentheses and separated by commas; the code of
the function is contained within curly brackets and we use the return keyword to
indicate what we want to return.

This specific implementation actually brings up an interesting requirement for
dealing with arrays in Objective-C. Just like we want to avoid mutable arrays in
Swift, we normally want to avoid them in Objective-C. In this case, we still don't
want to modify the passed in array, we just want to add the new invitee to the end
of a copied version. In Swift, because arrays are value types, the copy is made for us
and we can use the addition operator to add on the new invitee. In Objective-C, we
need to explicitly make a copy of the array. More than that, we need the copy to be
mutable so that we can add the new invitee to it.

All in all, the biggest difference between Swift functions and Objective-C methods is
the definition of the return value being at the beginning or the end of the parameters.
The memory is handled in the same way in both languages. When passing in a
pointer in Objective-C, the pointer itself is copied but both versions are going to
reference the exact same instance. When a value type is passed into a function in
Swift, the value is simply copied and the two versions have nothing to do with each
other after that.

Types
The type system in Objective-C is a little bit more disparate than Swift. This is
because the structures and enumerations in Objective-C come from C. Only classes
and categories come from the Objective-C extension.

Harnessing the Past – Understanding and Translating Objective-C

[214]

Structures
In Swift, structures are very similar to classes, but in Objective-C, they are much
more different. Structures in Objective-C are essentially just a way of giving a
name to a collection of individual types. They cannot contain methods. Even more
restrictive than that, structures can't contain Objective-C types. This leaves us with
only basic possibilities:

struct Cylinder {
 var radius: Int
 var height: Int
}
var c = Cylinder(radius: 10, height: 10)

typedef struct {
 int radius;
 int height;
} Cylinder;
Cylinder c;
c.radius = 10;
c.height = 5;

Structures in Objective-C start with the keyword typedef, which is short for
type definition. This is then followed by the struct keyword and the different
components of the structure contained within curly brackets. Finally, after the
curly brackets is the name of the structure.

Advanced C programmers will do a lot more with structures. There are ways
to simulate some features of inheritance with structures and to do other more
advanced things, but that is beyond the scope of this book and not very relevant
in most modern programming projects. There are some types in Apple's APIs that
are structures like CGRect so you should know how to interact with them, but you
most likely won't have to deal with custom structure definitions when looking at
Objective-C resources.

Enumerations
Enumerations are also much more restrictive in Objective-C. They are really just a
simple mechanism to represent a finite list of related possible values. This allows us
to still represent possible primary colors:

enum PrimaryColor {
 case Red
 case Green
 case Blue
}

Chapter 10

[215]

var color = PrimaryColor.Blue

typedef enum {

 PrimaryColorRed,
 PrimaryColorGreen,
 PrimaryColorBlue,
} PrimaryColor;
PrimaryColor color = PrimaryColorBlue;

Just like with structures, Objective-C enumerations start with the keyword typedef
followed by enum with the name at the end of the definition. Each case is contained
within the curly brackets and separated by a comma.

Notice that every case of the enumeration starts with the name of the enumeration.
This is a very common convention, to make it easy for code completion and to show
all possible values of an enumeration. This is because in Objective-C, you cannot
specify a specific enumeration value through the name of the enumeration itself.
Instead, every case is its own keyword. This is why when we are assigning our
color variable to blue; we use the case name by itself.

Enumerations in Objective-C cannot have methods, associated values, or represent
any other values except for integers. In fact, in Objective-C enumerations, every case
has a numeric value. If you don't specify any, they start at 0 and go up by 1 for each
case. If you want, you can manually specify a value for one or more of the cases:

typedef enum {
 PrimaryColorRed,
 PrimaryColorGreen = 10,
 PrimaryColorBlue,
} PrimaryColor;

Each case after a manually specified case will continue to increase by one. This
means that in the preceding code PrimaryColorRed is still 0 but PrimaryColorBlue
is 11.

Classes
Unlike Objective-C structures and enumerations, classes are very similar to their
Swift counterparts. Objective-C classes can contain methods and properties, use
inheritance, and get initialized. However, they look pretty different. Most notably,
a class in Objective-C is split into two parts: its interface and its implementation.
The interface is intended to be the public interface to the class, while the
implementation includes the implementation of that interface in addition
to any other private methods.

Harnessing the Past – Understanding and Translating Objective-C

[216]

Basic class
Let's start by looking again at our contact class from Chapter 3, One Piece at a
Time – Types, Scopes, and Projects and what it looks like in Objective-C:

class Contact {
 var firstName: String = "First"
 var lastName: String = "Last"
}

@interface Contact : NSObject {
 NSString *firstName;
 NSString *lastName;
}
@end

@implementation Contact
@end

Already Objective-C is taking a lot more lines of code. First, we have the interface
declaration. This begins with the @interface keyword and ends with the @end
keyword. Within the square brackets is a list of attributes. These are essentially the
same as the attributes of a structure, except that you can include Objective-C objects
in the attributes. These attributes are not commonly written like this because using
the properties will create these automatically, as we will see later.

You will also notice that our class is inheriting from a class called NSObject, as
indicated by : NSObject. This is because every class in Objective-C must inherit
from NSObject, which makes NSObject the most basic form of class. However, don't
let the term "basic" fool you; NSObject provides a lot of functionality. We won't
really get into that here, but you should at least be aware of it.

The other part of the class is the implementation. It starts with the @implementation
keyword followed by the name of the class we are implementing and then
ends again with the @end keyword. Here, we have not actually added any extra
functionality to our contact class. However, you may notice that our class is missing
something that the Swift version has.

Initializers
Objective-C does not allow specifying default values for any attributes or properties.
This means that we have to implement an initializer that sets the default values:

@implementation Contact
- (id)init {
 self = [super init];
 if (self) {

Chapter 10

[217]

 firstName = @"First";
 lastName = @"Last";
 }
 return self;
}
@end

In Objective-C, initializers are the exact same as a method, except that by convention
they start with the name init. This is actually just a convention but it is important,
as it will cause problems down the line with memory management and interacting
with the code from Swift.

The minus sign at the beginning indicates that this is a method. Next, the return type
is specified within parentheses, which is then followed by the name of the method:
in this case init. The body of the method is contained in curly brackets just like
a function.

The return type for all initializers is going to be id by convention. This allows us to
easily override initializers of subclasses.

Virtually all initializers will follow this same pattern. Just like in Swift, self
references the instance that this method is being called on. The first line assigns
the self reference to the result by calling the superclass's initializer with [super
init]. We then allow for the possibility that the initializer fails and returns nil
by testing it for nil in the if (self) statement. The if statement will fail if self
is nil. If it is not nil, we assign the default values. Finally, we return self, so that
calling code can maintain a reference to the newly initialized object. However, this
is just a convention and Objective-C does not have any protection around properly
initializing properties.

Properties
The Objective-C version of the contact class still isn't exactly like the Swift version
because the firstName and lastName attributes are not accessible from outside the
class. To make them accessible we need to define them as public properties and we
can drop them from being explicit attributes:

@interface Contact : NSObject {
}
@property NSString *firstName;
@property NSString *lastName;
@end

Harnessing the Past – Understanding and Translating Objective-C

[218]

Note that the properties are defined outside of the curly brackets but still within
the @interface. In fact, you can leave off the curly brackets altogether if you have
nothing to define in it. Properties automatically generate attributes by the same name
except with an underscore at the beginning:

@implementation Contact
- (id)init {
 self = [super init];
 if (self) {
 _firstName = @"First";
 _lastName = @"Last";
 }
 return self;
}
@end

Alternatively, you can just set the values using self:

@implementation Contact
- (id)init {
 self = [super init];
 if (self) {
 self.firstName = @"First";
 self.lastName = @"Last";
 }
 return self;
}
@end

There are nuances to each approach but for just general reading purposes, it doesn't
matter which one is used.

Also, just as you can define weak references in Swift, you can do so in Objective-C:

@interface SteeringWheel : NSObject
@property (weak) Car *car;
@end

If you want, you can replace weak with strong, but just like Swift, all properties are
strong by default. Weak references in Objective-C will automatically be set to nil
if the referenced object gets deallocated. You can also use the unsafe_unretained
keyword, which is equivalent to unowned in Swift. However, this is rarely used as
the only difference between the two in Objective-C is that unsafe_unretained does
not reset the value to nil; instead, it will reference an invalid object if the object gets
deallocated causing confusing crashes if used.

Chapter 10

[219]

In addition to weak or strong, you can also specify that a property is readonly or
readwrite:

@interface SteeringWheel : NSObject
@property (weak, readonly) Car *car;
@end

Each property attribute should be written inside the parentheses separated by a
comma. As the readonly name implies, this makes it so that the property can be
read but not written to. Every property is read-write by default, so normally it is not
necessary to include it.

Note that you may also see the keyword nonatomic in the parentheses. This is a
more advanced topic that is beyond the scope of this book.

Methods
We have already seen an example of a method in the form of an initializer, but let's
take a look at some methods that take parameters:

@implementation Contact
- (NSArray *)addToInviteeList:(NSArray *)invitees
includeLastName:(BOOL)include {
 NSMutableArray *copy = [invitees mutableCopy];
 if (include) {
 NSString *newString = [self.firstName
 stringByAppendingFormat:@" %@", self.lastName
];
 [copy addObject:newString];
 }
 else {
 [copy addObject:self.firstName];
 }
 return copy;
}
@end

Each parameter is defined with a public label followed by a colon, its type in
parentheses, and an internal name. Then, each parameter is separated by a space
or new line.

You can also see an example way to format a long method call with the creation of
the newString instance. Similar to Swift, any space can be converted to a new line
instead. This allows us to convert a single long line into multiple lines, as long as we
don't put semicolons after the partial lines.

Harnessing the Past – Understanding and Translating Objective-C

[220]

Like Swift, Objective-C also has the idea of class methods. Class methods are
indicated with a plus sign instead of a minus sign:

@implementation Contact
+ (void)printAvailablePhonePrefixes {
 NSLog(@"+1");
}
@end

So now you can call the method directly on the class:

[Contact printAvailablePhonePrefixes];

Inheritance
Just as all of our classes so far have inherited from NSObject, any class can inherit
from any other class just like in Swift and all the same rules apply. Methods and
properties are inherited from their superclass and you can choose to override
methods in subclasses. However, the compiler enforces the rules much less. The
compiler does not force you to specify that you intend your method to override
another. The compiler does not enforce any rules around initializers and whom
they call. However, all the conventions exist because those conventions were the
inspiration for the Swift requirements.

Categories
Categories in Objective-C are just like Swift extensions. They allow you to add new
methods to existing classes. They look very similar to plain classes:

extension Contact {
 func fullName() -> String {
 return "\(self.firstName) \(self.lastName)"
 }
}

@interface Contact (Helpers)
- (NSString *)fullName;
@end

@implementation Contact (Helpers)
- (NSString *)fullName {
 return [self.firstName stringByAppendingFormat:@" %@", self.
lastName];
}
@end

Chapter 10

[221]

We know that this is a category instead of a normal class because we added a name
within parentheses after the class name. Every category on a class must have a
unique name. In this case, we are calling it Helpers and we are adding a method to
return the contact's full name.

Here, for the first time, we are declaring a method inside the interface. This is also
possible with classes. A method definition looks exactly like an implementation
except that it ends in a semicolon instead of the code inside the curly brackets. This
will allow us to call the method from outside the current file, as we will see in more
detail in the upcoming projects section.

Categories can also add properties, but you will have to define your own getter
and setter methods because just like Swift extensions can't add stored properties,
Objective-C categories can't add attributes:

@interface Contact (Helpers)
@property NSString *fullName;
@end

@implementation Contact (Helpers)
- (NSString *)fullName {
 return [self.firstName stringByAppendingFormat: @" %@",
 self.lastName
];
}
- (void)setFullName:(NSString *)fullName {
 NSArray *components = [fullName
 componentsSeperatedByString:@" "];
];
 if (components.count > 0) {
 self.firstName = components[0];
 }
 if (components.count > 1) {
 self.lastName = components[1];
 }
}
@end

These types of properties are very similar to calculated properties. If you need to
allow reading from a property, you must implement a method with the exact same
name that takes no parameters and returns the same type. If you want to be able
to write to the property you will have to implement a method that starts with set,
followed by the same property name with a capital first letter, that takes the property
type as a parameter and returns nothing. This allows outside classes to interact with
the property as if it were an attribute, when in fact it is just another set of methods.
Again, this is possible within a class or a category.

Harnessing the Past – Understanding and Translating Objective-C

[222]

Protocols
Like Swift, Objective-C has the idea of protocols. Their definition looks similar
to this:

protocol StringContainer {
 var count: Int {get}
 func addString(string: String)
 func enumerateStrings(handler: () -> ())
}

@protocol StringContainer
@property (readonly) NSInteger count;
- (void)addString:(NSString *)string;
- (void)enumerateStrings:(void(^)(NSString *))handler;
@end

Here, we are using the @protocol keyword instead of @interface and it still ends
with the @end keyword. We can define any properties or methods that we want. We
can then say that a class implements the protocol similar to this:

@interface StringList : NSObject <StringContainer>
@property NSMutableArray *contents;
@end

The list of protocols that a class implements should be listed within angled
brackets after the class it inherits from separated by commas. In this case we are
only implementing a single protocol so we don't need any commas. This code also
declares a contents property, so that we can implement the protocol as shown:

@implementation StringList

- (NSInteger)count {
 return [self.contents count];
}

- (void)addString:(NSString *)string {
 if (self.contents == nil) {
 self.contents = [NSMutableArray new];
 }
 [self.contents addObject:string];
}

- (void)enumerateStrings:(void (^)(NSString *))handler {
 for (NSString *string in self.contents) {
 handler(string);
 }
}

@end

Chapter 10

[223]

Note that we don't do anything special in the implementation to implement a
protocol; we just need to make sure the proper methods and computed properties
are implemented.

The other thing you should be aware of is that protocols in Objective-C are not used
in the same way as classes. You can't just define a variable to be a protocol; instead,
you must give it a type and require that it implement the protocol. Most commonly,
this is done with the id type:

 id<StringContainer> container = [StringList new];

Any variable declaration can require that it not only inherits from a specific type, but
also implements certain protocols.

Blocks
Lastly, blocks are the Objective-C alternative to closures in Swift. They are actually a
late addition to Objective-C so their syntax is somewhat complex:

int (^doubleClosure)(int) = ^(int input){
 return input * 2;
};
doubleClosure(2);

Let's break this down. We start like any other variable with the variable's name and
type before the equals sign. The name starts with a carrot symbol (^) inside the first
set of parentheses. In this case, we are calling it doubleClosure. The actual type of
the closure surrounds that. The type it starts with is the type the closure returns,
which in this case is an int. The second set of parentheses lists the types of the
parameters the closure accepts. In total, this means that we are defining a closure
called doubleClosure that accepts int and returns int.

Then, we move on to the business of implementing the closure. All closure
implementations start with a carrot symbol followed by any arguments in
parentheses and curly brackets with the actual implementation. Once a closure is
defined, it can be called similar to any other function. However, you should always
be aware that it is possible for a closure to be nil, in which calling it will cause the
program to crash.

It is also possible to define a function or method that accepts a closure as a
parameter. First, a function:

id firstInArrayPassingTest(NSArray *array, BOOL(^test)(id)) {
 for (id element in array) {
 if (test(element)) {
 return element;

Harnessing the Past – Understanding and Translating Objective-C

[224]

 }
 }
 return nil;
}
firstInArrayPassingTest(array, ^BOOL(id test) {
 return false;
});

Note that the type id signifies any Objective-C object and even though it doesn't
have an asterisk, it is a reference type. The usage above looks exactly like a
standalone block usage. However, the syntax looks somewhat different in a method:

- (id)firstInArray:(NSArray *)array
 passingTest:(BOOL(^)(id test))test
{
 for (id element in array) {
 if (test(element)) {
 return element;
 }
 }
 return nil;
}
[self firstInArray:array passingTest:^BOOL(id test) {
 return false;
}];

This is because a method's parameter name is separated by parentheses. This
causes the name of the parameter to be moved from being with the carrot to after
the parentheses. In the end, we can say that the nuances of the syntax aren't too
important when reading Objective-C code and translating to Swift, as long as you
recognize that a carrot symbol indicates a block. Many Objective-C programmers
look up the syntax of a block on a regular basis.

All of the same memory concerns exist in Objective-C with blocks. By default, all
arguments are captured strongly and the syntax to capture them weakly is much
more convoluted. Instead of including the weak captures in the block itself, you must
create weak variables outside of the block and use them:

@interface Ball : NSObject
@property int xLocation;
@property (strong) void (^onBounce)();
@end
@implementation Ball
@end

Chapter 10

[225]

Ball *ball = [Ball new];
__weak Ball *weakBall = ball;
ball.onBounce = ^{
 NSLog(@"%d", weakBall.xLocation);
};

Here we use the keyword __weak (that has two underscores) to indicate that the
weakBall variable should only have a weak reference to ball. We can then safely
reference the weakBall variable within the block and not create a circular reference.

Projects
Now that we have a pretty good understanding of Objective-C, let's discuss what
Objective-C code looks like in a project. Unlike the Swift code, Objective-C is
written in two different types of files. One of the types is called a header file and
ends in the extension h. The other type is called an implementation file and ends in
the extension m.

Before we can really discuss what the difference is between the two, we first have to
discuss code exposure. In Swift, all the code you write is accessible to all other code
in your project. This is not true with Objective-C. In Objective-C, you must explicitly
indicate that you want to have access to the code in another file.

Header files
The header files are the types of files that can be included by other files. This means
that header files should only contain the interfaces of types. In fact, this is why the
separation exists between class interfaces and implementations. Any file can import
a header file and that essentially inserts all the code of one file into the file that is
importing it:

#import <Foundation/Foundation.h>
#import "Car.h"

@interface SteeringWheel : NSObject
@property (weak) Car *car;
@end

This allows us to separate each class into its own file just as we like to do in Swift.
The danger is that we must only put code that can be safely imported into headers.
If you try to put implementations in a header, you will end up with duplicate
implementations for every time you import the header.

Harnessing the Past – Understanding and Translating Objective-C

[226]

In the preceding example, we actually imported one header file into another. This
means that if a different file now includes this header file, it will essentially be
importing both header files.

You will also notice that there are two different ways to import a file. We import
foundation with angled brackets and imported our car header with quotes. Angled
brackets are used for importing header files from frameworks, while quotes are used
for importing header files within the same framework or application.

A lot of the time it isn't actually necessary for one header file to include another
because all it needs to know about is the existence of the class. If it doesn't need to
know any actual details about the class, it can simply indicate that the class exists
using the @class keyword:

@class Car;

@interface SteeringWheel : NSObject
@property (weak) Car *car;
@end

Now, the compiler will not complain that it doesn't know what Car is. However, you
will most likely still need to import the car header in the implementation file because
you will probably be interacting with some part of that class.

Implementation files
As you might have guessed, implementation files are generally for the
implementation of your types. These files are not imported into others; they
simply fulfill the promises of what the interface files have defined. This means
that header and implementation files generally exist in pairs. If you are defining a
steering wheel class, you will most likely create a SteeringWheel.h header and a
SteeringWheel.m implementation file. Any other code that needs to interact with
the details of the steering wheel class will import the header and at compile time, the
compiler will make all of the implementations available to the running program.

Implementation files are also a great place to hide private code, because they cannot
be imported by other code. Since the code is not visible anywhere else, it is unlikely
to be interacted with. This means that people will sometimes add class interfaces to
implementation files if their use is localized to just that file. It is also very common to
add what is called an anonymous category to an implementation file:

@interface SteeringWheel ()
@property NSString *somePrivateProperty;
- (void)somePrivateMethod;
@end

Chapter 10

[227]

This is considered anonymous because the category was not actually given a name.
This means there is no way to pair an implementation directly with that category.
Instead, the implementation should be defined within the normal implementation
of the class. This provides a great way to define any private properties and methods
at the top of an implementation file. You don't technically need to define any
private methods because as long as they are implemented in the same file, they can
be interacted with. However, it is often nice to have a concise list of the available
properties and methods at the top of the file.

This brings up another point, that only methods that you intend to use from outside
files should be declared in the header. You should always consider a header to
be the public interface of your class and it should be as minimal as possible. It is
always written from the perspective of outside files. This is the way that Objective-C
implements access control. It isn't formally built into the language but the compiler
will warn you if you try to interact with code that has not been imported. It is
actually still possible to interact with these private interfaces, especially if you
duplicate the interface declaration somewhere else, but it is considered best practice
to not do that and Apple will actually reject your apps during review if you try to
interact with private parts of their API.

Organization
Other than the obvious difference, the Objective-C projects will have two different
types of files. They are organized in the exact same way as Swift files. It is still
considered to be a good practice to create folders to group related files together. Most
of the time you will want to keep header file and implementation file pairs together,
as people will be switching between the two types of files a lot. However, people can
also use the keyboard shortcuts Control/Command up arrow or Control/Command
down arrow to quickly swap between a header file and its implementation file.

Calling Objective-C code from Swift
The last and possibly the most critical component of understanding Objective-C for
our purpose is to be able to call Objective-C code from Swift. This is actually pretty
straightforward in most circumstances. We will not take any time to discuss calling
Swift code from Objective-C because this book assumes that you are only writing
Swift code.

Harnessing the Past – Understanding and Translating Objective-C

[228]

Bridging header
The most important part of being able to call Objective-C code from Swift is how
to make the code visible to Swift. As we now know, Objective-C code needs to be
imported to be visible to other code. This still holds true with Swift, but Swift has no
mechanism to import individual files. Instead, when you add your first Objective-C
code to a Swift project, Xcode is going to ask you if you want to add what is called a
bridging header:

You should select Yes and then Xcode will automatically create a header file named
after the project ending in Bridging-Header.h. This is the file where you need to
import any Objective-C headers that you want to expose to Swift. It will just be a file
with a list of imports. You still do not need to import any of the implementation files.

Using functions
After you have exposed the headers to Swift, it is very simple to call functions. You
can simply call the functions directly as if they didn't have parameter names:

NSArray *addInviteeToListIfSpotAvailable
 (
 NSArray *invitees,
 NSString *newInvitee
);

addInviteeToListIfSpotAvailable(inviteeList, "Sarah")

Xcode will even autocomplete the code for you. From your Swift files point of view,
there is no way to know if that function is implemented in Objective-C or Swift.

Chapter 10

[229]

Using types
You can use types the same way you use functions. Once the proper header files are
imported in the bridging header, you can just use the type as if it were a Swift type:

@interface Contact : NSObject
@property NSString *firstName;
@property NSString *lastName;
- (NSArray *)addToInviteeList:(NSArray *)invitees
includeLastName:(BOOL)include;
@end

var contact = Contact()
contact.firstName = "First"
contact.lastName = "Last"
contact.addToInviteeList(inviteeList, includeLastName: false)

Again, from Swift's point of view, there is absolutely no difference between how we
write the code that uses our Objective-C class and how we would write it if the class
were implemented in Objective-C. We were even able to call the addToInviteeLis
t:includeLastName: method with the same parameter names. This makes it even
more clear that Swift was designed with backwards compatibility in mind.

The only real restrictions are that all classes defined in Objective-C are still going to
inherit from NSObject and Objective-C enumerations aren't going to translate perfectly
into Swift enumerations. Instead, they are still exposed as individual constants:

typedef enum {
 PrimaryColorRed,
 PrimaryColorGreen,
 PrimaryColorBlue,
} PrimaryColor;

var color: PrimaryColor = PrimaryColorRed

Containers
You may have also noticed that the NSString and NSArray types seem to translate
transparently to String and Array classes in the preceding code. This is another
wonderful feature of the bridge between Swift and Objective-C. These types, as
well as dictionaries, translate almost perfectly. The only difference is that since
Objective-C does require an element type when defining a container, they are
translated into Swift as containing objects of type AnyObject. If you want to treat
them as a more specific type, you will have to cast them:

inviteeList = contact.addToInviteeList(
 inviteeList,
 includeLastName: false
) as! [String]

Harnessing the Past – Understanding and Translating Objective-C

[230]

The actual return value of this method when translated to Swift is [AnyObject]!.
Therefore, if you are sure that the method never returns nil and always returns an
array of Strings, it is safe to do the forced casting that we did above. Otherwise, you
should still check for nil and do an optional casting (as?).

Annotations
You will note that this acts as a pattern when Objective-C types are translated to
Swift. Any reference type is going to be translated, by default, to an implicitly
unwrapped optional because of the nature of Objective-C reference types. The
compiler can't automatically know if the value returned could be nil or not, so it
doesn't know if it should be translated as a regular optional or a non-optional.
However, Objective-C developers can add annotations to let the compiler know
if a value can be nil or not.

Nullability
The first thing Objective-C developers can add annotations for is whether a specific
variable can be null or not:

- (NSArray * __nonnull)addToInviteeList:
 (NSArray * __nullable)invitees;

The __nonnull keyword indicates that it cannot be nil, so it will be translated in
Swift to a non-optional and the __nullable keyword indicates that it can be nil,
so in Swift it will translated to a regular optional.

Container element types
Objective-C developer can also annotate their container types to say what type they
contain. For this, use the angled brackets just like Swift:

- (NSArray<NSString *> * __nonnull)addStringToInviteeList:
 (NSArray<NSString *> * __nullable)invitees;

Now, this method will really work just like Swift methods in that it will take an
optional array of strings and return a non-optional array of strings; there will be no
casting necessary:

inviteeList = contact.addStringToInviteeList(inviteeList)

If you have control over the Objective-C code you are importing then you may want
to add it. Otherwise, you might be able to ask the developer of the code to add the
annotations to make your Swift coding much easier and more clean.

Chapter 10

[231]

Summary
While Swift is the hot new language right now in the Apple development
community, there is no immediate sign that Objective-C is getting replaced fully.
All of Apple's APIs are still written in Objective-C and it would be a lot of work for
Apple to rewrite them, if they even wanted to. Apple definitely designed Swift to be
able to live alongside Objective-C, so for now we have to assume that Objective-C is
here to stay. This makes understanding and being able to interact with Objective-C
very valuable, even as a Swift developer.

In this chapter, we have gotten an overview of the most pertinent Objective-C
features and syntax from the point of view of a primarily Swift developer. We
have learned how Swift is basically a part of a long line of evolving languages. It
was heavily influenced by Apple's desire to make it backwards compatible with
Objective-C and Objective-C was actually an evolution of C which was an evolution
of Assembly and so on. Objective-C is still a powerful language with the ability
to express many of the same concepts as Swift. Objective-C has similar concepts
of constants and variables with more of a stress on variables. It also has the same
basic containers but control flow is slightly different in the two languages. Swift has
more powerful switches and ranges, but the underlying concepts are still very much
the same. Functions are almost identical between the two languages but the type
system in Objective-C is somewhat more limited because it can only express classes
unlike Swift which has a powerful concept of classes, structures, and enumerations.
Structures and enumerations still exist in Objective-C, but they really come directly
from C and can do a lot less. Finally, we saw that organizing Objective-C in a project
is very much the same and calling Objective-C code from Swift is actually quite
straightforward.

There is some debate in the Apple developer community about how relevant
Objective-C will be moving forward. There are people that have jumped into Swift
development full time and there are others that are waiting for Swift to mature even
more before they commit energy to truly learning it. However, there is little debate
over the fact that Objective-C knowledge is still going to be relevant for a while, most
notably because of the vast resources that exist and the fact that all existing Apple
APIs are written in Objective-C. We will put those APIs to use in our next chapter:
Chapter 11, A Whole New World – Developing an App, when we will finally dive into
some real app development.

[233]

A Whole New World –
Developing an App

Until this point, we have been concentrating almost exclusively on learning Swift
without learning much about the platforms that it was designed for. This is because
learning a new platform is a completely different world from learning a language.
Learning a programming language is like learning the basic grammar of a spoken
language. The grammar between the spoken languages generally expresses similar
concepts but the specific words of the languages are often more varied, even if they
are sometimes recognizable. Learning a programming language is learning how to
connect the specific vocabulary of your desired platform. This chapter will be about
learning some of the vocabulary of the iOS framework.

We will do this by going through the process of starting to develop a simple camera
app. Along the way, we will learn some of the most critical vocabularies to get
started with any other kind of iOS app and many of the concepts will be transferable
to OS X development. More specifically, we will cover:

•	 Conceptualizing the app
•	 Setting up the app project
•	 Configuring the user interface
•	 Running the app
•	 Temporarily saving a photo
•	 Populating our photo grid
•	 Refactoring to respect model-view-controller
•	 Permanently saving a photo

A Whole New World – Developing an App

[234]

Conceptualizing the app
Before we even open up Xcode, we should have a good sense of what we plan to
develop. We want to know the basics of what kind of data we are going to need to
represent and what the user interface is going to be like. We don't yet need pixel
perfect designs for every screen, but we should have a good idea of the flow of the
app and what features we want to include in our first version.

Features
As we already discussed, we are going to develop a basic camera app. This leaves us
with a very clear list of features, which we would want in a first version:

•	 Take a photo
•	 View gallery of previously taken photos
•	 Label photos
•	 Delete photos

These are the highly critical features of a camera app. Clearly, we don't have any
differentiating features that will make this app valuable above other existing apps,
but this will be enough to learn the most critical parts of making an iOS app.

Interface
Now that we have a list of features, we can come up with the basic flow of the app,
otherwise referred to as a wireframe. The first screen of our app will be a gallery of
any picture the user has already taken. There will be a button on the screen, which
will allow them to take a new picture. It will also have the ability to activate the
editing mode where they can delete photos or change their label:

Chapter 11

[235]

This interface will allow us to take advantage of the built-in picture-taking interface
that we will look at in more detail later. This interface will also allow us to make it
flexible to work on all the different phone and tablet screens. It may seem simple,
but there are many components that have to fit together to make this application
work. On the other hand, once you have a good understanding of the different
components, it will start to seem simple again.

Data
Now that we know roughly how the app needs to work for the user, we can come up
with at least a high-level concept of how the data should be stored. In this case, we
simply have a flat list of images with different labels. The easiest way for us to store
these files is in the local file system, with each image named after the user chosen
label. The only thing to keep in mind with this system is that we will have to find
a way to allow two different images with the same exact label. We will solve that
problem in more detail when we get around to implementing it.

A Whole New World – Developing an App

[236]

Setting up the app project
Now that we have finished conceptualizing our app, we are ready to start coding. In
Chapter 3, One Piece at a Time – Types, Scopes, and Projects, we created a command-line
project. This time, we are going to create an iOS Application. Once again, in Xcode,
navigate to File | New | Project…. When a window appears, select the Single View
Application from the iOS | Application menu:

From there, click on Next and then give the project the name LearningCamera. Any
Organization Name and Identifier are fine. Finally, make sure that Swift is selected
from the Language drop down menu and Universal is selected from the Devices
drop down. Now select Next again and create the project.

Xcode will then present you with a project development window that looks
somewhat different from a command-line project:

Chapter 11

[237]

This default screen allows us to configure various attributes of the app including the
version number, target devices, and much more. For our purposes, all of the defaults
are fine. When you decide to submit an app to the app store, this screen will become
much more important.

Xcode has also created a few different files and folders for us. We will be working
exclusively in the LearningCamera folder. The LearningCameraTests folder is for
automated tests; they are a fantastic idea but beyond the scope of this book. The final
folder is the Products folder, which you won't have to change.

In the LearningCamera folder, we have several important files. The first file is
AppDelegate.swift, which is the entry point of the application. It has a class that
was created for you, called AppDelegate that has a number of methods that are
called at different points during the application life cycle. We won't have to modify
this file for our purposes but it is an important file in many applications.

The second file is ViewController.swift. This holds a UIViewController subclass
that is used to manage the interaction between the app's default view and the
business logic. We will be doing a lot of work in there.

A Whole New World – Developing an App

[238]

The third file is Main.storyboard. This file contains the interface design for our
views. Currently, it has only a single view that is managed by ViewController.
We will be working with this file later to add and configure our visual components.

The fourth file is Assets.xcassets. This is a container for all of the images that we
would want to display in our app. Almost every app you make will have at least one
image so this is a very important file too.

Finally, the last file is LaunchScreen.storyboard. This file lets us manage the
display while our app is launching. This is an extremely important part of a
production application because this is the first thing a user sees every time they
launch it; a well-designed launch process can make a huge difference. However,
we do not have to do anything to this file for our learning purpose.

Configuring the user interface
Now that we have our bearings within the project, let's jump into configuring
the user interface of our app. As we discussed earlier, this is done within the
Main.storyboard file. When we select that file, we are presented with a graphical
editing tool, generally referred to as Interface Builder:

Chapter 11

[239]

In the center, there is a main view that is controlled by a ViewController instance.
This is a blank canvas where we can add all of the interface elements we want.

The first thing we want to do is add the bar along the top that is in our wireframes.
This bar is called a navigation bar and we can add it directly, as it is one of the
elements in our library. However, the frameworks will handle many complications
for us if we use a Navigation Controller instead. A Navigation Controller is a view
controller that contains other view controllers. Specifically, it adds a navigation bar
to the top and allows us to push child view controllers onto it in the future. This
controller creates the animation of a view being pushed on from the right in many
applications. For example, when you select an e-mail in the Mail app, it animates in
the contents of the e-mail; this uses a navigation controller. We will not have to push
any view controllers on in this app, but it is good to be set up for the future and this
is a superior way of getting a navigation bar at the top.

Along the right, we have a library of elements we can drag onto the canvas, let's start
by finding the Navigation Controller. Drag it from the library to the pane on the
left where the View Controller Scene is listed. This is going to add two new view
controllers to the list:

A Whole New World – Developing an App

[240]

We don't want the new Root View Controller, only the View Controller Scene so
let's delete it. To do this, click on the Root View Controller with the yellow icon
and press the Delete key. Next, we want to make the View Controller Scene the root
view controller. The root view controller is the first controller to be shown within
the Navigation Controller. To do this, right-click on the Navigation Controller with
the yellow icon and drag it to the View Controller with the yellow icon below. The
View Controller will be highlighted blue:

Chapter 11

[241]

Once you let go of the right mouse button, a menu will come up and you should
click on Root View Controller. Finally, we want to make the navigation controller
the first view controller to appear in the app. Select the Navigation Controller with
the yellow icon and navigate to View | Utilities | Show Attributes Inspector from
the main menu, and then scroll-down and check the Is Initial View Controller
checkbox. Note that you can drag around the view controllers on the screen
however, you want to make the file easier to navigate.

Now we are ready to customize our main view. To focus the view, select View
Controller from the pane on the left. Now double-click on the title and change
it to Gallery:

A Whole New World – Developing an App

[242]

Next, we want to add the "Take a Picture" button to our navigation bar. All buttons
in toolbars are called bar button items. Find them in the library and then drag it to
the right side of the toolbar (the place where you can drop it will turn blue when
you get close to it). By default, the button will say Item, but we want it to be an
add button instead. One option would be to change the text to an addition symbol,
but there is a better option. After adding the button, you should be able to see it
appear in the hierarchy that is to the left of the main view. In there, you will see the
navigation bar with the new button item nested inside the Gallery title. If you select
that item in the hierarchy, you will see some options we can configure about the
item along the right-hand side of the screen. We want to change the System Item
to Add:

Now, you can do the same thing for the left-hand side of the navigation bar with the
Edit identifier.

Finally, we need to add the gallery of photos. For this, we are going to use the
Collection View from the library. Drag one onto the center of the view. A collection
view is made of a variable amount of cells laid out in a grid. Each cell is a copy
of a template cell and it can be configured in code to display specific data. When
you dragged the collection view on, it also created a template cell for you. We will
configure that soon.

Chapter 11

[243]

First, we need to define the rules for the sizing of the collection view. This will allow
the interface to adapt well to each different screen size. The tool we use to do this is
called Auto Layout. Click on the collection view and then select the Pin icon in the
lower right of the screen:

Configure this window to match the preceding screenshot. Click on each of the four
struts so that they are highlighted red, uncheck Constrain to margins, and change
each of the measurements to zero. After everything is configured, click on Add 4
Constraints. This will cause some yellow lines to appear that indicate that the view's
placement is not consistent with the rules we just created. We can resize the views
ourselves to make it match or we can let Xcode do it for us: there will be a yellow
icon next to the Gallery Scene on the left-hand side of the screen. Click on that and
you will get a list of misplaced views. In there, you can click on the yellow triangle
and click on Fix Misplacement. We also want to make the background white instead
of black. Select the collection view and then change its Background to white in the
Attributes Inspector.

A Whole New World – Developing an App

[244]

The last thing we need to configure on this screen is the collection view cell. This
is the box in the upper-left corner of the collection view. We need to change the
size and add both an image and a label; let's start by changing the size. Click on the
Collection View if it isn't already selected and navigate to View | Utilities | Show
Size Inspector from the main menu. Change the Cell Size to be 110 points wide and
150 points tall.

Now, we can drag in our image. In the library, this is called an Image View. Drag it
into the cell and then change the height and width in the Size Inspector to 110 and
x and y to 0. Next, we want to drag a Label below the image view. Once it is placed,
we want to configure the placement rules within the cell.

First, select the Image View. We have to make it the full width and attach it to the
top of the cell, so select the pin icon again and configure it as follows:

Chapter 11

[245]

It is pinned to the left, top, and right without constraining to margins and values
of zero for all three measurements. Click on Add 3 Constraints and we are ready
to define the rules for the label. We want the label to be full width and vertically
centered. A label is going to automatically center the text, so we want the label to be
tall enough to have a reasonable margin above and below the text. Click on the label
and configure it as follows:

It is pinned in every direction without constraining to the margins and has zero for
all measurements. It is also constrained to be 30 points tall by checking the Height
checkbox. Click Add 5 Constraints and then have Xcode resize it for you again from
the menu on the left. Also, make sure to select the center alignment in the Attributes
Inspector and reduce the font size to 12.

A Whole New World – Developing an App

[246]

Running the app
Now we have most of our interface configured without writing a single piece
of code. We can run the app to see what it looks like. To do this, first select the
simulator you want to run it on from the menu in the top bar. Then you can click
on the run button, which is the one with the black triangle. This will open up a new
simulator window running your app:

You can rotate the virtual device from the Hardware menu to see what happens
when you rotate it and you can try running it on various different simulators.
We have configured our view so far to adapt to any screen size.

Chapter 11

[247]

Allowing picture taking
Now we are ready to move onto the programming. The first thing we need to allow
the user to do is to take a new picture. In order to do that, we are going to need
some code to run every time the user taps on the add button. We achieve this by
connecting the trigger action of the add button to a method on our view controller.
Normally we make a connection by right-click dragging from the button to the
code; however, we can't do this if we can't see the interface and the code at the same
time. The easiest way to do this is to show the Assistant Editor. You can do this by
navigating to View | Assistant Editor | Show Assistant Editor. Also, make sure it is
configured to be automatic by clicking on the bar at the top of the editor:

This mode causes the second view to automatically change to the most appropriate
file according to what you have selected on the left. In this case, because we are
working with the interface of our view controller, it shows the code for the
view controller.

A Whole New World – Developing an App

[248]

Our view controller code is generated with two methods to start. viewDidLoad
is called when the view for the view controller is loaded. Most of the time this
happens when the view controller is about to be displayed for the first time.
didReceiveMemoryWarning is called when the system starts to run low on memory.
This provides you an opportunity to help the system find more memory by deleting
anything that isn't necessary.

We want to start by creating a connection from the button to a new method.
You can do so by right clicking on the add button and dragging to below the
didReceiveMemoryWarning method:

When you release the right mouse button, a little window will appear. There you
should select Action from the Connection menu and enter didTapTakePhotoButton.
When you click on Connect, Xcode will create a new method for you and connect it
to the button. You know it is connected because there is a filled in gray circle to the
left of the method. Now, every time the user taps the button, this method will be
executed. Note that this method has @IBAction at the beginning of it. This is needed
for any method that is connected to an interface element.

Chapter 11

[249]

We want this method to present the user with an interface to take a picture. Apple
provides a class for us called UIImagePickerController that makes this very
easy for us. All we need to do is create an instance of UIImagePickerController,
configure it to allow taking pictures, and present it to the screen. The code looks
like this:

@IBAction func didTapTakePhotoButton(sender: AnyObject) {
 let imagePicker = UIImagePickerController()
 if UIImagePickerController.isSourceTypeAvailable(.Camera) {
 imagePicker.sourceType = .Camera
 }
 self.presentViewController(
 imagePicker,
 animated: true,
 completion: nil
)
}

Lets break this code down. On the first line, we are creating our image picker. On
the second line, we are checking if the current device has a camera by using the
isSourceTypeAvailable: class method of UIImagePickerController. If the
camera source is available, we set that as the source type for the image picker on
line three. Otherwise, by default, an image picker lets the user pick an image from
their photo library. Since the simulator doesn't support taking a picture, you are
going to be presented with an image picker instead of a camera when simulating
the app. Finally, the last line asks our view controller to present our image picker
by animating it on the screen. presentViewController:animated:completion:
is a method implemented within the UIViewController class, the superclass of our
ViewController, to make it easy for us to present new view controllers. If you run
the app and click on the add button, you will be asked for permission to access the
photos and then it will display the photo picker. You can tap the Cancel button in
the upper right and the image picker controller will be dismissed. However, if you
select a photo, nothing will happen.

We need to write some code to handle the picking of a photo. To make this possible,
image picker can have a delegate that receives a method call when an image is
picked. We are going to make our view controller the delegate of the image picker
and implement its protocol. First, we have to add a line to our action method above,
that assigns our view controller as the delegate of the image picker. Add this line
above the call to present the image picker:

imagePicker.delegate = self

A Whole New World – Developing an App

[250]

When we do that, we will get a compiler error that says that we can't make this
assignment because our view controller doesn't implement the necessary protocols.
Lets change that. I like to implement each protocol as a separate extension in
the same file to allow for better code separation. We need to implement both
UIImagePickerControllerDelegate and UINavigationControllerDelegate
according to the error. The only method that is important to us in either of these
protocols is the one that is called when an image is picked. That leaves us with the
following code:

extension ViewController: UINavigationControllerDelegate {}

extension ViewController: UIImagePickerControllerDelegate {
 func imagePickerController(
 picker: UIImagePickerController,
 didFinishPickingImage image: UIImage!,
 editingInfo: [NSObject : AnyObject]!
)
 {
 self.dismissViewControllerAnimated(true, completion: nil)
 }
}

Our implementation for the UINavigationControllerDelegate delegate is empty
but we have a simple implementation for the imagePickerController:picker:di
dFinishPickingImage:editingInfo: method. This is where we are going to add
our handling code, but for now, we are just dismissing the presented view controller
to return the user to the previous screen. This method does not force us to specify the
view controller we are dismissing because the view controller already knows which
one it is presenting. Now, if you run the app and select a photo, you will return
to the previous screen but nothing else will happen. In order to make something
meaningful happen with the photo, we are going to have to put a lot of other code in
place. We have to both save the picture and implement our view controller to display
the picture inside our collection view.

Temporarily saving a photo
To start, we are only going to concern ourselves with temporarily storing our
pictures in memory. To do this, we can add an image array as a property of our view
controller:

class ViewController: UIViewController {

 var photos = [UIImage]()

 // ...
}

Chapter 11

[251]

As we saw in the image picker delegate method, UIKit provides a class UIImage that
can represent images. Our photos property can store an array of these instances.
This means that the first step for us is to add new images to our property when the
callback is called:

 func imagePickerController(
 picker: UIImagePickerController,
 didFinishPickingImage image: UIImage!,
 editingInfo: [NSObject : AnyObject]!
)
 {
 self.photos.append(image)
 self.dismissViewControllerAnimated(true, completion: nil)
 }

Now every time the user takes or picks a new photo, we add it to our list, which
stores all of the images in memory. However, this isn't quite enough, we also want to
require a label for each photo.

To support this feature, let's create a new structure called Photo that has an image
and label property. At this point, I would create three groups in the LearningCamera
folder: Model, View, and Controller by right-clicking on the LearningCamera
folder and choosing New Group. I would move ViewController.swift into the
Controller group and then create a new Photo.swift file by right-clicking on the
Model group and selecting New File…. Just a plain Swift File is fine.

You should define your photo structure in that file:

import UIKit

struct Photo {
 let image: UIImage
 let label: String
}

We have to import UIKit because that is what defines UIImage. The rest of our
structure is straightforward as it just defines our two desired properties. The default
initializer will be fine for now.

Now, we can return to our ViewController.swift file and update our photos
property to be of the type Photo instead of UIImage:

var images = [Photo]()

A Whole New World – Developing an App

[252]

This now creates a new problem for us. How do we ask the user for the label for the
image? Let's do that in a standard alert. To display an alert, UIKit has a class called
UIAlertController. To use this, we will have to rework our function some. UIKit
does not allow you to present more than one view controller from the same view
controller at the same time. This means that we have to dismiss the photo picker and
wait for that to complete before displaying our alert:

self.dismissViewControllerAnimated(true) {
 // Ask User for Label

 let alertController = UIAlertController(
 title: "Photo Label",
 message: "How would you like to label your photo?",
 preferredStyle: .Alert
)

 alertController.addTextFieldWithConfigurationHandler()
 {
 textField in
 let saveAction = UIAlertAction(
 title: "Save",
 style: .Default
) { action in
 let label = textField.text ?? ""
 let photo = Photo(image: image, label: label)
 self.photos.append(photo)
 }
 alertController.addAction(saveAction)
 }

 self.presentViewController(
 alertController,
 animated: true,
 completion: nil
)
}

Chapter 11

[253]

Lets break down this code, as it is somewhat complex. To start, we are using the
trailing closure syntax for the dismissViewControllerAnimated:completion:
method. This closure is called once the view controller has finished animating
off the screen.

Next, we are creating an alert controller with a title, message, and Alert as its style.
Before we can display the alert controller, we have to configure it with a text field
and a save action. We start by adding the text field and use the trailing closure again
on addTextFieldWithConfigurationHandler:. This closure is called to give us an
opportunity to configure the text field. We are OK with the defaults but we are going
to want to know the text contained in the text field when saving so we can create
our save action directly within this alert and save ourselves the hassle of getting a
reference to it later.

Each action of an alert must be of the type UIAlertAction. In this case, we create one
with the title Save with the default style. The last parameter of the UIAlertAction
initializer is a closure that will be called when the user chooses that action. Again, we
use the trailing closure syntax.

Inside that callback, we get the text from the text field and use that, along with our
image, to create a new Photo instance and add it to our photos array.

Finally, we have to add our save action to the alert controller and then display the
alert controller.

Now if you run the app, it will ask you for a label for each photo after it is chosen but
it still won't appear to be showing it because we are not displaying the saved photos
yet. That is our next task.

A Whole New World – Developing an App

[254]

Populating our photo grid
Now that we are maintaining a list of photos, we need to display it in our collection
view. A collection view is populated by providing it with a data source that
implements its UICollectionViewDataSource protocol. Probably the most common
thing to do is to have the view controller be the data source. We can do this by
opening the Main.storyboard back up and control dragging from the collection view
to the view controller:

Chapter 11

[255]

When you let go, select dataSource from the menu. After that, all we need to do is
implement the data source protocol. The two methods we need to implement are
collectionView:numberOfItemsInSection: and collectionView:cellForItem
AtIndexPath:. The former allows us to specify how many cells should be displayed
and the latter allows us to customize each cell for a specific index into our list. It is
easy for us to return the number of cells that we want:

extension ViewController: UICollectionViewDataSource {
 func collectionView(
 collectionView: UICollectionView,
 numberOfItemsInSection section: Int
) -> Int
 {
 return self.photos.count
 }
}

All we have to do is return the number of elements in our photos property.

Configuring the cell is going to take a little bit more preparation. First, we need to
create our own cell subclass that can reference the image and label we created in the
storyboard. All collection view cells must subclass UICollectionViewCell. Let's call
ours PhotoCollectionViewCell and create a new file for it in the View group. Like
we needed a connection from the storyboard to our code for tapping the add button,
we need a connection for both the image and the label. However, this is a different
type of connection. Instead of an action, this type of connection is called an outlet,
which adds the object as a property to the view controller. We could use the same
click and drag technique we used for the action, but this time we will set up the code
in advance ourselves:

import UIKit

class PhotoCollectionViewCell: UICollectionViewCell {
 @IBOutlet var imageView: UIImageView!
 @IBOutlet var label: UILabel!
}

A Whole New World – Developing an App

[256]

Here we have specified two properties, each with a prefix of @IBOutlet. This prefix
is what allows us to make the connection in Interface Builder just like we did with
the data source. Both types are defined as implicitly unwrapped optionals because
these connections cannot be set when the instance is initialized. Instead, they are
connected when loading the view.

Now that we have that setup, we can go back to the storyboard and make the
connections. Currently the cell is still just the type of a generic cell so first we need
to change it to our class. Find the cell inside the view hierarchy on the left and click
on it. Select View | Utilities | Show Identify Inspector. In this inspection, we can
set the class of the cell to our class by entering PhotoCollectionViewCell in the
class field. Now if you navigate to View | Utilities | Show Connections Inspector
you will see our two outlets listed as possible connections. Click and drag from the
hollow gray circle next to imageView to the image view in the cell:

Chapter 11

[257]

Once you let go, the connection will be made. Do the same thing with the label
connection to the label we created before. We also need to set a reuse identifier for
our cell so that we can reference this template in code. You can do this by returning
to the Attributes Inspector and entering DefaultCell into the Identifier text field:

We are also going to need a reference to the collection view from within our view
controller. This is because we will need to ask the collection view to add a cell each
time a photo is saved. You can add this by writing the code first or by right clicking
and dragging from the collection view to the code. Either way, you should end up
with a property like this on the view controller:

class ViewController: UIViewController {
 @IBOutlet var collectionView: UICollectionView!

 // ...
}

A Whole New World – Developing an App

[258]

Then we are ready to implement the remaining data source method:

extension ViewController: UICollectionViewDataSource {
 // ...

 func collectionView(
 collectionView: UICollectionView,
 cellForItemAtIndexPath indexPath: NSIndexPath
) -> UICollectionViewCell
 {
 let cell = collectionView
 .dequeueReusableCellWithReuseIdentifier(
 "DefaultCell",
 forIndexPath: indexPath
) as! PhotoCollectionViewCell

 let photo = self.photos[indexPath.item]
 cell.imageView.image = photo.image
 cell.label.text = photo.label

 return cell
 }
}

The first line of this implementation asks the collection view for a cell with our
DefaultCell identifier. To understand this fully, we have to understand a little
bit more about how a collection view works. A collection view is designed to
handle virtually any number of cells. We could want to display thousands of cells
at once but it would not be possible to have thousands of cells in memory at one
time. Instead, the collection view will automatically reuse cells that have been
scrolled off the screen to save on memory. We have no way of knowing whether
the cell we get back from this call is new or reused, so we must always assume it
is being reused. This means that anything we configure on a cell in this method,
must always be reset on each call, otherwise, some old configurations may still
exist from its previous configuration. We end that call by casting the result to our
PhotoCollectionViewCell class so that we can configure our subviews properly.

Our second line is getting the correct photo out of our list. The item property on
the indexPath variable is the index of the photo that we are using to configure the
cell. At any time, this method could be called with any index between zero and the
number returned in our previous data source method. This means that in our case, it
will always be a number within our photos array, making it safe to assume that the
index is properly within its bounds.

Chapter 11

[259]

The next two lines set the image and label according to the photo and finally, the last
line returns that cell so that the collection view can display it.

At this point, if you ran the app and added a photo you still wouldn't see anything
because the collection view will not automatically reload its data when an element
is added to the photos array. That is because the collectionView:numberOfIte
msInSection: method is a callback. Callbacks are only called when other code
initiates it. This method is called once when the collection view is first loaded but
we must ask it to be called again manually from then on. The easiest way to do
this is to call reloadData on the collection view when we add a photo to the list.
This causes all of the data and cells to be loaded again. However, this does not look
very good because the cell will just pop into existence. Instead, we want to use the
insertItemsAtIndexPaths method. When used properly, this will cause a cell to
be animated onto the screen. The important thing to remember with this method is
that you must only call it after collectionView:numberOfItemsInSection: returns
the updated amount after the insertion. This means we must call it after we have
already added our photo to our property:

let saveAction = UIAlertAction(
 title: "Save",
 style: .Default
) { action in
 let label = textField.text ?? ""
 let photo = Photo(image: image, label: label)
 self.photos.append(photo)

 let indexPath = NSIndexPath(
 forItem: self.photos.count - 1,
 inSection: 0
)
 self.collectionView.insertItemsAtIndexPaths([indexPath])
}

Only the last two lines of this are new. First, we create an index path for where we
want to insert our new item. An index path consists of both an item and a section. All
of our items exist in a single section, so we can always set that to zero. We want the
item to be one less than the total count of photos because we just added it to the end
of the list. The last line is simply making the call to the insert items method that takes
an array of index paths.

A Whole New World – Developing an App

[260]

Now you can run your app and all saved photos will be displayed in the
collection view.

Refactoring to respect
model-view-controller
We have already made some good progress on the core functionality of our app.
However, before we move any further, we should reflect on the code we have
written. Ultimately, we haven't actually written that many lines of code, but it can
definitely be improved. The biggest shortcoming of our code is that we have put a
lot of business logic inside our view controller. This is not a good separation of our
different model, view, and controller layers. Let's take this opportunity to refactor
this code into a separate type.

We will create a class called PhotoStore that will be responsible for storing our
photos and that will implement the data source protocol. This will mean moving
some of our code out of our view controller.

First, we will move the photo's property to the photo store class:

import UIKit

class PhotoStore: NSObject {
 var photos = [Photo]()
}

Note that this new photo store class inherits from NSObject. This is necessary for us
to be able to fully satisfy the UICollectionViewDataSource protocol, which is our
next task.

We could simply move the code from our view controller to this class, but we do not
want our model to deal directly with our view layer. The current implementation
creates and configures our collection view cell. Lets allow the view controller to still
handle that by providing our own callback for when we need a cell for a given photo.
To do that, we will first need to add a callback property:

class PhotoStore: NSObject {
 var photos = [Photo]()
 var cellForPhoto:
 (Photo, NSIndexPath) -> UICollectionViewCell

 init(
 cellForPhoto: (Photo,NSIndexPath) -> UICollectionViewCell
)

Chapter 11

[261]

 {
 self.cellForPhoto = cellForPhoto

 super.init()
 }
}

We need to provide an initializer now so that we can get the callback function. Next,
we have to tweak our data source implementations and put them in this new class:

extension PhotoStore: UICollectionViewDataSource {
 func collectionView(
 collectionView: UICollectionView,
 numberOfItemsInSection section: Int
) -> Int
 {
 return self.photos.count
 }

 func collectionView(
 collectionView: UICollectionView,
 cellForItemAtIndexPath indexPath: NSIndexPath
) -> UICollectionViewCell
 {
 let photo = self.photos[indexPath.item]
 return self.cellForPhoto(photo, indexPath)
 }
}

The collectionView:numberOfItemsInSection: method can still just return the
number of photos in our array, but collectionView:cellForItemAtIndexPath: is
implemented to use the callback instead of creating a cell itself.

The second thing we need to add to this class is the ability to save a photo. Let's
add a method to take a new image and label that returns the index path that
should be added:

func saveNewPhotoWithImage(
 image: UIImage,
 labeled label: String
) -> NSIndexPath
{
 let photo = Photo(image: image, label: label)
 self.photos.append(photo)
 return NSIndexPath(

A Whole New World – Developing an App

[262]

 forItem: self.photos.count - 1,
 inSection: 0
)
}

This looks identical to the code we wrote in the view controller to do this, but it is
better separated.

Now our photo store is complete and we just have to update our view controller to
use it instead of our old implementation. First, lets add a photo store property that
is an implicitly unwrapped optional in ViewController so we can create it after the
view is loaded:

 var photoStore: PhotoStore!

To create our photo store in viewDidLoad, we will call the photo store initializer and
pass it a closure that can create the cell. For clarity, we will define that closure as a
separate method:

func createCellForPhoto(
 photo: Photo,
 indexPath: NSIndexPath
) -> UICollectionViewCell
{
 let cell = self.collectionView
 .dequeueReusableCellWithReuseIdentifier(
 "DefaultCell",
 forIndexPath: indexPath
) as! PhotoCollectionViewCell

 cell.imageView.image = photo.image
 cell.label.text = photo.label

 return cell
}

This method looks almost identical to our old collectionView:cellForItemAtInde
xPath: implementation; the only difference is that we already have a reference to the
correct photo.

Chapter 11

[263]

This method allows our viewDidLoad implementation to be very simple. All we need
to do is initialize the photo store with a reference to this method and make it the data
source for the collection view:

override func viewDidLoad() {
 super.viewDidLoad()
 self.photoStore = PhotoStore(
 cellForPhoto: self.createCellForPhoto
)
 self.collectionView.dataSource = self.photoStore
}

Lastly, we just have to update the save action to use the photo store:

let saveAction = UIAlertAction(
 title: "Save",
 style: .Default
) { action in
 let label = textField.text ?? ""
 let indexPath = self.photoStore.saveNewPhotoWithImage(
 image,
 labeled: label
)
 self.collectionView.insertItemsAtIndexPaths([indexPath])
}

You can run the app again and it will operate as before, but now our code is
modular, which will make any future changes much easier.

Permanently saving a photo
Our app works pretty well for saving pictures, but as soon as the app quits, all of
the photos are lost. We need to add a way to save the photos permanently. Our
refactoring of the code allows us to work primarily within the model layer now.

Before we write any code, we have to decide how we are going to store the photos
permanently. There are many ways in which we can choose to save the photos, but
one of the easiest is to save it to the file system, which is what we conceived of in our
conception phase. Every app is provided a documents directory that is automatically
backed up by the operating system as a part of normal backups. We can store our
photos in there as files named after the label the user gives them. To avoid any
problems with duplicate labels, where we would have multiple files named the same
thing, we can nest every file inside a subdirectory named after the time the photos is
saved. The time stamp will always be unique because we will never save two photos
at the exact same time.

A Whole New World – Developing an App

[264]

Now that we have that decided, we can start to update our photo store code. First,
we will want to have an easy way to use a consistent directory for saving. We can
create that by adding a method called getSaveDirectory. This method can be
private and, as a convention, I like to group private code in a private extension:

private extension PhotoStore {
 func getSaveDirectory() throws -> NSURL {
 let fileManager = NSFileManager.defaultManager()
 return try fileManager.URLForDirectory(
 .DocumentDirectory,
 inDomain: .UserDomainMask,
 appropriateForURL: nil,
 create: true
)
 }
}

This code first gets a URL representing the documents directory from an
Apple-provided class called NSFileManager. You may notice that NSFileManager
has a shared instance that can be accessed through the defaultManager class
method. We then call the URLForDirectory method, give it information indicating
that we want the documents directory for the current user, and return the result.
Note that this method can throw an error, so we marked our own method as
throwing and did not allow any errors to propagate.

Now we can move on to saving all added images to disk. There are a number of
things that we will need to be done. First, we need to get the current time stamp. We
can do this by creating an NSDate instance, asking that for the time stamp and using
string interpolation to turn it into a string:

let timeStamp = "\(NSDate().timeIntervalSince1970)"

NSDate instances can represent any sort of time on any date. By default, all NSDate
instances are created to represent the current time.

Next, we are going to want to append that onto our save directory to
get the path where we are going to save the file. For that, we can use the
URLByAppendingPathComponent: method of NSURL:

let fullDirectory = directory.URLByAppendingPathComponent(
 timestamp
)

Chapter 11

[265]

This will ensure that the proper path slash is added, if it is not already there. Now
we need to make sure that this directory exists before we try to save a file to it. This
is done using a method on NSFileManager:

NSFileManager.defaultManager().createDirectoryAtURL(
 fullDirectory,
 withIntermediateDirectories: true,
 attributes: nil
)

This method can throw if there is an error, which we will need to handle later. It is
still considered a success if the directory already exists. Once we are sure that the
directory has been created, we will want to create the path to the specific file using
the label text:

let fileName = "\(self.label).jpg"
let filePath = fullDirectory
 .URLByAppendingPathComponent(fileName)

Here we used string interpolation to add a .jpg extension to the file name.

Most importantly, we will need to convert our image to data that can be saved to a
file. For that, UIKit provides a function called UIImageJPEGRepresentation that
takes the UIImage and returns an NSData instance:

let data = UIImageJPEGRepresentation(self.image, 1)

The second parameter is a value between zero and one representing the compression
quality we want. In this case, we want to save the file at full quality, so we use 1. It
then returns an optional data instance, so we will need to handle the scenario where
it returns nil.

Finally, we need to save that data to the file path we created:

data.writeToURL(filePath, atomically: true)

This method on NSData simply takes the file path and a Boolean indicating if we
want it to write to a temporary location before it overwrites any existing file. It also
returns true or false depending on if it is successful. Unlike directory creation, this
will fail if the file already exists. However, since we are using the current time stamp
that should never be a problem.

A Whole New World – Developing an App

[266]

Lets combine all of this logic into a method on our photo structure that we can use
later to save it to disk, which throws an error in case of an error:

struct Photo {
 // ...

 enum Error: String, ErrorType {
 case CouldntGetImageData = "Couldn't get data from image"
 case CouldntWriteImageData = "Couldn't write image data"
 }

 func saveToDirectory(directory: NSURL) throws {
 let timeStamp = "\(NSDate().timeIntervalSince1970)"
 let fullDirectory = directory
 .URLByAppendingPathComponent(timeStamp)
 try NSFileManager.defaultManager().createDirectoryAtURL(
 fullDirectory,
 withIntermediateDirectories: true,
 attributes: nil
)
 let fileName = "\(self.label).jpg"
 let filePath = fullDirectory
 .URLByAppendingPathComponent(fileName)
 if let data = UIImageJPEGRepresentation(self.image, 1) {
 if !data.writeToURL(filePath, atomically: true) {
 throw Error.CouldntWriteImageData
 }
 }
 else {
 throw Error.CouldntGetImageData
 }
 }
}

First, we define a nested enumeration for our possible errors. Then we define the
method to take the root level directory where it should be saved. We allow any
errors from the directory creation to propagate. We also need to throw our errors if
the data comes back nil or if the writeToURL:automatically: method fails.

Chapter 11

[267]

Now we need to update our saveNewPhotoWithImage:labeled: to use the
saveToDirectory: method. Ultimately, if an error is thrown while saving the photo,
we will want to display something to the user. That means that this method will
need to just propagate the error, because the model should not be the one to display
something to the user. That results in the following code:

func saveNewPhotoWithImage(
 image: UIImage,
 labeled label: String
) throws -> NSIndexPath
{
 let photo = Photo(image: image, label: label)
 try photo.saveToDirectory(self.getSaveDirectory())
 self.photos.append(photo)
 return NSIndexPath(
 forItem: self.photos.count - 1,
 inSection: 0
)
}

If the saving to directory fails, we will skip the rest of the method so we won't add it
to our photos list. That means we need to update the view controller code that calls it
to handle the error. First, let's add a method to make it easy to display an error with a
given title and message:

func displayErrorWithTitle(title: String?, message: String) {
 let alert = UIAlertController(
 title: title,
 message: message,
 preferredStyle: .Alert
)
 alert.addAction(UIAlertAction(
 title: "OK",
 style: .Default,
 handler: nil
))
 self.presentViewController(
 alert,
 animated: true,
 completion: nil
)
}

A Whole New World – Developing an App

[268]

This method is simple. It just creates an alert with an OK button and then presents it.
Next, we can add a function to display any kind of error we will expect. It will take
a title for the alert that will pop-up, so we can customize the error we are displaying
for the scenario that produced it:

func displayError(error: ErrorType, withTitle: String) {
 switch error {
 case let error as NSError:
 self.displayErrorWithTitle(
 title,
 message: error.localizedDescription
)
 case let error as Photo.Error:
 self.displayErrorWithTitle(
 title,
 message: error.rawValue
)
 default:
 self.displayErrorWithTitle(
 title,
 message: "Unknown Error"
)
 }
}

We expect either the built-in error type of NSError that will come from Apple's APIs
or the error type we defined in our photo type. The localized description property
of Apple's errors just creates a description in the locale the device is currently
configured for. We also handle any other error scenarios by just reporting it as an
unknown error.

I would also extract our save action creation to a separate method so we
don't overcomplicate things when we add in our do-catch blocks. This
will be very similar to our previous code but we will wrap the call to
saveNewPhotoWithImage:labeled: in a do-catch block and call our
error handling method on any thrown errors:

func createSaveActionWithTextField(
 textField: UITextField,
 andImage image: UIImage
) -> UIAlertAction
{
 return UIAlertAction(
 title: "Save",
 style: .Default

Chapter 11

[269]

) { action in
 do {
 let indexPath = try self.photoStore
 .saveNewPhotoWithImage(
 image,
 labeled: textField.text ?? ""
)
 self.collectionView.insertItemsAtIndexPaths(
 [indexPath]
)
 }
 catch let error {
 self.displayError(
 error,
 withTitle: "Error Saving Photo"
)
 }
 }
}

That leaves us with just needing to update the imagePickerController:didFinish
PickingImage:editingInfo: method to use our new save action creating method:

// ..

alertController.addTextFieldWithConfigurationHandler()
{
 textField in
 let saveAction = self.createSaveActionWithTextField(
 textField,
 andImage: image
)
 alertController.addAction(saveAction)
}

// ..

That completes the first half of permanently storing our photos. We are now saving
the images to disk but that is useless if we don't load them from disk at all.

To load an image from disk, we can use the contentsOfFile: initializer of UIImage
that returns an optional image:

let image = UIImage(contentsOfFile: filePath.relativePath!)

A Whole New World – Developing an App

[270]

To convert our file path URL to a string, which is what the initializer requires, we can
use the relative path property.

We can get the label for the photo by removing the file extension and getting the last
component of the path:

let label = filePath.URLByDeletingPathExtension?
 .lastPathComponent ?? ""

Now we can combine this logic into an initializer on our Photo struct. To do this, we
will also have to create a simple initializer that takes the image and label so that our
other code that uses the default initializer still works:

init(image: UIImage, label: String) {
 self.image = image
 self.label = label
}

init?(filePath: NSURL) {
 if let image = UIImage(
 contentsOfFile: filePath.relativePath!
)
 {
 let label = filePath.URLByDeletingPathExtension?
 .lastPathComponent ?? ""
 self.init(image: image, label: label)
 }
 else {
 return nil
 }
}

Lastly, we need to have the image store enumerate through the files in the
documents directory calling this initializer for each one. To enumerate through
a directory, NSFileManager has an enumeratorAtFilePath: method. It returns
an enumerator instance that has a nextObject method. Each time it is called, it
returns the next file or directory inside the original directory. Note that this will
enumerate all children of each subdirectory it finds. This is a great example of the
iterator pattern we saw in Chapter 9, Writing Code the Swift Way – Design Patterns and
Techniques. We can determine if the current object is a file using the fileAttributes
property. All of that lets us write a loadPhotos method like this:

func loadPhotos() throws {
 self.photos.removeAll(keepCapacity: true)

 let fileManager = NSFileManager.defaultManager()

Chapter 11

[271]

 let saveDirectory = try self.getSaveDirectory()
 let enumerator = fileManager.enumeratorAtPath(
 saveDirectory.relativePath!
)
 while let file = enumerator?.nextObject() as? String {
 let fileType = enumerator!.fileAttributes![NSFileType]
 as! String
 if fileType == NSFileTypeRegular {
 let fullPath = saveDirectory
 .URLByAppendingPathComponent(file)
 if let photo = Photo(filePath: fullPath) {
 self.photos.append(photo)
 }
 }
 }
}

The first thing we do in this method is remove all existing photos. This is to protect
against calling this method when there are already photos in it. Next, we create an
enumerator from our save directory. Then, we use a while loop to continue to get
each next object until there are none left. Inside the loop we check if the object we
just got is actually a file. If it is and we create the photo successfully with the full
path, we add the photo to our photos array.

Finally, all we have to do is make sure this method is called at the appropriate time
to load the photos. A great time to do this, considering we want to be able to show
errors to the user, is right before the view will be displayed. As the view controllers
have a method for right after the view has been loaded, there is also a method
called viewWillAppear: that is called every time the view is about to appear.
In here we can load the photos and also display any errors to the user with our
displayError:withTitle: method:

override func viewWillAppear(animated: Bool) {
 super.viewWillAppear(animated)

 do {
 try self.photoStore.loadPhotos()
 self.collectionView.reloadData()
 }
 catch let error {
 self.displayError(
 error,
 withTitle: "Error Loading Photos"
)
 }
}

A Whole New World – Developing an App

[272]

Now if you run the app, save some photos, and quit it, your previously saved
photos will be there when you run it again. We have completed the saving
photos functionality!

Summary
This app is far from being something that we could put on the store, but it gives you
a good first dive into what it is like to build an iOS app. We have covered how to
conceptualize an app and then how to go about making it a reality. We know how
to configure an interface in a storyboard, how to run it, and we got into the practical
details of saving photos both temporarily and permanently to disk and displaying
those in our own custom interface. We even got some practice writing high quality
code by ensuring our code sticks with the model-view-controller design pattern as
best we can.

Even though we have covered a lot, this clearly isn't enough information to
immediately write any other iOS app. The key is to get an insight into what the
app development process looks like and to start to feel more comfortable in an iOS
app project. All developers spend lots of time searching the documentation and the
Internet for how to do specific things on any given platform. The key is being able
to take solutions you find on the Internet or in books, determine the best one for
your use case, and integrate them effectively into your own code. Over time, you
will be able to do more and more on your own without looking it up, but with
ever-changing frameworks and platforms, that will always be a part of your
development cycle.

With that in mind, I now challenge you to complete the feature list we
conceptualized. Figure out how to delete a picture and add whatever other features,
usability tweaks, or visual tweaks you want. As I said before, app development is a
completely new world to explore. There are so many things that you can tweak,
even with this simple app; all of it will help you learn tons.

Coming up in our final chapter, we will look at where you can go from here to
become the best Swift developer you possibly can.

[273]

What's Next? – Resources,
Advice, and the Next Steps

At this point, we have covered a lot in the book. Swift is not a small topic and app
development itself is orders of magnitude bigger than that. We learned most of Swift
but it would not have been practical to cover every little feature of the language and
Swift is still a new and evolving language. You are never going to be able to keep
everything you've learned in your memory without being able to refer to it later.
You can always refer back to this book but Apple's documentation can be a great
reference too. Beyond that, if you truly want to become a proficient Swift developer,
you can ensure your success by always learning and evolving. It is extremely hard to
do that in a vacuum. The best way to ensure that you are keeping up with the times
is to follow and participate in the community around whatever topics interest you
the most. In this chapter, we will go over how to use Apple's documentation and
some suggestions on where you can find and participate in the Swift, iOS, and OS X
developer community. More specifically, in this chapter we will cover:

•	 Apple's documentation
•	 Forums and blogs
•	 Prominent figures
•	 Podcasts

Apple's documentation
Apple puts a lot of time and effort into maintaining its documentation.
This documentation can often be a very valuable tool to determine how
you are expected to interact with their frameworks.

What's Next? – Resources, Advice, and the Next Steps

[274]

Xcode actually integrates with the documentation quite well. One of the main ways
you can look at the documentation is within the Quick Help inspector. You can
display it by navigating to View | Utilities | Show Quick Help Inspector from
the main menu. This inspector shows you the documentation of whatever piece of
code you currently have your cursor on. If that particular class, method, or function
is a part of Apple's frameworks, you will get some quick help with regards to it, as
shown in the following screenshot:

Here the cursor is on UICollectionView, so the Quick Help inspector gives us the
high-level information about it.

You can also look at the documentation in its own window if you need more
information or want to do more exploring. You can open up this window at any time
by navigating to Help | Documentation and API Reference and you can search for
any topic you want. However, you can also jump right to a specific piece of code's
documentation by holding the Option key and double-clicking on it. For example, if
you were to hold the Option key and double-click on isSourceTypeAvailable, you
would get the following full documentation window:

Chapter 12

[275]

This window acts very similar to the Web. You can navigate through the
documentation by clicking on any of the links or searching for a completely
unrelated topic. You can also jump to specific parts of a documentation page
using the outline view on the left-hand side of the screen.

This documentation is particularly useful when you already have a sense of what
parts of the framework you need to use for a particular task. You can then use this
documentation to figure out the specifics of how to properly use that part of the
framework. As you get better acquainted with Apple's frameworks, this will become
more useful, because it is relatively easy to remember what parts of the framework
you use for all of the common tasks, but it is far more difficult and often impractical
to remember exactly how they work. However, sometimes the documentation is not
enough. The next place you should look for answers is online.

What's Next? – Resources, Advice, and the Next Steps

[276]

Forums and blogs
Whenever you have a problem or question while programming, odds are almost
guaranteed that someone else has already run into it and the odds are also very
good that someone has already written about it somewhere. Before you jump
right to asking a question on a forum, I strongly recommend that you do your
own searching. First of all, you want to save the valuable time of the community
members. If they are constantly answering the same questions over and over again,
they are dedicating a lot less time to truly new questions. Second, you will often
find that you discover the answer for yourself in the process of formulating your
thoughts, on how to search for it. Lastly, you will become much better at searching
for programming related problems as you practice it more. Forums are usually going
to be very slow compared to finding your own answer and obviously time is money.

Most of the time when you use a search engine to look up a problem; you will find
two main types of resources with answers: blog posts and forums.

Blog posts
Similar to books, blog posts are fantastic for larger, higher-level considerations. You
may search for something, such as: "ways to permanently store information," and
you will probably find many blog posts talking about the different ways you can do
that. Blog posts are generally better for this because they can discuss the nuances of
different solutions and they aren't restricted to target a small problem.

Blog posts can also be great for extremely in-depth and nuanced problems. For
example, there are some major and complicated repercussions of our move from
32-bit to 64-bit processors. Truly understanding the underlying problem will be far
more valuable for you in moving forward than finding a quick solution for your
immediate problem; if you can't find a book, blog posts are ideal to give you that
kind of understanding.

Forums
Forms are incredible at giving you very quick solutions to very specific problems.
The most common forums are probably http://stackoverflow.com/ and forums.
developer.apple.com. On sites like these, there are very dedicated communities
of people answering and asking questions. The Apple developer forum even has
Apple employees answering questions. Asking good questions is just as important
as answering questions well. These sites act not only as a way to get an answer to a
new question but as living documentation for people searching for an answer in the
future. A well-framed question is going to be more easily answered and more easily
found by a search engine.

http://stackoverflow.com/
forums.developer.apple.com
forums.developer.apple.com

Chapter 12

[277]

Stack Overflow has a great documentation on what makes good questions and
answers, but generally they should have the following characteristics:

•	 Be specific and clear about what you are asking for.
•	 Make it easy for other people to reproduce the problem on their

own systems.
•	 Be respectful of any answerer's time by putting as much effort as you can

into the question up front.

The last point is the most important one. You want to phrase your questions to allow
someone with more knowledge than you to hone in on the exact problem instead
of wasting time on things you could figure out on your own. This will often mean
describing all of the things you have tried already and what roadblocks you hit. The
clearer you make it that you have put real effort into solving the problem yourself,
the better reception you will get from the community and also better answers. I
cannot even count all the times that I have figured out the solution to a problem
while I was writing up a question on a forum. This type of solution is going to be far
more memorable and long lasting than a solution that someone else gives you.

Prominent figures
The more experienced you get at programming with a specific language and/or
framework, the more likely you are to get stuck in a pattern of solving problems
the same ways over and over again. Odds are that other people have figured out
better ways to solve the same problem and someone, somewhere, is talking about
it. You have to at least observe the community, even if you are not participating
in it yourself.

One of the best ways to follow the community is to follow the prominent figures in it.
For example, for Swift, it is a great idea to follow Chris Lattner, the original creator of
Swift. While numerous people now develop Swift, he spent more than a year as the
sole developer and continues to run the Developer Tools department at Apple. You
can follow him on Twitter @clattner_llvm and it can also be useful to follow his
activity on Apple's Developer forums at https://devforums.apple.com/people/
ChrisLattner. You can click on the Email Updates button to get emails about
his activity.

Other than Chris Lattner, there are many other valuable people to pay attention to
but only you can decide who is valuable to you. Pay attention to the names you are
seeing a lot within the community and find out if they have blogs, podcasts, or any
other places you can keep up with what they are saying.

https://devforums.apple.com/people/ChrisLattner
https://devforums.apple.com/people/ChrisLattner

What's Next? – Resources, Advice, and the Next Steps

[278]

Podcasts
If you are not familiar with podcasts, they are an incredibly valuable way of keeping
up with virtually any topic in a relatively passive manner. They are essentially
on-demand radio shows that you can subscribe to. You can listen to them whenever
you want like when driving, doing housework, or working out. That is why they
are particularly valuable: they can turn relatively dull situations into fantastic
learning opportunities.

Apple has a podcast app built right into iOS that you can use or there are also
numerous other podcast apps on the app store that I recommend you check out.
Most of these apps include discovery mechanisms that make it easier to find new
podcasts and many podcasts will also talk about other podcasts they recommend.

It is hard to recommend specific podcasts because most development podcasts do
not last particularly long. It takes a lot of time and energy to produce a podcast, so
many people do it for a while and take long breaks or decide to stop after a while.
However, because of the on-demand nature of podcasts, it can still be very valuable
to go back and listen to old episodes of podcasts. Three podcasts that are great to get
you started are:

•	 Core intuition: Great podcast from prominent developers Daniel Jalkut and
Manton Reece about general development topics.

•	 Accidental tech podcast: General, Apple oriented tech discussion from
big names in the industry including Marco Arment: a very inspirational
developer for me.

•	 Under the radar: A nice and concise podcast that is always 30 minutes or
less but often contains valuable nuggets of information centered around
independent Apple development. It is hosted by Marco Arment and David
Smith, another inspirational developer.

Some podcasts are so valuable and entertaining that you will want to listen to every
episode. Others are great for picking and choosing episodes that seem interesting
and relevant to you. Whatever you do, I recommend you don't miss out on this free
and easy opportunity to keep up with the development community.

Chapter 12

[279]

Summary
The short length of this chapter is in stark contrast to its importance. If there is one
thing I could leave you with after reading this book, it is that the best developers
know how to seek out and find solutions for themselves from the many sources
available to us. Sometimes those solutions are in books like this one; other times
they are in documentation, blog posts, forums, podcasts, or even conversations with
other people. The developer that can not only find these solutions, but also integrate
and truly understand them is going to be incredibly valuable for the rest of their
career. However, if you feel overwhelmed at the beginning, do not fret because we
all started there. Focus your energy on one problem at a time and don't settle for a
solution that just seems to work. Make sure that you understand every solution you
put in place and you will quickly, without even realizing it, become an incredibly
proficient developer.

[281]

Index
A
abstract factory pattern 193, 194
access controls

about 77
internal 77
private 77
public 77

annotations, Objective-C
about 230
container element types 230
nullability 230

app
conceptualizing 234
data 235
features 234
interface 234, 235
refactoring, to respect

model-view-controller 260-262
running 246

Apple
documentation 273-275

app project
setting up 236-238

arrays 13, 14
associated values

about 64
class hierarchies, replacing 195
state, representing 195, 196
using 194

Auto Layout 243
automatic reference counting

about 146, 147
object relationships 147

B
bar button items 242
basic functions 25
behavioral patterns

about 179
iterator pattern 179, 180
observer pattern 180

blog posts 276
blogs 276
bridging header 228
building blocks

implementing 31-36
building blocks, functional programming

about 104
filter 105
for avoiding state 108
map 107
reduce 105, 106
sorted 107

C
capture lists 146
case 19
casting

about 59
downcasting 60
upcasting 60

class
about 51
casting 59
inheriting, from another class 51-53
initialization 53

[282]

methods and computed properties,
overriding 57

classes, Objective-C
about 215
basic class 216
inheritance 220
initializers 216, 217
methods 219
properties 217-219

closed range 23
closures

about 101
as parameters 102
as variables 101
syntactic sugar 103

cohesion 178
collection types

arrays 13, 14
dictionaries 14, 15
tuples 13

collection view cell 244
command-line tool 67
compiler 8
complexity 179
composite pattern

about 183
alternative to subclassing 186, 187
hierarchies 183-185

computed properties
about 45
overriding 58

computer data storage
about 138
file system 138
memory 138, 139

conditionals 18, 19
console

printing to 17, 18
constants 12
containers 12
containers, Objective-C

about 205
arrays 205-207
dictionaries 207, 208

control flow
about 18
conditionals 18, 19

loops 22-24
switches 19-21

control flow, Objective-C
about 208
conditionals 209
loops 210, 211
switches 209

convenience initializers 56, 57
core Swift types

about 12
constants 12
containers 12
variables 12

coupling 178
creational patterns

about 190
abstract factory 193, 194
singleton/shared instance 191, 192

D
declarative 99
default arguments 29
defer block 174
delegate pattern 187, 188
designated initializers 56
design patterns

about 177, 178
behavioral 179
creational 190
structural 183

development environment
setting up 3

dictionaries 14, 15
downcasting 60

E
enumeration

about 61
associated values 64-66
basic declaration 61
enumeration values, testing 62
methods and properties 66, 67
raw values 63

error handling
about 161-164
error, catching 165-172

[283]

errors, propagating 172, 173
forceful try 164
optional try 164, 165

error situations, cleaning
about 173
deferring execution 174-176
order of execution when

errors occur 173, 174
errors, throwing

about 161
error type, defining 162
function that throws error, defining 162
function that throws error,

implementing 162, 163
existing generics, extending

about 125
methods, adding to all forms

of generic 125-127
methods, adding to certain instances

of generic 127
protocols, extending 128-130

extensions 75, 76
external name 29

F
factory 193
forced unwrapping 85, 86
forums

about 276, 277
reference 276

functional programming
about 97, 98
building blocks 104
declarative, versus imperative code 99, 100
side effects 98, 99
state 98
stateless function 98

functions
about 25
basic functions 25
functions that return values 27, 28
functions with default arguments 29, 30
guard statement 30, 31
parameterized functions 26

functions, Objective-C
about 212, 213
annotations 230
containers 229
types, using 229
using 228

G
generators 131, 132
generics

about 113, 119
generic function 119, 120
generic type 120, 121
implementing 131
type constraints 122

getter 45
GIF 60
guard statement 30, 31

H
half open range 23

I
imperative code 99
implicitly unwrapped optional

about 89
defining 89-91

inheritance 51
initializers

about 53
convenience initializers 56, 57
designated initializers 56, 57
overriding initializer 54
required initializer 54, 55

Instruments 152
Interface Builder 238
internal name 29
iterator pattern 179, 180

K
keys 14

[284]

L
lazy evaluation 108, 109
lazy properties

about 198
logic to concerned property, localizing 199
unnecessary memory usage, avoiding 198
unnecessary processing, avoiding 199

Leaks 152
leaky abstraction 78
loops

about 22, 23
while loop 22

lost objects
about 158
between objects 158
with closures 159

M
Mac App Store

reference 3
member and static functions 42
member constants 41
member variables 41
memory management 137
methods

overriding 57, 58
model view controller pattern 188-190
mutating method 43

N
named parameters 29
navigation bar 239
nil coalescing operator 87

O
Objective-C

background 202
constants 203
containers 205
control flow 208
functions 212, 213
functions, using 228
projects 225
reference types 203, 204

Swift's relationship 202
type system 213
value types 203
variables 203

Objective-C code
bridging header 228
calling, from Swift 227

object-oriented programming
about 39, 97
example 109-111

object relationships
about 147
strong 147-149
unowned 150
weak 149, 150

objects 39
observer pattern

about 180
callback 181
notification center 182

optional
about 47, 81
debugging 91-94
defining 82
forced unwrapping 85, 86
nil coalescing operator 87
optional binding 83-85
unwrapping 83

optional chaining 87, 88
overriding initializer 54

P
parameterized functions 26, 27
photo

saving permanently 263-271
saving temporarily 250-253

photo grid
populating 254-259

picture taking
allowing 247-250

playgrounds 7, 8
podcasts

about 278
accidental tech podcast 278
core intuition 278
under the radar 278

[285]

product of Fibonacci numbers under 50
calculating 133-135

projects
about 67
code, interfacing from other files 71-74
command-line Xcode project,

setting up 68, 69
external file, creating 70
external file, using 70
file organization 74, 75
navigation 74, 75

projects, Objective-C
about 225
header files 225, 226
implementation files 226, 227
organization 227

prominent figures 277
properties 42
protocols

about 113
defining 114
implementing 114-116, 131
type aliases, using 117, 118

R
raw value 63
required initializer 54, 55

S
scope

about 76
defining 76
global scope 76
nested types 76, 77

separation of concerns 71
sequences 23, 132, 133
setter 45
singleton/shared instance pattern 191, 192
Size Inspector 244
static constant 41
static methods 43
string interpolation 18
string literal 15
strong reference cycle 150

strong reference cycle, between objects
about 151
fixing 155
spotting 151-154

strong reference cycle, with closures
about 156
fixing 157
spotting 156

structs
about 40
computed properties 45, 46
custom initialization 48-51
member and static methods 42-44
properties 41, 42
property changes, reacting to 46, 47
subscripts 47, 48
types, versus instances 40, 41

structural patterns
about 183
composite pattern 183
delegate pattern 187, 188
model view controller 188-190

structures
versus classes 159, 160

subclass 52
subscripts 47
superclass 52
Swift

about 1
goals, defining 2

swift code
running 3-7

switches 19-21
system types

extending 196, 197

T
tuples 13
type aliases

about 117
using 117

type constraints
about 122
protocol constraints 122-124
where clauses, for equality 125
where clauses, for protocols 124

[286]

Type Inference 15
type system 15, 16
type system, Objective-C

about 213
blocks 223-225
categories 220, 221
classes 215
enumerations 214, 215
protocols 222
structures 214

U
underlying implementation 94, 95
upcasting 60
user interface

configuring 238-245

V
values 14
value types, versus reference types

about 139
behavior on assignment 140, 141
behavior on input 142-144
closure capture behavior 144-146
reference type, determining 140
value type, determining 140

variables 12

X
Xcode 3

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Swift

	Defining our goals for this book
	Setting up the development environment
	Running our first swift code
	Understanding playgrounds
	Learning with this book
	Summary

	Chapter 2: Building Blocks – Variables, Collections, and Flow Control

	Core Swift types
	Constants and variables
	Containers
	Tuples
	Arrays
	Dictionaries

	Swift's type system
	Printing to the console
	Control flow
	Conditionals
	Switches
	Loops

	Functions
	Basic functions
	Parameterized functions
	Functions that return values
	Functions with default arguments
	Guard statement

	Bringing it all together
	Summary

	Chapter 3: One Piece at a Time – Types, Scopes, and Projects

	Structs
	Types versus instances
	Properties
	Member and static methods
	Computed properties
	Reacting to property changes
	Subscripts
	Custom initialization

	Classes
	Inheriting from another class
	Initialization
	Overriding initializer
	Required initializer
	Designated and convenience initializers

	Overriding methods and computed properties
	Methods
	Computed properties

	Casting
	Upcasting
	Downcasting

	Enumerations
	Basic declaration
	Testing enumeration values
	Raw values
	Associated values
	Methods and properties

	Projects
	Setting up a command-line Xcode project
	Creating and using an external file
	Interfacing with code from other files
	File organization and navigation

	Extensions
	Scope
	How scope is defined
	Nested types

	Access control
	Summary

	Chapter 4: To Be or Not to
Be – Optionals

	Defining an optional
	Unwrapping an optional
	Optional binding
	Forced unwrapping
	Nil coalescing

	Optional chaining
	Implicitly unwrapped optionals
	Debugging optionals
	The underlying implementation
	Summary

	Chapter 5: A Modern Paradigm – Closures and Functional Programming

	Functional programming philosophy
	State and side effects
	Declarative versus imperative code

	Closures
	Closures as variables
	Closures as parameters
	Syntactic sugar

	Building blocks of functional programming in Swift
	Filter
	Reduce
	Map
	Sort
	How these affect the state and nature of code

	Lazy evaluation
	Example
	Summary

	Chapter 6: Make Swift Work for You – Protocols and Generics

	Protocols
	Defining a protocol
	Implementing a protocol
	Using type aliases

	Generics
	Generic function
	Generic type
	Type constraints
	Protocol constraints
	Where clauses for protocols
	Where clauses for equality

	Extending generics
	Adding methods to all forms of a generic
	Adding methods to only certain instances of a generic
	Extending protocols

	Putting protocols and generics to use
	Generators
	Sequences
	Product of Fibonacci numbers under 50

	Summary

	Chapter 7: Everything is Connected – Memory Management

	Computer data storage
	File system
	Memory

	Value types versus reference types
	Determining value type or reference type
	Behavior on assignment
	Behavior on input
	Closure capture behavior

	Automatic reference counting
	Object relationships
	Strong
	Weak
	Unowned

	Strong reference cycles
	Between objects
	Spotting
	Fixing

	With closures
	Spotting
	Fixing

	Lost objects
	Between objects
	With closures

	Structures versus classes
	Summary

	Chapter 8: Paths Less Travelled – Error Handling

	Throwing errors
	Defining an error type
	Defining a function that throws an error
	Implementing a function that throws an error

	Handling errors
	Forceful try
	Optional try
	Catching an error
	Propagating errors

	Cleaning up in error situations
	Order of execution when errors occur
	Deferring execution

	Summary

	Chapter 9: Writing Code the Swift
Way – Design Patterns
and Techniques

	What is a design pattern?
	Behavioral patterns
	Iterator
	Observer
	Callback
	Notification center

	Structural patterns
	Composite
	Hierarchies
	Alternative to subclassing

	Delegate
	Model view controller

	Creational patterns
	Singleton/shared instance
	Abstract factory

	Using associated values effectively
	Replacing class hierarchies
	Concisely representing state

	Extending system types to reduce code
	Lazy properties
	Avoiding unnecessary memory usage
	Avoiding unnecessary processing
	Localizing logic to the concerned property

	Summary

	Chapter 10: Harnessing the
Past – Understanding and Translating Objective-C

	Swift's relationship to Objective-C
	Background of Objective-C
	Constants and variables
	Value types
	Reference types

	Containers
	Arrays
	Dictionaries

	Control flow
	Conditionals
	Switches
	Loops

	Functions
	Types
	Structures
	Enumerations
	Classes
	Basic class
	Initializers
	Properties
	Methods
	Inheritance

	Categories
	Protocols
	Blocks

	Projects
	Header files
	Implementation files
	Organization

	Calling Objective-C code from Swift
	Bridging header

	Using functions
	Using types
	Containers
	Annotations
	Nullability
	Container element types

	Summary

	Chapter 11: A Whole New World – Developing an App

	Conceptualizing the app
	Features
	Interface
	Data

	Setting up the app project
	Configuring the user interface
	Running the app
	Allowing picture taking
	Temporarily saving a photo
	Populating our photo grid
	Refactoring to respect model-view-controller
	Permanently saving a photo
	Summary

	Chapter 12: What's Next? – Resources, Advice, and the Next Steps

	Apple's documentation
	Forums and blogs
	Blog posts
	Forums

	Prominent figures
	Podcasts
	Summary

	Index

