
www.allitebooks.com

http://www.allitebooks.org

Magento 1.8
Development
Cookbook

Over 70 recipes to learn Magento development
from scratch

Bart Delvaux

Nurul Ferdous

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Magento 1.8 Development Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: December 2010

Second Edition: February 2014

Production Reference: 1130214

Published by Packt Publishing Ltd.

Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-332-9

www.packtpub.com

Cover Image by Bart Delvaux (info@bartdelvaux.be)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Bart Delvaux

Nurul Ferdous

Reviewers
Bartosz Górski

Aron Kerr

Tiago Sampaio

 Acquisition Editors
Nikhil Karkal

Mary Jasmine Nadar

Dilip Venkatesh

Content Development Editor
Athira Laji

Technical Editors
Arwa Manasawala

Veena Pagare

Manal Pednekar

Copy Editors
Roshni Banerjee

Mradula Hegde

Gladson Monteiro

Adithi Shetty

Project Coordinator
Shiksha Chaturvedi

Proofreaders
Simran Bhogal

Maria Gould

Indexer
Rekha Nair

Production Coordinator
Adonia Jones

Cover Work
Adonia Jones

www.allitebooks.com

http://www.allitebooks.org

About the Author

Bart Delvaux is an experienced web developer from Belgium. With a passion for web
technologies, he started his career in 2010 after he received his bachelor's degree in
Applied Informatics. Magento gave him the first opportunity to establish himself when he
was working as a consultant for a leading PHP company in Belgium. When the Magento
certifications were released, Bart was one of the first persons who received Magento
Certified Developer and Magento Certified Developer Plus. With the principle of quality
above quantity, Bart finished a lot of Magento projects going from a standard web shop to
complex integrations and module development.

Nurul Ferdous is an open source enthusiast and IT specialist from Bangladesh who is
currently working for TM Secure Inc. as a LAMP consultant. In fact, he is a soldier turned
programmer. He started his career with the Bangladesh Air Force. He has also served in
RAB as an intelligence staff where he was nominated for the President's Police medal for his
contribution to national security. He is a true passionate programmer. He started his run on
software development back in 2004, while he was working in the Bangladesh Air Force.

His primary skills are as a PHP developer. He is a Zend Certified PHP 5 Engineer, and
contributes to a number of PHP projects, blogs on PHP-related topics, and presents talks
and tutorials related to PHP development and the projects to which he contributes. He also
contributes on open source community regularly. He is also a certified professional on TDD
and Code Refactoring.

He has served in some top notch software companies both at home and abroad, such
as BIPL, Right Brain Solutions Ltd., TM Secure Inc., NameDepot.com Inc., and so on, as
a programmer, software engineer, and consultant. He also writes at his personal blog
http://dynamicguy.com when he is not baking with codes.

The very first person whom I would like to thank who made this happen
is Dilip Venkatesh along with Meeta Rajani, Aditi Suvarna, and all Packt
Publishing personnel who worked on this book. I am also thankful to my
wife, Ferdousy Chowdhury and my kid, Riva. They have helped me a lot
during the whole writing process!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Bartosz Górski is a Magento Certified Developer Plus and a Magento Certified Frontend
Developer working for Creatuity, a Magento Silver Solution Partner. He has been working in
the web development and programming field for over six years, and has over three years of
experience in developing only for the Magento e-commerce platform.

Bartosz is a big fan of doing things the right way, so he always aims to write as clean and
efficient code as possible. He's always happy to give and receive feedback on how a given
piece of code can be improved.

When he's not at work, he's probably playing pool somewhere, sitting at home and browsing
camera lenses on eBay, and complaining about how little time he has to actually go outside
and click some photos himself.

I'd like to thank my wife for her love and support (and for not killing me in
some cruel way when I'm spending another evening with Magento instead of
spending it with her).

www.allitebooks.com

http://www.allitebooks.org

Tiago Sampaio began to develop modules and implementations for Magento Commerce in
2010 for a college project. He has now become one of the most famous Magento developers
in Brazil.

With four years of experience in Magento platform development, he was the first one to pass
the Magento Certified Developer Plus exam. Today, he is a unique developer who has all of
the three available Magento certifications. In order of relevance, the certifications owned by
Tiago are Magento Front End Developer (June 2013), Magento Certified Developer (December
2012), and Magento Certified Developer Plus (January 2013).

With extensive experience in Magento development, Tiago is specialized in the platform and
nowadays works only with Magento developments as a Software Development Team Leader at
e-smart, a unique Magento Gold partner in Brazil.

First, I'd like to thank God for giving me the opportunity to change my life
by learning about Magento Commerce and making me not give up during
the most hard times of my life. I would also like to thank my family and
friends for all the support they gave me and for staying by my side all the
time giving me strength to always go on with my daily battles. Thanks to
Packt Publishing for this great opportunity to participate in this book, which
I guess, will be one of the most important books to disseminate experiences
and knowledge about Magento Commerce to the whole world.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with Magento 7

Introduction 7
Preparing the development environment 8
Installing Magento with sample data 11
Adding version control to the source code 15
Configuring the development tools 18

Chapter 2: Theming 23
Introduction 23
Configuring Magento themes and packages 23
Creating your first theme 27
Adding extra files to your theme 31
Adding jQuery support 33
Changing a page title 35
Working with translations 36
Understanding the theming block system 38
Adding widgets to the layout 40

Chapter 3: Working with Products 43
Introduction 43
Setting up the catalog defaults 44
Working with attribute sets 47
Working with product types 51
Adding a Facebook like button 54
Adding a product to the cart through querystring 57
Embedding a YouTube video 58
Changing the URL of a product page 59

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 4: Creating a Module 63
Introduction 63
Creating files 63
Registering blocks, helpers, and models 65
Adding a new page 68
Adding a layout file 70
Adding a translation file 72
Adding a block of new products 74
Rewriting a core class 76

Chapter 5: Database Concepts 79
Introduction 79
Finding your way in the tables 79
Creating a database connection in Magento 83
Working with flat tables 85
Working with EAV tables 87
Configuring a Master/Slave setup 90
Repairing the database 95

Chapter 6: Databases and Modules 97
Introduction 97
Registering the resource models 97
Registering connections 100
Installing and upgrading scripts 101
Creating a flat table with models 104
Working with Magento collections 110

Chapter 7: Magento Backend 119
Introduction 119
Registering a backend controller 119
Extending the menu 122
Adding an ACL 124
Extending the system configuration 127
Creating a grid from a database table 133
Adding customer attributes 139
Working with source models 141

Chapter 8: Event Handlers and Cronjobs 145
Introduction 145
Understanding Magento event types 146
Creating your own event 149
Adding an event observer 150
Introducing cronjobs 154

iii

Table of Contents

Creating a new cronjob 157
Testing your new cronjob 159

Chapter 9: Creating a Shipping Module 163
Introduction 163
Initializing module configurations 164
Writing an adapter model 170
Extending the shipping method features 173
Adding the module in the frontend 175

Chapter 10: Creating a Product Slider Widget 179
Introduction 179
Creating an empty module 180
Registering helpers and blocks 181
Creating a widget configuration file 182
Creating a block and the template files 185
Creating a custom configuration parameter 191
Finalizing the theming 197

Chapter 11: Performance Optimization 203
Introduction 203
Exploring the limits of a website 204
Optimizing the database and MySQL configuration 213
Optimizing the Apache web server 216
Tuning the Magento configurations 219
Configuring APC and Memcached 222
Optimizing the PHP configurations 227
Analyzing the page speed 228

Chapter 12: Debugging and Unit Testing 233
Introduction 233
Getting started with Xdebug 234
Debugging with FirePHP 240
Installing PHPUnit 243
Creating a Magento test case 245

Index 251

Preface
Magento is one of the most popular e-commerce platforms on the market because it is free,
stable, and offers a lot of functionalities. A lot of e-commerce websites are built with Magento.
Developing in Magento is not as easy as you would expect. When you want to start with
Magento, a good guide that shows you the best practices will be very helpful while learning
Magento development, and that is what this book has set out to do.

With Magento 1.8 Development Cookbook, we will discover all the topics that will help you
become a good Magento developer, and then we start with the basics and end with more
advanced topics towards the end of this book. This will be a good guideline that explains every
step or action that you have to take to complete the recipes of this book.

We will start this book with the creation of a good development environment using the right
tools. We will create a web server where we will put a Magento installation with sample
products in it. We will create a custom theme to change the look and feel of the webshop. The
focus of this book will be the development part. We will create a custom module that follows
the best practices of Magento. We will customize this module with a lot of common features
that are used in Magento projects, such as extra controller pages, database integrations,
custom shipping methods, and extra backend interfaces. At the end of the book, we will see
how we can improve the performance of our Magento installation. Finally, we will see some
debugging techniques such as xDebug and create a unit test with PHPUnit.

What this book covers
Chapter 1, Getting Started with Magento, gives you an introduction and shows you how to
create a development environment using the right tools, how to install Magento, and how to
work with the code in a version control system.

Chapter 2, Theming, explains what you can do to customize the look and feel of your shop.

Chapter 3, Working with Products, gives you more information about the possibilities of showing
the products in your shop and customizing the product pages with a Facebook like button.

Preface

2

Chapter 4, Creating a Module, describes how to create a basic Magento module, how to
extend that module with configurations for a custom page, translations, blocks, and how to
rewrite existing classes.

Chapter 5, Database Concepts, shows you how Magento works with database connections,
how the tables are linked to Magento entities, and how the EAV system works. It also shows
you how to create a Master/Slave setup.

Chapter 6, Databases and Modules, teaches you how to extend a Magento module with a
database interaction by creating an install script that installs a database table and entity that
will interact with this database table.

Chapter 7, Magento Backend, covers the topics that you should know when integrating
your module with the Magento backend, such as adding extra configuration pages, creating
overview pages, and extending the admin menu.

Chapter 8, Event Handlers and Cronjobs, describes how the Event-driven Architecture is
implemented in Magento and how you can use this in a module. Later in this chapter, you will
learn how to create cronjobs in a module and how to test them.

Chapter 9, Creating a Shipping Module, shows you how to create a custom module with the
configurations required for a new shipping method.

Chapter 10, Creating a Product Slider Widget, explains how to create a module with a custom
widget, how to build the backend interface, and how to provide a good UI in the frontend of
that widget.

Chapter 11, Performance Optimization, describes how to benchmark your site to know
the limits and improve its performance using different techniques such as web server
optimization and caching systems (APC and Memcached).

Chapter 12, Debugging and Unit Testing, shows you how to use the PHP debugger xDebug,
how to use FirePHP in Magento, and how to create a simple unit test with PHPUnit.

What you need for this book
 f Magento 1.8 source code

 f Ubuntu Version 13.10 or higher

 f Apache2

 f PHP Version 5.3 or higher

 f MySQL Server 5

 f NetBeans IDE

 f phpMyAdmin

 f Wiz command-line tool

Preface

3

 f Firebug (add-on for Firefox)

 f FirePHP (add-on for Firefox)

 f xDebug

 f PHPUnit

 f A standard web browser

 f Siege (a benchmarking tool)

 f ApacheBench (another benchmarking tool)

 f YSlow (add-on for Firefox)

 f Git SCM

 f jQuery

 f carouFredSel (a jQuery library to create a jQuery carousel)

Who this book is for
If you know something about programming in PHP and want to start with Magento
development, this book has something for you. Knowledge of Magento is not required to start
with the recipes of this book. Basic knowledge of PHP and web development is required. This
book starts with the fundamentals of Magento development and ends with more advanced
topics. Even if you know something about Magento development yet you need a good guide,
this book has something for you.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, pathnames, dummy URLs
and user inputs are shown as follows: "The widget.xml file is used to define widgets in the
Magento installation."

A block of code is set as follows:

<category_id>
 <label>Category ID</label>
 <type>text</type>
 <required>1</required>
 <sort_order>20</sort_order>
 <visible>1</visible>
</category_id>

Preface

4

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<category_id>
 <label>Category ID</label>
 <type>text</type>
 <required>1</required>
 <sort_order>20</sort_order>
 <visible>1</visible>
</category_id>

Any command-line input or output is written as follows:

sudo apt-get install apache2

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes, for example, appear in the text like this: "Click on Finish and your
NetBeans project is ready."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

5

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book. If
you find any errata, please report them by visiting http://www.packtpub.com/submit-
errata, selecting your book, clicking on the errata submission form link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted and
the errata will be uploaded on our website, or added to any list of existing errata, under
the Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Getting Started

with Magento

In this chapter, we will cover the following topics:

 f Preparing the development environment

 f Installing Magento with sample data

 f Adding version control to the source code

 f Configuring the development tools

Introduction
You have probably heard of Magento. It is an out-of-the-box e-commerce platform with many
features, such as catalog navigation, promotion rules, RSS feeds, product search, product
tags, product reviews, tax rules, reports, and order management.

The company behind Magento is Varien. In 2007, they started thinking about an open
source e-commerce platform that would be designed for a large number of uses. After one
year of developing, the first stable release Magento 1.0 came out in 2008. When Magento
became more popular in the later years, eBay showed interest in it and now owns 100 percent
of Magento.

If you install Magento and configure it, then you can start selling products online. But when
you want a custom theme, extra shipping methods, and other features, you have to extend the
software as per the rules of Magento. If you know something about PHP programming, follow
the steps described in the recipes, and you can start editing your Magento store.

Getting Started with Magento

8

We will create a development environment where you can start working. We will install sample
data so that the shop is not empty and is ready to go. If you are new, you can start here.
If you are a pro, you can still start here, because we follow the best practices of Magento
development. Let's get started. Good luck!

Preparing the development environment
We will set up a development environment with Magento. For this, we need to set up a LAMP
(Linux, Apache, MySQL, PHP) environment. In that LAMP environment, we will create a Fully
Qualified Domain Name (FQDN) and a virtual host.

Getting ready
We have to set up a development server that we will use to run Magento. When we have a
Ubuntu desktop environment, we have to install the latest versions of the following software:

 f Apache2

 f PHP

 f MySQL server

 f Extra PHP libraries

We can install these software by running the following commands on a CLI interface. These
commands are based on a Ubuntu-based Linux distribution. To run the commands on a
desktop with Ubuntu OS, launch the Terminal program:

 f To install the web server Apache2, run the following command:
sudo apt-get install apache2

 f To install PHP, run the following command:
sudo apt-get install php5

 f To install the MySQl server, run the following command:
sudo apt-get install mysql-server

 f To install the required PHP extensions that Magento uses, such as the MySQL bridge,
run the following command:

sudo apt-get install php5-mysql php5-curl php5-gd php-pear

Chapter 1

9

How to do it...
When everything is installed, we will create a virtual host with an FQDN. We want our
development environment to be available at http://magento-dev.local/. To do this,
we have to create a virtual host with this domain name. This domain points to the IP of our
previously created web server.

The following steps describe how you can create a virtual host with an FQDN:

1. Create a magento-dev.local file in the /etc/apache2/sites-available/
directory.

2. To create and edit the file, run the following command:
sudo nano /etc/apache2/sites-available/magento-dev.local

3. Paste the following content in that file:
<VirtualHost *:80>
 # ServerName (domain) and admin email
 ServerAdmin webmaster@magento-dev.local
 ServerName magento-dev.local

 DocumentRoot /var/www/magento-dev.local/public # Folder of the
site. We have to create this

 # Log file locations
 LogLevel warn
 ErrorLog /var/log/apache2/magento-dev.error.log
 CustomLog /var/log/apache2/magento-dev.access.log combined
</VirtualHost>

4. Run the following commands in the terminal to create the www root folder:

1. To create the site folder (document root), run the following command:
sudo mkdir /var/www/magento-dev.local/public

sudo chown -R www-data:www-data /var/www/magento-dev.local/

2. To enable the site, run the following command:
sudo a2ensite magento-dev.local

3. To reload the Apache server, run the following command:
sudo service apache2 reload

Getting Started with Magento

10

4. To test the site, we have to add the following line in our host's file (/etc/
hosts):

127.0.0.1 magento-dev.local

This will point the domain magento-dev.local to the IP address 127.0.0.1.
This is the IP address of the local web server (localhost), so a request to this
URL doesn't go to the Internet but goes to the local web server.

How it works...
This recipe describes how to install a web server from a CLI interface. If you already have a
web server with a specific domain, you can skip this chapter.

The Magento files will be installed in the public directory. When a request is made to the
domain, the www-data user will execute the request. So, it is best that all files and folders
have the www-data user and group to avoid permission problems.

On a Linux server, every file and folder has three types of permissions. These permissions are
read, write, and execute (rwx). You can set these permissions in three scopes: for owners,
groups, and others. On every file request, Linux decides, based on the permissions, whether a
user can read, write, or execute a certain file.

For an HTTP request, the www-data user will be used to execute a request. So, it is important
to ensure that the www-data user has enough file permissions to run the application. To
change file permissions, you can use the chmod command. To change the owner and group,
you can use the chown command.

There's more…
It is also possible to run Magento and the web server on other operating systems. To run a
web server, we need Apache, MySQL, and PHP. It is possible to install these software on a
Windows or Mac device.

The variant for Windows operating systems is WAMP (Windows, Apache, MySQL, and PHP).
You can find more information about this variant on the WAMP website at http://www.
wampserver.com.

For Mac OS, the alternative is MAMP. More information on MAMP is available at http://
www.mamp.info.

A cross-platform web server is XAMP. You can download the installer for Linux, Windows, or
Mac from their website at http://www.apachefriends.org/en/xampp.html.

Chapter 1

11

Installing Magento with sample data
When you install Magento, you can start with an empty database or a database with some
sample products and configurations. For our development environment, the best approach is
to start with the sample data because we can start using Magento directly after installation.

For a new webshop, it is recommended to start with an empty database and do the
configuration yourself. To install Magento, we need the following data:

 f The Magento code

 f The sample data

Getting ready
You can download Magento and the sample data from Magento's website (http://www.
magentocommerce.com/download). Download the latest Full release and the Sample
data. The recipes of this book are based on the Magento Version 1.8.1.0. For the sample
data, you can use the 1.6.1.0 Version.

How to do it...
The following steps show you how to install a clean Magento webshop with sample data:

1. Extract the code in the appropriate folder of our web server. In our case, this is /var/
www/magento-dev.local/public. Take a look at the folder structure by running
the ls -la command in the site's root folder. We have to take care that the hidden
files are included in the folder:
ls -la
drwxrwxr-x .
drwxrwxr-x ..
-rwxrw-r-- .htaccess
-rw-rw-r-- .htaccess.sample
-rw-rw-r-- api.php
drwxrwxr-x app
-rw-rw-r-- cron.php
-rw-rw-r-- cron.sh
drwxrwxr-x downloader
drwxrwxr-x errors
-rw-rw-r-- favicon.ico
-rw-rw-r-- get.php
-rw-rw-r-- .htaccess

Getting Started with Magento

12

-rw-rw-r-- .htaccess.sample
drwxrwxr-x includes
-rw-rw-r-- index.php
-rw-rw-r-- index.php.sample
-rw-rw-r-- install.php
drwxrwxr-x js
drwxrwxr-x lib
-rw-rw-r-- LICENSE_AFL.txt
-rw-rw-r-- LICENSE.html
-rw-rw-r-- LICENSE.txt
-rw-rw-r-- mage
drwxrwxr-x media
-rw-rw-r-- php.ini.sample
drwxrwxr-x pkginfo
-rw-rw-r-- RELEASE_NOTES.txt
drwxrwxr-x shell
drwxrwxr-x skin
drwxrwxr-x var

In Linux, hidden files or folders start wit a dot (.), such as the .htaccess
file. The -a option of the ls command that we used shows all the
files and folders, including the hidden ones. It is important to see that
the .htaccess file is in the directory because this file contains the
configuration for URL rewrites and other server configurations.

2. When you extract the sample data archive, you see a media folder and a SQL file. The
SQL file contains the database, the media folder, and the images. To install the media
folder, merge this folder with the site's root media folder.

It is important to install the sample data before running the Magento
install wizard. If Magento doesn't find the sample data in the database,
the wizard continues with an empty database without the sample data.

3. To install the database, you have to run the following commands:

1. To create the database, run the following commands:
mysql -u root -p

create database magento_dev;

exit;

2. To import the SQL file, run the following commands:
mysql -u <<username>> -p magento_dev <
"path_to_sample_data.sql"

Chapter 1

13

To avoid permission problems, ensure that all files and folders have
the right permissions. For security reasons, it is recommended that
all files have just enough permissions so that only the right users can
access the right files. When you give all the rights (777), you don't have
permission problems; but, every user on the server can read, write, and
execute every file of your application.

4. The next step is to run the Magento installation wizard. Go to the site's URL and the
installer will be displayed as shown in the following screenshot:

5. Continue with the installation process by accepting the terms and conditions.

6. On the next screen, choose the correct language, locale, and currency for your store.

7. On the Configuration page, fill the form with the right data:

 � Database Type: Enter MySQL in this field.
 � Host: Enter localhost in this field.
 � Database Name: Enter magento_dev (your Magento database name) in

this field.
 � User Name: Enter root (your Magento database username) in this field.
 � User Password: Enter root (your database user password) in this field. It is

possible to leave this empty.

Getting Started with Magento

14

 � Tables Prefix: Leave this field empty (if filled, all tables will have the prefix
that is entered here).

 � Base URL: Enter http://magento-dev.local/ (the URL of your
webshop) in this field.

 � Admin Path: Enter admin (the path to the backend) in this field.
 � Enable Charts: This check box must be checked.
 � Skip Base URL Validation Before the Next Step: This check box must be

unchecked (if checked, the wizard will check for a valid URL when processing
this form).

 � Use Web Server (Apache) Rewrites: This check box must be unchecked.
 � Use Secure URLs (SSL): This check box must be unchecked.

8. Submit the form and continue to the next step. In this step, you can configure the
admin account. Fill in the right data and remember the login and password, because
this is required to manage the store. Leave the encryption key empty.

9. After submitting this form, the installation wizard terminates. The setup is complete.
You can now visit your store and enter the backend with the username that you have
created in the installation wizard.

Chapter 1

15

How it works...
We just created a fully functional Magento store. Technically, you can start selling products.

We have started with the sample data. The SQL file that we inserted in the database contains
all the data for the sample webshop. When you want to create an empty shop, you can start
with an empty database.

When installing a new shop, always follow the installer. The installer creates the app/etc/
local.xml file and installs the values that you have set in the installer. These values are
currency, timezone, backend user, and so on. The installer will show up when there is no
local.xml file in the app/etc/ folder. In all other cases, the webshop will show up.

With a complete local.xml file in the app/etc folder, you can install Magento. However, this
is not recommended because you don't have a backend user and the other configurations.

Adding version control to the source code
With version control, you can manage the changes that are made in the computer files. When
you add this to a programming code, you can track all the changes you have made to the code
from the time you initialized it. There are some very popular version control systems on the
market, such as Subversion (SVN), Mercurial SCM, CVS, and Git SCM.

In this recipe, we will use Git SCM to add version control to our previously created Magento
code. We will initialize an empty repository. After that, we will do several commits to add all
the Magento code to the repository.

Getting ready
Go to your command line, and install Git on your local server by running the following
command in the terminal:

sudo apt-get install git

How to do it...
The following steps show you how you can add the Magento code to the version control
system Git:

1. We have to initialize the Git repository. To do this, navigate to the source folder and
enter the following command:
git init

Getting Started with Magento

16

2. Run the following command and you will see that all the files are marked as
untracked:
git status

In the next steps, we will add the other folders to the repository.

3. Add the app/ folder to the repository by running the following command:
git add app/

This will add all the files in the app/ directory. When you run the git status
command, you will see a list of all the files.

4. Run the following command to remove the local.xml file from the repository but
not from the drive:
git rm --cached app/etc/local.xml

5. Run the following command to create the first commit:
git commit –m "add app folder"

6. Run the following command to track the file's status:
git status

7. Create a .gitignore file in the root, and add the following content in it:
app/etc/local.xml

8. Run the git status command again, and you will see that local.xml is ignored.

9. Commit the .gitignore file by running the following command:
git commit .gitignore –m "add gitignore file"

10. Add the other application files and folders to the repository by running the command
git add <folder or filename>. Run this command for the following folders:

 � downloader (for installing plugins)

 � errors (configuration about error handling)

 � js (the JS library folder)

 � lib (contains PHP libraries)

 � pkginfo (information about upgrades)

 � shell/ (contains PHP CLI scripts)

 � skin/ (the CSS and images folder)

 � api.php

 � cron.php

 � cron.sh

Chapter 1

17

 � favicon.ico

 � get.php

 � index.php

 � index.php.sample

 � install.php

 � LICENCE_AFL.txt

 � LICENCE.html

 � LICENCE.txt

 � mage

 � php.ini.sample

 � RELEASE_NOTES.txt

11. Run a new git commit command:
git commit –m "add additional files"

12. Ignore the other nonstatic Magento files and folders. Add the following content in the
.gitignore file:
/app/etc/local.xml

/errors/local.xml

/media/css/
/media/dhl
/media/downloadable
/media/import/
/media/js/
/media/catalog/
/media/customer
/media/upload/
/media/wysiwyg/
/media/captcha/
/media/tmp/
/media/xmlconnect

/var/import/
/var/export/
/var/cache/
/var/log/
/var/session/

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Magento

18

/var/locks/
/var/package
/var/report/
/var/resource_config.json

sitemap.xml

13. Add the media/ and var/ folders to the repository with the following command:

git add media/.htaccess

git add var/.htaccess

We only need the .htaccess files, the other files are ignored because they
are dynamic.

How it works...
When working with a version control system, you have to keep in mind that another person
who clones the project can set up the environment with a database and the code in the Git.
That environment has to be the same as the one you have committed.

It is very important that every Magento core file and your customized files are in the Git
repository. You don't have to add configuration files, such as app/etc/local.xml and
errors/local.xml, in version control. When running your code on another server, the
settings in the configuration files are mostly different from the settings on the server.

Dynamically generated files such as cache files and user images are stored in the media and
var folder, so we don't need the content of these folders.

The only important file in these folders is the .htaccess file, which has the configuration to
restrict the var folder and the media folder.

Configuring the development tools
When you start customizing your Magento store, a good development environment with the
following components saves time:

 f A code editor (IDE)

 f A MySQL client (phpMyAdmin or MySQL Workbench)

 f A command-line tool

Chapter 1

19

Getting ready
NetBeans is an open source IDE that can be used for a lot of programming languages. The
PHP support is well maintained and there are a lot of integrations with other systems (Git,
SVN, and MySQL).

To install NetBeans, you have to download it from their site at http://netbeans.org
and run the installer. Make sure that when you download it, you select the PHP version or
the full version.

How to do it...
The following steps show you how to create a NetBeans project with the Magento files as the
document root:

1. To create the project, open NetBeans and navigate to File | New Project.

2. In the dialog window, click on PHP Application with Existing Sources as shown in
the following screenshot:

Getting Started with Magento

20

3. Click on Next and configure the following settings:

 � Source Folder: This field is set to the location of your Magento code

 � Project Name: The NetBeans project name is entered in this field

 � PHP Version: This field is set to PHP 5.3 or higher

 � Default Encoding: This field is set to UTF-8

The following screenshot gives the sample values for these settings:

When you are working with a version control system (SVN, Git, or
something else), it is recommended to check the option Put NetBeans
metadata into a separate directory. If not checked, a .nbproject
folder is created in your Magento root, which you will not have in your
version control system. Another possibility is to add the .nbproject
folder in the .gitignore file.

4. Click on Next.

Chapter 1

21

5. Configure the following settings:

 � Run as: In our case, this field is set to a local web server

 � Project URL: In this field, enter http://magento-dev.local, the URL
that we have configured for Magento

 � Index File: This field is set to index.php

The following screenshot gives the sample values for these settings:

6. Click on Finish and your NetBeans project is ready.

How it works...
When the project is started, you see the document root in the left-hand side column of the
window. When you double click on a file, the file will open in the main window. In this window,
you can view the file's history, format the code, refactor variable names, and a lot more.

There's more…
Behind the development environment in the IDE, a database client and a command-line tool
are very useful when developing in Magento.

Getting Started with Magento

22

MySQL client phpMyAdmin
phpMyAdmin is a MySQL client that runs as a web application. It is an easy-to-use tool for
direct SQL input in a database.

1. To install phpMyAdmin, open your terminal and run the following command:
sudo apt-get install phpmyadmin

2. Follow the installer's instructions.

3. Edit the /etc/apache2/apache.conf file, and add the following code at the end
of the file:
Include /etc/phpmyadmin/apache.conf

4. Reload the Apache server with the following command:
sudo service apache2 reload

5. Go to http://magento-dev.local/phpmyadmin, and you will see the
login screen. You can log in with the credentials of the database user for your
Magento database.

Command-line tool Wiz
Magento has a lot of system tasks that you have to execute in your development process. All
these actions could be triggered in the backend. However, because this is a time consuming
job, a shell interface can save you a lot of time.

Wiz is a command-line tool that you can download from https://github.com/
classyllama/Wiz.

Follow the installation instructions on their website. When installed, you have to change the
directory of your shell to your Magento root. If you are in the Magento root, all the commands
you run are executed for that Magento installation.

The following are some useful commands:

 f wiz admin-resetpass: This command can be used when you forget your admin
password

 f wiz admin-createadmin: This command creates a new administrative user from
scratch

 f wiz cache-clear: This command clears all cache or specific cache

 f wiz devel-showhints: This command enables or disables frontend hints

 f wiz module-list: This command gives a list of all the installed modules

 f wiz sql-cli: This command opens the MySQL command line

2
Theming

In this chapter, we will cover the following topics:

 f Configuring Magento themes and packages

 f Creating your first theme

 f Adding extra files to your theme

 f Adding jQuery support

 f Changing a page title

 f Working with translations

 f Understanding the theming block system

 f Adding widgets to the layout

Introduction
When you want to make your sample Magento site ready for use, the first thing most people
want to change is the look and feel of the shop. The first impression a visitor has of your site is
the look and feel.

In this chapter, we will cover the most important things you can do with a Magento theme.
Customizing the standard theme is not so difficult but building a theme from scratch is a
lot of work.

Configuring Magento themes and packages
Magento works with multiple themes. You can configure more themes in the same store. A
common case is that you have a theme of your shop and some inherited themes based on the
shop theme.

Theming

24

Getting ready
Log in to the backend and go to the theme configuration section that you can find at System |
Configuration | Design.

How to do it...
The following instructions describe how to manage the different Magento themes of a webshop:

1. Change the theme field to modern and clear the cache. Go to your frontend and your
shop will look as follows:

You have now configured the modern theme in the default package. This theme
will extend things from the default theme and, in the last case, from the base/
default theme. This process is called the theme fallback system.

Chapter 2

25

2. Make the theme field empty and add the following configuration:

3. Reload the frontend:

Theming

26

Your shop will look like the default theme but with some different CSS styles. We
have configured the default theme but with another skin folder that contains the
CSS files.

How it works...
There are three levels of themes in Magento: the base theme, the package's default theme,
and the other themes in the package.

The following diagram shows how the theme fallback system works when you have configured
a theme:

When the winter theme is configured, Magento will look at files in the following order:

 f The theme (packt/winter)

 f The package's default theme (packt/default)

 f The base theme (base/default)

It is possible to configure a default theme in the configuration page by navigating to System |
Configuration | Design. If this is set (for example, packt/summer), the fallback system will
loop through the themes in the following order:

 f The theme (packt/winter)

 f The configured default theme (packt/summer)

 f The package's default theme (packt/default)

 f The base theme (base/default)

The directory where the theme is stored is app/design/frontend for the template files
(rendering HTML) and skin/frontend for the static files (CSS, images, fonts, and so on).

Chapter 2

27

Practically, the default theme of a package will contain the theme of the webshop. The
subthemes in that package mostly have the same layout but differ in some small things.
For example, a winter theme has a background with snow and the summer theme has a
background with a beach. The rest of the theme is exactly the same because this uses the
same files of the default theme.

When your theme is not in the default package, nothing happens on the
frontend after installing a Magento extension.

The reason could be that the theme files of the module are in the default
package. Magento looks only at the configured and base packages. The
default package is just like every other package such as packt or music.
When a module has custom theme files, the best practice is to store these
files in the base theme to avoid this problem.

You can configure Magento themes on different levels to show up on the frontend. In most
cases, the theme settings are configured on the configuration page by navigating to System |
Configuration | Design.

You can add exceptions on the page by navigating to System | Design. On this page, you can
configure a theme for a store with a from date and to date.

It is also possible to configure a specific theme for a product, category, or CMS page. You can
change the settings on the edit pages of a product, category, or CMS page.

Creating your first theme
We will create a package with a default theme in it. At a later stage, we can add more themes
in this package, which extend the default theme that we will create in this chapter.

Getting ready
Open your IDE and navigate to the theme folder (app/design/frontend and skin/
frontend/default).

How to do it...
The following procedure shows you which actions are required to create a custom theme:

1. Create the following folders:

 � app/design/frontend/packt/default

 � app/design/frontend/packt/default/layout

Theming

28

 � app/design/frontend/packt/default/template

 � skin/frontend/packt/default

2. Copy the content of the folder skin/frontend/default/blank/ to skin/
frontend/packt/default. The folder looks as follows:

3. Configure the new theme and package in the backend. Navigate to System |
Configuration | Design and configure as follows:

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Chapter 2

29

4. Save the configuration and your site will look as follows:

The theme is now installed and ready for further development.

How it works...
We have just created a blank theme; a theme with only structural CSS. When we want to
customize the look and feel with CSS, we have to work in the following folders and files:

 f skin/frontend/packt/default/css

 f skin/frontend/packt/default/css/styles.css (the main css file)

 f skin/frontend/packt/default/images (the css images folder)

With these files, you can change the CSS look and feel of the shop. If you want to change some
of the HTML code, you have to work in the app/design/frontend/packt/default folder.

Theming

30

This folder is inherited from the app/design/frontend/base/default folder where the
standard files are stored. If you want to change a file in the base folder, you need to copy the
file with the same folder structure from the base folder to your theme.

Changing the code of the base package files will also work but this is not
recommended because these files are part of the Magento core. When
these files are changed, your changes will be lost after a Magento upgrade
and your code maintainability becomes low.

If you want to change the header.phtml file that is located at app/design/frontend/
base/default/template/page/html/header.phtml, you have to copy it to app/
design/frontend/packt/default/template/page/html/header.phtml.

When it is located there, clear your caches. Now, the file of your theme is loaded instead of
the one in the base folder.

In the Magento development process, you have to clear the caches to see
your changes. It is also possible to disable the cache. If so, you don't have
to clear the cache many times when developing but you will have longer
page loads.

There's more…
To see from where every file is loaded, you can turn on Template Path Hints. To do this, go to
the backend and navigate to System | Configuration | Developer.

Navigate to your store view in the top-left corner and set the following configuration:

Chapter 2

31

When this is set, navigate to the frontend and you will see red columns around every block.

Adding extra files to your theme
In the previous recipe, we set up our theme with one CSS file. Mostly, you want to add some
more files to it (when you are using a JavaScript plugin or something).

Getting ready
We will add an extra CSS and JavaScript file to our theme. To do this, we have to work in the
following two directories:

 f app/design/frontend/packt/default/layout

 f skin/frontend/packt/default

How to do it...
In the following steps, we will see how we can add extra files to a theme:

1. Copy the page.xml file. The declarations of all the CSS and JavaScript files that need
to be included are stored in the file app/design/frontend/base/default/
layout/page.xml.

It is possible that there are other CSS and JavaScript declarations
in other layout XML files. The page.xml file is used to set up the
default layout structure.

2. We need to add something. So we need to copy this file with the same folder
structure to our theme folder. Copy the file to app/design/frontend/packt/
default/layout/page.xml.

3. Add the CSS declaration.

4. If you open the page.xml file and look in the <default> tag, you will see a lot of
lines with "addCss". We need to add the following line in that section:
<action method="addCss"><stylesheet>css/packt.css</stylesheet></
action>

The path we specify here is the path starting from our theme root folder,
so it is css/packt.css. Magento will use the theme fallback to find
the file in the theme, package, or base folder.

Theming

32

5. Don't forget to create the CSS file. Create the packt.css file in the skin/
frontend/packt/default/css/ folder.

6. Clear the Magento cache.

When you change something in the XML files, you will always have to clear
the cache to see the effect of your changes. It is also possible to disable
the cache. The purpose is that you don't have to clear the cache many
times as the page loads are slower.

7. Reload the frontend and look at the HTML source. Your file should be added.

How it works...
The addCss function is one of the functions in the head block of Magento. This block will
generate the HTML head section of a page.

The following functions are useful when working with extra CSS and JS files:

 f addJs: This function will add a JS file from the js folder (folder in the root directory)
to the head of the page.

 f addItem: This is a function that will add a JS or CSS file to the head of the page. The
function has two required parameters: the type and the filename.

The type can have the following values:

 f skin_js: This is a JavaScript file in the skin folder

 f js_css: This is a CSS file in the js folder

 f js: This is a JavaScript file in the js folder

 f css: This is a CSS file in the skin folder

 f rss: This creates a <link> HTML tag with an attribute type="application/
rss+xml"

The addItem function has three other optional parameters to customize the output of the tag
in the head tag.

There's more...
When you use the right functions to include images, JavaScript, and CSS, you have the
following advantages over adding HTML code in a .phtml file:

 f You can merge the CSS and JavaScript files to one file when you configure it

Chapter 2

33

 f It always contains the right absolute URL to the file (it contains the right domain
and protocol)

 f It uses the theme fallback system

Adding jQuery support
Magento 1.8 and earlier versions didn't use jQuery in the frontend and backend. The library
that Magento uses for the JavaScript functionality is Prototype. When you want to use some
jQuery code, you need to add the jQuery library in your theme.

Getting ready
Go to the jQuery website and get the latest version.

How to do it...
By default, Magento loads the Prototype library. Excluding this will cause JavaScript errors on
every page, so we need to use both libraries. The problem with jQuery and Prototype is that
they both use the dollar sign ($) as the namespace for their functions.

To avoid the conflict, we have to use jQuery in the noconflict mode:

1. Put the jQuery library in the js/jquery folder.

2. We will create a local.xml file in our theme folder to add extra layout instructions.
Create the app/design/frontend/packt/default/local.xml file.

3. Add the following content in that file:
<?xml version="1.0" encoding="UTF-8"?>
<layout>
 <default>
 <reference name="head">
 <action method="addJs">
 <js>jquery/jquery.js</js>
 </action>
 </reference>
 </default>
</layout>

4. Create a jquery.noconflict.js file in the js/jquery folder with the following
content:
$.noConflict();

Theming

34

5. Add this file, after adding the jQuery file, in your local.xml file. The file contains the
following code snippet:
<?xml version="1.0" encoding="UTF-8"?>
<layout>
 <default>
 <reference name="head">
 <action method="addJs">
 <js>jquery/jquery.js</js>
 </action>
 <action method="addJs">
 <js>jquery/jquery.noconflict.js</js>
 </action>
 </reference>
 </default>
</layout>

6. Clear your caches and look at the source of your frontend.

7. The jQuery file and the noconflict file should be added in the head section.

8. You can now use jQuery in your webshop.

Keep in mind that you have to call jQuery with the jQuery
namespace instead of the $ namespace.

Also keep in mind that third-party extensions of Magento could
include jQuery in the frontend. Make sure the version is compatible
with your code.

9. We normally use the following code snippet:

$(document).ready(function() {});

But, we will instead use the following line with the jQuery namespace:

jQuery(document).ready(function () {});

How it works...
We added two files to the theme that contains the jQuery library. We had to use the noconflict
mode to avoid conflicts with the prototype library.

To add files to the layout, we created a local.xml file. In that file, we added instructions to
add the JavaScript files to the head of the HTML code.

The main advantage of using a local.xml file for this is that you don't have to overwrite an
entire XML file from the base folder to add just two lines of code.

Chapter 2

35

Changing a page title
In the previous chapter, we added some CSS and JavaScript files to the <head> tag of the
HTML. To change the page title, we have to do it in a similar way.

We will change the page title of the contacts page that is available at http://magento-
dev.local/contacts.

How to do it...
To change the page title of the contacts page, have a look at the following steps:

1. Go to the contacts page in the frontend. This is available at http://magento-dev.
local/contacts.

2. You see that the page title reads Contact Us. We will change this to Give us a
message.

3. Copy the layout/contacts.xml file from the base theme to our theme and open
the file. In this file, there is an xml tag <contacts_index_index>:
<contacts_index_index translate="label">
 <label>Contact Us Form</label>
 <reference name="head">
 <action method="setTitle" translate="title" module="contacts">
<title>Contacts Us</title></action>
 </reference>
 <reference name="root">
 <action method="setTemplate"><template>page/2columns-
 right.phtml</template></action>
 <action method="setHeaderTitle" translate="title"
 module="contacts"><title>Contact Us</title></action>
 </reference>
 <reference name="content">
 <block type="core/template" name="contactForm"
 template="contacts/form.phtml"/>
 </reference>
</contacts_index_index>

4. In the <reference name="head"> tag, you will see a setTitle method. Set this
line as follows:
<action method="setTitle" translate="title"
module="contacts"><title>Give us a message</title></action>

5. Clear your cache and reload the page. The title in your browser is now changed to
Give us a message.

Theming

36

How it works...
The <title> tag in the HTML page is in the head section. This head section is generated by
the Magento head block.

In the template file, the code looks as follows:

<title><?php echo $this->getTitle() ?></title>

This means that Magento will print the title of that object in the tag. To set the title of that
object, we use the setTitle function.

Working with translations
Magento has the ability to run multiple stores in different languages. In the sample store, you
can see English, French, and a German store view.

Getting ready
Open the backend and go to the general configuration section (System | Configuration |
General). We will configure the languages for the store views and do some inline translations.

How to do it...
The following steps show you how you can translate strings in a Magento store:

1. Configure the languages for each store view.

2. At the top-left corner, you will see a store switcher where you can switch the
configuration for a store. Set the French language for the French store view and the
German language for the German store view.

3. Clear the cache and reload your frontend.

You will see no changes because there is no language pack installed
by default for French and German. Language packs are available in
Magento Connect.

Chapter 2

37

4. Enable the inline translation. We will translate our store with the inline translation tool
that you can configure from System | Configuration | Developer (the last tab). In the
default configuration scope, configure the following:

5. Reload your frontend. You will see red frames around a lot of strings in the
frontend. When you hover and click on the icon, a pop-up window will show
the translation form:

With this translation form, you can create your own translations for the language of
the current store.

6. Click on Submit, clear the caches, and reload the page.

www.allitebooks.com

http://www.allitebooks.org

Theming

38

If everything goes well, you will see that the text is translated into the string you just entered.
Make sure you always clear the cache when editing a translation.

How it works...
Magento has a very powerful translate function. To create a string in this translate function,
you have to use the following syntax:

Mage::helper('core')->__('Text to translate');

This syntax always works, but when working in template files, you can also use the
shorter syntax:

$this->__('Text to translate');

The translate function will search for the string in the following ways:

 f First, Magento will look into the core_translate table of the database. In this
table, only those translations which you have translated inline are added (like we did
in this recipe).

 f If no matching string is found in the core_translate table, Magento will look at
the translate.csv file in the theme. This file is located under app/design/
frontend/<<my_package>>/<<my_theme>>/locale/<<language>>/
translate.csv.

 f If the string is not found in the theme translation file, Magento will search for the
string in the app/locale/<<language>> folder. In this folder, you can find all the
translation files. A translate package will contain some of the module's translate files
(.csv).

 f If no string is found in the module's translate files, Magento will print the original
string that is passed as an argument to the translation function.

Understanding the theming block system
The Magento frontend is not a single file. It is a combination of blocks nested in each other.
Each block is an object you can play with.

Getting ready
Open a category page in your shop and you see a lot of frames which all represent a block.
Some blocks are structural (left column, right column, content, and footer) and others contain
content (product list, cart, navigation, and so on).

Chapter 2

39

How to do it...
In the next two steps, we will enable the frontend hints to get an idea of the used blocks
on a page.

1. Enable your frontend Template Path Hints. Go to System | Configuration |
Developer and enable the template and block names.

2. Reload the frontend. When the frontend hints are enabled, a frontend page will have
red frames around each block.

Each block with a template is in a red frame. The title in white is the template file and the blue
title is the classname of the block object.

When you want to edit the content of a block, you will have to look at the files displayed in the
red frames. Make sure when a template file is in the base theme, you copy it to your theme.

How it works...
All the blocks are declared in layout XML files. These layout files are stored in the layout folder
of a theme.

When you open a layout file, everything is stored in the layout XML tag. The children of this tag
are layout handles.

A layout handle is a set of layout instructions that can be loaded on a page. When you look at
the contacts.xml file, you see two handles. Layout handles are always in the second level
of the <layout> XML tree:

 f default

 f contacts_index_index

The default handle will be loaded on every page. The contacts_index_index handle will
be loaded on the contacts page.

When you want to load a layout instruction on a page, you have to name your handle as follows:

<modulename>_<controllername>_<actionname>

For the contacts page, you have to enter following values:

 f Module: contacts

 f Controller: IndexController

 f Action: indexAction

Theming

40

For the login page, it is as follows:

 f Module: customer

 f Controller: AccountController

 f Action: loginAction

So, the name of the handle is customer_account_login.

You can find more information about controllers and their actions in the Adding a new page
recipe in Chapter 4, Creating a Module.

When you look at the customer.xml file in the theme, you will see this handle with the
instructions for the login page. When you look inside a handle, you will see the <reference>
tags. Inside these tags, you see the <block> tags.

A reference is a block. When you have <reference name="left">, you are performing
actions in the block with the name left. This block with the name left is declared in the
page.xml file of the theme.

Actions that you can perform are as follows:

 f Calling methods on the block object with <action method="methodName">

 f Adding child blocks

 f Removing child blocks

 f Setting a template

The Magento frontend is built with blocks. The main block where everything starts from is
called root. If you look at the page.xml file in our theme, in the default handle, you will see
how the structural blocks are initialized.

Adding widgets to the layout
In the previous recipe, we described the Magento layout blocks. Writing layout XML files is
not so easy as there is a graphical interface to add blocks to the layout. This interface is
called widgets.

Getting ready
We will add a product link to the left column of the category page. Go to the backend and
navigate to CMS | Widgets.

Chapter 2

41

How to do it...
In the following steps, we will configure a widget for the category pages.

1. Choose Add new widget instance.

2. In the next form, choose the configuration shown in the following screenshot:

3. Click on Continue and the following screen shows up:

Theming

42

4. Fill in the form with the following values:

 � Widget Instance Title: Widget-category-left-product

This is the title of the widget in the backend. A structural name is easy when
working with a lot of widgets.

 � Assign to Store Views: All Store Views

In the Widget Options tab, you have to choose the product.

5. Save the widget. Click on Save and Continue Edit. The widget instance is now saved
but nothing will show up in the frontend because there is no layout update set.

6. To show the widget in the frontend, we have to create a layout update by clicking on
the Add Layout Update button.

7. Fill in the form as follows:

8. Clear the cache and go to a category page. A product link will show up in the
left column.

How it works...
In the left column, a new block is added to the frontend. Like each block on the frontend, this
widget has a block class and a template similar to the other blocks.

The only difference is that this block is not generated by an XML file but by an XML layout
instruction in the database.

The widget interface will generate a layout XML that is stored in the database. The block class
and template are similar to other blocks in the XML files.

3
Working with Products

In this chapter, we will cover:

 f Setting up the catalog defaults

 f Working with attribute sets

 f Working with product types

 f Adding a Facebook like button

 f Adding a product to the cart through querystring

 f Embedding a YouTube video

 f Changing the URL of a product page

Introduction
The choice of products and how they are displayed on the frontend are very important to make
a web shop with good usability. Making a visitor buy something is the main target of every
shop owner.

We have to set up the products in a way such that a visitor can quickly find what they are
looking for. If this is done and the shop looks reliable, a visitor is more likely to buy something.

This chapter will explain all the possibilities of what you can do with a set of products and how
to add extra things such as a video or a like button.

The goal of this chapter is to make your shop more user-friendly without a lot of development.

Working with Products

44

Setting up the catalog defaults
The first step is to configure the catalog settings to the preferred values. We will cover all the
configuration values that are possible with a standard installation.

Getting ready
Open the frontend in a tab of your browser. In the second tab, open the backend and log in.

How to do it...
In the next steps, we will configure the settings of the catalog (category and product) pages:

1. Go to the Configuration section in System, and click on the Catalog tab. You will see
the following screen:

2. Open the frontend section and set the following values:

 � List mode: grid (Show products by default in a grid or list)

 � Products per page on Grid allowed values: 12,24,36

 � Products per page on Grid default value: 24

While changing the allowed and default value for a grid page, make
sure the numbers are divisible by the number of products in a row.
Otherwise, the number of products on a page will not fit in the grid.

Chapter 3

45

 � Products per page on List allowed values: 10,20,30,40

 � Products per page on List default value: 10

 � Allow all products per page: No

When you have a large number of products, it is not recommended to
set the Allow all products per page option to Yes. When you have 2,000
products, and you want to show all the products on a single page, you will
generate an enormous HTML output that can cause memory issues.

 � Product listing Sort by: price

 � Use Flat Catalog Category: No

 � Use Flat Catalog Product: No

The purpose of the preceding two settings (Use Flat Catalog
Category and Use Flat Catalog Product) is explained in the Working
with EAV tables recipe in Chapter 5, Database Concepts.

 � Allow Dynamic Media URLs in Products and Categories: Yes

3. Set the following values under the Sitemap section:

 � Use tree like category sitemap: Yes

 � Minimum lines per page: 30

This setting will change the look of the sitemap pages. You can find this at catalog/
seo_sitemap/category.

4. Enable the product reviews for guests. This allows everyone to write a review about a
product. When this is enabled, a review form will appear on the product review page.

5. Open the Product Alert Settings section to configure product alert e-mails that will
be sent when the price or stock changes.

We will configure a stock alert with the following settings:

 � Allow alert when product price changes: No

 � Allow alert when product stock changes: Yes

The previous configurations will send stock alert e-mails (a stock
alert is triggered when a product becomes available in stock) to the
subscribed e-mail addresses.

Working with Products

46

6. We can set the Product Alert Run Settings values in the next section. We will
configure a daily job at 0400 hours to send the alert e-mails:

 � Frequency: Daily

 � Start time: 04:00:00

7. Leave the product image placeholders as they are. Here, we can set a default image
that will be shown when a product has no image or the image is not found. The best
way is to set the placeholder image(s) in the theme.

8. In the Recently Viewed/Compared Products tab, set the following values:

 � Show for current: Website

This will show the recent products you viewed over all stores and store
views in the website.

 � Default recently viewed count: 5

 � Default recently compared count: 5

9. In the Price tab, set Catalog Price Scope as Global. For this tutorial, we don't need
different prices for each store view. When Price Scope is set to Global, we can only
configure one price for a product in different store views.

10. In the Layered Navigation section, we will modify some settings to customize the left
navigation for the category pages.

 � Display product count: Yes

 � Price ranges: Equalize price ranges

By setting this, the price steps will always have the same increment.

11. Set the top navigation Category to 3. This will mean that the depth of the navigation
is three levels at the maximum.

12. Skip the Search Engine Optimization option. We will look into it in the Changing the
URL of a product page recipe

13. Configure the Catalog / Search section as follows:

 � Minimal query length: 3

 � Maximum query length: 128

 � Maximum query words count: 10

 � Search type: Like

You can set this to full text that has better results, but the performance is not so
good. The previous settings configure the search behavior of Magento.

14. Don't forget to save the configuration.

Chapter 3

47

How it works...
All these settings are saved in the configuration table of Magento. The frontend files of the
catalog pages will pick up these settings and render the output based on these settings.

When you add extra functionality to the category page, you can easily extend the configuration
with extra parameters. More information about extending the configurations is explained in
the Extending the system configuration recipe of Chapter 7, Magento Backend.

Working with attribute sets
Magento has a flexible system to work with products. When you sell, for example, a board
game and a computer, the specifications of each product are different. Suppose I want to
configure an age for the board game and a screen resolution for the computer. In such cases,
these things are covered with attributes and attribute sets.

When you create a product, you have to first select an attribute set (with specific attributes)
before entering other data.

Getting ready
Go to the backend and navigate to Catalog | Attributes | Manage Attributes and Catalog |
Attributes | Manage Attribute Sets.

We will create some extra attributes and an attribute set on these pages.

How to do it...
In the next steps, we will create extra product attributes that we can use with an attribute set:

1. Create a new attribute on the Manage Attributes page.

2. After you click on New Attribute, fill in the form as follows:

 � Attribute Code: available_from (the code of the attribute used in the
database and functions)

 � Scope: Store View (this setting adds the ability to specify a separate value
for each store view)

 � Catalog Input Type for Store Owner: Date (this is the type of the attribute)

 � Default Value: empty

 � Unique Value: No

 � Values Required: No

Working with Products

48

 � Apply To: All Product Types

 � Use in Quick Search: No (this option searches through the attribute values
while performing a quick search)

 � Use in Advanced Search: No (this option makes the attribute available to
search on in the Advanced search option)

 � Comparable on Front end: No (this option shows the attribute in the product
comparing tool)

 � Use for Promo Rule Conditions: No

 � Position: empty

 � Visible on Product View Page on Front-end: Yes (this option shows the
attribute value on product pages)

 � Used in Product Listing: No (this option makes the attribute value available
on category pages)

 � Used for sorting in Product Listing: No (this option makes the attribute
available to sort on category pages)

3. In the Manage Label / Options field, fill in the labels for the frontend.

4. Click on Save Attribute and the attribute is saved.

5. Create a new attribute set by navigating to Catalog | Attributes | Manage
Attribute Sets.

6. Fill in the form as follows and click on Save Attribute Set:

7. The attribute set overview opens. On this page, you can drag-and-drop the attributes
in the appropriate groups.

Chapter 3

49

8. Create a group named Game specific data and drag the available_from,
memory, and processor attributes to it.

The overview will look as follows:

9. Save the attribute set.

10. Create a new product in Manage Products from Catalog, and enter the following
configuration:

 � Attribute Set: Games

 � Product Type: Simple Product

Working with Products

50

11. Click on Continue.

You will see that the special game attributes are now available in the Game specific
data tab:

How it works...
Attributes and attribute sets are used when you work with multiple families of products. In
the sample data of our shop, there are more attribute sets available for cameras, computers,
shirts, shoes, and more.

With attribute sets, you can group attributes of a family with each other.

While creating a new attribute, you will have to specify the type of the attribute. The following
types are available with different inputs and outputs:

 f Text field

 f Text area (a text field with multiple lines)

 f Date

 f Yes / No

 f Multiple Select

Chapter 3

51

 f Dropdown

 f Price

 f Media Image

 f Fixed Product Tax (this is used for extra taxes such as author taxes)

When you will use an attribute as a filter in the left navigation on
the category pages, this attribute must have the type Dropdown,
Multiple Select, or Price.

Working with product types
In Magento, there are different types of products you can create. The standard product is a
simple product. This type of product is used to sell basic products. However, there are other
product types where you can choose options or a size.

Getting ready
We will create a configurable product. For example, you want to buy a pair of shoes
where you can choose their size and color. Open your backend and navigate to Catalog |
Manage Products.

How to do it...
In the following steps, we will create a product (shoes) where we can specify their sizes on the
product detail page:

1. Choose the following configuration when you hit the Add Product button:

Working with Products

52

2. When we click on Next, we have to choose the attributes to configure. This product
has to be configurable on the Shoe size attribute. Select the checkbox and click on
Continue.

3. Fill in the required attributes, and save the product by clicking on Save And
Continue Edit.

To make a product visible in the store, check the Websites, Status,
Visibility, Category, and Inventory attributes.

4. Navigate to the Associated Products tab where we will create the child products.

5. By adding the following configuration to the Quick simple product creation section,
we will add five child products:

6. Click on the Quick Create button and repeat this four times with a different
shoe size.

Chapter 3

53

7. When everything goes well, the Super product attributes configuration section will
look as follows:

8. Click on the Save And Continue button and the product is saved.

9. Navigate to the frontend and search for the product we just created. When we are on
the product detail page, you will see a dropdown where you can choose the options
we have just created.

How it works...
A configurable product is a product in which you will have to configure the options before
adding it to the cart. The customer will see the configurable product in the cart, but in the
background a simple product is also added to the cart.

That's the reason we have to create simple products to use as options for the configurable
product. The configurable product is the parent that is used to show the child products in the
frontend. When a product is sold, the SKU of the selected child product will be used to process
the order. That's the reason the stock is configured on the child products.

Working with Products

54

There's more...
In Magento, you can create six types of products. The following section gives a short
description of what is possible with the different product types.

Simple product
A simple product is just a product that you can sell in your web shop. Every product in Magento
has a unique ID (SKU) that mostly has the same value as the article code of the suppliers.

Configurable product
In this recipe, we created a configurable product. This product has child products that you can
configure on the product detail page (for example, to configure the size). The child products
are simple products.

Bundled product
A bundled product is like a configurable product, but with this one you can specify more
(optional) options. For a good example of a bundled product, you can go to Electronics |
Computers | Build Your Own. The products in this category are bundled products.

Grouped product
A grouped product is a product that represents a set where you can specify the number of child
products. A good example of this can be found in Furniture | Magento Red Furniture Set.

Virtual product
A virtual product is like a simple product but it is not physical. It has no inventory and can't be
shipped. In the sample data, the warranties on the bundled products of the sample store are
good examples of virtual products.

Downloadable product
A downloadable product is a product that is not physical. When a customer buys a product like
this, they will receive a download link where they can download their product such as a PDF,
ZIP, MP3, or any other type of file.

Adding a Facebook like button
These days, it is trendy to show a Facebook like button on your website so that visitors can
share the page with their friends.

In this recipe, we will add the like button on every product page.

Chapter 3

55

Getting ready
Open your browser and go to a product page. In your IDE, open your configured theme folder.

How to do it...
In the next steps, we will generate and add the code of a Facebook like button to the
product detail pages:

1. Open the catalog/product/view.phtml template from your theme. If it is not in
the theme, copy it from the app/design/frontend/base/default folder.

2. Go to http://developers.facebook.com/docs/reference/plugins/like
from where you can use the Configurator page to customize the like button for your
page, as shown in the following screenshot:

3. Paste the code in your view.phtml file where it will be more readable; for example,
at the end of the file as a child of the div tag with the class product-collateral.

4. Reload a product page and the like button will show up.

Working with Products

56

5. To change the URL of the like button, change the data-href attribute of the HTML5
code. The following code shows you how to do this to use the product page URL:
<div class="fb-like"
 data-href="<?php echo Mage::helper('core/url')
 ->getCurrentUrl() ?>"
 data-layout="standard"
 data-action="like"
 data-show-faces="true"
 data-share="true">
</div>

6. While using the HTML5 code, don't forget to include the JavaScript SDK.

How it works...
The Facebook like button is one of the social plugins you can embed in your website. On
Facebook, every URL is an object you can like or comment on. You can find more information
about the available social plugins from the following URL:

https://developers.facebook.com/docs/plugins/

In this recipe, we covered the addition of the Facebook like button, but when you want
to add buttons for other social media sites such as Twitter or Google Plus, you can visit the
following URLs:

 f https://developers.google.com/+/web/+1button/

 f https://about.twitter.com/resources/buttons

There's more...
When you like a page of your website, Facebook will generate a wall post based on the HTML
markup of the page. When you like a page, Facebook will post an image, title, and description
of that item on your wall.

With Open Graph (og) meta tags, you can customize the content of these things. An overview
of the available og tags and how to use them can be found at https://developers.
facebook.com/docs/opengraph/using-objects/.

Chapter 3

57

Adding a product to the cart through
querystring

In some use cases, you will link a visitor to your site when they directly add a product to the cart;
for example, when you have a campaign with a buy now button on an external website.

Getting ready
Open your browser with your shop and navigate to Catalog | Manage Products in the backend.

How to do it...
In the next steps, we will create a URL where a product will be added to the cart:

1. Find a product in your frontend you want to add to the cart. For example, navigate to
Furniture | Living Room | Ottoman.

2. Find this product in the backend and keep the ID in mind.

3. To add a product, we have to call the checkout/cart/add URL with the product
ID as the GET parameter. So, the final URL will be http://magento-dev.local/
checkout/cart/add?product=51.

4. While calling this URL, you will be redirected to the cart page with one item of this
product in the cart.

5. When you add the qty parameter to the query, you can add more than one item of
the same product to the cart. Call the http://magento-dev.local/checkout/
cart/add?product=51&qty=3 URL, and you will see that three products are
added to the cart.

It is not possible to add two or more different products to the
cart with the same query. If you want to do this, you can create a
grouped product.

How it works...
If we monitor the add to cart action in our shop, we will see that there is a GET or POST
request to the checkout/cart/add action in the frontend. This action will forward the
request to the cart page if it is valid.

Working with Products

58

There's more...
Adding a simple product is easy, but if we want to add a grouped, configurable, or bundled
product, the querystring is a bit more complex.

To know which parameters you have to send to the add action, we have to debug this with
Firebug. In the Net Panel, as shown in the following screenshot, you can debug the request:

The preceding screenshot shows the POST parameters of a configurable product.

Embedding a YouTube video
In a product description, we can add HTML tags so that we can use the <object> tag to
embed a YouTube video in the description of a product.

Getting ready
Go to http://www.youtube.com, and choose a video that you want to add to the
description of the product.

How to do it...
The next steps show you how to embed a YouTube video on a product detail page:

1. On the YouTube video page, click on the Embed button. When you click on this
button, the following screen shows up:

Chapter 3

59

2. Copy the HTML code and paste it in the description of a product.

3. Save the product.

4. Go to the product in the frontend. You will see the video on the product page.

How it works...
The ability to use HTML tags in product descriptions gives a lot of flexibility for this field. It is
possible to use a WYSIWYG editor for the content because this allows us to use widgets such
as a YouTube video or other third-party widgets.

Changing the URL of a product page
When you are on a product page, the URL of every product always looks clean. The name in
the URL makes it very SEO friendly.

In this recipe, we will explore the possibilities with URL rewrites in Magento and how it works.

Getting ready
Go to the Manage Products page from Catalog in the backend. Open a product and have a
look at the URL key attribute. This recipe is based on the HTC Touch Diamond product.

Working with Products

60

How to do it...
In the next steps, the way you can change the URL of a product page is shown:

1. Find the appropriate product in the frontend and look for the URL. In this case, this
will be /htc-touch-diamond.html.

2. In the backend, change the URL key attribute to buy-now-htc-touch-diamond.

3. Reload the product in the frontend. The URL will change to the new one we have
entered at the backend.

When you select the Create Permanent Redirect for old URL checkbox,
Magento will create a permanent 301 redirect response for the old URL of
the product. The checkbox is located in the product's Edit page under the
URL key attribute.

4. Empty the URL key attribute at the backend and save the product again. You will see
that Magento autogenerates the URL key value based on the name of the product.

5. At the backend, go to System | Configuration | Catalog | Search Engine
Optimizations. Empty the Product URL Suffix field and save the configuration.

6. Clear the cache by navigating to System | Cache Management.

7. Reindex the Product URL Rewrites index by navigating to System | Index
Management. In the reindexing process, the URLs will be generated in the core_
url_rewrite database table.

8. Reload the product in the frontend, and you will see that the .html suffix is gone.

How it works...
In Magento, there is a URL rewrite system that maps an SEO-friendly URL to the system URL
for that request. You can see all the URL rewrites in the backend. Navigate to Catalog | URL
Rewrite Management, and you will see the complete list of URLs that Magento will map on a
controller action. For example, when we search for htc-touch-diamond, we will see a list
with all the URLs for this key.

What we see is the following:

 f Permanent 301 redirect responses (rows where the Options column has the value
RP. RP stands for Redirect Permanently.)

 f The product URL.

 f The category product URL.

All URLs are generated again for each store view. When a product is enabled in multiple
stores, it is normal that a product has more than one URLs.

Chapter 3

61

There's more...
On the URL rewrite page, it is also possible to add custom URL rewrites; for example, a URL
rewrite for the contacts page.

While adding the configuration as shown in the following screenshot, you will create a rewrite
for /sitemap.html for the English store view:

 f In the Store dropdown, you can configure the store for the URL rewrite.

 f In the ID Path field, the ID of the URL rewrite is set. You have to enter a unique name
for this.

 f The value in the Request Path field is the path you want to rewrite. In this case, we
want to rewrite something on the /sitemap.html path.

 f The value in the Target Path field is the path where the request will end. In this case,
it is the contacts page.

 f If the value in the Redirect dropdown is set to Yes, you can choose for a 301 redirect
to the target. When it is set to No, the target page will be rendered on the request
path (so the URL of the page doesn't change).

4
Creating a Module

In this chapter, we will cover the following topics:

 f Creating files

 f Registering blocks, helpers, and models

 f Adding a new page

 f Adding a layout file

 f Adding a translation file

 f Adding a block of new products

 f Rewriting a core class

Introduction
When you take a look into the core code of Magento, you will see the modular architecture.
Every concept is stored in a module. Magento is the combination of all the core modules. The
advantage of a modular architecture is its extendibility. It is easy to add modules that extend
or rewrite the core.

In this chapter, we will create a module using the most important things you need to know to
extend Magento with a simple module.

Creating files
When you want to create a module, the first step is to create the files and folders to register
the module. At the end of this recipe, we will have a module that is registered but does not
have functionality.

Creating a Module

64

Getting ready
Open your IDE and navigate to the app/code/local folder. If the local folder is not there,
create the app/code/local folder.

How to do it...
In the following steps, we will create the files required to register a Magento module.

1. Create the module in app/code/local by creating the following folders:

 � app/code/local/Packt

 � app/code/local/Packt/Helloworld

 � app/code/local/Packt/Helloworld/etc

Packt is the namespace of the module and Helloworld is the name of the
module.

2. Register the module by creating the Packt_Helloworld.xml file in the app/etc/
modules folder. Add the following content in this file:
<?xml version="1.0"?>
<config>
 <modules>
 <Packt_Helloworld>
 <active>true</active>
 <codePool>local</codePool>
 </Packt_Helloworld>
 </modules>
</config>

3. Create the main configuration file config.xml in the etc folder of the module. Add
the following content in the file:
<?xml version="1.0" encoding="UTF-8"?>
<config>
 <modules>
 <Packt_Helloworld>
 <version>0.0.1</version>
 </Packt_Helloworld>
 </modules>
</config>

Chapter 4

65

4. Check the registration of the module by going to the backend. Go to System |
Configuration | Advanced and check whether the module is present in the list. Make
sure that you have cleared the Magento caches.

When running the command wiz module-list in your command line,
you will see a list of all the modules, including the version, code pool,
and more. You can find more information about the Wiz command-line
tool in the Configuring the development tools recipe in Chapter 1, Getting
Started with Magento.

How it works...
Magento has three code pools. They are listed as follows:

 f Core: The core pool contains the modules and classes of the Magento code. It is not
recommended to change files in this directory because this will be overwritten when
Magento is upgraded.

 f Community: The community pool is for the Magento modules that are delivered
by the community. They are mostly the free modules that you can download from
Magento Connect.

 f Local: The local pool is for the custom modules such as the one we have created in
this recipe.

The first pool where Magento will search for the code is the local code pool. Next, it will look in
the community code pool, and at last it will look in the core code pool.

Registering blocks, helpers, and models
When we want to perform operations on our module, we have to use blocks, models, and
helpers. In this recipe we will register these object types with the right class prefix.

Getting ready
Open the config.xml file of the Packt_Helloworld module. This file is located at app/
code/local/Packt/Helloworld/etc/config.xml.

Creating a Module

66

How to do it...
In the following steps, we will add configuration to the module to register the blocks, helpers,
and models:

1. Register the blocks by adding the following configuration in the config.xml file. Add
the following XML code as a child of the <config> tag:
<global>
 <blocks>
 <helloworld>
 <class>Packt_Helloworld_Block</class>
 </helloworld>
 </blocks>
</global>

2. Create the app/code/local/Packt/Helloworld/Block folder.

3. Repeat step 1 and step 2 to register the helpers and models. Your global tag will look
similar to the code shown as follows:
<global>
 <blocks>
 <helloworld>
 <class>Packt_Helloworld_Block</class>
 </helloworld>
 </blocks>
 <helpers>
 <helloworld>
 <class>Packt_Helloworld_Helper</class>
 </helloworld>
 </helpers>
 <models>
 <helloworld>
 <class>Packt_Helloworld_Model</class>
 </helloworld>
 </models>
</global>

4. Create the app/code/local/Packt/Helloworld/Helper and app/code/
local/Packt/Helloworld/Model folders.

5. Create the helper class of the module by adding the following content to the app/
code/local/Packt/Helloworld/Helper/Data.php file:
<?php
class Packt_Helloworld_Helper_Data extends Mage_Core_Helper_
Abstract

Chapter 4

67

{

}

A helper class always extends from the core helper to use the functions declared in
this class.

6. Test your configuration with the Wiz command-line tool by running the following
command:

wiz devel-models

You will see your registered models available in the Magento installation.

When you change something in a configuration XML file, make sure
that you clear the Magento caches before testing your configuration.
Otherwise, the changes will have no effect because the old
configuration is cached.

How it works...
When these objects are registered, we can create classes in the Block, Helper, and Model
folder. The classnames in these objects need to adhere to the following naming convention;
otherwise, they can't be found:

<Vendor Namespace>_<Modulename>_<Objectype>_<Classname>

Every folder name starting with app/code/<codepool> is used in the classname separated
by an underscore. The last part is the name of the file. Every folder or file in the Model,
Block, and Helper folder starts with a capital letter.

Our helper class is located in app/code/local/Packt/Helloworld/Helper, so the
classname is Packt_Helloworld_Helper_Data.

To load a model, we have to use the Mage::getModel() function. In the first
parameter, we have to specify the classname, which is different from the real
classname. To specify the Packt_Helloworld_Model_Sample class, we have to use
Mage::getModel('helloworld/sample') to get an instance of this model.

We have registered our model as helloworld. The name of the model in the Model folder
is sample. When you take a look at the getModel() function discussed previously, you see
that the words helloworld and sample are in the argument of that function.

The same syntax is used to get helpers and blocks. For helpers, we have to use the
Mage::helper() function. For blocks, this syntax is used in the layout XML files or when we
use the core functions to work with blocks.

Creating a Module

68

Adding a new page
Now, we will do something visible with our module. We are going to add a page to our
Magento shop, which we can use for several purposes.

Getting ready
We have to add some configuration in the config.xml file and we will also create a
controller file.

How to do it...
In the following steps, we will add an extra page to the Magento installation by adding extra
configurations in the Packt_Helloworld module:

1. Open your IDE and navigate to the module folder.

2. Add the following configuration as a child of the config tag in the config.xml file
of the module:
<frontend>
 <routers>
 <helloworld>
 <use>standard</use>
 <args>
 <module>Packt_Helloworld</module>
 <frontName>helloworld</frontName>
 </args>
 </helloworld>
 </routers>
</frontend>

3. To create the controller file, we will create an IndexController.php file in folder
app/code/local/Packt/Helloworld/controllers/.

4. Add the following content in this controller file. This will create two actions in the
IndexController class:
<?php
class Packt_Helloworld_IndexController extends Mage_Core_
Controller_Front_Action
{
 public function indexAction()
 {

 }

Chapter 4

69

 public function helloAction()
 {
 echo 'Action hello in Helloworld IndexController';
 }
}

5. Clear the cache and test the controller that is available at the following locations:

 � http://magento-dev.local/helloworld/index/hello, for the
helloAction function

 � http://magento-dev.local/helloworld, for the indexAction
function

The helloAction() function will display the string that we have set in the echo
statement. The indexAction() function is a blank page, because we have no more
code in this action.

How it works...
The syntax of a Magento controller is shown as follows:

<modulename or frontname>/<controllerName>/<actionName>

In our case, module name and front name is helloworld, the controller name is index, and
the action name is hello, so we get /helloworld/index/hello.

Magento recognizes the controller files when a classname ends with the word Controller.
This is the reason why the name of the class is IndexController.

The same rule applies for controller actions. The function's name needs to end with the
word Action. The part that precedes Action is the name of the action. A function called
helloAction() results in the hello part of the URL.

While writing names of controllers and actions, make sure you keep
a track on the capital letters of the class and function names. If you
miss some capital letters, your code will not work.

There's more…
When we test the controller action, we will see a blank page. This is not wrong because there
is no logic added in the controller action.

If we want to see the frontend of the shop, we have to use the following code:

$this->loadLayout();
$this->renderLayout();

Creating a Module

70

This will start the layout system that will load the layout instructions. It is not always
recommended to load the frontend as done in a POST action where you want to process the
post and continue to the next page.

Adding a layout file
In this recipe, we will customize the frontend of our previously created page with a custom
layout XML file.

Getting ready
For adding a layout file, we have to add some configuration in the config.xml file of the
module and a layout XML file as well.

How to do it...
In the following steps, we will learn how to add a layout file to the Magento module.

1. Add the following configuration to your config.xml file to initialize the layout XML
file. Add it as a child of the <frontend> tag:
<layout>
 <updates>
 <helloworld>
 <file>helloworld.xml</file>
 </helloworld>
 </updates>
</layout>

2. Create the helloworld.xml file in your theme layout folder in the app/design/
frontend/<package>/<theme>/layout/helloworld.xml directory.

3. In the helloworld.xml file, add the following content to test if the file is loaded:
<?xml version="1.0" encoding="UTF-8"?>
<layout>
 <default>
 <remove name="header" />
 </default>
</layout>

4. Reload a page in the frontend. The previous configuration will remove the header
from every page in the frontend.

Chapter 4

71

5. Remove the content from the <default> tag and create the helloworld_index_
hello handle in the layout XML file. You can do this by adding the following XML
code as a child of the <layout> tag:
<helloworld_index_hello>

</helloworld_index_hello>

6. For this page, we will configure the 2columns-right layout. To do this, add the
following configuration in the layout XML file as child of the helloworld_index_
hello handle:
<helloworld_index_hello>
 <reference name="root">
 <action method="setTemplate">
 <template>page/2columns-right.phtml</template>
 </action>
 </reference>
</helloworld_index_hello>

7. Add the following code in the helloAction() function of the controller to start the
layout system:
$this->loadLayout();
$this->renderLayout();

8. Clear the Magento cache and navigate to the http://magento-dev.local/
helloworld/index/hello page. You will see a page with a column towards the
right-hand side.

How it works...
If you only place a layout.xml file in the app/design/frontend/<package>/<theme>/
layout folder, it will not be loaded in Magento. To do this, we have to configure it in the
config.xml file of our module as we have done in this recipe.

The layout XML file (helloworld.xml) works in the same way as all other layout files work,
as described in Chapter 2, Theming.

There's more…
Adding a custom layout XML file adds a lot of possibilities for extending your installation.
Copying an XML file to your theme and changing the required settings is the easiest way.
However, if you want, add a custom layout file and manipulate the blocks in that file.

Creating a Module

72

The purpose of this method is to avoid double coding. A good reference of this way of modular
theming can be found at http://www.classyllama.com/development/magento-
development/the-better-way-to-modify-magento-layout.

Adding a translation file
In Magento, you can run a store in multiple languages so that your module is translatable to
the configured languages. In this recipe, we will add a custom translate CSV file to our module
where we can place the custom strings if needed.

Getting ready
For this recipe, we have to add some configuration in the config.xml file of our module.
Also, we have to create a translate CSV file in the locale folder.

How to do it...
In the following steps, we will add configuration to the module so that we can translate the
interface to multiple languages:

1. Add the following configuration as a child of the <frontend> tag in the config.
xml file of the helloworld module. This will initialize an extra translate file to the
installation:
<translate>
 <modules>
 <Packt_Helloworld>
 <files>
 <default>Packt_Helloworld.csv</default>
 </files>
 </Packt_Helloworld>
 </modules>
</translate>

2. We just configured our module to use the Packt_Helloworld.csv file. Create this
file in the app/locale/en_US folder.

3. Create a test translation in the controller. Add the following line in the
indexAction() function of IndexController:
echo $this->__('Test translation packt');

Chapter 4

73

4. Go to the appropriate page (http://magento-dev.local/helloworld). You will
see that Test translation packt is printed as shown in the following screenshot:

5. Add the following content in the Packt_Helloworld.csv file:
"Test translation packt","Packt translation to test"

6. Clear the cache and reload the page. You will see that the output is changed to Packt
translation to test as shown in the following screenshot:

How it works...
Now, we will discuss the behavior of the translation function in Magento.

When calling the __('translate string') function, Magento will search for a translated
string in the following resources:

 f The core_translate translate.csv file in the database table, present in the
app/design/frontend/<package>/<theme>/locale folder

 f Translate files located in app/locale/<language>

If no matching string is found for the current language, Magento will return the string that is
present in the first parameter of the translate function.

If a string is found in a resource, Magento won't search further for that string. That means that
a string that is in the core_translate table and the translate.csv file will be loaded
from the database.

Creating a Module

74

The translate function is mostly called on the current object by using $this->__(), but
this always refers to the helper function of that object. If $this->__() doesn't work (mostly
when you are in a class that doesn't extend the abstract block, helper, or model), you have
to call the translate function directly from the module's helper class as shown in the
following code:

Mage::helper('<module name>')->__('…')

Adding a block of new products
The module is now prepared for the real work. In the previous recipes, we prepared the
module with the most common features. In this recipe, we will add a block of new products in
our previously created page.

Getting ready
To create a custom block, we have to create a Block class in the Block folder of the
Packt_Helloworld module, a layout instruction to add the block to our page, and a phtml
template in our theme to style the HTML output of the block.

How to do it...
The following steps describe how to add a block with new products to the frontend:

1. Create the block class in app/code/local/Packt/Helloworld/Block. The
name of the class is Newproducts, so we have to create a Newproducts.php file
in this folder.

2. Add the following content in the file. This will create a class that extends the Mage_
Core_Block_Template class. This class will output a template if specified:
<?php
class Packt_Helloworld_Block_Newproducts extends Mage_Core_Block_
Template
{

}

3. Add the template to your theme template folder. This is in the app/design/
frontend/<package>/<theme>/template/helloworld folder. Create the
newproducts.phtml file in this folder.

4. Add some HTML content such as <h2>New Products</h2> in this file.

Chapter 4

75

5. Create a block in the helloworld.xml layout file by adding the following XML code
in the helloworld_index_hello handle:
<reference name="content">
 <block type="helloworld/newproducts" name="block_newproducts"
 template="helloworld/newproducts.phtml" />
</reference>

6. Clear the cache and go to the http://magento-dev.local/helloworld/
index/hello page. You will see the New Products title in the content of the site.

7. Create the getProducts() function in the block class. This function will return
the five latest products from the shop. The code for the getProducts()function will
look as follows:
public function getProducts()
{
 $products = Mage::getModel('catalog/product')->getCollection()
 ->addAttributeToSelect('*')
 ->setOrder('created_at')
 ->setPageSize(5);

 return $products;
}

In this function, we will fire a query on the product collection. We sort it by date and
limit the result to 5 so that we get the latest five products.

8. Call the getProducts() function in the template and loop through the products to
print them in a list. The template code is as follows:

<h2>New Products</h2>

<?php foreach ($this->getProducts() as $_product): ?>
 <?php echo $_product->getName() ?>
<?php endforeach; ?>

How it works...
What we have done in this recipe is a basic extension of the standard Magento. We have
created a custom block. This block is placed on a custom page created by the module.

In this block, there is a function that returns the five most recent products and a query is fired
to get these products. This is not done by SQL, but by using the Magento collections.

Creating a Module

76

The purpose of using this is to get an easy interface to return the right entities. Since a
product is not stored in one database table, this saves you from programming of a very
complex SQL query.

Rewriting a core class
In some cases, you want to change something about the standard behavior of Magento. When
you see some code in a core class that you want to change, you have to follow this recipe.

As it is not recommended to do changes in core files, we can rewrite the path of a class to a
custom one that is a parent over the original class.

Getting ready
In this recipe, we will rewrite the core product model to a custom class in our module.

How to do it...
In the following steps, we will change the output of the getName() function of a product:

1. The getName() function is called on the product detail page. Navigate to this page
and open the catalog/product/view.phtml template.

2. When you search for getName() in the template, you see that this is done on the $_
product variable. To know the class of this variable, you can debug this with echo
get_class($_product).

3. The output of this function returns the Mage_Catalog_Model_Product class.
To rewrite this, we have to create an empty class in our module folder that extends
the original one. Create a Product.php file in the app/code/local/Packt/
Helloworld/Model/Catalog/ folder.

4. Paste the following code in that file:
<?php

class Packt_Helloworld_Model_Catalog_Product extends Mage_Catalog_
Model_Product {

}

When rewriting a class, the best practice is to follow the folder
structure of the original class in your module. In the model folder of
the Packt_Helloworld module, we start with a Catalog folder
(refers to the Catalog module). In this folder, you see the same file
structure as in the original module.

Chapter 4

77

5. When you clear the cache and reload the frontend, you will see that the output of
the get_class function doesn't change. This is because we didn't add the rewrite
configuration in the config.xml file. Open the config.xml file and paste the
following code as a child of the <models> tag:
<catalog>
 <rewrite>
 <product>Packt_Helloworld_Model_Catalog_Product</product>
 </rewrite>
</catalog>

When you want to rewrite a block class, you have to paste a similar
configuration as a child of the <blocks> tag. Similarly, for helper,
paste the configuration under the <helpers> tag.

6. Clear the cache and reload the product page. You will see that the output of the get_
class function is changed to the class we have just created.

7. When the new class is loaded, it is just a case of overwriting the function you want
to change in this file. When we want to change the getName() function, we have to
add the old function in this class and change some behavior. When you paste the
following code in the class, the name of the product will change:
public function getName()
{
 return 'Packt ' . $this->_getData('name');
}

8. Reload the product page and you will see that the name of the product starts
with Packt.

How it works...
The best practice is that you don't rewrite a core class because changing the standard
behavior of Magento could break the application in some cases. A more stable method is
working with event handlers that are described in Chapter 8, Event Handlers and Cronjobs.

Unfortunately, in some cases it isn't possible to work with events. So, you need to rewrite a
core class. In this case, you have to do it as described in this recipe:

 f Create an empty class that extends the original ones

 f Paste the function in the class that you want to change

 f Add the configuration in the config.xml file of your module to rewrite the core class

Creating a Module

78

When the rewrite is added in the config.xml class, Magento will recognize the rewrite when
the class is called with the Magento functions. For a model, this is the Mage::getModel()
function where the first argument is the path to the model.

When calling a class directly in the code as $product = new Mage_Catalog_Model_
Product(), the rewrite will not work because an instance is returned from the Mage_
Catalog_Model_Product class.

5
Database Concepts

In this chapter, we will cover:

 f Finding your way in the tables

 f Creating a database connection in Magento

 f Working with flat tables

 f Working with EAV tables

 f Configuring a Master/Slave setup

 f Repairing the database

Introduction
Magento has a very large database model to store all kinds of information. There are many
Magento modules. Every module has its own tables in the database. A naming convention is
used to provide a good overview in the database. Some modules use a flat database model
(one table per entity), while other modules use the EAV (Entity Attribute Value) database
model. The recipes in this chapter will cover the most important things you need to know
when you are working with a database.

Finding your way in the tables
When you look at the tables, you will realize that the number of tables is very high. In a
standard installation, there are more than 300 database tables. A structured naming
convention is needed to find your way in this maze of tables.

Database Concepts

80

Getting ready
In this recipe, we will make some queries to the database to get an idea of the tables and
their purpose.

Here, you have to firstly make a connection with your database client using phpMyAdmin.

How to do it...
In the next steps, we will learn some methods to familiarize you with the database model
in Magento:

1. Get a list of the core modules. You can do this by running the ls –l command in the
app/code/core/Mage folder. This will give you the following output:
drwxrwxr-x 7 www-data www-data Admin
drwxrwxr-x 8 www-data www-data Adminhtml
drwxrwxr-x 6 www-data www-data AdminNotification
drwxrwxr-x 8 www-data www-data Api
drwxrwxr-x 8 www-data www-data Api2
drwxrwxr-x 7 www-data www-data Authorizenet
drwxrwxr-x 5 www-data www-data Backup
drwxrwxr-x 9 www-data www-data Bundle
drwxrwxr-x 8 www-data www-data Captcha
drwxrwxr-x 9 www-data www-data Catalog
drwxrwxr-x 5 www-data www-data CatalogIndex
drwxrwxr-x 7 www-data www-data CatalogInventory
drwxrwxr-x 6 www-data www-data CatalogRule
drwxrwxr-x 8 www-data www-data CatalogSearch
drwxrwxr-x 7 www-data www-data Centinel
drwxrwxr-x 9 www-data www-data Checkout
drwxrwxr-x 10 www-data www-data Cms
drwxrwxr-x 7 www-data www-data Compiler
drwxrwxr-x 7 www-data www-data Connect
drwxrwxr-x 7 www-data www-data Contacts

Chapter 5

81

2. Run the SHOW TABLES command on your database. This will give the following result
in phpMyAdmin:

3. Compare the first part of the table names with the module list. You will see that the
name of every table starts with the name of the module.

4. Go to phpMyAdmin and navigate to the Designer tab of the database. This page will
render a database schema with all the database tables in Magento.

Database Concepts

82

5. You can limit the result by checking the tables you want to see in the left column.
Uncheck all the tables and check the core tables. These are the tables starting with
core_*. This will give you an overview of the relationships between the core tables,
as shown in the following screenshot:

6. In the previous screenshot, we see that there are a lot of relations starting from the
core_store table. Let's have a look at the structure of this table. You can do this by
clicking on the Relation view link in the Structure tab of the core_store table. This
gives the following output:

How it works...
The Magento database is just like any database with tables and relations between them. The
difficulty is that there are so many tables that make a simple overview very difficult.

Chapter 5

83

You don't need to know the whole structure of the database while working. With the Designer
option in phpMyAdmin, you can show the tables you want to see.

Most of the tables in the database represent entities in Magento. These entities (models) are
connected with the database using the Magento framework. This framework uses collections
to do select queries on the database. These collections will generate a Zend_Db_Statement
object that generates SQL queries.

The purpose of these collections is that they return instances of Magento models. A SQL or
Zend DB query will return an array with data.

Creating a database connection in Magento
Magento uses resources to connect to a database. By default, Magento uses one connection
to interact with the database. In this connection, there are resources declared in the config.
xml files of the modules to link the models with the right table.

In this recipe, we will use a Magento connection to read some tables and we will learn how to
configure a second connection to another database, such as a third-party system.

Getting ready
Navigate to IndexController of the Packt_Helloworld module that we created in
Chapter 4, Creating a Module. We will test some connections in the indexController.

How to do it...
In the following steps, we will explain how to work with multiple database connections in
your script:

1. Paste the following code in the indexAction method:
$resource = Mage::getSingleton('core/resource');
$connection = $resource->getConnection('core_read');

$results = $connection->query('SELECT * FROM core_store')-
>fetchAll();

Zend_Debug::dump($results);

This query will return an array of the values in the core_store table.

2. Reload the indexAction method in the frontend. You will see all the values from
the core_store table like the following code:
array(4) {
 [0] => array(7) {

Database Concepts

84

 ["store_id"] => string(1) "0"
 ["code"] => string(5) "admin"
 ["website_id"] => string(1) "0"
 ["group_id"] => string(1) "0"
 ["name"] => string(5) "Admin"
 ["sort_order"] => string(1) "0"
 ["is_active"] => string(1) "1"
 }
 [1] => array(7) {
 ["store_id"] => string(1) "1"
 ["code"] => string(7) "default"
 ["website_id"] => string(1) "1"
 ["group_id"] => string(1) "1"
 ["name"] => string(7) "English"
 ["sort_order"] => string(1) "0"
 ["is_active"] => string(1) "1"
 }
...

3. Create a new connection. For example, we will make some queries on a second
Drupal database. Paste the following code in the indexAction method and modify
the connection parameters with your credentials:
$dbConfig = array(
 'host' => 'localhost',
 'dbname' => 'drupal',
 'username' => 'drupal_web',
 'password' => 'drupal_pwd',
);
$_resource = Mage::getSingleton('core/resource');

//Create the connection
$connection = $_resource->createConnection('drupalConnection',
'pdo_mysql', $dbConfig);
$results = $connection->query('SELECT * FROM node')->fetchAll();

Zend_Debug::dump($results);

4. Reload your frontend and you will see the result of your previous query. The
previous piece of code will make a connection to an external database using the
Magento connection.

How it works...
The database connections in Magento are managed by the Mage_Core_Model_Resource
model. By using the singleton pattern to load the class, the connection is made once
per process.

Chapter 5

85

To get an instance of a model, you can use the Mage::getModel() function, which returns
a new instance of the object. By using the Mage::getSingleton() function, an instance
of the object given in the first parameter is returned. However, once the model is declared,
Magento doesn't create a new instance but returns the existing instance of the object.

Working with flat tables
Magento has two types of entities while working with the databases: flat entities and
EAV entities.

Flat tables works with fields that represent columns in a database table. EAV tables, which
are described in the next chapter, will use attributes. In this recipe, we will concentrate on
flat tables.

Getting ready
In this recipe, we will make some example queries on flat tables. Open the
IndexController from the Packt_Helloworld module and create a flatAction()
method in it. This controller action will be used to trigger the example queries.

How to do it...
In the next set of instructions, we will show you how a flat table from the database is linked to
a Magento model:

1. Have a look at the review tables. You can do this by filtering them in the phpMyAdmin
table names.

Database Concepts

86

2. Get all the data from the review_detail table. You can do this by clicking on
the table.

3. Print the same data by selecting it in the Magento code. To do this, paste the
following code in your flatAction method:
$resource = Mage::getSingleton('core/resource');
$connection = $resource->getConnection('core_read');

$results = $connection->query('SELECT * FROM review_detail')-
>fetchAll();

Zend_Debug::dump($results);

While executing this code, an array of values is returned.

4. We can get the same result by working with the Magento collections. You can do this
by running the following code:
$reviews = Mage::getModel('review/review')->getCollection();

foreach ($reviews as $_review) {
 Zend_Debug::dump($_review->debug());
}

5. This code will give the same output, but the data of a collection is coming from
objects and not directly from the database. The purpose of this is that we can
directly call functions on the object.

When working with Magento database tables, it is recommended to
use the collections instead of a direct SQL query. More information
about the Magento collection is described in the Working with Magento
collections recipe from Chapter 6, Databases and Modules.

6. Print the URLs of the reviews on the screen. We can do this simply by calling the
getReviewUrl() function on the review entities. Add the following code in
each loop:
echo $_review->getReviewUrl().'
';

7. While reloading the page, you will see that all the URLs of the reviews are printed. The
logic of the URL structure is done in the Mage_Review_Model_Review class, which
represents a review entity.

Chapter 5

87

How it works...
Working with flat tables in Magento is not so difficult. When using the Magento framework, a
flat entity consists of the following parts:

 f The database table: The database table is used to store the information of the entity.
This database table can have relations to different tables in the Magento database,
such as a relation with a product.

 f The model object: The model object is a class where an instance is returned while
loading a row from the database table. This class can have methods with business
logic, such as the getReviewUrl() function in this recipe.

 f The resource model object: The resource model is a class that connects the model
with the database table. This class will handle, for example, the save() method.

 f The resource collection object: The resource collection object is a class that makes
it possible to work with Magento collections for an entity.

Working with EAV tables
The EAV table is a database model that is used for some entities in Magento. In this recipe,
we will explore the details of the EAV implementation in Magento.

Getting ready
The EAV pattern is used for some entities in Magento such as the product entity. In this recipe,
we will make some queries for updating a product using SQL queries. Open your database
client and prepare yourself for running some complex queries.

How to do it...
The following steps show you how you can create a query to return the data of a Magento
EAV model:

1. The Magento EAV entities are declared in the eav_entity_type table. Run the
following query to see which EAV entities are available:
SELECT * FROM eav_entity_type;

Remember the ID of the catalog_product entity.

www.allitebooks.com

http://www.allitebooks.org

Database Concepts

88

2. To get the attributes related to a product, we have to look in the eav_attribute
table. To see which attributes are related to a product, we have to run the
following query:
SELECT * FROM eav_attribute WHERE entity_type_id = 10

Make sure 10 is the entity type ID for catalog_product.

3. Now we have the entity and attributes, so the value is the next part to find out. Find a
product in the backend and remember the ID. For example, the product HTC Touch
Diamond with the ID 166.

4. Select the product from the catalog_product_entity table by running the
following query:
SELECT * FROM catalog_product_entity WHERE entity_id = 166;

5. The last query will only return the entity information of this product. To get the
information for an attribute, such as name, we have to look in the value table. For
the name attribute, the value table is catalog_product_entity_varchar. Run
the following query to get all the varchar attribute values for the product:
SELECT * FROM catalog_product_entity_varchar WHERE entity_id = 166

6. The previous query gives the following result:

Chapter 5

89

7. With this result, you can recognize the name of the product. If you look at the
attribute ID of the row and match the attribute ID with the one in the eav_
attribute table, you will see that this refers to the name attribute.

8. To update the name of the product, make an update query on the row as follows:
UPDATE catalog_product_entity_varchar SET value = 'HTC Touch
Diamond sql' WHERE value_id = 1131;

See that the value_id value matches the value ID of your previous result.

9. Reload the product in the backend, and you will see that the name of the product
is updated.

How it works...
EAV entities in Magento are declared in the eav_entity_type table and the attributes are
declared in the eav_attribute table.

Like every entity, each EAV entity has its own base table. In this base table, the primary fields
are declared as columns in this table. All the other fields are declared as attributes in the
eav_attribute table.

Every attribute is of a specific type such as int, varchar, date, time, decimal, and text.
The place where these values are stored depends on the entity type and is declared in the
configuration files of Magento.

The following screenshot shows the structure of the EAV tables for a product:

Database Concepts

90

There's more...
Not all EAV entities work with multiple tables by entity. For example, the sales_flat_*
tables are all EAV tables, but they are, as their name suggests, flat. This means that all the
attributes of the entity are set in a separate column of the flat table.

In the catalog configuration, you have the ability to enable the Flat catalog option for the
tables for category and products. When this configuration is enabled, Magento will sync all the
data from the EAV tables to the catalog_flat_* tables and will load the data from there.

When the Flat catalog option is enabled, you get a better performance because a select
query on a single table is faster than getting the data from the different tables. The advantage
is a better performance, but on the other hand, there are some disadvantages that could be a
problem with a large amount of products and categories.

The Master data will be stored in the EAV tables. This means there is synchronization between
the flat tables. This process is implemented as a Magento Index Process. When there are a
lot of products and categories, this process can run very long. Another thing is that the size of
the database can explode because the data is stored twice.

Configuring a Master/Slave setup
Database replication is used when you want to scale your infrastructure to serve more
requests. There are a lot of methods available to scale your database to set up replication.
The exact choice is different for every situation.

In this recipe, we will use a generic setup to create a Master/Slave setup for our Magento
store. This setup will use a Master database server where all the write queries will be saved.
The Slave database server(s) will be used for the read queries. The database is the most
difficult component of an application to scale.

Getting ready
To complete the Master/Slave setup, we will use two different MySQL servers. Get the
connection information such as hostname, IP addresses, username, and passwords.

How to do it...
Here, we will set up a Master/Slave replication in MySQL and configure Magento to use
this setup. Have a look at the following steps:

Chapter 5

91

Setting up the Master database
1. Log in to the server with SSH and open the /etc/mysql/my.cnf file.

2. Look for the bind-address section in the file and comment it out. By commenting
this, you make it possible to make connections from different servers:
#bind-address = 127.0.0.1

3. Paste the following code in the my.cnf file under the [mysqld] section:
server-id = 1

log_bin = /var/log/mysql/mysql-bin.log

expire_logs_days = 10

max_binlog_size = 100M

binlog_do_db = magento_dev

4. Restart your MySQL server by running the following command:
sudo service mysql restart

5. Open the MySQL shell by running the following command. This will perform a login
with the root user:
mysql -u root -p

6. When you are logged in, you have to run the following queries:
GRANT ALL PRIVILEGES ON `magento_dev` . * TO `user_slave`@`%` WITH

GRANT OPTION IDENTIFIED BY `password_slave`;

FLUSH PRIVILEGES;

7. Run the following commands to show the status of the Master database:
USE magento_dev;

FLUSH TABLES WITH READ LOCK;

SHOW MASTER STATUS;

The last command from the previous snippet will give the following output:

We will use this information in the Slave setup, so keep this with you.

Database Concepts

92

8. Unlock the tables with the following command:
UNLOCK TABLES;

quit;

While entering the quit or exit command, you will be returned to the shell of the
server. The setup of the Master database is done.

Setting up the Slave database
1. Perform an SSH login to your Slave server. This is a different server than your

Master server.

2. Open the MySQL shell with the following command:
mysql –u root –p

3. Create a new database magento_dev and import the Master database in it.

4. Add the following configuration in the /etc/mysql/my.cnf file under the
[mysqld] section:
[mysqld]

server-id = 2

master-host = 192.168.56.3

master-user = user_slave

master-password = password_slave

master-connect-retry = 60

replicate-do-db = magento_dev

5. Restart the MySQL server with the following command:
sudo service mysql restart

6. Run the following commands in your MySQL shell. Make sure the MASTER_LOG_FILE
and MASTER_LOG_POST values match the values that you have seen while running
the SHOW MASTER STATUS command:
CHANGE MASTER TO MASTER_HOST=`192.168.56.3`, MASTER_USER=`user_
slave`, MASTER_PASSWORD=`password_slave`, MASTER_LOG_FILE=`mysql-
bin.000001`, MASTER_LOG_POS=88;

7. Run the following command to start the Slave server:
START SLAVE;

8. Check the status by running the following command:
SHOW SLAVE STATUS \G

Chapter 5

93

The output will look as follows:

Configuring Magento
Now, when the MySQL setup for the Master/Slave setup is done, it is time to configure
Magento to use this setup. We have to configure this in the app/etc/local.xml file of
Magento. Here, we will configure a default_setup connection and a default_read
connection. To configure this, add the following XML in the local.xml file under the
<resources> tag:

<resources>
 <db>
 <table_prefix><![CDATA[]]></table_prefix>
 </db>
 <default_setup>
 <connection>

Database Concepts

94

 <host><![CDATA[192.168.56.3]]></host>
 <username><![CDATA[user_master]]></username>
 <password><![CDATA[password_master]]></password>
 <dbname><![CDATA[magento_dev]]></dbname>
 <initStatements><![CDATA[SET NAMES utf8]]>
 </initStatements>
 <model><![CDATA[mysql4]]></model>
 <type><![CDATA[pdo_mysql]]></type>
 <pdoType><![CDATA[]]></pdoType>
 <active>1</active>
 </connection>
 </default_setup>
 <default_read>
 <connection>
 <host><![CDATA[192.168.56.3]]></host>
 <username><![CDATA[user_slave]]></username>
 <password><![CDATA[password_slave]]></password>
 <dbname><![CDATA[magento_dev]]></dbname>
 <active>1</active>
 </connection>
 </default_read>
</resources>

Clear your cache and your Magento will use this setup.

How it works...
When data in the Master database changes, it has to be in sync with the Slave database. To
establish this, the binary logfile is used to communicate between each other.

You have to see that binary logging is configured on the Master. If not, you have to enable
this and restart your MySQL server. If it is not enabled, there is no logfile, so there is no
communication between servers. This is also the reason why the MASTER_LOG_FILE Slave
must match the one on the Master database.

If the setup is done and the Magento configuration is in the app/etc/local.xml file,
everything is finished. Magento is smart enough to send the write request to the Master
and the read requests to the Slave.

Chapter 5

95

Repairing the database
Sometimes it happens that your Magento database is broken or corrupt. This can be caused
by various reasons such as hacking or server crash. When the database is broken and you
have to fix it, the database repair tool from Magento is of great help.

In this recipe, we will make our database corrupt and fix it with the repair tool.

Getting ready
To prepare you, download the database repair tool from the Magento site at http://www.
magentocommerce.com and place the PHP file in your server root.

How to do it...
The following steps show you how to make your database corrupt and fix it using the database
repair tool:

1. Create a backup of your existing database.

2. Create an empty database as the reference database. Let's say we call it magento_
dev_repair.

3. Configure Magento to use this database in the app/etc/local.xml file.

4. Clear the cache and run Magento. This will install an empty Magento in this database.

5. Make your original database corrupt. You can do this by running the following queries
that remove a foreign key and a table:
ALTER TABLE core_store DROP FOREIGN KEY FK_CORE_STORE_GROUP_ID_
CORE_STORE_GROUP_GROUP_ID;

DROP TABLE catalog_product_index_price

Database Concepts

96

6. Browse to the repair tool in your browser, and configure your original and reference
database as shown in the following screenshot:

7. Submit the form and the script will repair your database. On the next page, you will
see what changes are made to your original database.

8. Switch the database in the app/etc/local.xml file, so Magento uses your
original database.

9. Clear the cache and your shop is up and running.

How it works...
While running the database repair tool, the script will compare the original database with
the reference database. If the comparison is done, the script will make the structure of your
original database the same as the one of the reference databases.

The database repair tool only fixes structural issues with your database. If you miss some
data, this is not the right tool to get the data back.

6
Databases and Modules

In this chapter, we will cover:

 f Registering the resource models

 f Registering connections

 f Installing and upgrading scripts

 f Creating a flat table with models

 f Working with Magento collections

Introduction
In the previous chapter, we learned how the Magento database works, which connections are
available, and how we can interact with the database.

In this chapter, we will perform some practical tasks with the things we learned in the previous
chapter. We will extend the module that we created in Chapter 4, Creating a Module, with
database interactions.

We will create Magento models that will interact with a database table, which will be installed
by the module.

Registering the resource models
The first thing we have to do is to register the resource models. The normal models are used
to write business logic. The resource models are used to interact with the database.

Databases and Modules

98

Getting ready
We have to add an extra configuration in the config.xml file of the module. Open the app/
code/local/Packt/Helloworld/etc/config.xml file.

How to do it...
The following steps explain how to register resource models in the existing Packt_
Helloworld module:

1. Navigate to the tag where the models are registered. This is in the config/global/
models tag.

2. Add the following configuration in it to add the resource models. Your <global> tag
will look as follows:
<global>
 <blocks>
 <helloworld>
 <class>Packt_Helloworld_Block</class>
 </helloworld>
 </blocks>
 <helpers>
 <helloworld>
 <class>Packt_Helloworld_Helper</class>
 </helloworld>
 </helpers>
 <models>
 <helloworld>
 <class>Packt_Helloworld_Model</class>
 </helloworld>
 <helloworld_resource>
 <class>Packt_Helloworld_Model_Resource</class>
 </helloworld_resource>
 </models>
</global>

3. Create the app/code/local/Packt/Helloworld/Model/Resource folder.

4. Link the normal model with the resource model by adding the following XML code in
the <models> tag. The <models> tag will look as follows:
<models>
 <helloworld>
 <class>Packt_Helloworld_Model</class>
 <resourceModel>helloworld_resource</resourceModel>
 </helloworld>

Chapter 6

99

 <helloworld_resource>
 <class>Packt_Helloworld_Model_Resource</class>
 </helloworld_resource>
</models>

The link between the helloworld and helloworld_resource models is done
with the <resourceModel> tag.

5. Test your configuration with the wiz command-line tool by running the following
command:

wiz devel-models | grep helloworld

You will now get the following output:

The previous command will display all registered models and filter the output on rows
matching the helloworld word.

How it works...
The models in Magento are used for business logic. For example, an observer model usually
contains functions that will be triggered by events or cron jobs.

A Magento object can also represent an entity such as a product, customer, and category. The
models representing an entity usually inherit from the Mage_Core_Model_Abstract class.
This class has logic to connect with a resource model. For example, the save() function is
declared in this class.

When you look in the save() function of the Mage_Core_Model_Abstract class, you see
that the getResource() function is called. This getResource() function will return an
instance of the resource model.

Resource models are used to connect entities with the database. Magento-specific business
logic is written in the model and the model is called while working with an entity.

If you want to get a resource model instance, you can use the Mage::getResourceModel()
or Mage::getResourceSingleton() method. To get an instance of a class, we have to
pass the Magento classname as the first argument.

Databases and Modules

100

Registering connections
In this recipe, we will configure the read and write adapters to use it in this module. These
adapters are used to connect the models with the database.

Getting ready
We will add the adapter configuration in the config.xml file of the Packt_Helloworld
module. Open this file and get ready to add some configuration.

How to do it...
Follow the next steps to create the read and write connections of the
Packt_Helloworld module:

1. Navigate to the <global> tag and add the following configuration to it. This will
register the read adapter.
<resources>
 <helloworld_read>
 <connection>
 <use>core_read</use>
 </connection>
 </helloworld_read>
</resources>

2. Configure the write adapter to add the following in the <resources> tag of the
XML code. Your resources tag will look as follows:
<resources>
 <helloworld_write>
 <connection>
 <use>core_write</use>
 </connection>
 </helloworld_write>
 <helloworld_read>
 <connection>
 <use>core_read</use>
 </connection>
 </helloworld_read>
</resources>

3. Clear your cache and you're done.

Chapter 6

101

How it works...
Every model in Magento is associated with a read and write adapter. The default read
adapter is core_read. The default write adapter is core_write.

Normally, all models use the core_read and core_write adapters when the database
tables are in the Magento database.

There's more...
You can register and configure a specific database model that uses another database
connection. If you navigate to the following URL, you can find a good tutorial that explains this:

http://www.solvingmagento.com/accessing-an-external-database-from-
your-magento-module/

Installing and upgrading scripts
When your module uses a custom database table, you need to make certain changes to the
database to deploy your module on a staging or production server. Magento has a way to
automatically trigger and install or update scripts when the code is in the right place.

In this recipe, we will extend the Packt_Helloworld module with the install script. This
install script will add an attribute to all products.

Getting ready
For this recipe, we have to work in the module's folder and the database. Open your database
client and go to your code in the Packt_Helloworld module.

How to do it...
The following steps describe the procedure to create and install scripts for your module:

1. Initialize the setup procedures for the module by adding the following code in the
<resources> tag of the config.xml file:
<helloworld_setup>
 <setup>
 <module>Packt_Helloworld</module>
 <class>Mage_Eav_Model_Entity_Setup</class>
 </setup>
 <connection>

Databases and Modules

102

 <use>core_setup</use>
 </connection>
</helloworld_setup>

The previous code will initialize a setup procedure with the name helloworld_setup.
The <module> tag configures the relation with the Packt_Helloworld module.

2. Create the folder for the installation scripts. The folder name in this case is app/
code/local/Packt/Helloworld/sql/helloworld_setup.

3. Create the installation script. The naming of an installation script follows the
convention install-<version_number_config_xml>.php. In our case, the
name of this script is install-0.0.1.php.

4. Add the following content in the file to test the installation procedure:
die('test');

5. Clear the cache and reload any page from the frontend. You will see a white page with
Test on it.

An installation or upgrade script is made to run once during an
installation. The version number of every registered setup is stored
in the core_resource database table. When you want to run your
script again for testing it, you can remove an entry or change the
version number for a setup.

6. Add the following content in the installation script. This installs a product attribute
that is available for all products.
<?php

$installer = $this;

$installer->startSetup();

$installer->addAttribute('catalog_product', 'helloworld_label',
array(
 'group' => 'Helloworld',
 'type' => 'varchar',
 'label' => 'Helloworld label',
 'input' => 'text',
 'global' => Mage_Catalog_Model_Resource_Eav_
 Attribute::SCOPE_STORE,
 'visible' => true,
 'required' => false,

Chapter 6

103

 'searchable' => false,
 'filterable' => false,
 'comparable' => false,
 'visible_on_front' => true,
 'unique' => false,
 'apply_to' => 'simple,configurable,virtual,
 bundle,downloadable',
 'is_configurable' => false
));

$installer->endSetup();

The previous code will create the helloworld_label product attribute. The
attribute will be applied to all products.

With the group option, the attribute will be displayed in the Helloworld tab while
viewing a product in the backend.

7. Clear the cache and reload the page. While reloading a page after clearing cache, the
installation script will run automatically.

8. Go to the backend and open a product to check whether the product attribute is
added. Normally, you will see a Helloworld tab with the attribute in it similar to the
following screenshot:

9. When your installation script is executed, you can see your setup in the core_
resource table of Magento. In this table, all modules and version numbers are stored,
so Magento knows which installation or upgradation scripts have to be executed.

Databases and Modules

104

How it works...
Working with installation scripts is useful when you want to change something in the structure
of your database. Some of the purposes are:

 f Easy deployment of your site from your development/test environment to your
production environment

 f Ability to repair the database

 f Overview of the database changes

The $this object in the installation scripts is the class we have declared in the setup
registration in the config.xml file. In this case, it is the Mage_Eav_Model_Entity_Setup
class. This class is mostly used when you want to add EAV attributes to the entities such as a
product or category like we did in this recipe. Mostly all setup classes extend the default setup
class, that is, Mage_Core_Model_Resource_Setup.

If you want to do a lot of things in you installation script, you can create your own setup class.
This will extend from the normal setup classes.

The functions declared in this class can call the $this object in the installer file.

Creating a flat table with models
In this recipe, we will extend our module with a flat database table. We will create an
upgradation script with the instruction to create a table. When the table is created, we will
finish the setup by adding the needed Magento models, resource models, and collections.
After finishing the whole setup, we have created a custom Magento entity with all the features
of the Magento ORM.

Getting ready
For this recipe, we have to work with the code and the database. Open your IDE in the module
folder and get access to your database client.

How to do it...
The following steps are the instructions to create a database table with the appropriate
Magento models that can interact with this table:

1. Configure the table name in the app/code/local/Packt/Helloworld/etc/
config.xml file.

Chapter 6

105

2. Add the following code under the helloworld_resource tag so that the tag looks
as follows:
<helloworld_resource>
 <class>Packt_Helloworld_Model_Resource</class>
 <entities>
 <subscription>
 <table>helloworld_subscription</table>
 </subscription>
 </entities>
</helloworld_resource>

The previous code will declare an entity which references the helloworld_
subscription table.

3. Create the upgradation script by creating the app/code/local/Packt/
Helloworld/sql/helloworld_setup/upgrade-0.0.1-0.0.2.php file.

4. Add the following code in the upgradation file. This code is a command to create a
table with some fields.
<?php

$installer = $this;

$installer->startSetup();

$table = $installer->getConnection()
 ->newTable($installer->getTable('helloworld/subscription'))
 ->addColumn('subscription_id', Varien_Db_Ddl_Table::
 TYPE_INTEGER, null, array(
 'identity' => true,
 'unsigned' => true,
 'nullable' => false,
 'primary' => true,
), 'Subscription id')
 ->addColumn('created_at', Varien_Db_Ddl_Table::
 TYPE_TIMESTAMP, null, array(
 'nullable' => false,
), 'Created at')
 ->addColumn('updated_at', Varien_Db_Ddl_Table::
 TYPE_TIMESTAMP, null, array(
 'nullable' => false,
), 'Updated at')

Databases and Modules

106

 ->addColumn('firstname', Varien_Db_Ddl_Table::TYPE_TEXT,
 64, array(
 'nullable' => false,
), 'First name')
 ->addColumn('lastname', Varien_Db_Ddl_Table::TYPE_TEXT,
 64, array(
 'nullable' => false,
), 'Last name')
 ->addColumn('email', Varien_Db_Ddl_Table::TYPE_TEXT,
 64, array(
 'nullable' => false,
), 'Email address')
 ->addColumn('status', Varien_Db_Ddl_Table::TYPE_TEXT,
 32, array(
 'nullable' => false,
 'default' => 'pending',
), 'Status')
 ->addColumn('message', Varien_Db_Ddl_Table::TYPE_TEXT,
 '64k', array(
 'unsigned' => true,
 'nullable' => false,
), 'Subscription notes')
 ->addIndex($installer->getIdxName('helloworld/subscription',
 array('email')),
 array('email'))
 ->setComment('Helloworld subscriptions');
$installer->getConnection()->createTable($table);

$installer->endSetup();

5. Clear the cache and reload the frontend. When you refresh your tables in the
database client, you will see the helloworld_subscription table in the list.

While creating a table, think about the naming convention. The first part
is the name where the models are registered followed by an underscore.
The second part refers to the entity model.

Make sure the name of the model is singular. For this example, it is
subscription and not subscriptions.

Chapter 6

107

6. Check whether the table is installed in the database. Reload the tables in
phpMyAdmin and open the new table. The structure will look as follows:

7. When the table is installed with the upgradation script (from 0.0.1 to 0.0.2), the last
part is to create a Magento entity that communicates with the previously created
table. For doing this, we have to create a model, a resource model, and a collection
resource model. The first step is to create the following files:

 � app/code/local/Packt/Helloworld/Model/Subscription.php
(the model)

 � app/code/local/Packt/Helloworld/Model/Resource/
Subscription.php (the resource model)

 � app/code/local/Packt/Helloworld/Model/Resource/
Subscription/Collection.php (the resource collection model)

8. Open the model file and add the following content to it. This content will link the
model with the appropriate resource model.
<?php
class Packt_Helloworld_Model_Subscription extends Mage_Core_Model_
Abstract
{

Databases and Modules

108

 protected function _construct()
 {
 $this->_init('helloworld/subscription');
 }

}

9. Open the resource model file and add the following content to it. The next content will
link the model with the database. In the _init function, we will link the model with
the primary key of the database table.
<?php
class Packt_Helloworld_Model_Resource_Subscription extends Mage_
Core_Model_Resource_Db_Abstract
{

 protected function _construct() {
 $this->_init('helloworld/subscription',
 'subscription_id');
 }

}

10. Open the resource collection model file and add the following content to it. This file
makes it possible to work with Magento collections on the model when you call the
getCollection() method on an entity.
<?php
class Packt_Helloworld_Model_Resource_Subscription_Collection
extends Mage_Core_Model_Resource_Db_Collection_Abstract
{

 protected function _construct() {
 $this->_init('helloworld/subscription');
 }

}

11. All the files are at the right place to start the tests if everything went well so
far. To perform some tests, create a subscriptionAction() method in the
IndexController of the module where we can perform some tests.

12. Navigate to the new action in the controller by going to the http://magento-dev.
local/helloworld/index/subscription URL. You will see a blank page.

Chapter 6

109

13. Add the following content in the action that will create a new subscription item in our
table:
public function subscriptionAction()
{
 $subscription = Mage::getModel('helloworld/subscription');

 $subscription->setFirstname('John');
 $subscription->setLastname('Doe');
 $subscription->setEmail('john.doe@example.com');
 $subscription->setMessage('A short message to test');

 $subscription->save();

 echo 'success';
}

14. When you reload the page, you will see the word success. This word being displayed
is a sign that all the actions have successfully executed. Navigate to your database
and make the following query:

SELECT * FROM helloworld_subscription;

This query will give you the following output:

Databases and Modules

110

How it works...
When you work with the previous setup for entities in a database table, the Magento ORM
makes the link between the entity and the database.

In our previously created Magento entity (Mage::getModel('helloworld/
subscription')), we can use the following functions that will result in a query
to the database:

 f load($entityId)

 f save()

 f delete()

All these functions are implemented in the Mage_Core_Model_Abstract class. All the
Magento entities will extend this abstract class to use the ORM framework.

Working with Magento collections
In this chapter, we will explore the possibilities of the Magento collections. A Magento
collection is a set of entities where you can add filters to customize your result.

In this chapter, we will explore everything that is possible with Magento collections.

Getting ready
Go to the indexController of the helloworld module and create a collectionAction
method in it. In this action, we will perform some tests to compare the results.

How to do it...
The next examples show what are the possibilities while working with Magento collections:

1. Add the following code in the collectionAction method and navigate to the page.
This code will return 10 products.
public function collectionAction ()
{

 $productCollection = Mage::getModel('catalog/product')
 ->getCollection()
 ->setPageSize(10,1);

Chapter 6

111

 foreach ($productCollection as $product)
 {
 Zend_Debug::dump($product->debug());
 }

}

At the end of the code, there is a foreach loop. This calls the
debug() function on the object. The debug() function is available
on all objects that extend the Varien_Object function. A collection
dump is a very large array and can cause an out of memory exception in
PHP or very large responses in the browser.

2. When you look at the output, you will see the following array:
array(11) {
 ["entity_id"] => string(2) "16"
 ["entity_type_id"] => string(2) "10"
 ["attribute_set_id"] => string(2) "38"
 ["type_id"] => string(6) "simple"
 ["sku"] => string(5) "n2610"
 ["created_at"] => string(19) "2007-08-23 13:03:05"
 ["updated_at"] => string(19) "2008-08-08 14:50:04"
 ["has_options"] => string(1) "0"
 ["required_options"] => string(1) "0"
 ["is_salable"] => string(1) "1"
 ["stock_item (Varien_Object)"] => array(1) {
 ["is_in_stock"] => string(1) "1"
 }
}

3. The values in this object don't contain attribute values. To select them, we have
to use the addAttributeToSelect('<attribute_code>') function. Add
the following code to select the first 10 products with the name, price, and image
attributes:
public function collectionAction ()
{

 $productCollection = Mage::getModel('catalog/product')
 ->getCollection()
 ->addAttributeToSelect('name')
 ->addAttributeToSelect('price')
 ->addAttributeToSelect('image')

Databases and Modules

112

 ->setPageSize(10,1);

 foreach ($productCollection as $product)
 {
 Zend_Debug::dump($product->debug());
 }

}

This code will output an array for each product as shown in the following code:

array(14) {
 ["entity_id"] => string(2) "16"
 ["entity_type_id"] => string(2) "10"
 ["attribute_set_id"] => string(2) "38"
 ["type_id"] => string(6) "simple"
 ["sku"] => string(5) "n2610"
 ["created_at"] => string(19) "2007-08-23 13:03:05"
 ["updated_at"] => string(19) "2008-08-08 14:50:04"
 ["has_options"] => string(1) "0"
 ["required_options"] => string(1) "0"
 ["name"] => string(16) "Nokia 2610 Phone"
 ["image"] => string(27) "/n/o/nokia-2610-phone-2.jpg"
 ["price"] => string(8) "149.9900"
 ["is_salable"] => string(1) "1"
 ["stock_item (Varien_Object)"] => array(1) {
 ["is_in_stock"] => string(1) "1"
 }
}

4. We will now create a filter on the product collection. The next code shows how you
can filter the products with the name Nokia 2610 Phone:
public function collectionAction ()
{

 $productCollection = Mage::getModel('catalog/product')
 ->getCollection()
 ->addAttributeToSelect('price')
 ->addAttributeToSelect('image')
 ->addAttributeToFilter('name', 'Nokia 2610 Phone');

 foreach ($productCollection as $_product)
 {
 Zend_Debug::dump($_product->debug());
 }

}

Chapter 6

113

The code in this statement will create a WHERE name = 'Nokia 2610
Phone' statement to the query, so all the items with the name Nokia
2610 Phone will be returned.

5. With the addAttributeToFilter function, we can do more. The following code
shows how you can create a WHERE product_id IN (159, 160, 161) statement:
public function collectionAction ()
{

 $productCollection = Mage::getModel('catalog/product')
 ->getCollection()
 ->addAttributeToSelect('price')
 ->addAttributeToSelect('image')
 ->addAttributeToFilter('entity_id', array(
 'in' => array(159, 160, 161)
));

 foreach ($productCollection as $_product)
 {
 Zend_Debug::dump($_product->debug());
 }

}

6. The next filter we will use is the like filter. Add the following code to make a query
with the WHERE name LIKE '%PC%' statement:
public function collectionAction ()
{

 $productCollection = Mage::getModel('catalog/product')
 ->getCollection()
 ->addAttributeToSelect('price')
 ->addAttributeToSelect('image')
 ->addAttributeToFilter('name', array(
 'like' => '%PC%'
));

 foreach ($productCollection as $_product)
 {
 Zend_Debug::dump($_product->debug());
 }

}

Databases and Modules

114

7. When the queries get more complex, sometimes it is nice to know what SQL query
will be generated to get the collection. To print the SQL query, which is used for a
collection, we can use the following line of code:
$productCollection->getSelect()->__toString()

8. When you add the following code, you will see the query for this collection:
public function collectionAction ()
{

 $productCollection = Mage::getModel('catalog/product')
 ->getCollection()
 ->addAttributeToSelect('price')
 ->addAttributeToSelect('image')
 ->addAttributeToFilter('name', array(
 'like' => '%PC%'
));

 $productCollection->load();

 echo $productCollection->getSelect()->__toString();

}

This code will output the following SQL query:

SELECT `e`.*,

 IF(at_name.value_id > 0, at_name.value,
 at_name_default.value) AS `name`,

 `price_index`.`price`,

 `price_index`.`tax_class_id`,

 `price_index`.`final_price`,

 IF(price_index.tier_price IS NOT NULL,
 Least(price_index.min_price,

 price_index.tier_price),

 price_index.min_price)
AS

 `minimal_price`,

 `price_index`.`min_price`,

 `price_index`.`max_price`,

 `price_index`.`tier_price`

Chapter 6

115

FROM `catalog_product_entity` AS `e`

 INNER JOIN `catalog_product_entity_varchar` AS
 `at_name_default`

 ON (`at_name_default`.`entity_id` =
 `e`.`entity_id`)

 AND (`at_name_default`.`attribute_id` = '96')

 AND `at_name_default`.`store_id` = 0

 LEFT JOIN `catalog_product_entity_varchar`
 AS `at_name`

 ON (`at_name`.`entity_id` = `e`.`entity_id`)

 AND (`at_name`.`attribute_id` = '96')

 AND (`at_name`.`store_id` = 1)

 INNER JOIN `catalog_product_index_price`
 AS `price_index`

 ON price_index.entity_id = e.entity_id

 AND price_index.website_id = '1'

 AND price_index.customer_group_id = 0

WHERE (IF(at_name.value_id > 0, at_name.value, at_name_default.
value) LIKE

 '%PC%')

When using the getSelect()->__toString() function, make sure the
collection is loaded. This is why we called the $productCollection-
>load() function before printing the SQL statement. When you add a
collection in a foreach() loop, the collection will automatically be loaded.

Run this query in phpMyAdmin, and you will see that this flat response can be used to
create a product collection.

9. With the previous code examples, we can only read data from the database. By using
the setDataToAll() function, you can update some attributes for all the entities in
the collection. Use the next code to update all the prices in the collection:
public function collectionAction ()
{

 $productCollection = Mage::getModel('catalog/product')
 ->getCollection()
 ->addAttributeToSelect('price')
 ->addAttributeToSelect('image')

Databases and Modules

116

 ->addAttributeToFilter('name', array(
 'like' => '%PC%'
));

 $productCollection->setDataToAll('price', 20);

 foreach ($productCollection as $_product)
 {
 Zend_Debug::dump($_product->debug());
 }

}

10. When you use the setDataToAll() function, nothing will be changed in the
database until you have called the save() function. Add the following code after the
setDataToAll() function to save the collection:

$productCollection->save();

How it works...
When you want to get a collection of entities, you can do this by calling the next two methods.
The return value of these two is a collection object.

Mage::getModel('model/entity')->getCollection();
Mage::getResourceModel('model/entity_collection');

A Magento collection object always extends from the Varien_Data_Collection class. This
object works as an array, so you can iterate between items in a collection.

For every entity, a collection class is created in the resource model folder. In most cases, this
class extends the parent classes and in some cases, methods are added specially for an entity.

The product entity is a good example of this. When you open the Mage_Catalog_Model_
Resource_Product_Collection class, you will see that this class is not empty. Here,
some functions are declared specially for the product entity.

When you debug the inheritance of collections, you will see that there is a difference for flat
and EAV entities as you can see in the following diagram:

Chapter 6

117

You can see that the classes of the flat entities (Mage_Core_Model_Resource_Db_
Collection_Abstract) and EAV entities (Mage_Eav_Model_Entity_Collection_
Abstract) extend the same parents. The EAV class adds extra methods and redefines some
existing ones to work together with the EAV system.

This is the main reason why the collection queries are different for flat and EAV entities.

For adding a filter on a field, the function for EAV is addAttributeToFilter(). For a flat
entity, the function is addFieldToFilter(). The addAttributeToFilter()function
is declared in the Mage_Eav_Model_Entity_Collection_Abstract class, so it is not
available in the Varien_Data_Collection_Db class.

See also
If you want to know all the possibilities on offer for Magento collections, have a look at the
following article on the Magento website, which has information on all the functions and options:

http://www.magentocommerce.com/wiki/1_-_installation_and_
configuration/using_collections_in_magento

7
Magento Backend

In this chapter, we will cover the following topics:

 f Registering a backend controller

 f Extending the menu

 f Adding an ACL

 f Extending the system configuration

 f Creating a grid from a database table

 f Adding customer attributes

 f Working with source models

Introduction
For a store owner, the backend is the interface to manage everything in their store. It is very
important that everything is secured against visitors with bad intentions. The backend of a
standard Magento installation is extendible in many ways, so everyone can extend it with
custom pages, configuration, roles, and more.

By following the configuration patterns of Magento, all the security issues (access for
anonymous users, a secured environment, and so on) are covered by the backend system
of Magento. The recipes in this chapter describe all the ways in which you can extend your
backend using Magento's best practices of extending the backend.

Registering a backend controller
The first thing that we will learn is how to extend the backend with a custom controller action.
For this, we have to create a controller that is secured so that only logged-in backend users
can see the content of this page.

Magento Backend

120

You need a backend controller when you want to add an extra page to your backend.
This is mostly the case when you are working with a custom form or overview that you
need for your module.

Getting ready
To make the testing of the admin URLs easier, we will remove the secret key (the hash in the
URL of a backend page) from the admin URLs. You can configure this in System | Configuration
| Admin | Security. Change the configuration as shown in the following screenshot:

How to do it...
When you want to add an extra page to your backend, you have to perform the following steps:

1. Open the app/code/local/Packt/Helloworld/etc/config.xml file and add
the following configuration under the global tag:
<admin>
 <routers>
 <adminhtml>
 <args>
 <modules>
 <helloworld before="Mage_Adminhtml">Packt_Helloworld_
 Adminhtml
 </helloworld>
 </modules>
 </args>
 </adminhtml>
 </routers>
</admin>

Chapter 7

121

This configuration will initialize the Adminhtml module to look for controllers in the
folders of the Packt_Helloworld module.

2. Add the following folders in the directories as shown:

 � app/code/local/Packt/Helloworld/controllers/Adminhtml

 � app/code/local/Packt/Helloworld/controllers/Adminhtml/
Helloworld

3. In the last folder, create the IndexController.php file with the following content:
<?php
class Packt_Helloworld_Adminhtml_Helloworld_IndexController
extends Mage_Adminhtml_Controller_Action
{
 public function indexAction()
 {

 }
}

4. Make sure that you extend from the Mage_Adminhtml_Controller_Action class
so that all the security cases are covered.

5. Clear the cache and navigate to the controller by going to the URL http://
magento-dev.local/index.php/admin/helloworld_index/.

This will give you a white page. This is normal because the action is empty.

6. Add the following code in your indexAction function and reload the page. You will
see that an empty backend page is returned:

$this->loadLayout();
$this->renderLayout();

How it works...
The difference between a frontend and backend controller is the parent class. A backend
controller extends another class as the frontend controller. A backend controller always extends
from the Mage_Adminhtml_Controller_Action class. This class adds the security to the
controller so that only authenticated users can have access to the controller action(s).

When we add the configuration in the config.xml file, we will extend the controllers
folder of the Mage_Adminhtml module with the controllers/Adminhtml folder of our
module. With the before="Mage_Adminhtml" option, Magento will look for a controller file
in the folder of the module. Later, it will look in the Mage_Adminhtml module.

Magento Backend

122

When you create a backend controller for your module, make
sure that you add the Adminhtml/Modulename folder in the
controllers folder to avoid conflicts with the existing Mage_
Adminhtml controllers.

There's more…
In some modules and tutorials, you will find the following configuration to link your backend
controller:

<admin>
 <routers>
 <helloworld>
 <use>admin</use>
 <args>
 <module>Packt_Helloworld</module>
 <frontName>helloworld</frontName>
 </args>
 </helloworld>
 </routers>
</admin>

It is not recommended to do the configuration in this way because this will create issues when
you work with frontend and backend controllers in the same module.

Extending the menu
While extending the backend, it is important to make sure that the user can easily navigate to
your customized pages. The only alternative that you can use for this is to extend the Admin
menu with your own items. With the Magento framework, it is possible to add menu items at
every level in that menu.

Getting ready
For this recipe, the only task that we have to do is add the right configuration, which is in the
adminhtml.xml file, into the etc folder of the Packt_Helloworld module.

Chapter 7

123

How to do it...
The following steps describe how you can add an extra menu item to the Admin menu:

1. The first thing that we have to think about is where will we place an extra menu item
in the Admin menu. For this test, we will place it under the System menu. Keep the
system ID in mind. We have to use this for the menu configuration.

2. The second thing is to add the configuration in the adminhtml.xml file. Paste the
following code under the config tag:
<menu>
 <system>
 <children>
 <helloworld translate="title" module="helloworld">
 <title>Helloworld</title>
 <sort_order>10</sort_order>
 <action>adminhtml/helloworld_index</action>
 </helloworld>
 </children>
 </system>
</menu>

In the <helloworld> tag, you see the translate and module
attributes. When these attributes are set, the title will be translated
using the helper class of the helloworld module.

3. Clear the cache and reload the backend. While hovering over the system menu, you
will see that a Helloworld link is displayed as shown the following screenshot:

4. To change the position of the menu item, we have to add the following sort_order
tag in the configuration:

<sort_order>30</sort_order>

Magento Backend

124

How it works...
The Admin menu of Magento comprises all menu configuration data from the modules. The
standard menu contains the following 10 root items:

 f Dashboard

 f Sales

 f Catalog

 f Mobile

 f Customers

 f Promotions

 f Newsletter

 f Reports

 f System

When you want to add an item as a child of one of the root items, you have to use these tags
in your configuration as we did for this recipe. The IDs of these menu items are declared in the
configuration XML files of the Magento core modules.

You can easily add extra root items to the menu, but you have to make sure that the menu
doesn't become too long. When the root menu becomes too long, it will cause layout issues for
smaller screen resolutions.

Adding an ACL
In the previous recipes, we created a backend controller action to which you can navigate.
However, when you want to configure a custom admin role, you can't restrict the access to
this page for a specific role. In this recipe, we will create an ACL (Access Control List) for our
backend page and configure a role with restricted access to this page.

Getting ready
Every admin user has a role. These roles contain access permissions, so you can restrict
access to some user roles. In this recipe, we will add an extra permission to the roles so that
we can configure the access for our previously created page.

Chapter 7

125

How to do it...
The following steps show you how you can restrict the access to a backend page for
specific users:

1. The first thing we have to do is to check which ACLs are available. To know this, we
can run the following command:
wiz admin-resources

2. Or, we can navigate to the Roles page in the backend. This is located in System |
Permissions | Roles. Click on Add new role and open the Resources tab. This will
give you a list of all the available ACLs in the backend.

3. The second step is to add an extra ACL to it. To do this, we can add the following
configuration in the adminhtml.xml file under the <config> tag:
<acl>
 <resources>
 <all>
 <title>Allow Everything</title>
 </all>
 <admin>
 <children>
 <system>
 <children>
 <helloworld>
 <title>Hellworld index page</title>
 <sort_order>10</sort_order>
 </helloworld>
 </children>
 </system>
 </children>
 </admin>
 </resources>
</acl>

Magento Backend

126

4. Clear your cache and reload the Resources page in the backend. When you search
for Helloworld, you will see that there is a checkbox available for our previously
created ACL as shown in the following screenshot:

At this point, our ACL is working. To verify this, we have to create a role with a user
and log in to see that the user has access to the page:

5. Create a new role on the Roles page in System | Permissions. Name it Test
Helloworld and check the Helloworld test and Manage Products ACL.

6. Create a backend user on the Users page at System | Permissions. Fill the form and
add the user to the role that we have just created, as shown in the following screenshot:

7. Log in as the new user, and you will see that this user has access only to the pages
that we have configured in the role.

Chapter 7

127

How it works...
With the ACL system, it is possible to restrict backend pages for specific roles of users. For
example, a product manager only has the rights to manage the products, categories, and
promotion rules and the logistic partner only has access to the order pages.

In the Magento Community Edition, it is not possible to
restrict the access to the data of a specific store. For example,
a logistic partner can only see the orders of Store 1. The
restrictions are based on the controller actions.

When you don't create an ACL for a page, only the roles that have access to all resources can
access the page. In most cases, this is the administrator. For other roles, it is not possible to
access a page without an ACL.

Extending the system configuration
When you want to save some configuration parameters for you module, you can use the
Magento configuration table to save your configuration in it. You can find the configuration
forms under Configuration in the System menu. In this recipe, we will add a configuration
page in the system configuration with some configuration parameters.

Getting ready
Prepare yourselves to extend the Packt_Helloworld module with some extra configuration.
Also, connect to your database because we will have to look at some tables.

How to do it...
The following steps describe the procedure to create extra configuration parameters in the
Configuration page under System.

1. Create the following files in the app/code/local/Packt/Helloworld/etc/
folder:

 � system.xml

 � adminhtml.xml

Magento Backend

128

2. The second step is to create the configuration page. We will create a new tab in the
left-hand side column under a new section. To create a section with the name packt,
we have to add the following code in the system.xml file that we have just created:
<tabs>
 <packt>
 <label>Packt</label>
 <sort_order>400</sort_order>
 </packt>
</tabs>

3. To add a configuration page, we have to add the following code under the global tag
of the system.xml file:
<sections>
 <helloworld translate="label" module="helloworld">
 <label>Helloworld</label>
 <tab>packt</tab>
 <sort_order>10</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 <groups>

 </groups>
 </helloworld>
</sections>

4. When you clear the cache and reload the page, the PACKT section with the
Helloworld tab appears in the menu as shown in the following screenshot:

Chapter 7

129

5. When you click on the link, you will see a 404 error. This is because we haven't
created an ACL for this configuration section. To add an ACL, we have to add the
following code in the adminhtml.xml file that we have created in the first step:
<?xml version="1.0" encoding="UTF-8"?>
<config>
 <acl>
 <resources>
 <all>
 <title>Allow Everything</title>
 </all>
 <admin>
 <children>
 <system>
 <children>
 <config>
 <children>
 <helloworld translate="title"
 module="helloworld">
 <title>Helloworld section</title>
 </helloworld>
 </children>
 </config>
 </children>
 </system>
 </children>
 </admin>
 </resources>
 </acl>
</config>

Magento Backend

130

6. We have to make sure that the ACL is added. To test this, you have to clear your
cache and go to the Roles page at System | Permissions. On that page, click on the
Administrator role, open the Role Resources tab, and change it to Custom. You will
see your ACL entry in the list as shown in the following screenshot:

7. When we see Helloworld section in the list, it means that the ACL is added. Don't
save the role because this was just to verify ACL's addition. To make sure that all the
ACL settings are in the backend session, we have to create a new backend session by
logging out and then logging in.

When creating an ACL, make sure that your custom ACL configuration
follows the Magento XML tree where you have placed your page.

8. When you log in again, navigate to the configuration page and you will see an empty
page. It's because the fields aren't added in the configuration.

9. A new configuration field has to be in a configuration group. To add a new group, we
have to add some configuration in the system.xml file. Add the following code under
the config/sections/helloworld tag:
<groups>
 <hellopage translate="label">
 <label>Hello page settings</label>
 <sort_order>1</sort_order>
 <show_in_default>1</show_in_default>

Chapter 7

131

 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 <fields>

 </fields>
 </hellopage>
</groups>

10. On reloading the page, you will see nothing because there are no fields defined in
the <fields> tag. To add a field (for example, header_title), we have to add the
following code in the <fields> tag:
<header_title translate="label">
 <label>Header title</label>
 <frontend_type>text</frontend_type>
 <sort_order>1</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
</header_title>

11. After clearing the cache and reloading the page, you will see a field in the
configuration page as shown in the following screenshot:

12. Enter a value in the field and save the configuration.

13. To see where the value is saved, we have to look in the core_config_data table.
Run the following query to see the record of our field:
SELECT * FROM core_config_data where path = 'helloworld/hellopage/
header_title'

Magento Backend

132

This query returns all the values of the field as shown in the following screenshot:

14. To read the config data, we can use the Mage::getStoreConfig('<path>')
function. In our case, the path is helloworld/hellopage/header_title. You
can determine the path from the path column of the core_config_data table or
from the system.xml files of the modules.

How it works...
The Magento configuration is saved in the core_config_data table. This table contains all
the configuration values that you can set in System | Configuration from the backend.

Every config setting can be configured at three levels:

 f Global configuration

 f Website configuration

 f Store view configuration

When you are working with multiple stores, this setup makes it possible to save a
configuration value for every store view. You can switch the scope with the drop-down field in
the upper-left corner of the screen, shown as follows:

Chapter 7

133

The type of every configuration value is stored in the scope column. This scope has a different
code for every level:

 f default (for global configuration)

 f websites (for website configuration)

 f stores (for stores)

For every configuration field, you can configure the scope in your system.xml file. This is
done with the use_in_store, use_in_website, and use_in_default tags.

The configuration path of a configuration parameter is set in the system.xml files of the
modules. In the following XML path, you can determine the values:

config/sections/$1/groups/$2/fields/$3

When you convert this XML path to a configuration path, it will look as follows:

$1/$2/$3

In this recipe, $1 corresponds to helloworld, $2 corresponds to hellopage, and $3
corresponds to header_title or is_enabled.

Creating a grid from a database table
In the previous chapter, we created a Magento entity that was linked to a database table. In
this recipe, we will create a backend interface so that backend users can see the data from
this table in the backend.

We will create an overview that will use the standard backend grid widget of Magento.
This widget is widely used in the backend to display information in a grid as the Manage
Products page.

Getting ready
For this recipe, we have to configure a backend controller, a menu item, an ACL, and the
right Block files to render the grid output. Prepare yourselves to extend the backend with a
custom grid.

How to do it...
1. The first thing we have to do is to create a backend controller for our grid.

We will create a grid based on the subscription entity, so we will create
SubscriptionController. Create a SubscriptionController.php file
in the app/code/local/Packt/Helloworld/controllers/Adminhtml/
Helloworld/ folder.

Magento Backend

134

2. Add the following content in the controller:
<?php
class Packt_Helloworld_Adminhtml_Helloworld_SubscriptionController
extends Mage_Adminhtml_Controller_Action
{
 public function indexAction()
 {
 $this->loadLayout();

 $this->renderLayout();
 }
}

3. Create a menu item for the controller. When you add the following code in the
adminhtml.xml file of the module, it will create a menu item under the Customer
item:
<menu>
 <customer>
 <children>
 <subscription translate="title" module="helloworld">
 <title>Helloworld subscriptions</title>
 <sort_order>10</sort_order>
 <action>adminhtml/helloworld_subscription</action>
 </subscription>
 </children>
 </customer>
</menu>

4. Create an ACL for the controller action. This can be done by adding the following code
in the same adminhtml.xml file as we did for the menu.
<acl>
 <resources>
 <all>
 <title>Allow Everything</title>
 </all>
 <admin>
 <children>
 <customer>
 <children>
 <subscription>
 <title>Hellworld subscriptions</title>
 <sort_order>10</sort_order>
 </subscription>

Chapter 7

135

 </children>
 </customer>
 </children>
 </admin>
 </resources>
</acl>

5. Clear the cache and reload your backend. The menu item is now in the menu under
Customer. When you navigate to the page, you will see an empty backend page.

We now have a backend page that is linked to the menu. In the next steps, we will
add a grid in the page. To do this, we have to create two blocks. The first block is for
the wrapper (title, classes). The second one is for the grid where we will define the
columns.

6. To create the wrapper block, create the app/code/local/Packt/Helloworld/
Block/Adminhtml folder. In that folder, create a Subscription.php file with the
following content:
<?php
class Packt_Helloworld_Block_Adminhtml_Subscription extends Mage_
Adminhtml_Block_Widget_Grid_Container
{
 public function __construct()
 {
 $this->_headerText = Mage::helper('helloworld')->__
 ('Helloworld subscriptions');

 $this->_blockGroup = 'helloworld';
 $this->_controller = 'adminhtml_subscription';

 parent::__construct();
 }

 protected function _prepareLayout()
 {
 $this->_removeButton('add');

 return parent::_prepareLayout();
 }
}

7. Create the app/code/local/Packt/Helloworld/Block/Adminhtml/
Subscription folder with a Grid.php file in it. In that file, add the following content:
<?php
class Packt_Helloworld_Block_Adminhtml_Subscription_Grid extends
Mage_Adminhtml_Block_Widget_Grid

Magento Backend

136

{
 public function __construct()
 {
 parent::__construct();

 $this->setId('subscription_grid');
 $this->setDefaultSort('subscription_id');
 $this->setDefaultDir('DESC');
 }

 protected function _prepareCollection()
 {
 $collection = Mage::getModel('helloworld/subscription')-
 >getCollection();
 $this->setCollection($collection);
 return parent::_prepareCollection();
 }

 protected function _prepareColumns()
 {
 $this->addColumn('subscription_id', array (
 'index' => 'subscription_id',
 'header' => Mage::helper('helloworld')->__
 ('Subscription id'),
 'type' => 'number',
 'sortable' => true,
 'width' => '100px',
));

 $this->addColumn('firstname', array (
 'index' => 'firstname',
 'header' => Mage::helper('helloworld')->__('Firstname'),
 'sortable' => false,
));

 $this->addColumn('lastname', array (
 'index' => 'lastname',
 'header' => Mage::helper('helloworld')->__('Lastname'),
 'sortable' => false,
));

 $this->addColumn('email', array (
 'index' => 'email',

Chapter 7

137

 'header' => Mage::helper('helloworld')->__('Email'),
 'sortable' => false,
));

 return parent::_prepareColumns();
 }

 public function getGridUrl()
 {
 return $this->getUrl('*/*/grid', array(
 '_current' => true,
));
 }
}

8. To add the blocks to the page, add the following code in the indexAction()
function of the previously created controller file:
public function indexAction()
{
 $this->loadLayout();

 $this->_addContent($this->getLayout()->createBlock('helloworld/
 adminhtml_subscription'));

 $this->renderLayout();
}

9. Reload the page and you will get the following output:

10. To change the page title, we have to go to the wrapper block class. This is the app/
code/local/Packt/Helloworld/Block/Adminhtml/Subscription.php file.
The $this->_headerText variable in the __contsruct() action contains the
title of the page.

Magento Backend

138

11. Now, the grid contains the Subscription id, Firstname, Lastname, and Email. In
_prepareColumns(), we will add more columns to the grid so that it shows all the
columns of the database table.

12. The created_at field is of the type datetime. When we add the following code in
the _prepareColumns() function, we will see the created_at column with a date
filter:
$this->addColumn('created_at', array (
 'index' => 'created_at',
 'header' => Mage::helper('helloworld')->__('Created At'),
 'type' => 'datetime',
 'sortable' => true,
 'width' => '150px',
));

13. The last column that we will add is the status column. In this column, we will add
some HTML markup to the values. For this, we need to add the following code in the
_prepareColumns() function:
$this->addColumn('status', array (
 'index' => 'status',
 'header' => Mage::helper('helloworld')->__('Status'),
 'sortable' => true,
 'frame_callback' => array($this, 'prepareStatusLayout'),
 'width' => '150px',
));

14. The frame_callback column requires the prepareStatusLayout() function.
Create the following function in the grid class:

public function prepareStatusLayout($value)
{
 $class = '';
 switch ($value) {
 case 'pending' :
 $class = 'grid-severity-notice';
 break;
 case 'approved' :
 $class = 'grid-severity-major';
 break;
 case 'declined' :
 $class = 'grid-severity-critical';
 break;
 }
 return ''.$value.'
 ';
}

Chapter 7

139

How it works...
The backend grid is one of the backend widgets that is available in Magento. Other widgets
that are widely used are the forms or the tabbed left menu. The grid widget is made to display
the content of a collection in a grid, where you can sort and filter on the columns. A pager is
automatically included, which prevents out-of-memory exceptions when there is a very large
number of records in a collection.

The rendering of the grid is done in the Mage_Adminhtml_Block_Widget_Grid class. Our
grid directly extends this class and overwrites the functions that were needed to customize
the output for our entity.

In the _prepareCollection() function, we initialize the collection where we will work.
The _prepareColumns() function is used to define the columns of the grid. In the _
prepareColumns() function, we can play with the definition of the columns. A column
definition is done with the $this->addColumn() function. In this function, we will initialize
an array with the parameters for the column. It is recommended to use the following
parameters for every column:

 f header (column title)

 f index (column in database)

 f sortable (enables sorting for the column when true)

The following parameters are optional:

 f width (defines a width for the column)

 f frame_callback (calls a function to render the value of a cell)

 f type (defines the filter widget such as number, datetime, and options)

 f options (defines a source model when the type is options)

Adding customer attributes
Sometimes, it is easy if we can add an attribute to a customer as we can do with products.
This is possible, but there is no interface for adding attributes in the backend. We have to
create it using a module that adds the attributes to the customer object. In this recipe, we
will add a loyaltynumber field to the customer.

Getting ready
For adding a customer attribute, the only task is to create an upgrade script which adds the
attribute. Then, we have to link the attribute in the form table.

Magento Backend

140

How to do it...
Perform the following steps to add the loyaltynumber attribute to your customer objects:

1. The first step is to create the upgrade script. In the previous chapters, we have
created an install and upgrade script in the app/code/local/Packt/
Helloworld/sql/helloworld_setup folder. Create an extra install script with
the name upgrade-002-003.php.

2. To install the customer attribute, add the following code in that install script:
<?php

$installer = $this;

$installer->startSetup();

//Create the attribute "loyaltynumber" for the customer entity
$installer->addAttribute('customer', 'loyaltynumber', array(
 'type' => 'varchar',
 'input' => 'text',
 'required' => false,
 'label' => 'Loyaltynumber',
 'visible' => true,
 'adminhtml_only' => true,
 'user_defined' => true,
));

//Add the attribute to the backend forms
//@todo

$installer->endSetup();

This will add a text attribute to the customer entity.

3. The previous code was to create the attribute for the customer. In this step, we will
add the attribute to the customer form in the backend. We can do this by adding the
following code under the @todo comment:
$loyaltyAttribute = Mage::getSingleton('eav/config')-
>getAttribute('customer', 'loyaltynumber');

$loyaltyAttribute->setData('used_in_forms', array('adminhtml_
customer'));

$loyaltyAttribute->save();

Chapter 7

141

4. To execute the upgrade script, update the version number from 0.0.2 to 0.0.3 in
config.xml.

5. To run the script, clear the caches and reload the page. When you navigate to a
customer in the backend, you will see that the attribute is added in the form as
shown in the following screenshot:

How it works...
The installation of the customer attribute works in the same way as adding a product
attribute via code. The only big difference is the entity type. Adding the field to the backend
form of a customer is not as easy as for a product. For a customer, the fields to be displayed in
the form are stored in the eav_form_attribute table.

While rendering the form, Magento will get the data from this table and render the fields
based on the configuration in the attribute. The customer address is another EAV entity
related to the customer entity. Adding attributes to a customer address works in the same way
as adding a customer entity.

Working with source models
Magento works with a lot of drop-down fields that you can select in the forms of the
application. Also, we can make use of drop-down fields in our custom fields.

Magento Backend

142

A drop-down or multiselect field always has options that you can choose in this field. To
render these options, Magento uses a class that returns the options. Such a class is called
a source model.

In this recipe, we will see which source models Magento uses and how we can create a
custom source model for a custom configuration field.

Getting ready
For this recipe, we will create a source model that is linked to a custom configuration field.
This is done in the Packt_Helloworld module, which we will extend in this recipe.

How to do it...
The following steps describe how you can create your own source models for your form fields.

1. The first thing that we have to create is a configuration field of the type drop-down. This
has the same syntax as a normal configuration. In the system.xml file of the Packt_
Helloworld module, add the following configuration under the <fields> tag:
<is_enabled translate="label">
 <label>Enabled</label>
 <frontend_type>select</frontend_type>
 <sort_order>10</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
</is_enabled>

2. Clear your cache and go to the configuration page. You will see that there is an
additional drop-down field without options. To create the options, we have to link a
source model to it. The next code adds a Yes/No option to the field. Add this under
the is_enabled tag:
<source_model>adminhtml/system_config_source_yesno</source_model>

3. To create our own source model, we have to create a Model instance. Create the
Packt_Helloworld_Model_Source_Config_Relation class. We can do this
by creating a Relation.php file in the app/code/local/Packt/Helloworld/
Model/Source/Config folder. Add the following content to that file:
<?php
class Packt_Helloworld_Model_Source_Config_Relation
{
 public function toOptionArray()
 {

Chapter 7

143

 return array(
 array(
 'value' => null,
 'label'=>Mage::helper('helloworld')->__('--Please
 Select--'),
),
 array(
 'value' => 'bronze',
 'label'=>Mage::helper('helloworld')->__('Bronze'),
),
 array(
 'value' => 'silver',
 'label'=>Mage::helper('helloworld')->__('Silver'),
),
 array(
 'value' => 'gold',
 'label'=>Mage::helper('helloworld')->__('Gold'),
),
);
 }
}

4. To link the previously created source model to the block, we have to change the
source_model line in the system.xml file. Change the line to the following:
<source_model>helloworld/source_config_relation</source_model>

5. Clear your cache and you will see that the options of the field are changed based on
the output from the source model, as shown in the following screenshot:

Magento Backend

144

How it works...
A source model is a model instance with a toOptionArray() function. This function returns
an array with all the items of the source array. This array has the following format:

array(
 array(
 'value' => '0',
 'label' => 'Label option 0',
),
 array(
 'value' => '1',
 'label' => 'Label option 1',
)
)

The value key is the value of the <option> in the drop-down list. The label key is the text
that appears in the drop-down list.

In this recipe, we configured a source model for a configuration field. We can also use source
models in the following cases:

 f The product attribute in the backend

 f The customer attribute in the backend

 f The additional backend form

 f The drop-down filter in backend grids

The configuration of the source model is mostly done in the configuration of the field.
For EAV forms, the information of the source model is stored in the attribute configuration
that is in the database.

When a drop-down or multiselect field is saved, it is always saved in a single field of the
database. If a field is a drop-down, a value will be stored in that field. When the field is a
multiselect field, a comma-separated list of the selected values will be saved in that field.

8
Event Handlers

and Cronjobs

In this chapter, we will cover the following topics:

 f Understanding Magento event types

 f Creating your own event

 f Adding an event listener

 f Introducing cronjobs

 f Creating a new cronjob

 f Testing your new cronjob

Introduction
In the e-commerce flow of Magento, there are a lot of events that happen when a visitor buys
something from your shop. He or she adds a product to the shopping cart, selects a payment
method, logs in, and so on.

Magento dispatches these events and you have the possibility to hook in to an event to do
your stuff. It's like hooking in to a click event in JavaScript.

The Observer design pattern is used to implement the event handling system. An event
happens in the installation, and the configuration will call the right function from an observer
class to execute.

The cronjob system in Magento is built on the same design pattern. Cronjobs are configured
in the configuration. When the cron runs, Magento will check the timeframes and execute the
jobs that match the configuration.

Event Handlers and Cronjobs

146

Understanding Magento event types
Working with event listeners is better than rewriting a core class. When analyzing a process, it
is good to think about how you can do it and if it is possible to work with the Magento events.

Before we can do that, we have to see which events are available, when they are dispatched,
and which parameters are sent with the event.

Getting ready
In this recipe, we will explore how the Magento event system works. We will use the Magento log
system to debug a core class to see which events are available and when they are dispatched.

How to do it...
Follow the ensuing instructions to see the event system in action:

1. When debugging something, it is recommended that you enable Magento
logging. You can do this by configuring it in the backend. Navigate to System |
Configuration | Advanced | Developer. Configure the Enabled parameter as
shown in the following screenshot:

You can also run the wiz command wiz devel-logging yes in
your command-line tool to enable logging.

Chapter 8

147

2. Magento events are dispatched with the Mage::dispatchEvent() function. To
debug this function, we have to edit it. The Mage::dispatchEvent() function will
call the dispatchEvent() function in the app/code/core/Mage/Core/Model/
App.php file. To edit this file, we have to copy the file into the app/code/local/
Mage/Core/Model folder. If this folder doesn't exist, create it and copy the file.

3. In that file, search for the dispatchEvent() function. In the first line of that
function, add Mage::log($eventName); to print the event name in the logfile. The
beginning of that function will look like the following code snippet:
public function dispatchEvent($eventName, $args)
{
 Mage::log($eventName);
 foreach ($this->_events as $area=>$events) {
 if (!isset($events[$eventName])) {
 $eventConfig = $this->getConfig()-
 >getEventConfig($area, $eventName);
 if (!$eventConfig) {
 $this->_events[$area][$eventName] = false;
 continue;
 }
 $observers = array();
 foreach ($eventConfig->observers->children() as
 $obsName=>$obsConfig) {
 ...

4. Clear the cache and reload the page in the frontend.

5. Have a look at the var/log/system.log file. By using the tail -f command, you
can see the changes of the file live. In the command line, go to the directory of your
Magento installation and run the following command:
tail -f var/log/system.log

This will give you the following output:

6. When reloading a new page, you will see that a lot of events are printed in the logfile
of Magento.

7. Enough debugging for now. It is time to remove the file app/code/local/Mage/
Core/Model/App.php.

Event Handlers and Cronjobs

148

How it works...
The first thing we did was enable the Magento log. This is recommended for development
environments because all the debug messages are printed in the file var/log/system.log.

PHP warnings and notices are also printed in this file, so it is
recommended to have a look at it when developing.

To print a debug message, we used the Mage::log() function. The first parameter of this
function is the message you want to debug. If the parameter is an object or array, Magento
will print a dump of the variable in the logfile.

The second parameter is the log level. When this is not specified, the error level DEBUG is
used. This parameter requires a numeric value. These values are set in the const variables
of the Zend_Log class, which are the following:

 f Zend_Log::EMERG

 f Zend_Log::ALERT

 f Zend_Log::CRIT

 f Zend_Log::ERR

 f Zend_Log::WARN

 f Zend_Log::NOTICE

 f Zend_Log::INFO

 f Zend_Log::DEBUG

With the third parameter, you can configure a file in the var/log folder where the log message
needs to be printed. When this parameter is empty, the default file system.log is used.

The fourth and last parameter is a Boolean value where you can force to always print a log
message (even if the Magento logging is set to off).

When using the Mage::log() function, you will print the debug data without changing the
output of the PHP process.

For every request in Magento, many events are dispatched. So, there are many ways to
integrate and execute custom code in the Magento process.

Working with events is better than rewriting a core class of Magento. When you rewrite a core
class, it is possible that your code will become incompatible while upgrading Magento or
installing third-party modules.

When you work with events, you will create an extension on Magento instead of creating a
modification when you rewrite a core class.

Chapter 8

149

So, it is good to think about the way you want to execute custom code in Magento.

See also
A full list of the Magento events can be found at: http://www.magentocommerce.com/
wiki/5_-_modules_and_development/reference/magento_events.

Make sure that this list is not complete when you are working with custom modules because
they can have their own events.

Creating your own event
When we want to create our own event, we have to dispatch it with a custom name. In this
recipe, we will learn how events are dispatched and what we can do with parameters that we
will forward.

Getting ready
We will create our own event that is fired when a visitor opens the helloAction() function
of the Packt_Helloworld module. In this recipe, we will build further on the Packt_
Helloworld module that is created in Chapter 4, Creating a Module, Chapter 6, Databases
and Modules, and Chapter 7, Magento Backend. If you want, you can install the start files.

How to do it...
The following steps describe how we can dispatch our own event.

1. Open the IndexController of the Packt_Helloworld module. In this controller,
there is a helloAction() function where we will work to dispatch the event.

2. To dispatch an event, the Mage::dispatchEvent() function is used. When we
change the code of the helloAction() function to the following code, we will
dispatch an event called helloworld_register_visit:
public function helloAction()
{
 $this->loadLayout();
 Mage::dispatchEvent('helloworld_register_visit');

 $this->renderLayout();
}

3. Every time the page is reloaded, the event is dispatched. Because there is no listener
added, nothing will happen. To test that the code works, you have to debug the Mage_
Core_Model_App::dispatchEvent() function like we did in the previous recipe.
You can find this function in the file app/code/core/Mage/Core/Model/App.php.

Event Handlers and Cronjobs

150

4. The second thing we will do is add two parameters to the event. For example, we will
send a product and a category to the event. We will use the second parameter to
send the parameters. This parameter accepts a key value array with the objects. The
following code shows how to send parameters to the event:
public function helloAction()
{
 $this->loadLayout();

 $parameters = array(
 'product' => Mage::getModel('catalog/product')-
 >load(166),
 'category' => Mage::getModel('catalog/category')-
 >load(10),
);

 Mage::dispatchEvent('helloworld_register_visit',
 $parameters);

 $this->renderLayout();
}

Make sure the product and category ID exists in your webshop. If
not, you can use another ID that exists in your webshop.

How it works...
The Mage::dispatchEvent() function fires an event in Magento. When this function is
called, Magento will look into the configuration and execute the matching event observer
functions, also known as observers in the Magento world.

You can use the Mage::dispatchEvent() function in every context you want, so it's to you
to decide where you want to place it if needed.

Adding an event observer
An event listener (observer) is used when you want to hook in to an event. In the previous
recipe, we fired an event. In this recipe, we will catch events and look at how we can execute
custom code when the event occurs in the website.

Getting ready
For this recipe, we will add two event observers. The first one will catch the event that we
created in the previous recipe. The second event listener (observer) will hook into the "add to
cart" action of a product.

Chapter 8

151

How to do it...
The following steps describe what you can do with event observers:

1. To listen to the helloworld_register_edit event, we have to add configuration
to the config.xml file of the Packt_Helloworld module. Add the following code
in this file under the <global> tag:
<events>
 <helloworld_register_visit>
 <observers>
 <register_visit>
 <type>singleton</type>
 <class>helloworld/observer</class>
 <method>registerVisit</method>
 </register_visit>
 </observers>
 </helloworld_register_visit>
</events>

2. We just configured an observer that fires the registerVisit() function of the
helloworld/observer class. We have to create the Packt_Helloworld_
Model_Observer class. Create the file app/code/local/Packt/Helloworld/
Model/Observer.php with the following content:
<?php
class Packt_Helloworld_Model_Observer
{
 public function registerVisit (Varien_Event_Observer
 $observer)
 {
 Mage::log('Registered');
 }
}

3. We can test the event observer by firing the event. The event is fired on the page
http://magento-dev.local/helloworld/index/hello. Navigate to this file
and check the debug messages in the Magento logfile (var/log/system.log).

4. The observer function prints a debug message in the Magento logfile. Let's look
at the parameters that we send with the event. These parameters are sent in the
$observer object in the function. To get the product and the category, change the
registerVisit() action to the following code to debug the product and category:
public function registerVisit ($observer)
{
 $product = $observer->getProduct();
 $category = $observer->getCategory();

Event Handlers and Cronjobs

152

 Mage::log($product->debug());
 Mage::log($category->debug());
}

5. For the next part, we will hook in to the "add to cart" event. When a user adds a
product to the cart, we have to check that the quantity is odd. If not, we have to show
an error message that the product can't be added to the cart.

6. To do that, we have to create an event listener (observer) for the event checkout_
cart_product_add_after. We do this by adding the following code in the
config.xml file of the Packt_Helloworld module. Paste the following code
under the <events> tag:
<checkout_cart_product_add_after>
 <observers>
 <check_cart_qty>
 <type>singleton</type>
 <class>helloworld/observer</class>
 <method>checkCartQty</method>
 </check_cart_qty>
 </observers>
</checkout_cart_product_add_after>

7. This will call the checkCartQty() function in the observer class. The following code
will display a notice message when the event is fired:
public function checkCartQty ($observer)
{
 Mage::getSingleton('checkout/session')-
 >addNotice('Product add event fired');
}

8. Clear your cache and add a product to the cart. The message will appear in the cart
page when a product is added, as shown in the following screenshot:

Chapter 8

153

9. Now, we have to add the following code to check if the quantity is odd or even. This
code gets the quantity from the observer and adds a check for even or odd:
public function checkCartQty ($observer)
{
 if ($observer->getProduct()->getQty() % 2 == 0) {
 //Even
 } else {
 //Odd
 }
}

10. When the quantity is even, we have to show a notice. When the quantity is odd, we
have to cancel the "add to cart" operation and display a message. We can do this by
throwing an exception. In an event observer, we can never use return values. To work
correctly, the check function will look like the following code:
public function checkCartQty (Varien_Event_Object $observer)
{
 if ($observer->getProduct()->getQty() % 2 == 0) {
 //Even
 Mage::getSingleton('checkout/session')->addNotice('Even
 quantity added');
 } else {
 //Odd
 Mage::throwException('Quantity is odd. It needs to be
 even');
 }
}

11. Clear the cache and add a product to the cart with an even and odd quantity. You will
see that the odd quantity will result in an error message.

How it works...
Event listeners (observers) are always configured in the config.xml file. When we look at
the configuration, every tag has its own purpose:

<events>
 <helloworld_register_visit>
 <observers>
 <register_visit>
 <type>singleton</type>
 <class>helloworld/observer</class>
 <method>registerVisit</method>
 </register_visit>

Event Handlers and Cronjobs

154

 </observers>
 </helloworld_register_visit>
</events>

The <events> tag is the root to define events in it. The <events> tag can be configured
under the <global>, <frontend>, or <admin> tags depending on the scope of the event
that needs to be executed.

Under the <events> tag, we find the <helloworld_register_visit> tag. The name of the
tag is the name of the event that will be observed. The observers are defined in the child tags.

Under the <helloworld_register_visit> tag, you see an <observers> subtag. In this
tag, all the observers are declared.

In this recipe, we have a register_visit observer. The observers that are declared under
the <observers> tag needs to have a unique name. When using an existing name, you will
overwrite the configuration of an existing observer.

The observer tag (register_visit) has the following subtags:

 f <type>: This is the design pattern to call the class, mostly as singleton or model

 f <class>: This is the Magento path to the class

 f <method>: This is the method to be executed

The previous event will execute the configured class and function when the event is fired with
the dispatchEvent() function.

To every observer function, an $observer object is passed. This variable is an instance of
the Varien_Event_Observer class. This class extends the Varien_Object class and it
contains some extra event-related functions.

The return parameters of the event observer functions will be ignored. When working with
an event observer, you have to look at the context where the Mage::dispatchEvent()
function is placed.

Sometimes, it is placed in a try-catch structure like the checkout_cart_product_add_
after event in this recipe. In other cases, you can change the values of the passed objects
like the model_save_before event does.

Introducing cronjobs
Cronjobs or scheduled tasks are background processes that keep your Magento webshop
running. Some examples of cronjobs are as follows:

 f Sending newsletters

 f Recalculating catalog promotion rules for the next day

Chapter 8

155

 f Cleaning visitor logs
 f Sending product stock and price alert mails
 f Updating currency rates

If cronjobs are not configured on the server, you will see issues with your webshop after a
period of time.

Getting ready
In this recipe, we will learn how to configure cronjobs on the server and verify that they are
working. Make an SSH connection to your server and prepare yourselves to perform some
server configurations.

How to do it...
The following steps describe how you have to configure the cronjobs on your server:

1. Practically, we have to configure cronjobs every five minutes. For that to happen, the
following command is executed:
/bin/sh /var/www/packt/magento-dev/cron.sh

To avoid permission problems, you have to run this command as the
user that apache uses to serve the HTTP requests. In our setup, this
user is www-data.

2. When you execute the previous command, the cronjob table in the database is
updated with the recent cronjobs. In the cron_schedule table, you can see the
queue for the next 30 minutes. Run the following command in your database client to
see the content of the table:
SELECT * from CRON_SCHEDULE;

This query gives you the following output:

Event Handlers and Cronjobs

156

3. In the scheduled_at column, you see when the cronjob is planned to run. When
running the cron.sh script after the scheduled_at time, we have to run the query
again. This will give the following output:

4. To run a cronjob, we have to use the crontab file on the Linux server. To configure
it, we have to switch to the www-data user. We can do this by running the following
command:
sudo su www-data

5. Next, we have to configure the cronjob. We can do this by running the crontab
-e command. This will open a file where we have to put the content shown in the
following screenshot:

Chapter 8

157

6. Save the file and the cronjob will run every five minutes.

How it works...
The Magento cron script is called the cron.sh file in the Magento root folder. This will
execute the cron.php file over Command Line Interface (CLI). In this cron.php file, the
Magento application is started and the cron process is initialized.

When the cron process is initialized, Magento will look at the cron_schedule table. Every
scheduled cronjob with the scheduled_at field in the past will be executed. When a job
starts, the executed_at field will be updated to the current timestamp.

When a job is finished, the finished_at field is updated with the current timestamp. Also,
the status will be updated. When the status is an error, the message field will be updated with
the error.

When the process is finished, Magento will create a queue for the next 30 minutes. Based on
the configuration files, Magento knows which cronjob has to be scheduled each time.

Creating a new cronjob
The cronjobs are defined in the config.xml files of the Magento modules. Like every
configuration in these files, the cronjob configuration is easy to extend in our own module. In
this recipe, we will learn how to create extra cronjobs for the Magento installation.

Getting ready
The workflow to execute a cronjob is mostly the same as working with events. We have to
configure an observer function in the config.xml file that will be executed when the cronjob
is executed.

In the Packt_Helloworld module, we will create a cronjob that will save some data in
the database.

How to do it...
Follow the ensuing steps to see which configuration is needed to configure an extra cronjob:

1. We have to create a crontab configuration in the config.xml file. The following
configuration will do that. Paste this under the <config> tag of the file app/code/
local/Packt/Helloworld/etc/config.xml:
<crontab>
 <jobs>
 <helloworld_check_subscriptions>

Event Handlers and Cronjobs

158

 <schedule>
 <cron_expr>* 10 * * *</cron_expr>
 </schedule>
 <run>
 <model>helloworld/observer::checkSubscriptions
 </model>
 </run>
 </helloworld_check_subscriptions>
 </jobs>
</crontab>

2. Clear the cache and verify that the configuration is working by running the following
command in your terminal:
wiz config-get crontab/jobs

This command gives you a list of all the configured cronjobs in the configuration.

If the helloworld_check_subscriptions code is under the list, it means that
the configuration is working.

3. When the configuration is OK, we have to create the observer function. In the
run/model tag, we will call the cronListener() action in the class Packt_
Helloworld_Model_Observer. Create the class if it is not there and add the
checkSubscriptions() function in it. The function will look like the following code:

public function checkSubscriptions()
{
 $subscription = Mage::getModel('helloworld/subscription');
 $subscription->setFirstname('Cron');
 $subscription->setLastname('Job');
 $subscription->setEmail('cron.job@example.com');
 $subscription->setMessage('Created by cronjob');

 $subscription->save();
}

This will save a subscription entity in the subscriptions table when the
cron is executed.

How it works...
When you look at the cronjob configuration, the first XML tag you see is the cronjob code.
This has to be unique across all the modules. If it exists, you will overwrite the settings of an
existing standard cronjob.

Chapter 8

159

A good practice is to start the cronjob code with the name that you used to register the
models of your module (helloworld, catalog, and so on). This code is followed with the
action you want to do.

A cronjob code is always in small letters. Spaces are replaced by
an underscore.

One level deeper, you see the <schedule> and <run> tags.

In the <schedule> tag, we can configure the interval of the cronjob. This configuration
contains five parameters which represent the following configurations:

 f Minute

 f Hour

 f Day

 f Month

 f Year

A configuration such as 0 10 * * * will run every day at 10:00 a.m. This means every
weekday, every month, every day, at hour 10 and minute 0.

The <run> tag just initializes the observer class and function to call when a cron needs to be
executed. It is not possible to send parameters to that function.

Testing your new cronjob
When you are developing a new cronjob, it is not so easy to test it. You will not wait
until the cron will be executed because you will lose a lot of time to do it.

On Magento Connect, there is a module that makes the testing of a cronjob easy.
This module allows you to run a cronjob from the backend or command line.

It also adds a view to the backend that is a graphical representation of the
cron_schedule table.

Getting ready
We will install a module from Magento Connect on our Magento installation. More information
of the module can be found at: http://www.magentocommerce.com/magento-
connect/aoe-scheduler.html.

Event Handlers and Cronjobs

160

How to do it...
The following steps describe the workflow of the module to test cronjobs:

1. Install the module by getting the extension key from Magento Connect. Be sure to
take the key for Magento Connect 2.0 as shown in the following screenshot:

2. Paste the extension key in Magento Connect Manager. Navigate to System |
Magento Connect | Magento Connect Manager, paste the extension key, and click
on the Install button as shown in the following screenshot:

3. When you proceed, Magento Connect Manager will install the module to the installation.

It is possible that Magento Connect Manager fails to install the
module. If it does, you can use the website http://freegento.
com/ddl-magento-extension.php to download a ready-to-
paste format of the module.

4. When you return to the admin, you will see that there is a menu item added
under the System section. When you navigate to System | Scheduler | Schedule
Configuration, you will see a list of all available cronjobs.

5. To run a cronjob, you have to select one in the grid. After that, select Run now in the
drop-down above the grid and click on Submit. This will directly run your cronjob.

Chapter 8

161

6. When you navigate to System | Scheduler | Timeline View, you will see the
information about the cronjob in the timeline as shown in the following screenshot:

7. In the shell folder of the Magento root, the module adds a shell script to test
the cronjobs by command line. This is the scheduler.php file, which has the
following options:

 � action (runNow or scheduleNow)
 � code (the cronjob code)

8. To run our cronjob by command line, the command looks like the following when you
are in the Magento root folder:
php shell/scheduler.php -action runNow -code cronjob_code

9. The previous command directly runs the cronjob. When you want to schedule the
cronjob with the current timestamp (so it will be executed when the next cron runs),
we have to use the scheduleNow action. With this option, the command looks like
the following:
php shell/scheduler.php -action scheduleNow -code cronjob_code

How it works...
The Aoe_Scheduler module adds an interface to the backend to simplify the process to test
a cronjob. It is just a graphical interface on the cron_schedule table.

When you are working with cronjobs in your module, this module is recommended and saves
a lot of time.

The shell script is added to test the cronjobs over the command line. Make sure when you run
a cronjob over PHP CLI or you run it in the browser, other PHP settings are used. An Apache
request uses the Apache php.ini settings and the command-line PHP uses the PHP CLI settings.

9
Creating a

Shipping Module

In this chapter, we will cover the following topics:

 f Initializing module configurations

 f Writing an adapter model

 f Extending the shipping method features

 f Adding the module in the frontend

Introduction
Shipping ordered products to customers is one of the key parts of the e-commerce flow. In
most cases, a shop owner has a contract with a shipping handler where everyone has their
own business rules.

In a standard Magento, the following shipping handlers are supported:

 f DHL

 f FedEx

 f UPS

 f USPS

If your handler is not on the list, have a look if there is a module available at Magento
Connect. If not, you can configure a standard shipping method or you can create your own,
which we will do in this chapter.

Creating a Shipping Module

164

Initializing module configurations
In Chapter 4, Creating a Module, we learned how we can create a custom module. In this
recipe, we will create the necessary files for a shipping module, which we will extend with
more features using the recipes of this chapter.

Getting ready
Open your code editor with the Magento project. Also, get access to the backend where we will
check some things.

How to do it...
The following steps describe how we can create the configuration for a shipping module:

1. Create the following folders:

 � app/code/local/Packt/

 � app/code/local/Packt/Shipme/

 � app/code/local/Packt/Shipme/etc/

 � app/code/local/Packt/Shipme/Model/

 � app/code/local/Packt/Shipme/Model/Carrier

2. Create the module file named Packt_Shipme.xml in the folder app/etc/modules
with the following content:
<?xml version="1.0"?>
<config>
 <modules>
 <Packt_Shipme>
 <active>true</active>
 <codePool>local</codePool>
 <depends>
 <Mage_Shipping />
 </depends>
 </Packt_Shipme>
 </modules>
</config>

3. Create a config.xml file in the folder app/code/local/Packt/Shipme/etc/
with the following content:
<?xml version="1.0" encoding="UTF-8"?>
<config>

Chapter 9

165

 <modules>
 <Packt_Shipme>
 <version>0.0.1</version>
 </Packt_Shipme>
 </modules>

 <global>
 <models>
 <shipme>
 <class>Packt_Shipme_Model</class>
 </shipme>
 </models>
 </global>

 <default>
 <carriers>
 <shipme>
 <active>1</active>
 <model>shipme/carrier_shipme</model>
 <title>Shipme shipping</title>

 <express_enabled>1</express_enabled>
 <express_title>Express delivery</express_title>
 <express_price>4</express_price>

 <business_enabled>1</business_enabled>
 <business_title>Business delivery</business_title>
 <business_price>5</business_price>
 </shipme>
 </carriers>
 </default>

</config>

4. Clear the cache and navigate in the backend to System | Configuration | Advanced
| Disable Modules Output. Observe that the Packt_Shipme module is on the list.

5. At this point, the module is initialized and working. Now, we have to create a
system.xml file where we will put the configuration parameters for our shipping
module. Create the file app/code/local/Packt/Shipme/etc/system.xml.

Creating a Shipping Module

166

6. In this file, we will create the configuration parameters for our shipping module.
When you paste the following code in the file, you will create an extra group in the
shipping method's configuration. In this group, we can set the settings for the new
shipping method:
<?xml version="1.0" encoding="UTF-8"?>
<config>
 <sections>
 <carriers>
 <groups>
 <shipme translate="label" module="shipping">
 <label>Shipme</label>
 <sort_order>15</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 <fields>
 <!-- Define configuration fields below -->

 <active translate="label">
 <label>Enabled</label>
 <frontend_type>select</frontend_type>
 <source_model>adminhtml/
 system_config_source_yesno</source_model>
 <sort_order>10</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 </active>

 <title translate="label">
 <label>Title</label>
 <frontend_type>text</frontend_type>
 <sort_order>20</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 </title>

 </fields>
 </shipme>
 </groups>
 </carriers>
 </sections>
</config>

Chapter 9

167

7. Clear the cache and navigate in the backend to the shipping method configuration
page. To do that, navigate to System | Configuration | Sales | Shipping methods.
You will see that an extra group is added as shown in the following screenshot:

8. You will see that there is a new shipping method called Shipme. We will extend this
configuration with some values. Add the following code under the <fields> tag of
the module:
<active translate="label">
 <label>Enabled</label>
 <frontend_type>select</frontend_type>
 <source_model>adminhtml/system_config_source_yesno
 </source_model>
 <sort_order>10</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
</active>

<title translate="label">
 <label>Title</label>
 <frontend_type>text</frontend_type>
 <sort_order>20</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
</title>

Creating a Shipping Module

168

<express_enabled translate="label">
 <label>Enable express</label>
 <frontend_type>select</frontend_type>
 <source_model>adminhtml/system_config_source_yesno
 </source_model>
 <sort_order>30</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
</express_enabled>

<express_title translate="label">
 <label>Title express</label>
 <frontend_type>text</frontend_type>
 <sort_order>40</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
</express_title>

<express_price translate="label">
 <label>Price express</label>
 <frontend_type>text</frontend_type>
 <sort_order>50</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
</express_price>

<business_enabled translate="label">
 <label>Enable business</label>
 <frontend_type>select</frontend_type>
 <source_model>adminhtml/system_config_source_yesno
 </source_model>
 <sort_order>60</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
</business_enabled>

<business_title translate="label">
 <label>Title business</label>
 <frontend_type>text</frontend_type>

Chapter 9

169

 <sort_order>70</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
</business_title>

<business_price translate="label">
 <label>Price business</label>
 <frontend_type>text</frontend_type>
 <sort_order>80</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
</business_price>

9. Clear the cache and reload the backend. You will now see the other configurations
under the Shipme – Express shipping method as shown in the following screenshot:

How it works...
The first thing we have done is to create the necessary files to initialize the module. The
following files are required to initialize a module:

 f app/etc/modules/Packt_Shipme.xml

 f app/code/local/Packt/Shipme/etc/config.xml

In the first file, we will activate the module with the <active> tag. The <codePool> tag
describes that the module is located in the local code pool, which represents the folder app/
code/local/.

Creating a Shipping Module

170

In this file, there is also the <depends> tag. First this will check if the Mage_Shipping
module is installed or not. If not, Magento will throw an exception. If the module is available,
the dependency will load this module after the Mage_Shipping module. This makes it
possible to rewrite some values from the Mage_Shipping module.

In the second file, config.xml, we configured all the stuff that we will need in this module.
These are the following things:

 f The version number (0.0.1)

 f The models

 f Some default values for the configuration values

The last thing we did was create a system.xml file so that we can create a custom
configuration for the shipping module.

The configuration in the system.xml file adds some extra values to the shipping method
configuration, which is available in the backend under the menu System | Configuration |
Sales | Shipping methods.

In this module, we created a new shipping handler called Shipme. Within this handler, you
can configure two shipping options: express and business. In the system.xml file, we
created the fields to configure the visibility, name, and price of the options.

See also
In this recipe, we used the system.xml file of the module to create the configuration values.
You can find information about this in the Extending the system configuration recipe from
Chapter 7, Magento Backend.

Writing an adapter model
A new shipping module is initialized in the previous recipe. What we did in the previous recipe
was a preparation to continue with the business part we will see in this recipe. We will add a
model with the business logic for the shipping method. The model is called an adapter class
because Magento requires an adapter class for each shipping method. This class will extend
the Mage_Shipping_Model_Carrier_Abstract class.

This class will be used for the following things:

 f Make the shipping method available

 f Calculate the shipping costs

 f Set the title in the frontend of the shipping methods

Chapter 9

171

How to do it...
Perform the following steps to create the adapter class for the shipping method:

1. Create the folder app/code/local/Packt/Shipme/Model/Carrier if it
doesn't already exist.

2. In this folder, create a file named Shipme.php and add the following content to it:
<?php
class Packt_Shipme_Model_Carrier_Shipme
 extends Mage_Shipping_Model_Carrier_Abstract
 implements Mage_Shipping_Model_Carrier_Interface
{
 protected $_code = 'shipme';

 public function collectRates
 (Mage_Shipping_Model_Rate_Request $request)
 {
 $result = Mage::getModel('shipping/rate_result');

 //Check if express method is enabled
 if ($this->getConfigData('express_enabled'))
 {
 $method = Mage::getModel
 ('shipping/rate_result_method');
 $method->setCarrier($this->_code);
 $method->setCarrierTitle
 ($this->getConfigData('title'));

 $method->setMethod('express');
 $method->setMethodTitle
 ($this->getConfigData('express_title'));

 $method->setCost
 ($this->getConfigData('express_price'));
 $method->setPrice
 ($this->getConfigData('express_price'));

 $result->append($method);
 }

 //Check if business method is enabled
 if ($this->getConfigData('business_enabled'))

Creating a Shipping Module

172

 {
 $method = Mage::getModel
 ('shipping/rate_result_method');
 $method->setCarrier($this->_code);
 $method->setCarrierTitle
 ($this->getConfigData('title'));

 $method->setMethod('business');
 $method->setMethodTitle
 ($this->getConfigData('business_title'));

 $method->setCost
 ($this->getConfigData('business_price'));
 $method->setPrice
 ($this->getConfigData('business_price'));

 $result->append($method);
 }

 return $result;
 }

 public function isActive()
 {
 $active = $this->getConfigData('active');
 return $active==1 || $active=='true';
 }

 public function getAllowedMethods()
 {
 return array('shipme'=>$this->getConfigData('name'));
 }
}

3. Save the file and clear the cache; your adapter model has now created.

How it works...
The previously created class handles all the business logic that is needed for the shipping
method. Because this adapter class is an extension of the Mage_Shipping_Model_
Carrier_Abstract class, we can overwrite some methods to customize the business logic
of the standard.

Chapter 9

173

The first method we overwrite is the isAvailable() function. In this function, we have
to return true or false to say that the module is active. In our code, we will activate the
module based on the system configuration field active.

The second method is the collectRates() function. This function is used to set the right
parameters for every shipping method. For every shipping method, we can set the title and price.

The class implements the interface Mage_Shipping_Model_Carrier_Interface.
In this interface, two functions are declared: the isTrackingAvailable() and
getAllowedMethods() functions.

We created the function getAllowedMethods() in the adapter class. The
isTrackingAvailable() function is declared in the parent class Mage_Shipping_
Model_Carrier_Abstract.

We configured two options under the Shipme shipping method. These options are called
Express delivery and Business delivery. We will check if they are enabled in the configuration
and set the configured title and price for each option.

The last thing to do is return the right values. We have to return an instance of the class
Mage_Shipping_Model_Rate_Result. We created an empty instance of the class, where
we will append the methods to when they are available.

To add a method, we have to use the function append($method). This function requires an
instance of the class Mage_Shipping_Model_Rate_Result_Method that we created in
the two if statements.

Extending the shipping method features
When all the files are installed, we can add more features to the shipping method. In this recipe,
we will add a country configuration and we will enable tracking codes for the shipping method.

How to do it...
Perform the following steps to tracking codes and country-specific shipping:

1. Open the adapter file app/code/local/Packt/Shipme/Model/Carrier/
Shipme.php.

2. Add the following function in this file to enable tracking codes:
public function isTrackingAvailable()
{
 return true;
}

Tracking codes are now enabled for the Shipme shipping methods.

Creating a Shipping Module

174

3. To enable country-specific shipping, we have to add some configuration fields in the
system.xml file of the module. Add the following code as the child of the <fields>
tag:
<sallowspecific translate="label">
 <label>Ship to Applicable Countries</label>
 <frontend_type>select</frontend_type>
 <sort_order>90</sort_order>
 <frontend_class>shipping-applicable-country</frontend_class>
 <source_model>adminhtml/system_config_source_shipping
 _allspecificcountries</source_model>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
</sallowspecific>

<specificcountry translate="label">
 <label>Ship to Specific Countries</label>
 <frontend_type>multiselect</frontend_type>
 <sort_order>100</sort_order>
 <source_model>adminhtml/system_config_source_country
 </source_model>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>0</show_in_store>
 <can_be_empty>1</can_be_empty>
</specificcountry>

4. Clear the cache and open the configuration page of the shipping method. You will see
that there are two new configuration options. When you change Ship to Applicable
Countries to Specific Countries, you can select multiple countries as seen in the
following screenshot:

Chapter 9

175

How it works...
The first thing we did was enable the possibility to create tracking codes for the Shipme
shipping method. We overwrote the isTrackingAvailable() function, which returns the
standard false. By returning true, we enable the tracking codes.

The second thing we did was enable country-specific shipping. We configured two fields with a
standard naming convention. When we enable the configuration in the backend, we can only
use the shipping method when the shipping address is in one of the selected countries.

Adding the module in the frontend
In this recipe, we will test that the shipping method appears in the frontend. We prepared the
code and configuration in the previous recipes to make this possible.

How to do it...
In this recipe, we will check the configuration and place a test order with the new
shipping method:

1. Log in to the admin panel.

2. Navigate to the shipping methods page by going to System | Configuration | Sales |
Shipping methods.

3. Check that all the values are correct for the Shipme – Express method. Also make
sure it is enabled.

4. Save the configuration.

5. Go to the frontend, add a product to the shopping cart, and checkout.

6. Fill in the right data for the billing and shipping steps.

Creating a Shipping Module

176

7. In the shipping method step, new methods will appear as shown in the
following screenshot:

8. Select a method from the list and click on the Continue button.

9. In the payment method step, choose the Check Money Order method.

If you don't see the Check Money Order payment method, you have to
enable it in the system configuration.

10. Click Continue and place the order. You will see the success page.

11. In the backend, go to Sales | Orders and click on the latest order.

12. To complete the order, we have to create an invoice for it to confirm that the order is
paid. When you click on the Invoice button, you will be redirected to the invoice form
where you can submit your invoice.

13. When the invoice is saved, you will see that the status of the order has changed
to Processing. When the status is Processing, you can click on the Ship button to
create the shipment. You will see the following screen:

Chapter 9

177

14. When you click on the Add Tracking Number button, choose the Shipme shipping
option from the drop-down and add a tracking code such as 1234567890:

15. When you click on the Submit Shipment button, your shipment is processed and the
status of the order will change to Complete.

How it works...
In this recipe, we tested the shipping method that we created in this chapter. We placed an
order with the new shipping method to check that everything works the way we wanted it to.

10
Creating a Product

Slider Widget

In this chapter, we will cover the following topics:

 f Creating an empty module

 f Registering helpers and blocks

 f Creating a widget configuration file

 f Creating a block and the template files

 f Creating a custom configuration parameter

 f Finalizing the theming

Introduction
Magento widgets are graphical interfaces to configure blocks in the frontend. For every widget,
there is a configuration page available where you can set the required values for that widget.

When the configuration is done, you can configure the layout instructions to show the widget
at several places in the frontend.

In this recipe, we will create a new module where we will create our own widget. We will create
a product slider with the products of a category that we can configure in the widget.

When we have performed the required configuration for the widget, we will finish the
representation in the frontend. We will create a product list that we will style with a jQuery
slider script.

Creating a Product Slider Widget

180

Creating an empty module
As we did in the previous chapter and fully explained in Chapter 4, Creating a Module, we
will create the required files to create an empty module that we will extend with widget
configurations in further chapters.

We will start with an empty Magento module that we will create in this recipe. We will create
all the required files to initialize a new module that can be used for the creation of a widget.

Getting ready
Open your code editor and prepare yourselves to create a new module called
Packt_Productslider.

How to do it...
When you perform the following steps, you will create an empty Packt_Productslider
module:

1. Create the following folders for the module:
 � app/code/local/

 � app/code/local/Packt/

 � app/code/local/Packt/Productslider/

 � app/code/local/Packt/Productslider/etc

2. Create the module file Packt_Productslider.xml in the modules folder
under app/etc.

3. Paste the following code into it:
<?xml version="1.0"?>
<config>
 <modules>
 <Packt_Productslider>
 <active>true</active>
 <codePool>local</codePool>
 <depends>
 <Mage_Widget />
 </depends>
 </Packt_Productslider>
 </modules>
</config>

Chapter 10

181

4. Create the configuration file for the module. This is the config.xml file that is
located in the etc folder under app/code/local/Packt/Productslider.

5. Add the following content to the file:
<?xml version="1.0" encoding="UTF-8"?>
<config>
 <modules>
 <Packt_Productslider>
 <version>0.0.1</version>
 </Packt_Productslider>
 </modules>
</config>

6. Clear the cache and check whether the module is installed. You can do this by
navigating to the configuration page, System | Configuration | Advanced |
Advanced, and checking whether the module is on the list. Alternatively, you
can run the command wiz module-list in the command line.

How it works...
We just created a new module with the name Packt_Productslider. This module is a
custom module, so we configured it in the local code pool.

Practically, this module does nothing, but we will extend it in the next recipes.

Registering helpers and blocks
The widget module we will create uses a custom block. For translating strings in the block and
in different configurations, we need to configure a helper class.

Getting ready
We will initialize blocks and helpers, and we will create the default helper for our module, just
like we did in Chapter 4, Creating a Module.

How to do it...
The following steps describe how to configure helpers and blocks for a new module.

1. Create the following folders:

 � app/code/local/Packt/Productslider/Block

 � app/code/local/Packt/Productslider/Helper

Creating a Product Slider Widget

182

2. In the config.xml file of the module, add the following configuration under the
<config> tag:
<global>
 <blocks>
 <productslider>
 <class>Packt_Productslider_Block</class>
 </productslider>
 </blocks>
 <helpers>
 <productslider>
 <class>Packt_Productslider_Helper</class>
 </productslider>
 </helpers>
</global>

3. Create the Data.php file under app/code/local/Packt/Productslider/
Helper and paste the following content into it:
<?php
class Packt_Productslider_Helper_Data extends Mage_Core_Helper_
Abstract
{

}

4. Clear the cache, and your blocks and helpers will be registered.

How it works...
In the previous code, we initialized blocks and helpers with the name productslider. With
this configuration, it is possible to use block names such as productslider/block_name.

The helpers are also registered under the name productslider. We created a default
helper, which we can call with the function Mage::helper('productslider').

Creating a widget configuration file
In this recipe, we will configure a new widget type. We have to create a new configuration file
where we will initialize the following things for the widget type:

 f Name of the widget (in the backend)

 f Widget configuration parameters

 f Widget block type

 f Widget templates (.phtml files)

Chapter 10

183

Getting ready
To test the widget configuration, we can navigate to the Widgets page under CMS in the
backend to manage the widget instances.

How to do it...
Perform the following steps to create a widget.xml configuration file.

1. Create the file app/code/local/Packt/Productslider/etc/widget.xml.

2. Add the following code to this file:
<?xml version="1.0" encoding="UTF-8"?>
<widgets>
 <category_product_slider type="catalog/product_list">
 <name>Category product slider</name>
 <description>Displays the products for a given category
 in a slider widget</description>
 </category_product_slider>
</widgets>

3. Clear your cache and check whether the configuration works.

4. At the backend, navigate to CMS | Widgets, click on the Add New Widget Instance
button, and confirm that the widget is in the list, as shown in the following screenshot:

5. Configure the widget for your frontend theme and go to the next page.

Creating a Product Slider Widget

184

6. You are now on the widget configuration page. In the Widget Options tab, we will
create our own widget parameters.

7. To create a title field that we will use in the block, we have to create a parameters tag
as shown in the following code. Paste this under the <category_product_slider>
tag.
<parameters>
 <title>
 <label>Title (frontend)</label>
 <type>text</type>
 <required>1</required>
 <visible>1</visible>
 </title>
</parameters>

8. Clear the cache, reload the backend page, and go to the Widget Options tab. You will
see that there is a title field available, as shown in the following screenshot:

9. To show all the products of a category, we have to create a configuration where we
can select a category. We will create a text field where we can paste the right category
ID. To configure the field, add the following code under the <parameters> tag:
<category_id>
 <label>Category ID</label>
 <type>text</type>
 <required>1</required>
 <sort_order>20</sort_order>
 <visible>1</visible>
</category_id>

10. Clear the cache and reload the page again. You will see that a second textbox is
added to the configuration form.

Chapter 10

185

How it works...
The widget.xml file is used to define widgets in the Magento installation. All widget types in
Magento are defined under the <widgets> configuration tag.

Under this tag, we defined a new widget called category_product_slider. In this tag, we
used the type attribute to define the Block class that the widget will refer to. In this case, it
is catalog/product_list. This is the block that is used to render the category product list
or the grid.

Under the <category_product_slider> tag, we have used the following configuration tags:

 f name

 f description

 f parameters

The name tag is used for the widget type name that is used in the dropdown when creating
a widget.

The description tag is for information. It is not shown in the frontend or backend. It is only
used for providing information for the widget.

In the parameters tag, we define the configuration parameters for the widget. In our case,
these are name and category_id.

Our fields are just text fields, but we can also make use of other input fields such as dropdowns
and checkboxes. When working with dropdown or multiselect fields, we can define a source
model with the <source_model> tag.

Creating a block and the template files
In the previous chapters, we learned how we can configure the widget. Now it is time to show
the widget.

We will create a custom block where we will write a query that returns the products for the
given category, and we will set up a configuration to use two template files on the widget
configuration page.

Getting ready
We will work further to create our own widget instance. Open the widget.xml file that we
created in the previous recipe.

Creating a Product Slider Widget

186

How to do it...
The following steps describe how we configure a custom block with custom templates for the
widget instance.

1. First, we will create a block class that extends the Mage_Catalog_Block_
Product_List class. We do this because the behavior of that class is what
we need for our widget.

2. Create the List.php file under app/code/local/Packt/Productslider/
Block/Catalog/Product.

3. Add the following content to that file to initialize the class and the functions that we
will configure:
<?php
class Packt_Productslider_Block_Catalog_Product_List
extends Mage_Catalog_Block_Product_List
implements Mage_Widget_Block_Interface
{
 protected function _beforeToHtml()
 {
 parent::_beforeToHtml();
 }

 protected function _prepareLayout()
 {
 parent::_prepareLayout();
 }
}

4. Configure the block that uses the class we previously created. We do this by changing
the type attribute in the <category_product_slider> tag. Change the attribute
to productslider/catalog_product_list.

5. When the block class is created, it is time to create templates for the block. In this
widget, we will use two templates. The first template comprises the image, title, and
price of the products. The second template only shows the image and the Add To
Cart button.

6. Create the templates in the category-product-slider folder under app/
design/frontend/base/default/template/productslider.

7. Create the folder and add the following files to this folder:

 � list.phtml

 � teaser.phtml

Chapter 10

187

8. In the list.phtml file, add the following content:
<div class="block">
 <div class="block-title">
 <h2><?php echo $this->getTitle() ?></h2>
 </div>
 <div class="block-content">
 <p>Test of the list.phtml template</p>
 </div>
</div>

9. In the teaser.phtml file, add the following content:
<div class="block">
 <div class="block-title">
 <h2><?php echo $this->getTitle() ?></h2>
 </div>
 <div class="block-content">
 <p>Teasers template</p>
 </div>
</div>

10. Configure the widget configuration page so that you can choose your template. We
can do this by adding the following as a child of the <parameters> tag:
<template>
 <label>Frontend template</label>
 <type>select</type>
 <values>
 <list translate="label">
 <value>productslider/category-product-
 slider/list.phtml</value>
 <label>List template</label>
 </list>
 <teaser translate="label">
 <value>productslider/category-product-
 slider/teaser.phtml</value>
 <label>Teaser template</label>
 </teaser>
 </values>
 <sort_order>30</sort_order>
 <visible>1</visible>
</template>

Creating a Product Slider Widget

188

11. Clear the cache and go to the widget configuration page. When you click on Add Layout
Update, you can select the page where the widget will display. The last dropdown is the
template you can use for the widget, as shown in the following screenshot:

Make sure you choose the right theme to configure the widget. We
will use the default / default theme to configure the widget, so make
sure your shop is using the same theme.

12. Complete the form to place a widget instance on the home page.

13. When you clear the cache, the widget will appear on the home page with the content
of the chosen template file.

Chapter 10

189

14. When you enable developer hints, you will see that our previously created custom
block is used as shown in the following screenshot:

You can enable developer hints in the backend by navigating to
the Developer page under System | Configuration | Advanced
in the Debug section. Be sure to configure it on the website or
store a view scope.

You can also run the wiz command wiz devel-showhints
yes to enable the hints.

15. The last thing we will do is to create a loop that shows the name of the products. Add
the following code to the list.phtml file:
<?php $_productCollection = $this->getLoadedProductCollection() ?>
<div class="block">
 <div class="block-title">
 <h2><?php echo $this->getTitle() ?></h2>
 </div>
 <div class="block-content">
 <p><?php echo $this->__('Category ID: %s',
 $this->getCategoryId()) ?></p>

 <?php foreach ($_productCollection as $_product): ?>
 <?php echo $_product->getName() ?>
 <?php endforeach; ?>

 </div>
</div>

Creating a Product Slider Widget

190

16. Configure the widget to use the right template and a valid category ID. After that,
reload the frontend, and you will see something like the following screenshot:

You can find the category ID while navigating to a category in the backend.
Navigate to Catalog | Manage Categories, select any category, and you
will see the ID near the name.

How it works...
We created a custom block class for the widget. By configuring the type attribute of the
widget, all instances of this widget will use a block of the type productslider/catalog_
product_list.

When we have a look at this class, we see that the class will extend the Mage_Catalog_
Block_Product_List class, which is the block that is used to render product lists for a
category. We use this class so we can use the standard functions instead of writing our own.

The next thing we did was to make it possible to choose two templates for the widgets. This is
done by configuring the <template> parameter on the widget.

The template is configured in the Layout Update section of the widget configuration page. This
form is a graphical implementation of the layout XML configuration in the template files.

When we save the widget, Magento will create a layout update in the database for the widget.
This layout update is stored in the table core_layout_update.

When we look at the template file, we see the $this->getTitle() function is used to fill
the title tag of the block. This function will output the data that is set for the title parameter
on the block.

In the configuration, we created a <title> configuration which will do a setData('title')
on the background when the block is created.

The second configuration parameter is the <category_id> field. When the category ID is
set on this block, the $this->getLoadedProductCollection() function will return the
products of the given category ID, which is just the thing we need for this case.

Chapter 10

191

Creating a custom configuration parameter
The widget is created. It shows up in the frontend and the right products are shown for the
given category ID.

To configure the category ID, we have to copy it from the category page and paste it in the
textbox. For better usability, we will create a custom widget in the configuration field where
we can select a category from a pop-up window.

Getting ready
To prepare yourselves, look at how you can configure the category for the Catalog Category
Link widget in the backend. We will configure the same pop-up window for the widget that we
created in previous recipes.

How to do it...
Perform the following steps to and you can create a custom configuration parameter:

1. When we look at the Catalog Category Link widget, we see that they use a custom
widget to select the category—we will do the same for our module.

2. In the widget.xml file, replace the <category_id> configuration parameter
with the following code:
<category_id>
 <label>Category</label>
 <type>label</type>
 <helper_block>

<type>adminhtml/catalog_category_widget_chooser</type>
 <data>
 <button translate="open">
 <open>Select Category...</open>
 </button>
 </data>
 </helper_block>
 <required>1</required>
 <sort_order>20</sort_order>
 <visible>1</visible>
</category_id>

Creating a Product Slider Widget

192

3. Clear the cache and reload the widget configuration page. You will see something like
the following screenshot when you click on the configuration parameter button:

4. When you select a category, save the widget, clear the cache, and reload the home
page, and you will see that the widget shows the wrong products.

5. When you inspect the Select Category … button and navigate to the hidden
field that is some elements above, you will see that the value is similar to
category/<category_id>.

6. The widget requires the category ID, that is, the number after the slash. We now have
the category path that is used to generate URLs. To fix this problem, we can perform
the following:

 � Get the ID from the path with string functions

 � Make sure a proper ID is set in the widget configuration page

7. We will adapt the second method because it is the most stable way.

8. To fix the issue, we have to update some code in the category widget chooser that is
shown in the widget configuration page. We will create a new class that extends the
current widget chooser. We will add the class to the Widget folder under app/code/
local/Packt/Productslider/Block/Adminhtml/Category.

9. In this folder, create a file called Chooser.php with the following content:
<?php
class Packt_Productslider_Block_Adminhtml_Catalog_Category_Widget_
Chooser extends Mage_Adminhtml_Block_Catalog_Category_Widget_
Chooser

Chapter 10

193

{
 /**
 * Block construction
 * Defines tree template and init tree params
 */

 public function prepareElementHtml(Varien_Data_Form_Element_
Abstract $element)
 {
 $uniqId = Mage::helper('core')->uniqHash($element-
 >getId());
 $sourceUrl = $this->getUrl('adminhtml/
 productslider_catalog_category_widget/chooser',
 array('uniq_id' => $uniqId, 'use_massaction' =>
 false));

 $chooser = $this->getLayout()-
 >createBlock('widget/adminhtml_widget_chooser')
 ->setElement($element)
 ->setTranslationHelper($this->getTranslationHelper())
 ->setConfig($this->getConfig())
 ->setFieldsetId($this->getFieldsetId())
 ->setSourceUrl($sourceUrl)
 ->setUniqId($uniqId);

 if ($element->getValue()) {
 $categoryId = $element->getValue();

 if ($categoryId) {
 $label = Mage::getSingleton('catalog/
 category')->load($categoryId)->getName();
 $chooser->setLabel($label);
 }
 }

 $element->setData('after_element_html',
 $chooser->toHtml());
 return $element;
 }

 public function getNodeClickListener()
 {
 if ($this->getData('node_click_listener')) {
 return $this->getData('node_click_listener');

Creating a Product Slider Widget

194

 }
 if ($this->getUseMassaction()) {
 $js = '
 function (node, e) {
 if (node.ui.toggleCheck) {
 node.ui.toggleCheck(true);
 }
 }
 ';
 } else {
 $chooserJsObject = $this->getId();
 $js = '
 function (node, e) {
 '.$chooserJsObject.'.setElementValue
 (node.attributes.id);
 '.$chooserJsObject.'.setElementLabel(node.text);
 '.$chooserJsObject.'.close();
 }
 ';
 }
 return $js;
 }
}

10. In the previous step, we created a new block class to handle the return value of the
chosen category. In this step, we will configure the configuration page to use the
new block. In the widget.xml file of the module, change the tag parameters/
category_id/helper_block/type from adminhtml/catalog_category_
widget_chooser to productslider/adminhtml_catalog_category_
widget_chooser. The widget.xml file will now appear as follows:
<?xml version="1.0" encoding="UTF-8"?>
<widgets>
 <category_product_slider
 type="productslider/catalog_product_list">
 <name>Category product slider</name>
 <description>Displays the products for a given category
 in a slider widget</description>
 <parameters>
 <title>
 <label>Title (frontend)</label>
 <type>text</type>
 <required>1</required>
 <sort_order>10</sort_order>
 <visible>1</visible>

Chapter 10

195

 </title>
 <category_id>
 <label>Category</label>
 <type>label</type>
 <helper_block>
 <type>productslider/adminhtml_catalog_category_
 widget_chooser</type>
 <data>
 <button translate="open">
 <open>Select Category...</open>
 </button>
 </data>
 </helper_block>
 <required>1</required>
 <sort_order>20</sort_order>
 <visible>1</visible>
 </category_id>
 <template>
 <label>Frontend template</label>
 <type>select</type>
 <values>
 <list translate="label">
 <value>productslider/category-product-
 slider/list.phtml</value>
 <label>List template</label>
 </list>
 <teaser translate="label">
 <value>productslider/category-product-
slider/teaser.phtml</value>
 <label>Teaser template</label>
 </teaser>
 </values>
 <sort_order>30</sort_order>
 <visible>1</visible>
 </template>
 </parameters>
 </category_product_slider>
</widgets>

11. We need a custom controller action to handle the AJAX call of the pop-up window.
To initialize admin controllers for the module, add the following code to the
config.xml file of the module. Paste it as a child of the <config> tag:
<admin>
 <routers>
 <adminhtml>

Creating a Product Slider Widget

196

 <args>
 <modules>
 <productslider before="Mage_Adminhtml">
 Packt_Productslider_Adminhtml</productslider>
 </modules>
 </args>
 </adminhtml>
 </routers>
</admin>

12. In the Category folder under app/code/local/Packt/Productslider/
Adminhtml/Productslider/Catalog, create a WidgetController.php
file with the following content in it:
<?php
require_once('Mage/Adminhtml/controllers/Catalog/Category/
WidgetController.php');

class Packt_Productslider_Adminhtml_Productslider_Catalog_
Category_WidgetController extends Mage_Adminhtml_Catalog_Category_
WidgetController
{
 protected function _getCategoryTreeBlock()
 {
 return $this->getLayout()->createBlock('productslider/
 adminhtml_catalog_category_widget_chooser', '', array(
 'id' => $this->getRequest()->getParam('uniq_id'),
 'use_massaction' => $this->getRequest()
 ->getParam('use_massaction', false)
));
 }
}

13. Clear the cache and load the configuration page. Select a category in the pop-up
window and inspect the hidden field as we did in step 5. You will see that the category
ID is set as a number instead of a path.

14. Save the widget, clear the cache, and reload the home page. You will see that the
right products of the configured category are shown.

How it works...
In this recipe, we created a custom configuration parameter. We did this for a better
user experience.

Chapter 10

197

First, we configured an existing configuration widget to show a category pop-up window when
clicking on the field. This was not so difficult because the only workload is to configure the
right settings in the widget.xml file.

But this widget was not exactly what we were looking for. The frontend representation was OK,
but in the background, a wrongly formatted category ID was returned.

To solve this, we created a custom configuration field that extends the previous configuration
field. We only changed the required things to format the right output.

Because the widget is working with an AJAX call, we had to create a custom controller that
extends the standard one to show the right block. In that controller, we included the relative
path of the parent controller because this class is not in the autoloader of Magento.

There's more…
We configured the widget parameter in this recipe to show how to create a custom HTML
output for a configuration field.

Technically, you can do the most impossible things with a configuration field; however, the only
thing you need to know is that you have to set the configuration value in an input field that has
the naming convention: <input name="parameter[<parameter_name>]" />.

Replace the <parameter_name> tag with the name of your custom parameter and the form
will handle your configuration parameter just as it handles all the others.

Finalizing the theming
The widget we made in the frontend does not invite us to buy some products. It is just a list
with the names of the products from a category.

In this recipe, we will finalize the theming of the widget. We will create an HTML output that
shows an image, name, and price of the given products.

With a jQuery plugin, we will convert the HTML output to a slider so we can scroll through
the products.

Getting ready
Search for a good jQuery carousel on the Internet. In this recipe, we will use
http://caroufredsel.dev7studios.com/.

Creating a Product Slider Widget

198

How to do it...
The following steps describe the last set of actions to complete the widget:

1. Let's generate a good HTML that is usable for the jQuery plugin. Add the following
code to the list.phtml template:
<?php $_productCollection = $this->getLoadedProductCollection() ?>
<div class="block-image-slider">
 <div class="block-title">
 <h2><?php echo $this->getTitle() ?></h2>
 </div>
 <div class="productslider-container">
 <div id="productslider-<?php echo $this-
 >getCategoryId() ?>">
 <?php foreach ($_productCollection as $_product): ?>
 <div class="slider-item">
 <a href="<?php echo $_product->getProductUrl() ?>"
 title="<?php echo $this->stripTags($this->
 getImageLabel($_product, 'small_image'),
 null, true) ?>" class="carousel-image">
 <img src="<?php echo $this->helper('catalog/image')
 ->init($_product,'small_image')->resize(250); ?>"
 width="250" height="250" alt="<?php echo $this-
 >stripTags($this->getImageLabel($_product,
 'small_image'), null, true) ?>" />
 <div class="slider-item-content">
 <p>
 <?php echo $_product->getName() ?>
 </p>
 <?php echo $this->getPriceHtml($_product) ?>
 </div>
 </div>
 <?php endforeach; ?>
 </div>
 <div class="productslider-controls">
 <a id="btn-prev-<?php echo $this->getCategoryId() ?>"
 class="btn-prev" href="#"><
 <a id="btn-next-<?php echo $this->getCategoryId() ?>"
 class="btn-next" href="#">>
 <div id="pager-<?php echo $this->getCategoryId() ?>"
 class="pager"></div>
 </div>
 </div>
</div>

Chapter 10

199

2. Create a CSS file to set the required styling. Add a productslider.css file to the
css folder under skin/frontend/base/default with the following content:
.productslider-container {width:700px;background-color:#DDD;}

.productslider-container .slider-item {width:250px;padding:20px;ma
rgin:20px;background-color:#BBB;float:left;clear:none;}

.productslider-container .productslider-controls
{overflow:hidden;}
.productslider-container .productslider-controls .btn-prev
{float:left;}
.productslider-container .productslider-controls .btn-next
{float:right;}
.productslider-container .productslider-controls .pager {text-
align: center;}
.productslider-container .productslider-controls .pager a
{margin:0 10px;}

3. Add the CSS file to the Magento head by adding the following code. With this code,
the CSS file is only added when the widget is configured on a page. app/code/
local/Packt/Productslider/Block/Catalog/Product/List.php in the
_prepareLayout() function:
protected function _prepareLayout()
{
 $this->getLayout()->getBlock('head')->addCss('css/productslider.
css');

 parent::_prepareLayout();
}

4. Save all the files, clear the cache, and reload the frontend. You will see a styled
output that we can use to convert to a slider.

5. The next step is to add a jQuery carousel script to the product list. We will use the
script http://caroufredsel.dev7studios.com/.

6. Download the source files, unzip it, and paste the folder and content to the folder
skin/frontend/base/default/js.

7. Link the CSS and JavaScript files by updating the _prepareLayout() function in
the app/code/local/Packt/Productslider/Block/Catalog/Product/
List.php file. Replace the function with the following code:
protected function _prepareLayout()
{
 $this->getLayout()->getBlock('head')->addCss('css/productslider.
css');

Creating a Product Slider Widget

200

 $this->getLayout()->getBlock('head')->addItem('skin_js',
 'js/carouFredSel-6.2.1/jquery.carouFredSel-6.2.1-
 packed.js');

 parent::_prepareLayout();
}

Make sure jQuery is enabled in your theme. You can find
instructions on it in Chapter 2, Theming.

8. The last step is to initialize the script for the product list element. Add the following
JavaScript code at the bottom of the list.phtml template:
<script type="text/javascript">

jQuery(document).ready(function(){
 jQuery("#productslider-<?php echo $this->
 getCategoryId() ?>").carouFredSel({
 width: '100%',
 prev: '#btn-prev-<?php echo $this->getCategoryId() ?>',
 next: '#btn-next-<?php echo $this->getCategoryId() ?>',
 pagination: '#pager-<?php echo $this->
 getCategoryId() ?>'
 });
});

</script>

9. Clear the cache and reload the frontend. You're done and the output will be as shown
in the following screenshot:

Chapter 10

201

How it works...
In the initial steps, we created a good HTML output for the template. This output generates a
scaled image, title, and price for every product in the loop.

To theme the HTML output, we used a CSS file that will only be included when a widget is
configured for the given page. The function _prepareLayout() is called when all blocks
are initialized. In this function, we add a CSS file and later a JavaScript file to the head of
the website.

To show the product slider with animations, we added some JavaScript code that adds the
slider to the product list.

11
Performance
Optimization

In this chapter, we will cover the following topics:

 f Exploring the limits of a website

 f Optimizing the database and MySQL configuration

 f Optimizing the Apache web server

 f Tuning the Magento configurations

 f Configuring APC and Memcached

 f Optimizing the PHP configurations

 f Analyzing the page speed

Introduction
For athletes, seconds, milliseconds, or hundredths of seconds decide if they will win a
competition or not. Every small aspect that improves the performance is a step in the right
direction to win the competition.

For websites, it is the same. The faster your Magento store is, the better it is. Magento is not one
of the most efficient systems when it comes to performance. Especially when you are working
with a lot of products and attributes, a good setup improves the performance of your webshop.

Performance Optimization

204

The performance of a website has a lot of impact on your visitors. Some facts about this
statement are listed as follows:

 f The page speed has a significant influence on the page ranking in search engines
such as Google

 f On an e-commerce site, every second costs 1 percent of the sales total

 f You get more visitors from search engines when you reduce the page size

As you can see, performance is a key part to improve the SEO of your website. Customers will
leave your website when it does not show a good performance.

Since you have finished the development, it is time to take a look at the performance of the
whole system. In this chapter, we will explore, detect, and fix performance leaks in a Magento
webshop by using many tools.

Some tools are delivered by Magento as standard, but we have to look at the whole picture.
Two identical Magento installations can have different page speed results that are caused by
the following reasons:

 f Hardware

 f Network

 f Load

 f Device of the client

Exploring the limits of a website
One of the first things you need to know are the limits of the current website. How much
capacity has my website got? What is slowing down my site? We have to get an overview of all
these aspects to arrive at a conclusion of which optimizations will have the most effect.

In this recipe, we will see some tools that help to create a view of the performance. Some of
the tools are listed as follows:

 f ApacheBench

 f Siege

 f Magento Profiler

 f YSlow

 f PageSpeed

 f GTmetrix

 f WebPagetest

Chapter 11

205

We will do some tests with all these tools to work out the pitfalls of a Magento store. With
these results, we can find out what kind of optimizations have the most effect.

Some optimizations are very easy and can have a large effect. Other optimizations are difficult
and can have less effect. It is on you to decide what you want.

Getting ready
To start, it is recommended to install the following tools to do some performance tests on a
Magento installation:

 f ApacheBench (ab): This tool is automatically installed with the Apache web server.
When you have access to the command line interface, you can run the following
command on a Linux server:
ab -h

 f Siege: We will do some performance tests with Siege that is installed on the same
server as Magento. To see if it is installed, you can run the following command:
siege -V

 � Here, make sure that V is uppercase. When Siege is installed, you will see its
version number as shown in the following screenshot:

 � If it is not installed, you can run the following command when you are using a
Debian-based Linux distribution:
sudo apt-get install siege

 � A second option is to download the installation file and install it by
performing the following procedure:

1. To download the archive, run the following command:
wget ftp://ftp.joedog.org/pub/siege/siege-latest.tar.
gz

2. To extract the archive, run the following command:
tar xzf siege-latest.tar.gz

3. Move the folder to the preferred location and change the directory.

Performance Optimization

206

4. Install Siege with the following command:

sudo ./configure

 f Magento Profile: This is a standard feature in Magento. You can enable it in
your system's configuration.

 f YSlow: This is a Firefox plugin that you can download and install from the
Add-ons store.

Because GTMetrix and WebPagetest are online tools, we don't have to install them.

How to do it...
1. To get an idea of the response time under a load of concurrent users, we can use

ApacheBench. We will perform a test with the following command and save the
results to a CSV file:
ab -c 10 -n 50 -e apachebench.csv http://magento-dev.local/

2. In the previous command, we did a load test with the following parameters:

 � -c: This parameter represents the number of concurrent users. In this test,
there were always 10 requests running at the same time.

 � -n: This parameter represents the number of requests. In this case it is 50,
so we will have 50 results in the file.

 � -e: This parameter represents the output file. The output is written to the
given CSV file.

The -g option means the same as -e but -g will generate a .tsv (tab
separated value) file, also known as a gnuplot file.

3. When you run the command, an output screen with the results will be printed as
shown in the following screenshot:

Chapter 11

207

This report shows the general statistics of the test. The specific results are saved in
the CSV file.

4. When you run the ab -h command, you will see all the available options.

5. Load testing with Siege.

Siege is another load testing tool like ApacheBench. The difference between Siege
and ApacheBench is that Siege has more functions than ApacheBench. It is designed
to do a stress test with a number of concurrent users. It has the ability to work with
HTTP authentication, cookies, sessions, and more. When you write a good script, you
can simulate a real stress situation.

Performance Optimization

208

6. For a load test with Siege, we will use a text file, where we will set some URLs that will
be used during the Siege load test. Doing a test with different URLs is better because
you will test more pages on your website, which means that you can find more pitfalls.
Create a siege_url.txt file and paste the following content in it:

 � http://magento-dev.local/

 � http://magento-dev.local/skin/frontend/default/default/
images/bkg_body.gif

 � http://magento-dev.local/skin/frontend/default/default/
images/logo.gif

 � http://magento-dev.local/skin/frontend/default/default/
images/ph_callout_left_top.gif

 � http://magento-dev.local/skin/frontend/default/default/
images/ph_callout_left_rebel.jpg

 � http://magento-dev.local/skin/frontend/default/default/
images/home_main_callout.jpg

 � http://magento-dev.local/index.php/electronics.html

 � http://magento-dev.local/index.php/electronics.
html?cat=12

 � http://magento-dev.local/index.php/checkout/cart/add/
product/46/

 � http://magento-dev.local/index.php/checkout/cart/

 � http://magento-dev.local/skin/frontend/default/default/
images/i_shipping.gif

 � http://magento-dev.local/skin/frontend/default/default/
images/i_discount.gif

 � http://magento-dev.local/skin/frontend/default/default/
images/btn_trash.gif

 � http://magento-dev.local/skin/frontend/default/default/
images/bkg_th.gif

 � http://magento-dev.local/skin/frontend/default/default/
images/i_msg-success.gif

 � http://magento-dev.local/skin/frontend/default/default/
images/btn_checkout.gif

 � http://magento-dev.local/index.php/checkout/onepage/

 � http://magento-dev.local/js/varien/accordion.js

 � http://magento-dev.local/skin/frontend/base/default/js/
opcheckout.js

Chapter 11

209

 � http://magento-dev.local/skin/frontend/default/default/
images/opc-ajax-loader.gif

 � http://magento-dev.local/skin/frontend/default/default/
images/cvv.gif

 � http://magento-dev.local/index.php/checkout/onepage/
progress/?toStep=billing

 � http://magento-dev.local/index.php/electronics/cameras/
accessories/universal-camera-case

 � http://magento-dev.local/index.php/tag/product/list/
tagId/185/

 � http://magento-dev.local/index.php/tag/product/list/
tagId/27/

 � http://magento-dev.local/index.php/customer/account/
login/

7. You can change the URLs so that they match your Magento configuration. Make sure
that the domain matches your configuration and that the URLs exist.

8. Run the following command to start the load test with 50 concurrent users:
siege -c50 -i -t 1M -d 3 -f siege_url.txt

9. The period for which this script will run depends on the webshop's performance. The
output of the command is shown as follows:
~$ siege -c50 -i -t 1M -d 3 -f siege_url.txt
** SIEGE 2.70
** Preparing 50 concurrent users for battle.
The server is now under siege...
Lifting the server siege... done.
Transactions: 2001 hits
Availability: 100.00 %
Elapsed time: 59.48 secs
Data transferred: 0.49 MB
Response time: 0.00 secs
Transaction rate: 33.64 trans/sec
Throughput: 0.01 MB/sec
Concurrency: 0.03
Successful transactions: 38
Failed transactions: 0
Longest transaction: 0.04
Shortest transaction: 0.00

With the Siege -h command, you can see all the available options.

Performance Optimization

210

10. We continue with the configuration of Magento Profiler. To enable the Magento
Profiler, open the backend and navigate to System | Configuration | Advanced |
Developer | Debug. Configure the Profiler field as shown in the following screenshot:

11. To see some more statistics, uncomment the following line in the index.php file:
Varien_Profiler::enable();

12. When you reload the frontend, you will see a grid as shown in the following screenshot:

Chapter 11

211

13. In the previous screenshot, you can see the execution time and memory that is used
for each function that is executed. This can help you to find a performance leak.

14. Next, we will install YSlow in Firefox.

 � YSlow is a Firefox plugin that is installed with Firebug

15. To open YSlow, open Firebug by pressing F12 or by clicking on the icon in the
Add-ons bar.

16. After Firebug starts, open the YSlow tab.

17. Check that the Ruleset dropdown is set to YSlow(V2).

18. Start the test by clicking on the Run Test button.

19. YSlow performs some tests and then displays the results of these tests as
shown in the following screenshot:

Performance Optimization

212

How it works...
We started with ApacheBench, which is a tool that is installed with the Apache web server.
This tool is designed to benchmark the HTTP requests.

We performed a test with a number of concurrent users. When you test with a load of 10
concurrent users, you will simulate a continuous load of 10 requests during the time of the
test. When a request is finished, a new one is fired, so there are always 10 processes running.

When you limit the time of the test to 30 seconds, you can see how many successful requests
your Apache server has finished during that time. This can give you a good idea of the capacity
your web server has.

Siege is a tool similar to ApacheBench. The main difference is that Siege has more options
than ApacheBench. In this recipe, we did a load test with a list of URLs. In this list, you can
add products to the cart by creating POST requests to simulate a human flow on the webshop.
Mostly, product pages are cached but session-specific flows, such as the checkout, can't be
cached and will generate more load on your server.

With ApacheBench and Siege, you can create load on a website. While
doing this on a remote website, it is possible that you will be blocked by a
firewall because many requests from the same host appear like an attack.

The performance of a web page depends on many factors. YSlow has bundled the most
important factors and runs a test with these factors. The parameters are bundled in rulesets.
The ruleset we used is the YSlow (V2) that contains most of the checks. You can choose some
others or create your own.

When the test runs, YSlow will check all the factors that are in the ruleset. For every factor,
it will give a score. The average of all scores is multiplied by the weight of each factor. The
weight depends on the impact of every factor on the performance of a website.

In the report generated by YSlow, suggestions are made to get a better score on every specific
part. It is up to you to decide which option you will choose to optimize your site.

There's more...
When your site is on a public URL, you can use some online tools to show a report of your
site's performance. These tools will look at your site and generate a report on it. It will make
some suggestions just like YSlow does:

 f WebPagetest: This tool can be found at http://www.webpagetest.org/

 f GTmetrix: This tool can be found at http://gtmetrix.com/

Chapter 11

213

Optimizing the database and MySQL
configuration

When scaling a Magento website, you will have one part that will be a hard job and that is
the MySQL database. You can scale your shop with multiple servers but the database is a
central storage of all the data of the website, which is not so easy to scale because everything
needs to be in sync. In this recipe, we will optimize the Magento MySQL database and the
MySQL server.

Getting ready
Log in to phpMyAdmin and navigate to the next page that shows the information about
the database.

How to do it...
The first step is to optimize the table structures of the Magento database. Take a look at the
following procedure:

1. When you are in phpMyAdmin, click on the Magento database, and you will see the
table overview.

2. At the bottom of this page, click on the check all button.

3. When you click on the drop-down list, you can repair the table and optimize it, as
shown in the following screenshot:

Make sure you run this action for all the tables in the Magento database. It
could happen that the list is separated and presented in multiple pages.

Performance Optimization

214

4. When you have repaired and optimized everything, your MySQL database is optimized.
You can also replicate the database with the Master/Slave setup as we have done in
the Configuring a Master/Slave setup recipe in Chapter 5, Database Concepts.

The second step is the optimization of the MySQL server. Perform the following steps to
optimize the MySQL server:

1. A good server configuration starts with good hardware and the right operating
system. To run Magento, it is recommended to use a dedicated server or a VPS.
When you use a shared environment, the RAM and CPU load is shared among other
users. With a VPS or dedicated server, you have a fixed number of CPUs and a fixed
amount of RAM available.

2. When your server is equipped with enough RAM, you can turn off the swapped
devices. Sometimes, the swap option will be automatically used even if enough
memory is available.

3. In the my.cnf file, under the [mysqld] section, use the skip-external-
locking parameter to avoid external locking.

4. The following command is used to set the right value for key_buffer in the MyISAM
tables. To see the configuration, run the following command on the MySQL prompt:
mysql> SHOW VARIABLES LIKE '%key_buffer%';

5. We will set the key buffer size to 512 MB. We can do this by running the following
command on the MySQL prompt:
mysql> SET GLOBAL key_buffer_size = 536870912;

6. We will do the following optimization settings in the my.cnf file. This is the main
configuration file of the MySQL server that is located in the app/etc/mysql folder:

1. Open the file and paste the following configuration under the
[mysqld] section:
[mysqld]
key_buffer = 512M
max_allowed_packet = 64M
thread_stack = 192K
thread_cache_size = 32
table_cache = 512
query_cache_type = 1
query_cache_size = 52428800
tmp_table_size = 128M
expire_logs_days = 10
max_binlog_size = 100M
sort_buffer_size = 4M

Chapter 11

215

read_buffer_size = 4M
read_rnd_buffer_size = 2M
myisam_sort_buffer_size = 64M
wait_timeout = 300
max_connections = 400

2. Save the file and restart your MySQL server. You can do this by running the
following command:

sudo service mysql restart

How it works...
While optimizing a MySQL server, you have to know the capabilities of your server and the
traffic you expect. With these parameters, you can calculate a good value for the key_
buffer, query_cache, and table_cache. Also, think about the skip-external-
locking parameter. With this parameter, you can deny external locking.

With the following commands, you can view the MySQL server status:

Command More information

mysql> SHOW STATUS; This command shows the current status
of the MySQL server. This command is
available in MySQL 5.0 and higher, and is
the standard to show all the global variables.

mysql> SHOW VARIABLES; All the MySQL variables are shown with this
command.

mysql> SHOW INNODB STATUS; This command lets you find out the current
INNODB status.

mysql> SHOW GLOBAL STATUS; This command shows the values of the load
on the database server for all connections.

mysql> SHOW LOCAL STATUS; This is the same as the SHOW GLOBAL
STATUS command, but the values are
calculated on the current connection.

mysql> mysqladmin extended -i100 -r Use this command to view what is
happening currently with the MySQL server.

The database optimization is one of the key aspects to tune your Magento webshop. The
database optimization amounts to 50 percent of a page load.

Performance Optimization

216

Optimizing the Apache web server
Magento recommends the use of Apache web server when you run a Magento website. There
are some other web servers on the market, such as Nginx, but initially Magento was optimized
to run on Apache.

The performance of the web server depends mostly on the hardware on which the server is
running. Network card, RAM, disk, OS, and CPU are important hardware to think about when
you are choosing a server.

How to do it...
1. The first thing to think about is the OS on which the web server will run. It is highly

recommended to use a Linux distribution. In the recipes of this book, we used an
Ubuntu server (a Debian-based Linux distribution).

Don't use a Windows server to run Magento. It will work but it is less
efficient and can lead to issues with file permissions, code, and more.

2. Update the OS to the latest stable version because the update software is faster
and safer. Use Apache2 instead of the Apache1 series. Apache2 uses fewer CPU
resources while delivering static content.

3. Install only the required services on the web server. When a lot of services are
installed, you will have background tasks that will use the resources of the server.

4. Use XFS and ReiserFS as the filesystem for a better disk I/O.

5. You have to configure the web server so that it never has to swap. When your
web server begins to swap, all requests will be served slower. The first thing is
to compare the volume of RAM on the server with the average memory load of a
request and the number of requests. The second thing you can do is to configure the
MaxClients setting. This setting controls the number of child processes when the
server swaps.

6. Look at the HostnameLookups setting and check if this is configured with the
Off value.

7. It is not recommended to use the SymLinksIfOwnerMatch setting. It is better to use
Options +FollowSymLinks +SymLinksIfOwnerMatch for specified directories.
For other locations, use the Options +FollowSymLinks setting to prevent that the
system calls lstat(2). The lstat() system calls are never cached.

8. Don't use a wildcard syntax in the DirectoryIndex setting. The setting is
shown as follows:
DirectoryIndex index

Chapter 11

217

9. It is better to use index.php only because Magento uses index.php as the default
index. This setting is shown as follows:
DirectoryIndex index.php

10. Enable the deflate and header Apache modules with the following commands:
sudo a2enmod deflate

sudo a2enmod header

11. Open the .htaccess file in the Magento root and go to the mod_deflate
configuration tag. Uncomment some lines so that the block looks like the
following code:
<IfModule mod_deflate.c>

##
enable apache served files compression
http://developer.yahoo.com/performance/rules.html#gzip

 # Insert filter on all content
 SetOutputFilter DEFLATE
 # Insert filter on selected content types only
 AddOutputFilterByType DEFLATE text/html text/plain text/xml
 text/css text/javascript

 # Netscape 4.x has some problems...
 BrowserMatch ^Mozilla/4 gzip-only-text/html

 # Netscape 4.06-4.08 have some more problems
 BrowserMatch ^Mozilla/4\.0[678] no-gzip

 # MSIE masquerades as Netscape, but it is fine
 BrowserMatch \bMSIE !no-gzip !gzip-only-text/html

 # Don't compress images
 SetEnvIfNoCase Request_URI \.(?:gif|jpe?g|png)$ no-gzip
 dont-vary

 # Make sure proxies don't deliver the wrong content
 Header append Vary User-Agent env=!dont-vary

</IfModule>

When you get an internal server error after the change, it is possible that the
Apache headers module is not enabled. Run the sudo a2enmod header
command and restart the server to fix this.

Performance Optimization

218

12. Take a look at the KeepAlive setting of your Apache server. When this is on, the
Apache server can serve multiple requests through the same TCP connection.

13. Configure the MPM (Multi-Processing Modules) for your case. The values of these
configurations depend on the resources and load that you expect on your server.
StartServers 50
MinSpareServers 15
MaxSpareServers 30
MaxClients 225
MaxRequestsPerChild 4000

14. When you run some load tests again, you can compare the obtained results with the
results before the optimization. Usually, you will see some differences.

How it works...
The performance of a web server depends on many factors. The key parts are the application,
the hardware, the OS, and the network.

 f Application: The first thing is to ensure that your application is working efficiently
with the resources of the server. If your application expects a lot of resources for a
request, you can optimize it here.

 f Hardware: The second thing is the hardware of the server. You have to make sure
that the resources of a server are high enough to serve the expected load and peaks.

 f OS: The third thing is the OS and web server. Use a Linux server for Magento with
an Apache or Nginx web server on it. Always use the latest version of the software
because it is mostly faster and more secured.

 f Network: The last thing is the network. The web server sends the response through
the network to the client. When that network is slow, the download time of a request
will be long. Host your web server with a good network connection and host it in the
same region as that of the target audience of your webshop. For example, host your
website in Italy for an Italian website.

Optimize the configurations of the system you are using. In this recipe, we did some
optimizations to tweak the Apache web server by defining custom settings in the
.htaccess file.

The last thing is the geographic location of your web server. It is better to locate your
web server in the region where your target audience lives. Also, limit the size and number
of HTTP requests.

Chapter 11

219

Tuning the Magento configurations
Magento has some standard features for a better performance, such as caching and
compilation. In this recipe, we will configure these features for a better performance of
the setup.

Getting ready
Log in to the admin panel and navigate to the configuration page at System | Configuration.

How to do it...
When you perform the following steps, your Magento installation will run a bit faster:

1. Uninstall or disable the extensions that you are not using.

2. Enable all caching systems that Magento has. They are located at System | Cache
Management.

When all caches are enabled, make sure you clear them when you are
developing the code.

3. Compile your Magento installation. You can do this by clicking on Run Compilation
Process on the compilation page at System | Tools | Compilation. When the
compilation is enabled, all the Magento classes are built in one directory where they
will be loaded faster. Compilation can increase the speed by 25 to 50 percent.

4. Disable the unused modules. You can do this by disabling the frontend output by
navigating to System | Configuration | Advanced | Disable Modules Output. When
you're not using the Mage_Poll module, you can disable it here.

Performance Optimization

220

5. Disable some developer features because you don't need them on a live site. Go to
System | Configuration | Advanced | Developers and configure it as shown in the
following screenshot:

6. Go to Catalog | Attributes | Manage Attributes. When you click on an attribute, you
can see the Frontend Properties section. Set only those configuration parameters
that you want to use in the frontend to Yes.

Chapter 11

221

7. Go to System | Configuration | Catalog and enable the flat catalog product and flat
catalog category settings, as shown in the following screenshot. When enabled, a
part of the EAV system will be converted to flat tables:

You can find more information about the flat catalog settings in the
Working with EAV tables recipe of Chapter 5, Database Concepts.

How it works...
The standard Magento configurations are not the best configurations for an optimal
performance. Every option you enable has some impact on the flexibility of development and
compatibility with platforms and modules.

Performance Optimization

222

When caching is enabled, you will have a better performance. However, you have to keep
in mind that you will have to clear it frequently while developing the code, to see your changes
in action.

Development features are useful when developing code because it contains interesting
information. However, when your site is live, you don't need these features as it will slow down
your website. It is recommended that you disable this.

Compilation is a process where Magento will copy all the classes from the app/code folder
into the includes folder. When all the classes are located in one folder, it is faster to load a
class instead of looking into all the different module's folders to load a class.

The advantage of compilation is that your site will be faster but a disadvantage is that you
have to run the compilation process after every change in the code. When you use a module
that doesn't follow the Magento standards, it can lead to errors when compilation is enabled.

The last thing is to enable the flat catalog product and flat catalog category. When you enable
these features, Magento will use a flat table for loading products and categories instead of
looking in the different EAV tables.

The disadvantages of using this is that you have to sync the data from the EAV tables to the
flat tables. When working with a large amount of products and categories, the index process
that syncs the data runs for a very long duration.

Configuring APC and Memcached
The cache system in Magento is based on cache parts of the HTML output and some
configuration files. In this recipe, we will configure caching on the PHP level that you can do
with APC and Memcached. APC will cache PHP files, while Memcached will cache objects.

Getting ready
When configuring APC and Memcached for our Magento store, we have to make sure that APC
is installed on the server.

To install APC, follow these instructions:

1. On a Debian-based Linux distribution, you can install APC with the following command:
sudo apt-get install php-apc

2. Follow the installer and APC will be available in your PHP configuration.

3. To install Memcached, you can run the following command:
sudo apt-get install php5-memcached

Chapter 11

223

4. To test if the extensions are correctly installed, you can use the phpinfo()
command. This command gives you a graphical representation of all the available
PHP settings.

5. To see phpinfo, create a phpinfo.php file with the following content:

<?php
phpinfo();

When you search on APC and Memcached, you will see a block that contains all the settings.

How to do it...
In the following steps, we will discuss the APC and Memcached configuration in Magento:

1. Make sure APC and Memcached are installed on the server. This is described in the
previous section of this recipe.

2. Open the app/code/local.xml file and add a <cache> block as a child of the
<global> tag. Your local.xml file looks as follows:
<?xml version="1.0"?>
<config>
 <global>
 <install>
 <date><![CDATA[Mon,
 22 Jul 2013 18:12:54 +0000]]></date>
 </install>
 <crypt>
 <key><![CDATA[cac0174a5563885b926aa73723aeb870]]></key>
 </crypt>
 <disable_local_modules>false</disable_local_modules>
 <resources>
 <db>
 <table_prefix><![CDATA[]]></table_prefix>
 </db>
 <default_setup>
 <connection>
 <host><![CDATA[localhost]]></host>
 <username><![CDATA[root]]></username>
 <password><![CDATA[root]]></password>
 <dbname><![CDATA[magento_dev]]></dbname>
 <initStatements><![CDATA
 [SET NAMES utf8]]></initStatements>
 <model><![CDATA[mysql4]]></model>

Performance Optimization

224

 <type><![CDATA[pdo_mysql]]></type>
 <pdoType><![CDATA[]]></pdoType>
 <active>1</active>
 </connection>
 </default_setup>
 </resources>
 <session_save><![CDATA[files]]></session_save>
 <cache>
 <backend>apc</backend>
 </cache>
 </global>
 <admin>
 <routers>
 <adminhtml>
 <args>
 <frontName><![CDATA[admin]]></frontName>
 </args>
 </adminhtml>
 </routers>
 </admin>
</config>

3. Clear all the Magento caches and restart your Apache server. When you do a load test
with ApacheBench, you will see that there is a big improvement in the performance:
ab -c 5 -n 100 http://magento-dev.local

4. The previous configuration enables the APC configuration for Magento. With the next
configuration, we enable Memcached. We do this by adding a <cache> tag as a child
of the <global> tag. With Memcached, the local.xml file will look as follows:
<?xml version="1.0"?>
<config>
 <global>
 <install>
 <date><![CDATA[Mon,
 22 Jul 2013 18:12:54 +0000]]></date>
 </install>
 <crypt>
 <key><![CDATA[cac0174a5563885b926aa73723aeb870]]></key>
 </crypt>
 <disable_local_modules>false</disable_local_modules>
 <resources>
 <db>

Chapter 11

225

 <table_prefix><![CDATA[]]></table_prefix>
 </db>
 <default_setup>
 <connection>
 <host><![CDATA[localhost]]></host>
 <username><![CDATA[root]]></username>
 <password><![CDATA[root]]></password>
 <dbname><![CDATA[magento_dev]]></dbname>
 <initStatements><![CDATA
 [SET NAMES utf8]]></initStatements>
 <model><![CDATA[mysql4]]></model>
 <type><![CDATA[pdo_mysql]]></type>
 <pdoType><![CDATA[]]></pdoType>
 <active>1</active>
 </connection>
 </default_setup>
 </resources>
 <session_save><![CDATA[files]]></session_save>
 <cache>
 <backend>memcached</backend>
 <slow_backend>database</slow_backend>
 <memcached>
 <servers>
 <server>
 <host><![CDATA[127.0.0.1]]></host>
 <port><![CDATA[11211]]></port>
 <persistent><![CDATA[1]]></persistent>
 <weight><![CDATA[2]]></weight>
 <timeout><![CDATA[10]]></timeout>
 <retry_interval><![CDATA[10]]></retry_interval>
 <status><![CDATA[1]]></status>
 </server>
 </servers>
 <compression><![CDATA[0]]></compression>
 <cache_dir><![CDATA[]]></cache_dir>
 <hashed_directory_level><![CDATA[]]>
 </hashed_directory_level>
 <hashed_directory_umask><![CDATA[]]>
 </hashed_directory_umask>
 <file_name_prefix><![CDATA[]]></file_name_prefix>
 </memcached>
 </cache>
 </global>

Performance Optimization

226

 <cache>
 <backend>apc</backend>
 </cache>
 <admin>
 <routers>
 <adminhtml>
 <args>
 <frontName><![CDATA[admin]]></frontName>
 </args>
 </adminhtml>
 </routers>
 </admin>
</config>

5. The last thing is to store the var/cache folder in memory. We can do this by
mounting the folder using TMPFS:

mount tmpfs /var/www/packt/magento-dev/var/cache -t tmpfs -o
size=64m

How it works...
APC (Alternative PHP Cache) is an open source caching framework that optimizes the PHP
code, compiles it, and caches it in the shared memory. Executing a precompiled code is faster
than loading all the scripts. A common problem with APC is that you have to clear the APC
cache before you see any code changes because some parts of the old code are cached.

Memcached is another caching system in PHP. Memcached will cache objects that will
be used in the application later. Examples are database objects, sessions, and API calls.
Memcached runs on a server, that is, in this example, the same server as the web server. By
setting the Magento configuration, we connect to the local Memcached server that runs on
port 11211.

In Magento, Memcached increases the performance. In the frontend, there is some effect but
the largest effect is in the backend where Magento itself caches very few things.

The last thing was to mount the Magento cache folder in the memory. When enough memory
is available, it is faster to store the cache files in the RAM memory. When they are located in
the RAM, it is faster to load a cache file instead of reading it from the disk.

Chapter 11

227

Optimizing the PHP configurations
When you are not using an APC such as an accelerator, think about using a PHP accelerator;
we will see how in this recipe. When a PHP script is requested, the script will be read and then
it will be compiled in binary, which is called opcode. This compiled code will be executed by
the PHP engine.

An opcode cache is simply a caching mechanism that saves the compiled code so that the
code doesn't have to be compiled every time the script will run. In this recipe, we will optimize
the php.ini settings for the best performance.

Getting ready
There are a lot of PHP accelerators on the market, such as APC, eAccelerator, XCache, Zend
Accelerator, and Zend Platform. At the following URLs, you can find out more information
about these accelerators:

 f APC: This PHP accelerator can be found at http://pecl.php.net/package/APC

 f eAccelerator: This PHP accelerator can be found at http://eaccelerator.net/

 f XCache: This PHP accelerator can be found at http://xcache.lighttpd.net/

How to do it...
The following steps describe some measures that you can take to improve the PHP
configuration:

1. Use an efficient process manager, such as php-fpm, that runs on an impressive
speed on FastCGI.

2. Use the realpath_cache_size configuration setting to configure the size of the
real path cache in PHP. On systems where PHP opens and closes a lot of files, this
value needs to be increased. You can use the following setting for Magento:
realpath_cache_size=1M
realpath_cache_ttl=86400

Performance Optimization

228

3. The settings in the following table can improve the performance of the PHP settings:

Setting Description Recommended value

max_execution_
time

This setting sets the maximum
time (in seconds) for which a
process can live.

120

max_input_time This property sets the time (in
seconds) for which a script will
wait for input data.

240

memory_limit With this setting, you can set the
amount of memory a process can
consume.

For Magento, it is
recommended to use 216
MB.

output_
buffering

With this setting, you can set the
amount of bytes to buffer before
sending the response to the client.

4096

4. The last thing is to disable some error reporting levels when your site is live. This can
be done by using the following setting:

error_reporting = E_COMPILE_ERROR|E_ERROR|E_ CORE_ERROR

How it works...
The values in the php.ini configuration depend mostly on the application that you are
running and the load that the application will have on your system. If your application has
some processes that will run for a long time (this is possible with the re-index process
when you have a large number of products), it is required to increase the values of max_
execution_time and max_input_time. This is the same for the memory_limit
parameter where the recommended value for Magento is 216 MB.

Disabling the error reporting on a production system is recommended for warnings and
notices but critical errors need to be reported because this information is required when
solving the bug.

Analyzing the page speed
YSlow is a tool that analyzes the speed for a web page. It is a plugin that you can install in
Firebug. While running a report, the site will be tested on some parameters. A report will be
shown with an overall score of your website.

Chapter 11

229

The test is based on a ruleset. You have the YSlow (V2) and YSlow (V1) ruleset. We will use
the YSlow(V2) ruleset for this recipe, which has 22 rules. The complete page load (including
images and static content) can be increased by 25 to 50 percent if you adhere to the following
22 rules:

 f Minimize HTTP requests

 f Use a Content Delivery Network

 f Avoid empty src or href

 f Add an expires header or a cache-control header

 f Use Gzip for components

 f Put stylesheets at the top

 f Put scripts at the bottom

 f Avoid CSS expressions

 f Make JavaScript and CSS external

 f Reduce DNS lookups

 f Minify JavaScript and CSS

 f Avoid redirects

 f Remove duplicate scripts

 f Configure ETags

 f Make AJAX cacheable

 f Use GET for AJAX requests

 f Reduce the number of DOM elements

 f No 404 errors

 f Reduce the cookie size

 f Use cookie-free domains for components

 f Avoid filters

 f Do not scale images in HTML

 f Make favicon.ico small and cacheable

Performance Optimization

230

How to do it...
Perform the following steps to see what we can do with a YSlow result:

1. Run the YSlow test on the current web page. On a standard Magento webshop, the
test normally returns an overall C score.

2. The first thing is to make fewer HTTP requests. You can fix this by enabling CSS and
JS merging. For an optimal score, it is recommended to use sprites so that you have
only one background image.

3. To optimize the background image, you can use an image optimization tool such as
Yahoo's Smush.it. When you upload the images folder of your theme and run it, you
can download the optimized version as shown in the following screenshot:

4. You can download the optimized images and replace them in the skin folder.

Chapter 11

231

5. The next bad point in the test is adding the expires header. We can fix this by
modifying some rules in the .htaccess file.

6. The following code shows how to add the expire headers to the static content of the
website:
<IfModule mod_expires.c>

##
Add default Expires header
http://developer.yahoo.com/performance/rules.html#expires

 ExpiresDefault "access plus 1 year"

 ExpiresDefault
 ExpiresActive On
 ExpiresByType image/gif
 ExpiresByType image/jpg
 ExpiresByType image/jpeg
 ExpiresByType image/png
 ExpiresByType image/x-icon
 ExpiresByType text/css
 ExpiresByType application/x-javascript

</IfModule>

##

7. With the following code, we will compress some file types:
<IfModule mod_deflate.c>

##
enable apache served files compression
http://developer.yahoo.com/performance/rules.html#gzip

 # Insert filter on all content
 SetOutputFilter DEFLATE
 # Insert filter on selected content types only
 AddOutputFilterByType DEFLATE text/html text/plain text/xml
 text/css text/javascript

 # Netscape 4.x has some problems...
 BrowserMatch ^Mozilla/4 gzip-only-text/html

Performance Optimization

232

 # Netscape 4.06-4.08 have some more problems
 BrowserMatch ^Mozilla/4\.0[678] no-gzip

 # MSIE masquerades as Netscape, but it is fine
 BrowserMatch \bMSIE !no-gzip !gzip-only-text/html

 # Don't compress images
 SetEnvIfNoCase Request_URI \.(?:gif|jpe?g|png)$ no-gzip
 dont-vary

 # Make sure proxies don't deliver the wrong content
 Header append Vary User-Agent env=!dont-vary

</IfModule>

8. The last step is to use a CDN network to host your static images. You can use
an existing CDN provider to host the static files of your site, but you can create a
subdomain static.magento-dev.local, which also points to the Magento root
and configures Magento to use this subdomain for static content. You can do this in
the backend by navigating to System | Configuration | General | Web, as shown in
the following screenshot:

How it works...
The documentation of all the 22 rules of YSlow is available on their website. If you want more
information about a rule, visit the following page that contains all the information:

http://developer.yahoo.com/performance/rules.html

12
Debugging and

Unit Testing

In this chapter, we will cover:

 f Getting started with Xdebug

 f Debugging with FirePHP

 f Installing PHPUnit

 f Creating a Magento test case

Introduction
Debugging a website in an efficient way is one of the most important jobs of PHP developers.
These days, a website is a lot more than some simple HTML pages. In a Magento web shop,
you have a lot of complex business logic that is used in the flow of an e-commerce transaction.

Debugging in PHP is not out of the box like in other programming languages. There are many
ways to configure a PHP debugger (Xdebug) with a good code editor such as NetBeans. With
some extra tools such as FirePHP and the Zend Wildfire plugin, debugging is much easier.

Another part of debugging is automated tests. While working with objects and functions, there
are many ways to write some tests that you can run on a set of configured functions. A report
will show you the information about the passed and failed tests.

Debugging and Unit Testing

234

Getting started with Xdebug
The most common way of debugging a PHP application is to use some functions such as
echo, die(), var_dump(),and print_r(). In Magento, you can use the Mage::log()
statement to print some logs to a file, but this isn't a real debugger.

With a real debugger, you can break the script and look at the variables and values they have.
You can also change values, go further, skip statements, and more.

In PHP, you can configure Xdebug to debug your PHP script or application. In this recipe, we
will see how to install Xdebug in the development environment and how we can integrate it
with an IDE.

Getting ready
In this recipe, we will start an Xdebug session with the NetBeans IDE. Open NetBeans and set
the Magento project as Main Project. Make sure all the URLs are configured correctly in the
Property settings of the project.

How to do it...
The following steps show you how you can install Xdebug on your development server:

1. We will install Xdebug with the PHP pear library. Make sure it is installed. If not, run
the following commands:
sudo apt-get install php5-dev

sudo apt-get install php-pear

2. The next step is to install the xdebug library. You can do this with the following
command:
sudo pecl install xdebug

3. This command gives the following output:

4. As you can read in the screenshot, we have to locate the xdebug.so file in the php.
ini file. To find out the path of the xdebug.so file, run the following command:
find / -name 'xdebug.so'

Chapter 12

235

5. When you have the path, add the following line in the php.ini file. Open the file with
the following command:
sudo nano /etc/php5/apache2/php.ini

6. Also, do the same for the cli/php.ini file:
sudo nano /etc/php5/cli/php.ini

7. Paste the following line of code at the end:
zend_extension="/usr/lib/php5/20100525/xdebug.so"

Make sure the path matches the path of the xdebug.so file on your server.

8. Restart the Apache server with the following command:
sudo service apache2 restart

9. To test if Xdebug is correctly installed, you can check it with phpinfo() in the
browser or you can run the following command that checks the phpinfo() page
using the command prompt:
php -i | grep xdebug

10. The previous command gives the following output:
xdebug

xdebug support => enabled

xdebug.auto_trace => Off => Off

xdebug.cli_color => 0 => 0

xdebug.collect_assignments => Off => Off

xdebug.collect_includes => On => On

xdebug.collect_params => 0 => 0

xdebug.collect_return => Off => Off

xdebug.collect_vars => Off => Off

xdebug.coverage_enable => On => On

xdebug.default_enable => On => On

xdebug.dump.COOKIE => no value => no value

xdebug.dump.ENV => no value => no value

xdebug.dump.FILES => no value => no value

xdebug.dump.GET => no value => no value

xdebug.dump.POST => no value => no value

xdebug.dump.REQUEST => no value => no value

xdebug.dump.SERVER => no value => no value

xdebug.dump.SESSION => no value => no value

Debugging and Unit Testing

236

xdebug.dump_globals => On => On

xdebug.dump_once => On => On

xdebug.dump_undefined => Off => Off

xdebug.extended_info => On => On

xdebug.file_link_format => no value => no value

xdebug.idekey => no value => no value

xdebug.max_nesting_level => 100 => 100

xdebug.overload_var_dump => On => On

xdebug.profiler_aggregate => Off => Off

xdebug.profiler_append => Off => Off

xdebug.profiler_enable => Off => Off

xdebug.profiler_enable_trigger => Off => Off

xdebug.profiler_output_dir => /tmp => /tmp

xdebug.profiler_output_name => cachegrind.out.%p => cachegrind.
out.%p

xdebug.remote_autostart => Off => Off

xdebug.remote_connect_back => Off => Off

xdebug.remote_cookie_expire_time => 3600 => 3600

xdebug.remote_enable => Off => Off

xdebug.remote_handler => dbgp => dbgp

xdebug.remote_host => localhost => localhost

xdebug.remote_log => no value => no value

xdebug.remote_mode => req => req

xdebug.remote_port => 9000 => 9000

xdebug.scream => Off => Off

xdebug.show_exception_trace => Off => Off

xdebug.show_local_vars => Off => Off

xdebug.show_mem_delta => Off => Off

xdebug.trace_enable_trigger => Off => Off

xdebug.trace_format => 0 => 0

xdebug.trace_options => 0 => 0

xdebug.trace_output_dir => /tmp => /tmp

xdebug.trace_output_name => trace.%c => trace.%c

xdebug.var_display_max_children => 128 => 128

xdebug.var_display_max_data => 512 => 512

xdebug.var_display_max_depth => 3 => 3

Chapter 12

237

11. The next step is to configure the NetBeans Xdebug integration. To make NetBeans
work with Xdebug, we have to add the following configuration at the end of the php.
ini file:
xdebug.remote_enable=1
xdebug.remote_handler=dbgp
xdebug.remote_mode=req
xdebug.remote_host=localhost
xdebug.remote_port=9000
xdebug.idekey="netbeans-xdebug"

12. Restart your Apache server and look at the phpinfo()page to see if the Xdebug
settings have been applied.

13. The next step is to check your NetBeans debug settings. Navigate to Tools | Options
and configure it as shown in the following screenshot:

Debugging and Unit Testing

238

14. The next step is to check if the project URL has the right value. Open the Project
Properties and go to Run Configuration. Make sure the Project URL field has the
right value as shown the following screenshot:

15. We are now ready to start the first debug session. To start it, we have to click on the
debug button that is near the run button. You can also use the shortcut Ctrl + F5.

16. When starting a debug session, a new tab will be added in the browser with a URL
like the following:
http://magento-dev.local/?XDEBUG_SESSION_START=netbeans-xdebug

17. The web page doesn't load because the debugger is interrupting the process. To
continue, we have to use the debugger controls in NetBeans.

18. When you add a breakpoint in the index.php file on line 87,
Mage::run($mageRunCode, $mageRunType), and continue with the debugger,
you will see the variable values as shown in the following screenshot:

Chapter 12

239

19. When you continue with the breakpoint, you will see that the page will be loaded.

20. The debug session stays alive until you hit the stop button in NetBeans. When you
browse to other pages on your website, the debugger will continue as long as the
session is alive.

21. To stop the debug session, click on the stop button in NetBeans. A browser page will
be opened with the message that the session has stopped.

How it works...
Xdebug needs to be installed on the server where you want to debug it. In this recipe, the
server used is the local debug server.

We installed Xdebug using PEAR. PEAR is an application repository for PHP plugins. With
PEAR, we downloaded and installed the xdebug library.

When Xdebug was installed on the server, we configured the php.ini file to use the xdebug
library. We added some settings to make the Xdebug configuration compatible with NetBeans.

When using Xdebug on a remote server, make sure you can connect
to the server trough port 9000. This is mostly disabled on the
firewall of the server and your local PC.

Debugging and Unit Testing

240

When the server was configured properly, we checked the configurations in NetBeans and
started the debug session. When this session was started, we were able to debug the
Magento application like a debugger does it.

The debugger enables advanced debugging features such as the following:

 f Setting breakpoints

 f Executing the code statement-by-statement

 f Skipping parts of code

 f Browsing and changing variable names

Debugging with FirePHP
FirePHP is a plugin that you can install in Firefox. It is integrated in the Firebug console that
makes it easy to use as a debugging tool. On the server, FirePHP also needs to be installed.
We can do that easily with the PEAR repository, like we did with Xdebug in the previous recipe.

To debug with FirePHP, we need another PHP library. This is the Zend Wildfire plugin in the Zend
Framework. Magento is built on the Zend Framework, so the Wildfire plugin is standard installed.

Getting ready
FirePHP is a plugin that runs in Firebug. To make them work, we need to install Firebug and
FirePHP as Firefox add-ons using the following links:

https://addons.mozilla.org/us/firefox/addon/firebug/

https://addons.mozilla.org/us/firefox/addon/firephp/

How to do it...
The following steps describe how we can use FirePHP in a Magento project:

1. Make sure all the Firefox plugins are installed.

2. Open your Magento project in your IDE such as NetBeans.

3. Open the index.php file and add the following code in it at the end of the file:
// --
// Zend Wildfire log function
// --
/**
 * Logs variables to the Firebug Console
 * via HTTP response headers and the FirePHP Firefox Extension.
 *

Chapter 12

241

 * @param mixed $var The variable to log.
 * @param string $label OPTIONAL Label to prepend to the log
 event.
 * @param string $style OPTIONAL Style of the log event.
 * @param array $options OPTIONAL Options to change how messages
 are processed and sent
 * @return boolean Returns TRUE if the variable was added to the
 response headers or buffered.
 * @throws Zend_Wildfire_Exception
 */
function logFirePHP($var, $label = 'Magento vars', $style =
'INFO', $options = array()) {
 if (Mage::getIsDeveloperMode()) {
 $httpRequest = new Zend_Controller_Request_Http();
 $httpResponse = new Zend_Controller_Response_Http();
 $channel = Zend_Wildfire_Channel_
 HttpHeaders::getInstance();
 $channel->setRequest($httpRequest);
 $channel->setResponse($httpResponse);
 ob_start();
 Zend_Wildfire_Plugin_FirePhp::send($var, $label,
 $style, $options);
 $channel->flush();
 $httpResponse->sendHeaders();
 } else {
 return null;
 }
}
// --
// End Zend Wildfire function
// --

4. Save the file index.php.

5. Enable the Magento Profiler and the Magento developer mode.

6. We prepared the Magento installation to work with FirePHP. To log something through
it, we can use the function logFirePHP() to print something in the log. Open the
file app/design/frontend/base/default/template/catalog/product/
view.phtml.

7. Add the following code at the end of the file:
<?php logFirePHP($_product->debug()) ?>

Debugging and Unit Testing

242

8. When you open a product detail page and the Firebug console, you should have an
output similar to the one shown in the following screenshot:

How it works...
FirePHP is a logging tool that shows log messages in the Firebug console. We create the log
messages with the function logFirePHP() that we added in the index.php file.

When using the logFirePHP() function, a header will be added to the HTTP request.
FirePHP will pick up these headers and print them in the Firebug console.

With the function logFirePHP(), we can set the log message in the first parameter. This can
be any variable such as a string, an array, an object, or something else.

The second parameter is the name of the log message that will show up in the Firebug console.

Chapter 12

243

The last parameter is the type of log message. You can show a message with the
following options:

 f LOG

 f INFO

 f WARN

 f ERROR

 f EXCEPTION

 f TRACE

 f TABLE

 f DUMP

 f GROUP_START

 f GROUP_END

Installing PHPUnit
When we want to start with unit testing in PHP, we need a tool that is called PHPUnit.
When PHPUnit is installed, we can start loading tests with the phpunit command in the
command line.

Getting ready
Before installing PHPUnit, make sure PEAR is installed on your server. If it is not done, you can
do this by running the following command:

sudo apt-get install php-pear

You can also install it using a file. You can find information about this procedure by navigating
to the following URL:

http://pear.php.net/manual/en/installation.php

How to do it...
Follow the next steps to install PHPUnit on your development server:

1. To install PHPUnit, we have to use a custom PEAR channel. We need to register
the PHPUnit PEAR channel before we can install PHPUnit over PEAR. With the next
command, we will add the extra channel to the PEAR environment:
sudo pear channel-discover pear.phpunit.de

Debugging and Unit Testing

244

2. The PHPUnit channel depends on some other channels. We need to discover the
channel components.ez.no too:
sudo pear channel-discover components.ez.no

3. The last channel that we have to discover is the Symfony Components PEAR
channel. With the following command, we will discover the channel pear.symfony-
project.com:
sudo pear channel-discover pear.symfony-project.com

sudo pear channel-discover pear.symfony.com

4. When we have discovered all the required channels, it is time to install the PHPUnit
library. We can do this by running the following command:
sudo pear install phpunit/PHPUnit

5. The result of this command will end with the following lines:
install ok: channel://pear.phpunit.de/File_Iterator-1.3.4

install ok: channel://pear.phpunit.de/Text_Template-1.1.4

install ok: channel://pear.phpunit.de/PHP_Timer-1.0.5

install ok: channel://pear.phpunit.de/PHP_TokenStream-1.2.1

install ok: channel://pear.phpunit.de/PHP_CodeCoverage-1.2.13

install ok: channel://pear.phpunit.de/PHPUnit_MockObject-1.2.3

install ok: channel://pear.symfony.com/Yaml-2.3.6

install ok: channel://pear.phpunit.de/PHPUnit-3.7.28

6. When running this command, the installer will download and prepare all the required
packages so that you can use them.

7. The last thing is to install the CLI component for PHP. This is most probably installed;
if it is not installed, we have to run the following command:
sudo apt-get install php5-cli

8. The last thing to do is to test that everything we have installed works. To test this, we
can run the command phpunit --version:

$ phpunit –version

PHPUnit 3.7.28 by Sebastian Bergmann.

How it works...
As part of the xUnit, PHPUnit is the most popular framework for PHP unit testing. The xUnit
framework contains unit testing frameworks for many programming languages, such as the
JUnit for Java.

Chapter 12

245

To install the PHPUnit libraries, we used the PEAR installer (which is an extension of PHP) for
downloading and installing extra plugins. To add more plugins, we can add extra channels to
PEAR like we did while installing PHPUnit.

There's more...
When you want to install the PHPUnit library without PEAR, you can do it by using the
following steps:

1. The first thing to do is to download the library files that you can find by navigating to
the following URL http://pear.phpunit.de/get/.

2. Extract the files in the include_path function that is defined in the php.ini
configuration.

3. The next step is to configure the PHPUnit script. First move the phpunit.php file to
phpunit.

4. Open the file and replace the string @php_bin@ with your PHP bin path. Usually,
this is /usr/bin/php.

5. Copy the file to a location that is in your Linux PATH. Be sure to make the
script executable.

6. The last thing to do is to change something in the PHPUnit/Util/PHP.php file.
Open this file and change the @php_bin@ string with you PHP bin path. Usually, this
is /usr/bin/php.

7. You can now run the phpunit command.

Creating a Magento test case
For the last recipe of this chapter, we will write an automated test with PHPUnit. PHPUnit is the
unit testing framework that we have installed in the previous chapter.

Unit testing is a key part of Test Driven Development (TDD). With TDD, we will write the test
case first, and then we will write the code that returns the expected values that we defined in
the test case.

With Magento, which is based on the Zend Framework and built with TDD, it is possible to
write unit tests with PHPUnit for a custom or existing module. In this recipe, we will see all the
steps that you have to perform for a custom unit test.

Getting ready
In this recipe, we will create a unit test for the Packt_Helloworld module that we created
and extended in Chapter 4, Creating a Module, Chapter 6, Databases and Modules, Chapter
7, Magento Backend, and Chapter 8, Event Handlers and Cronjobs.

Debugging and Unit Testing

246

If you don't have the complete code, you can download it from the Packt Publishing website
http://www.packtpub.com.

How to do it...
Follow these steps to create a unit test for Magento:

1. Create a folder named unit-tests in your Magento root.

2. Create an autoload.php file in the unit-tests folder.

3. Open the autoload.php file and add the following content in it:
<?php

ini_set('include_path', ini_get('include_path') . PATH_SEPARATOR
. dirname(__FILE__) . '/../app' . PATH_SEPARATOR . dirname(__
FILE__));

//Set custom memory limit
ini_set('memory_limit', '512M');

//Include Magento libraries
require_once 'Mage.php';

//Start the Magento application
Mage::app('default');

//Avoid issues "Headers already send"
session_start();

4. Create a phpunit.xml file in the unit-tests folder with the following content:
<?xml version="1.0" encoding="UTF-8" ?>
<phpunit backupGlobals="false"
 backupStaticAttributes="false"
 colors="true"
 convertErrorsToExceptions="true"
 convertNoticesToExceptions="true"
 convertWarningsToExceptions="true"
 processIsolation="false"
 stopOnFailure="false"
 syntaxCheck="true"
 bootstrap="./autoload.php">

Chapter 12

247

 <testsuite name="Magento Unit Test">
 <directory>./</directory>
 </testsuite>
 <filter>
 <whitelist>
 <directory>../app/code/local</directory>
 </whitelist>
 </filter>
</phpunit>

5. The next step is to create a folder tree as shown in the following screenshot:

Instead of creating all the folders manually, you can also run the
following Linux command in your terminal: mkdir -p app/code/
local/Packt/Helloworld/Model/.

6. In the folder app/code/local/Packt/Helloworld/Model/, create a new PHP
file called SubscriptionTest.php.

7. In the SubscriptionTest.php file, add the following content:
<?php
class SubscriptionTest extends PHPUnit_Framework_TestCase {

 protected $_subscriptionInstance;

 public function setUp() {
 echo 'Start unit test for method: ' . $this->getName();

 Mage::app('default');

Debugging and Unit Testing

248

 $this->_subscriptionInstance = Mage::
 getModel('helloworld/subscription');
 }

 protected function tearDown() {

 }

 public function testGetAllSubscriptions() {
 $subscriptions = $this->_subscriptionInstance-
 >getCollection();

 //Check if $subscriptions is instance of the
 collection class
 $this->assertInstanceOf('Packt_Helloworld_Model_
 Resource_Subscription_Collection', $subscriptions);
 }

}

8. To start the unit test, open the terminal and navigate to the unit-tests directory of
your Magento installation using the following command:
cd /var/www/magento-dev/unit-tests

9. In the unit-tests folder, run the phpunit command. This will give you an output
as shown in the following screenshot:

10. When you see the message OK (1 test, 1 assertion), the test has passed.

Chapter 12

249

How it works...
We started this recipe by creating all the required folders for the unit test. We created the
following files:

 f autoload.php

 f phpunit.xml

 f SubscriptionTest.php

The bootstrap of the phpunit command is configured in the phpunit.xml file. In this file,
at the beginning of the command, we can configure some parameters that are important. We
have configured the loader file autoload.php and some other values of global variables and
error-reporting variables.

In the phpunit.xml file, we configured the autoload.php file first in order to run it. In this
file, we set the include path with the path of the Magento application, some PHP settings,
and the inclusion of the Mage.php file.

The unit test itself is written in the SubscriptionTest.php file. In this file, we created a
class that extends the PHPUnit_Framework_Testcase class. This parent class contains all
the logic for the unit test and the generic functions.

In the setup() function, we can write some code to bootstrap the test. In this case, we
created an instance of the subscriptions collection.

The unit test is in the testGetAllSubscriptions() method. The phpunit
command will run all the test* functions in that class. In this function, we used the
function assertInstanceOf() to see if the type of the class matches the value that is
set in the first parameter.

There's more...
In this case, we used the assertion function assertInstanceOf() that will look at the
instance type of the variable. There are many more assertion functions that you can use
with PHPUnit. For example, a function that compares a number and a function to check for
null values.

A full list of the assertion methods can be found at the following URL:

http://phpunit.de/manual/3.7/en/writing-tests-for-phpunit.
html#writing-tests-for-phpunit.assertions

Index
Symbols
$productCollection->load() function 115
$this->addColumn() function 139
$this->getLoadedProductCollection() function

190
$this->getTitle() function 190
-a option 12
<cache> tag 224
<category_product_slider> tag 185
-c parameter 206
-e parameter 206
<events> tag 154
<global> tag 224
-h command 209
<helloworld_register_visit> tag 154
.htaccess file 231
-n parameter 206
<parameter_name> tag 197
<parameters> tag 184
_prepareCollection() function 139
_prepareColumns() function 138, 139
<run> tag 159
.tsv (tab separated value) file 206

A
ab -h command 207
Access Control List. See ACL
ACL

about 124
access, restricting to backend page 125, 126
working 127

adapter class
about 170
creating, for shipping module 171, 172
using 170

addAttributeToFilter()function 117
addAttributeToSelect(<attribute_code>)

function 111
addCss function 32
addItem function 32
addJs function 32
Add Layout Update button 42
Add New Widget Instance button 183
Add To Cart button 186
Add Tracking Number button 177
Alternative PHP Cache. See APC
ApacheBench tool

about 205
differentiating, with Siege tool 207

Apache web server
optimizing 216-218
performance factors, application 218
performance factors, hardware 218
performance factors, network 218
performance factors, OS 218

APC
about 227
configuring 223-226
installing 222

assertInstanceOf() function 249
attribute sets

about 47
product attributes, creating 47-51

B
backend controller

registering 119-121
blocks

configuring, for new module 181, 182
registering 66, 67

252

business option 170

C
cart

product adding, through querystring 57, 58
Catalog Category Link widget 191
catalog defaults

setting up 44-47
check all button 213
checkCartQty() function 152
Check Money Order method 176
checkout_cart_product_add_after event 154
checkSubscriptions() function 158
chown command 10
CMS | Widgets 40
code pools, Magento

community 65
core 65
local 65

collectionAction method 110
collectRates() function 173
Command Line Interface (CLI) 157
community pool 65
compilation

compilation 222
disadvantage 222

config.xml class 78
connections

registering 100, 101
core class

rewriting 76, 77
core pool 65
cronjobs

about 154
configuring, on server 155-157
examples 154

crontab -e command 156
custom block

creating 185-190
custom configuration parameter

about 191
creating 191-196
working 196, 197

customer attributes
about 139
adding 140, 141

custom layout XML file
adding 70-72

custom translate CSV file
adding 72, 73

D
database configuration

optimization 213-215
database connection

creating, in Magento 83-85
database model

in Magento 80-83
database repair tool 95
database replication 90
database table

grid, creating from 133-139
data-href attribute 56
debug() function 111
debugging

automated tests 233
in PHP 233
website 233

default_read connection 93
description tag 185
Designer option 83
Developer page 189
development environment preparation, with

Magento
requirements 8
steps 9, 10

development tools
command-line tool Wiz 22
configuring 18-21
MySQL client phpMyAdmin 22

dispatchEvent() function 147, 154

E
eAccelerator 227
EAV 79
EAV tables

about 87
structure 89
working with 87-90

Embed button 58

253

empty module
about 180
creating 180, 181

entities 110
Entity Attribute Value. See EAV
event listener. See event observer
event observer

about 150
adding 151-153
working 153, 154

event system, Magento
working 146-148

express option 170
extra files

adding, to Magento theme 31, 32

F
Facebook

like button, adding 54
Facebook like button

adding 54-56
files, for Magento module registration

creating 64, 65
Firebug 240
FirePHP plugin

about 240
debugging 240, 241
working 242

first Magento theme
creating 27-31

flatAction() method 85, 86
Flat catalog option 90
flat entity

about 85
database table 87
model object 87
resource collection object 87
resource model object 87

flat table
creating, models used 104-110
working with 85, 86

frontend
modules, adding in 175-177

Fully Qualified Domain Name (FQDN) 9
function _prepareLayout() function 201

G
getAllowedMethods() function 173
get_class function 77
getCollection() method 108
getModel() function 67
getName() function 77
getProducts() function 75
getResource() function 99
getReviewUrl() function 86, 87
getSelect()->__toString() function 115
git add <folder or filename> command 16
git commit command 17
grid

creating, from database table 133-139
GTMetrix tool

about 206
URL 212

H
helloAction() function 69, 71, 149
helloworld_register_edit event 151
helpers

configuring, for new module 181, 182
registering 66

HTC Touch Diamond 59

I
indexAction function 121
indexAction() function 69, 137
indexAction method 83, 84
IndexController class 68
installations

PHPUnit 243-245
Install button 160
isAvailable() function 173
isTrackingAvailable() function 175
isTrackingAvailable() method 173

J
jQuery support

adding 33, 34

254

L
label key 144
LAMP (Linux, Apache, MySQL, PHP) 8
local pool 65
logFirePHP() function 242
ls command 12

M
Mage::getResourceSingleton() method 99
Mage_Adminhtml_Block_Widget_Grid class

139
Mage_Adminhtml_Controller_Action class

121
Mage_Adminhtml module 121
Mage_Catalog_Block_Product_List class

186, 190
Mage_Catalog_Model_Product class 78
Mage_Catalog_Model_Resource_Product_

Collection class 116
Mage_Core_Block_Template 74
Mage_Core_Model_Abstract class 99
Mage_Core_Model_App::dispatchEvent()

function 149
Mage::dispatchEvent() function 147, 149,

154
Mage_Eav_Model_Entity_Collection_Abstract

class 117
Mage_Eav_Model_Entity_Setup class 104
Mage::getModel() function 67, 78
Mage::getResourceModel() method 99
Mage::helper() function 67
Mage::log() function 148
Magento

Admin menu 124
cronjob system 145
database connection, creating in 83, 84
database model 80-83
event types 146
models, creating 97
overview 7
packages 27
supported shipping handlers 163
test case, creating 245, 247
themes 23

used, for development environment
preparation 8

used, for sample data installation 11-15
Magento collections

about 110
working with 110-117

Magento configurations
tuning 219-222

Magento Connect 159
Magento database

corrupting 95
fixing, database repair tool used 96

Magento Index Process 90
Magento Profile tool 206
Magento test case

creating 245-249
Magento themes

configuring 23-27
extra files, adding to 31, 32
first theme, creating 27

Magento widgets 179
Mage_Review_Model_Review class 86
Mage_Shipping_Model_Carrier_Abstract

class 172
Mage_Shipping_Model_Rate_Result_Method

class 173
Master/Slave setup

configuring 90
Magento, configuring 93, 94
Master database, setting up 91, 92
Slave database, setting up 92
working 94

Memcached
about 226
configuring 223-226

memory_limit parameter 228
menu

extending 122
extra item, adding 123
extra item, adding to Admin menu 123

models
registering 66, 67
used, for flat table creating 104-110

model_save_before event 154
module configurations

initializing 164-170

255

modules
adding, in frontend 175-177
registering 66

MPM (Multi-Processing Modules) 218
MySQL configuration

optimization 213-215
mysql> mysqladmin extended -i100 -r

command 215
mysql> SHOW GLOBAL STATUS; command

215
mysql> SHOW INNODB STATUS; command

215
mysql> SHOW LOCAL STATUS; command 215
mysql> SHOW STATUS; command 215
mysql> SHOW VARIABLES; command 215

N
name tag 185
NetBeans

about 19
URL 19

NetBeans project
creating, with Magento files 19-21

new cronjob
creating 157-159
testing 159-161

new page
adding 68, 69
working 69, 70

new product block
adding, to frontend 74, 75

Nokia 2610 Phone 112

O
observer tag (register_visit)

<class> 154
<method> 154
<type> 154

opcode cache 227
Open Graph (og) meta tags 56
Options +FollowSymLinks setting 216
own event

creating 149, 150

P
Packt_Helloworld_Model_Observer class 151
Packt_Helloworld_Model_Source_Config_

Relation class 142
page speed

analyzing 228-232
page title

changing 35
parameters tag 185
PHP accelerators

APC 227
eAccelerator 227
XCache 227
Zend Accelerator 227

PHP application, debugging
die() functions, using 234
echo functions, using 234
print_r() functions, using 234
var_dump() functions, using 234

PHP configurations
optimizing 227, 228

phpinfo() command 223
phpMyAdmin 22, 80
PHP setting

max_execution_time 228
max_input_time 228
memory_limit 228
output_buffering 228

PHPUnit
about 243
installing 243
installing, on development server 244
installing, without pear 245
working 244

phpunit command 248, 249
PHPUnit libraries

installing 245
phpunit --version command 244
prepareStatusLayout() function 138
product page

URL, modifying 59
product page URL

modifying 60, 61
products

setting up, technique 43

256

product types
about 51
bundled product 54
configurable product 54
downloadable product 54
grouped product 54
simple product 54
virtual product 54
working with 51-54

Profiler field 210

Q
querystring

used, for adding product to cart 57, 58
Quick Create button 52

R
read, write, and execute (rwx) 10
registerVisit() action 151
registerVisit() function 151
Request Path field 61
resource models

about 97
registering 98, 99
working 99

S
sample data installation

Magento, using 11-15
save() method 87
scripts

creating 101-103
installing 101-104
upgrading 104

Select Category button 192
setDataToAll() function 115, 116
setTitle function 36
setTitle method 35
setup() function 249
Shipme - Express method 175
Shipme shipping method 175
shipping method features

extending 173, 174

shipping module
adapter class, creating for 171, 173
configuration, creating 164-169

SHOW MASTER STATUS command 92
SHOW TABLES command 81
Siege tool

about 205, 207
differentiating, with ApacheBench 207

singleton pattern 84
skip-external-locking parameter 215
Smush.it tool 230
source code

version control, adding to 15-18
source models

about 141, 142
using 144
working with 142-144

Submit Shipment button 177
subscriptionAction() method 108
Symfony Components 244
system configuration

extending 127-131
working 132, 133

System | Configuration | Design 28
System | Configuration | Developer 37
System | Configuration | General | Web 232

T
template files

creating 186-190
Test Driven Development (TDD) 245
testGetAllSubscriptions() method 249
theme fallback system 24
theming block system

frontend hints, enabling 39, 40
toOptionArray() function 144
translate function 74
translations

working with 36-38

U
unique ID (SKU) 54
unit testing in PHP. See PHPUnit
URL rewrites 59

257

V
value key 144
Varien_Data_Collection class 116
Varien_Data_Collection_Db class 117
Varien_Object class 154
version control

adding, to source code 15-18

W
WAMP (Windows, Apache, MySQL, and PHP)

10
WebPagetest tool

about 206
URL 212

website limits
exploring, steps 205-212
exploring, tools 204

widget configuration file
creating 183, 184
initializing 182
testing 183
working 185

Widget Options tab 42, 184
widgets

about 40
adding, to layout 40-42

widget theming
finalizing 198-201

Wiz
URL 22

wiz admin-createadmin command 22
wiz admin-resetpass command 22
wiz cache-clear command 22
wiz devel-showhints command 22
wiz module-list command 22
wiz sql-cli command 22
WYSIWYG editor 59

X
XCache 227
Xdebug

advanced debugging features 240
installation, testing 235-239
installing, on development server 234, 235
working 239

Y
YouTube video

embedding 58, 59
YSlow result

experimenting 230-232
YSlow tool

about 206
opening 211

Z
Zend_Log class 148

Thank you for buying

Magento 1.8 Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Magento 1.4 Development
Cookbook
ISBN: 978-1-84951-144-5 Paperback: 268 pages

Extend your Magento store to the optimum level by
developing modules and widgets

1. Develop Modules and Extensions for Magento 1.4
using PHP with ease

2. Socialize your store by writing custom modules
and widgets to drive in more customers

3. Achieve a tremendous performance boost by
applying powerful techniques such as YSlow,
PageSpeed, and Siege

Magento Beginner's Guide
Second Edition
ISBN: 978-1-78216-270-4 Paperback: 320 pages

Learn how to create a fully featured, attractive online
store with the most powerful open source solution for
e-commerce

1. Install, configure, and manage your own
e-commerce store

2. Extend and customize your store to reflect your
brand and personality

3. Handle tax, shipping, and custom orders

Please check www.PacktPub.com for information on our titles

Magento PHP Developer's
Guide
ISBN: 978-1-78216-306-0 Paperback: 256 pages

Get started with the flexible and powerful e-commerce
framework, Magento

1. Build your first Magento extension, step by step

2. Extend core Magento functionality, such as the API

3. Learn how to test your Magento code

Mastering Magento
ISBN: 978-1-84951-694-5 Paperback: 300 pages

Maximize the power of Magento: for developers,
designers, and store owners

1. Learn how to customize your Magento store for
maximum performance

2. Exploit little known techniques for extending and
tuning your Magento installation

3. Step-by-step guides for making your store run
faster, better and more productively

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
with Magento
	Introduction
	Preparing the development environment
	Installing Magento with sample data
	Adding version control to the source code
	Configuring the development tools

	Chapter 2: Theming
	Introduction
	Configuring Magento themes and packages
	Creating your first theme
	Adding extra files to your theme
	Adding jQuery support
	Changing a page title
	Working with translations
	Understanding the theming block system
	Adding widgets to the layout

	Chapter 3: Working with Products
	Introduction
	Setting up the catalog defaults
	Working with attribute sets
	Working with product types
	Adding a Facebook like button
	Adding a product to the cart through querystring
	Embedding a YouTube video
	Changing the URL of a product page

	Chapter 4: Creating a Module
	Introduction
	Creating files
	Registering blocks, helpers, and models
	Adding a new page
	Adding a layout file
	Adding a translation file
	Adding a block of new products
	Rewriting a core class

	Chapter 5: Database Concepts
	Introduction
	Finding your way in the tables
	Creating a database connection in Magento
	Working with flat tables
	Working with EAV tables
	Configuring a Master/Slave setup
	Repairing the database

	Chapter 6: Databases and Modules
	Introduction
	Registering the resource models
	Registering connections
	Installing and upgrading scripts
	Creating a flat table with models
	Working with Magento collections

	Chapter 7: Magento Backend
	Introduction
	Registering a backend controller
	Extending the menu
	Adding an ACL
	Extending the system configuration
	Creating a grid from a database table
	Adding customer attributes
	Working with source models

	Chapter 8: Event Handlers
and Cronjobs
	Introduction
	Understanding Magento event types
	Creating your own event
	Adding an event observer
	Introducing cronjobs
	Creating a new cronjob
	Testing your new cronjob

	Chapter 9: Creating a
Shipping Module
	Introduction
	Initializing module configurations
	Writing an adapter model
	Extending the shipping method features
	Adding the module in the frontend

	Chapter 10: Creating a Product Slider Widget
	Introduction
	Creating an empty module
	Registering helpers and blocks
	Creating a widget configuration file
	Creating a block and the template files
	Creating a custom configuration parameter
	Finalizing the theming

	Chapter 11: Performance Optimization
	Introduction
	Exploring the limits of a website
	Optimizing the database and MySQL configuration
	Optimizing the Apache web server
	Tuning the Magento configurations
	Configuring APC and Memcached
	Optimizing the PHP configurations
	Analyzing the page speed

	Chapter 12: Debugging and
Unit Testing
	Introduction
	Getting started with Xdebug
	Debugging with FirePHP
	Installing PHPUnit
	Creating a Magento test case

	Index

