
[1]

www.allitebooks.com

http://www.allitebooks.org

Mastering Redmine
Second Edition

An expert's guide to open source project management
with Redmine

Andriy Lesyuk

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Redmine
Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author(s), nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2013

Second edition: May 2016

Production reference: 1260516

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-130-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Andriy Lesyuk

Reviewer
Ilya Lyamkin

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Prachi Bisht

Content Development Editor
Shweta Pant

Technical Editor
Utkarsha S. Kadam

Copy Editor
Vikrant Phadke

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Andriy Lesyuk is an open source evangelist. He is an enthusiastic and passionate
developer with more than 14 years of experience. He is skilled in Ruby, PHP, Perl,
C, and more. His primary areas of interest are web development and Linux system
development. Andriy is also the author of more than 20 open source plugins for
Redmine. He lives and works in Ivano-Frankivsk, Ukraine. His website is
http://www.andriylesyuk.com. He started his career as an engineer at the
Ivano-Frankivsk National Technical University of Oil and Gas, where he later became
the head of the Software and Networking Laboratory. For some time, he worked as a
freelancer, developing custom Redmine plugins for companies worldwide, the most
famous of which is oDesk. Later, Andriy joined the Kayako team, which develops the
world's leading helpdesk solutions.

www.allitebooks.com

http://www.andriylesyuk.com
http://www.allitebooks.org

About the Reviewer

Ilya Lyamkin is a full-stack developer with a passion for JavaScript on the client
and the server. He likes everything that has to do with web design and development
and he feels creating something new and important.

During the last couple of years, Ilya has developed various web applications and
helped to make the internal overtime management system at T-Systems RUS.

To get in touch with him, you can visit his website, http://lyamkin.com.

He is the founder of CVPicker (https://cvpicker.ru), a SaaS platform designed to
simplify the process of hiring.

I am grateful to the author for patiently listening to my critique.
Special thanks to my parents, without whom I would have never
grown to love learning as much as I do.

Last but not least, I would like to thank my workfellows, Den
Patin and Pavel Gordon, for their friendship and for facilitating the
completion of my high workload.

www.allitebooks.com

http://lyamkin.com
https://cvpicker.ru
http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface	 ix
Chapter 1: Getting Familiar with Redmine	 1

What is Redmine?	 2
Why Redmine succeeds?	 3

Walking through the Redmine interface	 5
MySQL, PostgreSQL, SQLite or Microsoft SQL Server	 11
Textile or Markdown?	 12
Selecting a Source Control Management (SCM)	 14
Selecting a web server and an application server	 16
Redmine versions	 18
Forks	 20
Summary	 21

Chapter 2: Installing Redmine	 23
Introduction to installation options	 24
Installing Redmine from a package	 27
Installing Redmine and MySQL server	 28

Configuring the MySQL server package	 29
Configuring the Redmine package	 29
Installing Apache and Passenger	 31
Connecting Redmine and Apache	 32

Verifying and completing the installation	 34
Upgrading the Redmine package	 35

Installing Redmine from sources	 36
Downloading and installing Redmine	 36
Configuring the database	 37

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Installing Ruby and Bundler	 38
Resolving Bundler errors	 38

Installing dependencies	 39
Installing the MySQL server, Apache, and Passenger	 40
Setting up the database	 41
Finalizing the Redmine installation	 41
Configuring Apache	 42
Verifying and completing the installation	 43
Upgrading Redmine	 43

Other installation options	 45
Hosting Redmine	 46
Redmine server hosting	 46
Using the TurnKey Redmine appliance	 48
Using the Bitnami Redmine Stack	 48
Using Docker	 49

Summary	 50
Chapter 3: Configuring Redmine	 51

The first thing to fix	 52
The general settings	 53

The General tab	 54
The Cache formatted text setting	 54
Other settings tips	 55

The Display tab	 55
The Use Gravatar user icons setting	 56
The Default Gravatar image setting	 56
The Display attachment thumbnails setting	 58

The API tab	 58
The Files tab	 59

Authentication	 60
The Authentication tab	 60

The Allow OpenID login and registration setting	 61
LDAP authentication	 62

Email integration	 63
Email delivery	 64

The configuration.yml file	 64
The Email notifications tab	 66
Reminder emails	 68

Email retrieval	 70
Handling incoming emails	 70
Forwarding emails from mail server	 73
Fetching emails from IMAP/POP3	 75

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Repository integration	 77
The Repositories tab	 78
Fetching commits	 80

Using cron	 81
Using an SCM hook	 81

Automatic creation of repositories	 83
Advanced repository integration	 85

Troubleshooting	 88
Summary	 92

Chapter 4: Issue Tracking	 93
Creating an issue	 94

Issue categories	 98
Issues and project versions	 99

The issue page	 100
Subtasks	 101
Related issues	 102

The issue list	 104
Custom queries	 107

Updating an issue	 108
Bulk update	 110

Issue reports	 112
Importing issues	 113
Keeping track of changes	 114
Configuring issue tracking	 115

The Issue tracking module	 115
The Issue tracking tab	 116
Issues and repository integration	 119

Summary	 121
Chapter 5: Managing Projects	 123

Modules	 124
The Issue tracking module	 124

The Roadmap page	 124
The Version page	 126

The News module	 127
The Documents module	 129
The Files module	 132
The Wiki module	 133
The Repository module	 138
The Forums module	 144

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

The Calendar module	 148
The Gantt module	 149

The global configuration	 151
Creating a project	 153
The project pages	 156

The Overview tab	 157
The Activity tab	 158

The project configuration	 160
The Information tab	 161
The Modules tab	 162
The Members tab	 163
The Versions tab	 164
The Wiki tab	 167

Closing a project	 168
The project list	 169
Project maintenance best practices	 170

Custom queries	 171
Administering projects	 172

Copying projects	 173
Archiving projects	 174

Summary	 174
Chapter 6: Text Formatting	 175

Formatting text in Redmine	 176
The Wiki toolbar	 177
Preview	 178
Where to store linked images?	 179

The Wiki syntax	 180
The basics	 180
Quotes	 185
Lists	 186
Images	 186
Links	 188

Normal links	 188
Internal links	 188

Code	 195
Tables	 197
Macros	 199

The Table of contents macro	 200
The Collapse macro	 200

Table of Contents

[v]

The Thumbnail macro	 200
The Include macro	 201
The Child pages macro	 201
The Hello world macro	 202
The Macro list macro	 202

The advanced syntax	 202
Alignment options	 203

Padding options	 203
Custom styles and language	 204
The Textile span	 204
Disabling an element	 204
Advanced table syntax	 205

Summary	 205
Chapter 7: Access Control and Workflow	 207

The Roles and permissions page	 208
Permissions	 210

The Project block	 211
The Forums block	 212
The Calendar block	 213
The Documents block	 213
The Files block	 213
The Gantt block	 214
The Issue tracking block	 214
The News block	 217
The Repository block	 217
The Time tracking block	 218
The Wiki block	 219

The Permissions report page	 220
The Trackers page	 222
The Issue statuses page	 224
The Workflow page	 226

The Status transitions tab	 226
The Fields permissions tab	 228
Copying the workflow	 229
Checking the workflow summary	 230

Modifying the workflow	 230
Adding a role	 231
Adding a tracker	 232
Adding an issue status	 233

A practical example	 234
Summary	 235

Table of Contents

[vi]

Chapter 8: Time Tracking	 237
Time tracking in Redmine	 238
Activities	 238
Tracking your time	 240

Tracking time through commit messages	 244
Checking out the spent time	 245

Time spent on issues	 246
Time spent on versions	 246
Time spent on projects	 247
Activity of users	 247
Your time entries	 248

Time reports	 248
The Details tab	 250
The Report tab	 251

Summary	 252
Chapter 9: Personalization	 253

Gravatar	 254
The personal page	 257

The Issues assigned to me block	 259
The Reported issues block	 260
The Watched issues block	 260
The Latest news block	 261
The Calendar block	 261
The Documents block	 261
The Spent time block	 262

Getting updates	 262
The email notifications	 262
Watching	 264
News feeds	 265

Personalizing the issue list	 265
On-the-fly account creation	 266

OpenID	 267
LDAP	 268

Summary	 269
Chapter 10: Plugins and Themes	 271

Finding plugins	 272
The official directory	 272
GitHub	 276

Table of Contents

[vii]

Installing a plugin	 279
Upgrading plugins	 280
Uninstalling a plugin	 281

A review of some plugins	 282
The Exception Handler plugin	 282
The jsToolbar CodeRay extension	 284
The Monitoring & Controlling plugin	 285
The Git Hosting plugin	 287
The Agile plugin	 293

Installing a theme	 298
A review of some themes	 299

The Basecamp theme	 299
The Modula Mojito theme	 300
The A1 theme	 301
The Highrise theme	 302

Summary	 303
Chapter 11: Customizing Redmine	 305

Custom fields	 306
Custom field options	 310

The Required option	 311
The Editable option	 311
The For all projects option	 311
The Used as a filter option	 312
The Searchable option	 313
The Visible option	 313

Custom field formats	 313
The Boolean format	 314
The Date format	 314
The Float format	 315
The Integer format	 315
The Key/value list format	 315
The Link format	 316
The List format	 317
The Long text format	 317
The Text format	 318
The User format	 318
The Version format	 318

Customized objects	 319
Customizing with Textile	 321

Styled boxes	 322
Using icons	 322
Table-based layout	 322

Table of Contents

[viii]

Customizing the theme	 323
Customizing with a plugin	 324

Writing a simple plugin	 325
Customizing view files	 326
Using hooks	 327

Helping Redmine	 329
Summary	 330

Appendix: Quick Syntax Reference	 331
Index	 337

[ix]

Preface
This book describes the functionality and capabilities of Redmine, reveals its
secrets, and gives tips on how to use it effectively. Here, you will find all the
information needed to install, configure, use, and master this application. As the
book is intended to be a practical guide, it also pays special attention to practical
examples of using Redmine.

Additionally, you will find mentions of some third-party plugins in chapters and
sections where they are pertinent. We will also review five of them in Chapter 10,
Plugins and Themes.

Redmine is a very powerful and an extremely flexible project management tool and
issue tracker. As it comes with many great features for working with projects, it is
also often used as an application for project hosting. It's free, open source, built on
the popular Ruby on Rails framework, and has a strong community.

What this book covers
Chapter 1, Getting Familiar with Redmine, prepares us for the next chapters by briefly
going through the concept of the Redmine interface and reviewing replaceable
components of the application.

Chapter 2, Installing Redmine, includes detailed instructions on how to install
Redmine in two different ways, each of which is preferable for different purposes.
Additionally, it mentions some other ways to easily install Redmine.

Chapter 3, Configuring Redmine, reviews the configuration options, which are available
on the Settings page in the Administration menu, and covers the advanced options
that are concealed behind them. Also, this chapter contains a section that describes
how to troubleshoot problems in the application.

Preface

[x]

Chapter 4, Issue Tracking, reviews what makes Redmine one of the best issue trackers,
also paying heed to the configuration options that are related to issue tracking.

Chapter 5, Managing Projects, covers the major part of Redmine functionality, which
is related to projects, and demonstrates why this is one of the best applications for
project hosting.

Chapter 6, Text Formatting, is a comprehensive tutorial for the Redmine rich text
formatting syntax, which is used all over Redmine. This chapter mainly describes
Textile (one of the supported markup languages), at the same time mentioning
analogs in Markdown.

Chapter 7, Access Control and Workflow, is aimed at enlightening the permission
system and the issue life cycle by explaining what the role, tracker, and issue status
are and how they are connected.

Chapter 8, Time Tracking, describes the time tracking capabilities of Redmine and
shows how to work with time reports.

Chapter 9, Personalization, will help you make Redmine more comfortable for yourself
and ensure that you'll be notified about events that are important or interesting for
you. Additionally, this chapter describes how third-party user accounts can be used
to access Redmine.

Chapter 10, Plugins and Themes, guides the readers to find plugins for a particular
version of Redmine, covers installation of plugins and themes, and reviews some
plugins and themes.

Chapter 11, Customizing Redmine, shows the power of custom fields and shows how
to customize Redmine without breaking upgrade compatibility. In particular, this
chapter explains how to create a simple theme and plugin.

Appendix, Quick Syntax Reference, contains a brief list of syntax rules that are
supported by Redmine's Wiki syntax. This reference includes the syntax rules of
Textile and Markdown.

What you need for this book
For this book, you need access to a Redmine installation (or you will need to install it
as described in Chapter 2, Installing Redmine). It's better if you are an administrator of
the installation.

This book describes Redmine 3.2.x. However, earlier versions should also be fine.

Preface

[xi]

Who this book is for
This book is for anyone who already uses or plans to use Redmine. But its readers
should consider that some of the discussed topics are specific to the software
industry (Redmine can be used for other industries as well). As the book sometimes
describes things that require privileged access, it will be especially useful for project
managers and administrators. No prior knowledge of Redmine is required.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, folder names, filenames, file extensions, pathnames, dummy
URLs, user input, and so on are shown as follows: ".rb is the extension for Ruby files."

A block of code is set as follows:

<VirtualHost *:80>
 RailsEnv production
 DocumentRoot /opt/redmine/redmine-3.2.0/public
 <Directory "/opt/redmine/redmine-3.2.0/public">
 Allow from all
 Require all granted
 </Directory>
</VirtualHost>

Any command-line input or output is written as follows:

$ sudo service apache2 reload

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Then select the Information page from the sidebar."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/MasteringRedmine_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

This book also has its own website at mastering-redmine.com that runs the
Redmine installation which is reviewed in the book. So, you can use Redmine
on this website to submit errata as well.

www.packtpub.com/authors
https://www.packtpub.com/sites/default/files/downloads/MasteringRedmine_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringRedmine_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xiii]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Discussions
You can also discuss this book on its website using the message board that can be
found at mastering-redmine.com/projects/book/boards.

mastering-redmine.com/projects/book/boards

[1]

Getting Familiar with
Redmine

When we are about to try out a new web application, we often look for experts who
are familiar with it to ask what they would recommend for use, for example, which
database backend, platform, and so on. That's actually what this chapter will also do.
It will let you know which options are available and help you understand which of
them fit your needs better than others.

The power of Redmine is in its components. Some of them affect performance, while
others influence functionality. Such components are the options that are discussed in
this chapter. I'm quite sure that even experienced users will discover new options here
and may decide to switch to or utilize them. In this chapter, you will also find a quick
tour through the Redmine interface. It's going to be short as I believe this interface
is easy to learn. Anyway, you'll be able to play with the interface more in the next
chapters, where we'll discuss how to install and use Redmine.

In this chapter, we will cover the following topics:

•	 What is Redmine?
•	 Walking through the Redmine interface
•	 MySQL, PostgreSQL, SQLite, or Microsoft SQL Server
•	 Textile or Markdown
•	 Selecting a Source Control Management (SCM)
•	 Selecting a web server and an application server
•	 Redmine versions
•	 Forks

Getting Familiar with Redmine

[2]

What is Redmine?
If you search for a free project management tool, most likely you will find Redmine.
This is an open source Ruby on Rails web application. It can be considered to be
the de facto flagship of project management solutions in the open source world. It
supports all that you need for effective project management: scheduling, calendars,
Gantt charts, roadmaps, version management, document management, news, files,
directories, activity views, member roles, permission management based on roles,
and so on. With its third-party plugins, you can also get invoice management, Scrum
backlogs, Kanban boards, burn down charts, and much more. But it's not just a
matter of project management.

It's hard to conclude whether Redmine is more of a project management tool or an
issue tracker. Ideally, a good issue tracker must come with some project management
features. And in Redmine, these two components are combined flawlessly. However,
what makes it a perfect issue tracking application is the fully configurable workflow,
which lets you set permissions to change issue statuses and field values for each
role-tracker pair individually (here, tracker is an issue type in Redmine terms). As
an issue tracker, Redmine also supports essential issue tracking features such as
priorities, subtasks, subscribing, commenting, custom fields, filters, and more.

Anyone who has worked in a team will understand the importance of project
documentation. For this purpose, many teams even establish dedicated Wiki sites
and Redmine ships with its own per-project Wiki system. This system supports
a special markup language and source code syntax highlighting. However, the
staggering thing is that the same Wiki syntax is supported throughout Redmine—in
issue descriptions, comments, news, and so on. Additionally, this syntax allows us to
create cross links to other issues and projects.

Redmine can also serve as a support system. Thus, it comes with a simple bulletin
board module, which allows you to have as many forums in a project as you need.
Then, each forum can have any number of threads. And finally, forums and threads
can be watched.

To host your projects, in addition to the aforementioned features, you would
probably want Redmine to be able to integrate with version control systems. Such
a feature is also available. Thus, the special module allows Redmine to be used as a
source code browser. But, this module also integrates flawlessly into other Redmine
components such as the issue tracker and Wiki. For example, an issue can be
associated with code revisions, a Wiki page can link to a revision, a commit, a source
file, and so on. With some additional plugins, Redmine can even be turned into a
repository manager. The list of supported version control systems is also impressive:
Subversion (SVN), Git, CVS, Mercurial, Bazaar, and Darcs.

Chapter 1

[3]

All of these allow Redmine to be used as a project hosting platform by many
individuals and organizations. And by the way, it's not limited to a single project—it
is multiproject, and each project can have any number of subprojects to any nesting
level. Many companies also utilize Redmine's collaborative capabilities for forge
or labs sites. Moreover, its usage is not limited to software development. Other
companies use Redmine for customer support, order fulfillment, task management,
document management, and more.

I cannot describe Redmine without mentioning the people who created this fabulous
software. As soon as you open Redmine, at the bottom of each page (near the
copyright section), you can see the name of its primary author – Jean-Philippe Lang.
A huge contribution to Redmine was also made by Toshi Maruyama and Eric Davis.

Why Redmine succeeds?
The previous section might have created the impression that Redmine is an all-in-one
software application. To some extent, it is. It was the evolution of Redmine that made
it look like this. It is extremely popular these days, and that's why it constantly gets
new features. But what makes it so popular?

Having first seen Redmine, I got the impression that it was a very easy-to-use
and friendly application. It is not overloaded with design and UI elements and
everything seems to be in its place. This helps users get used to Redmine and like it
at first sight. The very first time I saw Redmine, I also thought that perhaps it was too
limited for my needs, mainly because it looked too simple. Eventually, it appeared
that both of my assumptions were wrong: it's not easy-to-use software and it's not
limited. The ease of the look and feel, however, does its job. So, if you need only the
basic features, you are ready to use Redmine right after you have seen it for the first
time. But when you need more advanced features, you need to spend some time to
learn them. That's the main thing that makes Redmine so popular, I believe.

The right tools are built with the right technologies. What makes Redmine so "right"
is Ruby and Rails. Ruby is known as, perhaps, the most modern metaprogramming
and truly object-oriented language. This programming language is very flexible and
is considered to allow building powerful applications fast and easily. The same can
be said about Redmine. The same can be said about Ruby on Rails (or just Rails)
as well. Rails is a web framework like Symfony and Zend Framework, but unlike
others, it is the de facto standard for Ruby, the language it is written in. The names
Ruby and Rails are so closely associated that many people believe they are the same
language. You can treat Rails as a construction set for building web services such
as Redmine. Also, Ruby on Rails became the source of inspiration for many other
frameworks and libraries, such as CakePHP and Grails. Redmine is built on this
technology and this is what makes it so good.

Getting Familiar with Redmine

[4]

But what exactly is in Ruby on Rails that makes it good? Ruby (and therefore Ruby
on Rails) supports metaprogramming. It's a technique that allows an application
to modify its own code (that is, itself) at runtime. This means that there is almost
nothing in Redmine that cannot be altered programmatically. Usually, the API of an
application is limited to some functionality, but there are no such limitations in Ruby,
thanks to metaprogramming. This makes the Redmine plugin API extremely flexible.

Thereby, we come to the next thing that makes Redmine so popular—its plugins. If
you are familiar with Ruby and Ruby on Rails, you only need to learn little to start
developing Redmine plugins. Taking into account the fact that Ruby on Rails is very
popular nowadays, Redmine has a huge number of potential developers. Therefore,
it has a large variety of plugins. Thus, with its plugins, you can even turn Redmine
into a CRM or helpdesk. By the way, some of its plugins will be reviewed in Chapter
10, Plugins and Themes.

There is a recognized issue of incompatibility between some
Redmine versions and some plugins. The Redmine plugin API
and Rails API used to change from version to version without
good backwards compatibility. This is especially critical as
many plugins use metaprogramming to alter non-API (core)
functionality (and, in fact, it's impossible to preserve full
backwards compatibility in such cases). Thus, this issue can be
seen in Redmine 3.0, which switches from Rails 3 to Rails 4. Hence,
when selecting a plugin, you should always check whether it is
compatible with the Redmine version you are using.

The last but not least important benefits are that Redmine is cross-platform, open
source, and freely available. Open source code and the GPL license make any
modification possible. Nothing limits you from making Redmine better fit your needs.

Chapter 1

[5]

Walking through the Redmine interface
It's always better to meet rather than just hear about. I cannot imagine a person who
is familiar with Redmine but who has never seen it. So, let's start by checking out the
Redmine interface.

As mentioned earlier, Redmine has an easy-to-use and simple user interface. The
following screenshot shows its Home page:

In the top-left corner of the page, we have the global menu (Home, My page, and so
on). To the right-hand side of the global menu, we have the account menu (Logged
in as). These menus are repeated on every page of Redmine. The blue area below
these menus contains the site title. The content area contains the site introduction
and recent news for all projects.

Getting Familiar with Redmine

[6]

Generally, a page in Redmine can be either a global one (the previous screenshot) or
a project one:

This is the start page of the project, which is also referenced as the project home
page. Most of the time, when working with Redmine, you will be interacting with
project pages. The blue top area on a project page contains the project title. The
project menu is displayed in this area below the title. The project home page contains
the description of the project, issues summary, members summary, and latest news
of the project. Most project pages also include the sidebar with some contextual
information, such as links, and sometimes forms.

Chapter 1

[7]

As one of the primary features of Redmine is issue tracking, let's check out the
issue list:

As you can see, the layout is quite simple and friendly. Collapsible boxes such as
Filters and Options are used all over Redmine to hide rarely used elements. If table
headers contain links, as in this case, they can be used to change the order of rows.
Below the issue listing, you can see export links (near Also available in:). Such links
are usually provided if the content can be exported to other formats.

Getting Familiar with Redmine

[8]

The following screenshot illustrates the issue page:

In the top-right corner of the content area of this page, you can see the contextual
menu, which is also duplicated at the bottom of the page. Similar contextual menus
are also used for many other Redmine objects such as projects, Wiki pages, and so on.

The issue page is an example of a Redmine page that contains multiple hidden
forms. Thus, such a form can be activated if you click on the Edit, Quote, and Add
links (all three links open the same form). Trash icons near Watchers are another
common Redmine interface element that can be used to delete an object.

Chapter 1

[9]

By the way, some hidden forms, such as the one that can be activated by clicking
on the Add link to the right of the Watchers heading on the sidebar, are shown in
a light box:

Another interface element that is used extensively in Redmine is the tabular menu.
Such a menu can be found on, for example, the project's Settings page:

www.allitebooks.com

http://www.allitebooks.org

Getting Familiar with Redmine

[10]

Here, you can see another interface element that is widely used in Redmine—the
text area, which supports Wiki syntax. Such a text area usually comes with the text
formatting toolbar.

The following screenshot illustrates the administration settings:

Links to administration pages are located on the sidebar. The current page, which is
Settings, uses the tabular menu that we saw in the project settings. On the General
tab of this menu, you can see the Wiki-enabled Welcome text field.

This was a short walkthrough of the Redmine interface to let you get used to it and
understand its basic concepts. I hope you see that it is easy to use. We will review the
interface in detail in subsequent chapters.

Chapter 1

[11]

MySQL, PostgreSQL, SQLite or Microsoft
SQL Server
Redmine can be used with MySQL, PostgreSQL, SQLite or Microsoft SQL Server
database backends (the first three ones are actually natively supported by Ruby on
Rails). But which one should you select for your Redmine installation? It's perhaps
too important a question to be ignored in this book. No, I'm not going to praise some
databases or criticize others—that's out of scope here. Instead, I'll cover things that
you should consider when choosing a database backend.

Having worked with Redmine for quite a long time, I have noticed that most users
use it with MySQL. Despite their reasons for choosing it, this means that Redmine
has been better tested with this database backend. This argument becomes even
more important if we consider that some plugins use SQL directly (that is, without
the Rails SQL query builder).

But if you are seeking a reliable source on which database is faster with Redmine,
you can check out the Redmine build logs at http://www.redmine.org/builds/
index.html. These logs contain results of tests for different versions of Ruby and
different database backends. Thus, at the time of writing this section, tests of the
latest revisions, r14600, r14597, and r14596, in the latest stable branch 3.1-stable
were running for the following time periods (only for ruby-1.9.3-p194):

mysql postgresql sqlite3 sqlserver
r14600 901.068992 s 752.914607 s 698.311900 s 1356.417375 s
r14597 684.866031 s 815.066303 s 636.497712 s 1056.660942 s
r14596 733.023295 s 781.173148 s 726.835502 s 1019.416963 s
Average 772.986106 s 783.051353 s 687.215038 s 1144.165093 s

In the previous table, I used the data from the aforementioned logs. Certainly, by the
time you read this section, there will be new data, but as practice shows, the results
will most likely be the same. Anyway, you can check out new data or take more
revisions into account to recheck the results.

So, according to this data, SQLite is the fastest, SQL Server is the slowest, and
PostgreSQL is a little slower than MySQL.

But don't hurry to make a decision in favor of the fastest backend. Unfortunately,
SQLite has scalability issues (you can't put it on a separate server) and will behave
incorrectly in a multiuser environment. And I'm quite sure that you'll want to serve
many users at a time.

http://www.redmine.org/builds/index.html
http://www.redmine.org/builds/index.html

Getting Familiar with Redmine

[12]

You should also note that in addition to the comparative slowness, Microsoft
SQL Server runs only on Windows, its full edition is not free, and the free one
(Express) is limited. Also, support for this database backend was added especially
to Redmine and is not native to Rails. This means that it was not tested as well
as other alternatives. Anyway, if you already have SQL Server running in your
corporate network, it can be a good idea to use it for Redmine.

Textile or Markdown?
Good readability helps improve perception. Rich formatting is very important for
issue tracking software as it allows us to highlight more important things, in this way
drawing special attention to them. In Redmine, rich formatting can be achieved using
a lightweight markup language—Textile or Markdown—and is supported almost in
every text area. Both of these markup languages use plain-text formatting syntax.

Textile has been used by Redmine as the default and the only available formatter
for many years. It is greatly supported and perfectly tested. Any experienced
Redmine user is familiar with Textile and many Redmine plugins extend its syntax.
Particularly for these reasons, the majority of Redmine installations, including the
official website Redmine.org, use this formatter. So, most Redmine users definitely
use Textile.

However, I did not see Textile being used by any other application except Redmine.
On the contrary, Markdown seems to have become the de facto standard for rich
formatting that is based on plain text. Thus, it is used by GitHub (in fact, it was
GitHub that made it so popular) and Stack Overflow. It can be said that most
developers who use a markup language use Markdown.

This means that for a fresh installation, if your target audience have not gotten used
to Textile yet, you should probably select Markdown. Also, currently Redmine
does not come with any converter from Textile to Markdown and I'm not sure
whether it ever will (as it's complicated). So, if you choose Textile for your fresh
installation, you will probably be tied to it forever. On the other hand, 3.1 is actually
the first Redmine version for which the Markdown formatter is not considered to
be experimental any more (it was added in 2.5). This means that this formatter has
just entered the intensive testing phase (you can still help with this though). Another
possible reason for keeping Textile as your formatter is that many existing Redmine
users, if any of them are going to use your installation, will probably expect Textile
to be used. So, generally you are better off asking your users.

Chapter 1

[13]

But let's not be too verbose and compare the basic rules of these formatters:

Textile Markdown
Bold text *Bold* **Bold**

Italic text _Italic_ *Italic*

Underline text +Underline+ Not available
Inline code @inline code@ `inline code`

Pre-formatted text <pre>

...

<pre>

~~~

...

~~~

Syntax highlighting <pre><code class="ruby">

...

</code></pre>

~~~ ruby

...

~~~

Bullet list * Item 1

* Item 2

* Item 1

* Item 2

Numbered list # Item 1

Item 2

1. Item 1

2. Item 2

Headings h1. Heading 1

h2. Heading 2

...

h6. Heading 6

Heading 1

Heading 2

...

Heading 6

Links "Anchor":http://link [Anchor](http://link)

Images !image_url(Title)! ![Title](image_url)

Tables |_.Table|_.Heading|

|Cell |Cell |

|Table|Heading|

|-----|-------|

|Cell |Cell |

Still, which one is more powerful? Markdown is known to be more feature rich
in general as, for example, it supports some HTML tags. However, its Redmine
implementation is limited. Thus, no HTML tags are actually supported under
Redmine. This can nonetheless change in the future, of course. On the contrary, the
long usage history of Textile by Redmine has made it more powerful at the moment.
See also Chapter 6, Text Formatting.

Getting Familiar with Redmine

[14]

Selecting a Source Control Management
(SCM)
Source Control Management (SCM) is better known as revision control
management. Redmine currently supports the following revision control systems:
Subversion (SVN), Git, Mercurial, Bazaar, Darcs, and CVS.

As it has been mentioned, Redmine can use SCMs not just as source code readers. It
can also associate a revision with issues (and have revisions listed on issue pages). It
can close an issue automatically and/or change its done ratio when an appropriate
commit is made to the repository. It allows us to use the Wiki syntax in commit
messages. It also allows us to refer to a revision, a commit, or a file from any Wiki-
syntax-powered content, which can be a Wiki page, an issue description, a project
description, a forum message, and so on. But all this makes Redmine an (advanced)
source code browser, not an SCM manager (which can be done with plugins though).
Then why is choosing the right SCM so important?

Most likely, you will want a deeper integration between Redmine and SCMs as
soon as you know the options. Thus, it can be said that Redmine supports three
levels of integration:

•	 Redmine as a source code browser
•	 Redmine as an SCM authenticator
•	 Redmine as an SCM manager

The basic code browser level requires corresponding SCM clients to be installed on
the same server on which Redmine is running, so you may want to use only some
of the supported SCMs. Also, the basic support is not equivalent for all SCMs. Thus,
the revision graph (similar to the one on GitHub; see the following screenshot)
is supported only for Git and Mercurial. Also, these two SCMs can be only local
(repositories should be on the same server where Redmine is).

Chapter 1

[15]

Also, Redmine comes with Redmine.pm—a Perl module for the Apache web server
that can be used to authenticate Subversion, Git, and Mercurial users against
Redmine. If the Redmine.pm tool has been integrated, you can control who has access
to the project's repository and what kind of access (read or write) they can have by
simply managing project members (and roles). Something similar (with additional
changes made to Redmine and/or the system) can also be achieved for Bazaar.
However, Subversion and Git SCMs are best supported by the Redmine.pm tool
and their support works out of the box. At the same time, you will most likely have
problems configuring other SCMs to authenticate against Redmine.

The only missing functionality for Redmine to become a full-featured SCM manager
is the ability to create repositories. But such functionality also comes with Redmine
and is provided by the reposman.rb command-line tool. This tool supports
Subversion, Darcs, Mercurial, Bazaar, and Git (that is, all except CVS). However,
the problem with it is that to make it work, you need to create a cron job that will
execute this tool periodically. Luckily, alternative solutions that do not have such
problems are provided by third-party plugins such as SCM Creator and Redmine
Git Hosting (see also Chapter 10, Plugins and Themes).

When choosing SCM, you should also consider your requirements, your experience,
the preferences of your team or audience, ease of use, and so on. However, the best
integrable SCMs seem to be Subversion and Git.

Getting Familiar with Redmine

[16]

Selecting a web server and an application
server
Redmine as a Ruby on Rails web application should be run under a web server. This
can be an independent web server (such as Apache, Nginx, or Lighttpd) that runs
Ruby on Rails using either Passenger or FastCGI, or a dedicated Ruby web server
such as Puma, Unicorn, Rainbows!, or Thin.

A big option list, isn't it? And these are not even all the possible options. Redmine
can also be used with JRuby under a Java virtual machine. It can be run under
standalone Passenger, under Mongrel, WEBrick, and more. But the previously
mentioned options were chosen by practical use, and therefore they are the most
common. That's why we are reviewing only those options here.

These options can be divided into three categories:

•	 A dedicated Ruby web server
•	 A dedicated Ruby web server and, for example, Nginx as a load balancer
•	 A separate web server with a Ruby module

Ruby is often compared to PHP, but actually these technologies are very different.
For PHP guys, which include me as well, the use of a web server written in Ruby to
run a Ruby application sounds weird. But in fact, a Ruby application, like a Java one,
runs under a virtual machine. Therefore, Apache, for example, needs to run a Ruby
virtual machine in order to run a Ruby application. This way, eventually we get at
least three processes: a web server, an application server, and the application itself.
So, running a Ruby application under a Ruby server seems to be reasonable, because
in this case, we get only two processes: an application server which serves as a web
server as well and the application.

The lack of good multithreading support is a known problem of Ruby virtual
machines, and this is the main reason people use a Ruby application server in
conjunction with a web server to run Ruby applications in production. Thus,
they launch many instances of a Ruby server and use some web servers as a load
balancer to forward requests to these instances and as a web server to dispatch the
static content (images, CSS files, and so on). The best combination for this category,
according to many benchmark results, is Nginx plus Puma or Unicorn.

Chapter 1

[17]

But in practice, for this configuration, people also often use a dedicated load balancer
in addition to the web server. This can be either a special application, such as
HAProxy, or a web server with support for reverse proxy mode. For Apache, such
a mode is provided by the mod_proxy module. Nginx and Lighttpd have built-in
proxies. In addition, some people use special software for monitoring of Puma/
Unicorn instances, for example, Monit.

Certainly, the category just discussed is for advanced use and high-loaded services.
The most commonly used, easiest to install, and best documented is the third
category: a web server running a Ruby application using the Passenger module (also
known as mod_rails) or the FastCGI module. The Passenger module is, in fact,
another Ruby application server. It differs from Puma/Unicorn in that it runs as a
module of a web server and not as a standalone application server (while the latter
is possible). Unfortunately, the Passenger module has some limitations. It does not
work under Windows and is not available for Lighttpd. For Lighttpd to run Ruby
applications, people have to use FastCGI. Here, FastCGI is the name of the protocol
that is used by web servers to communicate with Ruby virtual machines. Modules of
the same name that implement this protocol exist for Lighttpd, Apache, and Nginx.

Getting Familiar with Redmine

[18]

Generally, Passenger is more popular than FastCGI. Thus, it is used by the BitNami
Redmine stack and TurnKey Redmine appliances (systems for easy Redmine
deployment). It is suitable not only for small-sized and middle-sized websites, but
also works great for high-loaded ones. Therefore, guys from the Ruby on Rails
framework recommend using Passenger in favor of other options (check out
http://rubyonrails.org/deploy).

When run under a web server, Passenger creates at least two processes: itself and an
application instance. This can become a problem if it is used on a cheap OpenVZ-
powered VPS hosting, where the amount of memory that is used by an application
is very critical. This is where FastCGI helps. When run using FastCGI, Redmine
occupies at least one process (an application instance).

If you still don't feel sure about which option to choose, let's summarize:

•	 If you plan to use Redmine for a heavy-loaded website, you should consider
using Nginx with Puma/Unicorn and possibly HAProxy

•	 For all other cases, or if you are just unsure, go with Apache or Nginx and
the Passenger module

While choosing, you should also consider your other requirements and services you
plan to run on the same server. For example, you will definitely need Apache if you
plan to use Redmine.pm for authentication of Subversion/Git users against Redmine,
as it's an Apache module.

Redmine versions
At the time of writing these words, on the official Redmine website, you could
find four different stable versions for download. They are a new release of 3.2,
maintenance releases for 3.1 and 3.0, and another maintenance release for 2.6. This
indicates that the installation of an application does not always mean the use of the
most recent version.

But let's try to find out why the Redmine guys decided to release four versions of the
application. Version 3.x uses Rails 4 and version 2.x uses Rails 3. For Ruby applications,
a migration between major Rails versions, such as from 3 to 4, is a very serious step
that often requires many changes to be made to the environment, custom tools, and so
on. Major Rails versions are usually not compatible, so it's normal to give people some
additional time for the migration. That's why we have 2.6 on the list. However, the
Redmine developers also decided to give additional time for migration from Redmine
3.0 and 3.1 to 3.2. There were actually no special reasons for this, I believe.

http://rubyonrails.org/deploy

Chapter 1

[19]

By the way, the same that applies to Rails applies to Redmine. Major Redmine
versions, such as, 1.x, 2.x, and 3.x, are known to be generally incompatible. That
is, plugins must usually be modified a lot to work under the next major version.
Therefore, their support for the new major version often comes with a big delay. On
the contrary, minor versions, such as 3.0 and 3.1, are usually quite compatible, so
plugins may run under the next minor version without any changes. And finally,
tiny Redmine versions, such as 3.1.0 and 3.1.1, usually deliver fixes, which do not
affect the working of plugins.

In most cases, people use the most recent version of an application, which is 3.2.x
for Redmine at the moment. However, some Linux distributions or appliances may
come with older versions. So should you stick to the distributed version or should
you install the very recent one? Note that in the case of using distributions and
appliances, switching to the most recent version usually involves performing manual
migration and further manual maintenance. So, to be sure about what to choose, you
should at least know what the difference between the versions in question is.

Therefore, let's shortly review the current stable versions of Redmine (the ones that
are available at the time of writing this section):

•	 3.2.x:
This version comes with the following new features:

°° The Redmine interface becomes responsive; that is, Redmine can now
be used on mobile devices.

°° It's now possible to import issues from a CSV file.
°° A new Key/value list custom field format is added.
°° The issue list is now able to show totals for estimated and spent

hours and numeric custom fields.

•	 3.1.x:
This version comes with the following noticeable features:

°° The Markdown formatter is no more considered experimental and
has finally got its own help page.

°° Subtasks can now be more independent and have their own dates,
priorities, and done ratios that do not affect the parent issue.

°° Security improvements: an option to expire passwords and password
re-entry for some actions.

Getting Familiar with Redmine

[20]

•	 3.0.x:
This version upgrades Redmine to Rails 4.2.x. So, to migrate, users will need to
update their custom Ruby tools, if any. Special attention should also be paid to
find appropriate versions of third-party plugins, if any plugins are used.
Additionally, this version comes with the following features:

°° Users can now have multiple emails.
°° Search functionality was improved. Thus, it's now possible to search

in open issues.
°° Documents now have support for custom fields.

•	 2.6.x:
This version includes the following new noticeable features:

°° Custom permissions can now be assigned to non-members and
anonymous users of the project.

°° Improved PDF export.

Basically, due to the migration to Rails 4—and, therefore, huge changes in API at the
time of writing this book—not all Redmine plugins had been ported to Redmine 3.x.x
yet. You should consider this while choosing the version for your installation if you
use or plan to use any plugins.

Forks
In 2011, one of the most active Redmine developers, Eric Davis, with a group of other
contributors from a company named Finnlabs, forked Redmine into ChiliProject.
Unfortunately, this project was recently discontinued.

However, while working on ChiliProject, Finnlabs decided to make a custom version
of this application. Eventually, having understood that ChiliProject was not good
enough for them, they made their fork public and named it OpenProject. Right now,
this fork is actively developed and already has quite a large community. Finnlabs
also changed the style of the project—they made it more commercially oriented
and created the OpenProject Foundation, which is funding it. These changes had a
positive effect on the fork, which now looks quite cool and promising. However, it's
obvious that the project is too young to replace Redmine. Also, it has not proven its
durability yet (ChiliProject looked promising too).

Check out OpenProject at https://www.openproject.org/.

https://www.openproject.org/

Chapter 1

[21]

Summary
The goal of this chapter was to familiarize you with Redmine and get you ready
to dig deeper into this amazing web application. Therefore, we not only reviewed
the advantages and the interface of Redmine, but also checked its installation
components. We even discussed forks of Redmine, as I believe it's good to know
about them if you are going to become a member of the Redmine community.

I have tried to share as much knowledge about the installation components of
Redmine as possible so that you can understand them better, learn what options you
have, and be able to choose the right one. Still, remember that usually the best option
is the one that is used by most users. So, if you choose an uncommon option, you
should be sure about your reasons for doing so.

The knowledge that you have gained by reading this chapter should come in handy
in the next one, as you will need to decide which components to use for installation.

[23]

Installing Redmine
Now that we know what Redmine is and what it looks like, we can proceed to
the next step in our relations with it, that is, getting Redmine up and running.
So generally, this chapter is about setting up and maintaining Redmine, and it is
intended mostly for administrators.

In this chapter, we are going to focus on two main options for installing Redmine. The
first one is what I recommend (and what I actually use)—installing Redmine from a
package on Debian or Ubuntu. The second one is the official option—installation of the
recent version from sources. Certainly, we will also speak about the advantages and
disadvantages of these options.

Many users used to claim that the Redmine installation is not an easy process, which
is not true if we consider the installation of a package. But actually, its installation
can be even easier. How? We will discuss this at the end of this chapter.

So, in this chapter, we will cover the following topics:

•	 Introduction to installation options
•	 Installing Redmine from a package
•	 Installing Redmine from sources
•	 Other installation options

Installing Redmine

[24]

Introduction to installation options
I have always believed that installation is not just a matter of getting an application
to run. It's actually much more, as it involves making important decisions that can be
hard to change in future, such as:

•	 What components and/or platform should be chosen to run the application
(which is covered in the previous chapter)?

•	 What version should be used?
•	 What source should be used to install the application from?

Of course, the answers to these questions depend on the goals of using Redmine.
This in turn raises other questions, such as the following:

•	 Will this be a production environment?
•	 Is this environment temporary or for development?
•	 Is there anyone who will maintain the installation?
•	 Should it be scalable and platform independent?

Many people go with the officially recommended installation procedure, which
is in fact the most common one. But this procedure does not consider platform
peculiarities (otherwise, there would be too many cases to document). So eventually,
by following this procedure, you get an isolated subsystem that is not connected to
the package management tools of the host system. Such a subsystem will require
manual maintenance, can easily be broken by changes in the host system, can create
obscure conflicts, and so on. This often ends up with this subsystem being, in fact,
unmaintained, as administrators have some fear about touching it. In addition, the
official installation procedure is the most complicated one.

Therefore, in this chapter, we will review not only the officially recommended
procedure—which is actually a good choice in some cases—but also some alternative
ones. All of these procedures differ in the source from which they get Redmine.
So, they can be divided into three categories by the source type:

•	 Prepackaged Redmine
•	 Official Subversion/Git/Mercurial repository or tarball
•	 An appliance containing all that you need to run/install Redmine

Chapter 2

[25]

The first category assumes that a Redmine package is available. Here, by "package"
I mean a specially prepared software archive that contains not only Redmine itself
but also instructions and possibly tools for installing it in the system. The best known
package formats are RPM (for Red Hat-based Linux distributions) and DEB (for
Debian-based Linux distributions). Certainly, such packages should be maintained
and actively supported! Otherwise, there is no sense in using them.

To install Redmine as a package, you just need to answer a couple of questions, but
this is not the only thing that makes packages so attractive. They are processed by
the package manager, which also resolves conflicts and installs dependencies. Also,
a package is usually associated with a repository where its dependencies and other
system packages are stored, and that repository is updated periodically. So this
means that the package manager will be able to update Redmine flawlessly when a
new version arrives. Moreover, it won't allow the dependencies to get updated if this
would break Redmine. Certainly, this makes its maintenance much easier.

Additionally, the packaged application is usually modified to conform to the
standards of the operating system it is intended for. Thus, its configuration is located
with other applications' configuration files (for example, in /etc/). The application
itself is stored at the same location as other similar applications (for example, under
/usr/share/). Its cache is stored under the system cache directory (for example,
/var/cache/). Its logs are written to the system logs. And so on. This means that any
administrator who is aware of the system standards—even if he/she is not aware of
Redmine—will be able to understand the Redmine file structure and find or manage
what he/she needs. Moreover, system tools (for example, log analyzers) will be able
to pick up and process Redmine files if needed.

Unfortunately, Redmine is currently not available as a package for all Linux
distributions. Thus, at the time of writing this section, Redmine packages are
available (and well-supported) for Debian-based distributions such as Debian,
Ubuntu and Mint, and some Red Hat based distributions, such as Fedora (through
the RPM Sphere repository) and Mageia.

It may be that by the time you read this section, there will be
Redmine packages for other Linux distributions as well. At
least, you should try finding the one for your distribution, as
this will make its maintenance much easier! When looking for a
package, don't forget to check:

•	 Whether it's actively supported and well-tested
•	 Whether it's in an official repository
•	 The feedback on the repository, if it's not an official one
•	 The feedback on the package itself, and so on

Installing Redmine

[26]

Generally, I recommend that you use a package whenever possible, mainly due to
the ease of maintenance. However, you should remember that packaged software
usually comes with an outdated version. At the time of writing this section, the
recent Redmine version is 3.2.x and the recent version of packaged Redmine in
Debian stable distribution is an intermediate between 2.5.x and 3.0.x. In Ubuntu
LTS, it was even older: 2.4.x. So, if you want to be up to date (just up to date and
not secure, as Ubuntu/Debian guys follow security news and make updates when
necessary), you should go with the recent official version. However, in this case,
be sure to allocate resources needed to maintain your Redmine installation and to
document changes made to the system (do mention that you installed Redmine
without using the system package manager). Also remember that plugins are most
likely not going to be available right away for the recent version of Redmine.

But don't hurry to leave this section and move on to the (appropriate) next one, as
there is even an easier way.

You can use special appliances that contain Redmine along with everything that you
need to run it: a web server and an application server (for example, Apache plus
Passenger), a database server (for example, MySQL), Ruby, Rails, and so on.

Some appliances also come with the entire operating system (usually Linux) and can
easily be deployed on a server or a cloud. The advantage of using such appliances is
that you preserve the possibility of upgrading the application (as well as the rest of
the system). However, these kinds of appliances can't be used to deploy Redmine on
an existing server.

There are also appliances that don't include the operating system and are to be
installed on existing servers. Their advantage (compared to normal installation) is
that you don't need to spend time configuring the application, as this is done by
the installer (which may ask you a couple of questions). However, after using such
appliances, the installed application will be separate from the rest of the system,
what means that you may experience issues while upgrading it. Moreover, an
upgrade of the operating system may accidentally break your application. Therefore,
these kinds of appliances are recommended only for development and testing.

Migrating to Redmine
The official Redmine documentation includes instructions for
migration from Trac and Mantis. The community also provides
migration tools for JIRA, Bugzilla, and more. Check out
http://www.redmine.org/projects/redmine/wiki/
RedmineMigrate for recent instructions.

http://www.redmine.org/projects/redmine/wiki/RedmineMigrate
http://www.redmine.org/projects/redmine/wiki/RedmineMigrate

Chapter 2

[27]

Now, let's have Redmine installed in two different ways. For all installations, we
will use Apache, Passenger and MySQL, that is, the most common components.
However, if you've chosen different components after reading Chapter 1, Getting
Familiar with Redmine, and have decided to go with a more advanced option, then
you will need to find a tutorial elsewhere (for example, http://www.redmine.org/).
Unfortunately, this book can't cover all the options.

Installing Redmine from a package
To install Redmine from a package, we will use Debian jessie 8.2. Usually, I would
recommend that you use Ubuntu server Long Term Support (LTS) instead. I would
did this because it's more popular and has a larger community, but the Redmine
version that comes with Ubuntu LTS is too outdated to be reviewed in this book
(it's currently 2.4). However, Ubuntu LTS is largely based on the Debian stable
repository, so the installation procedure should be the same for both systems (to
make sure that it will be, I'm also going to use Ubuntu-style commands). Also, this in
turn means that the very next Ubuntu LTS version is going to come with the version
of Redmine that is currently shipped with Debian stable distribution. So, it can be
said that we are going to use the future version of Ubuntu Server. Additionally,
I personally prefer Debian stable over Ubuntu as the former is an older Linux
distribution, is the original one, and has a more professional community.

Note that the version of the Redmine package in the Debian stable
repository is stated to be 3.0~20140825, but when installed,
Redmine itself shows 2.5.2.devel. In fact, it's not really 2.5 as it,
for example, runs on Rails 4, but it's not completely 3.0 either. As
I have mentioned, it's an intermediate between 2.5 and 3.0 (with
respect to functionality, it's perhaps closer to 2.5). The displayed
version is 2.5.2.devel as the Debian guys took a code snapshot
of the 3.0.0 branch, in which the version had not been fixed yet
(that's why it's suffixed with .devel).

I assume that you have already installed Debian 8.2 (or a more recent version,
or Ubuntu Server LTS). If not, please do it! Also, assuming that you have a clean
installation and will need to install Apache, MySQL and so on—that is, everything
needed to run Redmine. But don't worry if some of these applications are already
installed. It will still be safe to execute the specified commands, as the Debian
package manager is smart enough to skip such packages.

http://www.redmine.org/

Installing Redmine

[28]

Installing Redmine and MySQL server
So let's execute the following command from the console:

$ sudo apt-get install redmine redmine-mysql mysql-server

Instead of redmine-mysql and mysql-server, you can use redmine-pgsql
and postgresql or redmine-sqlite and sqlite3. But remember that neither
PostgreSQL nor SQLite3 is reviewed in this section.

This command will install Redmine and MySQL as well as many dependency
packages, including Ruby on Rails. Before doing this, the apt-get package manager
will ask you to confirm, as follows:

Here, type y and then press Enter. This will make it download all the packages and
start the installation process.

Chapter 2

[29]

Configuring the MySQL server package
After unpacking the packages, apt-get will configure them. When it gets to the
MySQL server, you will see the following dialog:

This dialog asks you to enter a new password for the MySQL superuser. In other
words, this is the password that you will use to administer your MySQL server. The
same password is to be used later to set up the Redmine database.

After you have entered the password, press Tab to move the cursor to the Ok button
and then press Enter. Afterwards, you will need to repeat these steps in the password
confirmation dialog.

Now it will take some time to configure other packages.

Configuring the Redmine package
The Debian/Ubuntu Redmine package supports multiple instances of this
application. Thus, several instances can be used to run Redmine in production
and development modes at the same time and on the same server (for example, on
different ports). The configurator of the package, however, can help you to configure
only a single default instance (if you want to configure more instances, you will need
to do this manually).

After MySQL, it will not take long for apt-get to start configuring Redmine. When it
does, the following dialog will be shown:

www.allitebooks.com

http://www.allitebooks.org

Installing Redmine

[30]

Here, the configurator offers assistance in creating and configuring the database for
Redmine. Unless you wish to do this manually, just press Enter.

The next dialog that opens immediately asks you to select the database back-end. It
lists all the supported (Linux) backends, as it is going to configure the database client
for Redmine (the database server can potentially run on another machine).

As we have decided to use MySQL, we just press Enter here. And now comes the
dialog that has already been mentioned:

This window asks for the MySQL superuser password that you specified before. It is
going to be used to create, configure, and populate the Redmine database.

So, we specify the password, press Tab to move to the Ok button, and press Enter.

Next, the final screen of the Redmine database configuration shows up:

This dialog asks for a new password that will be used by Redmine to access its
database. As this password is not going to be used anywhere except in Redmine,
it is perhaps a good idea to press Enter here and just let the configurator generate
a random password for you. However, note that the generated password is not
going to be displayed to you during this installation process (it will be stored in the
configuration file).

Chapter 2

[31]

You may also need to specify this password in the Apache
configuration files for advanced SCM integration. If you need it,
you can find it in /etc/redmine/default/database.yml.

Thereafter, the package manager will configure the rest of the packages and return to
the shell prompt.

That's it! Redmine has been installed and configured and it is actually ready to be
run. But the system is not yet ready to run it.

Installing Apache and Passenger
To run Redmine, the system needs a web server. We are going to use Apache for this
web server. Besides a web server, as you should remember from Chapter 1, Getting
Familiar with Redmine, we need something to run Ruby applications on. This is going
to be the Passenger module for Apache.

So let's install them:

$ sudo apt-get install apache2 libapache2-mod-passenger

As before, you will be asked to type y and press Enter. After this, the package
manager will download the specified packages and their dependencies, install them,
and start the Apache web server.

Installing Redmine

[32]

Now, if you request the index page of the newly installed web server using the URL
http://127.0.0.1, for example (only from the same computer), you should see
something like this:

This is the default welcome page of the Apache web server on Debian.

Connecting Redmine and Apache
But wait. Where is Redmine? At the moment, it is not connected to Apache.
Unfortunately, despite the power of the Debian package management, this part
should be configured manually. Luckily, it's not complicated. The Debian Redmine
package comes with sample configuration files for Redmine under the /usr/
share/doc/redmine/examples directory. In this directory, you can find sample
configurations for Apache and FastCGI or Passenger, Lighttpd, Nginx, and Thin.
There, you can see two sample files for Apache and Passenger: apache2-passenger-
alias.conf and apache2-passenger-host.conf. The former should be used if you
want to run Redmine under an additional URL path, for example, www.yourdomain.
com/redmine. The latter is to be used if you want to run Redmine under a
subdomain or as the main website on your domain.

www.yourdomain.com/redmine
www.yourdomain.com/redmine

Chapter 2

[33]

It is assumed that you have installed a clean Debian/Ubuntu (as I did), especially
for Redmine; that is, you want to use the server only for Redmine or for Redmine
as the primary application. So let's copy apache2-passenger-host.conf to /etc/
apache2/sites-available (the path for site configurations on Debian/Ubuntu):

$ sudo cp /usr/share/doc/redmine/examples/apache2-passenger-host.conf
/etc/apache2/sites-available/

As it is clear from its name, this directory stores the configuration files of the
available sites. For enabled sites, there is another directory—/etc/apache2/sites-
enabled/. So, we need to move our new configuration into the latter. Let's do this in
the correct Debian/Ubuntu way:

$ sudo a2ensite apache2-passenger-host

The e2ensite script is used to create symbolic links in /etc/apache2/sites-
enabled/ that point to configuration files from /etc/apache2/sites-available/.
A similar script, e2dissite, can be used to disable configuration files (that is, to
remove symbolic links). And we need to execute the latter script to disable the
default welcome page that comes with Apache in Debian/Ubuntu:

$ sudo a2dissite 000-default

Next, reload Apache to apply the new configuration:

$ sudo service apache2 reload

Now, if we load the site, we get the following:

Congratulations! You have successfully installed Redmine. But still, there are a few
things we need to do before we take a break for coffee and go ahead.

Installing Redmine

[34]

Verifying and completing the installation
Now we need to check whether the installation is correct. To do this, click on the
Sign in link in the top-right corner and log in to your Redmine account. Use admin
both as the login and the password.

After you have signed in, click on the newly appeared Administration item in the
top dark blue menu bar. Then select the Information page from the sidebar. You will
see something like this:

This is the page that one should always check after installing Redmine! As you can
see, it contains a checklist that should be used to verify the installation.

As everyone knows that both the default username and password for Redmine are
admin, you should change the password (at least) as soon as possible. To do this
right now (what is recommended), go to the Users section of the Administration
area, select the admin user, enter a new password in the Password and
Confirmation fields of the Authentication box, and click on Save. This will make the
corresponding item on the checklist green.

Chapter 2

[35]

However, the checklist also shows that we have a problem with the ImageMagick
convert tool. Actually, the problem is that it is not installed.

RMagick is a Ruby interface for the ImageMagick/
GraphicsMagick image processing library. This library is
used by Redmine to export a Gantt chart and to embed
images in PDF files. It can also be expected to be installed
by some third-party plugins. The convert tool is used to
generate thumbnails for image attachments.

However, instead of the standard ImageMagick library, we will use its fork called
GraphicsMagick, which is known to support more image formats (but it is also
known for processing PSD files slower). So, to install GraphicsMagick, execute the
following command (if you want the standard tool, specify imagemagick instead):

$ sudo apt-get install graphicsmagick-imagemagick-compat

Now, reload Apache to let Redmine see the changes:

$ sudo service apache2 reload

After this, you should see a green check mark to the right of ImageMagick
convert available.

The only thing left to fix now is the administrator account. What should be done and
how, will be reviewed at the beginning of the next chapter.

Upgrading the Redmine package
When you are using a Redmine package, the system package manager is going to
upgrade it automatically along with the rest of the system. Such system upgrades
can be triggered by the following commands:

$ sudo aptitude update

$ sudo aptitude safe-upgrade

However, you should not expect it to upgrade Redmine to a major or even a minor
version (for which the first two digits differ; for example, 3.1.x and 3.2.x are different
minor versions). Usually for a particular version of Debian/Ubuntu, the package
manager can upgrade Redmine only to the next tiny version (that is, a version in
which only the last digit differs, for example, 3.0.0 to 3.0.1). And you can expect a
major or minor version upgrade only with the upgrade of the entire system to the
next major release of the system. Certainly, this means that if you install Redmine
2.5/3.0 on Debian stable, you will end up sticking to this version for some time.

Installing Redmine

[36]

Anyway! Usually when you upgrade Debian/Ubuntu to the next major version, the
upgrade of Redmine goes very flawlessly. So, you do not need to pay any special
attention to it (as the package manager does everything needed automatically),
unless you use plugins! Most plugins are not available as packages for Debian/
Ubuntu (as well as other Linux distributions) and can be installed only manually.
Such manual installations often become a huge problem when you upgrade the
system to the next major release. Therefore, it is recommended to find updates for
plugins first and only then upgrade the system. Certainly, this can delay the upgrade
of the system (for example, you may need to wait for plugin code to be updated for
the corresponding version of Redmine).

Installing Redmine from sources
This is the most complicated but the officially recommended installation
option. It is also the best documented one. Certainly, these instructions can change
for future versions of Redmine, so if you are going to install a version newer than
3.2, you should also check out the official installation tutorial, which is available at
http://www.redmine.org/projects/redmine/wiki/RedmineInstall.

I guess you are going to use SSH to install Redmine on a remote
server? If so, consider using the screen tool. The network
connection can potentially be dropped during the installation
process, what can damages the incomplete installation. The
screen tool can help here by creating a virtual terminal that
will continue its work even if the connection gets lost. To install
this tool, use sudo apt-get install screen. To create a
terminal screen, just execute screen. Finally, to reattach the
terminal, execute screen -r.

This time, I will use a clean Ubuntu Server 14.04 LTS, but Debian stable distribution
should also be fine. If your Ubuntu/Debian server is not yet ready, prepare it now.

Downloading and installing Redmine
First of all, we need to decide where to store Redmine files. Let's use /opt/redmine
(this path is fine for FHS, short for Filesystem Hierarchy Standard):

$ sudo mkdir -p /opt/redmine

This command will create the /opt/redmine directory. Now, let's go to it:

$ cd /opt/redmine

http://www.redmine.org/projects/redmine/wiki/RedmineInstall

Chapter 2

[37]

Next, we need to get the latest version of Redmine in the tar.gz archive from
http://www.redmine.org/projects/redmine/wiki/Download. At the time of
writing this chapter, it was 3.2.0. So get it:

$ sudo wget http://www.redmine.org/releases/redmine-3.2.0.tar.gz

Now unpack the archive into the current directory (which should be /opt/redmine):

$ sudo tar xvf redmine-3.2.0.tar.gz

This command will unpack everything into the redmine-3.2.0 subdirectory.
We move there:

$ cd redmine-3.2.0

Configuring the database
Before we proceed, we should fill in the database details in Redmine configuration
files (because they will be needed to run Bundler in the Installing dependencies section).
To help here, Redmine comes with a sample database configuration in the config/
database.yml.example file. Let's rename it to config/database.yml:

$ sudo mv config/database.yml.example config/database.yml

Now, open the config/database.yml file in your favorite editor and modify it so
that it looks like this:

production:
 adapter: mysql2
 database: redmine
 host: localhost
 username: redmine
 password: your_password_here
 encoding: utf8

Thus, to make the file look like this, I removed the development and test sections,
changed the username from root to redmine, and set the password. You need to
replace your_password_here with your own one.

You can generate a random password with the makepasswd
tool (it needs to be installed first using sudo apt-get
install makepasswd), as follows:
$ makepasswd --chars=32

http://www.redmine.org/projects/redmine/wiki/Download

Installing Redmine

[38]

Installing Ruby and Bundler
Redmine comes with Bundler support. Bundler is a Ruby gem dependency manager,
that is, in some ways, similar to the Debian/Ubuntu package manager used in the
previous section. In other words, Bundler simplifies the deployment process by
ensuring that all dependencies are installed.

However, Bundler is not yet available in our clean system. Moreover, neither gem
nor Ruby is available. So, we need to install them first:

$ sudo apt-get install ruby

When you are asked for confirmation, type y and press Enter. This command will
install Ruby and all its dependencies, including the gem tool.

Now we can install Bundler. To do this, we will use the gem tool as follows:

$ sudo gem install bundler

Resolving Bundler errors
Bundler can automatically resolve only gem dependencies. This means that when it's
not able to find a Ruby library (which is called gem), it tries to fetch it from https://
rubygems.org/. But some gems use native system libraries, and therefore they must
be built before being installed. Moreover, in order to build such gems, Bundler needs
the appropriate system libraries to be already available. Otherwise, it won't be able
to install them and will give errors.

In this section, I will let you know which libraries to install to make Bundler run
flawlessly, but future versions of Redmine (3.2.0+) may require some other system
libraries. So, before you run Bundler, let me show you how to resolve possible
Bundler errors. Again, as you are unlikely to get any such error this time, you can
skip this subsection and move on to the Installing dependencies subsection.

https://rubygems.org/
https://rubygems.org/

Chapter 2

[39]

If you are still here, let's review a sample Bundler error:

As it can be seen from the preceding screenshot, Bundler has failed to build the
rmagick gem. Consider this message:

require': cannot load such file -- mkmf (LoadError)

It tells us that Bundler failed to find the mkmf.rb file (.rb is the extension for Ruby
files). The most common reason for such an error is that the corresponding library
is missing. Also note that Bundler usually needs not only libraries but also their
development files. Thus, the mkmf.rb file comes with ruby1.9.1-dev—the package
that contains the development files for Ruby 1.9.1.

If Bundler gives a filename that it was not able to find, like in this case, on Debian/
Ubuntu you can use the apt-file tool to locate it in non-installed packages. To
install apt-file and initialize its database, use these commands:

$ sudo apt-get install apt-file

$ apt-file update

Afterwards, to search for a file, just specify it as an argument for the apt-file's search
command. For example, to find the package that contains the Magick-config file,
you should execute this:

$ apt-file search Magick-config

Installing dependencies
As we do not need Bundler to come to a halt with errors, let's install in one run all
the system dependencies, the lack can cause them:

$ sudo apt-get install ruby1.9.1-dev make zlib1g-dev libmysqlclient-dev
libmagickcore-dev libmagickwand-dev

Installing Redmine

[40]

This command will install the development files for Ruby, the MySQL client, and the
ImageMagick libraries, as well as the libraries themselves and all their dependencies.

If you do not need the support of RMagick, omit the
libmagickcore-dev and libmagickwand-dev packages here.

Now let Bundler install the gem dependencies:

$ bundle install --without development test

This command will make Bundler install gems in system directories. To do this, it
will use sudo, so it may ask for the password of your user account.

You can skip the installation of RMagick here by adding the
rmagick keyword to the --without option.

If the installation of the dependencies was successful, you should see something like
the following:

Installing the MySQL server, Apache, and
Passenger
As we plan to use the MySQL server and the Apache web server with the Passenger
module and our system is clean, we need to install all of them as well. Generally,
the procedure of their installation is identical to what was described in the previous
section (Installing Redmine from a package):

$ sudo apt-get install mysql-server mysql-client apache2 libapache2-mod-
passenger

Here, we will skip all the details related to their installation, as they have been
reviewed before. Thus, you can check them out in the Configuring the MySQL server
package and Installing Apache and Passenger subsections of the Installing Redmine from
a package section.

Chapter 2

[41]

Setting up the database
Now that we are ready to go further, let's create the database for Redmine. We'll do
this in the console MySQL client, so run it:

$ mysql -u root -p

The client will ask for the password of the MySQL server's superuser (root), which
you have specified during the installation of the MySQL server.

Execute the following SQL queries in the console of the MySQL client:

CREATE DATABASE redmine CHARACTER SET UTF8;

CREATE USER 'redmine'@'localhost' IDENTIFIED BY 'your_password_here';

GRANT ALL PRIVILEGES ON redmine.* TO 'redmine'@'localhost';

Don't forget to replace your_password_here with the password that you specified in
the config/database.yml file while you were configuring the database for Redmine.

Once you've finished, type quit and press Enter to exit the client.

Finalizing the Redmine installation
At this moment, only a few things are left to do to prepare Redmine for running.
We need to create a secret token for the Redmine session store:

$ bundle exec rake generate_secret_token

Next, we need to create the structure (tables, indexes, and so on) of the Redmine
database:

$ RAILS_ENV=production bundle exec rake db:migrate

Be ready – this command will produce a lot of output.

Finally, we need to insert initial data (such as trackers, the administrator account,
and so on) into the database:

$ RAILS_ENV=production bundle exec rake redmine:load_default_data

This command will ask you to select a language in which the role names, the tracker
names, the issue statuses and priorities, and so on should be added. You should
think carefully about what to answer (for example, are you sure that you want the
tracker names to be non-English?).

Installing Redmine

[42]

Configuring Apache
So by now, Redmine has been installed and configured, but we can't access it. To
be able to do this, we need to configure Apache. Then let's move on to Apache's
configuration directory:

$ cd /etc/apache2

Now, create the redmine.conf file in the sites-available subdirectory with the
following content (do this under root):

<VirtualHost *:80>
 RailsEnv production
 DocumentRoot /opt/redmine/redmine-3.2.0/public
 <Directory "/opt/redmine/redmine-3.2.0/public">
 Allow from all
 Require all granted
 </Directory>
</VirtualHost>

This is the configuration of the virtual host that will run Redmine. However, this is
not the only virtual host that we currently have.

Please note that Redmine, which is installed and configured
this way, is going to run from your user account. If you prefer
to use another user, www-data, for example, you need to add
PassengerDefaultUser www-data to your virtual host
configuration, and change the owner of the redmine-3.2.0
directory by executing chown www-data:www-data /opt/
redmine/redmine-3.2.0 -R.

In Debian/Ubuntu, Apache comes with a default page, which must be disabled to let
Redmine run (otherwise, we will be getting that page instead of Redmine). This can
be done by running the following command:

$ sudo a2dissite 000-default

In fact, as mentioned in the previous section, this command removes a symbolic link
to the sites-available/000-default.conf file from the sites-enabled directory.
And, as you must have probably guessed, we need to do the opposite for our
redmine.conf file. This can be done by executing the line shown here:

$ sudo a2ensite redmine

Ready to try? Then reload Apache:

$ sudo service apache2 reload

Chapter 2

[43]

Now, if you open a browser and point it to the IP or hostname of your server, you
should get the following result:

You can now log in to your new Redmine installation using admin as both the login
and password.

Verifying and completing the installation
There is a page in Redmine that should always be checked after launching this
application for the first time. This page is Information, and it can be found in the
Administration menu.

The Information page was described in detail in the Verifying and completing the
installation subsection of the previous section. So, please go there and check these
details. Thus, you should change the password of the admin user as soon as possible.
Also, you may want to install the ImageMagick convert tool.

Upgrading Redmine
As we have installed Redmine separately from the rest of the system (in other
words, the system package manager won't able to see or recognize it), we will need
to handle all its updates manually and on our own. The Redmine guys periodically
issue maintenance releases aimed at fixing serious bugs. So by leaving the
installation unmaintained, we risk having many issues, including but not limited to
security and upgrade issues.

Also note that you will have to upgrade your Redmine installation to the next major
or minor version when the Redmine guys stop maintaining the version that you are
currently using. (For a package, this is not the case, as package maintainers usually
handle security fixes and support the package as long as the corresponding release
of the system is supported.) If you don't do this, you won't even know when a new
serious bug is found in the version you use.

Installing Redmine

[44]

In other words, you need to keep a track of the new versions of Redmine to be sure
that you upgrade as soon as a fix is available. But how do you know when a new
Redmine version is released? To check this, you can subscribe to Redmine news
using the ATOM feed at http://www.redmine.org/projects/redmine/news.
atom. The appropriate news should mention the reason for the release—whether it is
a security fix or it just contains new features.

To read ATOM feeds, you can use Safari, Internet Explorer,
Chrome (through a plugin), Mozilla Thunderbird, and so on.

Certainly, before performing an upgrade, you should always check the official
Redmine upgrade documentation, which is available at http://www.redmine.org/
projects/redmine/wiki/RedmineUpgrade. Nevertheless, we are going to discuss
this procedure shortly here as well (focusing on the particulars of our installation).

It's always a good idea to take a backup before upgrading. Thus,
to back up the Redmine database, execute this command:

$mysqldump -u root -p redmine > /path/redmine.dump

It will ask for the MySQL superuser's password. Don't forget to
replace /path/redmine.dump with your path.

As for the installation, we first need to download the recent version of Redmine. This
can be done from the following URL (get the release in the tar.gz format): http://
www.redmine.org/projects/redmine/wiki/Download. Unpack the archive into the
/opt/redmine directory, where we already have redmine-3.2.0.

Now, we need to copy some configuration and other files from the old version of
Redmine to the new one. In particular, we need config/database.yml, config/
configuration.yml and everything inside the files directory.

Also, as for the installation, we will use Bundler to install all the Ruby dependencies.
The command is the same:

$ bundle install --without development test

If anything goes wrong (say, any building errors), you know how to fix it (check out
Resolving Bundler errors subsection).

http://www.redmine.org/projects/redmine/news.atom
http://www.redmine.org/projects/redmine/news.atom
http://www.redmine.org/projects/redmine/wiki/RedmineUpgrade
http://www.redmine.org/projects/redmine/wiki/RedmineUpgrade
http://www.redmine.org/projects/redmine/wiki/Download
http://www.redmine.org/projects/redmine/wiki/Download

Chapter 2

[45]

Now copy the themes and plugins from the old version to the new one, but do this
only if you are sure that each of them does support the new version of Redmine.
If you are not sure, stop the upgrade procedure and go check if they do (see also
Chapter 10, Plugins and Themes)! So, copy those themes and plugins that are known
to work under the new version from the public/themes and plugins directories
correspondingly, and install new versions of the plugins old versions of which do
not work under the new version.

New versions of Redmine as well as those of plugins often come with changes to the
database. So, it's important to execute the following commands:

$ RAILS_ENV=production bundle exec rake db:migrate

$ RAILS_ENV=production bundle exec rake redmine:plugins:migrate

These will update the database structure and will make any other fixes to the
database, if needed.

As we have installed the new version in a separate directory under /opt/redmine,
we need to update Apache to use this directory. So, open the /etc/apache2/sites-
available/redmine.conf file in your favorite editor and replace redmine-3.2.0
with the appropriate name of the new directory. Next, restart Apache:

$ sudo service apache2 reload

As I have mentioned before, I can't guarantee that the described upgrade procedure
is proper (because at the time of writing this subsection subsection, there were
no new versions to upgrade to). So, if you have upgraded Redmine using these
instructions—and only them—and it runs fine, you are lucky. Never do it this way
again! The goal of this subsection was to give you an idea of what an upgrade of
Redmine sources looks like. More complicated and riskier than an upgrade of a
Redmine package, isn't it?

Afterwards, if everything works fine, you can remove the old version of Redmine
(at least, you might want to remove its files directory, which often occupies a lot of
disk space).

Other installation options
Redmine is getting more and more popular and is therefore becoming a tool on
which companies want to build their businesses. So, this certainly helps to obtain
more and more options for easy installation of Redmine. I guess no one can now say
that it's hard to establish a Redmine server.

Installing Redmine

[46]

Hosting Redmine
The easiest way to establish a Redmine website is perhaps by using a dedicated
Redmine hosting provider. The problem with this option, however, is that you are
limited in the customization of your Redmine instance (for example, you won't be
able to install custom plugins). Also, you will have to deal with the customizations of
the hosting provider (which you may like though).

One of the oldest and best known Redmine hosting providers (on which even some
of its core contributors now work) is https://plan.io/. Their customized Redmine
comes with the agile board, contacts, the CRM and helpdesk functionality (plugins
of http://www.redminecrm.com/), news renamed to blogs, team chat, and more. Of
course, it's not free, but the company offers a free 30-day trial at https://plan.io/.

Another hosting provider became known due to their interesting plugins that can
be used for pure Redmine as well (but they are limited and their full versions are
not free). It's EasyRedmine. Their Redmine version is highly customized and may
come with many different amazing plugins, including plugins of http://www.
redminecrm.com/ and of their own. EasyRedmine can also be downloaded and
installed on your server, but it's expensive. Luckily, you can try it for 14 days before
buying. Their website is at https://www.easyredmine.com/.

There are also other dedicated Redmine hosting providers, such as http://
hostedredmine.com/, which offers free hosting; http://www.saas-secure.com/
index.html, which offers a limited free hosting service in addition to the paid one;
and more.

Redmine server hosting
When I was going to create a DigitalOcean (VPS provider) Droplet with
Ubuntu 14.04 LTS for a Redmine installation from sources, I found that the list
of pre-installed applications contains Redmine, as shown here:

https://plan.io/
http://www.redminecrm.com/
https://plan.io/
http://www.redminecrm.com/
http://www.redminecrm.com/
https://www.easyredmine.com/
http://hostedredmine.com/
http://hostedredmine.com/
http://www.saas-secure.com/index.html
http://www.saas-secure.com/index.html

Chapter 2

[47]

You just click on it (give it a name) and wait a little for the cloud hosting provider to
establish a new server with Redmine that just runs. What can be simpler than this?

To create a Redmine Droplet on DigitalOcean, you can use this
link: https://cloud.digitalocean.com/droplets/
new?image=redmine

However, don't think that I am claiming that this is a unique feature of DigitalOcean.
It's quite possible that some other hosting providers offer similar Redmine server
images. Just check out your favorite provider for such an option.

The DigitalOcean pre-installed Redmine server image currently uses Ubuntu 14.04
LTS. At the time of writing this subsection, the version of installed Redmine is 3.0.3,
what means that the installation was done from sources and that they update the
image periodically. Like us, DigitalOcean used the MySQL server and the Passenger
module. Unlike us, however, they used Nginx. The installed Redmine does not ship
with any plugins but includes the Subversion integration.

Installing Redmine

[48]

Using the TurnKey Redmine appliance
As the name suggests, the TurnKey Linux Redmine appliance comes as ready-to-use
Linux images that can run under VirtualBox, VMWare, LXC, and Docker or can be
deployed on a VPS (OpenVZ, Xen or OpenStack) or Amazon EC2 cloud. It is also
available as a live CD ISO image, what means that you can first try and then install
it. TurnKey Linux is based on Debian, so after deploying or installing it, you in fact
get Debian. Therefore, you can update and install additional packages or security
fixes from Debian repositories. However, it is not recommended to upgrade such an
installation to the next major version of Debian. To migrate to a newer version of the
appliance, TurnKey recommends that you use their special tool called TKLBAM.

To download the appliance or deploy it on a VPS, use the
following URL:
http://www.turnkeylinux.org/redmine.

The TurnKey Redmine appliance currently comes with Redmine 3.0.3, which was
installed manually, and therefore it is not connected to the system package manager.
It uses the MySQL server, the Apache web server, the Passenger module, and Ruby
Enterprise. The appliance comes with Subversion, Git, Bazaar, and Mercurial servers,
which are already configured and integrated with Redmine. Email integration is also
preconfigured and the mail transfer agent is Postfix. Besides, the system runs the
SSH server, Webmin, and Webshell.

A special mention should also be made of TurnKey Hub. Like DigitalOcean, it allows
you to quickly deploy the Redmine image on the Amazon EC2 cloud.

Using the Bitnami Redmine Stack
While the basic idea of the TurnKey Linux appliance is to ease the deployment of
a new server, the basic idea of the Bitnami stack is to ease the deployment of an
application. The Bitnami stack contains everything needed to run the application
and, unlike TurnKey, supports Windows and Mac. In addition, you can download
an Ubuntu-based virtual machine with the Bitnami Redmine stack intended for
VirtualBox or VMware; or you can easily deploy the Stack on Amazon EC2, Google
Cloud Platform, Microsoft Azure, VMware vCloud Air, or DigitalOcean. When
deployed on the cloud, the Bitnami stack uses different host OSes for different cloud
providers, thus for DigitalOcean, it uses Debian 8.1.

http://www.turnkeylinux.org/redmine

Chapter 2

[49]

By the way, the deployment of a new Bitnami Redmine server
on DigitalOcean is almost as easy as the deployment of the
DigitalOcean's own Redmine image. But this feature is available only
from the following Bitnami page: https://bitnami.com/stack/
redmine/cloud. This page can also be used for deployment on
other cloud providers.

The problem with Bitnami is that it is separate from the rest of the system, and
therefore, you face all the maintenance issues mentioned earlier. Despite what
you might expect, upgrading the Bitnami stack is not an easy task (Bitnami even
recommends that you simply reinstall it). However, one good thing is that you can
deploy other Bitnami stacks on the same server; for example, you can deploy the
WordPress stack on the server that is already running Redmine. Another good thing
is that the Bitnami stack always comes with the most recent version of Redmine.

Taking the preceding paragraphs into account, I can conclude that the Bitnami
Redmine Stack is good for development and testing and it should not be chosen for
production. Of course, it's only my opinion, and you should come up with yours
considering all the said factors.

To download the Bitnami Redmine Stack, go to this URL:
http://bitnami.org/stack/redmine.

The Bitnami Redmine installer comes with Redmine 3.2.0 and everything you need
to run it. Thus, it includes Apache, MySQL, Rails, Ruby, Passenger for Linux and
Mac, and Thin for Windows. The installed Redmine ships with Subversion, Git, and
CVS integration.

The Bitnami Redmine installation does not include any plugins, but Bitnami also
offers the Redmine + Agile stack, which additionally includes the Agile plugin of
RedmineCRM.com.

Using Docker
The Docker image is much like the Bitnami stack—it's a kind of a container that
includes the application, everything needed to run it, and their dependencies. Like
Bitnami stacks, multiple Docker images can be deployed to a single host system. But
unlike Bitnami stacks, a Docker image is not self-contained. Thus, it requires Docker
to be already available on the system to which the application is deployed.

https://bitnami.com/stack/redmine/cloud
https://bitnami.com/stack/redmine/cloud
http://bitnami.org/stack/redmine

Installing Redmine

[50]

Docker provides a registry of available applications, called Docker Hub, which lists
more than 120 Redmine images. This registry includes an official Redmine image,
but the most popular one is Sameer Naik's sameersbn/redmine. Both images should
be used in conjunction with MySQL or PostgreSQL Docker images.

Links to the images
The official image is https://hub.docker.com/_/redmine/
and Sameer Naik's image is https://hub.docker.com/r/
sameersbn/redmine/.

While Docker is a Linux-based tool, it can also be run on Windows and Mac using a
special tiny VirtualBox machine known as the Docker Machine. Certainly, this kind
of setup is not to be used in production.

As you may have probably noticed, Docker is quite popular nowadays. Thus, it
is available as an application on DigitalOcean and is supported by TurnKey and
Bitnami (some appliances and stacks can be deployed on it). So, it's not a problem to
deploy Redmine on a server through a Docker image.

Summary
Different users have different goals. Some users aim to have a stable installation
without the need to pay much attention to it. Some users prefer to be up to date and
have the latest features. Other users just want to give it a try. And so on. That's why
we reviewed all the aforementioned options for a Redmine installation. Thus, there
is no need to spend much time setting up Redmine from sources if you just want to
play with it. So having read this chapter, you now have an idea on which option is
best for you, and you should be able to install Redmine quickly and easily.

Probably, you have finished reading this chapter with a newly installed Redmine.
If so, you should take time out to play with it. In fact, that would be good because
when you get back to this book, you will understand what is written in the
upcoming chapters better.

Note, however, that the just installed Redmine is too clean. Before using it, you
should spend some time on its configuration, and that's what we are going to do in
the next chapter. But don't expect to see only the basic configuration there. The next
chapter should be interesting not only for those who will configure Redmine, but
also for everyone else, as they will see what powerful things can be done in Redmine.

https://hub.docker.com/_/redmine/
https://hub.docker.com/r/sameersbn/redmine/
https://hub.docker.com/r/sameersbn/redmine/

[51]

Configuring Redmine
When talking about the web interface (that is, not system files), all of the global
configuration of Redmine can be done on the Settings page of the Administration
menu. This is actually the page that this chapter is based on (it has many tabs; the
other administration pages will be reviewed in the appropriate chapters later). Some
settings on this page, however, depend on special system files or third-party tools
that need to be installed. And these are the other things that we will discuss.

You might expect to see detailed explanations of all the administration settings
here, but instead, we will only review a few of them in detail, as I believe that the
others do not need to be explained or can easily be tested. So generally, we will
focus on hard-to-understand settings and those settings that need to be configured
additionally in some special way or have some obscurities.

So, why should you read this chapter if you are not an administrator? Some features
of Redmine are available only if they have been configured, so by reading this chapter,
you will learn what extra features exist and get an idea of how to enable them.

In this chapter, we will cover the following topics:

•	 The first thing to fix
•	 The general settings
•	 Authentication
•	 Email integration
•	 Repository integration
•	 Troubleshooting

Configuring Redmine

[52]

The first thing to fix
A fresh Redmine installation has only one user account, which has administrator
privileges. You can see it in the following screenshot:

This account is exactly the same by default on all Redmine installations. That's why it
is extremely important to change its credentials immediately after you complete the
installation, especially for Redmine instances that can be accessed publicly.

The administrator credentials can be changed on the Users page of the
Administration menu. To do this, click on the admin link. You will see this screen:

Chapter 3

[53]

In this form, you should specify a new password in the Password and Confirmation
fields (actually, you should have done this in the previous chapter). Also, it's
recommended that you change the login to something different. Additionally,
consider specifying your email instead of admin@example.net (at least), and
changing the First name and Last name.

The general settings
Everything that is possible to configure at the global level (the opposite is the project
level) can be found under the Administration link in the top-left menu. Of course,
this link is available only for administrators.

If you click on the Administration link, you will get the list of available
administration pages on the sidebar to the right. Most of them are for managing
Redmine objects, such as projects and trackers. Such pages won't be reviewed in
this chapter for the following three reasons: firstly, some of them are intelligible and
need little explanation; secondly, many of them will be reviewed in later chapters;
and thirdly, in this chapter, we will only be discussing general, system-wide
configuration. Most of the settings that we are going to review are compiled on the
Settings page, which is shown in the following screenshot:

Configuring Redmine

[54]

As all of these settings can't fit on a single page, Redmine organizes them into tabs.

We will discuss the Authentication, Email notifications,
Incoming emails, and Repositories tabs in the next sections.
The Projects and Issue tracking tabs will be reviewed in the
next two chapters.

The General tab
So let's start with the General tab, which can be seen in the previous screenshot.
Settings in this tab control the general behavior of Redmine, thus Application title
is the name of the website that is shown at the top of non-project pages, Welcome
text is displayed on the start page of Redmine, Objects per page options specifies
how many objects users will be able to see on a page, such settings as Search results
per page and Days displayed on project activity allow you to control the number
of objects that are shown on search results and activity pages correspondingly, the
Protocol setting specifies the preferred protocol that will be used in links to the
website, Wiki history compression controls whether the history of Wiki changes
should be compressed to save space, and finally, Maximum number of items in
Atom feeds sets the limit for the amount of items that are returned in the Atom feed.

Additionally, the General tab contains settings, which I want to discuss in detail.

The Cache formatted text setting
As mentioned in Chapter 1, Getting Familiar with Redmine, Redmine supports text
formatting through the lightweight markup language Textile or Markdown. While
conversion of a content from such a language to HTML is quite fast, in some
circumstances, you may want to cache the resulting HTML. If that is the case, the
Cache formatted text checkbox is what you need.

When this setting is enabled, all Textile or Markdown content that is larger than 2 KB
will be cached. The cached HTML will only be refreshed when changes are made to
the source text, so you should take this into account if you are using a Wiki extension
that generates dynamic content (such as my the WikiNG plugin).

Unless performance is extremely critical for you, you should leave this checkbox
unchecked.

Chapter 3

[55]

Other settings tips
Here are some other tips for the General tab:

•	 The value of the Host name and path setting will be used to generate URLs
in the email messages that will be sent to users, so it's important to specify a
proper value here.

•	 For Text formatting, select the markup language that is best for you. The
Textile or Markdown? section of Chapter 1, Getting Familiar with Redmine, can
help you make a thoughtful decision. It's also possible to select none here,
but I would not recommend doing this.

The Display tab
As it comes from the name, this tab contains settings related to the look and feel of
Redmine. Its settings can be seen in the following screenshot:

Configuring Redmine

[56]

Using the Theme setting users can choose a theme for the Redmine interface (see
also Chapter 10, Plugins and Themes). The Default language setting specifies which
language will be used for the interface, if Redmine fails to determine the language of
the user. Thus, for not logged-in users it will attempt to use the preferred language
of the user's browser, what can be disabled by the Force default language for
anonymous users setting, and for logged-in users it will use the language that is
chosen by users in their profiles, what can be disabled by the Force default language
for logged-in users setting. By default the user's language also affects the start day of
the week, date, and time formats, what can also be changed by the Start calendars on,
Date format, and Time format settings respectively. The display format of the user
name is controlled by the Users display format setting. Finally, the Thumbnails size
(in pixels) setting specifies the size of thumbnail images in pixels.

Now let's check what the rest of the settings mean.

The Use Gravatar user icons setting
Once I used a WordPress form to leave a comment on someone's blog. That form
asked me to specify the first name, the last name, my email address, and the text.
After submitting it, I was surprised to see my photo near the comment. That's what
Gravatar does.

Gravatar stands for Globally Recognized Avatar. It's a web service that allows
you to assign an image for each user's email. Then, third-party sites can fetch the
corresponding image by supplying a hash of the user's email address. The Use
Gravatar user icons setting enables this behavior for Redmine.

Having this option checked is a good idea (unless potential users of your Redmine
installation can be unable to access Internet because, for example, Redmine is going
to be used in an isolated intranet). How to specify Gravatars we will discuss in
Chapter 9, Personalization.

The Default Gravatar image setting
What happens if a Gravatar is not available for the user's email? In such cases, the
Gravatar service returns a default image, which depends on the Default Gravatar
image setting.

Chapter 3

[57]

The following table shows the six available themes of the default avatar image:

Theme Sample image Description
None The default image, which is shown if no

other theme is selected

Wavatars A generated face with differing features
and background

Identicons A geometric pattern

Monster IDs A generated monster image with
different colors, face, and so on

Retro A generated 8-bit, arcade-style
pixelated face

Mystery man A simple, cartoon-style silhouetted
outline of a person

For all of these themes, except Mystery man and none, Gravatar generates an avatar
image that is based on the hash of the user's email and is therefore unique to it.

Configuring Redmine

[58]

The Redmine Local Avatars plugin
Consider installing the Redmine Local Avatars plugin by Andrew
Chaika, Luca Pireddu, and Ricardo Santos, if you want users to
upload their avatars directly onto Redmine:
https://github.com/thorin/redmine_local_avatars

This plugin will also let your users take their pictures with web
cameras.

The Display attachment thumbnails setting
If the Display attachment thumbnails setting is enabled, all image attachments—no
matter what object (for example, Wiki or issue) they are attached to—will be also
seen under the attachment list as clickable thumbnails. If the user clicks on such a
thumbnail, the full-size image will be opened.

The Redmine Lightbox 2 plugin
In pure Redmine, full-size images are opened in the same browser
window. To open them in a lightbox, you can use the Lightbox 2
plugin that was created by Genki Zhang and Tobias Fischer:
https://github.com/paginagmbh/redmine_lightbox2

Note that in order for this setting to work, you must have the ImageMagick's convert
tool installed (see the Verifying and completing the installation subsection of the
Installing Redmine from a package section in Chapter 2, Installing Redmine).

The API tab
In addition to the web interface that is intended for human Redmine comes with
a special REST application programming interface (API) that is intended for
third-party applications. Thus, the Redmine REST API is used by Redmine Mylyn
Connector for Eclipse and RedmineApp for iPhone. This interface can be enabled
and configured under the API tab of the Settings page which is shown in the
following screenshot:

https://github.com/thorin/redmine_local_avatars
https://github.com/paginagmbh/redmine_lightbox2

Chapter 3

[59]

Let's check what these settings mean:

•	 If you need to support integration of third-party tools, you should turn on the
Redmine REST API using the Enable REST web service checkbox. But it is safe
to keep this setting disabled, if you are not using any external Redmine tools.

•	 The Redmine API can also be used via JavaScript in the web browser, but
not if the API client (that is, a website, that runs JavaScript) is on a different
domain. In such cases to bypass the browser's same-origin policy the API
client may use the technique called JSONP. As this technique is considered to
be insecure it should be explicitly enabled using the Enable JSONP support
setting, so in most cases you should leave this option disabled.

The Files tab
The Files tab contains settings related to file display and attachment as shown in the
following screenshot:

Here Allowed extensions and Disallowed extensions can be used to restrict file
uploads by file extensions – thus you can use the former setting to only allow certain
extensions or the latter one to forbid certain extensions. Such settings as Maximum
size of text files displayed inline and Maximum number of diff lines displayed
control the amount of the file content that can be displayed.

Configuring Redmine

[60]

The rest of settings are used more often:

•	 You may need to change the Maximum attachment size setting to a larger
value (it should be in KB). Thus, project files (releases) are attachments as
well, so if you expect your users to upload large files, consider changing this
setting to a bigger value.

•	 The value of the Attachments and repositories encodings option is used to
convert commit messages to UTF-8.

Authentication
There are two pages in Redmine intended for configuring the authentication. The
first one is the Authentication tab on the Settings page, and the second one is the
special LDAP Authentication page, which can be found in the Administration
menu. Let's discuss these pages in detail.

The Authentication tab
The next tab in the administration settings is Authentication. The following
screenshot shows the various options available under this tab:

Chapter 3

[61]

If the Authentication required setting is enabled, users won't be able to see the
content of your Redmine without having logged in first. The Autologin setting
can be used to let your users keep themselves logged in for some period of time
using their browsers. The Self-registration setting controls how user accounts are
activated (the manual account activation option means that users should be enabled
by administrators). The Allow users to delete their own account setting controls
whether users will be able to delete their accounts. The Minimum password length
setting specifies the minimum size of the password in characters, and the Require
password change after setting can be used to force users to change their passwords
periodically. The Lost password setting controls whether users will be able to restore
their passwords in cases when they, for example, have forgotten them. And finally
the Maximum number of additional email addresses setting specifies the number of
additional email addresses a user account may have.

After a user logs in Redmine opens a user session. The lifetime of such a session is
controlled by the Session maximum lifetime setting (the value disabled means that
the session hangs forever). Such a session can also be automatically terminated if
the user was not active for some time, what is controlled by the Session inactivity
timeout setting (the value disabled means that the session never expires).

Now, let's discuss a very special setting, which we skipped.

The Allow OpenID login and registration setting
If you are running a public website with open registration, you perhaps know
(or you will know if you want your Redmine installation to be public and open
for user registration) that users do not like to register on each new site. This is
understandable, as they do not want to create another password to remember or
share their existing password with a new and therefore untrusted website. Besides,
it's also a matter of sharing the email address and—sometimes—remembering
another login.

That's when OpenID comes in handy. OpenID is an open-standard authentication
protocol in which authentication (password verification) is performed by the OpenID
provider. This popular protocol is currently supported by many companies, such as
Yahoo!, PayPal, AOL, LiveJournal, IBM, VeriSign, and WordPress. In other words,
servers of such companies can act as OpenID providers, and therefore users can log
in to Redmine using their accounts that they have on these companies' websites if the
Allow OpenID login and registration setting is enabled.

Configuring Redmine

[62]

Google used to support OpenID too, but they shut it down
recently in favor of the OAuth2.0-based OpenID Connect
authentication protocol. Despite the use of OpenID in its
name, OpenID Connect is very different from OpenID.

So, if your Redmine installation is (or is going to be) public, consider enabling this
setting. But note that to log in using this protocol, your users will need to specify
OpenID URL (the URL of the OpenID provider) in addition to Login and Password,
as can be seen on the following Redmine login form:

LDAP authentication
Just as OpenID is convenient for public sites to be used to authenticate external
users, LDAP is convenient for private sites to authenticate corporate users. Like
OpenID, LDAP is a standard that describes how to authenticate against a special
LDAP directory server, and is widely used by many applications such as MediaWiki,
Apache, JIRA, Samba, SugarCRM, and so on. Also, as LDAP is an open protocol, it is
supported by some other directory servers, such as Microsoft Active Directory and
Apple Open Directory. For this reason, it is often used by companies as a centralized
users' directory and an authentication server.

To allow users to authenticate against an LDAP server, you should add it to
the list of supported authentication modes on the LDAP authentication page,
which is available in the Administration menu. To add a mode, click on the New
authentication mode link. This will open the form:

Chapter 3

[63]

If the On-the-fly user creation option is checked, user accounts will be created
automatically when users log in to the system for the first time. If this option is not
checked, users will have to be added manually beforehand. Also, if you check this
option, you need to specify all the attributes in the Attributes box, as they are going
to be used to import user details from the LDAP server.

Check with your LDAP server administrator to find out what
values should be used in this form.

In Redmine, LDAP authentication can be performed against many LDAP servers.
Every such server is represented as an authentication source in the authentication
mode list, which has just been mentioned. The corresponding source can also be seen
in the user's profile and can even be changed to the internal Redmine authentication
if needed.

Email integration
Redmine email integration can be considered to consist of two components: email
delivery (notifications) and email retrieval.

Configuring Redmine

[64]

Email delivery
Most likely, if you open the Email notifications tab on a recently installed Redmine,
you will get the following message:

This message clearly states that you can't fix this issue through the web interface.
First, we need to modify the mentioned configuration file and then we can get back
here. So, it's time to open the console.

The configuration.yml file
In the config subdirectory of the Redmine root directory, you will find the
configuration.yml.example file. Copy (or just rename) it to configuration.yml:

$ cp configuration.yml.example configuration.yml

Now, open this file in your favorite console editor.

As you can see, it is divided into three blocks: default, production, and
development. The production and development blocks are for environment-
specific configuration and the default block combines the configuration options
of all environments. As we are not going to have any specific configurations for the
environments, we will use the default block.

The email configuration section starts under the email_delivery keyword. In this
section you will find commented sample configurations, one of which you can use
for your Redmine installation. The only option that is used in all the samples is
delivery_method, which determines the type of delivery.

The delivery_method option accepts the following values: :sendmail, :smtp,
:async_sendmail, and :async_smtp. The :async_sendmail and :async_smtp
methods deliver emails in separate threads, thus not making users wait for the delivery
to complete. Hence, asynchronous methods should be used on installations that
involve the delivery of a large number of emails, when a mail (SMTP) server is slow
or hardly accessible, or if you are experiencing slow loading of pages that send emails
(for example, when you update an issue , when you create a wiki page, and so on).

Chapter 3

[65]

From the aforementioned delivery methods, I personally recommend the use of
:sendmail or :async_sendmail, as these methods will use the sendmail system
tool. This tool is a standard part of Mail Transfer Agent (MTA) (software that
performs mail delivery); that is, it ships with MTA and uses MTA to send emails.
In other words, with the sendmail tool, you use the default delivery configuration
of the operating system. So, if a system administrator modifies the email delivery
configuration of the system, Redmine will automatically use it without any changes
on its side. Additionally, such a configuration is easier to maintain as you don't have
to care about separate email settings in Redmine:

default:
 email_delivery:

 delivery_method: :sendmail

You can also use a local or remote SMTP server by choosing the :smtp or :async_
smtp delivery method. In this case, you will additionally need to specify smtp_
settings to let Redmine know how to connect to the server.

Avoid using external SMTP servers as in the event of an
Internet connection loss, email messages won't be sent at
all. Additionally, this will slow down the performance of
your Redmine.

So, let's review the options that can be specified inside the smtp_settings block:

•	 The address option should contain the IP or hostname of the SMTP server. If
you are going to put localhost here, consider using :sendmail instead.

•	 The port option should contain the TCP port number of the SMTP server.
Normally, it is 25 or 587 if the TLS secure protocol is used (for example, TLS
is used by Gmail).

•	 The value of the domain option is used for the HELO SMTP command.
Normally, it's the domain part of the sender's email address. For Gmail (but
not Google Apps), you should specify smtp.gmail.com here.

•	 The authentication option accepts the :plain, :login or :cram_md5
values. You should ask which value to choose to the system administrator of
the SMTP server that you are going to send emails through. For Gmail, this
should be :login.

•	 Values of the user_name and password options are going to be used to
authenticate the Redmine mailer on the SMTP server.

•	 Finally, the enable_starttls_auto option should be set to true if the SMTP
server requires TLS (normally, this should be enabled if the port number is
587). Set it to true for Gmail.

Configuring Redmine

[66]

Avoid using a personal account in smtp_settings. Some SMTP
servers (for example, Gmail) may override the from address of
the email message with the address of the authenticated account.
Therefore, all Redmine notifications may appear to be coming
from your personal email address. Consider creating a special
account for this purpose instead.

When you finish editing the configuration.yml file, don't forget to save it and
restart Redmine.

The Email notifications tab
Let's check out the Email notifications tab again. Now it should look as shown in the
following screenshot:

Chapter 3

[67]

These settings are very important as email notifications can annoy users and multiple
emails from a single source can be treated as spam. So, let's review them in detail.

The value of the Emission email address setting is going to be used as the sender
address in email messages, which will be sent from your Redmine. So, its default value,
which you can see in the preceding screenshot, should definitely be changed! Normally,
people set it to something like no-reply@yourdomain.com, but I would recommend
using a real email address here, for example, the email address of your support staff.

If the Blind carbon copy recipients (bcc) setting is disabled, notification recipients
will be able to see who else has been sent a copy of this notification (what could be
treated as a disclosure). So, it's normally a good idea to leave this setting enabled.

The Plain text mail (no HTML) setting can be used to make Redmine send all email
notifications in the plain text format, that is, without rich text formatting, links, and
so on.

However, the most important setting is perhaps the Default notification option. It
determines which notification mode will be set for new users. As practice shows,
users rarely change this setting in their profiles, so the option you choose here is
most likely going to be used for most of your users. Let's review the supported
modes in detail (also see Chapter 9, Personalization):

•	 For any event on all my projects: This option should never be selected by
anyone except the users themselves, as in this mode, they are going to receive
notifications about all events in all projects that they are members of. From
my experience, I can tell you that users (especially if they are not familiar
with Redmine) will most likely configure their email clients to move such
notifications to a separate folder, and will never read them rather than fix
the appropriate notification setting in their profiles. That's why I believe that
only the users themselves should select this option. However, if you still want
this mode to be the default, be sure to check as few notification actions in the
Select actions for which email notifications should be sent block as possible.

•	 Only for things I watch or I'm involved in: This option is selected by
default. In this mode, users will receive notifications about events in objects
that they own (that is, of which they are the authors) or are/were assigned to
(if the object is an issue).

•	 Only for things I am assigned to: In this mode, users will be notified about
events in issues that they are or were assigned to (this is the same as the
previous one, except that authors are not notified).

•	 Only for things I am the owner of: In this mode, users will be notified only
about the events in objects that they are authors of.

•	 No events: This mode disables email notifications for the user.

Configuring Redmine

[68]

All modes, except No events, will still send notifications to users if they are explicitly
watching the object that generates these notifications (for example, an issue).

The Select actions for which email notifications should be sent block contains the
list of events about which Redmine will notify users. Only administrators (and only
on this tab) can determine which actions will generate notifications. In other words, if
you leave, for example, the News added event disabled here, users will never receive
emails with any news about any projects (they will need to check it out using the
project page or news feeds)! Therefore, I personally recommend that you enable all
the available actions here. Otherwise, people may subscribe to some objects assuming
that they will get emails on particular events and then get frustrated with the absence
of such emails. So, let it be the users who control which notifications they can get.

The next two blocks are self-explanatory. They contain text that will be inserted
into the email before and after the notification message. Be sure to change
http://hostname/my/account to the actual URL here.

Once you have finished configuring the email notifications, you can click on the
Send a test email link to check whether the email delivery works, and how it works.
This link will send a test message to the email address that you have specified in
your Redmine account.

Reminder emails
Redmine issues have an optional Due date attribute. So what about being notified of
the issue due date in advance? Let's do it?

Redmine ships with so-called rake tasks—small Ruby tools intended for different
specific tasks that can or should be performed from the console. It also comes with a
rake task that can be used to generate notifications about upcoming issue due dates.
The name of this task is redmine:send_reminders, and it accepts the following
options:

•	 days: The number of days before the due date. The value defaults to 7.
•	 tracker: The numerical (internal) tracker ID. If the value is not specified all

issue trackers will be checked.
•	 project: The identifier (which is used in the URL) of the project. The task

will check all projects if no identifier is specified.
•	 users: The numerical IDs of users and/or groups separated by commas.

If the value is omitted all users will be notified.
•	 version: The project version in which the issues are to be resolved. All

versions will be checked if the value is not specified.

Chapter 3

[69]

The syntax of the command that runs the redmine:send_reminders task is
as follows:

$ rake redmine:send_reminders days=7 tracker=1 project=book users=1,5
versions=1.0.0 RAILS_ENV=production

Now, let's configure our Redmine to remind all users about the issue due dates a day
before they are due, but not on weekends. So, open crontab (the file that specifies
commands that should be run periodically) using the following command:

$ crontab -e

You may need to specify a different user with the -u option,
for example:
$ sudo crontab -u www-data -e

If you are not sure whether the current account can be used,
just try running the rake task manually first.

The preceding command will open an editor. Add the following two lines there:

0 10 * * 1-4 /usr/local/bin/rake -f /usr/share/redmine/Rakefile
redmine:send_reminders days=1 RAILS_ENV=production

0 10 * * 5 /usr/local/bin/rake -f /usr/share/redmine/Rakefile
redmine:send_reminders days=3 RAILS_ENV=production

Run which rake to determine the path to the rake tool on your server. Be sure to
also replace /usr/share/redmine/ with the correct path to Redmine if you are not
using the Redmine package. When you're done, save the changes and exit the editor.

So what do these lines mean? The first line will be executed at 10:00 a.m. on
Mondays, Tuesdays, Wednesdays, and Thursdays, and the second line will be
executed at 10:00 a.m. on Fridays.

Also note that this rake task will generate reminder emails for issues, the due dates
of which are within the specified number of days. So, if you choose 7 days, users will
get notifications about issues that are due in 6 days and in 1 day. Running such a
task (with days=7) every day can really annoy your users. That's why we chose one
day in the preceding example. In other words, you should execute this task once in
the specified number of days; that is, if you use days=7, execute it only, for example,
on Mondays.

Configuring Redmine

[70]

Email retrieval
While the invention of email predates the invention of the World Wide Web, email is
still one of the primary electronic ways to communicate. Thus, while I have a public
issue tracker for my projects, I still keep getting emails regarding issues from users.
Perhaps that's why email integration is one of the essential features of modern issue
trackers, and Redmine does have it.

If you have taken a look at the Redmine directory structure, you might have noticed
the extra directory, the subdirectories of which contain some scripts and a sample
plugin. We are going to review all of these tools in this chapter (except the plugin).
Soon, we'll start with rdm-mailhandler.rb. As you might have guessed from its
name, this script can help Redmine handle incoming email messages.

In addition to rdm-mailhandler.rb, Redmine comes with two rake tasks that
can be used to retrieve emails, namely redmine:email:receive_imap and
redmine:email:receive_pop3.

The difference between the script and the two rake tasks is in the method in which
they are invoked. Thus, rdm-mailhandler.rb was designed to be run on the mail
server by the Mail Transfer Agent (MTA), while rake tasks are to be used to fetch
emails from a remote mail server. Certainly, the script that gets executed by the mail
server when an email arrives is better for several reasons: firstly, it runs only when
there is a job to do and secondly, Redmine retrieves the email right after it comes to
the mail server (that is, the delay is minimal). However, the tool that fetches emails
from a remote mail server can be useful as well, especially if the remote mail server is,
for example, Gmail (so there is no way to install the rdm-mailhandler.rb tool on it).

For the aforementioned reasons, we are going to review both these solutions. But
let's start with discussing what exactly Redmine can do with incoming emails.

Handling incoming emails
In incoming emails Redmine expects to see mainly new issues. In addition to issues,
Redmine can import issue comments and forum board messages from emails. So,
when you receive a notification about a new issue, you can just reply to it and the
message that you'll send will be added as a note to this issue. In the same way, you can
answer someone's note or other changes in an issue, or someone's message in forums.

If you want Redmine to receive replies from users via email, you
should change the Emission email address setting to the address
at which you plan to handle such emails. Thereby, this email
address will be used automatically by users' email clients when
they click on the Reply button.

Chapter 3

[71]

To create a new issue, Redmine needs to know values of several required attributes,
that is, the tracker, status, and priority. Luckily, the default values for these attributes
can be specified in the tools that are going to be used to process incoming emails. But
what if your Redmine also requires some custom fields? Besides, will it not be too
limiting to have hardcoded values of such attributes for all issues created via email?

To mitigate the issues that were just mentioned, Redmine can recognize attributes
in the message body and supports many more attributes than just the required ones.
Check out the sample email body:

Hi!

I have an issue…

These are attributes:

Assigned to: Andriy Lesyuk

Tracker: Support

Status: New

Priority: Urgent

Category: Email queries

Target version: 1.0.0

Start: 2016-01-01

Due date: 2016-01-18

Estimated time: 20

Done ratio: 50

Custom field: Value

Additionally, values for the issue attributes can be specified in the replies to existing
issues. Certainly, whether changes will be applied to the issue, as well as whether
a new issue with the specified attribute values will be created, depends on the
permissions of the user who authors the email (the user is identified by the from
email address). Also, to allow changes to the project, tracker, status, priority, and
issue category in the email body, you need to list all of these attributes in the
allow_override or --allow-override argument for the appropriate tool
(see Forwarding emails from mail server and Fetching emails from IMAP/POP3
subsections).

Configuring Redmine

[72]

To prevent attributes and their values from appearing in issue descriptions, issue
notes, and forum messages, Redmine allows you to configure which lines the message
text should be truncated after. The corresponding lines should be specified under the
Incoming emails tab of the Settings page, that is shown in the following screenshot:

Thus, for our preceding example, we could specify These are attributes: here to
remove attributes from the issue description or issue note. Of course, such delimiters
are to be negotiated with users.

I believe that it's essential to have the double hyphen line (--)
here, as it is often used to separate the message body from the
signature.

Also, if the incoming email includes To and/or CC addresses that are registered
in Redmine (that is, there exist user accounts with such emails), the corresponding
users will automatically be added to the watchers list of the issue. However, this
does not happen for replies.

Finally, if the email includes attachments, they will be attached to the corresponding
issue or forum message. Of course, the attachment size limit that is specified on the
General tab of the Settings page is applied to such attachments as well. Additionally,
on the Incoming emails tab, which was discussed earlier, you can specify the list of
wildcarded filenames to skip while importing attachments from emails.

Chapter 3

[73]

Forwarding emails from mail server
The majority of popular Mail Transfer Agents (MTAs) can forward incoming email
to a third-party script as soon as it arrives in the inbox. And the rdm-mailhandler.
rb tool, which I have mentioned before, is a script that should be used in this way.
When the MTA forwards the email to this tool, rdm-mailhandler.rb builds a
special HTTP request containing the email message and transmits it to a special web
service (WS) of Redmine. Then, this web service processes the message and performs
the appropriate action (for example, creates an issue).

So first, we need to enable the mentioned web service in Redmine. This can be done
on the Incoming emails tab of the Settings page, that is shown in the preceding
screenshot. There, you should check the Enable WS for incoming emails checkbox
and then click on the Generate a key link. This will make Redmine generate a special
key that will be needed to access the web service.

When ready, copy the rdm-mailhandler.rb tool to your mail server and put it into
/usr/local/sbin. If it's a different server (that is, not the one that Redmine runs
on), make sure that you have everything needed to run a Ruby script. If not, install
whatever is missing.

But before we proceed, we will check out what arguments are supported by this tool.
Let's start with the mandatory ones:

•	 The --url argument should be set to the base Redmine URL, for example,
http://mastering-redmine.com

•	 The --key argument should be set to the key that we have generated
•	 Instead of the --key argument, you can use --key-file, which should be set

to the path of the file where the key is stored

Now, let's see what optional arguments are available:

•	 The --unknown-user option accepts values such as ignore (the default),
accept, or create. If the default ignore value is used, all email messages
that come from an unknown email address (that is, an email address that
is not associated with any user account in Redmine) will be ignored. If the
accept value is set, issues created with such email messages will be authored
by the special Anonymous user. And finally, if the create value is specified,
new user accounts will be created.

http://mastering-redmine.com

Configuring Redmine

[74]

•	 There are also a couple of other arguments that can be used to control
the process of user creation. Certainly, they work only when the
--unknown-user argument is set to create. Thus, --default-group
can be used to add the newly created users to some special group. The
--no-account-notice argument instructs Redmine not to send the account
information to the new user. The --no-notification arguments disables
email notifications for such users (that is, it enables the No events option).

•	 The --project argument can be set to the identifier of the project in which
issues are to be created. If this argument is omitted, the project identifier
should be explicitly specified in the body of each email message.

•	 The --project-from-subaddress argument can be used to tell Redmine
which email address can contain the project identifier as a subaddress part
of the address (for example, in issues+book@mastering-redmine.com the
book is a subaddress and a project identifier). In this way, users will be able
to select the project right in the email address. Also note that Redmine will
look for such addresses in to, cc, and bcc email headers.

•	 The --fixed-version argument can be used to set a target version for
new issues.

•	 The --tracker argument can be set to the name of the tracker that will be
used for newly created issues.

•	 The --status argument can be specified to set a different initial status for
issues that are created from incoming emails (the default issue status is
configured per tracker what will be reviewed in the next chapter).

•	 The --category argument can be used to set a special category for issues
that are created from emails.

•	 The --priority argument can be used to set a different priority for issues
that are created from incoming emails.

•	 If the --private argument is used, all created issues will be made private.
•	 The --allow-override argument can be used to restrict the issue attributes,

which can be specified in the message body of the incoming email. The issue
attributes that are supported by this argument are the six aforementioned
ones: project, tracker, status, category, priority, and private
(multiple attributes should be separated by commas).

•	 If the --no-permission-check argument is used, new issues, comments and
forum messages will be created, even if the author of the email does not have
appropriate permissions.

•	 Finally, two special arguments, --no-check-certificate and
--certificate-bundle, can be used to bypass SSL certificate errors.

Chapter 3

[75]

The rdm-mailhandler.rb script is intended to be executed in the shell, that is, it's
just a console script. So here is a sample of the command:

/usr/local/sbin/rdm-mailhandler.rb --unknown-user create --project book
--url http://mastering-redmine.com --key mvF868NBavZZVWinIejC

The rest of configuration depends on which mail transfer agent are you using. As
we can't review all the available MTAs here, let's assume that you are using Postfix,
which is configured to use a plain-text file for aliases, such as /etc/aliases.

So, open the /etc/aliases file and add the following line:

issues: "|/usr/local/sbin/rdm-mailhandler.rb --unknown-user create
--allow-override=project,tracker,status,category,priority --project book
--url http://mastering-redmine.com --key mvF868NBavZZVWinIejC"

Here, issues is the username part of the email address (the full address can look like
issues@mastering-redmine.com). The string that starts with the pipe (|) instructs
Postfix to forward messages that come to this email address to the standard input of
the rdm-mailhandler.rb tool.

After this, your Redmine should be able to receive issues, notes, and forum messages
via email.

Fetching emails from IMAP/POP3
Nowadays, many companies host their email on external mail servers that they do
not own (for example, on Google). So, it's impossible for them to integrate the rdm-
mailhandler.rb tool with the server's MTA. Especially for such cases, Redmine
provides two additional rake tasks that can fetch emails from remote IMAP and
POP3 servers. As the IMAP protocol is more advanced, the IMAP rake task has
more features than the POP3 one, but which one to use depends on what protocol is
supported by your mail server. Many servers (including Gmail) support both.

So let's see what the command for fetching emails from IMAP looks like:

$ rake redmine:email:receive_imap host=imap.gmail.com port=993
ssl=1 username=issues@mastering-redmine.com password=LIIWLmedev6M9yAJ
RAILS_ENV=production

Now, let's review the options that are available for the IMAP and POP3 rake tasks.
Here they are:

•	 The unknown_user option, like the --unknown-user argument of
rdm-mailhandler.rb, supports values such as ignore, accept, and
create. The meanings of these values are the same as that ones for
rdm-mailhandler.rb.

Configuring Redmine

[76]

•	 Like rdm-mailhandler.rb, the rake tasks support special options:
default_group and no_account_notice. These options can be used to
control the process of user creation (to add the user to a group and to disable
the account information notification correspondingly).

•	 The project, status, tracker, category, priority, fixed_version,
private, and allow_override options also accept the same values and have
the same meanings as the corresponding arguments of rdm-mailhandler.rb.

•	 The no_permission_check option can be used to allow creating issues,
comments, and forum messages by users who do not have the appropriate
permissions in Redmine.

•	 The host option should be set to the IP or hostname of the mail server. Its
default value is localhost.

•	 The port option should contain the port number of the mail server. For
IMAP the default value is 143, and for POP3 it is 110.

•	 The ssl option should be set to 1 if the mail server supports SSL.
•	 The starttls option is available only for IMAP. It should be set to 1 if the

IMAP server supports this protocol extension.
•	 The username and password options specify the credentials that should be

used to connect to the IMAP or POP3 server.
•	 The folder option, which is supported only for IMAP, specifies the name of

the mail folder on the server to process. The default folder is INBOX.
•	 The apop option can be used to select the APOP authentication for the POP3

server.
•	 By default, the POP3 rake task keeps email messages that it failed to process

on the mail server (because, for example, they can be intended for a human).
So the special delete_unprocessed option can be used to instruct the task to
remove such emails.

The IMAP protocol allows moving email messages between server folders. To use
this feature, the IMAP rake task supports the following additional options:

•	 The move_on_success option specifies the name of the folder to which the
successfully processed emails should be moved.

•	 The move_on_failure option specifies the name of the folder to which the
ignored email messages should be moved.

Chapter 3

[77]

Now that we know what options we can use, let's make the rake task check the
IMAP server for new emails once in an hour. To do this we'll add it into cron using
the command:

$ crontab -e

This command will open the editor. Add there a line that looks like this:

45 * * * * /usr/local/bin/rake -f /opt/redmine/redmine-3.2.0/Rakefile
--silent redmine:email:receive_imap host=imap.gmail.com port=993 ssl=1
username=issues@mastering-redmine.com password=LIIWLmedev6M9yAJ
unknown_user=create allow_override=project,tracker,status,category,
priority RAILS_ENV=production

This line tells cron to run the redmine:email:receive_imap rake task on the
45th minute of every hour. Here, /usr/local/bin/rake is the full path to the rake
tool, which can be obtained using the which rake command, and /opt/redmine/
redmine-3.2.0 is the root directory of the Redmine installation. Also, make sure
you replace the credentials with your own ones.

The redmine:email:receive_pop3 rake task can be run in a very similar way.

Repository integration
Repository integration is an awesome feature of Redmine. I just can't imagine this
application without it! So, I believe that you will like Redmine for having it. But as
soon as you get to know how deep this integration can be, I'm sure you will love
Redmine even more!

We will start by configuring repositories and ensuring that the basic integration
works. Then we will discuss how to turn Redmine into a repository manager.

Configuring Redmine

[78]

The Repositories tab
So, here we come to the last tab on the Settings page—the Repositories tab:

The exclamation mark near the name of an Source Control Management (SCM)
command indicates that there is some issue with this SCM. The small text below the
checklist in the Enabled SCM block advises that you may need to specify proper
paths to the commands in config/configuration.yml. But you should do this in
rare cases, for example, if you have installed SCMs from sources. And in most other
cases, the exclamation mark just means that the SCM is not installed (as in this case).

Chapter 3

[79]

So, let's shortly review how to install these SCMs on Ubuntu/Debian. Of course, you
are not likely to need all of them (you should have decided which SCM to use after
having read Chapter 1, Getting Familiar with Redmine).

SCM Installation command
Subversion $ sudo apt-get install subversion

Darcs $ sudo apt-get install darcs

Mercurial $ sudo apt-get install mercurial

CVS $ sudo apt-get install cvs

Bazaar $ sudo apt-get install bzr

Git $ sudo apt-get install git

If you have installed any of these SCMs, do not forget to restart Redmine to make it
pick them up. Afterwards, if you go to the Repositories tab, you should see check
marks instead of exclamation marks near the commands and SCM version numbers
in the Version column:

If any of the listed SCMs are not installed (or exclamation marks are still shown
for them for some other reasons), you should disable them here by unchecking the
corresponding checkboxes.

Before enabling the Filesystem SCM, you should set the
scm_filesystem_path_regexp option in config/
configuration.yml to a regular expression that will
ensure that a proper path is used! Otherwise, users who have
the Manage repository permission can get the ability to read
the filesystem of the server that runs Redmine.

Other blocks of the Repositories tab are reviewed in the following subsections.

www.allitebooks.com

http://www.allitebooks.org

Configuring Redmine

[80]

Fetching commits
The main feature of Redmine SCM integration is the repository browser, which is
available under the Repository tab of a project. Here is the screenshot that shows
how it looks on Redmine.org:

This repository browser can be used to view or download files, browse directories
and revisions, compare revisions, see what changes were made to each file, and
more. But to be able to see new changes, Redmine needs to fetch them from the
repository first. By default, it does this each time a user accesses anything under
the projects/<project>/repository URL (that is, under the Repository tab of
the project).

In other words, Redmine fetches new commits from the repository when you click
on the Repository tab, on the trunk directory of the repository, on a file of such a
directory, and so on! If Redmine does not have to serve many users at the same time
and the repository is local, this should not be a big problem. But what if the Redmine
installation is heavily loaded and uses remote repositories?

This default behavior is enabled by the Fetch commits automatically setting, which
can be found on the Repositories tab of the Settings page. So, to make Redmine
stop updating commits on each user visit, you just need to disable it. But how will
Redmine fetch new data in this case? Without such updates, the Repository view of
the project is going to become outdated sooner or later.

Chapter 3

[81]

Luckily, Redmine offers several other solutions for fetching new commits from
repositories. Which one to use depends on whether the repository is local or remote
and from where the update can be initiated. Generally, there are two places where
you can initiate this process—from cron or from an SCM hook.

Using cron
Cron can be used to trigger an update of repositories within Redmine. However, this
can be done only on the same server where Redmine is running. Still, it's better than
the default update-on-request option, as you can control how many times the update
is executed.

To trigger the update, you need to use the following command:

$ rails runner "Repository.fetch_changesets" -e production

So, this command should be put into crontab as follows:

*/30 * * * cd /opt/redmine/redmine-3.2.0 && /usr/local/bin/rails runner
"Repository.fetch_changesets" -e production

Don't forget to replace /opt/redmine/redmine-3.2.0 with the actual path to your
Redmine installation.

This line will trigger the fetching of commits for all projects every 30 minutes.

This command can also be used to make Redmine load data
from a huge repository that was just added to a project. Doing
this from the browser (using the Fetch commits automatically
mode) can be troublesome.

The second option is more advanced and flexible, and it is to be used on the server
where the SCM is running.

Using an SCM hook
All SCMs—at least the ones that I used to work with—support hooks. Hooks are
scripts that are located in a special directory or are listed in a configuration file of the
repository. Thus, for Subversion this directory is hooks. For Mercurial hooks are to
be specified under the [hooks] section in .hg/hgrc. For CVS, they can be specified in
the commitinfo file. For Bazaar, they can be either put into the .bzr/hooks directory
or listed in the bazaar.conf file. For Git, they should be put into the .git/hooks
directory. These scripts are triggered when an event occurs, for example, when a
user makes a commit to the repository. And this is exactly where we should initiate
fetching the commits for Redmine!

Configuring Redmine

[82]

To do this, we need to use another special web service (WS) that is provided by
Redmine and that can be accessed using the following URI: sys/fetch_changesets.
But first, we need to enable it on the Repositories tab of the Settings page:

Check the Enable WS for repository management checkbox here and click on the
Generate a key link. Then press Save.

Now, you need to create a hook script for your SCM (check out the SCM's
documentation for the format, the name of the script, and the location) and put the
following command there:

curl -o /dev/null "https://mastering-redmine.com/sys/fetch_changesets" -d
key=oVVm1CmvXJnpRVmTZ5ii > /dev/null 2>&1

Replace https://mastering-redmine.com with the actual URL of your Redmine
installation and oVVm1CmvXJnpRVmTZ5ii with the key that was generated for you.

Use the HTTPS protocol in the URL (if available) to encrypt the
key when it is sent over the Internet.

Different projects usually use different repositories, which can be located on different
servers, and even use different SCMs. For such cases, this web service supports an
additional parameter: id. This parameter should contain the project identifier, like in
the following example:

https://mastering-redmine.com/sys/fetch_changesets?key=oVVm1CmvXJnpRVmTZ5
ii&id=book

Actually, this is the right approach—each repository should be configured to
update only the project to which it belongs. But, this means that each repository is
to be configured separately, which can be a headache (especially if your Redmine
installation hosts many projects). However, Redmine will otherwise update all
repositories in all projects when a commit is made to any of them.

Chapter 3

[83]

The Git SCM supports only local repositories in Redmine, but it's
possible to make a clone from GitHub and then keep the local
copy up to date using Jakob Skjerning's GitHub Hook plugin:
https://github.com/koppen/redmine_github_hook

Do not forget to disable the Fetch commits automatically setting on the Repositories
tab when you have configured all your repositories to trigger the update of commits
through the web service.

Automatic creation of repositories
In the previous subsections of this section, we discussed how to configure Redmine
as a repository browser, which is a well-known feature of this application that
actually works out of the box (if the SCM is installed). Now let's speak how to turn
Redmine into a repository manager.

Redmine comes with a special tool intended for creating repositories for projects that
do not have a repository yet. The name of this tool is reposman.rb, and it's located
in the extra/svn directory of Redmine. It is to be executed periodically by cron on
the SCM server. When it is run, it connects to Redmine, fetches its projects list, checks
whether a repository exists for each of the projects, and creates a repository if the
project does not have a repository yet. But note that it expects the project's repository to
have exactly the same name as the project itself (it uses the project identifier). Also note
that to use it, you'll need access to the server that hosts SCM (or is going to host it).

To proceed, you need to know where the repository files are to be located. If the SCM
server has already been configured, figure out what the path for repositories is and
which SCM is to be used. If no SCM server exists yet, let's just create a directory for
repositories for now; later on, in the next subsection, we'll configure the server.

It is assumed that you are going to use Subversion. To conform to the FHS, let's select
/var/lib/svn as the directory for the Subversion repositories:

$ sudo mkdir /var/lib/svn

If you have not enabled the web service for repository management, as described in
the Using an SCM hook subsection of this chapter, do it now. This web service is going
to be used by the reposman.rb tool to check the repositories list.

Also, before creating a repository, we need a project that this repository will be
added to. This can be either a test project or a real one. A new project can be created
using the New project link, which becomes available when you click on the Projects
item in the top-left menu. So please create it, if you don't have a project yet.

https://github.com/koppen/redmine_github_hook

Configuring Redmine

[84]

When ready, open the console on the SCM server and test the reposman.rb tool by
running it in the following way:

$ sudo /opt/redmine/redmine-3.2.0/extra/svn/reposman.rb --owner=www-
data --svn-dir=/var/lib/svn --url=file:///var/lib/svn --redmine-
host=mastering-redmine.com --key=oVVm1CmvXJnpRVmTZ5ii --verbose –test

Change the paths, the hostname, and the API key to the correct ones.

If the SCM server is located on a different physical server, you'll
need to copy reposman.rb there and possibly install Ruby.

Let's review the various options that are supported by this tool:

•	 The --svn-dir option should point to the directory under which new
repositories are to be created.

•	 The --redmine-host option should hold the IP or hostname that will be
used by the reposman.rb tool to connect to Redmine.

•	 The --key option specifies the API key of the web service.
•	 The --owner option specifies the name of the system user who will own the

repository files on the SCM server.
•	 The --group option can be used to specify the name of the group to which

the repository files will belong.
•	 The --url option specifies the URL that can be used to access repositories

externally (for example, http://mastering-redmine.com/svn).
•	 The --scm option should be specified if any other than the Subversion SCM

is to be used (its possible values are Subversion, Darcs, Mercurial, Bazaar,
Git, and Filesystem).

•	 The --command option can be used to specify a custom command for
repository creation, and it is required for SCMs other than Subversion
and Git.

•	 The --key-file option can be used as an alternative to --key as it allows
you to store the API key in a file.

•	 The --test option can be used to check what the tool is going to do.
•	 By default, the reposman.rb tool creates a repository only if the

corresponding project does not have any repository yet. This can be changed
by the --force option, which instructs the tool to always create the repository
with the project's identifier in its name, if such a repository is missing.

Chapter 3

[85]

•	 The --verbose option can be used to get more information about what the
tool is doing.

•	 The --quiet option is to be used if you do not want the tool to give any
output to the console.

If the test run worked fine, we can use cron to make the tool be run periodically and
create repositories, when new projects are registered. To do this, add the following
line to crontab:

15 * * * * /opt/redmine/redmine-3.2.0/extra/svn/reposman.rb --owner=www-
data --svn-dir=/var/lib/svn --url=file:///var/lib/svn --redmine-
host=mastering-redmine.com --key=oVVm1CmvXJnpRVmTZ5ii --quiet

This tells cron to run reposman.rb on the 15th minute of every hour.

From now on, all your projects should have repositories created for them
automatically.

The SCM Creator plugin
For easy repository creation, you can also use the SCM Creator
plugin. This plugin currently supports Subversion, Git, Mercurial,
and Bazaar. For all of these SCMs, except Git, it can create only
local repositories (located at the same server on which Redmine
is running). For Git, it can create local and remote GitHub
repositories. You can check it out at:
http://projects.andriylesyuk.com/project/redmine/
scm-creator

Advanced repository integration
If you check a role's permissions on the Roles and permissions page of the
Administration menu, you will see the Commit access permission. This permission
has nothing to do with Redmine as a web application, as no commit access is, in
fact, possible within Redmine. Actually, it is for what is called advanced repository
integration. Thus, this permission is going to be checked by an extra tool called
Redmine.pm, if it has been properly integrated. And like other similar tools this one
can be found in the extra/svn directory of Redmine.

Normally, a Subversion server uses the Apache web server with the WebDAV
module. The same configuration can be used for a Git and a Mercurial server. And the
Redmine.pm tool is actually another module for Apache that handles authorization.

http://projects.andriylesyuk.com/project/redmine/scm-creator
http://projects.andriylesyuk.com/project/redmine/scm-creator

Configuring Redmine

[86]

So how does it work? When users request access to a repository, Apache asks
Redmine.pm whether it should authorize or forbid them. To give the answer,
Redmine.pm reads data from the Redmine's database. Access is granted or denied
depending on the user's role and permissions. Thus, if the user's role in the project
has the Commit access permission, the user is allowed to commit changes to the
project's repository.

If you want to allow read-only access to the repository for
anonymous users, make the corresponding project public and
grant the Browse repository permission to the Anonymous role.

Let's now see how to configure advanced integration for Subversion:

1.	 We'll start with installing and configuring the Subversion server. It is
assumed that you are going to use Debian/Ubuntu to run the SCM server
and you have already installed Apache. Execute the following command:
$ sudo apt-get install libapache2-svn libapache2-mod-perl2
libapache-dbi-perl

This command will install the WebDAV and ModPerl modules for the
Apache and the Perl DBI library.

2.	 Now, copy Redmine.pm into the Authn subdirectory of the /usr/lib/
perl5/Apache directory:
$ sudo mkdir /usr/lib/perl5/Apache/Authn

$ sudo cp /opt/redmine/redmine-3.2.0/extra/svn/Redmine.pm /usr/
lib/perl5/Apache/Authn/

3.	 Next, we need to know where the repositories are going to be located. If you
have chosen the path in the Automatic creation of repositories subsection, use
that path. Otherwise, let's use /var/lib/svn:
$ sudo mkdir /var/lib/svn

At the moment, we have all that we need to start configuring Subversion
with Apache.
There are two options for adding the Subversion configuration to Apache
configuration files: use an existing <VirtualHost> directive if you want
Subversion to be accessible under a path such as /svn, or add a new
<VirtualHost> directive, if you want to use Subversion under a subdomain,
(for example, svn.mastering-redmine.com). We will choose the first option
(for the second option, you need to create a new virtual host first). Also, we
will use the redmine.conf file that we created while installing Redmine
on Ubuntu using the official tarball (see the Installing Redmine from sources
section of Chapter 2, Installing Redmine).

Chapter 3

[87]

4.	 Open the configuration file of the virtual host and add the following lines
before the closing </VirtualHost> directive:
PerlLoadModule Apache::Authn::Redmine
<Location /svn>
 DAV svn
 SVNParentPath /var/lib/svn

 Order deny,allow
 Deny from all
 Satisfy any

 AuthType Basic
 AuthName "Mastering Redmine SVN Server"
 PerlAccessHandler Apache::Authn::Redmine::access_handler
 PerlAuthenHandler Apache::Authn::Redmine::authen_handler

 RedmineDSN "DBI:mysql:dbname=redmine;host=localhost"
 RedmineDbUser redmine
 RedmineDbPass your_password_here

 <Limit GET PROPFIND OPTIONS REPORT>
 Require valid-user
 Satisfy any
 </Limit>
 <LimitExcept GET PROPFIND OPTIONS REPORT>
 Require valid-user
 </LimitExcept>
</Location>

Instead of the credentials that are used in this sample configuration (the
database name, username, and password), use the real ones. If you are not
sure about them, take them from the Redmine's database.yml file.

You will also need to replace localhost with the IP or hostname
of your Redmine installation if you are using a separate server
for Subversion. Additionally, you may need to modify the bind-
address option of the MySQL server in this case.

5.	 When ready, restart Apache:

$ sudo service apache2 reload

This is it! You are now ready to go with advanced Subversion integration.

Configuring Redmine

[88]

Advanced Git integration can be configured in a very similar way (with some
Git-specific configuration steps). The same can also be done for Mercurial and Bazaar.
However, it would be unfair to only additionally review Git in this section, and it
would be too much to review all SCMs here. So for other SCMs, you should check out
the official tutorials for advanced integration at http://www.redmine.org/projects/
redmine/wiki/HowTos. See the Source Code Management (SCM) section there.

Troubleshooting
No one is lucky enough to never have an issue with an application. So, it's essential for
a user to know where to ask for assistance, how to do it, and what information should
be provided to make the issue as clear as possible. That's what we'll discuss now.

Before asking a question, it's always worth ensuring that no one has asked it before
and that the answer has not been given yet. Besides Google, you can search for issues
similar to the one that you experience on http://www.redmine.org/, using the search
form http://www.redmine.org/search. Check the following screenshot:

In most cases, the answer—if it exists—is found in Issues or Messages. The answer
to a frequently asked question can also be found in Wiki pages.

If you can't find the answer using this search form, the first thing to check is whether
the issue is really related to Redmine itself. Thus, it can be related to one of the
plugins that you are using. The easiest way to check this is to try to disable all
plugins (or to disable them one by one to determine which plugin causes the issue).
This can be done by simply renaming the plugins' init.rb files, using the following
command for example:

$ mv redmine_scm/init.rb redmine_scm/init.rb.bck

This command should be executed for each subdirectory (redmine_scm is such a
subdirectory) of Redmine's plugins directory (this is where plugins are located).
Also, don't forget to restart Redmine after executing this command.

http://www.redmine.org/projects/redmine/wiki/HowTos
http://www.redmine.org/projects/redmine/wiki/HowTos
http://www.redmine.org/
http://www.redmine.org/search

Chapter 3

[89]

If it appears to be an issue in a third-party plugin, contact its author or the
community. To find the home page of the plugin check out the Plugins page in
the Administration menu (but note that not all plugins specify the home page).
Alternatively, you can try finding the contact details for the plugin using the already
mentioned search form (choose Redmine plugins).

Now it's the time to prepare the details. Let's start with getting information about
the environment under which we are running Redmine. Execute the following
command:

$ RAILS_ENV=production ruby bin/about

For http://mastering-redmine.com/, this command currently gives the
following output:

Environment:

 Redmine version 3.1.1.stable

 Ruby version 1.9.3-p484 (2013-11-22) [x86_64-
linux]

 Rails version 4.2.4

 Environment production

 Database adapter Mysql2

SCM:

 Subversion 1.8.8

 Filesystem

Redmine plugins:

 no plugin installed

Keep this information, as it should be provided in the issue that you are going to
report to developers.

Before asking Redmine developers or the community to help you with your issue,
you should also check out the Redmine log files. In many cases, logs can give you a
hint about the source of the problem, so you can even understand how to resolve it
on your own. Anyway, error messages from your log files, if any, should be always
given to the people whom you ask for help.

Usually, Redmine stores its logs under the own log directory. However, if you use
the Redmine package from the Debian/Ubuntu repository to install Redmine, the log
files will be under the redmine subdirectory of /var/log. The name of the file that
contains logs should be production.log (for the production environment).

http://mastering-redmine.com/

Configuring Redmine

[90]

Normally, a log file consists of blocks like this:

Started GET "/admin/plugins" for 23.197.12.199 at 2015-10-30 20:45:06
-0500

Processing by AdminController#plugins as HTML

 Current user: s-andy (id=1)

 Rendered admin/plugins.html.erb within layouts/admin (4.6ms)

 Rendered admin/_menu.html.erb (7.6ms)

 Rendered layouts/base.html.erb (21.0ms)

Completed 200 OK in 49ms (Views: 38.9ms | ActiveRecord: 1.2ms)

This is a block without errors.

An erroneous block looks like the following:

Started GET "/users/1" for 192.168.0.1 at 2015-10-30 14:13:17 +0000

Processing by UsersController#show as HTML

 Parameters: {"id"=>"1"}

 Current user: s-andy (id=1)

 Rendered users/show.html.erb within layouts/base (4.3ms)

Completed 500 Internal Server Error in 277ms (ActiveRecord: 19.3ms)

ActionView::Template::Error (undefined method `mail' for
#<User:0x00000007a420c0>):

 10: <%=l(:field_login)%>: <%= @user.login %>

 11: <% end %>

 12: <% unless @user.pref.hide_mail %>

 13: <%=l(:field_mail)%>: <%= mail_to(@user.mail, nil, :encode
=> 'javascript') %>

 14: <% end %>

 15: <% @user.visible_custom_field_values.each do |custom_value| %>

 16: <% if !custom_value.value.blank? %>

 app/views/users/show.html.erb:13:in `_app_views_users_show_html_erb___8
01144951909033840_62290640'

 app/controllers/users_controller.rb:77:in `block (2 levels) in show'

 app/controllers/users_controller.rb:73:in `show'

 lib/redmine/sudo_mode.rb:63:in `sudo_mode'

If you are getting something like this, then it's definitely an error in the code.

Chapter 3

[91]

Usually such an error is accompanied by the following message in the browser:

Or it will be something like this if you use Passenger:

So, if you get such messages, look for errors in your logs!

If the error message says could not find gem, try
running bundle install. If the stack trace contains a
plugin's file (a file under the plugins directory), then the
error could be caused by this plugin.

Configuring Redmine

[92]

If your issue is not yet resolved, go to http://www.redmine.org/ and create a new
issue or post a message on its forums.

But if you find a possible security vulnerability, report it to security@redmine.org
instead.

Summary
I guess you have become a bit tired with all these general details, installations,
configurations, integrations, and so on. We have been walking around Redmine for
three chapters, but have not really worked with it (besides the settings, of course).
This was the last such chapter. In the upcoming chapters, you will be learning how
to use its main features (through the web interface).

In the next chapter we will review the primary feature of Redmine, which
is really well implemented and which made Redmine so popular. This feature
is issue tracking.

[93]

Issue Tracking
It's difficult to determine whether Redmine is rather a project management tool
or an issue tracker. Issue tracking is not possible without a project (while some
project management is still possible without issues). Even so, we spend most of our
time working with Redmine as an issue tracker. This appears to be a fundamental
component of Redmine that nevertheless depends on its other components. So, to use
Redmine effectively, you have to learn it. For these reasons, we will start reviewing
Redmine's functionality from its issue tracking capabilities.

In other words, the Issue tracking module is too deeply tied to other Redmine
modules to be reviewed separately. But the opposite is also true—other modules
use issues too extensively to skip issue tracking and start from reviewing other
components. So, in this chapter, we will try to concentrate on issue tracking while
also mentioning other modules if and where they are applicable. But don't worry if
you are not familiar with mentioned modules yet! I will let you know where you'll be
able to check them quickly.

In this chapter, we will cover the following topics:

•	 Creating an issue
•	 The issue page
•	 The issue list
•	 Updating an issue
•	 Issue reports
•	 Importing issues
•	 Keeping track of changes
•	 Issue-related settings

Issue Tracking

[94]

Creating an issue
In order to be able to create an issue, you need to have a project already. So, create
one if you haven't done this yet (use the New project link that can be found under
the Projects menu item). You can also jump to the Creating a project section in Chapter
5, Managing Projects, where project creation is described, and then come back here.

If you already have a project, or after you have created it, navigate to the New issue
tab in the Projects menu. You will see the following form:

This is the form that Redmine users use to create issues. Fields that are marked with
the red asterisk are mandatory.

Issues can be also created via email if you have configured the
email retrieval (as described in the Email retrieval subsection of
Chapter 3, Configuring Redmine), or through third-party tools if
you have enabled the REST API.

Chapter 4

[95]

Let's discuss each element of this form:

•	 In Redmine, the Tracker name is used to describe the type of the issue.
Thus, the appropriate element in JIRA (a popular commercial alternative to
Redmine) is named literally Issue type. By default, Redmine comes with the
following trackers:

°° Bug
°° Feature
°° Support

You can delete, modify, or add trackers using the Trackers page of the
Administration menu, which will be reviewed in Chapter 7, Access Control
and Workflow. For my demo project, I have added a new tracker called
Chapter, which you can see selected in the previous screenshot.

•	 The Private checkbox can be used to make the issue visible only to you and
other members of groups that you are a member of. If the project is private as
well, such users are also required to be members of the project.

•	 The Subject field should briefly describe the issue (like, for example, an
email subject describes the message). In most cases, the tracker and the
subject of the issue (in addition to the unique numerical identifier) are the
only fields that users see on other Redmine pages that mention the issue. For
this reason, the content of this field should be chosen with care.

The subject should give the basic idea about the issue and
should not be ambiguous or too long.

•	 I believe that the Description field does not need an explanation. But it's worth
mentioning that for this field you can use rich text formatting. To get an idea
about its capabilities, you can click on the last button of the upper toolbar.
We will review the appropriate Wiki syntax in Chapter 6, Text Formatting.

Remember that rich formatting can help you draw the eye to
the key messages and highlight specific data, such as code
blocks, in the issue description. This in turn can improve the
overall perception of the issue.

Issue Tracking

[96]

•	 The Status field indicates the status of the issue, such as whether it is active,
whether anyone is working on it, whether it is already resolved, and so on.
In the previous screenshot, the status was set to New as that was a new issue,
and this status was selected by default (I just did not change it). The available
issue statuses, their order and the default status can be configured on the
Issue statuses and Trackers pages of the Administration menu.

•	 The Priority field reflects how urgent or critical the issue is. The values for
this field and their order can be managed on the Enumeration page of the
Administration menu. There, you can also select the default value (which is
Normal by default).

•	 The Assignee field holds the name of the user who will be responsible for
handling the issue. Only members of the project or the original issue author
can be selected here. That is, if you want to assign an issue to someone, you
must first ensure that that person is a member of the project (new members
can be added under the Members tab of the project's Settings page).

•	 The Parent task field can hold the numerical identifier of another issue to
which the new issue will be added as a subtask. To help you identify the
right issue, when you type a value Redmine shows the autocomplete box
with a list of matching issues and their subjects.

•	 The Start date and Due date fields can be used to set the period during
which the issue has to be resolved. Nonetheless, they don't have to be
specified together. These attributes, if both are set, are used to display the
issue on the project's Gantt chart. Also, each of these attributes is used to
display the issue on the calendar. By default Redmine sets the Start date field
to the current date, what can be disabled under the Issue tracking tab of the
Settings page in the Administration menu.

•	 The Estimated time field can be used to specify how many hours it should
take to resolve the issue. This attribute can be especially useful if you are
using the, Time tracking project module (which is described in Chapter 8,
Time Tracking), as it allows you to control the time spent on the issue.

Normally, you should not set the estimated time for an
issue, unless it is assigned to you or you are a manager for
the person to whom the issue is assigned.

•	 The % Done field, also known as the done ratio, indicates how much
percentage of the issue has been resolved. Thus, it should ideally be 0% by
the start date, and by the due date, it should be 100%. The value specified
here is shown on the Gantt chart and is used for the project roadmap to show
the overall progress for the corresponding version.

Chapter 4

[97]

•	 Redmine allows you to add any number of attachments to an issue. Each
attachment can have a description (the special textbox for the description
appears as soon as you upload a file to the issue form). The size of each file is
limited by the Maximum attachment size setting, which can be found under
the General tab of the Settings page in the Administration menu.

It's a good idea to describe the file that you attach to the
issue, using this special textbox. You should do this, even if
it's the only attachment in the issue, as other users can add
more files later (for example, with the same name).

•	 Each issue can be watched. By watching the issue, you will:
°° Be able to see a list of issues that you watch on My page (if you have

enabled the Watched issues block there; this page is going to be
reviewed in Chapter 9, Personalization). In this way, you can have a
kind of a list of favorite issues.

°° Be notified via email about any changes made to the issue (if email
notifications have been enabled and properly configured; refer to
Chapter 3, Configuring Redmine, to learn how to do this).

•	 The new issue form, which you can see in the previous screenshot, includes
checkboxes only for members of the project. To add non-members to the
Watchers list, you need to click on the Search for watchers to add link.

•	 When you have finished editing the issue, you can click on the Create button
to submit it and open its page. Alternatively, if you need to add another
issue, you can click on the Create and continue button to save the current
issue and get the new issue form again.

•	 The Preview link can be used to preview the issue description, in particular
to check how the Wiki markup will be rendered.

Some of the discussed form elements, which are also known as standard fields, can
be disabled for particular trackers on the Trackers page of the Administration menu.
Most of them can also be made required or read-only per issue status, member role,
and tracker on the Workflow page of the same menu. Both of these pages will be
reviewed in Chapter 7, Access Control and Workflow.

Additionally, Redmine supports custom fields for issues, which can add their own
elements to the issue form as well. Custom fields are going to be reviewed in Chapter
11, Customizing Redmine.

Issue Tracking

[98]

Even so, these are not all the elements that this form can include. There can be
more elements added when you configure the project. The project configuration is
discussed in detail in the very next chapter. Now let's talk about only those things
that add new elements to the new issue form.

Issue categories
In many cases, having just the tracker (the issue type) is not enough to describe an
issue. To see what I mean, let's take the Feature tracker. Is an issue of this tracker
for a UI feature? Is it for a new functionality of the project? Is it, maybe, for an API
feature? As you can see, for some complex projects, you may need an additional
attribute to make the issue more concrete. And Redmine does provide such an issue
attribute. But why did not we see it? Because we need to add at least one value for
this field to make it appear on the issue form.

Such values can be added in the Issue categories tab, which can be found in the
project's settings (the Settings tab of the project menu). Here is what this tab looks like:

As you can see, there are no issue categories here for now. To add an issue category,
you need to click on the New category link. Then you'll see the following form:

Chapter 4

[99]

The Assignee field of this form can be set to a user to whom issues of this category
should be automatically assigned (unless of course the assignee was specified
explicitly). Thus, if you have different employees responsible for different parts
of the project, you can create categories named after those parts and specify the
corresponding employees here as assignees for those categories. In this way, a
reporter will only need to select a part of the project and the issue will automatically
get assigned to the corresponding employee.

But wait! How will reporters select the issue category? If you check out the new issue
form after you have added an issue category, you will see an additional field there,
as shown in this screenshot:

The icon at the right-hand side of the field appears only for users who have the
Manage issue categories permission. Such users may add issue categories right from
the issue form.

Some examples of good issue categories are API, Reporting,
Front-end, Back-end, and UI.

Issues and project versions
Normally, a project has multiple planned versions. If so, in which of them is a
particular issue planned to be resolved? This question draws attention to the need
to be able to assign an issue to a project version. However, the issue form that was
shown earlier did not include any field for this. Well, the project that I used did not
have any version either.

As soon as you add a version to the project using the Versions tab, which can be
found on the project's Settings page, the new field appears on the form, as shown in
the following screenshot:

Issue Tracking

[100]

The new Target version field should be set to the name of the version in which the
issue should be resolved. If it's set, the issue will also be listed on the project roadmap
and in the version's change log (both will be reviewed in Chapter 5, Managing Projects).

Similar to the one near the Category field, the icon allows you to add a version
directly from the issue form. Of course, to be able to do this, you must have the
Manage versions permission. You will learn more details about version management
in the next chapter.

The issue page
When you finish creating an issue by clicking on the Create button, you get
redirected to the issue page, which looks like this:

This page not only shows information about the issue but also gives you all the
instruments that you need to work with it.

Chapter 4

[101]

The content of the issue, including its attributes, is located inside the big yellow block.
In the top-right corner of this block, you can see the Previous and Next links. These
links can be used to navigate through the issue list (for example, issue search results).

Below the yellow block, you can see the History section. It lists changes that were
made to the issue and includes information on what exactly was changed, when it
was changed, and by whom.

The sidebar of this page contains the contextual links (most of which will be
reviewed in Chapter 5, Managing Projects) and the Watchers section, which can
be used to manage the watchers of the issue.

Subtasks
In the previous screenshot, at the bottom of the yellow box, you can see two empty
sections. The first of them is Subtasks. If you click on the Add link to the right of its
label, you will be redirected to the new issue form, with the Parent task field pre-
filled with the current issue number. In this way, you can create subtasks.

But, what are subtasks? Let's check out the following screenshot:

These are the subtasks that I added to my demo project. Besides being shown in the
hierarchical structure, subtasks (usually) also define the priority (the highest priority
of all subtasks is used), the start date (the earliest date is used), the due date (the
latest date is used), the done ratio (calculated), and the estimated time (the sum is
used) for the parent task. Certainly, Redmine does not allow you to specify values for
these attributes of the parent task explicitly in such cases. However, this behavior can
be changed from the Issue tracking tab of the global Settings page (we will review
this tab later in this chapter).

Issue Tracking

[102]

The Smart Issues Sort plugin
Redmine has an issue with displaying the hierarchical tree of tasks,
as it strictly keeps the sort order. In the previous screenshot, the
hierarchy is preserved because issues are sorted by numbers and
they are sequential. So, to have the hierarchical tree of issues, you
need either to keep their numbers sequential by creating them in
the appropriate order, or to use the Smart Issues Sort plugin by
Vitaly Klimov, which resolves this issue:
http://www.redmine.org/plugins/redmine_smart_
issues_sort.

Related issues
Another empty section at the bottom of the yellow box on the issue page is Related
issues. If you click on the Add link of this section, the following form will appear
inside it:

This form can be used to associate other issues with the current one. For each such
related issue, you should specify the type of relation.

Some of these types not only describe the relation but also provide implicit
functionality. So, let's review each of them:

•	 Related to: This is one of the relation types that does not do anything. You
can use it just to mark that the issues are somehow related. Also, this type is
selected by default, as it can be seen in the previous screenshot.

•	 Duplicates: This type tells Redmine that the current issue should be closed
when the related one is closed.

•	 Duplicated by: This type is the inverse of Duplicates. It forces the related
issue to be closed when the current one is closed.

•	 Blocks: This type does not allow the related issue to be closed until the
current one is open.

•	 Blocked by: This type is the inverse of Blocks. It tells Redmine to prevent the
closure of the current issue until the related one is open.

http://www.redmine.org/plugins/redmine_smart_issues_sort
http://www.redmine.org/plugins/redmine_smart_issues_sort

Chapter 4

[103]

•	 Precedes: This type forces the start date of the related issue to follow the due
date (plus an optional delay in days) of the current one.

•	 Follows: This type is the inverse of Precedes. It forces the start date of the
current issue to follow the due date (plus an optional delay in days) of the
related one.

•	 Copied to: This type marks the related issue as a copy of the current one and
is automatically set by Redmine when an issue is copied. This relation type
should not be set manually.

•	 Copied from: This type marks the current issue as a copy of the related one
and is automatically set by Redmine when an issue is copied. This relation
type should not be set manually either.

As the Precedes and Follows relation types support an additional delay, the
relation form includes the special Delay field for these two types, as shown in the
following screenshot:

In this field, you can specify the number of days that should pass between the due
date of the preceding issue and the start date of the following issue.

The described implicit functionality can become a source of
confusion. Thus, if two duplicate issues are assigned to different
employees, closing one of them will lead to closure of another
one, and this can come as a surprise to the assignee of the latter.
Also, adding a preceding issue with empty start and due dates
can lead to clearing the dates of the following issue. For these
reasons, you should be careful while managing issue relations.

When added, related issues are shown in the Related issues section, as you can see
in this screenshot:

Issue Tracking

[104]

The issue list
Now that you have learned how to create issues and check their details, let's move
on to the Issues tab of the Projects menu, where they are listed:

On the sidebar of this page, you can see the same Issues section that you could see
on the single issue page. The View all issues link of this section can be used to open
the issue list with all view parameters reset to their default values. The form under
the Issues title in the main content area and above the list is actually the one that you
can use to modify the parameters of the list. Let's discuss this form in detail.

By default, issues are filtered by their status, so only open issues are listed. But you
can add more filters using this form. Thus, you can also filter issues by Tracker,
Priority, Author, Assignee, Category, Target version, Subject, Start date, Due date,
the done ratio, the issue relation, and much more. The following screenshot shows
some of the filters that are available:

Chapter 4

[105]

Each of these filters has a set of its own conditions. For example, the Subject filter
can check a part of the subject, the Tracker filter can look for several trackers (the
little plus icon enables the multi-select mode), and date filters support relative
conditions (such as, for examples, less than days ago, this week, in more than
(days), and so on). The best way to learn these filters is perhaps by playing with
them—if you don't have enough issues on your Redmine installation, you can do this
at http://www.redmine.org/.

Below Filters, you can see the Options label. If you click on it, the following form
elements will be shown:

http://www.redmine.org/

Issue Tracking

[106]

Here, you can choose which columns to include in the issue list. Thus, to add a
column, you should select it in the Available Columns box and click on the right
arrow button . The left arrow button is to be used to remove a column from
the Selected Columns box. The up arrow and down arrow buttons can be used to
get the desired order of columns.

To show you what the Group results by option does, let me select the Status value
for it. Here is what the issue list looks like after applying this option:

As you can see, the list gets divided into groups. Each group has a label with the
number of issues in it. Also, these groups can be collapsed or expanded (using the
gray plus or minus icon correspondingly).

The Show option, if the Description checkbox is checked, adds the issue description
to the list as a separate table row below the main issue row.

Finally, the Totals option can be used to calculate the grand totals of the estimated and
spent time for all the issues that are included into the issue list. The calculated totals will
be shown before the list, to the right of form buttons (that is, Apply, Clear, and Save).

Redmine also has a global issue list, which can be accessed
through the View all issues link on the project list page (click
on the Projects link from the top-left menu to get there).

Every time you click on the Apply button to apply new parameters, they are also
saved in your browser. In this way, whenever you load the issue list again, you get
the same customized view. To reset to the default view, you can use the Clear link of
the parameters form or the View all issues link which is available on the sidebar.

Chapter 4

[107]

Custom queries
All new users, when they come to your Redmine website—despite their roles—will
see the same issue list with the same columns, the same filters applied to the list, and
so on. Actually, this is fine, unless you want them to be able to get the list of issues
that they are interested in with just one click (and without the need to customize the
view). So, how can you do this?

By customizing the issue list you can show: issues that are to be tested to your
testers, features in future versions to public users, feature requests to your
developers, and so on. All you need to do is to share such a customized view with
the appropriate users. You can do this by clicking on the Save link of the parameters
form, which was discussed previously. This will open the query form, which is
shown in the following screenshot:

Issue Tracking

[108]

Most elements of this form are already known to you, so let's discuss only those that
may need an additional explanation:

•	 As you can see, such custom queries can be private (to me only), public (to
any users), or visible only to selected user roles (to these roles only).

•	 By default, a custom query is created for the current project only. So in order
to make it available for all projects, you need to check the For all projects
checkbox.

When you create a public custom query, be sure that it
won't appear to be unsolicited for most of your users
(especially if you are creating such query for all projects).

•	 If using the Columns element of the Options block you have selected
columns which fit your needs but are not likely to be useful for others, you
can enable the Default columns option to use the default columns in the
saved custom query.

•	 The Sort option can be used to select the default sorting mode for the
saved query. This can always be changed by just clicking on a heading
of the issue list.

When you save a newly created custom query, it gets added to the new Custom
queries section on the sidebar where you can access it anytime. If you are currently
using a saved custom query (by the way, the currently used query is saved in the
browser just like the current view parameters), it is highlighted on the sidebar and
its name appears as the title of the page instead of Issues. Also, the Edit and Delete
links appear in the top-right corner of the main content area. These links can be used
to modify or delete the saved query.

Updating an issue
Finally, let's check out how to update issues. To open the issue update form, you
need to click on the Edit link, which is located in the top-right corner of the issue
page (in the contextual menu). This will open the following form below the last
history entry:

Chapter 4

[109]

Most of the fields of this form should already be known to you. The missing text area
for the Description field is hidden to save space and can be revealed by clicking on
the Edit link (with the pen icon).

A new element in this form is the Notes box. As you can see, the text area inside this
box supports Wiki formatting (like the one for the Description field). This is the text
area where you can enter your comments on the issue. If the Private notes checkbox
is checked, such comments will be visible only to those project members who have
the View private notes permission.

Issue Tracking

[110]

When added, issue comments are rendered as history entries, as shown in the
following screenshot:

Private comments have a red stripe to the left and are marked with the label.

Note the two icons to the right of each comment. The pen icon can be used to edit
the comment (if you have the Edit own notes permission, of course), and the chat
icon should be used if you want to quote it. By the way, quoting the issue description
is also easy. To do this, you just need to click on the Quote link with the same icon
that can be found to the right of the issue description.

But what if you need to make the same change to several issues?

Bulk update
Let's go back to the issue list. Right-click on any issue and you will see this contextual
drop-down menu:

Chapter 4

[111]

This menu provides you with a quick way of setting one value at a time for the
Status, Tracker, Priority, Target version, Assignee, or % Done fields of several
issues (you can select multiple issues in the list and then right-click on one of them).

However, it's not, recommended to make one change at a time,
unless it's really going to be the only one. If you make multiple
single changes separately, all of them will be represented as
separate issue history entries and notifications about them will
be sent in separate emails.

If you need to change several fields of multiple issues at a time, you should use the
Edit item of this contextual menu. This item activates the following bulk edit form:

Issue Tracking

[112]

Issue reports
If you click on the Summary link, that can be found in the Issues section on the
sidebar of the aforementioned issue pages, you will be redirected to the issue reports
index, which is shown in the following screenshot:

Tables on this page show summary of issues by their status, that is, how many of the
issues are open, how many of them are closed and their total count. As you can see,
these counts are shown for each tracker, issue priority, assignee, author of the issue,
target version, subproject, and issue category. Every number and row title here is
clickable and redirects to the issue list with the appropriate filters applied to show
the corresponding issues.

Chapter 4

[113]

If you click on the icon near a table caption, you will be redirected to the detailed
report for the corresponding issue property. Thus, clicking on this icon near the
Tracker caption will open the report, which is shown in the following screenshot:

As you can see, the detailed report shows counts for each issue status and not just for
open and closed issues.

Importing issues
You have probably noticed that it's possible to export an issue list to a CSV file using
the corresponding link in the Also available in: block, which can be found below
each issue list. The opposite—to import issues from a CSV file—is also possible.

The Issues section on the sidebar, which we discussed in the previous section, also
contains links such as Calendar, Gantt (about which we'll speak in the next chapter),
and Import. The latter one can be used to import new issues from a CSV file. When you
click on this link, a wizard-style dialog will be opened and you'll be asked to upload a
file. After you do this, the following form—a part of the wizard—will be shown:

Issue Tracking

[114]

Using this form, you should select which columns of the CSV file correspond to
which issue properties. Additionally, you can specify an explicit value for some of
them and even chose to import new values for others.

Keeping track of changes
It's very important to know when an issue that you are working on has been
updated, especially if it has been updated by a customer. So in this section, we will
discuss how to make sure that you will be aware of such updates.

The primary mechanism for notifying users about any events in Redmine is email
notifications. However, it must be configured before you can use it. We have
discussed how to do this in Chapter 3, Configuring Redmine. Also, for notifications to
work for changes in issues, email notifications must be enabled for issue updates,
what can be done under the Email notifications tab of the Settings page in the
Administration menu (using the Issue updated checkbox). Finally, for a user to be
able to receive email notifications, any notification type except No events should be
selected in his/her profile, as this type, in fact, disables email notifications for this
particular user (we'll discuss this in detail in Chapter 9, Personalization).

If it was you who created the issue, or if this issue is or was previously assigned to
you, you should already be receiving email notifications about changes in it. If it's
not so, you need to subscribe to changes in a particular issue using the watching
mechanism. To do this, you just need to open the page of the issue and click on the
Watch link in its contextual menu. This menu is located in the top- and bottom-right
corners of the issue page and looks as follows:

However, to be able to watch issues, you need to be registered in Redmine. Luckily,
Redmine also provides a way to track changes in an issue without watching it. Thus,
you can subscribe to the Atom feed of the issue. This feed is available under the
corresponding link in the bottom-right hand corner of the issue page, as shown here:

An Atom feed, by the way, is also available for the issue list. Using this feed, you can
subscribe to new issues in the project.

Chapter 4

[115]

You can also configure email notifications to be sent when a
new issue is added to the project. To do this, go to your profile
(using, for example, the My account link in the top-right menu),
select the For any event on the selected projects only option
under Email notifications, and choose the projects for which
you want to get such notifications. But note that in this case,
you'll be notified about all events on the selected projects.

Configuring issue tracking
Let's now see what configuration options are available in Redmine for issue tracking.

The Issue tracking module
Everything you have read in this chapter so far can actually be disabled for a project
with just one click. However, I'm not sure who might need to do this and why...
Anyway, just in case you got Redmine with issue tracking disabled by someone else
or whatever, let's discuss how Issue tracking can be enabled (or disabled) for a project.

Open the project settings by selecting the Settings tab in the Projects menu. Then
select the Modules tab of the Settings page. Make sure that the Issue tracking
module is checked, as shown in this screenshot:

If this checkbox is unchecked, issue tracking won't be available for the project.

The Issue tracking module can also be enabled for all projects
by default. This can be done under the Projects tab of the
Settings page of the Administration menu.

Issue Tracking

[116]

The Issue tracking tab
Remember that we skipped several tabs of the Settings page in the Administration
menu in the previous chapter? It's now time to discuss one of them—Issue tracking:

So let's go through the available settings:

•	 By default, you can mark an issue as related to another one only if both are in
the same project. But if projects hosted on Redmine are somehow related, it
can be useful to link issues from different projects. So, to make this possible,
you need to enable the Allow cross-project issue relations setting.

Chapter 4

[117]

•	 If the Link issues on copy setting is set to Yes, the copied issue will be added
to the original one as related using the Copied to relation type, and the
original issue will be added as a Copied from issue to the copy. If this setting
is set to Ask (which is the default), Redmine will ask you what to do each
time you copy an issue.

•	 By default, subtasks are required to be from any subproject of the topmost
project at any level. This is controlled by the Allow cross-project subtasks
setting, which is set to With project tree by default. To allow subtasks from
any projects, you need to use With all projects for this setting. To allow
subtasks from any subproject or any parent project (but not their other
subprojects), use With project hierarchy. Finally, to allow subtasks only from
subprojects, use With subprojects.

•	 By default, you can't assign an issue to more than one user. However, by
enabling the Allow issue assignment to groups setting, you can make it
possible to assign an issue to a group. Groups can be created and edited on
the Groups page of the Administration menu.

Note that assigning an issue to a group may end up with
nobody taking responsibility for the issue, especially if the
issue is boring.

•	 There were times when the first thing I did after creating a new issue was
removing the current date from its Start date field. So, I was quite happy to
see that the Use current date as start date for new issues setting was added
to Redmine. Disable this setting unless you are sure that all your users will
create issues on the day on which these issues should start, or unless you just
need any value in this field for some reason.

•	 The Display subprojects issues on main projects by default setting is an
option that can lead to confusion. If your subprojects are highly related to
their parent projects, you may want to enable this setting to have issues of
subprojects included in issue lists of their parent projects. But remember
that having forgotten about this feature or not having noticed it, users may
eventually navigate to a subproject and then wonder where the other issues
have disappeared. Also, some users may wonder why certain settings (such
as issue categories and custom fields) that are configured for the parent
project do not work for some issues.

•	 Despite what it may sound like, the Calculate the issue done ratio with
setting is actually about choosing between the manual and automatic
done ratios.

Issue Tracking

[118]

If this option is set to Use the issue status, the % Done issue field disappears
from the issue edit form, so there will be no way to set the done ratio
explicitly. Also, for the automatic done ratio to work, you must configure
the done ratios for your issue statuses on the Issue statuses page of the
Administration menu, as shown in this screenshot (otherwise, the done ratio
will always be empty):

The % Done field for issue statuses is available only when
the Calculate the issue done ratio with setting is set to
Use the issue status.

After switching to the automatic done ratio (or updating the done ratios of
the issue statuses), you should click on the Update issue done ratios link in
the top-right corner of the Issue statuses page to recalculate all done ratios
for all issues.

The Update issue done ratios link is not available if Calculate
the issue done ratio with is set to a value other than Use the
issue status.

Finally, if the Calculate the issue done ratio with setting is set to Use the
issue field (the default value), users will need to specify the done ratio on
their own.

Unfortunately, in practice they often don't specify the done
ration on their own. I guess this is the reason support for the
Use the issue status option was added. So, you should consider
using this option, if the done ratio is important to you.

•	 Using the Non-working days setting you can select which week days should
not be considered to be working. This setting affects the Gantt chart and
calculation of issue date properties.

Chapter 4

[119]

•	 Two other settings in the main block, which are Issues export limit and
Maximum number of items displayed on the gantt chart, can be used to
limit the number of issues that can be exported to a CSV file and included
into a Gantt chart correspondingly.

•	 The Parent tasks attributes block contains settings that allow you to control
how the Start date, Due date, Priority, and % Done fields are determined
for parent tasks (that is, issues that have subtasks). If these settings are set to
Calculated from subtasks, the values of the corresponding fields of parent
tasks are calculated as described in the Subtasks subsection of The issue page
section of this chapter. If the Independent of subtask value is selected, these
fields are to be set manually.

•	 The last block, which is Default columns displayed on the issue list,
can be used to select different default columns for issue lists on your
Redmine installation. Thus, instead of making each user select the columns
that he/she wants to see in the issue list, you should determine (in a way
that is out of scope here) which columns are most commonly needed by your
users and select them on this page.

•	 In the last block, using the Totals setting you can also choose to show grand
total counts of the estimated and/or spent time of the included issues in the
issue list by default.

Issues and repository integration
To check other settings that are related to issues, we need to go to the Repositories
tab of the Settings page in the Administration menu. We will speak about the part
of this page which is shown in the following screenshot:

Issue Tracking

[120]

The Referencing keywords setting holds the words that, if found in commit
messages before an issue number (# plus a number), generate a reference for the
appropriate issue. In practice, however, you most likely will want to specify an
asterisk (*) here, which means that no special word is required for a reference
to be created (only the issue ID is enough). Also, such a reference can be created
for several issues at a time. To do this, you need to list these issues in the commit
message separated by commas, spaces, or ampersands (&).

But, what is a reference? Let's check out the issue shown in the following screenshot:

The gray block that you can see under the Associated revisions title contains an
issue reference. It was created by an SVN commit command like this (the Fixing
keywords field was set to *, that is, an asterisk):

$ svn commit -m "Fixed that wiki start page can't be changed (#11085)."

An issue can have any number of such references.

Chapter 4

[121]

Special issue references can also be used to modify the status and/or the done ratio
of the issue. As it can be complicated to find suitable universal words for all available
trackers, Redmine allows you to specify different Fixing keywords for different
trackers for such references. As you might have guessed, this can be done in the table
at the bottom of the settings page.

Let's review a sample: say, if Applied status was set to Closed, % Done was set to
100%, and Fixing keywords included closes, the following SVN command would
close the issue and set its done ratio to 100%:

$ svn commit -m "Fixed that wiki start page can't be changed (closes
#11085)."

Finally, the Allow issues of all the other projects to be referenced and fixed setting
decides whether users will be able to reference and fix issues of projects to which the
repository does not belong. This is unlikely to be needed, unless all your projects are
highly related.

Summary
Having learned the Issue tracking module, you may consider that you have actually
learned Redmine, as issue tracking is its main feature that most people work with.
Other modules are, in fact, not as critical to know for a usual user, and, as it has been
mentioned, the entire Redmine interface is quite easy to understand. However, as
this book is not named Redmine: The very basics, I assume that you want to learn more
to be able to not only use Redmine but also master it.

The next chapter is intended mostly for project managers and site owners, as
it describes the capabilities of Redmine as a project management and a project
hosting tool. But it should also be interesting for usual users as it teaches how to
navigate through the project and how to find information. Additionally, it shares
some best practices.

[123]

Managing Projects
Unfortunately, or fortunately, this chapter is not about the project management bit
which is part of software engineering, but about managing projects in Redmine.
Despite this, it is actually targeted at project managers (as well as project owners and
the like). Thus, it describes what tools are available for projects and how they can be
used. Even so, this chapter should not be ignored by regular users as it teaches them
how to find the needed information, where to put requests, how to keep a track of
changes in a project, and much more.

If the previous chapter described Redmine as an issue tracker, this one reviews it as
a project management and project hosting solution. This is a kind of secondary role
served by Redmine.

In this chapter, we will cover the following topics:

•	 Modules
•	 The global configuration
•	 Creating a project
•	 The project pages
•	 The project configuration
•	 Closing a project
•	 The project list
•	 Project maintenance best practices
•	 Administering projects

Managing Projects

[124]

Modules
I have already mentioned modules several times, for example, the Issue tracking
module that we discussed in the previous chapter. Thence, you have probably
concluded that a module is a part of a functionality, and that's correct. But to be
more precise, this is a part of the functionality that is used for projects. This is why
Redmine modules are also often called project modules.

Actually, modules are like bricks, with which you can build a website for your
project. On the other hand, they can also be used to disable functionality that is not
needed. But generally, modules are nothing more than virtual units, as they are not
plugins, their files are not stored separately from the core, and so on.

Certainly modules can also be provided by plugins, but we are going to discuss only
core project modules here. Even so, not all of them will be reviewed in this chapter.
Thus, as we have discussed the Issue tracking module in the previous chapter, we will
skip it here. However, we will review the Roadmap tab of the project menu that is
provided by the Issue tracking module because it has not been reviewed yet. Also, we
will skip the Time tracking module, as it will be reviewed in Chapter 8, Time Tracking.

We start this chapter with reviewing modules because later you will have to choose
which modules to enable for your projects. And how can you do this without
understanding what is provided by those modules?

The Issue tracking module
As I have already mentioned, the whole of the previous chapter was about what
this project module does. However, the Issue tracking module also provides the
Roadmap page, which we have not reviewed yet. So, let's do that now.

The Roadmap page
When enabled, in addition to the Issues and New issue tabs (which have been
already discussed), the Issue tracking module adds the Roadmap tab. This is what
it looks like:

Chapter 5

[125]

This page shows the overall progress for versions of the project and lists the closed
and open issues for some trackers, thus producing feature lists for the versions.

On the sidebar, under the Roadmap label, you can select trackers that should be
listed on this page. By default, only those trackers for which the Issues displayed in
roadmap option is enabled (on the Trackers page of the Administration menu) are
selected and listed here.

Also by default, the roadmap shows only open versions. But you can change this by
enabling the Show completed versions option (and clicking on the Apply button).

If the project has subprojects, there will also be the Subprojects option. This option
can be used to make the roadmap include versions and issues of subprojects.

Under the Versions label, you can see a list of available versions (my project has
only one version, which is Second edition). Completed versions, if they exist in the
project, will be available under the toggle box with the title Completed versions.

The New version link that you see in the top-right corner of the content area is a
shortcut for adding a new version (we will review this in The Version tab subsection
of The project configuration section of this chapter).

Managing Projects

[126]

As you might have guessed, the Second edition label near the yellow box icon ()
is the title of the version. Below the title, you see the effective date, which is shown
only if it has been specified for the version.

The progress bar—perhaps the main element of the roadmap page—uses a simple
algorithm to show the done and completeness ratios (the latter has a slightly
lighter color). The done ratio indicates how many issues are closed out of the total
number. The completeness ratio indicates what percentage of the rest of the issues
is completed. For both of these ratios, Redmine attempts to take the estimated hours
into account.

You can click on the issue counts below the progress bar to
see the list of referenced issues.

Below the progress bar and above the issue list, Redmine shows the content of the
associated Wiki page. We will review later what this page is and how can it be specified
(The Version tab subsection of The project configuration section).

You can also right-click on an issue in the issue list to get
the contextual pop-up menu. This menu can be used to
manipulate the issue.

The Version page
If you click on a version title on the roadmap page, you will be redirected to the
version page, which looks like this:

Chapter 5

[127]

As you can see, the version page contains generally the same information as the
roadmap, but it's about a single version. Also, unlike the roadmap, the version page
lists all issues of the version in the Related issues block.

Additionally, this page contains a contextual menu that can be used to modify the
version (the Edit link), edit the associated Wiki page, or delete the version.

Also, it has the special Issues by block that allows you to check completeness ratios
per different values of an issue attribute. Thus, it's possible to see completeness
progress bars for different categories, trackers, statuses, priorities, authors, and
assignees of issues of the version. To change the mode of this block, just select a
different issue attribute in the drop-down list.

If you have enabled the Time tracking module, this page will also show the
total estimated time and the total spent time for issues of the version in another
separate block.

The News module
It's essential that all major changes made to a project are accompanied by official
news from the owners of the project. Therefore, Redmine would not be a good
project hosting solution without the News module.

When enabled, the News module adds the News tab to the project menu, as shown
in this screenshot:

Managing Projects

[128]

Under this tab, you can see the list of all news about the project. To subscribe to these
news feeds, you can click on the Watch link in the top-right corner.

You can also subscribe to project news using the Atom
link and your favorite feed reader.

If you have the Manage news permission, you will also see the Add news link in the
contextual menu. Clicking on this link shows the following form above the news list:

As you can see, the news description supports Wiki formatting. To ensure that the
content will be rendered correctly, you can use the Preview link below the form.

The value of the Summary field is to be used as a short description of the news and
should always be specified. It is shown along with the news title on the Redmine
start page and the start page of the project, but note that unlike Description, this
field does not support Wiki formatting.

Chapter 5

[129]

If you click on the news title, you'll be redirected to the news page, which is shown
in this screenshot:

If you have the Comment news permission, you will see the Add a comment link on
this page. Clicking on this link opens the form containing only one text area, which
also supports Wiki formatting. Using the trash icon to the right of the comment,
users with appropriate permission can remove the comment.

If you are interested in getting notifications about new comments in the news, you
can click on the Watch link in the contextual menu of the news page (after this, the
link will change to the Unwatch link). If you have authored the news, watching will
be enabled for you automatically. Other links in this menu can be used to edit and
delete news.

The Documents module
The Documents module can be useful if the project has a lot of documentation. Let's
see what this module can do for you.

Managing Projects

[130]

When enabled, this module adds the Documents tab to the project menu, which is
visible only if the user has the View documents permission. This tab is shown in the
following screenshot:

Here, the Outline, Planning and writing a chapter, and Submitting your work links
are document titles. Below each title, you can see the date when the document was
added and an optional short description.

In the previous screenshot, the documents are listed by categories. Thus, Supporting
documents and Author resources are their names. Document categories are global
(that is, for all projects) and can be managed from the Enumerations page of the
Administration menu, as shown here:

Additionally, it's possible to list documents by date, title, and author. To change the
display mode, you just need to click on the corresponding link on the sidebar.

Chapter 5

[131]

Thus, when documents are listed by titles, only the first letter of the document title is
used for groups, as follows:

Now let's see how to add a document. To do this, you need to click on the New
document link. It will open the following form:

In Redmine, a document is a documentation object that can include, for example,
images, chapters, and so on as separate files. For this reason, the document form
can be used to upload multiple files one by one—when you choose a file, it gets
uploaded and the Choose Files button becomes available again.

To edit a document, click on its title to be redirected to the document page and
then click on the Edit link there. In the same way, you can use the Delete link to
remove a document.

The Document Management System Features plugin
A more featureful document management solution is
provided by the DMSF plugin, which was originally
written by Vít Jonáš (it is now maintained by Daniel
Munn). You can get this plugin at:
https://github.com/danmunn/redmine_dmsf

https://github.com/danmunn/redmine_dmsf

Managing Projects

[132]

The Files module
You will need the Files module if you want users of your project to be able to
download project files (for example, releases). When enabled, this module adds the
Files tab to the project menu, which looks like this:

Project files can optionally be associated with a particular version. Thus, in the
preceding screenshot, all the files belong to Second edition. The file list can be sorted
by filename, date, size, and download count (that is, D/L).

If you click on the New file link, you'll get this form:

As you can see, with this simple form, you can upload multiple files at once.

What is the difference between files and documents?
Unlike documents, files can be added to a particular project
version. Only for files Redmine provides MD5 hashes and
saves the download count. Files are available right under
the Files tab, whereas to download documents, you need to
locate and open the documentation object first.

Chapter 5

[133]

The Wiki module
Under this subsection, we will review what is provided by the Wiki module. The
Wiki syntax will be reviewed in the next chapter.

Don't confuse Wiki formatting with the Wiki module.
The former is a feature of Redmine that is widely used
by its components, and the latter is a virtual module that
implements the Wiki tab of the project. Thus, Wiki formatting
still remains available for issues, project, and document
descriptions, and so on if the Wiki module is disabled.

The Wiki tab plays the role of the entry point to the project's Wiki system. However,
by default, there are no Wiki pages in the project, that is, the landing page for the
Wiki system does not exist either. Therefore, when you click on the Wiki tab, you
get the Wiki page edit form (or an error if you don't have permission to edit the Wiki
page). This form looks as follows:

Managing Projects

[134]

Certainly, the content field of this form supports Wiki syntax. A short description of
this syntax becomes available when you click on the last button of the toolbar.
When the page content is ready, you can click on the Preview link to check how it is
going to be rendered. The preview of the page will be shown below the form.

This form also has the special Comment field. This field should be used to specify
what changes were made to the Wiki page. For new pages, I usually write Created
here. A little later, I will show you what these comments are used for.

Using the file upload element of this form, you can add any number of files to the
Wiki page. Usually, these will be images that will be shown on the page.

The Parent page field can be used to make the page a child of another page. This
will affect the index of the Wiki pages (which we'll discuss later in this subsection).
Additionally, child pages will get breadcrumbs:

Here, the breadcrumbs are the Wiki and Versions links in the top-left corner. They
point to the corresponding parent Wiki pages.

Let's also discuss the layout of a Wiki page using the previous screenshot as an
example.

To the right of the breadcrumbs, you can see the contextual menu. The Edit link in
this menu redirects to the edit form, which is similar to the one that we discussed
earlier. The Watch link allows subscribing to changes that will be made to this Wiki
page. The Delete link can be used to remove the Wiki page.

The Lock link is only available for users who have the Protect wiki pages
permission. The title of this link is a bit confusing, as it may be considered that no
more changes are going to be allowed on the page if you click on it, but this is not
so. You, as well as other users who have the Protect wiki pages permission, will still
be able to modify the page. Also, only such users will be able to unlock it. So this
link can be used to protect the page from other Redmine users, that is, to restrict its
editing to trusted users only.

Chapter 5

[135]

Before we discuss the Rename link, let's figure out how to create a Wiki page.
Similar to many other Wiki systems, a Wiki page in Redmine can be created in the
following two ways:

•	 By adding the page name to the URL: For example, if the URL for the project
is http://mastering-redmine.com/projects/book, you can create a
page with the name Test-page by adding this name to the URL as follows:
http://mastering-redmine.com/projects/book/wiki/Test-page (note
the additional /wiki/ path). Going to this URL will invoke the previously
discussed edit form, where you will be able to specify the content for the
page (if you have permission to do this, of course).

•	 By adding a link pointing to the new page on any existing page: The
new Wiki page that you are going to create should be referenced from
somewhere. So, just add a link to this not-yet-existing page there. The syntax
for adding a link to a page is as follows:
[[Test-page|Any display text]]

This link will be rendered in red, which means that the referenced page does
not exist.

If you click on this link, you will be redirected to the edit form just as with the
previous method (in fact, it's the same as going to the URL of a new page).

The latter method is easier and should be preferred, as it
also sets the page that contains the link as the parent page
automatically. So, don't forget to clear the value of Parent
page if this is not what you want.

But what if you've made a mistake in the page name? This is what the Rename link
is available for in the contextual menu. Clicking on this link redirects to the form
shown here:

http://mastering-redmine.com/projects/book
http://mastering-redmine.com/projects/book/wiki/Test-page

Managing Projects

[136]

Title here is actually the name of the Wiki page, as it can be seen in the URL. This
name is also used when you reference the page on other Wiki pages. Therefore,
the Redirect existing links option has been checked. If this option is checked, the
renamed page will still be accessible by the old name (and URL). Additionally, this
form allows you to change the parent page and even the project of the page (that is,
it allows you to move the page to another project).

Always enable the Redirect existing links option if the page
has been available under the old name for some time. This is
recommended not only because users could have referenced it
on other pages or have saved the old URL in their favorites, but
also because search engines could have already indexed it.

The last link from the contextual menu of the Wiki page that is to be reviewed is
History. When you click on it, you will see something like the following:

This is where comments discussed earlier are shown. By choosing the versions (for
example, 1 and 2) and clicking on the View difference button, you can see what
changes were made between them:

The Annotate link, which is located to the right of the version on the History page,
can be used to check who authored which line of the Wiki page. And the Delete link
near it can be used to clear the history from redundant entries, if you have the Delete
wiki pages permission. This, however, won't remove the changes themselves, unless
you delete the latest version of the page.

Chapter 5

[137]

On each Wiki page, below the content you can also see the Also available in:
block of links. Using these links you can export the page content in PDF, HTML,
and TXT formats.

On the sidebar of each Wiki page, you will see the navigation menu, which looks
like this:

Navigation in a Wiki system is usually implemented using the Wiki syntax (that
is, through links). But if the authors of Wiki pages have failed to maintain the
navigation, you can always use this navigation menu to find the page you need.

Custom content on the sidebar under the Wiki tab
Redmine allows you to add custom Wiki content to the sidebar
of the Wiki module. To use this feature, you need to create a
Wiki page named Sidebar. Its content will be automatically
shown on each Wiki page above the navigation menu. However,
note that the sidebar content should start with a ### (h3.) title to
look similar to other titles on the sidebar.

The index of Wiki pages mentioned earlier is available under two links—Index
by title and Index by date. The index that can be accessed by the former link also
displays the structure of the Wiki pages, like this:

As you might have noticed, this index can be watched. And if you watch it, you will
be notified about every new Wiki page that gets added to the project. In addition to
watching, you can subscribe to this list using the Atom link.

Managing Projects

[138]

The Redmine Wiki Extensions plugin
You might want to install the Wiki Extensions plugin by r-labs.
It allows you to add tags and comments to Wiki pages, use Wiki
pages as tabs in the project menu, and much more. Check it out
at http://www.r-labs.org/projects/r-labs/wiki/
Wiki_Extensions_en.

The Repository module
Redmine was designed mainly for software projects. Each software project has
source code, so it's essential for Redmine to have a source code browser. Nowadays,
software projects use revision control systems for collaboration. Therefore, Redmine
needs to support such systems as well. In Redmine, all such functionality is provided
by the Repository module, which adds the Repository tab to the project menu and
the Repositories tab to the project's Settings page.

So, let's review the latter first. Go to the Settings tab of the project menu and select
the Repositories tab. You should see something like the following:

By default, there is no repository in the project. To add one, you need to click on the
New repository link. This is what you will see next:

http://www.r-labs.org/projects/r-labs/wiki/Wiki_Extensions_en
http://www.r-labs.org/projects/r-labs/wiki/Wiki_Extensions_en

Chapter 5

[139]

The SCM field of this form contains only those SCMs that have been permitted by
an administrator on the Repositories tab of the Settings page in the Administration
menu. That page and tab were discussed in Chapter 3, Configuring Redmine.

The Main repository checkbox must be checked for one of the repositories of the
project (it can be any). If you are adding the first repository for the project, the Main
repository option will be enabled anyway, even if you disable it in the form. Then, if
you enable it for any next repository of the project, this option will be automatically
disabled for the previous main repository. In this way, Redmine ensures that there is
only one main repository in the project.

The Identifier field is required if you have or are going to have many repositories in
the project, as it is used to distinguish them.

What other fields are available in this form depends on the type of SCM (for
example, Subversion). To determine the correct values for those fields, you need to
contact the administrator of your repository.

The Git repository is slow?
If you have commits with a huge amount of modified
files and directories, loading the Git repository can
become slow. To resolve this issue, try disabling the
Report last commit for files and directories option.

Redmine expects all the repositories that you add using this form to be already
available. In other words, this form just registers them in Redmine. However, you
can configure the automatic creation of repositories using the reposman.rb tool,
which was described in Chapter 3, Configuring Redmine.

The SCM Creator plugin
You can also use the SCM Creator plugin for Redmine. It
allows you to create repositories directly from the discussed
form. Check it out at http://projects.andriylesyuk.
com/projects/scm-creator.

http://projects.andriylesyuk.com/projects/scm-creator
http://projects.andriylesyuk.com/projects/scm-creator

Managing Projects

[140]

After you have registered a repository, it gets added to the repository list of the
project, as shown in the following screenshot:

Every commit in revision control systems is associated with a username. This
username, however, can differ from the one in Redmine. In such cases, Redmine won't
be able to detect the correct users for commits. That's what the Users link is for. When
you click on this link, Redmine opens a form that can be used to associate repository
usernames with Redmine users. By default, Redmine assumes that the same username
means the same user. And, if Redmine fails to find an appropriate user, it will just
show the repository username as it is (without the link to a Redmine user).

I am not sure whether you have noticed, but in addition to the repository that
appeared in the repository list, the project now has a new Repository tab (just before
Settings). This tab is also provided by the Repository module, but it appears only
when at least one repository is available in the project.

So, let's check out what's under this new tab:

Chapter 5

[141]

The upper part of the screen can be used to browse the source code. You can either
click on the directory names to go to a separate page with their content, or use the
plus icon () to show the content in place. The lower part displays the information
about the last 10 commits that were made to the repository. To view all the commits,
you can click on the View all revisions link. Finally, to view some basic statistics
about when commits were made and who committed the changes, use the Statistics
link in the top-right corner.

You can also subscribe to commits using the Atom link.

If you click on a revision number, you will see a brief summary of the changes that
were made in this revision. Here is a sample:

So, to see what exactly was changed, you can do any of these actions:

•	 Click on the View differences link on this page (for the entire commit)
•	 Click on the diff link near the filename on this page (for this particular file)
•	 Select the revisions and click on the View differences button on the main

(previous) screen (for differences between revisions, which can include
several commits)

Managing Projects

[142]

You will get something like this:

If you click on a filename in the main screen of the repository browser, you will
be redirected to a page about that file. It will contain the following four links in its
upper part:

All of these links, except Download, open a separate page:

•	 History: This page lists only those revisions that have affected this file. On
this page, you will also be able to select two revisions and click on the View
differences button to see what changes were made to the file between them.

•	 View: This page just shows the content of the file with highlighted syntax.
•	 Annotate: This page shows the content of the file too, but additionally, it

includes information about who authored each line of the file and in which
revision, like this:

Chapter 5

[143]

•	 Download: This link just triggers the file download.

Also, you're probably wondering how the Repository tab looks if more than one
repository is used in the project. It looks the same. In the case of many repositories,
the sidebar just contains links that allow quick switching between the repositories, as
shown in the following screenshot:

Now, you can play with the repository browser more on your own to see all its pages
and features. In my opinion, the Repository module is the most visually beautiful
core module of Redmine, so it's really worth playing with. (If you don't have
a repository to play with, you can check out http://www.redmine.org or
http://mastering-redmine.com.)

http://www.redmine.org
http://mastering-redmine.com

Managing Projects

[144]

The Forums module
The Forums module is often undeservedly ignored by Redmine users. Therefore, in
practice it is underused. So what is the use of this module?

A project needs to provide some means to support its users, answer their questions,
and so on. The Forums module adds discussion boards that make this possible. A
board can have an unlimited number of threads, called topics. Each topic can have
any number of posts, which are called messages.

However, in practice, users rarely use forums to ask for support. Most likely, they
will use issues for this, especially if Redmine comes (and it does by default) with
the Support tracker that is intended for such use. So, why not? Why should you use
forums instead?

Let me explain:

•	 Firstly, support issues will get mixed in with others (bugs, features, and so
on). This will make the issue list harder to read and will require users to
configure filters.

•	 Secondly, when you resolve an issue, you should close it! And closed issues
are going to be hidden, while forum threads remain open and visible even
after they have been resolved. In this way, with forums, you will build a
troubleshooting database, while with issues, you are going to get duplicates.

•	 Thirdly, topics can be categorized using boards. While issues also support
categories, users can't subscribe to them. And they can subscribe to boards
and topics. The possibility of subscribing will also let volunteers help you
support your customers.

•	 Fourthly, forums and issues use different permission sets. This means that
you can have a special role for community supporters and you won't need to
take them into account when granting permissions for issues.

As you can see, forums are better for customer support to some extent.

If you have decided to go with forums, consider removing
the Support tracker to avoid confusion.

Chapter 5

[145]

Before we proceed with checking out the capabilities of this module, we need to
configure it. Its configuration can be done on the project's Settings page under the
Forums tab, which is shown here:

Click on the New forum link to add a new discussion board. This will open the form:

The value of the Name field should briefly describe the topic of the forum. The
Description field should contain a longer description. Thus, good examples of the
values are the following:

Name Description
General discussions If no other forum fits, write here
Help If things do not work, ask here
Development Anything about development should be written here

As soon as you create the first forum in the project, the Forums tab will be added to
the project menu:

Managing Projects

[146]

If you have only one forum, you will see its topic list under the Forums tab. But if you
have more forums, then under the Forum tab, you will see the list of forums first.

You can watch the forum by clicking on the Watch link or by subscribing to the
Atom feed. If you have more than one forum, you will also be able to subscribe to
new forums using the Atom link on their index page.

Now, let's add a topic. If you click on the New message link, the following form will
appear above the topic list:

Certainly, forum messages also support Wiki formatting.

If the Sticky option is enabled, the topic will always appear at the top of the message
list. If the Locked option is enabled, no more replies will be allowed for that
particular topic (consider it like closing the discussion).

Chapter 5

[147]

When the message is saved, you are redirected to the page of the newly created
topic, which looks as follows:

The first message in a forum creates a new topic. The user who creates a topic is
automatically added to its watcher list (that's why we have the Unwatch link in the
preceding screenshot).

To reply to a message, you can use either the Quote link, which will insert the
quoted content of the original message into your reply, or the Reply link. In both
cases, an additional form that contains just a text area is shown under the Reply link.
Replies are added to the existing topic as messages.

Now let's check out the forum page again (I have added several other topics):

Here, you can see how sticky and locked topics are shown. The RE: A demo topic for
the book link is a quick shortcut to the last message in the topic. The message list can
be sorted by the Created, Replies, and Last message columns.

Managing Projects

[148]

The Calendar module
The Calendar module adds a tab with the same name to the project menu. It looks
like this:

As you can see, the calendar shows the start and due dates of issues, if they are
specified. Thus, the start date is shown with a green arrow pointing forward , and
the due date with the red arrow pointing backward . If the start and due dates are
the same, a red rhombus () is shown.

Chapter 5

[149]

Hovering the mouse cursor over an issue opens a box with its details. These details
include the assignee name, priority, status, and so on:

If a version has the due date, it will also be shown on the calendar, as follows:

Here, Second edition is the name of the project version.

Also, you might have noticed that the calendar page contains a filter similar to the
one we saw on the issue list. In fact, this can be considered to be the same filter,
as its configuration is retained when you move between the Issues, Calendar, and
Gantt tabs.

The Calendar module is really useful if issue reporters and/or assignees always
specify the start and due dates. But if an issue has neither, it won't be displayed on
the calendar at all.

The Redmine ICS Export plugin
This plugin allows you to export issues and versions into
ICS format, which is compatible with most major pieces
of calendar software. Refer to https://github.com/
buschmais/redmics.

The Gantt module
It seems that no project management software is complete without the Gantt chart, as
this type of bar chart is perfect for representing the flow of work in a project in terms
of time and resource availability.

https://github.com/buschmais/redmics
https://github.com/buschmais/redmics

Managing Projects

[150]

In Redmine, such a chart is available under the Gantt tab of the project menu, but
only if the Gantt module is enabled, of course.

It's good that I worked on the book with quite a big delay (not so good, but…) as you
can see how delays are displayed on the Gantt chart. The delay is marked in red on
the graph. Also, issues that should have been closed according to their due date have
red titles here (this time it's fine, as the chapters are going to be closed during the
rewrite phase of the book). Finally, the issue that is in progress has an orange title.

The blue arrows on the Gantt chart indicate issue relations (next chapters follow
previous ones).

Like the calendar, the Gantt module uses the same issue filter that is used by the
issue list, what means that you can configure what to show on the Gantt chart using
the Issues tab. The Zoom in and Zoom out links allow zooming of the chart down
to weeks or days or up to months, respectively.

The Previous and Next links under the chart allow movement between periods.
For example, if the chart shows January – June 2015, the Previous link will move to
July – December 2014 and the Next link will move to July – December 2015.

Additionally, a Gantt chart can be exported as a PDF document or a PNG image.

Chapter 5

[151]

Also, as with the calendar, when you hover your mouse cursor over a bar, a box with
detailed information about the issue is shown.

To be able to export a Gantt chart in PNG, you need to have
RMagick installed.

The global configuration
There is still one tab on the Settings page of the Administration menu that we have
not discussed yet. It's the Projects tab. So let's check it out now:

A project in Redmine can be either public or private. A public project is visible
to everyone, even to unregistered users (unless you have restricted access to the
whole of Redmine by enabling the Authorization required option under the
Authentication tab). Of course, access to some pages of the project can still be
restricted, but even if every page is restricted, the public project will still be visible!
It will just appear to be empty. A private project is the opposite—it cannot be seen
by non-members, whatever you do! Thus, you can let unregistered users and
non-members see everything, but still such projects won't be visible to them.

Managing Projects

[152]

So, the New projects are public by default setting should be enabled only if all
of your projects are to be public. Otherwise, it is possible that a project that was
meant to be private is accidentally left public. However, even if you want all of
your projects to be public, you may still want to disable this setting to avoid the
appearance of empty projects in the project list, as users may need some time to
put data into them (later, when their projects are ready, they can change this). You
should consider this especially if you are positioning your Redmine installation as a
list of active and up-to-date applications so that your users won't get frustrated when
they see no data in a project.

The next setting is the reason we started this chapter with a review of project
modules. Now, I believe that you can easily determine which modules you need.
Remember, however, that on this page you select modules that are going to be
enabled by default for all new projects. Also note that users will still be able to enable
modules that are not selected here and disable the ones that you selected.

Perhaps, it's a good idea to uncheck all modules here, except Issue
tracking. In practice, users often skip configuration of modules
when they create a project and leave it as it is. This results in
empty and unused news, documents, files, Wiki, and so on.

Like the previous setting, Default trackers for new projects can be used to select
which trackers should be enabled for new projects by default. Here, you should
enable only those trackers that are going to be common for all your projects.

Please note that if you select no trackers here, Redmine will
assume that all trackers are to be enabled by default.

Each project in Redmine has a unique identifier—a short string with letters, digits,
dashes, and underscores. The main goal of this identifier is to replace the numerical
project ID, which is used internally, by something more readable and memorizable.

For this reason, I'm not sure why one may need to enable the next setting. Perhaps,
it was added for cases when users do not care about the readability of project
identifiers. In other words, if you just don't want users to think up project identifiers
and do not care about their ease of remembrance, you can enable the Generate
sequential project identifiers setting. When it's enabled, Redmine generates
sequential identifiers for new projects. Thus, if the identifier of the previous project
was redmine, the next suggested identifier will be redminf (not very smart, is it?),
and if the previous identifier was chapter-1, the next one will be chapter-2.

Chapter 5

[153]

For the Role given to a non-admin user who creates a project setting, you should
select a role that will be assigned automatically to the user who creates the project.
Certainly, this should be a role with project management permissions. If you don't
do this, such users will get the first role from the role list (which can be checked in
Roles and permissions under Administration). So, using this setting you can avoid
confusion when users discover that some things are not available for them in their
just-created projects (because their automatically assigned role does not have the
appropriate permission).

Creating a project
Now that we have chosen the default values for some project fields, let's create a
project. This can be done in two ways: using the New project link on the project list
(click on the Projects top menu item to get there), or using the link with the same
name on the Projects page of the Administration menu. The latter is available only
for administrators, however. In both cases, you will get the following form:

Managing Projects

[154]

Not much to explain here, right? But let's speak about the best practices for filling
this form. It's perhaps the most important form in Redmine because it is where you
actually create the face of your project.

To be able to create projects, a user must have the Create
project permission. If you want to allow any registered user
to create projects, you need to grant this permission to the
Non member built-in role.

The value of the Name field, which is required, should be as short as possible
but still descriptive. Usually, you will want it to be identical to the project name.
However, if your project is a part of another system, you may also want to prefix
it with the name of that system, for example, Redmine SCM Creator, where SCM
Creator is the project name and Redmine is the name of the system the project was
created for.

The Description field should contain a short summary of the project. While this field
is actually optional, it is highly recommended that you specify it, as it is going to be
the first source of information about your project (as it is shown on the start page of
the project, which will be reviewed soon, and in the project list). While writing the
description, remember about the target audience. Thus, for customers, you should
specify the main features of the project as well as its requirements. However, if
your Redmine installation is used only by developers and other employees, there
is no need to list its features. Instead, you can write about the location of the team,
mention the technologies that are used, and so on.

The meaning of the Identifier field was discussed in the previous section. Here, I
would like to emphasize that the value of this field should be as easy to remember as
possible, while at the same time be informative and similar to the project name. This
value is going to be used in all URLs of the project, and therefore, it will be indexed
by search engines (for this reason, it is recommended that you use dashes instead of
underscores here). But it can also be used by users to create cross-project links in the
Wiki system (see Chapter 7, Text Formatting).

The Homepage field is optional and can be skipped safely. If you specify a value for
it (which should start with http:// or https://), it will just be shown on the start
page of the project.

The Public field was discussed in the previous section too. Its value can be changed
anytime, so in most cases, you will want to disable this option until your project is
ready to go public.

Chapter 5

[155]

Each project in Redmine can have any number of subprojects, each subproject can
have any number of its own subprojects, and so on down to any nesting level. But in
what cases should subprojects be used?

Taking into account their implementation, I come to the conclusion that subprojects
should be projects that are closely related to the main project but still independent.
They should not be like repository branches, as branches share source code and
subprojects don't. They should not be like project modules either (like Forums for
Redmine), as the latter can't be used or distributed separately. (Subprojects can have
their own files under the Files tab, so plugins for Redmine fit better than modules
here.) They can be related to versions of the parent project (as Redmine can share
versions with subprojects). They can share the workflow with the parent project (and
the roadmap of the parent project can include issues and versions of subprojects).
Issues in subprojects can be related to issues in the parent project (and the issue list
of the parent project can include issues from subprojects). Different people can work
on the parent project and on its subprojects (but members can be "inherited"—see the
next option of this form). And so on.

These are not rules or official recommendations (and I'm not aware of any official
recommendations, by the way). These are implementation limitations and features
that you should consider while using subprojects. I just wanted to give you a general
idea of what can be put into subprojects.

Redmine users often use this feature to implement project categories, which are
unfortunately missing in Redmine. While this works, I would recommend that you
avoid doing this. The side effect of such "categories" are empty projects with empty
tabs, with a huge grand total time (it's about time tracking) that was spent on all
subprojects, with activity lists (which include activities on subprojects), with issues
of all subprojects, with some weird members (for example, users who have Create
subprojects permission and were added especially for the purpose of creating
subprojects), and so on.

Generally, the subprojects feature seems to be incomplete, as users often face
different limitations, even when they use it in the right way (for example, issue
categories are not shared). So, the decision to create a project as a subproject should
be based on the available features and not the visual representation (which is the
main reason behind using parent projects as categories).

The Project Sections plugin
An implementation of project categories is provided
by the Project Sections plugin, which can be found at
http://projects.andriylesyuk.com/project/
redmine/project-sections.

http://projects.andriylesyuk.com/project/redmine/project-sections
http://projects.andriylesyuk.com/project/redmine/project-sections

Managing Projects

[156]

But why did I write all this? All this is about the Subproject of option, which can be
used to make the project a subproject of another one.

You can also add subprojects using the New subproject link on the
overview page of the parent project (which we will soon discuss).
Clicking on this link opens the same new project form, but with a
pre-filled value for the Subproject of field.

Subprojects can't share members of the parent project, but they can "inherit" them.
That's what the Inherit members option was added for. When you enable it for a
new project, all members of the parent project (if any) are copied to the new project.
When you disable it for an existing project, all "inherited" members will be removed
from the project.

Now, we come to the modules again. Luckily, we already know what each module
does, so it should be easy to choose which modules to enabled for the project. The
only thing that you should take into account while doing this is that you should
not enable them unless you are going to use them right away. It is better to enable a
project module later—right before using it. Thus, if you have enabled Wiki, be sure
to add a Wiki page; if you've enabled News, be sure to write news (for example,
about creating the project); and so on. Avoid users' disappointment when they reach
an empty page of an unused module.

In the new project form, you should also choose trackers for your project. Here, you
can see just their names, but the associated workflows are what you actually need to
consider. However, it's a bit too early to discuss these things, as they are going to be
reviewed later in this book (in Chapter 7, Access Control and Workflow). Also, which
trackers you need depends on the project (for example, I doubt that you will need
the Chapter tracker for your projects). So, the only thing that I can recommend right
now is enabling as few trackers as possible, because a large number of trackers may
confuse your users.

The project pages
Certainly, not all tabs in the project menu are provided by modules. Thus, even
if all project modules are disabled for the project, it will still have the three core
tabs—Overview, Activity, and Settings.

The Overview and Activity tabs are public and the Settings tab is visible only to
project managers. We will talk about the Settings tab in The project configuration
section. Right now, let's speak about the first two tabs.

Chapter 5

[157]

The Overview tab
The overview page is the landing page for the project. That's why it combines all of
the information that can be of interest to users. However, it needs to be stated that
users who use Redmine intensively rarely come to this page, as they know where
they can find the information they need. On the other hand, new users of the project,
especially first-time users, come to this page more often. So, it can be concluded that
the overview page is intended mostly for new users. Still, this page contains some
information that you won't find elsewhere.

So, let's check out the Overview tab:

The description of the project that you can see under the Overview label is what
you specify in the Description field of the project form. Below the description, you
can see the value of the Homepage field of the same form. Towards the right from
the Overview label is the New subproject link. This link opens the new project
form with the Subproject of field set to the current project. All of these elements are
already known to you.

Managing Projects

[158]

Near the New subproject link, you can see the Close link. This link will be discussed
later in this chapter. On the sidebar, you can see the grand total of the time spent
on this project and the related links. The whole Spent time block is provided by the
Time tracking module, which we'll discuss in Chapter 8, Time Tracking.

The content of the Latest news block should already look familiar to you, as it
contains the latest news provided by the News module, which was discussed earlier.
This block also contains the View all news link, which redirects to the News tab.

The next two blocks are available only on this page.

The Issue tracking block lists the numbers of open and closed issues and total
number of issues for each tracker in the project. If you click on the tracker name or a
number of issues in the Total column, you will be redirected to the issue list with the
issue filter preconfigured to show only the issues of this tracker. And if you click on
a number of issues in the open or closed column, you will get the list of issues of the
corresponding tracker and status.

The Members block lists all members of the project grouped by their roles. Project
managers and administrators can see this information on the project's Settings page,
but other users can find it only here.

The Activity tab
With Redmine, you can keep track of what's happening in the project using email
notifications. But what if you missed some notifications, for example, because there
were too many email messages in your inbox? In such cases, you can always check
out the activity page and filter the actions there to find out what you need. This is
especially useful if you don't use notifications or you are interested in all events in
the project (and you don't have to be its manager for this).

Chapter 5

[159]

The activity page that I'm referencing is available under the Activity tab, which is
shown in the following screenshot:

By default, the activity page shows a summary of events in the project for the
last 30 days. This period can be configured using the Days displayed on project
activity setting, which can be found under the General tab of the Settings page in
the Administration menu. The dates for which the activities are shown can be seen
under the Activity label. At the bottom of the activity list, you can see the Previous
link. This link allows you to move to the previous 30 days (that is, before 11/01/2015).
If you go there, to the right from the Previous link, you will see the Next link. This
link can be used to move back to the current period. So, using these links, you can
navigate the history of project events.

Additionally, you can subscribe to the activity feed using the Atom link which you
can see below the list.

Managing Projects

[160]

The sidebar of the activity page contains the already mentioned filter that allows
you to select what kinds of events you want to see. Most of the event types that are
available here do not need any explanation, so let's review only those that are less
obvious. Thus, if the Issues checkbox is checked, the activity list will include changes
of the issue status and notes. If the Changesets action is enabled, the list will also
include repository commits. And, if the Messages checkbox is checked, you will also
see messages that were posted to forums (including topics, replies, and so on).

Note that the issue events shown here are not the same as
the issue history entries shown on the issue page. The latter
include many more details.

Unfortunately, as you can see, it's not obvious which item is for which event type.
Different event types have different icons, but to learn which one is for which, you
need to use this page for some time. Anyway, let me tell you what events you can see
in the previous screenshot.

The first two items for 11/17/2015 are the status changes for the Chapter #4
and Chapter #5 issues. Below them, you can see the upload of the 9144_Ch04_
PreliminaryDraft.odt file. For 11/16/2015, you see notes for the Chapter #4 issue.

Once you get used to this page, you will love the listing, as it is compact, is easy to
read, and supports the filter—there is no easier way to quickly check out the latest
events in the project.

Global activities
There is also the global activity page that shows events on
all projects (to which a user has access, of course). This page
can be useful for employees who work on different projects,
for example, company directors who want to know what's
happening on all projects. To get there, click on the Projects
item of the top menu and then click on the Overall activity link.

The project configuration
In this section, we are going to discuss topics intended solely for Redmine project
managers, that is, users who have permissions that allow them to edit some project
attributes (or other attributes that are somehow related to projects). It's easy to check
whether you are among of them—if you see the Settings tab in the project menu, it
means you can manage this project (or at least some of its attributes).

Chapter 5

[161]

So, let's move on to this tab:

Here, you see the settings of the project. As you can see, these settings also use tabs.
Let's discuss them.

In this section, we will skip the Issue category tab, as it has been discussed in the
previous chapter. We will also skip the Repositories and Forums tabs as they have been
reviewed along with the appropriate modules. Also, we won't review the Activities
(time tracking) tab because it's going to be reviewed in Chapter 8, Time Tracking.

The Information tab
The first tab of the settings menu that gets opened by default and which you can see
in the previous screenshot is the Information tab. Generally, it contains the same
fields that can be found in the new project form.

Managing Projects

[162]

The only new field in this form is Default version. Using this field you can select a
project version which will be used as the target version for new issues by default.
Thus, you can create a version with the name, for example, Next major release and
select it here to make all new issues assigned to it by default.

Only users who have the Edit project permission will be able
to see this tab.

The Modules tab
Elements of the second tab, which is Modules, can be seen on the new project form
as well. These fields allow you to choose modules for the project, as shown in the
following screenshot:

On this tab, you can enable (or disable) modules anytime—for example, when you
are ready to fill out their pages.

Only users who have the Select project modules permission
will be able to see the Modules tab.

Chapter 5

[163]

The Members tab
The next tab is Members. Check it out in this screenshot:

This is the page where you can manage the members of the project.

To get access to this tab, the user must have the Manage
members permission.

If you click on the New member link, it will open the following dialog:

Managing Projects

[164]

As you can see, in this dialog, you can choose several users and several roles at the
same time (a user can have multiple roles in a project). Notice that the user list also
contains groups, for example, Redmine developers. In this way, you can add all
members of a group as members of the project.

The search field can be used to filter users and groups by parts of their names.
Thus, if I type Jean in this field, the list will contain only Jean-Philippe Lang and
Jean-Baptiste Barth. The green check mark () near the Roles label can be used to
quickly select or unselect all listed roles.

Maybe you have noticed that the user/group list contains only those users who are
not members of the project yet. To assign a different role to an existing member of
the project, you need to use the Edit link in the member list. When you do this, the
following form is revealed in the member's row:

After you have saved the changes or clicked on the Cancel link, this form disappears
and the member's row gets updated accordingly.

The Versions tab
Now, let's see what's under the Versions tab:

This is where we manage the versions of the project.

If you don't have the Manage versions permission, you won't
see this tab.

Chapter 5

[165]

Project versioning is extremely important for software projects. Thus in Redmine,
project versions can be referenced by issues (and you can specify in which version
the issue is going to be resolved), project files can be uploaded for a specific version,
versions are shown on the roadmap, the calendar can show version dates, the Wiki
syntax supports links to versions (we will speak about this later), custom fields
support the Version type, and so on. In other words, by ignoring versions, you
literally limit the functionality that is available for your project in Redmine.

However, it's also important to manage versions correctly. Let's check out the new
version form that becomes available when you click on the New version link. This
form is shown in the following screenshot:

Here, Name is usually a version number but also can be just a string (such as Second
edition in my case). However, it's not recommended to use strings for this field, as
you can end up with a broken order of versions (which can be corrected by using the
Date field though, which we'll discuss soon). This is also the only required field.

The Description field is optional and should contain a very short description of what
is special about this version, for example, Maintenance release. This description is
going to be shown on the roadmap and the version page.

The value of the Status field can be open, locked, or closed. Here, "locked" means
that the version is in a frozen state and all associated issues have been fixed but not
yet tested. Also, you can't change the Target version of an issue to a locked or
closed version.

The Wiki page field contains the name of the Wiki page that describes changes that
were made in this version. The content of this page will be embedded in the version's
section on the roadmap and the version page. Such a Wiki page can contain, for
example, the changelog for the version.

Remember about SEO while choosing the a name for the
associated Wiki page. Thus, you can use the word Changelog
plus the version name, for example, Changelog-1-0-2.

Managing Projects

[166]

When you save the version, the value of the Wiki page field turns into the link that
points to the associated Wiki page (see the Second-edition link in the first screenshot
of this subsection). The same Wiki page is also going to be referenced by the Edit
associated Wiki page: link on the version page.

The Date field is not just for showing the due date of the release. Thus, the value of
this field affects the order of versions, as shown in the following screenshot:

Usually, more recent versions are shown at the bottom of the list, but if a version has
Date, it gets moved to the top. So, other versions appear as newer. In other words, an
empty Date field is treated as distant time in the future.

Actually, you should not mix versions with dates and versions
without dates, as your version list may become disordered.
Nevertheless, you can still use dates for old and current versions
and leave them empty for future versions.

Additionally, the value of the Date field is used to determine whether the version is
completed, but we will get back to this a little later in this subsection.

The last field of this form—the Sharing field—accepts the following values:

•	 Not shared: This version won't be shared. This means that it will be available
only for this project. This is the default value.

•	 With subprojects: This version will be available for all subprojects of this
project down to any nesting level.

•	 With project hierarchy: This version will be available for all subprojects as
well as all parent projects of the current one, but not for other subprojects
of parent projects. To be able to choose this option, the user must have the
Manage versions permission for the parent project as well.

•	 With project tree: This version will be available for all subprojects of the
current project as well as all subprojects of all parent projects of the current
one. Moreover, it will be available for all parent projects of the current
project. As with the previous option, to be able to select this option, the user
must have the Manage versions permission for the parent project.

Chapter 5

[167]

•	 With all projects: This version will be shared among all projects that are
available on this Redmine installation! As this is a very wide sharing method,
this option is available only for administrators. Certainly, you have to be
extremely careful when choosing this option.

Any of these fields can be modified later by clicking on the Edit link next to the
version in the version list. This link opens the same form that we have just reviewed.
Additionally, you can remove the version by clicking on the Delete link.

There is, however, one more thing related to versions that we have not discussed
yet. It's the Close completed versions link, which can be seen on the right-hand side
under the version list (see the first screenshot in this subsection).

A completed version can be considered to be a not-yet-closed version that
nonetheless meets all the conditions to be closed. Remember that when we were
reviewing the Date field, I promised to get back to it? That's here! If the value of
the Date field is in the past and there are no more open issues for the version, such
a version is considered to have been completed. So, using the Close completed
versions link, you can close all such versions with just one click.

The Wiki tab
The last tab of the project's Settings page that we will review in this section is Wiki,
which is shown here:

In this tab, you can specify the landing page for the project's Wiki, which is Wiki by
default. In other words, using this form, you can change the Wiki page that is opened
when you click on the Wiki tab of the project menu. Thus, you may need to do this if
you have prepared a special page for the next release of your project.

The Delete link in the bottom-right corner can be used to delete the start page.
However, it not only deletes the Wiki page itself but also removes the name of the
landing page in the form! So after this, the Wiki tab of the project menu (not of the
project's Settings page) disappears, as the start page no longer exists. Actually, I
believe that a more gracious way to do the same is to just disable the Wiki module.

Managing Projects

[168]

Closing a project
Some companies may work on many small projects. In several years, such companies
end up with a huge list of projects, the majority of which are not used anymore
(that is, there are no new issues, files, Wiki pages, updates on forums, and so
on). However, removing such projects can be unacceptable as some of them can
potentially be renewed in future, others can be forked and some data of the original
project can still be needed for a fork, the data of others can be needed for reference,
and so on. At the same time, leaving such projects in the list can also be problematic,
as in that case, the project list can become unusable. This is when the Close link on
the project's Overview page comes in handy.

When clicked on, and after a confirmation, this link puts the projects into a read-only
state. In this state, all project information remains available and all read permissions
are preserved, but nothing can be changed or added. Also, the Overview page of the
project gets this warning:

Chapter 5

[169]

As you can see, the Close link has changed to Reopen, which can be used to open the
project again. Also notice that the project does not have the New issue and Settings
tabs anymore (as these tabs are to be used to modify the project).

Only project members who have the Close / reopen the
project permission can use this feature.

By the way, the project list does not include closed projects by default.

The project list
Let me say a few words about the page where projects are listed. You have probably
seen this page, as it's where we can find the New project link as well as the View
all issues and Overall activity links, which have been mentioned in this and the
previous chapters. So, you can now see them here:

This page lists projects that are accessible to the user. The list includes a shortened
description of each project. If a project has a yellow star near the name, it means
that you are a member of that project. If a project is a subproject, it will be shown
with an additional margin to the left.

As mentioned in the previous section, the project list does not include closed projects
by default. Therefore, on the sidebar of this page, you can see a form with the View
closed projects option that allows you to change this.

Also, it's possible to subscribe to the list of projects and be notified about new
projects when they are added. To do this, just copy the Atom link and paste it in
your favorite feed aggregator.

Managing Projects

[170]

Project maintenance best practices
As of now, we have reviewed the functionality that is available for projects in
Redmine. However, in my opinion, it's not enough to learn what functionality is
available. It's much more important to learn how to use it properly. So now, I would
like to share some of my experience of what should be done and what should be
avoided. In other words, in this section, I would like to list some best practices for
better project maintenance. So let's go:

•	 Always specify the target version when you close an issue, as it is used for
the roadmap.

•	 Have a future version added to the version list. If you are unsure what
version name or number this will be then name it, for example, Next version.
You can always change the name later. If no future version is available, a
developer won't be able to select a value for the Target version field.

Redmine developers use the following version names
for future versions: Candidate for next major release and
Candidate for next minor release.

•	 Write a changelog for each released version, using the associated Wiki page
functionality. Just the list of fixed issues that is provided automatically is not
enough because this list is often huge, issue subjects are not intended to be
clear enough for a changelog, and so on.

•	 Try to keep the done ratio of issues actual while you work on it. There are
several reasons for this. Firstly, customers may follow the issue and its done
ratio in particular, so this will help them see the progress (while 0% can be
frustrating). Secondly, the grand total of the done ratios is used to show the
overall progress of the project version.

•	 Write news every time you make a release. Customers who are waiting for
a new release of your project may subscribe to the news of your project and
expect to get news about the new release.

Chapter 5

[171]

Custom queries
You should not expect your users to learn how the issue filter works and configure
it to their needs on their own. Wherever possible, you should ensure that they
feel comfortable while browsing your issue lists. And this is not only about your
customers but also—and even especially—about your project members.

Check out the following examples of custom queries. Some of them will possibly be
useful for you. The others, I hope, will give you an idea about custom queries that
you may need:

Name Filters
Field/Option Condition/Value

My open issues Status open

Assigned to "<<me>>"

My open issues in the next
version

Status open

Assigned to "<<me>>"

Target version "Next version"

Issues watched by me Status open

Watcher "<<me>>"

Unassigned issues Status open

Assignee none

New features in the next
version

Tracker Feature

Target version "Next version"

Changelog for current stable
version

Target version "Stable"

Sort Tracker

Roadmap Status open

Group results by Target version

Issues grouped by assignees
and sorted by priority

Status open

Group results by Assignee

Sort Priority

Issues by trackers sorted by
status

Group results by Tracker

Sort Status

The issue filter and custom queries were described in detail in the previous chapter.

Managing Projects

[172]

Administering projects
Redmine also has another list of projects. This list, however, is available only for
administrators. You can check it out on the Projects page of the Administration
menu. It looks as shown in this screenshot:

Here, you can see all the projects that I have on my demo Redmine installation. This
page has a very simple form that allows you to filter projects by their statuses and by
a part of the name. The Clear link can be used to reset values of this form.

Available statuses are: all, active, closed, and archived. If the status filter is set to
active (which is the default), the list won't include closed and archived projects.
You already know what a closed project is. You will read about archived projects
in the Archiving projects subsection. Also note how the subproject, that is, Redmine,
is shown.

Additionally, on this page, you can see another New project link, which was
mentioned earlier in this chapter. This link opens the new project form that we
have discussed as well.

New things on this page are the Archive (and Unarchive) and Copy links. Regarding
the Delete link, I guess there is no need to explain what it does (note that it does this
asking for a confirmation). So now, let's talk about other links.

Chapter 5

[173]

Copying projects
Let's see what happens when we click on the Copy link:

This form is very much the same as the new project form, except that it uses some
values and states of the original project and has the additional Copy block.

In some circumstances, projects hosted in Redmine can be very similar. For such
cases, with this Copy link, Redmine provides a way to create a project template and
then copy it into new projects.

Managing Projects

[174]

The Copy block allows you to choose what types of objects should be copied to a
new project. The Send email notifications during the project copy option controls
whether users should receive notifications about the creation of new issues, forums,
messages, Wiki pages, and so on. Certainly, you should not enable this option, unless
you want to "spam" them.

Archiving projects

You can archive the project template to hide it from
users.

If you have finished a project and do not want it to appear in the project list anymore
and be accessible at all, would you want to remove it? With all issues, all of the
history, all comments and discussions, all of the documentation and Wiki pages? If
you do, you can use the Delete link. Otherwise, you should use the Archive link.

After being archived, a project disappears from the listings and its pages become
inaccessible, but they still remain in the system. Thus, if you change your mind or
just want to check something out in the project, you will be able to unarchive it.

To make a project read-only, use the Close link on the
project overview page instead.

Summary
In this chapter, we reviewed the functionality that you will use quite often while
working with Redmine. The knowledge that you have gained here should help you
configure and maintain your projects with ease.

Nevertheless, the topics that we reviewed were not really complicated and probably
could be learned without reading a book. So, my main goal was not to show you
the basics of managing projects in Redmine, but to show things that you should
consider while doing this. I also tried to share my experience about best practices for
configuring and maintaining Redmine projects. I hope I have succeeded in this.

With each chapter, we learn more and more and you probably wonder, "What else
can be in the next chapters?" But do we know enough? For example, we know that
we can use the Wiki syntax almost everywhere in Redmine, but have we discussed
this syntax? That's what we are going to do in the next chapter.

[175]

Text Formatting
As a developer, I can assure you of the importance of rich text formatting in user
requests—especially in issue descriptions—for good text comprehension. It is
especially important if the one who is going to comprehend an issue (for example)
is constantly dealing with a lot of such issues. In practice, users unfortunately
neglect rich formatting often, what results in bad readability and sometimes
distorted message layouts (when some characters are treated as formatting markers).
Therefore, I believe that familiarity with Redmine text formatting is essential for
using this application. Luckily, the syntax of the formatting language is not too
complicated, as it's based on a plain-text markup language.

Redmine currently comes with native support for two markup languages—Textile
and Markdown. However, we will focus mainly on the former (while mentioning
the latter whenever possible). There are two reasons for this. Firstly, most Redmine
installations (still) use Textile, as it was supported by Redmine long before
Markdown was added. Secondly, Textile is less used in other applications, so you
most likely won't be able to learn it elsewhere.

The Textile markup language attempts to add rich formatting to plain text while
not breaking its readability. Thus, list items begin with * or #, italic text is enclosed
in _ (underline), and so on. This way, if someone writes text not using any formatting
markers, such text will be rendered just fine (in most cases). Moreover, Textile is able
to add rich formatting to plain text that does not include any special Textile rules.
For example:

•	 Pieces of text that are separated by empty lines are rendered as paragraphs
•	 Paragraphs that start with > are rendered as quotes
•	 Strings that start with, say, http://, are rendered as links

Text Formatting

[176]

In other words, Textile is very simple and easy to learn. At least, most of its syntax is.
However, this book is not aimed at simple things that you can learn on your own, so
in this chapter you will also find some complicated advanced topics.

We will cover the following topics in this chapter:

•	 Formatting text in Redmine
•	 The Wiki syntax

Formatting text in Redmine
Initially in Redmine, rich text formatting was implemented mainly for the integrated
Wiki system that is provided by the Wiki module, which was described in the
previous chapter. That's why it is still often called Wiki formatting (and that's the
name I will use to refer to it from now on). Right now, however, the Wiki syntax is
used not only for the Wiki pages but also for issue descriptions, comments, news,
project descriptions, and so on.

The underlying markup language used for Wiki formatting can be selected on the
General tab of the Settings page, which can be found in the Administration menu.
Check out the following screenshot:

Chapter 6

[177]

Thus, if the Text formatting setting is set to none, the content that you put into a
Wiki-syntax-enabled text area will be shown as is, that is, any formatting will be
ignored. This will also apply to the Wiki system, what means that Wiki pages will
lose their formatting. However, the Wiki syntax for Redmine's internal linking
(such as links to issues and Wiki pages), which will be covered further, will still
be functioning! Otherwise, the Wiki system would become completely useless,
particularly without support for cross-page links.

As before, for fresh Redmine installations with a fresh audience, I would recommend
that you choose Markdown for the Text formatting option (see Chapter 2, Installing
Redmine). Certainly, this chapter would become less useful for you in that case. Less
useful but not totally useless, as the Wiki syntax has a part that is common to both
Textile and Markdown.

The Wiki toolbar
Almost every text area for a field that supports Wiki formatting comes with the
Wiki toolbar:

This toolbar does not convert the text area into a What You See Is What You
Get (WYSIWYG) editor, however. It just provides an easy way to paste the most
commonly used formatting markers. Unfortunately, a well-working WYSIWYG
solution for Redmine currently does not exist as far as I know.

For Markdown, this toolbar does not include the underline
button, , as this markup language does not support this style.

The last button in the toolbar, , opens a quick reference for the Wiki syntax.
The page that gets opened also includes a link to more detailed documentation.

None of the buttons in the toolbar open a dialog. All of them just paste the syntax
markers at the current position in the text area. Also, if the user selects part of the text
in the text area, clicking on these buttons formats the selected text accordingly. Thus, if
the user clicks on the button, the selected text will be enclosed in * (the bold marker).
If the user selects several lines of the text and clicks on the or button, * or # (list
markers) will be prepended at the beginning of each selected line accordingly.

Text Formatting

[178]

The Wiki toolbar is really helpful when you have just started using Redmine and
therefore do not remember all the markers. After you become a more experienced
user, I believe you will prefer to type them directly in the text area (at least I do).
Also, the Wiki toolbar does not cover all the available markers, so you won't be able
to completely avoid typing them anyway. For this reason and because we have not
covered the available syntax yet, we won't review these buttons here. However, you
may play with them on your own.

To get a hint of what a button does, hover the mouse cursor
over it.

Preview
In most cases, forms with Wiki-syntax-enabled text areas include the Preview link,
an example of which is shown here:

This link can, and should, be used before submitting the content to Redmine to check
whether it's going to be formatted correctly. When you click on this link, the preview
of the content of a Wiki syntax-enabled text area will be rendered beneath the form.

Always use the Preview link, if available, before submitting
content to the server. Do this even if you are sure that the markup
is correct and even if you did not use any markers at all, as the
content can still include some special characters or sequences of
characters that may be treated as formatting markers by the core
Redmine formatter or third-party extensions.

Of course, in most cases, you will be able to fix the content later after submitting it.
However, if users are subscribed to the content, they will most likely get the initial
version and not the fixed one. Also, further changes are sometimes logged in the
change history of the resource (for example, the issue history), thus clogging it.

Chapter 6

[179]

Where to store linked images?
Wiki content can use linked images. Here, the word linked means it's hosted on the
same Redmine installation, and possibly stored in the same resource (for example,
an issue) and embedded in the Wiki content of the resource using the Wiki syntax.
While the Wiki syntax allows the linking of images that are hosted on external
websites, this can be inadmissible in many cases, for example, for security reasons or
due to the load speed. So, let's discuss where you can store your linked images.

If the resource (such as an issue or a Wiki page) for which you are writing the
content lets you attach files, attach your images to it. Thus, for issue notes, attach
images to the issue.

However, not all resources can have attachments (that's why I have written this
subsection, actually). For such resources, some users store linked images under the
Files tab of the project menu, but I don't recommend doing this. Under the Files tab,
your users expect to see files for downloading, for example, installation packages,
documentation, samples, and so on. So, they may conclude that these images are
somehow related to the project (for example, they may think of them as diagrams)
and should be downloaded as well.

Therefore, I believe that in such cases the best option is to attach linked images to a
specially created and dedicated Wiki page, for example, Linked-images. There, you
will also be able to describe the purpose of the page and annotate images that are
attached—if you want, of course. Also note that if this page won't be referenced from
any other Wiki page, it will be seen only on Wiki index pages, such as Index by title
and Index by date, which is perhaps good.

If you have disabled the Wiki module, you can use a special
closed issue instead.

Text Formatting

[180]

But what URL should you use if you store the image in a separate resource? For the
same resource, it's easy (use just the filename; see the Images subsection of The Wiki
syntax section), but what about a separate resource? Not so easy, but not too difficult
either. To get the URL, right-click on the name of the attached file and copy the link
address, as follows:

You should get a URL that ends with /attachments/<id>/<filename>. This is the
URL you should use when embedding the image in a Wiki content! Also, always use
the relative URL. I mean the one that starts with /, for example, /attachments/<id>
or /redmine/attachments/<id> (this depends on whether your Redmine uses
a subdomain—redmine is the subdomain here). And yes, <filename> is actually
optional, so it can be omitted.

The Wiki syntax
So far, we have discussed the way in which text formatting is integrated into
Redmine. Now we'll focus exclusively on the syntax rules.

The basics
The supported syntax rules can be divided into special rules (for example, lists and
tables) and the rest. So, the rest actually includes not only the basics but also rules
that are very simple and therefore do not need a separate subsection. Moreover,
these are the rules that you are going to learn right now. But let's start with the
basic principles.

A Textile or Markdown document is a plain-text document. The new line character
in such a document is treated as a
 tag in HTML; that is, the rest of the text
after the new line character in the current paragraph is moved to a new line.

Chapter 6

[181]

A paragraph is separated from the previous and next paragraphs by an empty line,
that is, two new line characters. Thus, the following text will be formatted as a single
paragraph:

Redmine is a flexible project management web application.
Written using the Ruby on Rails framework,
it is cross-platform and cross-database.

Alternatively, you can start each paragraph with p. (there should be a space
after the dot):

p. Redmine is a flexible project management web application.

p. Written using the Ruby on Rails framework,
it is cross-platform and cross-database.

But again, paragraphs must be separated by an empty line. Otherwise, the p. in the
third line will just be ignored and shown as is inside the paragraph.

The p. marker works only with Textile.

The p. marker stands for paragraph and is converted into the HTML <p> tag. But in
fact, the effect of using p. is usually the same as not using it, because Textile uses the
HTML <p> tag for every paragraph that does not have any marker at the beginning
of the line anyway.

The p. marker can be used to keep the indentation consistent
for all paragraphs in a document. Thus, you can write a code
paragraph as follows:

p. <code>...</code>

Similar to p., the h1., h2., h3., h4., h5., and h6. markers are converted into
HTML's <h1>, <h2>, <h3>, <h4>, <h5>, and <h6> tags accordingly. These markers
can be used to add headings to a Wiki content. To see how all the heading levels are
formatted, let's use the following code:

h1. First heading

h2. Second heading

h3. Third heading

Text Formatting

[182]

h4. Fourth heading

h5. Fifth heading

h6. Sixth heading

This code is rendered as shown in the following screenshot:

As you can see, these headings define sections of the Wiki document, each of which
can be edited independently using the pen icon on the right. Headings down
to the fourth level will also be shown in the table of contents (I will explain how to
enable it later in this chapter).

In Markdown, headings can be specified using the # marker.
The level of heading is specified by the number of hashes. Thus,
to add an <h6> heading to Wiki content, place six hashes at the
beginning of the line, as follows:

Sixth heading

These are the basic blocks that define styles for paragraphs. Now it's time for basic
inline styles.

Let's start with checking how the following text will be formatted:

This is the difference between *strong* and **bold**.
Inline cite looks ??this way??.
Inline text can be +inserted+ or -deleted-.
This is the difference between _emphasize_ and __italics__.
Also Redmine supports ^superscript^ and ~subscript~.

Chapter 6

[183]

Here is the corresponding screenshot:

The superscript and subscript markers should be separated from
other words by spaces. Thus, the supports^superscript^
code won't work, as there is no space between supports and ^.
However, this does not apply to Markdown.

You should have noticed an odd thing about strong and bold, as well as emphasized
and italic styles. In most cases, * and **, as well as _ and _ _, are the same (and look
the same), except that they are converted to different HTML tags. Here is the full list of
HTML analogs of these Textile markers (and their Markdown analogs):

Textile HTML Markdown
... ... **...**
... ...

??...?? <cite>...</cite>

+...+ <ins>...</ins>

-...- ... ~~...~~
... ... *...*
_ _.._ _ <i>...</i>

^...^ ^{...} ^...
~...~ _{...}

Explaining the difference between the and
tags is beyond the scope of this book and is related to HTML.
Basically, and <i> are just styles, while and
 are intended to emphasize the content.

Sometimes, you may want to use short names or phrases for something that can need
a more detailed explanation. In such cases, you can use footnotes and acronyms to let
readers quickly check out the details.

Text Formatting

[184]

A footnote consists of two parts. The first part is a number, which should be
specified inline using square brackets, for example, Some text[1] (there should
be no space between the text and the marker). The second part should be specified
separately—preferably at the bottom of the document—using fnX., where X is the
footnote number. Like p. and hX., this marker should be at the start of the line. Also,
as this is a so-called block marker, each footnote should be separated from other lines
by empty lines.

In Markdown, footnotes can be specified using this syntax: [^X]
(inline) and [^X]: Note (at the bottom of the document).

Acronyms are specified inline using parentheses. Their syntax is ABC(Text),
where ABC is an all-caps word that is going to be shown on the page, and Text is
the description that will be shown when the user hovers the mouse arrow over the
visible part. Also, as with footnotes, there should be no space between the acronym
and its description.

So now, let's check out how the following Textile code will be formatted:

In Redmine[1] Wiki pages can be exported to PDF(Portable Document
Format), HTML(HyperText Markup Language) and TXT(Plain text).

fn1. Flexible project management web application written using Ruby on
Rails.

This is what we get:

To visually separate parts of the text, you can use --- (dashes), ***, or _ _ _
(underscores) between paragraphs (separated from the paragraphs by empty lines).
These markers will produce a horizontal line (made with the HTML <hr> tag). All of
these markers work in Markdown as well.

Sometimes, the formatting needs to be disabled. If this is the case, to disable the
processing of some part of the text by Textile, use the special <notextile> tag. Here
is an example:

<notextile>This text will be shown *as is*.</notextile>

Chapter 6

[185]

But note that this won't disable link generation—it will turn off only the formatting.
New line characters and empty lines won't be processed either, so the no-textile
(the text inside <notextile>) text will always be shown in a single paragraph.

Quotes
For applications such as Redmine, it's important to be able to embed quotes,
especially in issue comments and forum messages. Luckily, the Redmine Wiki
formatting implementation allows us to do this. Moreover, the appropriate forms
usually provide UI elements for quoting original messages.

In Redmine, quotes can be embedded in two ways:

•	 By default, to format a text as a quote, Redmine uses the > marker at the
beginning of the line (yes, it's another block marker). As this marker supports
nesting, you can use it as follows:
>> Initial message
> Reply to initial message

Here is a screenshot that shows how this text will be rendered:

This syntax works for both Textile and Markdown, but in Textile,
the > marker does not have to be separated by an empty line from
the previous paragraph. Moreover, the empty line will break the
left gray line, which indicates that the paragraph is a quote. On
the contrary, in Markdown, the empty line is required.

•	 Textile supports one more way of specifying quotes—with the bq. marker.
Generally, both ways produce visually identical results (because both rely on
the HTML <blockquote> tag), but bq. does not support nesting. However,
the bq. marker, like the <blockquote> tag, supports the cite parameter:
bq.:http://www.redmine.org Redmine is a flexible project
management web application. Written using the Ruby on Rails
framework, it is cross-platform and cross-database.

Here, the syntax is as follows:
bq.:cite Text

Note that cite can be an absolute or relative URL or a named anchor (that
starts with #). This parameter is not displayed or used by browsers, but it can
be used by search engines to locate the original message.

Text Formatting

[186]

Lists
Redmine Wiki formatting supports bulleted and numbered lists. Bullet list items
can be created with the * marker, and numbered list items can be created with the #
marker. Both should be placed at the start of the line and followed by a space (unlike
the strong * marker, which should be followed by a word).

Bulleted and numbered lists can be nested. To add a nesting level, just add another
marker at the beginning. Let's see how the following example will be rendered
using Textile:

The first item
Nested item
Next nesting level
The second item

The following screenshot shows the result:

In Markdown, for numbered lists, you need to use a number
and a dot (for example, 1.). To add another nesting level, you
need to prepend spaces before the marker.

You can also mix types of nested lists. For example, check out the following code:

The first item
#* Nested item
#** Next nesting level
The second item

Images
Images can be embedded in Wiki content using the ! rule, the syntax of which is
as follows:

!Options.ImageURL(Title)!:HREF

Chapter 6

[187]

Here, Options. (with the dot), (Title), and :HREF are optional.

For Markdown, the syntax is ![Title](ImageURL). But
note that you should always specify Title, even if it is
empty, that is, [].

The image URL can be absolute or relative. Thus, to embed an image that was
attached to a different resource (described in the Where to store linked images?
subsection of the Formatting text in Redmine section), you need to use the relative URL:

!/attachments/110!

Of course, in this case, users who have access to the current Wiki content will also be
required to have access to the resource to which the image is attached.

Images that are attached to the current resource can be embedded just by using their
file names, like in this example:

!9144_06_15.png!

The optional HREF parameter can be used to turn the image into a clickable link that
points to a URL:

!redmine-logo.png!:http://www.redmine.org

The optional Options parameter can be used to align the image relative to the
text. Supported alignment options are <, =, and >. These options align the image
to the left, center, and right correspondingly. For example, let's check out how the
following markup is rendered:

!<.redmine-logo.png!

Redmine is a flexible project management web application.
Written using the Ruby on Rails framework, it is
cross-platform and cross-database.

This is what we get:

Text Formatting

[188]

Resizing images
You can resize the image in the browser using CSS width and
height properties, as follows:

!{width:64px;height:64px;}.<ImageURL>!

Finally, the Title parameter can be used to specify the alternative text for the image.
This text is going to be displayed when the browser fails to load it (it's an analog of
the alt attribute of the HTML tag).

The alternative text may also be shown by email clients when
the Wiki content is sent in email notifications (thus, many
clients do not show Internet resources by default). So, it's a
good idea to always specify the title.

Links
Redmine's Wiki formatting supports two types of links: normal and internal.

Normal links
If the text contains strings that start with http://, https://, ftp://, ftps://,
sftp://, or www., they will be rendered as links automatically. The same will be
done with email addresses—they will be converted into mailto: links.

Also, normal links can be created using the following syntax:

"Anchor(Text)":Link

Here, Anchor is the text that is going to become clickable, Text is the optional link
title that will be displayed when the user hovers the mouse arrow over Anchor, and
Link is the URL that the link will point to.

For Markdown, the syntax is [Anchor](Link "Title").

Internal links
Redmine Wiki formatting would be incomplete without support for internal links. In
particular, its Wiki system would be useless without cross-page links.

The syntax for internal links was developed especially for Redmine, so it's common
to both formatters: Textile and Markdown.

Chapter 6

[189]

Wiki links
It's essential for any Wiki system to support cross-page links, as such links are the
only way to navigate the Wiki (other than the awkward Wiki index).

In Redmine's Wiki, cross-page links can be created using this syntax:

[[Project:Page#NamedAnchor|Title]]

Everything except Page is optional here. Page is the name of the Wiki page, that is,
the last component of the page URL. For example, in the URL http://www.redmine.
org/projects/redmine/wiki/RedmineWikis, the page name is RedmineWikis.

A free-form page name will also be converted to a proper
URL path. Thus, [[Free form page name]] will link to
the page with the name Free_form_page_name.

Sometimes, you may need to create a link to a section of a Wiki page. Sections that
are created using the h1. to h4. markers always include named anchors, which
can be referenced in links. Moreover, the named anchor is always automatically
generated from the title of the heading. Therefore, we can use just the heading title
as NamedAnchor. Here is an example:

[[Wiki#First heading]]

In the URL, NamedAnchor is used as a component that is
also known as the fragment identifier. As not all characters
are URL-safe, Redmine sanitizes heading titles and values
that you specify in Wiki links. However, if in some cases you
need to specify the already sanitized named anchor, you can
determine it by hovering your mouse arrow over the heading
and then over the pilcrow (¶) that will appear to the right of
the heading . The sanitized value will be seen in the URL, that
should be shown on the status bar, after the # sign (that is, as
the URL fragment).

In practice, you will rarely want to use the page name as the title of the link (which is
also known as the anchor). And, to use a different piece of text, you should put it into
the Wiki link as Title (after the | sign). Here is an example:

See [[Another-Wiki-page-name|this page]] for details.

Finally, if the page that you are about to link to belongs to a different project, you
should prefix its name in the Wiki link with the project name or identifier, as follows:

[[Mastering Redmine:Wiki-page-name]]

http://www.redmine.org/projects/redmine/wiki/RedmineWikis
http://www.redmine.org/projects/redmine/wiki/RedmineWikis

Text Formatting

[190]

Don't hesitate to put cross-page links in places where you think
they will be suitable. Remember that, with the Title parameter,
you can turn a part of the text into a cross-page link. A sufficient
number of such links will only improve your Wiki's structure.

Project links
If the projects that you host on your Redmine installation are somehow related,
you may want to create links from some projects to others. For such cases, Redmine
supports project links that have this syntax:

project:Name

Here, project is the keyword that indicates the project link, and Name is the project
name or identifier. If the project name contains special characters, for example,
spaces, it should be put in double quotes.

Project links point to the overview page of the project and always use the project
name as the anchor (that is, visible text).

Version links
Linking to a version is a very useful feature, and I personally use it quite often. Thus,
it can be used in news, when you describe the new features of a version; in issues, if
you want to specify which version is affected; and so on. Version links point to the
version page and always use the version name as the anchor. The syntax is like this:

version#ID
version:Name

Here, version is the keyword that indicates that this is a version link, Name is the
version name (which can be enclosed in quotes), and ID is the numeric ID, which can
be seen in the URL of the version page (the last component).

To link to a version in a different project, prefix it with the project identifier, like in
this example:

redmine:version:3.1.0

Issue links
Most likely, you will use issue links even if you don't plan to. That's because their
syntax is very natural and obvious. It's just #X, where X is the issue number.

Chapter 6

[191]

If the issue is closed, its anchor, that is, the issue number, will be formatted as
strikethrough. If the user hovers the mouse arrow over the issue link, the hint box
will show the subject and status of the issue.

Resolving an issue is a process that often engages not only the assignee, but also
users, customers, QA engineers, and more. In such cases, it is very useful to be
able to reference a particular note (history entry) of the issue, especially if that note
explains some details. To create a link to an issue note, use this syntax:

#X-Y
#X#note-Y

Here, Y is the number of the history entry, which can be seen on the issue page.

Attachment links
While the ability to attach files to a resource can be used to store images that will be
embedded in Wiki content of that resource, the main goal of attachments is actually
different. Thus, we usually store files in a Wiki page, an issue, a forum topic, or any
other resource just to let users download them. In such cases, we need to reference
the attached files somewhere in the Wiki content. To do this, instead of using text
such as "check the file attached to this page" we can use the following syntax:

attachment:filename.ext

This will produce the link to the attached file, which will trigger its download when
users click on it. Instead of filename.ext, use the actual filename of the attachment.
Enclose the filename in quotes if it contains spaces or other special characters.

However, note that the file that you link to in Wiki content must be attached to the
resource that this Wiki content is part of. This means that you can't create links to
project files (the ones that are under the Files tab).

News links
Sometimes, you may want to mention news about the project in your Wiki content.
In such cases, you can use the news syntax rule, as follows:

news#ID
news:Title

Here, ID is the numeric ID of the news. This ID can be seen in the URL of the news
page (the last component). Title is the title of the news (which can be enclosed in
quotes). When rendered, news links always use the title as the anchor.

Text Formatting

[192]

If the news that you are about to link to is in a different project, you should prepend
the syntax rule with the project identifier, like this:

project-identifier:news#ID
project-identifier:news:Title

Document links
The very same rule is available for documents:

document#ID
document:Title

Here, ID is the numeric ID of the document, which can be seen in the URL of the
document page, and Title is the document title (which can be put in quotes).

To create a link to a document in a different project, use the project identifier at the
beginning, as follows:

project-identifier:document#id
project-identifier:document:Title

Forum links
Linking to forums is very much the same:

forum#ID
forum:Name

Again, ID is the numeric ID of the forum (you know how to find it) and Name is the
name (title) of the forum.

If you have only one forum, it's not so easy to determine its ID.
In this case, look for it in other URLs of this forum (for example,
you can use the new message URL). Such URLs should contain
boards/ID/, where ID is what you are looking for.

Forum links can be used, for example, to advise users on where they can discuss
their questions. However, in practice, you will most likely want to link to a specific
topic of the forum or even to a specific message in a topic (for example, because it
contains details about the issue).

Chapter 6

[193]

From a technical point of view, a reply in a topic is the same object as the topic itself
(a topic is just the first message in a thread). So, to link to both of them, you need to
use message links. The syntax for such links is as follows:

message#ID

Here, ID is the unique numeric ID of the message.

Unfortunately, the message ID which is to be used in such links is not shown in the
list of topic messages, and individual replies do not have URLs to take it from. This
means that it should be determined in a special way. Check out this screenshot:

As you can see in the previous screenshot, when you hover your mouse arrow over
the message subject, on the status bar of the browser, you should see the reply URL.
In this particular case, it is the following:

http://mastering-redmine.com/boards/1/topics/2?r=4#message-4

Let's discuss what this URL tells us. The message ID of the reply is 4 (#message-4).
The first message of the topic has ID 2 (topics/2) and is actually the topic. Also, the
numeric ID of the forum is 1 (boards/1).

As in the case of other links, to make a reference to a forum or message in another
project, just prepend the project identifier with a colon (:) at the end.

Repository links
Repository support is one of the most powerful features of Redmine, so it is not
surprising that the Wiki syntax comes with support for many repository-related links.

Text Formatting

[194]

As you might know, SCM systems are intended for managing and tracking revisions.
Each revision that is created by a commit contains changes that were made to files.
So, links to revisions may be needed to let users know when, by whom, and how
files were changed. However, the way to create such links depends on the type of
revision ID, which in turn depends on the type of SCM.

Some SCMs, such as Subversion, use numeric IDs for commits. To link to revisions in
such SCMs, you should use this syntax:

Repository|rX

Here, X is the revision number and Repository is the repository identifier, which
should be specified if you have more than one repository in the project. Also, the
Repository| part is optional. Here are some examples:

r128
Core|r9868

Other SCMs, such as Git, use string IDs for revisions (for example, special hashes).
For them, you should use the following syntax:

commit:Repository|ID

Here, ID is the revision ID, commit is the keyword, and Repository is the optional
repository identifier. Let's see some examples:

commit:0e1a622a
commit:Core|9fde11f9

I would recommend that you always use the repository identifier
in your repository links. Otherwise, if you add another repository
to your project or change the main one, old links will become
broken (as they will point to a wrong repository).

Like with issue links, when the user hovers the mouse cursor over a revision link, the
hint box with the commit message is shown.

In addition to revisions, you may need to reference a particular source file and even
its line, for example, to show where you think the problem lies. In such cases, use the
following syntax:

source:Repository|Path@X#LY

Chapter 6

[195]

Here, Path is the path to the file in the repository, X is the optional revision ID
(numeric or not), Y is the optional line number, and Repository should be used if
this is not the default repository in the project. Here are some examples:

source:trunk/lib/redcloth3.rb
source:redmine|trunk/lib/redcloth3.rb
source:trunk/app/helpers/application_helper.rb@7248
source:trunk/app/helpers/application_helper.rb#L779

You can also use a repository link to let users download a file from the repository. In
this case, use the following syntax:

export:Repository|Path

Also, all of these links (revision, source, and download) can be prepended with the
project identifier if you want to reference a revision or a file from a different project.

Code
Redmine would not be a good project hosting and issue tracking tool without the
ability to embed code in Wiki content. Furthermore, Redmine also allows you to
highlight the syntax of embedded code.

Sometimes, for example, when you describe a class or a function, you may need to
place a piece of code inline. There are two syntax rules that you can use in such cases.

First, you can enclose the code in the @ marker, as follows:

@Redmine::WikiFormatting@

In Markdown, you should enclose the inline code in ` (grave accent).

Alternatively, you can use the HTML <code> tag for this, as follows:

<code>Redmine::WikiFormatting</code>

Both these rules produce the same result, but the <code> tag additionally allows you
to specify which programming language is used by the code:

<code class="Lang">...</code>

Text Formatting

[196]

Here, Lang should be replaced with the language name. The currently supported
values of this parameter are C, CPlusPlus (C++), CSS, Clojure, Delphi (Object
Pascal), Diff (used to view differences in Redmine), ERB (eRuby), Groovy, HAML,
HTML, JSON, Java, JavaScript, PHP, Python, Ruby, SQL, XML, and YAML.

Besides inline code, it is often necessary to embed blocks of code. This also can be
done in several ways in Redmine.

First, it is enough just to add more spaces before each line of code, as follows:

The code block:
 module Test
 class Klass
 end
 end

For Textile, a single space is enough, but for Markdown you
will need to add at least four spaces.

Note, however, that, as with most other block rules, such a block must be separated
from other paragraphs by an empty line.

Alternatively, you can use the HTML <pre> tag:

<pre>
module Test
 class Klass
 end
end
</pre>

For Markdown, you can use ~~~ as the first line and the last
line of the code block.

Both of these methods produce the block of code, but the latter can also be modified
to use syntax highlighting. Thus, to make the syntax of the code inside the <pre> tag
highlighted, you can add the <code> tag, which has been described earlier, as follows:

<pre><code class="ruby">
 def self.included(base)

Chapter 6

[197]

 base.send(:include, InstanceMethods)
 base.class_eval do
 unloadable

 alias_method_chain :repository_field_tags, :add
 alias_method_chain :subversion_field_tags, :add
 alias_method_chain :mercurial_field_tags, :add
 alias_method_chain :git_field_tags, :add
 alias_method_chain :bazaar_field_tags, :add
 end
 end
</code></pre>

This markup will be rendered as shown in the following screenshot:

To enable syntax highlighting in Markdown, just add the
language name after the ~~~ marker in the first line of the
code block, like this:

~~~ ruby

Tables
The idea behind lightweight markup languages such as Textile and Markdown is to 
keep the source text readable. This is the reason the | (the vertical bar) marker was 
chosen for tables. Thus, you can create a table using this code:

|             |Heading 1|Heading 2|Heading 3|
|Row heading 1|    ?    |    ?    |    ?    |
|Row heading 2|    ?    |    ?    |    ?    |
|Row heading 3|    ?    |    ?    |    ?    |



Text Formatting

[ 198 ]

It will be formatted as follows:

The code looks very natural, doesn't it? In practice, however, users usually omit 
spaces, so the source text looks less readable.

Many Textile syntax rules support options (we will speak about this feature in detail 
later), and the table rule is among them. Thus, the _ option can be used to format the 
cell as a header. So, suppose we change the code to this:

|_.             |_.Heading 1|_.Heading 2|_.Heading 3|
|_.Row heading 1|     ?     |     ?     |     ?     |
|_.Row heading 2|     ?     |     ?     |     ?     |
|_.Row heading 3|     ?     |     ?     |     ?     |

Then, it will be formatted as seen in the following screenshot:

Unfortunately—as you can see—the more complex the code, the less readable the 
source text.

However, I personally can't imagine good table support without support for merged 
cells. In Textile, cells can be merged horizontally using the \X option, where X is the 
number of cells to merge, and vertically using the /Y option, where Y is the number 
of cells as well. Let's see how it works, using the following code:

|_/2\2.                        |_\2. Common heading    | | |
                               |_.Heading 1|_.Heading 2|
|_/3.Common row|_.Row heading 1|     ?     |     ?     |
               |_.Row heading 2|     ?     |     ?     |
               |_.Row heading 3|     ?     |     ?     |



Chapter 6

[ 199 ]

Here is the result:

You might think that the table rule still misses some important options, for example, 
for aligning the content. But don't rush to a conclusion—wait for the advanced 
syntax that we will cover later in this chapter.

In Markdown, the syntax for tables is similar in some ways:
|             |Heading 1|Heading 2|Heading 3|

|-------------|:-------:|:-------:|:-------:|

|Row heading 1|    ?    |    ?    |    ?    |

|Row heading 2|    ?    |    ?    |    ?    |

|Row heading 3|    ?    |    ?    |    ?    |

However, its table support is much more limited. Thus, it's not 
possible to merge cells. To align the content of a column , you 
can use a colon (:), as can be seen in the preceding example (if 
it was on the left side only, the content would be aligned to the 
left, and so on).

Macros
Everything that we have discussed so far cannot be altered or extended (or, at least, 
it's not easy—I mean, the Redmine API does not allow you to do this). However, 
Redmine also supports Wiki macros that are intended to be extended. This means 
that third-party plugins can bring in their own macros into Redmine.

The syntax of a Wiki macro looks like this:

{{MacroName(Arguments)}}

So, let's review those macros that are introduced by the Redmine core.



Text Formatting

[ 200 ]

The Table of contents macro
Actually, Table of contents is not a macro, technically. However, it's reviewed here as 
its syntax resembles macros:

{{toc}}

This rule—if it's the only one on a line and is separated by empty lines from other 
paragraphs—generates the table of contents, as seen in the following screenshot:

The table of contents that is generated by the {{toc}} rule can also be aligned. Thus, to 
align it to the right, use {{>toc}}, and to align it to the left of the text, use {{<toc}}.

The Collapse macro
Sometimes, you may need to publish some less important details. The problem is 
that such information is going to occupy some space on the page and, probably, take 
attention away from the more important things. This is when the {{collapse}} 
macro comes in handy:

{{collapse(hint)
text
}}

This macro makes text invisible and shows only hint by default. Also, hint is 
rendered as a link; clicking on it unhides text:

The Thumbnail macro
What if you want to embed an attached image in a different size? Of course, you 
can have a separate attachment for each size. You can also use the advanced options 
(see the appropriate subsection later) to resize the image in the browser using CSS, 
but in this case it is going to be resized each time the user loads the Wiki content. 
Therefore, for such cases, Redmine provides the {{thumbnail}} macro, which has 
the following syntax:

{{thumbnail(image.png, size=100, title=Title)}}



Chapter 6

[ 201 ]

Here, image.png must be attached to the current resource, size specifies the size of 
the thumbnail, and Title is its title.

Thumbnails not shown?
To generate thumbnails, Redmine uses ImageMagick's convert 
tool, which is probably missing on your installation. Check out 
Chapter 2, Installing Redmine, to learn how to install it.

The Include macro
If you need to copy some common text—such as a disclaimer or rules—into multiple 
Wiki pages, you can create a separate page with the common content and then 
include it in other pages using the {{include}} macro. The syntax of this macro is 
as follows:

{{include(Project:Name)}}

Here, Project is the project identifier and is optional. It is needed only if you are 
going to include a Wiki page from another project. Name is the name of the Wiki page 
to be included.

The Child pages macro
The Wiki navigation is built by Wiki writers through an extensive use of Wiki  
links. That's how Wiki systems work. However, nothing prevents Redmine from 
assisting with this by introducing the {{child_pages}} macro, which has the 
following syntax:

{{child_pages(Name, parent=1, depth=2)}}

Here, Name is the name of the Wiki page whose child pages are to be listed. If Name 
is omitted, Redmine will use the current Wiki page (and if the macro is not executed 
within a Wiki page, an error will be raised). If the parent option is enabled (that is, 
set to 1), the list will include the current page as well. The depth option controls the 
depth up to which child pages should be listed.

The following screenshot shows a sample output:



Text Formatting

[ 202 ]

The Hello world macro
This macro was created for educational and testing purposes. It just outputs the 
given arguments and text, if any:

{{hello_world(argument=1)
Text
}}

So, you can play with this macro to learn the syntax of macros.

The Macro list macro
If a plugin ships with a macro, how do you know that it is available? That's where 
{{macro_list}} can help. This macro outputs short information about the macros 
that are available in the current Redmine installation.

The syntax is simple:

{{macro_list}}

If you are using plugins that provide custom macros, it can be 
a good idea to create a special Wiki page named, for example, 
Help, with a list of all available macros.

The advanced syntax
This subsection is about Textile only.

In fact, Textile is much more powerful than it may seem to be at first glance. Its 
power lies in its advanced options, which are supported by most of its syntax rules. 
While you won't usually need to resort to these options, you may find some of them 
essential for getting the result that you need.

Advanced options are usually specified between the marker and the dot (.) that 
marks the end of the options. Thus, the following syntax can be used for table cells 
and some block rules:

|(Options). ...|
p(Options). ...

For some markers, such as the ones that are used to format lists, the options should 
be specified right after the marker and before the space (without the dot):

*(Options) ...



Chapter 6

[ 203 ]

Images and normal links can use advanced options as well:

!(Options)image.png!
"(Options)Anchor":http://www.example.com

Alignment options
Some alignment options have already been mentioned, but those were options 
specific to certain rules. In addition to them, Redmine supports common alignment 
options, which are the following:

•	 <: Align to the left
•	 =: Align centrally
•	 <>: Justify
•	 >: Align to the right

Here are some examples of using these options:

p<>. This paragraph will be justified.
bq>. This quote will be aligned to the right.

Some elements, such as table cells, also support options for vertical alignment:

•	 ^: Align to the top
•	 -: Align to middle
•	 ~: Align to the bottom

Here is an example of using ^:

|/3^. Cell value aligned to the top|

Padding options
Block elements, such as paragraphs and cells, can be padded using the ( and ) 
options. These options control how many ems (typography units) of padding 
should be added to the left side [(] and the right side [)] of the block. The quantity is 
specified using a suitable number of parentheses. An example of using these options:

p(((). This paragraph will use padding.

For this paragraph, the left padding will be set to 3 ems and the right padding will  
be set to 1 em.



Text Formatting

[ 204 ]

Custom styles and language
We can do even more with Textile. Thus, we can specify the name of the CSS class 
for an element, as follows (the class name is in parentheses):

p(info). This paragraphs will use <p class="info">.
"(redmine-link)Redmine":http://www.redmine.org

Of course, such CSS classes should have previously been defined in CSS files (for 
example, in the theme; see Chapter 11, Customizing Redmine).

However, if the style that you need is not specified in CSS, you can write some CSS 
rules directly in Textile, as follows (use curly brackets):

"{color:red}Redmine":http://www.redmine.org
*{font-family:Tahoma} Tahoma font

Unfortunately, not all CSS rules can be specified in this way. Thus, CSS properties 
that are supported by Textile include color, width, height, border, background, 
padding, margin, font, text, and those that start with border-, background-, 
padding-, margin-, font-, and text-.

Additionally, you can specify the (human) language of the element, as follows:

*[en] English
bq[en]. English quote.

The Textile span
If you are familiar with HTML and CSS, you should be aware of the magic <span> 
tag. I call this tag magic because it is intended to be used to style a part of the text if 
no other HTML tag fits better. This element is supported in Textile as well. Thus, it 
can be created using the % marker, as follows:

Let's make %{color:red}this text red% and %{color:yellow}this one 
yellow%.

The span element supports most of the advanced options that were described earlier.

Disabling an element
What if you don't want the #1 text to be rendered as an issue link? Almost every 
marker or rule in Textile can be disabled using the special ! marker.



Chapter 6

[ 205 ]

Check out the following examples:

!#1
!r128
![[Wiki]]
!{{macro_list}}

All of these rules will be rendered as is (but without the exclamation mark).

Advanced table syntax
The table syntax is the most complex syntax in Textile, so it may become a headache 
to style all cells of a table properly using advanced options. For such cases, Textile 
supports batch styling.

So, to style an entire table, you can use the special table. rule (including the dot), 
which should be specified on its own line right before the table markers. Thus, to add 
a red border to a table, you can do the following:

table{border:2px solid red}.
|_.Heading 1|_.Heading 2|
|     ?     |     ?     |

A similar batch mode is also supported for table rows. Thus, to change the 
background color of the heading row to gray, you can write this:

{background-color:gray}. |_.Heading 1|_.Heading 2|
                         |     ?     |     ?     |

Summary
I hope you did not get the feeling that Redmine Wiki formatting is too complicated. 
Even if you did, believe me, this is only a first impression. As you practice more, you 
will find it flexible and entertaining.

I'm quite sure that, having read this chapter, you will not only be able to astonish 
your Redmine mates, but you will also be more intelligible in your posts, will 
emphasize more important information, and so on.

In the next chapter, you will learn how to improve the issue workflow, adapt it to 
your methodology, and control access to your Redmine installation.





[ 207 ]

Access Control and Workflow
You might expect to see the most major part of the administration menu being 
discussed in a single chapter, but that's not going to happen. In this book, I'm trying 
to review Redmine by its functional parts and not by sections of its web interface. 
Anyway, this chapter discusses the largest number of pages of this menu, as they are 
related to the access control and workflow.

On the other hand, you might wonder why the access control and workflow are 
reviewed in a single chapter. In Redmine, the workflow is a set of rules for the issue 
life cycle that consider trackers (issue types) and member roles. And it's actually 
member roles that define access permissions.

Also, this chapter is intended mostly for administrators as the administration 
menu is visible only to this type of user. However, it should also be interesting for 
project managers as it explains how to configure Redmine to ease and optimize the 
development process, in particular the issue life cycle. Other users might find this 
chapter useful as well, because here they can learn what permissions they need to 
gain access to certain types of functionality.

In this chapter, we will cover the following topics:

•	 The Roles and permissions page
•	 The Trackers page
•	 The Issue statuses page
•	 The Workflow page
•	 Modifying the workflow
•	 A practical example



Access Control and Workflow

[ 208 ]

The Roles and permissions page
As you already know, users are added to projects as members. To add a member, 
you need to select a user and a role. So in this context, a role is a kind of membership 
type. That's why roles in Redmine are often called member roles. However, the 
actual meaning of role is slightly broader than just a membership type for a project, 
as some role permissions affect not only the project of the user.

Roles are defined for the entire system. This can be done from the Roles and 
permissions page of the Administration menu, which is shown in the following 
screenshot:

As you can see, the order of roles can be changed here using the arrows in the Sort 
column. The same order is used in the forms, with which users select roles for project 
members. Normally, you will want it to be from the most privileged at the top to the 
least privileged at the bottom.

However, the order can't be changed for the italicized Non member and 
Anonymous roles. They are always the last here. These are virtual roles, what means 
that they do not really exist in the database and thus cannot be edited. The Non 
member role is for users who are not members of the project, and the Anonymous 
role is for unauthorized (not logged in) users.

The Copy link can be used to copy a role's configuration, including the permissions 
and the associated workflow, to a new role. You should use this feature if the role 
which you are about to create is in some way similar to an existing one. Finally, the 
Delete link can be used to remove a role.



Chapter 7

[ 209 ]

A role can be edited by clicking on its name in the list. When you do this, you get the 
following form:

The Issues can be assigned to this role option determines whether members of the 
particular role will be available for the Assignee field of the issue form. Thus, this 
option can be disabled for a reporter or customer role, the members of which you 
will not likely want to make assignable.



Access Control and Workflow

[ 210 ]

The Issues visibility option specifies which issues are going to be visible to the 
project members of this role. It accepts the following values:

•	 All issues: All issues, including private ones, will be visible to the user
•	 All non private issues: All issues except private ones will be visible to  

the user
•	 Issues created by or assigned to the user: Only issues that are owned by the 

user will be visible

The Time logs visibility option controls the visibility of time tracking entries, which 
will be discussed in the next chapter. Its possible values are the following:

•	 All time entries: All time entries of all visible users (see the next option)
•	 Time entries created by the user: Only their own time entries will be visible 

to members of this role

The Users visibility option specifies which other users will be visible to members of 
the current role. This option can be set to one of the following values:

•	 All active users: All users will be visible (inactive users are visible only to 
administrators)

•	 Members of visible projects: Only users who are members of visible projects 
will be visible to the user

Users who have the Manage members permission (which is described in The 
Project block subsection) can add other members to their project. Thus, users with a 
restrictive role may appear to be able to re-add themselves to the project with a more 
privileged one. The Member management option was added to prevent such cases. 
With this option, you can control which roles can be added or removed from the 
project by members of the current role.

However, the most interesting and important part of the discussed form can be seen 
under the Permissions label.

Permissions
Generally, Redmine access control is built on permissions. All such permissions 
(if they are editable) can be found in this form. Thereby, when a plugin adds a 
permission, it appears here as well.



Chapter 7

[ 211 ]

As you can see in the previous screenshot, the list of permissions is split into 
blocks—Project, Forums, and so on. Each such block, except Project, corresponds 
to the appropriate project module. Thus, when a plugin adds a project module with 
some permissions, you see a new block with new permissions here. An exception 
is the Project block, which is not related to any project module and includes 
permissions for the projects themselves.

In Redmine, users can be divided into three types: unauthorized or not logged 
in users, who are represented by the Anonymous role; authorized users but not 
members of the project, who are represented by the Non member role; and project 
members, who are represented by other roles. Generally, permissions are defined for 
these three types and not all permissions are available for all of them. For example, 
Redmine cannot allow unauthorized users to create projects. Many permissions can 
be enabled for project members only. And all permissions are implicitly granted to 
administrators.

So let's discuss the permissions of each block now.

The Project block
The Project block, as mentioned earlier, contains permissions for projects. However, 
if a plugin introduces any system permission (that is, the one that controls access 
to something that is not related to projects), such a permission will be added to this 
block as well.

Let's check out the permissions in this block:

•	 Create project: This is the only permission of this block that is available for all 
registered users. It decides whether the user is allowed to create new projects.
As you know, the user should be associated with a role in order to get 
permissions, and to be associated with a role, the user should be added to a 
project. Then how can users get the Create project permission if they have 
not been added to any project yet? The first project in the system should 
always be created by an administrator. Normally, this will be a general 
project of the organization, which can even be named after the organization. 
You can add users whom you want to grant this permission to such a project. 
Alternatively, you may want to grant the Create project permission to the 
Non member role, but note that in this case, any registered user will be able 
to create projects.

•	 Edit project: This permission controls whether or not the project member 
can change the properties of the project, which can be found under the 
Information tab of the project's Settings page.



Access Control and Workflow

[ 212 ]

•	 Close / reopen the project: This permission determines whether the project 
member is able to close or reopen the project, what can be done from the 
project's Overview page.

•	 Select project modules: This permission controls whether the project 
member can enable or disable the project modules under the Modules tab of 
the project's Settings page.

•	 Manage members: This permission specifies whether the project member 
is allowed to manage project membership under the Members tab of the 
project's Settings page.

•	 Manage versions: This permission determines whether the project member 
is able to add, edit, and delete project versions. This can be done under the 
Versions tab of the project's Settings page.

•	 Create subprojects: This permission determines whether the project member 
is able to add subprojects to the project. However, to be able to do this, the 
project member must also have the Create project permission.

The Forums block
The Forums block contains permissions for message boards. These boards are 
provided by the Forums project module and can be found under the Forums tab  
in the project menu.

So, here are the permissions of this block:

•	 Manage forums: This permission controls whether the project member 
has access to the Forums tab of the project's Settings page, where message 
boards can be added, edited, or removed.

•	 Post messages: This permission specifies whether the user can add messages 
to the message boards of the project. This also includes whether the user can 
reply to messages. The permission is available for all users, including not 
logged in ones.

•	 Edit messages: This permission controls whether the project member can 
modify forum messages, including those that were added by other users. It is 
suitable for forum moderators.

•	 Edit own messages: This permission controls whether users can modify their 
own messages. When granting this permission you should remember that 
the original text can be copied by other users into their replies as a quote. So 
generally, the Edit own messages permission should be used only to correct 
typos. Certainly, it is available only for logged in users.



Chapter 7

[ 213 ]

•	 Delete messages: This permission determines whether the project member 
can delete forum messages, including those that were created by other users. 
Thus, this permission can be used for spam moderation.

•	 Delete own messages: This permission determines whether users can delete 
their own forum messages. As with the Edit own messages permission, 
when granting this one, you should consider that the message text can be 
copied into replies or replies can be based on the message. This permission is 
available only for registered users as well.

The Calendar block
The Calendar block contains permissions that provide access control to the calendar, 
which can be found under the appropriate tab of the project, if the Calendar project 
module is enabled:

•	 View calendar: This permission is the only permission in this block. It 
specifies whether the user has access to the Calendar tab of the project menu. 
It can be specified for all users, including not logged in ones.

The Documents block
The Documents block contains permissions for access to the Documents tab of the 
project menu, which is provided by the Documents project module.

Let's check them out:

•	 Add documents: This permission controls whether the user can add 
documents to the project. It is available for all registered users.

•	 Edit documents: This permission, which is available for all registered users 
too, specifies whether the user may modify existing documents. Users with 
this permission will also be able to attach files to documents and remove 
such attachments.

•	 Delete documents: This permission determines whether the user can delete 
documents. It is available for all registered users.

•	 View documents: This permission determines whether the user can see 
documents and download their attachments. It can be granted to any user, 
including not logged in ones.

The Files block
The Files block contains permissions for access to the Files tab of the project menu. 
This tab is available only if the Files project module is enabled.



Access Control and Workflow

[ 214 ]

The permissions in this block are the following:

•	 Manage files: This permission determines whether the user is able to add 
and remove project files.

•	 View files: This permission is needed for the user to be able to download 
project files. It can be granted to any user, including not logged in ones.  
But note that project files still won't be accessible for non-members if the 
project is private.

The Gantt block
The Gantt block comes with permissions for access to the Gantt tab of the project 
menu, which contains the Gantt chart. This tab is available only if the Gantt project 
module is enabled.

•	 The View gantt chart: This permission controls whether the user has 
access to the Gantt tab of the project menu. It can be specified for all users, 
including those who are not logged in.

The Issue tracking block
The Issue tracking block contains permissions for issue tracking. This is the largest 
and perhaps the most important block. Its permissions affect not only the functionality 
that can be found under the Issues tab of the project menu, but also many other pages 
that provide some functionality related to issues. Moreover, these are almost all project 
pages, including the overview page, roadmap, calendar, and Gantt. Certainly, these 
permissions take effect only if the Issue tracking project module is enabled.

So, here they go:

•	 Manage issue categories: This permission controls whether the project 
member can add, edit, or delete issue categories, what can be done under the 
Issue categories tab of the project's Settings page (or within the issue form).

•	 View issues: This permission controls whether the user can see issues. 
Without this permission the user won't be able to access any issue in the 
project. So, in most cases, you will want it to be set. It is available for all 
users, including not logged in ones.

•	 Add issues: This permission determines whether the user is able to add new 
issues. It is available for users who are not logged in as well.

•	 Edit issues: This permission controls whether the user is able to edit issues, 
what includes adding attachments. It is available for all users, including not 
logged in ones.



Chapter 7

[ 215 ]

•	 Copy issues: This permission is used to determine, whether the user is allowed 
to copy issues. It is available for all users, including not logged in ones.

•	 Manage issue relations: This permission controls whether the user can 
add or remove related issues, what can be done on the issue page. This 
permission is available for users who are not logged in as well.

•	 Manage subtasks: This permission determines whether the user is able to 
add subtasks to the issue, what can be done on the issue page. But note that 
such users should also have the Add issues permission. Like the latter, this 
permission is available for not logged in users as well.

•	 Set issues public or private: This permission specifies whether the user is 
able to modify the Private flag of the issue or not. If this permission or the 
Set own issues public or private permission is set, the user will also be 
able to see the value of this flag in the issue list (by enabling the appropriate 
column) and filter this list by its value. The permission is also available for 
users who are not logged in (and can be used if an anonymous user reports a 
critical security issue).

•	 Set own issues public or private: This permission specifies whether users  
are able to modify the Private flag of the issue which was created by them. 
Users with this permission will also be able to see the value of this flag in 
the issue list and filter the list by its value. The permission is available for all 
registered users.

•	 Add notes: This permission controls whether the user can comment on 
issues. Moreover, it allows users to add attachments to issues (though as 
sometimes, users may need to show files in their comments). This permission 
is available for all users, including not logged in ones.

•	 Edit notes: This permission controls whether the user can edit issue 
comments. However, it does not allow users to remove files that were 
attached to the issue along with a comment. It is available for all registered 
users and is suitable for moderation.

•	 Edit own notes: This permission allows the user to modify comments that 
were created by that user. However, it doesn't allow the user to remove  
files that were attached along with such comments. Also, permissions like 
this one should be used only to correct typos, as the original text from the 
comment can be used in replies as a quote. The permission is available for all 
registered users.

•	 View private notes: This permission controls whether private comments of 
issues are visible to the user. Certainly, it's available only to project members.



Access Control and Workflow

[ 216 ]

•	 Set notes as private: This permission controls whether the user can add 
private comments to issues. But note that without the View private notes 
permission, users won't be able to see their own private comments. This 
permission is available for project members only.

•	 Delete issues: This permission controls whether issues can be deleted by  
the project member.

I believe that issues should never be deleted. Each issue is 
assigned a unique ID and can be referenced by this ID from 
other objects and pages. So if you delete an issue, its ID 
becomes unused. While most related objects are removed or 
unlinked by Redmine automatically, Wiki links to this issue 
will still remain and will become dead links. Therefore, issues 
can and should be closed instead.

•	 Manage public queries: This permission specifies whether the project 
member can add, modify, or delete public custom queries. Custom queries 
are a very powerful feature, and public custom queries can make a project 
more customer friendly. However, too many public queries per project can 
make this feature inefficient. So, this permission should be granted to users 
who really know what to do with it.

•	 Save queries: This permission determines whether the user can save custom 
queries. Custom queries are available for all users, including not logged in 
ones, but only registered users can save queries (if this permission is set).

•	 View watchers list: This permission controls whether or not the user can see 
who is watching the issue. It is available for all users, including those who 
are not logged in.

•	 Add watchers: This permission is available for all users as well. It specifies 
who is able to add watchers to the issue. (Anonymous users can be allowed 
to do this because, for example, they may know who will likely be interested 
in the issue.) However, while granting this permission, you should remember 
that watchers are going to receive email notifications. So, it may be not a very 
good idea to allow users, especially anonymous ones, to "configure" Redmine 
to send emails to other users.

•	 Delete watchers: This permission determines who will be able to remove 
watchers from the issue. It is available for all users, including not logged in 
ones, but you will most likely not want to grant this permission to anyone 
besides project managers. Also, the user who is watching the issue will 
expect to be notified about changes in the issue, so I don't think that it's good 
if someone besides this user removes him/her from the watchers.



Chapter 7

[ 217 ]

•	 Import issues: This permission determines whether the user is able to import 
issues from a CSV file. It is available for all users, including not logged in 
ones. However, I would not recommend enabling it for users who are not 
members of the project.

The News block
The News block contains permissions for access to project news. They can be found 
under the News tab of the project menu if the News project module is enabled. 
The News tab is visible to everyone, including not logged in users, and there is no 
permission to change this (but you can still make the entire project private).

Here are the permissions:

•	 Manage news: This permission determines whether the project member is 
able to post, edit, and delete news in the project. A user with this permission 
will also be able to remove news comments (which makes it suitable for 
spam moderation).

•	 Comment news: This permission controls who can comment on news. 
It is available for all users, including not logged in ones. But I would not 
recommend granting this permission to anonymous users because, as I know 
from practice, this is where the spam goes most often.

The Repository block
The Repository block contains permissions that control access to repositories. Some 
of these permissions apply not only to Redmine (directly) but also to SCM servers 
if advanced repository integration has been configured (see Chapter 3, Configuring 
Redmine). Repositories are available under the Repository tab of the project menu if 
the Repository project module is enabled.

So, let's see what we have in this block:

•	 Manage repository: This permission allows the project member to add,  
edit, and delete repositories. Additionally, it allows the user to modify 
committer associations, what can be done under the Repositories tab of  
the project's Settings page.



Access Control and Workflow

[ 218 ]

•	 Browse repository: This permission determines whether the user can browse 
the content of the repository. If advanced integration has been configured for 
the SCM server, this permission also controls access to the repository on the 
SCM side. The permission can be set for all users, including those who are 
not logged in. Thus, if advanced repository integration has been configured 
in your Redmine and you want anonymous users of your SCM server to have 
read-only access to the repository, you should grant this permission to the 
Anonymous role.

•	 View changesets: This permission determines whether the user has access 
to the repository revision list and revision pages. To provide users with 
full read access to the repository, you need to grant this permission along 
with the Browse repository one. The permission is available for all users, 
including not logged in ones.

•	 Commit access: This permission has nothing to do with Redmine itself. It 
is used by the SCM server, if advanced integration has been configured, to 
determine whether write access to the repository should be given to the user. 
It is available for all users, including those who are not logged in.

•	 Manage related issues: This permission specifies whether the user should  
be able to add or remove issues that are related to the revision, what can  
be done on the revision page. It is available for all users, including not logged 
in ones.

The Time tracking block
The Time tracking block contains permissions that are used to control time tracking 
for the project. Time tracking will be reviewed in detail in the next chapter.

For the moment, let's check out the permissions that are available:

•	 Log spent time: This permission specifies whether the user should be able 
to add time entries to the project or not. Note that this also applies to time 
entries that are added via commit messages. The permission is available for 
all registered users.

•	 View spent time: This permission determines whether the user can see time 
entries in the project. This applies, not only to the time report, but also to the 
total hours on the project overview page, the spent hours on the issue page, 
and so on. The permission can be set for not logged in users.



Chapter 7

[ 219 ]

•	 Edit time logs: This permission allows users to modify time entries of any 
user in the project. Certainly, it can be granted only to project members. 
Anyway, I doubt whether it's good to allow a user to modify the time entries 
of another user.

•	 Edit own time logs: This permission allows users to modify their own time 
entries. It is available for all registered users.

•	 Manage project activities: This permission determines whether the project 
member can enable or disable time tracking activities for the project, what can 
be done under the Activities (time tracking) tab of the project's Settings page.

The Wiki block
The Wiki block includes permissions for access to Wiki pages, which can be found 
under the Wiki tab of the project menu (if the Wiki project module is enabled). These 
permissions, however, do not apply to other Wiki-syntax-enabled contents (such as 
issue description):

•	 Manage wiki: This permission controls whether the project member has 
access to the Wiki tab of the project's Settings page (which allows you to 
specify the name of the starting Wiki page).

•	 Rename wiki pages: This permission determines whether the project 
member is able to move the Wiki page to a different parent page and/or 
change its name.

•	 Delete wiki pages: This permission specifies whether the project member is 
able to remove the Wiki page.

•	 View wiki: This permission determines whether the Wiki page is visible to 
the user. So, you can unset it if you want to hide the Wiki for particular roles. 
It is available for all users, including those who are not logged in.

•	 Export wiki pages: This permission determines whether the user is able 
to export the Wiki page in PDF, HTML, or TXT format. Unsetting this 
permission actually makes no sense, as users can always save the Wiki page 
using the browser (if they have the View wiki permission, of course). It is 
available for all users.



Access Control and Workflow

[ 220 ]

•	 View wiki history: This permission is also available for all users, including 
not logged in ones. As you know, the Wiki page stores the history of changes. 
But sometimes, some sensitive data can get there, so it may be necessary to 
hide previous versions. This permission allows the user to see not only the 
change history but also previous versions of the page, differences between 
versions, and who authored each line of the page.

•	 Edit wiki pages: This permission specifies whether the user should be 
allowed to edit Wiki pages of the project. Additionally, it allows users to add 
attachments to Wiki pages. The Wiki system stores the complete history of 
changes and allows rolling back to a previous version, if needed. So, it's quite 
safe to grant this permission even to the Anonymous role.

•	 Delete attachments: This permission allows the user to remove attachments 
from Wiki pages of the project. While Wiki stores the history of changes of 
the Wiki text, it does not store the history of attachments, so this permission 
can be used to prevent removal of important files by untrusted users. The 
permission is available for all roles.

•	 Protect wiki pages: This permission determines whether the project member 
can lock or unlock the Wiki page. Having all of the project's Wiki system 
editable by anyone, you can make some pages editable only by trusted users 
by granting this permission to them. (Yes, a page that was protected by one 
user can be edited by another user who has this permission as well.)

The Permissions report page
Member roles are used to differentiate users with the help of permissions. In other 
words, the purpose of a role is often not only to hold permissions, but also to make 
sure that only one role has some specific permissions. Therefore, the role name 
does not have to replicate the real-life position—it is better to represent the granted 
permissions. In this case, it will be easier to manage Redmine, to determine which 
role should be given to a particular user, and so on. Thus, access to project settings 
may be granted to Project manager or Project administrator, editing permissions to 
Moderator or Content editor, and so on. Also remember that it's okay to assign several 
roles to a single project member.

However, in such cases, it can be hard to keep all the role names and their purposes 
in mind while editing permissions using the role page that has just been described. 
For this reason, many Redmine administrators prefer to use the Permissions report 
page, which can be accessed through the link with the same name on the Roles and 
permissions page. Check it out in the following screenshot:



Chapter 7

[ 221 ]



Access Control and Workflow

[ 222 ]

This page allows you to quickly check which permissions are assigned to which 
roles. It also allows you to modify them. The green check marks ( ) in the column 
and row titles can be used to check or uncheck all the permissions in the column or 
row correspondingly. Like the role editing page, this page is divided into blocks by 
project modules, where each block can be collapsed or expanded by clicking on the 
minus  or plus  icon to the left-hand side of the block title correspondingly.

On this page, you can also clearly see that some permissions are not available for  
all types of user.

The Trackers page
In any issue tracking application, an issue has a type, such as bug, feature, or support 
(the default types in Redmine). In Redmine, such issue types are called trackers.

Trackers play an essential role in issue tracking, as they define issue properties, 
conditions for issue status transitions, field availability, and so on. Thus, a feature 
should not have the status Fixed and a bug should not have the status Planned.

Trackers can be managed—that is, created, edited, or removed—on the Trackers 
page of the Administration menu. You can see this page in the following screenshot:

The order of trackers is not insignificant here. The same order is used when listing 
trackers in application forms. So, the most frequently used trackers or those that you 
want to be used most often should be on top. To change the order, you can use the 
green arrow icons: .



Chapter 7

[ 223 ]

The Summary link in the top-right corner opens this page:

On this page, you can select which issue fields should be available for each tracker. The 
green check mark icon  can be used to toggle all checkboxes in a row or a column.

The availability of issue fields can also be configured on the tracker page, which can 
be opened if you click on a tracker name on the Trackers page.



Access Control and Workflow

[ 224 ]

Here, the Default status option should be used to specify the initial issue status for 
the tracker. In the web form for a new issue, the initial issue status can be changed 
without any problems, but this possibility does not always exist in other cases. For 
example, the initial status can be omitted in email messages that are used to create 
new issues. So, it's extremely important to specify the right initial status for each 
tracker using the tracker page.

The Issues displayed in roadmap option determines whether the issues of this 
tracker should be displayed in the roadmap by default. The roadmap was reviewed 
in detail in Chapter 5, Managing Projects.

Keep your roadmap short and clear
Usually, in the roadmap, people list features. They don't list bug 
fixes, as those are less important for end users (and are important 
only for those users who have faced the corresponding bug).

In the fifth chapter, which is Managing Projects, we also reviewed the Information tab 
of the project's Settings page. If you remember, there you could also choose trackers 
that should be available for the project. In the right-hand side column of the tracker 
page, we have just another way of doing the same—we can choose projects for which 
the tracker should be available.

You may want to rename the Redmine's default Feature tracker 
to something more common that better describes your work. 
Thus, the development of a system's core is unlikely to be named 
feature development. For such cases, you may prefer the Task 
name instead.

The Issue statuses page
We can say with confidence that issue tracking is useless without the use of issue 
statuses. Moreover, the more detailed the issue statuses, the more accurate the 
workflow. On the other hand, too many details can make the working process 
annoying. Therefore, I believe that choosing the right issue statuses for your 
processes is extremely important in order for your users to have a good experience 
with Redmine. In fact, this should be one of the first things that you configure after 
having deployed Redmine in your organization.



Chapter 7

[ 225 ]

Issue statuses can be managed using the Issue statuses page of the Administration 
menu. This page is shown here:

Generally, an issue can be open or closed. Therefore, each issue status has a property 
that determines whether this status makes an issue closed. In the list that is shown in 
the preceding screenshot, such issue statuses are marked with a check mark  under 
the Issue closed column. Also, as you can see, Redmine can have several statuses 
that mark the issue as closed. For example, they can be Closed or Rejected, as in the 
screenshot, or Won't Fix, Obsolete, Not Confirmed, Fixed, and so on.

Again, the order of issue statuses on this page is important and can be modified 
using the green arrows under the Sort column. The same order is used in issue 
forms. Ideally this order should reflect the completeness of the issue from the very 
initial state (such as New) to the final state (such as Closed).

Issue statuses can be edited by clicking on their names. A new issue status can be 
added by clicking on the New status link. In both cases, the following form is opened:

As mentioned in Chapter 4, Issue Tracking, if the Calculate the 
issue done ratio with setting is set to Use the issue status 
under the Issue tracking tab of the global Settings page, this 
form also contains the % Done field and the issue statuses list 
includes the % Done column.



Access Control and Workflow

[ 226 ]

Generally, that's all regarding the Issue statuses page, despite the fact that issue 
statuses are actually what defines the life cycle of the issue and builds the workflow. 
However, it would be too complicated to manage the workflow along with issue 
statuses. Therefore, this was moved to a separate page of the Administration menu.

The Workflow page
Issue tracking is not only about managing the list of issues, but also about 
implementing the issue life cycle, which is also known as the workflow. In Redmine, 
the issue workflow can be configured on the Workflow page of the Administration 
menu, which is shown in the following screenshot:

So let's review each tab of this page.

The Status transitions tab
The main purpose of the workflow is to control which issue status can be set for the 
issue in certain conditions. Thus, instead of using the Open status after In Progress 
(for example, if the issue was returned), you may want to use the special Reopened 
status. For this, you can allow the Open status to be set only after the New one 
and allow the Reopened status after In Progress. These are the things that can be 
configured under the Status transitions tab.

Issue status transitions can be configured per role and tracker, which are to be chosen 
using the Role and Tracker fields correspondingly (see the preceding screenshot). 
If the status transitions are similar for several roles and/or trackers, you can use the 
plus icon ( ) to convert the field into a multiselect mode.

Some issue statuses may be not used by certain trackers (for example, the Fixed status 
would not be needed for the Feature tracker), so to simplify the form, Redmine 
skips such issue statuses by default. However, we still need a way to configure 
new statuses, which of course won't be used by any tracker yet. So, to show all the 
available issue statuses, you can uncheck the Only display statuses that are used by 
this tracker checkbox.



Chapter 7

[ 227 ]

After clicking the Edit button, we get the following form:

In the left-hand side column, you can see the initial issue status, and in the rows, 
you can see possible target statuses. In other words, this table allows you to decide 
whether the status in the left-hand side column can be changed to other statuses in 
the row. If the checkbox is checked, the change can be made.

For user convenience, the background color of the cell, the checkbox of which was 
initially selected, is green here. In this way, you can check what was modified before 
submitting your changes.

If several roles or trackers are selected and the issue transition is not the same for  
all the combinations of them, Redmine will use the select box instead, as shown in 
this screenshot:

The form for issue transitions is divided into three blocks. The top block contains the 
common configuration, while the other two blocks, which are collapsed by default, 
can optionally contain modifications to the common configuration. The common 
configuration applies to all users of the current role and to all issues of the tracker. 
The next block is for cases when the user is the author of the issue (that is, the issue 
was created by this particular user). And the last one applies to cases when the issue 
is or was previously assigned to the user.

There is no need to copy the common configuration into other blocks, as other blocks 
can only enable issue status transitions. Disabled transitions are just ignored there.



Access Control and Workflow

[ 228 ]

The Fields permissions tab
The Fields permissions tab can be used to make certain issue fields read-only or to 
require them for some trackers. This tab uses the same form as Status transitions.

Switching between the Status transitions and Fields 
permissions tabs preserves the configuration of the form.

Clicking on the Edit button opens the form shown in the following screenshot:

Each select box in this form allows you to choose the Read-only option. If this option 
is chosen for a field, a user of the corresponding role won't be able to change the 
value of this field, provided the issue is of the corresponding tracker.

Issue fields that are required by default are marked with a red asterisk ( ) in this 
table. Fields that are not required have the additional Required option. If this option 
is selected for a field, it will become required for users of the corresponding role, 
provided the issue is of the corresponding tracker.

Normally, when you mark a field as read-only or required, you want it to remain the 
same for all subsequent issue statuses in the particular row. If this is the case, you can 
use the  link to copy the option to the columns on the right-hand side.



Chapter 7

[ 229 ]

Also, as with issue status transitions, if fields permissions were set before, they are 
loaded with the backgrounds of the corresponding cells changed to the appropriate 
colors, as shown here:

Here, the gray stands for the Read-only option, and the red stands for the  
Required option.

Copying the workflow
The workflow page also has the contextual menu with links in the top-right corner, 
which we did not review. I skipped this menu because at that moment you did not 
know enough to understand what they are for.

The Copy link of this menu can be used to quickly copy a configuration from 
one role and tracker pair to another. This feature can be used if, for example, you 
have mistakenly changed a wrong pair. Anyway, as you have seen, the workflow 
configuration is quite complex and utilizes many checkboxes and select boxes, so 
many of you may find this feature useful for different purposes. This link opens the 
page that is shown in the following screenshot:

As you can see, for user convenience, this form allows the selection of several target 
trackers and roles at a time.



Access Control and Workflow

[ 230 ]

Checking the workflow summary
The Summary link redirects to a page that contains the aggregate data. This page is 
shown in the following screenshot:

These numbers represent the number of enabled issue transitions per role and 
tracker, and the cross icon  means that no transitions are enabled. While these 
numbers are generally useless, each number and cross icon is a link that redirects 
to the corresponding form. So, the summary page can be used for quick access to 
transitions editing.

Modifying the workflow
Configuring the workflow is one of the most complicated tasks in Redmine. Also, 
proper configuration of issue status transitions is more significant and important 
than configuration of fields permissions. So before doing this, I would recommend 
that you draw a diagram of issue status transitions that you plan to implement, and 
discuss it with your team in detail. In this way, you will minimize the risk of the 
need to modify the workflow later. However, I believe that you can't fully avoid 
further modifications, as the workflow should be an adaptive system and can still 
change.

Modifying the workflow is not so complicated as risky. A wrong configuration can 
allow more than users need, or limit them when they need more. You have already 
seen all the configuration forms and the amount of elements in them, so you would 
probably agree that it's easy to miss something when you add a new role, tracker, 
or issue status. Therefore, under this section, we will talk about basic principles that 
you should follow while adding new objects to the workflow.



Chapter 7

[ 231 ]

Adding a role
Member roles can be added using the New role link, which can be found in the 
contextual menu in the top-right corner of the Roles and permissions page. Clicking 
on this link opens the following form:

This form also contains Permissions, which I did not include in the screenshot.  
The same form can be invoked with the Copy link which is located in the rightmost 
column of the role list.

As you can see, the new role form is very much like the role edit form that was 
discussed earlier, but with a new Copy workflow from option. This new option 
allows you to choose the role, the workflow configuration for all trackers (that is, 
issue status transitions and fields permissions, but not role permissions) of which 
will be copied into the newly created one.

So, let's compile a list of actions that you should do when creating a new role, to 
make this process easy and flawless:

1.	 Choose an existing role which has the permissions that are closest to the 
permissions that the new role should have.

2.	 Click on the Copy link, which can be found in the rightmost column of the 
chosen role's row, to open the new role form.

3.	 For the Copy workflow from option, choose an existing role, issue status 
transitions and fields permissions of which are closest to the configuration 
that you want to have in the new role.

4.	 Use the green arrow icons to move the new role to the appropriate position 
in the role list.

5.	 Use Permissions report to adjust permissions for the new role.
6.	 Use the Workflow page to adjust workflows for the newly created role  

(if needed).



Access Control and Workflow

[ 232 ]

Adding a tracker
A new tracker can be added using the New tracker link. This link is located in the 
top-right contextual menu of the tracker list that can be found on the Trackers page. 
It opens the following form:

This form is almost identical to the one which is used for editing trackers. Like the 
new role form, this form also has the Copy workflow from option, which has exactly 
the same meaning—if a tracker is selected for this option, the workflow configuration 
for all roles and the selected tracker will be copied into the new tracker.

So, to avoid mistakes and misconfiguration, try to follow these principles while 
creating new tracker:

1.	 Using the Copy workflow from option, select the tracker whose configuration 
is closest to the configuration that you want to have for the new tracker.

2.	 Uncheck the fields that you want to disable for the new tracker.
3.	 Choose the projects for which you want to activate the new tracker.
4.	 Using the green arrow icons in the tracker list, move the new tracker to the 

appropriate position.
5.	 Using the Workflow page, adjust workflows for the newly created tracker  

(if needed).



Chapter 7

[ 233 ]

Adding an issue status
A new issue status can be added using the New status link, which can be found on 
the Issue statuses page. This link opens the following form:

This form is exactly the same as the one that is used to edit issue statuses. As you can 
see, no Copy workflow from option is available this time. Adding an issue status is 
not going to be so easy.

The workflow for issue statuses cannot be just copied, as new statuses are usually 
placed somewhere between existing ones (for example, New—New status—In 
Progress). This means that new issue statuses definitely need to be configured 
manually. In practice, however, users often forget about the need to add the new 
status to the workflow, which ends up in confusion and a lack of understanding 
as to why the new issue status is not visible in the issue forms and the workflow. 
Unfortunately, Redmine's interface and approach to this problem do not help much.

So let's try to define some principles that can help make this process easier:

1.	 Create the new issue status.
2.	 Using the green arrow icons in the issue status list, move the new status to 

the appropriate position (keep closed statuses at the bottom).
3.	 Print, write down numbers, or take a screenshot of the content of the 

summary page, which can be accessed using the Summary link on the 
Workflow page.

4.	 On the Workflow page, select any role and any tracker.
5.	 Uncheck the Only display statuses that are used by this tracker option. 

Otherwise, the workflow won't show the newly added status.
6.	 Reconfigure the workflow, taking the new status into account. Do this for 

authors and assignees as well, if applicable. And don't forget about fields 
permissions.



Access Control and Workflow

[ 234 ]

7.	 Using the Copy link on the Workflow page, copy the workflow that was just 
configured to other role-tracker pairs, but only to those ones that are going to 
have similar workflows.

8.	 Adjust the workflows to which you have just copied the configuration  
(if needed).

9.	 Repeat the previous five steps (4-8) for every group of role-tracker pairs that 
are going to have a similar workflow configuration.

10.	 Use the Summary link on the Workflow page and the data saved earlier to 
check whether all relevant numbers have changed. These are just numbers of 
the allowed status transitions, but in this case, they can help you determine 
whether changes have been made to all the necessary role-tracker pairs.

A practical example
I can't think of any better way to demonstrate the configuration of the workf﻿low than 
reviewing a real-life practical example. As the Kanban agile methodology is very 
popular nowadays, let's see how to configure the workflow to satisfy Kanban task 
rotation practices.

Before configuring the workflow, it is always helpful to draw 
a diagram of the issue life cycle.

Kanban does not have any strict requirements for the board and column names,  
so here we'll use the following issue statuses, which should correspond to column 
names on the Kanban board (except the New status, which is to be set on issue 
creation and means to be reviewed):



Chapter 7

[ 235 ]

It is assumed that there is only one tracker and there are three roles: Project manager 
(who reviews new issues and closes completed ones), Developer, and Tester. The 
following minimal configuration should be applied in Redmine:

NEW ACCEPTED IN PROGRESS TESTING PASSED DONE
Project manager
NEW ü ü

PASSED ü

Developer
ACCEPTED ü

IN PROGRESS ü

Tester
TESTING ü ü

Of course, this is a very basic example, but you can use it as a starting point.

The Redmine Backlogs plugin
If you are using agile development in your team,  
you may find the Backlogs plugin useful. Go to 
http://www.redminebacklogs.net.

Summary
In practice, users rarely configure the workflow and just use the default configuration 
that comes with Redmine. Some users add new roles, trackers, and issue statuses, 
but do not utilize the full power of the workflow. Instead, they just allow all trusted 
users to change all statuses to any other status. My guess is that this is due to the 
complexity of that part of the Redmine interface which is responsible for managing 
the workflow. Therefore, I hope that in this chapter I've succeeded in clarifying how 
to embrace this important feature. Nevertheless, I'm quite sure that project managers 
who have read this chapter will feel more comfortable with Redmine now and will be 
able to transform it into a very helpful assistant.

In the next chapter, we are going to review another interesting feature of Redmine. 
In fact, it can be considered one of the main features of this application. We'll discuss 
how you can track your work time using Redmine. In particular, you will learn how 
you can add time entries from SCM commit messages.

http://www.redminebacklogs.net




[ 237 ]

Time Tracking
Considering the fact that time tracking functionality is provided by a project 
module, why didn't we review it along with other modules in Chapter 5, Managing 
Projects? Other project modules do not provide enough functionality to make users 
install Redmine for them, or they just have a much better competitor (for example, 
MediaWiki or DocuWiki is much better than the Wiki module, Invision Power Board 
or phpBB is better than the Forums module, and so on). On the contrary, the Time 
tracking module is complete and competitive (considering the functionality that is 
provided by the Redmine core and its other project modules,), and often enough it 
becomes one of the main reasons for using Redmine. Thus, I first used Redmine as a 
time tracking application.

But why is this chapter so late in the book? Despite its functionality, time tracking 
cannot be considered a primary feature of Redmine. Moreover, in practice, it is 
disabled in the majority of Redmine installations. In other words, it's less important 
to know than the functionalities that were reviewed in previous chapters. Therefore, 
this is also the first (and the only) chapter that you don't need to master (if you don't 
plan to use time tracking, of course). If, however, you decide to continue reading 
it, you will learn how to submit your time entries, how to generate time reports 
and what third-party tools you can use to improve your time tracking experience. 
Certainly, in this chapter, we will also mention some other functionality, especially 
issue tracking, as time tracking is generally based on issues.  

So, in this chapter, we will cover the following topics:

•	 Time tracking in Redmine
•	 Activities
•	 Tracking your time
•	 Checking out the spent time
•	 Time reports



Time Tracking

[ 238 ]

Time tracking in Redmine
Why should Redmine be chosen over other time tracking alternatives? The answer 
is, because of the inclusion of other features (not only issue tracking). Generally, 
time tracking applications rarely come alone, as this is a simple task that is unlikely 
to have many features. Thus, it is available as an additional feature in Trac, 
OrangeHRM, and so on.

So, let's check out the benefits of time tracking with Redmine:

•	 In Redmine, time entries are associated with issues. And issues have a 
detailed description of what should be done. They can be shown on the Gantt 
chart, and much more.

•	 Issues can also have an estimated time. This time can be used to evaluate the 
speed of development, determine problematic tasks, and so on.

•	 Users can specify what they have been doing using the Comment field of the 
time entry.

•	 With the help of the Activity field, administrators and project managers can 
categorize time entries.

•	 Redmine allows users to add time entries through SCM commit messages 
(we'll discuss how to do this in detail later).

•	 A report on the spent time is available.
•	 Whether it's a benefit or not, Redmine supports only the hour value (which 

can be a float though) and does not care about the start and end times.

In order to be able to use the Time tracking module in the project, make sure that  
the Time tracking checkbox is checked under the Modules tab of the project's 
Settings page.

Also, to enable the Time tracking module for all new projects by default, do the same 
under the Projects tab of the Settings page in the Administration menu.

Activities
In order to be completed, a task may need different types of work to be done. Thus, 
a software feature can be designed, developed, and tested. Sometimes, information 
about the time that was spent on such types of work is very important, as it helps 
determine which work is more time-consuming and therefore allows optimization of 
the workflow. Also, such information is especially needful if different types of work 
involve different hourly payment rates. So, that's what the Activity field of the time 
entry should be used for.



Chapter 8

[ 239 ]

Certainly, activities for time entries should not be defined by end users—their names 
and usage should be controlled by managers. Therefore, in Redmine, they can be 
managed only by administrators and only project managers (users who have the 
Manage project activities permission) can choose which activities apply to the project.

Administrators can manage activities using the Activities (time tracking) table, 
which can be found on the Enumerations page of the Administration menu. It is 
shown in the following screenshot:

Here, activities are in the same order as they appear on the time entry form. This 
order can be changed using the green arrow icons in the Sort column. The activity 
will be enabled for a project by default if the Active option is set, and will be selected 
by default in the time entry form if the Default value option is set.

A new activity can be added using the New value link. An existing activity can be 
modified by clicking on its name in the list. Both these actions open the form that is 
shown in this screenshot:



Time Tracking

[ 240 ]

As it has been mentioned, activities that are listed on the Enumerations page  
also appear in the Activities (time tracking) tab of the project's Settings page,  
as shown here:

This is the page where project managers can select activities (using checkboxes in the 
Active column) that will be available for the project.

If you click on the Reset link, which can be seen in the bottom-right corner, only 
those activities that are also active on the system's Enumerations page will remain 
checked here.

The System Activity column can be a source of confusion. Check marks that are 
shown in this column indicate whether the state of the checkbox in the Active 
column is taken from the Active option on the Enumerations page. Thus, if you 
modify the value of the Active column here, the check mark for the corresponding 
activity will disappear (even if you uncheck it first and then check it back). This 
would mean that the state of the activity is stored separately in this project.

Tracking your time
The time entry form, which is used to add time entries to Redmine, can be accessed 
from several places. For example, users can open this form by clicking on the Log 
time link, which can be found in the top-right contextual menu of the issue page. 
This page is shown in the following screenshot:



Chapter 8

[ 241 ]

Similar Log time links can be found on the project overview page (on the sidebar) 
and on the time report page, which will be reviewed later in this chapter.

To be able to log time, the user must have the Log spent 
time permission.

The time entry form can also be opened by selecting the Log time item in the drop-
down menu that can be invoked by right-clicking on an issue in the issue list. Here is 
a screenshot of this menu:

But note that the Log time item does not appear in this menu if you selected more 
than one issue.



Time Tracking

[ 242 ]

Also, this form is partially available within the issue edit form, which can be opened 
by clicking on the Update link on the issue page. It looks like this:

Note the Log time block, which is available only if the Time tracking module is 
enabled for the project.

The Bulk Time Entry plugin
You can install the Bulk Time Entry plugin, which was originally 
authored by Eric Davis, to make it possible to add several time 
entries at a time. This plugin adds the Bulk time entries item to 
the top-left menu that is shown on every page. Check it out at:
https://github.com/Warecorp/redmine-bulk_time_
entry_plugin

https://github.com/Warecorp/redmine-bulk_time_entry_plugin
https://github.com/Warecorp/redmine-bulk_time_entry_plugin


Chapter 8

[ 243 ]

The complete time entry form can be invoked using the Log time link on the system 
time report, which can be opened using the Overall spent time link on the Projects 
page. It looks like this:

As you can see, the Project and Issue fields are optional. That is, you can add time 
entries that are not associated with an issue and even a project. This can be useful if, 
for example, you need to track time that was spent on company meetings.

The Date field of this form should be set to the date when you spent the time. By 
default, this field is set to today's date.

The Hours field should contain the number of hours that you spent. The value of 
this field can be a decimal or a time in a human-readable format, for example, 30m, 
30min, 1h30, 1h30m or 1:30.

If you decide to specify a decimal value in the Hours field, please 
note that it should contain decimals after the point, not minutes, 
that is, .00 to .99 and not .00 to .59. Thus, to specify 1:30 (one hour 
and thirty minutes) you should enter 1.50 in this field.

While the Comment field is optional, it's recommended you use this field to briefly 
describe what exactly you have been doing. Generally, this comment is for your 
managers, so if they do not need such details, you can leave it empty.

Avoid using general comments such as, Worked or Tested. 
Good examples are Investigated, why did the issue come up, 
Implemented GetSomething() function, and Was writing the 
Time Tracking section.

The Activity field of this form should be set to the type of work that you were doing. If 
you were doing various jobs, you should create separate time entries for each type.



Time Tracking

[ 244 ]

The Time Tracker plugin
The Time Tracker plugin, which was originally authored by 
Jérémie Delaitre, can simplify the process of logging time by 
adding Start and Stop links to the account menu (which is located 
in the top-right corner). Check it out at https://github.com/
hicknhack-software/redmine_time_tracker.

Once you have filled in the form, you can click on either the Create button to be 
redirected to the page from which you came to this form, or the Create and continue 
button to get this form again and add another time entry.

Tracking time from a mobile device

To track time from an iPhone or Android device, you can use 
RedminePM, which can be found at http://redminepm.com. 
This is a full-featured Redmine client that supports time logging 
in addition to many other functions.

Tracking time through commit messages
When we were reviewing the Repositories tab of the Settings page, which can 
be found in the Administration menu (we did it twice, in Chapter 3, Configuring 
Redmine, and Chapter 4, Issue Tracking), we skipped the part of the form that is shown 
in the following screenshot:

In this form, we skipped the Enable time logging and Activity for logged time 
settings as you knew nothing about time logging at that time. So let's now see what 
we can do with these settings.

If the Enable time logging setting is enabled, users will be able to add time entries 
through SCM commit messages. Thus, suppose a user commits changes to a 
repository using this command:

$ svn commit -m 'Finished controller, refs #1554 @4:30'

https://github.com/hicknhack-software/redmine_time_tracker
https://github.com/hicknhack-software/redmine_time_tracker


Chapter 8

[ 245 ]

This will tell Redmine to add a time entry for issue #1554 with the Hours attribute 
set to 4 hours and 30 minutes. This time entry will use the activity that has been 
selected in the Activity for logged time setting. Its comment will be Applied in 
changeset R, where R is the revision ID. The date on which the commit has been made 
will be used for the Date attribute of the added time entry.

So, to add a time entry through an SCM, a user should make sure that the commit 
message contains a string that follows this format:

refs #N @HM

Let's discuss what it means:

•	 refs: This is any of the keywords that are specified in the Referencing 
keywords setting (however, it's not needed if Referencing keywords are  
set to *).

•	 #N: This is an issue number, for example, #1554.
•	 @HM: This specifies the time that was spent. HM can be in a variety of  

formats, for example, 1h30m, 5hours, 1hour5min, 20min, 1:30, 1.5h, 2, or 8h  
(all without spaces).

Checking out the spent time
The Time tracking module is one of the most deeply integrated project modules in 
Redmine. Therefore, you can see overall time values in many places in its interface. 
That's also why we will use this section to review how time entries are used and 
where they can be found.

To be able to check time entries, the user must have the View spent 
time permission. So, if you want to hide time entries from your 
customers, make sure that the corresponding roles do not have this 
permission (as well as the Non member and Anonymous roles).

This section will be of interest mainly to managers, but other users who track their 
time using Redmine should find some interesting information here as well.

The Invoices plugin
The Invoices plugin by Kirill Bezrukov can be used to generate 
invoices using hours specified in time entries. Note, however, 
that you need the commercial PRO version for this. Check out the 
plugin at: http://redminecrm.com/projects/invoices.

http://redminecrm.com/projects/invoices


Time Tracking

[ 246 ]

Time spent on issues
If an issue has time entries, the grand total of all hours of all time entries for the 
issue will be displayed on the issue page in the Spent time attribute, as shown in the 
following screenshot:

Here, the number of hours (that is, 5.00 h) is a link. If you click on it, you will  
be redirected to the time report for the issue (we will discuss time reports later  
in this chapter).

Time spent on versions
If a version has issues associated with it (through the Target version attribute of 
the issues), the grand total of all hours of all time entries for these issues will be 
displayed on the version page, as shown in this screenshot:



Chapter 8

[ 247 ]

Here, 5.00 hours is just text and not a link. Also note Estimated time, which is 
the grand total of all estimated hours for these issues. In this way, you can easily 
compare the estimated and the spent times of the version using this page.

Time spent on projects
The grand total of all hours ever entered for the project is shown in the sidebar of the 
project overview page, as follows:

I'm not sure whether anyone needs this value, but you can find really useful links 
below it. Thus, the Details and Report links point to the time report that will be 
reviewed in the next section. The Log time link has been mentioned earlier—it opens 
the form used to add time entries.

Activity of users
Time entries that were entered for a project can also be seen on the project activity 
page, which is available under the project's Activity tab. Additionally, all time 
entries for all projects can be seen on the global activity page, which can be opened 
by clicking on the Overall activity link. This link can be found on the global Projects 
page (the top-left menu). But, to be able to see time entries on these pages, you need 
to enable the Spent time filter on their sidebars. Also, the user's personal activity 
feed can be found on the user's profile (this page is opened when you click on the 
user's name).



Time Tracking

[ 248 ]

In all of these activity feeds, time entries are displayed as shown in the following 
screenshot:

If you click on the title of the event, that is, on 2.00 hours (Chapter #8 (In Progress): 
Time Tracking), you will be redirected to the time report for issue #8. Below the title, 
you can see the comment for the time entry. However, the date and time of the event 
refer to the date when the user added the time entry and not when the user worked 
on the issue.

Your time entries
Your latest time entries (sorted by the date on which you spent the time) can also be 
found in the Spent time (last 7 days) block of My page (if this block is enabled, of 
course). This page and its blocks are going to be discussed in the next chapter. For 
now, here is how it looks:

Time reports
Redmine is known to lack reporting functionality, but not in the case of time 
tracking, as time tracking is generally useless without reporting.

In the previous section, you learned that Redmine provides many links to time 
reports. Let's list them here:

•	 Overall spent time on the project list page, which can be accessed through 
the Projects item in the top-left menu. This link opens a report that lists all 
visible time entries for all projects.

•	 The Details and Report links on the project's Overview page. The 
corresponding report lists all the time entries for the project.



Chapter 8

[ 249 ]

•	 The number of hours on the issue page. This report lists all the time entries 
for the issue.

•	 The title of a time entry event on an activity page. The report that such a link 
points to lists all the time entries for the corresponding issue.

So, as you can see, time reports are generally available for three nesting levels:  
the global level (for all projects and issues), the project level (for all issues), and the 
issue level.

In this section, we will review the report for the issue level (for Chapter #8). Check it 
out in the following screenshot:

The breadcrumbs in the top-left corner can be used to switch between nesting levels. 
To the right-hand side of the breadcrumbs, you can see the Log time link, which can 
be used to add new time entries.

Below the Spent time title, you can see the Filters block. By default, only the Date 
filter is enabled here, but you can use the Add filter select box to add other filters.

Here are the filters that are supported by the time report:

The Project filter, however, is available only on the global level (for all projects). On 
other levels, it is enforced.



Time Tracking

[ 250 ]

Below Filters, you can also see the Options block, which is shown in the next 
screenshot. It is collapsed by default.

Using these options, you can choose which columns should be included in the report. 
Moreover, it can include custom fields as columns (Pages is a custom field).

Now let's review the Details and Report tabs, which contain different views of  
the report.

The Details tab
In this subsection, we continue to discuss the first screenshot of the Time reports 
section. 

Under the Details tab, we get a list of time entries that match the specified filters. 
This list is shown in the table, most columns of which can be used for sorting (all 
except Comment and custom fields, actually). Above the list, you can see the grand 
total of all hours for all the time entries that are included in the report. The rightmost 
column (the untitled one) contains icon links that can be used to edit ( ) and delete  
( ) time entries (of course, users should have the appropriate permissions to see and 
use these links). Below the list, you can see the Atom and CSV links. The former can 
be used to subscribe to time entries and the latter can be used to export the report.

As you might have noticed, rows of the list can be selected by either checking the 
checkboxes in the leftmost column, or clicking on the rows themselves (you can hold 
the Ctrl key to select more than one row). Additionally, you can click on the  icon 
in the leftmost column to select all rows at once.



Chapter 8

[ 251 ]

Right-clicking on the selected row (or rows) invokes the drop-down menu that is 
shown in the following screenshot:

Using this menu, you can delete selected time entries, change their activity, or invoke 
the bulk edit form. The latter can be used to change several time entries at a time. 
Check it out here:

The Report tab
Under the Report tab, you can see the report builder, which is shown in the 
following screenshot:

The Details field specifies what date-based columns the report will include. In my 
case, these are Days (2016-01-01, 2016-01-02, and so on). The report supports Years, 
Months, Weeks, and Days values for this field.



Time Tracking

[ 252 ]

The Add field is more interesting. It allows you to choose up to three grouping 
attributes that will be shown in the report as columns. Thus, in the previous 
screenshot, the first grouping attribute is User and the second one is Activity. Also, 
the grouping attributes are to be added in the same order in which they should 
appear in the report. Thus, to get the report that is shown in the preceding screenshot 
I first added the User group and then added Activity.

Possible values of the Add field are shown here:

The Clear link can be used to reset the report's configuration.

The resulting report can be exported using the CSV link, which can be found in the 
bottom-right corner.

The Timesheet plugin
The Timesheet plugin, which was originally authored by Eric 
Davis, can be used to generate more flexible time reports. 
Check it out at https://github.com/arkhitech/
redmine_timesheet_plugin.

Summary
You don't have to work in a company to track time in Redmine—as you can see, it 
fits great for personal use as well. Although Redmine time tracking is quite basic, it 
can easily be extended by third-party tools, including but not limited to mobile apps.

I hope the knowledge that you have gained after having read this chapter will help 
you make time tracking as comfortable as possible for you. I also hope that I was able 
to reveal the power of the time report to project managers. The next chapter is going 
to be useful for all types of Redmine users, as it describes how to make Redmine 
more personal.

https://github.com/arkhitech/redmine_timesheet_plugin
https://github.com/arkhitech/redmine_timesheet_plugin


[ 253 ]

Personalization
Some readers might want to start this book with this chapter, as it looks like an 
introduction to using Redmine. But it's not an introductory chapter. Usually people 
first get used to a new place and only then unpack their boxes. And unpacking  
your boxes and making Redmine your home application is actually what this chapter 
is about.

Also, this is the first time we will speak about Redmine from the user's perspective. 
Thus, this chapter will try to answer the following questions:

•	 What can users do to improve their experience with Redmine?
•	 How can users get quick access to the needed functionality?
•	 How can users be sure that they won't miss important updates?

And these are only some of the questions that we will address.

Like the previous chapter, this one is intended for all users. For project managers and 
site owners, it also gives an idea of what users might need to get a better experience 
with Redmine.

In this chapter, we will cover the following topics:

•	 Gravatar
•	 The personal page
•	 Getting updates
•	 Personalizing the issue list
•	 On-the-fly account creation



Personalization

[ 254 ]

Gravatar
Gravatar is a very popular avatar image service (the name stands for Globally 
Recognized AVATAR). It uses a very simple algorithm to associate an image with 
a user email. Thus, a client application (Redmine in our case) sends a request with 
the hash of the user's email to this service and it returns the associated image. If 
no image is associated with the specified hash, Gravatar returns one of the default 
images (we reviewed them in The Display tab subsection of The general settings section 
in Chapter 3, Configuring Redmine).

Using avatars helps to visually identify your data (issues, comments, 
activities, and so on) among other user data.

This simplicity caused Gravatar to be chosen as the source of profile pictures in 
WordPress and StackOverflow. With custom plugins, support for Gravatars can 
also be added to Drupal, Joomla, SugarCRM, and so on. This means that, if you 
configure a Gravatar for Redmine, you will also have it automatically in WordPress, 
StackOverflow, some Drupal sites, and more.

In practice, however, the majority of Redmine users do not make use of Gravatar. 
Maybe because Redmine comes with no information anywhere that would explain 
the possibility for adding a profile picture using this service? So let's review how to 
do this in this section.

Gravatar uses https://wordpress.com/ user accounts. So, if you are registered on 
WordPress.com, you can use your existing credentials to sign in to Gravatar. You can 
do this by using https://gravatar.com/connect link.

If you don't have a WordPress.com account yet, you need to go to  
https://en.gravatar.com/connect/?source=_signup and register there  
using the email address that you have chosen or are going to choose for your 
Redmine account.

https://wordpress.com/
https://gravatar.com/connect link
https://en.gravatar.com/connect/?source=_signup


Chapter 9

[ 255 ]

After a successful sign-in, you will be redirected to Gravatar's email addresses 
configuration page, which is shown in the following screenshot:

As you can see, Gravatar allows you to register and manage multiple email 
addresses under a single account. So, if you have used a different email address  
in Redmine, you can register it in your existing Gravatar account using this page.



Personalization

[ 256 ]

To add a picture, you need to click on either the Add one by clicking here! link or 
the Add a new image link on this page. Alternatively, you can go to the My Gravatar 
page and click on the Add a new image link there. After you do this, you'll be given 
options for uploading images to Gravatar—you will be able to upload them from 
your computer, specify the URL of the image, use an already uploaded image, or 
take a picture with a webcam. Finally, after you have uploaded an image, you will be 
able to select the square area that should be used for the avatar and crop the picture, 
as shown in the following screenshot:

When you click on the Crop and Finish! button, you will be redirected to the last 
page of this wizard. On that page, you will be asked to choose a rating for the avatar 
image, as shown in this screenshot:



Chapter 9

[ 257 ]

Normally, you will need to choose the G rating here (by clicking on the appropriate 
box). Anyway, you really should not use images with rude gestures, nudity, hard 
drug use, violence, or sexual content as your avatars in Redmine!

After you have selected a rating, the avatar becomes associated with the email 
address and is ready to use. So, when you come back to Redmine, you should see the 
new avatar near the name of the user, as shown in the following screenshot:

Henceforth, this avatar will be shown in almost every place where the link to the 
user's profile is rendered.

The Local Avatars plugin
In some cases, you may need to have avatars stored locally, 
for example, if your corporate network has a limited Internet 
connection. In such cases, you may use the Local Avatars plugin, 
which was originally authored by Andrew Chaika. It is available at 
https://github.com/thorin/redmine_local_avatars.

The personal page
Perhaps you have already visited My page—the page that is opened after successful 
authentication if Redmine fails to redirect you to the previous Redmine page (for 
example, if you first came right to the login page). You can open this page by clicking 
on the My page link in the top-left menu. It looks like this:

https://github.com/thorin/redmine_local_avatars


Personalization

[ 258 ]

The idea of this page is to gather all of the information that is interesting to the user 
in one place so that he/she can quickly move to the page of interest. However, as 
you already know, there is a lot of information that the user can be interested in. 
Therefore, this page comes with the Personalize this page link. This link can be used 
to switch it into edit mode, which is shown in the following screenshot:

In this mode, each block of the personal page can be dragged or removed. To drag 
a block, you need to press the mouse button when the cursor is above its header, 
and move the mouse arrow while holding the button pressed (thus, in the preceding 
screenshot, I'm moving the Latest news block). To remove a block, you need to click 
on the  icon that can be found in its top-right corner.

The personal page is divided into three sections—the wide top section, the left 
column section, and the right column section. Each is outlined by dashed lines. You 
can move blocks between these sections and change the order of blocks inside them. 
Any of the sections can also be empty.



Chapter 9

[ 259 ]

To add a new block, you can use the My page block drop-down list. Its content is 
shown in the following screenshot:

So, to add a block, you need to select it in this list and click on the Add link. After 
this, the block will appear in the wide top section, from where you will be able to 
move it to another section. Also note that you can add any of the listed blocks to your 
personal page only once.

The Back link should be used to switch the personal page into the normal non-
editable mode.

Now let's review what information these blocks provide.

Some plugins may come with additional My page blocks.

The Issues assigned to me block
The Issues assigned to me block contains the list of issues that are assigned to you. It 
looks like the following screenshot:



Personalization

[ 260 ]

This list is limited to 10 items. However, the Issues assigned to me link (the header) 
can be used to go to the issue list with the issue filter set to the appropriate values, 
which will make the issue list include all such issues. The issues in this block are 
ordered by their priority and last update time. Also, the right mouse button can be 
used to invoke the issue contextual menu, which should already be familiar to you.

The Reported issues block
The Reported issues block contains issues that were created by you. In fact, this is 
the only place where you can quickly find such issues. Therefore, I personally use 
this block quite often (you can also use a custom query to list such issues, though).

The issues in this block are ordered by their update time. As with the previous block, 
you can use the right mouse button to invoke the contextual menu for selected issues 
(hold Ctrl to select several issues). The header of the block is a link that points to the 
issue list that will include all issues reported by you.

The Watched issues block
The Watched issues block is another issue list.

This block lists issues that are watched by you. They are sorted by their update time. 
The block also supports the contextual menu and its header is also a link to the full 
issue list.



Chapter 9

[ 261 ]

The Latest news block
The Latest news block contains the 10 latest news items from projects that you are a 
member of. It looks like in this screenshot:

The Calendar block
The Calendar block is your personal calendar for the current week.

Like the Calendar tab of a project, this block contains important events on projects 
that you are a member of.

The Documents block
The Documents block lists up to 10 documents from projects that you are a member 
of. It looks like this:

This list contains recently added documents.



Personalization

[ 262 ]

The Spent time block
If you want to use Redmine for time tracking, you may find the Spent time  
block useful.

This block lists your time entries for the last seven days. As you can see, here they 
can be modified and removed. Also, here you can add new time entries using the 
Log time link. Moreover, clicking on the Spent time link (the header) opens the time 
report with the filter set to show only your time logs.

Getting updates
Unless you are checking out Redmine on a regular basis—that is, once a day or even 
more frequently—it's easy to miss some important information, such as a new issue 
that was assigned to you, new data on an issue, changes in Wiki documentation, 
a new reply in a forum topic, and so on. Unfortunately, not all of such data can 
be found on a single page (say My page), and such pages can contain too much 
information to examine (for example, the Activity tab of the project). Therefore, 
in this section, we will discuss how to make sure that you will be notified about 
changes that are made to the objects you are interested in.

The email notifications
Personally, I find it convenient to be notified via email, as you get these kinds of 
notifications when you are ready for them (that is, you check for new messages and 
expect them to come). Users usually check their mailboxes once a day or even more 
often. There are many different tools that can help users get their emails in time. In 
email clients, it is commonly possible to control which email messages you receive 
(using filters). These are only some of the benefits of email notifications. The only 
problem with them is that they must be configured properly to be effective—a too 
narrow configuration can prevent important information from being sent and a too 
wide configuration can make you lose interest in reading every notification message.



Chapter 9

[ 263 ]

So, let's discuss how to configure email notifications. Click on the My account link 
in the top-right menu. This will open the account page. Find the Email notifications 
box, which looks as follows:

Let's review all the available notification options:

•	 For any event on all my projects: This option is selected by default. If you 
choose it, you will get all the notifications for all the events (for example, for 
changes in Wiki pages, replies on forums, comments in issues, and so on) on 
all projects that you are a member of. Practice shows that it's really too much! 
So, you will likely not want to leave this option selected.

•	 For any event on the selected projects only...: When you choose this option, 
the list of your projects will appear below the drop-down list. In that list, you 
will be able to select for which projects you want to receive notifications for 
all events. So, this is a kind of limited previous notification option. For other 
projects—that is, ones that are not selected—Redmine will use the following 
notification option:

•	 Only for things I watch or I'm involved in: If you choose this option, you 
will be notified about events in objects that you watch, or created, that are 
assigned to you, or were assigned to you. This is perhaps the best choice. But 
if you choose it, do not forget to watch objects that you are interested in but 
which were not created by you and are not/were not assigned to you.

•	 Only for things I am assigned to: If you select this option, you'll be notified 
about events on objects that you watch or that are assigned to you. In 
Redmine, only issues can be assigned to users. So, this means that only 
notifications that are related to issues will be sent to you (except, of course, 
notifications related to watched objects).

•	 Only for things I am the owner of: If you select this option, you'll be notified 
about events only on those objects that you watch or created.

•	 No events: This option disables notifications completely (including notifications 
related to any watched objects, what actually makes watching useless).



Personalization

[ 264 ]

No notifications even when you enabled them?
Ask your Redmine administrators whether they configured 
email delivery for Redmine. Refer to Chapter 3, Configuring 
Redmine, for more details.

If, for example, you are watching an issue and add a comment to it, then by default 
you will get a notification that you have added that comment. This behavior can be 
disabled by checking the I don't want to be notified of changes that I make myself 
checkbox, which is unchecked by default. I believe that this is one of the first options 
that should be changed in your account right after registration.

Still no (or only some) notifications come?
For example, you are getting notifications for watched 
issues but not for watched topics. Most likely, this 
means that your Redmine administrators disabled the 
Message added action under the Email notifications 
tab on the Settings page, which can be found in the 
Administration menu. So, you need to ask them to 
check whether the appropriate actions are enabled.

Watching
In Redmine, the best way to ensure that you'll be notified about changes that are 
made to an object is to watch it. Watching an object is easy—just click on the Watch 
link in its contextual menu (which can be usually found in the top-right corner of its 
content area), as shown in the following screenshot:

After this, or if you are already watching the object, the title of the corresponding 
link turns to Unwatch and the star icon becomes yellow, like this:

Currently in Redmine, users can watch issues, news (including 
their index), Wiki pages and indexes, forums, and topics.



Chapter 9

[ 265 ]

News feeds
The Only for things I watch or I'm involved in option for email notifications (which 
was discussed in The email notifications subsection earlier) is quite satisfactory, but 
what if you want to be notified about new issues? Yes, you can watch issues, but not 
new ones. Should you switch to the For any event on all my projects option in this 
case? No. Luckily, there is one more way to get such updates—news feeds.

If an object or a list has an Atom link similar to the one shown in the preceding 
screenshot, this means that you can subscribe to that object or list using a news feeds 
aggregator, such as iTunes or Safari. If this link is available, it can usually be found  
in the bottom-right corner of the page.

Atom is an XML-based language for web feeds. To be able to read them you need  
a special application called a reader or aggregator. The Atom link points to such a 
web feed.

Currently, you can subscribe to the project list, news, Wiki 
indexes, the issue list, issue comments, activities, the forum 
list, the topic list, time entries, and revisions.

Personalizing the issue list
Having your issues organized is extremely important for good performance. So, 
that's when custom queries come in handy again.

Custom queries were described in detail in Chapter 4, Issue Tracking. Some samples 
of them can be found in the Project maintenance best practices section of Chapter 5, 
Managing Projects. This is the time to mention them again, what proves how useful 
they are.

So, in the following table, let's review some samples of custom queries that you can 
use to create specific issue lists for your own usage:

Name Filters
Field/Option Condition/Value

My open issues Status open

Assigned to "<<me>>"

Issues I work on Status In Progress

Assigned to "<<me>>"



Personalization

[ 266 ]

Name Filters
Field/Option Condition/Value

My overdue issues Status open

Assigned to "<<me>>"

Due date more than days ago 0 days

My issues that are due 
soon

Status open

Assigned to "<<me>>"

Due date in less than 0 days

Also remember that you can subscribe to a customized issue list using the Atom link. 
Moreover, you don't even need to save the custom query to be able to subscribe to 
it—just click on the Apply link and use the generated Atom link.

On-the-fly account creation
Under this section, we will review not user registration but automatic account 
creation that does not require filling in any form. So, this section is not intended 
solely for ordinary users but also for site owners and administrators. Ordinary users 
will learn how they can use their third-party accounts in Redmine, and site owners 
and administrators will learn how to make this possible.

Just in case you did not know, most users avoid registering on each new site.  
There are many reasons for this, among them the following:

•	 They don't trust the new site and therefore do not want to share their email 
addresses, passwords, and so on

•	 They do not want to remember another username and password  
combination and do not want to reuse the ones that they are already  
using in other systems

•	 They see no reasons weighty enough for creating an account on the new site

The reason that is mentioned last hints at the 
solution—make sure that your potential users do 
know the benefits of registering on your website.

However, Redmine can liberate you from the need to remember a new username and 
password combination. It supports at least two technologies that allow it to do this—
OpenID and LDAP.



Chapter 9

[ 267 ]

OpenID
OpenID is an open standard for authentication that uses an OpenID identity 
provider as an authentication server. This way, users do not need to store their 
passwords in Redmine. Instead, OpenID users are redirected to the OpenID 
provider, where they authenticate, and are then returned to Redmine authenticated 
if the authentication is successful.

Don't confuse OpenID with OpenID Connect, which is based on 
OAuth 2.0. OpenID Connect is used, for example, by Google.

The great thing is that the OpenID provider can be any Internet host, and this 
protocol is supported by industry giants such as Yahoo. This means that you can 
authorize in Redmine using, for example, your Yahoo account. The drawback of this 
authentication solution is that you need to specify the URL of the OpenID provider 
in the login form. Check it out in the following screenshot:

To log in using OpenID, the user needs to specify the appropriate URL in the 
OpenID URL field and then just click on the Login button (that is, if you are using 
OpenID you don't need to specify anything in the Login and Password fields). After 
this, the user will be redirected to the OpenID provider. The provider will usually 
ask for credentials that the user has in its system. After the user logs in there (or if the 
user is already logged in), the provider will ask for confirmation that the user really 
wants to grant Redmine access to his/her profile. In particular, to create a dedicated 
profile for the user, Redmine will need the full name and email address of the user. 
And it will fetch this data from the OpenID provider if the user has authorized it. 
Moreover, the newly created user will have the same username that he/she has in 
the OpenID provider's system.

OpenID providers also usually allow you to revoke the 
authorization if, for example, you change your mind.



Personalization

[ 268 ]

Depending on the Redmine configuration, after successful authorization in the 
OpenID provider, you will be:

•	 Asked to activate your account in Redmine using the URL that has been sent 
to you by email, if the Self-registration setting—which can be found under 
the Authentication tab of the Settings page in the Administration menu—is 
set to account activation by email.

•	 Asked to wait for your new account to be approved by an administrator if 
the Self-registration setting is set to manual account activation.

•	 Logged in to your new account if the Self-registration setting is set to 
automatic account activation.

•	 Asked to fill in some additional data for your new account, the password and 
username among them. This actually indicates that something went wrong 
in Redmine's OpenID stack, and it did not allow you to use the OpenID 
provider to authenticate.

The fact that any Internet host can be an OpenID provider can, of course, become 
a reason for not using OpenID (or for using it along with manual or email account 
activation). This reason can be even more weighty if you are using Redmine as a 
corporate project management application. But don't be in a hurry to get upset!

LDAP
Lightweight Directory Access Protocol (LDAP) is an open protocol that allows an 
application (Redmine in our case) to access active directory services. Such services 
are commonly used to store usernames and passwords. Therefore, LDAP can be used 
for authentication as well. Most known directory service servers are OpenLDAP and 
Microsoft Active Directory. So, yes! With LDAP, you can connect Redmine to the 
Microsoft AD domain.

Unlike OpenID, to support an LDAP server an administrator must register it 
first on the LDAP authentication page of the Administration menu (using the 
New authentication mode link, as described in Chapter 3, Configuring Redmine). 
If administrators have added several LDAP servers, Redmine will attempt to 
authenticate a new user against each of them (until one of them returns a successful 
response). Also, if the On-the-fly user creation option is enabled for the server, 
Redmine will create accounts for new users on their first successful logins.



Chapter 9

[ 269 ]

Moreover, unlike OpenID, the login process of LDAP users does not differ from that 
of local users. That is, users specify their usernames and passwords in the login form 
as usual and are not redirected to any third-party websites.

User/group synchronization
Ricardo Santos created the LDAP Sync plugin, which can perform 
user and group synchronization between Redmine and LDAP 
servers. Visit the following GitHub page for more information:
https://github.com/thorin/redmine_ldap_sync

Summary
This chapter is one of the last chapters, as you are expected to already know Redmine. 
Thus, to customize the issue list, you need to know how to use custom queries. To 
configure and troubleshoot email notifications, you need to know which settings 
should be specified in the administration pages. To customize personal pages, you 
need to be familiar with the information that is shown in the blocks. And so on.

Perhaps this could be a good chapter to end the book with, but Redmine is not  
just a tool with a fixed list of features. It has a great special feature that makes its 
feature list nearly unlimited. This feature is the plugin API. There are a lot of plugins 
for Redmine with very different functionalities—from just adding a feature to 
turning Redmine into a different application. So, in the next chapter, we will review 
what plugins are, how to find the plugins that you need, and other related topics. 
Additionally, we will review some interesting plugins there.

https://github.com/thorin/redmine_ldap_sync




[ 271 ]

Plugins and Themes
I have always liked playing with plugins—not only as a user but also as a developer. 
I was amazed by the power that plugin APIs of some applications (for example, 
Apache HTTP server) give to let a developer extend their functionality. But when I 
started to learn the Redmine plugin API, I was amazed even more. Honestly, I can't 
say that I love Ruby on Rails or am a fan of it, but Redmine's plugin API (which is 
based on Ruby and Rails) is definitely the thing! Unlike other plugin APIs that I've 
seen before, it's not a regular plugin API. Thus, it embraces the Redmine API and 
the Rails API. And, it is based on Ruby, which is a very powerful metaprogramming 
language and provides unsurpassed means for patching code at runtime. As a result, 
this makes the Redmine plugin API nearly limitless—in other words, you can do 
almost anything with it.

While Redmine is quite featureful without plugins, you will most likely encounter 
a couple of them that you will want to make use of. However, this is where the 
first problem appears—it's not easy to find a working plugin for a certain version 
of Redmine. Also, the official list of plugins misses some their recent versions. 
Therefore, in this chapter, you will learn how to find plugins. Additionally, we 
will review some of them. But besides plugins, we will also pay some attention to 
Redmine themes, as a theme is what can help make an application look different.

So, who is this chapter for? In spite of what you might think, it's not only for 
administrators (who can install plugins) but also for other users who can use them 
(and, for example, ask an administrator to install some plugins).



Plugins and Themes

[ 272 ]

In this chapter, we will cover the following topics:

•	 Finding plugins
•	 Installing a plugin
•	 A review of some plugins
•	 Themes
•	 A review of some themes

Finding plugins
The official website of Redmine has a plugin directory, which you can use to find a 
plugin that you need (the directory, by the way, is implemented with another plugin 
that was written by Jean-Philippe Lang). However, many plugins on this list are not 
updated. For example, a plugin might be listed for an older Redmine, while its more 
recent version can actually be available. Also, more recent versions of some plugins 
can be available elsewhere, for example, on GitHub. (Sometimes, plugin authors, 
including me, fail to release updates for new versions of Redmine on time. So, 
volunteers can fork and update such plugins on GitHub.) Therefore, unfortunately, it 
is usually not enough to use the official directory to find a plugin for your version of 
Redmine.

A forum dedicated to plugins
In addition to the plugin directory, http://www.redmine.org/ 
has a forum that is dedicated to plugins. On it, you can discuss 
plugins, ask for help, request the development of a custom plugin, 
and so on. Check it out here:
http://www.redmine.org/projects/redmine/boards/3

The official directory
Anyway, the official Redmine plugin directory should be your primary source of 
information about Redmine plugins. Yes, it's not ideal and not all plugins or their 
versions are registered there, but it was designed to maintain the list of plugins. 
Therefore, it has a legible structure, supports Redmine versions, allows us to filter 
plugins by a Redmine version, has a rating system, and so on.

http://www.redmine.org/
http://www.redmine.org/projects/redmine/boards/3


Chapter 10

[ 273 ]

This plugin directory can be accessed using http://www.redmine.org/plugins. Its 
start page is shown in the following screenshot:

The page that is shown in the preceding screenshot contains five recently registered 
plugins. On its sidebar, you can also see ten recently released versions (which 
include versions of plugins that were recently registered).

You can subscribe to new plugins using the icon near the 
New Plugins title and a feeds aggregator.

Below Latest plugins releases on the sidebar, you can see the top 10 best rated 
plugins. If you click on the Browse… link below it, you'll be redirected to a  
multi-page list of plugins (which we'll discuss later). This list will be sorted  
by ratings. In other words, using this link, you can quickly check out popular 
Redmine plugins.



Plugins and Themes

[ 274 ]

You can also search for a plugin by entering related keywords in the Search box 
that is located in the top-right corner. However, it's important that you do this while 
being on the plugin list page! Alternatively, you can check the Redmine plugins 
checkbox in the search form, as shown in the following screenshot:

Finally, you can browse the plugin list by clicking on the Browse all Plugins... link that 
is located in the bottom-left corner. After you do so, you'll be redirected to the multi-
page list where plugins are sorted alphabetically, as shown in the following screenshot:



Chapter 10

[ 275 ]

Note this drop-down list in the top-right corner:

This select box can be used to filter plugins by a specific Redmine version. But 
remember that some plugin versions may be not registered in the official directory 
yet (you can try checking out the home page of the plugin or finding its forked 
version on GitHub, what is described in the very next subsection).

Finally, let's see what a plugin page looks like:

In the preceding screenshot, you can see only the upper part of the page. Usually, 
plugin pages contain a description of the plugin, which may include a couple of 
screenshots (so such pages are usually quite long).

Below the description, there is the Atom link. It can be used to subscribe to new 
versions of the plugin (and you should really do this if you use it). Also, the page 
lists all versions of the plugin, as shown on the following screenshot:



Plugins and Themes

[ 276 ]

Below the Changelog section, you can find the User ratings section. It is shown in 
the following screenshot:

GitHub
Redmine was written in Ruby on Rails, just like GitHub. GitHub is a project hosting 
and collaboration platform that is admired by open source developers mainly 
due to its social networking capabilities. Thus, even the code of Ruby on Rails is 
hosted there. For all these reasons, this great service is especially loved by "Rubists". 
Therefore, I guess it is not a surprise that most Redmine plugins can be found on 
GitHub.

In other words, GitHub can be a secondary source of information on Redmine 
plugins. So let's learn how we can find plugins there. To do this, we'll use the search 
form that is available at https://github.com/search

In this form, you should specify language:Ruby to make it search only for Ruby 
code and add keywords that describe the searched plugin along with the keyword 
Redmine.

By default, the search results will include only original repositories, that is, not 
forks (copies). Therefore, you may also need to search for a fork of the plugin that is 
compatible with the version of Redmine that you are using. So let's see how this can 
be done.

https://github.com/search


Chapter 10

[ 277 ]

Limiting results by update date
You can restrict search results on GitHub by last push date using 
the pushed keyword. For example, use the language:Ruby 
Redmine pushed:>2015-02-19 fork:true query to find 
repositories that were modified after the release of Redmine 3.0.0, 
which happened on February 2, 2015. The fork:true condition 
is needed here as original repositories can remain unmodified for 
a longer time.

Thus, if you search for the Redmine Time Tracker plugin, which is believed to work 
only with Redmine 1.3.x according to the official plugin directory (at the time of 
writing this book), you will most likely find the repository of Fernando Kosh, as 
shown in this screenshot:

Unfortunately, the version of the plugin in this repository is for Redmine 2.4 and the 
last commit to it was made on April 11, 2014 (that's what I see at the time of writing 
this book). So, we need to find the most recently updated fork of this repository, 
that should theoretically support the most recent version of Redmine. To do this, 
we need to open the network graph, what can be done by clicking on the number of 
forks (141, as can be seen in the previous screenshot) on the search result page or the 
repository page. This is how this number is shown on the repository page:



Plugins and Themes

[ 278 ]

Now, check out a sample of the network graph that is shown in the following 
screenshot:

On this graph, the spots are commits (that is, code changes). As we need to find the 
latest commit that was made to any of the forks shown in this graph, we drag it to 
the left (by clicking on it and moving the mouse arrow to the left-hand side) until we 
find the very rightmost spot.

When you hover your mouse arrow over a spot, a small box with brief information 
about the commit will be shown, as can be seen in the previous screenshot. This 
information will include the name of the author, the hash, and the commit message. 
In our case, the shown commit was made to support Redmine 3.2, and this is exactly 
what we need. So, it looks as if the repository of babky-atteq (Martin Babka) 
contains the searched version of the plugin. To move to this repository, just click on 
the spot.



Chapter 10

[ 279 ]

On GitHub, forks are created by volunteers, who can make 
changes that are required by them or their organizations. So, 
the most recent commits do not automatically mean support 
for recent versions of Redmine. Therefore, you should always 
read commit messages to get an idea of what the changes are 
for. Also note that authors of forks are not necessarily good at 
programming (and so are authors of plugins though), so their 
forks can be buggy. Additionally, it's always a good idea to 
read the README.md file of the repository, which is shown on 
its start page, as this file can contain some information about 
the state of the code and known issues.

Installing a plugin
The installation procedure may differ for different plugins, but it has some common 
steps, which we will review in this section. Before installing a plugin, you should 
always check out its documentation to ensure that you will be doing this properly.

This section is intended for administrators who have access 
to the filesystem of the server on which Redmine runs. Also, 
plugin installation may require root access.

Redmine plugins usually come in a directory, which should be copied to the plugins 
subdirectory of Redmine (that is, for example, into /opt/redmine/redmine-3.2.0/
plugins if you have installed Redmine at /opt/redmine/redmine-3.2.0).

What if the plugin's directory is missing or has an invalid name?
The plugin should contain the init.rb file in its main directory. 
So, if this file is in the root, it means that the plugin's directory is 
missing. Also, the init.rb file should contain the following line:

Redmine::Plugin.register :plugin_name do

Here, plugin_name is the name of the plugin. The plugin's 
directory must have exactly the same name.

Most plugins require migration. This means that, in order for the plugin to work, 
some changes must be made to the Redmine database. To perform plugin migration, 
execute the following command on the Redmine server:

$ rake redmine:plugins:migrate RAILS_ENV=production



Plugins and Themes

[ 280 ]

It is safe to execute this command even if the plugin does not require migration.

Files for migration come in the db subdirectory of the plugin's 
directory. So, if such a directory exists and contains files, 
migration is necessary.

Finally, to activate the plugin, you need to restart Redmine using the following 
command:

$ sudo service apache2 reload

This is actually all you need to do to install an ordinary plugin for Redmine.

If the installation is successful, the plugin will appear on the 
Plugins page of the Administration menu.

Upgrading plugins
Often, new versions of plugins are released to support newer versions of Redmine. 
Therefore, when a new version of a plugin arrives, you need to make sure that it still 
supports the version of Redmine that you are using. Otherwise, upgrading to such a 
version may break your installation. But how can you check for supported versions?

The first source where you should check this is the page from which you got the 
plugin. Thus, if it was GitHub, check in the README.md file (if it's missing there, look 
for similar files, for example, README.txt).

You can also check the page of the plugin in the official Redmine plugin directory 
at http://www.redmine.org/plugins. Check out a sample page, shown in the 
following screenshot:

http://www.redmine.org/plugins


Chapter 10

[ 281 ]

The versions of Redmine that are supported by the latest version of the plugin are 
listed in the Compatible with field (you can also check which versions of Redmine 
were supported by older versions of the plugin in the Changelog section of the 
page). Unfortunately, this information can be outdated in the official directory 
(because, for example, the latest version was not registered yet).

Alternatively, you can try checking the home page of the plugin, which should be 
shown in the installed plugins list, if specified. To check this list, open the Plugins 
page in the Administration menu. Certainly, for this information to be reflected 
on the home page, the new version should be authored by the same person as the 
version that you are already using (in other words, it should not be a fork).

Now, let's speak about the upgrade procedure. In general, it is the same as the 
installation one. That is, to upgrade a plugin, you usually need to perform the same 
three steps:

1.	 Update the code (it would be a great idea to back up the old code).
2.	 Run the migration.
3.	 Restart Redmine.

Uninstalling a plugin
I assume that you will want to try several plugins to decide which one best fits your 
needs (unfortunately, some plugins do not provide enough information to make 
a decision without trying them). So, in this case, you will need to know how to 
uninstall them correctly.

Don't play with plugins on the production server! Set up a test 
server (it can be a virtual machine) for this purpose.

To uninstall a plugin, you first need to roll back the database changes that were 
made during the migration phase of the installation. Thus, if you want to remove the 
plugin_name plugin, you need to execute this:

$ rake redmine:plugins:migrate NAME=plugin_name VERSION=0 RAILS_
ENV=production

Note VERSION=0, which means that the plugin should be migrated to the "zero" (that 
is, none) version. Also note that it is safe to execute this command even if the plugin 
does not include migration scripts.



Plugins and Themes

[ 282 ]

After that, you can remove the plugin's directory (which is named after it) from 
the plugins subdirectory of the Redmine root directory (that is, /opt/redmine/
redmine-3.2.0 if you installed Redmine there).

Finally, you need to restart Redmine:

$ sudo service apache2 reload

A review of some plugins
Can Redmine be used without plugins? Surely it can. Is Redmine thorough without 
plugins? I'm not sure whether it is—I haven't seen a Redmine installation that does 
not use any plugins. Anyway, if you can extend your installation with features that 
you need, why not do this?

Of course, we won't be able to review all the available plugins in this chapter. 
Therefore, we'll start with the ones that I believe are essential for any Redmine 
installation. Then we'll check a plugin that implements a highly anticipated feature 
that is missing in the Redmine core. Finally, we'll review plugins that are discussed 
by experienced Redmine users most often.

So, let's check out what amazing things can be done with some plugins. Under this 
section, we will review:

•	 The Exception Handler plugin
•	 The jsToolbar CodeRay Extension
•	 The Monitoring and Controlling plugin
•	 The Git Hosting plugin
•	 The Agile plugin

The Exception Handler plugin
There is no perfect software—any application can throw an error. By error here, I mean 
an exception that occurs when an application cannot handle an emergency situation. 
Yes, such cases can't be avoided, but that's not even the main problem. The main 
problem is that an exception can happen silently and you may never know that it has 
happened, because you can't be sure that the user who faces it will report it to you.

This becomes especially important if you are using:

•	 The most recent version of Redmine
•	 Badly tested third-party plugins or their most recent versions
•	 Custom plugins that were developed for this particular Redmine installation



Chapter 10

[ 283 ]

Luckily, Redmine writes all such exceptions to its log files or the log files of the 
HTTP server. But if your Redmine installation is heavily loaded and/or server 
administrators do not check all log files regularly (that is, at least once a day), you 
can still easily miss them.

The solution comes from the now-former Redmine core developer Eric Davis, who 
developed the Exception Handler plugin. This plugin catches unhandled exceptions, 
generates reports, and sends them to the specified email addresses.

You can find the up-to-date fork of this plugin, which is 
maintained by Ricardo Santos, at https://github.com/
thorin/redmine_exception_handler.

To install the plugin, you need to copy its code into the redmine_exception_
handler subdirectory of the plugins directory, install the tinder and exception_
notification gems (using gem install, possibly with the -v option), and run 
bundle install.

This plugin requires Ruby 2.0.

The very first thing that needs to be done after installation of this plugin is specifying 
the email addresses at which you want to receive information about exceptions. 
To do this, go to the Plugins page of the Administration menu and click on the 
Configure link that is located to the right-hand side of the plugin's row. You should 
get the form which is shown in the following screenshot:

After completing this form, you can check whether notifications can be sent to the 
specified email addresses using the Test Settings by triggering a fake exception link.

https://github.com/thorin/redmine_exception_handler
https://github.com/thorin/redmine_exception_handler


Plugins and Themes

[ 284 ]

Now, you will always know when your Redmine fails. So, unless you are able to 
check Redmine log files regularly and carefully, I believe that installing this plugin  
is essential.

The jsToolbar CodeRay extension
As described in Chapter 6, Text Formatting, to make a code in a Wiki content 
formatted appropriately, you need to embed it in the <pre> and <code> tags (for 
Textile). Moreover, you need to do this manually! Also, to have the code highlighted 
properly, you need to specify the correct programming language in the class 
attribute of the starting <code> tag. As practice shows, this is a problem for new 
Redmine users. Therefore, they often embed the code without syntax highlighting.

So, to make the lives of your users easier, you can install the jsToolbar CodeRay 
Extension. This plugin adds a new button to the Wiki toolbar, as shown here:

With this button, you just select the code, or place the cursor at the position where 
you want to write it, and click on the corresponding language in the drop-down box. 
As simple as this!

This plugin consists of two parts, which are available at: https://
github.com/tleish/redmine_jstoolbar_ext_coderay and 
https://github.com/tleish/redmine_jstoolbar_ext

https://github.com/tleish/redmine_jstoolbar_ext_coderay
https://github.com/tleish/redmine_jstoolbar_ext_coderay
 https://github.com/tleish/redmine_jstoolbar_ext
 https://github.com/tleish/redmine_jstoolbar_ext


Chapter 10

[ 285 ]

As this plugin solves one of the issues that are common to many Redmine users,  
I believe it's essential to have it installed on your Redmine installation.

This plugin does not work with the Markdown formatter.

The Monitoring & Controlling plugin
As it has been mentioned, Redmine lacks reporting and statistics. This is a well-
known issue, so no wonder there exist several plugins that implement these missing 
features for Redmine. One of these plugins is Redmine Monitoring & Controlling 
(which is also known as M&C).

The Monitoring & Controlling plugin implements its functionality as a project 
module, so to be able to use it you need to enable this module for your project. This 
can be done under the Modules tab of the project's Settings page (remember that 
you can also enable it by default for all new projects on the global Settings page). 
Here is this tab:



Plugins and Themes

[ 286 ]

After you have enabled the Monitoring & Controlling by Project module here, you 
will see in your project menu the following new tab:



Chapter 10

[ 287 ]

Each of the charts that are shown on this page can be printed or downloaded using 
the icons:

As you might have noticed, this page has its own tabs and the previous screenshot 
shows just one of them: Tasks Management. The other tabs are: Time Management, 
which contains charts for due and spent hours, and Human Resource Management, 
which contains a chart that displays the number of issues per project member.

An up-to-date fork of the plugin is available at https://github.
com/benoitlm/Redmine-Monitoring-Controlling.

The Git Hosting plugin
The most popular protocols for accessing Git repositories are HTTPS and SSH. In 
particular, these two protocols are used by GitHub. In Chapter 3, Configuring Redmine, 
I mentioned that the Git server can be configured to use Redmine users through 
the Redmine.pm tool. Such a configuration allows Redmine users to access Git 
repositories via the HTTP/HTTPS protocol. However, Git alone does not implement 
an HTTP server—it needs a separate application for this, which is Apache in our case 
(due to Redmine.pm, which is an Apache Perl module). In the same way, Git alone 
does not implement an SSH server—it needs a separate application to implement 
SSH access as well.

So, to provide SSH access to your repositories, you need an SSH server. But 
additionally, you need something like Redmine.pm that will support Redmine users. 
One such tool is Gitolite. It's a kind of shell that is opened when the user logs in to 
the SSH server using a special SSH account. Usually, the name of such an account is 
just git (it can also be gitolite or gitolite3). That's why the URL for SSH access 
usually looks like git@hostname.com (git is the username here). In other words, 
Gitolite uses a single system account for its operations. And, for Git users, it provides 
virtual accounts, much like Redmine.pm.

https://github.com/benoitlm/Redmine-Monitoring-Controlling
https://github.com/benoitlm/Redmine-Monitoring-Controlling


Plugins and Themes

[ 288 ]

However, Gitolite cannot work with Redmine directly, as it knows nothing about 
this application. So, to integrate it with Redmine, you need the Redmine Git Hosting 
plugin. This plugin makes sure that Gitolite will be able to recognize Redmine users 
and authorize them according to their roles and permissions. In addition to this, 
the plugin turns Redmine into a feature-rich Git hosting application. That's why the 
authors of the plugin chose such a name for it.

As the plugin dramatically extends the capabilities of the Git SCM, for its own Git 
repositories it introduces the special virtual Gitolite/Xitolite SCM. Therefore, for the 
plugin to be activated, this SCM must be enabled under the Repositories tab of the 
Settings page in the Administration menu, as shown in this screenshot:

If the Xitolite SCM is enabled here, you will see the new Gitolite SCM in the  
new repository form (this form can be opened by clicking on the New repository  
link under the Repositories tab of the project's Settings page), as shown in the 
following screenshot:



Chapter 10

[ 289 ]

The difference between normal repositories and Gitolite ones can be seen right 
after a Gitolite repository is added to the project. Thus, it obviously has many more 
capabilities.

The settings page of such a repository, which can be opened by clicking on the Edit 
link, reveals what these capabilities are.



Plugins and Themes

[ 290 ]

The Deployment Credentials section on this page reminds us that SSH access is 
based on SSH keys. So, to be able to access Gitolite repositories through the SSH 
protocol, Redmine users must add such keys to their accounts first. This can be done 
using the My public keys link, which can be found on the My account page. This 
link opens the page that is shown in the following screenshot:

Here, you need to paste the content of your public key file (it usually has a .pub 
extension).

However, as you have probably noticed in a previous screenshot, SSH is not the only 
protocol that is supported by the Git Hosting plugin for accessing its repositories. 
Thus, by default, it assumes that you have also configured HTTP for your Git server. 
But that's not all! Additionally, it supports the proprietary Git protocol (if the Enable 
Git Daemon option is enabled for the repository), GoLang, and Git-Annex. All of 
the enabled protocols are represented in Repository access links as buttons. By the 
way, the box with these links is also displayed on the project's Overview page (if the 
project has a Gitolite repository, of course).



Chapter 10

[ 291 ]

These access links (SSH, HTTP) can also be seen on the repository page, which also 
has some other improvements that are provided by the Git Hosting plugin. For 
example, the sidebar of this page looks like in the following screenshot:



Plugins and Themes

[ 292 ]

Another improvement is support for the GitHub-style README, which is shown 
on the repository page under the Latest revisions block (if such a file exists in the 
repository, of course):

As on GitHub, this README file uses the Markdown formatter, even if you are 
using Textile for the rest of the system.

Another really cool and important feature of the Git Hosting plugin is the 
comprehensive repository statistics that replace the native short statistics and 
become available under the Statistics link, which can be found on the repository 
page. Here are these statistics:



Chapter 10

[ 293 ]

In this screenshot, you see just one of the tabs. It looks much like the statistics on 
GitHub, right?

Among other features that are provided by this amazing plugin are the following:

•	 Automatic creation of repositories on the Gitolite server. In this way, the 
plugin does the same job as the reposman.rb tool (this tool was described in 
Chapter 3, Configuring Redmine) but, unlike the latter, it does this job on-the-fly. 
Additionally, it can automatically create repositories for new projects.

•	 Support for GitHub-style post-receive URLs. In this way, Redmine will be 
able to notify third-party applications about new changes that have been 
made to the repository.

•	 The plugin can automatically mirror the repository to third-party Git servers, 
for example, to GitHub.

•	 The plugin can also restrict some branches to specific Redmine users  
and groups.

As you can see, it's a powerful and complex plugin that depends on third-party 
systems, such as SSH server and Gitolite. Therefore, its installation procedure  
is, unfortunately, quite complicated.

This plugin also requires the Redmine Bootstrap Kit 
plugin to be installed. Detailed installation instructions 
for these two plugins are available at  
http://redmine-git-hosting.io/get_started.

The Agile plugin
Agile methodologies are intended to make software development processes adaptive, 
iterative, and evolutionary. While Agile is in fact more about project planning and 
collaboration between team members, it may also need certain features to be present 
in the project management tools that are used by the team. Unfortunately, the 
Redmine core does not come with any special agile-specific functionality, but luckily 
such a functionality can be found in some plugins for Redmine.

The Agile plugin by Kirill Bezrukov is the most popular Redmine plugin that is 
intended to assist in agile software development. Thus, it is so popular that it's even 
pre-installed by some hosting providers that offer Redmine in images or as SaaS 
(for example, BitNami, Plan.io, and so on; see also Chapter 2, Installing Redmine). But 
unfortunately, it's not completely free—there is the light free version and the PRO 
commercial one.

http://redmine-git-hosting.io/get_started


Plugins and Themes

[ 294 ]

The agile-related functionality is provided by this plugin as a project module. So 
it must be enabled for the project, what can be done under the Modules tab of the 
project's Settings page, as shown here:

Here, this plugin is listed as the Agile project module. Alternatively, you can enable 
it for all new projects under the Projects tab of the system Settings page, which can 
be found in the Administration menu.

When the project module is enabled, the new Agile tab is added to the project menu, 
like this:



Chapter 10

[ 295 ]

What you see in this screenshot is known as an agile task board. The main purpose 
of such boards is to visualize the development process and, therefore, to help detect 
any problems that are related to it. That's also the reason why such boards are usually 
used in the real world (that is, not in an electronic form) and are kept in a location 
where most team members can see them. Nevertheless, the virtual board may also be 
needed sometimes—for such cases, you can use Redmine with the Agile plugin.

Filters, which you can see at the top of this page, are in fact the same as on the issue 
list. However, Options are specific to the Agile board. Here they are:



Plugins and Themes

[ 296 ]

Here, Board columns are issues statuses which should be used as the columns of the 
board. And, Card fields are issue fields that should be shown in cards on the board.

Also cards on the board are draggable. Thus, you can change their order in the 
column, what can be useful if you believe that some cards are more important and 
therefore should be on top. But you can also drag them to other columns, what 
would mean changing their issue status.

By the way, when you hover the mouse arrow over a card, the comment  icon 
appears in its bottom-right corner—this can also be seen in the previous screenshot. 
Clicking on this icon allows you to quickly add a comment to the card/issue. When 
added, the comment is shown within the card until you refresh the page. This can be 
seen in the following screenshots:

This is, in fact, an ordinary issue note and it will also be shown on the issue page.

But this is not the only board that is provided by the plugin. In the Issues section 
on the sidebar of an issue page, you can see the new Version planning link (for 
example, in the second screenshot of this subsection). If you open this link, another 
board will be opened. On that board, you can drag issues between versions, in this 
way assigning the issue to a different version (much like the way you would change 
the issue status using the previous board).



Chapter 10

[ 297 ]

Additionally, the Agile plugin comes with the burn-down chart. This chart can be 
opened if you click on the Issues burndown link under the Agile charts label on the 
sidebar. Here is a sample of the chart:

This chart is another well-known Agile tool that shows how much work is left to do. 
Moreover, it can be considered to be essential for issue tracking applications such  
as Redmine.

The Agile plugin can be obtained from:  
http://www.redminecrm.com/projects/agile

This is the only functionality that is available in the light free version of this amazing 
plugin. The PRO version (which unfortunately costs a lot at the time of writing) 
comes with many more features, such as the ability to configure and save boards, the 
ability to group cards on the board, different colors for cards based on issue fields, 
and more charts.

You can play with the PRO version of the plugin online using this URL:

http://demo.redminecrm.com/projects/agile/agile/board

http://www.redminecrm.com/projects/agile


Plugins and Themes

[ 298 ]

For a good agile experience, your task board should not just reflect the issue statuses. 
Instead, if you want to use the agile methodology and its task board practice with the 
help of the Agile plugin, you should adjust the issue statuses so that they better reflect 
your processes and then use them as columns on the board. Thus, you may decide 
that you want to use it as a more specific Kanban or scrum board. In other words, 
before using this plugin, you should know what kind of board you want to have.

Installing a theme
Redmine themes are based on CSS and often come with images. Sometimes, they can 
also include JavaScript code. But, generally, Redmine's support for theming is very 
basic. Nevertheless, this makes installing its themes very easy.

Redmine themes are stored in their own subdirectories under the public/themes 
directory of Redmine (that is, under /opt/redmine/redmine-3.2.0/public/
themes in my case). By default Redmine comes with two directories in public/
themes, which are alternate and classic—these are the Alternate and Classic 
core Redmine themes correspondingly.

So, to install a new theme, you need to create a directory in public/themes for it. 
The name of the theme can actually be anything that you want it to be (that is, you 
can use the name that is suggested by the author, or think up your own). The only 
requirement for the name is that it must be in lowercase.

After you have created a directory for the theme, put all its files into it. Thus, the 
theme must include at least stylesheets/application.css, but it also can contain 
images under the images subdirectory, and so on.

When finished, you need to restart Redmine in order to load the new themes:

$ sudo service apache2 reload

Finally, to switch to a new theme, navigate to the Administration | Settings | 
Display tab, and select its name from the drop-down list of the Theme field. Then 
click on Save.

That's it! Enjoy!

Uninstalling a theme is even easier. Just remove its directory 
and restart Redmine.



Chapter 10

[ 299 ]

A review of some themes
Now let's review some of the most beautiful themes for Redmine (in my personal 
opinion).

Remember, however, that by selecting a theme, you actually choose which existing 
site you want your Redmine to look like. Public themes, especially nice-looking ones, 
are used widely and often. So, if you can afford it, order a unique theme for your 
website.

The Basecamp theme
The Basecamp theme was created by Peter Theill. It is a port of 37signals' Basecamp 
theme for Redmine:



Plugins and Themes

[ 300 ]

This theme can be downloaded from https://github.com/
theill/redmine-basecamp-theme.

The Modula Mojito theme
This theme was originally authored by Eero Louhenperä from Modula.

Later, the maintenance of this theme was taken over by 
Steven Jones from Computer minds, so now it can be found 
at https://github.com/computerminds/modula-
mojito. Unfortunately, it has not been updated for a long 
time (3 years).

https://github.com/theill/redmine-basecamp-theme
https://github.com/theill/redmine-basecamp-theme
https://github.com/computerminds/modula-mojito
https://github.com/computerminds/modula-mojito


Chapter 10

[ 301 ]

The A1 theme
This theme was created by Kirill Bezrukov. It is based on Ronin's theme (a time 
tracking application).

This theme can be downloaded from http://www.
redminecrm.com/pages/a1-theme.

http://www.redminecrm.com/pages/a1-theme
http://www.redminecrm.com/pages/a1-theme


Plugins and Themes

[ 302 ]

The Highrise theme
This theme was also created by Kirill Bezrukov. It is based on 37signals' Highrise 
CRM theme.

This one can be downloaded from http://www.redminecrm.
com/pages/highrise-theme.

http://www.redminecrm.com/pages/highrise-theme
http://www.redminecrm.com/pages/highrise-theme


Chapter 10

[ 303 ]

Summary
In this chapter, I wanted to share my experience of searching for functional Redmine 
plugins, as I personally find this process quite complicated and, most likely, you 
won't be able to avoid using plugins. In other words, I wanted you to feel easy about 
finding and installing the plugins that you'll need.

To demonstrate what can be done with plugins, we reviewed some of them. Of course, 
we have still ignored many interesting, useful, and popular ones, but the goal of this 
chapter was not to review all of them (as this chapter would be too huge). I wanted 
to draw your attention to some of the plugins to show what interesting things can be 
done with them.

I assume that you have searched for and found plugins that you will use, and you 
have already chosen and installed a theme that will become the face of your Redmine 
installation. If you have done this, you have just done the basic customization that 
gets done by everyone who uses Redmine. The next chapter is about advanced 
customization—it describes how to turn Redmine into a unique website. Therefore, 
the next chapter is for project managers, site owners, Redmine administrators, and 
server administrators.





[ 305 ]

Customizing Redmine
The previous two chapters were about what could be called customization. And 
that's natural, because after we have learned the application, we will want to make 
it fit our needs better. Thus, personalization is a customization that is made by users, 
using the permissions that they have. Installing plugins is a customization that can 
be done by server administrators (don't confuse them with Redmine administrators). 
However, those chapters describe common things that are done by everyone who 
installs Redmine. There are also advanced things that you may want to do, for 
example, if you use Redmine for a public forge website.

In such cases, people usually seek to customize the look and feel (for example, 
the theme), add some custom content to a few pages, and so on. During this 
customization step, people also usually ask experts for help. Thus, they sometimes 
ask them to develop plugins to implement different ideas, though plugins are 
not always needed. Also, during this step, people often customize Redmine by 
themselves and often do it wrong. So, what is the right way to customize Redmine, 
and what can you do without developing custom plugins? These are the topics that 
we will discuss now.

So, in this chapter, we will cover the following topics:

•	 Custom fields
•	 Customizing with Textile
•	 Customizing the theme
•	 Customizing with a plugin
•	 Helping Redmine



Customizing Redmine

[ 306 ]

Custom fields
I believe that support for custom fields is essential for any issue tracker, and luckily 
Redmine implements this feature very well. Thus, in Redmine, custom fields can be 
defined for issues, projects, versions, users, groups, time entries, and so on (even for 
some objects that are provided by third-party plugins). Custom fields enrich these 
objects by allowing you to add properties that are missing. Additionally, they can be 
used, for example, in search filters. In other words, to a great extent, custom fields 
let you change the way Redmine looks and behaves. So, this makes them a tool for 
advanced customization (and that's why they are reviewed in this chapter).

Be sure to plan the use of custom fields. Thus, avoid adding 
custom fields that are going to be rarely used, as too many 
custom fields can confuse your users.

Custom fields can be managed on the Custom fields page, which can be found in the 
Administration menu. Check out the following screenshot:

This page has tabs that correspond to different customized objects, which have 
custom fields defined (currently, I have a custom field for issues only, as can be  
seen in the screenshot). So, each tab contains the list of custom fields for the 
particular object.



Chapter 11

[ 307 ]

The New custom field link can be used to create custom fields. So, let's see what 
happens if we click on it:

As you can see, Redmine uses a wizard type of dialog for the creation of a custom 
field. The first page of this wizard asks you to select the type of object for which you 
want to create it. When you click on the Next » button, you see the following form:

This form is for issue custom fields. Forms for other objects can differ, but most 
elements remain the same (actually, the form for issue custom fields is the most 
complete one). The same form is also used for editing a custom field when you 
click on its name in the list, which is shown on the Custom fields page (see the first 
screenshot of this section).



Customizing Redmine

[ 308 ]

The block in the left-hand side column contains properties of the custom field 
and does not differ for different customized objects, but it does differ for different 
formats of custom fields (they will be reviewed later). The following are the 
explanations of these properties:

•	 Format: This field allows you to select the format of the custom field. As each 
format has its own set of available properties, we will review the supported 
formats separately in a subsection a little later.

•	 Name: This is the only required property, and it should contain an easy-to-
understand and intelligible name for the custom field. This name will be 
shown in forms and on some pages of the customized objects.

•	 Description: This field can be used to add a subtitle to the name. The subtitle 
will be shown when the user hovers the mouse arrow over the name of the 
custom field, as can be seen in the following screenshot:

•	 Min – Max length: These fields specify the minimum and maximum size (in 
characters) of the value for the custom field.

•	 Regular expression: This field is used to verify the value of the custom field. 
It is a very useful property, as it allows you to ensure that users specify 
proper values for the custom field. Unfortunately, to be able to use it, you 
need to be familiar with regular expressions. Still, I highly recommend that 
you learn them.

You can learn regular expressions using interactive tutorials and 
practical examples that can be found at: http://regexone.com/.

•	 Text formatting: This option decides whether users will be able to use Wiki 
syntax in the value of the custom field. Certainly, this option is available only 
for fields of the Text and Long text formats.

•	 Default value: This field can be used to specify the default value for the 
custom field.

http://regexone.com/


Chapter 11

[ 309 ]

Changing the way values of custom fields are displayed
in The Extended Fields plugin can be used to define custom 
template files for certain custom fields (by format or by name). In 
this way, you can render Boolean values as check marks, Twitter 
usernames as Follow buttons, and so on. To learn more about 
the Extended Fields plugin, check out http://projects.
andriylesyuk.com/projects/extended-fields/wiki/
Custom-fields-view-customization.

There are also more specific properties that are available only for certain formats of 
custom fields. Thus, the Link values to URL property, which allows you to convert 
the value into a link, when rendered, is available for all formats except Link, Long 
text, User, and Version. For this property, you need to specify a URL that can 
optionally contain the following variables:

•	 %value%: This will be replaced by the value of the custom field.
•	 %id%: This will be replaced by the ID of the customized object, for example, 

by the issue ID, if the custom field was added for issues.

•	 %project_id%: This will be replaced by the numeric ID of the project the 
customized object is associated with (if any). As such numeric project IDs are 
used internally only, it is not likely that you'll need to use this variable.

•	 %project_identifier%: This will be replaced by the identifier of the project 
that the customized object is associated with (if any).

•	 %m1%, %m2%, and so on (that is, %mX%): These will be replaced by capture 
group matches. These variables are available only if you have specified 
a regular expression for the custom field and if the specified expression 
contains capture groups. Capture groups are parts of the regular expression, 
that are in parentheses. For example, the regular expression ^([A-Z]+)-([0-
9]+)$ contains two capture groups: ([A-Z]+) and ([0-9]+). If the value of 
the custom field is ABC-123 (which matches our regular expression), then 
%m1% will be replaced by ABC and %m2% – by 123.

Suppose you want to have an issue custom field, that will contain 
the ID of the issue in the JIRA tracker and the value of which should 
be rendered as a link to the external issue page. In this case, you 
can specify something like the following in the Link values to URL 
field: https://company.atlassian.net/browse/%value%.

http://projects.andriylesyuk.com/projects/extended-fields/wiki/Custom-fields-view-customization
http://projects.andriylesyuk.com/projects/extended-fields/wiki/Custom-fields-view-customization
http://projects.andriylesyuk.com/projects/extended-fields/wiki/Custom-fields-view-customization
https://company.atlassian.net/browse/%value%


Customizing Redmine

[ 310 ]

Custom fields of Boolean, Key/value list, List, User, and Version formats 
additionally have the Display property, which controls how the custom field is 
rendered in forms. Here it is:

The radio buttons option is available only for Boolean custom fields though.

Finally, custom fields of Key/value list, List, User, and Version formats come with 
the Multiple values option. If this option is enabled, users will be able to select 
several values for the custom field.

These are still not all the possible properties for custom fields. But the rest are 
specific to certain formats, and therefore, they will be reviewed along with those 
formats later.

Custom field options
The upper box in the right-hand side column of the custom field form, which 
was shown earlier, contains custom field options. The following table shows the 
availability of these options for different customized objects:

Customized 
object

Required Editable For all 
projects

Used as 
a filter

Searchable Visible

Issues ü ü ü ü ü

Time entries ü ü

Projects ü ü ü ü

Versions ü ü

Documents ü

Users ü ü ü ü

Groups ü ü

Activities ü

Issue priorities ü

Document 
categories

ü

Now let's discuss each of them.



Chapter 11

[ 311 ]

The Required option
The Required option, which is available for all customized objects, decides whether 
or not the value of the custom field is required.

For issues, you can have more flexible control over whether the 
custom field should be required using the Fields permissions 
tab of the Workflow page. This tab and page were reviewed in 
Chapter 7, Access Control and Workflow.

The Editable option
The Editable option specifies whether users should be able to see and edit the value 
of the custom field. This option is currently available only for the User object. So, 
user custom fields that have this option disabled will be seen only by administrators 
(via the Users page, which can be found in the Administration menu).

The For all projects option
The For all projects option, which is currently used only by issue custom fields, 
determines whether the custom field will be available for all projects automatically. 
If this option is not enabled, project managers will still be able to enable the custom 
field for the particular project in the project's settings (using the Custom fields block 
under the Information tab of the project's Settings page).

Additionally, the custom field form includes the Projects block for issues. In this 
block, administrators can select projects for which the custom field should be 
enabled. This is an alternative way to do what can be done in the project's settings. 
Certainly, this is possible only if the For all projects option is disabled.

Do not forget to additionally enable the custom field for 
trackers that are available in the selected projects.



Customizing Redmine

[ 312 ]

The Used as a filter option
The Used as a filter option allows the custom field to be used as a filter, in, for 
example, issue custom queries. It's available for issues, time entries, projects, 
versions, users, and groups. Take a look at the following screenshots:

To the left, you can see the available filters for issue custom queries that are used 
under the Issues, Gantt, and Calendar tabs of the project. In this list, the selected 
Pager is an issue custom field. But this list also includes project, user, version, and 
group custom fields, under appropriate labels and with appropriate prefixes. Thus, 
Project's ISBN-13 is a project custom field (which has the name ISBN-13), Author's 
Homepage and Assignee's Homepage are user custom fields (which have the name 
Homepage), Assignee's Website is a group custom field, and Target version's Pages 
is a version custom field. Certainly, the Used as a filter option is enabled for these 
fields and that's why they are here.

To the right of the previous screenshots, you can see the available filters for the time 
report (this report can be opened, for example, by clicking on the Report link on the 
sidebar of the project's Overview page, if the Time tracking module is enabled). In 
this list, the selected Page number is a time entry custom field. Additionally, as you 
can see, the list can include Project, Issue, and User custom fields if the Used as a 
filter option is enabled for them.



Chapter 11

[ 313 ]

The Searchable option
The Searchable option determines whether the value of the custom field will be 
inspected when Redmine performs a search in customized objects. This option is 
available only for projects and issues, as they can be searched using the Redmine 
search form. Here is this form:

This search form can be accessed via the Search link, which can be found in the top-
right corner of the Redmine interface (near the search bar).

The Visible option
The Visible option controls whether the value of the custom field will be displayed 
on open pages of the customized object (for example, on the project's Overview page 
or the user profile). In other words, if this option is disabled, the value of the custom 
field will be visible only in edit mode of the customized object (for example, on the 
project's Settings page or in the user account, which is seen only by administrators).

Also, for project and user custom fields, this option is available as a checkbox, while 
for issue custom fields, it allows you to select either all users or only certain user 
roles (as can be seen in the third screenshot of this section).

Custom field formats
Sometimes, you may need to store a string in a custom field. At other times, you 
may want to store a date or a boolean value. Such a data type of the custom field is 
controlled by the Format property. So, let's check out what options it has.

The Computed Custom Field plugin
Sometimes, it may be necessary to have a custom field with a 
value, that is calculated from other fields. This can be done with 
the Computed Custom Field format, which is provided by the 
plugin, that can be found at: https://github.com/annikoff/
redmine_plugin_computed_custom_field.

https://github.com/annikoff/redmine_plugin_computed_custom_field
https://github.com/annikoff/redmine_plugin_computed_custom_field


Customizing Redmine

[ 314 ]

The Boolean format
The Boolean format should be used if the custom field has to accept only Yes or No. 
When this format is selected, the properties block looks like what is shown in the 
following screenshot:

Using the Display property, you can have a custom field of this type rendered in 
forms as a drop-down list, checkboxes, or radio buttons.

The Date format
The Date format can be used to store a date in a custom field. The input element for 
such custom fields is rendered with the calendar  icon, clicking on which opens 
the calendar dialog. This small dialog is intended to help users select a proper date 
value, as shown in the following screenshot:

The properties block for custom fields of the Date format also differs. Thus, the 
Default value property comes with the icon that opens the calendar dialog as well.



Chapter 11

[ 315 ]

The Float format
The Float format of custom fields was designed to store floating-point numbers. Such 
custom fields additionally support the Min – Max length property, which can be 
used to limit the number of digits in the value, and the Regular expression property, 
which can be used, for example, to allow only positive numbers.

The Integer format
The Integer format of custom fields allows you to store integer values. It uses the 
same properties block as the Float format.

The Key/value list format
In many cases, custom fields are needed to ask users to select a value from a set 
of options, for example, a project license — from the list of available licenses, a 
resolution type from the list of resolution types, and so on. This is what can be done 
with the Key/value list format.

An unusual thing about this format is that the initial form for it does not include any 
field for specifying possible values for the custom field. Such a field appears only after 
you have created the custom field of this format, as shown in the following screenshot:



Customizing Redmine

[ 316 ]

So, right after creating a custom field of this format, you should click on the Edit 
link of the Possible values field to add possible values for it. This link will open the 
following form:

Using this page, you can manage the value list of this particular custom field. The 
same order of values will be used in forms where users will select them. So, you 
can change it by dragging values using their arrow  icons to the left. The Active 
checkbox controls whether it will be possible to select the particular value in forms.

The Link format
Values that are stored in custom fields of the Link format are always rendered as 
links. Therefore, such values must be valid URLs. Also, if the value does not start 
with protocol:// (where protocol is http, https, ftp, and so on), Redmine 
prepends http:// to it automatically.

The properties block for the Link format includes an additional URL field. This field 
in fact, has exactly the same meaning as the Link values to URL property that was 
described earlier. So, if you define a URL pattern for this property of a custom field, 
users will need to specify only a part of the URL as a value for that custom field (for 
example, if you enter https://company.atlassian.net/browse/%value% in the 
URL field, users will need to specify something like ABC-123).

As values of custom fields of this format are going to be rendered as 
links, you may want to use a regular expression to make sure that 
the specified URLs (and rendered links) are correct. Thus, you can 
use this expression:
^(https?:\/\/)?([\da-z-]+\.)+[a-z]{2,6}[\/\w\.-]*$



Chapter 11

[ 317 ]

The List format
The List format very much resembles Key/value list. The difference between these 
two formats is in how their possible values are specified. Thus, for the List format, the 
Possible values field is rendered as a text area, where you just enter options from which 
users will need to select a value for the custom field. Each such option should be on its 
own line. And, yes, the Possible values field is present in the initial form for this format, 
so you can specify possible values while creating a custom field.

To avoid typos, copy and paste a value for the Default 
value property from the Possible values text area.

The Long text format
The Long text format should be used when you want to allow users to enter a large 
volume of free text. In forms, custom fields of this format are rendered as text areas, 
like the one which is used for the Default value property in this screenshot:

As it was mentioned at the beginning of this section, if the Text formatting option is 
enabled, users will be able to use Wiki syntax for the custom field.

Unfortunately, text areas for custom fields for which you have 
enabled the Text formatting option won't include the Wiki 
toolbar. So, you also need to let users know somehow that 
they can use Wiki syntax for such custom field. For example, 
you can write this in Description.



Customizing Redmine

[ 318 ]

The Text format
The Text format is very much like Long text, except that it accepts shorter values and 
is therefore rendered in forms as a textbox. The properties block for this format is 
also similar to the one that is used for Long text, but additionally, contains the Link 
values to URL property (besides, the Default value property is rendered as a textbox 
too—of course).

The User format
The User format can be used to allow choosing a project member as a value for the 
custom field (for example, it can be used for a second assignee, QA, or code reviewer).

This format is available only for issues, time entries, versions, 
documents, and projects.

The properties block for this format looks like what is shown in the following 
screenshot:

As you can see, the list of project members which can be chosen as values for the 
custom field can be limited to specific roles.

The Version format
The Version format allows you to select a project version as a value for the custom 
field (for example, it can be used to specify a stable version for the project).



Chapter 11

[ 319 ]

This format is available only for issues, time entries, versions, 
documents, and projects.

The properties block for this format is very similar to the one for the User format, 
except that instead of the Role property, it includes the Status property, as shown in 
this screenshot:

Customized objects
Each customized object uses custom fields in its own way. That's what we are going 
to discuss in this subsection.

•	 Issues: Redmine is an issue tracker. Therefore, it's no wonder that its support 
for custom fields is most advanced for issues. Thus, in addition to the custom 
field page (that is, Custom fields in the Administration menu), issue custom 
fields can be managed on the Workflow page (in the same Administration 
menu). There, you can make them read-only or required depending on the 
issue status (see also Chapter 7, Access Control and Workflow).
Values for issue custom fields can be specified in the issue form, but it's not 
that they can be seen only on the issue page. You can also show them in the 
issue list and, use them in custom queries and even in time reports.

If you want to create a Resolution custom field, make it 
read-only for all issue statuses except closed ones.

•	 Spent time: Custom fields can also be added to time entries. The values  
of such custom fields can be edited in the log time form and used in the  
time report.

•	 Projects: Project custom fields can be used to collect more details about 
the project. The values for such custom fields can be specified under the 
Information tab of the project's Settings page. If the Visible option is 
enabled for a custom field, its value will be displayed on the project's 
Overview page (under the description in the left-hand column). Also, the 
values of project custom fields can be used in issue custom queries.



Customizing Redmine

[ 320 ]

•	 Versions: Project versions can have custom fields as well. The values for 
such custom fields can be specified in the version form and viewed on the 
roadmap and individual version pages. Additionally, such custom fields can 
be used in issue custom queries.

•	 Documents: Document custom fields can be edited in the document form 
and viewed on the document page.

•	 Users: In my opinion, the default Redmine user profile is too scant, as it 
provides too little information that can be useful to other Redmine users. 
Thus, you may want it to include Facebook and Twitter accounts, a phone 
number, a phone extension, a company, a position, and much more. Luckily, 
such data can be added to the user profile with the help of custom fields.
The values of user custom fields can be edited in the user account (via the 
Users page of the Administration menu) by administrators, or in the user 
profile (via the My account link in the top-right corner) by users. The latter 
is possible only if the Editable option is enabled for such custom fields. If 
the Visible option is enabled, the value will also be shown on the user page. 
Additionally, a user custom field can be referred to by issue custom queries.

•	 Groups: User groups can have custom fields as well. The values for such 
custom fields can be specified in the group edit form (which can be accessed 
via the Groups page of the Administration menu). Unfortunately, such 
custom fields are not shown anywhere else. However, they can be used by 
issue custom queries (if the Used as a filter option is enabled).

•	 Activities (time tracking): Time tracking activities are enumerations that, 
like other enumerations, can be managed on the Enumerations page of the 
Administration menu. Enumerations are simple objects that allow you to 
store list-style values. These objects also support custom fields.
Custom fields for time tracking activities can be managed in the enumeration 
edit form. This form can be opened from the Enumerations page, or under 
the Activities (time tracking) tab of the project's Settings page.

Remember that by editing an activity in the project settings, 
you make a copy of the corresponding system activity.

•	 Issue priorities: Issue priorities is another enumeration that supports 
custom fields. The values of such custom fields can be managed only 
in the enumeration edit form, that is, on the Enumerations page of the 
Administration menu.



Chapter 11

[ 321 ]

•	 Document categories: Document categories is an enumeration too, and like 
the other enumerations, it supports custom fields. The values of such custom 
fields can be managed in the enumeration edit form, which can be opened 
from the Enumerations page of the Administration menu.

Customizing with Textile
Once, I was asked to create a custom plugin for Redmine to improve the look and 
feel of its start page (which can be opened by clicking on the Home link) by adding 
buttons, links, sections, and other similar stuff. My answer was, You don't need a 
plugin to do that.

Textile is very simplified HTML. Therefore, it can't be used to create full-featured 
HTML pages, but for some things, it may appear to be sufficient. However, to achieve 
the necessary results, you will most likely need to use the most advanced features 
of Textile. Also, like for HTML, you can't learn how to create a good look and feel 
with Textile—you may only understand the concept. You will need to inject your 
own creativity to get what you need. Therefore, in this section, we will review some 
interesting customization examples that should help you understand the technique.

Wiki pages as tabs in the project menu
The Wiki Extensions plugin, which was created by Haruyuki 
Iida, allows you to add Wiki pages to the project menu as tabs 
(configured per project). You can find more information about 
this plugin at http://www.r-labs.org/projects/r-labs/
wiki/Wiki_Extensions_en.

The things that we'll discuss here will look tricky, so you may wonder why  
they should be preferred over writing a plugin. The answer is: because Textile 
formatting will survive upgrades of Redmine, whereas a plugin will most likely  
need to be updated.

As Markdown is less powerful at the time of writing this book, 
many things that are discussed in this section, are not possible 
to implement using it. For this reason, Markdown is not 
reviewed here.

http://www.r-labs.org/projects/r-labs/wiki/Wiki_Extensions_en
http://www.r-labs.org/projects/r-labs/wiki/Wiki_Extensions_en


Customizing Redmine

[ 322 ]

Styled boxes
CSS classes that are used for the Redmine interface can also be used to create 
information boxes inside the Wiki content. For example, check out the following code:

p(conflict). A warning message.
p(box). Rendered as a box.

It will be rendered into this:

You can also add custom CSS rules to the Redmine theme, 
specifically to use them in the Wiki content. We'll talk about 
this in the Customizing the theme section.

Using icons
You can also put an icon before the text, for example:

You can insert "(icon icon-fav)a link with an icon":http://www.
andriylesyuk.com or even %(icon icon-checked)not a link%...

This Textile code will be rendered as follows:

Here, we used icon CSS classes of the Redmine interface and the magic % marker.

Table-based layout
In modern web design, everyone prefers to build the page layout using divs instead 
of tables (the old-style approach). But in Textile, we don't have enough control over 
divs. Nevertheless, we can still use tables:

table{border:none}.
|{border:none}.eBook: %{color:#bbb}£18.99%|{border:none;padding:1em}.%
{font-size:1.5em}£15.19%



Chapter 11

[ 323 ]

save 20%|{border:none}.!http://www.packtpub.com/sites/all/themes/
packt_new/images/addtocart.gif!:https://www.packtpub.com/application-
development/mastering-redmine|
|{border:none}.Print + free eBook + free PacktLib access to the 
book: %{color:#bbb}£49.98%|{border:none;padding:1em}.%{font-
size:1.5em}£27.89%
save 44%|{border:none}.!http://www.packtpub.com/sites/all/themes/
packt_new/images/addtocart.gif!:https://www.packtpub.com/application-
development/mastering-redmine|

This tricky code produces the following result:

In this example, we defined the CSS style for the table (table{border:none}.) and 
its cells (for example, |{border:none;padding:1em}.). Also, we used the magic % 
marker (for example, %{color:#bbb}£49.98%).

Customizing the theme
A common scenario of customization is when users first choose a theme for Redmine 
and then slightly modify it to make it fit their needs. As a result, such users lose the 
possibility to upgrade that theme in the future (this is because it henceforth contains 
their changes, which are going to be overridden during an upgrade).

Suppose you want to customize the default Redmine theme. Instead of modifying its 
files under the public/stylesheets directory, let's create a new theme based on it. 
To do this, let's create the mastering-redmine subdirectory for our theme (this will 
be its name) in the public/themes directory. In the newly created directory, create 
the stylesheets subdirectory, and the application.css file in it.

Now add the following code to that CSS file:

@import url(../../../stylesheets/application.css);

#top-menu { background: #373c40; }
#header { background-color: #e7692c; }
#main-menu li a:hover { background-color: #d92238; }



Customizing Redmine

[ 324 ]

Here, the first line imports CSS rules from the Default theme. So, in my customized 
version of the theme, I needed to include only the difference (thus, I changed the 
background colors of the page header and its menus).

If you want to customize a theme other than Default, for example, 
Alternate, you need to change the first line to the following:

@import url(../../../themes/alternate/stylesheets/
application.css);

To apply your customized theme, don't forget to select it under the Display tab of 
the system Settings page and reload Redmine.

Customizing with a plugin
The most advanced customization can be accomplished by writing a custom 
plugin. With a plugin, you can customize anything in Redmine. Of course, to write 
a full-featured plugin, you need to be familiar with Ruby, Rails, the Redmine API, 
JavaScript, HTML, CSS, the concept of web development, and so on. But who said 
that you need a full-featured plugin?

As you already know, the files of a plugin are kept in a separate directory that is 
named after the plugin and located under the plugins directory of Redmine. So, 
when Redmine is upgraded, such files remain untouched. On the other side, many 
users put their customizations into the Redmine core files that are overridden on 
upgrades. So why not use a special plugin for this instead?

The Redmine plugin API is quite flexible. In particular, it allows you to:

•	 Override any core view file without touching the original one
•	 Add custom content to some views
•	 Load additional CSS style sheets, JavaScript files, and so on

This makes it possible to use a plugin as a tool for customization. And for this, you 
do not need to write any complicated Ruby code—you can simply use small code 
snippets to activate different capabilities of the plugin. That's what you'll learn in  
this section.

Of course, to be able to customize the look and feel, you need to be familiar with 
HTML at least. Familiarity with CSS is optional, but it will be very useful.



Chapter 11

[ 325 ]

Writing a simple plugin
Before creating a plugin, you need to choose a name for it. I'll use the name 
mastering_redmine.

Name your customization plugin after your organization or 
website. Use alphanumeric characters and underscores.

Next, you need to create a subdirectory for the plugin in the plugins directory 
of Redmine. The created subdirectory must have the name of the plugin. In other 
words, the full path for my plugin will be /opt/redmine/redmine-3.2.0/plugins/
mastering_redmine.

After this, in the newly created directory, you need to create the init.rb file (the 
entry point for the plugin) and put the following code into it:

require 'redmine'

Rails.logger.info 'Starting Mastering Redmine Plugin for Redmine'

Redmine::Plugin.register :mastering_redmine do
    name 'Mastering Redmine customization'
    author 'Andriy Lesyuk'
    author_url 'http://www.andriylesyuk.com'
    description 'Website customization using the plugin.'
    url 'http://mastering-redmine.com'
    version '2.0.0'
end

Of course, you need to use your plugin name instead of :mastering_redmine (but 
keep the colon at the beginning). What should be changed in the rest of the code, I 
believe, is quite clear.

When you're done, restart Redmine. Now you should see your plugin listed on the 
Plugins page of the Administration menu, as shown in the following screenshot:



Customizing Redmine

[ 326 ]

At the moment, this plugin does nothing (besides putting itself into the plugin list), 
but that's only for now.

Customizing view files
Redmine uses the Model-View-Controller (MVC) architecture, in which view files 
store the interface information. Most of the content of these files is just HTML code (the 
rest of the content is eRuby, JavaScript, and so on). All such files are located under the 
app/views directory of Redmine. Moreover, any such file can be overridden just by 
copying it to the corresponding path under the plugin's app/views directory (in this 
case, the original file remains unchanged). So, let's see how this works by reviewing 
one of the most common customization tasks—adding a logo to the Redmine interface.

First, you need to create a directory for images in your plugin. Its path has to be 
assets/images. After you have done this, put the logo image into this directory.

Next, create the app/views/layouts directory in the plugin and copy the app/
views/layouts/base.html.erb file from Redmine there (thus, the full target path 
in my case is plugins/mastering_redmine/app/views/layouts/base.html.erb).

Now, open your copy of the base.html.erb file and find this line of code (it's line 44 
currently):

<h1><%= page_header_title %></h1>

This code renders the title of the page. Now, add the following line of code before 
that line:

<%= image_tag('mastering-redmine.png', :plugin => :mastering_redmine, 
:style => 'float: left; padding-right: 1em;') %>

Here, mastering-redmine.png is the name of the logo image and :mastering_
redmine (the colon is important) is the name of the plugin.

Alternatively, the logo can be added using CSS (for example, 
by creating a custom theme). Thus, it can be specified as a 
background image for the #header block. However, if the 
#header area already has a background image (such an 
image can be set, for example, by a theme), the logo will 
override it. Anyway, the advantage of this method is that this 
customization most likely won't need to be updated after an 
upgrade of Redmine.

After saving the changes, you need to restart Redmine to apply them. Now, if you 
reload any Redmine page, you should see something like this:



Chapter 11

[ 327 ]

Always track the changes that you make to the copies of the 
Redmine core files, as you may need to make them again if 
those Redmine files are modified in an upgrade.

Using hooks
Redmine comes with support for hooks. Hooks are callbacks that can be used to 
inject custom content into some predefined places of certain Redmine views. If 
possible, it is better to use a hook to add a content to the view instead of making  
a copy of the view file. This is because, for hooks, you need to provide only the 
content itself and they are not affected by upgrades. So, let's check out how this 
works through another real-life example—let's add a message to the login page  
(for example, it can contain login instructions).

To be able to use hooks, you need to add a hook listener to the plugin. To do this, 
create the lib directory in the plugin and put the mastering_redmine_hook.rb file 
into it (actually, you can use any filename). Now, add the following code into the 
newly created file:

class MasteringRedmineHook < Redmine::Hook::ViewListener
    render_on :view_account_login_top,
              :partial => 'mastering_redmine/login'
end

Here, the name of the class, that is, MasteringRedmineHook, reflects the filename 
(your class name should reflect your filename too), :view_account_login_top is 
the name of the hook that is called on the login form, and the :partial option is set 
to the path to the view file that contains the custom content.

Now, you need to create the view file with the custom content that has to be added 
to the login form. First, you need to create the mastering_redmine directory in app/
views, and then create the _login.html.erb file in it (note the _ character at the 
beginning of the filename—it is required). Here, the name of the directory, mastering_
redmine, and the name of file, _login.html.erb, are what forms the value of the 
:partial option. Now put your custom content, which can be just HTML, into this 
newly created file.



Customizing Redmine

[ 328 ]

The Hooks Manager plugin
This plugin provides a nice interface for specifying custom content 
for many Redmine hooks (no need to write a plugin). Check it 
out at http://projects.andriylesyuk.com/project/
redmine/hooks-manager.

Finally, you need to register the hook listener. To do this, just add the following line 
of code into the init.rb file (below require 'redmine'):

require_dependency 'mastering_redmine_hook'

Here, mastering_redmine_hook is the filename of the hook listener without extension.

Now, if you restart Redmine and go to the login page, you should see something  
like this:

Let's quickly check out what other hooks are provided by Redmine. The following 
table lists some of them:

Hook Location
:view_welcome_index_left Bottom of the left column, on the welcome page
:view_welcome_index_right Bottom of the right column, on the welcome page
:view_account_login_bottom Below the login form
:view_layouts_base_content Below the content, on each page
:view_projects_show_left Bottom of the left column, on the project overview page
:view_projects_show_right Bottom of the right column, on the project overview 

page
:view_issues_new_top Above the form, on the new issue page

http://projects.andriylesyuk.com/project/redmine/hooks-manager
http://projects.andriylesyuk.com/project/redmine/hooks-manager


Chapter 11

[ 329 ]

A complete list of hooks that are provided by Redmine can be 
found at http://www.redmine.org/projects/redmine/
wiki/Hooks_List#View-hooks.

Helping Redmine
There is one more way to customize Redmine—to modify Redmine itself, thus 
sharing your customization with other users. Any contribution is very important 
for free and open source projects, such as Redmine. An active and passionate 
community is what makes such projects good.

When most people hear about contribution to a free and open source project, 
they assume contribution in the form of some development, but in fact, there are 
many more areas where people can help. For example, this book helps Redmine 
by spreading information about it, teaching how to use it, and demonstrating its 
capabilities. Also, you have already helped Redmine by purchasing this book, 
not only because you can become a potential fan of this project, but also because 
Packt Publishing—the company that publishes this book—will pay a royalty to the 
Redmine team.

So let's discuss how else you can help Redmine:

•	 As it has already been mentioned, let's start with development. If you are a 
developer, you can help by contributing code or patches to Redmine. To be 
able to do this, you should be familiar with Ruby and Rails. But even if you 
are familiar with Perl, you can still help by improving Redmine.pm. You can 
help even more if you know HTML/CSS and/or JavaScript because these 
technologies are intensively used by Redmine and may need improvements. 
If you are familiar with neither of the aforementioned technologies, you can 
still help by, for example, developing a REST API client library for Redmine 
using the technologies that you are familiar with.
Here are some links regarding development for Redmine:

°° General information: http://www.redmine.org/projects/
redmine/wiki/Contribute

°° Subversion repository: https://svn.redmine.org/redmine
°° Git repository: https://github.com/redmine/redmine

•	 If you are a designer, you can make new themes for Redmine. This is an 
extremely important area, as good themes attract more users.

°° See also http://www.redmine.org/projects/redmine/wiki/
HowTo_create_a_custom_Redmine_theme.

http://www.redmine.org/projects/redmine/wiki/Hooks_List#View-hooks
http://www.redmine.org/projects/redmine/wiki/Hooks_List#View-hooks
http://www.redmine.org/projects/redmine/wiki/Contribute 
http://www.redmine.org/projects/redmine/wiki/Contribute 
https://svn.redmine.org/redmine 
https://github.com/redmine/redmine 
http://www.redmine.org/projects/redmine/wiki/HowTo_create_a_custom_Redmine_theme
http://www.redmine.org/projects/redmine/wiki/HowTo_create_a_custom_Redmine_theme


Customizing Redmine

[ 330 ]

•	 You can write articles, blog posts, tutorials, and books, improve the source 
code documentation (it uses RDoc), and more. You can do this in English or 
any other language.

•	 Regarding other languages. You can also translate Redmine, its official or 
unofficial tutorials, and so on, into other languages. 

°° See also http://www.redmine.org/projects/redmine/wiki/
HowTo_translate_Redmine_in_your_own_language.

•	 If you are just a user or are going to become a user of Redmine, do not 
hesitate to report bugs or suggest new features. If you are not sure whether 
something is a bug, you are still advised to open a discussion in the Redmine 
forum and ask the community. Many bugs are hard to find and not many 
people report them.

°° See also http://www.redmine.org/projects/redmine/boards.

•	 Finally, you can show your support for Redmine by making a donation.
°° See also http://www.redmine.org/projects/redmine/wiki/

Donors.

In a very similar way, you can help many free and open source plugins for Redmine.

Summary
If a Redmine installation is not customized, it's a demo. Even Redmine.org is 
customized (the ad on the sidebar, the plugins directory, and so on). All users prefer 
to customize applications that they are using. Many users of Redmine install some 
third-party plugins and a theme, but this can be considered a part of the installation 
and configuration. The real customization is what we discussed in this chapter.

Probably, some of you will never need the things that were described here (though I 
hope that the chapter was still interesting to you). But those of you who will will be 
able to save time and money by performing customization properly.

http://www.redmine.org/projects/redmine/wiki/HowTo_translate_Redmine_in_your_own_language
http://www.redmine.org/projects/redmine/wiki/HowTo_translate_Redmine_in_your_own_language
http://www.redmine.org/projects/redmine/boards
http://www.redmine.org/projects/redmine/wiki/Donors
http://www.redmine.org/projects/redmine/wiki/Donors


[ 331 ]

Quick Syntax Reference
Here are the syntax rules that are provided by the Textile markup language:

Block rules List rules
p. Starts a 

paragraph
# Numbered list 

item
h1. First-level 

heading
## Nested 

numbered list 
item

h2. Second-level 
heading

* Bulleted list 
item

h3. Third-level 
heading

** Nested 
bulleted list 
item

h4. Fourth-level 
heading

#* Nested mixed 
list item

h5. Fifth-level 
heading

Phrase rules

h6. Sixth-level 
heading

*...* Strong text

bq. Quote block **...** Bold text
> Quote ??...?? Citation
>> Second-level 

quote
+...+ Inserted text

fnN. ... Footnote text 
(see also [N])

-...- Removed text



Quick Syntax Reference

[ 332 ]

Inline rules _..._ Emphasized 
text

...[N] Footnote 
index

_ _..._ _ Italicized text

ABC(...) Acronym ^...^ Superscript
Textile links ~...~ Subscript
http://... HTTP link Image rule
www.... HTTP link !url! Image
ftp://... FTP link !url(title)! Image with 

title
mailto:... Email link !url!:http://... Image link
"text":http://... Link with 

anchor
Code

"text(...)":http://... Link with 
title

@...@ Inline code

Tables <code>...</code> Inline code
| ... | ... | Cells <pre>...</pre> Code block
|_. ... |_. ... | Heading 

cells
<code class="lang">...</code>

|\N. ... | Cell merged 
horizontally

<pre><code class="lang">

...

</code></pre>

|/N. ... | Cell merged 
vertically

!rule Disabling 
rule

Horizontal line markers Disabling formatting
--- or *** or _ _ _ <notextile>...</notextile>

The syntax rules that are provided by Redmine itself are the following:

Wiki links Issue links
[[...]] Link to a Wiki 

page
#N Link to an issue

[[...#section]] Link to a section #N-X Link to a note
[[...|text]] Link with an 

anchor
#N#note-X Link to a note



Appendix

[ 333 ]

[[project:...]] Link to another 
project

Repository links

[[project:...#section|text]] rN Link to a revision
Version links commit:id Link to a revision
version#N Link by ID source:path Link to a file
version:... Link by name source:path@rev Link to a file in revision
project:version 
:...

Link to another 
project

source:path#LN Link to a line

Attachment links source:path@re 
v#LN

Link to a line in a revision

attachment:file Link to an 
attachment

export:path File download

Project links repo|rN Link to a revision
project:project Link to a project commit:repo|id Link to a revision
project:"..." Link by name source:"repo 

|path"
Link to a file

News links export:repo|path File download
news#N Link by ID project:rN Revision in a project
news:"..." Link by title project:commit 

:id
Revision in a project

project:news: 
"..."

Link to another 
project

project:source 
:path

File in a project

Forum links project:export 
:path

Download from a project

forum#N Link by ID Document links
forum:"..." Link by name document#N Link by ID
message#N Link by ID document:"..." Link by title
project:forum: 
"..."

Link to another 
project

project:document:"..." Link to another 
project

Macros
{{toc}} Table of 

contents
{{collapse(hint)

...

}}

Collapsed block

{{thumbnail(image.png)}}

{{thumbnail(image.png, 
size=100)}}

{{child_pages(page)}} Child pages index

{{thumbnail(image.png, 
title=...)}}

{{child_pages(depth=N)}}

{{include(page)}} Include a Wiki 
page

{{child_pages(parent=1)}}



Quick Syntax Reference

[ 334 ]

{{include(project:page)}} {{macro_list}} List of macros

The following are advanced style options that are provided by the Textile markup 
language:

Advanced options (used inside syntax rules)
Alignment Padding
< Align to left ( Left padding
= Align centrally ) Right padding
<> Justify (() Both paddings
> Align to right CSS
^ Align to top (css classes) CSS class names
- Align to middle {css-rule} CSS style rules
~ Align to bottom [lang] Language
Special rules (intended for the use of advanced options)
%options...% Phrase options table<options>. Table options

Finally, here are the syntax rules that are provided by the Markdown markup 
language:

Block rules List rules
# First-level heading 1. Numbered list item
## Second-level heading    1. Nested numbered list 

item
### Third-level heading * Bulleted list item
#### Fourth-level heading    * Nested bulleted list item
##### Fifth-level heading Phrase rules
###### Sixth-level heading **...** Strong text
> Quote ~~...~~ Removed text
>> Second-level quote *...* Emphasized text
Footnotes ^... Superscript
[^X]: ... Footnote text ***...*** Strong emphasize text
[^X] Inline footnote index Image rule



Appendix

[ 335 ]

Markdown links ![](url) Image
http://... HTTP link ![title]

(url)
Image with title

www…. HTTP link Code
ftp://... FTP link `...` Inline code
user@host Email link ~~~ lang

...

~~~

[text]
(http://...)

Link with anchor

Tables
| ... | ...| Cells Table column alignment
|---|---| Line between heading

and body
|:---| Align to the left

Horizontal line marker |:---:| Align centrally
--- |---:| Align to the right

[337]

Index
A
A1 theme

about 301
URL 301

activities, time tracking
time entry form, using 240-244
time tracking, through commit

messages 244, 245
Activity tab 158-160
advanced table syntax 205
aggregator 265
Agile plugin

about 293-298
reference link 297
URL 297

alignment options 203
Apache

configuring 42, 43
connecting, to Redmine 32, 33
installing 31-40

API tab 58, 59
application server

selecting 16-18
Atom

about 265
URL 44

attachment links 191
authentication

about 60
LDAP authentication 62, 63
OpenID login, allowing 61
registration setting, allowing 61
tab 60, 61

automatic account creation
about 266
Lightweight Directory Access Protocol

(LDAP) 268
OpenID 267, 268

B
Backlogs plugin

URL 235
Basecamp theme

about 299
URL 300

Bitnami Redmine Stack
URL 49
using 48, 49

blocks
default 64
development 64
production 64

Bulk Time Entry plugin
about 242
URL 242

bullet lists 186
Bundler

Bundler errors, resolving 38, 39
installing 38

burn-down chart 297

C
Cache formatted text setting 54
Calendar block

permission options 213
Calendar module 148, 149

[338]

callbacks 327
Child pages macro 201
code

syntax 195-197
Collapse macro 200
commit messages

time, tracking through 244, 245
commits

fetching 80, 81
Computed Custom Field plugin

about 313
URL 313

configuration options, issue tracking
issue tracking module 115
issue tracking tab 116-119
Repositories tab 119-121

configuration.yml file 64
cron

using 81
custom field formats

about 313
Boolean format 314
Date format 314
Float format 315
Integer format 315
Key/value list format 315, 316
Link format 316
List format 317
Long text format 317
Text format 318
User format 318
Version format 318, 319

custom field options
about 310
Editable option 311
For all projects option 311
Required option 311
Searchable option 313
Used as a filter option 312
Visible option 313

custom fields
about 306
creating 307-310
properties 308

customization
about 305

with plugin 324
with Textile 321

customized objects 319
customized objects, custom fields

activities (time tracking) 320
document categories 321
documents 320
groups 320
issue priorities 320
issues 319
projects 319
spent time 319
users 320
versions 320

custom queries
about 171
examples 171
issue list, customizing 107, 108

custom style 204

D
database

configuring 37
setting up 41

dependencies
Apache, installing 40
installing 39, 40
MySQL server, installing 40
Passenger, installing 40

Details tab
used, for viewing time reports 250, 251

Display tab
about 55, 56
Default Gravatar image setting 56-58
Display attachment thumbnails setting 58
Gravatar user icons setting 56

DMSF plugin
about 131
URL 131

Docker
image, URL 50
using 49, 50

Docker Machine 50
document links 192
documents

versus files 132

[339]

Documents block
permission options 213

Documents module 130, 131

E
EasyRedmine

URL 46
email integration

about 63
configuration.yml file 64, 65
email delivery 64
email notifications tab 66-68
email retrieval 70
emails, fetching from IMAP/POP3 75-77
emails, forwarding from mail server 73-75
incoming emails, handling 70-72
reminder emails 68, 69

Exception Handler plugin
about 282, 283
URL 283

Extended Fields plugin
about 309
URL 309

F
FastCGI 17
feature development 224
Feature tracker 224
Fields permissions tab 228
files

versus documents 132
Files block

permission options 213, 214
Files module 132
Files tab 59, 60
footnote 184
forum links 192, 193
Forums block

permission options 212, 213
Forums module 144-147

G
Gantt block

permission options 214
Gantt module 149, 150

general settings
about 53
API tab 58, 59
Display tab 55
Files tab 59, 60
General tab 54

General tab
about 54
cache formatted text setting 54
settings, tips 55

Git Hosting plugin
about 287-293
URL 293

GitHub
about 276
plugins, searching 276-279

GitHub Hook plugin
URL 83

Git repository 139
global configuration 151-153
Globally Recognized AVATAR (Gravatar)

about 56, 254
URL, for signing up 254
using 255-257

H
headings 182
Hello world macro 202
Highrise theme

about 302
URL 302

hooks
about 81-83, 327
URL 329
using 327, 328

Hooks Manager plugin
about 328
URL 328

I
icons

using 322
ICS Export plugin

about 149
URL 149

[340]

images
about 186
resizing 188

IMAP/POP3
emails, fetching from 75-77

Include macro 201
Information tab 161
installation options, Redmine

about 24-26, 45
Bitnami Redmine Stack, using 48, 49
Docker, using 49, 50
Redmine, hosting 46
Redmine server, hosting 46, 47
TurnKey Redmine appliance, using 48

installation, Redmine
completing 34, 35
Redmine package, upgrading 35, 36
verifying 34, 35

interface, Redmine 5-10
internal links 188
Invoices plugin

about 245
URL 245

issue
categories 98, 99
creating 94-98
importing 113
modification, tracking 114, 115
multiple fields, updating 110, 111
project versions 99, 100
updating 108-110

issue links 191
issue list

customizing, with custom queries 107, 108
personalizing 265, 266
viewing 104-106

issue page
about 100
related issues 102, 103
subtasks 101

issue reports
displaying 112, 113

Issue statuses page 224-226
Issue tracking block

permission options 214-217
Issue tracking module

about 124

configuration options 115
Roadmap page 124-126
Version page 126, 127

Issue type 95

J
jsToolbar CodeRay Extension

about 284
URL 284

L
language 204
LDAP authentication 62, 63
Lightweight Directory Access Protocol

(LDAP) 268
linked images

storing 179, 180
links

attachment links 191
document links 192
forum links 192, 193
internal links 188
issue links 190
news links 191
normal links 188
project links 190
repository links 193-195
version links 190
Wiki links 189, 190

lists
about 186
bullet lists 186
numbered lists 186

Local Avatars plugin
about 257
URL 257

M
Macro list macro 202
macros

about 199
Child pages macro 201
Collapse macro 200
Hello world macro 202
Include macro 201

[341]

Macro list macro 202
Table of contents macro 200
Thumbnail macro 200, 201

mail notifications
configuring 263, 264

Mail Transfer Agent (MTA) 65, 70, 73
Markdown

syntax rules 334, 335
versus Textile 12, 13

Members tab 163, 164
messages 144
Microsoft SQL Server 11, 12
Model-View-Controller (MVC) 326
Modula Mojito theme

about 300
URL 300

modules
about 124
Calendar module 148, 149
Documents module 129-131
Files module 132
Forums module 144-147
Gantt module 149-151
Issue tracking module 124
News module 127-129
Repository module 138-143
Wiki module 133-137

Modules tab 162
Monitoring & Controlling plugin

about 285, 287
URL 287

MySQL server
about 11, 12
and Redmine, installing 28
installing 40

MySQL server package
Apache, installing 31, 32
configuring 29
Passenger, installing 31, 32
Redmine, connecting to Apache 32, 33
Redmine package, configuring 29, 30

N
named anchors 189
network graph 277
News block

permission options 217

news feeds
updates, obtaining via 265

news links 191, 192
News module 127-129
normal links 188
numbered lists 186

O
OpenID 267, 268
OpenProject

about 20
URL 20

Overview tab 157, 158

P
package

Redmine, installing from 27
padding options 203
Passenger

installing 31, 32, 40
Passenger module 17
permissions

assigning 210, 211
Calendar block 213
Documents block 213
Files block 213, 214
Forums block 212, 213
Gantt block 214
Issue tracking block 214-217
News block 217
Project block 211, 212
Repository block 217, 218
Time tracking block 218
Wiki block 219, 220

Permissions report page 220-222
personal page

about 257, 258
Calendar block 261
Documents block 261
Issues assigned to me block 259, 260
Latest news block 261
Reported issues block 260
Spent time block 262
Watched issues block 260

[342]

pilcrow 189
plugin directory

about 272-275
URL 273, 280

plugins
Agile plugin 293-298
Exception Handler plugin 282, 283
Git Hosting plugin 287-293
GitHub 276-279
installing 279, 280
jsToolbar CodeRay Extension 284
Monitoring & Controlling plugin 285-287
official directory 272-275
reviewing 282
uninstalling 281
upgrading 280, 281

p. marker 181
PostgreSQL 11, 12
project

Activity tab 158-160
administering 172
archiving 174
closing 168, 169
copying 173, 174
creating 153-156, 325
hooks, using 327, 328
Overview tab 157, 158
project pages 156
used, for customization 324
view files, customizing 326

Project block
permission options 211, 212

project configuration
about 160, 161
Information tab 161
Members tab 163, 164
Modules tab 162
Versions tab 164-167
Wiki tab 167

project links 190
project list 169
project maintenance

best practices 170
project modules 124
Project Sections plugin

about 155
URL 155

project statuses
active 172
all 172
archived 172
closed 172

project versions
and issue 99, 100

Q
quotes

about 185
embedding 185

R
reader 265
Redmine

about 2, 3
and MySQL Server, installing 28
benefits 3, 4
connecting, to Apache 32, 33
help option 329, 330
hosting 46
installation 52, 53
installation, completing 34, 35
installation, verifying 34, 35
installing, from package 27
interface 5-10
references 329
syntax rules 332, 333
URL 27
versions 18-20

Redmine 2.6.x 20
Redmine 3.0.x 20
Redmine 3.1.x 19
Redmine 3.2.x 19
Redmine build logs

URL 11
Redmine hosting providers

URL 46
Redmine installation, from sources

about 36
Apache, configuring 42, 43
Bundler, installing 38
completing 43
database, configuring 37

[343]

database, setting up 41
dependencies, installing 39, 40
finalizing 41
Redmine, downloading 36, 37
Redmine, installing 36, 37
Redmine, upgrading 43-45
reference link 36
Ruby, installing 38
verifying 43

Redmine Lightbox 2 plugin
URL 58

Redmine Local Avatars plugin
URL 58

Redmine package
configuring 29, 30
upgrading 35, 36

RedminePM
URL 244

Redmine server
hosting 46, 47

regular expressions
reference link 308

related issue, types
Blocked by 102
Blocks 102
Copied from 103
Copied to 103
Duplicated by 102
Duplicates 102
Follows 103
Precedes 103
Related to 102

Report tab
used, for viewing time reports 251, 252

Repository block
permission options 217, 218

repository integration
about 77
advanced 85-87
commits, fetching 80, 81
cron, using 81
repositories, automatic creation 83
repositories tab 78, 79
SCM hook, using 81, 82

repository links 193-195
Repository module 138-143

REST application programming interface
(API) 58

rmagick keyword 40
Roadmap page 124-126
Roles and permissions page

about 208-210
permissions 210, 211
Permissions report page 220-222

Ruby
installing 38

RubyGems
URL 38

Ruby on Rails
URL 18

S
SCM Creator plugin

URL 85, 139
Smart Issues Sort plugin

about 102
URL 102

Source Code Management (SCM)
reference link 88

Source Control Management (SCM)
about 1, 14, 78
selecting 14, 15

spent time
checking 245
checking, on issues 246
checking, on projects 247
checking, on users 247
checking, on versions 246, 247

SQLite 11, 12
Status transitions tab 226, 227
styled boxes

creating 322
subtasks

creating 101

T
table-based layout

creating 323
Table of contents macro 200
tables

creating 197-199

[344]

text formatting 176, 177
Textile

advanced style options 334
advanced syntax 202
advanced table syntax 205
alignment options 203
custom style 204
element, disabling 204
icons, using 322
language 204
padding options 203
styled boxes, creating 322
syntax rules 331, 332
table-based layout, creating 322
used, for customization 321
versus Markdown 12, 13

Textile span 204
themes

A1 theme 301
about 298
Basecamp theme 299
customizing 323
Highrise theme 302
installing 298
Modula Mojito theme 300
reference link 329
reviewing 299
uninstalling 298

Thumbnail macro 200, 201
time entries

tracking 248
time reports

about 248-250
Details tab 250, 251
Report tab 251, 252

Timesheet plugin
about 252
URL 252

Time Tracker plugin
about 244
URL 244

time tracking
about 238
activities, managing 238-240
benefits 238
spent time, checking 245

Time tracking block
permission options 218

topics 144
trackers 222
Trackers page 222-224
troubleshooting 88-92
TurnKey Redmine appliance

URL 48
using 48

U
updates

obtaining, via mail notifications 262-264
obtaining, via news feeds 265
obtaining, via Watch link 264

Use Gravatar user icons setting 56
user/group synchronization

reference link 269

V
version links 190
Version page 126, 127
Versions tab 164-167
view files

customizing 326

W
web server

selecting 16-18
web service (WS) 73
What You See Is What You Get

(WYSIWYG) editor 177
Wiki block

permission options 219, 220
Wiki Extensions plugin

about 138, 321
URL 138

Wiki links 189
Wiki module 133-137
Wiki page

creating 135
Wiki syntax

about 180
basics 180-185

[345]

images 186-188
links 188
lists 186
quotes 185

Wiki tab 167
Wiki toolbar

about 177, 178
Preview link 178

workflow
issue status, adding 233, 234
modifying 230

practical example 234, 235
role, adding 231
tracker, adding 232

Workflow page
about 226
Fields permissions tab 228
Status transitions tab 226, 227
workflow, copying 229
workflow summary, checking 230

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Conventions

	Chapter 1: Getting Familiar with Redmine
	What is Redmine?
	Why Redmine succeeds?

	Walking through the Redmine interface
	MySQL, PostgreSQL, SQLite or Microsoft SQL Server
	Textile or Markdown?
	Selecting a Source Control Management (SCM)
	Selecting a web server and an application server
	Redmine versions
	Forks
	Summary

	Chapter 2: Installing Redmine
	Introduction to installation options
	Installing Redmine from a package
	Installing Redmine and MySQL server
	Configuring the MySQL server package
	Configuring the Redmine package
	Installing Apache and Passenger
	Connecting Redmine and Apache

	Verifying and completing the installation
	Upgrading the Redmine package

	Installing Redmine from sources
	Downloading and installing Redmine
	Configuring the database
	Installing Ruby and Bundler
	Resolving Bundler errors

	Installing dependencies
	Installing the MySQL server, Apache, and Passenger
	Setting up the database
	Finalizing the Redmine installation
	Configuring Apache
	Verifying and completing the installation
	Upgrading Redmine

	Other installation options
	Hosting Redmine
	Redmine server hosting
	Using the TurnKey Redmine appliance
	Using the Bitnami Redmine Stack
	Using Docker

	Summary

	Chapter 3: Configuring Redmine
	The first thing to fix
	The general settings
	The General tab
	The Cache formatted text setting
	Other settings tips

	The Display tab
	The Use Gravatar user icons setting
	The Default Gravatar image setting
	The Display attachment thumbnails setting

	The API tab
	The Files tab

	Authentication
	The Authentication tab
	The Allow OpenID login and registration setting

	LDAP authentication

	Email integration
	Email delivery
	The configuration.yml file
	The Email notifications tab
	Reminder emails

	Email retrieval
	Handling incoming emails
	Forwarding emails from mail server
	Fetching emails from IMAP/POP3

	Repository integration
	The Repositories tab
	Fetching commits
	Using cron
	Using an SCM hook

	Automatic creation of repositories
	Advanced repository integration

	Troubleshooting
	Summary

	Chapter 4: Issue Tracking
	Creating an issue
	Issue categories
	Issues and project versions

	The issue page
	Subtasks
	Related issues

	The issue list
	Custom queries

	Updating an issue
	Bulk update

	Issue reports
	Importing issues
	Keeping track of changes
	Configuring issue tracking
	The Issue tracking module
	The Issue tracking tab
	Issues and repository integration

	Summary

	Chapter 5: Managing Projects
	Modules
	The Issue tracking module
	The Roadmap page
	The Version page

	The News module
	The Documents module
	The Files module
	The Wiki module
	The Repository module
	The Forums module
	The Calendar module
	The Gantt module

	The global configuration
	Creating a project
	The project pages
	The Overview tab
	The Activity tab

	The project configuration
	The Information tab
	The Modules tab
	The Members tab
	The Versions tab
	The Wiki tab

	Closing a project
	The project list
	Project maintenance best practices
	Custom queries

	Administering projects
	Copying projects
	Archiving projects

	Summary

	Chapter 6: Text Formatting
	Formatting text in Redmine
	The Wiki toolbar
	Preview
	Where to store linked images?

	The Wiki syntax
	The basics
	Quotes
	Lists
	Images
	Links
	Normal links
	Internal links

	Code
	Tables
	Macros
	The Table of contents macro
	The Collapse macro
	The Thumbnail macro
	The Include macro
	The Child pages macro
	The Hello world macro
	The Macro list macro

	The advanced syntax
	Alignment options
	Padding options
	Custom styles and language
	The Textile span
	Disabling an element
	Advanced table syntax

	Summary

	Chapter 7: Access Control and Workflow
	The Roles and permissions page
	Permissions
	The Project block
	The Forums block
	The Calendar block
	The Documents block
	The Files block
	The Gantt block
	The Issue tracking block
	The News block
	The Repository block
	The Time tracking block
	The Wiki block

	The Permissions report page

	The Trackers page
	The Issue statuses page
	The Workflow page
	The Status transitions tab
	The Fields permissions tab
	Copying the workflow
	Checking the workflow summary

	Modifying the workflow
	Adding a role
	Adding a tracker
	Adding an issue status

	A practical example
	Summary

	Chapter 8: Time Tracking
	Time tracking in Redmine
	Activities
	Tracking your time
	Tracking time through commit messages

	Checking out the spent time
	Time spent on issues
	Time spent on versions
	Time spent on projects
	Activity of users
	Your time entries

	Time reports
	The Details tab
	The Report tab

	Summary

	Chapter 9: Personalization
	Gravatar
	The personal page
	The Issues assigned to me block
	The Reported issues block
	The Watched issues block
	The Latest news block
	The Calendar block
	The Documents block
	The Spent time block

	Getting updates
	The email notifications
	Watching
	News feeds

	Personalizing the issue list
	On-the-fly account creation
	OpenID
	LDAP

	Summary

	Chapter 10: Plugins and Themes
	Finding plugins
	The official directory
	GitHub

	Installing a plugin
	Upgrading plugins
	Uninstalling a plugin

	A review of some plugins
	The Exception Handler plugin
	The jsToolbar CodeRay extension
	The Monitoring & Controlling plugin
	The Git Hosting plugin
	The Agile plugin

	Installing a theme
	A review of some themes
	The Basecamp theme
	The Modula Mojito theme
	The A1 theme
	The Highrise theme

	Summary

	Chapter 11: Customizing Redmine
	Custom fields
	Custom field options
	The Required option
	The Editable option
	The For all projects option
	The Used as a filter option
	The Searchable option
	The Visible option

	Custom field formats
	The Boolean format
	The Date format
	The Float format
	The Integer format
	The Key/value list format
	The Link format
	The List format
	The Long text format
	The Text format
	The User format
	The Version format

	Customized objects

	Customizing with Textile
	Styled boxes
	Using icons
	Table-based layout

	Customizing the theme
	Customizing with a plugin
	Writing a simple plugin
	Customizing view files
	Using hooks

	Helping Redmine
	Summary

	Appendix: Quick syntax reference
	Index

