
www.allitebooks.com

http://www.allitebooks.org

Mastering SciPy

Implement state-of-the-art techniques to visualize
solutions to challenging problems in scientific
computing, with the use of the SciPy stack

Francisco J. Blanco-Silva

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering SciPy

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1301015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-474-9

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Francisco J. Blanco-Silva

Reviewers
Raiyan Kamal

Kristen Thyng

Patrick Varilly

Jonathan Whitmore

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Shaon Basu

Content Development Editor
Nikhil Potdukhe

Technical Editor
Bharat Patil

Copy Editors
Tani Kothari

Merilyn Pereira

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Tejal Soni

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Francisco J. Blanco-Silva is the owner of a scientific consulting company called
Tizona Scientific Solutions, a faculty member of the Department of Mathematics, and
an associate member of the Interdisciplinary Mathematics Institute at the University
of South Carolina. He obtained his formal training as an applied mathematician from
Purdue University. He enjoys problem solving, learning, and teaching alike. Being
an avid programmer and blogger, when it comes to writing, he relishes finding
the common denominator among his passions and skills and making it available
to everyone.

He wrote the prequel to this book, Learning SciPy for Numerical and Scientific
Computing, Packt Publishing, and coauthored Chapter 5 of the book, Modeling
Nanoscale Imaging in Electron Microscopy, Springer.

I will always be indebted to Bradley J. Lucier and Rodrigo Bañuelos
for being constant sources of inspiration and for their guidance
and teachings. Special thanks to my editors, Sriram Neelakantam,
Bharat Patil, Nikhil Potdukhe, Mohammad Rizvi, and the many
colleagues who have contributed by giving me encouragement
and participating in helpful discussions. In particular, I would
like to mention Parsa Bakhtary, Aaron Dutle, Edsel Peña, Pablo
Sprechmann, Adam Taylor, and Holly Watson.

The most special thanks, without a doubt, goes to my wife and
daughter. Grace's love and smiles alone provided all the motivation,
enthusiasm, and skills to overcome the difficulties encountered
during the writing of this book and everything that life threw
at me ever since she was born.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Raiyan Kamal is a strong proponent of the open source movement and everything
related to Python. He holds a bachelor's degree in computer science from BUET,
Dhaka, Bangladesh, and a master's degree from the University of Windsor, Ontario,
Canada. He has been working in the software industry for several years, developing
software for mobile, web, and desktop platforms. Although he is in his early thirties,
Raiyan feels that his boyhood has not ended yet. He often looks for hidden treasures
in science, engineering, programming, art, and nature. He is currently working at
IOU Concepts, exploring different ways of saying thank you. When he isn't on a
computer, he plants trees and composts kitchen scraps.

Kristen Thyng has worked on scientific computing for most of her career. She has
a bachelor's degree in physics from Whitman College, master's degree in applied
mathematics from the University of Washington, and PhD in mechanical engineering
from the University of Washington. She uses Python on a daily basis for analysis and
visualization in physical oceanography at Texas A&M University, where she works
as an assistant research scientist.

Jonathan Whitmore is a data scientist at Silicon Valley Data Science. He has a
diverse range of interests and is excited by the challenges in data science and data
engineering. Before moving into the tech industry, he worked as an astrophysicist in
Melbourne, Australia, researching whether the fundamental physical constants have
changed over the lifespan of the universe. He has a long-standing commitment to
the public's understanding of science and technology, and has contributed to FOSS
projects. He co-starred in the 3D IMAX film Hidden Universe, which was playing in
theaters around the world at the time of writing this book. Jonathan is a sought-after
conference speaker on science and technical topics. He received his PhD in physics
from the University of California, San Diego, and graduated magna cum laude from
Vanderbilt University with a bachelor's degree in science. He is also a triple major in
physics (with honors), philosophy, and mathematics.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Numerical Linear Algebra 1

Motivation 1
Creation of matrices and linear operators 14

Constructing matrices in the ndarray class 14
Constructing matrices in the matrix class 18
Constructing sparse matrices 19
Linear operators 26

Basic matrix manipulation 28
Scalar multiplication, matrix addition, and matrix multiplication 29
Traces and determinants 30
Transposes and inverses 31
Norms and condition numbers 33

Matrix functions 35
Matrix factorizations related to solving matrix equations 38

Relevant factorizations 38
Pivoted LU decomposition 38
Cholesky decomposition 39
QR decomposition 39
Singular value decomposition 39

Matrix equations 40
Back and forward substitution 41
Basic systems: banded matrices 41
Basic systems: generic square matrices 44
Least squares 51
Regularized least squares 53
Other matrix equation solvers 53

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Matrix factorizations based on eigenvalues 54
Spectral decomposition 54
Schur decomposition 58

Summary 59
Chapter 2: Interpolation and Approximation 61

Motivation 61
Interpolation 67

Implementation details 67
Univariate interpolation 69

Nearest-neighbors interpolation 69
Lagrange interpolation 70
Hermite interpolation 73
Piecewise polynomial interpolation 75
Spline interpolation 77

Multivariate interpolation 81
Least squares approximation 92

Linear least squares approximation 92
Nonlinear least squares approximation 95

Summary 103
Chapter 3: Differentiation and Integration 105

Motivation 105
Differentiation 107

Numerical differentiation 108
Symbolic differentiation 109
Automatic differentiation 110

Integration 110
Symbolic integration 111
Numerical integration 113

Functions without singularities on finite intervals 113
Functions with singularities on bounded domains 119
Integration on unbounded domains 121

Numerical multivariate integration 122
Summary 123

Chapter 4: Nonlinear Equations and Optimization 125
Motivation 125
Non-linear equations and systems 129

Iterative methods for univariate functions 130
Bracketing methods 131
Secant methods 132
Brent method 134

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Systems of nonlinear equations 135
Simple iterative solvers 139
The Broyden method 141
Powell's hybrid solver 142
Large-scale solvers 145

Optimization 146
Unconstrained optimization for univariate functions 146
Constrained optimization for univariate functions 150
Unconstrained optimization for multivariate functions 150

The stochastic methods 154
Deterministic algorithms that exclusively employ function evaluations 155
The Broyden-Fletcher-Goldfarb-Shanno quasi-Newton method 157
The conjugate gradient method 158

Constrained optimization for multivariate functions 161
Summary 163

Chapter 5: Initial Value Problems for Ordinary
Differential Equations 165

Symbolic solution of differential equations 166
Analytic approximation methods 168
Discrete-variable methods 170

One-step methods 172
Two-step methods 176

Summary 178
Chapter 6: Computational Geometry 179

Plane geometry 180
Combinatorial computational geometry 187

Static problems 187
Convex hulls 188
Voronoi diagrams 192
Triangulations 195
Shortest paths 199

Geometric query problems 202
Point location 202
Nearest neighbors 205
Range searching 208

Dynamic problems 209
Numerical computational geometry 211
Bézier curves 212

Summary 216

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Chapter 7: Descriptive Statistics 217
Motivation 219
Probability 231

Symbolic setting 231
Numerical setting 234

Data exploration 237
Picturing distributions with graphs 238

Bar plots and pie charts 238
Histograms 244
Time plots 246

Describing distributions with numbers and boxplots 247
Relationship between quantitative variables 251

Scatterplots and correlation 252
Regression 256

Analysis of the time series 264
Summary 274

Chapter 8: Inference and Data Analysis 275
Statistical inference 275

Estimation of parameters 277
Frequentist approach 277
Bayesian approach 277
Likelihood approach 280

Interval estimation 282
Frequentist approach 282
Bayesian approach 283
Likelihood approach 283

Data mining and machine learning 283
Classification 284

Support vector classification 286
Trees 288
Naive Bayes 290
Nearest neighbors 291

Dimensionality reduction 292
Principal component analysis 294
Isometric mappings 295
Spectral embedding 296
Locally linear embedding 297

Clustering 298
MeanShift 299
Gaussian mixture models 304
Kmeans 306
Spectral clustering 309

Summary 309

Table of Contents

[v]

Chapter 9: Mathematical Imaging 311
Digital images 313

Binary 313
Gray-scale 314

Color 316
Alpha channels 319

High-level operations on digital images 320
Object measurements 320
Mathematical morphology 321
Smoothing filters 323
Multivariate calculus 324
Statistical filters 326
Fourier analysis 327
Wavelet decompositions 329

Image compression 331
Lossless compression 332
Lossy compression 334

Image editing 336
Transformations of the domain 336

Rescale and resize 337
Swirl 337
Geometric transformations 338

Intensity adjustment 342
Histogram equalization 342
Intensity clipping/resizing 345
Contrast enhancement 346

Image restoration 348
Noise reduction 349
Sharpening and blurring 353

Inpainting 355
Image analysis 357

Image structure 358
Object recognition 365

Edge detection 365
Line, circle, and ellipse detection 365
Blob detection 367
Corner detection 368
Beyond geometric entities 370

Summary 374
Index 375

[vii]

Preface
The idea of writing Mastering SciPy arose but 2 months after publishing Learning
SciPy for Numerical and Scientific Computing. During a presentation of that book at the
University of South Carolina, I had the privilege of speaking about its contents to a
heterogeneous audience of engineers, scientists, and students, each of them with very
different research problems and their own set of preferred computational resources.
In the weeks following that presentation, I helped a few professionals transition to a
SciPy-based environment. During those sessions, we discussed how SciPy is, under
the hood, the same set of algorithms (and often the same code) that they were already
using. We experimented with some of their examples and systematically obtained
comparable performance. We immediately saw the obvious benefit of a common
environment based upon a robust scripting language. Through the SciPy stack, we
discovered an easier way to communicate and share our results with colleagues,
students, or employers. In all cases, the switch to the SciPy stack provided a faster
setup for our groups, where newcomers could get up to speed quickly.

Everybody involved in the process went from novice to advanced user, and finally
mastered the SciPy stack in no time. In most cases, the scientific background of the
individuals with whom I worked made the transition seamless. The process toward
mastering materialized when they were able to contrast the theory behind their
research with the solutions offered. The aha moment always happened while replicating
some of their experiments with a careful guidance and explanation of the process.

That is precisely the philosophy behind this book. I invite you to participate in
similar sessions. Each chapter has been envisioned as a conversation with an
individual with certain scientific needs expressed as numerical computations.
Together, we discover relevant examples—the different possible ways to solve
those problems, the theory behind them, and the pros and cons of each route.

Preface

[viii]

The process of writing followed a similar path to obtain an engaging collection of
examples. I entered into conversations with colleagues in several different fields.
Each section clearly reflects these exchanges. This was crucial while engaged in
the production of the most challenging chapters—the last four. To ensure the same
quality throughout the book, always trying to commit to a rigorous set of standards,
these chapters took much longer to be completed to satisfaction. Special mentions
go to Aaron Dutle at NASA Langley Research Center, who helped shape parts of the
chapter on computational geometry, and Parsa Bakhtary, a data analyst at Facebook,
who inspired many of the techniques in the chapter on applications of statistical
computing to data analysis.

It was an amazing journey that helped deepen my understanding of numerical
methods, broadened my perspective in problem solving, and strengthened my
scientific maturity. It is my wish that it has the same impact on you.

What this book covers
Chapter 1, Numerical Linear Algebra, presents an overview of the role of matrices to
solve problems in scientific computing. It is a crucial chapter for understanding most
of the processes and ideas of subsequent chapters. You will learn how to construct
and store large matrices effectively in Python. We then proceed to reviewing basic
manipulation and operations on them, followed by factorizations, solutions of matrix
equations, and the computation of eigenvalues/eigenvectors.

Chapter 2, Interpolation and Approximation, develops advanced techniques to
approximate functions, and their applications to scientific computing. This
acts as a segway for the next two chapters.

Chapter 3, Differentiation and Integration, explores the different techniques to produce
derivatives of functions and, more importantly, how to compute areas and volumes
effectively by integration processes. This is the first of two chapters devoted to
the core of numerical methods in scientific computing. This second part is also an
introduction to Chapter 5, Initial Value Problems for Ordinary Differential Equations
that mentions ordinary differential equations.

Chapter 4, Nonlinear Equations and Optimization, is a very technical chapter in which
we discuss the best methods of obtaining the roots and extrema of systems of
functions depending on the kinds of functions involved.

Chapter 5, Initial Value Problems for Ordinary Differential Equations, is the first of
five chapters on applications to real-world problems. We show you, by example,
the most popular techniques to solve systems of differential equations, as well as
some applications.

Preface

[ix]

Chapter 6, Computational Geometry, takes a tour of the most significant algorithms
in this branch of computer science.

Chapter 7, Descriptive Statistics, is the first of two chapters on statistical computing
and its applications to Data Analysis. In this chapter, we focus on probability and
data exploration.

Chapter 8, Inference and Data Analysis, is the second chapter on Data Analysis.
We focus on statistical inference, machine learning, and data mining.

Chapter 9, Mathematical Imaging, is the last chapter of this book. In it, we explore
techniques for image compression, edition, restoration, and analysis.

What you need for this book
To work with the examples and try out the code of this book, all you need is a recent
version of Python (2.7 or higher) with the SciPy stack: NumPy, the SciPy library,
matplotlib, IPython, pandas, and SymPy. Although recipes to install all these
independently are provided throughout the book, we recommend that you perform
a global installation through a scientific Python distribution such as Anaconda.

Who this book is for
Although this book and technology are ultimately intended for applied mathematicians,
engineers, and computer scientists, the material presented here is targeted at a broader
audience. All that is needed is proficiency in Python, familiarity with iPython, some
knowledge of the numerical methods in scientific computing, and a keen interest in
developing serious applications in science, engineering, or data analysis.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

Preface

[x]

Any command-line input or output is written as follows:

In [7]: %time eigvals, v = spspla.eigsh(A, 5, which='SM')

CPU times: user 19.3 s, sys: 532 ms, total: 19.8 s

Wall time: 16.7 s

In [8]: print eigvals

[10.565523 10.663114 10.725135 10.752737 10.774503]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you. You can also download
the code files from GitHub repository at https://github.com/blancosilva/
Mastering-Scipy.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/blancosilva/Mastering-Scipy
https://github.com/blancosilva/Mastering-Scipy

Preface

[xi]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/4749OS_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/4749OS_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/4749OS_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Numerical Linear Algebra
The term Numerical Linear Algebra refers to the use of matrices to solve
computational science problems. In this chapter, we start by learning how to
construct these objects effectively in Python. We make an emphasis on importing
large sparse matrices from repositories online. We then proceed to reviewing basic
manipulation and operations on them. The next step is a study of the different matrix
functions implemented in SciPy. We continue on to exploring different factorizations
for the solution of matrix equations, and for the computation of eigenvalues and
their corresponding eigenvectors.

Motivation
The following image shows a graph that represents a series of web pages (numbered
from 1 to 8):

1

2

3

8

7

6

5

4

Numerical Linear Algebra

[2]

An arrow from a node to another indicates the existence of a link from the web page,
represented by the sending node, to the page represented by the receiving node. For
example, the arrow from node 2 to node 1 indicates that there is a link in web page 2
pointing to web page 1. Notice how web page 4 has two outer links (to pages 2 and
8), and there are three pages that link to web page 4 (pages 2, 6, and 7). The pages
represented by nodes 2, 4, and 8 seem to be the most popular at first sight.

Is there a mathematical way to actually express the popularity of a web page within
a network? Researchers at Google came up with the idea of a PageRank to roughly
estimate this concept by counting the number and quality of links to a page. It goes
like this:

• We construct a transition matrix of this graph, T={a[i,j]}, in the following
fashion: the entry a[i,j] is 1/k if there is a link from web page i to web
page j, and the total number of outer links in web page i amounts to k.
Otherwise, the entry is just zero. The size of a transition matrix of N web
pages is always N × N. In our case, the matrix has size 8 × 8:

 0 1/2 0 0 0 0 0 0

 1 0 1/2 1/2 0 0 0 0

 0 0 0 0 0 0 1/3 0

 0 1/2 0 0 0 1 1/3 0

 0 0 1/2 0 0 0 0 0

 0 0 0 0 0 0 0 1/2

 0 0 0 0 1/2 0 0 1/2

 0 0 0 1/2 1/2 0 1/3 0

Let us open an iPython session and load this particular matrix to memory.

Remember that in Python, indices start from zero, not one.

In [1]: import numpy as np, matplotlib.pyplot as plt, \

 ...: scipy.linalg as spla, scipy.sparse as spsp, \

 ...: scipy.sparse.linalg as spspla

In [2]: np.set_printoptions(suppress=True, precision=3)

In [3]: cols = np.array([0,1,1,2,2,3,3,4,4,5,6,6,6,7,7]); \

 ...: rows = np.array([1,0,3,1,4,1,7,6,7,3,2,3,7,5,6]); \

 ...: data = np.array([1., 0.5, 0.5, 0.5, 0.5, \

 ...: 0.5, 0.5, 0.5, 0.5, 1., \

Chapter 1

[3]

 ...: 1./3, 1./3, 1./3, 0.5, 0.5])

In [4]: T = np.zeros((8,8)); \

 ...: T[rows,cols] = data

From the transition matrix, we create a PageRank matrix G by fixing a positive
constant p between 0 and 1, and following the formula G = (1-p)*T + p*B for a
suitable damping factor p. Here, B is a matrix with the same size as T, with all its
entries equal to 1/N. For example, if we choose p = 0.15, we obtain the following
PageRank matrix:

In [5]: G = (1-0.15) * T + 0.15/8; \

 ...: print G

[[0.019 0.444 0.019 0.019 0.019 0.019 0.019 0.019]

 [0.869 0.019 0.444 0.444 0.019 0.019 0.019 0.019]

 [0.019 0.019 0.019 0.019 0.019 0.019 0.302 0.019]

 [0.019 0.444 0.019 0.019 0.019 0.869 0.302 0.019]

 [0.019 0.019 0.444 0.019 0.019 0.019 0.019 0.019]

 [0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.444]

 [0.019 0.019 0.019 0.019 0.444 0.019 0.019 0.444]

 [0.019 0.019 0.019 0.444 0.444 0.019 0.302 0.019]]

PageRank matrices have some interesting properties:

• 1 is an eigenvalue of multiplicity one.
• 1 is actually the largest eigenvalue; all the other eigenvalues are in modulus

smaller than 1.
• The eigenvector corresponding to eigenvalue 1 has all positive entries. In

particular, for the eigenvalue 1, there exists a unique eigenvector with the
sum of its entries equal to 1. This is what we call the PageRank vector.

A quick computation with scipy.linalg.eig finds that eigenvector for us:

In [6]: eigenvalues, eigenvectors = spla.eig(G); \

 ...: print eigenvalues

[1.000+0.j -0.655+0.j -0.333+0.313j -0.333-0.313j –0.171+0.372j
 -0.171-0.372j 0.544+0.j 0.268+0.j]

In [7]: PageRank = eigenvectors[:,0]; \

 ...: PageRank /= sum(PageRank); \

 ...: print PageRank.real

[0.117 0.232 0.048 0.219 0.039 0.086 0.102 0.157]

Numerical Linear Algebra

[4]

Those values correspond to the PageRank of each of the eight web pages depicted
on the graph. As expected, the maximum value of those is associated to the second
web page (0.232), closely followed by the fourth (0.219) and then the eighth web
page (0.157). These values provide us with the information that we were seeking:
the second web page is the most popular, followed by the fourth, and then, the eight.

Note how this problem of networks of web pages has been translated
into mathematical objects, to an equivalent problem involving
matrices, eigenvalues, and eigenvectors, and has been solved with
techniques of Linear Algebra.

The transition matrix is sparse: most of its entries are zeros. Sparse matrices with an
extremely large size are of special importance in Numerical Linear Algebra, not only
because they encode challenging scientific problems but also because it is extremely
hard to manipulate them with basic algorithms.

Rather than storing to memory all values in the matrix, it makes sense to collect only
the non-zero values instead, and use algorithms which exploit these smart storage
schemes. The gain in memory management is obvious. These methods are usually
faster for this kind of matrices and give less roundoff errors, since there are usually
far less operations involved. This is another advantage of SciPy, since it contains
numerous procedures to attack different problems where data is stored in this
fashion. Let us observe its power with another example:

The University of Florida Sparse Matrix Collection is the largest database of matrices
accessible online. As of January 2014, it contains 157 groups of matrices arising
from all sorts of scientific disciplines. The sizes of the matrices range from very small
(1 × 2) to insanely large (28 million × 28 million). More matrices are expected to be
added constantly, as they arise in different engineering problems.

More information about this database can be found in ACM
Transactions on Mathematical Software, vol. 38, Issue 1, 2011, pp 1:1-
1:25, by T.A. Davis and Y.Hu, or online at http://www.cise.ufl.
edu/research/sparse/matrices/.

For example, the group with the most matrices in the database is the original
Harwell-Boeing Collection, with 292 different sparse matrices. This group can also be
accessed online at the Matrix Market: http://math.nist.gov/MatrixMarket/.

http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
http://math.nist.gov/MatrixMarket/

Chapter 1

[5]

Each matrix in the database comes in three formats:

• Matrix Market Exchange format [Boisvert et al. 1997]
• Rutherford-Boeing Exchange format [Duff et al. 1997]
• Proprietary Matlab .mat format.

Let us import to our iPython session two matrices in the Matrix Market Exchange
format from the collection, meant to be used in a solution of a least squares problem.
These matrices are located at www.cise.ufl.edu/research/sparse/matrices/
Bydder/mri2.html.The numerical values correspond to phantom data acquired on
a Sonata 1.5-T scanner (Siemens, Erlangen, Germany) using a magnetic resonance
imaging (MRI) device. The object measured is a simulation of a human head made
with several metallic objects. We download the corresponding tar bundle and untar
it to get two ASCII files:

• mri2.mtx (the main matrix in the least squares problem)
• mri2_b.mtx (the right-hand side of the equation)

The first twenty lines of the file mri2.mtx read as follows:

www.cise.ufl.edu/research/sparse/matrices/Bydder/mri2.html
www.cise.ufl.edu/research/sparse/matrices/Bydder/mri2.html

Numerical Linear Algebra

[6]

The first sixteen lines are comments, and give us some information about the
generation of the matrix.

• The computer vision problem where it arose: An MRI reconstruction
• Author information: Mark Bydder, UCSD
• Procedures to apply to the data: Solve a least squares problem A * x - b, and

posterior visualization of the result

The seventeenth line indicates the size of the matrix, 63240 rows × 147456 columns,
as well as the number of non-zero entries in the data, 569160.

The rest of the file includes precisely 569160 lines, each containing two integer
numbers, and a floating point number: These are the locations of the non-zero
elements in the matrix, together with the corresponding values.

We need to take into account that these files use the FORTRAN
convention of starting arrays from 1, not from 0.

A good way to read this file into ndarray is by means of the function loadtxt in
NumPy. We can then use scipy to transform the array into a sparse matrix with the
function coo_matrix in the module scipy.sparse (coo stands for the coordinate
internal format).

In [8]: rows, cols, data = np.loadtxt("mri2.mtx", skiprows=17, \

 ...: unpack=True)

In [9]: rows -= 1; cols -= 1;

In [10]: MRI2 = spsp.coo_matrix((data, (rows, cols)), \

 : shape=(63240,147456))

The best way to visualize the sparsity of this matrix is by means of the routine spy
from the module matplotlib.pyplot.

In [11]: plt.spy(MRI2); \

 : plt.show()

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

[7]

We obtain the following image. Each pixel corresponds to an entry in the matrix;
white indicates a zero value, and non-zero values are presented in different shades
of blue, according to their magnitude (the higher, the darker):

These are the first ten lines from the second file, mri2_b.mtx, which does not
represent a sparse matrix, but a column vector:

%% MatrixMarket matrix array complex general

%---

% UF Sparse Matrix Collection, Tim Davis

% http://www.cise.ufl.edu/research/sparse/matrices/Bydder/mri2

% name: Bydder/mri2 : b matrix

%---

63240 1

-.07214859127998352 .037707749754190445

-.0729086771607399 .03763720765709877

-.07373382151126862 .03766685724258423

Numerical Linear Algebra

[8]

Those are six commented lines with information, one more line indicating the
shape of the vector (63240 rows and 1 column), and the rest of the lines contain two
columns of floating point values, the real and imaginary parts of the corresponding
data. We proceed to read this vector to memory, solve the least squares problem
suggested, and obtain the following reconstruction that represents a slice of the
simulated human head:

In [12]: r_vals, i_vals = np.loadtxt("mri2_b.mtx", skiprows=7,

 : unpack=True)

In [13]: %time solution = spspla.lsqr(MRI2, r_vals + 1j*i_vals)

CPU times: user 4min 42s, sys: 1min 48s, total: 6min 30s

Wall time: 6min 30s

In [14]: from scipy.fftpack import fft2, fftshift

In [15]: img = solution[0].reshape(384,384); \

 : img = np.abs(fftshift(fft2(img)))

In [16]: plt.imshow(img); \

 : plt.show()

Chapter 1

[9]

If interested in the theory behind the creation of this matrix and the
particulars of this problem, read the article On the optimality of the Gridding
Reconstruction Algorithm, by H. Sedarat and D. G. Nishimura, published in
IEEE Trans. Medical Imaging, vol. 19, no. 4, pp. 306-317, 2000.

For matrices with a good structure, which are going to be exclusively involved in
matrix multiplications, it is often possible to store the objects in smart ways. Let's
consider an example.

A horizontal earthquake oscillation affects each floor of a tall building, depending
on the natural frequencies of the oscillation of the floors. If we make certain
assumptions, a model to quantize the oscillations on buildings with N floors can
be obtained as a second-order system of N differential equations by competition:
Newton's second law of force is set equal to the sum of Hooke's law of force, and the
external force due to the earthquake wave.

These are the assumptions we will need:

• Each floor is considered a point of mass located at its center-of-mass. The
floors have masses m[1], m[2], ..., m[N].

• Each floor is restored to its equilibrium position by a linear restoring force
(Hooke's -k * elongation). The Hooke's constants for the floors are k[1],
k[2], ..., k[N].

• The locations of masses representing the oscillation of the floors are x[1],
x[2], ..., x[N]. We assume all of them functions of time and that at
equilibrium, they are all equal to zero.

• For simplicity of exposition, we are going to assume no friction: all the
damping effects on the floors will be ignored.

• The equations of a floor depend only on the neighboring floors.

Set M, the mass matrix, to be a diagonal matrix containing the floor masses on its
diagonal. Set K, the Hooke's matrix, to be a tri-diagonal matrix with the following
structure, for each row j, all the entries are zero except for the following ones:

• Column j-1, which we set to be k[j+1],
• Column j, which we set to -k[j+1]-k[j+1], and
• Column j+1, which we set to k[j+2].

Set H to be a column vector containing the external force on each floor due to the
earthquake, and X, the column vector containing the functions x[j].

Numerical Linear Algebra

[10]

We have then the system: M * X'' = K * X + H. The homogeneous part of this system
is the product of the inverse of M with K, which we denote as A.

To solve the homogeneous linear second-order system, X'' = A * X, we define the
variable Y to contain 2*N entries: all N functions x[j], followed by their derivatives
x'[j]. Any solution of this second-order linear system has a corresponding solution
on the first-order linear system Y' = C * Y, where C is a block matrix of size 2*N
× 2*N. This matrix C is composed by a block of size N × N containing only zeros,
followed horizontally by the identity (of size N × N), and below these two, the matrix
A followed horizontally by another N × N block of zeros.

It is not necessary to store this matrix C into memory, or any of its factors or blocks.
Instead, we will make use of its structure, and use a linear operator to represent it.
Minimal data is then needed to generate this operator (only the values of the masses
and the Hooke's coefficients), much less than any matrix representation of it.

Let us show a concrete example with six floors. We indicate first their masses
and Hooke's constants, and then, proceed to construct a representation of A as
a linear operator:

In [17]: m = np.array([56., 56., 56., 54., 54., 53.]); \

 : k = np.array([561., 562., 560., 541., 542., 530.])

In [18]: def Axv(v):

 : global k, m

 : w = v.copy()

 : w[0] = (k[1]*v[1] - (k[0]+k[1])*v[0])/m[0]

 : for j in range(1, len(v)-1):

 : w[j] = k[j]*v[j-1] + k[j+1]*v[j+1] - \

 : (k[j]+k[j+1])*v[j]

 : w[j] /= m[j]

 : w[-1] = k[-1]*(v[-2]-v[-1])/m[-1]

 : return w

 :

In [19]: A = spspla.LinearOperator((6,6), matvec=Axv, matmat=Axv,

 : dtype=np.float64)

Chapter 1

[11]

The construction of C is very simple now (much simpler than that of its matrix!):

In [20]: def Cxv(v):

 : n = len(v)/2

 : w = v.copy()

 : w[:n] = v[n:]

 : w[n:] = A * v[:n]

 : return w

 :

In [21]: C = spspla.LinearOperator((12,12), matvec=Cxv, matmat=Cxv,

 : dtype=np.float64)

A solution of this homogeneous system comes in the form of an action of the
exponential of C: Y(t) = expm(C*t)* Y(0), where expm() here denotes a matrix
exponential function. In SciPy, this operation is performed with the routine
expm_multiply in the module scipy.sparse.linalg.

For example, in our case, given the initial value containing the values x[1](0)=0,
..., x[N](0)=0, x'[1](0)=1, ..., x'[N](0)=1, if we require a solution Y(t)
for values of t between 0 and 1 in steps of size 0.1, we could issue the following:

It has been reported in some installations that, in the next step, a
matrix for C must be given instead of the actual linear operator (thus
contradicting the manual). If this is the case in your system, simply
change C in the next lines to its matrix representation.

In [22]: initial_condition = np.zeros(12); \

 : initial_condition[6:] = 1

In [23]: Y = spspla.exp_multiply(C, np.zeros(12), start=0,

 : stop=1, num=10)

The oscillations of the six floors during the first second can then be calculated
and plotted. For instance, to view the oscillation of the first floor, we could issue
the following:

In [24]: plt.plot(np.linspace(0,1,10), Y[:,0]); \

 : plt.xlabel('time (in seconds)'); \

 : plt.ylabel('oscillation')

www.allitebooks.com

http://www.allitebooks.org

Numerical Linear Algebra

[12]

We obtain the following plot. Note how the first floor rises in the first tenth of
a second, only to drop from 0.1 to 0.9 seconds from its original height to almost
under a meter and then, start a slow rise:

For more details about systems of differential equations, and how to solve
them with actions of exponentials, read, for example, the excellent book,
Elementary Differential Equations 10 ed., by William E. Boyce and Richard
C. DiPrima. Wiley, 2012.

These three examples illustrate the goal of this first chapter, Numerical Linear
Algebra. In Python, this is accomplished first by storing the data in a matrix form,
or as a related linear operator, by means of any of the following classes:

• numpy.ndarray (making sure that they are two-dimensional)
• numpy.matrix

• scipy.sparse.bsr_matrix (Block Sparse Row matrix)
• scipy.sparse.coo_matrix (Sparse Matrix in COOrdinate format)
• scipy.sparse.csc_matrix (Compressed Sparse Column matrix)

Chapter 1

[13]

• scipy.sparse.csr_matrix (Compressed Sparse Row matrix)
• scipy.sparse.dia_matrix (Sparse matrix with DIAgonal storage)
• scipy.sparse.dok_matrix (Sparse matrix based on a Dictionary of Keys)
• scipy.sparse.lil_matrix (Sparse matrix based on a linked list)
• scipy.sparse.linalg.LinearOperator

As we have seen in the examples, the choice of different classes obeys mainly to the
sparsity of data and the algorithms that we are to apply to them.

We will learn when to apply these choices in the following sections.

This choice then dictates the modules that we use for the different algorithms:
scipy.linalg for generic matrices and both scipy.sparse and scipy.sparse.
linalg for sparse matrices or linear operators. These three SciPy modules are
compiled on top of the highly optimized computer libraries BLAS (written in
Fortran77), LAPACK (in Fortran90), ARPACK (in Fortran77), and SuperLU (in C).

For a better understanding of these underlying packages, read the
description and documentation from their creators:

• BLAS: netlib.org/blas/faq.html
• LAPACK: netlib.org/lapack/lapack-3.2.html
• ARPACK: www.caam.rice.edu/software/ARPACK/
• SuperLU: crd-legacy.lbl.gov/~xiaoye/SuperLU/

Most of the routines in these three SciPy modules are wrappers to functions in
the mentioned libraries. If we so desire, we also have the possibility to call the
underlying functions directly. In the scipy.linalg module, we have the following:

• scipy.linalg.get_blas_funcs to call routines from BLAS
• scipy.linalg.get_lapack_funcs to call routines from LAPACK

For example, if we want to use the BLAS function NRM2 to compute Frobenius norms:

In [25]: blas_norm = spla.get_blas_func('nrm2')

In [26]: blas_norm(np.float32([1e20]))

Out[26]: 1.0000000200408773e+20

netlib.org/blas/faq.html
netlib.org/lapack/lapack-3.2.html
www.caam.rice.edu/software/ARPACK/
crd-legacy.lbl.gov/~xiaoye/SuperLU/

Numerical Linear Algebra

[14]

Creation of matrices and linear operators
In the first part of this chapter, we are going to focus on the effective creation of
matrices. We start by recalling some different ways to construct a basic matrix as
an ndarray instance class, including an enumeration of all the special matrices
already included in NumPy and SciPy. We proceed to examine the possibilities of
constructing complex matrices from basic ones. We review the same concepts within
the matrix instance class. Next, we explore in detail the different ways to input
sparse matrices. We finish the section with the construction of linear operators.

We assume familiarity with ndarray creation in NumPy, as well as data
types (dtype), indexing, routines for the combination of two or more
arrays, array manipulation, or extracting information from these objects.
In this chapter, we will focus on the functions, methods, and routines
that are significant to matrices alone. We will disregard operations if their
outputs have no translation into linear algebra equivalents. For a primer
on ndarray, we recommend you to browse through Chapter 2, Top-Level
SciPy of Learning SciPy for Numerical and Scientific Computing, Second
Edition. For a quick review of Linear Algebra, we recommend Hoffman
and Kunze, Linear Algebra 2nd Edition, Pearson, 1971.

Constructing matrices in the ndarray class
We may create matrices from data as ndarray instances in three different ways:
manually from standard input, by assigning to each entry a value from a function, or
by retrieving the data from external files.

Constructor Description
numpy.array(object) Create a matrix from object
numpy.diag(arr, k) Create diagonal matrix with entries of

array arr on diagonal k
numpy.fromfunction(function,
shape)

Create a matrix by executing a function
over each coordinate

numpy.fromfile(fname) Create a matrix from a text or binary file
(basic)

numpy.loadtxt(fname) Create a matrix from a text file (advanced)

Chapter 1

[15]

Let us create some example matrices to illustrate some of the functions defined in the
previous table. As before, we start an iPython session:

In [1]: import numpy as np, matplotlib.pyplot as plt, \

 ...: scipy.linalg as spla, scipy.sparse as spsp, \

 ...: scipy.sparse.linalg as spspla

In [2]: A = np.array([[1,2],[4,16]]); \
 ...: A

Out[2]:

array([[1, 2],

 [4, 16]])

In [3]: B = np.fromfunction(lambda i,j: (i-1)*(j+1),

 ...: (3,2), dtype=int); \

 ...: print B

 ...:

 [[-1 -2]

 [0 0]

 [1 2]]

In [4]: np.diag((1j,4))

Out[4]:

array([[0.+1.j, 0.+0.j],

 [0.+0.j, 4.+0.j]])

Special matrices with predetermined zeros and ones can be constructed with the
following functions:

Constructor Description
numpy.empty(shape) Array of a given shape, entries not initialized
numpy.eye(N, M, k) 2-D array with ones on the k-th diagonal, and zeros

elsewhere
numpy.identity(n) Identity array
numpy.ones(shape) Array with all entries equal to one
numpy.zeros(shape) Array with all entries equal to zero
numpy.tri(N, M, k) Array with ones at and below the given diagonal,

zeros otherwise

Numerical Linear Algebra

[16]

All these constructions, except numpy.tri, have a companion function
xxx_like that creates ndarray with the requested characteristics and
with the same shape and data type as another source ndarray class:

In [5]: np.empty_like(A)

Out[5]:

array([[140567774850560, 140567774850560],

 [4411734640, 562954363882576]])

Of notable importance are arrays constructed as numerical ranges.

Constructor Description
numpy.arange(stop) Evenly spaced values within an interval
numpy.linspace(start, stop) Evenly spaced numbers over an interval
numpy.logspace(start, stop) Evenly spaced numbers on a log scale
numpy.meshgrid Coordinate matrices from two or more

coordinate vectors
numpy.mgrid nd_grid instance returning dense multi-

dimensional meshgrid
numpy.ogrid nd_grid instance returning open multi-

dimensional meshgrid

Special matrices with numerous applications in linear algebra can be easily called
from within NumPy and the module scipy.linalg.

Constructor Description
scipy.linalg.circulant(arr) Circulant matrix generated by 1-D array arr
scipy.linalg.companion(arr) Companion matrix of polynomial with

coefficients coded by arr
scipy.linalg.hadamard(n) Sylvester's construction of a Hadamard

matrix of size n × n. n must be a power of 2
scipy.linalg.hankel(arr1,
arr2)

Hankel matrix with arr1 as the first column
and arr2 as the last column

scipy.linalg.hilbert(n) Hilbert matrix of size n × n
scipy.linalg.invhilbert(n) The inverse of a Hilbert matrix of size n × n
scipy.linalg.leslie(arr1,
arr2)

Leslie matrix with fecundity array arr1 and
survival coefficients arr2

scipy.linalg.pascal(n) n × n truncations of the Pascal matrix of
binomial coefficients

Chapter 1

[17]

Constructor Description
scipy.linalg.toeplitz(arr1,
arr2)

Toeplitz array with first column arr1 and
first row arr2

numpy.vander(arr) Van der Monde matrix of array arr

For instance, one fast way to obtain all binomial coefficients of orders up to a large
number (the corresponding Pascal triangle) is by means of a precise Pascal matrix.
The following example shows how to compute these coefficients up to order 13:

In [6]: print spla.pascal(13, kind='lower')

Besides these basic constructors, we can always stack arrays in different ways:

Constructor Description
numpy.concatenate((A1, A2, ...)) Join matrices together
numpy.hstack((A1, A2, ...)) Stack matrices horizontally
numpy.vstack((A1, A2, ...)) Stack matrices vertically
numpy.tile(A, reps) Repeat a matrix a certain number of times

(given by reps)
scipy.linalg.block_diag(A1,A2,
...)

Create a block diagonal array

Numerical Linear Algebra

[18]

Let us observe some of these constructors in action:

In [7]: np.tile(A, (2,3)) # 2 rows, 3 columns

Out[7]:

array([[1, 2, 1, 2, 1, 2],

 [4, 16, 4, 16, 4, 16],

 [1, 2, 1, 2, 1, 2],

 [4, 16, 4, 16, 4, 16]])

In [8]: spla.block_diag(A,B)

Out[8]:

array([[1, 2, 0, 0],

 [4, 16, 0, 0],

 [0, 0, -1, -2],

 [0, 0, 0, 0],

 [0, 0, 1, 2]])

Constructing matrices in the matrix class
For the matrix class, the usual way to create a matrix directly is to invoke either
numpy.mat or numpy.matrix. Observe how much more comfortable is the syntax
of numpy.matrix than that of numpy.array, in the creation of a matrix similar to A.
With this syntax, different values separated by commas belong to the same row of
the matrix. A semi-colon indicates a change of row. Notice the casting to the matrix
class too!

In [9]: C = np.matrix('1,2;4,16'); \

 ...: C

Out[9]:

matrix([[1, 2],

 [4, 16]])

These two functions also transform any ndarray into matrix. There is a third
function that accomplishes this task: numpy.asmatrix:

In [10]: np.asmatrix(A)

Out[10]:

matrix([[1, 2],

 [4, 16]])

Chapter 1

[19]

For arrangements of matrices composed by blocks, besides the common stack
operations for ndarray described before, we have the extremely convenient function
numpy.bmat. Note the similarity with the syntax of numpy.matrix, particularly the
use of commas to signify horizontal concatenation and semi-colons to signify vertical
concatenation:

In [11]: np.bmat('A;B') In [12]: np.bmat('A,C;C,A')

Out[11]: Out[12]:

matrix([[1, 2], matrix([[1, 2, 1, 2],

 [4, 16], [4, 16, 4, 16],

 [-1, -2], [1, 2, 1, 2],

 [0, 0], [4, 16, 4, 16]])

 [1, 2]])

Constructing sparse matrices
There are seven different ways to input sparse matrices. Each format is designed to
make a specific problem or operation more efficient. Let us go over them in detail:

Method Name Optimal use
BSR Block Sparse Row Efficient arithmetic, provided the matrix

contains blocks.
COO Coordinate Fast and efficient construction format. Efficient

methods to convert to the CSC and CSR formats.
CSC Compressed Sparse

Column
Efficient matrix arithmetic and column slicing.
Relatively fast matrix-vector product.

CSR Compressed Sparse
Row

Efficient matrix arithmetic and row slicing.
Fastest to perform matrix-vector products.

DIA Diagonal storage Efficient for construction and storage if the
matrix contains long diagonals of non-zero
entries.

DOK Dictionary of keys Efficient incremental construction and access of
individual matrix entries.

LIL Row-based linked list Flexible slicing. Efficient for changes to matrix
sparsity.

Numerical Linear Algebra

[20]

They can be populated in up to five ways, three of which are common to every
sparse matrix format:

• They can cast to sparse any generic matrix. The lil format is the most
effective with this method:
In [13]: A_coo = spsp.coo_matrix(A); \

 : A_lil = spsp.lil_matrix(A)

• They can cast to a specific sparse format another sparse matrix in another
sparse format:
In [14]: A_csr = spsp.csr_matrix(A_coo)

• Empty sparse matrices of any shape can be constructed by indicating the
shape and dtype:
In [15]: M_bsr = spsp.bsr_matrix((100,100), dtype=int)

They all have several different extra input methods, each specific to their
storage format.

• Fancy indexing: As we would do with any generic matrix. This is only
possible with the LIL or DOK formats:
In [16]: M_lil = spsp.lil_matrix((100,100), dtype=int)

In [17]: M_lil[25:75, 25:75] = 1

In [18]: M_bsr[25:75, 25:75] = 1

NotImplementedError Traceback (most recent call last)

<ipython-input-18-d9fa1001cab8> in <module>()

----> 1 M_bsr[25:75, 25:75] = 1

[...]/scipy/sparse/bsr.pyc in __setitem__(self, key, val)

 297

 298 def __setitem__(self,key,val):

--> 299 raise NotImplementedError

 300

 301 ######################

NotImplementedError:

• Dictionary of keys: This input system is most effective when we create,
update, or search each element one at a time. It is efficient only for the LIL
and DOK formats:
In [19]: M_dok = spsp.dok_matrix((100,100), dtype=int)

In [20]: position = lambda i, j: ((i<j) & ((i+j)%10==0))

In [21]: for i in range(100):

Chapter 1

[21]

 : for j in range(100):

 : M_dok[i,j] = position(i,j)

 :

• Data, rows, and columns: This is common to four formats: BSR, COO, CSC,
and CSR. This is the method of choice to import sparse matrices from the
Matrix Market Exchange format, as illustrated at the beginning of the chapter.

With the data, rows, and columns input method, it is a good idea to
always include the option shape in the construction. In case this is
not provided, the size of the matrix will be inferred from the largest
coordinates from the rows and columns, resulting possibly in a
matrix of a smaller size than required.

• Data, indices, and pointers: This is common to three formats: BSR, CSC,
and CSR. It is the method of choice to import sparse matrices from the
Rutherford-Boeing Exchange format.

The Rutherford-Boeing Exchange format is an updated version of
the Harwell-Boeing format. It stores the matrix as three vectors:
pointers_v, indices_v, and data. The row indices of the
entries of the jth column are located in positions pointers_v(j)
through pointers_v(j+1)-1 of the vector indices_v. The
corresponding values of the matrix are located at the same
positions, in the vector data.

Let us show by example how to read an interesting matrix in the Rutherford-Boeing
matrix exchange format, Pajek/football. This 35 × 35 matrix with 118 non-zero
entries can be found in the collection at www.cise.ufl.edu/research/sparse/
matrices/Pajek/football.html.

It is an adjacency matrix for a network of all the national football teams that attended
the FIFA World Cup celebrated in France in 1998. Each node in the network
represents one country (or national football team) and the links show which
country exported players to another country.

www.cise.ufl.edu/research/sparse/matrices/Pajek/football.html
www.cise.ufl.edu/research/sparse/matrices/Pajek/football.html

Numerical Linear Algebra

[22]

This is a printout of the football.rb file:

The header of the file (the first four lines) contains important information:

• The first line provides us with the title of the matrix, Pajek/football;
1998; L. Krempel; ed: V. Batagelj, and a numerical key for
identification purposes MTRXID=1474.

• The second line contains four integer values: TOTCRD=12 (lines containing
significant data after the header; see In [24]), PTRCRD=2 (number of lines
containing pointer data), INDCRD=5 (number of lines containing indices data),
and VALCRD=2 (number of lines containing the non-zero values of the matrix).
Note that it must be TOTCRD = PTRCRD + INDCRD + VALCRD.

• The third line indicates the matrix type MXTYPE=(iua), which in this case
stands for an integer matrix, unsymmetrical, compressed column form. It
also indicates the number of rows and columns (NROW=35, NCOL=35), and the
number of non-zero entries (NNZERO=118). The last entry is not used in the
case of a compressed column form, and it is usually set to zero.

• The fourth column contains the Fortran formats for the data in the following
columns. PTRFMT=(20I4) for the pointers, INDFMT=(26I3) for the indices,
and VALFMT=(26I3) for the non-zero values.

Chapter 1

[23]

We proceed to opening the file for reading, storing each line after the header in a
Python list, and extracting from the relevant lines of the file, the data we require
to populate the vectors indptr, indices, and data. We finish by creating the
corresponding sparse matrix called football in the CSR format, with the data,
indices, pointers method:
In [22]: f = open("football.rb", 'r'); \

 : football_list = list(f); \

 : f.close()

In [23]: football_data = np.array([])

In [24]: for line in range(4, 4+12):

 : newdata = np.fromstring(football_list[line], sep=" ")

 : football_data = np.append(football_data, newdata)

 :

In [25]: indptr = football_data[:35+1] - 1; \

 : indices = football_data[35+1:35+1+118] - 1; \

 : data = football_data[35+1+118:]

In [26]: football = spsp.csr_matrix((data, indices, indptr),

 : shape=(35,35))

At this point, it is possible to visualize the network with its associated graph, with
the help of a Python module called networkx. We obtain the following diagram
depicting as nodes the different countries. Each arrow between the nodes indicates
the fact that the originating country has exported players to the receiving country:

networkx is a Python module to deal with complex networks. For more
information, visit their Github project pages at networkx.github.io.

One way to accomplish this task is as follows:

In [27]: import networkx

In [28]: G = networkx.DiGraph(football)

In [29]: f = open("football_nodename.txt"); \

 : m = list(f); \

 : f.close()

In [30]: def rename(x): return m[x]

In [31]: G = networkx.relabel_nodes(G, rename)

networkx.github.io

Numerical Linear Algebra

[24]

In [32]: pos = networkx.spring_layout(G)

In [33]: networkx.draw_networkx(G, pos, alpha=0.2, node_color='w',

 : edge_color='b')

The module scipy.sparse borrows from NumPy some interesting concepts to
create constructors and special matrices:

Constructor Description
scipy.sparse.diags(diagonals,
offsets)

Sparse matrix from diagonals

scipy.sparse.rand(m, n, density) Random sparse matrix of prescribed
density

scipy.sparse.eye(m) Sparse matrix with ones in the main
diagonal

scipy.sparse.identity(n) Identity sparse matrix of size n × n

Both functions diags and rand deserve examples to show their syntax. We will start
with a sparse matrix of size 14 × 14 with two diagonals: the main diagonal contains
1s, and the diagonal below contains 2s. We also create a random matrix with the
function scipy.sparse.rand. This matrix has size 5 × 5, with 25 percent non-zero
elements (density=0.25), and is crafted in the LIL format:

In [34]: diagonals = [[1]*14, [2]*13]

In [35]: print spsp.diags(diagonals, [0,-1]).todense()

Chapter 1

[25]

[[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

 [2. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

 [0. 2. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

 [0. 0. 2. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

 [0. 0. 0. 2. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

 [0. 0. 0. 0. 2. 1. 0. 0. 0. 0. 0. 0. 0. 0.]

 [0. 0. 0. 0. 0. 2. 1. 0. 0. 0. 0. 0. 0. 0.]

 [0. 0. 0. 0. 0. 0. 2. 1. 0. 0. 0. 0. 0. 0.]

 [0. 0. 0. 0. 0. 0. 0. 2. 1. 0. 0. 0. 0. 0.]

 [0. 0. 0. 0. 0. 0. 0. 0. 2. 1. 0. 0. 0. 0.]

 [0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 1. 0. 0. 0.]

 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 1. 0. 0.]

 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 1. 0.]

 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 1.]]

In [36]: S_25_lil = spsp.rand(5, 5, density=0.25, format='lil')

In [37]: S_25_lil

Out[37]:

<5x5 sparse matrix of type '<type 'numpy.float64'>'

 with 6 stored elements in LInked List format>

In [38]: print S_25_lil

 (0, 0) 0.186663044982

 (1, 0) 0.127636181284

 (1, 4) 0.918284870518

 (3, 2) 0.458768884701

 (3, 3) 0.533573291684

 (4, 3) 0.908751420065

In [39]: print S_25_lil.todense()

[[0.18666304 0. 0. 0. 0.]

 [0.12763618 0. 0. 0. 0.91828487]

 [0. 0. 0. 0. 0.]

 [0. 0. 0.45876888 0.53357329 0.]

 [0. 0. 0. 0.90875142 0.]]

Numerical Linear Algebra

[26]

Similar to the way we combined ndarray instances, we have some clever ways to
combine sparse matrices to construct more complex objects:

Constructor Description
scipy.sparse.bmat(blocks) Sparse matrix from sparse sub-blocks
scipy.sparse.hstack(blocks) Stack sparse matrices horizontally
scipy.sparse.vstack(blocks) Stack sparse matrices vertically

Linear operators
A linear operator is basically a function that takes as input a column vector and
outputs another column vector, by left multiplication of the input with a matrix.
Although technically, we could represent these objects just by handling the
corresponding matrix, there are better ways to do this.

Constructor Description
scipy.sparse.linalg.
LinearOperator(shape, matvec)

Common interface for
performing matrix vector
products

scipy.sparse.linalg.aslinearoperator(A) Return A as LinearOperator

In the scipy.sparse.linalg module, we have a common interface that handles
these objects: the LinearOperator class. This class has only the following two
attributes and three methods:

• shape: The shape of the representing matrix
• dtype: The data type of the matrix
• matvec: To perform multiplication of a matrix with a vector
• rmatvec: To perform multiplication by the conjugate transpose of a matrix

with a vector
• matmat: To perform multiplication of a matrix with another matrix

Its usage is best explained through an example. Consider two functions that take
vectors of size 3, and output vectors of size 4, by left multiplication with two
respective matrices of size 4 × 3. We could very well define these functions
with lambda predicates:

In [40]: H1 = np.matrix("1,3,5; 2,4,6; 6,4,2; 5,3,1"); \

 : H2 = np.matrix("1,2,3; 1,3,2; 2,1,3; 2,3,1")

In [41]: L1 = lambda x: H1.dot(x); \

Chapter 1

[27]

 : L2 = lambda x: H2.dot(x)

In [42]: print L1(np.ones(3))

[[9. 12. 12. 9.]]

In [43]: print L2(np.tri(3,3))

 [[6. 5. 3.]

 [6. 5. 2.]

 [6. 4. 3.]

 [6. 4. 1.]]

Now, one issue arises when we try to add/subtract these two functions, or multiply
any of them by a scalar. Technically, it should be as easy as adding/subtracting the
corresponding matrices, or multiplying them by any number, and then performing
the required left multiplication again. But that is not the case.

For instance, we would like to write (L1+L2)(v) instead of L1(v) + L2(v).
Unfortunately, doing so will raise an error:

TypeError: unsupported operand type(s) for +: 'function' and

'function'

Instead, we may instantiate the corresponding linear operators and manipulate them
at will, as follows:

In [44]: Lo1 = spspla.aslinearoperator(H1); \

 : Lo2 = spspla.aslinearoperator(H2)

In [45]: Lo1 - 6 * Lo2

Out[45]: <4x3 _SumLinearOperator with dtype=float64>

In [46]: print Lo1 * np.ones(3)

[9. 12. 12. 9.]

In [47]: print (Lo1-6*Lo2) * np.tri(3,3)

[[-27. -22. -13.]

 [-24. -20. -6.]

 [-24. -18. -16.]

 [-27. -20. -5.]]

Linear operators are a great advantage when the amount of information needed
to describe the product with the related matrix is less than the amount of memory
needed to store the non-zero elements of the matrix.

Numerical Linear Algebra

[28]

For instance, a permutation matrix is a square binary matrix (ones and zeros) that has
exactly one entry in each row and each column. Consider a large permutation matrix,
say 1024 × 1024, formed by four blocks of size 512 × 512: a zero block followed
horizontally by an identity block, on top of an identity block followed horizontally
by another zero block. We may store this matrix in three different ways:

In [47]: P_sparse = spsp.diags([[1]*512, [1]*512], [512,-512], \

 : dtype=int)

In [48]: P_dense = P_sparse.todense()

In [49]: mv = lambda v: np.roll(v, len(v)/2)

In [50]: P_lo = spspla.LinearOperator((1024,1024), matvec=mv, \

 : matmat=mv, dtype=int)

In the sparse case, P_sparse, we may think of this as the storage of just 1024 integer
numbers. In the dense case, P_dense, we are technically storing 1048576 integer
values. In the case of the linear operator, it actually looks like we are not storing
anything! The function mv that indicates how to perform the multiplications has
a much smaller footprint than any of the related matrices. This is also reflected in
the time of execution of the multiplications with these objects:

In [51]: %timeit P_sparse * np.ones(1024)

10000 loops, best of 3: 29.7 µs per loop

In [52]: %timeit P_dense.dot(np.ones(1024))

100 loops, best of 3: 6.07 ms per loop

In [53]: %timeit P_lo * np.ones(1024)

10000 loops, best of 3: 25.4 µs per loop

Basic matrix manipulation
The emphasis of the second part of this chapter is on mastering the following
operations:

• Scalar multiplication, matrix addition, and matrix multiplication
• Traces and determinants
• Transposes and inverses
• Norms and condition numbers

Chapter 1

[29]

Scalar multiplication, matrix addition, and
matrix multiplication
Let us start with the matrices stored with the ndarray class. We accomplish scalar
multiplication with the * operator, and the matrix addition with the + operator. But
for matrix multiplication we will need the instance method dot() or the numpy.dot
function, since the operator * is reserved for element-wise multiplication:

In [54]: 2*A

Out[54]:

array([[2, 4],

 [8, 32]])

In [55]: A + 2*A

Out[55]:

array([[3, 6],

 [12, 48]])

In [56]: A.dot(2*A) In [56]: np.dot(A, 2*A)

Out[56]: Out[56]:

array([[18, 68], array([[18, 68],

 [136, 528]]) [136, 528]])

In [57]: A.dot(B)

ValueError: objects are not aligned

In [58]: B.dot(A) In [58]: np.dot(B, A)

Out[58]: Out[58]:

array([[-9, -34], array([[-9, -34],

 [0, 0], [0, 0],

 [9, 34]]) [9, 34]])

The matrix class makes matrix multiplication more intuitive: the operator * can
be used instead of the dot() method. Note also how matrix multiplication between
different instance classes ndarray and a matrix is always casted to a matrix
instance class:

In [59]: C * B

ValueError: shapes (2,2) and (3,2) not aligned: 2 (dim 1) != 3 (dim 0)

In [60]: B * C

Out[60]:

matrix([[-9, -34],

 [0, 0],

 [9, 34]])

Numerical Linear Algebra

[30]

For sparse matrices, both scalar multiplication and addition work well with
the obvious operators, even if the two sparse classes are not the same. Note
the resulting class casting after each operation:

In [61]: S_10_coo = spsp.rand(5, 5, density=0.1, format='coo')

In [62]: S_25_lil + S_10_coo

Out[62]: <5x5 sparse matrix of type '<type 'numpy.float64'>'

 with 8 stored elements in Compressed Sparse Row format>

In [63]: S_25_lil * S_10_coo

Out[63]: <5x5 sparse matrix of type '<type 'numpy.float64'>'

 with 4 stored elements in Compressed Sparse Row format>

numpy.dot does not work well for matrix multiplication of a sparse
matrix with a generic. We must use the operator * instead.

In [64]: S_100_coo = spsp.rand(2, 2, density=1, format='coo')

In [65]: np.dot(A, S_100_coo)

Out[66]:

array([[<2x2 sparse matrix of type '<type 'numpy.float64'>'

 with 4 stored elements in COOrdinate format>,

 <2x2 sparse matrix of type '<type 'numpy.float64'>'

 with 4 stored elements in COOrdinate format>],

 [<2x2 sparse matrix of type '<type 'numpy.float64'>'

 with 4 stored elements in COOrdinate format>,

 <2x2 sparse matrix of type '<type 'numpy.float64'>'

 with 4 stored elements in COOrdinate format>]], dtype=object)

In [67]: A * S_100_coo

Out[68]:

array([[1.81 , 1.555],

 [11.438, 11.105]])

Traces and determinants
The traces of a matrix are the sums of the elements on the diagonals (assuming
always increasing indices in both dimensions). For generic matrices, we compute
them with the instance method trace(), or with the function numpy.trace:

In [69]: A.trace() In [71]: C.trace()

Out[69]: 17 Out[71]: matrix([[17]])

In [70]: B.trace() In [72]: np.trace(B, offset=-1)

Out[70]: -1 Out[72]: 2

Chapter 1

[31]

In order to compute the determinant of generic square matrices, we need the
function det in the module scipy.linalg:

In [73]: spla.det(C)

Out[73]: 8.0

Transposes and inverses
Transposes can be computed with any of the two instance methods transpose()
or T, for any of the two classes of generic matrices:

In [74]: B.transpose() In [75]: C.T

Out[74]: Out[75]:

array([[-1, 0, 1], matrix([[1, 4],

 [-2, 0, 2]]) [2, 16]])

Hermitian transpose can be computed for the matrix class with the instance
method H:

In [76]: D = C * np.diag((1j,4)); print D In [77]: print D.H

[[0.+1.j 8.+0.j] [[0.-1.j 0.-4.j]

 [0.+4.j 64.+0.j]] [8.-0.j 64.-0.j]]

Inverses of non-singular square matrices are computed for the ndarray class with
the function inv in the module scipy.linalg. For the matrix class, we may also
use the instance method I. For non-singular square sparse matrices, we may use
the function inv in the module scipy.sparse.linalg.

Inverses of sparse matrices are seldom sparse. For this reason, it is not
recommended to perform this operation with the scipy.sparse.
inv function. One possible way to go around this issue is to convert the
matrix to generic with the todense() instance method, and use scipy.
linear.inv instead.
But due to the difficulty of inverting large matrices, it is often beneficial
to compute approximations to the inverse, instead. The function spilu
in the module scipy.sparse.linalg provides us with a very fast
algorithm to perform this computation for square sparse matrices in CSC
format. This algorithm is based on LU decompositions, and coded internally
as a wrapper of a function from the library SuperLU. Its use is rather
complex, and we are going to postpone its study until we explore matrix
factorizations.

In [78]: E = spsp.rand(512, 512, density=1).todense()

In [79]: S_100_csc = spsp.rand(512, 512, density=1, format='csc')

www.allitebooks.com

http://www.allitebooks.org

Numerical Linear Algebra

[32]

In [80]: %timeit E.I

10 loops, best of 3: 28.7 ms per loop

In [81]: %timeit spspla.inv(S_100_csc)

1 loops, best of 3: 1.99 s per loop

In the execution of sparse inverses, if the input matrix is not in the CSC or
CSR format, we will get a warning:
/scipy/sparse/linalg/dsolve/linsolve.py:88:
SparseEfficiencyWarning: spsolve requires A be CSC or CSR
matrix format

 warn('spsolve requires A be CSC or CSR matrix format',
SparseEfficiencyWarning)

/scipy/sparse/linalg/dsolve/linsolve.py:103:
SparseEfficiencyWarning: solve requires b be CSC or CSR
matrix format

The Moore-Penrose pseudo-inverse can be computed for any kind of matrix (not
necessarily square) with either routines the pinv or the pinv2 in the module scipy.
linalg. The first method, pinv, resorts to solving a least squares problem to
compute the pseudo-inverse. The function pinv2 computes the pseudo-inverse by a
method based on singular value decompositions. For Hermitian matrices, or matrices
that are symmetric with no complex coefficients, we also have a third function called
pinvh, which is based on eigenvalue decompositions.

It is known that in the case of square non-singular matrices, the inverse and pseudo-
inverse are the same. This simple example shows the times of computation of the
inverses of a large generic symmetric matrix with the five methods described:

In [82]: F = E + E.T # F is symmetric

In [83]: %timeit F.I

1 loops, best of 3: 24 ms per loop

In [84]: %timeit spla.inv(F)

10 loops, best of 3: 28 ms per loop

In [85]: %timeit spla.pinvh(E)

1 loops, best of 3: 120 ms per loop

In [86]: %timeit spla.pinv2(E)

1 loops, best of 3: 252 ms per loop

In [87]: %timeit spla.pinv(F)

1 loops, best of 3: 2.21 s per loop

Chapter 1

[33]

Norms and condition numbers
For generic matrices, we have seven different standard norms in scipy.linalg. We
can summarize them in the following table:

Constructor Description
norm(A,numpy.inf) Sum of absolute values of entries in each row. Pick the largest

value.
norm(A,-numpy.
inf)

Sum of absolute values of entries in each row. Pick the smallest
value.

norm(A,1) Sum of absolute values of entries in each column. Pick the
largest value.

norm(A,-1) Sum of absolute values of entries in each column. Pick the
smallest value.

norm(A,2) Largest eigenvalue of the matrix.
norm(A,-2) Smallest eigenvalue of the matrix.
norm(A,'fro') or
norm(A,'f')

Frobenius norm: the square root of the trace of the product A.H
* A.

In [88]: [spla.norm(A,s) for s in (np.inf,-np.inf,-1,1,-2,2,'fro')]

Out[88]: [20, 3, 5, 18, 0.48087417361008861, 16.636368595013604,
16.643316977093239]

For sparse matrices, we can always compute norms by applying the
todense() instance method prior to computation. But when the sizes
of the matrices are too large, this is very impractical. In those cases, the
best we can get for the 1-norm is a lower bound, thanks to the function
onenormest in the module scipy.sparse.linalg:
In [89]: spla.norm(S_100_csc.todense(), 1) - \

 : spspla.onenormest(S_100_csc)

Out[89]: 0.0

As for the 2-norms, we may find the values of the smallest and the largest
eigenvalue, but only for square matrices. We have two algorithms in the
module scipy.sparse.linalg that perform this task: eigs (for generic
square matrices) and eigsh for real symmetric matrices. We will explore
them in detail when we discuss matrix decompositions and factorizations
in the next section.

Numerical Linear Algebra

[34]

Note the subtle difference between the norm computations from SciPy and NumPy.
For example, in the case of the Frobenius norm, scipy.linalg.norm is based
directly on the BLAS function called NRM2, while numpy.linalg.norm is equivalent
to a purely straightforward computation of the form sqrt(add.reduce((x.conj()
* x).real)). The advantage of the code based on BLAS, besides being much faster,
is clear when some of the data is too large or too small in single-precision arithmetic.
This is shown in the following example:

In [89]: a = np.float64([1e20]); \

 : b = np.float32([1e20])

In [90]: [np.linalg.norm(a), spla.norm(a)]

Out[90]: [1e+20, 1e+20]

In [91]: np.linalg.norm(b)

[...]/numpy/linalg/linalg.py:2056: RuntimeWarning: overflow encountered
in multiply

 return sqrt(add.reduce((x.conj() * x).real, axis=None))

Out[91]: inf

In [92]: spla.norm(b)

Out[92]: 1.0000000200408773e+20

This brings us inevitably to a discussion about the computation of the condition
number of a non-singular square matrix A. This value measures how much the output
of the solution to the linear equation A * x = b will change when we make small
changes to the input argument b. If this value is close to one, we can rest assured
that the solution is going to change very little (we say then that the system is well-
conditioned). If the condition number is large, we know that there might be issues
with the computed solutions of the system (and we say then that it is ill-conditioned).

The computation of this condition number is performed by multiplying the norm
of A with the norm of its inverse. Note that there are different condition numbers,
depending on the norm that we choose for the computation. These values can also be
computed for each of the pre-defined norms with the function numpy.linalg.cond,
although we need to be aware of its obvious limitations.

In [93]: np.linalg.cond(C, -np.inf)

Out[93]: 1.875

Chapter 1

[35]

Matrix functions
A matrix function is a function that maps a square matrix to another square matrix
via a power series. These should not be confused with vectorization: the application
of any given function of one variable to each element of a matrix. For example, it is
not the same to compute the square of a square matrix, A.dot(A) (for example, In
[8]), than a matrix with all the elements of A squared (examples In [5] through
In []).

To make the proper distinction in notation, we will write A^2 to denote
the actual square of a square matrix and A^n to represent the subsequent
powers (for all positive integers n).

Constructor Description
scipy.linalg.funm(A, func, disp) Extension of a scalar-valued

function called func to a matrix
scipy.linalg.fractional_matrix_
power(A, t)

Fractional matrix power

scipy.linalg.expm(A) or scipy.sparse.
linalg.expm(A)

Matrix exponential

scipy.sparse.linalg.expm_multiply(A,B) Action of the matrix exponential
of A on B

scipy.linalg.expm_frechet(A, E) Frechet derivative of the matrix
exponential in the E direction

scipy.linalg.cosm(A) Matrix cosine
scipy.linalg.sinm(A) Matrix sine
scipy.linalg.tanm(A) Matrix tangent
scipy.linalg.coshm(A) Hyperbolic matrix cosine
scipy.linalg.sinhm(A) Hyperbolic matrix sine
scipy.linalg.tanhm(A) Hyperbolic matrix tangent
scipy.linalg.signm(A) Matrix sign function
scipy.linalg.sqrtm(A, disp, blocksize) Matrix square root
scipy.linalg.logm(A, disp) Matrix logarithm

In [1]: import numpy as np, scipy as sp; \

 ...: import scipy.linalg as spla

In [2]: np.set_printoptions(suppress=True, precision=3)

In [3]: def square(x): return x**2

In [4]: A = spla.hilbert(4); print A

Numerical Linear Algebra

[36]

[[1. 0.5 0.333 0.25]

 [0.5 0.333 0.25 0.2]

 [0.333 0.25 0.2 0.167]

 [0.25 0.2 0.167 0.143]]

In [5]: print square(A)

[[1. 0.25 0.111 0.062]

 [0.5 0.333 0.25 0.2]

 [0.333 0.25 0.2 0.167]

 [0.25 0.2 0.167 0.143]]

In [6]: print A*A

[[1. 0.25 0.111 0.062]

 [0.25 0.111 0.062 0.04]

 [0.111 0.062 0.04 0.028]

 [0.062 0.04 0.028 0.02]]

In [7]: print A**2

[[1. 0.25 0.111 0.062]

 [0.25 0.111 0.062 0.04]

 [0.111 0.062 0.04 0.028]

 [0.062 0.04 0.028 0.02]]

In [8]: print A.dot(A)

[[1.424 0.8 0.567 0.441]

 [0.8 0.464 0.333 0.262]

 [0.567 0.333 0.241 0.19]

 [0.441 0.262 0.19 0.151]]

The actual powers A^n of a matrix is the starting point for the definition of any
matrix function. In the module numpy.linalg we have the routine matrix_power
to perform this operation. We can also achieve this result with the generic function
funm or with the function fractional_matrix_power, both of them in the module
scipy.linalg.

In [9]: print np.linalg.matrix_power(A, 2)

[[1.424 0.8 0.567 0.441]

 [0.8 0.464 0.333 0.262]

 [0.567 0.333 0.241 0.19]

 [0.441 0.262 0.19 0.151]]

In [10]: print spla.fractional_matrix_power(A, 2)

[[1.424 0.8 0.567 0.441]

Chapter 1

[37]

 [0.8 0.464 0.333 0.262]

 [0.567 0.333 0.241 0.19]

 [0.441 0.262 0.19 0.151]]

In [11]: print spla.funm(A, square)

[[1.424 0.8 0.567 0.441]

 [0.8 0.464 0.333 0.262]

 [0.567 0.333 0.241 0.19]

 [0.441 0.262 0.19 0.151]]

To compute any matrix function, theoretically, we first express the function as a
power series, by means of its Taylor expansion. Then, we apply the input matrix
into an approximation to that expansion (since it is impossible to add matrices ad
infinitum). Most matrix functions necessarily carry an error of computation, for this
reason. In the scipy.linalg module, the matrix functions are coded following
this principle.

• Note that there are three functions with an optional Boolean parameter disp.
To understand the usage of this parameter, we must remember that most
matrix functions compute approximations, with an error of computation. The
parameter disp is set to True by default, and it produces a warning if the
error of approximation is large. If we set disp to False, instead of a warning
we will obtain the 1-norm of the estimated error.

• The algorithms behind the functions expm, the action of an exponential over
a matrix, expm_multiply, and the Frechet derivative of an exponential,
expm_frechet, use Pade approximations instead of Taylor expansions. This
allows for more robust and accurate calculations. All the trigonometric and
hyperbolic trigonometric functions base their algorithm in easy computations
involving expm.

• The generic matrix function called funm and the square-root function called
sqrtm apply clever algorithms that play with the Schur decomposition of the
input matrix, and proper algebraic manipulations with the corresponding
eigenvalues. They are still prone to roundoff errors but are much faster
and more accurate than any algorithm based on Taylor expansions.

• The matrix sign function called signm is initially an application of funm
with the appropriate function, but should this approach fail, the algorithm
takes a different approach based on iterations that converges to a decent
approximation to the solution.

Numerical Linear Algebra

[38]

• The functions logm and fractional_matrix_power (when the latter is
applied to non-integer powers) use a very complex combination (and
improvement!) of Pade approximations and Schur decompositions.

We will explore Schur decompositions when we deal with matrix
factorizations related to eigenvalues. In the meantime, if you are
interested in learning the particulars of these clever algorithms, read their
descriptions in Golub and Van Loan, Matrix Computations 4 edition, Johns
Hopkins Studies in the Mathematical Sciences, vol. 3.
For details on the improvements to Schur-Pade algorithms, as well as the
algorithm behind Frechet derivatives of the exponential, refer to:

• Nicholas J. Higham and Lijing Lin An Improved Schur-Pade
Algorithm for Fractional Powers of a Matrix and Their Frechet
Derivatives

• Awad H. Al-Mohy and Nicholas J. Higham Improved Inverse
Scaling and Squaring Algorithms for the Matrix Logarithm, in SIAM
Journal on Scientific Computing, 34 (4)

Matrix factorizations related to solving
matrix equations
The concept of matrix decompositions is what makes Numerical Linear Algebra an
efficient tool in Scientific Computing. If the matrix representing a problem is simple
enough, any basic generic algorithm can find the solutions optimally (that is, fast,
with minimal storage of data, and without a significant roundoff error). But, in real
life, this situation seldom occurs. What we do in the general case is finding a suitable
matrix factorization and tailoring an algorithm that is optimal on each factor, thus
gaining on each step an obvious advantage. In this section, we explore the different
factorizations included in the modules scipy.linalg and scipy.sparse.linalg
that help us achieve a robust solution to matrix equations.

Relevant factorizations
We have the following factorizations in this category:

Pivoted LU decomposition
It is always possible to perform a factorization of a square matrix A as a product
A = P � L � U of a permutation matrix P (which performs a permutation of the rows
of A), a lower triangular matrix L, and an upper triangular matrix U:

Chapter 1

[39]

Constructor Description
scipy.linalg.lu(A) Pivoted LU decomposition
scipy.linalg.lu_factor(A) Pivoted LU decomposition
scipy.sparse.linalg.splu(A) Pivoted LU decomposition
scipy.sparse.linalg.spilu(A) Incomplete pivoted LU decomposition

Cholesky decomposition
For a square, symmetric, and positive definite matrix A, we can realize the matrix as
the product A = UT � U of an upper triangular matrix U with its transpose, or as the
product A = LT � L of a lower triangular matrix L with its transpose. All the diagonal
entries of U or L are strictly positive numbers:

Constructor Description
scipy.linalg.cholesky(A) Cholesky decomposition
scipy.linalg.cholesky_
banded(AB)

Cholesky decomposition for Hermitian
positive-definite banded matrices

QR decomposition
We can realize any matrix of size m × n as the product A=Q � R of a square orthogonal
matrix Q of size m × m, with an upper triangular matrix R of the same size as A.

Constructor Description
scipy.linalg.qr(A) QR decomposition of a matrix

Singular value decomposition
We can realize any matrix A as the product A = U � D � VH of a unitary matrix U with
a diagonal matrix D (where all entries in the diagonal are positive numbers), and the
Hermitian transpose of another unitary matrix V. The values on the diagonal of D are
called the singular values of A.

Constructor Description
scipy.linalg.svd(A) Singular value decomposition
scipy.linalg.svdvals(A) Singular values
scipy.linalg.diagsvd(s, m, n) Diagonal matrix of an SVD, from singular

values `s` and prescribed size
scipy.sparse.linalg.svds(A) Largest k singular values/vectors of a

sparse matrix

Numerical Linear Algebra

[40]

Matrix equations
In SciPy, we have robust algorithms to solve any matrix equation based on the
following cases:

• Given a square matrix A, and a right-hand side b (which can be a one-
dimensional vector or another matrix with the same number of rows as A),
the basic systems are as follows:

 ° A � x = b
 ° AT � x = b
 ° AH � x = b

• Given any matrix A (not necessarily square) and a right-hand side vector/
matrix b of an appropriate size, the least squares solution to the equation
A � x = b. This is, finding a vector x that minimizes the Frobenius norm
of the expression A � x - b.

• For the same case as before, and an extra damping coefficient d, the
regularized least squares solution to the equation A � x = b that minimizes
the functional norm(A * x - b, 'f')**2 + d**2 * norm(x, 'f')**2.

• Given square matrices A and B, and a right-hand side matrix Q with
appropriate sizes, the Sylvester system is A � X + X � B = Q.

• For a square matrix A and matrix Q of an appropriate size, the continuous
Lyapunov equation is A � X + X � AH = Q.

• For matrices A and Q, as in the previous case, the discrete Lyapunov equation
is X - A � X � AH = Q.

• Given square matrices A, Q, and R, and another matrix B with an appropriate
size, the continuous algebraic Riccati equation is
AT � X + X � A - X � B � R-1 � BT � X + Q = 0.

• For matrices as in the previous case, the Discrete Algebraic Riccati equation is
X = AT � X � A - (AT � X � B) � (R+BT � X � B)-1 � (BT � X � A) + Q.

In any case, mastering matrix equations with SciPy basically means identifying
the matrices involved and choosing the most adequate algorithm in the libraries to
perform the requested operations. Besides being able to compute a solution with the
least possible amount of roundoff error, we need to do so in the fastest possible way,
and by using as few memory resources as possible.

Chapter 1

[41]

Back and forward substitution
Let us start with the easiest possible case: The basic system of linear equations
A � x = b (or the other two variants), where A is a generic lower or upper triangular
square matrix. In theory, these systems are easily solved by forward substitution
(for lower triangular matrices) or back substitution (for upper triangular matrices).
In SciPy, we accomplish this task with the function solve_triangular in the
module scipy.linalg.

For this initial example, we will construct A as a lower triangular Pascal matrix of
size 1024 × 1024, where the non-zero values have been filtered: odd values are turned
into ones, while even values are turned into zeros. The right-hand side b is a vector
with 1024 ones.

In [1]: import numpy as np, \

 ...: scipy.linalg as spla, scipy.sparse as spsp, \

 ...: scipy.sparse.linalg as spspla

In [2]: A = (spla.pascal(1024, kind='lower')%2 != 0)

In [3]: %timeit spla.solve_triangular(A, np.ones(1024))

10 loops, best of 3: 6.64 ms per loop

To solve the other related systems that involve the matrix A, we employ the optional
parameter trans (by default set to 0 or N, giving the basic system A � x = b). If trans
is set to T or 1, we solve the system AT � x = b instead. If trans is set to C or 2, we
solve AH � x = b instead.

The function solve_triangular is a wrapper for the LAPACK
function trtrs.

Basic systems: banded matrices
The next cases in terms of algorithm simplicity are those of basic systems
A � x = b, where A is a square banded matrix. We use the routines solve_banded
(for a generic banded matrix) or solveh_banded (for a generic real symmetric
of complex Hermitian banded matrix). Both of them belong to the module
scipy.linalg.

The functions solve_banded and solveh_banded are wrappers
for the LAPACK functions GBSV, and PBSV, respectively.

Numerical Linear Algebra

[42]

Neither function accepts a matrix in the usual format. For example, since solveh_
banded expects a symmetric banded matrix, the function requires as input only the
elements of the diagonals on and under/over the main diagonal, stored sequentially
from the top to the bottom.

This input method is best explained through a concrete example. Take the following
symmetric banded matrix:

 2 -1 0 0 0 0

-1 2 -1 0 0 0

 0 -1 2 -1 0 0

 0 0 -1 2 -1 0

 0 0 0 -1 2 -1

 0 0 0 0 -1 2

The size of the matrix is 6 × 6, and there are only three non-zero diagonals, two of
which are identical due to symmetry. We collect the two relevant non-zero diagonals
in ndarray of size 2 × 6 in one of two ways, as follows:

• If we decide to input the entries from the upper triangular matrix, we collect
first the diagonals from the top to the bottom (ending in the main diagonal),
right justified:
* -1 -1 -1 -1 -1
2 2 2 2 2 2

• If we decide to input the entries from the lower triangular matrix, we collect
the diagonals from the top to the bottom (starting from the main diagonal),
left justified:
 2 2 2 2 2 2
-1 -1 -1 -1 -1 *

In [4]: B_banded = np.zeros((2,6)); \

 ...: B_banded[0,1:] = -1; \

 ...: B_banded[1,:] = 2

In [5]: spla.solveh_banded(B_banded, np.ones(6))

Out[5]: array([3., 5., 6., 6., 5., 3.])

Chapter 1

[43]

For a non-symmetric banded square matrix, we use solve_banded instead, and the
input matrix also needs to be stored in this special way:

• Count the number of non-zero diagonals under the main diagonal (set that to
l). Count the number of non-zero diagonals over the main diagonal (set that
to u). Set r = l + u + 1.

• If the matrix has size n × n, create ndarray with n columns and r rows. We
refer to this storage as a matrix in the AB form, or an AB matrix, for short.

• Store in the AB matrix only the relevant non-zero diagonals, from the top to
the bottom, in order. Diagonals over the main diagonal are right justified;
diagonals under the main diagonal are left justified.

Let us illustrate this process with another example. We input the following matrix:

 2 -1 0 0 0 0

-1 2 -1 0 0 0

 3 -1 2 -1 0 0

 0 3 -1 2 -1 0

 0 0 3 -1 2 -1

 0 0 0 3 -1 2

In [6]: C_banded = np.zeros((4,6)); \

 ...: C_banded[0,1:] = -1; \

 ...: C_banded[1,:] = 2; \

 ...: C_banded[2,:-1] = -1; \

 ...: C_banded[3,:-2] = 3; \

 ...: print C_banded

[[0. -1. -1. -1. -1. -1.]

 [2. 2. 2. 2. 2. 2.]

 [-1. -1. -1. -1. -1. 0.]

 [3. 3. 3. 3. 0. 0.]]

To call the solver, we need to input manually the number of diagonals over and under
the diagonal, together with the AB matrix and the right-hand side of the system:

In [7]: spla.solve_banded((2,1), C_banded, np.ones(6))

Out[7]:

array([0.86842105, 0.73684211, -0.39473684, 0.07894737,

 1.76315789, 1.26315789])

Numerical Linear Algebra

[44]

Let us examine the optional parameters that we can include in the call of these
two functions:

Parameter Default values Description
l_and_u (int, int) Number of non-zero lower/upper diagonals
ab Matrix in AB format A banded square matrix
b ndarray Right-hand side
overwrite_ab Boolean Discard data in ab
overwrite_b Boolean Discard data in b
check_finite Boolean Whether to check that input matrices contain

finite numbers

All the functions in the scipy.linalg module that require matrices
as input and output either a solution to a system of equations, or a
factorization, have two optional parameters with which we need to
familiarize: overwrite_x (for each matrix/vector in the input) and
check_finite. They are both Boolean.
The overwrite options are set to False by default. If we do not care
about retaining the values of the input matrices, we may use the same
object in the memory to perform operations, rather than creating another
object with the same size in the memory. We gain speed and use fewer
resources in such a case.
The check_finite option is set to True by default. In the algorithms
where it is present, there are optional checks for the integrity of the data.
If at any given moment, any of the values is (+/-)numpy.inf or NaN,
the process is halted, and an exception is raised. We may turn this option
off, thus resulting in much faster solutions, but the code might crash if the
data is corrupted at any point in the computations.

The function solveh_banded has an extra optional Boolean parameter, lower, which
is initially set to False. If set to True, we must input the lower triangular matrix
of the target AB matrix instead of the upper one (with the same input convention
as before).

Basic systems: generic square matrices
For solutions of basic systems where A is a generic square matrix, it is a good idea
to factorize A so that some (or all) of the factors are triangular and then apply back
and forward substitution, where appropriate. This is the idea behind pivoted LU
and Cholesky decompositions.

Chapter 1

[45]

If matrix A is real symmetric (or complex Hermitian) and positive definite, the optimal
strategy goes through applying any of the two possible Cholesky decompositions
A = UH � U or A = L � LH with the U and L upper/lower triangular matrices.

For example, if we use the form with the upper triangular matrices, the solution of
the basic system of equations A � x = b turns into UH � U � x = b. Set y = U � x and solve
the system UH � y = b for y by forward substitution. We have now a new triangular
system U � x = y that we solve for x, by back substitution.

To perform the solution of such a system with this technique, we first compute
the factorization by using either the functions cholesky, cho_factor or
cholesky_banded. The output is then used in the solver cho_solve.

For Cholesky decompositions, the three relevant functions called cholesky,
cho_factor, and cholesky_banded have a set of options similar to those of
solveh_banded. They admit an extra Boolean option lower (set by default to False)
that decides whether to output a lower or an upper triangular factorization. The
function cholesky_banded requires a matrix in the AB format as input.

Let us now test the Cholesky decomposition of matrix B with all three methods:

In [8]: B = spsp.diags([[-1]*5, [2]*6, [-1]*5], [-1,0,1]).todense()

 ...: print B

[[2. -1. 0. 0. 0. 0.]

 [-1. 2. -1. 0. 0. 0.]

 [0. -1. 2. -1. 0. 0.]

 [0. 0. -1. 2. -1. 0.]

 [0. 0. 0. -1. 2. -1.]

 [0. 0. 0. 0. -1. 2.]]

In [9]: np.set_printoptions(suppress=True, precision=3)

In [10]: print spla.cholesky(B)

[[1.414 -0.707 0. 0. 0. 0.]

 [0. 1.225 -0.816 0. 0. 0.]

 [0. 0. 1.155 -0.866 0. 0.]

 [0. 0. 0. 1.118 -0.894 0.]

 [0. 0. 0. 0. 1.095 -0.913]

 [0. 0. 0. 0. 0. 1.08]]

In [11]: print spla.cho_factor(B)[0]

[[1.414 -0.707 0. 0. 0. 0.]

 [-1. 1.225 -0.816 0. 0. 0.]

Numerical Linear Algebra

[46]

 [0. -1. 1.155 -0.866 0. 0.]

 [0. 0. -1. 1.118 -0.894 0.]

 [0. 0. 0. -1. 1.095 -0.913]

 [0. 0. 0. 0. -1. 1.08]]

In [12]: print spla.cholesky_banded(B_banded)

[[0. -0.707 -0.816 -0.866 -0.894 -0.913]

 [1.414 1.225 1.155 1.118 1.095 1.08]]

The output of cho_factor is a tuple: the second element is the Boolean lower. The
first element is ndarray representing a square matrix. If lower is set to True, the
lower triangular sub-matrix of this ndarray is L in the Cholesky factorization of A. If
lower is set to False, the upper triangular sub-matrix is U in the factorization of A.
The remaining elements in the matrix are random, instead of zeros, since they are not
used by cho_solve. In a similar way, we can call cho_solve_banded with the output
of cho_banded to solve the appropriate system.

Both cholesky and cho_factor are wrappers to the same LAPACK
function called potrf, with different output options. cholesky_banded
calls pbtrf. The cho_solve function is a wrapper for potrs, and
cho_solve_banded calls pbtrs.

We are then ready to solve the system, with either of the two options:

In [13]: spla.cho_solve((spla.cholesky(B), False), np.ones(6))

Out[13]: array([3., 5., 6., 6., 5., 3.])

In [13]: spla.cho_solve(spla.cho_factor(B), np.ones(6))

Out[13]: array([3., 5., 6., 6., 5., 3.])

For any other kind of generic square matrix A, the next best method to solve the
basic system A � x = b is pivoted LU factorization. This is equivalent to finding a
permutation matrix P, and triangular matrices U (upper) and L (lower) so that
P � A = L � U. In such a case, a permutation of the rows in the system according to
P gives the equivalent equation (P � A) � x = P � b. Set c = P � b and y = U � x, and
solve for y in the system L � y = c using forward substitution. Then, solve for x in
the system U � x = y with back substitution.

The relevant functions to perform this operation are lu, lu_factor
(for factorization), and lu_solve (for solution) in the module scipy.linalg. For
sparse matrices we have splu, and spilu, in the module scipy.sparse.linalg.

Chapter 1

[47]

Let us start experimenting with factorizations first. We use a large circulant matrix
(non-symmetric) for this example:

In [14]: D = spla.circulant(np.arange(4096))

In [15]: %timeit spla.lu(D)

1 loops, best of 3: 7.04 s per loop

In [16]: %timeit spla.lu_factor(D)

1 loops, best of 3: 5.48 s per loop

The lu_factor function is a wrapper to all *getrf routines from
LAPACK. The lu_solve function is a wrapper for getrs.

The function lu has an extra Boolean option: permute_l (set to False by default).
If set to True, the function outputs only two matrices PL = P � L (the properly
permuted lower triangular matrix), and U. Otherwise, the output is the triple
P, L, U, in that order.

In [17]: P, L, U = spla.lu(D)

In [17]: PL, U = spla.lu(D, permute_l=True)

The outputs of the function lu_factor are resource-efficient. We obtain a matrix
LU, with upper triangle U and lower triangle L. We also obtain a one-dimensional
ndarray class of integer dtype, piv, indicating the pivot indices representing the
permutation matrix P.

In [18]: LU, piv = spla.lu_factor(D)

The solver lu_solve takes the two outputs from lu_factor, a right-hand side
matrix b, and the optional indicator trans to the kind of basic system to solve:

In [19]: spla.lu_solve(spla.lu_factor(D), np.ones(4096))

Out[19]: array([0., 0., 0., ..., 0., 0., 0.])

At this point, we must comment on the general function solve in the
module scipy.linalg. It is a wrapper to both LAPACK functions
POSV and GESV. It allows us to input matrix A and right-hand side
matrix b, and indicate whether A is symmetric and positive definite. In
any case, the routine internally decides which of the two factorizations
to use (Cholesky or pivoted LU), and computes a solution accordingly.

Numerical Linear Algebra

[48]

For large sparse matrices, provided they are stored in the CSC format, the pivoted
LU decomposition is more efficiently performed with either functions splu or spilu
from the module scipy.sparse.linalg. Both functions use the SuperLU library
directly. Their output is not a set of matrices, but a Python object called scipy.
sparse.linalg.dsolve._superlu.SciPyLUType. This object has four attributes
and one instance method:

• shape: 2-tuple containing the shape of matrix A
• nnz: The number of non-zero entries in matrix A
• perm_c, perm_r: The permutations applied to the columns and rows

(respectively) to the matrix A to obtain the computed LU decomposition
• solve: instance method that converts the object into a function object.

solve(b,trans) accepting ndarray b, and the optional description
string trans.

The big idea is that, dealing with large amounts of data, the actual matrices in the LU
decomposition are not as important as the main application behind the factorization:
the solution of the system. All the relevant information to perform this operation is
optimally stored in the object's method solve.

The main difference between splu and spilu is that the latter computes an
incomplete decomposition. With it, we can obtain really good approximations to the
inverse of matrix A, and use matrix multiplication to compute the solution of large
systems in a fraction of the time that it would take to calculate the actual solution.

The usage of these two functions is rather complex. The purpose is to
compute a factorization of the form Pr*Dr*A*Dc*Pc = L*U with diagonal
matrices Dr and Dc and permutation matrices Pr and Pc. The idea is to
equilibrate matrix A manually so that the product B = Dr*A*Dc is better
conditioned than A. In case of the possibility of solving this problem in
a parallel architecture, we are allowed to help by rearranging the rows
and columns optimally. The permutation matrices Pr and Pc are then
manually input to pre-order the rows and columns of B. All of these
options can be fed to either splu or spilu.
The algorithm exploits the idea of relaxing supernodes to reduce
inefficient indirect addressing and symbolic time (besides permitting
the use of higher-level BLAS operations). We are given the option to
determine the degree of these objects, to tailor the algorithm to the
matrix at hand.
For a complete explanation of the algorithms and all the different options,
the best reference is SuperLU User Guide, which can be found online at
crd-legacy.lbl.gov/~xiaoye/SuperLU/superlu_ug.pdf.

crd-legacy.lbl.gov/~xiaoye/SuperLU/superlu_ug.pdf

Chapter 1

[49]

Let us illustrate this with a simple example, where the permutation of rows or
columns is not needed. In a large lower triangular Pascal matrix, turn into zero all
the even-valued entries and into ones all the odd-valued entries. Use this as matrix A.
For the right-hand side, use a vector of ones:

In [20]: A_csc = spsp.csc_matrix(A, dtype=np.float64)

In [21]: invA = spspla.splu(A_csc)

In [22]: %time invA.solve(np.ones(1024))

CPU times: user: 4.32 ms, sys: 105 µs, total: 4.42 ms

Wall time: 4.44 ms

Out[22]: array([1., -0., 0., ..., -0., 0., 0.])

In [23]: invA = spspla.spilu(A_csc)

In [24]: %time invA.solve(np.ones(1024))

CPU times: user 656 µs, sys: 22 µs, total: 678 µs

Wall time: 678 µs

Out[24]: array([1., 0., 0., ..., 0., 0., 0.])

Compare the time of execution of the procedures on sparse matrices, with
the initial solve_triangular procedure on the corresponding matrix A
at the beginning of the section. Which process is faster?

However, in general, if a basic system must be solved and matrix A is large and
sparse, we prefer to use iterative methods with fast convergence to the actual
solutions. When they converge, they are consistently less sensitive to rounding-off
errors and thus more suitable when the number of computations is extremely high.

In the module scipy.sparse.linalg, we have eight different iterative methods,
all of which accept the following as parameters:

• Matrix A in any format (matrix, ndarray, sparse matrix, or even a linear
operator!), and right-hand side vector/matrix b as ndarray.

• Initial guess x0, as ndarray.
• Tolerance to l, a floating point number. If the difference of successive

iterations is less than this value, the code stops and the last computed
values are output as the solution.

• Maximum number of iterations allowed, maxiter, an integer.

Numerical Linear Algebra

[50]

• A Preconditioner sparse matrix M that should approximate the inverse of A.
• A callback function of the current solution vector xk, called after

each iteration.

Constructor Description
bicg Biconjugate Gradient Iteration
bicgstab Biconjugate Gradient Stabilized Iteration
cg Conjugate Gradient Iteration
cgs Conjugate Gradient Squared Iteration
gmres Generalized Minimal Residual Iteration
lgmres LGMRES Iteration
minres Minimum Residual Iteration
qmr Quasi-minimal Residual Iteration

Choosing the right iterative method, a good initial guess, and especially a successful
Preconditioner is an art in itself. It involves learning about topics such as operators in
Functional Analysis, or Krylov subspace methods, which are far beyond the scope of
this book. At this point, we are content with showing a few simple examples for the
sake of comparison:

In [25]: spspla.cg(A_csc, np.ones(1024), x0=np.zeros(1024))

Out[25]: (array([nan, nan, nan, ..., nan, nan, nan]), 1)

In [26]: %time spspla.gmres(A_csc, np.ones(1024), x0=np.zeros(1024))

CPU times: user 4.26 ms, sys: 712 µs, total: 4.97 ms

Wall time: 4.45 ms

Out[26]: (array([1., 0., 0., ..., -0., -0., 0.]), 0)

In [27]: Nsteps = 1

 : def callbackF(xk):

 : global Nsteps

 : print'{0:4d} {1:3.6f} {2:3.6f}'.format(Nsteps, \

 : xk[0],xk[1])

 : Nsteps += 1

 :

In [28]: print '{0:4s} {1:9s} {1:9s}'.format('Iter', \

 : 'X[0]','X[1]'); \

 : spspla.bicg(A_csc, np.ones(1024), x0=np.zeros(1024),

 : callback=callbackF)

 :

Chapter 1

[51]

Iter X[0] X[1]

 1 0.017342 0.017342

 2 0.094680 0.090065

 3 0.258063 0.217858

 4 0.482973 0.328061

 5 0.705223 0.337023

 6 0.867614 0.242590

 7 0.955244 0.121250

 8 0.989338 0.040278

 9 0.998409 0.008022

 10 0.999888 0.000727

 11 1.000000 -0.000000

 12 1.000000 -0.000000

 13 1.000000 -0.000000

 14 1.000000 -0.000000

 15 1.000000 -0.000000

 16 1.000000 0.000000

 17 1.000000 0.000000

Out[28]: (array([1., 0., 0., ..., 0., 0., -0.]), 0)

Least squares
Given a generic matrix A (not necessarily square) and a right-hand side
vector/matrix b, we look for a vector/matrix x such that the Frobenius
norm of the expression A � x - b is minimized.

The main three methods to solve this problem numerically are contemplated
in scipy:

• Normal equations
• QR factorization
• Singular value decomposition

Normal equations
Normal equations reduce the least square problem to solving a basic system of
linear equations, with a symmetric (not-necessarily positive-definite) matrix.
It is very fast but can be inaccurate due to presence of roundoff errors. Basically,
it amounts to solving the system (AH � A) � x = AH � b. This is equivalent to solving
x = (AH � A)-1 � AH � b = pinv(A) � b.

Numerical Linear Algebra

[52]

Let us show by example:

In [29]: E = D[:512,:256]; b = np.ones(512)

In [30]: sol1 = np.dot(spla.pinv2(E), b)

In [31]: sol2 = spla.solve(np.dot(F.T, F), np.dot(F.T, b))

QR factorization
The QR factorization turns any matrix into the product A = Q � R of an orthogonal/
unitary matrix Q with a square upper triangular matrix R. This allows us to solve the
system without the need to invert any matrix (since QH = Q-1), and thus,
A � x = b turns into R � x = QH � b, which is easily solvable by back substitution. Note
that the two methods below are equivalent, since the mode economic reports the
sub-matrices of maximum rank:

In [32]: Q, R = spla.qr(E); \

 : RR = R[:256, :256]; BB = np.dot(Q.T, b)[:256]; \

 : sol3 = spla.solve_triangular(RR, BB)

In [32]: Q, R = spla.qr(E, mode='economic'); \

 : sol3 = spla.solve_triangular(R, np.dot(Q.T, b))

Singular value decomposition
Both methods of normal equations and QR factorization work fast and are reliable
only when the rank of A is full. If this is not the case, we must use singular value
decomposition A = U � D � VH with unitary matrices U and V and a diagonal matrix
D, where all the entries in the diagonal are positive values. This allows for a fast
solution x = V � D-1 � UH � b.

Note that the two methods discussed below are equivalent, since the option
full_matrices set to False reports the sub-matrices of the minimum possible size:

In [33]: U, s, Vh = spla.svd(E); \

 : Uh = U.T; \

 : Si = spla.diagsvd(1./s, 256, 256); \

 : V = Vh.T; \

 : sol4 = np.dot(V, Si).dot(np.dot(Uh, b)[:256])

In [33]: U, s, Vh = spla.svd(E, full_matrices=False); \

 : Uh = U.T; \

 : Si = spla.diagsvd(1./s, 256, 256); \

 : V = Vh.T; \

 : sol4 = np.dot(V, Si).dot(np.dot(Uh, b))

Chapter 1

[53]

The module scipy.linalg has one function that actually performs least squares
with the SVD method: lstsq. There is no need to manually transpose, invert, and
multiply all the required matrices. It is a wrapper to the LAPACK function GELSS. It
outputs the desired solution, together with the residues of computation, the effective
rank, and the singular values of the input matrix A.

In [34]: sol5, residue, rank, s = spla.lstsq(E, b)

Note how all the computations that we have carried out offer solutions that are very
close to each other (if not equal!):

In [35]: map(lambda x: np.allclose(sol5,x), [sol1, sol2, sol3, sol4])

Out[35]: [True, True, True, True]

Regularized least squares
The module scipy.sparse.linalg has two iterative methods for least squares
in the context of large sparse matrices, lsqr and lsmr, which allow for a more
generalized version with a damping factor d for regularization. We seek to minimize
the functional norm(A * x - b, 'f')**2 + d**2 * norm(x, 'f')**2. The usage
and parameters are very similar to the iterative functions we studied before.

Other matrix equation solvers
The rest of the matrix equation solvers are summarized in the following table. None
of these routines enjoy any parameters to play around with performance or memory
management, or check for the integrity of data:

Constructor Description
solve_sylvester(A, B, Q) Sylvester equation
solve_continuous_are(A, B, Q, R) continuous algebraic Riccati equation
solve_discrete_are(A, B, Q, R) discrete algebraic Riccati equation
solve_lyapunov(A, Q) continuous Lyapunov equation
solve_discrete_lyapunov(A, Q) discrete Lyapunov equation

Numerical Linear Algebra

[54]

Matrix factorizations based on
eigenvalues
In this category, we have two kinds of factorizations on square matrices: Spectral
and Schur decompositions (although, technically, a spectral decomposition is a
special case of Schur decomposition). The objective of both is initially to present the
eigenvalues of one or several matrices simultaneously, although they have quite
different applications.

Spectral decomposition
We consider the following four cases:

• Given a square matrix A, we seek all vectors v (right eigenvectors) that
satisfy A � v = m � v for some real or complex value m (the corresponding
eigenvalues). If all eigenvectors are different, we collect them as the columns
of matrix V (that happens to be invertible). Their corresponding eigenvalues
are stored in the same order as the diagonal entries of a diagonal matrix
D. We can then realize A as the product A = V � D � V-1. We refer to this
decomposition as an ordinary eigenvalue problem.

• Given a square matrix A, we seek all vectors v (left eigenvectors) that satisfy
v � A = m � v for the eigenvalues m. As before, if all eigenvectors are different,
they are collected in matrix V; their corresponding eigenvalues are collected
in the diagonal matrix D. The matrix A can then be decomposed as the
product A = V � D � V-1. We also refer to this factorization as an ordinary
eigenvalue problem. The eigenvalues are the same as in the previous case.

• Given square matrices A and B with the same size, we seek all vectors v
(generalized right eigenvectors) that satisfy m � A � v = n � B � v for some real
or complex values m and n. The ratios r = n/m, when they are computable, are
called generalized eigenvalues. The eigenvectors are collected as columns
of matrix V, and their corresponding generalized eigenvalues r collected
in a diagonal matrix D. We can then realize the relation between A and B by
the identity A = B � V � D � V-1. We refer to this identity as a generalized
eigenvalue problem.

• For the same case as before, if we seek vectors v (generalized left
eigenvectors) and values m and n that satisfy m � v � A = n � v � B, we have
another similar decomposition. We again refer to this factorization as a
generalized eigenvalue problem.

Chapter 1

[55]

The following functions in the modules scipy.linalg and scipy.sparse.linalg
help us to compute eigenvalues and eigenvectors:

Constructor Description
scipy.linear.eig(A[, B]) Ordinary/generalized eigenvalue problem
scipy.linalg.eigvals(A[, B]) Eigenvalues for ordinary/generalized

eigenvalue problem
scipy.linalg.eigh(A[, B]) Ordinary/generalized eigenvalue problem.

Hermitian/symmetric matrix
scipy.linalg.eigvalsh(A[, B]) Eigenvalues for ordinary/generalized

eigenvalue problem; Hermitian/symmetric
matrix

scipy.linalg.eig_banded(AB) Ordinary eigenvalue problem; Hermitian/
symmetric band matrix

scipy.linalg.eigvals_banded(AB) Eigenvalues for ordinary eigenvalue
problem; Hermitian/symmetric band matrix

scipy.sparse.linalg.eigs(A, k) Find k eigenvalues and eigenvectors
scipy.sparse.linalg.eigsh(A, k) Find k eigenvalues and eigenvectors; Real

symmetric matrix
scipy.sparse.linalg.lobpcg(A, X) Ordinary/generalized eigenvalue problem

with optional preconditioning A symmetric

For any kind of eigenvalue problem where the matrices are not symmetric or
banded, we use the function eig, which is a wrapper for the LAPACK routines GEEV
and GGEV (the latter for generalized eigenvalue problems). The function eigvals
is syntactic sugar for a case of eig that only outputs the eigenvalues, but not the
eigenvectors. To report whether we require left of right eigenvectors, we use the
optional Boolean parameters left and right. By default, left is set to False and
right to True, hence offering right eigenvectors.

For eigenvalue problems with non-banded real symmetric or Hermitian matrices, we
use the function eigh, which is a wrapper for the LAPACK routines of the form *EVR,
*GVD, and *GV. We are given the choice to output as many eigenvalues as we want,
with the optional parameter eigvals. This is a tuple of integers that indicate the
indices of the lowest and the highest eigenvalues required. If omitted, all eigenvalues
are returned. In such a case, it is possible to perform the computation with a much
faster algorithm based on divide and conquer techniques. We may indicate this choice
with the optional Boolean parameter turbo (by default set to False).

Numerical Linear Algebra

[56]

If we wish to report only eigenvalues, we can set the optional parameter
eigvals_only to True, or use the corresponding syntactic sugar eighvals.

The last case that we contemplate in the scipy.linalg module is that of the
eigenvalue problem of a banded real symmetric or Hermitian matrix. We use the
function eig_banded, making sure that the input matrices are in the AB format.
This function is a wrapper for the LAPACK routines *EVX.

For extremely large matrices, the computation of eigenvalues is often computationally
impossible. If these large matrices are sparse, it is possible to calculate a few
eigenvalues with two iterative algorithms, namely the Implicitly Restarted Arnoldi
and the Implicitly Restarted Lanczos methods (the latter for symmetric or Hermitian
matrices). The module scipy.sparse.linalg has two functions, eigs and eigsh,
which are wrappers to the ARPACK routines *EUPD that perform them. We also have the
function lobpcg that performs another iterative algorithm, the Locally Optimal Block
Preconditioned Conjugate Gradient method. This function accepts a Preconditioner,
and thus has the potential to converge more rapidly to the desired eigenvalues.

We will illustrate the usage of all these functions with an interesting matrix: Andrews.
It was created in 2003 precisely to benchmark memory-efficient algorithms for
eigenvalue problems. It is a real symmetric sparse matrix with size 60,000 × 60,000 and
760,154 non-zero entries. It can be downloaded from the Sparse Matrix Collection at
www.cise.ufl.edu/research/sparse/matrices/Andrews/Andrews.html.

For this example, we downloaded the matrix in the Matrix Market format Andrews.
mtx. Note that the matrix is symmetric, and the file only provides data on or below
the main diagonal. After collecting all this information, we ensure that we populate
the upper triangle too:

In [1]: import numpy as np, scipy.sparse as spsp, \

 ...: scipy.sparse.linalg as spspla

In [2]: np.set_printoptions(suppress=True, precision=6)

In [3]: rows, cols, data = np.loadtxt("Andrews.mtx", skiprows=14,

 ...: unpack=True); \

 ...: rows-=1; \

 ...: cols-=1

In [4]: A = spsp.csc_matrix((data, (rows, cols)), \

 ...: shape=(60000,60000)); \

 ...: A = A + spsp.tril(A, k=1).transpose()

www.cise.ufl.edu/research/sparse/matrices/Andrews/Andrews.html

Chapter 1

[57]

We compute first the top largest five eigenvalues in absolute value. We call the
function eigsh, with the option which='LM'.

In [5]: %time eigvals, v = spspla.eigsh(A, 5, which='LM')

CPU times: user 3.59 s, sys: 104 ms, total: 3.69 s

Wall time: 3.13 s

In [6]: print eigvals

[69.202683 69.645958 70.801108 70.815224 70.830983]

We may compute the smallest eigenvalues in terms of the absolute value too,
by switching to the option which='SM':

In [7]: %time eigvals, v = spspla.eigsh(A, 5, which='SM')

CPU times: user 19.3 s, sys: 532 ms, total: 19.8 s

Wall time: 16.7 s

In [8]: print eigvals

[10.565523 10.663114 10.725135 10.752737 10.774503]

The routines in ARPACK are not very efficient at finding small eigenvalues.
It is usually preferred to apply the shift-invert mode in this case for better
performance. For information about this procedure, read the description
in www.caam.rice.edu/software/ARPACK/UG/node33.html, or
the article by R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USER
GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted
Arnoldi Methods. SIAM, Philadelphia, PA, 1998.

The function eigsh allows us to perform shift-invert mode by indicating
a value close to the required eigenvalues. If we have a good guess, as
offered by the previous step, we may apply this procedure with the
option sigma, and a strategy with the option mode. In this case, we
also need to provide a linear operator instead of a matrix. The time
of execution is much slower, but the results are much more precise in
general (although the given example would not suggest so!).

In [9]: A = spspla.aslinearoperator(A)

In [10]: %time spspla.eigsh(A, 5, sigma=10.0, mode='cayley')

CPU times: user 2min 5s, sys: 916 ms, total: 2min 6s

Wall time: 2min 6s

In [11]: print eigvals

[10.565523 10.663114 10.725135 10.752737 10.774503]

www.caam.rice.edu/software/ARPACK/UG/node33.html

Numerical Linear Algebra

[58]

Schur decomposition
There are four cases:

• Complex Schur decomposition for a square matrix A with complex
coefficients. We can realize A as the product A = U � T � UH of a unitary matrix
U with an upper triangular matrix T, and the Hermitian transpose of U. We
call T the complex Schur form of A. The entries in the diagonal of T are the
eigenvalues of A.

• Real Schur decomposition for a square matrix A with real coefficients. If all
the eigenvalues of the matrix are real valued, then we may realize the matrix
as the product A = V � S � VT of an orthonormal matrix V with a block-upper
triangular matrix S, and the transpose of V. The blocks in S are either of size
1 × 1 or 2 × 2. If the block is 1 × 1, the value is one of the real eigenvalues of A.
Any 2 × 2 blocks represents a pair of complex conjugate eigenvalues of A. We
call S the real Schur form of A.

• Complex generalized Schur decomposition of two square matrices A and B.
We can simultaneously factorize them to the form A = Q � S � ZH and
B = Q � T � ZH with the same unitary matrices Q and Z. The matrices S and
T are both upper triangular, and the ratios of their diagonal elements are
precisely the generalized eigenvalues of A and B.

• Real generalized Schur decomposition of two real-valued square matrices
A and B. Simultaneous factorization of both can be achieved in the form
A = Q � S � ZT and B = Q � T � ZT for the same orthogonal matrices Q and Z.
The matrices S and T are block-upper triangular, with blocks of size 1 × 1 and
2 × 2. With the aid of these blocks, we can find the generalized eigenvalues
of A and B.

There are four functions in the module scipy.linalg that provide us with tools
to compute any of these decompositions:

Constructor Description
scipy.linalg.schur(A) Schur decomposition of a matrix
scipy.linalg.rsf2csf(T, Z) Convert from real Schur form to complex Schur

form
scipy.linalg.qz(A, B) Generalized Schur decomposition of two matrices
scipy.linalg.hessenberg(A) Hessenberg form of a matrix

Chapter 1

[59]

The function hessenberg gives us the first step in the computation of any
Schur decomposition. This is a factorization of any square matrix A in the form
A = Q � U � QH, where Q is unitary and U is an upper Hessenberg matrix (all entries
are zero below the sub-diagonal). The algorithm is based on the combination of the
LAPACK routines GEHRD, GEBAL (to compute U), and the BLAS routines GER, GEMM (to
compute Q).

The functions schur and qz are wrappers to the LAPACK routines GEES and GGES, to
compute the normal and generalized Schur decompositions (respectively) of square
matrices. We choose whether to report complex or real decompositions on the basis
of the optional parameter output (which we set to 'real' or 'complex'). We also
have the possibility of sorting the eigenvalues in the matrix representation. We do
so with the optional parameter sort, with the following possibilities:

• None: If we do not require any sorting. This is the default.
• 'lhp': In the left-hand plane.
• 'rhp': In the right-hand plane
• 'iuc': Inside the unit circle
• 'ouc': Outside the unit circle
• func: Any callable function called func can be used to provide the users with

their own sorting

Summary
In this chapter, we have explored the basic principles of numerical linear algebra—the
core of all procedures in scientific computing. The emphasis was first placed on the
storage and the basic manipulation of matrices and linear operators. We explored in
detail all different factorizations, focusing on their usage to find a solution to matrix
equations or eigenvalue problems. All through the chapter, we made it a point to
link the functions from the modules scipy.linalg and scipy.sparse to their
corresponding routines in the libraries BLAS, LAPACK, ARPACK and SuperLU. For our
experiments, we chose interesting matrices from real-life problems that we gathered
from the extensive Sparse Matrix Collection hosted by the University of Florida.

In the next chapter, we will address the problems of interpolation and least squares
approximation.

[61]

Interpolation and
Approximation

Approximation theory states how to find the best approximation to a given
function by another function from some predetermined class and how good this
approximation is. In this chapter, we are going to explore this field through two
settings: interpolation and least squares approximation.

Motivation
Consider a meteorological experiment that measures the temperature of a set of
buoys located on a rectangular grid at sea. We can emulate such an experiment by
indicating the longitude and latitude of the buoys on a grid of 16 × 16 locations,
and random temperatures on them between say 36ºF and 46ºF:

In [1]: import numpy as np, matplotlib.pyplot as plt, \

 ...: matplotlib.cm as cm; \

 ...: from mpl_toolkits.basemap import Basemap

In [2]: map1 = Basemap(projection='ortho', lat_0=20, lon_0=-60, \

 ...: resolution='l', area_thresh=1000.0); \

 ...: map2 = Basemap(projection='merc', lat_0=20, lon_0=-60, \

 ...: resolution='l', area_thresh=1000.0, \

 ...: llcrnrlat=0, urcrnrlat=45, \

 ...: llcrnrlon=-75, urcrnrlon=-15)

In [3]: longitudes = np.linspace(-60, -30, 16); \

 ...: latitudes = np.linspace(15, 30, 16); \

 ...: lons, lats = np.meshgrid(longitudes, latitudes); \

 ...: temperatures = 10. * np.random.randn(16, 16) + 36.

Interpolation and Approximation

[62]

In [4]: x1, y1 = map1(lons, lats); \

 ...: x2, y2 = map2(lons, lats)

In [5]: plt.rc('text', usetex=True); \

 ...: plt.figure()

In [6]: plt.subplot(121, aspect='equal'); \

 ...: map1.drawmeridians(np.arange(0, 360, 30)); \

 ...: map1.drawparallels(np.arange(-90, 90, 15)); \

 ...: map1.drawcoastlines(); \

 ...: map1.fillcontinents(color='coral'); \

 ...: map1.scatter(x1, y1, 15, temperatures, cmap=cm.gray)

In [7]: plt.subplot(122); \

 ...: map2.drawmeridians(np.arange(0, 360, 30)); \

 ...: map2.drawparallels(np.arange(-90, 90, 15)); \

 ...: map2.drawcoastlines(); \

 ...: map2.fillcontinents(color='coral'); \

 ...: C = map2.scatter(x2, y2, 15, temperatures, cmap=cm.gray); \

 ...: Cb = map2.colorbar(C, "bottom", size="5%", pad="2%"); \

 ...: Cb.set_label(r'$\mbox{}^{\circ} F$'); \

 ...: plt.show()

We obtain the following diagram:

Chapter 2

[63]

It is possible to guess the temperature between these buoys (not exactly, but at least
to some extent), since the temperature is a smooth function on the surface of the
Earth. Let us assume that we require an approximation by means of piecewise 2D
polynomials of degree three, with maximum smoothness where the pieces intersect
each other. One obvious challenge is, of course, that the buoys are not located on a
plane, but on the surface of a really big sphere. This is not an issue for SciPy.

In [8]: from scipy.interpolate import RectSphereBivariateSpline \

 ...: as RSBS

In [9]: soln = RSBS(np.radians(latitudes), \

 ...: np.pi + np.radians(longitudes), \

 ...: temperatures)

In [10]: long_t = np.linspace(-60, -30, 180); \

 : lat_t = np.linspace(15, 30, 180); \

 : temperatures = soln(np.radians(lat_t), \

 : np.pi + np.radians(long_t))

In [11]: long_t, lat_t = np.meshgrid(long_t, lat_t); \

 : lo1, la1 = map1(long_t, lat_t); \

 : lo2, la2 = map2(long_t, lat_t)

In [12]: plt.figure()

Out[12]: <matplotlib.figure.Figure at 0x10ec28250>

In [13]: plt.subplot(121, aspect='equal'); \

 : map1.drawmeridians(np.arange(0, 360, 30)); \

 : map1.drawparallels(np.arange(-90, 90, 15)); \

 : map1.drawcoastlines(); \

 : map1.fillcontinents(color='coral'); \

 : map1.contourf(lo1, la1, temperatures, cmap=cm.gray)

Out[13]: <matplotlib.contour.QuadContourSet instance at 0x10f63d7e8>

In [14]: plt.subplot(122); \

 : map2.drawmeridians(np.arange(0, 360, 30)); \

 : map2.drawparallels(np.arange(-90, 90, 15)); \

 : map2.drawcoastlines(); \

 : map2.fillcontinents(color='coral'); \

 : C = map2.contourf(lo2, la2, temperatures, cmap=cm.gray); \

 : Cb = map2.colorbar(C, "bottom", size="5%", pad="2%"); \

Interpolation and Approximation

[64]

 : Cb.set_label(r'$\mbox{}^{\circ} F$'); \

 : plt.show()

We have solved this problem simply by seeking a representation of the temperature
function as a piecewise polynomial surface that agrees with the temperature values
over the locations of the buoys. This is technically called an interpolation with
bivariate splines over a rectangular grid of nodes on a sphere.

In other situations, the precise value at these locations is not very important, provided
that the resulting function is more closely related to the actual temperature. In such
a case, rather than performing interpolation, we want to compute an approximation
with the elements of the same functional class.

Let us define both the settings precisely:

The interpolation problem requires three ingredients:

• A target function f(x) on a finite domain (which we denote by x
for convenience).

• A finite set of points in the domain: The nodes of interpolation, which
we denote by xi. We will also need the evaluation of the target function
(and possibly some of its derivatives) at these nodes. We denote these by
yi throughout this chapter.

• A family of interpolants: Functions with the same input/output structure
as the target function.

Chapter 2

[65]

The goal of the interpolation problem is the approximation of the target function
by a member of the interpolants by matching the values of the target function
at the nodes.

We explore interpolation in the following settings:

• Nearest-neighbors interpolation (in any dimension)
• Interpolation by piecewise linear functions (in any dimension)
• Univariate interpolation by polynomials (both Lagrange and Hermite

interpolation)
• Univariate interpolation by piecewise polynomials
• Univariate and bivariate interpolation by splines
• Radial basis multivariate interpolation

We assume familiarity with the theory and application of splines. There
are many good sources to get started, but we recommend those with a
more practical flavor:

• Carl de Boor, A Practical Guide to Splines. Springer, 1978.
• Paul Dierckx, Curve and Surface Fitting with Splines. Oxford

University Press, 1993.

All the interpolations are carried out through the module scipy.interpolate. In
particular, those related to splines are a set of wrappers to some routines in Paul
Dierckx's FITPACK libraries.

To define the approximation problem, we need the following four ingredients:

• A target function f(x) on a finite domain x that takes as input a column
vector of dimension n and outputs a column vector of dimension m

• A family of approximants, {g[a](x)}: Functions with the same input/
output structure as f(x), that depend on parameter a coded as a column
vector of dimension r

• A norm is a functional that measures the distance between any two given
functions of x, ||f(x) - g(x)||

The goal of the approximation problem is to find the member of the approximants
that minimizes the expression ||f(x) - g[a](x)|| with respect to parameter a.
This is equivalent to finding a (local or global) minimum for error function F(a) =
||f(x) - g[a](x)|| over a.

Interpolation and Approximation

[66]

We say that the approximation is linear if the family of approximants is a linear
combination of elements of a basis and the parameter a acts as the coefficient;
otherwise, we refer to the approximation as nonlinear.

In this chapter, we will address the approximation of functions in the following
settings:

• Generic linear least squares approximation (by solving systems of
linear equations)

• Least squares approximation/smoothing with univariate and bivariate splines
• Least squares approximation/smoothing with splines over rectangular grids

on spheres
• Generic nonlinear least squares approximation (with the Levenberg-

Marquardt iterative algorithm)

Least squares approximation in the context of functions is performed through
several modules:

• For a generic linear least squares approximation, the problems can always
be reduced to solutions of systems of linear equations. In this case, the
scipy.linalg and scipy.sparse.linalg modules that we studied in
the previous chapter hold all the algorithms that we need. As explained
earlier, the required functions are wrappers of several routines in the
Fortran libraries BLAS and LAPACK, and the C library SuperLU.

• For the special case of linear least squares approximation through splines, the
scipy.interpolate module carries out many functions (for all the different
cases), which are in turn wrappers of routines in Paul Diercks's Fortran
library FITPACK.

• For a nonlinear least squares approximation, we use functions from the
scipy.optimize module. These functions are wrappers to the LMDIF
and LMDER routines in the Fortran library MINPACK.

For more information on these Fortran libraries, a good reference can be
obtained from their pages in the Netlib repository:

• FITPACK: http://netlib.org/dierckx/
• MINPACK: http://netlib.org/minpack/
• FFTPACK: http://netlib.org/fftpack/

One of the best references for SuperLU can be found from its creators at
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/.

http://netlib.org/dierckx/
http://netlib.org/minpack/
http://netlib.org/fftpack/
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

Chapter 2

[67]

Interpolation
We have three different implementation methodologies to deal with interpolation
problems:

• A procedural mode that computes a set of data points (in the form of
ndarray with the required dimension) representing the actual solution.

• In a few special cases, a functional mode that provides us with numpy
functions representing the solutions.

• An object-oriented mode that creates classes for interpolation problems.
Different classes have different methods, depending on the operations that
the particular kinds of interpolants enjoy. The advantage of this mode is
that, through these methods, we can request more information from the
solutions: not only evaluation or representation, but also relevant operations
like searching for roots, computing derivatives and antiderivatives, error
checking, and calculating coefficients and knots.

The choice of mode to represent our interpolants is up to us, depending mostly
on how much accuracy we require, and the information/operations that we
need afterwards.

Implementation details
There is not much more to add to the implementation details on the procedural
mode. For each interpolation problem, we choose a routine to which we feed nodes
xi, the values yi of the target function (and possibly its derivatives) on those nodes,
and the domain x where the interpolant is to be evaluated. In some cases, if the
interpolant requires more structure, we feed extra information.

Functional implementations are even simpler: when they are available, they only
require the values of nodes xi and evaluation at those nodes, yi.

There are several generic object-oriented classes for interpolation. We seldom tamper
with them and resort to using routines that create and manipulate internally more
appropriate subclasses instead. Let us go over these objects in brief:

• For generic univariate interpolation, we have the _Interpolator1D
class. It may be initialized with the set of nodes xi, together with the
value of the target function on those nodes, yi. If necessary, we may
force the data type of yi as well, with the._set_dtype class method. In
case we need to deal with the derivatives of an interpolator, we have the
_Interpolator1DWithDerivatives subclass, with the extra class method
.derivatives to compute the evaluations of the differentiations.

Interpolation and Approximation

[68]

• For univariate interpolation with splines of a degree less than or equal to 5, we
have the InterpolatedUnivariateSpline class, which is in turn a subclass
of the UnivariateSpline class. They are both very rich classes, with plenty
of methods not only to evaluate a spline or any of its derivatives, but also to
compute the spline representations of its derivatives and antiderivatives. We
have methods to compute a definite integral between two points, as well. There
are also methods that return the position of the knots, the spline coefficients,
residuals, or even the roots. We initialize objects in the UnivariateSpline
class at least with the nodes xi and the values to fit on those nodes, yi. We
may optionally initialize the object with the degrees of the spline.

• For bivariate interpolation with unstructured nodes (nodes not necessarily
on a rectangular grid), one option is the interp2d class, which implements
interpolation in two dimensions with bivariate splines of orders 1, 3, or 5.
This class is initialized with the nodes and their evaluation.

• For bivariate spline interpolation with nodes on a rectangular grid, we have
the RectBivariateSpline class (when used with the s = 0 parameter),
which is a subclass of the BivariateSpline class. In turn, BivariateSpline
is a subclass of the base class _BivariateSplineBase. As its univariate
counterpart, this is a very rich class with many methods for evaluation,
extraction of nodes and coefficients, and computation of volume integrals
or residuals.

• For multivariate interpolation, there is the NDInterpolatorBase class,
with three subclasses: NearestNDInterpolator (for nearest-neighbors
interpolation), LinearNDInterpolator (for piecewise linear interpolation),
and CloughTocher2DInterpolator (that implements a piecewise cubic,
C1 smooth, curvature-minimizing interpolant in two dimensions).

• For interpolation on a set of nodes on a rectangular grid over the surface
of a sphere, there is the RectSphereBivariateSpline subclass of the
SphereBivariateSpline class. We initialize it with the angles (theta and
phi) representing the location of the nodes on the sphere, together with the
corresponding evaluations.

• For multivariate interpolation with radial functions, we have the Rbf class. It
is rather dry, since it only allows an evaluation method. It is initialized with
nodes and evaluations.

Chapter 2

[69]

Univariate interpolation
The following table summarizes the different univariate interpolation modes coded
in SciPy, together with the processes that we may use to resolve them:

Interpolation mode Object-oriented implementation Procedural
implementation

Nearest-neighbors interp1d(,kind='nearest')
Lagrange polynom. BarycentricInterpolator barycentric_

interpolate

Hermite polynom. KroghInterpolator krogh_interpolate

Piecewise polynom. PiecewisePolynomial piecewise_
polynomial_
interpolate

Piecewise linear interp1d(,kind='linear')
Generic spline
interpolation

InterpolatedUnivariateSpline splrep

Zero-order spline interp1d(,kind='zero')
Linear spline interp1d(,kind='slinear')
Quadratic spline interp1d(,kind='quadratic')
Cubic spline interp1d(,kind='cubic')
PCHIP PchipInterpolator pchip_interpolate

Nearest-neighbors interpolation
In the context of one-dimensional functions, nearest-neighbors interpolation
provides a solution that is constant around each node, on each subinterval
defined by two consecutive midpoints of the node set. To calculate the required
interpolants, we call the generic scipy.interpolate.interp1d function with the
kind='nearest' option. It produces an instance of the _Interpolator1D class
with only the evaluation method available.

The following example shows its result on a simple trigonometric function f(x) =
sin(3*x) on the interval from 0 to 1:

In [1]: import numpy as np, matplotlib.pyplot as plt; \

 ...: from scipy.interpolate import interp1d

In [2]: nodes = np.linspace(0, 1, 5); \

 ...: print nodes

[0. 0.25 0.5 0.75 1.]

In [3]: def f(t): return np.sin(3 * t)

Interpolation and Approximation

[70]

In [4]: x = np.linspace(0, 1, 100) # the domain

In [5]: interpolant = interp1d(nodes, f(nodes), kind='nearest')

In [6]: plt.rc('text', usetex=True)

 ...: plt.figure(); \

 ...: plt.axes().set_aspect('equal'); \

 ...: plt.plot(nodes, f(nodes), 'ro', label='Nodes'); \

 ...: plt.plot(x, f(x), 'r-', label=r'f(x)=\sin(3x)'); \

 ...: plt.plot(x, interpolant(x), 'b--', label='Interpolation'); \

 ...: plt.title("Nearest-neighbor approximation"); \

 ...: plt.ylim(-0.05, 1.05); \

 ...: plt.xlim(-0.5, 1.05); \

 ...: plt.show()

This produces the following graph:

Lagrange interpolation
In Lagrange interpolation, we seek a polynomial that agrees with a target function
at the set of nodes. In the scipy.interpolate module, we have three ways to solve
this problem:

• The BarycentricInterpolator subclass of _Interpolator1D implements a
very stable algorithm based upon approximation by rational functions. This
class has an evaluation method, plus two methods to add/update nodes of
the fly: .add_xi and .set_yi.

Chapter 2

[71]

• A procedural scheme barycentric_interpolate is syntactic sugar for the
previous class, with the evaluation method applied on a prescribed domain.

• A numerically unstable functional scheme, lagrange, computes a numpy.
poly1d instance of the interpolating polynomial. If the nodes are few and
wisely chosen, this method allows us to deal with derivative, integration, and
root-solving problems associated with the target function, somewhat reliably.

Let us experiment with this interpolation mode on the infamous Runge example:
Find an interpolation polynomial for the function f(x) = 1/(1+x2) in the interval
from -5 to 5, with two sets of equally distributed nodes:

In [7]: from scipy.interpolate import BarycentricInterpolator, \

 ...: barycentric_interpolate, lagrange

In [8]: nodes = np.linspace(-5, 5, 11); \

 ...: x = np.linspace(-5,5,1000); \

 ...: print nodes

[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]

In [9]: def f(t): return 1. / (1. + t**2)

In [10]: interpolant = BarycentricInterpolator(nodes, f(nodes))

In [11]: plt.figure(); \

 : plt.subplot(121, aspect='auto'); \

 : plt.plot(x, interpolant(x), 'b--', \

 : label="Lagrange Interpolation"); \

 : plt.plot(nodes, f(nodes), 'ro', label='nodes'); \

 : plt.plot(x, f(x), 'r-', label="original"); \

 : plt.legend(loc=9); \

 : plt.title("11 equally distributed nodes")

Out[11]: <matplotlib.text.Text at 0x10a5fbe50>

The BarycentricInterpolator class allows adding the extra nodes and updating
interpolant in an optimal way, without the need to recalculate from scratch:

In [12]: newnodes = np.linspace(-4.5, 4.5, 10); \

 : print newnodes

[-4.5 -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5]

In [13]: interpolant.add_xi(newnodes, f(newnodes))

In [14]: plt.subplot(122, aspect='auto'); \

 : plt.plot(x, interpolant(x), 'b--', \

Interpolation and Approximation

[72]

 : label="Lagrange Interpolation"); \

 : plt.plot(nodes, f(nodes), 'ro', label='nodes'); \

 : plt.plot(x, f(x), 'r-', label="original"); \

 : plt.legend(loc=8); \

 : plt.title("21 equally spaced nodes"); \

 : plt.show()

We obtain the following results:

The Runge example shows one of the shortcomings of very simple interpolation.
Although the interpolant accurately approximates the function in the interior of
the interval, it shows a very large deviation at the endpoints.

The same methods to initialize our interpolants can be called to request information
about them. The following short session illustrates this point:

In [15]: print interpolant.xi

[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5. -4.5 -3.5

 –2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5]

In [16]: print interpolant.yi.squeeze()

[0.04 0.06 0.1 0.2 0.5 1. 0.5 0.2 0.1 0.06 0.04

 0.05 0.08 0.14 0.31 0.8 0.8 0.31 0.14 0.08 0.05]

Chapter 2

[73]

The procedural scheme has a simpler syntax, but lacks the flexibility to update nodes
on the fly:

In [17]: y = barycentric_interpolate(nodes, f(nodes), x)

The functional scheme also enjoys a simple syntax:

In [18]: g = lagrange(nodes, f(nodes)); \

 : print g

 10 9 8 7 6

3.858e-05 x + 6.268e-19 x - 0.002149 x + 3.207e-17 x + 0.04109 x

 5 4 3 2

 + 5.117e-17 x - 0.3302 x - 2.88e-16 x + 1.291 x - 1.804e-16 x

Hermite interpolation
The goal of Hermite interpolation is the computation of a polynomial that
agrees with a target function and some of its derivatives in a finite set of nodes.
We accomplish this task numerically with two schemes:

• A subclass of _Interpolator1DWithDerivatives, KroghInterpolator,
which has the .derivative method to compute a representation for any
derivative of the interpolant and the .derivatives method to evaluate it.

• A krogh_interpolate function, which is syntactic sugar for the previous
class with the evaluation method applied on a prescribed domain.

Let us showcase these routines with Bernstein's example: Compute the Hermite
interpolation to the absolute value function in the interval from -1 to 1 with ten
equally distributed nodes, providing one derivative on each node.

The nodes need to be fed in an increasing order. For every node in which
we present derivatives, we repeat the node as many times as necessary.
For each occurrence of a node in xi, we place on yi the evaluation of the
function and its derivatives, at the same entry levels.

In [19]: from scipy.interpolate import KroghInterpolator

In [20]: nodes = np.linspace(-1, 1, 10); \

 : x = np.linspace(-1, 1, 1000)

In [21]: np.set_printoptions(precision=3, suppress=True)

In [22]: xi = np.repeat(nodes, 2); \

 : print xi; \

Interpolation and Approximation

[74]

 : yi = np.ravel(np.dstack((np.abs(nodes), np.sign(nodes)))); \

 : print yi

[-1. -1. -0.778 -0.778 -0.556 -0.556 -0.333 -0.333 -0.111

 -0.111 0.111 0.111 0.333 0.333 0.556 0.556 0.778 0.778

 1. 1.]

[1. -1. 0.778 -1. 0.556 -1. 0.333 -1. 0.111

 -1. 0.111 1. 0.333 1. 0.556 1. 0.778 1.

 1. 1.]

In [23]: interpolant = KroghInterpolator(xi, yi)

In [24]: plt.figure(); \

 : plt.axes().set_aspect('equal'); \

 : plt.plot(x, interpolant(x), 'b--', \

 : label='Hermite Interpolation'); \

 : plt.plot(nodes, np.abs(nodes), 'ro'); \

 : plt.plot(x, np.abs(x), 'r-', label='original'); \

 : plt.legend(loc=9); \

 : plt.title('Bernstein example'); \

 : plt.show()

This gives the following diagram:

Chapter 2

[75]

Piecewise polynomial interpolation
By prescribing the degrees of several polynomials and a finite set of nodes, we can
construct an interpolator that has on each subinterval between two consecutive
nodes, a polynomial arc with the required order. We can construct interpolants
of this characteristic with the following procedures:

• A subclass of _Interpolator1DWithDerivatives, the PiecewisePolynomial
class, with methods for evaluating interpolants and its derivatives, or
appending new nodes

• For the special case of piecewise linear interpolation, the interp1d
utility creates an instance of the _Interpolator1D class with only the
evaluation method

• A piecewise_polynomial_interpolate function, which is syntactic sugar
for the PiecewisePolynomial class, with the evaluation method applied on
a prescribed domain

Let us revisit the first example in this section. First, we try piecewise linear
interpolation with interp1d. Second, we apply piecewise quadratic interpolation
(all pieces have order 2) with the correct derivatives at every node by using
PiecewisePolynomial.

In [25]: from scipy.interpolate import PiecewisePolynomial

In [26]: nodes = np.linspace(0, 1, 5); \

 : x = np.linspace(0, 1, 100)

In [27]: def f(t): return np.sin(3 * t)

In [28]: interpolant = interp1d(nodes, f(nodes), kind='linear')

In [29]: plt.figure(); \

 : plt.subplot(121, aspect='equal'); \

 : plt.plot(x, interpolant(x), 'b--', label="interpolation"); \

 : plt.plot(nodes, f(nodes), 'ro'); \

 : plt.plot(x, f(x), 'r-', label="original"); \

 : plt.legend(loc=8); \

 : plt.title("Piecewise Linear Interpolation")

Out[29]: <matplotlib.text.Text at 0x107be0390>

In [30]: yi = np.zeros((len(nodes), 2)); \

 : yi[:,0] = f(nodes); \

 : yi[:,1] = 3 * np.cos(3 * nodes); \

 : print yi

[[0. 3.]

Interpolation and Approximation

[76]

 [0.682 2.195]

 [0.997 0.212]

 [0.778 -1.885]

 [0.141 -2.97]]

In [31]: interpolant = PiecewisePolynomial(nodes, yi, orders=2)

In [32]: plt.subplot(122, aspect='equal'); \

 : plt.plot(x, interpolant(x), 'b--', label="interpolation"); \

 : plt.plot(nodes, f(nodes), 'ro'); \

 : plt.plot(x, f(x), 'r-', label="original"); \

 : plt.legend(loc=8); \

 : plt.title("Piecewise Quadratic interpolation"); \

 : plt.show()

This gives the following diagram:

In this image, the piecewise quadratic interpolation and the original function are
virtually indistinguishable. We need to go to the computation of the absolute values
of differences (of the function together with its first and second derivatives) to
actually realize the error of computation. The following is a crude computation that
approximates these errors and illustrates the use of the .derivatives method:

In [33]: np.abs(f(x) - interpolant(x)).max()

Out[33]: 0.0093371930045896279

In [34]: f1prime = lambda t: 3 * np.cos(3 * t); \

 : np.abs(f1prime(x) - interpolant.derivatives(x)).max()

Out[34]: 10.589218385920123

In [35]: f2prime = lambda t: -9 * np.sin(3 * x); \

 : np.abs(f2prime(x) - interpolant.derivatives(x,der=2)).max()

Out[35]: 9.9980773091170505

Chapter 2

[77]

A great advantage of piecewise polynomial approximation is the flexibility of using
polynomials of different degrees on different subintervals. For instance, with the
same set of nodes, we can use lines in the first and last subintervals and cubics for
the others:

In [36]: interpolant = PiecewisePolynomial(nodes, yi, \

 : orders=[1,3,3,1])

The other great advantage of the implementation of this interpolation scheme is
the ease with which we may add new nodes, without the need to recalculate from
scratch. For example, to add a new node after the last one, we issue:

In [37]: interpolant.append(1.25, np.array([f(1.25)]))

Spline interpolation
Univariate splines are a special case of piecewise polynomials. They possess a high
degree of smoothness at places where the polynomial pieces connect. These functions
can be written as linear combinations of basic splines with minimal support with
respect to a given degree, smoothness, and set of nodes.

Univariate spline interpolations using splines of the order of up to five may be
carried out by the interp1d function with the appropriate kind option. This function
creates instances of _Interpolator1DWithDerivatives, with the corresponding
class methods. The computations are performed through calls to routines in the
Fortran library FITPACK. The following example shows the different possibilities:

In [38]: splines = ['zero', 'slinear', 'quadratic', 'cubic', 4, 5]; \

 : g = KroghInterpolator([0,0,0,1,1,1,2,2,2,3,3,3], \

 : [10,0,0,1,0,0,0.25,0,0,0.125,0,0]); \

 : f = lambda t: np.log1p(g(t)); \

 : x = np.linspace(0,3,100); \

 : nodes = np.linspace(0,3,11)

In [39]: plt.figure()

In [40]: for k in xrange(6):

 : interpolant = interp1d(nodes, f(nodes), \

 : kind = splines[k])

 : plt.subplot(2,3,k+1, aspect='equal')

 : plt.plot(nodes, f(nodes), 'ro')

 : plt.plot(x, f(x), 'r-', label='original')

 : plt.plot(x, interpolant(x), 'b--', \

Interpolation and Approximation

[78]

 : label='interpolation')

 : plt.title('{0} spline'.format(splines[k]))

 : plt.legend()

In [41]: plt.show()

This gives the following diagram:

The zero spline is very similar to the nearest-neighbors approximation,
although in this case the interpolant is constant between each choice
of two consecutive nodes. The slinear spline is exactly the same as the
piecewise linear interpolation. However, the algorithm that performs
this interpolation through splines is slower.

For any given problem setup, there are many different possible spline interpolations
with the same degrees, nodes, and evaluations. The output also depends on the
position and the number of knots, for example. Unfortunately, the interp1d function
only allows the control of nodes and values; the algorithm uses the simplest possible
settings in terms of knot computation.

Chapter 2

[79]

Note for instance that the cubic spline interpolation in the previous example does not
preserve the monotonicity of the target function. It is possible to force the monotonicity
of the interpolant in this case by carefully imposing restrictions on derivatives or the
location of knots. We have a special function that achieves this task for us by using
piecewise monotonic cubic Hermite interpolation (PCHIP), implemented through
the Fritsch-Carlson algorithm. This simple algorithm is carried out either by the
PchipInterpolator subclass of _Interpolator1DWithDerivatives, or through
its equivalent procedural function, pchip_interpolate.

In [42]: from scipy.interpolate import PchipInterpolator

In [43]: interpolant = PchipInterpolator(nodes, f(nodes))

In [44]: plt.figure(); \

 : plt.axes().set_aspect('equal'); \

 : plt.plot(nodes, f(nodes), 'ro'); \

 : plt.plot(x, f(x), 'r-', label='original'); \

 : plt.plot(x, interpolant(x), 'b--', label='interpolation'); \

 : plt.title('PCHIP interpolation'); \

 : plt.legend(); \

 : plt.show()

This gives the following graph:

Interpolation and Approximation

[80]

Generic spline interpolation, where we have actual control over all the
different parameters that affect the quality of splines, is handled by the
InterpolatedUnivariateSpline class. In this case, all computations are carried
out by wrappers of routines from the Fortran library FITPACK. It is possible to
access these wrappers in a procedural way, through a set of functions in the scipy.
interpolate module. The following table shows a match between class methods,
the corresponding procedural functions, and the FITPACK routines that they call:

Operation Object-oriented implementation Procedural FITPACK
Instantiation of
interpolant

InterpolatedUnivariateSpline splrep CURFIT

Reporting knots
of spline

object.get_knots() splrep

Reporting spline
coefficients

object.get_coeffs() splrep CURFIT

Evaluation of
spline

object() splev SPLEV

Derivative object.derivative() splder
Evaluation of
derivatives

object.derivatives() splev,
spalde

SPLDER,
SPALDE

Antiderivative object.antiderivative() splantider
Definite integral object.integral() splint SPLINT

Roots (for cubic
splines)

object.roots() sproot SPROOT

The values obtained by the.get_coeffs method are the coefficients of
the spline as a linear combination of B-splines.

Let us show how to approximate the area under the graph of the target function by
computing the integral of the corresponding interpolation spline of order 5.

In [45]: from scipy.interpolate import InterpolatedUnivariateSpline \

 : as IUS

In [46]: interpolant = IUS(nodes, f(nodes), k=5)

In [47]: area = interpolant.integral(0,3); \

 : print area

2.14931665485

Chapter 2

[81]

Multivariate interpolation
Bivariate interpolation with splines can be performed with interp2d in the scipy.
interpolate module. This is a very simple class that allows only the evaluation
method and has three basic spline interpolation modes coded: linear, cubic, and
quintic. It offers no control over knots or weights. To create a representation of the
bivariate spline, the interp2d function calls the Fortran routine SURFIT from the
library FITPACK (which, sadly, is not actually meant to perform interpolation!).
To evaluate the spline numerically, the module calls the routine BISPEV.

Let us show by example the usage of interp2d. We first construct an interesting
bivariate function to interpolate a random choice of 100 nodes on its domain and
present a visualization:

In [1]: import numpy as np, matplotlib.pyplot as plt; \

 ...: from mpl_toolkits.mplot3d.axes3d import Axes3D

In [2]: def f(x, y): return np.sin(x) + np.sin(y)

In [3]: t = np.linspace(-3, 3, 100); \

 ...: domain = np.meshgrid(t, t); \

 ...: X, Y = domain; \

 ...: Z = f(*domain)

In [4]: fig = plt.figure(); \

 ...: ax1 = plt.subplot2grid((2,2), (0,0), aspect='equal'); \

 ...: p = ax1.pcolor(X, Y, Z); \

 ...: fig.colorbar(p); \

 ...: CP = ax1.contour(X, Y, Z, colors='k'); \

 ...: ax1.clabel(CP); \

 ...: ax1.set_title('Contour plot')

In [5]: nodes = 6 * np.random.rand(100, 2) - 3; \

 ...: xi = nodes[:, 0]; \

 ...: yi = nodes[:, 1]; \

 ...: zi = f(xi, yi)

In [6]: ax2 = plt.subplot2grid((2,2), (0,1), aspect='equal'); \

 ...: p2 = ax2.pcolor(X, Y, Z); \

 ...: ax2.scatter(xi, yi, 25, zi) ; \

 ...: ax2.set_xlim(-3, 3); \

 ...: ax2.set_ylim(-3, 3); \

 ...: ax2.set_title('Node selection')

www.allitebooks.com

http://www.allitebooks.org

Interpolation and Approximation

[82]

In [7]: ax3 = plt.subplot2grid((2,2), (1,0), projection='3d', \

 ...: colspan=2, rowspan=2); \

 ...: ax3.plot_surface(X, Y, Z, alpha=0.25); \

 ...: ax3.scatter(xi, yi, zi, s=25); \

 ...: cset = ax3.contour(X, Y, Z, zdir='z', offset=-4); \

 ...: cset = ax3.contour(X, Y, Z, zdir='x', offset=-5); \

 ...: ax3.set_xlim3d(-5, 3); \

 ...: ax3.set_ylim3d(-3, 5); \

 ...: ax3.set_zlim3d(-4, 2); \

 ...: ax3.set_title('Surface plot')

In [8]: fig.tight_layout(); \

 ...: plt.show()

We obtain the following diagram:

Chapter 2

[83]

Piecewise linear interpolation with these nodes can be then performed as follows:

In [9]: from scipy.interpolate import interp2d

In [10]: interpolant = interp2d(xi, yi, zi, kind='linear')

In [11]: plt.figure(); \

 : plt.axes().set_aspect('equal'); \

 : plt.pcolor(X, Y, interpolant(t, t)); \

 : plt.scatter(xi, yi, 25, zi); \

 : CP = plt.contour(X, Y, interpolant(t, t), colors='k'); \

 : plt.clabel(CP); \

 : plt.xlim(-3, 3); \

 : plt.ylim(-3, 3); \

 : plt.title('Piecewise linear interpolation'); \

 : plt.show()

In spite of its name (interp2d), this process is not an actual interpolation but a crude
approximation that tries to fit the data. In general, each time you run this code, you
will obtain results of different quality. Luckily, this is not the case with the rest of the
interpolation routines that follow!

Interpolation and Approximation

[84]

If the location of the nodes is not optimal, we are likely to obtain a
warning:
Warning: No more knots can be added because the
number of B-spline coefficients

 already exceeds the number of data points m. Probably
causes: either

 s or m too small. (fp>s)

 kx,ky=1,1 nx,ny=11,14 m=100 fp=0.002836 s=0.000000

Note that in the previous example, the evaluation of the interpolant
is performed with a call to two one-dimensional arrays. In general, to
evaluate an interpolant g computed with interp2d on a rectangular
grid that can be realized as the Cartesian product of two one-dimensional
arrays (tx of size m and ty of size n), we issue g(tx, ty); this gives us a
two-dimensional array of size m x n.

The quality of the result is, of course, deeply linked to the density and structure
of the nodes. Increasing their number or imposing their location on a rectangular
grid improves matters. In the case of nodes forming a rectangular grid, an actual
interpolation, with a much faster and accurate method is accomplished by means of
the RectBivariateSpline class. This function is a wrapper to the Fortran routine
REGRID in the FITPACK library.

Let us now choose 100 nodes on a rectangular grid and recalculate, as follows:

In [12]: ti = np.linspace(-3, 3, 10); \

 : xi, yi = np.meshgrid(ti, ti); \

 : zi = f(xi, yi)

In [13]: from scipy.interpolate import RectBivariateSpline

In [14]: interpolant = RectBivariateSpline(ti, ti, zi, kx=1, ky=1)

In [15]: plt.figure(); \

 : plt.axes().set_aspect('equal'); \

 : plt.pcolor(X, Y, interpolant(t, t)); \

 : CP = plt.contour(X, Y, interpolant(t, t), colors='k'); \

 : plt.clabel(CP); \

 : plt.scatter(xi, yi, 25, zi); \

 : plt.xlim(-3, 3); \

 : plt.ylim(-3, 3); \

Chapter 2

[85]

 : plt.title('Piecewise linear interpolation, \

 : rectangular grid'); \

 : plt.show()

As with the case of interp2d, to evaluate an interpolant g computed
with RectBivariateSpline on a rectangular grid that can be realized
as the Cartesian product of two one-dimensional arrays (tx of size m and
ty of size n), we issue g(tx, ty); this gives us a two-dimensional array
of size m x n.

This gives an actual interpolation now:

The volume integral under the graph is very accurate (the actual integral of the target
function in the given domain is zero):

In [16]: interpolant.integral(-3, 3, -3, 3)

Out[16]: 2.636779683484747e-16

Interpolation and Approximation

[86]

Let us examine some of the different pieces of information that we receive from this
class, in this case:

• The degrees of the interpolant:
In [17]: interpolant.degrees

Out[17]: (1, 1)

• The sum of the squared residuals of the spline approximation returned:
In [18]: interpolant.fp

Out[18]: 0.0

In [19]: interpolant.get_residual()

Out[19]: 0.0

• The coefficients of the interpolant:
In [20]: np.set_printoptions(precision=5, suppress=True)

In [21]: print interpolant.get_coeffs()

[-0.28224 -0.86421 -1.13653 -0.98259 -0.46831 0.18607

 0.70035 0.85429 0.58197 0. -0.86421 -1.44617

 -1.71849 -1.56456 -1.05028 -0.39589 0.11839 0.27232

 0. -0.58197 -1.13653 -1.71849 -1.99082 -1.83688

 -1.3226 -0.66821 -0.15394 0. -0.27232 -0.85429

 -0.98259 -1.56456 -1.83688 -1.68294 -1.16867 -0.51428

 0. 0.15394 -0.11839 -0.70035 -0.46831 -1.05028

 -1.3226 -1.16867 -0.65439 -0. 0.51428 0.66821

 0.39589 -0.18607 0.18607 -0.39589 -0.66821 -0.51428

 -0. 0.65439 1.16867 1.3226 1.05028 0.46831

 0.70035 0.11839 -0.15394 0. 0.51428 1.16867

 1.68294 1.83688 1.56456 0.98259 0.85429 0.27232

 0. 0.15394 0.66821 1.3226 1.83688 1.99082

 1.71849 1.13653 0.58197 0. -0.27232 -0.11839

 0.39589 1.05028 1.56456 1.71849 1.44617 0.86421

 0. -0.58197 -0.85429 -0.70035 -0.18607 0.46831

 0.98259 1.13653 0.86421 0.28224]

• The location of the knots:
In [22]: interpolant.get_knots()

(array([-3. , -3. , -2.33333, -1.66667, -1. , -0.33333,

 0.33333, 1. , 1.66667, 2.33333, 3. , 3.]),

 array([-3. , -3. , -2.33333, -1.66667, -1. , -0.33333,

 0.33333, 1. , 1.66667, 2.33333, 3. , 3.]))

Chapter 2

[87]

Smoother results can be obtained with piecewise cubic splines. In the previous
example, we can accomplish this task by setting kx = 3 and ky = 3:

In [23]: interpolant = RectBivariateSpline(ti, ti, zi, kx=3, ky=3)

In [24]: fig = plt.figure(); \

 : ax = fig.add_subplot(121, projection='3d',aspect='equal'); \

 : ax.plot_surface(X, Y, interpolant(t, t), alpha=0.25, \

 : rstride=5, cstride=5); \

 : ax.scatter(xi, yi, zi, s=25); \

 : C = ax.contour(X, Y, interpolant(t, t), zdir='z', \

 : offset=-4); \

 : C = ax.contour(X, Y, interpolant(t, t), zdir='x',\

 : offset=-5); \

 : ax.set_xlim3d(-5, 3); \

 : ax.set_ylim3d(-3, 5); \

 : ax.set_zlim3d(-4, 2); \

 : ax.set_title('Cubic interpolation, RectBivariateSpline')

Among all possible interpolations with cubic splines, there is a special case that
minimizes the curvature. We have one implementation of this particular case, by
means of a clever iterative algorithm that converges to the solution. It relies on the
following three key concepts:

• Delaunay triangulations of the domain using the nodes as vertices
• Bezier cubic polynomials supported on each triangle using a

Cough-Tocher scheme
• Estimation and imposition of gradients to minimize curvature

An implementation is available through the CloughTocher2dInterpolator function
in the scipy.interpolate module, or through the black-box function griddata in
the same module with the method='cubic' option. Let us compare the outputs:

In [25]: from scipy.interpolate import CloughTocher2DInterpolator

In [26]: nodes = np.dstack((np.ravel(xi), np.ravel(yi))).squeeze(); \

 : zi = f(nodes[:, 0], nodes[:, 1])

In [27]: interpolant = CloughTocher2DInterpolator(nodes, zi)

In [28]: ax = fig.add_subplot(122, projection='3d', aspect='equal'); \

 : ax.plot_surface(X, Y, interpolant(X, Y), alpha=0.25, \

 : rstride=5, cstride=5); \

 : ax.scatter(xi, yi, zi, s=25); \

Interpolation and Approximation

[88]

 : C = ax.contour(X, Y, interpolant(X, Y), zdir='z', \

 : offset=-4); \

 : C = ax.contour(X, Y, interpolant(X, Y), zdir='x', \

 : offset=-5); \

 : ax.set_xlim3d(-5, 3); \

 : ax.set_ylim3d(-3, 5); \

 : ax.set_zlim3d(-4, 2); \

 : ax.set_title('Cubic interpolation, \

 : CloughTocher2DInterpolator'); \

 : plt.show()

Unlike the cases of interp2d and RectBivariateSpline, to evaluate
an interpolant g computed with CloughTocher2DInterpolator on a
rectangular grid X, Y = domain, we issue g(X, Y) or g(*domain).

This gives the following diagram:

The black-box procedural function called griddata also allows us to access
piecewise linear interpolation in multiple dimensions, as well as multidimensional
nearest-neighbors interpolation.

In [29]: from scipy.interpolate import griddata

In [30]: Z = griddata(nodes, zi, (X, Y), method='nearest')

In [31]: plt.figure(); \

Chapter 2

[89]

 : plt.axes().set_aspect('equal'); \

 : plt.pcolor(X, Y, Z); \

 : plt.colorbar(); \

 : plt.title('Nearest-neighbors'); \

 : plt.show()

This gives us the following not-too-impressive diagram:

There is one more interpolation mode to consider: radial basis function interpolation.
The aim here is to interpolate with a linear combination of radial functions of the
form fk(x,y) = g(sqrt((x-xk)**2 + (y-yk)**2)), centered at the points (xk,
yk), for the same function g. We may choose among seven standard functions g
(listed below), or even choose our own:

• 'multiquadric': g(r) = sqrt((r/self.epsilon)**2 + 1)

• 'inverse': g(r) = 1.0/sqrt((r/self.epsilon)**2 + 1)

• 'gaussian': g(r) = exp(-(r/self.epsilon)**2)

• 'linear': g(r) = r

• 'cubic': g(r) = r**3

• 'quintic': g(r) = r**5

• 'thin_plate': g(r) = r**2 * log(r)

Interpolation and Approximation

[90]

The implementation is performed through the Rbf class. It can be initialized as
usual with nodes and their evaluations. We also need to include the choice of radial
function, and if necessary, the value of the epsilon parameter affecting the size of
the bumps.

Let us run a couple of interpolations: first, by means of radial Gaussians with
standard deviation epsilon = 2.0, and then, with a radial function based on
sinc. Let us also go back to random nodes:

In [32]: from scipy.interpolate import Rbf

In [33]: nodes = 6 * np.random.rand(100, 2) - 3; \

 : xi = nodes[:, 0]; \

 : yi = nodes[:, 1]; \

 : zi = f(xi, yi)

In [34]: interpolant = Rbf(xi, yi, zi, function='gaussian', \

 : epsilon=2.0)

In [35]: plt.figure(); \

 : plt.subplot(121, aspect='equal'); \

 : plt.pcolor(X, Y, interpolant(X, Y)); \

 : plt.scatter(xi, yi, 25, zi); \

 : plt.xlim(-3, 3); \

 : plt.ylim(-3, 3)

Out[35]: (-3, 3)

In [36]: interpolant = Rbf(xi, yi, zi, function = np.sinc)

In [37]: plt.subplot(122, aspect='equal'); \

 : plt.pcolor(X, Y, interpolant(X, Y)); \

 : plt.scatter(xi, yi, 25, zi); \

 : plt.xlim(-3, 3); \

 : plt.ylim(-3, 3); \

 : plt.show()

Chapter 2

[91]

This gives two very accurate interpolations, in spite of the unstructured nodes:

The last case for consideration is bivariate spline interpolation over a rectangular grid
on a sphere. We obtain this interpolation with the RectSphereBivariateSpline
function, which instantiates a subclass of SphereBivariateSpline through calls
to the FITPACK routines SPGRID (to compute the representation of the spline) and
BISPEV (for evaluation).

The implementation and evaluation are reminiscent of the Fortran coding
methodology:

• To compute the spline representation, we issue the
RectSphereBivariateSpline(u, v, data) command, where both u and v
are one-dimensional arrays of strictly increasing positive values representing
the angles (in radians) for the latitudes and longitudes (respectively) of the
locations of the nodes.

• At evaluation time, if we require a two-dimensional representation of the
interpolant on a refined grid of size m x n, we issue object(theta, phi)
where both theta and phi are one-dimensional and strictly increasing, and
must be contained in the domains defined by u and v above. The output is
(in spite of what your documentation says) an m x n array.

Interpolation and Approximation

[92]

Least squares approximation
Numerically, it is relatively simple to state the approximation problem for the least
squares norm. This is the topic of this section.

Linear least squares approximation
In the context of linear least squares approximation, it is always possible to reduce
the problem to solving a system of linear equations, as the following example shows:

Consider the sine function f(x) = sin(x) in the interval from 0 to 1. We choose as
approximants the polynomials of second degree: {a0 + a1x + a2x2}. To compute the
values [a0, a1, a2] that minimize this problem, we first form a 3 × 3 matrix containing
the pairwise dot products (the integral of the product of two functions) of the basic
functions {1, x, x2} in the given interval. Because of the nature of this problem, we
obtain a Hilbert matrix of order 3:

[< 1, 1 > < 1, x > < 1, x^2 >] [1 1/2 1/3]

[< x, 1 > < x, x > < x, x^2 >] = [1/2 1/3 1/4]

[< x^2, 1 > < x^2, x > < x^2, x^2 >] [1/3 1/4 1/5]

The right-hand side of the system is the column vector with the dot product of the
sine function with each basic function in the given interval:

[< sin(x), 1 >] [1 - cos(1)]

[< sin(x), x >] = [sin(1) - cos(1)]

[< sin(x), x^2 >] [2*sin(1) + cos(1) - 2]

We compute the coefficients and the corresponding approximation polynomial
as follows:

In [1]: import numpy as np, scipy.linalg as spla, \

 ...: matplotlib.pyplot as plt

In [2]: A = spla.hilbert(3); \

 ...: b = np.array([1-np.cos(1), np.sin(1)-np.cos(1), \

 ...: 2*np.sin(1)+ np.cos(1)-2])

In [3]: spla.solve(A, b)

Out[3]: array([-0.00746493, 1.09129978, -0.2354618])

In [4]: poly1 = np.poly1d(spla.solve(A, b)[::-1]); \

 ...: print poly1

 2

-0.2355 x + 1.091 x - 0.007465

Chapter 2

[93]

In general, to resolve a linear least squares approximation problem for a basis with
r elements, we need to solve a basic system of linear equations with r equations and
r indeterminates. In spite of its apparent simplicity, this method is far from perfect.
The two main reasons are the following:

• The system may be ill-conditioned, as was the case in the previous example.
• There is nonpermanence of the coefficients. The value of the coefficients

depends very heavily on r. Increasing the dimension of the problem results
in a new set of coefficients, different from the previous set.

There are ways to remediate the ill-conditioning of the system. One
standard procedure is to construct an orthogonal basis from the original
with the Gram-Schmidth and modified Gram-Schmidt orthogonalization
methods. This topic is beyond the scope of this monograph, but a good
reference for these methods can be read in Chapter 1 of the book Numerical
Analysis by Walter Gautschi, Birkhäuser, 1997.

A basis that always provides simple linear systems is the B-splines. All the systems
involved are tridiagonal and thus are easily solvable without the need of complex
operations. The object-oriented system coded in the scipy.interpolate module
allows us to perform all these computations internally. This is a brief enumeration
of the classes and subclasses involved:

• UnivariateSpline for splines in one dimension, or splines of curves in
any dimension. We seldom use this class directly and resort instead to the
LSQUnivariateSpline subclass.

• BivariateSpline for splines representing surfaces over nodes placed on a
rectangle. As its univariate counterpart, this class must not be used directly.
Instead, we utilize the LSQBivariateSpline subclass.

• SphereBivariateSpline for splines representing surfaces over nodes
placed on a sphere. The computations must be carried out through the
LSQSphereBivariateSpline subclass instead.

In all three cases, the base classes and their methods are their
counterparts in the problem of interpolation. Refer to the Interpolation
section for more information.

Interpolation and Approximation

[94]

Let us illustrate these object-oriented techniques with a few selected examples:

Approximate the same sine function on the same domain, with cubic splines (k =
3), in the sense of least squares. First, note that we must provide a bounding box, a
set of knots on the domain, and the weights w for the least squares approximation.
We are also allowed to provide an optional smoothness parameter s. If s = 0, we
obtain interpolation instead, and for large values of s, we achieve different degrees
of smoothness of the resulting spline. To obtain a reliable (weighted) least squares
approximation, a good choice is s = len(w) (which is what the routine does by
default). Note also how small the computed error is:

In [5]: f = np.sin; \

 ...: x = np.linspace(0,1,100); \

 ...: knots = np.linspace(0,1,7)[1:-1]; \

 ...: weights = np.ones_like(x)

In [6]: from scipy.interpolate import LSQUnivariateSpline

In [7]: approximant = LSQUnivariateSpline(x, f(x), knots, k=3, \

 ...: w = weights, bbox = [0, 1])

In [8]: spla.norm(f(x) - approximant(x))

Out[8]: 3.370175009262551e-06

A more convenient way to compute this error of approximation
is to use the .get_residual method, as follows:
In [9]: approximant.get_residual()**(.5)

Out[9]: 3.37017500928446e-06

Approximate the two-dimensional function sin(x)+sin(y) on the [-3,3] x
[-3,3] domain. We first choose a representation of the domain, a set of 100 suitable
knots on a grid, and the set of weights. Since all inputs to the LSQBivariateSpline
function must be one-dimensional arrays, we perform the corresponding conversions
prior to calling the approximation function:

In [10]: def f(x, y): return np.sin(x) + np.sin(y); \

 : t = np.linspace(-3, 3, 100); \

 : domain = np.meshgrid(t, t); \

 : X, Y = domain; \

 : Z = f(*domain)

In [11]: X = X.ravel(); \

 : Y = Y.ravel(); \

 : Z = Z.ravel()

Chapter 2

[95]

In [12]: kx = np.linspace(-3,3,12)[1:-1]; \

 : ky = kx.copy(); \

 : weights = np.ones_like(Z);

In [13]: from scipy.interpolate import LSQBivariateSpline

In [14]: approximant = LSQBivariateSpline(X, Y, Z, kx, kx, \

 : w = weights)

In [15]: approximant.get_residual()

Out[15]: 0.0

It is also possible to perform this computation with the
RectBivariateSpline function. To achieve least squares
interpolation, we provide nodes (instead of knots, since these
will be computed automatically), weights w, and a smoothness
parameter s that is sufficiently large. A good choice is s =
len(w).

Nonlinear least squares approximation
In the context of nonlinear least square approximations, we do not usually have
the luxury of simple matrix representations. Instead, we make use of two variations
of an iterative process, the Levenberg-Marquardt algorithm, which is hosted in
the scipy.optimize module. The two versions, which correspond to the LMDER
and LMDIF routines from the Fortran library MINPACK, can be called through the
leastsq wrapper.

The following table lists all the options to this function:

Option Description
func error function F(a)
x0 starting estimate for the minimization, of size r
args extra arguments to func, as a tuple
Dfun function representing the Jacobian matrix of func
full_output Boolean
col_deriv Boolean
ftol relative error desired in the sums of squares
xtol relative error desired in the approximate solution
gtol orthogonality desired between func and the columns of Dfun
maxfev maximum number of calls. If zero, the number of calls is

100*(r+1)

Interpolation and Approximation

[96]

Option Description
epsfcn if Dfun=None, we may specify a floating-point value as the step

in the forward-difference approximation of the Jacobian matrix
factor floating-point value between 0.1 and 100, indicating the initial

step bound
diag scale factors for each of the variables

The first variant of the algorithm is used when we have a trusted Jacobian for the
error function. If this is not provided, a second variant of the algorithm is used,
which approximates the Jacobian by forward differences. We illustrate both
variants with several examples.

Let us start revisiting a previous example with this method, in order to see the
differences in usage and accuracy. We will focus the computations on a partition
of the interval from 0 to 1, with 100 uniformly spaced points:

In [16]: from scipy.optimize import leastsq

In [17]: def error_function(a):

 : return a[0] + a[1] * x + a[2] * x**2 - np.sin(x)

In [18]: def jacobian(a): return np.array([np.ones(100), x, x**2])

In [19]: coeffs, success = leastsq(error_function, np.zeros((3,)))

In [20]: poly2 = np.poly1d(coeffs[::-1]); print poly2

 2

-0.2354 x + 1.091 x - 0.007232

In [21]: coeffs, success = leastsq(error_function, np.zeros((3,)), \

 : Dfun = jacobian, col_deriv=True)

In [22]: poly3 = np.poly1d(coeffs[::-1]); \

 ...: print poly3

 2

-0.2354 x + 1.091 x - 0.007232

In [23]: map(lambda f: spla.norm(np.sin(x) - f(x)), \

 : [poly1, poly2, poly3])

Out[23]:

[0.028112146265269783, 0.02808377541388009, 0.02808377541388009]

Chapter 2

[97]

There is another function in the scipy.optimize module to
perform nonlinear least squares approximation: curve_fit. It uses
the same algorithm, but instead of an error function, we feed it a
generic approximant g[a](x), together with a suitable domain for
the independent variable x, and the output of the target function f on
the same domain. We do need to input an initial estimate as well. The
output is, together with the required coefficients, an estimation of the
covariance of the said coefficients.

In [23]: from scipy.optimize import curve_fit

In [24]: def approximant(t, a, b, c):

 : return a + b*t + c*t**2

In [25]: curve_fit(approximant, x, np.sin(x), \

 : np.ones((3,)))

(array([-0.007232 , 1.09078356, -0.23537796]),

 array([[7.03274163e-07, -2.79884256e-06,

 2.32064835e-06],

 [-2.79884256e-06, 1.50223585e-05,

 -1.40659702e-05],

 [2.32064835e-06, -1.40659702e-05,

 1.40659703e-05]]))

In this section, we focus on the leastsq function exclusively. The
goals and coding of both the functions are the same, but leastsq
offers a more informative output on demand and more control over
the different parameters of the Levenberg-Marquardt algorithm.

Let us experiment now with a few actual nonlinear problems:

In the first example, we will approximate the tan(2*x) function in the interval
from 0 to 1 with rational functions where each of the polynomials has an at most
degree of 1:

In [26]: def error_function(a):

 : return (a[0] + a[1]*x)/(a[2] + a[3]*x) – np.tan(2*x)

In [27]: def jacobian(a):

 : numerator = a[0] + a[1]*x

 : denominator = a[2] + a[3]*x

 : return np.array([1./denominator, x/denominator, \

 : -1.0*numerator/denominator**2, \

 : -1.0*x*numerator/denominator**2])

Interpolation and Approximation

[98]

To show the dependence of the initial estimation, we are going to experiment with
three different choices: one that makes no sense (all zero coefficients), another that
is a blind standard choice (with all entries equal to one), and the other choice that
acknowledges the fact that the tan(2*x) function has a vertical asymptote. We will
pretend that we do not know the exact location and approximate it to 0.78. Our third
initial estimation then represents a simple rational function with an asymptote at 0.78.

A wrong initial estimate does not give us anything useful, obviously:

In [28]: x1 = np.zeros((4,)); \

 : x2 = np.ones((4,)); \

 : x3 = np.array([1,0,0.78,-1])

In [29]: coeffs, success = leastsq(error_function, x1); \

 : numerator = np.poly1d(coeffs[1::-1]); \

 : denominator = np.poly1d(coeffs[:1:-1]); \

 : print numerator, denominator

0

0

In [30]: coeffs, success = leastsq(error_function, x1, \

 : Dfun=jacobian, col_deriv=True); \

 : numerator = np.poly1d(coeffs[1::-1]); \

 : denominator = np.poly1d(coeffs[:1:-1]); \

 : print numerator, denominator

0

0

None of these two approximations using x2 as the initial guess are satisfactory:
the corresponding errors are huge, and neither solution has an asymptote in the
interval from 0 to 1.

In [31]: coeffs, success = leastsq(error_function, x2); \

 : numerator = np.poly1d(coeffs[1::-1]); \

 : denominator = np.poly1d(coeffs[:1:-1]); \

 : print numerator, denominator; \

 : spla.norm(np.tan(2*x) - numerator(x) / denominator(x))

-9.729 x + 4.28

-1.293 x + 1.986

Out[31]: 220.59056436054016

Chapter 2

[99]

In [32]: coeffs, success = leastsq(error_function, x2, \

 : Dfun=jacobian, col_deriv=True); \

 : numerator = np.poly1d(coeffs[1::-1]); \

 : denominator = np.poly1d(coeffs[:1:-1]); \

 : print numerator, denominator; \

 : spla.norm(np.tan(2*x) - numerator(x) / denominator(x))

-655.9 x + 288.5

-87.05 x + 133.8

Out[32]: 220.590564978504

The approximations using x3 as the initial guess are closer to the target function, and
both of them have an acceptable asymptote.

In [33]: coeffs, success = leastsq(error_function, x3); \

 : numerator = np.poly1d(coeffs[1::-1]); \

 : denominator = np.poly1d(coeffs[:1:-1]); \

 : print numerator, denominator; \

 : spla.norm(np.tan(2*x) - numerator(x) / denominator(x))

0.01553 x + 0.02421

-0.07285 x + 0.05721

Out[33]: 2.185984698129936

In [34]: coeffs, success = leastsq(error_function, x3, \

 : Dfun=jacobian, col_deriv=True); \

 : numerator = np.poly1d(coeffs[1::-1]); \

 : denominator = np.poly1d(coeffs[:1:-1]); \

 : print numerator, denominator; \

 : spla.norm(np.tan(2*x) - numerator(x) / denominator(x))

17.17 x + 26.76

-80.52 x + 63.24

Out[34]: 2.1859846981334954

We can do much better, of course, but these simple examples will suffice for now.

If we desire to output more information to monitor the quality of approximation,
we may do so with the full_output option set to True:

In [35]: approximation_info = leastsq(error_function, x3, \

 : full_output=True)

Interpolation and Approximation

[100]

In [36]: coeffs = approximation_info[0]; \

 : print coeffs

[0.02420694 0.01553346 0.0572128 -0.07284579]

In [37]: message = approximation_info[-2]; \

 : print message

Both actual and predicted relative reductions in the sum of squares

 are at most 0.000000

In [38]: infodict = approximation_info[2]; \

 : print 'The algorithm performed \

 : {0:2d} iterations'.format(infodict['nfev'])

The algorithm performed 97 iterations

Although technically, the leastsq algorithm deals mostly with approximation to
univariate functions, it is possible to work on multivariate functions with the aid
of indices, raveling, unpacking (with the special * operator), and stable sums.

The usual sum of the floating-point numbers of ndarray with the numpy
instance method sum (or with the numpy function sum) is far from stable.
We firmly advise against using it for fairly large sums of numbers. The
following example shows an undesired scenario, in which we try to add
4000 values:
>>> arr=np.array([1,1e20,1,-1e20]*1000,dtype=np.float64)

>>> arr.sum() # The answer should be, of course, 2000

0.0

To resolve this situation, we make use of stable sums. In the math
module, there is an implementation of the Shewchuk algorithm for this
very purpose:
>>> from math import fsum

>>> fsum(arr)

2000.0

For more information about the Shewchuk algorithm, as well as other
common pitfalls to avoid in scientific computing with floating-point
arithmetic, we recommend the excellent guide What Every Computer
Scientist Should Know about Floating Point Arithmetic, by David Goldberg.
ACM Computing Surveys, 1991. vol. 23, pp. 5-48.

Chapter 2

[101]

This process is best explained with an example. We start by generating the target
function: an image of size 32 × 32 containing white noise on top of the addition of
three spherical Gaussian functions with different locations, variances, and heights.
We collect all these values in a 3 × 4 array that we name values. The first and second
columns contain the x and y values of the coordinates of the centers. The third
column contains the heights, and the fourth column contains the variances.

In [39]: def sphericalGaussian(x0, y0, h, v):

 : return lambda x,y: h*np.exp(-0.5*((x-x0)**2+(y-y0)**2)/v)

 :

In [40]: domain = np.indices((32, 32)); \

 : values = np.random.randn(3,4); \

 : values[:,:2] += np.random.randint(1, 32, size=(3, 2)); \

 : values[:,2] += np.random.randint(1, 64, size=3); \

 : values[:,3] += np.random.randint(1, 16, size=3); \

 : print values

[[17.43247918 17.15301326 34.86691265 7.84836966]

 [5.5450271 20.68753512 34.41364835 4.78337552]

 [24.44909459 27.28360852 0.62186068 9.15251106]]

In [41]: img = np.random.randn(32,32)

In [42]: for k in xrange(3):

 : img += sphericalGaussian(*values[k])(*domain)

Let us assume that we do not know the centers, heights, and variances, and wish
to estimate them from the target image img. We then create an error function to
compute the 12 coefficients that are packed in the 3 × 4 array a. Note the role of the
numpy function ravel and the instance method reshape in ensuring that the data is
handled correctly:

In [43]: from math import fsum

In [44]: def error_function(a):

 : a = a.reshape(3,4)

 : cx = a[:,0] # x-coords

 : cy = a[:,1] # y-coords

 : H = a[:,2] # heights

 : V = a[:,3] # variances

 : guess = np.zeros_like(img)

 : for i in xrange(guess.shape[0]):

Interpolation and Approximation

[102]

 : for j in xrange(guess.shape[1]):

 : arr = H*np.exp(-0.5*((i-cx)**2+(j-cy)**2)/V)

 : guess[i,j] = fsum(arr)

 : return np.ravel(guess-img)

Starting the process of least squares in this situation with guarantees of success
requires a somewhat close initial guess. For this particular example, we are going
to produce our initial guess from the array called values:

In [45]: x0 = np.vectorize(int)(values); \

 : print x0

[[17 17 34 7]

 [5 20 34 4]

 [24 27 0 9]]

In [46]: leastsq(error_function, x0)

Out[46]:

(array([17.43346907, 17.14219682, 34.82077187, 7.85849653,

 5.52511918, 20.68319748, 34.28559808, 4.8010449 ,

 25.19824918, 24.02286107, 3.87170006, 0.5289382]),

 1)

Let us now visually compare both the target image img and its minimization by
the following procedure:

In [47]: coeffs, success = _; \

 : coeffs = coeffs.reshape(3,4)

In [48]: output = np.zeros_like(img)

In [49]: for k in xrange(3):

 : output += sphericalGaussian(*coeffs[k])(*domain)

In [50]: plt.figure(); \

 : plt.subplot(121); \

 : plt.imshow(img); \

 : plt.title('target image'); \

 : plt.subplot(122); \

 : plt.imshow(output); \

 : plt.title('computed approximation'); \

 : plt.show()

Chapter 2

[103]

This gives the following diagram:

Summary
In this chapter, we have explored two basic problems in the field of approximation
theory: interpolation and approximation in the sense of least squares. We learned
that there are three different modes to approach solutions to these problems in SciPy:

• A procedural mode, that offers quick numerical solutions in the form
of ndarrays.

• A functional mode that offers numpy functions as the output.
• An object-oriented mode, with great flexibility through different classes and

their methods. We use this mode when we require from our solutions extra
information (such as information about roots, coefficients, knots, and errors),
or related objects (such as the representation of derivatives or antiderivatives).

We explored in detail all the different implementations for the interpolation coded
in the scipy.interpolate module, and learned in particular that those related to
splines are wrappers of several routines in the Fortran library FITPACK.

In the case of linear approximations in the least squares sense, we learned that
we may achieve solutions either through systems of linear equations (by means
of techniques from the previous chapter), or in the case of spline approximation,
through wrappers to Fortran routines in the FITPACK library. All of these functions
are coded in the scipy.interpolate module.

Interpolation and Approximation

[104]

For nonlinear approximation in the least squares sense, we found two variants of
the Levenberg-Marquardt iterative algorithm coded in the scipy.optimize module.
These are in turn calls to the Fortran routines LMDER and LMDIF from the library
MINPACK.

In the next chapter, we will master techniques and applications of differentiation
and integration.

[105]

Differentiation and Integration
In this chapter, we will master some classical and state-of-the-arts techniques to
perform the two core operations in Calculus (and, by extension, in Physics and
every engineering field): differentiation and integration of functions.

Motivation
Common to the design of railway or road building (especially for highway exits),
as well as those crazy loops in many roller coasters, is the solution of differential
equations in two or three dimensions that address the effect of curvature and
centripetal acceleration on moving bodies. In the 1970s, Werner Stengel studied and
applied several models to attack this problem and, among the many solutions he
found, one struck as particularly brilliant—the employment of clothoid loops (based on
sections of Cornu's spiral). The first looping coaster designed with this paradigm was
constructed in 1976 in the Baja Ridge area of Six Flags Magic Mountain, in Valencia,
California, USA. It was coined the Great American Revolution, and it featured the very
first vertical loop (together with two corkscrews, for a total of three inversions).

Differentiation and Integration

[106]

The tricky part of the design was based on a system of differential equations, whose
solution depended on the integration of Fresnel-type sine and cosine integrals, and
then selecting the appropriate sections of the resulting curve. Let's see the computation
and plot of these interesting functions:

In [1]: import numpy as np, matplotlib.pyplot as plt; \
 ...: from scipy.special import fresnel
In [2]: np.info(fresnel)
fresnel(x[, out1, out2])
(ssa,cca)=fresnel(z) returns the Fresnel sin and cos integrals:
integral(sin(pi/2 * t**2),t=0..z) and
integral(cos(pi/2 * t**2),t=0..z)
for real or complex z.
In [3]: ssa, cca = fresnel(np.linspace(-4, 4, 1000))
In [4]: plt.plot(ssa, cca, 'b-'); \
 ...: plt.axes().set_aspect('equal'); \
 ...: plt.show()

This results in the following plot:

Chapter 3

[107]

The importance of Fresnel integrals granted them a permanent place in SciPy
libraries. There are many other useful integrals that shared the same fate, and now
lie ready for action in the module scipy.special. For a complete list of all those
integrals, as well as implementation of other relevant functions and their roots or
derivatives, refer to the online documentation of scipy.special at http://docs.
scipy.org/doc/scipy-0.13.0/reference/special.html, or in Chapter 4, SciPy
for Numerical Analysis of Francisco Blanco-Silva's Learning SciPy for Numerical and
Scientific Computing.

For all the other functions that did not make it to this ample list, we still need robust
solutions to the computation of their roots, derivatives, or integrals. In this chapter,
we will focus on computational devices that allow the last two operations.

The calculation of (or approximation to the) roots of any
given function will be covered in the next chapter.

Differentiation
There are three ways to approach the computation of derivatives:

• Numerical differentiation refers to the process of approximation of the
derivative of a given function at a point. In SciPy, we have the following
procedures, which will be covered in detail:

 ° For generic univariate functions, the central difference formula
with fixed spacing.

 ° It is always possible to perform numerical differentiation via
Cauchy's theorem, which transforms the derivative into a definite
integral. This integral is then treated with the techniques of numerical
integration explained in the upcoming section.

• Symbolic differentiation refers to computation of functional expressions of
derivatives of functions, pretty much in the same way that we would do
manually. It is termed symbolic because unlike its numerical counterpart,
symbols take the role of variables, rather than numbers or vectors of numbers.
To perform symbolic differentiation, we require a computer algebra system
(CAS), and in the SciPy stack, this is achieved mainly through the SymPy library
(see http://docs.sympy.org/latest/index.html). Symbolic differentiation
and posterior evaluation is a good option as a substitute of numerical
differentiation for very basic functions. However, in general, this method
leads to overcomplicated and inefficient code. The speed of purely numerical
differentiation is preferred, in spite of the possible occurrence of errors.

http://docs.scipy.org/doc/scipy-0.13.0/reference/special.html
http://docs.scipy.org/doc/scipy-0.13.0/reference/special.html
http://docs.sympy.org/latest/index.html

Differentiation and Integration

[108]

• Automatic differentiation is another set of techniques to numerically evaluate
the derivative of a function. It is not based upon any approximation schema.
This is without a doubt the most powerful option in the context of high derivatives of
multivariate functions.

In the SciPy stack, this is performed through different unrelated libraries.
Some of the most reliable are Theano (http://deeplearning.net/
software/theano/) or FuncDesigner (http://www.openopt.
org/FuncDesigner). For a comprehensive description and analysis of
these techniques, a very good resource can be found at http://alexey.
radul.name/ideas/2013/introduction-to-automatic-
differentiation/.

Numerical differentiation
The most basic scheme for numerical differentiation is performed with the
central difference formula with uniformly spaced nodes. To maintain symmetry,
an odd number of nodes is required to guarantee smaller roundoff errors. An
implementation of this simple algorithm is available in the module scipy.misc.

For information about the module scipy.misc, and enumeration of
its basic routines, refer to the online documentation at http://docs.
scipy.org/doc/scipy-0.13.0/reference/misc.html.

To approximate the first and second derivatives of the polynomial function, for
example, f(x) = x5 at x=1 with 15 equally spaced nodes (centered at x=1) at distance
dx=1e-6, we could issue the following command:

In [1]: import numpy as np
In [2]: from scipy.misc import derivative
In [3]: def f(x): return x**5
In [4]: derivative(f, 1.0, dx=1e-6, order=15)
Out[4]: 4.9999999997262723
In [5]: derivative(f, 1.0, dx=1e-6, order=15, n=2)
Out[5]: 19.998683310705456

Somewhat accurate, yet still disappointing since the actual values are 5
and 20, respectively.

Another flaw of this method (at least with respect to the
implementation coded in SciPy) is the fact that the result relies on
possibly large sums, and these are not stable. As users, we could
improve matters by modifying the loop in the source of scipy.
misc.derivative with the Shewchuk algorithm, for instance.

http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://www.openopt.org/FuncDesigner
http://www.openopt.org/FuncDesigner
http://alexey.radul.name/ideas/2013/introduction-to-automatic-differentiation/
http://alexey.radul.name/ideas/2013/introduction-to-automatic-differentiation/
http://alexey.radul.name/ideas/2013/introduction-to-automatic-differentiation/
http://docs.scipy.org/doc/scipy-0.13.0/reference/misc.html
http://docs.scipy.org/doc/scipy-0.13.0/reference/misc.html

Chapter 3

[109]

Symbolic differentiation
Exact differentiation for polynomials can be achieved through the module numpy.
polynomial:

In [6]: p = np.poly1d([1,0,0,0,0,0]); \
 ...: print p
 5
1 x
In [7]: np.polyder(p,1)(1.0) In [7]: p.deriv()(1.0)
Out[7]: 5.0 Out[7]: 5.0
In [8]: np.polyder(p,2)(1.0) In [8]: p.deriv(2)(1.0)
Out[8]: 20.0 Out[8]: 20.0

Symbolic differentiation is another way to achieve exact results:

In [9]: from sympy import diff, symbols
In [10]: x = symbols('x', real=True)
In [11]: diff(x**5, x) In [12]: diff(x**5, x, x)
Out[11]: 5*x**4 Out[12]: 20*x**3
In [13]: diff(x**5, x).subs(x, 1.0)
Out[13]: 5.00000000000000
In [14]: diff(x**5, x, x).subs(x, 1.0)
Out[14]: 20.0000000000000

Note the slight improvement (both in notation and simplicity of coding) when we
differentiate more involved functions than simple polynomials. For example, for
g(x) = e-xsinx at x=1:

In [15]: def g(x): return np.exp(-x) * np.sin(x)
In [16]: derivative(g, 1.0, dx=1e-6, order=101)
Out[16]: -0.11079376536871781
In [17]: from sympy import sin as Sin, exp as Exp
In [18]: diff(Exp(-x) * Sin(x), x).subs(x, 1.0)
Out[18]: -0.110793765306699

A great advantage of symbolic differentiation over its numerical or automatic
counterparts is the possibility to compute partial derivatives with extreme ease.
Let's illustrate this point by calculating a fourth partial derivative of the multivariate
function h(x,y,z) = exyz at x=1, y=1, and z=2:

In [19]: y, z = symbols('y z', real=True)
In [20]: diff(Exp(x * y * z), z, z, y, x).subs({x:1.0, y:1.0, z:2.0})
Out[20]: 133.003009780752

Differentiation and Integration

[110]

Automatic differentiation
The third method employs automatic differentiation. For this example, we will use
the library FuncDesigner:

In [21]: from FuncDesigner import oovar, exp as EXP, sin as SIN
In [22]: X = oovar('X'); \
 : G = EXP(-X) * SIN(X)
In [23]: G.D({X: 1.0}, X)
Out[23]: -0.11079376530669924

The result is obviously more accurate than the one obtained with numerical
differentiation. Also, there was no need to provide any extra parameters.

Integration
To achieve a definite integration of functions on suitable domains, we have mainly
two methods—Numerical integration and Symbolic integration.

Numerical integration refers to the approximation of a definite integral by a
quadrature process. Depending on how the function f(x) is given, the domain
of integration, the knowledge of its singularities, and the choice of quadrature,
we have different ways to attack this problem:

• For univariate polynomials, exact integration is achieved algebraically on
each finite interval

• For functions given as a finite set of samples over their domain:
 ° The composite trapezoidal rule
 ° Simpson's trapezoidal rules
 ° Romberg integration scheme

• For generic univariate functions given as Python functions, on finite intervals:
 ° Fixed-order Gaussian quadrature
 ° Fixed-tolerance Gaussian quadrature
 ° Simple non-adaptive quadrature, by applying 21-, 43- and 87-point

Gauss-Kronron rules
 ° Simple adaptive quadrature, by subdivision and quadrature on

each subinterval

Chapter 3

[111]

• A blind global adaptive quadrature based on the 21-point Gauss-Kronrod
quadrature within each subinterval, with an acceleration process (the Peter
Wynn's epsilon algorithm):

 ° A global adaptive quadrature based on the previous, but with a
user-provided location of singularities/discontinuities

 ° An adaptive Romberg integration scheme

• For univariate functions given as Python functions on unbounded intervals,
there is a global adaptive quadrature. The process transforms the infinite
interval into a semi-open interval, and applies a 15-point Gauss-Kronrod
quadrature within each subinterval.

• For multivariate functions given as Python functions on type I domains
(which will be described shortly), a method that applies adaptive univariate
quadratures, iteratively on each dimension is generally used.

In many cases, it is also possible to perform exact integration, even for not-bounded
domains, with the aid of symbolic computation. In the SciPy stack, to this effect, we
have an implementation of the Risch algorithm for elementary functions, and Meijer
G-functions for non-elementary integrals. Both methods are housed in the SymPy
libraries. Unfortunately, these symbolic procedures do not work for all functions.
And due to the complexity of the generated codes, in general, the solutions obtained
by this method are by no means as fast as any numerical approximation.

Symbolic integration
The definite integral of a polynomial function on a finite domain [a,b] can be
computed very accurately via the Fundamental Theorem of Calculus, through
the module numpy.polynomial. For instance, to calculate the integral of the
polynomial p(x)=x5 on the interval [-1,1], we could issue:

In [1]: import numpy as np
In [2]: p = np.poly1d([1,0,0,0,0,0]); \
 ...: print p; \
 ...: print p.integ()
 5
1 x
 6
0.1667 x
In [3]: p.integ()(1.0) - p.integ()(-1.0)
Out[3]: 0.0

Differentiation and Integration

[112]

In general, obtaining exact values for a definite integral of a generic function
is hard and computationally inefficient. This is possible in some cases through
symbolic integration, with the aid of the Risch algorithm (for elementary functions)
and Meijer G-functions (for non-elementary integrals). Both methods can be called
with the common routine integrate in the library SymPy. The routine is clever enough
to decide which algorithm to use, depending on the source function.

Let's show you a few examples starting with the definite integral of the polynomial
from the previous case:

In [4]: from sympy import integrate, symbols
In [5]: x, y = symbols('x y', real=True)
In [6]: integrate(x**5, x)
Out[6]: x**6/6
In [7]: integrate(x**5, (x, -1, 1))
Out[7]: 0

Let's try something more complicated. The definite integral of the function
f(x) = e-xsinx on the interval [0,1]:

In [8]: from sympy import N, exp as Exp, sin as Sin
In [9]: integrate(Exp(-x) * Sin(x), x)
Out[9]: -exp(-x)*sin(x)/2 - exp(-x)*cos(x)/2
In [10]: integrate(Exp(-x) * Sin(x), (x, 0, 1))
Out[10]: -exp(-1)*sin(1)/2 - exp(-1)*cos(1)/2 + 1/2
In [11]: N(_)
Out[11]: 0.245837007000237

Symbolic integration, when it works, treats singularities the right way:

In [12]: integrate(Sin(x) / x, x)
Out[12]: Si(x)
In [13]: integrate(Sin(x) / x, (x, 0, 1))
Out[13]: Si(1)
In [14]: N(_)
Out[14]: 0.946083070367183
In [15]: integrate(x**(1/x), (x, 0, 1))
Out[15]: 1/2

Integration over unbounded domains is also possible:

In [16]: from sympy import oo
In [17]: integrate(Exp(-x**2), (x,0,+oo))
Out[17]: sqrt(pi)/2

Chapter 3

[113]

It is even possible to perform multivariate integration:

In [18]: integrate(Exp(-x**2-y**2), (x, -oo, +oo), (y, -oo, +oo))
Out[18]: pi

However, we need to stress this point strongly—symbolic integration is not efficient
(and might not work!) for simple cases, as the following example shows:

In [19]: integrate(Sin(x)**Sin(x), x)
Integral(sin(x)**sin(x), x)
In [20]: integrate(Sin(x)**Sin(x), (x, 0, 1))
Integral(sin(x)**sin(x), (x, 0, 1))

Even when it works for simple cases, it generates complicated code, and might use
too many computational resources.

Numerical integration
The optimal way to address these problems is to obtain good approximations
instead, with the aid of numerical integration. There are different techniques,
according to the type of function and integration domain. Let's examine them
in detail.

Functions without singularities on finite intervals
The basic problem in numerical integration is the approximation to the definite
integral of any function f(x) on a finite interval [a,b]. In general, if the function
f(x) does not have singularities or discontinuities, we can obtain easy quadrature
formulas by integrating different interpolations with piecewise polynomials
(since these are evaluated exactly):

• The composite trapezoidal rule is achieved by integration of a piecewise
linear interpolator (every two consecutive nodes)

• Simpson's rule is achieved by integrating a piecewise polynomial
interpolator, where every two consecutive subintervals we fit a parabola

• In the previous case, if we further impose Hermite interpolation, we obtain
the composite Simpson's rule

Differentiation and Integration

[114]

We have efficient algorithms for composite trapezoidal and composite Simpson's
rules in the module scipy.integrate through the routines cumtrapz and simps,
respectively. Let's show you how to use these simple quadrature formulas for the
polynomial example:

In [21]: from scipy.integrate import cumtrapz, simps
In [22]: def f(x): return x**5
In [23]: nodes = np.linspace(-1, 1, 100)
In [24]: simps(f(nodes), nodes)
Out[24]: -1.3877787807814457e-17
In [25]: cumtrapz(f(nodes), nodes)
Out[25]:
array([-1.92221161e-02, -3.65619927e-02, -5.21700680e-02,
 -6.61875756e-02, -7.87469280e-02, -8.99720915e-02,
 -9.99789539e-02, -1.08875683e-01, -1.16763077e-01,
 -1.23734908e-01, -1.29878257e-01, -1.35273836e-01,
 -1.39996314e-01, -1.44114617e-01, -1.47692240e-01,
 -1.50787532e-01, -1.53453988e-01, -1.55740523e-01,
 -1.57691741e-01, -1.59348197e-01, -1.60746651e-01,
 -1.61920310e-01, -1.62899066e-01, -1.63709727e-01,
 -1.64376231e-01, -1.64919865e-01, -1.65359463e-01,
 -1.65711607e-01, -1.65990811e-01, -1.66209700e-01,
 -1.66379187e-01, -1.66508627e-01, -1.66605982e-01,
 -1.66677959e-01, -1.66730153e-01, -1.66767180e-01,
 -1.66792794e-01, -1.66810003e-01, -1.66821177e-01,
 -1.66828145e-01, -1.66832283e-01, -1.66834598e-01,
 -1.66835799e-01, -1.66836364e-01, -1.66836598e-01,
 -1.66836678e-01, -1.66836700e-01, -1.66836703e-01,
 -1.66836703e-01, -1.66836703e-01, -1.66836703e-01,
 -1.66836700e-01, -1.66836678e-01, -1.66836598e-01,
 -1.66836364e-01, -1.66835799e-01, -1.66834598e-01,
 -1.66832283e-01, -1.66828145e-01, -1.66821177e-01,
 -1.66810003e-01, -1.66792794e-01, -1.66767180e-01,
 -1.66730153e-01, -1.66677959e-01, -1.66605982e-01,
 -1.66508627e-01, -1.66379187e-01, -1.66209700e-01,
 -1.65990811e-01, -1.65711607e-01, -1.65359463e-01,
 -1.64919865e-01, -1.64376231e-01, -1.63709727e-01,
 -1.62899066e-01, -1.61920310e-01, -1.60746651e-01,
 -1.59348197e-01, -1.57691741e-01, -1.55740523e-01,
 -1.53453988e-01, -1.50787532e-01, -1.47692240e-01,
 -1.44114617e-01, -1.39996314e-01, -1.35273836e-01,
 -1.29878257e-01, -1.23734908e-01, -1.16763077e-01,
 -1.08875683e-01, -9.99789539e-02, -8.99720915e-02,
 -7.87469280e-02, -6.61875756e-02, -5.21700680e-02,
 -3.65619927e-02, -1.92221161e-02, -1.73472348e-17])

Chapter 3

[115]

The routine cumtrapz computes cumulative integrals over the
designated subintervals. The last entry of the output is therefore
the value of the quadrature we seek. We could, of course, report
only the required integral by simply accessing that entry:
In [26]: cumtrapz(f(nodes), nodes)[-1]

Out[26]: -1.7347234759768071e-17

The implementation of these two algorithms does not compute the interpolators
explicitly. The final formulas are the target here, and the way it is coded in SciPy
is by means of Newton-Cotes quadratures.

The routines to perform Newton-Cotes are hidden (in the sense that they are not
reported in the tutorials or documentation in the official pages of SciPy) and are
meant to be used only internally by cumtrapz or simps. They provide only the
corresponding coefficients that multiply the function evaluation at the nodes.

However, Newton-Cotes quadrature formulas are usually very accurate by themselves
in the right scenarios. They can be used to compute better approximations in many
cases, without being subjected to conform to trapezoidal or Simpson's rules.

Let's show you how it works for our running example, now with only four equally
spaced nodes in the interval [-1,1]:

In [27]: from scipy.integrate import newton_cotes
In [28]: coefficients, abs_error = newton_cotes(3, equal=True); \
 : nodes = np.linspace(-1, 1, 4); \
 : print coefficients
[0.375 1.125 1.125 0.375]
In [29]: integral = (coefficients * f(nodes)).sum(); \
 : print integral
0.0
In [30]: from math import fsum
In [31]: integral = fsum(coefficients * f(nodes)); \
 : print integral
-7.8062556419e-18

If the nodes of our choice happen to be equally spaced, then there is an improvement
of the trapezoidal rule in a special case—if the number of subintervals is a power
of two. In that case, we may use the Romberg rule—an improvement that uses the
Richardson extrapolation. We can access it with the routine romb in the same module.

Differentiation and Integration

[116]

Let's compare results with our running example, this time using 64 subintervals of
size 1/32 in the interval [-1,1]:

In [32]: from scipy.integrate import romb
In [33]: nodes = np.linspace(-1, 1, 65)
In [34]: romb(f(nodes), dx=1./32)
0.0

We have the option to report the table that shows the Richardson extrapolation from
the given nodes:

In [35]: romb(f(nodes), dx=1./32, show=True)
 Richardson Extrapolation Table for Romberg Integration
==
 0.00000
 0.00000 0.00000
 0.00000 0.00000 0.00000
 0.00000 0.00000 0.00000 0.00000
 0.00000 0.00000 0.00000 0.00000 0.00000
 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
==
Out[35]: 0.0

We might not have any preference for the choice of nodes, but still have our mind
set in using Romberg's rule for our numerical integration scheme. In that case, we
could use the routine romberg, for which we only need to provide the expression
of a function and the limits of integration. Optionally, we can provide absolute or
relative tolerances for the error (which are both set by default to 1.48e-8):

In [36]: from scipy.integrate import romberg

In [37]: romberg(f, -1, 1, show=True)

Romberg integration of <function vfunc at 0x10ffa8c08> from [-1, 1]

 Steps StepSize Results

 1 2.000000 0.000000

 2 1.000000 0.000000 0.000000

The final result is 0.0 after 3 function evaluations.

Out[37]: 0.0

Chapter 3

[117]

Another possibility is to use Gaussian quadrature formulas. These are more powerful,
since the accuracy of the approximations is gained through computing, internally,
the best possible choice of nodes. There are two basic routines in the module scipy.
integrate that perform implementations of this algorithm: quadrature, if we want
to specify tolerance, or fixed_quad, if we wish to specify the number of nodes
(but not their locations!):

In [38]: from scipy.integrate import quadrature, fixed_quad
In [39]: value, absolute_error = quadrature(f, -1, 1, tol=1.49e-8); \
 : print value
0.0
In [40]: value, absolute_error = fixed_quad(f, -1, 1, n=4); \
 : print value # four nodes
-9.45424294407e-16

A more advanced method to perform Gaussian quadrature, using an adaptive
scheme, is obtained through the function quad in the module scipy.integrate.
This function is a wrapper of the routine QAGS in the Fortran library QUADPACK. The
algorithm breaks the domain of integration into several subintervals and on each of
them, performs a 21-point Gaussian-Kronrod quadrature rule. Further acceleration
is achieved with Peter Wynn's epsilon algorithm.

For more information on QAGS as well as the other routines
in the QUADPACK libraries, refer to the netlib repositories:
http://www.netlib.org/quadpack/.

Let's compare this with our running example:

In [41]: from scipy.integrate import quad
In [42]: value, absolute_error = quad(f, -1, 1); \
 : print value
0.0

We could obtain implementation details by setting the optional argument full_output
to True. This gives us an additional Python dictionary with useful information:

In [43]: value, abs_error, info = quad(f, -1, 1, full_output=True)
In [44]: info.keys()
Out[44]: ['rlist', 'last', 'elist', 'iord', 'alist', 'blist',
 'neval']
In [45]: print "{0} function evaluations".format(info['neval'])
21 function evaluations
In [46]: print "Used {0} subintervals".format(info['last'])
Used 1 subintervals

http://www.netlib.org/quadpack/

Differentiation and Integration

[118]

To fully understand all the different outputs of info, we need to know about
the underlying algorithm computing the Gaussian quadratures. These particular
routines use the Clensaw-Curtis method, a technique based on Chebyshev moments.

In the preceding example, by default, the code tried to use 50 Chebyshev moments.
Due to the simplicity of the integrand, and since only one subinterval was needed, it
was necessary only to use one of those moments. When we report the 50-entry one-
dimensional outputs rlist, elist, alist, and blist from the dictionary info, we
can disregard the information offered by the last 49 entries of each of them:

In [47]: np.set_printoptions(precision=2, suppress=True)
In [48]: print info['rlist'] # integral approx on subintervals
[0.00e+000 2.32e+077 6.93e-310 0.00e+000 0.00e+000
 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
 0.00e+000 6.45e-314 2.19e-314 6.93e-310 0.00e+000
 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
 0.00e+000 0.00e+000 -1.48e-224 2.19e-314 6.93e-310
 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000]
In [49]: print info['elist'] # abs error estimates on subintervals
[3.70e-015 2.32e+077 3.41e-322 0.00e+000 0.00e+000
 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
 0.00e+000 0.00e+000 0.00e+000 0.00e+000 7.30e+245
 2.19e-314 6.93e-310 0.00e+000 0.00e+000 0.00e+000
 4.74e+246 2.20e-314 6.93e-310 0.00e+000 0.00e+000
 0.00e+000 0.00e+000 0.00e+000 0.00e+000 -9.52e+207
 2.19e-314 6.93e-310 0.00e+000 0.00e+000 0.00e+000
 0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
 0.00e+000 2.00e+000 2.00e+000 2.27e-322 1.05e-319]
In [50]: print info['alist'] # subintervals left end points
[-1. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0.]
In [51]: print info['blist'] # subintervals right end pts
[1. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
 0. 0. 0. 2. -0.]

Chapter 3

[119]

It is possible to impose a different number of Chebyshev moments to be used.
We do so with the optional parameter maxp1, which imposes an upper bound
to this number (rather than fixing it, for optimal results).

Oscillatory integrals of the form f(x)cos(wx) or f(x)sin(wx), even when f(x) is smooth,
are especially tricky. The integrator quad can tackle these integrals by calling the
routine QAWO in QUADPACK. We can employ this method by specifying the arguments
weight='cos' or weight='sin', with wvar=w.

For example, for the integral of g(x) = sin(x)ex on the interval [-10,10],
we compare this method with a basic quad. We could do the following:

In [52]: def f(x): return np.sin(x) * np.exp(x)
In [53]: g = np.exp
In [54]: quad(g, -10, 10, weight='sin', wvar=1)
Out[54]: (3249.4589405744427, 5.365398805302381e-08)
In [55]: quad(f, -10, 10)
Out[55]: (3249.458940574436, 1.1767634585879705e-05)

Note the significant gain in absolute error.

For details and the theory behind all the quadrature formulas that we
have explored in this section, a good reference is Chapter 3, Numerical
Differentiation and Integration of Walter Gautchi's Numerical Analysis.

Functions with singularities on bounded domains
The second case of integration is that of definite integrals on a finite interval [a,b]
of functions with singularities. We contemplate two cases: weighted functions and
generic functions with singularities.

Weighted functions
Weighted functions can be realized as products of the f(x)w(x) kind for some smooth
function f(x) with a non-negative weight function w(x) containing singularities.
An illustrative example is given by cos(πx/2)/√x. We could regard this case as the
product of cos(πx/2) with w(x)=1/√x. The weight presents a single singularity at x=0,
and is smooth otherwise.

The usual way to treat these integrals is by means of weighted Gaussian quadrature
formulas. For example, to perform principal value integrals of functions of the form
f(x)/(x-c), we issue quad with the arguments weight='cauchy' and wvar=c. This
calls the routine QAWC from QUADPACK.

Differentiation and Integration

[120]

Let's experiment with the Fresnel-type sine integral of g(x) = sin(x)/x on the interval
[-1,1] and compare it with romberg:

In [56]: value, abs_error = quad(f, -1, 1, weight='cauchy',wvar=0); \
 : print value
1.89216614073
In [57]: romberg(g, -1, 1)
Out[57]: 2.35040238729

In the case of integrals of functions with weights (x-a)α(b-x)β, where a and b are the
endpoints of the domain of integration and both alpha and beta are greater than -1,
we issue quad with the arguments weight='alg' and wvar=(alpha, beta). This
calls the routine QAWS from QUADPACK.

Let's experiment with the Fresnel-type cosine integral of g(x)=cos(πx/2)/√x on the
interval [0,1] and compare it with quadrature:

In [58]: def f(x): return np.cos(np.pi * x * 0.5)
In [59]: def g(x): return np.cos(np.pi * x * 0.5) / np.sqrt(x)
In [60]: value, abs_error = quad(f, 0, 1, weight='alg', \
 wvar=(-0.5,0)); \
 : print value
1.55978680075
In [61]: quadrature(g, 0, 1)
quadrature.py:178: AccuracyWarning: maxiter (50) exceeded. Latest
difference = 3.483182e-04
 AccuracyWarning)
Out[61]: (1.5425452942607543, 0.00034831815190772275)

If the weight has the form w(x)=(x-a)α(b-x)βln(x-a), w(x)=(x-a)α(b-x)βln(b-x),
or w(x)=(x-a)α(b-x)βln(x-a)ln(b-x), we issue quad with the arguments
weight='alg-loga', or weight='alg-logb' or weight='alg-log' respectively,
and in each case, wvar=(alpha, beta). For example, for the function g(x)=x2ln(x)
on the interval [0,1], we could issue the following:

In [62]: def f(x): return x**2
In [63]: def g(x): return x**2 * np.log(x)
In [64]: value, abs_error = quad(f, 0, 1, weight='alg-loga', \
 wvar=(0,0)); \
 : print value
-0.111111111111

The actual value of this integral is -1/9.

Chapter 3

[121]

General functions with singularities
In general, we might be handling functions with singularities that do not conform to
the nice forms f(x)w(x) that were indicated in the previous section. In that case, if we
are aware of the locations of the singularities, we could indicate so to the integrator
quad with the optional argument points. The integrator quad calls the routine
QAGP in QUADPACK. For example, for the function g(x) = floor(x)ln(x) that observes
a singularity on each integer number, to integrate on the interval [1,8], we could
issue the following:

In [65]: def g(x): return np.floor(x) * np.log(x)
In [66]: quad(g, 1, 8, points=np.arange(8)+1)
Out[66]: (45.802300241541005, 5.085076830895319e-13)

Compare this to a simple quad computation without indicating any singularities,
as the next lines of code show:

In [67]: quad(g, 1, 8)
quadpack.py:295: UserWarning: The maximum number of subdivisions (50)
has been achieved.
 If increasing the limit yields no improvement it is advised to
analyze the integrand in order to determine the difficulties. If the
position of a local difficulty can be determined (singularity,
discontinuity) one will probably gain from splitting up the interval
and calling the integrator on the subranges. Perhaps a special-
purpose integrator should be used.
 warnings.warn(msg)
Out[67]: (45.80231242134967, 8.09803045669355e-05)

Integration on unbounded domains
The versatile integrator quad is also able to compute definite integrals on unbounded
domains using adaptive quadrature formulas, by means of a call to the routine QAGI
from QUADPACK. This process does not work with 'cauchy', or any of the 'alg'-type
weight options.

In general, if the functions to integrate do not present singularities, the approximations
are reliable. The presence of singularities gives unreliable integrals, as the following
example suggests:

In [68]: def f(x): return 2 * np.exp(-x**2) / np.sqrt(np.pi)
In [69]: value, absolute_error = quad(f, 0, np.inf); \
 : print value
1.0
In [70]: def f(x): return np.sin(x)/x
In [71]: integrate(Sin(x)/x, (x, 0, oo))

Differentiation and Integration

[122]

Out[71]: pi/2
In [72]: value, absolute_error = quad(f, 0, np.inf); \
 : print value # ouch!
2.24786796347

In the case of oscillatory integrals in unbounded domains, besides issuing quad with
the argument weight='cos' or weight='sin' and the corresponding wvar parameter,
we can also place an upper bound on the number of cycles to use internally. We do so
by setting the optional argument limlst to the desired bound. It is usually a good idea
to set it to something larger than three. For example, for the Fourier-like integral of the
sinc function on [1, ∞], we could issue the following command:

In [73]: def f(x): return 1./x
In [74]: quad(f, 1, np.inf weight='sin', wvar=1, limlst=5)
quadpack.py:295: UserWarning: The maximum number of cycles allowed
has been achieved., e.e. of subintervals (a+(k-1)c, a+kc) where c =
(2*int(abs(omega)+1))*pi/abs(omega), for k = 1, 2, ..., lst. One can
allow more cycles by increasing the value of limlst. Look at
info['ierlst'] with full_output=1.
 warnings.warn(msg)
Out[74]: (0.636293340511029, 1.3041427865109276)
In [75]: quad(f, 1, np.inf, weight='sin', wvar=1, limlst=50)
Out[75]: (0.6247132564795975, 1.4220476353655983e-08)

Numerical multivariate integration
It is also possible to perform multivariate numerical integration on different domains,
through application of adaptive Gaussian quadrature rules. In the module scipy.
integrate, we have to this effect the routines dblquad (double integrals), tplquad
(triple integrals), and nquad (integration over multiple variables).

These routines can only compute definite integrals over type I regions:

• In two dimensions, a type I domain can be written in the form {(x,y) : a<x<b,
f(x)<y<h(x)} for two numbers a and b and two univariate functions f(x) and
h(x).

• In three dimensions, a type I region can be written in the form
{(x,y,z) : a<x<b, f(x)<y<h(x), q(x,y)<z<r(x,y)} for numbers a, b, univariate
functions f(x), h(x), and bivariate functions q(x,y), r(x,y).

Chapter 3

[123]

• In more than three dimensions, type I regions can be written sequentially in
a similar manner as its double and triple counterparts. The first variable is
bounded by two numbers. The second variable is bounded by two univariate
functions of the first variable. The third variable is bounded by two bivariate
functions of the two first variables, and so on.

Let's run a numerical integration over the function of the example in line In [18].
Note the order in which the different variables must be introduced in the definition
of the function to be integrated:

In [76]: def f(x, y): return np.exp(-x**2 - y**2)
In [77]: from scipy.integrate import dblquad
In [78]: dblquad(f, 0, np.inf, lambda x:0, lambda x:np.inf)
Out[78]: (0.785398163397, 6.29467149642e-09)

Summary
In this chapter, we have mastered all the different methods to compute differentiation
and integration of functions. We learned that the scipy libraries have very robust
routines to compute approximations of all these operations numerically (wrapping
efficient Fortran libraries when necessary). We also learned that it is possible to
access other libraries in the SciPy stack to perform the operations in a symbolic
or an automatic way.

In the next chapter, we will explore the theory and methodology to solve equations
or systems of equations, in the context of nonlinear functions, as well as computing
extrema for optimization purposes.

[125]

Nonlinear Equations
and Optimization

In this chapter, we will review two basic operations that are fundamental to
the development of Numerical Mathematics: the search of zeros and extrema
of real-valued functions.

Motivation
Let's revisit Runge's example from Chapter 2, Interpolation and Approximation, where
we computed a Lagrange interpolation of Runge's function using eleven equally
spaced nodes in the interval from -5 to 5:

In [1]: import numpy as np, matplotlib.pyplot as plt; \

 ...: from scipy.interpolate import BarycentricInterpolator

In [2]: def f(t): return 1. / (1. + t**2)

In [3]: nodes = np.linspace(-5, 5, 11); \

 ...: domain = np.linspace(-5, 5, 128); \

 ...: interpolant = BarycentricInterpolator(nodes, f(nodes))

In [4]: plt.figure(); \

 ...: plt.subplot(121); \

 ...: plt.plot(domain, f(domain), 'r-', label='original'); \

 ...: plt.plot(nodes, f(nodes), 'ro', label='nodes'); \

 ...: plt.plot(domain, interpolant1(domain), 'b--',

 ...: label='interpolant'); \

 ...: plt.legend(loc=9); \

 ...: plt.subplot(122); \

Nonlinear Equations and Optimization

[126]

 ...: plt.plot(domain, np.abs(f(domain)-interpolant1(domain))); \

 ...: plt.title('error or interpolation'); \

 ...: plt.show()

One way to measure the success or failure of this scheme is by computing the
uniform norm of the difference between the original function and the interpolation.
In this particular case, that norm is close to 2.0. We could approximate this value by
performing the following computation on a large set of points in the domain:
In [5]: error1a = np.abs(f(domain)-interpolant(domain)).max(); \

 ...: print error1a

1.91232007608

However, this is a crude approximation of the actual error. To compute the true
norm, we need a mechanism that calculates the actual maximum value of a function
over a finite interval, rather than over a discrete set of points. To perform this
operation for the current example, we will use the routine minimize_scalar from
the module scipy.optimize.
Let's solve this problem in two different ways, to illustrate one possible pitfall of
optimization algorithms:

• In the first case, we will exploit the symmetry of the problem (both f and
interpolator are even functions) and extract the maximum value of the
norm of their difference in the interval from 0 to 5

• In the second case, we perform the same operation over the full interval from
-5 to 5.

Chapter 4

[127]

We will draw conclusions after the computations:

In [6]: from scipy.optimize import minimize_scalar

In [7]: def uniform_norm(func, a, b):

 ...: g = lambda t: -np.abs(func(t))

 ...: output = minimize_scalar(g, method="bounded",

 ...: bounds=(a, b))

 ...: return -output.fun

 ...:

In [8]: def difference(t): return f(t) - interpolant(t)

In [9]: error1b = uniform_norm(difference, 0., 5.)

 ...: print error1b

1.9156589182259303

In [10]: error1c = uniform_norm(difference, -5., 5.); \

 : print error1c

0.32761452331581842

What did just happen? The routine minimize_scalar uses an
iterative algorithm that got confused by the symmetry of the problem
and converged to one local maximum, rather than the requested
global maximum.
This first example illustrates one of the topics of this chapter
(and its dangers): the computation of constrained extrema for
real-valued functions.

The approximation is obviously not very good. A theorem by Chebyshev states that
the best polynomial approximation is achieved with a smart choice of nodes—the
zeros of the Chebyshev polynomials precisely! We can gather all these roots by using
the routine t_roots from the module scipy.special. In our running example, the
best choice of 11 nodes will be based upon the roots of the 11-degree Chebyshev
polynomial, properly translated over the interval of the interpolation:

In [11]: from scipy.special import t_roots

In [12]: nodes = 5 * t_roots(11)[0]; \

 : print nodes

[-4.94910721e+00 -4.54815998e+00 -3.77874787e+00 -2.70320409e+00

 -1.40866278e+00 -1.34623782e-15 1.40866278e+00 2.70320409e+00

 3.77874787e+00 4.54815998e+00 4.94910721e+00]

In [13]: interpolant = BarycentricInterpolator(nodes, f(nodes))

Nonlinear Equations and Optimization

[128]

In [14]: plt.figure(); \

 : plt.subplot(121); \

 : plt.plot(domain, f(domain), 'r-', label='original'); \

 : plt.plot(nodes, f(nodes), 'ro', label='nodes'); \

 : plt.plot(domain, interpolant(domain), 'b--',

 : label='interpolant')); \

 : plt.subplot(122); \

 : plt.plot(domain, np.abs(f(domain)-interpolant(domain))); \

 : plt.title('error or interpolation'); \

 : plt.show()

This is a significant improvement in the quality of the interpolator. All thanks to the
well-placed nodes that we computed as the roots of a polynomial. Let's compute
the uniform norm of this interpolation:

In [15]: def difference(t): return f(t) - interpolant(t)

In [16]: error2 = uniform_norm(difference, 0., 2.)

 : print error2

0.10915351095

Chapter 4

[129]

For some recurrent cases, such as the example of the zeros of Chebyshev polynomials,
the module scipy.special has routines that collect those values with prescribed
accuracy. For a complete list of those special cases, refer to the online documentation of
scipy.special at http://docs.scipy.org/doc/scipy/reference/special.html.

For general cases, we would like to have a good set of techniques to get roots. This is
precisely the other topic discussed in this chapter.

Non-linear equations and systems
In the solution of linear equations and systems, f(x) = 0, we had the choice of using
either direct methods or iterative processes. A direct method in that setting was
simply the application of an exact formula involving only the four basic operations:
addition, subtraction, multiplication, and division. The issues with this method
arise when cancellation occurs, mainly whenever sums and subtractions are present.
Iterative methods, rather than computing a solution in a finite number of operations,
calculate closer and closer approximations to the said solution, improving the
accuracy with each step.

In the case of nonlinear equations, direct methods are seldom a good idea. Even when
a formula is available, the presence of nonbasic operations leads to uncomfortable
rounding errors. Let's see this using a very basic example.

Consider the quadratic equation ax2 + bx + c = 0, with a = 10–10,
b = –(1010 + 1)/1010, and c = 1. These are the coefficients of the expanded version of the
polynomial p(x) = 10–10(x–1)(x–1010), with the obvious roots x = 1 and x = 1010. Notice
the behavior of the quadratic formula in the following command:

In [1]: import numpy as np

In [2]: a, b, c = 1.0e-10, -(1.0e10 + 1.)/1.0e10, 1.

In [3]: (-b - np.sqrt(b**2 - 4*a*c))/(2*a)

Out[3]: 1.00000000082740371

A notable rounding error due to cancellation has spread. It is possible to fix the
situation, in this case, by multiplying the numerator and denominator of this formula
by the conjugate of its denominator, and using the resulting formula instead:

In [4]: 2*c / (-b + np.sqrt(b**2 - 4*a*c))

Out[4]: 1.0

http://docs.scipy.org/doc/scipy/reference/special.html

Nonlinear Equations and Optimization

[130]

Even the algebraic solvers coded in the sympy libraries share this defect, as the
following example shows:

The sympy libraries have a set of algebraic solvers, and all of them are
accessed from the common routine solve. Currently, this method
solves univariate polynomials, transcendental equations, and a
piecewise combination of them. It also solves systems of linear and
polynomial equations.
For more information, refer to the official documentation for sympy at
http://docs.sympy.org/dev/modules/solvers/solvers.html.

In [5]: from sympy import symbols, solve

In [6]: x = symbols('x', real=True)

In [7]: solve(a*x**2 + b*x + c)

Out[7]: [1.00000000000000, 9999999999.00000]

To avoid having to second-guess the accuracy of our solutions or fine-tune each
possible formula that solves a nonlinear equation, we can always adopt iterative
processes to achieve arbitrarily close approximations.

Iterative methods for univariate functions
Iterative processes for scalar functions can be divided in to three categories:

• Bracketing methods, where the algorithms track the endpoints of an interval
containing a root. We have the following algorithms:

 ° Bisection Method
 ° Regula falsi (false position method)

• Secant methods, with the following algorithms:
 ° The secant method
 ° The Newton-Raphson method
 ° The interpolation method
 ° The inverse interpolation method
 ° The fixed-point iteration method

• Brent method, which is a combination of the bisection, secant, and inverse
interpolation methods.

Now, let's explore the methods included in the SciPy stack.

http://docs.sympy.org/dev/modules/solvers/solvers.html

Chapter 4

[131]

Bracketing methods
The most basic algorithm is the method of bisection—given a continuous function
f(x) in the interval [a, b] satisfying f(a)f(b) < 0. This method constructs a sequence
of approximations by bisecting intervals and keeping the subinterval where
the solution is present. It is a slow process (linear convergence), but it never
fails to converge to a solution. In the module scipy.optimize, we have one
implementation, the routine bisect.

Let's explore this method first with our running example. Since the signs of p(0) and
p(2) are different, there must be a root in the interval [0, 2]:

In [8]: from scipy.optimize import bisect

In [9]: p = np.poly1d([a,b,c])

In [10]: bisect(p, 0, 2)

Out[10]: 1.0

Note that we chose to represent p(x) with a numpy.poly1d class.
Whenever we need to work with polynomials, the optimal way to
handle them in SciPy is by means of this class. This ensures evaluation
of the polynomials using a Horner scheme, which provides faster
computations than with any other lambda representation.
For polynomials with a very high degree, however, the Horner scheme
might be inaccurate due to rounding errors from cancellation. Caution
must be used in those cases.

One issue with the method of bisection is that it is very sensitive to the choice
of initial endpoints, but in general, the quality of the computed solutions can be
improved by requesting proper tolerances, as shown in the following example:

In [11]: bisect(p, -1, 2)

Out[11]: 1.0000000000002274

In [12]: bisect(p, -1, 2, xtol=1e-15)

Out[12]: 0.9999999999999996

In [13]: bisect(p, -1, 2, xtol=1e-15, rtol=1e-15)

Out[13]: 1.0000000000000009

More advanced sets of techniques are based upon regula falsi. Given an interval [a, b]
that contains a root of the function f(x), compute the line that goes through the points
(a, f(a)) and (b, f(b)). This line intersects the x axis inside [a, b]. We use this point
for the next bracketing step. In the module scipy.optimize, we have the routine
ridder (an improvement of regula falsi based on an algorithm developed by C.
Ridders), which presents quadratic convergence.

Nonlinear Equations and Optimization

[132]

To illustrate the difference in behavior between any solvers, we might use the
optional output RootResult of each algorithm, as the following session shows:

In [14]: soln, info = bisect(p, -1, 2, full_output=True)

In [15]: print "Iterations: {0}".format(info.iterations)

Iterations: 42

In [16]: print "Function calls: {0}".format(info.function_calls)

Function calls: 44

In [17]: from scipy.optimize import ridder

In [18]: soln, info = ridder(p, -1, 2, full_output=True)

In [19]: print "Solution: {0}".format(info.root)

Solution: 1.0

In [20]: print "Iterations: {0}".format(info.iterations)

Iterations: 1

In [21]: print "Function calls: {0}".format(info.function_calls)

Function calls: 4

Secant methods
The next step of techniques is based on the secant method and its limit cases. The
secant method is very similar to regula falsi computationally. Instead of bracketing the
root, we start with any two initial guesses x0, x1, and compute the intersection x2 of the
line through (x0, f(x0)) and (x1, f(x1)). The next step repeats the same operation on the
guesses x1, x2 to compute a new approximation x3, and the process is repeated until
a satisfactory approximation to the root is attained.

Improvements on this method can be obtained by employing smarter choices than
the secant line to search for intersections with the x axis. The Newton-Raphson
method uses a first derivative of f(x) to compute a better intersecting line. The Halley
method employs both first and second derivatives of f(x) to compute the intersection
of an arc of parabola with the x axis.

The secant method has an order of convergence of approximately 1.61803, while
Newton-Raphson is quadratic and Halley is cubic.

For scalar functions, all three methods (secant, Newton, Halley) can be accessed
with the common routine newton in the module scipy.optimize. The obligatory
parameters for the routine are the function f(x), together with an initial guess x0.

Chapter 4

[133]

Let's work on a more complex example involving the equation sin(x)/x = 0:

In [22]: from scipy.optimize import newton; \

 : from sympy import sin as Sin, pi, diff, lambdify

In [23]: def f(t): return np.sin(t)/t

In [24]: f0 = Sin(x)/x

In [25]: f1prime = lambdify(x, diff(f0, x), "numpy"); \

 : f2prime = lambdify(x, diff(f0, x, 2), "numpy")

In [26]: solve(f0, x)

Out[26]: [pi]

In [27]: newton(f, 1) # pure secant

Out[27]: 3.1415926535897931

In [28]: newton(f, 1, fprime=f1prime) # Newton-Raphson

Out[28]: 3.1415926535897931

In [29]: newton(f, 1, fprime=f1prime, fprime2=f2prime) # Halley

Out[29]: 3.1415926535897931

An issue with any of these three methods is that convergence is not always
guaranteed. The routine newton has a mechanism that prevents the algorithm from
going over a certain number of steps and, when this happens, it raises a runtime
error that informs us of that situation. A classical example of bad behavior in the
Newton-Raphson method and the Halley method occurs with the equation x20 = 1
(which has the obvious roots x = 1 and x = –1), if our initial guess happens to be
x = 0.5:

In [30]: solve(x**20 - 1, x)

Out[30]:

[-1,

 1,

 -sqrt(-sqrt(5)/8 + 5/8) + I/4 + sqrt(5)*I/4,

 -sqrt(-sqrt(5)/8 + 5/8) - sqrt(5)*I/4 - I/4,

 sqrt(-sqrt(5)/8 + 5/8) + I/4 + sqrt(5)*I/4,

 sqrt(-sqrt(5)/8 + 5/8) - sqrt(5)*I/4 - I/4,

 -sqrt(sqrt(5)/8 + 5/8) - I/4 + sqrt(5)*I/4,

 -sqrt(sqrt(5)/8 + 5/8) - sqrt(5)*I/4 + I/4,

 sqrt(sqrt(5)/8 + 5/8) - I/4 + sqrt(5)*I/4,

 sqrt(sqrt(5)/8 + 5/8) - sqrt(5)*I/4 + I/4]

In [31]: coeffs = np.zeros(21); \

 : coeffs[0] = 1; \

Nonlinear Equations and Optimization

[134]

 : coeffs[20] = -1; \

 : p = np.poly1d(coeffs); \

 : p1prime = p.deriv(m=1); \

 : p2prime = p.deriv(m=2)

In [32]: newton(p, 0.5, fprime=p1prime)

RuntimeError: Failed to converge after 50 iterations, value is
2123.26621974

In [33]: newton(p, 0.5, fprime=p1prime, fprime2=p2prime)

RuntimeError: Failed to converge after 50 iterations, value is
2.65963902147

There is yet another technique to approximate solutions to nonlinear scalar equations
iteratively, via fixed point iterations. This is very convenient when our equations can
be written in the form x = g(x), for example, since the solution to the equation will be
a fixed point of the function g.

In general, for any given equation f(x) = 0, there is always a convenient way to
rewrite it as a fixed point problem x = g(x). The standard way would be to write
g(x) = x + f(x), of course, but this does not necessarily provide the best setting.
There are many other possibilities out there.

To calculate iteration to a fixed point, we have the routine fixed_point in the
module scipy.optimize. This implementation is based in an algorithm by
Steffensen, using a smart convergence acceleration by Aitken:

In [34]: def g(t): return np.sin(t)/t + t

In [35]: from scipy.optimize import fixed_point

In [36]: fixed_point(g, 1)

Out[36]: 3.1415926535897913

Brent method
Developed by Brent, Dekker, and van Wijngaarten, an even more advanced
(and faster) algorithm arises when combining the secant and bisection methods with
inverse interpolation. In the module scipy.optimize, we have two variations of this
algorithm: brentq (using inverse quadratic interpolation) and brenth (using inverse
hyperbolic interpolation). They both start as a bracketing method and require, as input,
an interval that contains a root of the function f(x).

Let's compare these two variations of the Brent method to the bracketing methods,
with the equation sin(x)/x = 0:

In [37]: soln, info = bisect(f, 1, 5, full_output=True); \

 : list1 = ['bisect', info.root, info.iterations,

Chapter 4

[135]

 : info.function_calls]

In [38]: soln, info = ridder(f, 1, 5, full_output=True); \

 : list2 = ['ridder', info.root, info.iterations,

 : info.function_calls]

In [39]: from scipy.optimize import brentq, brenth

In [40]: soln, info = brentq(f, 1, 5, full_output=True); \

 : list3 = ['brentq', info.root, info.iterations,

 : info.function_calls]

In [41]: soln, info = brenth(f, 1, 5, full_output=True); \

 : list4 = ['brenth', info.root, info.iterations,

 : info.function_calls]

In [42]: for item in [list1, list2, list3, list4]:

 : print "{0}: x={1}. Iterations: {2}. Calls: {3}".
format(*item)

 :

bisect: x=3.14159265359. Iterations: 42. Calls: 44

ridder: x=3.14159265359. Iterations: 5. Calls: 12

brentq: x=3.14159265359. Iterations: 10. Calls: 11

brenth: x=3.14159265359. Iterations: 10. Calls: 11

Systems of nonlinear equations
In this section, we aim to find solutions of systems of scalar or multivariate functions,
F(X) = 0, where F represents a finite number N of functions, each of them accepting
as a variable a vector X of dimension N.

In the case of systems of algebraic or transcendental equations, symbolic
manipulation is a possibility. When the dimensions are too large, it is nonetheless
very impractical. A few examples to illustrate this point should suffice.

Let's start with a very easy case that can be readily solved by elimination: the
intersection of a circle (x2 + y2 = 16) with a parabola (x2 – 2y = 8):

In [1]: import numpy as np; \

 ...: from sympy import symbols, solve

In [2]: x,y = symbols('x y', real=True)

In [3]: solutions = solve([x**2 + y**2 - 16, x**2 - 2*y -8])

In [4]: for item in solutions:

 ...: print '({0}, {1})'.format(item[x], item[y])

Nonlinear Equations and Optimization

[136]

 ...:

(0, -4)

(0, -4)

(-2*sqrt(3), 2)

(2*sqrt(3), 2)

Now, let's present a harder example. One of the equations is fractional and the other
is polynomial: 1/x4 + 6/y4 = 6, 2y4 + 12x4 = 12x4y4:

In [5]: solve([1/x**4 + 6/y**4 - 6, 2*y**4 + 12*x**4 - 12*x**4*y**4])

Out[5]: []

No solutions? How about (1, (6/5))1/4?

In [5]: x0, y0 = 1., (6/5.)**(1/4.)

In [6]: np.isclose(1/x0**4 + 6/y0**4, 6)

Out[6]: True

In [7]: np.isclose(2*y0**4 + 12*x0**4, 12*x0**4*y0**4)

Out[7]: True

Only iterative methods can guarantee accurate and fast solutions without exhausting
our computational resources. Let's explore some techniques in this direction.

Going from one to several variables brings many computational
challenges. Some of the techniques that arise in this context are
generalizations from the methods explained for scalar functions in
the previous section, but there are many other strategies that exploit
the richer structures of spaces with large dimensions. As in the case
of solutions of linear equations employing iterative methods, the
command of all these techniques involves learning about very advanced
topics such as operators in Functional Analysis, Spectral Theory, Krylov
subspaces, and so on. This is far beyond the scope of our book.
For a complete description and analysis of all methods, optimal choices
of initial guesses, or the construction of successful preconditioners
(when used), refer instead to the book Iterative solutions of nonlinear
equations in several variables, by Ortega and Rheinboldt. It was published
in 1970 as a Monograph Textbook for Computational Science and
Applied Mathematics by Academic Press, and is still among the best
available sources for this topic.

Chapter 4

[137]

For our analysis of systems of nonlinear equations, we will run all our different
methods on a particularly challenging example that tries to determine the values
of x = [x[0], ..., x[8]], solving the following system of tridiagonal equations:

(3-2*x[0])*x[0] -2*x[1] = -1

 -x(k-1) + (3-2*x[k])*x[k] -2*x[k+1] = -1, k=1,...,7

 -x[7] + (3-2*x[8])*x[8] = -1

We can define such systems as both a purely NumPy function or as a SymPy matrix
function (this will help us compute its Jacobian in the future):

In [8]: def f(x):

 ...: output = [(3-2*x[0])*x[0] - 2*x[1] + 1]

 ...: for k in range(1,8):

 ...: output += [-x[k-1] + (3-2*x[k])*x[k] - 2*x[k+1] + 1]

 ...: output += [-x[7] + (3-2*x[8])*x[8] + 1]

 ...: return output

 ...:

In [9]: from sympy import Matrix, var

In [10]: var('x:9'); \

 : X = [x0, x1, x2, x3, x4, x5, x6, x7, x8]

In [11]: F = Matrix(f(X)); \

 : F

Out[11]:

Matrix([

[x0*(-2*x0 + 3) - 2*x1 + 1],

[-x0 + x1*(-2*x1 + 3) - 2*x2 + 1],

[-x1 + x2*(-2*x2 + 3) - 2*x3 + 1],

[-x2 + x3*(-2*x3 + 3) - 2*x4 + 1],

[-x3 + x4*(-2*x4 + 3) - 2*x5 + 1],

[-x4 + x5*(-2*x5 + 3) - 2*x6 + 1],

[-x5 + x6*(-2*x6 + 3) - 2*x7 + 1],

[-x6 + x7*(-2*x7 + 3) - 2*x8 + 1],

[-x7 + x8*(-2*x8 + 3) + 1]])

Nonlinear Equations and Optimization

[138]

All available iterative solvers could be called with the common routine root in the
module scipy.optimize. The routine requires, as obligatory parameters, a left-hand
side expression of the system F(x) = 0 and an initial guess. To access the different
methods, we include the parameter method, which can be set to any of the
following options:

• linearmixing: For linear mixing, a very simple iterative inexact-Newton
method that uses a scalar approximation to the Jacobian.

• diagbroyden: For diagonal Broyden method, another simple iterative
inexact-Newton method that uses a diagonal Broyden approximation
to the Jacobian.

• excitingmixing: For exciting mixing, one more simple inexact-Newton
method, that uses a tuned diagonal approximation to the Jacobian.

• broyden1: The good Broyden method is a powerful inexact-Newton method
using Broyden's first Jacobian approximation.

• hybr: Powell's hybrid method, the most versatile and robust solver
available in the SciPy stack, although it is not efficient for systems
with large dimensions.

• broyden2: The bad Broyden method, similar to the good Broyden method,
is another inexact-Newton method that uses Broyden's second Jacobian
approximation. It is more apt for large-scale systems.

• krylov: The Newton-Krylov method is another inexact-Newton method
based on Krylov approximations to the inverse of the Jacobian. It is a top
pick for systems with large dimensions.

• anderson: This is an extended version of the Anderson mixing method.
Together with Newton-Krylov and the bad Broyden method, this is the other
weapon of choice for dealing with large scale systems of nonlinear equations.

The implementations are very clever. Except in the case of Powell's hybrid method,
the rest uses the same code employing different expressions for the (approximations
to the) Jacobian of f(x), Jacf(x). To this effect, there is a python class, Jacobian,
stored in the module scipy.optimize.nonlin, with the following class attributes:

• .solve(v): This returns, for a suitable left-hand-side vector v, the expression
Jacf(x)^(-1)*v

• .update(x, F): This updates the object to x, with residual F(x), to
guarantee evaluation of the Jacobian at the right location on each step

• .matvec(v): This returns, for a suitable vector v, the product Jacf(x)*v
• .rmatvec(v): This returns, for a suitable vector v, the product Jacf(x).H*v

Chapter 4

[139]

• .rsolve(v): This returns, for a suitable vector v, the product
(Jacf(x).H)^(-1)*v

• .matmat(M): For a dense matrix M with the appropriate dimensions,
this returns the matrix product Jacf(x).H*M

• .todense(): This forms the dense Jacobian matrix, if ever needed

We seldom need to worry about creating objects in this class. The routine root
accepts as Jacobians any ndarray, sparse matrix, LinearOperator, or even callables
whose output is any of the previous. It transforms them internally to a Jacobian
class with the method asjacobian. This method is also hosted in the submodule
scipy.optimize.nonlin.

Simple iterative solvers
We have three very simple inexact-Newton solvers in the SciPy stack which, like the
secant method for scalar equations, substitute the Jacobian of a multivariate function
with a suitable approximation. These are the methods of linear and exciting mixing,
and the diagonal Broyden method. They are fast, but not always reliable—use them
at your own risk!

To analyze, in depth, the speed and behavior of these solvers, we will use a callback
function to store the steps of convergence. First, the method of linear mixing:

In [12]: from scipy.optimize import root

In [13]: root(f, np.zeros(9), method='linearmixing')

Out[13]:

 status: 2

 success: False

 fun: array([9.73976997e+00, -1.66208587e+02, 7.98809260e+00,

 -1.66555288e+01, 6.09078392e+01, -5.57689008e+03,

 5.72527250e+06, -2.61478262e+13, 3.15410157e+06])

 x: array([2.85055795e+00, -8.21972867e+00, 2.28548187e+00,

 -1.17938653e+00, 4.52499108e+00, -4.30522840e+01,

 8.68604963e+02, -3.61578590e+06, 4.81211473e+02])

 message: 'The maximum number of iterations allowed has been reached.'

 nit: 1000

Nonlinear Equations and Optimization

[140]

This is not too promising! If we so desire, we can play around with different
tolerances, or the maximum number of iterations allowed. Another option that
we could change for this algorithm is the method of searching for optimal lines
in the approximation of the Jacobian. This helps determine the step size in the
direction given by the said approximation. At this point, we only have three choices:
armijo (the Armijo-Goldstein condition, the default), wolfe (using Philip Wolfe's
inequalities), or None.

All options passed to any method must be done through a Python dictionary, via the
parameter options:

In [14]: lm_options = {}; \

 : lm_options['line_search'] = 'wolfe'; \

 : lm_options['xtol'] = 1e-5; \

 : lm_options['maxiter'] = 2000

In [15]: root(f, np.zeros(9), method='linearmixing',

 : options=lm_options)

OverflowError: (34, 'Result too large')

Now, let's try the method of exciting mixing, with the same initial condition:

In [16]: root(f, np.zeros(9), method='excitingmixing')

Out[16]:

 status: 2

 success: False

 fun: array([1.01316841e+03, -8.25613756e+05, 4.23367202e+02,

 -7.04594503e+02, 5.53687311e+03, -2.85535494e+07,

 6.34642518e+06, -3.11754414e+13, 2.87053285e+06])

 x: array([1.24211360e+01, -6.41737121e+02, 1.20299207e+01,

 -1.69891515e+01, 3.26672949e+01, -3.77759320e+03,

 8.82115576e+02, -3.94812801e+06, 7.34779049e+02])

 message: 'The maximum number of iterations allowed has been reached.'

 nit: 1000

A similar (lack of) success! The relevant options to fine-tune this method are
line_search, the floating-point value alpha (to use -1/alpha as the initial
approximation to the Jacobian), and the floating-point value alphamax (so the
entries of the diagonal Jacobian are kept in the range [alpha,alphamax]).

Chapter 4

[141]

Let's try the diagonal Broyden method with the same initial condition:

In [17]: root(f, np.zeros(9), method='diagbroyden')

Out[17]:

 status: 2

 success: False

 fun: array([-4.42907377, -0.87124314, -2.61646043, 0.59009568,
-1.34073061,

 -2.06266247, -0.32076522, 0.25120731, 0.0731001])

 x: array([2.09429178, 1.46991649, -0.06730407, 0.96778603,
0.75367344,

 1.2489588 , 1.46803463, 0.08282948, -0.24223748])

 message: 'The maximum number of iterations allowed has been reached.'

 nit: 1000

A poor performance from this method too! We could experiment with the options
line_search and alpha to try to improve the convergence, if needed.

The Broyden method
The good Broyden method is another inexact Newton method that uses an actual
Jacobian in the first iteration, but for subsequent iterations, it employs successive
rank-one updates. Let's see if we have more luck with our running example:

In [18]: root(f, np.zeros(9), method='broyden1')

Out[18]:

 status: 2

 success: False

 fun: array([-111.83572901, -938.30236242, -197.71489446,
-626.93927637,

 -737.43130888, -19.87676004, -107.31583876, -92.32200167,

 -252.26714229])

 x: array([6.65222472, 22.1441079 , 9.17971608, 17.78778014,

 19.65632798, 3.43502682, -6.03665297, 6.94424738,
11.87312669])

 message: 'The maximum number of iterations allowed has been reached.'

 nit: 1000

Nonlinear Equations and Optimization

[142]

To fine-tune this algorithm, besides line_search and alpha, we also have control
over the method of enforcing rank constraints on successive iterations. We could
plainly restrict the rank to be not higher than a given threshold, with the optional
integer max_rank. But even better, we could impose a reduction method that
depends on other factors. To do so, we employ the option reduce_method.

These are the options:

• restart: This reduction method drops all matrix columns.
• simple: Only the oldest matrix column is dropped.
• svd: Together with the optional integer to_retain, this reduction method

keeps only the most significant SVD components (up to the integer
to_retain). If the integer max_rank was imposed, a good choice for
to_retain is usually max_rank - 2:

In [19]: b1_options = {}; \

 : b1_options['max_rank'] = 4; \

 : b1_options['reduce_method'] = 'svd'; \

 : b1_options['to_retain'] = 2

In [20]: root(f, np.zeros(9), method='broyden1', options=b1_
options)

Out[20]:

 status: 2

 success: False

 fun: array([-1.22226719e+00, -6.72508500e-02,
-6.31642766e-03,

 -2.24588204e-04, -1.70786962e-05, -4.55208297e-05,

 -4.81332054e-06, 1.42432661e-05, -1.64421441e-05])

 x: array([0.87691697, 1.65752568, -0.16593591,
-0.60204322, -0.68244063,

 -0.688356 , -0.66512492, -0.59589812, -0.41638642])

 message: 'The maximum number of iterations allowed has been
reached.'

 nit: 1000

Powell's hybrid solver
Among the most successful nonlinear system solvers, we have the hybrid algorithm
of Powell, for which there are several Fortran routines named HYBRID** in the
library MINPACK. These routines implement several modified versions of the
original algorithm.

Chapter 4

[143]

The scipy routine root, when called with method='hybr', acts as a wrapper to both
HYBRID and HYBRIDJ. If an expression for the Jacobian is offered via the optional
parameter jac, then root calls HYBRIDJ, otherwise, it calls HYBRID. Instead of an
actual Jacobian, HYBRID uses an approximation to this operator constructed by
forward differences at the starting point.

For a complete description and analysis of Powell's hybrid algorithm
from his author, refer to the article A Hybrid Method for Nonlinear
Equations, published in 1970 in the journal of Numerical Methods for
Nonlinear Algebraic Equations.
For implementation details of the Fortran routines HYBRID and
HYBRIDJ, refer to Chapter 4 of the MINPACK user guide at
http://www.mcs.anl.gov/~more/ANL8074b.pdf.

Let's try again with our elusive example:

In [21]: solution = root(f, np.zeros(9), method='hybr')

In [22]: print solution.message

The solution converged.

In [23]: print "The root is approximately x = {0}".format(solution.x)

The root is approximately x = [-0.57065451 -0.68162834 -0.70173245
-0.70421294 -0.70136905 -0.69186564

 -0.66579201 -0.5960342 -0.41641206]

In [24]: print "At that point, it is f(x) = {0}".format(solution.fun)

At that point, it is f(x) = [-5.10793630e-11 1.00466080e-10
-1.17738708e-10 1.36598954e-10

 -1.25279342e-10 1.10176535e-10 -2.81137336e-11 -2.43449705e-11

 3.32504024e-11]

It is refreshing to at least obtain a solution, but we can do better. Let's observe the
behavior of method='hybr' when a precise Jacobian of f(x) is offered. In our case,
this operator can be readily computed both symbolically and numerically, as follows:

In [25]: F.jacobian(X)

http://www.mcs.anl.gov/~more/ANL8074b.pdf

Nonlinear Equations and Optimization

[144]

In [26]: def Jacf(x):

 : output = -2*np.eye(9, k=1) - np.eye(9, k=-1)

 : np.fill_diagonal(output, 3-4*x)

 : return output

 :

In [27]: root(f, np.zeros(9), jac=Jacf, method='hybr')

 status: 1

 success: True

 qtf: array([-1.77182781e-09, 2.37713260e-09, 2.68847440e-09,

 -2.24539710e-09, 1.34460264e-09, 8.25783813e-10,

 -3.43525370e-09, 2.36025536e-09, 1.16245070e-09])

 nfev: 25

 r: array([-5.19829211, 2.91792319, 0.84419323, -0.48483853,
0.53965529,

 -0.10614628, 0.23741206, -0.03622988, 0.52590331, -4.93470836,

 2.81299775, 0.2137127 , -0.96934776, 1.03732374, -0.71440129,

 0.27461859, 0.5399114 , 5.38440026, -1.62750656, -0.6939511 ,

 0.3319492 , -0.11487171, 1.11300907, -0.65871043, 5.3675704 ,

 -2.2941419 , -0.85326984, 1.56089518, -0.01734885, 0.12503146,

 5.42400229, -1.8356058, -0.64571006, 1.61337203, -0.18691851,

 5.25497284, -2.34515389, 0.34665604, 0.47453522, 4.57813558,

 -2.82915356, 0.98463742, 4.64513056, -1.59583822, -3.76195794])

 fun: array([-5.10791409e-11, 1.00465636e-10, -1.17738708e-10,

 1.36598732e-10, -1.25278898e-10, 1.10176535e-10,

 -2.81135115e-11, -2.43454146e-11, 3.32505135e-11])

 x: array([-0.57065451, -0.68162834, -0.70173245, -0.70421294,
-0.70136905,

 -0.69186564, -0.66579201, -0.5960342 , -0.41641206])

 message: 'The solution converged.'

 fjac: array([[-0.96956077, 0.19053436, 0.06633131, -0.12548354,
0.00592579,

 0.0356269 , 0.00473293, -0.0435999 , 0.01657895],

 [-0.16124306, -0.95068272, 0.1340795 , -0.05374361, -0.08570706,

 0.18508814, -0.04624209, -0.05739585, 0.04797319],

 [0.08519719, 0.11476118, 0.97782789, -0.0281114 , -0.08494929,

 -0.05753056, -0.02702655, 0.09769926, -0.04280136],

Chapter 4

[145]

 [-0.13529817, -0.0388138 , 0.03067186, 0.97292228, -0.12168962,

 -0.10168782, 0.0762693 , 0.0095415 , 0.04015656],

 [-0.03172212, -0.09996098, 0.07982495, 0.10429531, 0.96154001,

 -0.12901939, -0.13390792, 0.10972049, 0.02401791],

 [0.05544828, 0.17833604, 0.03912402, 0.1374237 , 0.09225721,

 0.93276861, -0.23865212, -0.00446867, 0.09571999],

 [0.03507942, 0.00518419, 0.07516435, -0.0317367 , 0.17368453,

 0.20035625, 0.9245396 , -0.20296261, 0.16065313],

 [-0.05145929, -0.0488773 , -0.08274238, -0.02933344, -0.06240777,

 0.09193555, 0.21912852, 0.96156966, -0.04770545],

 [-0.02071235, -0.03178967, -0.01166247, 0.04865223, 0.05884561,

 0.12459889, 0.11668282, -0.08544005, -0.97783168]])

 njev: 2

Observe the clear improvement—we have arrived at the same root, but only in 25
iterations. It was necessary to evaluate the Jacobian only twice.

Large-scale solvers
For large scale systems, the hybrid method is very inefficient, since the strength of
the method relies on the internal computation of the inverse of a dense Jacobian
matrix. In this setting, we prefer to use more robust inexact-Newton methods.

One of these is the bad Broyden method (broyden2). Anderson mixing (anderson)
is also a reliable possibility. However, the most successful is, without a doubt, the
Newton-Krylov method (krylov):

In [28]: root(f, np.zeros(9), method='krylov')

Out[28]:

 status: 1

 success: True

 fun: array([-8.48621595e-09, -1.28607913e-08, -9.39627043e-10,

 -6.71023681e-10, -1.12563803e-09, -3.46839557e-09,

 -7.64257968e-09, -1.29112268e-08, -1.26301001e-08])

 x: array([-0.57065452, -0.68162834, -0.70173245, -0.70421294,
-0.70136905,

 -0.69186565, -0.66579202, -0.5960342 , -0.41641207])

 message: 'A solution was found at the specified tolerance.'

 nit: 29

Nonlinear Equations and Optimization

[146]

We have accomplished a good approximation in only 29 iterations. Improvements
are possible through a series of optional parameters. The two crucial options are:

• The iterative solvers for linear equations from the module
scipy.sparse.linalg used to compute the Krylov approximation
to the Jacobian

• A preconditioner for the inner Krylov iteration: a functional expression that
approximates the inverse of the Jacobian

To illustrate the employment of preconditioners, there is a great
example in the official documents of SciPy at http://docs.scipy.
org/doc/scipy/reference/tutorial/optimize.html.
Further explaining the usage of these two options would require a
textbook on its own! For the theory behind this technique, refer to the
article Jacobian-free Newton-Krylov methods, published by D.A. Knoll
and D.E. Keyes in the Journal of Computational Physics. 193,
357 (2003).

Optimization
The optimization problem is best described as the search for a local maximum or
minimum value of a scalar-valued function f(x). This search can be performed for
all possible input values in the domain of f (and in this case, we refer to this problem
as an unconstrained optimization), or for a specific subset of it that is expressible
by a finite set of identities and inequalities (and we refer to this other problem as a
constrained optimization). In this section, we are going to explore both modalities
in several settings.

Unconstrained optimization for univariate
functions
We focus on the search for the local minima of a function f(x) in an interval [a, b]
(the search for local maxima can then be regarded as the search of the local minima
of the function –f(x) in the same interval). For this task, we have the routine
minimize_scalar in the module scipy.optimize. It accepts as obligatory input
a univariate function f(x), together with a search method.

http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html

Chapter 4

[147]

Most search methods are based on the idea of bracketing that we used for root
finding, although the concept of bracket is a bit different in this setting. In this case,
a good bracket is a triple x < y < z where f(y) is less than both f(x) and f(z). If the
function is continuous, its graph presents a U-shape on a bracket. This guarantees
the existence of a minimum inside of the subinterval [x, z]. A successful bracketing
method will look, on each successive step, for the target extremum in either [x, y]
or [y, z].

Let's construct a simple bracketing method for testing purposes. Assume we have an
initial bracket a < c < b. By quadratic interpolation, we construct a parabola through
the points (a, f(a)), (c, f(c)), and (b, f(b)). Because of the U-shape condition, there must
be a minimum (easily computable) for the interpolating parabola, say (d, f(d)). It is
not hard to prove that the value d lies between the midpoints of the subintervals
[a, c], and [c, b]. We will use this point d for our next bracketing step. For example,
if it happens that c < d, then the next bracket will be either c < d < b, or a < c < d.
Easy enough! Let's implement this method:

In [1]: import numpy as np; \

 ...: from scipy.interpolate import lagrange; \

 ...: from scipy.optimize import OptimizeResult, minimize_scalar

In [2]: def good_bracket(func, bracket):

 ...: a, c, b = bracket

 ...: return (func(a) > func(c)) and (func(b) > func(c))

 ...:

In [3]: def parabolic_step(f, args, bracket, **options):

 ...: stop = False

 ...: funcalls = 0

 ...: niter = 0

 ...: while not stop:

 ...: niter += 1

 ...: interpolator = lagrange(np.array(bracket),

 ...: f(np.array(bracket)))

 ...: funcalls += 3

 ...: a, b, c = interpolator.coeffs

 ...: d = -0.5*b/a

 ...: if np.allclose(bracket[1], d):

 ...: minima = d

 ...: stop = True

 ...: elif bracket[1] < d:

Nonlinear Equations and Optimization

[148]

 ...: newbracket = [bracket[1], d, bracket[2]]

 ...: if good_bracket(f, newbracket):

 ...: bracket = newbracket

 ...: else:

 ...: bracket = [bracket[0], bracket[1], d]

 ...: else:

 ...: newbracket = [d, bracket[1], bracket[2]]

 ...: if good_bracket(f, newbracket):

 ...: bracket = newbracket

 ...: else:

 ...: bracket = [bracket[0], d, bracket[1]]

 ...: return OptimizeResult(fun=f(minima), x=minima,

 ...: nit=niter, nfev=funcalls)

The output of any minimizing method must be an OptimizeResult
object, with at least the attribute x (the solution to the optimization
problem). In the example we have just run, the attributes coded in this
method are x, fun (the evaluation of f at that solution), nit (number of
iterations), and nfev (number of functions evaluations needed).

Let's run this method over a few examples:

In [4]: f = np.vectorize(lambda x: max(1-x, 2+x))

In [5]: def g(x): return -np.exp(-x)*np.sin(x)

In [6]: good_bracket(f, [-1, -0.5, 1])

Out[6]: True

In [7]: minimize_scalar(f, bracket=[-1, -0.5, 1],

 ...: method=parabolic_step)

Out[7]:

 fun: array(1.5000021457670878)

 nfev: 33

 nit: 11

 x: -0.50000214576708779

In [8]: good_bracket(g, [0, 1.2, 1.5])

Out[8]: True

In [9]: minimize_scalar(g, bracket=[0,1.2,1.5],

 ...: method=parabolic_step)

Chapter 4

[149]

Out[9]:

 fun: -0.32239694192707441

 nfev: 54

 nit: 18

 x: 0.78540558550495643

There are two methods already coded for univariate scalar minimization, golden,
using a golden section search, and brent, following an algorithm by Brent
and Dekker:

In [10]: minimize_scalar(f, method='brent', bracket=[-1, -0.5, 1])

Out[10]:

 fun: array(1.5)

 nfev: 22

 nit: 21

 x: -0.5

In [11]: minimize_scalar(f, method='golden', bracket=[-1, -0.5, 1])

Out[11]:

 fun: array(1.5)

 x: -0.5

 nfev: 44

In [12]: minimize_scalar(g, method='brent', bracket=[0, 1.2, 1.5])

Out[12]:

 fun: -0.32239694194483443

 nfev: 11

 nit: 10

 x: 0.78539817180087257

In [13]: minimize_scalar(g, method='golden', bracket=[0, 1.2, 1.5])

Out[13]:

 fun: -0.32239694194483448

 x: 0.7853981573284226

 nfev: 43

Nonlinear Equations and Optimization

[150]

Constrained optimization for univariate
functions
Although the bracket included in the routine minimize_scalar already places a
constraint on the function, it is feasible to force the search for a true minimum inside
of a suitable interval for which no bracket can be easily found:

In [14]: minimize_scalar(g, method='bounded', bounds=(0, 1.5))

Out[14]:

 status: 0

 nfev: 10

 success: True

 fun: -0.32239694194483415

 x: 0.78539813414299553

 message: 'Solution found.'

Unconstrained optimization for multivariate
functions
Except in the cases of minimization by brute force or by basin hopping, we can
perform all other searches with the common routine minimize from the module
scipy.optimize. The parameter method, as with its univariate counterpart, takes
care of selecting the algorithm employed to achieve the extremum. There are
several well-known algorithms already coded, but we also have the possibility
of implementing our own ideas via a suitable custom-made method.

In this section, we will focus on the description and usage of the coded
implementations. The same technique that we employed in the construction of
custom methods for minimize_scalar is valid here, with the obvious challenges
that the extra dimensions bring.

To compare all the different methods, we are going to run them against a particularly
challenging function: Rocksenbrock's parabolic valley (also informally referred to
as the banana function). The module scipy.optimize has NumPy versions of this
function, as well as its Jacobian and Hessian:

In [15]: from scipy.optimize import rosen; \

 : from sympy import var, Matrix, solve, pprint

In [16]: var('x y')

Out[16]: (x, y)

In [17]: F = Matrix([rosen([x, y])]); \

Chapter 4

[151]

 : pprint(F)

[(-x + 1)2 + 100.0(-x2 + y)2]

In [18]: X, Y = np.mgrid[-1.25:1.25:100j, -1.25:1.25:100j]

In [19]: def f(x,y): return rosen([x, y])

In [20]: import matplotlib.pyplot as plt, matplotlib.cm as cm; \

 : from mpl_toolkits.mplot3d.axes3d import Axes3D

In [21]: plt.figure(); \

 : plt.subplot(121, aspect='equal'); \

 : plt.contourf(X, Y, f(X,Y), levels=np.linspace(0,800,16),

 : cmap=cm.Greys)

 : plt.colorbar(orientation='horizontal')

 : plt.title('Contour plot')

 : ax = plt.subplot(122, projection='3d', aspect='equal')

 : ax.plot_surface(X, Y, f(X,Y), cmap=cm.Greys, alpha=0.75)

 : plt.colorbar(orientation='horizontal')

 : plt.title('Surface plot')

 : plt.show()

Nonlinear Equations and Optimization

[152]

The figure shows a large area (in the shape of a banana) that might contain local
minima. Techniques of multivariate calculus help us locate all of the critical points
precisely, instead of relying on intuition. We need first to compute the Jacobian
and Hessian of the function:

In [22]: JacF = F.jacobian([x, y]); \

 : pprint(JacF)

[- 400.0⋅x⋅(- x2 + y) + 2⋅x - 2 - 200.0⋅x2 + 200.0⋅y]

In [23]: HesF = JacF.jacobian([x, y]); \

 : pprint(HesF)

[1200.0⋅x2 - 400.0⋅y + 2 -400.0⋅x

 -400.0⋅x 200.0]

In [24]: solve(JacF)

Out[24]: [{x: 1.00000000000000, y: 1.00000000000000}]

In [25]: HesF.subs({x: 1.0, y: 1.0})

Out[25]:

Matrix([

[802.0, -400.0],

[-400.0, 200.0]])

In [26]: _.det()

Out[26]: 400.000000000000

These computations show that there is only one critical point at (1, 1).
Unequivocally, this point presents a local minimum at that location.

Trying to compute the critical points with this technique for a Rosenbrock function
in higher dimensions, while doable, is computationally intense. Moving to four
dimensions, for example, takes a decent computer about half a minute:

In [27]: var('x:4'); \

 : X = [x0, x1, x2, x3]; \

 : F = Matrix([rosen(X)])

In [28]: %time solve(F.jacobian(X))

CPU times: user 36.6 s, sys: 171 ms, total: 36.8 s

Wall time: 36.7 s

Out[28]:

[{x
0
:1.0,x

1
:1.0,x

2
:1.0,x

3
:1.0}]

Chapter 4

[153]

For large dimensions, the search for global minima can be done by brute-force; not
very elegant, but it gets the job done. A brute-force algorithm is able to track global
minima (or approximate it to satisfactory precision). We can call this method with
the routine brute in the module scipy.optimize. The obligatory parameters are the
function to be minimized, together with a description of the domain where we will
apply the optimization. This domain is best coded as a tuple of slices. For example,
to search for a global minimum of the Rosenbrock function in four variables, where
each variable is bounded in absolute value by three, we could issue this command:

In [29]: from scipy.optimize import brute

In [30]: interval = slice(-3, 3, 0.25); \

 : box = [interval] * 4

In [31]: %time brute(rosen, box)

CPU times: user 13.7 s, sys: 6 ms, total: 13.7 s

Wall time: 13.7 s

Out[31]: array([1., 1., 1., 1.])

Still quite a slow process! To achieve speed, it is always better to use iterative
methods. The search for minima in this setting is achieved according to several
schema (and combinations of these):

• The stochastic methods: These are methods suitable for the search of actual
global minima. They generate and use random variables. In the module
scipy.optimize, we have two exponents of this category:

 ° One is the basin-hopping algorithm, called with the routine
basinhopping in the module scipy.optimize. The implementation
has an acceptance test given by the Metropolis criterion of a standard
Monte-Carlo simulation.

 ° Another is a deprecated version of the method of simulated
annealing, called with method='Anneal'. This is a variation of a
Monte-Carlo simulation. It is useful for optimization problems
where the search space is discrete and large.

Nonlinear Equations and Optimization

[154]

• Deterministic algorithms that exclusively employ function evaluations:
These are basically performed by successive linear minimizations in different
directions. In the module scipy.optimize, we have two methods complying
with this philosophy:

 ° Powell's method based on the unidimensional Brent's minimization.
We call it with method='Powell'.

 ° The downhill simplex algorithm, also known as the amoeba
method, created by Nelder and Mead in 1965. We call it with
method='Nelder-Mead'.

• The Newton methods: These are deterministic algorithms on differentiable
functions that mimic multivariate calculus to search for critical points. In a
nutshell, we seek for at least one critical point whose Hessians satisfy the
conditions for the local minimum. These algorithms employ both Jacobian
and Hessian evaluations. Because of the complexity of these expressions in
general, approximations to both operators are usually implemented instead.
When this is the case, we refer to these methods as quasi-Newton methods.
In the module scipy.optimize, we have the quasi-Newton method of
Broyden, Fletcher, Goldfarb, and Shanno (BFGS), which uses exclusively
first derivatives. We call it with method='BFGS'.

• The conjugate gradient methods: Here, we have three variants:

 ° A variant of the Fetcher-Reeves algorithm is to implement a pure
conjugate gradient, written by Polak and Ribiere. It uses exclusively
first derivatives and is called with the method ='CG'.

 ° A combination of the conjugate gradient with a Newton method, the
truncated Newton method, which we call with method='Newton-CG'.

 ° Two different versions of the Newton conjugate gradient trust-region
algorithm, which use the idea of trust-regions to more effectively
bound the location of the possible minima. We call them with
method='dogleg' and method='trust-ncg'.

Let's browse through these methods.

The stochastic methods
Let's find the global minimum of the Rosenbrock function of nine variables using the
technique of basin hopping:

In [32]: from scipy.optimize import minimize, basinhopping

In [33]: %time basinhopping(rosen, np.zeros(9))

Chapter 4

[155]

CPU times: user 4.59 s, sys: 7.17 ms, total: 4.6 s

Wall time: 4.6 s

Out[33]:

 nfev: 75633

 minimization_failures: 52

 fun: 2.5483642615054407e-11

 x: array([0.99999992, 0.99999994, 0.99999992,
0.99999981, 0.99999962,

 0.99999928, 0.99999865, 0.9999972 , 0.99999405])

 message: ['requested number of basinhopping iterations
completed successfully']

 njev: 6820

 nit: 100

Let's compare to the behavior of (the deprecated) simulated annealing:

In [34]: minimize(rosen, np.zeros(9), method='Anneal')

Out[34]:

 status: 5

 success: False

 accept: 19

 nfev: 651

 T: 1130372817.0369582

 fun: 707171392.44894326

 x: array([11.63666756, -24.41186725, 48.26727994, 3.97730959,

 -31.52658563, 18.00560694, 1.22589971, 21.97577333,
-43.9967434])

 message: 'Final point not the minimum amongst encountered points'

 nit: 12

Deterministic algorithms that exclusively employ
function evaluations
Let's compare the results of the Powell method with the downhill simplex method:

In [35]: minimize(rosen, np.zeros(9), method='Powell')

Out[35]:

 status: 0

 success: True

Nonlinear Equations and Optimization

[156]

 direc: array([[-9.72738085e-06, 2.08442100e-05, 2.06470355e-05,

 4.39487337e-05, 1.29109966e-04, 1.98333214e-04,

 3.66992711e-04, 7.00645878e-04, 1.38618490e-03],

 [-6.95913466e-06, -7.25642357e-07, -2.39771165e-06,

 4.10148947e-06, -6.17293950e-06, -6.53887928e-06,

 -1.06472130e-05, -5.23030557e-06, -2.28609232e-06],

 [0.00000000e+00, 0.00000000e+00, 1.00000000e+00,

 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,

 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],

 [1.23259262e-06, 9.30817407e-07, 2.48075497e-07,

 -7.07907998e-07, -2.01233105e-07, -1.10513430e-06,

 -2.57164619e-06, -2.58316828e-06, -3.89962665e-06],

 [6.07328675e-02, 8.51817777e-02, 1.30174960e-01,

 1.71511253e-01, 9.72602622e-02, 1.47866889e-02,

 1.12376083e-03, 5.35386263e-04, 2.04473740e-04],

 [0.00000000e+00, 0.00000000e+00, 0.00000000e+00,

 0.00000000e+00, 0.00000000e+00, 1.00000000e+00,

 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],

 [3.88222708e-04, 8.26386166e-04, 5.56913200e-04,

 3.08319925e-04, 4.45122275e-04, 2.66513914e-03,

 6.31410713e-03, 1.24763367e-02, 2.45489699e-02],

 [0.00000000e+00, 0.00000000e+00, 0.00000000e+00,

 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,

 0.00000000e+00, 1.00000000e+00, 0.00000000e+00],

 [-2.82599868e-13, 2.33068676e-13, -4.23850631e-13,

 -1.23391999e-12, -2.41224441e-12, -5.08909225e-12,

 -9.92053051e-12, -2.07685498e-11, -4.10004188e-11]])

 nfev: 6027

 fun: 3.1358222279861171e-21

 x: array([1., 1., 1., 1., 1., 1., 1., 1., 1.])

 message: 'Optimization terminated successfully.'

 nit: 56

In [36]: minimize(rosen, np.zeros(9), method='Nelder-Mead')

 status: 1

 nfev: 1800

 success: False

 fun: 4.9724099905503065

 x: array([0.85460488, 0.70911132, 0.50139591, 0.24591886,
0.06234451,

Chapter 4

[157]

 -0.01112426, 0.02048509, 0.03266785, -0.01790827])

 message: 'Maximum number of function evaluations has been exceeded.'

 nit: 1287

The Broyden-Fletcher-Goldfarb-Shanno
quasi-Newton method
Let's observe the behavior of this algorithm on our running example:

In [37]: minimize(rosen, np.zeros(9), method='BFGS')

Out[37]:

 status: 0

 success: True

 njev: 83

 nfev: 913

 hess_inv: array([[1.77874730e-03, 1.01281617e-03, 5.05884211e-04,

 3.17367120e-04, 4.42590321e-04, 7.92168518e-04,

 1.52710497e-03, 3.06357905e-03, 6.12991619e-03],

 [1.01281617e-03, 1.91057841e-03, 1.01489866e-03,

 7.31748268e-04, 8.86058826e-04, 1.44758106e-03,

 2.76339393e-03, 5.60288875e-03, 1.12489189e-02],

 [5.05884211e-04, 1.01489866e-03, 2.01221575e-03,

 1.57845668e-03, 1.87831124e-03, 3.06835450e-03,

 5.86489711e-03, 1.17764144e-02, 2.35964978e-02],

 [3.17367120e-04, 7.31748268e-04, 1.57845668e-03,

 3.13024681e-03, 3.69430791e-03, 6.16910056e-03,

 1.17339522e-02, 2.33374859e-02, 4.66640347e-02],

 [4.42590321e-04, 8.86058826e-04, 1.87831124e-03,

 3.69430791e-03, 7.37204979e-03, 1.23036988e-02,

 2.33709766e-02, 4.62512165e-02, 9.24474614e-02],

 [7.92168518e-04, 1.44758106e-03, 3.06835450e-03,

 6.16910056e-03, 1.23036988e-02, 2.48336778e-02,

 4.71369608e-02, 9.29927375e-02, 1.85683729e-01],

 [1.52710497e-03, 2.76339393e-03, 5.86489711e-03,

 1.17339522e-02, 2.33709766e-02, 4.71369608e-02,

 9.44348689e-02, 1.86490477e-01, 3.72360210e-01],

 [3.06357905e-03, 5.60288875e-03, 1.17764144e-02,

 2.33374859e-02, 4.62512165e-02, 9.29927375e-02,

 1.86490477e-01, 3.73949424e-01, 7.46959044e-01],

 [6.12991619e-03, 1.12489189e-02, 2.35964978e-02,

Nonlinear Equations and Optimization

[158]

 4.66640347e-02, 9.24474614e-02, 1.85683729e-01,

 3.72360210e-01, 7.46959044e-01, 1.49726446e+00]])

 fun: 6.00817150312557e-11

 x: array([0.99999993, 0.99999986, 0.99999976, 0.99999955,
0.99999913,

 0.99999832, 0.99999666, 0.99999334, 0.99998667])

 message: 'Optimization terminated successfully.'

 jac: array([5.23788826e-06, -5.45925187e-06, -1.35362172e-06,

 8.75480656e-08, -9.45374358e-06, 7.31889131e-06,

 3.34352248e-07, -7.24984749e-07, 2.02705630e-08])

Note that this method employs more iterations, but much fewer
function evaluations than the method of Powell (including Jacobian
evaluations). Accuracy is comparable, but the gain in complexity and
speed in remarkable.

The conjugate gradient method
The pure conjugate gradient method works best with functions with a clear, unique
critical point, and where the range of the slopes is not too large. Multiple stationary
points tend to confuse the iterations, and too steep slopes (larger than 1000) result in
terrible rounding errors.

Without offering an expression for the Jacobian, the algorithm computes a decent
approximation of this operator to compute the first derivatives:

In [38]: minimize(rosen, np.zeros(9), method='CG')

Out[38]:

 status: 0

 success: True

 njev: 326

 nfev: 3586

 fun: 1.5035665428352255e-10

 x: array([0.9999999 , 0.99999981, 0.99999964, 0.99999931,
0.99999865,

 0.99999733, 0.9999947 , 0.99998941, 0.99997879])

 message: 'Optimization terminated successfully.'

 jac: array([-1.48359492e-06, 2.95867756e-06, 1.71067556e-06,

 -1.83617409e-07, -2.47616618e-06, -5.34951641e-06,

 2.50389338e-06, -2.37918319e-06, -3.86667920e-06])

Chapter 4

[159]

Including an actual Jacobian improves matters greatly. Note the improvement in the
evaluation of the found minimum (fun):

In [39]: from scipy.optimize import rosen_der

In [40]: minimize(rosen, np.zeros(9), method='CG', jac=rosen_der)

Out[40]:

 status: 0

 success: True

 njev: 406

 nfev: 406

 fun: 8.486856765134401e-12

 x: array([0.99999998, 0.99999996, 0.99999994, 0.99999986,
0.99999969,

 0.99999938, 0.99999875, 0.9999975 , 0.999995])

 message: 'Optimization terminated successfully.'

 jac: array([1.37934336e-06, -9.03688875e-06, 8.53289049e-06,

 9.77779178e-06, -2.63022111e-06, -1.02087919e-06,

 -6.55712127e-06, -1.71887373e-06, -9.12268328e-07])

The truncated Newton method requires a precise Jacobian to work:
In [41]: minimize(rosen, np.zeros(9), method='Newton-CG')

ValueError: Jacobian is required for Newton-CG method

In [38]: minimize(rosen, np.zeros(9), method='Newton-CG', jac=rosen_der)

Out[41]:

 status: 0

 success: True

 njev: 503

 nfev: 53

 fun: 5.231613200425767e-08

 x: array([0.99999873, 0.99999683, 0.99999378, 0.99998772,
0.99997551,

 0.99995067, 0.99990115, 0.99980214, 0.99960333])

 message: 'Optimization terminated successfully.'

 nhev: 0

 jac: array([6.67155399e-06, 2.50927306e-05, 1.03398234e-04,

 4.09953321e-04, 1.63524314e-03, 6.48667316e-03,

 -1.91779902e-03, -2.81972861e-04, -5.67500380e-04])

Nonlinear Equations and Optimization

[160]

The methods using trust regions require an exact expression for the Hessian:

In [42]: from scipy.optimize import rosen_hess

In [43]: minimize(rosen, np.zeros(9), method='dogleg',

 : jac=rosen_der, hess=rosen_hess)

Out[43]:

 status: 0

 success: True

 njev: 25

 nfev: 29

 fun: 9.559277795967234e-19

 x: array([1., 1., 1., 1., 1., 1., 1., 1., 1.])

 message: 'Optimization terminated successfully.'

 nhev: 24

 jac: array([3.84137166e-14, 3.00870439e-13, 1.10489395e-12,

 4.32831548e-12, 1.72455383e-11, 6.77315980e-11,

 2.48459919e-10, 6.62723207e-10, -1.52775570e-09])

 nit: 28

In [44]: minimize(rosen, np.zeros(9), method='trust-ncg',

 : jac=rosen_der, hess=rosen_hess)

Out[44]:

 status: 0

success: True

 njev: 56

 nfev: 67

 fun: 3.8939669818289621e-18

 x: array([1., 1., 1., 1., 1., 1., 1., 1., 1.])

 message: 'Optimization terminated successfully.'

 nhev: 55

 jac: array([2.20490293e-13, 5.57109914e-13, 1.77013959e-12,

 -9.03965791e-12, -3.05174774e-10, 3.03425818e-09,

 1.49134067e-08, 6.32240935e-08, -3.64210218e-08])

 nit: 66

Note the huge improvement in terms of accuracy, iterations, and function
evaluations over the previous methods! The obvious drawback is that quite often it is
very challenging to obtain good representations of the Jacobian or Hessian operators.

Chapter 4

[161]

Constrained optimization for multivariate
functions
Take, for example, the minimization of the plane function f(x,y) = 5x – 2y + 4 over
the circle x2 + y2 = 4. Using SymPy, we can implement the technique of
Lagrange multipliers:

In [45]: F = Matrix([5*x - 2*y + 4]); \

 : G = Matrix([x**2 + y**2 - 4]) # constraint

In [46]: var('z'); \

 : solve(F.jacobian([x, y]) - z * G.jacobian([x, y]))

Out[46]: [{x: 5/(2*z), y: -1/z}]

In [47]: soln = _[0]; \

 : solve(G.subs(soln))

Out[47]: [{z: -sqrt(29)/4}, {z: sqrt(29)/4}]

In [48]: zees = _; \

 : [(soln[x].subs(item), soln[y].subs(item)) for item in zees]

Out[48]:

[(-10*sqrt(29)/29, 4*sqrt(29)/29), (10*sqrt(29)/29, -4*sqrt(29)/29)]

Not too bad! On top of this constraint, we can further impose another condition
in the form of an inequality. Think of the same problem as before, but constraining
to half a circle instead: y > 0. This being the case, the new result will be only
the point with coordinates x = –10√(29)/29 = –1.8569533817705186 and
y = 4√(29)/29 = 0.74278135270820744.

It is, of course, possible to address this problem numerically. In the module
scipy.optimize, we have basically three methods, all of which can be called
from the common routine minimize:

• The large-scale bound-constrained optimization based on the BFGS
algorithm (we call it with method='L-BFGS-B'). The implementation is
actually a wrapper for a FORTRAN routine with the same name, written by
Ciyou Zhu, Richard Byrd, and Jorge Nocedal (for details, see for example,
R. H. Byrd, P. Lu, and J. Nocedal. A Limited Memory Algorithm for Bound
Constrained Optimization, (1995), SIAM Journal on Scientific and Statistical
Computing, 16, 5, pp. 1190-1208).

• A constrained-based algorithm based on the truncated Newton method
(we call it with method='TNC'). This implementation is similar to the one
we called with method='Newton-CG', except this version is a wrapper for
a C routine.

Nonlinear Equations and Optimization

[162]

• A constrained optimization by linear approximation (called with
method='COBYLA'). This implementation wraps a FORTRAN routine
with the same name.

• A minimization method based on sequential least squares programming
(method='SLSQP'). The implementation is a wrapper for a FORTRAN routine
with the same name, written by Dieter Kraft.

Let's use our running example to illustrate how to input different constraints.
We implement these as a dictionary or a tuple of dictionaries—each entry in the
tuple represents either an identity ('eq'), or an inequality ('ineq'), together
with a functional expression (in the form of a ndarray when necessary) and the
corresponding derivative of it:

In [49]: def f(x): return 5*x[0] - 2*x[1] + 4

In [50]: def jacf(x): return np.array([5.0, -2.0])

In [51]: circle = {'type': 'eq',

 : 'fun': lambda x: x[0]**2 + x[1]**2 - 4.0,

 : 'jac': lambda x: np.array([2.0 * x[0],

 2.0 * x[1]])}

In [52]: semicircle = ({'type': 'eq',

 : 'fun': lambda x: x[0]**2 + x[1]**2 - 4.0,

 : 'jac': lambda x: np.array([2.0 * x[0],

 : 2.0 * x[1]])},

 : {'type': 'ineq',

 : 'fun': lambda x: x[1],

 : 'jac': lambda x: np.array([0.0, 1.0])})

The constraints are fed to the routine minimize through the parameter constraints.
The initial guess must satisfy the constraints too, otherwise, the algorithm fails to
converge to anything meaningful:

In [53]: minimize(f, [2,2], jac=jacf, method='SLSQP', constraints=circle)

Out[53]:

 status: 0

 success: True

 njev: 11

 nfev: 13

 fun: -6.7703296142789693

 x: array([-1.85695338, 0.74278135])

 message: 'Optimization terminated successfully.'

Chapter 4

[163]

 jac: array([5., -2., 0.])

 nit: 11

In [54]: minimize(f, [2,2], jac=jacf, method='SLSQP',
constraints=semicircle)

Out[54]:

 status: 0

 success: True

 njev: 11

 nfev: 13

 fun: -6.7703296142789693

 x: array([-1.85695338, 0.74278135])

 message: 'Optimization terminated successfully.'

 jac: array([5., -2., 0.])

 nit: 11

Summary
In this chapter, we have mastered two of the most challenging processes in
computational mathematics—the search for roots and extrema of functions. You
learned about the symbolic and numerical methods to address these problems in
several settings, and how to avoid common pitfalls by gathering enough information
about the functions.

In the next chapter, we will explore some techniques for solving differential equations.

[165]

Initial Value Problems
for Ordinary Differential

Equations
Initial value problems for ordinary differential equations (or systems) hardly need
any motivation. They arise naturally in almost all sciences. In this chapter, we will
focus on mastering numerical methods to solve these equations.

Throughout the chapter, we will explore all the techniques implemented in the SciPy
stack through three common examples:

• The trivial differential equation of the first order y'(t) = y(t) with the initial
condition as y(0) = 1. The actual solution is y(t) = et.

• A more complex differential equation of first order: a Bernoulli equation
ty'(t) + 6y(t) = 3ty(t)3/4, with the initial condition y(1) = 1. The actual solution
is y(t) = (3t5/2 + 7)4/(10000t6).

• To illustrate the behavior with autonomous systems (where the derivatives
do not depend on the time variable), we use a Lotka-Volterra model
for one predator and one prey, y0'(t) = y0(t) – 0.1 y0(t) y1(t) and
y1'(t) = –1.5 y1(t) + 0.075 y0(t) y1(t) with the initial condition y0(0) = 10
and y1(0) = 5 (representing 10 prey and 5 predators at the initial time).

Higher-order differential equations can always be transformed into
(non-necessarily autonomous) systems of differential equations. In
turn, nonautonomous systems of differential equations can always be
turned into autonomous by including a new variable in a smart way. The
techniques to accomplish these transformations are straightforward, and
explained in any textbook on differential equations.

Initial Value Problems for Ordinary Differential Equations

[166]

We have the possibility of solving some differential equations analytically via
SymPy. Although this is hardly the best way to solve initial value problems
computationally—even when analytical solutions are available—we will illustrate
some examples for completion. Reliable solvers are numerical in nature, and in this
setting, there are mainly two ways to approach this problem—through analytic
approximation methods, or with discrete-variable methods.

Symbolic solution of differential equations
Symbolic treatment of a few types of differential equations is coded in the SciPy stack
through the module sympy.solvers.ode. At this point, only the following equations
are accessible with this method:

• First order separable
• First order homogeneous
• First order exact
• First order linear
• First order Bernoulli
• Second order Liouville
• Any order linear equations with constant coefficients

In addition to these, other equations might be solvable with the following techniques:

• A power series solution for the first or second order equations (the latter only
at ordinary and regular singular points)

• The lie group method for the first order equations

Let's see these techniques in action with our one-dimensional examples, y' = y and
the Bernoulli equation. Note the method of inputting a differential equation. We
write it in the form F(t,y,y') = 0, and we feed the expression F(t,y,y') to the solver (see
line 3 that follows). Also, notice how we code derivatives of a function using SymPy;
the expression f(t).diff(t) represents the first derivative of f(t), for instance:

In [1]: from sympy.solvers import ode

In [2]: t = symbols('t'); \

 ...: f = Function('f')

In [3]: equation1 = f(t).diff(t) - f(t)

In [4]: ode.classify_ode(equation1)

Out[4]:

('separable',

Chapter 5

[167]

 '1st_exact',

 '1st_linear',

 'almost_linear',

 '1st_power_series',

 'lie_group',

 'nth_linear_constant_coeff_homogeneous',

 'separable_Integral',

 '1st_exact_Integral',

 '1st_linear_Integral',

 'almost_linear_Integral')

Note that some of the methods have a variant labeled with the suffix
_Integral. This is a clever mechanism that allows us to complete the
solution without actually computing the needed integrals. This is useful
when facing expensive or impossible integrals.

The equation has been classified as a member of several types. We can now solve
it according to the proper techniques of the corresponding type. For instance, we
choose to solve this equation by first assuming that it is separable, and then by
computing an approximation of degree four (n=4) to the solution with a power
series representation (hint='1st_power_series') around x0=0:

In [5]: ode.dsolve(equation1, hint='separable')

Out[5]: f(t) == C1*exp(t)

In [6]: ode.dsolve(equation1, hint='1st_power_series', n=4, x0=0.0)

Out[6]: f(t) == C0 + C0*t + C0*t**2/2 + C0*t**3/6 + O(t**4)

Solving initial value problems is also possible, but only for solutions computed as a
power series of first order differential equations:

In [7]: ode.dsolve(equation1, hint='1st_power_series', n=3, x0=0,

 ...: ics={f(0.0): 1.0})

Out[7]: f(t) == 1.0 + 1.0*t + 0.5*t**2 + O(t**3)

Let's explore the second example with these techniques:

In [8]: equation2 = t*f(t).diff(t) + 6*f(t) - 3*t*f(t)**(0.75)

In [9]: ode.classify_ode(equation2)

Out[9]: ('Bernoulli', 'lie_group', 'Bernoulli_Integral')

In [10]: dsolve(equation2, hint='Bernoulli')

Initial Value Problems for Ordinary Differential Equations

[168]

Out[10]: f(t) == (t**(-1.5)*(C1 + 0.3*t**2.5))**4.0

In [11]: dsolve(equation2, hint=lie_group')

Out[11]: f(t) == -5/(3*t*(C1*t**5 - 1))

[f(t) == 6.25e-6*(t**6*(625.0*C1**4 + 5400.0*C1*t**5 + 1296.0*t**10)

 - 120.0*sqrt(C1*t**17*(25.0*C1 + 36.0*t**5)**2))/t**12,

 f(t) == 6.25e-6*(t**6*(625.0*C1**4 + 5400.0*C1*t**5 + 1296.0*t**10)

 + 120.0*sqrt(C1*t**17*(25.0*C1 + 36.0*t**5)**2))/t**12]

Of course, although the functional expressions of both solutions in lines 10 and 11 are
different, they represent the same function.

For more information on how to use these techniques and code your
own symbolic solvers, refer to the excellent documentation from the
official SymPy pages at http://docs.sympy.org/dev/modules/
solvers/ode.html.

Analytic approximation methods
Analytic approximation methods try to compute approximations to the exact
solutions on suitable domains, in the form of truncated series expansions over a
system of basis functions. In the SciPy stack, we have an implementation based on
the Taylor series, through the routine odefun in the module sympy.mpmath.

mpmath is a Python library for arbitrary-precision floating-point
arithmetic, hosted inside the sympy module. Although it is independent
of the numpy machinery, they both work well together.
For more information about this library, read the official documentation
at http://mpmath.org/doc/current/.

Let's see it in action, first with our trivial example y'(t) = y(t), y(0) = 1. The key here is
to assess the speed and the accuracy of the approximation, as compared to the actual
solution in the interval [0, 1]. Its syntax is very simple, we assume the equation is
always in the form of y' = F, and we provide the routine odefun with this functional
F and the initial conditions (in this case, 0 for the t-value, and 1 for the y-value):

In [1]: import numpy as np, matplotlib.pyplot as plt; \

 ...: from sympy import mpmath

In [2]: def F(t, y): return y

In [3]: f = odefun(F, 0, 1)

http://docs.sympy.org/dev/modules/solvers/ode.html
http://docs.sympy.org/dev/modules/solvers/ode.html
http://mpmath.org/doc/current/

Chapter 5

[169]

We proceed to compare the results of the solver f with the actual analytical
solution np.exp:

In [4]: t = np.linspace(0, 1, 1024); \

 ...: Y1 = np.vectorize(f)(t); \

 ...: Y2 = np.exp(t)

In [5]: (np.abs(Y1-Y2)).max()

Out[5]: mpf('2.2204460492503131e-16')

Let's examine our second example. We evaluate the time of execution and accuracy
of approximation, as compared with the actual solution in the interval [1, 2]:

In [6]: def F(t, y): return 3.0*y**0.75 - 6.0*y/t

In [7]: def g(t): return (3.0*t**2.5 + 7)**4.0/(10000.0*t**6.)

In [8]: f = mpmath.odefun(F, 1.0, 1.0)

In [9]: t = np.linspace(1, 2, 1024); \

 ...: Y1 = np.vectorize(f)(t); \

 ...: Y2 = np.vectorize(g)(t)

In [9]: (np.abs(Y1-Y2)).max()

Out[9]: mpf('5.5511151231257827e-16')

Now let's address the example with the Latko-Volterra system. We compute the
solutions and plot them for a time range of 0 to 10 units of time:

In [10]: def F(t, y): return [y[0] - 0.1*y[0]*y[1],

 : 0.075*y[0]*y[1] - 1.5*y[1]]

In [11]: f = mpmath.odefun(F, 0.0, [10.0, 5.0])

In [12]: T = [10.0*x/1023. for x in range(1024)]

 : X = [f(10.0*x/1023.)[0] for x in range(1024)]; \

 : Y = [f(10.0*x/1023.)[1] for x in range(1024)]

In [13]: plt.plot(T, X, 'r--', linewidth=2.0, label='predator'); \

 : plt.plot(T, Y, 'b-', linewidth=2.0, label='prey'); \

 : plt.legend(loc=9); \

 : plt.grid(); \

 : plt.show()

Initial Value Problems for Ordinary Differential Equations

[170]

This last command presents us with the following graph. The dotted line represents
the amount of predators with respect to time, and the solid line represents the
prey. First note the periodicity of the solution. Also, note the behavior of both
functions—when the number of predators is high, the amount of prey is low.
At that point, predators have a harder time finding food and their numbers start
decreasing, while that of the prey starts rising:

Discrete-variable methods
In discrete-variable methods, we are concerned with finding approximations to the
solutions, but only at a discrete set of points in the domain. These points could be
predetermined before solving, or we could generate them dynamically as part of the
integration, to better suit the properties of the functions involved. This is especially
useful when the solutions present singularities, for example, once a discrete set of
points have been generated, we can compute a nice analytic approximation to the
solutions, by a simple process of interpolation.

We have two schema for discrete-variable methods:

• One-step methods: The value of the solution at one point is computed solely
from information on the previous point. Classical exponents of this scheme
are, for instance, Euler's method, improved Euler's method, any second-order
two-stage method, or any Runge-Kutta method.

Chapter 5

[171]

• Multistep methods: The value of the solution at one point depends on the
knowledge of several previous points. The best known algorithms in this
category are the Adams-Bashford method, the Adams-Moulton method,
any backward-difference method, or any predictor-corrector method.

In the module scipy.integrate, we have the common interface class ode, that
will perform an approximation to the solution of equations/systems with a chosen
numerical method. The way to work with this class is very different compared
to what we are used to, and it deserves a careful explanation:

1. Once a right-hand side of a differential equation/system is produced, say
y' = f(t,y), the process starts by creating an instance of a solver. We do so by
issuing ode(f). If we have a description of the Jacobian of the right-hand
side with respect to the y variables, we could include it in the creation of the
solver ode(f, jac).

2. If extra parameters need to be fed to either the function f or its Jacobian, we do
so with .set_f_params(*args) or .set_jac_params(*args), respectively.

3. The initial values of the problem are indicated with the attribute
.set_initial_value(y[, t]).

4. It is time to choose a numerical scheme. We do so by setting the attribute
.set_integrator(name, **params). If necessary, we can provide further
information to the chosen method, by using the optional parameter.

5. Finally, we compute the actual solution of the initial value problem. We
usually accomplish this by playing with several attributes within a loop:

 ° .integrate(t[, step, relax]) will compute the value of the
solution y(t) at the provided time t.

 ° Retrieval of the last step in the computations can always be obtained
with the attributes.t (for the time variable) and .y (for the
solution)

 ° To check for the success of the computation, we have the attribute
.successful().

 ° Some integration methods accept a flag function solout_func(t, y),
that gets called after each successful step. This is accomplished with
.set_solout(solout_func).

Initial Value Problems for Ordinary Differential Equations

[172]

One-step methods
The only one-step methods coded in the SciPy stack are two implementations of
Runge-Kutta, designed by Dormand and Prince, and written by Hairer and Wanner
for the module scipy.integrate:

• Explicit Runge-Kutta method of order (4)5. We access it with
method='dopri5'.

• Explicit Runge-Kutta method of order 8(5,3). We call it with method='dop853'.

Let's run through our examples. With the first one, we will solve the differential
equation by issuing dopri5, on a set of 10 nodes given by zeros of the Chebyshev
polynomial in the interval [0, 1]:

In [1]: import numpy as np,import matplotlib.pyplot as plt; \

 ...: from scipy.integrate import ode; \

 ...: from scipy.special import t_roots

In [2]: def F(t, y): return y

In [3]: solver = ode(F) # solver created

In [4]: solver.set_initial_value(1.0, 0.0) # y(0) = 1

Out[4]: <scipy.integrate._ode.ode at 0x1038d3a50>

In [5]: solver.set_integrator('dopri5')

Out[5]: <scipy.integrate._ode.ode at 0x1038d3a50>

In [6]: solver.t, solver.y

Out[6]: (0.0, array([1.]))

In [7]: nodes = t_roots(10)[0]; \

 ...: nodes = (nodes + 1.0) * 0.5

In [8]: for k in range(10):

 ...: if solver.successful():

 ...: t = nodes[k]

 ...: solver.integrate(t)

 ...: print "{0},{1},{2}".format(t, solver.y[0], np.exp(t))

 ...:

0.00615582970243, 1.00617481576, 1.00617481576

0.0544967379058, 1.05600903161, 1.05600903161

0.146446609407, 1.15771311835, 1.15771311818

0.27300475013, 1.31390648743, 1.31390648604

0.42178276748, 1.52467728436, 1.52467727922

0.57821723252, 1.78285718759, 1.78285717608

0.72699524987, 2.06885488518, 2.06885486703

0.853553390593, 2.34797534217, 2.34797531943

Chapter 5

[173]

0.945503262094, 2.57410852921, 2.5741085039

0.993844170298, 2.7015999731, 2.70159994653

It is possible to fine-tune the algorithm by providing different
tolerances, restriction of number of steps, and other stabilizing
constants. For a detailed description of the different parameters, refer
to the official documentation at http://docs.scipy.org/doc/
scipy/reference/generated/scipy.integrate.ode.html, or
simply request the manual page from within your Python session with
the following code:
>>> help(ode)

In the example of the Bernoulli equation, we will again gather the roots of a
Chebyshev polynomial as nodes, but this time we will collect the solutions and
construct a piecewise polynomial interpolation with them, to compare the results
with the true solution visually. In this case, we employ Runge-Kutta of order 8(5,3):

In [9]: def bernoulli(t, y): return 3*y**(0.75) - 6.0*y/t

In [10]: def G(t):

 : return (3.0*t**(2.5) + 7.0)**4.0 / (10000.0*t**6.0)

In [11]: solver = ode(bernoulli); \

 : solver.set_initial_value(1.0, 1.0); \

 : solver.set_integrator('dop853')

Out[11]: <scipy.integrate._ode.ode at 0x104667f50>

In [12]: T = np.linspace(1, 2, 1024); \

 : nodes = t_roots(10)[0]; \

 : nodes = 1.5 + 0.5 * nodes; \

 : solution = []

In [13]: for k in range(10):

 : if solver.successful():

 : solver.integrate(nodes[k])

 : solution += [solver.y[0]]

 :

In [14]: from scipy.interpolate import PchipInterpolator

In [15]: interpolant = PchipInterpolator(nodes, solution)

In [16]: plt.plot(T, interpolant(T), 'r--',

 : linewidth=2.0, label='approx.'); \

 : plt.plot(T, G(T), 'b-', label='true soln.'); \

 : plt.grid(); \

 : plt.legend(); \

 : plt.show()

http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html

Initial Value Problems for Ordinary Differential Equations

[174]

This presents the following enlightening diagram. The computed solution
(dotted line) very accurately resembles the true solution (solid line) between
times t=1 and t=2:

The Lotka-Volterra system gets solved in the same fashion. In the following example,
we will choose a set of equally spaced nodes in one cycle—the interval from 0 to
2π/√1.5 (approximately 5.13):

In [16]: def volterra(t, y):

 : return [y[0] - 0.1*y[0]*y[1],

 : 0.075*y[0]*y[1] - 1.5*y[1]]

In [17]: solver = ode(volterra); \

 : solver.set_initial_value([10.0, 5.0], 0.0); \

 : solver.set_integrator('dop853')

Out[17]: <scipy.integrate._ode.ode at 0x10461e390>

In [18]: prey = []; \

 : predator = []

In [19]: while (solver.t < 5.13 and solver.successful()):

 : solver.integrate(solver.t + 0.01)

 : prey += [solver.y[0]]

Chapter 5

[175]

 : predator += [solver.y[1]]

 :

In [20]: plt.plot(prey, predator); \

 : plt.grid(); \

 : plt.xlabel('number of prey'); \

 : plt.ylabel('number of predators'); \

 : plt.show()

This presents us with a phase portrait of the system. The graph represents a curve
where, for each unit of time, the x coordinate represents the number of prey, and
the corresponding y coordinate represents the number of predators. Due to the
periodicity of the solutions, the phase portrait is a closed curve. As it happened with
the simple plot of both solutions, the phase portrait also illustrates how, for example,
when the number of predators raises over 20 units, the number of predators is
usually small (less than 20 units). When the number of predators goes below 20,
the number of prey rises slowly to over 40 units:

Initial Value Problems for Ordinary Differential Equations

[176]

Two-step methods
We have two different choices here—an Adams-Moulton method (suitable for
non-stiff equations) and a backward-difference method (designed for stiff equations).
For each of these two numerical methods, we have two different implementations,
depending on the background Fortran routine used to compute the solutions.
The options are as follows:

• *VODE: In the Fortran library ODE, we have the routines VODE and ZVODE
(for a real and complex-valued solution of initial value problems, respectively).
To access the numerical method of Adams-Moulton, for example, for a
real-valued problem, we issue the attribute .set_integrator('vode',
method='adams'). To access backward-differences, we issue
.set_integrator('vode', method='BDF').

• LSODA: This other implementation wraps different routines from the Fortran
library ODEPACK. The calls are exactly as in the previous case, substituting
'vode' or 'zvode' with 'lsoda' instead.

For more information about the netlib libraries ODE and ODEPACK,
refer to http://www.netlib.org/ode/ and http://www.
netlib.org/odepack/, respectively.

These numerical methods are designed for large problems. For smaller tasks
(non-stiff one-dimensional equations with small set of nodes), Runge-Kutta should
be used instead. The second example illustrates this point: We apply BDF from VODE,
and compare the solutions obtained with both Runge-Kutta from before, to the
actual solution. Note how dop853 outperforms BDF in this simple case:

In [21]: solver = ode(bernoulli); \

 : solver.set_initial_value(1.0, 1.0); \

 : solver.set_integrator('vode', method='BDF')

Out[21]: <scipy.integrate._ode.ode at 0x1038d2990>

In [22]: nodes = t_roots(10)[0]; \

 : nodes = 1.5 + 0.5 * nodes; \

 : solution2 = []

In [23]: for k in range(10):

 : if solver.successful():

 : solver.integrate(nodes[k])

 : solution2 += [solver.y[0]]

 :

http://www.netlib.org/ode/
http://www.netlib.org/odepack/
http://www.netlib.org/odepack/

Chapter 5

[177]

In [24]: for k in range(10):

 : true = G(nodes[k])

 : dop853 = solution[k]

 : vode = solution2[k]

 : print "{0},{1},{2}".format(true, dop853, vode)

 :

0.981854827818, 0.981854827818, 0.981855789349

0.859270248468, 0.859270248468, 0.859270080689

0.698456572663, 0.698456572663, 0.698458875953

0.570963875566, 0.570963875559, 0.57096210196

0.49654019444, 0.496540194433, 0.496537599383

0.466684337536, 0.466684337531, 0.466681706374

0.466700776675, 0.46670077667, 0.466699552511

0.482536531899, 0.482536531895, 0.482537207918

0.501698475572, 0.501698475568, 0.501699366611

0.514159743133, 0.514159743128, 0.514160809167

To finish this chapter, we use LSODA on our Lotka-Volterra system, including
information of the Jacobian:

In [25]: def jacF(t, y):

 : output = np.zeros((2,2))

 : output[0,0] = 1.0 - 0.1*y[1]

 : output[0,1] = -0.1*y[0]

 : output[1,0] = 0.075*y[1]

 : output[1,1] = 0.075*y[0] - 1.5

 : return output

In [26]: solver = ode(volterra, jacF); \

 : solver.set_initial_value([10.0, 5.0], 0.0); \

 : solver.set_integrator('lsoda', method='adams',

 : with_jacobian=True)

In [27]: prey2 = []; \

 : predator2 = []

In [28]: while (solver.t < 5.13 and solver.successful()):

 : solver.integrate(solver.t + 0.01)

 : prey2 += [solver.y[0]]

 : predator2 += [solver.y[1]]

Initial Value Problems for Ordinary Differential Equations

[178]

We leave this as an exercise to compare the results of solving this last system with
this method against the previous Runge-Kutta process.

Summary
In this short chapter, we have mastered all the symbolic and numerical techniques
to solve differential equations/systems and related initial value problems.

In the next chapter, we will explore what resources we have in the SciPy stack,
to address problems in computational geometry.

[179]

Computational Geometry
Computational geometry is a field of mathematics that seeks the development of
efficient algorithms to solve problems described in terms of basic geometrical objects.
We differentiate between combinatorial computational geometry and numerical
computational geometry.

Combinatorial computational geometry deals with the interaction of basic geometrical
objects—points, segments, lines, polygons, and polyhedra. In this setting, we have
three categories of problems:

• Static problems: The construction of a known target object is required from
a set of input geometric objects

• Geometric query problems: Given a set of known objects (the search space)
and a sought property (the query), these problems deal with the search of
objects that satisfy the query

• Dynamic problems: This is similar to the problems from the previous two
categories, with the added challenge that the input is not known in advance,
and objects are inserted or deleted between queries/constructions

Numerical computational geometry deals mostly with the representation of
objects in space described by means of curves, surfaces, and regions in space
bounded by these.

Before we proceed to the development and analysis of the different algorithms in
those two settings, it pays to explore the basic background—Plane geometry.

Computational Geometry

[180]

Plane geometry
The geometry module of the SymPy library covers basic geometry capabilities.
Rather than giving an academic description of all objects and properties in that
module, we discover the most useful ones through a series of small self-explanatory
Python sessions.

We start with the concepts of point and segment. The aim is to illustrate how easily
we can check for collinearity, compute lengths, midpoints, or slopes of segments, for
example. We also show how to quickly compute the angle between two segments,
as well as decide whether a given point belongs to a segment or not. The following
diagram illustrates an example, which we will follow up with the code:

In [1]: from sympy.geometry import Point, Segment, Line, \
 ...: Circle, Triangle, Curve
In [2]: P1 = Point(0, 0); \
 ...: P2 = Point(3, 4); \
 ...: P3 = Point(2, -1); \
 ...: P4 = Point(-1, 5)
In [3]: statement = Point.is_collinear(P1, P2, P3); \
 ...: print "Are P1, P2, P3 collinear?," statement
Are P1, P2, P3 collinear? False

Chapter 6

[181]

In [4]: S1 = Segment(P1, P2); \
 ...: S2 = Segment(P3, P4)
In [5]: print "Length of S1:", S1.length
Length of S1: 5
In [6]: print "Midpoint of S2:", S2.midpoint
Midpoint of S2: Point(1/2, 2)
In [7]: print "Slope of S1", S1.slope
Slope of S1: 4/3
In [8]: print "Intersection of S1 and S2:", S1.intersection(S2)
Intersection of S1 and S2: [Point(9/10, 6/5)]
In [9]: print "Angle between S1, S2:", Segment.angle_between(S1, S2)
Angle between S1, S2: acos(-sqrt(5)/5)
In [10]: print "Does S1 contain P3?", S1.contains(P3)
Does S1 contain P3? False

The next logical geometrical concept is the line. We can perform more interesting
operations with lines, and to that effect, we have a few more constructors. We can
find their equations; compute the distance between a point and a line, and many
other operations:

Computational Geometry

[182]

In [11]: L1 = Line(P1, P2)
In [12]: L2 = L1.perpendicular_line(P3) #perpendicular line to L1
In [13]: print "Parametric equation of L2:", L2.arbitrary_point()
Parametric equation of L2: Point(4*t + 2, -3*t – 1)
In [14]: print "Algebraic equation of L2:", L2.equation()
Algebraic equation of L2: 3*x + 4*y - 2
In [15]: print "Does L2 contain P4?", L2.contains(P4)
Does L2 contain P4? False
In [16]: print "Distance from P4 to L2:", L2.distance(P4)
Distance from P4 to L2: 3
In [17]: print "Is L2 parallel with S2?", L1.is_parallel(S2)
Is L2 parallel with S2? False

The next geometrical concept we are to explore is the circle. We can define a circle
by its center and radius, or by three points on it. We can easily compute all of its
properties, as shown in the following diagram:

Chapter 6

[183]

In [18]: C1 = Circle(P1, 3); \
 : C2 = Circle(P2, P3, P4)
In [19]: print "Area of C2:", C2.area
Area of C2: 1105*pi/98
In [20]: print "Radius of C2:", C2.radius
Radius of C2: sqrt(2210)/14
In [21]: print "Algebraic equation of C2:", C2.equation()
Algebraic equation of C2: (x - 5/14)**2 + (y - 27/14)**2 - 1105/98
In [22]: print "Center of C2:", C2.center
Center of C2: Point(5/14, 27/14)
In [23]: print "Circumference of C2:", C2.circumference
Circumference of C2: sqrt(2210)*pi/7

Computing intersections with other objects, checking whether a line is tangent to a
circle, or finding the tangent lines through a exterior point, are simple tasks too:

In [24]: print "Intersection of C1 and C2:\n", C2.intersection(C1)
Intersection of C1 and C2:
[Point(55/754 + 27*sqrt(6665)/754, -5*sqrt(6665)/754 + 297/754),
 Point(-27*sqrt(6665)/754 + 55/754, 297/754 + 5*sqrt(6665)/754)]
In [25]: print "Intersection of S1 and C2:\n", C2.intersection(S1)
Intersection of S1 and C2:
[Point(3, 4)]
In [26]: print "Is L2 tangent to C2?", C2.is_tangent(L2)
Is L2 tangent to C2? False
In [27]: print "Tangent lines to C1 through P4:\n", \
 C1.tangent_lines(P4)
Tangent lines to C1 through P4:
[Line(Point(-1, 5),
 Point(-9/26 + 15*sqrt(17)/26, 3*sqrt(17)/26 + 45/26)),
 Line(Point(-1, 5),
 Point(-15*sqrt(17)/26 - 9/26, -3*sqrt(17)/26 + 45/26))]

The triangle is a very useful basic geometric concept. Reliable manipulation of these
objects is at the core of computational geometry. We need robust and fast algorithms
to manipulate and extract information from them. Let's first show the definition of
one, together with a series of queries to describe its properties:

In [28]: T = Triangle(P1, P2, P3)
In [29]: print "Signed area of T:", T.area
Signed area of T: -11/2
In [30]: print "Angles of T:\n", T.angles
Angles of T:
{Point(3, 4): acos(23*sqrt(26)/130),

Computational Geometry

[184]

 Point(2, -1): acos(3*sqrt(130)/130),
 Point(0, 0): acos(2*sqrt(5)/25)}
In [31]: print "Sides of T:\n", T.sides
Sides of T:
[Segment(Point(0, 0), Point(3, 4)),
 Segment(Point(2, -1), Point(3, 4)),
 Segment(Point(0, 0), Point(2, -1))]
In [32]: print "Perimeter of T:", T.perimeter
Perimeter of T: sqrt(5) + 5 + sqrt(26)
In [33]: print "Is T a right triangle?", T.is_right()
Is T a right triangle? False
In [34]: print "Is T equilateral?", T.is_equilateral()
Is T equilateral? False
In [35]: print "Is T scalene?", T.is_scalene()
Is T scalene? True
In [36]: print "Is T isosceles?", T.is_isosceles()
Is T isosceles? False

Next, note how easily we can obtain representation of the different segments, centers,
and circles associated with triangles, as well as the medial triangle (the triangle with
vertices at the midpoints of the segments):

In [37]: T.altitudes
Out[37]:
{Point(0, 0) : Segment(Point(0, 0), Point(55/26, -11/26)),
 Point(2, -1): Segment(Point(6/25, 8/25), Point(2, -1)),
 Point(3, 4) : Segment(Point(4/5, -2/5), Point(3, 4))}
In [38]: T.orthocenter # Intersection of the altitudes
Out[38]:
Point((3*sqrt(5) + 10)/(sqrt(5) + 5 + sqrt(26)),
 (-5 + 4*sqrt(5))/(sqrt(5) + 5 + sqrt(26)))
In [39]: T.bisectors() # Angle bisectors
Out[39]:
{Point(0, 0) : Segment(Point(0, 0),
 Point(sqrt(5)/4 + 7/4, -9/4 + 5*sqrt(5)/4)),
 Point(2, -1): Segment(Point(3*sqrt(5)/(sqrt(5) + sqrt(26)),
 4*sqrt(5)/(sqrt(5) + sqrt(26))),
 Point(2, -1)),
 Point(3, 4) : Segment(Point(-50 + 10*sqrt(26), -5*sqrt(26) + 25),
 Point(3, 4))}
In [40]: T.incenter # Intersection of angle bisectors
Out[40]:
Point((3*sqrt(5) + 10)/(sqrt(5) + 5 + sqrt(26)),
 (-5 + 4*sqrt(5))/(sqrt(5) + 5 + sqrt(26)))
In [41]: T.incircle

Chapter 6

[185]

Out[41]:
Circle(Point((3*sqrt(5) + 10)/(sqrt(5) + 5 + sqrt(26)),
 (-5 + 4*sqrt(5))/(sqrt(5) + 5 + sqrt(26))),
 -11/(sqrt(5) + 5 + sqrt(26)))
In [42]: T.inradius
Out[42]: -11/(sqrt(5) + 5 + sqrt(26))
In [43]: T.medians
Out[43]:
{Point(0, 0) : Segment(Point(0, 0), Point(5/2, 3/2)),
 Point(2, -1): Segment(Point(3/2, 2), Point(2, -1)),
 Point(3, 4) : Segment(Point(1, -1/2), Point(3, 4))}
In [44]: T.centroid # Intersection of the medians
Out[44]: Point(5/3, 1)
In [45]: T.circumcenter # Intersection of perpendicular bisectors
Out[45]: Point(45/22, 35/22)
In [46]: T.circumcircle
Out[46]: Circle(Point(45/22, 35/22), 5*sqrt(130)/22)
In [47]: T.circumradius
Out[47]: 5*sqrt(130)/22
In [48]: T.medial
Out[48]: Triangle(Point(3/2, 2), Point(5/2, 3/2), Point(1, -1/2))

Here are some other interesting operations with triangles:

• Intersection with other objects
• Computation of the minimum distance from a point to each of the segments
• Checking whether two triangles are similar

In [49]: T.intersection(C1)
Out[49]: [Point(9/5, 12/5),
 Point(sqrt(113)/26 + 55/26, -11/26 + 5*sqrt(113)/26)]
In [50]: T.distance(T.circumcenter)
Out[50]: sqrt(26)/11
In [51]: T.is_similar(Triangle(P1, P2, P4))
Out[51]: False

The other basic geometrical objects currently coded in the geometry module are:

• LinearEntity: This is a superclass with three subclasses: Segment, Line,
and Ray. The class LinearEntity enjoys the following basic methods:

 ° are_concurrent(o1, o2, ..., on)

 ° are_parallel(o1, o2)

 ° are_perpendicular(o1, o2)

Computational Geometry

[186]

 ° parallel_line(self, Point)

 ° perpendicular_line(self, Point)

 ° perpendicular_segment(self, Point)

• Ellipse: This is an object with a center, together with horizontal and
vertical radii. Circle is, as a matter of fact, a subclass of Ellipse with
both radii equal.

• Polygon: This is a superclass that we can instantiate by listing a set of
vertices. Triangles are a subclass of Polygon, for example. The basic
methods of Polygon are:

 ° area

 ° perimeter

 ° centroid

 ° sides

 ° vertices

• RegularPolygon. This is a subclass of Polygon, with extra attributes:
 ° apothem

 ° center

 ° circumcircle

 ° exterior_angle

 ° incircle

 ° interior_angle

 ° radius

For more information about this module, refer to the official
SymPy documentation at http://docs.sympy.org/
latest/modules/geometry/index.html.

There is also a nonbasic geometric object—a curve, which we define by
providing parametric equations, together with the interval of definition of
the parameter. It currently does not have many useful methods, other than
those describing its constructors. Let's illustrate how to deal with these objects.
For example, a three-quarters arc of an ellipse could be coded as follows:

In [52]: from sympy import var, pi, sin, cos
In [53]: var('t', real=True)
In [54]: Arc = Curve((3*cos(t), 4*sin(t)), (t, 0, 3*pi/4))

http://docs.sympy.org/latest/modules/geometry/index.html
http://docs.sympy.org/latest/modules/geometry/index.html

Chapter 6

[187]

To end the exposition on basic objects from the geometry module in the SymPy
library, we must mention that we can apply any basic affine transformations to
any of the previous objects. This is done by combination of the methods reflect,
rotate, translate, and scale:

In [55]: T.reflect(L1)
Out[55]: Triangle(Point(0, 0), Point(3, 4), Point(-38/25, 41/25))
In [56]: T.rotate(pi/2, P2)
Out[56]: Triangle(Point(7, 1), Point(3, 4), Point(8, 3))
In [57]: T.translate(5,4)
Out[57]: Triangle(Point(5, 4), Point(8, 8), Point(7, 3))
In [58]: T.scale(9)
Out[58]: Triangle(Point(0, 0), Point(27, 4), Point(18, -1))
In [59]: Arc.rotate(pi/2, P3).translate(pi,pi).scale(0.5)
Out[59]:
Curve((-2.0*sin(t) + 0.5 + 0.5*pi, 3*cos(t) - 3 + pi),
 (t, 0, 3*pi/4))

With these basic definitions and operations, we are ready to address more complex
situations. Let's explore these new challenges next.

Combinatorial computational geometry
Also called algorithmic geometry, the applications of this field are plenty. In robotics,
it is used to solve visibility problems, and motion planning, for instance. Similar
applications are employed to design route planning or search algorithms in geographic
information systems (GIS).

Let's describe the different categories of problems, putting emphasis on the tools
to solve them, which are available in the SciPy stack.

Static problems
The fundamental problems in this category are the following:

• Convex hulls: Given a set of points in space, find the smallest convex
polyhedron containing them.

• Voronoi diagrams: Given a set of points in space (the seeds), compute a
partition in regions consisting of all points closer to each seed.

• Triangulations: Partition the plane with triangles in a way that two triangles
are either disjointed, or otherwise they share an edge or a vertex. There are
different triangulations depending on the input objects or constraints on the
properties of the triangles.

Computational Geometry

[188]

• Shortest paths: Given a set of obstacles in a space and two points, find the
shortest path between the points that does not intersect any of the obstacles.

The problems of computation of convex hulls, basic triangulations,
and Voronoi diagrams are intimately linked. The theory that explains
this beautiful topic is explained in detail in a monograph in computer
science titled Computational Geometry, written by Franco Preparata and
Michael Shamos. It was published by Springer-Verlag in 1985.

Convex hulls
While it is possible to compute the convex hull of a reasonably large set of points in the
plane through the geometry module of the library SymPy, this is not recommended.
A much faster and reliable code is available in the module scipy.spatial through
the class ConvexHull, which implements a wrapper to the routine qconvex, from the
Qhull libraries (http://www.qhull.org/). This routine also allows the computation
of convex hulls in higher dimensions. Let's compare both methods, with the famous
Lake Superior polygon, superior.poly.

The poly files represent planar straight line graphs—a simple list
of vertices and edges, together with information about holes and
concavities, in some cases. The running example can be downloaded
from https://github.com/blancosilva/Mastering-Scipy/
blob/master/chapter6/superior.poly.
This contains a polygonal description of the coastline of Lake Superior,
with 7 holes (for the islands), 518 vertices, and 518 edges.
For a complete description of the poly format, refer to http://
www.cs.cmu.edu/~quake/triangle.poly.html. With that
information, we can write a simple reader without much effort.

Following is an example.

part of file chapter6.py
from numpy import array
def read_poly(file_name):
 """
 Simple poly-file reader, that creates a python
 dictionary
 with information about vertices, edges and holes.
 It assumes that vertices have no attributes or
 boundary markers.
 It assumes that edges have no boundary markers.
 No regional attributes or area constraints are

http://www.qhull.org/
https://github.com/blancosilva/Mastering-Scipy/blob/master/chapter6/superior.poly
https://github.com/blancosilva/Mastering-Scipy/blob/master/chapter6/superior.poly
http://www.cs.cmu.edu/~quake/triangle.poly.html
http://www.cs.cmu.edu/~quake/triangle.poly.html

Chapter 6

[189]

 parsed.
 """
 output = {'vertices': None,
 'holes': None,
 'segments': None}
 # open file and store lines in a list
 file = open(file_name, 'r')
 lines = file.readlines()
 file.close()
 lines = [x.strip('\n').split() for x in lines]
 # Store vertices
 vertices= []
 N_vertices,dimension,attr,bdry_markers = [int(x) for x in lines[0]]
 # We assume attr = bdrt_markers = 0
 for k in range(N_vertices):
 label,x,y = [items for items in lines[k+1]]
 vertices.append([float(x), float(y)])
 output['vertices']=array(vertices)
 # Store segments
 segments = []
 N_segments,bdry_markers = [int(x) for x in lines[N_vertices+1]]
 for k in range(N_segments):
 label,pointer_1,pointer_2 = [items for items in lines[N_
vertices+k+2]]
 segments.append([int(pointer_1)-1, int(pointer_2)-1])
 output['segments'] = array(segments)
 # Store holes
 N_holes = int(lines[N_segments+N_vertices+2][0])
 holes = []
 for k in range(N_holes):
 label,x,y = [items for items in lines[N_segments + N_vertices + 3 +
k]]
 holes.append([float(x), float(y)])
 output['holes'] = array(holes)
 return output

Notice that loading each vertex as Point, as well as computing the convex hull with
that structure, requires far too many resources and too much time. Note the difference:

In [1]: import numpy as np, matplotlib.pyplot as plt; \
 ...: from sympy.geometry import Point, convex_hull; \
 ...: from scipy.spatial import ConvexHull; \
 ...: from chapter6 import read_poly
In [2]: lake_superior = read_poly("superior.poly"); \
 ...: vertices_ls = lake_superior['vertices']

Computational Geometry

[190]

In [3]: %time hull = ConvexHull(vertices_ls)
CPU times: user 1.59 ms, sys: 372 µs, total: 1.96 ms
Wall time: 1.46 ms
In [4]: vertices_sympy = [Point(x) for x in vertices_ls]
In [5]: %time convex_hull(*vertices_sympy)
CPU times: user 168 ms, sys: 54.5 ms, total: 223 ms
Wall time: 180 ms
Out[5]:
Polygon(Point(1/10, -629607/1000000),
 Point(102293/1000000, -635353/1000000),
 Point(2773/25000, -643967/1000000),
 Point(222987/1000000, -665233/1000000),
 Point(8283/12500, -34727/50000),
 Point(886787/1000000, -1373/2000),
 Point(890227/1000000, -6819/10000),
 Point(9/10, -30819/50000),
 Point(842533/1000000, -458913/1000000),
 Point(683333/1000000, -17141/50000),
 Point(16911/25000, -340427/1000000),
 Point(654027/1000000, -333047/1000000),
 Point(522413/1000000, -15273/50000),
 Point(498853/1000000, -307193/1000000),
 Point(5977/25000, -25733/50000),
 Point(273/2500, -619833/1000000))

Let us produce a diagram with the solution, using the computations of
scipy.spatial.ConvexHull:

Plotting a set of vertices together with its convex hull in two dimensions
(once computed with ConvexHull) is also possible with the simple
command convex_hull_plot_2d. It requires matplotlib.pyplot.

In [5]: plt.figure(); \
 ...: plt.xlim(vertices_ls[:,0].min()-0.01,
 vertices_ls[:,0].max()+0.01); \
 ...: plt.ylim(vertices_ls[:,1].min()-0.01,
 vertices_ls[:,1].max()+0.01); \
 ...: plt.axis('off'); \
 ...: plt.axes().set_aspect('equal'); \
 ...: plt.plot(vertices_ls[:,0], vertices_ls[:,1], 'b.')
Out[5]: [<matplotlib.lines.Line2D at 0x10ee3ab10>]
In [6]: for simplex in hull.simplices:
 ...: plt.plot(vertices_ls[simplex, 0],
 ...: vertices_ls[simplex, 1], 'r-')
In [7]: plt.show()

Chapter 6

[191]

This plots the following image:

To modify the output of ConvexHull, we are allowed to pass all required qconvex
controls through the parameter qhull_options. For a list of all qconvex controls
and other output options, consult the Qhull manual at http://www.qhull.org/
html/index.htm. In this chapter, we are content with showing the results obtained
with the default controls qhull_options='Qx Qt' if the dimension of the points is
greater than four, and qhull_options='Qt' otherwise.

Let's now illustrate a few advanced uses of ConvexHull. First, the computation of the
convex hull of a random set of points in the 3D space. For visualization, we will use
the mayavi libraries:

In [8]: points = np.random.rand(320, 3)
In [9]: hull = ConvexHull(points)
In [10]: X = hull.points[:, 0]; \
 : Y = hull.points[:, 1]; \
 : Z = hull.points[:, 2]
In [11]: from mayavi import mlab
In [12]: mlab.triangular_mesh(X, Y, X, hull.simplices,
 : colormap='gray', opacity=0.5,
 : representation='wireframe')

http://www.qhull.org/html/index.htm
http://www.qhull.org/html/index.htm

Computational Geometry

[192]

This plots the following image:

Voronoi diagrams
Computing the Voronoi diagram of a set of vertices (our seeds) can be done with
the class Voronoi (and its companion voronoi_plot_2d for visualization) from
the module scipy.spatial. This class implements a wrapper to the routine
qvoronoi from the Qhull libraries, with the following default controls
qhull_option='Qbb Qc Qz Qx' if the dimension of the points is greater than
four, and qhull_options='Qbb Qc Qz' otherwise. For the computation of the
furthest-site Voronoi diagram, instead of the nearest-site, we would add the
extra control 'Qu'.

Let's work a simple example with the usual Voronoi diagram:

In [13]: from scipy.spatial import Voronoi, voronoi_plot_2d
In [14]: vor = Voronoi(vertices_ls)

To understand the output, it is very illustrative to replicate the diagram that we
obtain by restricting the visualization obtained by voronoi_plot_2d in a small
window, centered somewhere along the north shore of Lake Superior:

In [15]: ax = plt.subplot(111, aspect='equal'); \
 : voronoi_plot_2d(vor, ax=ax); \
 : plt.xlim(0.45, 0.50); \
 : plt.ylim(-0.40, -0.35); \
 : plt.show()

Chapter 6

[193]

This plots the following image:

• The small dots are the original seeds with x coordinates between 0.45 and
0.50, and y coordinates between -0.40 and -0.35. We access those values
either from the original list vertices_ls or from vor.points.

• The plane gets partitioned into different regions (the Voronoi cells), one for
each seed. These regions contain all the points in the plane which are closest to
its seed. Each region receives an index, which is not necessarily the same index
as the index of its seed in the vor.points list. To access the corresponding
region to a given seed, we use vor.point_region:
In [16]: vor.point_region

Out[16]:

array([0, 22, 24, 21, 92, 89, 91, 98, 97, 26, 218,
 219, 220, 217, 336, 224, 334, 332, 335, 324, 226, 231,
 230, 453, 500, 454, 235, 234, 333, 236, 341, 340, 93,
 ...
 199, 81, 18, 17, 205, 290, 77, 503, 469, 473, 443,
 373, 376, 366, 370, 369, 210, 251, 367, 368, 377, 472,
 504, 506, 502, 354, 353, 54, 42, 43, 350, 417, 414,
 415, 418, 419, 425])

Computational Geometry

[194]

• Each Voronoi cell is defined by its delimiting vertices and edges (also known
as ridges in Voronoi jargon). The list with the coordinates of the computed
vertices of the Voronoi diagram can be obtained with vor.vertices. These
vertices were represented as bigger dots in the previous image, and are
easily identifiable because they are always at the intersection of at least
two edges—while the seeds have no incoming edges:
In [17]: vor.vertices
Out[17]:
array([[0.88382749, -0.23508215],
 [0.10607886, -0.63051169],
 [0.03091439, -0.55536174],
 ...,
 [0.49834202, -0.62265786],
 [0.50247159, -0.61971784],
 [0.5028735 , -0.62003065]])

• For each of the regions, we can access the set of delimiting vertices with
vor.regions. For instance, to obtain the coordinates of the vertices that delimit
the region around the fourth seed, we could issue the following command:
In [18]: [vor.vertices[x] for x in
 vor.regions[vor.point_region[4]]]
Out[18]:
[array([0.13930793, -0.81205929]),
 array([0.11638 , -0.92111088]),
 array([0.11638 , -0.63657789]),
 array([0.11862537, -0.6303235]),
 array([0.12364332, -0.62893576]),
 array([0.12405738, -0.62891987])]

Care must be taken with the previous step—some of the vertices of the
Voronoi cells are not actual vertices, but lie at infinity. When this is the case,
they are identified with the index -1. In this situation, to provide an accurate
representation of a ridge of these characteristics, we must use the knowledge
of the two seeds whose contiguous Voronoi cells intersect on said ridge—since
the ridge is perpendicular to the segment defined by those two seeds. We
obtain the information about those seeds with vor.ridge_points:
In [19]: vor.ridge_points
Out[19]:
array([[0, 1],
 [0, 433],
 [0, 434],
 ...,

Chapter 6

[195]

 [124, 118],
 [118, 119],
 [119, 122]])

The first entry of vor.ridge_points can be read as, there is a ridge
perpendicular to both the first and second seeds.

There are other attributes of the object vor that we could use to inquire properties of
the Voronoi diagram, but the ones we have described should be enough to replicate
the previous diagram. We leave this as a nice exercise:

1. Gather the indices of the seeds from vor.points that have their x
coordinates and y coordinates in the required window. Plot them.

2. For each of those seeds, gather information about the vertices of their
corresponding Voronoi cells. Plot those vertices that are not at infinity
with a different style to the seeds.

3. Gather information about the ridges of each relevant region, and plot them
as simple thin segments. Some of the ridges cannot be represented by their
two vertices. In that case, we use the information about the seeds that
determine them.

Triangulations
A triangulation of a set of vertices in the plane is a division of the convex hull of the
vertices into triangles, satisfying one important condition. Any two given triangles
can be either one of the following:

• They must be disjoint
• They must intersect only at one common vertex
• They must share one common edge

These plain triangulations have not much computational value, since some
of their triangles might be too skinny—this leads to uncomfortable rounding
errors, computation or erroneous areas, centers, and so on. Among all possible
triangulations, we always seek one where the properties of the triangles are
somehow balanced.

With this purpose in mind, we have the Delaunay triangulation of a set of vertices.
This triangulation satisfies an extra condition—none of the vertices lie in the interior
of the circumcircle of any triangle. We refer to triangles with this property as
Delaunay triangles.

Computational Geometry

[196]

For this simpler setting, in the module scipy.spatial, we have the class Delaunay,
which implements a wrapper to the routine qdelaunay from the Qhull libraries,
with the controls set exactly, as in the case of the Voronoi diagram:

In [20]: from scipy.spatial import Delaunay
In [21]: tri = Delaunay(vertices_ls)
In [22]: plt.figure()
 : plt.xlim(vertices_ls[:,0].min()-0.01,
 vertices_ls[:,0].max()+0.01); \
 : plt.ylim(vertices_ls[:,1].min()-0.01,
 vertices_ls[:,1].max()+0.01); \
 : plt.axes().set_aspect('equal'); \
 : plt.axis('off'); \
 : plt.triplot(vertices_ls[:,0], vertices_ls[:,1],
 tri.simplices, 'k-'); \
 : plt.plot(vertices_ls[:,0], vertices_ls[:,1], 'r.'); \
 : plt.show()

This plots the following diagram:

It is possible to generate triangulations with imposed edges too. Given a collection of
vertices and edges, a constrained Delaunay triangulation is a division of the space
into triangles with those prescribed features. The triangles in this triangulation are
not necessarily Delaunay.

We can accomplish this extra condition sometimes by subdividing each of the
imposed edges. We call this triangulation conforming Delaunay, and the new
(artificial) vertices needed to subdivide the edges are called Steiner points.

Chapter 6

[197]

A constrained conforming Delaunay triangulation of an imposed set of vertices
and edges satisfies a few more conditions, usually setting thresholds on the values of
angles or areas of the triangles. This is achieved by introducing a new set of Steiner
points, which are allowed anywhere, not only on edges.

To achieve these high-level triangulations, we need to step outside of the
SciPy stack. We have a Python wrapper for the amazing implementation
of mesh generators, triangle, by Richard Shewchuck (http://www.
cs.cmu.edu/~quake/triangle.html). This wrapper, together with
examples and other related functions, can be installed from prompt by
issuing either easy_install triangle, or pip install triangle.
For more information on this module, refer to the documentation online
from its author, Dzhelil Rufat, at http://dzhelil.info/triangle/
index.html.

Let's compute those different triangulations for our running example. We once
again use the poly file with the features of Lake Superior, which we read into a
dictionary with all the information about vertices, segments, and holes. The first
example is that of the constrained Delaunay triangulation (cndt). We accomplish
this task with the flag p (indicating that the source is a planar straight line graph,
rather than a set of vertices):

In [23]: from triangle import triangulate, plot as tplot
In [24]: cndt = triangulate(lake_superior, 'p')
In [25]: ax = plt.subplot(111, aspect='equal'); \
 : tplot.plot(ax, **cndt); \
 : plt.show()

Note the improvement with respect to the previous diagram, as well as the absence
of triangles outside of the original polygon:

http://www.cs.cmu.edu/~quake/triangle.html
http://www.cs.cmu.edu/~quake/triangle.html
http://dzhelil.info/triangle/index.html
http://dzhelil.info/triangle/index.html

Computational Geometry

[198]

The next step is the computation of a conforming Delaunay triangulation (cfdt).
We enforce Steiner points on some segments to ensure as many Delaunay triangles
as possible. We achieve this with the extra flag D:

In [26]: cfdt = triangulate(lake_superior, 'pD')

Either slight or no improvement, with respect to the previous diagram, can be
observed in this case. The real improvement arises when we further impose
constraints in the values of minimum angles on triangles (with the flag q) or in the
maximum values of the areas of triangles (with the flag a). For instance, if we require
a constrained conforming Delaunay triangulation (cncfdt) in which all triangles
have a minimum angle of at least 20 degrees, we issue the following command:

In [27]: cncfq20dt = triangulate(lake_superior, 'pq20D')
In [28]: ax = plt.subplot(111, aspect='equal'); \
 : tplot.plot(ax, **cncfq20dt); \
 : plt.show()

This presents us with a much more improved result, as seen in the following diagram:

To conclude this section, we present a last example where we further impose a
maximum area on triangles:

In [29]: cncfq20adt = triangulate(lake_superior, 'pq20a.001D')
In [30]: ax = plt.subplot(111, aspect='equal'); \
 : tplot.plot(ax, **cncfq20adt); \
 : plt.show()

Chapter 6

[199]

The last (very satisfying) diagram is as follows:

Shortest paths
We will use the previous example to introduce a special setting to the problem of
shortest paths. We pick a location on the Northwest coast of the lake (say, the vertex
indexed as 370 in the original poly file), and the goal is to compute the shortest path
to the furthest Southeast location on the shore, at the bottom-right corner—this is the
vertex indexed as 179 in the original poly file. By a path in this setting, we mean a
chain of edges of the triangulation.

In the SciPy stack, we accomplish the computation of the shortest paths on a
triangulation (and in some other similar geometries that can be coded by means
of graphs) by relying on two modules:

• scipy.sparse is used to store a weighted-adjacency matrix G representing
the triangulation. Each nonzero entry G[i,j] of this adjacency matrix is
precisely the length of the edge from vertex i to vertex j.

• scipy.sparse.csgraph is the module that deals with compressed sparse
graphs. This module contains routines to analyze, extract information,
or manipulate graphs. Among these routines, we have several different
algorithms to compute the shortest paths on a graph.

Computational Geometry

[200]

For more information on the module scipy.sparse.csgraph,
refer to the online documentation at http://docs.scipy.org/
doc/scipy/reference/sparse.csgraph.html.
For the theory and applications of Graph Theory, one of the best
sources is the introductory book by Reinhard Diestel, Graph Theory,
published by Springer-Verlag.

Let's illustrate this example with proper code. We start by collecting the indices of
the vertices of all segments in the triangulation, and the lengths of these segments.

To compute the length of each segment, rather than creating,
from scratch a routine that applies a reliable norm function over
each item of the difference of two lists of related vertices, we use
minkowski_distance from the module scipy.spatial.

In [31]: X = cncfq20adt['triangles'][:,0]; \
 : Y = cncfq20adt['triangles'][:,1]; \
 : Z = cncfq20adt['triangles'][:,2]
In [32]: Xvert = [cncfq20adt['vertices'][x] for x in X]; \
 : Yvert = [cncfq20adt['vertices'][y] for y in Y]; \
 : Zvert = [cncfq20adt['vertices'][z] for z in Z]
In [33]: from scipy.spatial import minkowski_distance
In [34]: lengthsXY = minkowski_distance(Xvert, Yvert); \
 : lengthsXZ = minkowski_distance(Xvert, Zvert); \
 : lengthsYZ = minkowski_distance(Yvert, Zvert)

We now create the weighted-adjacency matrix, which we store as a lil_matrix,
and compute the shortest path between the requested vertices. We gather, in a list,
all the vertices included in the computed path, and plot the resulting chain overlaid
on the triangulation.

A word of warning:
The adjacency matrix we are about to compute is not the distance
matrix. In the distance matrix A, we include, on each entry A[i, j],
the distance between any vertex i to any vertex j, regardless of
being connected by an edge or not. If this distance matrix is desired,
the most reliable way to compute it is by means of the routine
distance_matrix in the module scipy.spatial:
>>> from scipy.spatial import distance_matrix

>>> A = distance_matrix(cncfq20adt['vertices'],
 cncfq20adt['vertices'])

http://docs.scipy.org/doc/scipy/reference/sparse.csgraph.html
http://docs.scipy.org/doc/scipy/reference/sparse.csgraph.html

Chapter 6

[201]

In [35]: from scipy.sparse import lil_matrix; \

 : from scipy.sparse.csgraph import shortest_path

In [36]: nvert = len(cncfq20adt['vertices']); \

 : G = lil_matrix((nvert, nvert))

In [37]: for k in range(len(X)):

 : G[X[k], Y[k]] = G[Y[k], X[k]] = lengthsXY[k]

 : G[X[k], Z[k]] = G[Z[k], X[k]] = lengthsXZ[k]

 : G[Y[k], Z[k]] = G[Z[k], Y[k]] = lengthsYZ[k]

 :

In [38]: dist_mat, pred = shortest_path(G, return_predecessors=True,

 : directed=True,
 : unweighted=False)

In [39]: index = 370; \

 : path = [370]

In [40]: while index != 197:

 : index = pred[197, index]

 : path.append(index)

 :

In [41]: print path

[380, 379, 549, 702, 551, 628, 467, 468, 469, 470, 632, 744, 764,
 799, 800, 791, 790, 789, 801, 732, 725, 570, 647, 177, 178, 179,
 180, 181, 182, 644, 571, 201, 200, 199, 197]

In [42]: ax = plt.subplot(111, aspect='equal'); \

 : tplot.plot(ax, **cncfq20adt)

In [43]: Xs = [cncfq20adt['vertices'][x][0] for x in path]; \

 : Ys = [cncfq20adt['vertices'][x][1] for x in path]

In [44]: ax.plot(Xs, Ys '-', linewidth=5, color='blue'); \

 : plt.show()

Computational Geometry

[202]

This gives the following diagram:

Geometric query problems
The fundamental problems in this category are as follows:

• Point location
• Nearest neighbor
• Range searching

Point location
The problem of point location is fundamental in computational geometry, given a
partition of the space into disjoint regions, we need to query the region that contains
a target location.

The most basic point location problems are those where the partition is given by a
single geometric object—a circle or a polygon, for example. For those simple objects
that have been constructed through any of the classes in the module sympy.geometry,
we have two useful methods: .encloses_point and .encloses.

Chapter 6

[203]

The former checks whether a point is interior to a source object (but not on the
border), while the latter checks whether another target object has all its defining
entities in the interior of the source object:

In [1]: from sympy.geometry import Point, Circle, Triangle
In [2]: P1 = Point(0, 0); \
 ...: P2 = Point(1, 0); \
 ...: P3 = Point(-1, 0); \
 ...: P4 = Point(0, 1)
In [3]: C = Circle(P2, P3, P4); \
 ...: T = Triangle(P1, P2, P3)
In [4]: print "Is P1 inside of C?", C.encloses_point(P1)
Is P1 inside of C? True
In [5]: print "Is T inside of C?", C.encloses(T)
Is T inside of C? False

Of special importance is this simple setting where the source object is a polygon.
The routines in the sympy.geometry module get the job done, but at the cost of too
many resources and too much time. A much faster way to approach this problem is
by using the Path class from the libraries of matplotlib.path. Let's see how with
a quick session. First, we create a representation of a polygon as a Path:

For information about the class Path and its usage within
the matplotlib libraries, refer to the official documentation
at http://matplotlib.org/api/path_api.
html#matplotlib.path.Path, as well as the tutorial at
http://matplotlib.org/users/path_tutorial.html.

In [6]: import numpy as np, matplotlib.pyplot as plt; \
 ...: from matplotlib.path import Path; \
 ...: from chapter6 import read_poly; \
 ...: from scipy.spatial import ConvexHull
In [7]: superior = read_poly("superior.poly")
In [8]: hull = ConvexHull(superior['vertices'])
In [9]: my_polygon = Path([hull.points[x] for x in hull.vertices])

We can now ask whether a point (respectively, a sequence of points) is interior to the
polygon. We accomplish this with either contains_point or contains_points:

In [10]: X = .25 * np.random.randn(100) + .5; \
 : Y = .25 * np.random.randn(100) - .5
In [11]: my_polygon.contains_points([[X[k], Y[k]] for k in
range(len(X))])
Out[11]:

http://matplotlib.org/api/path_api.html#matplotlib.path.Path
http://matplotlib.org/api/path_api.html#matplotlib.path.Path
http://matplotlib.org/users/path_tutorial.html

Computational Geometry

[204]

array([False, False, True, False, True, False, False, False, True,
 False, False, False, True, False, True, False, False, False,
 True, False, True, True, False, False, False, False, False,
 ...
 True, False, True, False, False, False, False, False, True,
 True, False, True, True, True, False, False, False, False,
 False], dtype=bool)

More challenging point location problems arise when our space is partitioned by
a complex structure. For instance, once a triangulation has been computed, and a
random location is considered, we need to query for the triangle where our target
location lies. In the module scipy.spatial, we have handy routines to perform
this task over Delaunay triangulations created with scipy.spatial.Delaunay.
In the following example, we track the triangles that contain a set of 100 random
points in the domain:

In [12]: from scipy.spatial import Delaunay, tsearch
In [13]: tri = Delaunay(superior['vertices'])
In [14]: points = zip(X, Y)
In [15]: print tsearch(tri, points)
[-1 687 -1 647 -1 -1 -1 -1 805 520 460 647 580 -1 -1 -1 -1
 304 -1 -1 -1 -1 108 723 -1 -1 -1 -1 -1 -1 -1 144 454 -1
 -1 -1 174 257 -1 -1 -1 -1 -1 52 -1 -1 985 -1 263 -1 647
 -1 314 -1 -1 104 144 -1 -1 -1 -1 348 -1 368 -1 -1 -1 988
 -1 -1 -1 348 614 -1 -1 -1 -1 -1 -1 -1 114 -1 -1 684 -1
 537 174 161 647 702 594 687 104 -1 144 -1 -1 -1 684 -1]

The same result is obtained with the method .find_simplex of the
Delaunay object tri:
In [16]: print tri.find_simplex(points)

[-1 687 -1 647 -1 -1 -1 -1 805 520 460 647 580 -1
 -1 -1 -1 304 -1 -1 -1 -1 108 723 -1 -1 -1 -1
 -1 -1 -1 144 454 -1 -1 -1 174 257 -1 -1 -1 -1
 -1 52 -1 -1 985 -1 263 -1 647 -1 314 -1 -1 104
 144 -1 -1 -1 -1 348 -1 368 -1 -1 -1 988 -1 -1
 -1 348 614 -1 -1 -1 -1 -1 -1 -1 114 -1 -1 684
 -1 537 174 161 647 702 594 687 104 -1 144 -1 -1 -1
 684 -1]

Note that, when a triangle is found, the routine reports its corresponding
index in tri.simplices. If no triangle is found (which means the point is
exterior to the convex hull of the triangulation), the index reported is -1.

Chapter 6

[205]

Nearest neighbors
The problem of finding the Voronoi cell that contains a given location is equivalent
to the search for the nearest neighbor in a set of seeds. We can always perform this
search with a brute-force algorithm—and this is acceptable in some cases—but in
general, there are more elegant and less complex approaches to this problem. The
key lies in the concept of k-d trees—a special case of binary space partitioning
structures for organizing points, conductive to fast searches.

In the SciPy stack, we have an implementation of k-d trees; the Python class KDTree,
in the module scipy.spatial. This implementation is based on ideas published in
1999 by Maneewongvatana and Mount. It is initialized with the location of our input
points. Once created, it can be manipulated and queried with the following methods
and attributes:

• The methods are as follows:
 ° data: This presents the input.
 ° leafsize: This is the number of points at which the algorithm

switches to brute-force. This value can be optionally offered in the
initialization of the KDTree object.

 ° m: This is the dimension of the space where the points are located.
 ° n: This is the number of input points.
 ° maxes: This indicates the highest values of each of the coordinates of

the input points.
 ° mins: This indicates the lowest values of each of the coordinates of

the input points.

• The attributes are as follows:
 ° query(self, Q, p=2.0): This is the attribute that searches for the

nearest neighbor, or a target location Q, using the structure of the
k-d tree, with respect to the Minkowski p-distance.

 ° query_ball_point(self, Q, r, p=2.0): This is a more
sophisticated query that outputs all points within the Minkowski
p-distance r, from a target location Q.

 ° query_pairs(self, r, p=2.0): This finds all pairs of points whose
Minkowski p-distance is, at most, r.

 ° query_ball_tree(self, other, r, p=2.0): This is similar to
query_pairs, but it finds all pairs of points from two different k-d
trees, which are at a Minkowski p-distance of, at least, r.

Computational Geometry

[206]

 ° sparse_distance_matrix(self, other, max_distance):
This computes a distance matrix between two kd-trees, leaving
as zero, any distance greater than max_distance. The output is
stored in a sparse dok_matrix.

 ° count_neighbors(self, other, r, p=2.0): This attribute is an
implementation of the two-point correlation designed by Gray and
Moore, to count the number of pairs of points from two different k-d
trees, which are at a Minkowski p-distance not larger than r. Unlike
query_ball, this attribute does not produce the actual pairs.

There is a faster implementation of this object created as an extension type in Cython,
the cdef class cKDTree. The main difference is in the way the nodes are coded on
each case:

• For KDTree, the nodes are nested Python classes (the node being the top
class, and both leafnode and innernode being subclasses that represent
different kinds of nodes in the tree).

• For cKDTree, the nodes are C-type malloc'd structs, not classes. This makes
the implementation much faster, at a price of having less control over a
possible manipulation of the nodes.

Let's use this idea to solve a point location problem, and at the same time revisit the
Voronoi diagram from Lake Superior:

In [17]: from scipy.spatial import cKDTree, Voronoi, voronoi_plot_2d
In [18]: vor = Voronoi(superior['vertices']); \
 : tree = cKDTree(superior['vertices'])

First, we query for the previous dataset, of 100 random locations, the seeds that are
closest to each of them:

In [19]: tree.query(points)
Out[19]:
(array([0.38942726, 0.05020313, 0.06987993, 0.2150344 ,
 0.16101652, 0.08485664, 0.33217896, 0.07993277,
 0.06298875, 0.07428273, 0.1817608 , 0.04084714,
 0.0094284 , 0.03073465, 0.01236209, 0.02395969,
 0.17561544, 0.16823951, 0.24555293, 0.01742335,
 0.03765772, 0.20490015, 0.00496507]),
 array([3, 343, 311, 155, 370, 372, 144, 280, 197, 144, 251, 453,
 42 233, 232, 371, 280, 311, 0, 307, 507, 49, 474, 370,
 114, 5, 1, 372, 285, 150, 361, 84, 43, 98, 418, 482,
 155, 144, 371, 113, 91, 3, 453, 91, 311, 412, 155, 156,
 251, 251, 22, 179, 394, 189, 49, 405, 453, 506, 407, 36,
 308, 33, 81, 46, 301, 144, 280, 409, 197, 407, 516]))

Chapter 6

[207]

Note the output is a tuple with two numpy.array: the first one indicates the distances
of each point to its closest seed (their nearest neighbors), and the second one
indicates the index of the corresponding seed.

We can use this idea to represent the Voronoi diagram without a geometric
description in terms of vertices, segments, and rays:

In [20]: X = np.linspace(0.45, 0.50, 256); \
 : Y = np.linspace(-0.40, -0.35, 256); \
 : canvas = np.meshgrid(X, Y); \
 : points = np.c_[canvas[0].ravel(), canvas[1].ravel()]; \
 : queries = tree.query(points)[1].reshape(256, 256)
In [21]: ax1 = plt.subplot(121, aspect='equal'); \
 : voronoi_plot_2d(vor, ax=ax1); \
 : plt.xlim(0.45, 0.50); \
 : plt.ylim(-0.40, -0.35)
Out[21]: (-0.4, -0.35)
In [22]: ax2 = plt.subplot(122, aspect='equal'); \
 : plt.gray(); \
 : plt.pcolor(X, Y, queries); \
 : plt.plot(vor.points[:,0], vor.points[:,1], 'ro'); \
 : plt.xlim(0.45, 0.50); \
 : plt.ylim(-0.40, -0.35); \
 : plt.show()

This gives the following two different representations of the Voronoi diagram, in a
small window somewhere along the North shore of Lake Superior:

Computational Geometry

[208]

Range searching
A range searching problem tries to determine which objects of an input set
intersect with a query object (that we call the range). For example, when given a set
of points in the plane, which ones are contained inside a circle of radius r centered
at a target location Q? We can solve this sample problem easily with the attribute
query_ball_point from a suitable implementation of a k-d tree. We can go even
further if the range is an object formed by the union of a sequence of different balls.
The same attribute gets the job done, as the following code illustrates:

In [23]: points = np.random.rand(320, 2); \
 : range_points = np.random.rand(5, 2); \
 : range_radii = 0.1 * np.random.rand(5)
In [24]: tree = cKDTree(points); \
 : result = set()
In [25]: for k in range(5):
 : point = range_points[k]
 : radius = range_radii[k]
 : partial_query = tree.query_ball_point(point, radius)
 : result = result.union(set(partial_query))
 :
In [26]: print result
set([130, 3, 166, 231, 40, 266, 2, 269, 120, 53, 24, 281, 26, 284])
In [27]: fig = plt.figure(); \
 : plt.axes().set_aspect('equal')
In [28]: for point in points:
 : plt.plot(point[0], point[1], 'ko')
 :
In [29]: for k in range(5):
 : point = range_points[k]
 : radius = range_radii[k]
 : circle = plt.Circle(point, radius, fill=False)
 : fig.gca().add_artist(circle)
 :
In [30]: plt.show()

This gives the following diagram, where the small dots represent the locations of
the search space, and the circles are the range. The query is the set of points located
inside of the circles, computed by our algorithm:

Chapter 6

[209]

Problems in this setting vary from trivial to extremely complicated, depending on
the input object types, range types, and query types. An excellent exposition of this
subject is the survey paper Geometric Range Searching and its Relatives, published by
Pankaj K. Agarwal and Jeff Erickson in 1999, by the American Mathematical Society
Press, as part of the Advances in Discrete and Computational Geometry: proceedings
of the 1996 AMS-IMS-SIAM joint summer research conference, Discrete and
Computational geometry.

Dynamic problems
A dynamic problem is regarded as any of the problems in the previous two
settings (static or query), but with the added challenge that objects are constantly
being inserted or deleted. Besides solving the base problem, we need to take extra
measures to assure that the implementation is efficient with respect to these changes.

To this effect, the implementations wrapped from the Qhull libraries in the module
scipy.spatial are equipped to deal with the insertion of new points. We accomplish
this by stating the option incremental=True, which basically suppresses the qhull
control 'Qz', and prepares the output structure for these complex situations.

Computational Geometry

[210]

Let's illustrate this with a simple example. We start with the first ten vertices of
Lake Superior, then we insert ten vertices at a time, and update the corresponding
triangulation and Voronoi diagrams:

In [27]: from scipy.spatial import delaunay_plot_2d
In [28]: small_superior = superior['vertices'][:9]
In [29]: tri = Delaunay(small_superior, incremental=True); \
 : vor = Voronoi(small_superior, incremental=True)
In [30]: for k in range(4):
 : tri.add_points(superior['vertices'][10*(k+1):10*(k+2)-1])
 : vor.add_points(superior['vertices'][10*(k+1):10*(k+2)-1])
 : ax1 = plt.subplot(4, 2, 2*k+1, aspect='equal')
 : delaunay_plot_2d(tri, ax1)
 : ax1.set_xlim(0.00, 1.00)
 : ax1.set_ylim(-0.70, -0.30)
 : ax2 = plt.subplot(4, 2, 2*k+2, aspect='equal')
 : voronoi_plot_2d(vor, ax2)
 : ax2.set_xlim(0.0, 1.0)
 : ax2.set_ylim(-0.70, -0.30)
 :
In [4]: plt.show()

This displays the following diagram:

Chapter 6

[211]

Numerical computational geometry
This field arose simultaneously among different groups of researchers seeking
solutions to priori nonrelated problems. As it turns out, all the solutions they
posed did actually have an important common denominator, they were obtained
upon representing objects by means of parametric curves, parametric surfaces, or
regions bounded by those. These scientists ended up unifying their techniques over
the years, to finally define the field of numerical computational geometry. In this
journey, the field received different names: machine geometry, geometric modeling,
and the most widespread computer aided geometric design (CAGD).

It is used in computer vision, for example, for 3D reconstruction and movement
outline. It is widely employed for the design and qualitative analysis of the bodies of
automobiles, aircraft, or watercraft. There are many computer-aided design (CAD)
software packages that facilitate interactive manipulation and solutions to many of
the problems in this area. In this regard, any interaction with Python gets relegated
to being part of the underlying computational engine behind the visualization or
animation—which are none of the strengths of SciPy. For this reason, we will not
cover visualization or animation applications in this book, and focus on the basic
mathematics instead.

In that regard, the foundation of Numerical computational geometry is based on
three key concepts: Bézier surfaces, Coons patches, and B-spline methods. In turn,
the theory of Bézier curves plays a central role in the development of these concepts.
They are the geometric standards for the representation of piecewise polynomial
curves. In this section, we focus solely on the basic development of the theory of
plane Bézier curves.

The rest of the material is also beyond the scope of SciPy, and we
therefore leave its exposition to more technical books. The best
source in that sense is, without a doubt, the book Curves and Surfaces
for Computer Aided Geometric Design—A Practical Guide (5th ed.),
by Gerald Farin, published by Academic Press under the Morgan
Kauffman Series in Computer Graphics and Geometric Modeling.

Computational Geometry

[212]

Bézier curves
It all starts with the de Casteljau algorithm to construct parametric equations of an
arc of a polynomial of order 3. In the submodule matplotlib.path, we have an
implementation of this algorithm using the class Path, which we can use to generate
our own user-defined routines to generate and plot plane Bézier curves:

file chapter6.py ...continued
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.path import Path
def bezier_parabola(P1, P2, P3):
 return Path([P1, P2, P3],
 [Path.MOVETO, Path.CURVE3, Path.CURVE3])
def bezier_cubic(P1, P2, P3, P4):
 return Path([P1, P2, P3, P4],
 [Path.MOVETO, Path.CURVE4,
 Path.CURVE4, Path.CURVE4])
def plot_path(path, labels=None):
 Xs, Ys = zip(*path.vertices)
 fig = plt.figure()
 ax = fig.add_subplot(111, aspect='equal')
 ax.set_xlim(min(Xs)-0.2, max(Xs)+0.2)
 ax.set_ylim(min(Ys)-0.2, max(Ys)+0.2)
 patch = patches.PathPatch(path, facecolor='none', linewidth=2)
 ax.add_patch(patch)
 ax.plot(Xs, Ys, 'o--', color='blue', linewidth=1)
 if labels:
 for k in range(len(labels)):
 ax.text(path.vertices[k][0]-0.1,
 path.vertices[k][1]-0.1,
 labels[k])
 plt.show()

Before we proceed, we need some explanation of the previous code:

• The de Casteljau algorithm for arcs of polynomials of order 2 is performed
by creating a Path with the three control points as vertices, and the list
[Path.MOVETO, Path.CURVE3, Path.CURVE3] as code. This ensures that
the resulting curve starts at P1 in the direction given by the segment P1P2,
and ends at P3 with direction given by the segment P2P3. If the three points
are collinear, we obtain a segment containing them all. Otherwise, we obtain
an arc of parabola.

Chapter 6

[213]

• The de Casteljau algorithm for arcs of polynomials of order 3 is
performed in a similar way to the previous case. We have four control
points, and we create a Path with those as vertices. The code is the list
[Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4], which
ensures that the arc starts at P1 with direction given by the segment P1P2.
It also ensures that the arc ends at P4 in the direction of the segment P3P4.

Let's test it with a few basic examples:

In [1]: import numpy as np; \
 ...: from chapter6 import *
In [2]: P1 = (0.0, 0.0); \
 ...: P2 = (1.0, 1.0); \
 ...: P3 = (2.0, 0.0); \
 ...: path_1 = bezier_parabola(P1, P2, P3); \
 ...: plot_path(path_1, labels=['P1', 'P2', 'P3'])

This gives the requested arc of parabola:

In [3]: P4 = (2.0, -1.0); \
 ...: P5 = (3.0, 0.0); \
 ...: path_2 = bezier_cubic(P1, P2, P4, P5); \
 ...: plot_path(path_2, labels=['P1', 'P2', 'P4', 'P5'])

Computational Geometry

[214]

This gives a nice arc of cubic as shown in the following diagram:

Higher degree curves are computationally expensive to evaluate. When complex
paths are needed, we rather create them as a piecewise sequence of low order Bézier
curves patched together—we call this object a Bézier spline. Notice that it is not hard
to guarantee continuity on these splines. It is enough to make the end of each path
the starting point of the next one. It is also easy to guarantee smoothness (at least up
to the first derivative), by aligning the last two control points of one curve with the
first two control points of the next one. Let's illustrate this with an example:

In [4]: Q1 = P5; \
 ...: Q2 = (4.0, 0.0); \
 ...: Q3 = (5.0, -1.0); \
 ...: Q4 = (6.0, 0.0); \
 ...: path_3 = bezier_cubic(P1, P2, P3, P5); \
 ...: path_4 = bezier_cubic(Q1, Q2, Q3, Q4); \
 ...: plot_path(Path.make_compound_path(path_3, path_4),
 labels=['P1','P2','P3','P5=Q1',
 'P5=Q1','Q2','Q3', 'Q4'])

Chapter 6

[215]

This gives the following Bézier spline:

A clear advantage of representing curves as Bézier splines arises when we
need to apply an affine transformation to a curve. For instance, if we required a
counter-clockwise rotated version of the last curve computed, instead of performing
the operation over all points of the curve, we simply apply the transformation to the
control points and repeat the de Casteljau algorithm on the new controls:

In [5]: def rotation(point, angle):

 ...: return (np.cos(angle)*point[0] - np.sin(angle)*point[1],

 ...: np.sin(angle)*point[0] + np.cos(angle)*point[1])

 ...:

In [6]: new_Ps = [rotation(P, np.pi/3) for P in path_3.vertices]; \

 ...: new_Qs = [rotation(Q, np.pi/3) for Q in path_4.vertices]; \

 ...: path_5 = bezier_cubic(*new_Ps); \

 ...: path_6 = bezier_cubic(*new_Qs); \

 ...: plot_path(Path.make_compound_path(path_5, path_6))

Computational Geometry

[216]

This displays the following result:

Summary
In this chapter, we have developed a brief incursion in the field of computational
geometry, and we have mastered all the tools coded in the SciPy stack to effectively
address the most common problems in this topic.

In the next two chapters, we will explore the capabilities of SciPy to work on
applications of statistics, data mining, learning theory, and other techniques, to the
field of quantitative data analysis.

[217]

Descriptive Statistics
This and the following chapter are mainly aimed at SAS, SPSS, or Minitab users, and
especially those employing the languages R or S for statistical computing. We will
develop an environment for working effectively in the field of data analysis, with
the aid of IPython sessions powered up with the following resources from the
SciPy stack:

• The probability and statistics submodule of the library of symbolic
computations, sympy.stats.

• The two libraries of statistical functions scipy.stats and
scipy.stats.mstats (the latter for data provided by masked arrays),
together with the module statsmodels, for data exploration, estimation on
statistical models, and performing statistical tests in a numerical setting. The
package statsmodels uses, under the hood, the powerful library patsy to
describe statistical models and building design matrices in Python (R or S
users will find patsy compatible with their formula mini-language).

• For statistical inference, we again use scipy.stats and statsmodels (for
frequentist and likelihood inference) and the module pymc that implements
Bayesian statistical models and fitting algorithms, including Markov chain
Monte Carlo.

• Two incredibly powerful libraries of high-level data manipulation tools.
 ° The Python Data Analysis library pandas, created by Wes McKinney

to address the useful functionalities of time series, data alignment,
and the treatment of databases in a similar fashion to SQL.

 ° The package PyTables, created by Francesc Alted, Ivan Vilata and
others, for managing hierarchical datasets. It is designed to efficiently
and easily cope with extremely large amounts of data.

Descriptive Statistics

[218]

• The clustering module scipy.cluster for vector quantization, the k-means
algorithm, hierarchical and agglomerative clustering.

• A few SciPy toolkits (SciKits for short):

 ° scikit-learn: A set of Python modules for machine learning and
data mining.

 ° scikits.bootstrap: Bootstrap confidence interval estimation
routines.

An obvious knowledge of statistics is needed to follow the techniques in these
chapters. Any good basic textbook with an excellent selection of examples and
problems will suffice. For a more in-depth study of inference, we recommend the
second edition of the book Statistical Inference, by George Casella and Roger L.
Berger, published by Duxbury in 2002.

Documentation for the following python libraries can be obtained online through
their corresponding official pages:

• sympy.stats: http://docs.sympy.org/dev/modules/stats.html.
• scipy.stats and scipy.stats.mstats: http://docs.scipy.org/doc/

scipy/reference/stats.html for a list of functions and http://docs.
scipy.org/doc/scipy/reference/tutorial/stats.html for a nice
overview and tutorial.

• scipy.cluster: http://docs.scipy.org/doc/scipy/reference/
cluster.html

• PyTables: http://www.pytables.org/
• PyMC: http://pymc-devs.github.io/pymc/index.html

The best way to get acquainted with Pandas is without a doubt the book Python for
Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, by Wes McKinney
himself—the creator of this amazing library. Familiarity with SQL is a must and, for
this, our recommendation is to get good training online.

One of the best resources to understand the topic of model estimation is the book
Methods of Statistical Model Estimation, by Joseph Hilbe and Andrew Robinson.
Although all the codes in this resource are written for R, they are easily portable to
a combination of routines and classes from scipy.stats, statsmodels, PyMC, and
scikit-learn.

http://docs.sympy.org/dev/modules/stats.html
http://docs.scipy.org/doc/scipy/reference/stats.html
http://docs.scipy.org/doc/scipy/reference/stats.html
http://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
http://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
http://docs.scipy.org/doc/scipy/reference/cluster.html
http://docs.scipy.org/doc/scipy/reference/cluster.html
http://www.pytables.org/
http://pymc-devs.github.io/pymc/index.html

Chapter 7

[219]

The package statsmodels used to be part of the scikit-learn toolkit. Good
documentation to learn the usage and power of this package, and its underlying
library to describe statistical models (patsy) are always the tutorials offered by
their creators online:

• http://statsmodels.sourceforge.net/stable/

• http://patsy.readthedocs.org/en/latest/

For the scipy toolkits, the best resource is found via their page at http://scikits.
appspot.com/. Browsing the different toolkits will point us to good tutorials and
further references. In particular, for scikit-learn, two must-reads are the official
page at http://scikit-learn.org/stable/, and the seminal article Scikit-learn:
Machine Learning in Python, by Fabian Pedregosa et al., published in the Journal of
Machine Learning Research in 2011.

But as it is our custom in this book, we will develop the material from the point of
view of the material itself. We have thus divided the exposition in two chapters, the
first of which is concerned with the most basic topics in Probability and Statistics:

• Probability—Random variables and their distributions.
• Data Exploration.

In the next chapter, we will address more advanced topics in Statistics and
Data Analysis:

• Statistical inference.
• Machine learning. The construction and study of systems that can learn from

data. Machine learning focuses on prediction based on known properties
learned from some training data.

• Data mining. Discovering patterns in large data sets. Data mining focuses
on the discovery of priori unknown properties in the data.

Motivation
On Tuesday, September 8, 1857, the steamboat SS Central America left Havana at 9
A.M. for New York, carrying about 600 passengers and crew members. Inside this
vessel, precious cargo was stored—a set of manuscripts by John James Audubon,
and three tons of gold bars and coins. The manuscripts documented an expedition
through the yet uncharted southwestern United States and California, and contained
200 sketches and paintings of its wildlife. The gold, fruit of many years of prospecting
and mining during the California Gold Rush, was meant to start anew the lives of
many of the passengers aboard.

http://statsmodels.sourceforge.net/stable/
http://patsy.readthedocs.org/en/latest/
http://scikits.appspot.com/
http://scikits.appspot.com/
http://scikit-learn.org/stable/

Descriptive Statistics

[220]

On the 9th, the vessel ran into a storm which developed into a hurricane. The
steamboat endured four hard days at sea, and by Saturday morning the ship was
doomed. The captain arranged to have women and children taken off to the brig
Marine, which offered them assistance at about noon. In spite of the efforts of the
remaining crew and passengers to save the ship, the inevitable happened at about
8 P.M. that same day. The wreck claimed the lives of 425 men, and carried to the
bottom of the sea the valuable cargo.

It was not until late 1980s that technology allowed recovery of shipwrecks in deep
sea. However, no technology would be of any help without an accurate location of
the site. In the following paragraphs, we would like to illustrate the power of the
SciPy stack by performing a simple simulation. The objective is the creation of a
dataset of possible locations for the wreck of the SS Central America. We mine this
data to attempt to pinpoint the most probable target.

We simulate several possible paths of the steamboat (say 10,000 randomly generated
possibilities), between 7 A.M. on Saturday, and 13 hours later, at 8 P.M on Sunday.
At 7 A.M. on that Saturday, the ship's captain, William Herndon, took a celestial fix
and verbally relayed the position to the schooner El Dorado. The fix was 31º25'N,
77º10'W. Since the ship was not operative at that point—no engine, no sails—for
the next thirteen hours its course was solely subjected to the effect of ocean currents
and winds. With enough information, it is possible to model the drift and leeway on
different possible paths.

We start by creating a DataFrame—a computational structure that will hold
all the values we need in a very efficient way. We do so with the help of the
pandas libraries:

In [1]: from datetime import datetime, timedelta; \

 ...: from dateutil.parser import parse

In [2]: interval = [parse("9/12/1857 7 am")]

In [3]: for k in range(14*2-1):

 ...: if k % 2 == 0:

 ...: interval.append(interval[-1])

 ...: else:

 ...: interval.append(interval[-1] + timedelta(hours=1))

 ...:

In [4]: import numpy as np, pandas as pd

In [5]: herndon = pd.DataFrame(np.zeros((28, 10000)),

 ...: index = [interval, ['Lat', 'Lon']*14])

Chapter 7

[221]

Each column of the DataFrame herndon is to hold the latitude and longitude
of a possible path of the SS Central America, sampled every hour. For instance,
to observe the first path, we issue the following command:

In [6]: herndon[0]

Out[6]:

1857-09-12 07:00:00 Lat 0

 Lon 0

1857-09-12 08:00:00 Lat 0

 Lon 0

1857-09-12 09:00:00 Lat 0

 Lon 0

1857-09-12 10:00:00 Lat 0

 Lon 0

1857-09-12 11:00:00 Lat 0

 Lon 0

1857-09-12 12:00:00 Lat 0

 Lon 0

1857-09-12 13:00:00 Lat 0

 Lon 0

1857-09-12 14:00:00 Lat 0

 Lon 0

1857-09-12 15:00:00 Lat 0

 Lon 0

1857-09-12 16:00:00 Lat 0

 Lon 0

1857-09-12 17:00:00 Lat 0

 Lon 0

1857-09-12 18:00:00 Lat 0

 Lon 0

1857-09-12 19:00:00 Lat 0

 Lon 0

1857-09-12 20:00:00 Lat 0

 Lon 0

Name: 0, dtype: float64

Let's populate this data following a similar analysis to that followed by the
Columbus America Discovery Group, as explained by Lawrence D. Stone in
the article Revisiting the SS Central America Search, from the 2010 International
Conference on Information Fusion.

Descriptive Statistics

[222]

The celestial fix obtained by Capt. Herndon at 7 A.M. was taken with a sextant in
the middle of a storm. There are some uncertainties in the estimation of latitude and
longitude with this method and under those weather conditions, which are modeled
by a bivariate normally distributed random variable with mean (0,0), and standard
deviations of 0.9 nautical miles (for latitude) and 3.9 nautical miles (for longitude).
We first create a random variable with those characteristics. Let's use this idea to
populate the data frame with several random initial locations:

In [7]: from scipy.stats import multivariate_normal

In [8]: celestial_fix = multivariate_normal(cov = np.diag((0.9, 3.9)))

To estimate the corresponding celestial fixes, as well as all further
geodetic computations, we will use the accurate formulas of Vincenty for
ellipsoids, assuming a radius at the equator of a = 6378137 meters and
a flattening of the ellipsoid of f = 1/298.257223563 (these figures are
regarded as one of the standards for use in cartography, geodesy, and
navigation, and are referred to by the community as the World Geodetic
System WGS-84 ellipsoid).
A very good set of formulas coded in Python can be found at https://
github.com/blancosilva/Mastering-Scipy/blob/master/
chapter7/Geodetic_py.py. For a description and the theory behind
these formulas, read the excellent survey on Wikipedia at https://
en.wikipedia.org/wiki/Vincenty%27s_formulae.
In particular, for this example, we will be using Vincenty's direct formula
that computes the resulting latitude phi2, longitude L2, and azimuth s2,
of an object starting at latitude phi1, longitude L1, and traveling s meters
with initial azimuth s1. Latitudes, longitudes, and azimuths are given in
degrees, and distances in meters. We also use the convention of assigning
negative values to the latitudes to the west. To apply the conversion
from nautical miles or knots to their respective units in SI, we employ the
system of units in scipy.constants.

In [9]: from Geodetic_py import vinc_pt; \

 ...: from scipy.constants import nautical_mile

In [10]: a = 6378137.0; \

 : f = 1./298.257223563

In [11]: for k in range(10000):

 : lat_delta,lon_delta = celestial_fix.rvs() * nautical_mile

 : azimuth = 90 - np.angle(lat_delta+1j*lon_delta, deg=True)

 : distance = np.hypot(lat_delta, lon_delta)

https://github.com/blancosilva/Mastering-Scipy/blob/master/chapter7/Geodetic_py.py
https://github.com/blancosilva/Mastering-Scipy/blob/master/chapter7/Geodetic_py.py
https://github.com/blancosilva/Mastering-Scipy/blob/master/chapter7/Geodetic_py.py
https://en.wikipedia.org/wiki/Vincenty%27s_formulae
https://en.wikipedia.org/wiki/Vincenty%27s_formulae

Chapter 7

[223]

 : output = vinc_pt(f, a, 31+25./60,

 : -77-10./60, azimuth, distance)

 : herndon.ix['1857-09-12 07:00:00',:][k] = output[0:2]

 :

In [12]: herndon.ix['1857-09-12 07:00:00',:]

Out[12]:

 0 1 2 3 4 5

Lat 31.455345 31.452572 31.439491 31.444000 31.462029 31.406287

Lon -77.148860 -77.168941 -77.173416 -77.163484 -77.169911 -77.168462

 6 7 8 9 ... 9990

Lat 31.390807 31.420929 31.441248 31.367623 ... 31.405862

Lon -77.178367 -77.187680 -77.176924 -77.172941 ... -77.146794

 9991 9992 9993 9994 9995 9996

Lat 31.394365 31.428827 31.415392 31.443225 31.350158 31.392087

Lon -77.179720 -77.182885 -77.159965 -77.186102 -77.183292 -77.168586

 9997 9998 9999

Lat 31.443154 31.438852 31.401723

Lon -77.169504 -77.151137 -77.134298

[2 rows x 10000 columns]

We simulate the drift according to the formula D = (V + leeway * W). In this
formula, V (the ocean current) is modeled as a vector pointing about Northeast
(around 45 degrees of azimuth) and a variable speed between 1 and 1.5 knots. The
other random variable, W, represents the action of the winds in the area during the
hurricane, which we choose to represent by directions ranging between south and
east, and speeds with a mean of 0.2 knots and standard deviation of 1/30 knots. Both
random variables are coded as bivariate normal. Finally, we have accounted for the
leeway factor. According to a study performed on the blueprints of the SS Central
America, we have estimated this leeway to be about 3 percent:

Descriptive Statistics

[224]

This choice of random variables to represent the ocean current
and wind differs from the ones used in the aforementioned paper.
In our version, we have not used the actual covariance matrices
as computed by Stone from data received from the Naval
Oceanographic Data Center. Rather, we have presented a very
simplified version.

In [13]: current = multivariate_normal((np.pi/4, 1.25),

 : cov=np.diag((np.pi/270, .25/3))); \

 : wind = multivariate_normal((np.pi/4, .3),

 : cov=np.diag((np.pi/12, 1./30))); \

 : leeway = 3./100

In [14]: for date in pd.date_range('1857-9-12 08:00:00',

 : periods=13, freq='1h'):

 : before = herndon.ix[date-timedelta(hours=1)]

 : for k in range(10000):

 : angle, speed = current.rvs()

 : current_v = speed * nautical_mile * (np.cos(angle)

 : + 1j * np.sin(angle))

 : angle, speed = wind.rvs()

 : wind_v = speed * nautical_mile * (np.cos(angle)

 : + 1j * np.sin(angle))

 : drift = current_v + leeway * wind_v

 : azimuth = 90 - np.angle(drift, deg=True)

 : distance = abs(drift)

 : output = vinc_pt(f, a, before.ix['Lat'][k],

 : before.ix['Lon'][k],

 : azimuth, distance)

 : herndon.ix[date,:][k] = output[:2]

Let's plot the first three of those simulated paths:

In [15]: import matplotlib.pyplot as plt; \

 : from mpl_toolkits.basemap import Basemap

In [16]: m = Basemap(llcrnrlon=-77.4, llcrnrlat=31.2,urcrnrlon=-76.6,

 : urcrnrlat=31.8, projection='lcc', lat_0 = 31.5,

 : lon_0=-77, resolution='l', area_thresh=1000.)

Chapter 7

[225]

In [17]: m.drawmeridians(np.arange(-77.4,-76.6,0.1),

 : labels=[0,0,1,1]); \

 : m.drawparallels(np.arange(31.2,32.8,0.1),labels=[1,1,0,0]);\

 : m.drawmapboundary()

In [18]: colors = ['r', 'b', 'k']; \

 : styles = ['-', '--', ':']

In [19]: for k in range(3):

 : latitudes = herndon[k][:,'Lat'].values

 : longitudes = herndon[k][:,'Lon'].values

 : longitudes, latitudes = m(longitudes, latitudes)

 : m.plot(longitudes, latitudes, color=colors[k],

 : lw=3, ls=styles[k])

 :

In [20]: plt.show()

This presents us with these three possible paths followed by the SS Central America
during its drift in the storm. As expected, they observe a north-easterly general
direction, on occasion showing deviations from the effect of the strong winds:

Descriptive Statistics

[226]

The focus of this simulation is, nonetheless, on the final location of all these paths.
Let's plot them all on the same map first, for a quick visual evaluation:

In [21]: latitudes, longitudes = herndon.ix['1857-9-12 20:00:00'].values

In [22]: m = Basemap(llcrnrlon=-82., llcrnrlat=31, urcrnrlon=-76,

 : urcrnrlat=32.5, projection='lcc', lat_0 = 31.5,

 : lon_0=-78, resolution='h', area_thresh=1000.)

In [23]: X, Y = m(longitudes, latitudes)

In [24]: x, y = m(-81.2003759, 32.0405369) # Savannah, GA

In [25]: m.plot(X, Y, 'ko', markersize=1); \

 : m.plot(x,y,'bo'); \

 : plt.text(x-10000, y+10000, 'Savannah, GA'); \

 : m.drawmeridians(np.arange(-82,-76,1), labels=[1,1,1,1]); \

 : m.drawparallels(np.arange(31,32.5,0.25), labels=[1,1,0,0]);\

 : m.drawcoastlines(); \

 : m.drawcountries(); \

 : m.fillcontinents(color='coral'); \

 : m.drawmapboundary(); \

 : plt.show()

To obtain a better estimate of the true location of the shipwreck, it is possible to
expand the simulation by using information from Captain Johnson of the Norwegian
bark Ellen. This ship rescued several survivors at 8 A.M. on Sunday, at a recorded
position of 31º55'N, 76º13'W. We can employ a similar technique to trace back to
the location where the ship sunk using a reverse drift. For this case, the uncertainty
in the celestial fix is modeled by a bivariate normal distribution with standard
deviations of 0.9 (latitude) and 5.4 nautical miles (longitude).

Chapter 7

[227]

A third simulation is also possible, using information from the
El Dorado, but we do not factor this in our computations.

Since at this point the only relevant information is the location of the wreck, we do
not need to keep the intermediate locations in our simulated paths. We record our
data in a pandas Series instead:

In [26]: interval = []

In [27]: for k in range(10000):

 : interval.append(k)

 : interval.append(k)

 :

In [28]: ellen = pd.Series(index = [interval, ['Lat','Lon']*10000]);\

 : celestial_fix =multivariate_normal(cov=np.diag((0.9,5.4)));\

 : current = multivariate_normal((225, 1.25),

 : cov=np.diag((2./3, .25/3)))

In [29]: for k in range(10000):

 : lat_delta, lon_delta = celestial_fix.rvs()*nautical_mile

 : azimuth = 90 - np.angle(lat_delta+1j*lon_delta, deg=True)

 : distance = np.hypot(lat_delta, lon_delta)

 : output = vinc_pt(f, a, 31+55./60,

 : -76-13./60, azimuth, distance)

 : ellen[k] = output[0:2]

 :

In [30]: for date in pd.date_range('1857-9-13 07:00:00', periods=12,

 : freq='-1h'):

 : for k in range(10000):

 : angle, speed = current.rvs()

 : output = vinc_pt(f, a, ellen[k,'Lat'],

 : ellen[k,'Lon'], 90-angle, speed)

 : ellen[k]=output[0:2]

 :

Descriptive Statistics

[228]

The purpose of the simulation is the construction of a map that indicates the
probability of finding the shipwreck depending on latitude and longitude. We can
construct it by performing a kernel density estimation on the simulated data. The
difficulty in this case lies in using the correct metric. Unfortunately, we are not able
to create a metric based upon Vincenty's formulas in SciPy suitable for this operation,
instead, we have two options:

• A linear approximation in a small area, using the routine gaussian_kde from
the library scipy.stats

• A spherical approximation, using the class KernelDensity from the toolkit
scikit-learn, imposing a Harvesine metric and a ball tree algorithm

The advantage of the first method is that it is faster, and the computations for
optimal bandwidth are done internally. The second method is more accurate if we
are able to provide the correct bandwidth. In any case, we prepare the data in the
same way, using the simulation as training data:

In [31]: training_latitudes, training_longitudes = herndon.ix['1857-9-12
20:00:00'].values; \

 : training_latitudes = np.concatenate((training_latitudes,

 : ellen[:,'Lat'])); \

 : training_longitudes = np.concatenate((training_longitudes,

 : ellen[:,'Lon'])); \

 : values = np.vstack([training_latitudes,

 : training_longitudes]) * np.pi/180.

For the linear approximation, we perform the following computations:

In [32]: from scipy.stats import gaussian_kde

In [33]: kernel_scipy = gaussian_kde(values)

For the spherical approximation, and assuming a less than optimal bandwidth of
10-7, we instead issue the following:

In [32]: from sklearn.neighbors import KernelDensity

In [33]: kernel_sklearn = KernelDensity(metric='haversine',

 : bandwidth=1.e-7,

 : kernel='gaussian',

 : algorithm='ball_tree')

 : kernel_sklearn.fit(values.T)

Chapter 7

[229]

Out[33]:

KernelDensity(algorithm='ball_tree', atol=0, bandwidth=1e-07,

 breadth_first=True, kernel='gaussian', leaf_size=40,

 metric='haversine', metric_params=None, rtol=0)

From here all we need to do is generate a map, construct a grid on it, and using these
values, project the corresponding evaluation of the computed kernel. This will give
us a probability density function (PDF) of the corresponding distribution:

In [34]: plt.figure(); \

 : m = Basemap(llcrnrlon=-77.1, llcrnrlat=31.4,urcrnrlon=-75.9,

 : urcrnrlat=32.6, projection='lcc', lat_0 = 32,

 : lon_0=-76.5, resolution='l', area_thresh=1000);\

 : m.drawmeridians(np.arange(-77.5,-75.5,0.2),

 : labels=[0,0,1,1]); \

 : m.drawparallels(np.arange(31,33,0.2), labels=[1,1,0,0]); \

 : grid_lon, grid_lat = m.makegrid(25, 25); \

 : xy = np.vstack([grid_lat.ravel(),

 : grid_lon.ravel()]) * np.pi/180.

The computations of the PDF are done, depending of the kernel implemented,
as follows:

In [35]: data = kernel_scipy(xy)

In [35]: data = np.exp(kernel_sklearn.score_samples(xy.T))

All that remains is to plot the results. We show the results of the first method, and
leave the second as a nice exercise:

In [36]: levels = np.linspace(data.min(), data.max(), 6); \

 : data = data.reshape(grid_lon.shape)

In [37]: grid_lon, grid_lat = m(grid_lon, grid_lat); \

 : cs = m.contourf(grid_lon, grid_lat, data,

 : clevels=levels, cmap=plt.cm.Greys); \

 : cbar = m.colorbar(cs, location='bottom', pad="10%"); \

 : plt.show()

Descriptive Statistics

[230]

This presents us with a region of roughly 50 x 50 (nautical miles), colored by
the corresponding density. The darker regions indicate a higher probability of
finding the shipwreck:

The actual location of the remains of the SS Central America is at 31º35'N,
77º02'W, not too far from the results of our rough approximation—and as
a matter of fact, very close to Captain Herndon's fix as communicated to
the Marine.

This short motivational example illustrates the power of the SciPy stack to perform
statistical simulations, store and manipulate the resulting data in optimal ways, and
analyze them using state-of-the-art algorithms to extract valuable information. In the
following pages, we will cover these techniques in more depth.

Chapter 7

[231]

Probability
In the SciPy stack, we have two means for determining probability: a symbolic
setting and a numerical setting. In this brief section, we are going to compare both
with a sequence of examples.

For the symbolic treatment of random variables, we employ the module sympy.stats,
while for the numerical treatment, we use the module scipy.stats. In both cases, the
goal is the same—the instantiation of any random variable, and the following three
kinds of operations on them:

• Description of the probability distribution of a random variable with
numbers (parameters).

• Description of a random variable in terms of functions.
• Computation of associated probabilities.

Let's observe several situations through the scope of the two different settings.

Symbolic setting
Let's start with discrete random variables. For instance, let's consider several random
variables used to describe the process of rolling three 6-sided dice, one 100-sided
dice, and the possible outcomes:

In [1]: from sympy import var; \

 ...: from sympy.stats import Die, sample_iter, P, variance, \

 ...: std, E, moment, cdf, density, \

 ...: Exponential, skewness

In [2]: D6_1, D6_2, D6_3 = Die('D6_1', 6), Die('D6_2', 6), \

 ...: Die('D6_3', 6); \

 ...: D100 = Die('D100', 100); \

 ...: X = D6_1 + D6_2 + D6_3 + D100

We run a simulation, where we cast those four dice 20 times, and collect the sum
of each throw:

In [3]: for item in sample_iter(X, numsamples=20):

 ...: print item,

 ...:

45 50 84 43 44 84 102 38 90 94 35 78 67 54 20 64 62 107 59 84

Descriptive Statistics

[232]

Let's illustrate how easily we can compute probabilities associated with these
variables. For instance, to calculate the probability that the sum of the three 6-sided
dice amount to a smaller number than the throw of the 100-sided dice can be
obtained as follows:

In [4]: P(D6_1 + D6_2 + D6_3 < D100)

Out[4]: 179/200

Conditional probabilities are also realizable, such as, "What is the probability of
obtaining at least a 10 when throwing two 6-sided dice, if the first one shows a 5?":

In [5]: from sympy import Eq # Don't use == with symbolic objects!

In [6]: P(D6_1 + D6_2 > 9, Eq(D6_1, 5))

Out[6]: 1/3

The computation of parameters of the associated probability distributions is also
very simple. In the following session, we obtain the variance, standard deviation,
and expected value of X, together with some other higher-order moments of this
variable around zero:

In [7]: variance(X), std(X), E(X)

Out[7]: (842, sqrt(842), 61)

In [8]: for n in range(2,10):

 ...: print "mu_{0} = {1}".format(n, moment(X, n, 0))

 ...:

mu_2 = 4563

mu_3 = 381067

mu_4 = 339378593/10

mu_5 = 6300603685/2

mu_6 = 1805931466069/6

mu_7 = 176259875749813/6

mu_8 = 29146927913035853/10

mu_9 = 586011570997109973/2

We can easily compute the probability mass function and cumulative density
function too:

In [9]: cdf(X) In [10]: density(X)

Out[9]: Out[10]:

{4: 1/21600, {4: 1/21600,

 5: 1/4320, 5: 1/5400,

Chapter 7

[233]

 6: 1/1440, 6: 1/2160,

 7: 7/4320, 7: 1/1080,

 8: 7/2160, 8: 7/4320,

 9: 7/1200, 9: 7/2700,

 10: 23/2400, 10: 3/800,

 11: 7/480, 11: 1/200,

 12: 1/48, 12: 1/160,

 13: 61/2160, 13: 1/135,

 14: 791/21600, 14: 181/21600,

 15: 329/7200, 15: 49/5400,

 16: 1193/21600, 16: 103/10800,

 17: 281/4320, 17: 53/5400,

 18: 3/40, 18: 43/4320,

...

 102: 183/200, 102: 1/100,

 103: 37/40, 103: 1/100,

 104: 4039/4320, 104: 43/4320,

 105: 20407/21600, 105: 53/5400,

 106: 6871/7200, 106: 103/10800,

 107: 20809/21600, 107: 49/5400,

 108: 2099/2160, 108: 181/21600,

 109: 47/48, 109: 1/135,

 110: 473/480, 110: 1/160,

 111: 2377/2400, 111: 1/200,

 112: 1193/1200, 112: 3/800,

 113: 2153/2160, 113: 7/2700,

 114: 4313/4320, 114: 7/4320,

 115: 1439/1440, 115: 1/1080,

 116: 4319/4320, 116: 1/2160,

 117: 21599/21600, 117: 1/5400,

 118: 1} 118: 1/21600}

Descriptive Statistics

[234]

Let's move onto continuous random variables. This short session computes the
density and cumulative distribution function, as well as several parameters,
of a generic exponential random variable:

In [11]: var('mu', positive=True); \

 : var('t'); \

 : X = Exponential('X', mu)

In [12]: density(X)(t)

Out[12]: mu*exp(-mu*t)

In [13]: cdf(X)(t)

Out[13]: Piecewise((1 - exp(-mu*t), t >= 0), (0, True))

In [14]: variance(X), skewness(X)

Out[14]: (mu**(-2), 2)

In [15]: [moment(X, n, 0) for n in range(1,10)]

Out[15]:

[1/mu,

 2/mu**2,

 6/mu**3,

 24/mu**4,

 120/mu**5,

 720/mu**6,

 5040/mu**7,

 40320/mu**8,

 362880/mu**9]

For a complete description of the module sympy.stats with an
exhaustive enumeration of all its implemented random variables, a good
reference is the official documentation online at http://docs.sympy.
org/dev/modules/stats.html.

Numerical setting
The description of a discrete random variable in the numerical setting is performed
by the implementation of an object rv_discrete from the module scipy.stats.
This object has the following methods:

• object.rvs to obtain samples
• object.pmf and object.logpmf to compute the probability mass function

and its logarithm, respectively

http://docs.sympy.org/dev/modules/stats.html
http://docs.sympy.org/dev/modules/stats.html

Chapter 7

[235]

• object.cdf and object.logcdf to compute the cumulative density function
and its logarithm, respectively

• object.sf and object.logsf to compute the survival function (1-cdf) and
its logarithm, respectively

• object.ppf and object.isf to compute the percent point function (the
inverse of the CDF) and the inverse of the survival function

• object.expect and object.moment to compute expected value and
other moments

• object.entropy to compute entropy
• object.median, object.mean, object.var, and object.std to compute

the basic parameters (which can also be accessed with the method
object.stats)

• object.interval to compute an interval with a given probability that
contains a random realization of the distribution

We can then simulate an experiment with dice, similar to the previous section. In this
setting, we represent dice by a uniform distribution on the set of the dice sides:

In [1]: import numpy as np, matplotlib.pyplot as plt; \

 ...: from scipy.stats import randint, gaussian_kde, rv_discrete

In [2]: D6 = randint(1, 7); \

 ...: D100 = randint(1, 101)

Symbolically, it was very simple to construct the sum of these four independent
random variables. Numerically, we address the situation in a different way. Assume
for a second that we do not know the kind of random variable we are to obtain. Our
first step is usually to create a big sample—10,000 throws in this case, and produce
a histogram with the results:

In [3]: samples = D6.rvs(10000) + D6.rvs(10000) \

 ...: + D6.rvs(10000) + D100.rvs(10000)

In [4]: plt.hist(samples, bins=118-4); \

 ...: plt.xlabel('Sum of dice'); \

 ...: plt.ylabel('Frequency of each sum'); \

 ...: plt.show()

Descriptive Statistics

[236]

This gives the following screenshot that clearly indicates that our new random
variable is not uniform:

One way to approach this problem is to approximate the distribution of the variable
from this data, and for that task, we use from the scipy.stats module the function
gaussian_kde, which performs a kernel-density estimate using Gaussian kernels:

In [5]: kernel = gaussian_kde(samples)

Chapter 7

[237]

This gaussian_kde object has methods similar to those of an actual random variable.
To estimate the value of the corresponding probability of getting a 50, and the
probability of obtaining a number greater than 100 in a throw of these four dice,
we would issue, respectively:

In [6]: kernel(50) # The actual answer is 1/100

Out[6]: array([0.00970843])

In [7]: kernel.integrate_box_1d(0,100) # The actual answer is 177/200

Out[7]: 0.88395064140531865

Instead of estimating this sum of random variables, and again assuming we are
not familiar with the actual result, we could create an actual random variable by
defining its probability mass function in terms of the probability mass functions
of the summands. The key? Convolution, of course, since the random variables
for these dice are independent. The sample space is the set of numbers from 4 to
118 (space_sum in the following command), and the probabilities associated with
each element (probs_sum) are computed as the convolution of the corresponding
probabilities for each dice on their sample spaces:

In [8]: probs_6dice = D6.pmf(np.linspace(1,6,6)); \

 ...: probs_100dice = D100.pmf(np.linspace(1,100,100))

In [9]: probs_sum = np.convolve(np.convolve(probs_6dice,probs_6dice),

 ...: np.convolve(probs_6dice,probs_100dice)); \

 ...: space_sum = np.linspace(4, 118, 115)

In [10]: sum_of_dice = rv_discrete(name="sod",

 : values=(space_sum, probs_sum))

In [11]: sum_of_dice.pmf(50)

Out[11]: 0.0099999999999999985

In [12]: sum_of_dice.cdf(100)

Out[12]: 0.89500000000000057

Data exploration
Data exploration is generally performed by presenting a meaningful synthesis of its
distribution—it could be through a sequence of graphs, by describing it with a set
of numerical parameters, or by approximating it with simple functions. Now let's
explore different possibilities, and how to accomplish them with different tools in
the SciPy stack.

Descriptive Statistics

[238]

Picturing distributions with graphs
The type of graph depends on the type of variable (categorical, quantitative,
or dates).

Bar plots and pie charts
When our data is described in terms of categorical variables, we often use pie charts
or bar graphs to represent it. For example, we access the Consumer Complaint
Database from the Consumer Financial Protection Bureau, at http://catalog.
data.gov/dataset/consumer-complaint-database. The database was created in
February 2014 to contain complaints received by the Bureau about financial products
and services. In its updated version in March of the same year, it consisted of almost
300,000 complaints acquired since November 2011:

In [1]: import numpy as np, pandas as pd, matplotlib.pyplot as plt

In [2]: data = pd.read_csv("Consumer_Complaints.csv",

 ...: low_memory=False, parse_dates=[8,9])

In [3]: data.head()

Out[3]:

 Complaint ID Product \

0 1015754 Debt collection

1 1015827 Debt collection

2 1016131 Debt collection

3 1015974 Bank account or service

4 1015831 Bank account or service

 Sub-product \

0 Other (phone, health club, etc.)

1 NaN

2 Medical

3 Checking account

4 Checking account

 Issue \

0 Cont'd attempts collect debt not owed

1 Improper contact or sharing of info

2 Disclosure verification of debt

3 Problems caused by my funds being low

http://catalog.data.gov/dataset/consumer-complaint-database
http://catalog.data.gov/dataset/consumer-complaint-database

Chapter 7

[239]

4 Problems caused by my funds being low

 Sub-issue State ZIP code \

0 Debt was paid NY 11433

1 Contacted me after I asked not to VT 5446

2 Right to dispute notice not received TX 77511

3 NaN FL 32162

4 NaN TX 77584

 Submitted via Date received Date sent to company \

0 Web 2014-09-05 2014-09-05

1 Web 2014-09-05 2014-09-05

2 Web 2014-09-05 2014-09-05

3 Web 2014-09-05 2014-09-05

4 Web 2014-09-05 2014-09-05

 Company \

0 Enhanced Recovery Company, LLC

1 Southwest Credit Systems, L.P.

2 Expert Global Solutions, Inc.

3 FNIS (Fidelity National Information Services, ...

4 JPMorgan Chase

 Company response Timely response? \

0 Closed with non-monetary relief Yes

1 In progress Yes

2 In progress Yes

3 Closed with explanation Yes

4 Closed with explanation Yes

 Consumer disputed?

0 NaN

1 NaN

2 NaN

3 NaN

4 NaN

Descriptive Statistics

[240]

We downloaded the database in the simplest format they offer, a
comma-separated-value file. We do so from pandas with the command
read_csv. If we want to download the database in other formats (JSON,
excel, and so on), we only need to adjust the reading command accordingly:
>>> pandas.read_csv("Consumer_Complaints.csv") # CSV

>>> pandas.read_json("Consumer_Complaints.json") # JSON

>>> pandas.read_excel("Consumer_Complaints.xls") # XLS

Even more amazingly so, it is possible to retrieve the data online (no need
to save it to our computer), if we know its URL:
>>> url1 = "https://data.consumerfinance.gov/api/views"

>>> url2 = "/x94z-ydhh/rows.csv?accessType=DOWNLOAD"

>>> url = url1 + url2

>>> data = pd.read_csv(url)

If the database contains trivial data, the parser might get confused with
the corresponding dtype. In that case, we request the parser to try and
resolve that situation, at the expense of using more memory resources.
We do so by including the optional Boolean flag low_memory=False,
as was the case in our running example.
Also, note how we specified parse_dates=True. An initial exploration
of the file with the data showed that both the eighth and ninth columns
represent dates. The library pandas has great capability to manipulate
those without resorting to complicated str operations, and thus we
indicate to the reader to transform those columns to the proper format.
This will ease our treatment of the data later on.

Now let's present a bar plot indicating how many of these different complaints per
company are on each Product:

In [4]: data.groupby('Product').size()

Out[4]:

Product

Bank account or service 35442

Consumer loan 8187

Credit card 39114

Credit reporting 35761

Debt collection 37737

Money transfers 1341

Mortgage 118037

Chapter 7

[241]

Payday loan 1228

Student loan 8659

dtype: int64

In [5]: _.plot(kind='barh'); \

 ...: plt.tight_layout(); \

 ...: plt.show()

This gives us the following interesting horizontal bar plot, showing the volume of
complaints for each different product, from November 2011 to September 2014:

Descriptive Statistics

[242]

The groupby method on pandas dataframes is equivalent to GROUP BY
in SQL. For a complete explanation of all SQL commands and their
equivalent dataframe methods in pandas, there is a great resource
online at http://pandas.pydata.org/pandas-docs/stable/
comparison_with_sql.html.

Another informative bar plot is achieved by stacking the bars properly. For instance,
if we focus on complaints about mortgages in the Midwest during the years 2012 and
2013, we could issue the following commands:

In [6]: midwest = ['ND', 'SD', 'NE', 'KS', 'MN', 'IA', \

 'MO', 'IL', 'IN', 'OH', 'WI', 'MI']

In [7]: df = data[data.Product == 'Mortgage']; \

 ...: df['Year'] = df['Date received'].map(lambda t: t.year); \

 ...: df = df.groupby(['State','Year']).size(); \

 ...: df[midwest].unstack().ix[:, 2012:2013]

Out[7]:

Year 2012 2013

State

ND 14 20

SD 33 34

NE 109 120

KS 146 169

MN 478 626

IA 99 125

MO 519 627

IL 1176 1609

IN 306 412

OH 1047 1354

WI 418 523

MI 1457 1774

In [8]: _.plot(kind="bar", stacked=True, colormap='Greys'); \

 ...: plt.show()

http://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html
http://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html

Chapter 7

[243]

The graph clearly illustrates how the year 2013 gave rise to a much higher volume of
complaints in these states:

We may be inclined to think, in view of the previous graphs, that in every state
or territory of the United States, mortgages are the number one complaint. A pie
chart showing the volumes of complaints per product in Puerto Rico alone, from
November 2011 until September 2014, tells us differently:

In [9]: data[data.State=='PR'].groupby('Product').size()

Out[9]:

Product

Bank account or service 81

Consumer loan 20

Credit card 149

Credit reporting 139

Debt collection 62

Mortgage 110

Student loan 11

Descriptive Statistics

[244]

Name: Company, dtype: int64

In [10]: _.plot(kind='pie', shadow=True, autopct="%1.1f%%"); \

 : plt.axis('equal'); \

 : plt.tight_layout(); \

 : plt.show()

The diagram illustrates how credit cards and credit reports are the main source for
complaints on these islands:

Histograms
For quantitative variables, we employ a histogram. In the previous section, we saw
an example of the construction of a histogram from 10,000 throws of four dice. In this
section, we produce another histogram from within pandas. In this case, we would
like to present a histogram that analyzes the ratio of daily complaints about credit
cards against the daily complaints on mortgages:

In [11]: df = data.groupby(['Date received', 'Product']).size(); \

 : df = df.unstack()

Chapter 7

[245]

In [12]: ratios = df['Mortgage'] / df['Credit card']

In [13]: ratios.hist(bins=50); \

 : plt.show()

The resulting graph indicates, for instance, that there are a few days in which the
number of complaints on mortgages is about 12 times the number of complaints on
credit cards. It also shows that the most frequent situation is that of days in which
the number of complaints on mortgages roughly triplicates the number of credit
card complaints:

Descriptive Statistics

[246]

Time plots
For variables measured at intervals over time, we employ a time plot. The library
pandas handles these beautifully. For instance, to observe the amount of daily
complaints received from January 1, 2012 to December 31, 2013, we issue the
following command:

In [14]: ts = data.groupby('Date received').size(); \

 : ts = ts['2012':'2013']; \

 : ts.plot(); \

 : plt.ylabel('Daily complaints'); \

 : plt.show()

Note both the oscillating nature of the graph, as well as the slight upward trend in
complaints during this period. We also observe what looks like a few outliers—one
in March 2012, a few more in between May and June of the same year, and a few
more in January and February 2013:

Chapter 7

[247]

Describing distributions with numbers and
boxplots
We request the usual parameters for each dataset:

• Mean (arithmetic, geometric or harmonic) and median to measure the center
of the data

• Quartiles, variance, standard deviation, or standard error of the mean,
to measure the spread of the data

• Central moments, skewness, and kurtosis to measure the degree of symmetry
in the distribution of the data

• Mode to find the most common values in the data
• Trimmed versions of the previous parameters, to better describe the

distribution of the data reducing the effect of outliers

A good way to present some of the preceding information is by means of the five-
number summary, or with a boxplot.

Let's illustrate how to achieve these basic measurements both in pandas (left
columns) and with the scipy.stats libraries (right columns):

In [15]: ts.describe() In [16]: import scipy.stats

Out[15]:

count 731.000000 In [17]: scipy.stats.describe(ts)

mean 247.333789 Out[17]:

std 147.02033 (731,

min 9.000000 (9, 628),

25% 101.000000 247.33378932968537,

50% 267.000000 21614.97884301858,

75% 364.000000 0.012578861206579875,

max 628.000000 -1.1717653990872499)

dtype: float64

This second output presents us with count (731 = 366 + 365), minimum and
maximum values (min=9, max=628), arithmetic mean (247), unbiased variance
(21614), biased skewness (0.0126), and biased kurtosis (-1.1718).

Descriptive Statistics

[248]

Other computations of parameters, with both pandas (mode and standard deviation)
and scipy.stats (standard error of the mean and trimmed variance of all values
between 50 and 600):

In [18]: ts.mode() In [20]: scipy.stats.sem(ts)

Out[18]: Out[20]: 5.4377435122312807

0 59

dtype: int64 In [21]: scipy.stats.tvar(ts, [50, 600])

 Out[21]: 17602.318623850999

In [19]: ts.std()

Out[19]: 147.02033479426774

For a complete description of all statistical functions in the scipy.stats
library, the best reference is the official documentation at http://docs.
scipy.org/doc/scipy/reference/stats.html.
It is possible to ignore NaN values in the computations of parameters.
Most dataframe and series methods in pandas do that automatically. If a
different behavior is required, we have the ability to substitute those NaN
values for anything we deem appropriate. For instance, if we wanted any
of the previous computations to take into account all dates and not only
the ones registered, we could impose a value of zero complaints in those
events. We do so with the method dataframe.fillna(0).
With the library scipy.stats, if we want to ignore NaN values in
an array, we use the same routines appending the keyword nan before
their name:
>>> scipy.stats.nanmedian(ts)

267.0

In any case, the time series we computed shows absolutely no NaNs—there
were at least nine daily financial complaints each single day in the years
2012 and 2013.

http://docs.scipy.org/doc/scipy/reference/stats.html
http://docs.scipy.org/doc/scipy/reference/stats.html

Chapter 7

[249]

Going back to complaints about mortgages on the Midwest, to illustrate the power
of boxplots, we are going to inquire in to the number of monthly complaints about
mortgages in the year 2013, in each of those states:

In [22]: in_midwest = data.State.map(lambda t: t in midwest); \

 : mortgages = data.Product == 'Mortgage'; \

 : in_2013 =data['Date received'].map(lambda t: t.year==2013);\

 : df = data[mortgages & in_2013 & in_midwest]; \

 : df['month'] = df['Date received'].map(lambda t: t.month); \

 : df = df.groupby(['month', 'State']).size(); \

 : df.unstack()

Out[22]:

State IA IL IN KS MI MN MO ND NE OH SD WI

month

1 11 220 40 12 183 99 91 3 13 163 5 58

2 14 160 37 16 180 45 47 2 12 120 NaN 37

3 7 138 43 18 184 52 57 3 11 131 5 50

4 14 148 33 19 185 55 52 2 14 104 3 48

5 14 128 44 16 172 63 57 2 8 109 3 43

6 20 136 47 13 164 51 47 NaN 13 116 7 52

7 5 127 30 16 130 57 62 2 11 127 5 39

8 11 133 32 15 155 64 55 NaN 8 120 1 51

9 10 121 24 16 99 31 55 NaN 8 109 NaN 37

10 9 96 35 12 119 50 37 3 10 83 NaN 35

11 4 104 22 10 96 22 39 2 6 82 3 32

12 6 98 25 6 107 37 28 1 6 90 2 41

In [23]: _.boxplot(); \

 : plt.show()

Descriptive Statistics

[250]

This boxplot illustrates how, among the states in the Midwest—Illinois, Ohio, and
Michigan have the largest amount of monthly complaints on mortgages. In the case
of Michigan (MI), for example, the corresponding boxplot indicates that the spread
goes from 96 to 185 monthly complaints. The median number of monthly complaints
in that state is about 160. The first and third quartiles are, respectively, 116 and 180:

A violin plot is a boxplot with a rotated kernel density estimation on each
side. This shows the probability density of the data at different values.
We can obtain these plots with the graphical routine violinplot from the
statsmodels submodule graphics.boxplots. Let's illustrate this kind of
plot with the same data as before:

Chapter 7

[251]

Another option is a combination of a violin plot with a line-scatter plot
of all individual data points. We call this a bean plot, and we have an
implementation with the routine beanplot in the same submodule
statsmodels.graphics.boxplot.

In [24]: from statsmodels.graphics.boxplots import violinplot

In [25]: df = df.unstack().fillna(0)

In [26]: violinplot(df.values, labels=df.columns); \

 : plt.show()

Relationship between quantitative variables
To express the relationship between two quantitative variables, we resort to
three techniques:

• A scatterplot to visually identify that relationship
• The computation of a correlation coefficient that expresses how likely that

relationship is to be formulated by a linear function
• A regression function as a means to predict the value of one of the variables

with respect to the other

Descriptive Statistics

[252]

Scatterplots and correlation
For example, we are going to try to find any relation among the number of
complaints on mortgages among four populous states—Illinois, New York, Texas,
and California—and the territory of Puerto Rico. We will compare the number of
complaints in each month from December 2011 to September 2014:

In [27]: from pandas.tools.plotting import scatter_matrix

In [28]: def year_month(t):

 : return t.tsrftime("%Y%m")

 :

In [29]: states = ['PR', 'IL', 'NY', 'TX', 'CA']; \

 : states = data.State.map(lambda t: t in states); \

 : df = data[states & mortgages]; \

 : df['month'] = df['Date received'].map(year_month); \

 : df.groupby(['month', 'State']).size().unstack()

Out[29]:

State CA IL NY PR TX

month

2011/12 288 34 90 7 63

2012/01 444 77 90 2 104

2012/02 446 80 110 3 115

2012/03 605 78 179 3 128

2012/04 527 69 188 5 152

2012/05 782 100 242 3 151

2012/06 700 107 204 NaN 153

2012/07 668 114 198 3 153

2012/08 764 108 228 3 187

2012/09 599 92 192 1 140

2012/10 635 125 188 2 150

2012/11 599 99 145 6 130

2012/12 640 127 219 2 128

2013/01 1126 220 342 3 267

2013/02 928 160 256 4 210

2013/03 872 138 270 1 181

2013/04 865 148 254 5 200

2013/05 820 128 242 4 198

2013/06 748 136 232 1 237

2013/07 824 127 258 5 193

Chapter 7

[253]

2013/08 742 133 236 3 183

2013/09 578 121 203 NaN 178

2013/10 533 96 193 2 123

2013/11 517 104 173 1 141

2013/12 463 98 163 4 152

2014/01 580 80 201 3 207

2014/02 670 151 189 4 189

2014/03 704 141 245 4 182

2014/04 724 146 271 4 212

2014/05 559 110 212 10 175

2014/06 480 107 226 6 141

2014/07 634 113 237 1 171

2014/08 408 105 166 5 118

2014/09 1 NaN 1 NaN 1

In [30]: df = _.dropna(); \

 : scatter_matrix(df); \

 : plt.show()

This gives the following matrix of scatter plots between the data of each pair of
states, and the histogram of the same data for each state:

Descriptive Statistics

[254]

For a grid of scatter plots with confidence ellipses added, we can use the routine
scatter_ellipse from the graphics module graphics.plot_grids of the package
statsmodels:

In [31]: from statsmodels.graphics.plot_grids import scatter_ellipse

In [32]: scatter_ellipse(df, varnames=df.columns); \

 : plt.show()

Note how each image comes with an extra piece of information. This is the
corresponding correlation coefficient of the two variables (Pearson's, in this case).
Data that appears to be almost perfectly aligned gets a correlation coefficient very
close to 1 in the absolute value. We can obtain all these coefficients as the pandas
dataframe method corr as well:

In [33]: df.corr(method="pearson")

Out[33]:

State CA IL NY PR TX

State

CA 1.000000 0.844015 0.874480 -0.210216 0.831462

IL 0.844015 1.000000 0.818283 -0.141212 0.805006

NY 0.874480 0.818283 1.000000 -0.114270 0.837508

PR -0.210216 -0.141212 -0.114270 1.000000 -0.107182

TX 0.831462 0.805006 0.837508 -0.107182 1.000000

Chapter 7

[255]

Besides the standard Pearson correlation coefficients, this method
allows us to compute Kendall Tau for ordinal data (kendall) or
Spearman rank-order (spearman).
In the module scipy.stats, we also have routines for the
computation of these correlation coefficients:

• pearsonr for Pearson's correlation coefficient and the p-value
for testing noncorrelation

• spearmanr for the Spearman rank-order correlation coefficient
and the p-value to test for noncorrelation

• kendalltau for Kendall's tau
• pointbiserial for the point biserial correlation coefficient

and the associated p-value

Another possibility of visually displaying the correlation is by means of color grids.
The graphic routine plot_corr from the submodule statsmodels.graphics.
correlation gets the job done:

In [34]: from statsmodels.graphics.correlation import plot_corr

In [35]: plot_corr(df.corr(method='spearman'),

 : xnames=df.columns.tolist()); \

 : plt.show()

Descriptive Statistics

[256]

The largest correlation happens between the states of New York and California
(0.874480). We will use the data corresponding to these two states for our subsequent
examples in the next section.

Regression
Scatter plots helped us identify situations where the data could potentially be related
by a functional relationship. This allows us to formulate a rule to predict the value of
a variable knowing the other. When we suspect that such a formula exists, we want
to find a good approximation to it.

We follow in this chapter the jargon of statisticians and data analysts, so rather than
referring to this as an approximation, we will call it a regression. We also append
an adjective indicating the kind of formula we seek. That way, we refer to linear
regression if the function is linear, polynomial regression if it is a polynomial, and
so on. Also, regressions do not necessarily involve only one variable in terms of
another single variable. We thus differentiate between single-variable regression
and multiple regression. Let's explore different settings for regression, and how
to address them from the SciPy stack.

Ordinary linear regression for moderate-sized datasets
In any given case, we can employ the tools we learned during our exploration of
approximation and interpolation in the least-squares sense, in Chapter 1, Numerical
Linear Algebra, and Chapter 2, Interpolation and Approximation. There are many tools
in the two libraries scipy.stack and statsmodels, as well as in the toolkit
scikit-learn to perform this operation and associated analysis:

• A basic routine to compute ordinary least-square regression lines,
linregress, in the scipy.stats library.

• The class LinearRegression from the scikit-learn toolkit, at
sklearn.linear_model.

• A set of different regression routines in the statsmodel libraries, with the
assistance of the patsy package.

Let's start with the simplest method via linregress in the scipy.stats library.
We want to explore the almost-linear relationship between the number of monthly
complaints on mortgages in the states of California and New York:

In [36]: x, y = df[['NY', 'CA']].T.values

In [37]: slope,intercept,r,p,std_err = scipy.stats.linregress(x,y); \

 : print "Formula: CA = {0} + {1}*NY".format(intercept, slope)

Formula: CA = 65.7706648926 + 2.82130682025*NY

Chapter 7

[257]

In [38]: df[['NY', 'CA']].plot(kind='scatter', x='NY', y='CA'); \

 : xspan = np.linspace(x.min(), x.max()); \

 : plt.plot(xspan, intercept + slope * xspan, 'r-', lw=2); \

 : plt.show()

This is exactly the same result we obtain by using LinearRegression from the
scikit-learn toolkit:

In [39]: from sklearn.linear_model import LinearRegression

In [40]: model = LinearRegression()

In [41]: x = np.resize(x, (x.size, 1))

In [42]: model.fit(x, y)

Out[42]: LinearRegression(copy_X=True, fit_intercept=True,

 : normalize=False)

In [43]: model.intercept_

Out[43]: 65.770664892647233

In [44]: model.coef_

Out[44]: array([2.82130682])

Descriptive Statistics

[258]

For a more advanced treatment of this ordinary least-square regression line, offering
more informative plots and summaries, we use the routine ols from statsmodels,
and some of its awesome plotting utilities:

In [45]: import statsmodels.api as sm; \

 : from statsmodels.formula.api import ols

In [46]: model = ols("CA ~ NY", data=df).fit()

In [47]: print model.summary2()

 Results: Ordinary least squares

 ==

 Model: OLS AIC: 366.3982

 Dependent Variable: CA BIC: 369.2662

 No. Observations: 31 Log-Likelihood: -181.20

 Df Model: 1 F-statistic: 94.26

 Df Residuals: 29 Prob (F-statistic): 1.29e-10

 R-squared: 0.765 Scale: 7473.2

 Adj. R-squared: 0.757

 --

 Coef. Std.Err. t P>|t| [0.025 0.975]

 --

 Intercept 65.7707 62.2894 1.0559 0.2997 -61.6254 193.1667

 NY 2.8213 0.2906 9.7085 0.0000 2.2270 3.4157

 --

 Omnibus: 1.502 Durbin-Watson: 0.921

 Prob(Omnibus): 0.472 Jarque-Bera (JB): 1.158

 Skew: -0.465 Prob(JB): 0.560

 Kurtosis: 2.823 Condition No.: 860

 ==

Chapter 7

[259]

An interesting method to express the fact that we would like to obtain a
formula of the variable CA with respect to the variable NY: CA ~ NY.
This comfortable syntax is possible thanks to the library patsy that
takes care of making all the pertinent interpretations and handling the
corresponding data behind the scenes.

The fit can be visualized with the graphic routine plot_fit from the submodule
statsmodels.graphics.regressionplots:

In [48]: from statsmodels.graphics.regressionplots import plot_fit

In [49]: plot_fit(model, 'NY'); \

 : plt.show()

Descriptive Statistics

[260]

Let's also illustrate how to perform multiple linear regression with statsmodels. For
the following example, we are going to gather the number of complaints during the
year 2013 on three products that we suspect are related. We will try to find a formula
that approximates the overall number of mortgage complaints as a function of the
number of complaints on both credit cards and student loans:

In [50]: products = ['Student loan', 'Credit card', 'Mortgage']; \

 : products = data.Product.map(lambda t: t in products); \

 : df = data[products & in_2013]; \

 : df = df.groupby(['State', 'Product']).size()

 : df = df.unstack().dropna()

In [51]: X = df[['Credit card', 'Student loan']]; \

 : X = sm.add_constant(X); \

 : y = df['Mortgage']

In [52]: model = sm.OLS(y, X).fit(); \

 : print model.summary2()

 Results: Ordinary least squares

 ===

 Model: OLS AIC: 827.7591

 Dependent Variable: Mortgage BIC: 833.7811

 No. Observations: 55 Log-Likelihood: -410.88

 Df Model: 2 F-statistic: 286.6

 Df Residuals: 52 Prob (F-statistic): 8.30e-29

 R-squared: 0.917 Scale: 1.9086e+05

 Adj. R-squared: 0.914

 Coef. Std.Err. t P>|t| [0.025 0.975]

 const 2.1214 77.3360 0.0274 0.9782 -153.0648 157.3075

 Credit card 6.0196 0.5020 11.9903 0.0000 5.0121 7.0270

 Student loan -9.9299 2.5666 -3.8688 0.0003 -15.0802 -4.7796

 Omnibus: 20.251 Durbin-Watson: 1.808

 Prob(Omnibus): 0.000 Jarque-Bera (JB): 130.259

 Skew: -0.399 Prob(JB): 0.000

 Kurtosis: 10.497 Condition No.: 544

 ===

Chapter 7

[261]

Note the value of r-squared, so close to 1. This indicates that a linear formula
has been computed and the corresponding model fits the data well. We can now
produce a visualization that shows it:

In [53]: from mpl_toolkits.mplot3d import Axes3D

In [54]: xspan = np.linspace(X['Credit card'].min(),

 : X['Credit card'].max()); \

 : yspan = np.linspace(X['Student loan'].min(),

 : X['Student loan'].max()); \

 : xspan, yspan = np.meshgrid(xspan, yspan); \

 : Z = model.params[0] + model.params[1] * xspan + \

 : model.params[2] * yspan; \

 : resid = model.resid

In [55]: fig = plt.figure(figsize=(8, 8)); \

 : ax = Axes3D(fig, azim=-100, elev=15); \

 : surf = ax.plot_surface(xspan, yspan, Z, cmap=plt.cm.Greys,

 : alpha=0.6, linewidth=0); \

 : ax.scatter(X[resid>=0]['Credit card'],

 : X[resid>=0]['Student loan'],

 : y[resid >=0],

 : color = 'black', alpha=1.0, facecolor='white'); \

 : ax.scatter(X[resid<0]['Credit card'],

 : X[resid<0]['Student loan'],

 : y[resid<0],

 : color='black', alpha=1.0); \

 : ax.set_xlabel('Credit cards'); \

 : ax.set_ylabel('Student loans'); \

 : ax.set_zlabel('Mortgages'); \

 : plt.show()

Descriptive Statistics

[262]

The corresponding diagram shows data points above the plane in white and points
below the plane in black. The intensity of the plane is determined by the corresponding
predicted values for the number of mortgage complaints (brighter areas equal low
residuals and darker areas equal to high residuals).

Ordinary least-squares regression for large datasets
In the case of linear regression for large datasets—more than 100,000 samples—
optimal algorithms use stochastic gradient descent (SGD) regression learning
with different loss functions and penalties. We can access these with the class
SGDregressor in sklearn.linear_model.

Chapter 7

[263]

Linear regression beyond ordinary least-squares
In the general case of multiple linear regression, if no emphasis is to be made on a
particular set of variables, we employ ridge regression. We do so through the class
sklearn.linear_model.Ridge in the scikit-learn toolkit.

Ridge regression is basically an ordinary least-squares algorithm with an extra
penalty imposed on the size of the coefficients involved. It is comparable in
performance to ordinary least-squares too, since they both have roughly the
same complexity.

In any given multiple linear regression, if we acknowledge that only a few variables
have a strong impact over the overall regression, the preferred methods are Least
Absolute Shrinkage and Selection Operator (LASSO) and Elastic Net. We choose
lasso when the number of samples is much larger than the number of variables, and
we seek a sparse formula where most of the coefficients associated to non-important
variables are zero.

Elastic net is always the algorithm of choice when the number of variables is close to,
or larger than, the number of samples.

Both methods can be implemented through scikit-learn—the classes
sklearn.linear_model.lasso and sklearn.linear_model.ElasticNet.

Support vector machines
Support vector regression is another powerful algorithm based upon the premise
that a subset of the training data has a strong effect on the overall set of variables.
An advantage of this method for unbalanced problems is that, by simply changing
a kernel function in the algorithm as our decision function, we are able to access
different kinds of regression (not only linear!). It is not a good choice when we have
more variables than samples, though.

In the scipy-learn toolkit, we have two different classes that implement variations
of this algorithm: svm.SCV and svm.NuSVC. A simplified variation of svm.SVC with
linear kernel can be called with the class svm.LinearSVC.

Descriptive Statistics

[264]

Ensemble methods
When everything else fails, we have a few algorithms that combine the power of
several base estimators. These algorithms are classified in two large families:

• Averaging methods: This combines estimators by averaging to reduce the
value of the variance of the residuals

• Boosting methods: This builds a sequence of weak estimators that converge
to a regression without any bias

For an in-detail description of these methods, examples, and implementation
through the scikit-learn toolkit, refer to the official documentation at
http://scikit-learn.org/stable/modules/ensemble.html.

Analysis of the time series
The subfield of time series modeling and analysis is also very rich. This kind of
data arises in many processes, ranging from corporate business/industry metrics
(economic forecasting, stock market analysis, utility studies, and many more), to
biological processes (epidemiological dynamics, population studies, and many
more). The idea behind modeling and analysis lies in the fact that data taken over
time might have some underlying structure, and tracking that trend is desirable
for prediction purposes, for instance.

We employ a Box-Jenkins model (also known as the Autoregressive Integrated
Moving Average model, or ARIMA in short) to relate the present value of a series
to past values and past prediction errors. In the package statsmodels, we have
implementations through the following classes in the submodule statsmodels.tsa:

• To describe an autoregressive model AR(p), we use the class ar_model.AR,
or equivalently, arima_model.AR.

• To describe an autoregressive Moving Average model ARMA(p,q) we
employ the class arima_model.ARMA. There is an implementation of the
Kalman filter to aid with ARIMA models. We call this code with kalmanf.
kalmanfilter.KalmanFilter (again, in the statsmodels.tsa submodule).

• For the general ARIMA model ARIMA(p,d,q), we use the classes
arima_model.ARIMA.

There are different classes of models that can be used to predict a
time series from its own history—regression models that use lags and
differences, random walk models, exponential smoothing models,
and seasonal adjustment. In reality, all of these types of models are
special cases of the Box-Jenkins models.

http://scikit-learn.org/stable/modules/ensemble.html

Chapter 7

[265]

One basic example will suffice. Recall the time series we created by gathering all
daily complaints in the years 2013 and 2014. From its plot, it is clear that our time
series ts is not seasonal and not stationary (there is that slight upward trend). The
series is too spiky for a comfortable analysis. We proceed to resample it weekly,
prior to applying any description. We use, for this task, the resample method for
the pandas time series:

In [56]: ts = ts.resample('W')

In [57]: ts.plot(); \

 : plt.show()

A first or second difference is used to detrend it—this indicates that we must use an
ARIMA(p,d,q) model with d=1 or d=2 to describe it.

Descriptive Statistics

[266]

Let's compute and visualize the first differences series ts[date] - ts[date-1]:

In pandas, we have a nice method for computing differences
between any periods, for example, ts.diff(periods=k).

In [58]: ts_1st_diff = ts.diff(periods=1)[1:]

In [59]: ts_1st_diff.plot(marker='o'); \

 : plt.show()

It indeed looks like a stationary series. We will thus choose d=1 for our ARIMA model.
Next, is the visualization of the correlograms of this new time series. We have two
methods to perform this task: a basic autocorrelation and lag plot from pandas and a
set of more sophisticated correlograms from statsmodels.api.graphics.tsa:

In [60]: from pandas.tools.plotting import autocorrelation_plot, \

 : lag_plot

In [61]: autocorrelation_plot(ts_1st_diff); \

 : plt.show()

Chapter 7

[267]

This gives us the following figure, showing the correlation of the data with
itself at varying time lags (from 0 to 1000 days, in this case). The solid black
line corresponds to the 95 percent confidence band, and the dashed line to the
99 percent confidence band:

In the case of a nonrandom time series, one or more of the autocorrelations will be
significantly nonzero. Note that, in our case, this plot is a good case for randomness.

The lag plot reinforces this view:

In [62]: lag_plot(ts_1st_diff, lag=1); \

 : plt.axis('equal'); \

 : plt.show()

Descriptive Statistics

[268]

In this case, we have chosen a lag plot of one day, which shows neither symmetry
nor significant structure:

The statsmodels libraries excel in the treatment of time series through its submodules
tsa and api.graphics.tsa. For example, to perform an autocorrelation as before, but
this time restricting the lags to 40, we issue sm.graphics.tsa.plot_acf. We can use
the following command:

In [63]: fig = plt.figure(); \

 : ax1 = fig.add_subplot(211); \

 : ax2 = fig.add_subplot(212); \

 : sm.graphics.tsa.plot_acf(ts_1st_diff, lags=40,

 : alpha=0.05, ax=ax1); \

 : sm.graphics.tsa.plot_pacf(ts_1st_diff, lags=40,

 : alpha=0.05, ax=ax2); \

 : plt.show()

Chapter 7

[269]

This is a different way to present the autocorrelation function but in a way that is
equally effective. Notice how we have control over the confidence band. Our choice
of alpha determines its meaning—in this case, for example, by choosing alpha=0.05,
we have imposed a 95 percent confidence band.

To present the corresponding values to the computed autocorrelations, we use the
routines acf and pacf from the submodule statsmodels.tsa.stattools:

In [64]: from statsmodels.tsa.stattools import acf, pacf

In [65]: acf(ts_1st_diff, nlags=40)

Out[65]:

array([1. , -0.38636166, -0.16209701, 0.13397057,

 -0.0555708 , 0.05048394, -0.0407119 , -0.02082811,

Descriptive Statistics

[270]

 0.0040006 , 0.02907198, 0.04330283, -0.02011055,

 -0.01537464, -0.02978855, 0.04849505, 0.01825439,

 -0.02593023, -0.07966487, 0.02102888, 0.10951272,

 -0.10171504, -0.00645926, 0.03973507, 0.03865624,

 -0.12395291, 0.03391616, 0.07447618, -0.02474901,

 -0.01742892, -0.02676263, -0.00276295, 0.03135769,

 0.0155686 , -0.09556651, 0.07881427, 0.04804349,

 -0.03797063, -0.05942366, 0.03913402, -0.00854744, -

 0.03463874])

In [66]: pacf(ts_1st_diff, nlags=40)

Out[66]:

array([1. , -0.39007667, -0.37436812, -0.13265923,

 -0.14290863, -0.00457552, -0.05168091, -0.05241386,

 -0.07909324, -0.01776889, 0.06631977, 0.07931566,

 0.0567529 , -0.02606054, 0.02271939, 0.05509316,

 0.06013166, -0.09309867, -0.11283787, 0.03704051,

 -0.06223677, -0.05993707, -0.03659954, 0.07764279,

 -0.16189567, -0.11602938, 0.00638008, 0.09157757,

 0.04046057, -0.04838127, -0.08806197, -0.02527639,

 0.06392126, -0.13768596, 0.00641743, 0.11618549,

 0.12550781, -0.14070774, -0.05995693, -0.0024937 ,

 -0.0905665])

In view of the correlograms computed previously, we have a MA(1) signature; there
is a single negative spike in the ACF plot, and a decay pattern (from below) in the
PACF plot. A sensible choice of parameters for the ARIMA model is then p=0, q=1,
and d=1 (this corresponds to a simple exponential smoothing model, possibly with
a constant term added). Let's then proceed with the model description and further
forecasting, with this choice:

In [67]: from statsmodels.tsa import arima_model

In [68]: model = arima_model.ARIMA(ts, order=(0,1,1)).fit()

Chapter 7

[271]

While running, this code informs us of several details of its implementation:

RUNNING THE L-BFGS-B CODE

 * * *

Machine precision = 2.220D-16

 N = 2 M = 12

 This problem is unconstrained.

At X0 0 variables are exactly at the bounds

At iterate 0 f= 5.56183D+02 |proj g|= 2.27373D+00

At iterate 5 f= 5.55942D+02 |proj g|= 1.74759D-01

At iterate 10 f= 5.55940D+02 |proj g|= 0.00000D+00

 * * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

 * * *

 N Tit Tnf Tnint Skip Nact Projg F

 2 10 12 1 0 0 0.000D+00 5.559D+02

 F = 555.940373727761

Descriptive Statistics

[272]

CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL

 Cauchy time 0.000E+00 seconds.

 Subspace minimization time 0.000E+00 seconds.

 Line search time 0.000E+00 seconds.

 Total User time 0.000E+00 seconds.

The method fit of the class arima_model.ARIMA creates a new class in
statsmodels.tsa, arima_model_ARIMAResults, that holds all the information
we need, and a few methods to extract it:

In [69]: print model.summary()

Let's observe the correlograms of the residuals. We can compute those values using
the method resid of the object model:

In [70]: residuals = model.resid

In [71]: fig = plt.figure(); \

 : ax1 = fig.add_subplot(211); \

 : ax2 = fig.add_subplot(212); \

 : sm.graphics.tsa.plot_acf(residuals, lags=40,

 : alpha=0.05, ax=ax1); \

Chapter 7

[273]

 : ax1.set_title('Autocorrelation of the residuals of the
ARIMA(0,1,1) model'); \

 : sm.graphics.tsa.plot_pacf(residuals, lags=40,

 : alpha=0.05, ax=ax2); \

 : ax2.set_title('Partial Autocorrelation of the residuals of the
ARIMA(0,1,1) model'); \

 : plt.show()

These plots suggest that we chose a good model. It only remains to produce a
forecast using it. For this, we employ the method predict in the object model. For
instance, a prediction for the first weeks in the year 2014, performed by considering
all data since October 2013, could be performed as follows:

In [72]: np.where((ts.index.year==2013) & (ts.index.month==10))

Out[72]: (array([92, 93, 94, 95]),)

In [73]: prediction = model.predict(start=92, end='1/15/2014')

Descriptive Statistics

[274]

In [74]: prediction['10/2013':].plot(lw=2, label='forecast'); \

 : ts_1st_diff['9/2013':].plot(style='--', color='red',

 : label='True data (first differences)'); \

 : plt.legend(); \

 : plt.show()

This gives us the following forecast:

Summary
This concludes the first part of our two-chapter coverage of Data Analysis, where
we have explored advanced Python tools in the SciPy stack for computation, and
visualization of descriptive statistics. In the next chapter, we produce a similar
treatment of inference statistics, data mining, and machine learning.

Chapter 8

[275]

Inference and Data Analysis
The different techniques of descriptive statistics that we have covered in the previous
chapter give us a straightforward presentation of facts from the data. The next logical
step is Inference—the process of making propositions and drawing conclusions
about a larger population than the sample data represents.

This chapter will cover the following topics:

• Statistical inference.
• Data mining and machine learning.

Statistical inference
Statistical inference is the process of deducing properties of an underlying
distribution by analysis of data. Inferential statistical analysis infers properties
about a population; this includes testing hypotheses and deriving estimates.

There are three types of inference:

• Estimation of the most appropriate single value of a parameter.
• Interval estimation to assess what region of parameter values is most

consistent with the given data.
• Hypothesis testing to decide, between two options, what parameter values are

most consistent with the data.

There are mainly three approaches to attack these problems:

• Frequentist: Inference is judged based upon performance in repeated
sampling.

Inference and Data Analysis

[276]

• Bayesian: Inference must be subjective. A prior distribution is chosen for
the parameter we seek, and we combine the density of the data prior to
obtain a joint distribution. A further application of Bayes Theorem gives us
a distribution of the parameter, given the data. To perform computations in
this setting, we use the package PyMC.

• Likelihood: Inference is based on the fact that all information about the
parameter can be obtained by inspection of a likelihood function, which is
proportional to the probability density function.

In this section, we briefly illustrate the three approaches to each of the three inference
types. We go back to the previous example of ratios of daily complaints of mortgages
against credit cards:

In [1]: import numpy as np, pandas as pd, matplotlib.pyplot as plt

In [2]: data = pd.read_csv("Consumer_Complaints.csv", \

 ...: low_memory=False, parse_dates=[8,9])

In [3]: df = data.groupby(['Date received', 'Product']).size(); \

 ...: df = df.unstack(); \

 ...: ratios = df['Mortgage'] / df['Credit card']

In [4]: ratios.describe()

Out[4]:

count 1001.000000

mean 2.939686

std 1.341827

min 0.203947

25% 1.985507

50% 2.806452

75% 3.729167

max 12.250000

dtype: float64

By visual inspection of the histogram, we could very well assume that this data is a
random sample from a normal distribution with parameters mu (average) and sigma
(standard deviation). We further assume, for simplicity, that the scale parameter
sigma is known, and its value is 1.3.

Later in this section, we will actually explore what tools we have in
the SciPy stack to determine the distribution of data more precisely.

Chapter 8

[277]

Estimation of parameters
In this setting, the problem we want to solve is an estimation of the average, mu,
using the data obtained.

Frequentist approach
This is the simplest setting. The frequentist approach uses as estimate the computed
mean of the data:

In [5]: ratios.mean()

Out[5]: 2.9396857495543731

In [6]: from scipy.stats import sem # Standard error

In [7]: sem(ratios.dropna())

Out[7]: 0.042411109594665049

A frequentist would then say: The estimated value of the parameter mu is
2.9396857495543731 with standard error 0.042411109594665049.

Bayesian approach
For the Bayesian approach, we select a prior distribution for mu, which we
conveniently assume is Normal with standard deviation 1.3. The average mu is
regarded as a variable, and initially, we assume that its value could be anywhere
in the range of the data (with Uniform distribution). We then use Bayes theorem
to compute a posterior distribution for mu. Our estimated parameter is then the
average of the posterior distribution of mu:

In [8]: import pymc as pm

In [9]: mu = pm.Uniform('mu', lower=ratios.min(), upper=ratios.max())

In [10]: observation = pm.Normal('obs', mu=mu, tau=1./1.3**2,

 : value=ratios.dropna(), observed=True)

In [11]: model = pm.Model([observation, mu])

Inference and Data Analysis

[278]

Notice how, in PyMC, the definition of a Normal distribution requires
an average parameter mu, but instead of standard deviation or
variance, it expects the precision tau = 1/sigma**2.
The variable observation combines our data with our proposed
data-generation scheme, given by the variable mu, through the option
value=ratios.dropna(). To make sure that this stays fixed
during the analysis, we impose observed=True.

In the learning step, we employ the Markov Chain Monte Carlo (MCMC) method to
return a large amount of random variables for the posterior distribution of mu:

In [12]: mcmc = pm.MCMC(model)

In [13]: mcmc.sample(40000, 10000, 1)

[---------------100%---------------] 40000 of 40000 complete in 4.5 sec

In [14]: mcmc.stats()

Out[14]:

{'mu': {'95% HPD interval': array([2.86064764, 3.02292213]),

 'mc error': 0.00028222883254203107,

 'mean': 2.9396811517572554,

 'n': 30000,

 'quantiles': {2.5: 2.8589908555161485,

 25: 2.9117191652137464,

 50: 2.9396815504225815,

 75: 2.9675088640073439,

 97.5: 3.0216312862055279},

 'standard deviation': 0.041412844137324857}}

In [15]: mcmc.summary()

Out[15]:

mu:

 Mean SD MC Error 95% HPD interval

 --

Chapter 8

[279]

 2.94 0.041 0.0 [2.861 3.023]

 Posterior quantiles:

 2.5 25 50 75 97.5

 |---------------|===============|===============|---------------|

 2.859 2.912 2.94 2.968 3.022

In [16]: from pymc.Matplot import plot as mcplot

In [17]: mcplot(mcmc); \

 : plt.show()

Plotting mu

We should get an output similar to the following:

The estimated value of the parameter is 2.93968. The standard deviation of the
posterior distribution of mu is 0.0414.

Inference and Data Analysis

[280]

Likelihood approach
We have a convenient method to perform the likelihood approach for estimation of
parameters of any distribution represented as a class in the submodule scipy.stats.
In our case, since we are fixing the standard deviation (the scale as parameter
of the normal distribution for this particular class), we would issue the following
command:

In [18]: from scipy.stats import norm as NormalDistribution

In [19]: NormalDistribution.fit(ratios.dropna(), fscale=1.3)

Out[19]: (2.9396857495543736, 1.3)

This gives us a similar value for the mean. The graph of the (non-negative log)
likelihood function for mu can be obtained as follows:

In [20]: nnlf = lambda t: NormalDistribution.nnlf([t, 1.3],

 : ratios.dropna()); \

 : nnlf = np.vectorize(nnlf)

In [21]: x = np.linspace(0, 14); \

 : plt.plot(x, nnlf(x), lw=2, color='r',

 : label='Non-negative log-likely function for μ'); \

 : plt.legend(); \

 : plt.annotate('Minimum', xy=(2.9, nnlf(2.9)), xytext=(0,20),

 : textcoords='offset points', ha='right', va='bottom',

 : bbox=dict(boxstyle='round,pad=0.5', fc='yellow',

 : color='k', alpha=1),

 : arrowprops=dict(arrowstyle='->', color='k',

 : connectionstyle='arc3,rad=0')); \

 : plt.show()

Chapter 8

[281]

We should get an output similar to the following:

In any case, the result is visually what we would expect:

In [22]: distribution = NormalDistribution(loc=2.9396857495543736,

 : scale=1.3)

In [23]: plt.plot(x, distribution.pdf(x), 'r-', lw=2,

 : label='Computed Probability Density Function'); \

 : ratios.hist(bins=50, alpha=0.2, normed=True,

 : label='Histogram of data (normalized)'); \

 : plt.legend(); \

 : plt.show()

Inference and Data Analysis

[282]

We should get an output similar to the following:

Interval estimation
In this setting, we seek an interval of values for mu that are supported by the data.

Frequentist approach
In the frequentist approach, we start by providing a small confidence coefficient
alpha, and proceed to find an interval so that the probability of including the
parameter mu is 1-alpha. In our example, we set alpha = 0.05 (hence, the
probability we impose is 95%), and proceed to compute the interval with the method
interval of any class defining a continuous distribution in the module scipy.stats:

In [24]: loc = ratios.mean(); \

 : scale = ratios.sem(); \

 : NormalDistribution.interval(0.95, scale=scale, loc=loc)

Out[24]: (2.8565615022044484, 3.0228099969042979)

Chapter 8

[283]

According to this method, values of the average mu between 2.8565615022044484
and 3.0228099969042979 are consistent with the data based on a 95% confidence
interval.

Bayesian approach
In the Bayesian approach, the equivalent to the confidence interval is called a
credible region (or interval), and is associated with the highest posterior density
region—the set of most probable values of the parameter that, in total, constitute
100*(1 - alpha) percentage of the posterior mass.

Recall that when using a MCMC, after sampling, we obtained the credible region for
alpha = 0.05.

To obtain credible intervals for other values of alpha, we use the routine hpd in the
submodule pymc.utils directly. For example, the highest posterior density region
for alpha = 0.01 is computed as follows:

In [25]: pm.utils.hpd(mcmc.trace('mu')[:], 1-.99)

Out[25]: array([2.83464531, 3.04706652])

Likelihood approach
This is also done with the aid of the method nnlf of any distribution. In this setting,
we need to determine the interval of parameter values for which the likelihood
exceeds 1/k where k is either 8 (strong evidence) or 32 (very strong evidence).

The estimation of the corresponding interval is then a simple application of
optimization. We leave this as an exercise.

Data mining and machine learning
We are going to focus on three kinds of problems: Classification, Dimensionality
reduction, and Clustering. Each of these problems is used in both data mining and
machine learning to draw conclusions about the data. Let's explain each of these
settings in different sections.

Inference and Data Analysis

[284]

Classification
Classification is an example of supervised learning. There is a set of training data
with an attribute that classifies it in one of several categories. The goal is to find the
value of that attribute for new data. For example, with our running database, we
could use all the data from the year 2013 to figure out which financial complaints got
solved positively for the customer, which ones got solved without relief, and which
ones remained in progress. This will offer us good insight on, for instance, which
companies are faster to respond to consumer complaints positively, if there are states
where complaints are less likely to get resolved, and so on.

Let's start by finding the kind of company responses observed in the database:

In [1]: import numpy as np, pandas as pd, matplotlib.pyplot as plt

In [2]: data = pd.read_csv("Consumer_Complaints.csv",

 ...: low_memory=False, parse_dates=[8,9])

In [3]: print data['Company response'].unique()

['Closed with non-monetary relief' 'In progress' 'Closed with
explanation'

 'Closed with monetary relief' 'Closed' 'Untimely response'

 'Closed without relief' 'Closed with relief']

These are eight different categories and our target for deciding the fate of future
complaints. Let's create a set of training data by gathering all complaints formulated
during the year 2013, and keeping only the columns that we believe are relevant
to the decision-making process:

• The product and subproduct that originate the complaint.
• The issue (but not the sub-issue) that consumers had with the product.
• State (but not ZIP code) where the complaint was filed.
• Method of submission of the complaint.
• The company that offered the service.

The size of this training data will dictate which algorithm is to be used
for classification.

Chapter 8

[285]

Before the data can be processed, we need to encode nonnumerical
labels so they can be properly treated by the different classifying
algorithms. We do that with the class LabelEncoder from the
module sklearn.preprocessing.

We will then try to classify all complaints formulated during the year 2014:

In [4]: in_2013 = data['Date received'].map(lambda t: t.year==2013);\

 ...: in_2014 = data['Date received'].map(lambda t: t.year==2014);\

 ...: df = data[in_2013 | in_2014]; \

 ...: df['Year'] = df['Date received'].map(lambda t: t.year); \

 ...: irrelevant = ['Date received', 'Date sent to company',

 ...: 'Complaint ID', 'Timely response?',

 ...: 'Consumer disputed?', 'Sub-issue','ZIP code'];\

 ...: df.drop(irrelevant, 1, inplace=True); \

 ...: df = df.dropna()

In [5]: from sklearn.preprocessing import LabelEncoder

In [6]: encoder = {}

In [7]: for column in df.columns:

 ...: if df[column].dtype != 'int':

 ...: le = LabelEncoder()

 ...: le.fit(df[column].unique())

 ...: df[column] = le.transform(df[column])

 ...: encoder[column] = le

 ...:

In [8]: training = df[df.Year==2013]; \

 ...: target = training['Company response']; \

 ...: training.drop(['Company response', 'Year'], 1, inplace=True)

In [9]: test = df[df.Year==2014]; \

 ...: true_result = test['Company response']; \

 ...: test.drop(['Company response', 'Year'], 1, inplace=True)

In [10]: len(training)

Out[10]: 77100

Inference and Data Analysis

[286]

Support vector classification
The training data here is not too big (anything less than 100,000 is considered
manageable). For this volume of training data, it is suggested that we employ
support vector classification with a linear kernel.

Three flavors of this algorithm are coded as classes in the module sklearn.svm
(for support vector machines): SVC, NuSVC, and a simplified version of SVC with
linear kernel, LinearSVC, which is what we need:

In [11]: from sklearn.svm import LinearSVC

In [12]: clf = LinearSVC(); \

 : clf.fit(training, target)

Out[12]:

LinearSVC(C=1.0, class_weight=None, dual=True, fit_intercept=True,

 intercept_scaling=1, loss='l2', multi_class='ovr', penalty='l2',

 random_state=None, tol=0.0001, verbose=0)

We are ready to evaluate the performance of this classifier:

In [13]: clf.predict(test)==true_result

Out[13]:

0 False

2 False

3 True

4 True

6 False

7 True

9 True

11 False

12 False

13 False

14 False

15 True

16 True

20 False

21 False

...

101604 True

Chapter 8

[287]

101607 False

101610 True

101611 True

101613 True

101614 True

101616 True

101617 True

101618 True

101620 True

101621 True

101622 True

101625 True

101626 True

101627 True

Name: Company response, Length: 65282, dtype: bool

In [18]: float(sum(_)) / float(len(_))

Out[18]: 0.7985509022395147

With this method, we correctly classify almost 80% of the complaints.

In rare cases where this method does not work, we can
always resort to plain SVC or its NuSVC variation with a
carefully chosen kernel.

The power of a classifier lies in the applications. For instance, if we would like to
purchase via web a conventional fixed mortgage from Bank of America in the state of
South Carolina, and we fear problems with settlement process and cost, what does the
classifier tell us about our chances of having the matter settled?

In [19]: encoder['Product'].transform(['Mortgage'])[0]

Out[19]: 4

In [20]: encoder['Sub-product'].transform(['Conventional fixed
mortgage'])[0]

Out[20]: 5

In [21]: encoder['Issue'].transform(['Settlement process and costs'])[0]

Out[21]: 27

In [19]: encoder['State'].transform(['SC'])[0]

Out[19]: 50

In [23]: encoder['Submitted via'].transform(['Web'])[0]

Out[23]: 5

Inference and Data Analysis

[288]

In [24]: encoder['Company'].transform(['Bank of America'])[0]

Out[24]: 247

In [25]: clf.predict([4,5,27,50,5,247])

Out[25]: array([1])

In [26]: encoder['Company response'].inverse_transform(_)[0]

Out[26]: 'Closed with explanation'

A satisfactory outlook!

Trees
It is possible to create a decision tree illustrating a set of rules to facilitate the
classification. In the scikit-learn toolkit, we have a class implemented for this
purpose—DecisionTreeClassifier in the submodule sklearn.tree. Let's see it in
action:

In [27]: from sklearn.tree import DecisionTreeClassifier

In [28]: clf = DecisionTreeClassifier().fit(training, target)

In [29]: clf.predict(test) == true_result

Out[29]:

0 True

2 False

3 True

4 True

6 False

7 True

9 True

11 False

12 False

13 False

14 False

15 True

16 True

20 False

21 False

...

101604 True

Chapter 8

[289]

101607 True

101610 True

101611 True

101613 True

101614 True

101616 True

101617 True

101618 True

101620 True

101621 True

101622 True

101625 True

101626 False

101627 True

Name: Company response, Length: 65282, dtype: bool

In [30]: float(sum(_)) / len(_)

Out[30]: 0.7400661744431849

It looks like this simple classifier was successful in predicting the outcome of about
74% of the complaints in 2014.

It is possible to create a dot file readable with the Graphviz
visualization software available at http://www.graphviz.org/:

In [31]: from sklearn.tree import export_graphviz

In [32]: export_graphviz(clf, out_file="tree.dot")

Opening this file in Graphviz gives us an impressive set of rules

http://www.graphviz.org/

Inference and Data Analysis

[290]

The following is a detail of the tree (too large to fit in these pages!):

We also have implementations of random forests and extremely randomized trees,
both of them within the submodule sklearn.ensemble. The corresponding classes
are called RandomForestClassifier and ExtraTreesClassifier, respectively.

In any of the previous cases, the coding of the classifier is exactly as in the cases of
the SVC and the basic decision trees.

Naive Bayes
Similar results are obtained with Naive Bayes methods. In the module sklearn.
naive_bayes, we have three implementations of this algorithm:

• The class GaussianNB for the Gaussian Naive Bayes, where the likelihood
of the features is assumed to be Gaussian.

• The class BernoulliNB for Naive Bayes for data distributes according to
multivariate Bernoulli distributions (each feature is assumed to be a binary
valued variable).

• The class MultinomialNB for multinomially distributed data.

Chapter 8

[291]

Nearest neighbors
For an even better result for this case, we employ classification by nearest neighbors.
This is exactly the same procedure we employed in the setting of computational
geometry to perform the corresponding geometric query problem. In this setting,
note how we have coded our data as points in a Euclidean space of high dimension,
and we can thus translate those methods for this classification purpose.

The advantage in this case is that we don't necessarily have to use Euclidean
distances for our computations. For instance, since the data is essentially different
regardless of its numerical value, it makes sense to impose a Hamming metric to
calculate distance between labels. We have a generalization of the nearest neighbors
algorithm implemented as the class KNeighborsClassifier in the module
sklearn.neighbors:

In [33]: from sklearn.neighbors import KNeighborsClassifier

In [34]: clf = KNeighborsClassifier(n_neighbors=8,metric='hamming');\

 : clf.fit(training, target)

Out[34]:

KNeighborsClassifier(algorithm='auto', leaf_size=30,metric='hamming',

 n_neighbors=8, p=2, weights='uniform')

In [35]: clf.predict(test)==true_result

Out[35]:

0 True

2 False

3 True

4 True

6 False

7 True

9 True

11 False

12 False

13 False

14 False

15 True

16 True

20 False

Inference and Data Analysis

[292]

21 False

...

101604 True

101607 False

101610 True

101611 True

101613 True

101614 True

101616 True

101617 True

101618 True

101620 True

101621 True

101622 True

101625 True

101626 True

101627 True

Name: Company response, Length: 65282, dtype: bool

In [36]: float(sum(_))/len(_)

Out[36]: 0.791274777120799

More than 79% of success!

Dimensionality reduction
Data often observes internal structure, but high dimension (number of columns,
in a sense) makes it difficult to extract and select this internal structure. Often, it is
possible to perform smart projections of this data on lower-dimensional manifolds,
and analyze these projections for search of features. We refer to this technique as
dimensionality reduction.

For the following example, we decided to drop all dates that
contain any NaN. This significantly reduced the volume of
the data, making the subsequent study and results simpler to
understand. For a more elaborate and complete study, force all
occurrences of NaN to be zeros—substitute the method dropna()
with fillna(0).

Chapter 8

[293]

Let's observe how to profit from these processes with our running example. We
gather all the daily complains by product, and analyze the data:

In [37]: df = data.groupby(['Date received', 'Product']).size(); \

 : df = df.unstack().dropna()

In [38]: df.head()

Out[38]:

Product Bank account or service Consumer loan Credit card \

Date received

2013-11-06 66 14 41

2013-11-07 44 11 33

2013-11-08 49 11 36

2013-11-09 9 4 20

2013-11-11 15 4 23

Product Credit reporting Debt collection Money transfers
Mortgage \

Date received

2013-11-06 62 129 2
153

2013-11-07 43 99 2
128

2013-11-08 44 83 8
113

2013-11-09 19 33 2
23

2013-11-11 32 68 2
46

Product Payday loan Student loan

Date received

2013-11-06 2 14

2013-11-07 8 10

2013-11-08 12 7

2013-11-09 3 4

2013-11-11 2 14

In [39]: df.shape

Out[39]: (233, 9)

We may regard this data as 233 points in a space of 9 dimensions.

Inference and Data Analysis

[294]

Principal component analysis
For this small kind of data, and without any other prior information, one of the best
procedures of dimensionality reduction results in projecting over a two-dimensional
plane. However, it's not just any plane—we seek one projection that ensures that
the projected data has the largest possible variance. We accomplish this with the
information we obtain from eigenvalues and eigenvectors of a matrix that represents
our data. This process is called principal component analysis (PCA).

PCA is regarded as one of the most useful techniques in Statistical
methods. For an amazing survey of theory (in both scopes of Linear
Algebra and Statistics), coding techniques, and applications, the
best resource is the second edition of the book Principal Component
Analysis, written by I.T. Jolliffe and published by Springer in their
Springer Series in Statistics in 2002.

We have an implementation in the scikit-learn toolkit, the class PCA, in the
submodule sklearn.decomposition:

In [40]: from sklearn.decomposition import PCA

In [41]: model = PCA(n_components=2)

In [42]: model.fit(df)

Out[42]: PCA(copy=True, n_components=2, whiten=False)

In [43]: projected_df = model.transform(df)

In [44]: plt.figure(); \

 : plt.scatter(projected_df[:,0], projected_df[:,1]); \

 : plt.title('Principal Component Analysis scatterplot of df'); \

 : plt.show()

Observe how the data consists of two very well differentiated clusters of points—one
of them considerably larger than the other—and some outliers. We will come back to
this problem in the next section.

Chapter 8

[295]

Isometric mappings
We don't necessarily need to project on hyperplanes. One neat trick is to assume
that the data itself lies on a nonlinear submanifold, and obtain a representation of
this object with the points on it. This gives us flexibility to search for projections
where the projected data satisfies relevant properties. For instance, if we require the
projections to maintain geodesic distance among points (whenever possible), we
achieve a so-called isometric mapping (isomap).

In the SciPy stack, we have an implementation of this method as the class Isomap in
the submodule sklearn.manifold:

In [45]: from sklearn.manifold import Isomap

In [46]: model = Isomap().fit(df)

In [47]: isomapped_df = model.transform(df)

In [48]: plt.figure(); \

Inference and Data Analysis

[296]

 : plt.scatter(isomapped_df[:,0], isomapped_df[:,1]); \

 : plt.title('Isometric Map scatterplot of df'); \

 : plt.show()

Although visually very different, this method also offers us two very clear clusters,
one of them much larger than the other. The smaller cluster appears as a sequence
of points clearly aligned:

Spectral embedding
Another possibility is to embed the data nonlinearly by applying spectral analysis
on an affinity/similarity matrix. The results carry similar quality as the previous
two examples:

In [49]: from sklearn.manifold import SpectralEmbedding

In [50]: model = SpectralEmbedding().fit(df)

In [51]: embedded_df = model.embedding_

Chapter 8

[297]

In [52]: plt.figure(); \

 : plt.scatter(embedded_df[:,0], embedded_df[:,1]); \

 : plt.title('Spectral Embedding scatterplot of df'); \

 : plt.show()

In this case, the clusters are more clearly defined than in the previous examples.

Locally linear embedding
Another possible projection, similar in some sense to isometric maps, seeks to
preserve the distance within local neighborhoods—the locally linear embedding.
We have an implementation through the class LocallyLinearEmbedding, again
within the submodule sklearn.manifold:

In [53]: from sklearn.manifold import LocallyLinearEmbedding

In [54]: model = LocallyLinearEmbedding().fit(df)

In [55]: lle_df = model.transform(df)

Inference and Data Analysis

[298]

In [56]: plt.figure(); \

 : plt.scatter(lle_df[:,0], lle_df[:,1]); \

 : plt.title('Locally Linear Embedding scatterplot of df'); \

 : plt.show()

Note the extremely conglomerated two clusters, and two outliers.

Clustering
Clustering is similar in some sense to the problem of classification, yet more
complex. When facing a dataset, we acknowledge the possibility of having some
hidden structure, in a way that will allow us to predict the behavior of future data.
Searching for this structure is performed by finding common patterns and gathering
data conforming to those patterns in different clusters. For this reason, we also refer
to this problem as data mining.

Chapter 8

[299]

There are many different methods to perform clustering, depending on the volume
of data, and the a priori information we have on the number of clusters. We are
going to explore the following settings:

• MeanShift.
• Gaussian mixture models.
• K-means.
• Spectral clustering.

MeanShift
We employ the technique of MeanShift clustering when the data does not exceed
10,000 points, and we do not know a priori the number of clusters we need. Let's
experiment with the running example from the section on dimensionality reduction,
but we will remain oblivious from the two clusters suggested by all projections. We
will let the mean shift clustering take that decision for us.

We have an implementation in the SciPy stack through the class MeanShift in the
submodule sklearn.cluster of the scikit-learn toolkit. One of the ingredients of
this algorithm is approximation with radial basis functions (discussed in Chapter 1,
Numerical Linear Algebra), for which we need to provide an appropriate bandwidth.
The algorithm, if not provided with one, will try to estimate from the data. This
process could potentially be very slow and expensive, and it is generally a good idea
to do estimation by ourselves, so we can control resources. We can do so with the
helper function estimate_bandwidth, in the same submodule.

The implementation of classes and routines for clustering algorithms in
the scikit-learn toolkit require the data to be fed as a numpy array,
rather than a pandas data frame.
We can perform this switch easily with the dataframe method .values.

In [57]: from sklearn.cluster import MeanShift, estimate_bandwidth

In [58]: bandwidth = estimate_bandwidth(df.values, n_samples=1000)

In [59]: model = MeanShift(bandwidth=bandwidth, bin_seeding=True)

In [60]: model.fit(df.values)

At this point, the object model has successfully computed a series of labels and
attached them to each point in the data, so they are properly clustered. We can allow
some unclassifiable points to remain unclassified—we accomplish this by setting the
optional Boolean flag cluster_all to False. By default, the algorithm forces every
single piece of data into a cluster.

Inference and Data Analysis

[300]

Let's find the number of labels and visualize the result on top of one of the
projections from the previous section, for quality purposes:

In [61]: np.unique(model.labels_) # how many clusters?

Out[61]: array([0, 1, 2])

In [62]: plt.figure(); \

 : plt.scatter(isomapped_df[:,0], isomapped_df[:,1],

 : c=model.labels_, s = 50 + 100*model.labels_); \

 : plt.title('MeanShift clustering of df\n Isometric Mapping \

 : scatterplot\n color/size indicates cluster'); \

 : plt.tight_layout(); \

 : plt.show()

Note how the two clear clusters are correctly computed and one outlier received its
own cluster.

Chapter 8

[301]

Let's find out the significance of these clusters. First, the outlier:

In [63]: df[model.labels_ == 2]

Out[63]:

Product Bank account or service Consumer loan Credit card \

Date received

2014-06-26 117 19 89

Product Credit reporting Debt collection Money transfers
Mortgage \

Date received

2014-06-26 85 159 5
420

Product Payday loan Student loan

Date received

2014-06-26 7 12

What is so different in the amount of complaints produced on July 26th, 2014? Let
us produce a plot with the each cluster of dates, to see if we may guess what the
differences are about.

In [64]: fig = plt.figure(); \

 : ax1 = fig.add_subplot(211); \

 : ax2 = fig.add_subplot(212); \

 : df[model.labels_==0].plot(ax=ax1); \

 : df[model.labels_==1].plot(ax=ax2); \

 : plt.show()

Inference and Data Analysis

[302]

We should get an output similar to the following:

Visually, it appears as if the cluster has been formed by gathering dates with
high volume of complaints, versus low volume of complaints. But not only that: a
closer inspection reveals that on dates from cluster 0, mortgages are unequivocally
the number one reason for complaint. On the other hand, for dates in cluster 1,
complaints on mortgages get relegated to a second or third position, always behind
debt collection and payday loans:

In [65]: plt.figure(); \

 : df[model.labels_==0].sum(axis=1).plot(label='cluster 0'); \

 : df[model.labels_==1].sum(axis=1).plot(label='cluster 1'); \

 : plt.legend(); \

 : plt.show()

Chapter 8

[303]

Indeed, that was the case:

In [66]: df[model.labels_==0].sum(axis=1).describe()

Out[66]:

count 190.000000

mean 528.605263

std 80.900075

min 337.000000

25% 465.000000

50% 537.000000

75% 585.000000

max 748.000000

dtype: float64

In [67]: df[model.labels_==1].sum(axis=1).describe()

Out[67]:

count 42.000000

mean 156.738095

std 56.182655

min 42.000000

25% 124.250000

50% 140.500000

75% 175.750000

Inference and Data Analysis

[304]

max 335.000000

dtype: float64

In [68]: df[model.labels_==2].sum(axis=1)

Out[68]:

Date received

2014-06-26 913

dtype: float64

Note that the volume of complaints in the cluster labeled 1 does not go over 335 daily
complaints. Complaints formulated on days from the zero cluster are all between 337
and 748. On the outlier date—July 26th, 2014—there were 913 complaints.

Gaussian mixture models
Gaussian mixture models are probabilistic models that make assumptions on the
way the data has been generated, and the distributions it obeys. These algorithms
approximate the parameters defining the involved distributions.

In its purest form, this method implements the expectation-maximization (EM)
algorithm in order to fit the model. We access this implementation with the class GMM
in the submodule sklearn.mixture of the scikit-learn toolkit. This implementation
requires us to provide with the number of desired clusters, though. And unlike other
methods, it will try its hardest to categorize the data into as many clusters required, no
matter whether these artificial clusters make any logical sense.

In order to perform clustering on relatively small amounts of data without previous
knowledge of the number of clusters that we need, we may employ a variant of
Gaussian mixture models that use variational inference algorithms instead. We call
this a variational Gaussian mixture. We have an implementation of this algorithm
as the class VBGMM in the same submodule.

For this particular method, we do need to feed an upper bound of the number of
clusters we expect, but the algorithm will compute the optimal number for us.

For instance, in our running example— which clearly shows two clusters—we
are going to impose an upper bound of 30, and observe the behavior of the
VBGMM algorithm:

In [69]: from sklearn.mixture import VBGMM

In [70]: model = VBGMM(n_components=30).fit(df)

In [71]: labels = model.predict(df)

In [72]: len(np.unique(labels)) # how many clusters?

Out[72]: 2

Chapter 8

[305]

Only two clusters!

In [73]: a, b = np.unique(labels)

In [74]: sizes = 50 + 100 * (labels - a) / float(b-a)

In [75]: plt.figure(); \

 : plt.scatter(embedded_df[:,0], embedded_df[:,1],

 : c=labels, s=sizes); \

 : plt.title('VBGMM clustering of df\n Spectral Embedding \

 : scatterplot\n color/size indicates cluster'); \

 : plt.tight_layout(); \

 : plt.show()

We should get an output similar to the following:

Inference and Data Analysis

[306]

Kmeans
If we previously know the number of clusters that we require, regardless of the
amount of data, a good algorithm for clustering is Lloyd's algorithm (better known
as the method of K-means).

In the module scipy.cluster.vq we have an efficient set of routines for k-means
clustering. A parallel-capable algorithm is implemented as the class KMeans in the
submodule sklearn.cluster of the scikit-learn toolkit. For instance, if we
require on our data a partition into four clusters, using all CPUs of our computer,
we could issue from the toolkit the following code:

In [76]: from sklearn.cluster import KMeans

In [77]: model = KMeans(n_clusters=4, n_jobs=-1).fit(df)

In [78]: plt.figure(); \

 : plt.scatter(isomapped_df[:,0], isomapped_df[:,1],

 : c=model.labels_, s=10 + 100*model.labels_); \

 : plt.title('KMeans clustering of df\n Isometric Mapping \

 : scatterplot\n color/size indicates cluster'); \

 : plt.tight_layout(); \

 : plt.show()

Chapter 8

[307]

We should get an output similar to the following:

Note how this artificial clustering still manages to categorize different dates by the
volume of complaints received, no matter the product:

In [79]: plt.figure()

In [80]: for label in np.unique(model.labels_):

 : if sum(model.labels_==label) > 1:

 : object = df[model.labels_==label].sum(axis = 1)

 : object.plot(label=label)

 :

In [81]: plt.legend(); \

 : plt.show()

Inference and Data Analysis

[308]

We should get an output similar to the following:

The cluster that has not been represented in this plot is, as in our previous
clustering analysis, is the single date July 26, 2014, when nearly a
thousand complaints were received.

In case of huge amounts of data (more than 10,000 points), we often use a variation of
K-means that runs on randomly sampled subsets of the data on different iterations,
to reduce computation time. This method is called Mini-batch Kmeans, and it
has been implemented as the class MiniBatchKMeans in the same submodule. The
quality of the clustering is slightly worse as compared to when using pure K-means,
but the process is significantly faster.

Chapter 8

[309]

Spectral clustering
By performing a low-dimension spectral embedding of the data (with different
metrics) prior to a K-means, we are often able to tackle clustering when any of the
previous methods fail to categorize data in a meaningful way. We have an amazingly
clever implementation based on algebraic multigrid solvers in the scikit-learn
toolkit, as the class SpectralClustering in the submodule sklearn.cluster.

To handle the algebraic multigrid solvers, it is highly recommended
to have the package pyamg installed. This package was developed by
Nathan Bell, Luke Olson, and Jacob Schroder, from the department of
computer science at the University of Illinois at Urbana-Champaign.
This is not strictly necessary, but doing so will speed up our
computations immensely. The package can be downloaded in several
formats from http://pyamg.org/ or installed as usual with either a
pip, easy_install or conda command from the console.

Summary
In this chapter, we explored advanced techniques in the SciPy stack to perform
inferential statistics, data mining, and machine learning. In the next chapter, we
change gears completely to master mathematical imaging.

http://pyamg.org/

[311]

Mathematical Imaging
Mathematical Imaging is a very broad field that is concerned with the treatment
of images by representing them as mathematical objects. Depending on the goals,
we have four subfields:

• Image acquisition: The concern here is the effective representation of an
object as an image. Clear examples are the digitalization of a photograph
(that could be coded as a set of numerical arrays), or super-imposed
information of the highest daily temperatures on a map (that could be coded
as a discretization of a multivariate function). The processes of acquisition
differ depending on what needs to be measured and the hardware that
performs the measures. This topic is beyond the scope of this book but, if
interested, some previous background can be obtained by studying the
Python interface to OpenCV and any of the background libraries, such as
Python Imaging Library (PIL) and the friendly PIL fork Pillow.

A nice documentation for PIL can be accessed through the http://
effbot.org/ pages at http://effbot.org/imagingbook/pil-
index.htm. Installing the SciPy stack immediately places a copy of the
latest version of PIL in our system. If needed, downloads of this library
alone are available from http://pythonware.com/products/
pil/. For information about Pillow, a good source is http://pillow.
readthedocs.org/.
A good source of information for OpenCV can be found at http://
opencv.org/. For a closer look at the interface to Python, I have found
the tutorials at http://docs.opencv.org/3.0-beta/doc/py_
tutorials/py_tutorials.html very useful.
Note that the installation of OpenCV for Python is not easy. My
recommendation is to perform such an installation from Anaconda or any
other scientific Python distribution.

http://effbot.org/
http://effbot.org/
http://effbot.org/imagingbook/pil-index.htm
http://effbot.org/imagingbook/pil-index.htm
http://pythonware.com/products/pil/
http://pythonware.com/products/pil/
http://pillow.readthedocs.org/
http://pillow.readthedocs.org/
http://opencv.org/
http://opencv.org/
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_tutorials.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_tutorials.html

Mathematical Imaging

[312]

• Image compression: This is the most technical of these subfields and requires
mostly high-level libraries from NumPy, SciPy, and some extra packages.
The goal is the representation of images using the minimum possible data,
in a way that most (ideally all) of the relevant information is kept.

• Image editing: This, together with the following image analysis, is what we
refer to as Image processing. Examples of the goals of image editing range
from the restoration of damaged photographs, to the deblurring of a video
sequence, or the removal of an object in an image, so that the removed area
gets inpainted with coherent information. To deal with these operations,
in the SciPy stack, we have the library scipy.ndimage, and the image
processing toolkit scikit-image.

A good set of references and documentation for the multidimensional
image-processing library scipy.ndimage can be found at http://
docs.scipy.org/doc/scipy/reference/tutorial/ndimage.
html, including an enlightening introduction to filters.
To explore the image processing toolkit scikit-image, a good
initial resource is the documentation of the official page at http://
scikit-image.org/docs/stable/. This includes a crash course
on using NumPy for images.

• Image analysis: This is an interesting field, where we aim to obtain different
pieces of information from an object represented as an image. Think of a code
that can track the face of an individual in the video rendering of a large crowd,
or count the number of gold atoms on a micrograph of a catalyst. For these
tasks, we usually mix functions from the previous two libraries, with the
ever-useful toolkit scikit-learn that we discussed in the previous chapter.

In our exposition, we will start with a small section on how to represent digital
images within the SciPy stack. We continue with a second section on the nature of
basic operations over images. The rest of the sections continue with the presentation
of techniques for compression, editing, and analysis, in that order.

Most of the operations we introduce conclude with a visualization of the examples.
The corresponding code is usually a trivial application of commands from
matplotlib. These codes are usually not included, and left to the reader as exercise.
Only when a specific complex layout or novel idea is introduced, we will include
those codes in our presentation.

http://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html
http://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html
http://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html
http://scikit-image.org/docs/stable/
http://scikit-image.org/docs/stable/

Chapter 9

[313]

Digital images
The dictionary defines a pixel (an abbreviation of picture element) as a minute area
of illumination on a display screen, one of many from which an image is composed.
We therefore consider a digital image as a set of pixels, each of them defined by its
location (irrespective of the kind of coordinates chosen) and the intensity of light of
the corresponding image at that location.

Depending on the way we measure intensity, a digital image belongs to one of three
possible types:

• Binary
• Gray-scale
• Color (with or without an alpha channel)

Binary
In a binary image there are only two possible intensities—light or dark. Such images
are traditionally best implemented as simple two-dimensional Boolean arrays. True
indicates a bright spot, while False measures a dark spot.

For instance, to create a binary image of size 128 x 128, with a single disk of radius 6
centered at the location (30, 100), we could issue the following:

In [1]: import numpy as np, matplotlib.pyplot as plt

In [2]: disk = lambda x,y: (x-30)**2 + (y-100)**2 <= 36

In [3]: image = np.fromfunction(disk, (128, 128))

In [4]: image.dtype

Out[4]: dtype('bool')

Mathematical Imaging

[314]

Another method to generate geometric shapes on a binary image is the
set of utilities in the modules skimage.draw or skimage.morphology.
For instance, the previous could have been generated as follows:
>>> from skimage.draw import circle

>>> image = np.zeros((128, 128)).astype('bool')

>>> image[circle(30, 100, 6)] = True

The module skimage.draw has routines to create other two-dimensional
geometric shapes:

• Lines: line. There is also an anti-aliased version of a line, for
gray-scale images: line_aa.

• Circles: circle, circle_perimeter. There is also an anti-
aliased version of a circle perimeter, for gray-scale images:
circle_perimeter_aa.

• Ellipses: ellipse, ellipse_perimeter.
• Polygons: polygon.

Gray-scale
A gray-scale image is the traditional method of representing black and white
photographs. In these images, the intensity of the light is represented as different
scales of gray. White indicates the brightest, and black signifies no light. The number
of different scales is predetermined, and usually a dyadic number (we could choose
as little as 16 scales, or as many as 256, for example). In any case, the highest value is
always reserved for the brightest color (white), and the lowest for the darkest (black).
A simple two-dimensional array is a good way to store this information.

The scipy.misc library has a test image conforming to this category. In the toolkit
skimage, we also have a few test images with the same characteristics:

In [6]: from scipy.misc import lena; \

 ...: from skimage.data import coins

In [7]: lena().shape

Out[7]: (512, 512)

In [8]: lena()

Out[8]:

array([[162, 162, 162, ..., 170, 155, 128],

 [162, 162, 162, ..., 170, 155, 128],

 [162, 162, 162, ..., 170, 155, 128],

 ...,

Chapter 9

[315]

 [43, 43, 50, ..., 104, 100, 98],

 [44, 44, 55, ..., 104, 105, 108],

 [44, 44, 55, ..., 104, 105, 108]])

In [9]: coins().shape

Out[9]: (303, 384)

In [10]: coins()

Out[10]:

array([[47, 123, 133, ..., 14, 3, 12],

 [93, 144, 145, ..., 12, 7, 7],

 [126, 147, 143, ..., 2, 13, 3],

 ...,

 [81, 79, 74, ..., 6, 4, 7],

 [88, 82, 74, ..., 5, 7, 8],

 [91, 79, 68, ..., 4, 10, 7]], dtype=uint8)

On the left-hand side, we can see Lena, the standard (and
controversial) test image scanned from the November 1972 edition
of Playboy magazine. On the right-hand side, we can see Greek
coins from Pompeii; this image has been downloaded from the
Brooklyn Museum collection.

Mathematical Imaging

[316]

Color
In color images, we have many different methods to store the underlying
information. The most common method, the one that also provides the easiest
computational structures for creating algorithms, is the RGB color space. In this
method, an image representation contains at least three layers. For each pixel, we
assess the combined information of the amounts of red, green, and blue necessary to
achieve the desired color and intensity at the corresponding location. The first layer
indicates the intensities of underlying reds. The second and third layers indicate,
respectively, the intensities of greens and blues:

In [12]: from skimage.data import coffee

In [13]: coffee().shape

Out[13]: (400, 600, 3)

In [14]: coffee()

Out[14]:

array([[[21, 13, 8],

 [21, 13, 9],

 [20, 11, 8],

 ...,

 [228, 182, 138],

 [231, 185, 142],

 [228, 184, 140]],

 ...,

 [[197, 141, 100],

 [195, 137, 99],

 [193, 138, 98],

 ...,

 [158, 73, 38],

 [144, 64, 30],

 [143, 60, 29]]], dtype=uint8)

Chapter 9

[317]

This photograph, taken by Rachel Michetti, is courtesy of Pikolo Espresso Bar.

To collect the data corresponding to each of the layers, we issue simple slicing
operations:

In [15]: plt.figure(); \

 : plt.subplot(131); \

 : plt.imshow(coffee()[:,:,0], cmap=plt.cm.Reds); \

 : plt.subplot(132); \

 : plt.imshow(coffee()[:,:,1], cmap=plt.cm.Greens); \

 : plt.subplot(133); \

 : plt.imshow(coffee()[:,:,2], cmap=plt.cm.Blues); \

 : plt.show()

Mathematical Imaging

[318]

All functions in the libraries of the SciPy stack described in this chapter assume that
any color image is represented in this scheme. There are other color schemes, which
are designed to address other fundamental questions and properties of images. A
process to transform among most of the frequent color spaces is available in the
toolkit scikit-image, as the function convert-colorspace in the submodule
skimage.color. For example, consider the Hue-Saturation-Value (HSV) color
space. This is a cylindrical-coordinate representation of points from an RGB color
space, where the angle around the central vertical axis corresponds to hue (H) and
the distance from the axis corresponds to saturation (S). The height corresponds
to a third value (V), the system's representation of the perceived luminance (think
brightness of the underlying combination of colors) in relation to the saturation:

In [16]: from skimage.color import convert_colorspace

In [17]: convert_colorspace(coffee(), 'RGB', 'HSV')

Out[17]:

array([[[0.06410256, 0.61904762, 0.08235294],

 [0.05555556, 0.57142857, 0.08235294],

 [0.04166667, 0.6 , 0.07843137],

 ...,

 [0.08148148, 0.39473684, 0.89411765],

 [0.08052434, 0.38528139, 0.90588235],

 [0.08333333, 0.38596491, 0.89411765]],

 ...,

 [[0.07044674, 0.49238579, 0.77254902],

 [0.06597222, 0.49230769, 0.76470588],

 [0.07017544, 0.49222798, 0.75686275],

 ...,

 [0.04861111, 0.75949367, 0.61960784],

 [0.0497076 , 0.79166667, 0.56470588],

 [0.04532164, 0.7972028 , 0.56078431]]])

Among the other color spaces available are the CIE XYZ method of
measuring tristimulus values, or the CIE-LUB and CIE-LAB color spaces.
The best resource to learn how to access and use them in the SciPy stack
environment is the documentation of the module skimage.color in the
pages of their official documentation at http://scikit-image.org/
docs/stable/api/skimage.color.html.

http://scikit-image.org/docs/stable/api/skimage.color.html
http://scikit-image.org/docs/stable/api/skimage.color.html

Chapter 9

[319]

It is also possible to produce a gray-scale version of any color image provided in
the RGB color space, by adding the three layers with appropriate weights. In the
skimage.color module, we have, for instance, the functions rgb2gray or rgb2grey,
that employ the formula output = 0.2125*red + 0.7154*green + 0.0721*blue.

Alpha channels
In either gray-scale or color images, we sometimes indicate an extra layer that
gives us information about the opacity of each pixel. This is referred to as the alpha
channel. Traditionally, we incorporate this property of our images as an additional
layer of an RGB—the so-called RGBA color space. In that case, images represented
by this scheme have four layers instead of three:

In [18]: from skimage.data import horse

In [19]: horse().shape

Out[19]: (328, 400, 4)

In [20]: horse()

Out[20]:

array([[[255, 255, 255, 110],

 [255, 255, 255, 217],

 [255, 255, 255, 255],

 ...,

 [255, 255, 255, 255],

 [255, 255, 255, 217],

 [255, 255, 255, 110]],

 ...,

 [[255, 255, 255, 110],

 [255, 255, 255, 217],

 [255, 255, 255, 255],

 ...,

 [255, 255, 255, 255],

 [255, 255, 255, 217],

 [255, 255, 255, 110]]], dtype=uint8)

Mathematical Imaging

[320]

High-level operations on digital images
Before addressing the challenges of image processing and compression, it pays
off to examine the sequence of basic operations that we perform on images.
These operations are the building blocks of the algorithms we are to explore.
By themselves, they beautifully illustrate the basic principle of mathematical
imaging. An image is represented as a mathematical object and, as such, basic
operations on the corresponding object can be translated to either physical
operations or queries on the corresponding image.

Object measurements
In the setting of binary images, we could regard an image as a set of objects or
blobs (in white) on an empty region of the plane (the background, in black). It is
then possible to perform different measures on each of the objects represented:

In [1]: import numpy as np, matplotlib.pyplot as plt; \

 ...: from skimage.data import hubble_deep_field

In [2]: image = (hubble_deep_field()[:,:,0] > 120)

Hubble eXtreme Deep Field: The image on the left shows the farthest
view of the universe. It was captured for NASA by the Hubble Telescope
and uploaded to http://hubblesite.org/. It can be freely used in
the public domain.

The image on the right (a binary image) collects, as subsets of True values, a selection
of the celestial objects represented in the original image. We obtained this binary
image by a simple thresholding operation, where we asked for those pixels where
the red intensity of the picture is greater than 120.

http://hubblesite.org/

Chapter 9

[321]

From this binary image, we can easily label and count the selected celestial objects,
and compute some of their geometric properties. We do so by using the function
label in the library scipy.ndimage:

In [4]: from scipy.ndimage import label

In [5]: labels, num_features = label(image); \

 ...: print "Image contains {} objects".format(num_features)

Image contains 727 objects.

Computing the center of mass of each object, for example, is performed with the
function center_of_mass:

In [6]: from scipy.ndimage import center_of_mass

In [7]: for k in range(1,11):

 ...: location = str(center_of_mass(image, labels, k))

 ...: print "Object {} center of mass at {}".format(k,location)

 ...:

Object 1 center of mass at (0.0, 875.5)

Object 2 center of mass at (4.7142857142857144, 64.857142857142861)

Object 3 center of mass at (3.3999999999999999, 152.19999999999999)

Object 4 center of mass at (6.0454545454545459, 206.13636363636363)

Object 5 center of mass at (5.0, 489.5)

Object 6 center of mass at (6.5, 858.0)

Object 7 center of mass at (6.0, 586.5)

Object 8 center of mass at (7.1111111111111107, 610.66666666666663)

Object 9 center of mass at (10.880000000000001, 297.45999999999998)

Object 10 center of mass at (12.800000000000001, 132.40000000000001)

Mathematical morphology
Again, in the setting of binary images, we have another set of interesting operations,
Mathematical morphology. A basic morphological operation consists of probing
the shape of the blobs with a common structuring element. Consider, for example,
the basic operations of the erosion and dilation of shapes, using a small square as
structuring element.

Mathematical Imaging

[322]

The erosion of an object is the set of points of said object that can be reached by the
center of the structuring element, when this set moves inside of the original object. The
dilation of an object, on the other hand, is the set of points covered by the structuring
element, when the center of this moves inside the original object. The combination of
sequences of these two operations leads to more powerful algorithms in image editing.

Also, let's observe two more advanced morphological operations: the computation of
the skeleton of a shape, and the location of the medial axis of a shape (the ridges of
its distance transform). These operations are also the seed of interesting processes in
image analysis:

In [8]: from scipy.ndimage.morphology import binary_erosion; \

 ...: from scipy.ndimage.morphology import binary_dilation; \

 ...: from skimage.morphology import skeletonize, medial_axis; \

 ...: from skimage.data import horse

In [9]: image = horse()[:,:,0]==0

In [10]: # Morphology via scipy.ndimage.morphology ; \

 : structuring_element = np.ones((10,10)); \

 : erosion = binary_erosion(image, structuring_element); \

 : dilation = binary_dilation(image, structuring_element)

In [11]: # Morphology via skimage.morphology ; \

 : skeleton = skeletonize(image); \

 : md_axis = medial_axis(image)

In [12]: plt.figure(); \

 : plt.subplot2grid((2,4), (0,0), colspan=2, rowspan=2); \

 : plt.imshow(image); \

 : plt.gray(); \

 : plt.title('Original Image'); \

 : plt.subplot2grid((2,4), (0,2)); \

 : plt.imshow(erosion); \

 : plt.title('Erosion'); \

 : plt.subplot2grid((2,4), (0,3)); \

 : plt.imshow(dilation); \

 : plt.title('Dilation'); \

 : plt.subplot2grid((2,4), (1,2)); \

 : plt.imshow(skeleton); \

Chapter 9

[323]

 : plt.title('Skeleton'); \

 : plt.subplot2grid((2,4), (1,3)); \

 : plt.imshow(md_axis); \

 : plt.title('Medial Axis'); \

 : plt.show()

A black and white silhouette of a horse, drawn and uploaded by Andreas
Preuss into the public domain for https://openclipart.org/.

Smoothing filters
We can regard an image as a multivariate function. In that case, there are a few
operations that compute an approximation to the original with certain good
properties. A case in point is the creation of smoothed versions of images. These
are the building blocks of algorithms where the presence of noise or unnecessarily
complicated textures could offer confusing results.

https://openclipart.org/

Mathematical Imaging

[324]

Take for example a Gaussian filter, the convolution of a function with a Gaussian
kernel with mean mu=0 and user-defined standard deviation sigma:
In [13]: from scipy.ndimage import gaussian_filter; \

 : from skimage.color import rgb2gray; \

 : from skimage.data import coffee

In [14]: image = coffee()

In [15]: smooth_image = gaussian_filter(rgb2gray(image), sigma=2.5)

Note that the image on the right (the smoothed version of the original) seems
blurred. For this reason, understanding the mechanisms of smoothing is also
a good steppingstone with algorithms of restoration of images.

Multivariate calculus
By regarding an image as a sufficiently smooth intensity function now (with or
without the help of smoothing filters) many operations are available in terms of
multivariate calculus techniques. For example, the Prewitt and Sobel operators
compute approximations to the norm of the gradient of said function. The
corresponding values at each location assess the probability of having an edge,
and are therefore used in the construction of reliable feature-detection algorithms:

In [17]: from scipy.ndimage import prewitt

In [18]: gradient_approx = prewitt(smooth_image)

Chapter 9

[325]

Due to the properties of the original image and its smoothed version, in this case,
the absolute value of the magnitudes of the gradient (right) ranges from 0 (black)
to 0.62255043871863613 (white). Brighter areas thus indicate the location of possible
edges, while darker areas imply the location of flatter regions.

The sum of second-derivatives (the Laplacian operator) is also used in algorithms of
feature detection or motion estimation:

In [20]: from scipy.ndimage import laplace

In [21]: laplace_approx = laplace(smooth_image)

In this case, the combination of the information of the Laplacian with the gradient
gives clues to the location of local extrema and the geometry of the objects represented.

Mathematical Imaging

[326]

The Hessian matrix (the second order partial derivatives of a scalar-valued function)
is used to describe the local curvature of the image. It is a useful component in the
process of the detection of blobs. We have an implementation of this operator in the
module skimage.feature, as the routine hessian_matrix. For an approximation
to the determinant of the Hessian, we have the routine hessian_matrix_det in the
same module.

Statistical filters
Treating an image as a multidimensional signal, we have many filtering operations
of a statistical nature available.

For instance, maximum, minimum, median, or percentile filters can be computed
using the functions maximum_filter, minimum_filter, median_filter or
percentile_filter in scipy.ndimage, respectively. These filters respectively
compute, for each pixel on the image and a given footprint, the maximum,
minimum, median, or requested percentile of the image on the footprint centered
at the pixel.

In the following example, we compute the 80th percentile using a 10 x 10 square
as a footprint:

In [23]: from scipy.ndimage import percentile_filter

In [24]: prctl_image = percentile_filter(image[:,:,0],

 : percentile=-20, size=10)

More relevant filters from this category can be found in the submodule
skimage.filters.rank.

Chapter 9

[327]

Fourier analysis
By regarding an image as a multivariate function again, we can perform the
Fourier analysis on it. Applications of the Fourier transform, and discrete cosine
transform, are mainly aimed at filtering, extracting information from the images,
and compression:

In [25]: from scipy.fftpack import fft2, ifft2, fftshift; \

 : from skimage.data import text

In [26]: image = text()

In [27]: frequency = fftshift(fft2(image))

The frequency of a function is, in general, a complex valued function. To visualize
it, we will present the module and angle of each output value. For a better
interpretation, we usually enhance visually the result by applying a logarithmic
correction over the module of the frequency:

In [28]: plt.figure(); \

 : ax1 = plt.subplot2grid((2,2), (0,0), colspan=2); \

 : plt.imshow(image)

Out[28]: <matplotlib.image.AxesImage at 0x11deb1650>

In [29]: module = np.absolute(frequency); \

 : angles = np.angle(frequency)

In [30]: from skimage.exposure import adjust_log

In [31]: ax2 = plt.subplot2grid((2,2), (1,0)); \

 : plt.imshow(adjust_log(module)); \

 : ax3 = plt.subplot2grid((2,2), (1,1)); \

 : plt.imshow(angles); \

 : plt.show()

Mathematical Imaging

[328]

Text is an image downloaded from Wikipedia and released to the
public domain. It can be found at https://en.wikipedia.org/
wiki/File:Corner.png.

Notice what happens if we disregard part of the information from the frequency of
the image—say, about 25 percent of it, and then perform an inversion:

In [32]: frequency.shape

Out[32]: (172, 448)

In [33]: smaller_frequency = frequency[:,448/2-172/2:448/2+172/2]

In [34]: new_image = ifft2(smaller_frequency); \

 : new_image = np.absolute(new_image)

https://en.wikipedia.org/wiki/File:Corner.png
https://en.wikipedia.org/wiki/File:Corner.png

Chapter 9

[329]

Although we are missing a fourth of the original frequency, the inversion gives us an
image with exactly the same information as the original. What have we actually lost
by disregarding that portion of the lower frequencies? The answer to this question
leads to interesting algorithms of reconstruction, compression, and analysis.

Wavelet decompositions
We can perform wavelet decompositions using the package PyWavelets, written by
Tariq Rashid.

It can be downloaded from https://pypi.python.org/pypi/
PyWavelets. Posterior installation can be performed following
instructions from those pages. For some architecture, the installation
might be tricky. We recommend that, in that cases you work from within
a scientific Python distribution, such as Anaconda. For instance, we could
search for the package using the binstar/conda commands:
% binstar search -t conda pywavelets

% conda install -c conda.binstar.org/dgursoy pywavelets

Note that there are many different families of wavelets implemented in this library:

In [36]: import pywt

In [37]: pywt.families()

Out[37]: ['haar', 'db', 'sym', 'coif', 'bior', 'rbio', 'dmey']

In [38]: print pywt.wavelist()

['bior1.1', 'bior1.3', 'bior1.5', 'bior2.2', 'bior2.4', 'bior2.6',

 'bior2.8', 'bior3.1', 'bior3.3', 'bior3.5', 'bior3.7', 'bior3.9',

 'bior4.4', 'bior5.5', 'bior6.8', 'coif1', 'coif2', 'coif3', 'coif4',

 'coif5', 'db1', 'db2', 'db3', 'db4', 'db5', 'db6', 'db7', 'db8',

 'db9', 'db10', 'db11', 'db12', 'db13', 'db14', 'db15', 'db16',

 'db17', 'db18', 'db19', 'db20', 'dmey', 'haar', 'rbio1.1','rbio1.3',

 'rbio1.5', 'rbio2.2', 'rbio2.4', 'rbio2.6', 'rbio2.8', 'rbio3.1',

 'rbio3.3', 'rbio3.5', 'rbio3.7', 'rbio3.9', 'rbio4.4', 'rbio5.5',

 'rbio6.8', 'sym2', 'sym3', 'sym4', 'sym5', 'sym6', 'sym7', 'sym8',

 'sym9', 'sym10', 'sym11', 'sym12', 'sym13', 'sym14', 'sym15',

 'sym16', 'sym17', 'sym18', 'sym19', 'sym20']

https://pypi.python.org/pypi/PyWavelets
https://pypi.python.org/pypi/PyWavelets

Mathematical Imaging

[330]

Let's see how to compute a representation of the image skimage.data.camera using
a haar wavelet. Since the original image has a side length of 512=2^9, we are going
to need nine levels in the computation of the wavelet coefficients:

In [39]: from skimage.data import camera

In [40]: levels = int(np.floor(np.log2(camera().shape).max())); \

 : print "We need {} levels".format(levels)

We need 9 levels

In [41]: wavelet = pywt.Wavelet('haar')

In [42]: wavelet_coeffs = pywt.wavedec2(camera(), wavelet,

 : level=levels)

The object wavelet_coeffs is a tuple with ten entries, the first one is the
approximation at the highest level 0. This is always one single coefficient. The
second entry in wavelet_coeffs is a 3-tuple containing the three different details
(horizontal, vertical, and diagonal) at level 1. Each consecutive entry is another
3-tuple containing the three different details at higher levels (n = 2, 3, 4, 5, 6,
7, 8, 9).

Note the number of coefficients for each level:

In [43]: for index, level in enumerate(wavelet_coeffs):

 : if index > 0:

 : value = level[0].size + level[1].size + level[2].size

 : print "Level {}: {}".format(index, value)

 : else:

 : print "Level 0: 1"

 :

Level 0: 1

Level 1: 3

Level 2: 12

Level 3: 48

Level 4: 192

Level 5: 768

Level 6: 3072

Level 7: 12288

Level 8: 49152

Level 9: 196608

Chapter 9

[331]

Image compression
The purpose of compression is the representation of images by methods that require
less units of information (for example, bytes) than the mere storage of each pixel
in arrays.

For instance, recall the binary image we constructed in the first section; that is a
128 x 128 image represented by 16,384 bits (True/False), where all but 113 of those
bits are False. There surely must be more efficient ways to store this information in a
way that require less than 16,384 bits. We could very well do so by simply providing
the size of the canvas (two bytes), the location of the center of the disk (two more
bytes), and the value of its radius (another byte). We now have a new representation
using only 40 bits (assuming each byte consists of 8 bits). We refer to such exact
representation as a lossless compression.

Another possible way to compress an image is the process of turning a color image
into its black and white representation, for example. We performed this operation
on the image skimage.data.coffee, turning an object of size 3 x 400 x 600 (720,000
bytes) into an object of size 400 x 600 (240,000 bytes). Although, in the process, we
lost the ability to see its color. This kind of operation is appropriately called a lossy
compression.

In the following pages, we are going to explore several settings for image compression
from a mathematical point of view. We will also develop efficient code to perform
these operations from within the SciPy stack. We are not concerned with the creation of
code to read or save these compressed images to file; for that, we already have reliable
utilities in the Python Imaging Library, that have also been imported to different
functions in the modules scipy.misc, scipy.ndimage, and the toolkit scikit-image.
If we wish to compress and store a numpy array A representing a black-and-white
photography as different file types, we simply issue something along these lines:

In [1]: import numpy as np; \

 ...: from scipy.misc import lena, imsave

In [2]: A = lena()

In [3]: imsave("my_image.png", A); \

 ...: imsave("my_image.tiff", A); \

 ...: imsave("my_image.pcx", A); \

 ...: imsave("my_image.jpg", A); \

 ...: imsave("my_image.gif", A)

Mathematical Imaging

[332]

A quick visualization of the contents of the folder in which we are working shows
the sizes of the files created. For instance, under a *NIX system, we could issue the
following command:
% ls -nh my_image.*

-rw-r--r-- 1 501 20 257K May 29 08:16 my_image.bmp

-rw-r--r-- 1 501 20 35K May 29 08:16 my_image.jpg

-rw-r--r-- 1 501 20 273K May 29 08:15 my_image.pcx

-rw-r--r-- 1 501 20 256K May 29 08:16 my_image.tiff

Note the different sizes of the resulting files. The lossless formats PCX, BMP, and
TIFF offer similar compression rates (273K, 257K, and 256 K, respectively). On the
other hand, the JPEG lossy format offers an obvious improvement (35 K).

Lossless compression
Some of the most common lossless compression schemes used for image processing
are as follows:

• Run-length encoding: This method is used in PCX, BMP, TGA, and TIFF file
types, when the original image can be regarded as palette-based bitmapped,
for example, a cartoon or a computer icon.

• Lempel-Ziv-Welch (LZW): This is used by default in the GIF image format.
• Deflation: This is very powerful and reliable. It is the method used for PNG

image files. It is also the compression method employed to create ZIP files.
• Chain code: This is the preferred method to encode binary images, especially

if these contain a small number of large blobs.

Let's examine, for instance, how run-length encoding works in a suitable example.
Consider the checkerboard image skimage.data.checkerboard. We receive it as a
200 x 200 array of integer values and, in this way, it requires 40,000 bytes of storage.
Note, it can be regarded as a palette-based bitmap with only two colors. We start by
transforming each zero value to a B, and each 255 to a W:
In [5]: from skimage.data import checkerboard

In [6]: def color(value):

 ...: if value==0: return 'B'

 ...: else: return 'W'

 ...:

In [7]: image = np.vectorize(color)(checkerboard()); \

 ...: print image

[['W' 'W' 'W' ..., 'B' 'B' 'B']

Chapter 9

[333]

 ['W' 'W' 'W' ..., 'B' 'B' 'B']

 ['W' 'W' 'W' ..., 'B' 'B' 'B']

 ...,

 ['B' 'B' 'B' ..., 'W' 'W' 'W']

 ['B' 'B' 'B' ..., 'W' 'W' 'W']

 ['B' 'B' 'B' ..., 'W' 'W' 'W']]

Next, we create a function that encodes both lists and strings of characters,
producing instead, a string composed of patterns of the form "single character
plus count":

In [7]: from itertools import groupby

In [8]: def runlength(string):

 ...: groups = [k + str(sum(1 for _ in g)) for k,g in

 ...: groupby(string)]

 ...: return ''.join(groups)

 ...:

Notice what happens when we rewrite the image as a flattened string containing
its colors and encode it in this fashion:

In [9]: coded_image = runlength(image.flatten().tolist())

In [10]: print coded_image

W26B23W27B23W27B23W27B24W26B23W27B23W27B23W27B24W26B23W27B23W27B23W27

B24W26B23W27B23W27B23W27B24W26B23W27B23W27B23W27B24W26B23W27B23W27B23

W27B24W26B23W27B23W27B23W27B24W26B23W27B23W27B23W27B24W26B23W27B23W27

B23W27B24W26B23W27B23W27B23W27B24W26B23W27B23W27B23W27B24W26B23W27B23

W27B23W27B24W26B23W27B23W27B23W27B24W26B23W27B23W27B23W27B24W26B23W27

B23W27B23W27B24W26B23W27B23W27B23W27B24W26B23W27B23W27B23W27B24W26B23

W27B23W27B23W27B24W26B23W27B23W27B23W27B24W26B23W27B23W27B23W27B24W26

B23W27B23W27B23W27B24W26B23W27B23W27B23W27B24W26B

...

26B24W27B23W27B23W27B23W26B24W27B23W27B23W27B23W26B24W27B23W27B23W27B

23W26B24W27B23W27B23W27B23W26B24W27B23W27B23W27B23W26B24W27B23W27B23W

27B23W26B24W27B23W27B23W27B23W26B24W27B23W27B23W27B23W26B24W27B23W27B

23W27B23W26B24W27B23W27B23W27B23W26B24W27B23W27B23W27B23W26B24W27B23W

27B23W27B23W26B24W27B23W27B23W27B23W26B24W27B23W27B23W27B23W26B24W27B

23W27B23W27B23W26B24W27B23W27B23W27B23W26B24W27B23W27B23W27B23W26B24W

27B23W27B23W27B23W26B24W27B23W27B23W27B23W26B24W27B23W27B23W27B23W26

In [11]: len(coded_image)

Out[11]: 4474

Mathematical Imaging

[334]

We have reduced its size to a mere 4,474 bytes. Now, how would you decode
this information back to an image? Imagine you are provided with this string,
the additional information of the size of the image (200 x 200), and the palette
information (B for black, and W for white).

Another nice exercise is to find descriptions of the other mentioned lossless
compression methods, and write Python codes for their corresponding encoder
and decoder.

Lossy compression
Among the many possible schemes of lossy compression, we are going to focus on
the method of transform coding. The file type JPEG, for instance, is based on the
discrete cosine transform.

In any of these cases, the process is similar. We assume that the image is a function.
Its visualization can be regarded as a representation of its graph, and as such this is
a spatial operation. Instead, we can compute a transform of the image (say, Fourier,
discrete cosine, or Wavelet). The image is now represented by a collection of values:
The coefficients of the function in the corresponding transform. Now, compression
occurs when we disregard a large quantity of those coefficients and reconstruct the
function with the corresponding inverse transform.

We have already observed the behavior of the reconstruction of an image after
disregarding 25 percent of its lower frequencies, when addressing the Fourier
analysis techniques in the previous section. This is not the only way to disregard
coefficients. For instance, we can instead collect coefficients with a large enough
absolute value. Let's examine the result of performing that operation on the same
image, this time using the discrete cosine transform:

In [12]: from skimage.data import text; \

 : from scipy.fftpack import dct, idct

In [13]: image = text().astype('float')

In [14]: image_DCT = dct(image)

Let's disregard the values that are less than or equal to 1000 in absolute value.
Note that there are more than 256,317 such coefficients (almost 98 percent of the
original data):

In [15]: mask = np.absolute(image_DCT)>1000

In [16]: compressed = idct(image_DCT * mask)

Chapter 9

[335]

In spite of having thrown away most of the coefficients, the reconstruction is very
faithful. There are obvious artifacts, but these are not too distracting.

We can perform a similar operation using the wavelet transform. A naive way
to perform compression in this setting could be to disregard whole levels of
coefficients, and then reconstruct. In the example that we covered in the previous
sections (a Haar wavelet representation of the image skimage.data.camera with
nine levels of coefficients), if we eliminate the last two levels, we are throwing away
245,760 coefficients (almost 94 percent of the original information). Observe the
quality of the reconstruction:

In [18]: import pywt; \

 : from skimage.data import camera

In [19]: levels = int(np.floor(np.log2(camera().shape).max()))

In [20]: wavelet = pywt.Wavelet('haar')

In [21]: wavelet_coeffs = pywt.wavedec2(camera(), wavelet,

 : level=levels)

In [22]: compressed = pywt.waverec2(wavelet_coeffs[:8], wavelet)

Mathematical Imaging

[336]

Similar to transform coding is the method of compression by singular value
decomposition. In this case, we regard an image as a matrix. We represent it by
means of its singular values. Compression in this setting occurs when we disregard
a large quantity of the smaller singular values, and then reconstruct. For an example
of this technique, read Chapter 3, SciPy for Linear Algebra of the book Learning SciPy for
Numerical and Scientific Computing, Second Edition.

Image editing
The purpose of editing is the alteration of digital images, usually to improve its
properties or to turn them into an intermediate step for further processing.

Let's examine different methods of editing:

• Transformations of the domain
• Intensity adjustment
• Image restoration
• Image inpainting

Transformations of the domain
In this setting, we address transformations to images by first changing the location
of pixels: rotations, compressions, stretching, swirls, cropping, perspective control,
and so on. Once the transformation to the pixels in the domain of the original is
performed, we observe the size of the output. If there are more pixels in this image
than in the original, the extra locations are filled with numerical values obtained by
interpolating the given data. We do have some control over the kind of interpolation
performed, of course. To better illustrate these techniques, we will pair an actual
image (say, Lena) with a representation of its domain as a checkerboard:

In [1]: import numpy as np, matplotlib.pyplot as plt

In [2]: from scipy.misc import lena; \

 ...: from skimage.data import checkerboard

In [3]: image = lena().astype('float')

 ...: domain = checkerboard()

In [4]: print image.shape, domain.shape

Out[4]: (512, 512) (200, 200)

Chapter 9

[337]

Rescale and resize
Before we proceed with the pairing of image and domain, we have to make sure that
they both have the same size. One quick fix is to rescale both objects, or simply resize
one of the images to match the size of the other. Let's go with the first choice, so that
we can illustrate the usage of the two functions available for this task in the module
skimage.transform to resize and rescale:

In [5]: from skimage.transform import rescale, resize

In [6]: domain = rescale(domain, scale=1024./200); \

 ...: image = resize(image, output_shape=(1024, 1024), order=3)

Observe how, in the resizing operation, we requested a bicubic interpolation.

Swirl
To perform a swirl, we call the function swirl from the module skimage.
transform:

In all the examples of this section, we will present the results visually
after performing the requested computations. In all cases, the syntax of
the call to offer the images is the same. For a given operation mapping,
we issue the command display(mapping, image, domain) where
the routine display is defined as follows:
def display(mapping, image, domain):

 plt.figure()

 plt.subplot(121)

 plt.imshow(mapping(image))

 plt.gray()

 plt.subplot(122)

 plt.imshow(mapping(domain))

 plt.show()

Mathematical Imaging

[338]

For the sake of brevity, we will not include this command in the following code, but
assume it is called every time:

In [7]: from skimage.transform import swirl

In [8]: def mapping(img):

 ...: return swirl(img, strength=6, radius=512)

 ...:

Geometric transformations
A simple rotation around any location (no matter whether inside or outside the
domain of the image) can be achieved with the function rotate from either module
scipy.ndimage or skimage.transform. They are basically the same under the hood,
but the syntax of the function in the scikit-image toolkit is more user friendly:

In [10]: from skimage.transform import rotate

In [11]: def mapping(img):

 : return rotate(img, angle=30, resize=True, center=None)

 :

This gives a counter-clockwise rotation of 30 degrees (angle=30) around the center
of the image (center=None). The size of the output image is expanded to guarantee
that all the original pixels are present in the output (resize=True):

Chapter 9

[339]

Rotations are a special case of what we call an affine transformation—a combination
of rotation with scales (one for each dimension), shear, and translation. Affine
transformations are in turn a special case of a homography (a projective
transformation). Rather than learning a different set of functions, one for each kind of
geometric transformation, the library skimage.transform allows a very comfortable
setting. There is a common function (warp) that gets called with the requested
geometric transformation and performs the computations. Each suitable geometric
transformation is previously initialized with an appropriate Python class. For
example, to perform an affine transformation with a counter-clockwise rotation angle
of 30 degrees about the point with coordinates (512, -2048), and scale factors of 2 and
3 units, respectively, for the x and y coordinates, we issue the following command:

In [13]: from skimage.transform import warp, AffineTransform

In [14]: operation = AffineTransform(scale=(2,3), rotation=np.pi/6, \

 : translation = (512, -2048))

In [15]: def mapping(img):

 : return warp(img, operation)

 :

Mathematical Imaging

[340]

Observe how all the lines in the transformed checkerboard are either parallel or
perpendicular—affine transformations preserve angles.

The following illustrates the effect of a homography:

In [17]: from skimage.transform import ProjectiveTransform

In [18]: generator = np.matrix('1,0,10; 0,1,20; -0.0007,0.0005,1'); \

 : homography = ProjectiveTransform(matrix=generator); \

 : mapping = lambda img: warp(img, homography)

Observe how, unlike in the case of an affine transformation, the lines cease to be all
parallel or perpendicular. All vertical lines are now incident at a point. All horizontal
lines are also incident at a different point.

The real usefulness of homographies arises, for example, when we need to perform
perspective control. For instance, the image skimage.data.text is clearly slanted.
By choosing the four corners of what we believe is a perfect rectangle (we estimate
such a rectangle by visual inspection), we can compute a homography that
transforms the given image into one that is devoid of any perspective. The Python
classes representing geometric transformations allow us to perform this estimation
very easily, as the following example shows:

In [20]: from skimage.data import text

In [21]: text().shape

Out[21]: (172, 448)

In [22]: source = np.array(((155, 15), (65, 40),

 : (260, 130), (360, 95),

 : (155, 15)))

In [23]: mapping = ProjectiveTransform()

Chapter 9

[341]

Let's estimate the homography that transforms the given set of points into a perfect
rectangle of the size 48 x 256 centered in an output image of size 512 x 512. The
choice of size of the output image is determined by the length of the diagonal of the
original image (about 479 pixels). This way, after the homography is computed, the
output is likely to contain all the pixels from the original:

Observe that we have included one of the vertices in the source twice.
This is not strictly necessary for the following computations, but will
make the visualization of rectangles much easier to code. We use the same
trick for the target rectangle.

In [24]: target = np.array(((256-128, 256-24), (256-128, 256+24),

 : (256+128, 256+24), (256+128, 256-24),

 : (256-128, 256-24)))

In [25]: mapping.estimate(target, source)

Out[25]: True

In [26]: plt.figure(); \

 : plt.subplot(121); \

 : plt.imshow(text()); \

 : plt.gray(); \

 : plt.plot(source[:,0], source[:,1],'-', lw=1, color='red'); \

 : plt.xlim(0, 448); \

 : plt.ylim(172, 0); \

 : plt.subplot(122); \

 : plt.imshow(warp(text(), mapping,output_shape=(512, 512))); \

 : plt.plot(target[:,0], target[:,1],'-', lw=1, color='red'); \

 : plt.xlim(0, 512); \

 : plt.ylim(512, 0); \

 : plt.show()

Mathematical Imaging

[342]

Other more involved geometric operations are needed, for example,
to fix vignetting—and some of the other kinds of distortions produced
by photographic lenses. Traditionally, once we acquire an image we
assume that all these distortions are present. By knowing the technical
specifications of the equipment used to take the photographs, we can
automatically rectify these defects. With this purpose in mind, in the
SciPy stack we have access to the lensfun library (http://lensfun.
sourceforge.net/) through the package lensfunpy (https://
pypi.python.org/pypi/lensfunpy).
For examples of usage and documentation, an excellent resource is
the API reference of lensfunpy at http://pythonhosted.org/
lensfunpy/api/.

Intensity adjustment
In this category, we have operations that only modify the intensity of an image
obeying a global formula. All these operations can therefore be easily coded by
using purely NumPy operations, by creating vectorized functions adapting the
requested formulas.

The applications of these operations can be explained in terms of exposure in black
and white photography, for example. For this reason, all the examples in this section
are applied on gray-scale images.

We have mainly three approaches to enhancing images by working on its intensity:

• Histogram equalization
• Intensity clipping/resizing
• Contrast adjustment

Histogram equalization
The starting point in this setting is always the concept of intensity histogram (or
more precisely, the histogram of pixel intensity values)—a function that indicates the
number of pixels in an image at each different intensity value found in that image.

http://lensfun.sourceforge.net/
http://lensfun.sourceforge.net/
https://pypi.python.org/pypi/lensfunpy
https://pypi.python.org/pypi/lensfunpy
http://pythonhosted.org/lensfunpy/api/
http://pythonhosted.org/lensfunpy/api/

Chapter 9

[343]

For instance, for the original version of Lena, we could issue the following command:

In [27]: plt.figure(); \

 : plt.hist(lena().flatten(), 256); \

 : plt.show()

The operations of histogram equalization improve the contrast of images by
modifying the histogram in a way so that most of the relevant intensities have
the same impact. We can accomplish this enhancement by calling, from the
module skimage.exposure, any of the functions equalize_hist (pure histogram
equalization) or equalize_adaphist (contrast limited adaptive histogram
equalization (CLAHE)).

Mathematical Imaging

[344]

Note the obvious improvement after the application of histogram equalization to the
image skimage.data.moon:

In the following examples, we include the corresponding histogram
below all relevant images for comparison. A suitable code to perform this
visualization could be as follows:
def display(image, transform, bins):

 target = transform(image)

 plt.figure()

 plt.subplot(221)

 plt.imshow(image)

 plt.gray()

 plt.subplot(222)

 plt.imshow(target)

 plt.subplot(223)

 plt.hist(image.flatten(), bins)

 plt.subplot(224)

 plt.hist(target.flatten(), bins)

 plt.show()

In [28]: from skimage.exposure import equalize_hist; \
 : from skimage.data import moon
In [29]: display(moon(), equalize_hist, 256)

Chapter 9

[345]

Intensity clipping/resizing
A peak at the histogram indicates the presence of a particular intensity that is
remarkably more predominant than its neighboring ones. If we desire to isolate
intensities around a peak, we can do so using purely NumPy masking/clipping
operations on the original image. If storing the result is not needed, we can request
a quick visualization of the result by employing the command clim in the library
matplotlib.pyplot. For instance, to isolate intensities around the highest peak of
Lena (roughly, these are between 150 and 160), we could issue the following command:

In [30]: plt.figure(); \

 : plt.imshow(lena()); \

 : plt.clim(vmin=150, vmax=160); \

 : plt.show()

Note how this operation, in spite of having reduced the representative range of
intensities from 256 to 10, offers us a new image that has sufficient information to
recreate the original one. Naturally, we can regard this operation also as a lossy
compression method:

Mathematical Imaging

[346]

Contrast enhancement
An obvious drawback of clipping intensities is the loss of perceived lightness
contrast. To overcome this loss, it is preferable to employ formulas that do not
reduce the size of the range. Among the many available formulas conforming to this
mathematical property, the most successful ones are those that replicate an optical
property of the acquisition method. We explore the following three cases:

• Gamma correction: Human vision follows a power function, with greater
sensitivity to relative differences between darker tones than between lighter
ones. Each original image, as captured by the acquisition device, might
allocate too many bits or too much bandwidth to highlight that humans
cannot actually differentiate. Similarly, too few bits/bandwidth could be
allocated to the darker areas of the image. By manipulation of this power
function, we are capable of addressing the correct amount of bits and
bandwidth.

• Sigmoid correction: Independently of the amount of bits and bandwidth,
it is often desirable to maintain the perceived lightness contrast. Sigmoidal
remapping functions were then designed based on an empirical contrast
enhancement model developed from the results of psychophysical
adjustment experiments.

• Logarithmic correction: This is a purely mathematical process designed
to spread the range of naturally low-contrast images by transforming
to a logarithmic range.

To perform gamma correction on images, we could employ the function adjust_
gamma in the module skimage.exposure. The equivalent mathematical operation
is the power-law relationship output = gain * input^gamma. Observe the
improvement in the definition of the brighter areas of a stained micrograph of
colonic glands, when we choose the exponent gamma=2.5 and no gain (gain=1.0):

In [31]: from skimage.exposure import adjust_gamma; \

 : from skimage.color import rgb2gray; \

 : from skimage.data import immunohistochemistry

In [32]: image = rgb2gray(immunohistochemistry())

In [33]: correction = lambda img: adjust_gamma(img, gamma=2.5,

 : gain=1.)

Chapter 9

[347]

Note the huge improvement in contrast in the lower-right section of the micrograph,
allowing a better description and differentiation of the observed objects:

Immunohistochemical staining with hematoxylin counterstaining. This image was acquired
at the Center for Microscopy And Molecular Imaging (CMMI).

To perform sigmoid correction with given gain and cutoff coefficients, according
to the formula output = 1/(1 + exp*(gain*(cutoff - input))), we employ the
function adjust_sigmoid in skimage.exposure. For example, with gain=10.0 and
cutoff=0.5 (the default values), we obtain the following enhancement:

In [35]: from skimage.exposure import adjust_sigmoid

In [36]: display(image[:256, :256], adjust_sigmoid, 256)

Mathematical Imaging

[348]

Note the improvement in the definition of the walls of cells in the enhanced image:

We have already explored logarithmic correction in the previous section, when
enhancing the visualization of the frequency of an image. This is equivalent to
applying a vectorized version of np.log1p to the intensities. The corresponding
function in the scikit-image toolkit is adjust_log in the sub module exposure.

Image restoration
In this category of image editing, the purpose is to repair the damage incurred by
post or preprocessing of the image, or even the removal of distortion produced by
the acquisition device. We explore two classic situations:

• Noise reduction
• Sharpening and blurring

Chapter 9

[349]

Noise reduction
In mathematical imaging, noise is by definition a random variation of the intensity
(or the color) produced by the acquisition device. Among all the possible types of
noise, we acknowledge four key cases:

• Gaussian noise: We add to each pixel a value obtained from a random
variable with normal distribution and a fixed mean. We usually allow the
same variance on each pixel of the image, but it is feasible to change the
variance depending on the location.

• Poisson noise: To each pixel, we add a value obtained from a random
variable with Poisson distribution.

• Salt and pepper: This is a replacement noise, where some pixels are
substituted by zeros (black or pepper), and some pixels are substituted
by ones (white or salt).

• Speckle: This is a multiplicative kind of noise, where each pixel gets
modified by the formula output = input + n * input. The value of
the modifier n is a value obtained from a random variable with uniform
distribution of fixed mean and variance.

To emulate all these kinds of noise, we employ the utility random_noise from the
module skimage.util. Let's illustrate the possibilities in a common image:

In [37]: from skimage.data import camera; \

 : from skimage.util import random_noise

In [38]: gaussian_noise = random_noise(camera(), 'gaussian',

 : var=0.025); \

 : poisson_noise = random_noise(camera(), 'poisson'); \

 : saltpepper_noise = random_noise(camera(), 's&p',

 : salt_vs_pepper=0.45); \

 : speckle_noise = random_noise(camera(), 'speckle', var=0.02)

In [39]: variance_generator = lambda i,j: 0.25*(i+j)/1022. + 0.001; \

 : variances = np.fromfunction(variance_generator,(512,512)); \

 : lclvr_noise = random_noise(camera(), 'localvar',

 : local_vars=variances)

In the last example, we have created a function that assigns a variance between
0.001 and 0.026 depending on the distance to the upper-corner of an image. When
we visualize the corresponding noisy version of skimage.data.camera, we see that
the level of degradation gets stronger as we get closer to the lower-right corner of
the picture.

Mathematical Imaging

[350]

The following is an example of the visualization of the corresponding noisy images:

The purpose of noise reduction is to remove as much of this unwanted signal, so we
obtain an image as close to the original as possible. The trick, of course, is to do so
without any previous knowledge of the properties of the noise.

The most basic methods of denoising are the application of either a Gaussian or
a median filter. We explored them both in the previous section. The former was
presented as a smoothing filter (gaussian_filter), and the latter was discussed
when we explored statistical filters (median_filter). They both offer decent noise
removal, but they introduce unwanted artifacts as well. For example, the Gaussian
filter does not preserve edges in images. The application of any of these methods is
also not recommended if preserving texture information is needed.

Chapter 9

[351]

We have a few more advanced methods in the module skimage.restoration, able
to tailor denoising to images with specific properties:

• denoise_bilateral: This is the bilateral filter. It is useful when preserving
edges is important.

• denoise_tv_bregman, denoise_tv_chambolle: We will use this if we
require a denoised image with small total variation.

• nl_means_denoising: The so-called non-local means denoising. This method
ensures the best results for denoising areas of the image presenting texture.

• wiener, unsupervised_wiener: This is the Wiener-Hunt deconvolution.
It is useful when we have knowledge of the point-spread function at
acquisition time.

Let us show by example, the performance of one of these methods on some of the
noisy images we computed earlier:

In [40]: from skimage.restoration import nl_means_denoising as dnoise

In [41]: images = [gaussian_noise, poisson_noise,

 : saltpepper_noise, speckle_noise]; \

 : names = ['Gaussian', 'Poisson', 'Salt & Pepper', 'Speckle']

In [42]: plt.figure()

Out[42]: <matplotlib.figure.Figure at 0x118301490>

In [43]: for index, image in enumerate(images):

 : output = dnoise(image, patch_size=5, patch_distance=7)

 : plt.subplot(2, 4, index+1)

 : plt.imshow(image)

 : plt.gray()

 : plt.title(names[index])

 : plt.subplot(2, 4, index+5)

 : plt.imshow(output)

 :

In [44]: plt.show()

Mathematical Imaging

[352]

Under each noisy image, we have presented the corresponding result after
employing non-local means denoising.

It is also possible to perform denoising by thresholding coefficients, provided
we represent images with a transform. For example, to do a soft thresholding,
employing Biorthonormal 2.8 wavelets, we would use the package PyWavelets:

In [45]: import pywt

In [46]: def dnoise(image, wavelet, noise_var):

 : levels = int(np.floor(np.log2(image.shape[0])))

 : coeffs = pywt.wavedec2(image, wavelet, level=levels)

 : value = noise_var * np.sqrt(2 * np.log2(image.size))

 : threshold = lambda x: pywt.thresholding.soft(x, value)

 : coeffs = map(threshold, coeffs)

 : return pywt.waverec2(coeffs, wavelet)

 :

In [47]: plt.figure()

Out[47]: <matplotlib.figure.Figure at 0x10e5ed790>

In [48]: for index, image in enumerate(images):

 : output = dnoise(image, pywt.Wavelet('bior2.8'),

Chapter 9

[353]

 : noise_var=0.02)

 : plt.subplot(2, 4, index+1)

 : plt.imshow(image)

 : plt.gray()

 : plt.title(names[index])

 : plt.subplot(2, 4, index+5)

 : plt.imshow(output)

 :

In [49]: plt.show()

Observe that the results are of comparable quality to those obtained with the
previous method:

Sharpening and blurring
There are many situations that produce blurred images:

• Incorrect focus at acquisition
• Movement of the imaging system
• The point-spread function of the imaging device (like in electron microscopy)
• Graphic-art effects

Mathematical Imaging

[354]

For blurring images, we could replicate the effect of a point-spread function by
performing convolution of the image with the corresponding kernel. The Gaussian
filter that we used for denoising performs blurring in this fashion. In the general
case, convolution with a given kernel can be done with the routine convolve from
the module scipy.ndimage. For instance, for a constant kernel supported on a
10 x 10 square, we could do as follows:

In [50]: from scipy.ndimage import convolve; \

 : from skimage.data import page

In [51]: kernel = np.ones((10, 10))/100.; \

 : blurred = convolve(page(), kernel)

To emulate the blurring produced by movement too, we could convolve with a
kernel as created here:

In [52]: from skimage.draw import polygon

In [53]: x_coords = np.array([14, 14, 24, 26, 24, 18, 18]); \

 : y_coords = np.array([2, 18, 26, 24, 22, 18, 2]); \

 : kernel_2 = np.zeros((32, 32)); \

 : kernel_2[polygon(x_coords, y_coords)]= 1.; \

 : kernel_2 /= kernel_2.sum()

In [54]: blurred_motion = convolve(page(), kernel_2)

Chapter 9

[355]

In order to reverse the effects of convolution when we have knowledge of the
degradation process, we perform deconvolution. For example, if we have knowledge
of the point-spread function, in the module skimage.restoration we have
implementations of the Wiener filter (wiener), the unsupervised Wiener filter
(unsupervised_wiener), and Lucy-Richardson deconvolution (richardson_lucy).

We perform deconvolution on blurred images by applying a Wiener filter. Note the
huge improvement in readability of the text:

In [55]: from skimage.restoration import wiener

In [56]: deconv = wiener(blurred, kernel, balance=0.025, clip=False)

Inpainting
We define inpainting as the replacement of lost or corrupted parts of the image data
(mainly small regions or to remove small defects).

There are ongoing efforts to include an implementation of Crimini's algorithm for
inpainting in skimage. Until that day comes, there are two other options outside of
the SciPy stack—an implementation of Alexandru Telea's Fast Marching Method
and an implementation based on fluid dynamics (in particular, the Navier-Stokes
equation). These two implementations can be called from the routine inpaint in the
imgproc module of OpenCV. We use Telea's algorithm to illustrate the power of this
technique: consider as a test image the checkerboard skimage.data.checkerboard
to which we have removed a region.

In [57]: from skimage.data import checkerboard

In [58]: image = checkerboard(); \

 : image[25:100, 25:75] = 0.

In [59]: mask = np.zeros_like(image); \

 : mask[25:100, 25:75] = 1.

Mathematical Imaging

[356]

In [60]: from cv2 import inpaint, INPAINT_TELEA, INPAINT_NS

In [61]: inpainted = inpaint(image, mask, 1, INPAINT_TELEA)

The result illustrates how inpainting works—the intensity of the pixels is obtained
from nearby known values. It is thus no surprise that the inpainted region, yet
preserving the geometry of the image, does not compute the correct set of intensities,
but the most logical instead.

For more information on the image-processing module imgproc
of OpenCV-Python, follow the API reference at http://docs.
opencv.org/modules/imgproc/doc/imgproc.html.

http://docs.opencv.org/modules/imgproc/doc/imgproc.html
http://docs.opencv.org/modules/imgproc/doc/imgproc.html

Chapter 9

[357]

Inpainting is very useful for removing unwanted objects from pictures. Observe, for
example, in the page image skimage.data.page, the effect of removing large areas
containing line breaks, and inpainting them with the Navier-Stokes algorithm:

In [62]: image = page(); \

 : image[36:46, :] = image[140:, :] = 0

In [63]: mask = np.zeros_like(image); \

 : mask[36:46, :] = mask[140:, :] = 1

In [64]: inpainted = inpaint(image, mask, 5, INPAINT_NS)

Image analysis
The aim of this section is the extraction of information from images. We are going
to focus on two cases:

• Image structure
• Object recognition

Mathematical Imaging

[358]

Image structure
The goal is the representation of the contents of an image using simple structures.
We focus on one case alone: image segmentation. We encourage the reader to
explore other settings, such as quadtree decompositions.

Segmentation is a method to represent an image by partition into multiple objects
(segments); each of them sharing some common property.

In the case of binary images, we can accomplish this by a process of labeling, as we
have shown in a previous section. Let's revisit that technique with an artificial image
composed by 30 random disks placed on a 64 x 64 canvas:

In [1]: import numpy as np, matplotlib.pyplot as plt

In [2]: from skimage.draw import circle

In [3]: image = np.zeros((64, 64)).astype('bool')

In [4]: for k in range(30):

 ...: x0, y0 = np.random.randint(64, size=(2))

 ...: image[circle(x0, y0, 3)] = True

 ...:

In [5]: from scipy.ndimage import label

In [6]: labels, num_features = label(image)

The variable labels can be regarded as another image, where each of the different
objects found in the original image have been given a different number. The
background of the image is also considered one more object, and received the
number 0 as a label. Its visual representation (on the right in the following figure)
presents all the objects from the image, each of them with a different color:

Chapter 9

[359]

For gray-scale or color images, the process of segmentation is more complex.
We can often reduce such an image to a binary representation of the relevant areas
(by some kind of thresholding operation after treatment with morphology), and then
apply a labeling process. But this is not always possible. Take, for example, the coins
image skimage.data.coins. In this image, the background shares the same range
of intensity as many of the coins in the background. A thresholding operation will
result in failure to segment effectively.

We have more advanced options:

• Clustering methods using, as distance between pixels, the difference between
their intensities/colors

• Compression-based methods
• Histogram-based methods, where we use the peaks and valleys in the

histogram on an image to break it into segments
• Region-growing methods
• Methods based on partial differential equations
• Variational methods
• Graph-partitioning methods
• Watershed methods

From the standpoint of the SciPy stack, we have mainly two options, a combination
of tools from scipy.ndimage and a few segmentation routines in the module
skimage.segmentation.

There is also a very robust set of implementations via bindings to the
powerful library Insight Segmentation and Registration Toolkit (ITK).
For general information on this library, the best resource is its official site
http://www.itk.org/.
We use a simplified wrapper build on top of it: The Python distribution of
SimpleITK. This package brings most of the functionality of ITK through
bindings to Python functions. For documentation, downloads, and
installation, go to http://www.simpleitk.org/.
Unfortunately, at the time this book is being written, the installation
is very tricky. Successful installations depend heavily on your Python
installation, computer system, libraries installed, and more.

http://www.itk.org/
http://www.simpleitk.org/

Mathematical Imaging

[360]

Let's see, by example, the usage of some of these techniques on the particularly tricky
image skimage.data.coins. For instance, to perform a simple histogram-based
segmentation, we could proceed along these lines:

In [8]: from skimage.data import coins; \

 ...: from scipy.ndimage import gaussian_filter

In [9]: image = gaussian_filter(coins(), sigma=0.5)

In [10]: plt.hist(image.flatten(), bins=128); \

 : plt.show()

Note how we first performed a smoothing of the original image
by convolution with a spherical Gaussian filter. This is standard
procedure to cancel possible unwanted signal and obtain
cleaner results.

There seems to be a clear valley around the intensity 80, in between peaks at
intensities 35 and 85. There is another valley around the intensity 112, followed
by a peak at intensity 123. There is one more valley around intensity 137, followed
by a last peak at intensity 160. We use this information to create four segments:

In [11]: level_1 = coins()<=80; \

 : level_2 = (coins()>80) * (coins()<=112); \

 : level_3 = (coins()>112) * (coins()<=137); \

 : level_4 = coins()>137

Chapter 9

[361]

In [12]: plt.figure(); \

 : plt.subplot2grid((2,4), (0,0), colspan=2, rowspan=2); \

 : plt.imshow(coins()); \

 : plt.gray(); \

 : plt.subplot2grid((2,4),(0,2)); \

 : plt.imshow(level_1); \

 : plt.axis('off'); \

 : plt.subplot2grid((2,4),(0,3)); \

 : plt.imshow(level_2); \

 : plt.axis('off'); \

 : plt.subplot2grid((2,4), (1,2)); \

 : plt.imshow(level_3); \

 : plt.axis('off'); \

 : plt.subplot2grid((2,4), (1,3)); \

 : plt.imshow(level_4); \

 : plt.axis('off'); \

 : plt.show()

Mathematical Imaging

[362]

With a slight modification of the fourth level, we shall obtain a decent segmentation:

In [13]: from scipy.ndimage.morphology import binary_fill_holes

In [14]: level_4 = binary_fill_holes(level_4)

In [15]: labels, num_features = label(level_4)

The result is not optimal. The process has missed a good segmentation of some coins
in the fifth column, but mainly in the lowest row.

Improvements can be made if we provide a marker for each of the segments we are
interested in obtaining. For instance, we can assume that we know at least one point
inside of the locations of those 24 coins. We could then use a watershed transform
for that purpose. In the module scipy.ndimage, we have an implementation of this
process based on the iterative forest transform:

In [17]: from scipy.ndimage import watershed_ift

In [18]: markers_x = [50, 125, 200, 255]; \

 : markers_y = [50, 100, 150, 225, 285, 350]

In [19]: markers = np.zeros_like(image).astype('int16'); \

 : markers_index = [[x,y] for x in markers_x for y in

 : markers_y]

In [20]: for index, location in enumerate(markers_index):

 : markers[location[0], location[1]] = index+5

 :

In [21]: segments = watershed_ift(image, markers)

Chapter 9

[363]

Not all coins have been correctly segmented, but those that had been corrected are
better defined. To further improve the results of watermarking, we could very well
work on the accuracy of the markers or include more than just one point for each
desired segment. Note what happens when we add just one more marker per coin,
to better segment three of the missing coins:

In [23]: markers[53, 273] = 9; \

 : markers[130, 212] = 14; \

 : markers[270, 42] = 23

In [24]: segments = watershed_ift(image, markers)

Mathematical Imaging

[364]

We can further improve the segmentation by employing, for instance,
a graph-partitioning method, like a random walker:

In [26]: from skimage.segmentation import random_walker

In [27]: segments = random_walker(image, markers)

This process correctly breaks the image in to 24 well-differentiated regions, but does
not resolve well the background. To take care of this situation, we manually mark,
with a-1—those regions we believe are background. We can use the previously
calculated masks level_1 and level_2—they clearly represent the image
background for these purposes:

In [29]: markers[level_1] = markers[level_2] = -1

In [30]: segments = random_walker(image, markers)

Chapter 9

[365]

For other segmentation techniques, browse the different routines in the module
skimage.segmentation.

Object recognition
Many possibilities arise. Given an image, we might need to collect the location of
simple geometric features like edges, corners, linear, circular or elliptical shapes,
polygonal shapes, blobs, and so on. We might also need to find more complex objects
like faces, numbers, letters, planes, tanks, and so on. Let's examine some examples
that we can easily code from within the SciPy stack.

Edge detection
An implementation of Canny's edge detector can be found in the module skimage.
feature. This implementation performs a smoothing of the input image, followed
by vertical and horizontal Sobel operators, as an aid for the extraction of edges:

In [32]: from skimage.feature import canny

In [33]: edges = canny(coins(), sigma=3.5)

Line, circle, and ellipse detection
For detection of these basic geometric shapes, we have the aid of the Hough
transform. Robust implementations can be found both in the module skimage.
transform, and in the imgproc module of OpenCV. Let's examine the usage of the
routines in the former by tracking these objects for an artificial binary image. Let's
place an ellipse with center (10, 10) and radii 9 and 5 (parallel to the coordinate
axes), a circle with center (30, 35) and radius 8, and a line between the points (0, 3)
and (64, 40):

In [35]: from skimage.draw import line, ellipse_perimeter, \

 : circle_perimeter

Mathematical Imaging

[366]

In [36]: image = np.zeros((64, 64)).astype('bool'); \

 : image[ellipse_perimeter(10, 10, 9, 5)] = True; \

 : image[circle_perimeter(30, 35, 15)] = True; \

 : image[line(0, 3, 63, 40)] = True

To use the Hough transform for a line, we compute the corresponding H-space (the
accumulator), and extract the location of its peaks. In the case of the line version of
the Hough transform, the axes of the accumulator represent the angle theta and
distance from the origin r in the Hesse normal form of a line r = x cos(θ)+ y sin(θ).
The peaks in the accumulator then indicate the presence of the most relevant lines
of the given image:

In [37]: from skimage.transform import hough_line, hough_line_peaks

In [38]: Hspace, thetas, distances = hough_line(image); \

 : hough_line_peaks(Hspace, thetas, distances)

Out[38]:

(array([52], dtype=uint64),

 array([-0.51774851]),

 array([3.51933702]))

This output means there is only one significant peak in the H-space of the Hough
transform of the image. This peak corresponds to a line with the Hesse angle
-0.51774851 radians, 3.51933702 units from the origin:

3.51933702 = cos(-0.51774851)x + sin(-0.51774851)y

Let's see the original image together with the detected line:

In [39]: def hesse_line(theta, distance, thickness):

 : return lambda i, j: np.abs(distance - np.cos(theta)*j \

 : - np.sin(theta)*i) < thickness

 :

In [40]: peak, theta, r = hough_line_peaks(Hspace, thetas, distances)

In [41]: detected_lines = np.fromfunction(hesse_line(theta, r, 1.),

 : (64, 64))

Note the inversion of the roles of the coordinates i and j in the
definition of hesse_line. Why did we have to perform this artificial
change of coordinates?

Chapter 9

[367]

The detection of circles and ellipses obeys a similar philosophy of computing an
accumulator in some H-space, and tracking its peaks. For example, if we are seeking
circles with radii equal to 15, and we wish to recover their centers, we could issue
something along the following lines:

In [43]: from skimage.transform import hough_circle

In [44]: detected_circles = hough_circle(image,radius=np.array([15]))

In [45]: np.where(detected_circles == detected_circles.max())

Out[45]: (array([0]), array([30]), array([35]))

The array detected_circles has shape (1, 64, 64). The first index of the last
output is thus irrelevant. The other two reported indices indicate that the center
of the detected circle is precisely (30, 35).

Blob detection
We may regard a blob as a region of an image where all its pixels share a common
property. For instance, after segmentation, each of the found segments is technically
a blob.

There are some relevant routines in the module skimage.feature to this effect,
blob_doh (a method based on determinants of Hessians), blob_dog (by differential of
Gaussians), and blob_log (a method based on the Laplacian of Gaussians). The first
approach ensures the extraction of more samples, and is faster than the other two:

In [46]: from skimage.data import hubble_deep_field; \

 : from skimage.feature import blob_doh; \

 : from skimage.color import rgb2gray

In [47]: image = rgb2gray(hubble_deep_field())

In [48]: blobs = blob_doh(image)

Mathematical Imaging

[368]

In [49]: plt.figure(); \

 : ax1 = plt.subplot(121); \

 : ax1.imshow(image); \

 : plt.gray(); \

 : ax2 = plt.subplot(122); \

 : ax2.imshow(np.zeros_like(image))

Out[49]: <matplotlib.image.AxesImage at 0x105356d10>

In [50]: for blob in blobs:

 : y, x, r = blob

 : c = plt.Circle((x, y),r,color='white',lw=1,fill=False)

 : ax2.add_patch(c)

 :

In [51]: plt.show()

Corner detection
A corner is that location where two nonaligned edges intersect. This is one of the
most useful operations in image analysis, since many complex structures require
a careful location of these features. The applications range from complex object or
motion recognition, to video tracking, 3D modeling, or image registration.

Chapter 9

[369]

In the module skimage.feature, we have implementations of some of the
best-known algorithms to solve this problem:

• FAST corner detection (features from accelerated segment test):
corner_fast

• Förstner corner detection (for subpixel accuracy): corner_foerstner
• Harris corner measure response (the basic method): corner_harris
• Kitchen and Rosenfeld corner measure response: corner_kitchen_

rosenfeld

• Moravec corner measure response: This is simple and fast, but not capable
of detecting corners where the adjacent edges are not perfectly straight:
corner_moravec

• Kanade-Tomasi corner measure response: corner_shi_tomasi

We also have some utilities to determine the orientation of the corners or their
subpixel position.

Let's explore the occurrence of corners in skimage.data.text:

In [52]: from skimage.data import text; \

 : from skimage.feature import corner_fast, corner_peaks, \

 : corner_orientations

In [53]: mask = np.ones((5,5))

In [54]: corner_response = corner_fast(text(), threshold=0.2); \

 : corner_pos = corner_peaks(corner_response); \

 : corner_orientation = corner_orientations(text(), corner_pos,

 : mask)

In [55]: for k in range(5):

 : y, x = corner_pos[k]

 : angle = np.rad2deg(corner_orientation[k])

 : print "Corner ({}, {}) orientation {}".format(x,y,angle)

 :

Corner (178, 26) orientation -146.091580713

Corner (257, 26) orientation -139.929752986

Corner (269, 30) orientation 13.8150253413

Corner (244, 32) orientation -116.248065313

Corner (50, 33) orientation -51.7098368078

In [56]: plt.figure(); \

Mathematical Imaging

[370]

 : ax = plt.subplot(111); \

 : ax.imshow(text()); \

 : plt.gray()

In [57]: for corner in corner_pos:

 : y, x = corner

 : c = plt.Circle((x, y), 2, lw=1, fill=False, color='red')

 : ax.add_patch(c)

 :

In [58]: plt.show()

Beyond geometric entities
Object detection is not limited to geometric entities. In this subsection, we explore
some methods of tracking more complex objects.

In the scope of binary images, a simple correlation is often enough to achieve a
somewhat decent object recognition. The following example tracks most instances
of the letter e on an image depicting the first paragraph of Don Quixote by Miguel
de Cervantes. A tiff version of this image has been placed at https://github.com/
blancosilva/Mastering-Scipy/tree/master/chapter9:

In [59]: from scipy.misc import imread

In [60]: quixote = imread('quixote.tiff'); \

 : bin_quixote = (quixote[:,:,0]<50); \

 : letter_e = quixote[10:29, 250:265]; \

 : bin_e = bin_quixote[10:29, 250:265]

In [61]: from scipy.ndimage.morphology import binary_hit_or_miss

In [62]: x, y = np.where(binary_hit_or_miss(bin_quixote, bin_e))

In [63]: plt.figure(); \

https://github.com/blancosilva/Mastering-Scipy/tree/master/chapter9
https://github.com/blancosilva/Mastering-Scipy/tree/master/chapter9

Chapter 9

[371]

 : ax = plt.subplot(111); \

 : ax.imshow(bin_quixote)

Out[63]: <matplotlib.image.AxesImage at 0x113dd8750>

In [64]: for loc in zip(y, x):

 : c = plt.Circle((loc[0], loc[1]), 15, fill=False)

 : ax.add_patch(c)

 :

In [65]: plt.show()

Small imperfections or a slight change of size in the rendering of the text makes
correlation an imperfect detection mechanism.

An improvement that can be applied to gray-scale or color images is through the
routine matchTemplate in the module imgproc of OpenCV:

In [66]: from cv2 import matchTemplate, TM_SQDIFF

In [67]: detection = matchTemplate(quixote, letter_e, TM_SQDIFF); \

 : x, y = np.where(detection <= detection.mean()/8.)

In [68]: plt.figure(); \

 : ax = plt.subplot(111); \

 : ax.imshow(quixote)

Out[68: <matplotlib.image.AxesImage at 0x26c7da890>]

In [69]: for loc in zip(y, x):

Mathematical Imaging

[372]

 : r = pltRectangle((loc[0], loc[1]), 15, 19, fill=False)

 : ax.add_patch(r)

 :

In [70]: plt.show()

All the letter e's have been correctly detected now.

Let's finish the chapter with a more complex case of object detection. We are going
to employ a Haar feature-based cascade classifier: this is an algorithm that applies a
machine learning based approach to detect faces and eyes from some training data.

First, locate in your OpenCV installation folder the subfolder haarcascades. In
my Anaconda installation, for instance, this is at /anaconda/pkgs/opencv-2.4.9-
np19py27_0/share/OpenCV/haarcascades. From that folder, we are going to need
the databases for frontal faces (haarcascade_frontalface_default.xml), and eyes
(haarcascade_eye.xml):

In [71]: from cv2 import CascadeClassifier; \

 : from skimage.data import lena

In [72]: face_cascade = CascadeClassifier('haarcascade_frontalface_
default.xml'); \

 : eye_cascade = CascadeClassifier('haarcascade_eye.xml')

In [73]: faces = face_cascade.detectMultiScale(lena()); \

 : eyes = eye_cascade.detectMultiScale(lena())

In [74]: print faces

Chapter 9

[373]

[[212 199 179 179]]

In [75]: print eyes

[[243 239 53 53]

 [310 247 40 40]]

The result is the detection of one face and two eyes. Let's put this all together visually:

In [76]: plt.figure(); \

 : ax = plt.subplot(111); \

 : ax.imshow(lena())

Out[76]: <matplotlib.image.AxesImage at 0x269fabed0>

In [77]: x, y, w, ell = faces[0]; \

 : r = plt.Rectangle((x, y), w, ell, lw=1, fill=False); \

 : ax.add_patch(r)

Out[77]: <matplotlib.patches.Rectangle at 0x26a837cd0>

In [78]: for eye in eyes:

 : x,y,w, ell = eye

 : r = plt.Rectangle((x,y),w,ell,lw=1,fill=False)

 : ax.add_patch(r)

 :

In [79]: plt.show()

Mathematical Imaging

[374]

Summary
In this chapter, we have seen how the SciPy stack helps us solve many problems in
Mathematical Imaging, from the effective representation of digital images, to their
efficient storage, compression, and processing, modifying, restoring, or analyzing
them. Although certainly exhaustive, this chapter scratches but the surface of this
challenging field of engineering. One could easily write another 400 pages just
devoted to this subject, and I invite you to further study the possibilities of the
module scipy.ndimage, the imaging toolkit skimage, and the Python bindings
for the libraries OpenCV or SimpleITK.

The chapter also closes my vision of what mastering the SciPy stack means. In truth,
this vision only focused on the relational aspect between the scientific applications
and the mathematical theory behind the needed routines. No efforts have been
put forth to tackle the techniques of speeding up the codes by binding with other
languages, for example. While this is an interesting and relevant topic, I defer to
other more technical monographs on computer science for that aspect.

[375]

Index
A
algorithms, skimage.feature module

FAST corner detection 369
Förstner corner detection 369
Harris corner measure response 369
Kanade-Tomasi corner measure

response 369
Kitchen and Rosenfeld corner measure

response 369
Moraved corner measure response 369

alpha channel 319
analysis, of time series 264-274
analytic approximation methods 168, 169
approaches, for attacking inference

Bayesian 276
frequentist 275
likelihood 276

approximation 256
approximation problem

defining 65
approximation theory

about 61
example 61-64

ARPACK
URL 13

automatic differentiation 108-110
autoregressive Integrated Moving

Average model (ARIMA) 264
autoregressive model AR(p) 264
autoregressive Moving Average model

ARMA(p,q) 264

B
back and forward substitution 41
banded matrices 41-44
bar plots 238-243
basic geometrical objects, geometry module

Ellipse 186
LinearEntity 185
Polygon 186
RegularPolygon 186

basic matrix manipulation
about 28
condition numbers 33, 34
determinants 30, 31
inverses 31, 32
matrix addition 29, 30
matrix multiplication 29, 30
norms 33, 34
scalar multiplication 29, 30
traces 30, 31
transposes 31, 32

bean plot 251
Bézier curves 212-215
binary image 313, 314
bivariate interpolation 68
bivariate spline interpolation 68
BLAS

URL 13
blurring 353-355
Box-Jenkins model 264
broyden method 141, 142

C
chain code 332
Cholesky decomposition 39

[376]

CIE-LAB color space 318
CIE-LUB color space 318
circle 182
classification

about 284
decision tree, creating 288-290
Naive Bayes methods 290
nearest neighbors 291, 292
support vector classification 286-288

Clensaw-Curtis method 118
clustering

about 298
Gaussian mixture models 304
Kmeans 306-308
MeanShift 299-304
spectral clustering 309

color images 316-319
combinatorial computational geometry

about 179, 187
dynamic problems 179, 209, 210
geometric query problems 179, 202
static problems 179, 187

complex generalized Schur
decomposition 58

complex Schur decomposition 58
computational geometry 179
Computer Aided Geometric Design

(CAGD) 211
computer algebra system (CAS) 107
condition numbers 33, 34
conforming Delaunay 196
constrained conforming Delaunay

triangulation 197
constrained Delaunay triangulation 196
constrained optimization for multivariate

functions 161, 162
constrained optimization for univariate

functions 150
contrast enhancement 346
contrast limited adaptive histogram

equalization (CLAHE) 343
convex hulls 187-191
correlation

and scatterplots 252-256
credible region 283
curve 186

D
database formats, matrix

Matrix Market Exchange 5
Proprietary Matlab .mat format 5
Rutherford-Boeing Exchange 5

data mining 219, 283
decision tree

creating 288-290
deflation 332
Delaunay triangulation 195
descriptive statistics 219-230
determinants 30, 31
differential equations 106
differentiation

about 107
automatic differentiation 108-110
numerical differentiation 107, 108
symbolic differentiation 107, 109

digital images
about 313
binary 313, 314
gray-scale 314, 315
high-level operations 320

dimensionality reduction
about 292
isometric mapping (isomap) 295, 296
locally linear embedding 297, 298
principal component analysis (PCA) 294
spectral embedding 296

discrete-variable methods
about 170
multistep methods 171
one-step methods 170-174
two-step methods 176, 177

distributions
describing, with boxplots 247-250
describing, with numbers 247-250
picturing, with graphs 238

dynamic problems 179, 209, 210

E
Elastic Net 263
ensemble methods

about 264
averaging methods 264
boosting methods 264

[377]

estimation 275
estimation of parameters, statistical

inference
about 277
Bayesian approach 277-279
frequentist approach 277
likelihood approach 280, 281

expectation-maximization
algorithm (EM) 304

F
FFTPACK

URL 66
filters

smoothing 323, 324
FITPACK

URL 66
Fortran coding methodology 91
Fourier analysis 327-329
Fresnel integrals 107
FuncDesigner

URL 108
functional mode 67
functions, without singularities on

finite intervals 113-119
functions, with singularities on

bounded domains
about 119
general functions, with singularities 121
weighted functions 119

G
gamma correction 346
Gaussian mixture models 304
Gaussian noise 349
generic square matrices 44-50
generic univariate interpolation 67
geographic information systems (GIS) 187
Geometric Modeling 211
geometric query problems

about 179, 202
nearest neighbors 205-207
point location 202-204
range searching 208, 209

geometric transformations 338-341
graphs

distributions, picturing with 238
Graphviz

URL 289
gray-scale image 314, 315

H
Hermite interpolation 73, 74
Hermitian transpose 31
Hessian matrix 326
higher-order differential equations 165
high-level operations, on digital images

about 320
filters, smoothing 323, 324
Fourier analysis 327-329
Mathematical morphology 321-323
multivariate calculus 324-326
object measurements 320, 321
statistical filters 326
wavelet decompositions 329, 330

histogram equalization 342, 343
histograms 244
Hubble eXtreme Deep Field

reference link 320
Hue-Saturation-Value (HSV)

color space 318
hypothesis testing 275

I
image acquisition 311
image analysis

about 312, 357
image structure 358-365

image compression
about 312-332
lossless compression schemes 332-334
lossy compression schemes 334-336

image editing 312, 336
image editing, example

image restoration 348
inpainting 355, 356
intensity adjustment 342
transformations, of domain 336

image processing 312

[378]

image restoration
about 348
blurring 353-355
noise reduction 349-353
sharpening 353-355

image structure 358-365
imgproc module

reference link 356
Implicitly Restarted Arnoldi method 56
Implicitly Restarted Lanczos method 56
inpainting

defining 355, 356
Insight Segmentation and Registration

Toolkit (ITK)
URL 359

integration
about 110
numerical integration 110-113
symbolic integration 110-113

intensity adjustment
about 342
contrast enhancement 346-348
histogram equalization 342, 343
intensity clipping/resizing 345

intensity clipping 345
intensity resizing 345
interpolation

about 61, 67
exploring 65
implementation details 67, 68
multivariate interpolation 81-91
univariate interpolation 69

interpolation problem
requisites 64, 65

interval 283
interval estimation 275
interval estimation, statistical inference

Bayesian approach 283
frequentist approach 282, 283
likelihood approach 283

inverses 31, 32
isometric mapping (isomap) 295, 296
iterative methods, for univariate functions

about 130
bracketing methods 130, 131
brent method 130, 134
secant methods 130-134

K
k-d trees 205
Kmeans 306-308

L
Lagrange interpolation 70-72
LAPACK

URL 13
large scale solvers 145
Least Absolute Shrinkage and Selection

Operator (LASSO) 263
least squares

about 51
normal equations 51
QR factorization 52
singular value decomposition 52, 53

least squares approximation
about 61, 66, 92
linear least squares approximation 92-95
nonlinear least squares

approximation 95-102
Lempel-Ziv-Welch (LZW) 332
lensfun library

URL 342
lensfunpy package

URL 342
Levenberg-Marquardt algorithm 97
line 181
linear approximation 66
linear least squares approximation 92-95
linear operators

about 26, 27
creating 14

linear regression, beyond ordinary
least-squares 263

locally linear embedding 297, 298
Locally Optimal Block Preconditioned

Conjugate Gradient method 56
logarithmic correction 346
lossless compression schemes, image

compression
chain code 332
deflation 332
Lempel-Ziv-Welch (LZW) 332
run-length encoding 332

[379]

lossy compression schemes, image
 compression 334-336

M
machine geometry 211
machine learning 219, 283
magnetic resonance imaging (MRI)

device 5
Markov Chain Monte Carlo (MCMC)

method 278
Mathematical Imaging

about 311
image acquisition 311
image analysis 312
image compression 312
image editing 312

Mathematical morphology 321-323
matrices

constructing, in matrix class 18
constructing, in ndarray class 14-17
creating 14

matrix addition 29, 30
matrix class

matrices, constructing in 18
matrix equations

about 40
back and forward substitution 41
banded matrices 41-44
generic square matrices 44-50
least squares 51
regularized least squares 53

matrix equation solvers 53
matrix factorizations, based on

eigenvalues
about 54
Schur decomposition 58, 59
spectral decomposition 54-57

matrix factorizations, related to solving
matrix equations

about 38
relevant factorizations 38

matrix functions
about 35, 36
computing 37, 38

Matrix Market Exchange format 5, 21
matrix multiplication 29, 30

MeanShift 299, 300
methods, for inputting sparse matrices

Block Sparse Row 19
Compressed Sparse Column 19
Compressed Sparse Row 19
Coordinate 19
data, indices, and pointers 21
data, rows, and columns 21
diagonal storage 19
dictionary of keys 19, 20
fancy indexing 20
row-based linked list 19

Mini-batch Kmeans 308
MINPACK

URL 66
Monte-Carlo simulation 153
Moore-Penrose pseudo-inverse 32
mpmath

about 168
URL 168

multivariate calculus 324-326
multivariate interpolation 68, 81-91

N
Naive Bayes 290
ndarray class

matrices, constructing in 14-17
nearest neighbors 205-207, 291, 292
nearest-neighbors interpolation 69
networkx

about 23
URL 23

Newton-Cotes quadratures 115
Newton methods 154-158
noise, cases

Gaussian noise 349
Poisson noise 349
salt and pepper 349
Speckle 349

noise reduction 349-353
nonlinear approximation 66
non-linear equations 129, 130
nonlinear least squares

approximation 95-102
non-symmetric banded square matrix 43

[380]

normal equations 51
norms 33, 34
numerical computational

geometry 179, 211
numerical differentiation 107, 108
numerical integration

about 110-113
functions, without singularities on finite

intervals 113-119
functions, with singularities on bounded

domains 119
on unbounded domains 121, 122

Numerical Linear Algebra
about 1
graph, example 1-13

Numerical Mathematics 125-129
numerical multivariate

integration 122, 123
numerical setting, probability 234-237

O
object measurements 320, 321
object recognition

about 365
beyond geometric entities 370-372
blob detection 367
circle detection 365, 366
corner detection 368, 369
edge detection 365
ellipse detection 365-367
line detection 365-367

ODE library
URL 176

ODEPACK library
URL 176

openclipart
URL 323

OpenCV
URL 311

optimization
about 146
constrained optimization for multivariate

functions 161, 162
constrained optimization for univariate

functions 150

unconstrained optimization for
multivariate functions 150-154

unconstrained optimization for univariate
functions 146-148

ordinary least-squares regression,
for large datasets 262

ordinary linear regression, for
moderate-sized datasets 256-262

P
piecewise monotonic cubic Hermite

interpolation (PCHIP) 79
piecewise polynomial interpolation 75-77
pie charts 238-243
Pillow 311
pivoted LU decomposition 38
plane geometry 180-185
point 180
point location 202-204
Poisson noise 349
poly files

URL 188
poly format

URL 188
Powell's hybrid solver 142-145
principal component analysis (PCA) 294
probability

about 231
numerical setting 234-237
symbolic setting 231-234

probability density function (PDF) 229
procedural mode 67
PyMC

URL 218
PyTables

URL 218
Python Imaging Library (PIL) 311

references 311
PyWavelets

URL, for downloading 329

Q
QAGS 117
Qhull libraries

URL 188

[381]

QR decomposition 39
QR factorization 52
QUADPACK libraries, netlib repositories

URL 117
quantitative variables

relationship between 251

R
range 208
range searching 208, 209
real generalized Schur decomposition 58
real Schur decomposition 58
regression

about 256
ensemble methods 264
linear regression beyond ordinary

least-squares 263
ordinary least-squares regression for

large datasets 262
ordinary linear regression for

moderate-sized datasets 256-262
support vector machines 263

regularized least squares 53
relevant factorizations

about 38
Cholesky decomposition 39
pivoted LU decomposition 38
QR decomposition 39
singular value decomposition 39

run-length encoding 332
Rutherford-Boeing Exchange format 5

S
salt and pepper noise 349
scalar multiplication 29, 30
scatterplots

and correlation 252-256
Schur decomposition

about 58, 59
complex generalized Schur

decomposition 58
complex Schur decomposition 58
real generalized Schur decomposition 58
real Schur decomposition 58

scikit-image library
URL 312

scikit-learn
URL 219

scipy.cluster
URL 218

scipy.misc
URL 108

scipy.misc library 314
scipy.ndimage library

URL 312
scipy.sparse.csgraph module

about 199
URL 200

scipy.sparse module 199
scipy.special

URL 129
scipy.stats

URL 218
scipy.stats.mstats

URL 218
segment 180
segmentation 358
sharpening 353-355
shortest paths 188, 199-202
Sigmoid correction 346
simple iterative solvers 139-141
SimpleITK

URL 359
singular value decomposition 39, 52, 53
skimage.color module

URL 318
sparse matrices

constructing 19-26
reference link 4

Sparse Matrix Collection
URL 56

Speckle 349
spectral clustering 309
spectral decomposition 54-56
spectral embedding 296
Spline interpolation 77-80
static problems, combinatorial

computational geometry
about 179
convex hulls 187-191
shortest paths 188, 199-202
triangulations 187, 195-199
Voronoi diagrams 187, 192-195

[382]

statistical filters 326
statistical inference

about 219, 275
estimation 275
estimation of parameters 277
hypothesis testing 275
interval estimation 275, 282

Steiner points 196
stochastic gradient descent (SGD) 262
stochastic methods 153-155
SuperLU

URL 13
support vector classification 286-288
support vector machines 263
swirl

performing 337, 338
symbolic differentiation 107-109
symbolic integration 110-113
symbolic setting, probability 231-234
symbolic solution of differential

equations 166-168
SymPy

URL 168
sympy libraries

about 130
URL 130

sympy.stats
URL 218

systems of nonlinear equations
about 135-138
broyden method 141, 142
large scale solvers 145
Powell's hybrid solver 142-145
simple iterative solvers 139-141

T
Theano

URL 108
time plots 246
time series

analysis 264-274
traces 30, 31
transformations, of domain

about 336
geometric transformations 338-341

rescale 337
resize 337
swirl, performing 337, 338

transition matrix 4
transposes 31, 32
triangle 183
triangulations 187, 195-199
two-dimensional geometric shapes,

skimage.draw module
circles 314
ellipses 314
lines 314
polygons 314

U
unconstrained optimization for

multivariate functions
about 150-152
conjugate gradient methods 154-160
Newton methods 154-158
stochastic methods 153-155

unconstrained optimization for univariate
functions 146-148

univariate interpolation
about 68, 69
Hermite interpolation 73, 74
Lagrange interpolation 70-72
nearest-neighbors interpolation 69
piecewise polynomial interpolation 75-77
Spline interpolation 77-80

V
VBGMM 304
Voronoi diagrams 187, 192-195

W
wavelet decompositions

performing 329, 330

Z
zero spline 78

Thank you for buying
Mastering SciPy

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning SciPy for Numerical and
Scientific Computing
ISBN: 978-1-78216-162-2 Paperback: 150 pages

A practical tutorial that guarantees fast, accurate,
and easy-to-code solutions to your numerical and
scientific computing problems with the power of
SciPy and Python

1. Perform complex operations with large
matrices, including eigenvalue problems,
matrix decompositions, or solution to large
systems of equations.

2. Step-by-step examples to easily implement
statistical analysis and data mining that rivals
in performance any of the costly specialized
software suites.

NumPy Cookbook
ISBN: 978-1-84951-892-5 Paperback: 226 pages

Over 70 interesting recipes for learning the Python
open source mathematical library, NumPy

1. Do high performance calculations with clean
and efficient NumPy code.

2. Analyze large sets of data with statistical
functions.

3. Execute complex linear algebra and
mathematical computations.

Please check www.PacktPub.com for information on our titles

NumPy Beginner's Guide
Second Edition
ISBN: 978-1-78216-608-5 Paperback: 310 pages

An action packed guide using real world examples of
the easy to use, high performance, free open source
NumPy mathematical library

1. Perform high performance calculations
with clean and efficient NumPy code.

2. Analyze large data sets with statistical
functions.

3. Execute complex linear algebra and
mathematical computations.

IPython Interactive Computing
and Visualization Cookbook
ISBN: 978-1-78328-481-8 Paperback: 512 pages

Over 100 hands-on recipes to sharpen your skills in
high-performance numerical computing and data
science with Python

1. Leverage the new features of the IPython
notebook for interactive web-based big data
analysis and visualization.

2. Become an expert in high-performance
computing and visualization for data analysis
and scientific modeling.

3. A comprehensive coverage of scientific
computing through many hands-on,
example-driven recipes with detailed,
step-by-step explanations.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Numerical Linear Algebra
	Motivation
	Creation of matrices and linear operators
	Constructing matrices in the ndarray class
	Constructing matrices in the matrix class
	Constructing sparse matrices
	Linear operators

	Basic matrix manipulation
	Scalar multiplication, matrix addition, and matrix multiplication
	Traces and determinants
	Transposes and inverses
	Norms and condition numbers

	Matrix functions
	Matrix factorizations related to solving matrix equations
	Relevant factorizations
	Pivoted LU decomposition
	Cholesky decomposition
	QR decomposition
	Singular value decomposition

	Matrix equations
	Back and forward substitution
	Basic systems: banded matrices
	Basic systems: generic square matrices
	Least squares
	Regularized least squares
	Other matrix equation solvers

	Matrix factorizations based on eigenvalues
	Spectral decomposition
	Schur decomposition

	Summary

	Chapter 2: Interpolation and Approximation
	Motivation
	Interpolation
	Implementation details
	Univariate interpolation
	Nearest-neighbors interpolation
	Lagrange interpolation
	Hermite interpolation
	Piecewise polynomial interpolation
	Spline interpolation

	Multivariate interpolation

	Least squares approximation
	Linear least squares approximation
	Nonlinear least squares approximation

	Summary

	Chapter 3: Differentiation and Integration
	Motivation
	Differentiation
	Numerical differentiation
	Symbolic differentiation
	Automatic differentiation

	Integration
	Symbolic integration
	Numerical integration
	Functions without singularities on finite intervals
	Functions with singularities on bounded domains
	Integration on unbounded domains

	Numerical multivariate integration

	Summary

	Chapter 4: Nonlinear Equations and Optimization
	Motivation
	Non-linear equations and systems
	Iterative methods for univariate functions
	Bracketing methods
	Secant methods
	Brent method

	Systems of nonlinear equations
	Simple iterative solvers
	The Broyden method
	Powell's hybrid solver
	Large-scale solvers

	Optimization
	Unconstrained optimization for univariate functions
	Constrained optimization for univariate functions
	Unconstrained optimization for multivariate functions
	The stochastic methods
	Deterministic algorithms that exclusively employ function evaluations
	The Broyden-Fletcher-Goldfarb-Shanno
quasi-Newton method
	The conjugate gradient method

	Constrained optimization for multivariate functions

	Summary

	Chapter 5: Initial Value Problems for Ordinary Differential Equations
	Symbolic solution of differential equations
	Analytic approximation methods
	Discrete-variable methods
	One-step methods
	Two-step methods

	Summary

	Chapter 6: Computational Geometry
	Plane geometry
	Combinatorial computational geometry
	Static problems
	Convex hulls
	Voronoi diagrams
	Triangulations
	Shortest paths

	Geometric query problems
	Point location
	Nearest neighbors
	Range searching

	Dynamic problems
	Numerical computational geometry
	Bézier curves

	Summary

	Chapter 7: Descriptive Statistics
	Motivation
	Probability
	Symbolic setting
	Numerical setting

	Data exploration
	Picturing distributions with graphs
	Bar plots and pie charts
	Histograms
	Time plots

	Describing distributions with numbers and boxplots
	Relationship between quantitative variables
	Scatterplots and correlation
	Regression

	Analysis of the time series

	Summary

	Chapter 8: Inference and Data Analysis
	Statistical inference
	Estimation of parameters
	Frequentist approach
	Bayesian approach
	Likelihood approach

	Interval estimation
	Frequentist approach
	Bayesian approach
	Likelihood approach

	Data mining and machine learning
	Classification
	Support vector classification
	Trees
	Naive Bayes
	Nearest neighbors

	Dimensionality reduction
	Principal component analysis
	Isometric mappings
	Spectral embedding
	Locally linear embedding

	Clustering
	MeanShift
	Gaussian mixture models
	Kmeans
	Spectral clustering

	Summary

	Chapter 9: Mathematical Imaging
	Digital images
	Binary
	Gray-scale

	Color
	Alpha channels

	High-level operations on digital images
	Object measurements
	Mathematical morphology
	Smoothing filters
	Multivariate calculus
	Statistical filters
	Fourier analysis
	Wavelet decompositions

	Image compression
	Lossless compression
	Lossy compression

	Image editing
	Transformations of the domain
	Rescale and resize
	Swirl
	Geometric transformations

	Intensity adjustment
	Histogram equalization
	Intensity clipping/resizing
	Contrast enhancement

	Image restoration
	Noise reduction
	Sharpening and blurring

	Inpainting

	Image analysis
	Image structure
	Object recognition
	Edge detection
	Line, circle, and ellipse detection
	Blob detection
	Corner detection
	Beyond geometric entities

	Summary

	Index

