
www.allitebooks.com

http://www.allitebooks.org

Mastering Yii

Advance your modern web application development
skills with Yii Framework 2

Charles R. Portwood II

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Yii

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2016

Production reference: 1210116

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-242-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Charles R. Portwood II

Reviewer
Tomasz Trejderowski

Acquisition Editor
Divya Poojari

Content Development Editor
Anish Dhurat

Technical Editor
Edwin Moses

Copy Editor
Stuti Srivastava

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Priya Sane

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Charles R. Portwood II has over 10 years of experience developing modern web
applications and is well versed in integrating PHP with native mobile applications.
An avid proponent of Yii Framework and open source software, Charles has
contributed multiple guides, extensions, and applications to the Yii community.
In addition to being a programmer, he is also a Linux system administrator.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Tomasz Trejderowski is a middle-aged developer from Poland who
has hands-on experience working with many programming languages and in
diverse IT-related areas. He has been programming computers since the very
first Commodore 64 and thus, he poses over 20 years of software development
experience. You can access repositories and contributions on his GitHub profile,
at http://github.com/trejder.

He is a full-time business analyst and free-time PhoneGap/Yii2 developer and
blogger. He is also a mobile market entrepreneur, constantly working on some
innovative projects. For more information, visit his company website at
http://www.gaman.pl or his blog network at http://www.acrid.pl/.

He is a happy husband of his wonderful wife and father of two beautiful daughters.

www.allitebooks.com

http://github.com/trejder
http://www.gaman.pl
http://www.acrid.pl/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface	 ix
Chapter 1: Composer, Configuration, Classes, and Path Aliases	 1

Composer	 1
Configuration	 7

Requirements checker	 7
Entry scripts	 8

Web entry script	 8
Configuration files	 10

Web and console configuration files	 10
Database configuration	 10
Parameter configuration	 11
Environment configuration	 11

Setting up our application environment	 13
Setting the web environment for NGINX	 13
Setting the web environment for Apache	 14

Components and objects	 14
Components	 15
Objects	 16

Path aliases	 16
Summary	 17

Chapter 2: Console Commands and Applications	 19
Configuration and usage	 19

Entry script	 19
Configuration	 21
Setting the console environment	 22
Running console commands	 22

Built-in console commands	 25
The help command	 25
The asset command	 26

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

The cache command	 26
The fixture command	 28
The Gii command	 29
The message command	 30
The migration command	 30

Creating console commands	 31
Generating help information	 32
Passing command-line arguments	 33
Exit codes	 37
Formatting	 38

Summary	 39
Chapter 3: Migrations, DAO, and Query Building	 41

Connecting to databases	 41
Additional configuration options	 44

Writing database migrations	 46
An overview of schema	 46
Writing migrations	 47
Running migrations	 50
Altering a database schema	 51

Database access objects	 55
Querying for data	 55

Quoting table and column names	 60
Executing queries	 61
Parameter binding	 62
Transactions	 64

Query Builder	 65
Query construction methods	 65
The select method	 66

The from method	 67
The where method	 67
Ordering results	 69
Limiting and offsetting data	 69
Grouping and having	 69
Joins and unions	 70
Executing queries	 71
Examining queries	 73
Iterating over query results	 73

Data providers and data widgets	 74
Data replication and load balancing	 78
Summary	 80

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 4: Active Record, Models, and Forms	 81
Configuring Gii	 81

Gii for web applications	 82
Gii for console applications	 85

Active Record	 88
The Active Record pattern	 88
Creating Active Record classes	 89

Creating active record classes with Gii	 90
Working with Active Record	 94

Model validation rules	 96
Adding custom validators	 97
Customizing validator error messages	 100
Working with validation errors	 100
Manually executing validation rules	 100
Model attribute labels	 101
Active Record relationships	 102
Using multiple database connections with Active Record	 103
Behaviors in Active Record	 103

Working with Active Record	 104
Querying data	 105
Saving data	 108
Deleting data	 109
Active Record events	 110

Models	 110
Model attributes	 111

Scenarios	 111
Forms	 113

Generating forms with Gii	 113
Generating forms with Gii's web interface	 113
Generating forms with Gii's console interface	 116

Using forms	 117
ActiveForm and input types	 118

Summary	 121
Chapter 5: Modules, Widgets, and Helpers	 123

Modules	 123
Module components	 124

The module class structure	 124
Controllers	 125
Views and layouts	 126
Registering modules	 128

Accessing modules	 132
Managing modules with Composer	 133
Modules in summary	 135

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Widgets	 135
Using widgets	 136
Commonly used built-in widgets	 137

Bootstrap widgets	 137
jQuery UI widgets	 138
Yii-specific widgets	 139

Creating custom widgets	 140
A summary of widgets	 143

Helpers	 143
The URL helper	 143
The HTML helper	 145
The JSON helper	 147
The Markdown helper	 147
Variable dumping	 148
Inflector	 148
FileHelper	 149

Summary	 150
Chapter 6: Asset Management	 151

Asset bundles	 151
Using asset bundles	 153
Configuration	 153

Asset mapping	 155
Asset types and locations	 156
Asset options	 156
Asset publication	 157
Client cache management with asset bundles	 159
Using preprocessor with asset bundles	 160
The asset command line tool	 161

Third-party asset tools	 165
NodeJS	 166
Bower	 167
Grunt	 168

Summary	 171
Chapter 7: Authenticating and Authorizing Users	 173

Authentication of users	 173
Implementing the user identity interface	 174

Cookie-based authentication	 177
Working with user identities	 178

Authenticating users with forms	 179

Table of Contents

[v]

Authorization	 184
Access control filters	 184
Role-based access control	 189
Configuring RBAC	 189
Creating permissions and permission relationships	 191
Custom authorization rules	 193
Checking if a user has access to a role	 194

Flash messages	 195
Hashing and encryption	 197

Hashing and verifying passwords	 197
Data encryption and decryption	 198
Data hashing	 199

Summary	 199
Chapter 8: Routing, Responses, and Events	 201

Routing	 201
Default and catch all routes	 203
Custom routes and URL rules	 203

Parameterizing routes	 205
URL suffixes	 206
HTTP method-specific URL rules	 206

Custom URL rule classes	 207
Dynamic rule generation	 208

Requests	 209
Retrieving request parameters and data	 209
Request headers and cookies	 211
Retrieving client and URL information	 212

Responses	 213
Setting status codes	 214

Web exceptions	 214
Setting response headers	 215
The response body	 215
Redirection	 217
The file output	 218

Events	 219
Event handlers	 219
Triggering events	 220
Class-level events	 222
Global events	 223

Summary	 223

Table of Contents

[vi]

Chapter 9: RESTful APIs	 225
ActiveController	 225

Configuring ActiveController display fields	 229
Data serialization within responses	 231
Disabling ActiveController actions	 233
Customizing ActiveController actions	 234

Authentication filters	 235
HTTP basic authentication	 236
Query parameter authentication	 238
OAuth2 authentication	 239
Composite authentication	 240
Custom authentication filters	 241
Action-specific authentication	 243
Checking access	 243

Verb filters	 244
Cross-origin resource headers	 245
Rate Limiting	 246
Error handling	 249
Custom API controllers	 250

Returning data	 251
Response Formatting	 252

Summary	 254
Chapter 10: Testing with Codeception	 255

Reasons for testing	 256
How to approach testing	 256

Testing manually	 257
Testing a few core components	 257

Test-driven development	 257
Configuring Codeception with Yii2	 258
Unit testing	 262

Generating unit tests	 263
Unit test examples	 266

Testing User model methods	 266
Functional testing	 272

Setting up functional tests	 273
Generating functional tests	 276
Examples of functional tests	 277

Acceptance testing	 282
Setting up acceptance testing	 282
Examples of acceptance tests	 285

Table of Contents

[vii]

Fixtures	 286
Creating fixtures	 287
Defining fixtures	 288
Using fixtures in unit tests	 290

Automatic change testing	 292
Summary	 295

Chapter 11: Internationalization and Localization	 297
Configuring Yii2 and PHP	 298

The intl extension	 298
The application language	 299

Programmatically setting the application language	 300
Dynamically setting the application language	 300

Message translations	 301
Message sources	 302
Default translations	 303
Framework messages	 303
Handling missing translations	 304
Generating message files	 305
Message formatting	 308

Viewing file translations	 308
Module translations	 309
Widget translations	 310
Summary	 312

Chapter 12: Performance and Security	 313
Caching	 313

Caching data	 313
Caching dependencies	 317
Database query caching	 318

Fragment caching	 320
Page caching	 321
HTTP caching	 322
Caching database schema	 323

General performance enhancements	 324
Enabling OPCache	 324
Optimizing Composer dependencies	 325
Upgrading to PHP 7	 326
Switch to Facebook's HHVM	 326

Security considerations	 327
Certificates	 327
Cookies	 328

Table of Contents

[viii]

Protecting against cross-site scripting	 328
Enabling cross-site request forgery protection	 329

Summary	 330
Chapter 13: Debugging and Deploying	 331

Debugging	 331
Logging	 332
Benchmarking	 336
Error handling	 336

Handling errors within non HTML responses	 339
Debugging with the Yii2 debug extension	 341

Deploying	 344
Summary	 345

Index	 347

[ix]

Preface
Yii Framework 2 (Yii2) is the successor to the popular Yii framework. Like its
successor, Yii2 is an open source, high-performance rapid development framework
designed to create modern, scalable, and performant web applications and APIs.

Designed for both developers with no exposure to Yii and Yii2 and for Yii framework
developers looking to become experts with Yii2, this book will serve as your guide
to becoming a master of Yii. From initialization and configuration to debugging and
deployment, this book will be your guide to becoming a master of all aspects of this
powerful framework.

What this book covers
Chapter 1, Composer, Configuration, Classes, and Path Aliases, covers the basics of a
Yii2 application. In this chapter, you'll learn the core conventions of Yii2 and how
to configure it as a multi-environment application. You'll also discover how to use
Composer, a dependency management tool for managing your applications'
software dependencies.

Chapter 2, Console Commands and Applications, focuses on how to use the built-in Yii2
console commands as it guides you through creating your own commands.

Chapter 3, Migrations, DAO, and Query Building, teaches you how to create migrations
in Yii2 and how to interact with your database using database access objects (DAO)
and how to use Yii2's query builder.

Chapter 4, Active Record, Models, and Forms, teaches you how to create and use Active
Record to effortlessly interact with a database. Furthermore, you'll also discover how
to create models to represent information not stored in databases and how to create
web forms based upon Active Record models and normal models.

Preface

[x]

Chapter 5, Modules, Widgets, and Helpers, covers how to incorporate modules inside of
our application. This chapter will also cover how to create and use dynamic widgets
and will additionally cover Yii2's powerful helper classes.

Chapter 6, Asset Management, focuses on how to create and manage our assets using
asset bundles and how to manage our assets using the asset command. This chapter
also covers several strategies to build and generate our asset library using powerful
tools such as Node Package Manage and Bower.

Chapter 7, Authenticating and Authorizing Users, teaches you how to verify the
authenticity of users in Yii2 using several common authentication schemes (such as
OAuth authentication, basic HTTP authentication, and header authentication) as well
as shows you how to grant them access to specific sections of your applications.

Chapter 8, Routing, Responses, and Events, focuses on how Yii2's routing and response
classes work in Yii2. In this chapter, we'll cover how to handle data both in and out
of our application and discover how to tap into Yii2's powerful event system.

Chapter 9, RESTful APIs, talks about how to quickly and effortlessly extend your
application with a RESTful JSON and XML API using Yii2's ActiveController class.

Chapter 10, Testing with Codeception, helps you learn how to create unit, functional,
and acceptance tests for your applications using a powerful testing tool called
Codeception. In this chapter, you'll also learn how to create fixtures to represent
your data for testing purposes.

Chapter 11, Internationalization and Localization, covers how to localize our applications
and build them to support multiple languages. Additionally, you will master how to
create and manage translation files using Yii2 console commands.

Chapter 12, Performance and Security, covers many ways to improve the performance
of your Yii2 application and how to keep it secure against modern day attacks on
web applications.

Chapter 13, Debugging and Deploying, helps you become well-versed in how to debug
your Yii2 applications using both application logging and the Yii2 debug tool.
Furthermore, you will discover the fundamentals of deploying your Yii2 applications
in a seamless and non-disruptive fashion.

Preface

[xi]

What you need for this book
To ensure a consistent development environment and prevent unnecessary
alterations to your host operation system, it is highly recommended that you run all
commands within a Linux virtual machine. This will ensure that your output both in
your web browser and from your command line matches the output that is presented
in this book. As setting up this environment on your own can be a daunting task,
prebuilt virtual machines that use VirtualBox and Vagrant are provided to make this
setup process easy.

To get started with this book, you should be running the latest version of either
Microsoft Windows 7, 8, 8.1 or 10, Apple OS X 10.9 or higher, or a Linux operating
system that can run virtual machines, such as Ubuntu 14.04 LTS. Additionally,
you will need to install the latest version of VirtualBox (available at https://
www.virtualbox.org/wiki/Downloads) and Vagrant (available at https://www.
vagrantup.com/downloads.html).

After installing these software dependencies, you may need to restart
your computer for the changes to take effect.

After installing VirtualBox and Vagrant, you can then create a new dedicated
development environment by opening a new command line or terminal window,
creating a new directory for the chapter, and then running the following command
to create your virtual machine development environment. These commands will
download a prebuilt virtual machine containing all the software required to get you
started and start your new development environment:

vagrant init charlesportwoodii/php56_trusty64

vagrant up --provider virtualbox

vagrant ssh

More information on this specific Vagrant box can be found at https://
atlas.hashicorp.com/charlesportwoodii/boxes/php56_
trusty64.
Note that if you are on Windows, you may need a tool such as PuTTy
to connect to your virtual machine over SSH. More information on how
to connect to your new virtual machine over SSH on Windows can be
found at http://docs-v1.vagrantup.com/v1/docs/getting-
started/ssh.html.

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html
https://atlas.hashicorp.com/charlesportwoodii/boxes/php56_trusty64
https://atlas.hashicorp.com/charlesportwoodii/boxes/php56_trusty64
https://atlas.hashicorp.com/charlesportwoodii/boxes/php56_trusty64
http://docs-v1.vagrantup.com/v1/docs/getting-started/ssh.html
http://docs-v1.vagrantup.com/v1/docs/getting-started/ssh.html

Preface

[xii]

Once your new Vagrant box has started, you can access the files of this virtual
machine over SSH and access your webroot directory by opening a new browser
window and navigating to http://localhost:8080. By default, when you open
this web page, you will see the output of phpino().

Depending upon your operating system security settings, your computer
may prompt or block you from accessing port 8080 on your computer.
Ensure that you configure your firewall settings if you are facing issues
and ensure that port 8080 is open on your computer and that VirtualBox
can forward connections from your host operating system to your guest
operating system.

As Yii2 is fully compatible with PHP7, it is strongly suggested that you develop and
test your web applications against PHP7 as well. The following commands will allow
you to provision a PHP7 Vagrant box:

vagrant init charlesportwoodii/php7_trusty64

vagrant up --provider virtualbox

vagrant ssh

As these virtual machines automatically configure port forwarding, it
is recommended that you only run a single virtual machine at a time.
Refer to the Vagrant documentation for a complete list of commands and
configuration options at https://docs.vagrantup.com/v2.

Who this book is for
Mastering Yii is for intermediate to experienced software developers who want to
quickly master Yii2. This book assumes some familiarity with PHP 5, HTML5, and
rudimentary software development practices and methodologies.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

https://docs.vagrantup.com/v2

Preface

[xiii]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "
This script tells Composer that when the create-project command is run, it should
run the postCreateProject static function."

A block of code is set as follows:

"scripts": {
 "post-create-project-cmd": [
 "yii\\composer\\Installer::postCreateProject"
]
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

// Define our application_env variable as provided by nginx/apache
if (!defined('APPLICATION_ENV'))
{
 if (getenv('APPLICATION_ENV') != false)
 define('APPLICATION_ENV', getenv('APPLICATION_ENV'));
 else
 define('APPLICATION_ENV', 'prod');
}

$env = require(__DIR__ . '/config/env.php');

Any command-line input or output is written as follows:

$./yii fixture/load <FixtureName>

$./yii fixture/unload <FixtureName>

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: " Once
we have specified all the necessary attributes, we can click on the Preview button
to preview our form, and then we can click on the Generate button to generate the
source code."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xiv]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
The latest and most up to date copies of source code for this book is maintained on
the Packt website: http://www.packtpub.com and on GitHub at https://github.
com/masteringyii, for each chapter where applicable.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
 http://www.packtpub.com
https://github.com/masteringyi
https://github.com/masteringyi
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xv]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Composer, Configuration,
Classes, and Path Aliases

Before diving into Yii Framework 2, we need to take a look at how it is installed,
how it is configured, and what the core building blocks of the framework are. In this
chapter, we'll go over how to install the framework itself and prebuilt applications
via a package management tool called Composer. We'll also cover some common
configurations of both Yii Framework 2 and our web server, including making
our applications aware of the environment they are running on and responding
appropriately to that environment.

The most common ways to reference Yii Framework 2 are
Yii Framework 2, YF2, and Yii2. We'll be using these terms
interchangeably throughout the book.

Composer
There are several different ways to install Yii2, ranging from downloading the
framework from source control (typically, from GitHub at https://github.com/
yiisoft/yii2) to using a package manager such as Composer. With modern web
applications, Composer is the preferred method to install Yii2 as it enables us to
install, update, and manage all dependencies and extensions for our application
in an automated fashion. Additionally, using Composer, we can ensure that Yii
Framework 2 is kept up to date with the latest security and bug fixes. Composer can
be installed by following the instructions on https://getcomposer.org. Typically,
this process looks as follows:

curl -sS https://getcomposer.org/installer | php

https://github.com/yiisoft/yii2
https://github.com/yiisoft/yii2
https://getcomposer.org

Composer, Configuration, Classes, and Path Aliases

[2]

Alternatively, if you don't have cURL available on your system, it can be installed
through PHP itself:

php -r "readfile('https://getcomposer.org/installer');" | php

Once installed, we should move Composer to a more centralized directory so that we
can call it from any directory on our system. Installing Composer from a centralized
directory rather than on a per-project basis has several advantages:

•	 It can be called anywhere from any project. When working with multiple
projects, we can ensure that we use the same dependency manager each time
and for every project.

•	 In a centralized directory, Composer only needs to be updated once rather
than in every project we are working on.

•	 Dependency managers are rarely considered code that should be pushed
to your DCVS repository. Keeping the composer.phar file out of your
repository reduces the amount of code you need to commit and push
and ensures that your source code remains isolated from your package
manager code.

•	 By installing Composer from a centralized directory, we can ensure that
Composer is always available, which saves us a step each time we clone a
project that depends on Composer.

A good directory to move Composer to is /usr/local/bin, as shown in the
following example:

mv composer.phar /usr/local/bin/composer

chmod a+x /usr/local/bin/composer

Throughout this book, we'll be using Unix-style commands
when referencing command-line arguments. Consequently, some
commands may not work on Windows. If you decide to set up
a Windows environment, you might need to use Composer-
Setup.exe (available at https://getcomposer.org/
Composer-Setup.exe) to get Composer configured for your
system. If you have any issues getting Composer to run on your
system, ensure that you check out the Composer documentation
available at https://getcomposer.org/doc/.

Alternatively, if you have Composer installed on your system already, ensure that
you update it to the latest version by running this:

composer self-update

https://getcomposer.org/Composer-Setup.exe
https://getcomposer.org/Composer-Setup.exe
https://getcomposer.org/doc/

Chapter 1

[3]

The commands that we use through this book are based on
the assumption that you have sufficient privileges to run
them. On Unix-like systems, you may need to preface some
commands with sudo in order to execute the command with
a high permissions set. Alternatively if you are running these
commands on Windows, you should ensure that you are running
the listed commands in a command prompt that has elevated
privileges. Ensure that you follow best practices when using
sudo and when using elevated command prompts in order to
ensure your system stays secure.

Once Composer is installed, we'll need to install a global plugin called The
Composer Asset Plugin (available at https://github.com/francoispluchino/
composer-asset-plugin). This plugin enables Composer to manage asset files for
us without the need to install additional software (these programs are Bower, an
asset dependency manager created by Twitter, and Node Package Manager, or NPM,
which is a JavaScript dependency manager).

composer global require "fxp/composer-asset-plugin:1.0.0"

Due to the GitHub API's rate limiting, during installation, Composer may
ask you to enter your GitHub credentials. After entering your credentials,
Composer will request a dedicated API key from GitHub that can be
used for future installations. Ensure that you check out the Composer
documentation at https://getcomposer.org/doc/ for more
information.

With Composer installed, we can now instantiate our application. If we want to
install an existing Yii2 package, we can simply run the following:

composer create-project --prefer-dist <package/name> <foldername>

Using the Yii2 basic app as an example, this command will look like this:

composer create-project --prefer-dist yiisoft/yii2-app-basic basic

After running the command, you should see output similar to the following:

Installing yiisoft/yii2-app-basic (2.0.6)

 - Installing yiisoft/yii2-app-basic (2.0.6)

 Downloading: 100%

Created project in basic

Loading composer repositories with package information

Installing dependencies (including require-dev)

https://github.com/francoispluchino/composer-asset-plugin
https://github.com/francoispluchino/composer-asset-plugin
https://getcomposer.org/doc/

Composer, Configuration, Classes, and Path Aliases

[4]

 - Installing yiisoft/yii2-composer (2.0.3)

 - Installing ezyang/htmlpurifier (v4.6.0)

 - Installing bower-asset/jquery (2.1.4)

 - Installing bower-asset/yii2-pjax (v2.0.4)

 - Installing bower-asset/punycode (v1.3.2)

 - Installing bower-asset/jquery.inputmask (3.1.63)

 - Installing cebe/markdown (1.1.0)

 - Installing yiisoft/yii2 (2.0.6)

 - Installing swiftmailer/swiftmailer (v5.4.1)

 - Installing yiisoft/yii2-swiftmailer (2.0.4)

 - Installing yiisoft/yii2-codeception (2.0.4)

 - Installing bower-asset/bootstrap (v3.3.5)

 - Installing yiisoft/yii2-bootstrap (2.0.5)

 - Installing yiisoft/yii2-debug (2.0.5)

 - Installing bower-asset/typeahead.js (v0.10.5)

 - Installing phpspec/php-diff (v1.0.2)

 - Installing yiisoft/yii2-gii (2.0.4)

 - Installing fzaninotto/faker (v1.5.0)

 - Installing yiisoft/yii2-faker (2.0.3)

Writing lock file

Generating autoload files

> yii\composer\Installer::postCreateProject

chmod('runtime', 0777)...done.

chmod('web/assets', 0777)...done.

chmod('yii', 0755)...done.

Your output may differ slightly due to the data cached on your
system and versions of subpackages.

This command will install the Yii2 basic app to a folder called basic. When creating
a new Yii2 project, you'll typically want to use the create-project command to clone
"yii2-app-basic" and then develop your application from there as the basic app comes
prepopulated with just about everything you need to start a new project. However,
you can also create a Yii2 project from scratch that, while more complicated, gives
you more control over your application's structure.

Chapter 1

[5]

Let's take a look at the composer.json file that was created when we ran the
create-project command:

{
 "name": "yiisoft/yii2-app-basic",
 "description": "Yii 2 Basic Application Template",
 "keywords": ["yii2", "framework", "basic",
 "application template"],
 "homepage": "http://www.yiiframework.com/",
 "type": "project",
 "license": "BSD-3-Clause",
 "support": {
 "issues": "https://github.com/
 yiisoft/yii2/issues?state=open",
 "forum": "http://www.yiiframework.com/forum/",
 "wiki": "http://www.yiiframework.com/wiki/",
 "irc": "irc://irc.freenode.net/yii",
 "source": "https://github.com/yiisoft/yii2"
 },
 "minimum-stability": "stable",
 "require": {
 "php": ">=5.4.0",
 "yiisoft/yii2": "*",
 "yiisoft/yii2-bootstrap": "*",
 "yiisoft/yii2-swiftmailer": "*"
 },
 "require-dev": {
 "yiisoft/yii2-codeception": "*",
 "yiisoft/yii2-debug": "*",
 "yiisoft/yii2-gii": "*",
 "yiisoft/yii2-faker": "*"
 },
 "config": {
 "process-timeout": 1800
 },
 "scripts": {
 "post-create-project-cmd": [
 "yii\\composer\\Installer::postCreateProject"
]
 },
 "extra": {
 "yii\\composer\\Installer::postCreateProject": {
 "setPermission": [
 {
 "runtime": "0777",

Composer, Configuration, Classes, and Path Aliases

[6]

 "web/assets": "0777",
 "yii": "0755"
 }
],
 "generateCookieValidationKey": [
 "config/web.php"
]
 },
 "asset-installer-paths": {
 "npm-asset-library": "vendor/npm",
 "bower-asset-library": "vendor/bower"
 }
 }
}

While most of these items (such as the name, description, license, and require blocks)
are rather self-explanatory, there are a few Yii2-specific items in here that we should
take note of. The first section we want to look at is the "scripts" section:

"scripts": {
 "post-create-project-cmd": [
 "yii\\composer\\Installer::postCreateProject"
]
}

This script tells Composer that when the create-project command is run, it
should run the postCreateProject static function. Looking at the the framework
source code, we see that this file is referenced in the yii2-composer package (refer
to https://github.com/yiisoft/yii2-composer/blob/master/Installer.
php#L232). This command then runs several post-project creation actions, namely
setting the local disk permissions, generating a unique cookie validation key, and
setting some asset installer paths for composer-asset-plugin.

Next, we have the "extra" block:

"extra": {
 "yii\\composer\\Installer::postCreateProject": {
 "setPermission": [
 {
 "runtime": "0777",
 "web/assets": "0777",
 "yii": "0755"
 }
],
 "generateCookieValidationKey": [

https://github.com/yiisoft/yii2-composer/blob/master/Installer.php#L232
https://github.com/yiisoft/yii2-composer/blob/master/Installer.php#L232

Chapter 1

[7]

 "config/web.php"
]
 },
 "asset-installer-paths": {
 "npm-asset-library": "vendor/npm",
 "bower-asset-library": "vendor/bower"
 }
}

This section tells Composer to use these options when it runs the
postCreateProject command. These preconfigured options give us a
good starting point to create our applications.

Configuration
With our basic application now installed, let's take a look at a few basic configuration
and bootstrap files that Yii2 automatically generated for us.

Requirements checker
Projects created from yii2-app-basic now come with a built-in requirements script
called requirements.php. This script checks several different values in order to
ensure that Yii2 can run on our application server. Before running our application,
let's run the requirements checker:

php requirements.php

You'll get output similar to the following:

Yii Application Requirement Checker

This script checks if your server configuration meets the requirements
for running Yii application.

It checks if the server is running the right version of PHP, if
appropriate PHP extensions have been loaded, and if php.ini file settings
are correct.

Check conclusion:

PHP version: OK

[... more checks here ...]

Errors: 0 Warnings: 6 Total checks: 21

www.allitebooks.com

http://www.allitebooks.org

Composer, Configuration, Classes, and Path Aliases

[8]

In general, as long as the error count is set to 0, we'll be good to move forward. If
the requirements checker notices an error, it will report it in the Check conclusion
section for you to rectify.

As part of your deployment process, it is recommended that
your deployment tool runs the requirements checker. This helps
ensure that your application server meets all the requirements for
Yii2 and that your application doesn't get deployed to a server or
environment that doesn't support it.

Entry scripts
Like its predecessor, Yii Framework 2 comes with two separate entry scripts:
one for web applications and the other for console applications.

Web entry script
In Yii2, the entry script for web applications has been moved from the root (/) folder
to the web/ folder. In Yii1, our PHP files were stored in the protected/ directory.
By moving our entry scripts to the web/ directory, Yii2 has increased the security
of our application by reducing the amount of web server configuration we need to
run our application. Furthermore, all public asset (JavaScript and CSS) files are now
completely isolated from our source code directories. If we open up web/index.php,
our entry script now looks as follows:

<?php

// comment out the following two lines when deployed to production
defined('YII_DEBUG') or define('YII_DEBUG', true);
defined('YII_ENV') or define('YII_ENV', 'dev');

require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');

$config = require(__DIR__ . '/../config/web.php');

(new yii\web\Application($config))->run();

Downloading the example code
The latest and most up to date copies of source code for this book is
maintained on the Packt Publishing website, http://www.packtpub.
com, and on GitHub at https://github.com/masteringyii, for
each chapter where applicable.

http://www.packtpub.com
http://www.packtpub.com
GitHub at https://github.com/masteringyii

Chapter 1

[9]

While suitable for basic applications, the default entry script requires us to manually
comment out and change the code when moving to different environments. Since
changing the code in a nondevelopment environment doesn't follow best practices,
we should change this code block so that we don't have to touch our code to move it
to a different environment.

We'll start by creating a new application-wide constant called APPLICATION_ENV.
This variable will be defined by either our web server or our console environment
and will allow us to dynamically load different configuration files depending upon
the environment that we're working in:

1.	 After the opening <?php tag in web/index.php, add the following
code block:
// Define our application_env variable as provided by nginx/
apache/console
if (!defined('APPLICATION_ENV'))
{
 if (getenv('APPLICATION_ENV') != false)
 define('APPLICATION_ENV',
 getenv('APPLICATION_ENV'));
 else
 define('APPLICATION_ENV', 'prod');
}

Our application now knows how to read the APPLCATTION_ENV variable from
the environment variable, which will be passed either though our command
line or our web server configuration. By default, if no environment is set, the
APPLICATION_ENV variable will be set to prod.
Next, we'll want to load a separate environment file that contains several
environmental constants that we'll use to dynamically change how our
application runs in different environments:
$env = require(__DIR__ . '/../config/env.php');

Next, we'll configure Yii to set the YII_DEBUG and YII_ENV variables
according to our application:

defined('YII_DEBUG') or define('YII_DEBUG', $env['debug']);
defined('YII_ENV') or define('YII_ENV', APPLICATION_ENV);

2.	 Then, follow the rest of our index.php file under web/:

require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');
(new yii\web\Application($config))->run();

Composer, Configuration, Classes, and Path Aliases

[10]

With these changes, our web application is now configured to be aware of its
environment and load the appropriate configuration files.

Don't worry; later in the chapter, we'll cover how to define the
APPLICATION_ENV variable for both our web server (either
Apache or NGINX) and our command line.

Configuration files
In Yii2, configuration files are still split into console- and web-specific configurations.
As there are many commonalities between these two files (such as our database and
environment configuration), we'll store common elements in their own files and
include those files in both our web and console configurations. This will help us
follow the DRY standard, and reduce duplicate code within our application.

The DRY (don't repeat yourself) principle in software development
states that we should avoid having the same code block appear in
multiple places in our application. By keeping our application DRY,
we can ensure that our application is performant and can reduce
bugs in our application. By moving our database and parameters'
configuration to their own file, we can reuse that same code in both
our web and console configuration files.

Web and console configuration files
Yii2 supports two different kinds of configuration files: one for web applications
and another for console applications. In Yii2, our web configuration file is stored in
config/web.php and our console configuration file is stored in config/console.
php. If you're familiar with Yii1, you'll see that the basic structure of both of these
files hasn't changed all that much.

Database configuration
The next file we'll want to look at is our database configuration file stored in config/
db.php. This file contains all the information our web and console applications will
need in order to connect to the database.

In our basic application, this file looks as follows:

<?php

return [
 'class' => 'yii\db\Connection',

Chapter 1

[11]

 'dsn' => 'mysql:host=localhost;dbname=yii2basic',
 'username' => 'root',
 'password' => '',
 'charset' => 'utf8',
];

For an application that is aware of its environment, however, we should replace
this file with a configuration that will use the APPLICATION_ENV variable that we
defined earlier:

<?php return require __DIR__ . '/env/' . APPLICATION_ENV .
'/db.php';

Right now, we're just setting things up. We'll cover how to set up
our directories in the next section.

With this change, our application now knows that it needs to look in a file called
db.php under config/env/<APPLICATION_ENV>/ to pull the correct configuration
environment for that file.

Parameter configuration
In a manner similar to our database configuration file, Yii also lets us use a parameter
file where we can store all of the noncomponent parameters for our application.
This file is located at config/params.php. Since the basic app doesn't make this file
aware of its environment, we'll change it to do that as follows:

<?php return require __DIR__ . '/env/' . APPLICATION_ENV .
'/params.php';

Environment configuration
Finally, we have the environment configuration that we defined earlier when
working with our entry scripts. We'll store this file in config/env.php, and it
should be written as follows:

<?php return require __DIR__ . '/env/' . APPLICATION_ENV .
'/env.php';

Composer, Configuration, Classes, and Path Aliases

[12]

Most modern applications have several different environments depending
upon their requirements. Typically, we'd break them down into four distinct
environments:

•	 The first environment we typically have is called DEV. This environment
is where all of our local development occurs. Typically, developers have
complete control over this environment and can change it, as required, to
build their applications.

•	 The second environment that we typically have is a testing environment
called TEST. Normally, we'd deploy our application to this environment
in order to make sure that our code works in a production-like setting;
however, we normally would still have high log levels and debug
information available to us when using this environment.

•	 The third environment we typically have is called UAT, or the User
Acceptance Testing environment. This is a separate environment that we'd
provide to our client or business stakeholders for them to test the application
to verify that it does what they want it to do.

•	 Finally, in our typical setup, we'd have our PROD or production
environment. This is where our code finally gets deployed to and
where all of our users ultimately interact with our application.

As outlined in the previous sections, we've been pointing all of our environment
configuration files to the config/env/<env> folder. Since our local environment is
going to be called DEV, we'll create it first:

1.	 We'll start by creating our DEV environment folder from the command line:
mkdir –p config/env/dev

2.	 Next, we'll create our dev database configuration file in db.php under
config/env/dev/. For now, we'll stick with a basic SQLite database:
<?php return [
 'dsn' => 'sqlite:/' . __DIR__ .
 '/../../../runtime/db.sqlite',
 'class' => 'yii\db\Connection',
 'charset' => 'utf8'
];

3.	 Next, we'll create our environment configuration file in env.php under
config/env/dev. If you recall from earlier in the chapter, this is where our
debug flag was stored, so this file will look as follows:
<?php return [
 'debug' => true
];

Chapter 1

[13]

4.	 Finally, we'll create our params.php file under config/env/dev/. As of now,
this file will simply return an empty array:

<?php return [];

Now, for simplicity, let's copy over this configuration to our other environments.
From the command line, we can do that as follows:

cp –R config/env/dev config/env/test

cp –R config/env/dev config/env/uat

cp –R config/env/dev config/env/prod

Setting up our application environment
Now that we've told Yii what files and configurations it needs to use for each
environment, we need to tell it what environment to use. To do this, we'll set custom
variables in our web server configuration that will pass this option to Yii.

Setting the web environment for NGINX
With our console application properly configured, we now need to configure our
web server to pass the APPLICATION_ENV variable to our application. In a typical
NGINX configuration, we have a location block that looks as follows:

location ~ \.php$ {
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root/
 $fastcgi_script_name;
 fastcgi_pass 127.0.0.1:9000;
 #fastcgi_pass unix:/var/run/php5-fpm.sock;
 try_files $uri =404;
 }

To pass the APPLICATION_ENV variable to our application, all we need to do is define
a new fastcgi_param as follows:

fastcgi_param APPLICATION_ENV "dev";

After making this change, simply restart NGINX.

Composer, Configuration, Classes, and Path Aliases

[14]

Setting the web environment for Apache
We can also easily configure Apache to pass the APPLICATION_ENV variable to
our application. With Apache, we typically have a VirtualHost block that looks
as follows:

Set document root to be "basic/web"
DocumentRoot "path/to/basic/web"

<Directory "path/to/basic/web">
 # use mod_rewrite for pretty URL support
 RewriteEngine on
 # If a directory or a file exists, use the request directly
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteCond %{REQUEST_FILENAME} !-d
 # Otherwise forward the request to index.php
 RewriteRule . index.php

 # ...other settings...
</Directory>

To pass the APPLICATION_ENV variable to our application, all we need to do is
use the SetEnv command as follows, which can be placed anywhere in our
VirtualHost block:

SetEnv APPLICATION_ENV dev

After making this change, simply restart Apache and navigate to your application.

At the most basic level, our application isn't doing anything different from what
it was when we first ran the composer create-project command. Despite not
doing anything different, our application is now significantly more powerful and
flexible than it was before our changes. Later on in the book, we'll take a look at how
these changes in particular can make automated deployments of our application a
seamless and simple process.

Components and objects
There are two base classes that almost everything in Yii2 extends from: the
Component class and the Object class.

Chapter 1

[15]

Components
In Yii2, the Component class has replaced the CComponent class from Yii1. In Yii1,
components act as service locators that host a specific set of application components
that provide different services for the processing of requests. Each component in Yii2
can be accessed using the following syntax:

Yii::$app->componentID

For example, the database component can be accessed using this:

Yii::$app->db

The cache component can be accessed using this:

Yii::$app->cache

Yii2 automatically registers each component at runtime via the application
configuration that we mentioned in the previous section by name.

To improve performance in Yii2 applications, components are lazy-loaded or only
instantiated the first time they are accessed. This means that if the cache component
is never used in your application code, the cache component will never be loaded.
At times, however, this can be nonideal, so to force load a component, you can
bootstrap it by adding it to the bootstrap configuration option in either config/
web.php or config/console.php. For instance, if we want to bootstrap the log
component, we can do that as follows:

<?php return [
 'bootstrap' => [
 'log'
],
 […]
]

The bootstrap option behaves in a manner similar to the preload option in
Yii1—any component that you want or need to be instantiated on bootstrap
will be loaded if it is in the bootstrap section of your configuration file.

For more information on service locators and components, ensure
that you read the Definitive Guide to Yii guide located at http://
www.yiiframework.com/doc-2.0/guide-concept-service-
locator.html and http://www.yiiframework.com/doc-2.0/
guide-structure-application-components.html.

http://www.yiiframework.com/doc-2.0/guide-concept-service-locator.html
http://www.yiiframework.com/doc-2.0/guide-concept-service-locator.html
http://www.yiiframework.com/doc-2.0/guide-concept-service-locator.html
http://www.yiiframework.com/doc-2.0/guide-structure-application-components.html
http://www.yiiframework.com/doc-2.0/guide-structure-application-components.html

Composer, Configuration, Classes, and Path Aliases

[16]

Objects
In Yii2, almost every class that doesn't extend from the Component class extends from
the Object class. The Object class is the base class that implements the property
feature. In Yii2, the property feature allows you to access a lot of information about
an object, such as the __get and __set magic methods, as well as other utility
functions, such as hasProperty(), canGetProperty(), and canSetProperty().
Combined, this makes objects in Yii2 extremely powerful.

The object class is extremely powerful, and many classes in Yii extend
from it. Despite this, using the magic methods __get and __set
yourself is not considered best practice as it is slower than a native PHP
method and doesn't integrate well with your IDE's autocomplete tool and
documentation tools.

Path aliases
In Yii2, path aliases are used to represent file paths or URL paths so that we don't
hardcode paths or URLs directly into our application. In Yii2, aliases always start
with the @ symbol so that Yii knows how to differentiate it from a file path or URL.

Aliases can be defined in several ways. The most basic way to define a new alias is to
call \Yii::setAlias():

\Yii::setAlias('@path', '/path/to/example');
\Yii::setAlias('@example, 'https://www.example.com');

Aliases can also be defined in the application configuration file by setting the alias
option as follows:

return [
 // ...
 'aliases' => [
 '@path => '/path/to/example,
 '@example' => 'https://www.example.com',
],
];

Also, aliases can be easily retrieved using \Yii::getAlias():

\Yii::getAlias('@path') // returns /path/to/example
\Yii::getAlias('@example') // returns https://www.example.com

Chapter 1

[17]

Several places in Yii are alias-aware and will accept aliases as inputs. For example,
yii\caching\FileCache accepts a file alias as an alias for the $cachePath
parameter:

$cache = new FileCache([
 'cachePath' => '@runtime/cache',
]);

For more information on path aliases, check out the Yii documentation
at http://www.yiiframework.com/doc-2.0/guide-concept-
aliases.html.

Summary
In this chapter, we went over how to create new Yii2 applications via composer.
We also went over the basic configuration files that come with Yii2 as well as
how to configure our web application to load environment-specific configuration
files. Finally, we also covered components, objects, and path aliases, which are
fundamental to gaining mastery over Yii.

In the next chapter, we'll cover everything you need to know in order to become a
master of console commands and applications.

http://www.yiiframework.com/doc-2.0/guide-concept-aliases.html
http://www.yiiframework.com/doc-2.0/guide-concept-aliases.html

[19]

Console Commands and
Applications

Often when building modern web applications, we need to write background and
maintenance tasks to support our main application. These tasks may include things
such as generating reports, sending e-mails via a queuing system, or even running
data analysis that would cause a web-based endpoint to timeout. With Yii2, we
can build these tools and scripts directly into our application by writing console
commands or even complete console applications.

Configuration and usage
The basic structure of Yii2 console applications is very similar to the structure used
in web applications. In Yii2, console commands that extend from yii\console\
Controller are nearly identical to yii\web\Controller.

Entry script
Before moving on to the configuration files themselves, let's take a look at the
console entry script, which is part of the file called yii. This entry script serves as
the bootstrapper for all our console commands, and in general, they can be run by
calling this:

$./yii

Console Commands and Applications

[20]

This command will output all the currently available commands for the system. Like
the web/index.php entry script, though, it isn't aware of its environment yet. We can
change this by replacing yii with the following code block:

#!/usr/bin/env php
<?php
/**
 * Yii console bootstrap file.
 */

// Define our application_env variable as provided by nginx/apache
if (!defined('APPLICATION_ENV'))
{
 if (getenv('APPLICATION_ENV') != false)
 define('APPLICATION_ENV', getenv('APPLICATION_ENV'));
 else
 define('APPLICATION_ENV', 'prod');
}

$env = require(__DIR__ . '/config/env.php');

defined('YII_DEBUG') or define('YII_DEBUG', $env['debug']);

// fcgi doesn't have STDIN and STDOUT defined by default
defined('STDIN') or define('STDIN', fopen('php://stdin', 'r'));
defined('STDOUT') or define('STDOUT', fopen('php://stdout', 'w'));

require(__DIR__ . '/vendor/autoload.php');
require(__DIR__ . '/vendor/yiisoft/yii2/Yii.php');

$config = require(__DIR__ . '/config/console.php');

$application = new yii\console\Application($config);
$exitCode = $application->run();
exit($exitCode);

This script is intended for Linux-like environments. Yii2 also
provides a yii.bat file that can be run on Windows. If you're
following along on a Windows computer, ensure that you change
yii.bat in addition to the yii file.

With our entry script files configured, we're ready to take a look at our application
configuration files.

Chapter 2

[21]

You may also notice that in the web/ folder, there is a separate entry
script called index-test.php. This script is used by Codeception, a
testing framework that is used to run unit, functional, and acceptance
tests in Yii2. We'll cover how to configure and use this entry script and
Codeception in Chapter 10, Testing with Codeception.

Configuration
In Yii2, the console configuration file is located at config/console.php and is nearly
identical to our web configuration file:

<?php

Yii::setAlias('@tests', dirname(__DIR__) . '/tests');

return [
 'id' => 'basic-console',
 'basePath' => dirname(__DIR__),
 'bootstrap' => ['log'],
 'controllerNamespace' => 'app\commands',
 'components' => [
 'cache' => [
 'class' => 'yii\caching\FileCache',
],
 'log' => [
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
 'levels' => ['error', 'warning'],
],
],
],
 'db' => require(__DIR__ . '/db.php'),
],
 'params' => require(__DIR__ . '/params.php'),
];

Like our web configuration file, we can include our database and parameters'
configuration files using the environment-aware configurations we wrote in
Chapter 1, Composer, Configuration, Classes, and Path Aliases. In fact, the only major
difference between our web and console configuration is the explicit declaration of
our console command namespace and the explicit declaration of the @test alias,
which defines where our test files will be located.

Console Commands and Applications

[22]

Thanks to Yii's extremely flexible structure, we can reorganize our
bootstrap and entry script files to be in many different physical locations
on our file system. Because of this flexibility, the console configuration
file expects us to declare the @test alias explicitly so that we can run our
console tests.

Setting the console environment
Following the same convention we set up for our web application, we now need
to instruct our console to pass the APPLICATION_ENV variable to our console
application. From the command line, we can easily change the environment by
exporting a variable:

export APPLICATION_ENV="dev"

If we want to make this change permanent for the server we are working
on, we can store this variable in our ~/.bash_profile file, or we can
store it globally for all users at /etc/profile. By adding this command
to either of these files, the next time we log in to our shell, this variable
will automatically be exported. Note that if you're using Windows, you'll
need to export this variable to your %path% variable.

Go ahead and give it a try! Log out and log in to your shell again and run
the following:

echo $APPLICATION_ENV

If your computer is configured correctly, you should see the environment outputted
to your screen.

dev

Running console commands
With our console application now configured, we can easily run our console
commands by running the following command:

$./yii

On Windows, this command is yii.bat.

Chapter 2

[23]

If you are familiar with Yii1, this command has now replaced the /yiic command.

Without any arguments, this is the same as running /yii help and will output the
help menu, which lists all the built-in console commands for our application:

$./yii

Console Commands and Applications

[24]

Yii provides additional help information for each of the default commands. For
example, if we want to see what subcommands exist for the cache command, we
can run the following:

$./yii help cache

In general, we can reduce the usage of the Yii console to the following pattern:

$./yii <route> [--option1=value1 --option2=value2 ... \

argument1 argument2 ...]

Here, <route> refers to the specific controller and action that we want to run. For
example, if we wanted to flush the entire cache for our application from the console,
we could run the following command:

$./yii cache/flush-all

Chapter 2

[25]

This is the output we receive:

The following cache components were processed:

 * cache (yii\caching\FileCache)

The ./yii command also enables you to use alternative console configuration files
from the same command:

$./yii <route> --appconfig=path/to/config.php

Without having to change anything in our code, we can simply instruct Yii to use an
alternate configuration file, which can contain anything, ranging from something as
simple as a reference to another database or cache to something more complex such
as an entirely different controller namespace. This option is especially useful when
creating applications that have both a frontend and a backend that may contain
different caches or database components.

Built-in console commands
Now that we know how to run console commands, let's take a look at the built-in
commands to see how they work. As shown previously, Yii2 has seven built-in
console commands: help, asset, cache, fixtures, gii, message, and migrate.
During the development of our application, we're likely to use all seven in order to
make our application more robust. Let's take a look at each one in more detail.

The help command
The first command built in to Yii2 is the help command. Often when running
console commands, you may not know what options a certain command needs.
Rather than referencing the Yii2 documentation, you can use the help command to
provide you with all the core information you need.

At the most basic level, the help command will output all the currently available
console commands:

$./yii help

Some commands contain additional subcommands that can be run. To view a list of
all the available subcommands for a given command, you can run this:

$./yii help <command>

Console Commands and Applications

[26]

Some subcommands, such as those found in the Gii tool, require additional options
to be passed to them in order for them to function. To see a list of all the required and
optional flags for a given subcommand, you can run the following:

$./yii help <command/sub>

As we move through the next sections, ensure that you use the help command to see
all the possible options and requirements for each command.

The asset command
The second default set of commands in our toolbox is the set of asset commands,
which include asset/template and asset/compress.

The first command, asset/template, is used to generate a configuration file to
automate the compression and minification of JavaScript and CSS assets, and it is
used as follows:

$./yii asset/template path/to/asset.php

Running this command will generate a new file at path/to/asset.php, containing
build instructions that are used by the next command, asset/compress. This file
outlines which CSS and JavaScript compressor to use, a list of asset bundles to be
compressed, a set of targets that the compressed assets will be outputted to, and any
custom configuration for our assetManager.

The next command, asset/compress, reads our generated configuration file and
builds the compressed asset files and a referable asset bundle configuration that we
can load into our layouts and/or views. This command is called using the following:

$./yii asset/compress path/to/asset.php path/to/asset-bundle.php

In Chapter 6, Asset Management, we will take an in-depth look at how
we can use these commands in addition to the assetManager class
in order to manage our assets in more detail.

The cache command
The third built-in command in our toolbox is the cache command. The cache
command provides the functionality to flush caches that are generated by our
application. These commands are cache, cache/flush, cache/flush-all, and
cache/flush-schema.

Chapter 2

[27]

The first command, cache, returns a named list of all the available caches defined in
our configuration file and can be run using the following command:

$./yii cache

Here's the output:

The following caches were found in the system:

 * cache (yii\caching\FileCache)

The output of this command takes the following format so that we can identify
which caches are in use. In our default application, only one cache is predefined:
our file cache.

<cache_name> (<cache_type>)

Once we know what caches are in use, we can then use the cache/flush command
to flush that cache by name. Using the output of the previous command, we can clear
the cache component by name by running this:

./yii cache/flush cache

Here's the output:

The following cache components will be flushed:

 * cache

The following cache components were processed:

 * cache (yii\caching\FileCache)

Some commands in Yii2 are interactive and prompt for confirmation
before running. This may be problematic when you need to automate the
use of a command, such as on deployment. You can bypass this behavior
by appending --interactive=0 to the command. When running
commands noninteractively, additional arguments may be required.
Ensure that you reference the help command to determine what
arguments you need to pass when running noninteractive commands.

Alternatively, if we want to flush the entire cache for our application, we can use the
cache/flush-all option:

$./yii cache/flush-all

www.allitebooks.com

http://www.allitebooks.org

Console Commands and Applications

[28]

In our production environments, we'll want to reduce the load on our database
server by caching our database schema. Yii2 will maintain a cache of the currently
active db component (the database) and the database schema when instructed to.
When making schema changes, such as when applying new migrations, we need to
clear this cache so that Yii2 becomes aware of our updated database structure. We
can clear the database schema cache by running this:

$./yii cache/flush-schema

We'll cover how to enable the schema cache and improve the performance
of our database in the next chapter.

The fixture command
When testing our application, we'll often want to set up our database such that our
tests always run in a predictable and repeatable way. One way in which we can do
this is by creating fixtures, which will represent database objects in our application
for testing. Yii2 provides a set of commands to both load and unload fixtures; these
commands are fixture/load and fixture/unload, and they do exactly what you
expect them to do.

When using fixtures, our typical test flow is as follows:

1.	 Apply database migrations.
2.	 Execute our test cases in the following manner:

1.	 Load our database fixtures.
2.	 Execute a specific test.
3.	 Unload our database fixtures.

3.	 Repeat as required until all tests have run.

The fixture/load and fixture/unload commands are called in the same way from
the command line:

$./yii fixture/load <FixtureName>

$./yii fixture/unload <FixtureName>

Chapter 2

[29]

Fixtures are a powerful way to create repeatable tests for our applications.
Additionally, the yii2-codeception package provides additional
support for the loading and unloading of fixtures when our tests run.
In Chapter 10, Testing with Codeception, we'll cover how to creature new
fixtures and how to integrate them with Codeception.

The Gii command
The next set of commands in our toolbox is the Gii command. If you are familiar
with Yii1, Gii provides the functionality to generate controllers, models, forms,
and even basic CRUD functionality. In Yii2, Gii has been extended from a web
application module to both a web and console application and has been enhanced to
include additional features as well.

The Gii module in Yii2 provides these console commands to automatically generate
code: gii/controller, gii/model, gii/crud, gii/form, gii/extension, and
gii/module. Each of these commands, when supplied with the right options, will
generate the respective item identified by the subcommand. For a complete list
of requirements and options, ensure that you use the help command on the
Gii subcommands.

As a development tool, Gii has the ability to arbitrarily generate and
override existing code in your application. For security purposes, you
should conditionally load the Gii module only in your development
environment. Moreover, the Gii module itself should never be deployed
to your production environment. For this reason, it is advised that
you only load the Gii module in the require-dev section of your
composer.json file.
The require-dev section is a special section within our composer.
json file, which allows us to separate our development dependencies
from our production dependencies. By default, running Composer will
install all packages in our require and require-dev sections. In
production environments, we will want to exclude our development
environments by passing the --no-dev flag to our Composer installation
command. For more information on the Composer CLI, ensure that you
reference the Composer documentation at https://getcomposer.
org/doc/03-cli.md.

https://getcomposer.org/doc/03-cli.md
https://getcomposer.org/doc/03-cli.md

Console Commands and Applications

[30]

The message command
The next set of commands is the message commands, which provide functionalities
to automatically generate message translations for our application in a variety of
different formats.

The first subcommand is the message/config command, which generates a
configuration file that the message/extract command will then use to output the
translation files. Before generating any translations, we must run the message/
config command as follows:

$./yii message/config /path/to/translation/config.php

This command generates a configuration file at /path/to/translation/config.
php that contains all the information message/extract will need in order to
generate the message output files.

After configuring your message configuration file to your liking, you can then run
the message/extract command as follows:

$./yii message /path/to/translation/config.php

Depending upon your configuration file and the use of \Yii::t(), the built-in Yii
translation tool in your application, this command will generate either a PHP file
containing a list of messages, a .po file, and a command translation file format, or it
will populate the specified table in your database with the necessary message lists.

In Chapter 11, Internationalization and Localization, we'll go into more depth
about how to use these commands to generate PHP message files and .po
files and how to populate our database. We'll also cover the use of the
Yii::t() method in detail.

The migration command
The final built-in command set with Yii2 is the migration command. The migration
commands provide functionalities to generate, apply, revert, and review database
migrations. This tool provides these subcommands: migrate/create, migrate/
history, migrate/mark, migrate/up, migrate/down, migrate/to, migrate/new,
and migrate/redo.

Chapter 2

[31]

We'll cover how to completely use this tool and work with databases in
general in more detail in Chapter 3, Migrations, DAO, and Query Building.
For now, use the ./yii help migrate command to view more
information on the migration tool.

Creating console commands
Now that we know what built-in commands Yii2 provides, let's start adding our own
commands. In Yii2, any custom commands we write are going to be stored in the /
commands subfolder of our application. If this folder doesn't exist yet, go ahead and
create it:

mkdir commands

Now, let's write a basic console command that just outputs some text:

1.	 First, we'll create a new file called BasicController.php in the
commands folder:
touch commands/BasicController.php

2.	 Now, let's write some PHP code. First, we need to declare the namespace that
our BasicController lives in. This namespace directly corresponds to the
controllerNamespace parameter we defined in config/console.php:
<?php

namespace app\commands;

3.	 Then, we'll want to declare that we want to use the \yii\console\
Controller class in our new controller:
use \yii\console\Controller;

4.	 Next, we'll declare our controller class as follows:
class BasicController extends Controller { }

Console Commands and Applications

[32]

5.	 Finally, inside our class, we'll create an actionIndex() method that will
simply output HelloWorld and then gracefully return with a successful error
code. By default, the actionIndex() method is the method that is called
when an action is not specified to a controller:

public function actionIndex()
{
 echo "HelloWorld";
 return 0;
}

We have our first console command! Now, if we run the help command, you can see
that our command appears in the list of available commands:

$./yii help

Moreover, we can now execute our command to verify that it functions properly:

$./yii basic

This is the output:

HelloWorld

Generating help information
While we can now run our commands, the help command for both the global help
menu and the action help menu currently doesn't provide any useful information. In
Yii2, this information is extracted directly from the document block comments (also
known as DocBlock comments) that are used before our BasicController class and
our actionIndex() method. For instance, consider that we add the following before
our class declaration:

/**
 * A basic controller for our Yii2 Application
 */
class BasicController extends \yii\console\Controller {}

Chapter 2

[33]

We could also provide more information to our actionIndex() method by
specifying a DocBlock comment before the method:

/**
 * Outputs HelloWorld
 */
public function actionIndex() {}

Running the help command on the basic controller would then display
the following:

$./yii help basic

Passing command-line arguments
Like our web controllers (yii\web\Controller), we can also pass arguments
through the command line to our console commands. Rather than using $_GET
parameters to determine the arguments in use, Yii2 will pull the arguments directly
from the command-line interface. Take, for instance, the following method of our
BasicController:

/**
 * Outputs "$name lives in $city"
 * @param string $name	 The name of the person
 * @param string $city The city $name lives in

Console Commands and Applications

[34]

 * @return 0
 */
public function actionLivesIn($name, $city="Chicago")
{
 echo "$name lives in $city.\n";
 return 0;
}

The help command now shows us what arguments are required and what
arguments are optional for this new method:

$./yii help basic/lives-in

Chapter 2

[35]

By now, you may have noticed that console commands can accept
two types of input: arguments, (in this example, name and city), and
options. Arguments serve as the data that we provide to your actions. On
the other hand, options allow us to specify additional configuration for
our controller in general. For instance, as previously shown, we can run
our commands noninteractively by passing the --interactve=0 flag
option. Each console application we create and use may have separate
options that we can set. Ensure that you reference the Yii2 documentation
for that class and use the help command to determine what options are
available for each command.

Without any arguments, this command will throw the following error, indicating
that the name parameter is required:

Error: Missing required arguments: name

Once we provide the name, the console outputs the result as expected:

$./yii basic/lives-in Alice

This is the output:

Alice lives in Chicago.

By providing a default value to the city parameter, that option is not required
for our command to be executed. However, if we passed a value as the second
parameter, it would override our default value as expected:

$./yii basic/lives-in Alice California

Here's the output:

Alice lives in California.

Depending upon how your shell is configured, you may not be able to
pass certain characters (such as $ or *) from the command line. Ensure
that you wrap any strings that use special characters in quotes to ensure
that the full argument is passed to your application.

Console Commands and Applications

[36]

In addition to simple strings, Yii2 will also accept arrays in the form of comma-
separated lists. Take, for instance, the following method:

/**
 * Outputs each element of the input $array on a new line
 * @param array $array A comma separated list of elements
 * @return 0
 */
public function actionListElements(array $array)
{
 foreach ($array as $$k)
 echo "$$k\n";

 return 0;
}

By type-hinting the first parameter using the array type-hint, we can notify
Yii to convert the command-line arguments into a usable PHP array. From the
command line, we can specify an element as an array by representing it as a
comma-separated list:

$./yii basic/list-elements these,are,separate,items

This is the output that will appear:

these

are

separate

items

Yii2 does not support the use of multidimensional arrays from the
command line. If you need to pass a multidimensional array of data from
the command line, you can pass a path to a configuration file instead and
then load that file inside your controller action.
The options to store this data range from a PHP file, which returns an
array of data, to a JSON- or YAML-formatted file, which would be loaded
and converted to a PHP array within your controller action.

Chapter 2

[37]

Exit codes
As shown in our previous examples, each action we've written thus far has a return
value of 0. While returning from our controller action isn't strictly necessary, it's
considered a best practice so that our shell can be notified whether our console
command has been executed successfully or not. By convention, an exit code of
0 indicates that our command ran without errors, whereas any positive integer
greater than zero would indicate that a specific error occurred. The number
returned will be the error code that is returned to the shell, and it can be used
by our end users to reference our application documentation or support forum
to identify what went wrong.

Suppose, for instance, that we wanted to validate one of our inputs without diving
into custom forms and validators. In this example, we want our input of $shouldRun
to be a positive nonzero integer. If that integer is less than zero, we could return an
error code that our documentation would be able to reference:

/**
 * Returns successfully IFF $shouldRun is set to any
 * positive integer greater than 0
 *
 * @param integer $shouldRun
 * @return integer
 */
public function actionConditionalExit($shouldRun=0)
{
 if ((int)$shouldRun < 0)
 {
 echo 'The $shouldRun argument must be an positive
 non-zero integer' . "\n";
 return 1;
 }

 return 0;
}

Additionally, Yii2 provides some predefined constants for us to work with:
Controller::EXIT_CODE_NORMAL, which has a value of 0, and Controller::EXIT_
CODE_ERROR, which has a value of 1. If you have more than one return code, it is
considered a good practice to define meaningful constants in your controller to
identify your error code.

Console Commands and Applications

[38]

Formatting
Yii2 provides support for the formatting of the output of our console commands.
This is provided through the yii\helpers\Console helper. Before we can use this
helper, we need to import it into our class:

<?php

namespace app\commands;
use yii\helpers\Console;

With this helper loaded, we can now use either the stdout() method from \yii\
console\Controller or the ansiFormat() method. While both methods will format
text, the ansiFormat() method can be used to dynamically combine multiple strings
with different formats:

/**
 * Outputs text in bold and cyan
 * @return 0
 */
public function actionColors()
{
 $this->stdout("Waiting on important thing to happen...\n",
 Console::BOLD);

 $yay = $this->ansiFormat('Yay', Console::FG_CYAN);
 echo "$yay! We're done!\n";
 return 0;
}

Then, if we run our new console command, we can see how our output text changes:

$./yii basic/colors

A complete list of available constants is available in the Yii2
documentation at http://www.yiiframework.com/doc-2.0/yii-
helpers-baseconsole.html.

http://www.yiiframework.com/doc-2.0/yii-helpers-baseconsole.html
http://www.yiiframework.com/doc-2.0/yii-helpers-baseconsole.html

Chapter 2

[39]

Summary
In this chapter, we covered how to configure Yii to run console commands in a
manner consistent with our web applications. We also covered the seven built-in
console commands in brief. Additionally, we covered how to create our own console
commands, how to pass parameters to our command, how to return values properly
from within our code, and how to format the output of our commands.

In the next chapter, we'll expand our mastery of Yii by learning how to use and write
migrations, how to use database access objects (DAO), and how to use Yii's built-in
Query Builder.

[41]

Migrations, DAO,
and Query Building

One of the most fundamental aspects of writing modern web application is working
with databases. Through PHP's PDO driver, Yii2, can work with many different
kinds of relational databases. In this chapter, we'll cover how to connect to different
databases, write database migrations to instantiate our databases, use database
access objects (DAO), and use Yii2's built-in Query Builder. We'll also cover the
basics of powerful tools such as data providers and data widgets as well as how to
use Yii2 to replicate and load balance access to our databases.

Connecting to databases
The primary component required in order to work with databases is the yii\
db\Connection class. Through this class, we can connect to a variety of different
database types, ranging from local SQLite databases to clustered MySQL databases.
The simplest way to establish a connection to a database is to create a SQLite
database connection, as follows:

$connection = new \yii\db\Connection([
 'dsn' => 'sqlite:/' . \Yii::getAlias('@app') .
 '/runtime/db.sqlite',
 'charset' => 'utf8'
]);

$connection->open();

Migrations, DAO, and Query Building

[42]

Normally, however, we'll want to use a single database connection across our entire
application. We can keep our application DRY by putting our database configuration
into the db component of our web or console configuration file. Following the
examples laid out in the previous chapters, this component will reference the
config/env/<ENV>/db.php file. As an example, establishing a SQLite connection
in this file will be done as follows:

<?php return [
 'dsn' => 'sqlite:/' . \Yii::getAlias('@app') .
 '/runtime/db.sqlite',
 'class' => 'yii\db\Connection',
 'charset' => 'utf8'
];

By storing our database configuration in the db component of our application, it
can easily be shared between both our web and console applications without any
additional effort on our part. Furthermore, since Yii2 loads components only when
required, it can keep our application lean and performant.

In Yii2, components are only loaded when required. This process is
often called lazy loading. Unless a component is preloaded, Yii2 will
not create an instance of that component until it is first used. After being
initially instantiated, Yii will then reuse the same component across your
application rather than creating multiple instances of that component.
Lazy loading is one of the primary reasons Yii is so performant.

With our database configuration stored within our configuration file, we can now
access the database connection, as follows:

\Yii::$app->db;

This connection will also be shared to any Active Record models used in our
application, which we'll discuss in Chapter 4, Active Record, Models, and Forms.

As stated earlier, Yii2 can connect to several different database types. As Yii2 binds
on top of PHP's PDO library, it can connect to the same sources a native PDO driver
can connect to. A few examples of the data source names (DSNs) that Yii2 supports
are listed here:

Database Type DSN Scheme
MySQL, Percona,
MariaDB, and so on

mysql:host=localhost;dbname=mydatabase

SQLite sqlite:/path/to/database/file.sqlite

Chapter 3

[43]

Database Type DSN Scheme
PostgreSQL pgsql:host=localhost;port=5432;dbname=mydatab

ase

CUBRID cubrid:dbname=demodb;host=localhost;port=33000

MS SQL Server (via the
sqlsrv driver)

sqlsrv:Server=localhost;Database=mydatabase

MS SQL Server (via the
dblib driver)

dblib:host=localhost;dbname=mydatabase

MS SQL Server (via the
mssql driver)

mssql:host=localhost;dbname=mydatabase

Oracle oci:dbname=//localhost:1521/mydatabase

If you're connecting to a MS SQL server, you'll need to have either
the sqlsrv, dblib or mssql PHP drivers installed on your system. More
information on these base drivers can be found within the PHP manual at
https://php.net/manual/en/pdo.drivers.php.
Additionally, Oracle connections will require the installation of Oracle's
OCI8 driver. More information on this driver can be found in the PHP
manual at https://php.net/manual/en/book.oci8.php.
Note that Yii2 will not be able to connect to any database unless the
appropriate PHP drivers are properly installed and configured. If you
aren't certain which drivers you have installed, the native phpinfo()
function can output a list of all the currently installed PHP extensions.

In addition to the base drivers listed earlier, Yii2 can also connect to databases
over Open Database Connectivity (ODBC). When connecting to a database via
ODBC, you'll need to specify the $driverName property within your db connection
component so that Yii2 can properly connect to your database:

'components' => [
 // [...]
 'db' => [
 'class' => 'yii\db\Connection',
 'driverName' => 'mysql', 'dsn' => 'odbc:Driver={MySQL};
 Server=localhost;Database=test',
 'username' => 'username',
 'password' => 'password',
]
]

https://php.net/manual/en/pdo.drivers.php
https://php.net/manual/en/book.oci8.php

Migrations, DAO, and Query Building

[44]

As shown previously, some database configurations may require you to specify a
username or password to connect to them. Within the db component, simply specify
the username and password attributes that are appropriate for your database.

Additional configuration options
In addition to the basic db component options listed previously, Yii2 also provides
several additional options that can be used to either enhance the performance of
your application or deal with a known issue within the native PHP drivers. While
many of these options can be found in the Yii guide and the API documentation,
some of them will most likely be used more often than others. These properties are
$emulatePrepare, $enableQueryCache, and $enableSchemaCache.

A complete list of the available methods and properties for the yii\db\
Connection class can be found at http://www.yiiframework.com/
doc-2.0/yii-db-connection.html.

The first common attribute, $emulatePrepare, can be used to alleviate common
issues identified by the Yii team when preparing database statements. By default,
Yii2 will try to use the native prepare support built into the native PDO driver. To
help alleviate issues with a few of the native PDO drivers (mainly, the MS SQL
drivers), the $emulatePrepare attribute may need to be set to true in order to
allow Yii2 to handle the prepare statements.

The next common property often enabled in our db component is
$enableQueryCache. To improve the performance of our application, we can set this
value to true and allow Yii to cache commonly executed queries. In an application
that mostly performs read actions, enabling this attribute can greatly increase the
performance of your application.

To completely enable this component, however, the additional properties we'll
mention now must be set as well. The first property, $queryCache, specifies the
named cache object that the query cache should use. If unset, this will simply
default to the cache component in our application. The second property is
$queryCacheDuration, and it determines how long any database query result
will be cached for. By default, the query cache will be valid for 3,600 seconds,
or 60 minutes:

'components' => [
 //[...
 'db' => [

http://www.yiiframework.com/doc-2.0/yii-db-connection.html
http://www.yiiframework.com/doc-2.0/yii-db-connection.html

Chapter 3

[45]

 'dsn' => 'sqlite:/' . \Yii::getAlias('@app') .
 '/runtime/db.sqlite',
 'class' => 'yii\db\Connection',
 'charset' => 'utf8',
 'enableQueryCache' => true,
 'queryCache' => 'filecache',
 'queryCacheDuration' => 60
],
 'filecache' => [
 'class' => 'yii\caching\FileCache',
],
]

The final common property that often will be added to our db component is
$enableSchemaCache. Before Yii accesses the database, it will often need to
determine the database schema. This schema information is used to assist Yii
when running validators and working with relational models, such as related
Active Record models. Rather than having Yii try to determine our database
schema on every request, we can tell it that our schema isn't changing by setting
$enableSchemaCache to true.

Similar to the $enableCache parameter outlined previously, we'll also need to define
the $schemaCache parameter, which will tell Yii what cache component to use. We'll
also need to define the $schemaCacheDuration parameter so that Yii2 knows how
long the schema cache is valid for in seconds:

'components' => [
 // [...]
 'db' => [
 'dsn' => 'sqlite:/' . \Yii::getAlias('@app') .
 '/runtime/db.sqlite',
 'class' => 'yii\db\Connection',
 'charset' => 'utf8',
 'enableSchemaCache' => true,
 'schemaCache' => 'filecache',
 'schemaCacheDuration' => 3600
],
 'filecache' => [
 'class' => 'yii\caching\FileCache',
],
]

As the majority of our controller actions will most likely result in a database
operation, enabling these properties can greatly improve the performance of
our application.

Migrations, DAO, and Query Building

[46]

Remember that because $enableSchemaCache and
$enableQueryCache are enabled, Yii2 will not perform common checks
against the database. Any change to the underlying data or schema in
your database may cause your application to return bad data or crash
entirely. If you change the data in your database directly rather than
through Yii2, or if you change the database schema, ensure that you flush
the relevant cache components defined by $enableSchemaCache or
$enableQueryCache to ensure that your application functions correctly.

Writing database migrations
When building and maintaining modern web applications, the underlying structure
of our database may need to change to account for changes in requirements or
scopes. To ensure that our database schema can evolve in tandem with our source
code, Yii2 provides built-in support to manage database migrations. Using database
migrations, we can treat our database as an extension of the source code and easily
change it when our source code changes.

An overview of schema
When working with database migrations, we'll often be working with the yii\db\
Schema class. When paired properly, we can often write our migrations in a way
that enables them to be run across a variety of database types. For example, when
working locally, we might need to use a local SQLite database even if our application
will ultimately run on a MySQL database.

At the heart of this class is a variety of different schema types that Yii2 will be able to
properly map to the appropriate data type within our database. These include data
types such as INT, DATETIME, and TEXT.

For a complete list of the available constants made available by the
Schema class, ensure that you refer to the Yii2 guide at http://www.
yiiframework.com/doc-2.0/yii-db-schema.html#constants.

Within our migrations, we can call any of these constants by running this:

Schema::<CONSTANT>

In the example of an integer, we can use this:

Schema::TYPE_INTEGER

http://www.yiiframework.com/doc-2.0/yii-db-schema.html#constants
http://www.yiiframework.com/doc-2.0/yii-db-schema.html#constants

Chapter 3

[47]

Using these constants in our migration, we can ensure that our migrations map
to the appropriate data type within our database and work across a variety of
database types.

Writing migrations
As shown in the previous chapter, we can create a new migration by invoking the
migrate/create command from the yii command-line tool. Using the source code
from the previous chapter as a starting point, we'll do this by running the following
from the command line:

./yii migrate/create init

Running this command will create a new migration in the migrations folder of
our application.

Depending upon the file permissions on your system, Yii2 may not
be able to create the migrations folder if it does not exist. If the
migrations folder doesn't exist yet, ensure that you create it before
running the migrate/create command.

When running migrations, Yii2 will execute them in the order in which they were
created. To determine this order, Yii2 will look at the filename or the migration that
contains the name of the migration specified from the migrate/create command as
well as the exact timestamp the migration was created at.

In our case, the filename is m150523_194158_init.php, which means that this
migration was created on May 23, 2015 at 7:41:58 PM UTC.

Because of this naming convention, any migration that you create will
have a distinct and unique filename. If you're following along, ensure that
you're working in the file that was created from the ./yii command.

Migrations, DAO, and Query Building

[48]

After running the migrate/create command, Yii2 provides us with a skeleton
migration that will look similar to the following code block:

<?php

use yii\db\Schema;
use yii\db\Migration;

class m150523_194158_init extends Migration
{
 public function up() {}

 public function down()
 {
 echo "m150523_194158_init cannot be reverted.\n";
 return false;
 }

 /*
 // Use safeUp/safeDown to run migration code within a
 transaction
 public function safeUp() {}

 public function safeDown() {}
 */
}

Migrations in Yii2 can operate in one of these two ways: we can either bring a
migration up, or we can bring it down. These two operations correspond to one of
four functions: up(), safeUp(), down(), and safeDown(). The up() and down()
methods are the base methods required to run migrations and will execute any
database command issued inside them even if there is an error. Alternatively, we can
use the safeUp() and safeDown() methods, which are functionally identical to the
up() and down() methods, with the exception that the entire operation is wrapped
within a transaction. If our database supports transactions, running our migrations
from the safe methods can help us catch migration errors at runtime before an error
can cause problems with our entire database.

Because of the additional safety they offer, safeUp() and safeDown()
should be our go-to methods when writing migrations. Additionally, if
safeUp() or safeDown() are used, the unsafe methods cannot be used.

Chapter 3

[49]

Let's start by adding a simple table to our database in order to store our users. We'll
start by simply storing an ID, an email address, a password, the username, and some
timestamp metadata indicating when our user was created and last updated. Within
our migration, we can write this as follows:

class m150523_194158_init extends Migration
{
 public function safeUp()
 {
 return $this->createTable('user', [
 'id' => Schema::TYPE_PK,
 // $this->primaryKey()
 'email' => Schema::TYPE_STRING,
 // $this->string(255) // String with 255 characters
 'password' => Schema::TYPE_STRING,
 'name' => Schema::TYPE_STRING,
 'created_at' => Schema::TYPE_INTEGER,
 // $this->integer()
 'updated_at' => Schema::TYPE_INTEGER
]);
 }

 public function safeDown()
 {
 return $this->dropTable('user');
 }
}

As illustrated previously, Yii2 supports two different ways to declare
schema types for columns. We can either directly use the constants
defined by the Schema class, or we can use the native migration methods,
such as primaryKey(), integer(), string(), and text(). Using the
migration methods is preferred because it permits us to add additional
attributes to our column, such as the column size and length. For a
complete list of methods offered by the migration class, refer to the Yii2
guide at http://www.yiiframework.com/doc-2.0/yii-db-
migration.html.

In the previous example, we outlined two methods: createTable(), which will
create a new database table within our application, and dropTable(), which will
drop the table from our database.

http://www.yiiframework.com/doc-2.0/yii-db-migration.html
http://www.yiiframework.com/doc-2.0/yii-db-migration.html

Migrations, DAO, and Query Building

[50]

A common convention when working with a database is to write field
names with underscores and use singular names for table and column
names. While Yii2 is smart enough to work with any field names you
specify, following this convention will make your code more readable and
working with your databases less complicated. While you don't have to
explicitly follow this convention, following a convention can save you a
lot of time in the future.

Running migrations
Running our migrations can be done through the yii command, as shown in the
previous chapter:

./yii migrate/up

Since we're using a SQLite database in our example, we can easily explore what just
happened when we ran the migrate/up command. Using the sqlite command-line
tool, we can explore our SQLite database:

sqlite3 /path/to/runtime/db.sqlite

If your package manager does not provide sqlite3, you can download the
binary executables from https://www.sqlite.org/download.html.

By running the .tables command from our SQLite prompt, we can see that two
tables were created when we ran the migrate/up command, migration and user:

sqlite> .tables

https://www.sqlite.org/download.html

Chapter 3

[51]

The first table, migration, contains a list of all the applied migrations as well as the
time at which they were applied.

The second table, user, shows the resulting schema that was created by Yii from our
migration class.

For instance, by specifying the TYPE_PK schema for our ID attribute, Yii2 knew that it
needed to add AUTOINCRIMENT and NOT NULL attributes to our SQLite schema.

While database migrations are suited for most database changes, running
them against large datasets may result in your database being unavailable
to your application, resulting in downtime. Make sure that before you
run a database migration through Yii2, your application should be able
to handle temporary downtime. If even temporary downtime is not
appropriate for your application, you may need to consider migrating
your data to an updated schema in other ways.

Altering a database schema
When developing locally, we can simply use the migrate/down command to undo
a specific migration (assuming we implemented a down() or safeDown() method).
However, after committing and pushing our code to our DCVS system, such as Git
or SVN, others may be using or working with our code. In this instance, we want to
change our migrations without causing harm to their local instance; we can create
new migrations that users of our code can apply in order to bring their applications
up to date.

Migrations, DAO, and Query Building

[52]

Take, for instance, the user schema that was created for us:

CREATE TABLE `user` (
 `id` integer PRIMARY KEY AUTOINCREMENT NOT NULL,
 `email` varchar(255),
 `password` varchar(255),
 `name` varchar(255),
 `created_at` integer,
 `updated_at` integer
);

Rather than having a single field for our username, we may want to have two fields:
one for their first name and one for their last name. We may also want to make a few
changes to other fields, such as our email field, to prevent them from being NULL. We
can do this by writing a new migration and altering the schema of the database itself.

We'll start by creating a new migration:

./yii migrate/create name_change --interactive=0

Remember, the --interactive=0 flag tells Yii to run our console
command without prompts.

Within our new migrations/…name_change.php migration, we can write a
safeUp() method to alter these columns for us:

public function safeUp()
{
 $this->renameColumn('user', 'name', 'first_name');
 $this->alterColumn('user', 'first_name', SCHEMA::TYPE_STRING);
 $this->addColumn('user', 'last_name', SCHEMA::TYPE_STRING);
 $this->alterColumn('user', 'email', SCHEMA::TYPE_STRING . '
 NOT NULL');
 $this->createIndex('user_unique_email', 'user', 'email',
 true);
}

In Yii2, migration commands are self-explanatory in what they do. For instance, the
first method, renameColumn(), will simply rename the name column to first_name.
In the same vein, addColumn() will add a new column with the specified name and
schema to our database, alterColumn() will alter the schema for the named column,
and createIndex() will create a unique index on the email field in our database,
which will ensure that no two users will share the same email address.

Chapter 3

[53]

A complete list of commands that can be run within the migration calls
can be found in the Yii2 guide at http://www.yiiframework.com/
doc-2.0/yii-db-migration.html.

If we try to run these migrations against our SQLite database, however, we would be
presented with an error similar to the following, indicating that SQLite doesn't have
support for these methods:

./yii migrate/up

Here's the output:

*** applying m150523_203944_name_change

 > rename column name in table user to first_name \

...Exception: yii\db\sqlite\QueryBuilder::renameColumn is not \

 supported by SQLite. \

(/var/www/ch3/vendor/yiisoft/yii2/db/sqlite/QueryBuilder.php:201)

While the previously listed migration would work on MySQL or PostgreSQL,
our SQLite driver doesn't provide support for these commands. Since we're using
SQLite, however, we'd have to rewrite our initial migration command and notify
users of our application about the change. For SQLite, we can rewrite our newly
created migrations/…name_change.php migration as follows:

public function safeUp()
{
 $this->dropTable('user');

 $this->createTable('user', [
 'id' => Schema::TYPE_PK,
 'email' => Schema::TYPE_STRING . ' NOT NULL',
 'password' => Schema::TYPE_STRING . ' NOT NULL',
 'first_name' => Schema::TYPE_STRING,
 'last_name' => Schema::TYPE_STRING,
 'created_at' => Schema::TYPE_INTEGER,
 'updated_at' => Schema::TYPE_INTEGER
]);

 $this->createIndex('user_unique_email', 'user', 'email',
 true);
}

http://www.yiiframework.com/doc-2.0/yii-db-migration.html
http://www.yiiframework.com/doc-2.0/yii-db-migration.html

Migrations, DAO, and Query Building

[54]

public function safeDown()
{
 return true;
}

yii\db\Migration does not have a query() method that we can
use to retrieve data. Consequently, if we need to query data within a
migration, we will need to use Yii2's Query Builder to do this, which we'll
cover later in this chapter. If our application has widespread adoption,
it might be better to query for all of our users with Query Builder and
store them temporarily in the memory (or a temporary store if we have a
large number of records). Then, after creating our new table schema for
our users table, we could then reinsert them into our database using the
insert() method.

After updating our new migration, we can rerun our migration command. Since
our first migration was already applied, that migration will be skipped when the
migrate/up command is executed, and only our migrations/m150523_203944_
change.php migration will be run:

./yii migrate/up

After running our migration, we can query our database to see what our full schema
looks like within SQLite:

sqlite3 /path/to/runtime/db.sqlite

Chapter 3

[55]

Migrations in Yii2 are extremely powerful. Take a look at the Yii2
documentation at http://www.yiiframework.com/doc-2.0/yii-
db-migration.html to see everything that you can do with yii\db\
Migration.

Database access objects
Yii database access objects, commonly referred to as DAO, provide a powerful
object-oriented API to work with a relational database. As the foundation for more
complex database access, such as Query Builder and Active Record, DAO enables
us to work directly with our database through SQL statements and PHP arrays.
Consequently, it is significantly more performant to work with DAO statements than
it is to work with either Active Record or Query Builder.

At the core of DAO is our yii\db\Connection class, or more commonly, our db
component \Yii::$app->db. Since our db component is already properly configured
for SQLite, we'll use it moving forward. With DAO, there are two general types of
queries that we can run: queries that return data, such as SELECT queries, and queries
that execute data, such as DELETE or UPDATE.

If you use the yii\db\Connection class directly, you'll need to
explicitly call the open() method before you can run any queries against
that connection.

Querying for data
The first way in which we can use DAO is to query for data. There are four main
methods that are used to query for data: queryAll(), queryOne(), queryScalar(),
and queryColumn().

http://www.yiiframework.com/doc-2.0/yii-db-migration.html
http://www.yiiframework.com/doc-2.0/yii-db-migration.html

Migrations, DAO, and Query Building

[56]

The first method, queryAll(), is used to query for all the data in a specific table
based upon the SQL statement used within the createCommand() method. Using our
user table as an example, we can query for all the users in our database by running
the following command:

$users = \Yii::$app->db
 ->createCommand('SELECT * FROM user;')
 ->queryAll();

After running this command, our $users variable will be populated with an array
of users:

Array
(
 [0] => Array
 (
 [id] => 1
 [email] => test@example.com
 [password] => test123
 [first_name] => test
 [last_name] => user
 [created_at] => 0
 [updated_at] => 0
)
)

The next method, queryOne(), is used to fetch a single record from the database.

$user = \Yii::$app->db
 ->createCommand('SELECT * FROM user WHERE id = 1;')
 ->queryOne();

The queryOne() method returns an array of data for a single element. In the event
that no data is found, this method will return false:

Array
(
 [id] => 1
 [email] => test@example.com
 [password] => test123
 [first_name] => test
 [last_name] => user
 [created_at] => 0
 [updated_at] => 0
)

Chapter 3

[57]

The third method, queryScalar(), is used to return the result of a SELECT query that
returns a single value. For instance, if we want to count the number of users in our
database, we can use queryScalar() to get the value:

$count = \Yii::$app->db
 ->createCommand('SELECT COUNT(*) FROM user;')
 ->queryScalar();

After running this command, our $count variable will be populated with the
number of users in our database.

The final method, queryColumn(), is used to query a specific column in our
database. For instance, if we want to know the email addresses of all the users
in our database, we can use queryAll() to fetch all that data, or we can use
queryColumn(), which would be significantly more efficient to use as it would
query for less data:

$user = \Yii::$app->db
 ->createCommand('SELECT email FROM user;')
 ->queryColumn();

Like queryAll(), queryColumn() will return an array of results:

Array
(
 [0] => test@example.com
)

In the event that no results are found, queryColumn() will return an empty array.

With our knowledge of these methods, as an exercise, let's go back to our previous
migrations and rewrite them to preserve our users across our schema change:

1.	 First, let's roll back our migrations to properly simulate the scenario:
./yii migrate/down

2.	 Then, we'll migrate our initial migration using the migrate/to command:
./yii migrate/to m150523_194158_init

3.	 Next, let's seed our database with some test data:
sqlite3 /path/to/runtime/db.sqlite
INSERT INTO user (email, password, name) VALUES
('test@example.com', 'test1', 'test user');

INSERT INTO user (email, password, name) VALUES
('test2@example.com', 'test2', 'test user 2');

Migrations, DAO, and Query Building

[58]

4.	 If we take a look at our database, we'll see that the initial schema and data is
now in place.

5.	 Then, let's rewrite our migrations/…name_change.php migration to fetch
our users from the database before running the initial migration that we
created, and then reinsert our users back into our database. We'll do this
using the queryAll() DAO method to fetch the data and the insert()
method of yii\db\Migration to put it back into the database. The new
code blocks have been highlighted for easy viewing:
public function safeUp()
{
 $users = \Yii::$app->db
 ->createCommand('SELECT * FROM user')
 ->queryAll();

 $this->dropTable('user');

 $this->createTable('user', [
 'id' => Schema::TYPE_PK,
 'email' => Schema::TYPE_STRING . ' NOT
 NULL',
 'password' => Schema::TYPE_STRING . ' NOT
 NULL',
 'first_name' => Schema::TYPE_STRING,
 'last_name' => Schema::TYPE_STRING,
 'created_at' => Schema::TYPE_INTEGER,
 'updated_at' => Schema::TYPE_INTEGER
]);

 $this->createIndex('user_unique_email', 'user',
 'email', true);

Chapter 3

[59]

 foreach ($users as $user)
 {
 $this->insert('user', [
 'id' => $user['id'],
 'email' => $user['email'],
 'password' => $user['password'],
 'first_name' => $user['name'],
 'created_at' => $user['created_at'],
 'updated_at' => $user['updated_at']
]);
 }
}

6.	 Now we can rerun our migration. If successful, we should see our original
migration run and an insert call executed for each user in our database.
./yii migrate/up –interactive=0

Migrations, DAO, and Query Building

[60]

7.	 Finally, we can query our SQLite database to preview the updated schema
and see our updated users:

sqlite3 /path/to/runtime/db.sqlite

As you can see, DAO's query method provides us with the ability to quickly and
efficiently fetch data from our database.

Quoting table and column names
When writing database-agnostic SQL queries, properly quoting field names can
be problematic. To avoid this problem, Yii2 provides the ability to automatically
quote table and column names for you using the correct quoting rule for the specific
database in use.

To automatically quote a column name, simply enclose the column name in
square brackets:

[[column name]]

To automatically quote a table, simply enclose the table name in curly brackets:

{{table name}}

An example of both of these tools in action is shown as follows:

$result = \Yii::$app->db
 ->createCommand("SELECT COUNT([[id]]) FROM {{user}}")
 ->queryScalar();

Chapter 3

[61]

Executing queries
While the query methods provide the ability to select data from our database,
we often need to execute UPDATE or DELETE commands, which do not return data.
To execute these commands, we can use the execute() method in general:

\Yii::$app->db
 ->createCommand('INSERT INTO user (email, password) VALUES
 ("test3@example.com", "test3");')
 ->execute();

If successful, the execute() method will return with true, whereas if it fails, it will
return false.

Yii2 also provides convenient wrappers for insert(), update(), and delete(),
which enables us to write commands without having to write raw SQL. These
methods properly escape and quote table and column names and bind parameters
on your behalf.

For instance, we can insert a new user into a database as follows:

// INSERT (tablename, [attributes => attr])
\Yii::$app->db
 ->createCommand()
 ->insert('user', [
 'email' => 'test4@example.com',
 'password' => 'changeme7',
 'first_name' => 'Test',
 'last_name' => 'User',
 'created_at' => time(),
 'updated_at' => time()
])
 ->execute();

We can update all the users in our database using the update() method:

// UPDATE (tablename, [attributes => attr], condition)
\Yii::$app->db
 ->createCommand()
 ->update('user', [
 'updated_at' => time()
], '1 = 1')
 ->execute();

Migrations, DAO, and Query Building

[62]

The last argument listed in our update command defines the where
condition of our query command, which we'll cover in more detail later
in the chapter. 1=1 is a common SQL idiom to update all records.

We can also delete a user in our database using the delete() method:

// DELETE (tablename, condition)
\Yii::$app->db
 ->createCommand()
 ->delete('user', 'id = 3')
 ->execute();

Additionally, if you need to insert several rows at the same time, you can use the
batchInsert() method, which can be significantly more efficient than inserting a
single row at a time:

// batchInsert(tablename, [properties], [rows])
\Yii::$app->db
 ->createCommand()
 ->batchInsert('user', ['email', 'password', 'first_name',
 'last_name', 'created_at', 'updated_at'],
 [
 ['james.franklin@example.com', 'changeme7', 'James',
 'Franklin', time(), time()],
 ['linda.marks@example.com', 'changeme7', 'Linda',
 'Marks', time(), time()]
 ['roger.martin@example.com', 'changeme7',
 'Roger', 'Martin', time(), time()]
])
 ->execute();

Yii2 does not provide a batchUpdate() or batchDelete() method
as bulk updates and deletes can be handled by the update() and
delete() methods using a normal SQL.

Parameter binding
The number one rule when working with user-submitted data is to never trust
user-submitted data. Any data that passes through our databases and has come
from an end user needs to be validated, sanitized, and properly bound to our
statements before they are executed against our database.

Chapter 3

[63]

Take, for instance, the following query:

\Yii::$app->db
 ->createCommand("UPDATE user SET first_name = 'Tom' WHERE id
 = " . $_GET['id'])
 ->execute();

Under normal circumstances, Yii would generate the following SQL, assuming
$_GET['id'] had a value of 1:

UPDATE user SET first_name = 'Tom' WHERE id = 1;

While this is innocent enough, any user who can manipulate the $_GET['id']
variable can rewrite our query to something much more dangerous. For instance,
they could drop our entire user table simply by substituting $_GET['id'] with 1;
DROP TABLE user; --:

UPDATE user SET first_name = 'Tom' WHERE id = 1; DROP TABLE user; --

This kind of attack is called SQL injection. To help protect against SQL injection, Yii2
offers several different ways to bind parameters to our queries in a way that will
filter our injected SQL. These three methods are bindValue(), bindValues(),
and bindParam().

The first method, bindValue(), is used to bind a single parameter to a token within
our SQL statement. For example, we can rewrite the previous query as follows:

\Yii::$app->db
 ->createCommand("UPDATE user SET first_name = :name
 WHERE id = :id)
 ->bindValue(':name', 'Tom')
 ->bindValue(':id', $_GET['id'])
 ->execute();

Alternatively, we can use the bindValues() method to bind several parameters into
a single call:

\Yii::$app->db
 ->createCommand("UPDATE user SET first_name = :name
 WHERE id = :id)
 ->bindValues([':name' => 'Tom', ':id' => $_GET['id']])
 ->execute();

Migrations, DAO, and Query Building

[64]

For convenience, the previous query can be rewritten so that the parameters are in
line with the createCommand() method:

$params = [':name' => 'Tom', ':id' => $_GET['id']];
\Yii::$app->db
 ->createCommand("UPDATE user SET first_name =
 :name WHERE id = :id, $params)
 ->execute();

The final method, bindParam(), is valued to bind parameters by reference rather
than by value:

$id = 1;
$name = 'Tom';
$q = \Yii::$app->db
 ->createCommand("UPDATE user SET first_name =
 :name WHERE id = :id)
 ->bindParam(':name', $name)
 ->bindParam(':id', $id);

Because bindParam() binds parameters by reference, we can change the bounded
values to execute multiple queries. Following the previous example, we can write the
following to update multiple users without having to rewrite our query each time:

$q->execute();
$id = 2;
$name = 'Kevin';
$q->execute();

Remember, the most important rule of working with user data is to never
trust user-submitted data. Even in cases where you're 100% certain that
SQL injection cannot happen, it's recommended that you use parameter
binding rather than writing in line SQL. This will protect you against
future changes to your code.

Transactions
When running multiple queries in a sequence, we often want to ensure that our
database state remains consistent across these queries. Most modern databases
support the use of transactions to accomplish this. In a transaction, changes are
written to the database in such a way that they can be committed if everything went
well or rolled back without consequence if any given query within the transaction
failed. In Yii2, this looks as follows:

Chapter 3

[65]

$transaction = \Yii::$app->db->beginTransaction();

try {
 \Yii::$app->db->createCommand($sql)->execute();
 \Yii::$app->db->createCommand($sql)->execute();
 //[… more queries …]
 $transaction->commit();
} catch (\Exception $e) {
 $transaction->rollBack();
}

Query Builder
Building on top of the foundations laid by DAO is Yii's Query Builder. Yii's Query
Builder allows us to write database-agnostic queries in a programmatic way.
Consequently, queries written through the Query Builder are significantly more
readable than their DAO counterparts.

The basics of Query Builder involve the creation an instance of yii\db\Query, the
construction of a statement, and then the execution of that query statement. For
example, we could simply query for all the users in our database in Query Builder
using the following code:

$users = (new \yii\db\Query())
 ->select(['id', 'email'])
 ->from('user')
 ->all();

When working with Query Builder, we're actually using the yii\db\
Query class rather than yii\db\QueryBuilder. While yii\db\
QueryBuilder can generate SQL statements similar to those generated
by yii\db\Query, yii\db\Query enables these statements to be
database-agnostic. In general, you'll want to work with yii\db\Query
when using Query Builder.

Query construction methods
The basics of Query Builder involve the chaining of multiple query methods
together. These method names directly correspond with the SQL segment that they
are named after. When working with Query Builder, the most common methods that
you'll use will be the select(), from(), and where() methods.

Migrations, DAO, and Query Building

[66]

Moving forward, we'll use the following variable to represent our query
builder object:

$query = (new \yii\db\Query());

The select method
The select() method directly corresponds to the SELECT segment of our SQL query
and accepts either a string of column names or an array of columns to specify the
columns that we would want to select from our database. For instance, the following
queries are identical:

$query->select('id, first_name)->from('user');
$query->select(['id', 'last_name'])->from('user');

When using the select() method, the array format is generally easy to
read and work with. If you choose to list the column names as a string,
ensure that you do that consistently throughout your application. In the
following examples, we'll use the array format.

The select() method also supports column aliases and table prefixes, as shown in
the next example:

$query->select([
 'id' => 'user_id',
 'user.first_name' => 'fName']
)->from('user');

In addition to column names, the select method also provides support for
expressions. For instance, if we want to retrieve the user's complete name as
a single field, we can execute the following query:

$query->select([
 "id",
 "CONCACT(first_name, ' ', last_name)" => 'full_name'
])->from('user');

The select method can also be used to execute subqueries, such as COUNT():

$query->select('COUNT(*)')->from('user');

Finally, the select statement can be chained with the distinct() method to
retrieve unique records. For instance, if we want to list all the first names of our
user's database, we can execute the following query:

$query->select('first_name')->distinct()->from('user');

Chapter 3

[67]

Omitting the select() method from your query will result in a SELECT
* query being performed.

The from method
Our previous examples have already illustrated the basic usage of the from()
method. The from() method can also be used to specify a table alias, as shown
in the following example:

$query->select('first_name')->from(['u' => 'users']);

Like the select() method, the from() method can also accept strings
as an input rather than an array. The preceding query can be rewritten as
$query->select('first_name')->from(['users u');.

The where method
The where() method specifies the where segment of our SQL query and can be used
either in a string format, hash format, or operator format.

The string format
The string format of the where() method should always be chained with the
addParams() method in order to prevent SQL injection:

$query->select(['first_name', 'last_name'])
 ->from('user')
 ->where('id = :id')
 ->addParams([':id' => 1]);

Alternatively, the parameters can be rewritten as the second argument to the
where() method:

$query->select(['first_name', 'last_name'])
 ->from('user')
 ->where('id = :id', [':id' => 1]);

Remember to avoid adding PHP variables inline in your where()
method in order to avoid SQL injection.

Migrations, DAO, and Query Building

[68]

The hash format
The hash format provides an even better way to chain multiple AND conditions
together in the where statement. Rather than passing a string as a parameter, we can
instead pass an array of key values representing the column name and value. When
using the hash format, the selected fields will be joined together with the SQL AND.

For example, we can find all the users in our database with the first name of John
who were in their 20s and who didn't have a listed pet name by running the
following query:

$query->from('user')
 ->where([
 'first_name' => 'John',
 'pets_name' => NULL,
 'age' => [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
]);

Our database currently doesn't have an age or pets_name field. We
will have to adjust our schema with a migration to add these fields to
our database.

This would result in the following query:

SELECT *
FROM user
WHERE first_name = "John" AND
 pets_name IS NULL AND
 age IN (20, 21, 22, 23, 24, 25, 26, 27, 28, 29);

As illustrated previously, the hash format allows you to generate more
complex WHERE queries, such as those that use IN when specifying an
array of values and IS NULL when passing null as the array value.

The operator format
The last way to use the where() method is to use the operator format. The operator
format allows us to build more complex SQL queries containing conditionals such as
LIKE, OR, BETWEEN, and EXISTS, just to name a few examples.

In general, the operator format takes the following format:

where([operator, condition1, condition2]);

Chapter 3

[69]

For example, if we want to fetch all users from our database who had the first name
of John or Jill, we can execute this:

$query->where(['or', 'John', 'Jill']);

For a complete list of all the available operators that the operator format
supports, check out the Yii2 API documentation at http://www.
yiiframework.com/doc-2.0/yii-db-query.html#where()-
detail.

As you can imagine, the where() method can quickly become very bulky and
complicated. Rather than using the operator, you may find your code more
readable by using the andWhere() or orWhere() methods to chain multiple
conditions together:

$query->andWhere(['in', 'id', [1,2,3,4,5]);

Ordering results
Query builder can also sort results by a given field using the orderBy() method.
For example, to sort all of our users in our database by age, we can construct the
following query:

$query->from('user')
 ->orderBy('age ASC');

Limiting and offsetting data
Commonly used with the where() method are the limit() and offset() methods,
which are used to limit the number of results and offset our results by a given
number of results. When properly used together, these two methods form the basics
of paginating through results:

$query->from('user')
 ->limit(5)
 ->offset(5);

Grouping and having
Often when working with diverse datasets, we'll need to perform some analysis on
our data. Aggregate functions such as GROUP BY and HAVING can greatly assist in
extracting additional information from our data. Yii2 supports these methods via the
groupBy() and having() methods.

http://www.yiiframework.com/doc-2.0/yii-db-query.html#where()-detail
http://www.yiiframework.com/doc-2.0/yii-db-query.html#where()-detail
http://www.yiiframework.com/doc-2.0/yii-db-query.html#where()-detail

Migrations, DAO, and Query Building

[70]

For example, if we want to list the number of users in our database in each age
group, we can execute the following query:

$query->select(['age', 'COUNT(*)' => 'users'])
 ->from('user')
 ->groupBy('age');

This will generate the following SQL statement:

SELECT age, COUNT(*) AS users FROM user GROUP BY age;

The groupBy() method behaves similar to the select() method in that it
accepts either an array or a string as an argument; however, when using database
expressions, you'll need to use the array syntax.

After grouping our results with groupBy(), we can then filter our results with
the having() method, which behaves the same as the where() method. The
following example will only show the number of users in our dataset who are
over a specified age:

$query->select(['age', 'COUNT(*)' => 'users'])
 ->from('user')
 ->groupBy('age')
 ->having('>', 'age', 30');

Joins and unions
When working across multiple tables, you may often need to perform a join or union
on your datasets. Joins and unions can be performed through query builder using
the join() and union() methods.

The join method has the following method syntax:

$query->join($type, $table, $on, $params);

The first parameter, $type, specifies the join type you'd like to execute (for example,
INNER JOIN, LEFT JOIN, or OUTER JOIN). The $table parameter specifies the table
to be joined. The third parameter, $on, specifies the conditions on which the table
should be joined and takes the syntax of the where() method, and the $params
parameter specifies optional parameters to be bound to the join.

For example, suppose we had a posts and users table. We could join them as follows
using the join() method:

$query->join('LEFT JOIN', 'post', 'post.user_id = user.id');

Chapter 3

[71]

Assuming our database had both a user and post table, this would return a return
containing a join of all users and their posts. The result would include all users
joined with all the posts that they owned.

Joins can also be performed by type using the shortcut methods rightJoin(),
leftJoin(), and innerJoin().

In the same vein, unions of two different queries can be constructed by first building
two separate yii\db\Query objects and then using the union() method on them,
as follows:

$query1->union($query2);

Executing queries
After constructing our query with Query Builder, we'll need to specify the execution
of our query. Yii2 provides the following query methods to execute queries built
with Query Builder. The query methods are simply chained to the existing $query
object, which will immediately result in their execution.

Most of the times when working with Query Builder, we'll want to fetch all the
records in our database. This can be done by chaining the all() methods to our
query object, which will retrieve all the records that fulfill the requirements of our
$query object:

$results = $query->all();

The $result variable will then be populated with an array of rows, with each row
containing an associated array of name-value key pairs for the resulting data.

Carefully consider using the all() method if you have a large dataset,
as the resulting query execution could take a long time to complete, and it
could either hang or cause an error in your application.

In other instances, it may be more beneficial just to fetch the first row of a query.
To fetch the first row, we can use the one() method:

$row = $query->one();

At other times, we may just want to know whether a query would result in any data.
To achieve this, we can use the exists() method, which will return either true or
false, indicating that data would be returned from the resulting query.

Migrations, DAO, and Query Building

[72]

For example, if we want to know whether we have any users in our database, we can
use the exists() query to check whether we had users before we performed any
more complex queries:

$areUsersInDb = (new \yii\db\Query)
 ->from('user')
 ->exists();

Alternatively, we can use the count() method to determine how many users exist
in our database before running our query. The count() method will execute a
COUNT(*) method within the SELECT fragment, and it will return a scalar value:

$count = (new \yii\db\Query)
 ->from('user')
 ->count();

When working with database expressions, such as MIN() and MAX(), or even more
complex queries, you may find it useful to retrieve scalar values from query builder
rather than an associative array. To fetch scalar values with query builder, we can
use the scalar() method. For instance, if we want to know how old the oldest user
is in our database using the MAX() SQL method, we can use the following code to
return an integer representing their age:

$age = (new \yii\db\Query)
 ->select('MAX(age)')
 ->from('user')
 ->scalar();

Finally, we may find it beneficial to retrieve the first column of our database results,
such as in the instance of using the groupBy() or having() methods. To fetch the
first row of our results, we can use the column() method:

$result = (new \yii\db\Query)
 ->from('user')
 ->column();

In the previous example, the first column of our user table is the ID field.
Consequently, an array of all IDs in our database will be returned.

Selecting all columns (*) will result in all records being loaded into the
memory, which, depending upon the size of the table, could result in
performance degradation. It's important to remember when querying
for data that you only query for the data you need. If you need all data,
you query for it in iterative way such as to limit the memory required
for each query.

Chapter 3

[73]

Examining queries
After building a query, you may want to examine the resulting query. To achieve
this, the createCommand() method can be used to convert the Query Builder object
into a DAO command:

$command = $query->select(['first_name', 'last_name'])
 ->from('user')
 ->where('id = :id', [':id' => 1])
 ->createCommand();

// Show the generated SQL statement
echo $command->sql;

// Show the bound parameters
var_dump($command->params);

// Execute the query via normal DAO commands
$rows = $command->queryAll();

Iterating over query results
Often when working with large datasets, the resulting datasets may be too large to
load into the memory. To keep the memory consumption low and to prevent our
application from hanging, we can use either the batch() or each() method. By
default, both methods will fetch 100 rows from the database. To change the number
of rows to be fetched, simply change the first parameter of each method:

$query->from('user');

// $users will ben an array of 100 or fewer rows from the database
foreach ($query->batch() as $users) {}

// Whereas the each() method allows you to iterate over the
first 50 or fewer users one by one
foreach ($query->each(50) as $user) {}

A batch() method supports fetching the data in batches, which can keep the
memory down. Think of this method as a query appended with a limit and an offset
parameter, which will restrict the number of returned rows. Each iteration of the
batch() query will contain multiple results. Like the batch() method, the each()
method can be used to reduce memory consumption as well, but it will iterate over
the query row-by-row instead, which means that each iteration of the method will
result in a single instance of our data.

Migrations, DAO, and Query Building

[74]

Data providers and data widgets
In Yii2, data providers are helper classes that are used to extract data via Query
Builder to be passed to a data widget. The benefit of using data providers and data
widgets over queries built via Query Builder is that they provide an interface to
automatically deal with sorting and pagination.

The most common way to work with data providers is to use the yii\data\
ActiveDataProvider class. Typically, yii\data\ActiveDataProvider will
be used with Active Record models:

$provider = new ActiveDataProvider([
 'query' => User::find(),
 'pagination' => [
 'pageSize' => 20,
],
]);

We'll cover how to create and use Active Record and models in Chapter 4,
Active Record, Models, and Forms.

Active data providers can also be populated through Query Builder, as shown in the
following example:

$query = new yii\db\Query();
$provider = new ActiveDataProvider([
 'query' => $query->from('user'),
 'pagination' => [
 'pageSize' => 20,
],
]);

Yii2 provides two additional data provider types: yii\data\
ActiveDataProvider and yii\data\SqlDataProvider. For
more information on these data providers, check out the Yii2 guide at
http://www.yiiframework.com/doc-2.0/guide-output-data-
providers.html.

Once we have fetched our data with a data provider, we can pass the resulting
data to a data widget. Data widgets in Yii2 are reusable building blocks used within
views to create complex interfaces to interact with data. The most common data
widgets are DetailView, ListView, and GridView, which behave similar to their
Yii1 counterparts.

http://www.yiiframework.com/doc-2.0/guide-output-data-providers.html
http://www.yiiframework.com/doc-2.0/guide-output-data-providers.html

Chapter 3

[75]

For instance, we can take our previous data provider and output it in GridView,
as follows:

$query = new yii\db\Query();
$provider = new yii\data\ActiveDataProvider([
 'query' => $query->from('user'),
 'pagination' => [
 'pageSize' => 2,
],
]);

echo yii\grid\GridView::widget([
 'dataProvider' => $provider
]);

By itself, our resulting GridView widget will display all the fields in our database
table. In some instances, there may be sensitive data that we don't want to display on
this page. Alternatively, there could simply be too much data to display in GridView.
To restrict the number of fields to display in our GridView widget, we can use the
columns attribute:

echo yii\grid\GridView::widget([
 'dataProvider' => $provider,
 'columns' => [
 'id',
 'email',
 'first_name',
 'last_name',
 'created_at',
 'updated_at'
]
]);

Migrations, DAO, and Query Building

[76]

We can further enhance our data providers using the yii\data\Sort class,
which provides sorting capabilities to our data providers. To add sorting to
our data provider, we'll need to specify the sort parameter within yii\data\
ActiveDataProvider with an instance of yii\data\Sort, which specifies the
attributes that can be sorted against:

$query = new yii\db\Query();
$provider = new yii\data\ActiveDataProvider([
 'query' => $query->from('user'),
 'sort' => new yii\data\Sort([
 'attributes' => [
 'email',
 'first_name',
 'last_name'
]
]),
 'pagination' => [
 'pageSize' => 2,
],
]);

As illustrated, the listed attributes within the sort attribute are now clickable and
sortable through our data provider.

More information on output data widgets can be found in the Yii2 guide
at http://www.yiiframework.com/doc-2.0/guide-output-
data-widgets.html.

While some widgets, such as GridView, allow us to work with and display multiple
rows, we can also use data providers and data widgets to display information for
a single row. With the DetailView widget, we can dynamically configure a simple
interface to display the information for a particular user in our database. The
getModels() method of our data provider splits our data provider into individual
models that our DetailView widget can understand:

http://www.yiiframework.com/doc-2.0/guide-output-data-widgets.html
http://www.yiiframework.com/doc-2.0/guide-output-data-widgets.html

Chapter 3

[77]

echo yii\widgets\DetailView::widget([
 'model' => $user,
 'attributes' => [
 'id',
 'first_name',
 'last_name',
 'email',
 // Format the updated dates as datetime object
 // Rather than an integer
 'updated_at:datetime'
]
]);

Typically when working with the DetailView widget, we'll supply
it with an Active Record instance rather than a generated model
from our data provider, which we'll cover in Chapter 4, Active Record,
Models, and Forms.

This will be displayed on our screen:

In addition to simply displaying results from a database, the DetailView widget
also supports the custom formatting of certain rows. In our previous example,
we were able to format our Unix timestamp stored in the updated_at field as
human-readable date and time fields by specifying the :datetime formatter in our
updated field:

'attributes' => [
 [...],
 'updated_at:datetime'
]

The formatter listed here is a powerful tool that allows us to
quickly convert raw data into useful human-readable information.
More information on the formatter can be found at http://www.
yiiframework.com/doc-2.0/yii-i18n-formatter.html.

www.allitebooks.com

http://www.yiiframework.com/doc-2.0/yii-i18n-formatter.html
http://www.yiiframework.com/doc-2.0/yii-i18n-formatter.html
http://www.allitebooks.org

Migrations, DAO, and Query Building

[78]

Data replication and load balancing
As we start working with larger and larger systems, we often find the need to build
an additional redundancy into our system in order to enable high availability and
protection against unexpected downtime. When working with large systems, we
will split our database into a read-and-write master and a read-only slave of a set of
slaves. Typically, our applications are unaware of our database architecture, which
can introduce problems when required to migrate from a new master. With Yii2,
we can configure our database connection to not only be aware of our master-slave
database configuration, but also intelligently handle slave unavailability.

In Yii2, we can configure a single master and multiple slaves using the following
database configuration. This will result in all writes going to our declared master
and all reads going to one of our declared slaves:

$config = [
 'class' => 'yii\db\Connection',

 // configuration for the master
 'dsn' => '<master_dns>',
 'username' => 'master',
 'password' => '<master_password>',

 // common configuration for slaves
 'slaveConfig' => [
 'username' => 'slave',
 'password' => '<slave_password>',
 'attributes' => [
 // Use a small connection timeout
 PDO::ATTR_TIMEOUT => 10,
],
],

 // List of slave configurations.
 'slaves' => [
 ['dsn' => '<slave1_dsn>'],
 ['dsn' => '<slave2_dsn>'],
 ['dsn' => '<slave3_dsn>'],
]
];

$db = Yii::createObject($config);

Chapter 3

[79]

// Would execute against an available slave
$users = $db->createCommand('SELECT * FROM user')->queryAll();

// Would execute against the master
$db->createCommand('UPDATE user SET updated_at =
NOW()')->execute();

In general, queries executed with the execute() method will run against
the master, whereas all other queries will run against one of the slaves.

In this configuration, Yii will execute write queries (such as UPDATE, INSERT, and
DELETE) against the master and run a read query (such as SELECT) against one of the
available slaves. When working with slaves, Yii will attempt to connect to slaves in
the list until a slave responds and load balance queries against each of the available
slaves. By setting PDO::ATTR_TIMEOUT equal to 10 seconds, Yii will abort trying to
retrieve data from a slave if it receives no response within 10 seconds, and it will
remember the state of the slave for the duration that the configuration is in effect.

Alternatively, using the following configuration, we can configure our application to
work with both multiple masters and multiple slaves. When using multiple masters,
Yii will execute writes against any available master and will load balance writes
between the available masters:

$config = [
 'class' => 'yii\db\Connection',
 'masterConfig' => [
 'username' => 'master',
 'password' => '<master_password>',
 'attributes' => [
 // use a smaller connection timeout
 PDO::ATTR_TIMEOUT => 10,
],
],

 // list of master configurations
 'masters' => [
 ['dsn' => '<master1_dsn>'],
 ['dsn' => '<master2_dsn>'],
],

 'slaveConfig' => [...],
 'slaves' => [...]
];

Migrations, DAO, and Query Building

[80]

If Yii2 is unable to connect to any of the available masters, an exception
will be thrown.

When working with a master-slave topology, we may want to issue a read query
against one of our masters. To do that, we would need to explicitly tell Yii2 to run
our query against our master rather than our slaves:

$rows = $db->useMaster(function ($db) {
 return $db->createCommand('SELECT * FROM user')->queryAll();
});

When working with transactions, Yii2 will try to run transactions against our master
by default. If we need to issue a transaction against a slave, we will need to explicitly
begin the transaction on a slave, as follows:

$transaction = $db->slave->beginTransaction();

Summary
In this chapter, we covered the foundations of working with databases in Yii2.
By working with database access objects, we showed how we can execute raw
SQL statements to run against our database and how we can use transactions to
protect our database integrity. We also illustrated the use of Query Builder, which
can enable us to write database-agnostic queries in a programmatic way. We then
discovered how we can use Query Builder to construct intelligent data providers,
which are used to supply data to reusable data widgets. Finally, we learned how
to configure Yii2 to be aware of master-slave and multi-master database cluster
configurations and how to load balance between these connections.

In the next chapter, we discover the capstone of working with databases in
Yii2—Active Record—which is a powerful tool used to work with our data and
model our database structure. We'll also dive into Active Records relatives, basic
models, and forms, and we'll learn how we can use a powerful tool called Gii to
automate the construction of much of the code our modern applications will
work with.

[81]

Active Record, Models,
and Forms

Like many modern web frameworks, Yii2 comes with several powerful classes
to represent data both in and out of our database. These classes enable us to
abstract our data management code away from DAO and Query Builder and into
an easy-to-use programmatic interface. In this chapter, we'll cover the use and
implementation of Active Record and learn how to create data models and custom
forms. We'll also cover how to configure a powerful code generation tool called Gii
to automate the creation of Active Record models and forms.

Configuring Gii
While Active Record models and forms can be generated by hand, in most cases,
we'll want to automate the creation of this code. To achieve this, Yii2 provides a
code generation tool called Gii, which can be executed both from the command line
and from a web interface in order to create Active Record models that work with
our database structure and forms that work with both our base models and Active
Record models.

Active Record, Models, and Forms

[82]

Unlike Yii1, Gii does not come prebundled with Yii2. In Yii2, nearly every module
is available as a separate Composer package, which can be installed from the
command-line interface. Consequently, we must use Composer to include Gii in our
application. Since Gii is available as a composer package, we can include it in our
application by running the following command from our command line:

$ composer require yiisoft/yii2-gii --dev

Since Gii is a development tool and has the ability to write new code to
our application, we should use the --dev flag so that Composer adds it to
the require-dev section of our composer.json file. Typically, during
our deployment process, we'll use the --no-dev flag to ensure that
development packages are not deployed to our production environment.

With Gii installed, we now need to configure it to work with both the Yii2 console
and within our web browser.

Gii for web applications
To enable the web interface for Gii, we'll need to specify a module section within
our config/web.php configuration file and bootstrap the Gii module so that it
loads properly:

return [
 'bootstrap' => ['gii'],
 'modules' => [
 'gii' => [
 'class' => 'yii\gii\Module',
 'allowedIPs' => ['*']
]
 // [...]
],
 // [...]
];

Chapter 4

[83]

By default, Gii is only available on the loopback interface of your
machine. If you're using a remote development server or a virtual
machine, you'll need to either whitelist your host IP within the
allowedIPs block or set the allowedIPs block to the wildcard
character * in order to grant your computer access to Gii.

While this basic configuration will properly load the Gii module, it doesn't follow
our convention of being aware of our environment. For instance, if we went to
production with this configuration and deployed it with composer install --no-
dev, as described earlier, our application would crash because Composer would not
have installed the Gii module in our vendor folder.

Fortunately, since we previously defined our APPLICATION_ENV constant in our
bootstrap file rather than returning a static array containing our configuration file,
we can store our configuration as a variable and conditionally modify it to include
the Gii module depending upon which environment we are working in:

<?php

$config = [
 'id' => 'basic',
 'basePath' => dirname(__DIR__),
 'bootstrap' => ['log'],
 'components' => [
 'request' => [
 'cookieValidationKey' => '<random_key>',
],
 'cache' => [
 'class' => 'yii\caching\FileCache',
],
 'user' => [
 'identityClass' => 'app\models\User',
 'enableAutoLogin' => true,
],
 'errorHandler' => [
 'errorAction' => 'site/error',
],
 'log' => [
 'traceLevel' => YII_DEBUG ? 3 : 0,
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',

Active Record, Models, and Forms

[84]

 'levels' => ['error', 'warning'],
],
],
],
 'db' => require(__DIR__ . '/db.php'),
],
 'params' => require(__DIR__ . '/params.php'),
];

if (APPLICATION_ENV == "dev")
{
 $config['bootstrap'][] = 'gii';
 $config['modules'] = [
 'gii' => [
 'class' => 'yii\gii\Module',
 'allowedIPs' => ['*']
]
];
}

return $config;

As an alternative to APPLICATION_ENV, you can conditionally load Gii
using the YII_ENV_DEV constant, which is typically defined in your
bootstrap file:

if (YII_ENV_DEV) // YII_ENV_DEV = true. Define in ./yii

{ // to enable this constant

 $config['bootstrap'][] = 'gii';

 $config['modules'] = [

 'gii' => 'yii\gii\Module'

];

}

For our configuration files, the use of either constant is appropriate.
However, most developers find that allowing their web server or
command line to define the APPLICATION_ENV constant requires less
maintenance than manually managing the YII_ENV_DEV constant.

Chapter 4

[85]

Gii can now be accessed by navigating our web browser to our application path and
changing the URI to /index.php?r=gii.

If you have already enabled pretty URLs for your application, Gii can be
accessed by navigating to the /gii endpoint.

Gii for console applications
Unlike Yii1, Gii for Yii2 provides a new interface to work with Gii on the command
line. With Yii2, we can now generate the source code for Active Record models,
forms, and even extensions all from our command-line interface.

Active Record, Models, and Forms

[86]

The simplest way to enable Gii for our console applications is to modify our config/
console.php file to include the Gii module within the module section of our
configuration file and then bootstrap the Gii module itself, as follows:

return [
 'bootstrap' => ['gii'],
 'modules' => [
 'gii' => 'yii\gii\Module',
 // [...]
],
 // [...]
];

Like our web application, this basic configuration doesn't enable our application
function properly in every environment. We can reconfigure our config/console.
php file in the same manner as our web configuration file in order to ensure that the
Gii module is only loaded in our development environment:

<?php

Yii::setAlias('@tests', dirname(__DIR__) . '/tests');

$config = [
 'id' => 'basic-console',
 'basePath' => dirname(__DIR__),
 'bootstrap' => ['log'],
 'controllerNamespace' => 'app\commands',
 'components' => [
 'cache' => [
 'class' => 'yii\caching\FileCache',
],
 'log' => [
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
 'levels' => ['error', 'warning'],
],
],
],
 'db' => require(__DIR__ . '/db.php'),
],
 'params' => require(__DIR__ . '/params.php'),
];

Chapter 4

[87]

if (APPLICATION_ENV == "dev")
{
 $config['bootstrap'][] = 'gii';
 $config['modules'] = [
 'gii' => 'yii\gii\Module'
];
}

return $config;

As shown in the previous code block, the module section of our configuration file can
be loaded using a shorter syntax if we don't need to register additional options with
our module, which is generally the preferred way to load modules:

$config['modules'] = [
 'gii' => 'yii\gii\Module'
];

With our console environment configured, we can now run Gii from the command
line by invoking the help command within the ./yii command:

$./yii help gii

Active Record, Models, and Forms

[88]

With our console application configured to use Gii, we can now start using the Gii
tool to create code. As we move through the rest of the chapter, we'll cover how to
use Gii from the web interface as well as the console interface.

Active Record
One of the most important tasks when building rich web applications is ensuring
that we properly model and represent our data in code. From a simple blog site to an
application as big as Twitter, data modeling and representation are vital to ensuring
that our application is easy to work with and can grow as required. To help us model
our data, Yii2 implements the Active Record pattern, also known as Active Record
within the yii/db/ActiveRecord class.

The Active Record pattern
Named by Martin Fowler in his 2003 book Patterns of Enterprise Application
Architecture, the Active Record pattern is an object-relational mapping (ORM)
pattern that's used to represent database rows and columns within an object. In
the Active Record pattern, each database column is represented by a single Active
Record class. Upon instantiation, that object then provides a simple interface to
manage individual rows or a collection of rows within our code. New rows can
be created, old ones can be deleted, and existing rows can be updated—all within
a simple and consistent API. Active Record also enables us to programmatically
reference and interact with related data, which is usually represented in our
database by foreign key relations.

In Yii2, Active Record is implemented by the yii/db/ActiveRecord class and
is often considered the go-to class to represent and work with the data within
our database. While many frameworks and ORMs implement Active Record for
relational databases only, Yii2 implements Active Record for search tools such
as Sphinx and ElasticSearch as well as for NoSQL databases such as Redis and
MongoDB. In this section, we'll cover how to create new Active Record classes, how
to implement them within our code, and some common pitfalls of working with
Active Record.

Before we start working with Active Record, we first need to create a couple of
tables that we can work with. Included with the project resources for this chapter is
a base migration that will create several new tables and populate them with some
sample data:

$./yii migrate/up –interactive=0

Chapter 4

[89]

After running the migration, you can verify that the following schema exists within
our database by running the .schema command from the sqlite3 tool.

Creating Active Record classes
To get started with Active Record in Yii2, we first need to declare an instance of
yii/db/ActiveRecord within our application. Since Active Record instances in Yii2
extend from the yii/base/Model class and are considered models, we will generally
store them within the models/ directory of our application and under the app/
models namespace.

In Yii2, @app is a predefined alias that points to our application base path.
Consequently, any namespace declared in our application will typically
take the form of app\<folder>, which enables Yii2's built-in autoloader
to automatically reference that namespace to our class found in
/<folder>/ClassName.php. If we want to, we can declare additional
aliases, such as @frontend and @backend, to divide our application
into different sections, which would enable us to create multiple Active
Record instances in different namespaces.
To keep things simple in this chapter, we'll declare only those Active
Record classes that are within the app\models namespace.

Active Record, Models, and Forms

[90]

To illustrate an example, let's create an Active Record class for the user table we
created in Chapter 3, Migrations, DAO, and Query Building:

1.	 First, we need to create a new file in the models/ directory of our application,
called User.php:
touch models/User.php

2.	 Next, we need to declare the namespace our Active Record instance will live
in and extend the yii/db/ActiveRecord class:
<?php

namespace app\models;

use yii\db\ActiveRecord;

class User extends ActiveRecord {}

3.	 Finally, we need to implement the static method tableName() within our
class, which defines the table name our Active Record model will use. Since
our Active Record model will use the user table, we will define this method
as follows:

/**
 * @return string the string name of the database table
 */
public static function tableName()
{
 return 'user';
}

Creating active record classes with Gii
While it's possible to create Active Record instances by hand, generally, we'll want to
use Gii to create these classes for us. Using Gii to create our Active Record classes has
several advantages: in addition to creating the class, it will also create attribute labels
for our fields, create validation rules based upon our database schema, and generate
model relationships to another Active Record classes based upon our databases'
foreign key structure.

Chapter 4

[91]

Using Gii's web interface
Like Yii1, Gii provides a friendly and easy-to-use web interface to create our Active
Record instances. To get started with Gii, navigate to the /gii endpoint of our
application and click on the Start button underneath the Model Generator section.

From this page, we can generate Active Record classes based upon our database
schema. As an example, let's create an active record instance for our user table:

1.	 First, we need to populate the Table name field with user, the name of the
user table in our database. As you type, Gii will try to show you possible
database tables that match our text entry, which can be extremely beneficial
when working with large databases.

2.	 Next, we need to either press the Tab key on our keyboard, or focus our
mouse onto the Model name field, which should autopopulate the field with
User, which will be the name of the class that Gii will generate.

Active Record, Models, and Forms

[92]

3.	 Then, we need to ensure that the Generate Relations checkbox is selected.
This will automatically add the required code to our class in order to
generate our model relations for the Post and Role classes, which we'll
create in the next section. After checking this box, our form should be filled
as follows:

4.	 Then, we can click on the Preview button at the bottom of the page, which
will enable us to preview the code that Gii will generate for us before we
confirm the creation of our class.

Chapter 4

[93]

5.	 After we preview the class, we can click on the Generate button to generate
our User class, which will be located at models/User.php.

In order to create new classes for us, the web user that our server is
running under needs write access to our models/ directory. If Gii returns
an error indicating it cannot write to the models/ directory, you'll need
to adjust the permissions on the directory. In our Linux environment, this
can be done by adding the www-data group to the folder and adjusting
the permissions so that the user can write to it:
chown –R <me>:www-data /path/to/models/
chmod –R 764 /path/to/models/

As an alternative, you can use the chmod tool to adjust the permissions
in the models/ directory to 777. Just ensure that you readjust the
permissions to something more reasonable after using Gii to create
the model.

By default, Gii is configured to add new models to the models/ folder in our
application and create the models under the app/models namespace. Additionally,
the yii/db/ActiveRecord class is configured to automatically use the db component
of our application. All of these fields are configurable within the Gii web interface for
us to change.

Using Gii's console interface
As an alternative to Gii's web interface, Gii can generate Active Record classes from
the command line. When running Gii from the command line, we simply need to
provide two attributes: the table name that we are working with and the name of the
model. This takes the following form:

./yii gii/model --tableName=<tablename> --modelClass=<ModelName>

Active Record, Models, and Forms

[94]

As an example, we can create a class for our post table by running the
following command:

./yii gii/model --tableName=post --modelClass=Post

While we're here, let's also create a class for our role table:

./yii gii/model --tableName=role --modelClass=Role

Working with Active Record
Now that our models have been generated, let's take a look at what Gii actually
wrote to the disk. We'll start by opening up models/User.php, which should be
identical to the following code block:

<?php

namespace app\models;

use Yii;

/**
 * This is the model class for table "user".
 *
 * @property integer $id
 * @property string $email
 * @property string $password
 * @property string $first_name
 * @property string $last_name
 * @property integer $role_id
 * @property integer $created_at
 * @property integer $updated_at
 *

Chapter 4

[95]

 * @property Post[] $posts
 * @property Role $role
 */
class User extends \yii\db\ActiveRecord
{
 /**
 * @inheritdoc
 */
 public static function tableName()
 {
 return 'user';
 }

 /**
 * @inheritdoc
 */
 public function rules()
 {
 return [
 [['email', 'password'], 'required'],
 [['role_id', 'created_at', 'updated_at'], 'integer'],
 [['email', 'password', 'first_name', 'last_name'],
 'string', 'max' => 255],
 [['email'], 'unique']
];
 }

 /**
 * @inheritdoc
 */
 public function attributeLabels()
 {
 return [
 'id' => 'ID',
 'email' => 'Email',
 'password' => 'Password',
 'first_name' => 'First Name',
 'last_name' => 'Last Name',
 'role_id' => 'Role ID',
 'created_at' => 'Created At',
 'updated_at' => 'Updated At',
];
 }

Active Record, Models, and Forms

[96]

 /**
 * @return \yii\db\ActiveQuery
 */
 public function getPosts()
 {
 return $this->hasMany(Post::className(),
 ['author_id' => 'id']);
 }

 /**
 * @return \yii\db\ActiveQuery
 */
 public function getRole()
 {
 return $this->hasOne(Role::className(), ['id'
 => 'role_id']);
 }
}

Model validation rules
The first section we should notice in our generated active record class is the rules()
method, which Gii generated for us. Since yii/db/ActiveRecord extends yii/
base/Model, it inherits all the validation logic and tools that yii/base/Model has:

public function rules()
{
 return [
 [['email', 'password'], 'required'],
 [['role_id', 'created_at', 'updated_at'], 'integer'],
 [['email', 'password', 'first_name', 'last_name'],
 'string', 'max' => 255],
 [['email'], 'unique']
];
}

When Gii created our model, it scanned our database schema to determine any
necessary validation rules it thought we would need to have by default. As shown
in the previous code block, it has marked both the email and password attributes
as required and the email field as unique, and it has correctly identified the
appropriate data types for our name fields as well as timestamps.

Chapter 4

[97]

The rules() method in Yii consists of an array of validation rules that take the
following format:

[
 // Specifies which attributes should be validated, REQUIRED
 ['attr', 'attr2', ...],

 // Specifies the validator to be used, REQUIRED
 // Can be either a built in core validator,
 // a custom validator method name, or a validator alias
 'validator',

 // Specifies the scenarios that the validator should
 // run on, OPTIONAL
 'on' => ['scenario1', 'scenario2', ...],

 // Specifies additional properties to be passed
 // to the validator, OPTIONAL
 'property1' => 'value1', 'property2' => 'value2'
]

A complete list of built-in validators can be found in the Yii2 guide at
http://www.yiiframework.com/doc-2.0/guide-tutorial-
core-validators.html.

Adding custom validators
In addition to the many built-in core validators Yii2 has, we may need to write our
own custom validators for our classes. Custom validators can either be written inline
using anonymous functions, or they can be written as a separate method within
our class.

For instance, suppose we only want to permit changes to our user information
between certain core hours of our business. As an anonymous function, this can be
written as follows:

public function rules()
{
 return [
 // [... other validators ..],

 // an inline validator defined as an anonymous function
 ['email', function ($attribute, $params) {
 $currentTime = strtotime('now');

http://www.yiiframework.com/doc-2.0/guide-tutorial-core-validators.html
http://www.yiiframework.com/doc-2.0/guide-tutorial-core-validators.html

Active Record, Models, and Forms

[98]

 $openTime = strtotime('9:00');
 $closeTime = strtotime('17:00');

 if ($currentTime > $openTime && $currentTime <
 $closeTime)
 return true;
 else
 $this->addError('email', 'The user\'s email
 address can only be changed between 9 AM
 and 5 PM');
 }],
];
}

Alternatively, we can write this as a separate method by providing a name for our
validator and then use that name as a method within our class:

public function rules()
{
 return [
 // [... other validators ..],

 // a custom validator
 ['email', 'validateTime']
];
}

public function validateTime($attributes, $params)
{
 $currentTime = strtotime('now');
 $openTime = strtotime('9:00');
 $closeTime = strtotime('17:00');

 if ($currentTime > $openTime && $currentTime < $closeTime)
 return true;
 else
 $this->addError('email', 'The user\'s email address can
 only be changed between 9 AM and 5 PM');
}

Chapter 4

[99]

Additionally, custom validators can be written by creating and extending the yii\
validators\Validator class and implementing the validateAttribute($model,
$attribute) method within that class:

// app/models/User.php::rules()
public function rules()
{
 return [
 // [... other validators ..],

 // a custom validator
 ['email', 'EditableTime']
];
}

// app/components/EditableTimeValidator.php
<?php

namespace app\components;

use yii\validators\Validator;

class EditableTimeValidator extends Validator
{
 public function validateAttribute($model, $attribute)
 {
 $currentTime = strtotime('now');
 $openTime = strtotime('9:00');
 $closeTime = strtotime('17:00');

 if ($currentTime > $openTime && $currentTime < $closeTime)
 return true;
 else
 $this->addError($model, $attribute, 'The user\'s email
 address can only be changed between 9 AM and 5 PM');
 }
 }
}

Active Record, Models, and Forms

[100]

Customizing validator error messages
Nearly all validators in Yii2 come with built-in error messages. However, if we
want to alter the error message for a certain property, we can do that by specifying
the message parameter for a specific validator. For instance, we can adjust the error
message for our unique validator by changing the last line of our validator to
the following:

[['email'], 'unique', 'That email address is already in
use by another user!']

Working with validation errors
Yii2 provides several ways to interact with and customize errors as and when
they happen. As you may have noticed in the previous example, we can use
the yii/base/Model method and addError() to add new errors to our model
attributes during our workflow. As shown in the previous example, this takes the
following form:

$this->addError($attribute, $message);

Additionally, we can use the getError() method to retrieve either all the errors for
our model or just the errors for a particular attribute. This method will return an
array of errors containing an array of error messages applicable for each attribute:

[
 'email' => [
 'Email address is invalid.',
 'The user\'s email address can only be changed between
 9 AM and 5 PM'
],
 'password' => [
 'Password is required.'
],
]

Manually executing validation rules
In Yii2, validation rules are executed when the validate() method on yii/db/
ActiveRecord is called. While this can be done manually in our controller, it is
typically executed before the save() method is executed. The validator method will
return either true or false, indicating whether the validation was successful or not.

The validate() method can also be extended by either overriding the
beforeValidate() and afterValidate() methods or by listening to the yii\base\
Model::EVENT_BEFORE_VALIDATE or yii\base\Model::EVENT_AFTER_VALIDATE
events.

Chapter 4

[101]

We'll cover events in more detail in Chapter 8, Routing, Responses,
and Events.

Model attribute labels
The next method that Gii automatically implements for us is the attributeLabels()
method. The attributesLabels() method enables us to name our model attributes
with more descriptive names that we can use as form labels. By default, Gii will
automatically generate labels for us based upon our column names. Furthermore,
by following the convention of using underscores in our column names in our user
table, Gii has automatically created titleized and readable attribute labels for us:

public function attributeLabels()
{
 return [
 'id' => 'ID',
 'email' => 'Email',
 'password' => 'Password',
 'first_name' => 'First Name',
 'last_name' => 'Last Name',
 'role_id' => 'Role ID',
 'created_at' => 'Created At',
 'updated_at' => 'Updated At',
];
}

Since our attributeLabels() method just returns an array of key-value pairs,
we can enhance our application by translating our attribute labels into multiple
languages using the \Yii::t() method:

public function attributeLabels()
{
 return [
 'id' => 'ID',
 'email' => \Yii::t('app', 'Email'),
 // [... other attribute labels ...]
];
}

Assuming that our application was properly configured to use translations, we can
fetch the translated text for our attribute labels using the getAttributeLabel()
method for our email attribute:

$user->getAttributeLabel('email'); // returns "Email"

Active Record, Models, and Forms

[102]

If our application was configured for the English locale, it would simply return the
string "Email"; however, if our application was running in a different language, say
Spanish, this method would return the string "Correo" instead of "Email".

We'll cover the Yii::t() method as well as general internationalization
and localization in Chapter 11, Internationalization and Localization.

Active Record relationships
Assuming that we configured our database schema properly with primary and
foreign keys, Yii2 will also generate model relationships for us. Unlike Yii1, Yii2
has done away with the relations() methods and replaced them with magic
__getter() methods. Our User model illustrates this for the Post and Role
relationships:

/**
 * @return \yii\db\ActiveQuery
 */
public function getPosts()
{
 return $this->hasMany(Post::className(), ['author_id' =>
 'id']);
}

/**
 * @return \yii\db\ActiveQuery
 */
public function getRole()
{
 return $this->hasOne(Role::className(), ['id' => 'role_id']);
}

Yii2 also simplified the relationships method, and now, it only supports two types of
relationships: has-one, as used by the hasOne() method, and has-many, as defined
by the hasMany() method. Like Yii1, though, related data can be accessed simply by
calling the __getter() method. For instance, if we want to retrieve the name of the
role for a user we are working with, we can simply execute the following:

$user = new User::findOne(4); // Fetch a user in our db
echo $user->role->name; // "Admin"

Chapter 4

[103]

Gii makes several inferences based upon your database schema to
create model relationships. Check whether your relationships map
to the correct classes and have the correct relationship types before
executing your code.

Using multiple database connections with Active
Record
By default, all active record instances will use the db component to connect to
our database. In the instance where we have multiple databases connected to our
application, we can configure active record to work with an alternate database by
defining the static method getDb() within our Active Record class:

public static function getDb()
{
 // the "db2" component
 return \Yii::$app->db2;
}

Behaviors in Active Record
Yii2 supports several behaviors, which can be used to automatically handle some
of the more tedious tasks of model management, such as managing the created and
updated times, automatically creating URL slugs for our application, and logging
which user created and modified a specific record.

To use a behavior with an Active Record class in Yii2, we simply need to specify
that we want to use the behavior class at the top of our PHP file and then add the
behavior to the behaviors() method of our model. For instance, since both our User
and Post classes have the created_at and updated_at attributes, we can add the
following to let Yii2 manage these attributes for us:

<?php

use Yii;
use yii\behaviors\TimestampBehavior
class User extends yii\db\ActiveRecord
{
 /**
 * Allow yii to handle population of
 * created_at and updated_at time
 */
 public function behaviors()

Active Record, Models, and Forms

[104]

 {
 return [
 TimestampBehavior::className(),
];
 }
 // [... other methods ...]
}

By default, the yii\behaviors\TimestampBehavior class will populate the
created_at and updated_at attributes with the current time, as extracted from
the native PHP time() function. Like most things in Yii2, this is completely
configurable. For instance, if our database has created and updated fields that
use the MySQL TIMESTAMP column type, we can adjust the behavior as follows:

public function behaviors()
{
 return [
 [
 'class' => TimestampBehavior::className(),
 'createdAtAttribute' => 'created',
 'updatedAtAttribute' => 'updated',
 'value' => new \yii\db\Expression('NOW()'),
],
];
}

More information on behaviors can be found from the Yii2 guide located
at http://www.yiiframework.com/doc-2.0/guide-concept-
behaviors.html.

Working with Active Record
Now that we have learned what Gii automatically provides for us when creating
new Active Record classes and what additional options we can add to our classes to
enhance them, let's take a look at how we can use active record instances to perform
basic create, read, update, and delete (CRUD) actions.

http://www.yiiframework.com/doc-2.0/guide-concept-behaviors.html
http://www.yiiframework.com/doc-2.0/guide-concept-behaviors.html

Chapter 4

[105]

Querying data
To query data with Active Record, we can query for data using the yii/db/
ActiveRecord::find() method, which will return an instance of yii/db/
ActiveQuery. Since yii/db/ActiveQuery extends yii/db/Query, we can take
advantage of nearly all the methods and query objects we learned in Chapter 3,
Migrations, DAO, and Query Building. Let's take a look at several different examples
of using the yii/db/ActiveRecord::find() method.

// Find the user in our database with the ID of 1.
// one() returns an instance of User model, for the user with id=1
$user = User::find()->where(['id' => 1])
 ->one();

// Find all users in our database and order them by ID
// Returns an array of User objects
$users = User::find()->orderBy('id'])
 ->all();

// Returns the number of users in our database
$userCount = User::find()->count();

As an alternative to yii/db/ActiveQuery, yii/db/ActiveRecord also provides
two additional methods to query for data, findOne(), which will return the first
Active Record instance from a query, and findAll(), which will return an array of
Active Record instances. Both methods accept a scalar argument, an array of scalar
arguments, or an array of associative pairs to query data:

// Fetches user with the ID of 1
User::findOne(1);

// Fetches users with the ID of 1, 2, 3, and 4
User::findAll([1, 2, 3, 4]);

// Fetches admin users (role_id = 2 from migration)
// with the last name of Doe
User::findOne([
 'role_id' => 2,
 'last_name' => 'Doe'
]);

Active Record, Models, and Forms

[106]

// Retrieves users with the last name of Doe
User::findAll([
 'last_name' => 'Doe'
]);

The yii/db/ActiveRecord::findOne() method will not add
LIMIT 1 to the generated SQL query, which may result in longer
running queries as yii/db/ActiveRecord::findOne() will
simply fetch the first row from the query result. If you encounter
performance issues using yii/db/ActiveRecord::findOne(),
try to use the yii/db/Activequery::find() method paired
with the limit() and one() methods instead, as follows:

User::find()->limit(1)->one();

Using yii/db/ActiveQuery can be extremely memory-intensive at times, depending
upon how many records are being accessed. One way to get around this limitation is
to convert our resulting data into an array format using the asArray() method:

$users = User::find()->asArray()
 ->all();

Rather than returning an array of Active Record instances, the asArray() method
will return an array of arrays containing Active Record data attributes.

While the asArray() method can be used to increase the performance of
large queries, it has several downsides. The data returned will not be an
instance of Active Record, and thus, it will not have any of the methods
or helpful attributes associated with it. Moreover, since data is being
returned directly from PDO, the data will not be typecast automatically
and will be returned as a string instead.

Data access
When using Active Record, each row from our database query will generate a single
Active Record instance. The column values from our Active Record instance can be
accessed via the model attributes for that Active Record instance:

$user = User::findOne(1);
echo $user->first_name; // "Jane"
echo $user->last_name; // "Doe"

Chapter 4

[107]

Moreover, relational information can be accessed through the related object's
attributes. For instance, to retrieve the author's name from a given post, we can
run the following code:

$post = Post::findOne(1);
echo $post->id; // "1"

// "Site Administrator"
echo $post->author->first_name . ' ' . $post->author->last_name;

Active Record attributes are named after the column names. If having
Active Record attributes with underscores doesn't match your coding
style, you should rename your column names.

Our data can also be manipulated by creating a custom getter and setter method
within our Active Record class. For instance, if we want to display the user's
complete name without changing our database schema, we can add the following
method to our User Active Record class:

/**
 * Returns the user's full name
 * @return string
 */
public function getFullName()
{
 return $this->first_name . ' ' . $this->last_name;
}

This data can then be accessed directly either through the getFullName() method or
as a pseudo attribute:

$user = User::findOne(1);
echo $user->fullName; // "Jane Doe"
echo $user->getFullName(); // "Jane Doe"

Along the same vein, we can also create custom setters. For instance, the following
method takes the user's complete name as input and populates the first_name and
last_name attributes for us:

/**
 * Set the users first and last name from a single variable
 * @param boolean
 */

Active Record, Models, and Forms

[108]

public function setFullName($name)
{
 list($firstName, $lastName) = explode(" ", $name);
 $this->first_name = $firstName;
 $this->last_name = $lastName;

 return true;
}

Our setter then enables us to treat the user's complete name as a settable attribute:

$user = User::findOne(1);
$user->fullName = 'Janice Doe'; // or $user->setfullName('Janice
Doe');
echo $user->first_name; // "Janice"
echo $user->last_name; // "Doe"

Saving data
Once we've made changes to our Active Record instance, we can save these changes
to our database by calling the save() method on our instance, which will return
true if the model was successfully saved to the database, or it'll return false if there
was an error.

$user = User::findOne(1);
$user->first_name = "Janice";
$user->last_name = "Doe";
$user->save();

If an error occurred during either the save or validation process, you can
retrieve the errors through the yii/db/ActiveRecord::getErrors()
method.

If we retrieved our user information from the database again, we would see that the
results were stored:

$user = User::findOne(1);
echo $user->first_name; // "Janice"
echo $user->last_name; // "Doe"

Chapter 4

[109]

Data can also be assigned in bulk through the yii/db/ActiveRecord::load()
method. Typically when using the load() method, we'll provide data from a form
submission, which we'll cover later in this chapter.

$user = User::findOne(1);
$user->load(\Yii::$app->request->post());
$user->save();

\Yii::$app->request represents the request object and is configured
in our config/web.php file. The post() method represents any data
submitted via a POST request.

Creating new records
Creating new records in our database can be done by instantiating a new instance of
an active record class using the new keyword, populating the model with data, and
then calling the save() method on the model.

$user = new User;
$user->load(\Yii::$app->request->post());
/**
 $user->attributes = [
 'first_name' => 'Janice',
 'last_name' => 'Doe',
 // ... and so forth
];
*/
$user->save();

Deleting data
Data can also be deleted from our database via Active Record by calling the
delete() method on our model. The delete() method will permanently delete data
from the database and will return true if the deletion was successful or false if an
error occurred.

$user = User::findOne(1);
$user->delete(); // return true;

Multiple data rows can be deleted by calling the yii/db/
ActiveRecord::deleteAll() static method:

Post::deleteAll(['author_id' => 4]);

Active Record, Models, and Forms

[110]

Be careful when using the deleteAll() method as it will permanently
delete any data that the condition statement specifies. A mistake in the
conditional can result in an entire table being truncated.

Active Record events
As an alternative to creating before and after method handlers such as beforeSave()
and afterDelete(), Yii2 supports several different events that our application can
listen to. The events that Active Record supports are outlined in the following table:

Event Description
EVENT_INIT An event that is triggered when an Active Record

instance is initialized via the init() method
EVENT_BEFORE_UPDATE An event that is triggered before a record is updated
EVENT_BEFORE_INSERT An event that is triggered before a record is inserted
EVENT_BEFORE_DELETE An event that is triggered before a record is deleted
EVENT_AFTER_UPDATE An event that is triggered after a record is modified
EVENT_AFTER_INSERT An event that is triggered after a record is inserted
EVENT_AFTER_DELETE An event that is triggered after a record is deleted

EVENT_AFTER_FIND An event that is triggered after a record is created and
populated with a query result

We'll cover what exactly events are and how to use them in Chapter 8,
Routing, Responses, and Events.

Models
In Yii1, base models and form models were two separated classes (CModel and
CFormModel). In Yii2, these two classes have been consolidated into a single class,
yii/base/Model. This class is used throughout Yii2 for data representation and
should be our go-to class when representing data we can't represent with yii/db/
ActiveRecord.

Chapter 4

[111]

Since yii/db/ActiveRecord extends yii/base/Model, we're
already familiar with the majority of methods and properties that
yii/base/Model offers, such as getAttributes(), rules(),
attributeLabels(), and getErrors(). Refer to the Yii2 API
documentation for a complete list of all the methods supported by yii/
base/Model at http://www.yiiframework.com/doc-2.0/yii-
base-model.html.

Model attributes
In yii/db/ActiveRecord, data attributes and attribute names are pulled directly
from our database column names. In yii/base/Model, data attributes and attribute
names are defined as public properties within our model class. For instance, if we
want to create a model called UserForm to collect user information, we can write the
following class:

<?php

use Yii;

class UserForm extends yii/base/Model
{
 public $email;
 public $password;
 public $name;
}

Unlike Active Record instances, information stored in base models is not persisted.
Calling unset() on the class or creating a new instance of the class will not grant
user the access to the data stored in other instance of the model. Since our model
attributes are public properties of our PHP class, we can access them like any public
property.

Scenarios
When working with models or active record classes, we may want to reuse the same
model for different situations, such as logging in a user or registering a user. To help
us write less code, Yii2 provides the scenarios() method to define what business
logic and validation rules should be executed for each scenario. By default, scenarios
are determined by our validation rules using the on property in our validation rules:

public function rules()
{
 return [

http://www.yiiframework.com/doc-2.0/yii-base-model.html
http://www.yiiframework.com/doc-2.0/yii-base-model.html

Active Record, Models, and Forms

[112]

 [['email', 'password'], 'required'],
 [['email'], 'email'],
 [['email', 'password', 'name'], 'string', 'max' => 255],
 [['email', 'password'], 'required', 'on' => 'login'],
 [['email', 'password', 'name'], 'required', 'on' =>
 'register'],
];
}

This behavior can be customized by overriding the scenarios() method with our
custom logic:

public function scenarios()
{
 return [
 'login' => ['email', 'password'],
 'register' => ['email', 'password', 'name']
];
}

Alternatively, if we want to add new scenarios to our model without altering the
current scenarios defined in our model validation rules, we can simply add them by
fetching the classes' parent scenarios, adding the new scenarios we want to add, and
then returning our updated scenarios' array:

public function scenarios()
{
 $scenarios = parent::scenarios();
 $scenarios['login'] = ['email', 'password'];
 $scenarios['register'] = ['email', 'password', 'name'];
 return $scenarios;
}

We can then control which scenario is active when we instantiate our model or when
we define the scenario property of our model at runtime:

// Instantiate a model with a specific scenario
$model = new UserForm(['scenario' => 'login']);

// Set scenario at runtime
$model = new UserForm;
$model->scenario = 'register';

When a scenario is not specified either at runtime or during
model instantiation, the default scenario is used. The default
scenario marks all model attributes as active for both mass
assignment and model validation.

Chapter 4

[113]

Forms
In Yii2, we can dynamically generate rich HTML5 forms based upon our model
using the yii/widgets/ActiveForm class. The yii/widgets/ActiveForm class has
several advantages over managing forms manually. In addition to providing several
useful helper methods and pairing well with the HTML helper yii/helpers/Html,
forms can be generated from the Gii tool using our model data. When working with
models and active record instances, this is the preferred way to generate forms.

Generating forms with Gii
Like Active Record classes, forms can be generated automatically for us from both
the web Gii tool and the console Gii tool. Let's take a look at generating a form for
authentication, which we'll call LoginForm, and a form to handle registration, which
we'll call RegisterForm.

Generating forms with Gii's web interface
For our LoginForm form, let's start by opening up the Gii web tool by navigating
to the /gii endpoint of our application and then clicking on the Start button
underneath the Form Generator section.

Active Record, Models, and Forms

[114]

Like our model generator, to generate a form, we only need to provide a few
fields. For forms, we only need to know the view name (which will translate to the
filename) and the model class. For our view name, let's use site/forms/LoginForm,
and for our model class, we may want to use the UserForm class that we generated
previously. Since we want to use our form just to log in, we should also specify that
we want to use the login scenario.

When specifying the model class, we need to specify both the namespace
and the class so that Yii can find our class. For our UserForm class, we
will need to provide app\models\UserForm.

Once we have specified all the necessary attributes, we can click on the Preview
button to preview our form, and then we can click on the Generate button to
generate the source code.

Chapter 4

[115]

Unlike our model generator, after the generation, our form generator will also
provide us with a template action that we can put into our controller:

<?php

// app\controllers\SiteController.php::actionLogin()
public function actionLogin()
{
 $model = new \app\models\UserForm(['scenario' => 'login']);

 if ($model->load(Yii::$app->request->post())) {
 if ($model->validate()) {
 // form inputs are valid, do something here
 return;
 }
 }

 return $this->render('LoginForm', [
 'model' => $model,
]);
}

Active Record, Models, and Forms

[116]

Generating forms with Gii's console interface
As an alternative to generating forms with Gii's web interface, we can also use
Gii's console interface to generate basic forms for our model class. To generate
forms with our console interface, we can run the gii/form tool, as shown in the
following example:

./yii gii/form --modelClass=app\\models\\UserForm --viewName=site/forms/
RegisterForm --scenarioName=register --enableI18N=1

Most console shells treat the backslash character as an escape character.
To pass a backslash character to Gii, we need to escape the backslash
character with a second backslash.

Here's the output:

Our resulting RegisterForm view will look as follows:

<?php

use yii\helpers\Html;
use yii\widgets\ActiveForm;

/* @var $this yii\web\View */
/* @var $model app\models\UserForm */
/* @var $form ActiveForm */
?>
<div class="site-forms-RegisterForm">

 <?php $form = ActiveForm::begin(); ?>

Chapter 4

[117]

 <?= $form->field($model, 'email') ?>
 <?= $form->field($model, 'password') ?>
 <?= $form->field($model, 'name') ?>

 <div class="form-group">
 <?= Html::submitButton(Yii::t('app', 'Submit'),
 ['class' => 'btn btn-primary']) ?>
 </div>
 <?php ActiveForm::end(); ?>

</div><!-- site-forms-RegisterForm -->

Remember, Gii's console interface only prompts you for the most
basic information it needs in order to generate the class. Remember
to use the help tool to discover other command-line arguments for
additional customization.

Using forms
Now that we've created our forms, let's take a brief look at how exactly they work.
As shown earlier, our yii/widgets/ActiveForm class expects a model to work with.
In most cases, this is going to be defined in our controller and then passed down to
our view:

$model = new app\models\UserForm(['scenario' => 'login']);

One thing you may notice about our generated forms is that they only contain
core form logic and don't contain extra HTML, such as the html, head, and body
tags. In Yii2, generated forms are intended to be rendered as a partial view rather
than a complete view. Rather than specifying our form, LoginForm, directly in our
controller, we will pass our model down to a parent view, which will then render
our form. As an example, our login action within our controller will change to
the following:

// app\controllers\SiteController::actionLogin()
return $this->render('login', [
 'model' => $model,
]);

Active Record, Models, and Forms

[118]

We will then create a new view file at views/site/login.php, which will render
our LoginForm:

// views/site/login.php
<div class="site-login" style="margin-top: 100px";>
 <div class="body-content">
 <?php echo $this->render('forms/LoginForm', ['model'
 => $model]); ?>
 </div>
</div>

Unlike Yii1, Yii2 doesn't have a renderPartial() method to render
partial views. Instead, it has two separate render() methods: one
in yii/base/Controller and another in yii/base/View. The
render() method called in our previous example is called from yii/
base/View and is used to render any view file whether we consider it a
partial view or a complete view.

The resulting view from our render chain would then look as follows if we navigate
to the site/login endpoint of our application:

Chapter 8, Routing, Responses, and Events, will help us gain a better
understanding of how routing works in Yii2 and how we can easily figure
out which controller actions match to which view actions.

ActiveForm and input types
Now that we know how to render our form, let's break down our form view. Since
view files and controllers are separated in Yii2, we need to first make sure that we
use our active form class in our view file:

<?php use yii\widgets\ActiveForm; ?>

Chapter 4

[119]

Our active form elements are then contained within a static call in the ActiveForm
class to the begin() and end() methods.

<?php $form = ActiveForm::begin(); ?>
<?php ActiveForm::end(); ?>

By default, our begin() method will provide us with several built-in HTML
defaults, such as an ID and class attribute. To customize these, we can provide an
array of arguments to our begin() method to manually specify these attributes:

$form = ActiveForm::begin([
 'id' => 'login-form',
 'options' => [
'class' => 'form-horizontal'
]
]) ?>

The next item to notice about our form is that model attributes are wrapped within a
call to $form->field():

<?= $form->field($model, 'email') ?>
<?= $form->field($model, 'password') ?>

The field() method is a chainable method that specifies the <input> tag for our
model attribute, adding some basic client-side validation (such as the required
attribute) and populating the form field with data in the instance of a model
validation error in our POST submission. Since the method is chainable, we can
chain additional attributes onto our form. For instance, if we want to add client-side
validation for our email field so that our browsers can verify our text field was an
email address, we can chain the following:

<?= $form->field($model, 'email')->input('email') ?>

In addition to our required validator, our view now verifies that our email is a valid
email address.

Active Record, Models, and Forms

[120]

Likewise, we can customize our password field to obstruct our password by
specifying that the field should be a password input:

<?= $form->field($model, 'password')->passwordInput() ?>

With ActiveForm, we can also add an inline hint or modify the label for any attribute
using the hint() method and the label() method:

<?= $form->field($model, 'name')->textInput()->hint('Please
enter your name')->label('Your Name') ?>

While the $form property is an instance of yii/widgets/ActiveForm,
the field() method returns an instance of yii/widgets/
ActiveField. For a list of all the available methods and options
for yii/widgets/ActiveField, refer to the Yii2 documentation
at http://www.yiiframework.com/doc-2.0/yii-widgets-
activefield.html.

http://www.yiiframework.com/doc-2.0/yii-widgets-activefield.html
http://www.yiiframework.com/doc-2.0/yii-widgets-activefield.html

Chapter 4

[121]

Summary
We covered a lot of information in this chapter! We covered how to properly set
up and configure Gii, the code generation tool for Yii2. We then covered how we
can automatically create Active Record classes based upon our database schema
using both the web and console interface for Gii in addition to many of the common
methods and properties we can bind to our Active Record classes, such as validation
rules, attribute labels, and behaviors. Next, we covered how to create basic models
that do not depend upon our database and how to add scenarios to our models
and Active Record classes. We finally covered how we can use the Gii tool to create
HTML forms based upon our models and explored some of the functionality that
comes with the ActiveForm class.

In the next chapter, we are going to expand our knowledge of the available helpers
and widgets that come with Yii2. We will also dive into modules in Yii2 and explore
how we can use them to create reusable self-contained applications that we will keep
building upon throughout the book.

As we move forward, we are going to build upon much of the knowledge we have
gained thus far. Before moving forward, ensure that you review the classes and
information we have learned about.

[123]

Modules, Widgets,
and Helpers

Like its predecessor, Yii2 provides several useful tools and reusable code blocks
to help us quickly develop our applications, known as widgets and helpers. Yii2
also provides us with the ability to build and include mini applications known as
modules that can enable us to rapidly add new features to our application while
maintaining a clear separation of concerns in our main application and any extended
functionality. In this chapter, we'll cover the basics of building and working with
modules within our application. We'll also cover several of Yii2's built-in widgets
and helpers and learn how we can implement our own custom widgets.

Modules
In Yii2, modules are considered to be mini self-contained software packages
containing the complete MVC stack. When paired with an application, modules
provide a way to extend applications by adding new features and tools without
adding code to our main code base. Consequently, modules are a great way to create
and reuse code. When creating applications with Yii2, you'll most likely work with
prebuilt models, such as Gii or the Yii2 dev module; however, modules can also
be custom applications created specifically to build upon and separate code for a
specific purpose. In this section, we'll go over the basic modules in Yii2 as well as
cover how to create and implement them within our application.

Modules, Widgets, and Helpers

[124]

Module components
Compared to Yii1, modules in Yii2 haven't changed much. At their core, they still
consist of the same structure and share many of the same ideas. In Yii2, modules are
stored in the modules directory of our application root and are registered with our
application through our web or console configuration files. If we were to break down
a basic module, its directory structure and core files would be as follows:

app/
 modules/
 mymodule/
 Module.php
 controllers/
 DefaultController.php
 models/
 views/
 layouts/
 default/
 index.php

Each module registered with our application resides within its own dedicated
module folder, which registers itself with its corresponding route with our URL
manager by default (in this instance, the mymodule folder will correspond to the
/mymodule URI route). Consequently, any controller within the module, unless
otherwise registered with our URL manager, will be available as a dedicated
controller route within the module itself. For example, the DefaultController.php
controller will map to the root route of our module (/mymodule), while any other
controller will map to the controller name within the /mymodule URI.

Additionally, modules provide full support for the basic MVC architecture within
Yii2. Each module may have its own set of models, views, controllers, and even
components. Like complete applications, modules also have support for their own
views and layouts, allowing them to be styled and managed differently than our
main application. As part of a Yii2 application, they also have complete access to the
models and classes implemented within our main application.

The module class structure
The most important part of a module is the module class defined in the Module.php
file in the root directory of our module. At its most basic level, a module must simply
extend the yii\base\Module class:

<?php

namespace app\modules\mymodule;

class Module extends \yii\base\Module {}

Chapter 5

[125]

Like everything in Yii2, however, modules can define their custom initialization code
and configuration files by overloading the public init() method of our class. At
the minimum, when overloading this method, we'll want to ensure that the parent
init() method from yii\base\Module is called.

public function init()
{
 parent::init();

 // Set custom parameters
 $this->params['a'] = 'b';

 // Register a custom Yii config for our module
 \Yii::configure($this, require __DIR__ .
 '/config/config.php');
}

We can also define additional custom parameters with our module by adding values
to the yii\base\Module::$params array. Additionally, custom configurations
can be registered to our module using the Yii::configure() static method. This
configuration can be a simple key-value pair, or it can be a complete configuration
file, such as those used in our web and console configuration files.

The Yii2 configuration syntax can be explored in detail in the Yii2 guide
located at http://www.yiiframework.com/doc-2.0/guide-
concept-configurations.html.

Controllers
Within a module, controllers are placed within the controllers/ directory of
the main module, and as per the Yii2 convention, they live within the module's
namespace. For example, to create the default controller for our mymodule
module, we would add the following to app/modules/mymodule/controllers/
DefaultController.php:

<?php

namespace app\modules\mymodule\controllers;

class DefaultController extends \yii\web\Controller
{
 public function actionIndex()
 {
 return $this->render('index');
 }
}

http://www.yiiframework.com/doc-2.0/guide-concept-configurations.html
http://www.yiiframework.com/doc-2.0/guide-concept-configurations.html

Modules, Widgets, and Helpers

[126]

Like other controllers within our project, the default action within our
controller is the index action. Since controllers within our module extend yii\
web\controller, we can adjust our default action by setting the yii\web\
controller::$defaultAction parameter.

By default, Yii2 will route the /mymodule URI route to the DefaultController
class. Should we wish to change this, however, we can adjust the $defaultRoute
parameter of our Module class. For instance, if we have a controller to handle users
called UserController, we can make our default route map to our controller,
as follows:

<?php

namespace app\modules\mymodule;

class Module extends \yii\base\Module
{
 public $defaultRoute = 'user'; // user maps to UserController
}

Consequently, navigating to /mymodule within our module will result in our
UserController class being executed rather than DefaultController.

Remember that unless otherwise specified, controllers will always be
available in their named URI. In our example, both /mymodule and /
mymodule/user will map to the same controller and perform similar
actions. If you do not want the named controller route to be enabled
after adjusting the $defaultRoute parameter, adjust your router
accordingly.

Views and layouts
Since controllers within modules extend from yii\web\controller, we can take
advantage of view and layout rendering within our module. To get started with
rendering our view, we first need to define which layout we want to use. By default,
modules will use whatever the parent modules layout file is until it reaches the main
layout file, and then it will default to the layout file defined in app/views/layouts.

If we do not want to use our application's layout file, we can define a custom layout
file for our module by setting the yii\base\Module::$layout property, as follows:

Chapter 5

[127]

We will then define a layout file called main.php within the app/modules/
mymodules/views/layouts folder:

<?php use yii\helpers\Html; ?>

<?php $this->beginPage() ?>
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8"/>
 <?php echo Html::csrfMetaTags() ?>
 <title><?php echo Html::encode($this->title) ?></title>
 <?php $this->head() ?>
 </head>
 <body>
 <?php $this->beginBody() ?>
 <?php echo $content ?>
 <?php $this->endBody() ?>
 </body>
</html>
<?php $this->endPage() ?>

The only component needed in a layout file to render our view files is
<?php echo $content ?>. When working with views, however,
you may find many things you would expect to work in views will
not however unless a full HTML document is defined with the
beginPage(), endPage(), beginBody(), endBody(), and head()
methods from yii\base\view. For more information on these methods,
refer to the layout section of the Yii2 documentation at http://
www.yiiframework.com/doc-2.0/guide-structure-views.
html#layouts and the yii\base\view class at http://
www.yiiframework.com/doc-2.0/yii-base-view.html.

After defining our layout, we'll need to define the view file for our DefaultContro
ller::actionIndex() method, where we previously declared that we wanted to
render the index view. Within modules, views are PHP files with the same name
as the requested view within our render() method, and they map to the app/
modules/mymodule/views/<controller> path. In our case, this view maps to app/
modules/mymodule/views/default/index.php. For now, let's simply add the
following to this view file:

<?php echo "MyModule: Hello World!"; ?>

http://www.yiiframework.com/doc-2.0/guide-structure-views.html#layouts and the yii\base\view class at http://www.yiiframework.com/doc-2.0/yii-base-view.html
http://www.yiiframework.com/doc-2.0/guide-structure-views.html#layouts and the yii\base\view class at http://www.yiiframework.com/doc-2.0/yii-base-view.html
http://www.yiiframework.com/doc-2.0/guide-structure-views.html#layouts and the yii\base\view class at http://www.yiiframework.com/doc-2.0/yii-base-view.html
http://www.yiiframework.com/doc-2.0/guide-structure-views.html#layouts and the yii\base\view class at http://www.yiiframework.com/doc-2.0/yii-base-view.html

Modules, Widgets, and Helpers

[128]

Registering modules
Once we have created our module, we need to register it with our configuration file
by defining a modules section within our app/config/web.php file:

'modules' => [
 'mymodule' => 'app\modules\mymodule\Module'
],

Alternatively, if we want to pass additional parameters to our module, we can define
our configuration as follows:

'modules' => [
 'mymodule' => [
 'class' => 'app\modules\mymodule\Module',
 'foo' => 'bar' // Maps to app\
 modules\mymodule\Module::$foo, assuming $foo is declared
]
]

Like many configuration options in Yii2, modules can receive additional
arguments using the previously mentioned configuration file. Any key-
value pair will populate the public property of the specified class with the
value listed in the array.

Dynamically registering modules
Often when working with large projects, several components will be broken down
into modules that need to be registered with our application. Moreover, there may
be circumstances where only certain modules need to be registered at a given time.
One way to automate the process of registering many different modules at once is
to create a dynamic configuration script and let our application scan our modules
for us.

To do this, we first need to adjust the modules section of our app/config/web.php
file to load a custom configuration for our modules, as follows:

'modules' => require(__DIR__ . '/module.php'),

Then, we'll define app/config/module.php, as follows:

1.	 First, we'll want to set the directory that we want to scan as well as try to
load a precached configuration file, should one exist.
<?php

Chapter 5

[129]

// Set the scan directory
$directory = __DIR__ . DS . '..' . DS . 'modules';
$cachedConfig =
__DIR__.DS.'..'.DS.'runtime'.DS.'modules.config.php';

2.	 Then, we'll try to return our cached configuration file, should it exist.
// Attempt to load the cached file if it exists
if (file_exists($cachedConfig))
 return require_once($cachedConfig);

3.	 If we don't have a precached configuration file, we'll then want to iterate
all the folders in our app/modules directory and then dynamically build
a module configuration array. Additionally, we'll also attempt to load a
module specific configuration file located at app/modules/<module>/
config/main.php. This will enable us to package the configuration with
our module without making changes to our app/config/web.php file:
else
{
 // Otherwise generate one, and return it
 $response = array();

 // Find all the modules currently installed, and
 preload them
 foreach (new IteratorIterator(new
 DirectoryIterator($directory)) as $filename)
 {
 // Don't import dot files
 if (!$filename->isDot() && strpos
 ($filename->getFileName(), ".") === false)
 {
 $path = $filename->getPathname();

 if (file_exists($path.DS
 .'config'.DS.'main.php'))
 {
 $config = require($path.
 DS.'config'.DS.'main.php');
 $module = ['class' => 'app\\modules\\'
 . $filename->getFilename() . '\Module'];

 foreach ($config as $k=>$v)
 $module[$k] = $v;

 $response[$filename->getFilename()] =
 $module;

Modules, Widgets, and Helpers

[130]

 }
 else
 $response[$filename->getFilename()] = 'app
 \\modules\\' . $filename->getFilename()
 . '\Module';
 }
 }

4.	 Finally, we generate a cached version of our generated configuration file to
eliminate duplicate work on each request. Now, when adding new modules
to our application, we simply need to remove the runtime/modules.confg.
php file rather than tediously update our web configuration file:

 $encoded = serialize($response);
 file_put_contents($cachedConfig, '<?php return
 unserialize(\''.$encoded.'\');');

 // return the response
 return $response;
}

Altogether, our dynamic configuration file will look as follows:

<?php

// Set the scan directory
$directory = __DIR__ . DS . '..' . DS . 'modules';
$cachedConfig = __DIR__.DS.'..'.DS.'runtime'.DS.'modules.config.php';

// Attempt to load the cached file if it exists
if (file_exists($cachedConfig))
 return require_once($cachedConfig);
else
{
 // Otherwise generate one, and return it
 $response = array();

 // Find all the modules currently installed, and preload them
 foreach (new IteratorIterator(new
 DirectoryIterator($directory)) as $filename)
 {
 // Don't import dot files
 if (!$filename->isDot() && strpos($filename
 ->getFileName(), ".") === false)
 {

Chapter 5

[131]

 $path = $filename->getPathname();

 if (file_exists($path.DS.'config'.DS.'main.php'))
 {
 $config = require(
 $path.DS.'config'.DS.'main.php');
 $module = ['class' => 'app\\modules\\' .
 $filename->getFilename() . '\Module'];

 foreach ($config as $k=>$v)
 $module[$k] = $v;

 $response[$filename->getFilename()] = $module;
 }
 else
 $response[$filename->getFilename()] = 'app
 \\modules\\' . $filename->getFilename() .
 '\Module';
 }
 }

 $encoded = serialize($response);
 file_put_contents($cachedConfig, '<?php return
 unserialize(\''.$encoded.'\');');

 // return the response
 return $response;
}

Using a configuration file and the module registration process, we can drastically
reduce our configuration file management overhead and make our application
extremely flexible, should we package features into separate modules that may or
may not be installed at the same time.

Bootstrapping modules
Some modules, such as the debug module, need to be executed on every request
when enabled. To ensure that these modules run on every request, we can Bootstrap
them by adding them to the Bootstrap section of our configuration file. If you're
familiar with Yii1, the bootstrap option is used in a manner similar to the Yii1
preload configuration option:

[
 'bootstrap' => [
 'debug',

Modules, Widgets, and Helpers

[132]

],

 'modules' => [
 'debug' => 'yii\debug\Module',
],
]

Due to the way Yii2 lazily loads new objects, you may encounter
race conditions between Yii2's autoloading of the class and the actual
population of that object. The Bootstrap parameter of our configuration
option will ensure that Yii2 will autoload and register the object early on
in the execution flow rather than waiting until the class it requires.
Be careful with adding items to the bootstrap section, however, as
forcing Yii2 to register objects before they're needed can introduce
performance degradation into your application.

Accessing modules
When working with modules, you may need to get the instance of the currently
running module to either access the module ID and parameters or components
associated to the module. To retrieve the current active instance of a module,
you can use the getInstance() method on the module class directly:

$module = \app\modules\mymodule\Module::getInstance();

Alternatively, if you know the name of the module, you can access it through the
\Yii instance:

$module = \Yii::$app->getModule('mymodule');

Moreover, if you are working in a controller, you can access a module from within a
running controller using the following method:

$module = \Yii::$app->controller->mymodule;

Once you have an instance of the module, you can access any public properties,
parameters, and components associated with that module:

echo $module->foo;
var_dump($module->params);

Chapter 5

[133]

Managing modules with Composer
When packaging projects, it's often beneficial to manage and version our
modules independent of our main applications. Using Composer and semantic
versioning, we can manage our modules such that they are versioned to specific
points in time in our application while still enabling developers to work with us.
Moreover, we can also configure our main project to automatically install modules
for us on deployment, which can drastically reduce the overhead involved in
managing modules:

1.	 To get started with managing our modules with Composer, we first need
to move our module source code out of our main application and push it
to our DCVS repository.

2.	 Next, we need to create a composer.json file within our new
module's repository:
{
 "name": "masteringyii/chapter5-mymodule",
 "description": "The mymodule module for Chapter 5
 of the book Mastering Yii",
 "license": "MIT",
 "type": "drupal-module",
 "keywords": [
 "mastering yii",
 "book",
 "packt",
 "packt publishing",
 "chapter 5"
],
 "authors": [
 {
 "name": "Charles R. Portwood II",
 "homepage": "https://www.nasteringyii.com"
 }
],
 "support": {
 "source": "https://
 github.com/masteringyii/chapter5-mymodule"
 },
 "homepage": "https://www.masteringyii.com"
}

Modules, Widgets, and Helpers

[134]

The tool we are using to manage the installation of our
modules is called composer-installers. To automatically
install modules to our modules directory, we need to
explicitly declare the type of our Composer package.
The composer-installers project does not support Yii-
specific modules currently; however, for our purpose, the
drupal-module type does what we need.

3.	 Next, we'll need to make some changes to our main projects' composer.
json file. The first change we need to make is the inclusion of the composer-
installers dependency. We can do this by adding the following to the require
block of our composer.json file:
"composer/installers": "v1.0.21"

4.	 The second change we need to make to our main project's composer.json
file is reference our modules' DCVS repository. We can do this by creating
a repositories block populated with the DCVS information for our module
repository and then adding the module to our require block:
"repositories": [
 {
 "type": "vcs",
 "url": "https://github.com/masteringyii/chapter5-
mymodule"
 },
],
"require": {
 "php": ">=5.4.0",
 "yiisoft/yii2": "*",
 "yiisoft/yii2-bootstrap": "*",
 "yiisoft/yii2-swiftmailer": "*",
 "composer/installers": "v1.0.21",
 "masteringyii/chapter5-mymodule": "dev-master"
 },

5.	 Then, we need to add the installation information to the extras section of our
composer.json file. This provides the required information to the composer-
installers package:
"installer-paths": {
 "modules/mymodule/": [
 "masteringyii/chapter5-mymodule"
],
}

Chapter 5

[135]

6.	 Then, we'll want to ensure that our module directory is excluded from our
DCVS repository. We can do this adding a .gitignore file to our module
directory with the following information:
*

7.	 Finally, we can run Composer to update and automatically install
our module:

composer update –o

Since we have specified that we wanted to use the dev-master
branch of our mymodule repository, Composer will clone the
project into our application, which will allow us to develop
it independent of our main application, as usual. During
deployments, however, you should semantically version your
module so that the versioned copy of the module is downloaded
rather than cloned.

Our module has now been installed from Composer.

Modules in summary
Modules are best used in large applications where certain features or reusable
components need to be created. As we've shown in this section, modules are
extremely powerful and can be used to extend our application.

Widgets
In Yii2, widgets are reuseable code blocks that are used in views to add configurable
user interface logic to our application in an object-oriented way. Yii2 comes with
several different types of reusable widgets, some of which we have already seen
in previous chapters. Custom widgets can also be created to create tools that can
be reused across multiple projects. In this section, we'll go over the basic types of
widgets, how to use them, and how to implement our own within our applications.

Modules, Widgets, and Helpers

[136]

Using widgets
As a presentation layer tool, widgets are most commonly used within our view files.
In Yii2, widgets can be used in one of two distinct ways. The first way to use widgets
is to call the yii\base\Widget::widget() method on a supported widget within a
view. This method takes a configuration array as an option and returns a rendered
widget as a result. For instance, to display a Twitter Bootstrap 3 style alert on our
page, we can use the yii\bootstrap\Alert widget as follows:

<?php use yii\bootstrap\Alert; ?>

<?php echo Alert::widget([
 'options' => [
 'class' => 'alert-info',
],
 'body' => 'This is a bootstrap alert widget using widget()',
]);

Alternatively, we can construct an instance of a specific widget using yii\base\
widget::begin() and yii\base\widget::end() to construct our widget. Using
our previous example, this will look as follows:

<?php use yii\bootstrap\Alert; ?>

<?php $widget = Alert::begin([
 'options' => [
 'class' => 'alert-warning',
],
]);

echo 'This is an bootstrap3 alert widget warning using begin() and
end()';

$widget->end();

Chapter 5

[137]

What both Alert widgets will look like once rendered

As a view object, widgets are responsible for registering and loading their
own assets to ensure that they are presented properly. This is why we can
create an instance of yii\bootstrap\Alert and see an alert rendered
with all the appropriate styles and functionalities.

Commonly used built-in widgets
To help quickly develop applications, Yii2 comes with several powerful widgets
built in that we can use to jumpstart development.

Bootstrap widgets
One of the main widget types Yii2 provides is specific to Twitter Bootstrap 3 styles
and provides a quick and easy way to add a functionality to our application. When
working with Bootstrap widgets, Yii2 will inject the necessary HTML, CSS, and
JavaScript objects into the DOM for us. However, this can be optimized by including
the core Bootstrap assets within our application's asset manager, AppAsset.php,
located in your @app/assets directory:

public $depends = [
 'yii\web\YiiAsset',
 'yii\bootstrap\BootstrapAsset', // this line
];

Modules, Widgets, and Helpers

[138]

We'll cover AssetManager in more detail in Chapter 6, Asset
Management.

All Bootstrap-specific widgets belong to the \yii\bootstrap namespace. These core
widgets are as follows:

Widget Result
ActiveForm A styled ActiveForm instance
Alert A style alert
Button A styled button
Button Dropdown A button drop-down group
Button Group A button group
Carousel An images or a text carousel
Collapse An accordion collapse JavaScript widget
Dropdown A drop-down menu
Model A model
Nav A navigation menu
NavBar A navigation top bar
Progress A styled process bar
Tabs A styled tab

More information on Bootstrap-specific widgets can be found on the
Yii guide at http://www.yiiframework.com/doc-2.0/guide-
widget-bootstrap.html. More information on Twitter Bootstrap 3
can be found at http://getbootstrap.com.

jQuery UI widgets
Through an official Yii2 extension, Yii2 also provides several jQuery-UI-specific
widgets. Support for jQuery UI widgets can be added to our application by
including the yii2-jui Composer package in our application:

php composer.phar require --prefer-dist yiisoft/yii2-jui "*"

http://www.yiiframework.com/doc-2.0/guide-widget-bootstrap.html
http://www.yiiframework.com/doc-2.0/guide-widget-bootstrap.html
http://getbootstrap.com

Chapter 5

[139]

Once installed, the jQuery UI package provides support for the following widgets
under the \yii\jui namespace:

Widget Result
Accordion An accordion element
AutoComplete An autocomplete element
DatePicker A date time picker object
Dialog A dialog box
Draggable A draggable element
Droppable A droppable element
Menu A menu
ProgressBar A styled progress bar
Resizable A resizable element
Selectable A selectable element
Slider A slider
SliderInput An input slider
Sortable A sortable element

More information on jQuery-UI-specific widgets can be found in the
Yii guide at http://www.yiiframework.com/doc-2.0/guide-
widget-jui.html. More information on jQuery UI can be found at
https://jqueryui.com.

Yii-specific widgets
Yii2 comes with support for familiar Yii1 widgets such as ActiveForm and GridView,
both of which we explored in previous chapters. All widgets in Yii2 that are specific
to Yii2 are namespaced under \yii\widget.

Widget Result
ActiveForm An ActiveForm instance used to display Yii2 forms
GridView A view to display model and data provider data in a grid table view
DetailView A view to display data for a specific modal
ListView A list view to display multiple modals on a single page
AjaxForm A widget to construct an Ajax form
LinkPager A widget to display a pagination element for multiple records
LinkSorter A widget to sort data from a data provider

http://www.yiiframework.com/doc-2.0/guide-widget-jui.html
http://www.yiiframework.com/doc-2.0/guide-widget-jui.html
https://jqueryui.com

Modules, Widgets, and Helpers

[140]

Widget Result
Pjax An implementation of jQuery's pjax functionality in Yii2
Breadcrumb A widget to display a breadcrumb trail
ContentDecorator The content decorator widget is used to capture all output between the

begin() and end() methods and pass it to the corresponding view
in the $content variable.

FragmentCache Used to cache view fragments
InputWidget A widget used to display an input field.
MaskedInput An input widget used to force users to enter properly formatted data
Menu A widget used to display a Yii menu
Spaceless A widget to remove whitespace characters between HTML tags

Several online projects also exist to extend Yii2's widget collection. Before
trying to implement your own widget, try to search Yii2's extensions to
see whether someone might have already implemented what you need.

Creating custom widgets
In some instances, it may make more sense to create our own widget to handle a
specific task. To create a custom widget in Yii2, we need to create a class that extends
yii\base\Widget and implements either the init() or run() method. For instance,
suppose we want to create a widget that displays a greeting with the user's name
depending upon the time of the day. We can create that widget by implementing
the following:

<?php
namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class GreetingWidget extends Widget
{
 public $name = null;

 public $greeting;

 public function init()
 {

Chapter 5

[141]

 parent::init();

 $hour = date('G');

 if ($hour >= 5 && $hour <= 11)
 $this->greeting = "Good Morning";
 else if ($hour >= 12 && $hour <= 18)
 $this->greeting = "Good Afternoon";
 else if ($hour >= 19 || $hours <= 4)
 $this->greeting = "Good Evening";
 }

 public function run()
 {
 if ($this->name === null)
 return HTML::encode($this->greeting);
 else
 return HTML::encode($this->greeting . ',
 ' . $this->name);
 }
}

We can then implement our widget by adding the following to our view file:

<?php
use app\components\GreetingWidget;
echo GreetingWidget::widget(['name' => ' Charles');

Modules, Widgets, and Helpers

[142]

We can also write our widgets so that they use the begin() and end() format. As an
illustration, let's create a widget that outputs whatever is wrapped within a begin()
and end() tag in an HTML div element. We can write this class as follows:

<?php

namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

class EchoWidget extends Widget
{
 public function init()
 {
 parent::init();
 ob_start();
 }

 public function run()
 {
 $content = ob_get_clean();
 echo Html::tag('div', $content, ['class' =>
 'echo-widget']);
 }
}

We can then use our widget as follows in our view:

<?php use app\components\EchoWidget; ?>

<?php EchoWidget::begin(); ?>
 <?php echo "Echo this!"; ?>
<?php EchoWidget::end(); ?>

When using widgets, you may find it necessary to pass information to a view file
to handle more complex view logic. In Yii2, widgets have native support for the
render() method, allowing us to render view files.

public function run()
{
 return $this->render('greeting');
}

Chapter 5

[143]

By default, view files should be stored within the WidgetPath\views folder. In our
example, since the GreetingWidget class is namespaced under app\components,
our greeting view file will be located at @app\components\views\greeting.php.

A summary of widgets
Widgets are powerful object-oriented reusable code blocks that we can add to our
views to quickly and easily add additional functionality to our application. As
self-contained objects, widgets follow the MVC pattern and handle dependency
management for any and all assets and external scripts required for the widget
to function.

Helpers
Yii2 has several built-in helper classes to streamline common coding tasks, such
as HTML, array, and JSON manipulation. These helper functions take the form of
static classes (which means that they should be called statically rather than being
instantiated) and live underneath the \yii\helpers namespace. In this section, we'll
go over several of the more common helpers.

Comprehensive documentation for all helpers Yii2 supports can be
found on the Yii2 API documentation page underneath the helpers
section at http://www.yiiframework.com/doc-2.0/.

The URL helper
The first helper commonly used in Yii2 is the URL helper. The URL helper helps us
retrieve specific URLs, such as the base and home URL, and generate URL routes to
specific paths. The URL helper lives under the yii\helpers\Url namespace.

To retrieve the home URL of your application, use the home() static method. Several
different arguments can be passed to get different types of URLs:

$relativeHomeUrl = Url::home();
$absoluteHomeUrl = Url::home(true);
$httpsAbsoluteHomeUrl = Url::home('https');

http://www.yiiframework.com/doc-2.0/

Modules, Widgets, and Helpers

[144]

Alternatively, you can use the base() method to retrieve the base URL of
your application:

$relativeBaseUrl = Url::base();
$absoluteBaseUrl = Url::base(true);
$httpsAbsoluteBaseUrl = Url::base('https');

The home() method returns the home route for our application,
whereas the base() method returns the base URL for our
application for internal use.

The URL helper can also be used to generate routes to other parts of your application
using the toRoute() and to() method. In general, the toRoute() method takes the
following form:

// Generate a relative URL to controller/action
$url = Url::toRoute(['controller/action', 'foo' => 'bar',
'let' => 'asl']);

Alternatively, toRoute() can generate absolute URLs by adding a preceding slash to
the first array parameter:

// Generate an absolute URL to controller/action with
multiple params.
$url = Url::toRoute(['/controller/action', 'foo' => 'bar',
'let' => 'asl']);

Furthermore, the method can be reduced to a single string if we do not have the need
for extra parameters:

// Navigate to controller/action
$url = Url::toRoute('controller/action');

As an alternative to the toRoute() method, the to() method can be used. The to()
method is identical to the toRoute() method, except that it always expects an array
rather than a string:

// Generates a URL to controller/action
echo Url::to(['controller/action']);

// Generates a URL to controller/action with params
// controller/action?foo=bar#name
echo Url::to(['controller/action', 'foo' => 'bar',
'#' => 'name']);

// the currently requested URL
echo Url::to();

Chapter 5

[145]

Additionally, if we want to retrieve the current URL, we can use the current()
method. When passed without arguments, the current URL will be returned.
Any array arguments passed to the method will generate the current URL
with its parameters:

// The current URL
echo Url::current();

// The current URL with params
echo Url::current(['foo' => 'bar']);

The HTML helper
Another common helper in Yii is the HTML helper. The HTML helper provides
many different static methods to generate HTML safe tags. In general, HTML tags
can be generated by calling the tag() method, as follows:

use \yii\helpers\Html; // HTML Helper namespace
// Generates an HTML encoded span tag with the class name,
and the users name HTML encoded.
// Charles
Html::tag('span', Html::encode($user->name), ['class' => 'name']);

As shown in the previous example, data can also be HTML-encoded to make it safe
for client viewing using the Html::encode() method.

Any piece of data submitted by the end user should be wrapped within
the encode() method to prevent XSS injection.

The CSS styles for our HTML tags can also be managed by our HTML helper via the
removeCssClass() and addCssClass() methods. The addCssClass() method can
work with either a string or an array definition of a class, and it will not add a class if
it already exists:

$options = ['class' => 'btn btn-default'];

Html::removeCssClass($options, 'btn-default');
Html::addCssClass($options, 'btn-success');
Html::addCssClass($options, 'btn'); // Has no effect

Html::tag('span', Html::encode($user->name), $options);

Modules, Widgets, and Helpers

[146]

The HTML helper can also be used to generate links:

// Generate a link to the user's profile
// My Profile
Html::a('My Profile', ['profile/view', 'id' => $id], ['class' =>
'profile']);

Html::mailto('Contact me', 'admin@masteringyii.com');

The helper can also be used to generate image tags:

// Generates an IMG tag
// <img src="https://www.masteringyii.com/images/logo.png"
alt="masteringyii logo" />
Html::img('@web/images/logo.png', ['alt' => 'masteringyii logo']);

Moreover, the HTML helper can be used to include inline CSS styles and JavaScript:

// <style>.greeting { color: #2d2d2d; }</style>
Html::style('.greeting { color: #2d2d2d; }');

//<script defer>alert("Hello World!");</script>
Html::script('alert("Hello World!");');

CSS files and JavaScript can also be included with the HTML helper:

//<link href="@web/css/styles.css" />
Html::cssFile('@web/css/styles.css');

// <!--[if IE 9]>
// <link href="http://example.com/css/ie9.css" />
// <![endif]-->
Html::cssFile('@web/css/ie9.css', ['condition' => 'IE 9']);

// <script type="text/javascript src="@web/js/main.js"></script>
Html::jsFile('@web/js/main.js');

The HTML helper can also be used to generate many different types
of HTML tags. A complete method list is available at http://www.
yiiframework.com/doc-2.0/yii-helpers-html.html.

http://www.yiiframework.com/doc-2.0/yii-helpers-html.html
http://www.yiiframework.com/doc-2.0/yii-helpers-html.html

Chapter 5

[147]

The JSON helper
Working with JSON objects can often be complicated. To help alleviate some of the
problems with complex JSON objects, Yii2 provides the yii\helpers\Json class,
which provides support for the encoding and decoding of complex JSON objects:

$data = [
 'foo' => 'bar,
 'a', => 'b',
 'param' => [
 'param2' => ['a' => 'b'],
 'foo' => 'bar'
]
];

// Encodes an array to JSON
$json = Json::encode($data);

// Decodes JSON to a PHP array
$decoded = Json::decode($json);

The yii\helpers\Json class builds upon the native PHP json_
enocde() and json_decode() classes to provide more robust support
for complex JSON objects. It's recommended when using Yii that you use
this class instead of the native PHP functions.

The Markdown helper
Markdown is a text to HTML conversion tool used to write on the Web. Meant to
replace problematic WYSIWYG editors, Markdown has very quickly become the
preferred writing method for professionals across the world. To help you work with
Markdown, Yii2 provides the yii\helpers\Markdown helper with support for some
of the most common markdown flavors, including GitHub Flavored Markdown and
Markdown Extra.

use \yii\helpers\Markdown;
$html = Markdown::process($markdown); // use original
markdown flavor
$html = Markdown::process($markdown, 'gfm'); // use github
flavored markdown
$html = Markdown::process($markdown, 'extra'); // use
markdown extra

Modules, Widgets, and Helpers

[148]

Variable dumping
Often when debugging, we need to explore a given array or object. Most developers
will use the native PHP functions var_dump() or print_r(), both of which can be
problematic with large arrays or objects. To help work with objects and arrays, Yii2
provides the VarDumper helper within the yii\helpers\VarDumper namespace.

While this class replicates much of the functionality of var_dump() and print_r(),
it can identify recursive structures to avoid recursive display of the same object over
and over again. VarDumper can be used as follows:

yii\helpers\VarDumper;
VarDumper::dump($var);

Inflector
Often when working with strings, we need to apply inflection to the string to get the
appropriate tense or plural. The yii\helpers\Inflector class enables us to do this.
Several examples of inflector are provided as follows:

use \yii\helpers\Inflector;

// WhoIsOnline
echo Inflector::camelize('who is online?');

// person => people
echo Inflector::classify('person');

// Who is online
echo Inflector::humanize('WhoIsOnline');

// 26 => 26th
echo Inflector::ordinalize(26);

// person => People
echo Inflector::pluralize('person');

// People => Person
echo Inflector::singularize('People');

Chapter 5

[149]

// SendEmail => send_email
echo Inflector::underscore('SendEmail');

// SendEmail => Send Email
echo Inflector::titlize('SendEmail');

The inflection class will work only with English words.

FileHelper
To help us work with files, Yii2 provides the yii\helpers\FileHelper class.
To search for files in a given directory, we can use FileHelper, as follows:

use \yii\helpers\FileHelper;
$files = FileHelper::findFiles('/path/to/search/');

Now, you have all files listed in the $files variable as an array.

With the find files method, we can specify the file type we want to have or exclude:

// Only .php and .txt files
FileHelper::findFiles('.', ['only' => ['*.php', '*.txt']]);

// Exclude .php and .txt files
FileHelper::findFiles('.', ['except' => ['*.php', '*.txt']]);

By default, fileHelper() will perform a recursive search. To disable this behavior,
we can set the recursive attribute to false:

FileHelper::findFiles('.', ['recursive' => false]);

FileHelper can also be used to determine the MIME type of a specific file or a
file extension:

// image/jpeg
FileHelper::getMimeType('/path/to/img.jpeg');

// image/jpeg
FileHelper::getMimeTypeByExtension('jpeg');

Modules, Widgets, and Helpers

[150]

Summary
In this chapter, we covered many of the different tools we can use to help us develop
applications quicker in Yii2 and extend Yii2. We first covered the basics of a module,
its MVC structure, and how to integrate it into our main application. We also
covered how to use Composer to automate the inclusion of modules in our projects
for development as well as deployment. We then covered widgets in Yii2 and
learned how we can use them in our application. We also covered how to create our
own widgets. Finally, we covered several of the built-in helpers in Yii2 and learned
how to use them.

In the next chapter, we'll explore how assets are managed in Yii2 and how to use
yii\web\AssetManager to optimize the usage of our assets. We'll also cover how we
can integrate other tools, such as Grunt, Node, and Bower, to simplify the use of our
assets in Yii2.

[151]

Asset Management
Modern web applications are made up of many different components. Second only
to functionality, the presentation of our application might be considered the most
important aspect of our application. Presentation of our user interface and the
corresponding user experience is vital to building excellent web applications. In web
applications, the presentation and experience is usually defined by Cascading Style
Sheets (CSS), and JavaScript files. With raw HTML, we can include any necessary
scripts and styles we need to, however often we need to handle our assets in a
programmatic way (such as when using modules, components, or widgets). To help
manage our assets, we can use a combination of third-party tools and Yii2's built-in
asset manager. In this chapter, we'll cover how to use Yii2's asset management tools,
as well as cover several third-party tools we can use to simplify management of our
asset files.

Asset bundles
Assets in Yii2 are managed through an asset bundle. An asset bundle in Yii2 is
simply a class that declares all the assets that we want to use in our application,
and resides within the assets/ directory of our application, usually within
the AppAsset.php file that declares an AppAsset class that extends yii\web\
AssetBundle. Since our default application comes within a pre-defined AppAsset
class, let's take a look at what is already defined in that file.

<?php

namespace app\assets;
use yii\web\AssetBundle;

class AppAsset extends AssetBundle
{
 public $basePath = '@webroot';

Asset Management

[152]

 public $baseUrl = '@web';

 public $css = [
 'css/site.css',
 '//ajax.googleapis.com/
 ajax/libs/jquery/2.1.1/jquery.min.js'
];

 public $js = [];

 public $depends = [
 'yii\web\YiiAsset',
 'yii\bootstrap\BootstrapAsset',
];
}

Our example asset bundle file declares several public properties. The first properties
are the base path and base URL for our application which define where our assets
should be loaded from. The second properties are an array of CSS and JavaScript files
which define which assets should be registered with our asset bundle. Finally our
asset bundle defines which asset bundles our current asset bundle depends upon.
The details of the most common properties are outlined as follows:

Property Explanation
basePath The string or path alias to the public directory of our web server

contains the asset files.
baseUrl The base URL for the relative assets listed in the JS or CSS

property.
css An array of CSS files to include in the asset bundle.
cssOptions An array of options and conditionals that will be rendered with

the generated <link> tag.
depends A array of asset bundles that this asset bundle depends upon.
js An array of JavaScript files to be included in the asset bundle.
jsOptions An array of options and conditionals that will be rendered with

the generated <script> tag.
publishOptions Options to be passed to the publish() method of yii\web\

AssetManager.
sourcePath Defines the directory that contains the asset files we want

to include in our bundle. Setting this property will override
basePath and baseUrl.

Chapter 6

[153]

Using asset bundles
After defining our asset bundles, we then need to include them in our layout files.
We can do that by adding the following to the beginning of our main layout file (in
our case this is views/layouts/main.php).

<?php
use app\assets\AppAsset;
AppAsset::register($this);

On page load, our asset bundle will register all of its dependent asset bundles, and
publish any and all non-web accessible files to a web-accessible directory. Then
during the view rendering stage, it will generate all the necessary HTML markup to
be included in our view.

In the previous instance, $this is an instance of yii\web\View. When
working in widgets or components, you can retrieve the view object
within a component or widget by using $this->view.

Configuration
Internally, Yii2 manages asset bundles and their configuration through the
assetManager application component, which is implemented by the yii\web\
AssetManager class. By configuring the $bundles property of this component,
we can customize how our asset bundles behave. Take for instance the yii\web\
JQueryAsset bundle; by default, it provides a version of jQuery from Bower (a
third-party asset dependency manager we'll cover later in the chapter) when our
Yii2 project is installed. If we wanted this asset bundle to use a different version of
jQuery, or wanted to improve performance by using a third-party CDN, we could
override the jQuery asset bundle options as follows.

// config/web.php
return [
 // [...],
 'components' => [
 // [...],
 'assetManager' => [
 'bundles' => [
 'yii\web\JqueryAsset' => [
 // Prevents the asset bundle from publishing
 this file
 'sourcePath' => null,
 'js' => [

Asset Management

[154]

 'https://cdnjs.cloudflare.com/ajax/
 libs/jquery/2.1.4/jquery.js',
]
],
],
],
],
];

In this instance, we're redefining the JavaScript files for the asset bundle by setting
the js parameter to a CloudFlare CDN, and telling our JQueryAsset bundle to not
push the asset as it is being rendered from a third-party CDN.

Alternatively, we can also conditionally redefine which files are rendering, say in
the instance where we have a minified version of a script we want to display in
production, but a non-minified version we'd like to use in other environments.

// config/web.php
return [
 // [...],
 'components' => [
 // [...],
 'assetManager' => [
 'bundles' => [
 'yii\web\JqueryAsset' => [
 'js' => [
 APPLICATION_ENV == 'prod' ?
 'jquery.min.js' : 'jquery.js'
]
],
],
],
],
];

As a reminder, our APPLICATION_ENV constant is dependent upon
our multi-environment setup we established in Chapter 1, Composer,
Configuration, Classes, and Path Aliases.

Additionally, we can disable specific asset bundles by setting that bundle to false,
as shown in the following example.

// config/web.php
return [
 // [...],

Chapter 6

[155]

 'components' => [
 // [...],
 'assetManager' => [
 'bundles' => [
 'yii\web\BootstrapAsset' => false
],
],
],
];

Moreover, we can completely disable all included asset bundles within our
application by setting the bundles property to false.

// config/web.php
return [
 // [...],
 'components' => [
 // [...],
 'assetManager' => [
 'bundles' => false
],
],
];

Asset mapping
In some instances, multiple asset bundles may define different versions of the same
script. For example, one asset bundle may include jQuery version 2.1.3, and another
may define 2.1.4. To resolve these conflicts, we can set the assetMap property of
our configuration file to resolve any named instances of an asset file to a single
dependency that will be included in our view.

// config/web.php
return [
 // [...],
 'components' => [
 // [...],
 'assetManager' => [
 'assetMap' => [
 'jquery.js' => 'https://cdnjs.cloudflare.com/
 ajax/libs/jquery/2.1.4/jquery.js',
 'jquery.min.js' => 'https://cdnjs.cloudflare.com/
 ajax/libs/jquery/2.1.4/jquery.min.js'
]
],
],
];

Asset Management

[156]

In this instance, any asset bundle that has an instance of jquery.js and jquery.
min.js defined within the js section of the asset bundle will have that asset re-
mapped to our CloudFlare CDN asset.

The assetMap property matches on the last part of an asset file within
bundles as a key-value pair.

Asset types and locations
Depending upon their location, Yii2 will classify an asset in one of three different
ways. Assets will be classified as a source asset, a published asset, or an external
asset. Source assets are asset files that are mixed in within our source code and are
not in a web-accessible directory. Such assets are often included with modules,
widgets, extensions, or components. Any assets that Yii2 defines as source assets
will need to be published by Yii2 to a web-accessible directory. Published assets are
source assets that have been published to a web-accessible directory. And finally,
external assets are assets that are located in a web-accessible location, such as on our
current server or on another server or CDN. Unlike published assets, Yii2 will not
publish these assets to our assets directory, and will instead reference them directly
as an external resource.

When working with asset bundles, if the sourcePath property is specified, Yii2 will
consider any assets listed with a relative path as a source asset, and will attempt to
publish those assets during runtime. If the sourcePath property is not specified,
Yii2 will assume the listed assets are in a web-accessible directory and are published.
In this case, it is necessary to specify either the basePath property, or the baseUrl
property to tell Yii2 where the assets are located.

Do not use the @webroot/assets alias for the sourcePath property,
as this directory is used by asset manager to save the asset files published
from their source location. Any data stored in this directory could be
removed at any time by Yii2.

Asset options
Like the yii\web\View methods registerJsFile() and registerCssFile(),
asset bundles can be rendered with a given set of options by setting the respective
$jsOptions and $cssOptions properties of our asset bundle.

Chapter 6

[157]

For example, we can have our asset bundle include our listed JavaScript files at the
end of the <body> tag within our view.

public $jsOptions = ['position' => \yii\web\View::POS_END];

The yii\web\View class also provides position methods for the
beginning of the body (yii\web\View::POS_BEGIN), the end of the
body (yii\web\View::POS_END), within a jQuery(window).load()
event (yii\web\View::POS_LOAD), and within a jQuery(window).
ready() event (yii\web\View::POS_READY).

With CSS, we can also define <noscript> blocks as follows:

public $cssOptions = ['noscript' => true];

Additionally, we can wrap our CSS blocks in conditionals:

public $cssOptions = ['condition' => 'IE 11'];

This will result in the following HTML being rendered:

<!--[if IE11]>
<link rel="stylesheet" href="path/to/ie11.css">
<![endif]-->

Setting the $jsOptions or $cssOptions property will apply the
specified options to all CSS and JavaScript files defined in the asset
bundle. To apply different conditionals to each asset individually, you'll
need to create a separate asset bundle defining those conditionals, or
inline the assets within the view using theregisterCssFile() or
registerJsFile() methods.

Asset publication
As previously mentioned, if the assets referenced by an asset bundle are located in a
directory that is not publicly accessible from a web browser (or has the sourcePath
property set), its assets will be copied to @webroot/assets (which corresponds
to the web path of @web/assets) as part of the automatic publication process the
asset manager performs when the bundle is registered with the view. As previously
mentioned, the publication path can be altered by setting the baseUrl and basePath
properties of the asset bundle.

Asset Management

[158]

As you may expect, the process of copying over files on a web request can be rather
expensive, and can cause performance-related issues in production environments
if allowed to continually run. To help alleviate this problem, Yii2 provides
two alternatives.

Rather than copying over files, Yii's asset manager can be configured to create a
symbolic link between the origin asset files and the web-accessible directory by
setting the linkAssets property of assetManager as follows:

// config/web.php
return [
 // [...],
 'components' => [
 'assetManager' => [
 'linkAssets' => true,
],
],
 // [...],
];

The publication process usually only occurs once. Once Yii2 has
published our assets, it won't publish them again unless we remove
our assets directory or tell Yii2 to republish our assets.

By default, Yii2 will run the publication process on every file listed in the
sourcePath property, which means if you have a large directory then every file will
be copied over regardless of whether it is actually used. To have Yii2's asset manager
only copy over the files you need, you can modify the publishOptions property of
the asset bundle.

Take for instance if we're using Yahoo's popular CSS library, purecss. To build
purecss from source, we need to run Bower, NPM, and Grunt, which will leave
behind build files we shouldn't publish to our web directory.

By setting the publishOptions property as shown in the following example, we can
ensure only the build files are published, which can drastically improve performance
during initial publication.

<?php
namespace app\assets;

use yii\web\AssetBundle;

class PureCssAsset extends AssetBundle
{
 public $sourcePath = '@bower/purecss';

Chapter 6

[159]

 public $css = [
 'build/base-min.css',
];

 public $publishOptions = [
 'only' => [
 	 'build/'
]
];
}

Client cache management with asset bundles
When running applications in production, we often set long-lived cache expiration
dates on our JavaScript and CSS assets to improve performance. When pushing
out new code, often our assets will change, but their file locations will not, which
will prevent clients from receiving our updated assets when we make changes. The
simplest way to overcome this issue is to append a version or timestamp to the end
of our assets so that browsers can cache a specific version of our assets, and be able to
re-cache new assets as we push to them.

With Yii2, we can configure our asset manager to automatically append the last
modified timestamp to our assets by setting the appendTimestamp property of our
assetManager as follows:

// config/web.php
return [
 // [...],
 'components' => [
 'assetManager' => [
 'appendTimestamp' => true,
],
],
 // [...],
];

Asset Management

[160]

Using preprocessor with asset bundles
To make asset development simpler and easy to manage, many developers have
moved to extended syntax languages such as LESS and CoffeeScript, and rely on
their corresponding tools to convert those assets into CSS and JavaScript files.
Yii2 can help facilitate this process by enabling asset manager to take care of this
build process for you. Using Yii2's asset bundles, you can list LESS, SCSS, Stylus,
CoffeeScript, and TypeScript files directly in asset bundles and Yii2 will identify
them and automatically run them through their corresponding preprocessor.
Take for instance the following asset bundle:

<?php
namespace app\assets;

use yii\web\AssetBundle;

class AppAsset extends AssetBundle
{
 public $basePath = '@webroot';

 public $baseUrl = '@web';

 public $css = [
 'css/app.less',
];

 public $js = [
 'js/app.ts'
];

 public $depends = [
 'yii\web\YiiAsset'
];
}

When our asset bundle is registered with our view, Yii2 will automatically run
the appropriate pre-processor tool to convert the assets to CSS and JavaScript to
include in our views.

Yii2 is dependent upon the corresponding pre-processor software to be
installed on your computer for this feature to work.

Chapter 6

[161]

When working with pre-processors it may be necessary to specify additional
arguments to the pre-processor for your assets to be generated correctly. To set
this in Yii2, you can set the converter property of our assetManager instance
as follows.

// config/web.php
return [
 // [...],
 'components' => [
 'assetManager' => [
 'converter' => [
 'class' => 'yii\web\AssetConverter',
 'commands' => [
 'less' => ['css', 'lessc {from} {to}'],
 'ts' => ['js', 'tsc --out {to} {from}'],
],
],
],
],
 // [...],
];

While convenient to use, it's generally not a good idea to let Yii2 build
our asset files in production, as it introduces unnecessary software into
production environments that may not match that in your development
environment or have security vulnerabilities, and can seriously hinder
application performance as Yii2 will need to build out the asset files on
its initial run. When working in production, it's usually a better idea
to build all of your asset files on a build server before pushing your
application out to production. We'll cover how to build asset files with
Grunt, NodeJS, and Bower later on in this chapter, and cover some basic
deployment strategies in Chapter 13, Debugging and Deploying.

The asset command line tool
With HTTP/1.1 applications, to save bandwidth and requests, it's often better to
combine and compress multiple asset files together. Yii2 can help facilitate this
process through the asset command, which can help you use Yii2, and some
third-party Java tools to compress and combine your asset files.

Asset Management

[162]

Due to changes in the HTTP/2 protocol, it's often more beneficial to serve
asset files individually rather than combining them. As more web servers
such as Nginx and Apache start supporting the HTTP/2 protocol, you
should run your own experiments to determine if combining assets or not
is the best choice for your application.

The asset command-line tool provides two options asset/template, which is used
to generate an instruction file called asset.php for use by the second command
asset/compress, which is used to compress files together. The first tool, asset/
template, is invoked as follows:

./yii asset/template config/assets.php

After running this command, a file called assets.php will be generated in the
config directory of our application, and by default will have the following output.

<?php
/**
 * Configuration file for the "yii asset" console command.
 */

// In the console environment, some path aliases may not exist.
Please define these:
// Yii::setAlias('@webroot', __DIR__ . '/../web');
// Yii::setAlias('@web', '/');

return [
 // Adjust command/callback for JavaScript files compressing:
 'jsCompressor' => 'java -jar compiler.jar --js {from}
 --js_output_file {to}',
 // Adjust command/callback for CSS files compressing:
 'cssCompressor' => 'java -jar yuicompressor.jar
 --type css {from} -o {to}',
 // The list of asset bundles to compress:
 'bundles' => [
 // 'app\assets\AppAsset',
 // 'yii\web\YiiAsset',
 // 'yii\web\JqueryAsset',
],

Chapter 6

[163]

 // Asset bundle for compression output:
 'targets' => [
 'all' => [
 'class' => 'yii\web\AssetBundle',
 'basePath' => '@webroot/assets',
 'baseUrl' => '@web/assets',
 'js' => 'js/all-{hash}.js',
 'css' => 'css/all-{hash}.css',
],
],

 // Asset manager configuration:
 'assetManager' => [
 //'basePath' => '@webroot/assets',
 //'baseUrl' => '@web/assets',
],
];

To compress assets, Yii2 by default will try to use Closure
Compiler (https://developers.google.com/closure/
compiler/) and YUI Compressor (https://github.com/
yui/yuicompressor/). You will need to install both of these
tools for the asset command to function as intended.

This configuration file defines several different options. The first two options,
jsCompressor and cssCompressor, define what commands should be run to
compress both JavaScript and CSS files. By default, these tools will try to use Closure
Compile and YUI Compressor; both can be configured as needed if you wish to use
other tools.

The second option, bundles, defines the asset bundles that you wish to compress
together. The third option, assetManager, defines some basic options that the
asset manager component should use, such as the basePath and baseUrl for the
compressed assets. Finally, the targets option defines the output asset bundles that
will be generated. By default, Yii2 will create a target called all, and will generate
compressed assets for all asset bundles listed.

https://developers.google.com/closure/compiler/
https://developers.google.com/closure/compiler/
https://github.com/yui/yuicompressor/
https://github.com/yui/yuicompressor/

Asset Management

[164]

In many cases, we often have assets split among several different asset bundles,
such as a shared, frontend, and backend tool. As the frontend assets don't need to
be included with our backend assets, we can define multiple targets, which will
generate separate assets after compression, allowing us to include those assets
specifically, thus saving bandwidth for our end user. An example is shown
as follows:

<?php
/**
 * Configuration file for the "yii asset" console command.
 */

// In the console environment, some path aliases may not exist.
Please define these:
// Yii::setAlias('@webroot', __DIR__ . '/../web');
// Yii::setAlias('@web', '/');

return [
 // [...],
 'targets' => [
 'shared' => [
 'js' => 'js/shared-{hash}.js',
 'css' => 'css/shared-{hash}.css',
 'depends' => [
 'yii\web\YiiAsset',
 'app\assets\AppAsset',
],
],
 'backend' => [
 'js' => 'js/backend-{hash}.js',
 'css' => 'css/backend-{hash}.css',
 'depends' => [
 'yii\web\YiiAsset',
 'app\assets\AdminAsset'
],
],
 'frontend' => [
 'js' => 'js/frontend-{hash}.js',
 'css' => 'css/frontend-{hash}.css',
 'depends' => [],
],
]
];

After writing our asset configuration file, we can then generate our compressed asset
files by running the asset command, as follows:

./yii asset/compress config/asset.php

Chapter 6

[165]

The asset configuration file is provided as convenience should desire to
keep everything in Yii2 as much as possible. While Closure Compiler
and YUI Compressor are good tools, tools like Grunt and NodeJS can
often provide a solution that is easier to work with and develop for, while
eliminating much of the configuration you need to do in Yii2 to compile
and compress assets. When working with assets, be sure to find a tool that
works best with your development workflow, team, and build process.

Third-party asset tools
When working with modern web applications, we often need to include many
different types of asset from various sources. Including these assets directly in our
application can cause several problems, namely:

•	 Licensing of third-party assets
•	 Management of versions and security
•	 Repository size
•	 Build processes

Rather than including assets directly in our application, we can utilize third-party
asset management tools such as NodeJS and Bower, which can alleviate all of the
issues outlined previously.

With Yii2, we can work directly with Node and Bower packages. For simple
applications, we can include these packages directly in our composer.json file by
including bower-asset/PackageName and npm-asset/PackageName within the
require section. Yii2's post-scripts will automatically take care of including these
assets within the @bower folder and the @npm folder, which we can then reference in
our asset bundle. In a typical Yii2 instance, this will correspond to vendor/bower
and vendor/npm, respectively.

With more complicated projects, it may make more sense to utilize those third-party
tools directly in our application, and included the requisite CSS and JavaScript files
later. In this next section, we'll take a look at three tools: NodeJS, Bower, and Grunt,
and explore how we can use them in conjunction with Yii2.

Asset Management

[166]

NodeJS
The first and most important tool we'll often use to manage our assets is called
NodeJS, and is a tool that we can use to install the other two packages, Bower and
Grunt. To get started with node, we'll first need to download the software from
https://nodejs.org/download/ and install it on our system.

For our purposes, NodeJS will provide us with the tools and packages that we need
to automatically download and build our asset files. To get started with NodeJS, we
first need to include a package.json file within our application. This file will define
all the dependencies we want to use. A typical NodeJS file for asset management will
look as follows:

{
 "name": "masteringyii-ch6",
 "description": "Chapter 6 source code for the book
 'Mastering Yii'",
 "repository": {
 "type": "git",
 "url": "https://www.github.com/masteringyii/chapter6"
 },
 "dependencies": {
 "ansi-styles": "^1.1.0",
 "bower": "1.3.12",
 "grunt": "^0.4.4",
 "grunt-cli": "^0.1.13",
 "grunt-contrib-concat": "^0.4.0",
 "grunt-contrib-cssmin": "0.6.1",
 "grunt-contrib-uglify": "0.2.0"
 }
}

There are two different ways of working with other packages such as
Bower and Grunt within NodeJS. The first way is to include them as
dependencies within our package.json file. This is advantageous as
we can version lock our build tools to our application. Alternatively, we
can globally install these tools so that we can run them directly through
the command line. When working with many developers and teams, it's
generally better to use the tools as defined in the package.json file.

https://nodejs.org/download/

Chapter 6

[167]

In our package.json file, we defined a few details about our repository such as the
name, description, and repository details, as well as several of the tools we want to
use, such as Bower, Grunt, and a few Grunt tools to concatenate and minify our CSS
and JavaScript files.

With our NodeJS configuration file setup; we can now use NodeJS to add these tools
to our repository by running the following command:

npm install

This will install our build tools to the node_modules directory.

Since this directory contains build tools, we should exclude it from our
repository by adding it to our .gitignore file.

Bower
To manage CSS and JavaScript libraries, we can utilize an asset dependency
management tool called Bower. To get started with Bower, we first need to create
a bower.json file in the root directory of our application, and populate it with the
libraries we want to include. As an example, let's include the popular CSS library
PureCSS in our application. We can do that by writing out a basic bower.json file
as follows:

{
 "name": "masteringyii-ch6",
 "dependencies": {
 "pure": "~0.6.0"
 }
}

A full list of package names can be discovered at http://bower.io/.

To install these packages, we can then run Bower from our node_modules directory
as follows:

./node_modules/.bin/bower install

http://bower.io/

Asset Management

[168]

This will add our libraries and CSS to the vendor/bower directory in the root of
our application.

By default, Bower will install itself to the bower_components directory.
Since, however, Yii2 has already defined the installation directory, it is
re-mapped to vendor/bower.

Grunt
Since we already know how to use YUI Compressor and Closure Compiler and the
Yii2 asset command, one option we have at this point is to direct our asset bundle
and asset configuration file to the node_modules and bower_components directory.
While this eliminates many of the issues listed previously, we can alternatively use
another third-party tool called Grunt to take care of compressing and concatenating
our files together.

In short, Grunt is JavaScript task-runner, designed to help automate much of
the trivial tasks that need to be repeated, such as building asset files. The main
benefit of using a tool like Grunt is that you can automate your workflow both for
development and for your build server.

To get started with Grunt, we first need to create a file called Gruntfile.js,
which will contain all the build instructions for our app.

1.	 The first step in creating our Gruntfile.js file is to declare that we're using
Grunt, and to specify the Grunt modules we want to use (the names of which
we specified in our package.json file).
module.exports = function(grunt) {

 // Register the NPM tasks we want
 grunt.loadNpmTasks('grunt-contrib-concat');
 grunt.loadNpmTasks('grunt-contrib-cssmin');
 grunt.loadNpmTasks('grunt-contrib-uglify');

};

Chapter 6

[169]

2.	 Within this section, we'll then want to declare our default task by specifying
which tasks we want to run when we run Grunt. In our case, we want to
concatenate our JavaScript and CSS files, then minify both our JavaScript
and CSS files.
// Register the tasks we want to run
grunt.registerTask('default', [
 'concat',
 'cssmin:css',
 'uglify:js'
]);

3.	 We then begin configuring our Grunt tasks by telling Grunt where it can find
our package.json file, and setting up some basic path aliases.
grunt.initConfig({
 pkg: grunt.file.readJSON('package.json'),

 paths: {
 assets: 'web',
 bower: 'vendor/bower',
 css : '<%= paths.assets %>/css',
 js: '<%= paths.assets %>/js',
 dist: '<%= paths.assets %>/dist',
 },
}

4.	 Within this section we then define our task to concatenate our JavaScript and
CSS files.
concat: {
 css: {
 src: [
 '<%= paths.bower %>/pure/pure-min.css',
 '<%= paths.css %>/*'
],
 dest: '<%= paths.dist %>/app.css'
 },
 js : {
 src: [
 '<%= paths.js %>/*.js'
],
 dest: '<%= paths.dist %>/app.js'
 }
},

Asset Management

[170]

5.	 Our task to minify our CSS assets after concatenating them together.
cssmin : {
 css:{
 src: '<%= paths.dist %>/app.css',
 dest: '<%= paths.dist %>/app.min.css'
 }
},

6.	 And finally, the task to compress our JavaScript files.

uglify: {
 js: {
 files: {
 '<%= paths.dist %>/app.min.js' : ['<%= paths.dist %>/
app.js']
 }
 }
},

With our Gruntfile.js file now configured, we can then build our asset files by
running Grunt as follows:

./node_modules/.bin/grunt

If everything ran well, we should see the following output:

Running "concat:css" (concat) task

File web/dist/app.css created.

Running "concat:js" (concat) task

File web/dist/app.js created.

Running "cssmin:css" (cssmin) task

File web/dist/app.min.css created.

Running "uglify:js" (uglify) task

File "web/dist/app.min.js" created.

Done, without errors.

Chapter 6

[171]

As shown in the output of Grunt, we generated four files for us, a compressed and
uncompressed JavaScript and CSS file containing all the assets we want to include in
our website. From this point, we can then conditionally include our asset files in our
asset bundle, and toggle off our APPLICATION_ENV or YII_ENV_<ENV> environment
so that we use the minified versions in production, and the non-minified versions in
our non-production environment.

NodeJS, Bower, and Grunt each provide powerful tools to accomplish
certain tasks automatically, and work well with Yii2. Before deciding
on a specific technology to use however, be sure to consult your team to
determine what works best for them.

Summary
In this chapter, we covered how assets work and are managed in Yii2. We explored
the basics of asset bundle files and their integration with Yii2's asset manager. We
also explored how we can use the asset command to build configuration files and
to combine and compress our assets. Finally, we explored three third-party tools:
NodeJS, Bower, and Grunt, and illustrated how we can use those tools in conjunction
with our asset bundle to automate the building of our asset files.

Having explored the front-end aspect of Yii, in the next chapter, we're going
to return to the backend to learn how we can handle user authentication and
authorization within our application, as well as cover how we can set up access
control filters and rule-based authentication within our app.

[173]

Authenticating and
Authorizing Users

When working with modern web applications, we often need to authenticate our
users to ensure that they are who they claim to be and that they have the appropriate
permissions (authorization) required to access information. In this chapter, we'll
cover the basics of authenticating users with Yii2 and granting them access to specific
pages within our applications using basic access control filters and more complex
role-based access control filters.

In this chapter, we'll be building upon the migration scripts and models
we created in Chapter 4, Active Record, Models, and Forms. Before starting
this chapter, make sure you have a good understanding of the models
and migrations we created in that chapter.

Authentication of users
With nearly every sufficiently sized web application, we will ultimately need our
application to support the storage and authentication of users in order to ensure
that the users working with our application are who they claim to be. With web
applications, we typically handle authentication through a public identity (such as
an e-mail address) and a secret that the user knows (such as a password). Depending
upon the sensitivity of our data and our threat model, we can also extend our
authentication process to include a two-factor authentication code issued either
through an SMS text message or a two-factor authentication application, such as
Authy or Google Authenticator. In this section, we'll cover how to implement basic
authentication with Yii2 and explore how we can enhance the security of our users
through the authentication process.

Authenticating and Authorizing Users

[174]

In Yii2, authentication is managed through the user component and is defined in our
config/web.php application configuration file. Before we can start authenticating
users in our application, we first need to define this component in our configuration
file. Specifically, we need to tell Yii2 where it can find the identity class we'll use to
handle the authentication logic within our application. In the following code block,
we've defined our identity class as our User model that we created in Chapter 3,
Migrations, DAO, and Query Building:

return [
 // [...],

 'components' => [
 'user' => [
 'identityClass' => 'app\models\User',
],
],

 // [...],
];

In the upcoming sections, we'll go over how to extend our User class to support
authentication.

Implementing the user identity interface
To implement our identity class with the required authentication logic, we must first
have our identity class (app\models\User, defined in models\User.php) implement
yii\web\IdentityInterface.

Remember, in PHP 5+, interfaces are PHP constructs that define which
methods the implemented class must contain.

In PHP 5+, we can enhance our User object with the required interface methods by
first using the implements keyword in our class, as follows:

class User extends \yii\db\ActiveRecord implements
\yii\web\IdentityInterface

Chapter 7

[175]

Then, we can implement the methods outlined in the IdentityInterface interface.
These methods are findIdentity($id), findIdentityByAccessToken(), getId(),
getAuthKey($token, $type), and validateAuthKey($authKey):

1.	 The first method we need to implement is findIdentity($id). This method
is responsible for finding an instance of the identity class with the specified
$id attribute, and is primarily used when Yii2 needs to authenticate the user
from the session data.

2.	 To implement this method, we need to define the static method and return an
instance of our User class, as shown in the following example:
/**
 * @inheritdoc
 */
public static function findIdentity($id)
{
 return static::findOne($id);
}

3.	 The next method defined in yii\web\IdentityInterface that we need
to define is findIdentityByAccessToken($token, $type). In Yii2,
authentication can be handled through a frontend web form, a cookie
(if we're using cookie-based authentication), or a RESTful API. The
findIdentityByAccessToken method is used when we're using RESTful
authentication. Since our application doesn't have a REST API yet, we can
simply define this method with an empty body, as follows:
/**
 * @inheritdoc
 */
public static function findIdentityByAccessToken($token,
$type=null) { }

Authenticating and Authorizing Users

[176]

If we want to add basic support for token-based authentication, we will
need to perform the following steps:
1. Add a new migration to store an access token with our user data.
2. Create an API-based authentication method that generates an access

token and store it alongside our user data
3. Implement the findIdentityByAccessToken() method,

as follows:
 public static function
 findIdentityByAccessToken($token, $type=null)
 {
 return static::findOne(['access_token' =>
 $token]);
 }

We'll cover RESTful API authentication in more detail in Chapter 9,
RESTful APIs.

4.	 Next, we need to explicitly define the getId() method, which will return the
ID of our user:
/**
 * @inheritdoc
 */
public function getId()
{
 return $this->id;
}

While yii\base\Object, which yii\base\ActiveRecord
extends from, defines a magic method __getter for all of our public
properties defined in our ActiveRecord instance, interfaces in PHP
5+ require all methods listed in the interface to be explicitly defined.

5.	 Finally, we need to implement the getAuthKey() and validateAuthKey()
methods within our application. As stated previously, these two methods
are explicitly used for cookie-based authentication. Since we won't be using
cookie-based authentication in this chapter, we can leave these two methods,
as follows:

 /**
 * @return string current user auth key
 */
 public function getAuthKey() {}

 /**

Chapter 7

[177]

 * @param string $authKey
 * @return boolean if auth key is valid for current
 user
 */
 public function validateAuthKey($authKey)
 {
 return true;
 }

Cookie-based authentication
When working with users, we often need to include a feature similar to the
Remember me feature in our application so that our users can seamlessly log in to
our application after they have been away for some time. To make cookie-based
authentication work in Yii2, we need to make several changes to our application:

1.	 First, we need to set the enableAutoLogin property of our user component
in our web configuration file to true. This will allow Yii2 to automatically
log users in if they have the appropriate cookie set:
return [
 'components' => [
 // [...],
 'user' => [
 'identityClass' => 'app\models\User',
 'enableAutoLogin' => true,
],
 // [...],
]
];

2.	 Next, we'll need to define a location to store and persist our user's
cookie-based authentication token. One way to achieve this would be to
add an additional migration that adds an auth_key column to our user table.
During the creation of our user, we can then seed this value, as follows:
public function beforeSave($insert)
{
 if (parent::beforeSave($insert))
 {
 if ($this->isNewRecord)
 {
 $this->auth_key = \Yii::
 $app->security->generateRandomString();
 }
 return true;
 }

 return false;
}

Authenticating and Authorizing Users

[178]

Alternatively, we can make this value persist into a secondary
storage system, such as in Memcached or Redis. We'll cover
how to use cache data using Redis and Memcached in
Chapter 12, Performance and Security.

3.	 Finally, when we define our login form method that instantiates our
IdentityInterface object, we'll need to log the user in with a duration,
as follows:

Yii::$app->user->login($identity, 3600*24*30);

Yii2 will consequently create a cookie that it will use internally and that will
automatically log the user in as long as the cookie is valid. If the duration is
not set, session-based authentication will be used instead of a cookie-based
one, which means that our user session will expire when the user closes their
browser rather than when the user's cookie expires.

Working with user identities
Now that we've defined the methods required for our identity interface, let's take a
look at the yii\web\User object in more detail.

Remember, the yii\web\User class is distinct from the
app\models\User class.

The yii\web\User object is referenced in Yii2 through \Yii::$app->user, which
contains information on the current user. Information about our user can be retrieved
through the \Yii::$app->user->identity property. If a user isn't authenticated,
this property will be NULL. However, if a user is authenticated, it will be populated
with information about the current user. For instance, if we want to fetch the
complete name of the user as defined in the app\models\User class we extended
in Chapter 4, Active Record, Models, and Forms, we can do that as follows:

$name = \Yii::$app->user->identity->getFullName(); // "Jane Doe";

Alternatively, we can detect whether a user is logged in by checking the isGuest
property of yii\web\User, as follows. This property will return true if the user is
not authenticated and false if they are:

\Yii::$app->user->isGuest;

Chapter 7

[179]

Moreover, if we want to retrieve the ID of the user, we can access it through the
getId() method we defined in our User class:

\Yii::$app->user->getId();

Finally, we can log our user in and out of our application using the respective
login() and logout() methods in Yii::$app->user. To log a user in, we first need
to create an instance of the identity we established earlier. In the following example,
we're fetching the identity information from the user's e-mail address. As mentioned
previously, we can also supply a duration parameter as part of the login() method
for cookie-based authentication:

$identity = User::findOne(['email' => $emailAddress]);
Yii::$app->user->login($identity);

After we're authenticated, we can log users out of our application by calling
\Yii::$app->user->logout(). By default, this parameter will destroy all the
session data associated with the current user. If we want to preserve this data,
we can pass false as the first parameter to the logout() method.

Authenticating users with forms
Now that we've implemented our identity interface and know the basics of the yii\
web\User component, let's piece these components together with the user data we
created in Chapter 3, Migrations, DAO, and Query Building, and the UserForm class
and scenario we created in Chapter 4, Active Record, Models, and Forms. As a reminder,
here is the UserForm class we started with in Chapter 4, Active Record, Models,
and Forms:

<?php

namespace app\models;
use Yii;

class UserForm extends \yii\base\Model
{
 public $email;
 public $password;
 public $name;

 public function rules()
 {
 return [
 [['email', 'password'], 'required'],
 [['email'], 'email'],

Authenticating and Authorizing Users

[180]

 [['email', 'password', 'name'], 'string', 'max' =>
 255],
 [['email', 'password'], 'required', 'on' => 'login'],
 [['email', 'password', 'name'], 'required', 'on' =>
 'register']
];
 }

 public function scenarios()
 {
 return [
 'login' => ['email', 'password'],
 'register' => ['email', 'password', 'name']
];
 }
}

To enhance our UserForm class to facilitate logging in, we need to make a couple
of changes:

1.	 First, since we'll be working with our identity object in multiple places, we
should create a private variable to store it. This will help reduce the number
of queries we need to make to our database when working with our form.
We'll also want to define a method to retrieve this property:
private $_user = false;

/**
* Finds user by [[email]]
* @return User|null
*/
 public function getUser()
 {
 if ($this->_user === false)
 $this->_user = User::findOne(['email' =>
 $this->email]);

 return $this->_user;
 }

Chapter 7

[181]

2.	 Next, we'll need to implement a method to validate our user's password. As
mentioned in Chapter 3, Migrations, DAO, and Query Building, we're hashing
the user's password using the PHP 5 password_hash method. To validate
passwords that are hashed this way, we can use the PHP 5 password_verify
method. For our application, let's add a verifyPassword() method to our
app\models\User class:
/**
 * Validates password
 *
 * @param string $password password to validate
 * @return boolean if password provided is valid for current user
 */
public function validatePassword($password)
{
 return password_verify($password, $this->password);
}

3.	 To call this method, we're going to add a new validator to the rules()
method of our UserForm class that only executes on the login scenario we
defined previously:
public function rules()
{
 return [
 // [...],
 [['password'], 'validatePassword', 'on' => 'login'],
];
}

4.	 Recalling the information we covered in Chapter 4, Active Record, Models, and
Forms, we know that in the login scenario, the validatePassword method
will be called to satisfy the new validation rule we added to our rules()
method. We can define this method as follows:
/**
 * Validates the password.
 * This method serves as the inline validation for password.
 *
 * @param string $attribute the attribute currently
being validated
 * @param array $params the additional name-value
pairs given in the rule
 */
public function validatePassword($attribute, $params)
{

Authenticating and Authorizing Users

[182]

 if (!$this->hasErrors())
 {
 if (!$this->getUser() || !$this->
 getUser()->validatePassword($this->password)) {
 $this->addError($attribute, 'Incorrect email
 or password.');
 }
 }
}

5.	 We'll finalize our UserForm class by adding a login() method that will
validate the email and password submitted by our user and then log the
user in.
/**
 * Logs in a user using the provided email and password.
 * @return boolean whether the user is logged
in successfully
 */
public function login()
{
 if ($this->validate())
{
 if (Yii::$app->user->login($this->getUser()))
 return true;
}

 return false;
}

6.	 With our form finalized, we can then implement the login action in our
controller that will finish the workflow. In our case, let's have our login
action redirect the user to a page that will display some information about
the user after they're logged in. Since we've already defined the bulk of this
action back in Chapter 4, Active Record, Models, and Forms, a small change is
required for this action:

public function actionLogin()
{
 $model = new \app\models\UserForm(['scenario' => 'login']);

 if ($model->load(Yii::$app->request->post()))
 {
 if ($model->login())
 return $this->redirect('secure');
 }

Chapter 7

[183]

 return $this->render('login', [
 'model' => $model,
]);
}

For illustration purposes, let's also dump the information from \Yii::$app-
>user->identity on this page so that we can see it. We can do this by
creating the secure action we mentioned previously and then using the
VarDumper helper to print this information.

public function actionSecure()
{
 echo "<pre>";
 \yii\helpers\VarDumper::dump(\Yii::
 $app->user->identity->attributes);
 echo "</pre>";
}

Since we already created our login view in Chapter 4, Active Record, Models, and Forms,
we can authenticate ourselves into the application using the credentials listed in that
chapter. For example, we can log in as an admin using the following credentials:

•	 Username: admin@example.com
•	 Password: admin

If authenticated successfully, we will be redirected to the secure page that dumps our
user attributes on the page.

[
 'id' => 4
 'email' => 'admin@example.com'
 'password' => '$2y$13$f.1jE/cSFP42bHbqjtmJ5
 .6VkcOtKPp7Vu3UBC6clL7cHj84fltUC'
 'first_name' => 'Site'
 'last_name' => 'Administrator'
 'role_id' => 2
 'created_at' => 1439233885
 'updated_at' => 1439233885
]

Authenticating and Authorizing Users

[184]

Authorization
Though we're now able to authenticate ourselves against our database, we need to
implement the necessary methods in order to ensure that the right people can access
the right pages. To do this, we need to implement either an access control filter or a
role-based access control filter.

Access control filters
One way to control access to certain pages is to create access control filters. Access
control filters in Yii2 are behaviors we can bind to our controllers to ensure
that the right people have access to the right content. The access control filter is
implemented through yii\filter\AccessControl and is primarily used when
simple access control is needed, such when needing to make sure users are logged
in or not (although it can be configured for rules that are more complex). As a filter,
yii\filter\AccessControl is implemented in the behaviors() method of our
controller, as shown in the following example:

<?php

namespace app\controllers;

use yii\web\Controller;
use yii\filters\AccessControl;

class SiteController extends Controller
{
 public function behaviors()
 {
 return [
 'access' => [
 'class' => AccessControl::className(),
 'only' => ['login', 'logout', 'register'],
 'rules' => [
 [
 'allow' => true,
 'actions' => ['login', 'register'],
 'roles' => ['?'],
],
 [
 'allow' => true,
 'actions' => ['logout'],
 'roles' => ['@'],
],

Chapter 7

[185]

],
],
];
 }
}

The previously mentioned code does several things, so let's break it down:

1.	 As mentioned in previous chapters, behaviors return an array of options.
In this case, the first behavior we're returning is the access behavior, which
specifies the yii\filter\AccessControl filter as the class this behavior
should use:
return [
 'access' => [
 'class' => AccessControl::className(),
 // [...]
]
];

2.	 Next, we define the actions we want our filter to apply. In this case, we only
want yii\filter\AccessControl to be applied to the login, logout, and
register actions of our SiteController object.
'only' => ['login', 'logout', 'register'],

3.	 Finally, we define the rules that our filter should obey. In the following
snippet, we declare that we want unauthenticated users (designated by the
special character ? within the roles section) to access the login and register
action and allow any authenticated user (designated by the special character
@ within the roles section) to access the logout action:

'rules' => [
 [
 'allow' => true,
 'actions' => ['login', 'register'],
 'roles' => ['?'],
],
 [
 'allow' => true,
 'actions' => ['logout'],
 'roles' => ['@'],
],
]

Authenticating and Authorizing Users

[186]

By default, if a user is unauthenticated, our access control filter will redirect
the user to our login page, and if they do not have access, yii\web\
ForbiddenHttpException will be thrown. As this isn't always desirable, we can
modify our filter by setting the denyCallback parameter of our filter. Also, we can,
within the rules section of our filter, define the conditions upon which an error can
occur by setting the matchCallback property. As an example, if we want to make
our secure action accessible to only administrators, we can write the following code:

<?php

namespace app\controllers;

use Yii;
use yii\filters\AccessControl;
use yii\web\Controller;
use yii\web\HttpException;
use yii\helpers\Url;

class SiteController extends Controller
{
 public function behaviors()
 {
 return [
 'access' => [
 'class' => AccessControl::className(),
 // Specifies the actions that the rules should
 be applied to
 'only' => ['secure'],
 // The rules surrounding who should and should
 not have access to the page
 'rules' => [
 [
 'allow' => true,
 'matchCallback' => function($rule,
 $action) {
 return !\Yii::$app->user->isGuest &&
 \Yii::$app->user->identity->role->id
 === 2;
 }
],
],
 // The action that should happen if the user
 shouldn't have access to the page
 'denyCallback' => function ($rule, $action) {
 if (\Yii::$app->user->isGuest)

Chapter 7

[187]

 return $this->redirect
 (Url::to('/site/login'));
 else
 throw new HttpException('403', 'You are
 not allowed to access this page');
 },
],
];
 }
}

In this section, users are only allowed to use the secure action if they have a role of 2
(which is the role we designated as an administrator in Chapter 3, Migrations, DAO,
and Query Building). If they aren't authenticated, we redirect them to the login page,
and if they are authenticated but don't have sufficient permissions, we throw an
HTTP 403 error.

The example shown previously is to illustrate what we can do with
the matchCallback and denyCallback properties of our access
control filter.

With an access control filter, we can restrict access to certain actions by the IP address
by setting the ips parameter within our rules section, as shown. IP addresses can
be restricted either by a specific IP or by a subnet using the wildcard character, as
shown in the following example:

return [
 'access' => [
 'class' => AccessControl::className(),
 // [..]
 'rules' => [
 [
 'allow' => true,
 'ips' => [
 '10.0.0.5', // Allow 10.0.0.5
 '192.168.*' // Allow 192.168.0.0/24 subnet
]
]
]
],
];

Authenticating and Authorizing Users

[188]

Additionally, we can restrict access to our action by specifying which HTTP verbs
are permitted using the yii\filter\VerbFilter filter. For instance, if we want to
ensure that only GET requests can be run against our secure action, we can define the
following behavior:

<?php

namespace app\controllers;

use Yii;
use yii\web\Controller;
use yii\filters\VerbFilter;

class SiteController extends Controller
{
 public function behaviors()
 {
 return [
 // [...]
 'verbs' => [
 'class' => VerbFilter::className(),
 'actions' => [
 'secure' => ['get'],
],
],
];
 }
}

By default, our access control filter will attempt to apply itself to every action within
our controller. To specify the actions that our filter should be restricted to, we can set
the only property of our filter:

'only' => ['secure'],

Additionally, we can specify actions that our access control rules should be applied
to by setting the actions property of our rules array:

'rules' => [
 [
 'allow' => true,
 'actions' => ['secure'],
 'matchCallback' => function($rule, $action) {
 return !\Yii::$app->user->isGuest && \Yii::
 $app->user->identity->role->id === 2;
 }

Chapter 7

[189]

],
 [
 'allow' => true,
 'actions' => ['authenticated'],
 'roles' => ['@']
]
],

In a manner similar to the only parameter, we can exclude certain actions from the
authentication filter by setting the except filter:

'except' => ['secure'],

Access control filters are broken down into rules, as shown in the
previous example. Each rule applies only to a specific set of actions, which
allows us to specify custom allow or deny callbacks for these rules. The
parent options of only and except, however, specify when the parent
access control filter should be applied.

Role-based access control
As an alternative to managing access with the user identity object, we can also
manage access to actions by configuring role-based access control (RBAC) within
our application. In Yii2, RBAC works by creating roles that represent a collection of
permissions and then assigning roles to a specific user. Roles are represented by a
check to determine if a given role or permission is applicable to the user in question.
In this section, we'll cover the basics of configuring and working with RBAC in Yii2.

Yii2's implementation of RBAC follows the NIST RBAC model through
the authManager component. The complete implementation details of
the NIST RBAC model are located at http://csrc.nist.gov/rbac/
sandhu-ferraiolo-kuhn-00.pdf.

Configuring RBAC
To start working with RBAC, we first need to configure our authManager component
for RBAC and define the authorization manager we want to use. Yii2 provides two
different authorization managers, the first being yii\rbac\PhpManager, which uses
a PHP script to store authorization data, and yii\rbac\DbManager, which utilizes
the application database to manage authorization data. For simple applications with
nondynamic permissions and roles, yii\rbac\PhpManager may be preferred.

http://csrc.nist.gov/rbac/sandhu-ferraiolo-kuhn-00.pdf
http://csrc.nist.gov/rbac/sandhu-ferraiolo-kuhn-00.pdf

Authenticating and Authorizing Users

[190]

To configure authManager, we simply need to define the class that we want to use,
as follows:

return [
 // [...],
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\PhpManager',
],
],
 // [...],
];

By default, yii\rbac\PhpManager will store authorization data in the
@app/rbac directory, which must be writable by your web server.

Alternatively, if we're using a database to manage our authorization data, we will
configure authManager as follows:

return [
 // [...],
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\DbManager',
],
],
 // [...],
];

When using our database to manage our authorization data, we need to run RBAC
migrations to configure our database appropriately, which can be done by running
the following command from our command-line interface:

./ yii migrate --migrationPath=@yii/rbac/migrations

This will result in output similar to the following:

Yii Migration Tool (based on Yii v2.0.6)

Total 1 new migration to be applied:

 m140506_102106_rbac_init

*** applying m140506_102106_rbac_init

 > create table {{%auth_rule}} ... done (time: 0.006s)

 > create table {{%auth_item}} ... done (time: 0.005s)

Chapter 7

[191]

 > create index idx-auth_item-type on {{%auth_item}} (type) ... /

 done (time: 0.006s)

 > create table {{%auth_item_child}} ... done (time: 0.005s)

 > create table {{%auth_assignment}} ... done (time: 0.005s)

*** applied m140506_102106_rbac_init (time: 0.050s)

Migrated up successfully.

After configuring RBAC, our authManager component can be accessed by \
Yii::$app->authManager.

Creating permissions and permission
relationships
After configuring our authManager component, we need to define the permissions
we want our users to have and the relationships between them. For most
applications with fixed permission hierarchies, this can be achieved by writing an
RBAC console command to initialize the data in our database. In the following
example, we'll create three permissions for an imaginary issue management
application, a permission for a user to create new issues, support for newly created
issues, a supervisor to oversee supervisors, and an administrator permission:

// Save to @app/commands
<?php
namespace app\commands;

use Yii;
use yii\console\Controller;

class RbacController extends Controller
{
 public function actionInit()
 {
 $auth = \Yii::$app->authManager;

 // Create the user permissions
 $user = $auth->createPermission('createIssue');
 $user->description = 'A permission to create a new issue
 within our incident management system';
 $auth->add($user);

Authenticating and Authorizing Users

[192]

 // Create the supporter permissions
 $supporter = $auth->createPermission('supportIssue');
 $supporter->description = 'A permission to apply supporter
 specific actions to an issue';
 $auth->add($supporter);

 // A supporter should have all the permissions of a user
 $auth->addChild($supporter, $user);

 // Create a permission to manage issues
 $supervisor = $auth->createPermission('manageIssue')
 $supervisor->description = 'A permission to apply
 management specific actions to an issue';
 $auth->add($supervisor);

 // A supervisor should have all the permissions of
 a supporter and a end user
 $auth->addChild($supervisor, $supporter);
 $auth->addChild($supervisor, $user);

 $admin = $auth->createRole('admin');
 $admin->description = 'A permission to perform
 admin actions on an issue';
 $auth->add($admin);

 // Allow an admin to perform all related tasks.
 $auth->addChild($admin, $supervisor);
 $auth->addChild($admin, $supporter);
 $auth->addChild($admin, $user);
 }
}

Our newly created permission scheme can then be initialized by running the
rbac/init command from our command line:

./yii rbac/init

After defining our roles, we can apply them to our users during our registration step
or in the administrative dashboard, as shown. In this example, we're fetching the
admin role and assigning it to our administrative user, which has a user ID of 4:

$auth = \Yii::$app->authManager;
$role = $auth->getRole('admin');
$auth->assign($role, User::findOne(['email' =>
'admin@example.com']));

Chapter 7

[193]

Alternatively, we can define an implicit default role within our authManager
component. This way, we do not need to explicitly assign new users to the
lowest-level user role. This can be achieved as follows:

return [
 // [...],
 'components' => [
 'authManager' => [
 'class' => 'yii\rbac\PhpManager',
 'defaultRoles' => ['user'],
],
 // [...],
],
];

Custom authorization rules
In addition to basic authentication roles and permissions, we can also define custom
rules by extending yii\rbac\Rule and implementing the execute() method,
as shown in the following example:

// Save to @app/rbac
<?php
namespace app\rbac;

use yii\rbac\Rule;

/**
 * Checks if a user can edit their own issue
 */
class SupervisorRule extends Rule
{
 public $name = 'isAuthor';

 /**
 * @param string|integer $user the user ID.
 * @param Item $item the role or permission that
 this rule is associated with
 * @param array $params parameters passed to
 ManagerInterface::checkAccess().
 * @return boolean a value indicating whether the rule
 permits the role or permission it is associated with.
 */
 public function execute($user, $item, $params)
 {

Authenticating and Authorizing Users

[194]

 return isset($params['issue']) ?
 $params['issue']->author == $user : false;
 }
}

Custom rules can be added to our authManager component, as follows:

$auth = Yii::$app->authManager;

// Add a rule
$rule = new \app\rbac\SupervisorRule;
$auth->add($rule);

// Create a permission and associate the rule to it
$modifyOwnIssue = $auth->createPermission('modifyOwnIssue');
$modifyOwnIssue->description = 'Modify a issue that was self
submitted';
$modifyOwnIssue->ruleName = $rule->name;
$auth->add($modifyOwnIssue);
// Assign the supervisor role to the superviseIssue permissions
$superviseIssue = $auth->getRole('superviseIssue');
$auth->addChild($modifyOwnIssue, $superviseIssue);

Checking if a user has access to a role
After configuring RBAC, creating the required roles, and assigning users to these
roles, we can check to see if a user has access to a particular role using the yii\web\
User::can() method, as shown here:

if (\Yii::$app->user->can('createIssue'))
{
 // Create a new issue
}

We can also check accessibility against our newly created rule by checking against
the parent role and passing in the required data, as shown here:

if (\Yii::$app->user->can('superviseIssue', ['issue'
=> Yii::$app->request->post('Issue')]))
{
 // Can modify an issue that they created
}

Chapter 7

[195]

Though more explicit through the naming of roles and rules, using
RBAC can quickly become confusing. When using RBAC, thoroughly
document permissions, relationships, and rules for reference later.

Flash messages
Rather than blindly redirecting users without information, we can utilize flash
messages in Yii2 to display one-time useful pieces of information to the user, such as
what action they need to perform in order to complete another action (such as them
having to log in to view the secure page).

In Yii1, user-specified flash messages can be tied directly to the user component.
In Yii2, they're solely managed by the session object. In this section, we'll show
how to use flash messages by example by enhancing our login view. We'll also
take advantage of several of the other widgets and helpers we've covered in
previous chapters.

As shown in the previous section, when a user is a guest and they try to access
a secure page, we simply redirect them back to the login page without any
information. To provide good user experience, we can set a flash message before
redirecting the user and then display that flash message in our login view. As an
example, the behaviors() method of our controller will change to the following.
Note the use of the setFlash() method:

public function behaviors()
{
 return [
 'access' => [
 'class' => AccessControl::className(),
 'denyCallback' => function ($rule, $action) {
 if (\Yii::$app->user->isGuest)
 {
 \Yii::$app->session->setFlash('warning', 'You
 must be authenticated to access this page');
 return
 $this->redirect(Url::to('/site/login'));
 }
 else
 throw new HttpException('403', 'You are not
 allowed to access this page');
 },

Authenticating and Authorizing Users

[196]

 'only' => ['secure'],
 'rules' => [
 [
 'allow' => true,
 'matchCallback' => function($rule, $action) {
 return !\Yii::$app->user->isGuest && \Yii:
 :$app->user->identity->role->id === 2;
 }
],
],
],
];
}

Within our login view file, we can then check for the presence of a specific type of
flash message using the hasFlash() method and then displaying a particular flash
message using the getFlash() method, as shown here:

<?php use yii\bootstrap\Alert; ?>

<div class="site-login">
 <?php if (\Yii::$app->user->isGuest): ?>
 <div class="body-content">
 <?php if (\Yii::$app->session->hasFlash(
 'warning')): ?>
 <?php echo Alert::widget([
 'options' => [
 'class' => 'alert alert-warning'
],
 'body' => \Yii::$app->
 session->getFlash('warning')
]); ?>
 <?php endif; ?>
 <?php echo $this->render('forms/LoginForm',
 ['model' => $model]); ?>
 </div>
 <?php else: ?>
 <?php echo Alert::widget([
 'options' => [
 'class' => 'alert alert-info'
],
 'body' => 'You are already logged in. To login as a
 different user, logout first'
]); ?>
 <?php endif; ?>
</div>

Chapter 7

[197]

Now if we navigate our browser to site/secure without being authenticated, we
are shown the following. Moreover, if we refresh the page again, the flash message
disappears, as flash messages are only intended to be displayed once.

Hashing and encryption
When dealing with user information, it's essential to be mindful of best security
practices in order to ensure that user information such as passwords is stored in a
way that if your database is compromised, the user's bare passwords are not exposed
in plain text. As shown in Chapter 3, Migrations, DAO, and Query Building, we're using
the native PHP password_hash() and password_verify() functions to encrypt
and decrypt our users' passwords. While these standards are easy to use, in the
development of your application, you may find it easier to take advantage of the
Yii2 security component used to hash user passwords and for the encryption of
sensitive data:

Yii::$app->getSecurity();

Hashing and verifying passwords
With Yii2, we can hash and verify user passwords using the
generatePasswordHash() and validatePassword() methods of the security
component. Like the password_hash() and password_verify() functions, the
generatePasswordHash() and validatePassword() methods use bcrypt to hash
the user passwords:

$hash = \Yii::$app->getSecurity()-
>generatePasswordHash($password);

Authenticating and Authorizing Users

[198]

Passwords can then be verified, as follows:

if (Yii::$app->getSecurity()->validatePassword(
$plainTextPassword, $hashedPassword))
{
 // Valid Password
}
else
{
 // Invalid Password
}

By default, Yii2 will use the PHP crypt() function to generate password hashes, but
can, optionally, be configured to use the raw password_hash() methods using the
PASSWORD_DEFAULT algorithm by setting the passwordHashStrategy property of the
security component within the application configuration:

return [
 // [...],
 'security' => [
 'passwordHashStrategy' => 'password_hash'
],
 // [...],
];

It's highly recommended that you use the password_hash strategy
over crypt as PHP will continue to strengthen the hashing algorithm of
PASSWORD_DEFAULT to increase the security of PHP.
The password hashing methods implemented by Yii2, however, are
simply wrappers around native PHP functions. Both the native functions
and Yii2 implementations will remain backward-compatible with each
other. For a more object-oriented approach, it's recommended that you
use Yii2 methods.

Data encryption and decryption
For convenience, Yii2 provides a way to encrypt and decrypt data using a
secret key or a user's passwords. To encrypt data with Yii2, we can use the
encryptByPassword() method of the security component, as shown in the
following example:

$encrypted = \Yii::$app->getSecurity()->encryptByPassword($data,
$secretPassword);

Chapter 7

[199]

Data can then be decrypted using the decryptByPassword() method:

$data = \Yii::$app->getSecurity()->decryptByPassword($encrypted,
$secretPassword);

The secret password used for the encrypt and decrypt methods should
be unique to the user and be stored in a format that if our database is
compromised, the secret password itself is not compromised. A good
secret to use would be the separate password submitted by the user.

Data hashing
In addition to hashing passwords and encrypting data, we can also hash data for
integrity verification using the hashData() and validateData() methods. These
methods will be beneficial to present and validate checksums of files or raw data:

$hash = Yii::$app->getSecurity()->hashData($data, $secretKey);
$data = Yii::$app->getSecurity()->validateData($hash, $secretKey);

Unlike encrypted data, hashed data cannot be recovered to its original
state. Hashes are beneficial in order to verify that information hasn't
been tampered with, and it ensures that the integrity of files or data is
consistent after transmission.

Summary
In this chapter, we covered the basics of authenticating the identity of our users
and granting them access to certain pages based upon attributes we set in the
user identity interface, and how to implement Yii2's hierarchical role-based
authentication. We also explored how to use flash messages to enhance our user
experience. Additionally, we explored a few components of the security component,
which enabled us to hash the user's passwords, hash and verify data, and encrypt
and decrypt information utilizing the user's password.

In the next chapter, we'll cover more complex routing within our application, how
to work with and modify our responses directly with Yii2, and the basics of listening
and responding to events.

[201]

Routing, Responses,
and Events

Like many modern web frameworks, Yii2 is built with a powerful router component,
which we can utilize to handle a variety of URIs coming from both our end users and
application. This functionality is further enhanced by Yii2's powerful request and
response handlers, which we can use to manipulate request and response bodies.
In this chapter, we'll cover the basics of how to manipulate Yii2's URL Manager to
adjust routes, explore how to configure Yii2 to respond in different ways, and learn
how to send and listen to events within our application.

Routing
As mentioned in previous chapters, routing within Yii2 is managed by the
UrlManager component defined in our application configuration. The router in Yii2
is responsible for determining where Yii2 routes external URI requests to internal
controllers and actions. In Chapter 5, Modules, Widgets, and Helpers, we covered
the basics of how to create and manipulate URL routes with the yii\helpers\
Url helper. In this section, we'll cover how Yii2 routes these requests inside our
application by exploring Yii2's UrlManager in more detail.

Routing in Yii2 can be broken down into two basic steps. The first of these steps is
to parse the incoming request and query parameters (which are stored in the GET
parameters of our request with the r parameter by default but can be retrieved from
the request URI if we have pretty URLs enabled). The second step is to create an
instance of the corresponding controller action, which will ultimately handle
the request.

Routing, Responses, and Events

[202]

By default, Yii2 will break the route down in the forward slashes of the URL to map
it to the appropriate module, controller, and action pair. For instance, the site/login
route will match the site controller and the action named login in the default
module of the application instance. Internally, Yii2 will take the following steps to
route the request:

1.	 By default, Yii2 will set the current module as the application.
2.	 Examine the controller map of the application to see whether it contains

the current route. If so, a controller instance will be created according to the
controller map defined within the module, at which point, the action will be
created according to the action map defined in step 4. By default, Yii2 will
create a controller map based upon the controllers found within the @app/
controllers folder, but this may be customized within the module
(or UrlManager):
yii\base\Module::$controllerMap = [
 'account' => 'app\controllers\UserController',
 // Different syntax for the previous example
 //'account' => [
 // 'class' => 'app\controllers\AccountController'
 //],
]

3.	 If the controller map of the application module is found not within the
application module, Yii2 will iterate through the module list in the module
property of the application module to see if a route matches there. If a
module is found, Yii2 will instantiate the module using the provided
configuration and then create the controller using the details outlined
in the previous step.

4.	 Yii2 will then look for the action within the action map defined in the
module's configuration. If found, it will create an action according to that
configuration; otherwise, it will attempt to create an inline action defined in
the action method corresponding to the given action.

If an error occurs at any point during this process, Yii2 will throw yii\web\
NotFoundHttpException.

Chapter 8

[203]

Default and catch all routes
When Yii2 receives a request that is parsed into an empty route, the default route
will be used instead. The default route is set to site/index, which references the
index action of the site controller. This behavior can be changed by setting the
defaultRoute property of the application component, as follows:

[
 // index action of main controller
 'defaultRoute' => 'main/index'
]

Additionally, Yii2 can be configured to forward all requests to a single route by
setting the catchAll property of yii\web\application. This can be beneficial
when you need to perform application maintenance.

[
 // Display a maintenance message
 'catchAll' => 'site/maintenance'
]

Custom routes and URL rules
Rather than relying upon the default controller/action routes Yii2 internally
generates, custom URL rules can be written to define our own URL routes. URL
routes in Yii2 are implemented by an instance of yii\web\UrlRule, and they consist
of a pattern used to patch the path information and query parameters of a given
route. When using custom URL rules, Yii2 will route a request to the first matching
rule for the accompanying request. Moreover, the matching rule determines how the
request parameters are split up. Additionally, using the yii\helpers\Url helper
will also rely upon the list rules to internally route requests.

URL rules in Yii2 can be defined in our application configuration by setting the
yii\web\UrlManager:$rules property as an array, with a key containing the URL
pattern to be matched and the value being the corresponding route. For example,
supposing we had a controller to manage published content, we could write custom
rules, as follows, to route posts and post to our content:

[
 'posts' => 'content/index',
 'post/<id:\d+>' => 'content/view',
]

Routing, Responses, and Events

[204]

Now when navigating to the /posts endpoint of our application, the content/index
controller action pair will be triggered. As shown in the previous example, URL
rules can extend beyond simple strings and can contain complex regular expressions,
which we can use to conditionally route rules. In the previous example, a route to the
/post endpoint followed by an integer ID will route to the content/view controller
action pair. Moreover, Yii2 will automatically pass the $id parameter to the action:

class ContentController extends yii\web\Controller
{
 // Responds to content/index and /posts
 public function actionIndex() {}

 // Responds to content/view/id/<id> or /post/<id>
 public function actionView($id) {}
}

Regular expressions can only be specified for parameters. However, as
we'll see later in this section, we can parameterize our routes to make the
controller and action more dynamic.

These regular expressions can be further customized to include more complex
routes. For instance, adding the following to our URL routes would enable us to pass
additional information to our content/index action, such as the year, month, and the
day we want to show published entries for.

// Creates a route that includes the year, month, and date of
a post
// eg: https://www.example.com/posts/2015/09/01
[
'posts/<year:\d{4}>/<month:\d{2}>/<day:\d{2}>' => 'content/index',
]

As you may expect from the expression, this route will only match four-digit years
and two-digit months and days. Moreover, as mentioned previously, by adding this
information to our URL rules, the yii\helper\Url helper will understand any URL
created with this pattern:

// Routes to posts/2014/09/01
Url::to(['posts/index', 'year' => 2015, 'month' => 09,
'day' => 01]);

Chapter 8

[205]

URL routes can also be defined to route domain names and schemes. For instance,
the following routes can be written to ensure that different domain names route to
different parts of the site:

[
 'https://dashboard.example.com/login' =>
 'dashboard/default/login',
 'https://www.example.com/login' => 'site/login'
]

This is beneficial when handling multiple frontend applications within the
same codebase.

Parameterizing routes
In addition to named parameters, as described in the previous section, parameters
can also be embedded within the URL rule itself. This approach enables Yii2 to
match a single rule to multiple routes, which can greatly reduce the number of
URL rules and, consequently, the performance of your router. Take, for instance,
the following route:

[
 '<controller:(content|comment)>/<id:\d+>/<action:(
 create|list|delete)>' => '<controller>/<action>',
]

This route will match both the content and comment controller with a given ID
for the create, list, and delete actions and pass it to the appropriate action. In order
for a route to match, however, all named parameters must be defined. If a given
route does not contain the given parameters, Yii2 will fail to match the route,
which will most likely result in the route hitting a 404 error. One way to get
around this limitation is to provide default parameters for the routes, as shown
in the following example:

[
 // ...other rules...
 [
 // :\d+ is a regular expression for integers
 'pattern' => 'content/<page:\d+>/<name>',
 'route' => 'content/index',
 'defaults' => ['page' => 1, 'name' => NULL],
],
]

Routing, Responses, and Events

[206]

In this example, page will default to 1, and name will default to NULL. This URL rule
can match multiple routes. In this specific instance, several routes will be matched:

•	 /content, page=1, name=NULL

•	 /content/215, page=215, name=NULL

•	 /content/215/foo, page=215, name=foo

•	 /content/foo, page=1, name=foo

URL suffixes
As an alternative to declaring a key-value pair for a URL route, routes can be defined
as an array of key-value pairs containing the pattern, route, and even a custom URL
suffix to specifically respond to.

[
 [
 'pattern' => 'posts',
 'route' => 'content/index',
 'suffix' => '.xml',
],
]

These routes can be used to configure your application to respond to certain types of
requests in different formats.

By default, rules created this way will be created as an instance
of yii\web\UrlRule, but they can be changed by defining the
class parameter.

HTTP method-specific URL rules
At times, you may find it beneficial to route different types of HTTP methods to
the same route but handle them in different actions. In Yii2, this can be achieved by
prefixing the method types before the route key, as shown in the following example:

[
 'PUT,POST users/<id:\d+>' => 'users/create',
 'DELETE users/<id:\d+>' => 'users/delete',
 'GET users/<id:\d+>' => 'users/view',
]

From an API perspective, all requests will ultimately route to users/<id>, but
depending upon the HTTP method, a different action will be executed.

Chapter 8

[207]

URL rules with specified HTTP methods will only be used for routing
purposes, and they won't be used to create URLs such as when using
yii\helper\Url.

Custom URL rule classes
While yii\web\Url is extremely flexible, and it should cover the majority of use
cases you need for a URL rule, often there are times when a custom URL may
be required. For instance, a publisher may want to support a format to represent
authors and books, such as /Author/Book, where both Author and Book are
data retrieved from the database. Custom URL rules in Yii2 can be created to
solve this problem by extending yii\base\Object and implementing yii\web\
UrlRuleInterface, as shown in the following example:

<?php

namespace app\components;

use yii\web\UrlRuleInterface;
use yii\base\Object;

class BookUrlRule extends Object implements UrlRuleInterface
{

 public function createUrl($manager, $route, $params)
 {
 if ($route === 'book/index')
 {
 if (isset($params['author'], $params['book']))
 return $params['author'] . '/' . $params['book'];
 else if (isset($params['author']))
 return $params['author'];
 }
 return false;
 }

 public function parseRequest($manager, $request)
 {
 $pathInfo = $request->getPathInfo();
 if (preg_match('%^(\w+)(/(\w+))?$%', $pathInfo, $matches))
 {

Routing, Responses, and Events

[208]

 // If the parameterized identified in
 $matches[] matches a database value
 // Set $params['author'] and $params['book'] to
 those attributes, then pass
 // those arguments to your route
 // return ['author/index', $params]
 }

 return false;
 }
}

Our custom rule can then be implemented within our yii\web\
UrlManager::$rules section by declaring our desire to use that class:

[
 // [...],
 [
 // Reuslts in URL's like https://
 www.example.com/charlesportwodii/mastering-yii
 'class' => 'app\components\BookUrlRule'
],
 // [...],
]

Dynamic rule generation
Rules can be programmatically and dynamically added to your application in
several different ways. Dynamic rule generation can take the form of a custom
URL rule class, as outlined in the previous section, or a custom URL manager. The
simplest way to add new URL rules dynamically, however, is to use the addRules()
method of the URL Manager. For rules to take effect, they need to occur early in the
bootstrapping process of the application. For modules to dynamically add new rules,
they should implement yii\base\BootstrapInterface and add the custom URL
rules in the bootstrap() method, as shown in the following example:

public function bootstrap($app)
{
 $app->getUrlManager()->addRules([
 // Add new rules here
], false);
}

Chapter 8

[209]

In complex web applications, it's important to monitor how many URL
rules you have. Adding many different rules can seriously degrade the
performance of your application as Yii2 needs to iterate over each rule
until it finds the first matching rule. Parameterized routes and reducing
the number of URL rules can significantly improve the performance of
your application.

Requests
After handling where we want our request to go, we will often need to write specific
logic to handle the details of our HTTP request. To help facilitate this, Yii2 represents
the HTTP request within the yii\web\Request object, which can provide a variety
of information about the HTTP request, such as the request body, GET and POST
parameters, and headers. Each request in Yii2 can be accessed easily through the
request application component, which is represented by Yii::$app->request
in our code.

Retrieving request parameters and data
The most common task we'll perform when working with the request object
is retrieving GET and POST parameters, which are implemented by yii\web\
Request::get() and yii\web\Request::post() respectively. These methods
enable us to consistently and safely access the $_GET and $_POST parameters of
our application:

$request = \Yii::$app->request;

// Retrieve all of the $_GET parameters
// similar to $get = $_GET
$get = $request->get();

// Retrieve all of the $_POST parameters
$post = $request->post();

Unlike the native $_GET and $_POST PHP global variables, however, Yii2's request
object allows us to safely access named parameters, as shown in the next example:

// Retrieves the name $_GET parameter, $_GET['id']
// https://www.example.com/controller/action/id/5
// https://www.example.com/controller/action?id=5
$id = $request->get('id');

// Retrieves the named $_POST parameter
$name = $request->post('name');

Routing, Responses, and Events

[210]

If the parameters are not defined, Yii2 will return NULL by default. This behavior can
be modified by setting the second parameter of both yii\web\Request::get() and
yii\web\Request::post():

// Default to 1 if ID is not set
$id = $request->get('id', 1);

// Default to 'Guest' if name is not set
$name = $request->post('name', 'Guest');

In addition to providing safe access to the $_GET and $_POST data,
the request object can also be easily mocked when running tests.
We'll cover how to work with tests and mocking data in Chapter 10,
Testing with Codeception.

As an added convenience, Yii2 provides us with the ability to determine the type
of request we're working with, such as a GET, POST, or PUT request. The easiest way
to determine the request type is to query \Yii::$app->request->method, which
will return the HTTP method type (such as GET, PUT, POST, DELETE, and so on).
Alternatively, we can conditionally check the request by querying one of the request
objects of many Boolean options, as shown in the following table:

Property Explanation
yii\web\Request::$isAjax If the request is an AJAX

(XMLHTTPRequest) request
yii\web\Request::$isConsoleRequest If the request is being made from the

console
yii\web\Request::$isDelete If the request is an HTTP DELETE

request
yii\web\Request::$isFlash If the request originated from Adobe

Flex or Adobe Flash.
yii\web\Request::$isGet If the request is an HTTP GET request

yii\web\Request::$isHead If the request is an HTTP HEAD request

yii\web\Request::$isOptions If the request is an HTTP OPTIONS
request

yii\web\Request::$isPatch If the request is an HTTP PATCH
request

yii\web\Request::$isPjax If the request is an HTTP PJAX request

yii\web\Request::$isPost If the request is an HTTP POST request

Chapter 8

[211]

Property Explanation
yii\web\Request::$isPut If the request is an HTTP PUT request

yii\web\
Request::$isSecureConnection

If the request was made over a secure
(HTTPS) connection

Unlike GET and POST requests sent as forms, many of these requests submit
data directly in the request body. To access this data, we can use yii\web\
Request::getBodyParam() and yii\web\Request::getBodyParams(),
as shown:

$request = Yii::$app->request;

$allParamns = $request->bodyParams;

$name = $request->getBodyParam('name');

$manyParams = $request->getBodyParams(['name', 'age', 'gender']);

Request headers and cookies
In addition to the request body, Yii2's request object can also retrieve header
and cookie information sent along with the request. The headers sent along
with our request are ultimately represented by yii\web\HeaderCollection,
which provides several methods used to work with headers, namely yii\web\
HeaderCollection::get() and yii\web\HeaderCollection::has(). In the
following example, we're checking whether the X-Auth-Token header is set
and then assigning it to the $authToken variable if it is set:

// $headers is an object of yii\web\HeaderCollection
$headers = Yii::$app->request->headers;

// If the header has 'X-Auth-Token', retrieve it.
if ($headers->has('X-Auth-Token'))
 $authToken = $headers->get('X-Auth-Token');

If a parameter is not provided to the yii\web\
HeaderCollection::get() method, an array of all headers will
be returned. More details on yii\web\HeaderCollection can be
found at http://www.yiiframework.com/doc-2.0/yii-web-
headercollection.html.

http://www.yiiframework.com/doc-2.0/yii-web-headercollection.html
http://www.yiiframework.com/doc-2.0/yii-web-headercollection.html

Routing, Responses, and Events

[212]

The request object has several built-in defaults to access some commonly queried
headers, namely:

•	 yii\web\Request::$userAgent retrieves the user agent sent by the browser
•	 yii\web\Request::$contentType can be used to determine the appropriate

response type
•	 yii\web\Request::$acceptableContentTypes returns all the acceptable

content types that the client will accept
•	 yii\web\Request::$acceptableLanguages can be used if our application

is configured to support multiple languages

The request object can also tell us what the preferred language of the
client is through yii\web\Request::getPreferedLanguage().
We'll work more with this variable and general translation and
localization in Chapter 11, Internationalization and Localization.

Alongside our header information, we can also retrieve the cookie data sent with our
request by querying Yii::$app->request->cookies, which will return an instance
of yii\web\CookieCollection, which, as you may suspect, contains many of the
same types of methods that yii\web\HeaderCollection provides, such as get()
and has().

The Yii2 API documentation provides a complete set of methods for yii\
web\CookieCollection at http://www.yiiframework.com/doc-
2.0/yii-web-cookiecollection.html.

Retrieving client and URL information
In addition to information about the request, the Yii2 request object can also be used
to retrieve information about the client and our application state. For instance, client
information such as their hostname or IP address can be accessed using yii\web\
Request::$userHost and yii\web\Request::$userIP.

The user's IP address may not be accurate if your request is being
forwarded through a proxy or load balancer. Ensure that your web server
is properly configured to pass along the original data.

http://www.yiiframework.com/doc-2.0/yii-web-cookiecollection.html
http://www.yiiframework.com/doc-2.0/yii-web-cookiecollection.html

Chapter 8

[213]

Data about the application state can be inspected by referencing a variety of
methods, which are more convenient than querying the $_SERVER global variable.
A few of the most common properties are shown in the following table:

Property Explanation
yii\web\
Request::$absoluteUrl

This is the absolute URL, including the hostname and
all the GET parameters (for example, https://www.
example.com/controller/action/?name=foo)

yii\web\
Request::$baseUrl

This is the base URL used before the entry script.

yii\web\
Request::$hostInfo

These are the host details (for example, https://
www.example.com)

yii\web\
Request::$pathInfo

This is the full path after the entry script (for example,
/controller/action)

yii\web\
Request::$queryString

This is the GET query string (for example, name=foo)

yii\web\
Request::$scriptUrl

This is the URL without the path and query string (for
example, /index.php)

yii\web\
Request::$serverName

This is the server name (for example, example.com)

yii\web\
Request::$serverPort

This is the port the server is running on (usually 80 or
443 for TLS connections)

yii\web\Request::$url This is the complete URL sans the host and
scheme information (for example, controller/
action/?name=foo).

The request object is capable of representing nearly every aspect of the
HTTP request and the data that may be stored in the $_SERVER global
variable. For more information on the request object refer to the Yii2 API
documentation at http://www.yiiframework.com/doc-2.0/yii-
web-request.html.

Responses
After finishing the processing of the request object, Yii2 then generates a response
object, which is sent back to the client. The response contains a myriad of
information, such as the HTTP status code, response body, and headers. In Yii2, the
response object is implemented by yii\web\Response, which is represented by the
response application component. In this section, we'll explore how to work
with responses.

http://www.yiiframework.com/doc-2.0/yii-web-request.html
http://www.yiiframework.com/doc-2.0/yii-web-request.html

Routing, Responses, and Events

[214]

Setting status codes
In most cases, Yii2 is perfectly capable of setting the appropriate response code back
to the end user; however, there may be situations that require us to explicitly define
the HTTP response code for our application. To modify the HTTP status code within
our application, we simply need to set yii\web\Response::$statusCode to a valid
HTTP status code:

\Yii::$app->response->statusCode = 200;

Web exceptions
By default, Yii2 will return an HTTP 200 status code for any successful request. If we
want to adjust the status code without interrupting our flow of logic, we can simply
define a new status code for yii\web\Response::$statusCode. In other cases, it
may be better to throw an exception to cause a short circuit in our application flow to
prevent additional logic from being executed.

In general, web exceptions can be thrown by calling yii\web\HttpException with a
valid HTTP status code:

throw new \yii\web\HttpException(409);

For convenience, Yii2 provides several specific methods for a few different types of
requests, as shown in the following table:

Exception Status Code HTTP Error

yii\web\BadRequestHttpException 400 Bad request

yii\web\UnauthorizedHtpException 401 Unauthorized

yii\web\ForbiddenHttpException 403 Forbidden

yii\web\NotFoundHttpException 404 Not found

yii\web\MethodNotAllowedException 405 Method not
allowed

yii\web\NotAcceptableHttpException 406 Not acceptable

yii\web\ConflictHttpException 409 Conflict

yii\web\GoneHttpException 410 Gone

yii\web\
UnsupportedMediaTypeHttpException

415 Unsupported
media type

yii\web\TooManyRequestsHttpException 429 Too many requests

yii\web\ServerErrorHttpException 500 Sever error

Chapter 8

[215]

As an alternative to throwing an empty yii\web\HttpException with
a given status code, you can also extend yii\web\HttpException to
implement your own HttpException exception.

Setting response headers
As with the yii\web\Request object, we can manipulate the HTTP headers
of our response using the add() and remove() methods from yii\web\
HeaderCollection, as shown in the following example:

yii\web\HeaderCollection
$headers = Yii::$app->response->headers;

// Add two headers
$headers->add('X-Auth-Token', 'SADFLJKBQ43O7AGB28948QT');
$headers->add('Pragma', 'No-Cache');

// Remove a header
$headers->remove('Pragma');

Adding new headers will override any previously set headers
with the same name. Moreover, all headers set through yii\web\
HeaderCollection are case insensitive. Removing a header will
remove any header with the name that is currently sent.

Headers can be manipulated at any time during the response up until yii\web\
Response::send() is called, which, by default, is called right before the response
body is sent out.

The response body
Typically, the response body will be represented by an instance of yii\web\
View, which is usually displayed to the end user by returning a rendered view
inside a controller action, as shown here. By default, Yii2 will return the response
with a MIME type of text/HTML and will format the response using yii\web\
HtmlResponseFormatter:

public function actionIndex()
{
 return $this->render('index');
}

Routing, Responses, and Events

[216]

There may be situations, however, where a different response type may be
required, such as when displaying JSON or XML data. Within our controller
action, we can change the output format from the default by setting the yii\web\
Response::$format property and returning either an array or a string representing
the data we want formatted, as shown in the following example:

public function actionIndex()
{
 \Yii::$app->response->format = \yii\web\Response::FORMAT_JSON;
 return [
 'message' => 'Index Action',
 'code' => 200,
];
}

The previous example will output the following JSON data to the client:

{
 "message": "Index Action",
 "code": 200
}

In addition to JSON formatting, yii\web\Response::$format can also be set to
JSONP, HTML, RAW, and XML using the details outlined in the following table:

Type Formatter class Format value
HTML yii\web\HtmlResponseFormat FORMAT_HTML

RAW FORMAT_RAW

XML yii\web\XmlResponseFormatter FORMAT_XML

JSON yii\web\JsonResponseFormatter FORMAT_JSON

JSONp yii\web\JsonResponseFormatter FORMAT_JSON

RAW data will be submitted to the client as is without any additional
formatting being applied to it.

In addition to working with the default response object, in Yii2, you can also create
new response objects to be sent to the end user, as shown in the following example:

public function actionIndex()
{
 return \Yii::createObject([
 'class' => 'yii\web\Response',

Chapter 8

[217]

 'format' => \yii\web\Response::FORMAT_JSON,
 'data' => [
 'message' => 'Index Action',
 'code' => 100,
],
]);
}

Any custom configuration set for the response application component
will not be applied to any custom response objects that you instantiate.

While controller actions are the primary place where you will find yourself editing
the response body, the response body can be modified from anywhere in Yii by
directly manipulating \Yii::$app->response. Any data that has been already
formatted can be assigned directly to the response object by setting the yii\web\
Response::$content property. Moreover, if you want to have the data being passed
through a response formatted before being sent to the user, you can set yii\web\
Response::$content and then set yii\web\Response::$data with the data you
want formatted:

$response = \Yii::$app->response;
$response->format = yii\web\Response::FORMAT_JSON;
$response->data = [
 'message' => 'Index Action',
 'code' => 100
];

Redirection
In order to redirect a browser to a new page, the special header location must be
set by the response. Yii2 provides special support for this through the yii\web\
Response::redirect() method, which can be called from within a controller
action, as follows:

public function actionIndex()
{
 return $this->redirect('https://www.example.com/index2');
}

Routing, Responses, and Events

[218]

By default, Yii2 will return a 302 status code, indicating that the
redirect should be temporary. To notify the browser to permanently
redirect the request, you can set the second parameter of yii\web\
Response::redirect() to 301, which is the HTTP status code for a
permanent redirection.

Outside a controller action, a redirect can be called by calling the redirect()
method and then immediately sending the response, as shown in the following
example:

\Yii::$app->response->redirect('https://www.example.com/index2',
301)->send();

The file output
Similar to browser redirection, outputting a file to the client requests several custom
headers to be set. To facilitate the transfer of files to the browser, Yii2 provides three
distinct methods to output files:

•	 yii\web\Response::sendFile() should be used when sending an existing
file located on the disk

•	 yii\web\Response::sendContentAsFile() sends a string of data as a file
(such as a CSV file)

•	 yii\web\Response::sendStreamAsFile() should be used for large files
(typically, files larger than 100 MB), and it should be sent to the browser as
it is more memory efficient. Within a controller, these methods can be called
directly to send a file:

public function actionReport()
{
 return \Yii::$app->response->sendFile('path/to/report.csv');
}

Similar to redirecting a browser, these methods can be called outside a controller
action by manipulating the response object directly:

\Yii::$app->response->sendFile('path/to/report.csv')->send();

More information on the response object can be found in the Yii2
documentation at http://www.yiiframework.com/doc-2.0/yii-
web-response.html.

http://www.yiiframework.com/doc-2.0/yii-web-response.html
http://www.yiiframework.com/doc-2.0/yii-web-response.html

Chapter 8

[219]

Events
Often when working with complex code bases, we may implement hooks and
handlers so that our application can call custom code outside our main application
flow. In Yii2, these handlers are called events, which can be automatically executed
when a given event is triggered. For example, in a blogging platform, we may create
an event to indicate that a post was published, which will trigger some custom code
to send out an email to users in a specific mailing list. In this section, we'll cover how
to create event handlers, trigger events, and write our own custom events.

Event handlers
Events in Yii2 are implemented within the yii\base\Component base class, which
nearly every class in Yii2 extends from. By extending from this class, we can bind an
event to nearly anywhere in our codebase. To begin working with events, we first
need to create an event handler.

Event handlers in Yii2 can be bound by calling the yii\base\Component::on()
method, and they specify a callback that should be executed when the event is
triggered. These callbacks can take several different forms, ranging from a global
PHP function specified as a string to an anonymous function written inline on the
event. For instance, if we want to call a global PHP function (such as the one we
defined or a built-in function such as trim), we can bind our event, as follows:

$thing = new app\Thing;
$thing->on(Thing::EVENT_NAME, 'php_function_name');

Events handlers can also be called on any PHP object: either the one that we already
have an instance variable for or a namespaced class within our application:

$thing->on(Thing::EVENT_NAME, [$object, 'method']);
$thing->on(Thing::EVENT_NAME, ['app\components\Thing ',
'doThing']);

Moreover, event handlers can be written as an anonymous function:

$thing->on(Thing::EVENT_NAME, function($event) {
 // Handle the event
});

Additional data can be passed to event handlers by passing any data as the third
parameter to the yii\base\Component::on() method:

$thing->on(Thing::EVENT_NAME, function($event) {
 echo $event->data['foo']; // bar
}, ['foo' => 'bar']);

Routing, Responses, and Events

[220]

Furthermore, multiple event handlers can be bound to a single event. When a given
event is triggered, each event will execute in the order in which it was bound to the
event. If an event handler needs to stop the execution of the other events that follow,
it can set the yii\base\Event::$handled property of the $event object to true,
which will prevent all the event handlers bound to the event from not executing:

$thing->on(Thing::EVENT_NAME, function($event) {
 // Handle the event
 $event->handled = true;
}, $data);

By default, the event handler in Yii2 is bound in the order in which it is called,
which means that the last event handler bound to a given event will be called last.
To prepend an event handler to the beginning of the event handler queue, you can
set the $append parameter of yii\base\Component::on() to false, which will
override the default behavior and cause the event handler to be triggered first when
the event is raised:

$thing->on(Thing::EVENT_NAME, function($event) {
 // Handle the event
}, [], false);

Event handlers can also be unbound from the event they're listening to by calling
yii\base\Component::off() using the same syntax used to attach the event
listener to the event. Alternatively, all events handlers can be unbound from an
event by calling yii\base\Component::off() without any additional parameters,
as shown in the following example:

$thing->off(Thing::EVENT_NAME);

Triggering events
Events in Yii2 are triggered by calling the yii\base\Component::trigger()
method, which takes the event name as the second parameter, and an optional
instance of yii\base\Event as the second parameter. For example, we can call
Thing::EVENT_NAME within our code, as follows:

$this->trigger(Thing::EVENT_NAME);

This event was previously bound with the following event:

$thing->on(Thing::EVENT_NAME, ['app\components\Thing, 'doThing']);

Chapter 8

[221]

Now, the app\components\Thing::doThing() method will be triggered. This code
may look as follows for our imaginary component:

<?php
namespace app\components;

use yii\base\Component;
use yii\base\Event;

class Thing extends Component
{
 const EVENT_NAME = 'name';

 public function doThing()
 {
 // This is the event handler
 }
}

Yii2 considers it a best practice to store event names as constants
within classes.

Additional information can be sent to our event handlers by extending yii\base\
Event and passing it as the second parameter of our trigger call, as shown in the
following example:

<?php

namespace app\components;

use yii\base\Component;
use yii\base\Event;

class LogEvent extends Event
{
 public $message;
}

class Logger extends Component
{
 const EVENT_LOG = 'log_event';

Routing, Responses, and Events

[222]

 /**
 * Log with $message
 * @param string $message
 */
 public function log($message)
 {
 $event = new LogEvent;
 $event->message = $message;
 $this->trigger(self::EVENT_LOG, $event);
 }
}

Due to the single-threaded nature of PHP, Yii2's events will occur synchronously rather than
asynchronously, which will block all other application flows from occurring until all the
events in the event handler queue are complete. Consequently, you should be careful when
using many events as they may cause detrimental application performance.

One way to use implemented asynchronous events (such as sending an
email newsletter from a CMS) is to have your event handlers pass off the
event to a third-party messaging queue, such as Gearman, Sidekiq, or
Resque, and immediately return the event. The event can then be handled
in a separate processing thread, which can be a Yii2 console command
configured to read events from the messaging queue and process them
separately from the main application.

Class-level events
The events described previously were bound at an instance level. In Yii2, events can
be bound to every instance of a class rather than a specific instance, and they can also
be bound to Yii2's global event handler.

Class-level events can be bound by attaching the event handler directly through
yii\base\Event::on(). For instance, Active Record will trigger an EVENT_AFTER_
DELETE event whenever a record is deleted from the database. We can log this
information for every Active Record instance, as shown in the following example:

<?php

use Yii;
use yii\base\Event;
use yii\db\ActiveRecord;

Chapter 8

[223]

Event::on(ActiveRecord::className(),
ActiveRecord::EVENT_AFTER_DELETE, function ($event) {
 Yii::trace(get_class($event->sender) . ' deleted a record.');
});

Whenever a trigger occurs, it will first call instance-level event handlers, then
it will call class-level event handlers, and then it will call global event handlers.
Class-level events can be explicitly called by calling yii\base\Event::trigger()
directly. Additionally, class-level event handlers can be removed through yii\base\
Event::off().

Global events
Global events are supported in Yii2 by binding event handlers to the application
singleton instance itself, as shown in the following example:

<?php
use Yii;
use yii\base\Event;
use app\components\Foo;

Yii::$app->on('thing', function ($event) {
 echo get_class($event->sender);
});

Yii::$app->trigger('thing', new Event(['sender' => new Thing]));

When using global events, be cautious as to not override Yii2's built-in
global events. Any global event that you use should include some sort of
prefix in order to avoid collision with Yii2's built-in events.

Summary
In this chapter, we covered the basics of how requests and responses are handled
in Yii2. We first explored how Yii2 handles the routing of URL routes, and we
learned how to manipulate and create our own custom URL rules. We then
explored the yii\web\Request and yii\web\Response objects and gained a better
understanding of how we can use these objects to manipulate the requests and
responses coming to and from our application. Finally, we learned how events work
in Yii2, and we also learned how to create our own events.

In the next chapter, we'll take the knowledge we've gained in this chapter to the next
level by exploring how to implement RESTful APIs.

[225]

RESTful APIs
Representational State Transfer (REST) is a modern approach for client-server
communications that decouple the client (such as Bowers and mobile applications)
from the server components in applications. RESTful implementations enable
backend implementations to speak a common language (usually, XML or JSON)
while taking complete advantage of HTTP verbs, such as GET, POST, PUT, and DELETE.
RESTful applications enable us to build stateless, scalable, and uniform applications
that we can distribute to our clients. With Yii2, we can quickly implement RESTful
APIs as either a part or the whole of our application.

ActiveController
The simplest way to create RESTful APIs in Yii2 is to take advantage of
yii\rest\ActiveController. Like yii\web\Controller, yii\rest\
ActiveController provides a controller interface that we can implement in our
./controllers directory. Unlike yii\web\Controller, implementing yii\rest\
ActiveController with a yii\db\ActiveRecord model will immediately create
a complete REST API for that model available, with very minimal coding. Models
implemented with yii\rest\ActiveController also make the following additional
features available out of the box:

•	 XML and JSON response formats
•	 Rate limiting
•	 Data and HTTP caching
•	 Authentication
•	 Full HTTP verb support (GET, POST, PATCH, HEAD, and OPTIONS)
•	 Data validation
•	 Pagination
•	 Support for HATEOAS

RESTful APIs

[226]

As an example, let's expose our User model that we created in Chapter 4, Active
Record, Models, and Forms. To get started with yii\rest\ActiveController, we first
need to create a controller in our controllers/ directory called UserController.
php, which references our User model that we created previously:

<?php

namespace app\controllers;

use yii\rest\ActiveController;

class UserController extends ActiveController
{
 public $modelClass = 'app\models\User';
}

Next, we need to make some configuration changes to our config/web.php
configuration file so that Yii2 can route the correct routes to our newly created
controller and to ensure that our application can accept JSON input. As we've
already enabled pretty URLs and disabled the script name being displayed in our
urlManager component, we simply need to add a custom URL rule for our user
class. This URL rule is an instance of yii\rest\UrlRule, and it will handle all the
required routing for our controller:

return [
 // [...],
 'components' => [
 // [...],
 'urlManager' => [
 'enablePrettyUrl' => true,
 'enableStrictParsing' => true,
 'showScriptName' => false,
 'rules' => [
 ['class' => 'yii\rest\UrlRule',
 'controller' => 'user'],
],
],
]
];

Chapter 9

[227]

Next, we need to modify the base request object that our application uses so that it
can parse the JSON input:

return [
 // [...],
 'components' => [
 // [...],
 'request' => [
 'parsers' => [
 'application/json' => 'yii\web\JsonParser',
]
]
]
];

The change to the request parser is added for convenience as JSON is an
easy input type to work with. Without this change, our application will
only be able to parse the application/x-www-form-urlencoded and
multipart/form-data request formats.

By simply adding a few lines of code, we've now implemented a complete REST API
for our Users model. The following table exposes a complete list of methods that
yii\rest\ActiveController exposes for us:

HTTP Method Endpoint Result
GET /users This is a list of all users
GET /users/<id> This has the information for the user with the

given <id> tag
POST /users This creates a new user with the data supplied

in the request body
PATCH /users/<id> This modifies a user with the given <id> tag

with the data supplied in the request body
DELETE /users/<id> This deletes a user with a given <id> tag
HEAD /users This retrieves the header information
HEAD /users/<idl> This retrieves the header information for the

given user <id> tag
OPTIONS /users This retrieves the HTTP options for Ajax-like

requests
OPTIONS /users/<id> This retrieves the HTTP options for Ajax-like

requests for a user with a given <id> tag

RESTful APIs

[228]

An easy way to query against our newly created REST API is to use the command-
line tool called CURL. For example, to retrieve the headers for our /users endpoint,
we can run the following command:

$ curl -i -X HEAD https://www.example.com/users

You'll get output similar to the following:

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Transfer-Encoding: chunked
Connection: keep-alive
Vary: Accept-Encoding
X-Pagination-Total-Count: 4
X-Pagination-Page-Count: 1
X-Pagination-Current-Page: 1
X-Pagination-Per-Page: 20
Link: <https://www.example.com/users?page=1>; rel=self
Access-Control-Allow-Origin: *

As mentioned previously, yii\rest\ActiveRecord immediately provides us with a
bunch of useful information, such as CORS headers and pagination details.

With CURL, we can also query for the raw data itself. Our API can respond in either
a JSON or an XML format depending upon the Accept headers we submit along
with our request. The next example illustrates a request that will respond in the
JSON format:

$ curl –I -H "Accept:application/json" https://www.example.com/users |
jq .
[
 {
 "updated_at": 1442602004,
 "created_at": 1442602004,
 "role_id": 1,
 "last_name": "Joe",
 "first_name": "Jane",
 "password": "$2y$13$pc0TEJged1BwmqpGL7
 dywupNzG6bCBWRjBbDMzBXhv7FewvUR/qqm",
 "email": "jane.doe@example.com",
 "id": 1
 },
 {...}
]

Chapter 9

[229]

By default, CURL will return data as a single line. As illustrated in the
previous command, we're piping the JSON response from our cURL
request to a tool called jq (https://stedolan.github.io/jq/),
which is used to format the data in an easy-to-read format. Alternatively,
you can install a graphic-based tool of your choice to submit and display
responses in an easy-to-read format.

Additionally, we can filter specific fields by passing them as GET parameters within
our request. For example, if we want to just retrieve the first and last name of the
user with the ID of 1 in our database, we can execute the following command:

$ curl -H "Accept:application/json" /

https://www.example.com/users/1?fields=id,first_name,last_name | jq .

This will return the following response:

{
 "last_name": "Joe",
 "first_name": "Jane",
 "id": 1
}

Configuring ActiveController display fields
As you may have noticed, yii\rest\ActiveController only returns fields that
are populated from the database and does not return extra fields that you may have
created (such as a full_name field as the concatenation of the first and last name)
or relations. Additionally, it exposes every field in the database, including sensitive
data, such as encrypted password hashes. One way to get around this limitation is to
modify the fields() method of our models.

For example, to prevent accidentally exposing our hashed passwords over our API,
we can implement a custom fields method in our User model, as follows. We can
also change the display name of certain fields:

class User extends \yii\db\ActiveRecord implements
\yii\web\IdentityInterface
{
 /**
 * API safe fields
 */
 public function fields()
 {

https://stedolan.github.io/jq/

RESTful APIs

[230]

 return [
 'id',
 'email_address' => 'email',
 'first_name',
 'last_name',
 'full_name' => function($model) {
 return $model->getFullName();
 },
 'updated_at',
 'created_at'
];
 }
}

Now, let's query against our API, as follows:

$ curl -H "Accept:application/json" https://www.example.com/users/1 /

| jq .

We retrieve the following response:

{
 "created_at": 1442602004,
 "updated_at": 1442602004,
 "full_name": "Jane Joe",
 "last_name": "Joe",
 "first_name": "Jane",
 "email_address": "jane.doe@example.com",
 "id": 1
}

Additionally, we can expose relational data by implementing the extraFields()
method of our model, as shown in the next example:

public function extraFields()
{
 // Expose the 'role' relation
 return ['role'];
}

The extraFields() method will expose the entire model relationship
in our response, and it can consequently be a security risk if our relations
contain sensitive information. Ensure that you use the fields() method
in the related attribute to restrict what data will be returned.

Chapter 9

[231]

We can expand this data by adding expand=role to our GET parameters, as shown in
the following example:

$ curl -H "Accept:application/json" /

https://www.example.com/users/1?expand=role | jq .

{
 "role": {
 "name": "User",
 "id": 1
 },
 "created_at": 1442602004,
 "updated_at": 1442602004,
 "full_name": "Jane Joe",
 "last_name": "Joe",
 "first_name": "Jane",
 "email_address": "jane.doe@example.com",
 "id": 1
}

Data serialization within responses
In addition to modifying the fields that are displayed in our response, we can also
modify our response to contain useful information, such as the information that
is sent in our headers (such as pagination information and links), and wrap our
response in a container that is easy to identify in our response. We can do this by
adding and specifying a serializer in our yi\rest\ActiveController, as shown in
the following example:

<?php

namespace app\controllers;

use yii\rest\ActiveController;

class UserController extends ActiveController
{
 public $modelClass = 'app\models\User';

 public $serializer = [
 'class' => 'yii\rest\Serializer',
 'collectionEnvelope' => 'users',
];
}

RESTful APIs

[232]

Now, when we query our /users endpoint, we will have the following response:

$ curl -H "Accept:application/json" https://www.example.com /users /

| jq .

{
 "_meta": {
 "perPage": 20,
 "currentPage": 1,
 "pageCount": 2,
 "totalCount": 21
 },
 "_links": {
 "self": {
 "href": "https://www.example.com/users?page=1"
 },
 "next": {
 "href": "https://www.example.com/users?page=2"
 }

 },
 "users": [
 {
 "created_at": 1442602004,
 "updated_at": 1442602004,
 "full_name": "Jane Joe",
 "last_name": "Joe",
 "first_name": "Jane",
 "email_address": "jane.doe@example.com",
 "id": 1
 },
 {...},
 {...}
]
}

Chapter 9

[233]

Disabling ActiveController actions
While yii\rest\ActiveController provides many useful actions, there may be
situations where you do not want to expose every method that is exposed by default.
The following actions are automatically exposed by yii\rest\ActiveController:

Action name Result
index This lists all the resources provided by the model with

pagination support
view This returns the details of a specific model
create This creates a new model instance
update This updates an existing model instance
delete This deletes a model
options This returns the available methods

Apart from overriding the action method, there are several different ways to disable
actions. Actions can be disabled by removing them from the actions list within the
actions() method of your controller. For example, to disable delete and create,
we can remove them, as follows:

<?php

namespace app\controllers;

use yii\rest\ActiveController;

class UserController extends ActiveController
{
 public $modelClass = 'app\models\User';

 public function actions()
 {
 $actions = parent::actions();

 // disable the "delete" and "create" actions
 unset($actions['delete'], $actions['create']);
 return $actions;
 }
}

RESTful APIs

[234]

Alternatively, actions can be disabled by removing the route from yii\rest\
UrlRule within our web configuration by setting the only or the except parameters
of our rule. In the following example, the delete, create, and update actions have
been disabled in our router:

[
 'class' => 'yii\rest\UrlRule',
 'controller' => 'user',
 // 'only' => ['index'], // Only allow index
 'except' => ['delete', 'create', 'update'], // Disabled
]

Customizing ActiveController actions
There are several ways to modify the data that is returned by each action provided
by yii\rest\ActiveController. Apart from directly overloading a specific
method, the data providers for each action can be modified as well. For example, to
change the data provider for our index action, we can write code that's similar to the
following code block:

<?php

namespace app\controllers;

use yii\rest\ActiveController;

class UserController extends ActiveController
{

 public function actions()
 {
 $actions = parent::actions();

 // Customize the data provider preparation with the
 "prepareDataProvider()" method
 $actions['index']['prepareDataProvider'] = [$this,
 'prepareDataProvider'];

 return $actions;
 }

 private function prepareDataProvider()
 {
 // Prepare a new data provider
 }
}

Chapter 9

[235]

Authentication filters
In Chapter 7, Authenticating and Authorizing Users, we covered the basics of user
access control filters to control which users can have access to our controllers. Unlike
stateful applications that depend upon the presence of session data to persist user
data across each request, RESTful APIs are stateless by nature, which means that
each request must provide the required information to authenticate each user. To
assist us in authenticating users over our API, Yii2 provides three built-in methods to
control access to our API:

•	 HTTP basic authentication
•	 Query parameter authentication
•	 OAuth2 authentication

Additionally, we can define our own custom authentication methods.

To get started with authenticating users within our API, we need to make the
following changes to our application:

•	 Configuring the user component of our configuration by doing the following:
°° Disabling sessions by setting enableSession to false
°° Setting the loginUrl property to null to prevent redirects to the

login page

•	 Specifying the authentication method in the behaviors() method of
our controller

•	 Implementing yii\web\IdentityInterface::findIdentityByAccessTok
en() in our user identity class

You may encounter issues if you mix your REST API with your normal
Yii2 application. For this reason, it is strongly encouraged that you run
your API as a separate application from your Yii2 app.

RESTful APIs

[236]

HTTP basic authentication
The most basic way to handle authentication is to implement HTTP basic
authentication. HTTP basic authentication is provided by the yii\filters\auth\
HttpBasicAuth class, and it can be implemented as follows:

<?php

namespace app\controllers;
use yii\filters\auth\HttpBasicAuth;
use yii\rest\ActiveController;

class UserController extends ActiveController
{
 public function behaviors()
 {
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => HttpBasicAuth::className(),
];
 return $behaviors;
 }
}

Now, if we attempt to query our API without sufficient credentials, we will receive
the following response:

{
 "name": "Unauthorized",
 "message": "You are requesting with an invalid credential.",
 "code": 0,
 "status": 401,
 "type": "yii\\web\\UnauthorizedHttpException"
}

If we attempt to navigate to any endpoint in our application, we will then receive the
following popup asking us to authenticate:

Chapter 9

[237]

By default, Yii2 will pass this information to yii\web\IdentityInterface::findId
entityByAccessToken() with just the username as the token. Generally, a username
isn't sufficient information to authenticate a user. This behavior can be overwritten
by specifying the auth property of yii\filters\auth\HttpBasicAuth, which will
allow us to pass both the username and password to a function of our choice:

public function behaviors()
{
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [

 'auth' => ['app\models\User', 'httpBasicAuth'],
 'class' => HttpBasicAuth::className(),
];
 return $behaviors;
}

Within our User model, we can define the httpBasicAuth() method as follows:

/**
* Handle HTTP basic auth
* @param string $email
* @param string $password
* @return static self
*/
public function httpBasicAuth($email, $password)
{
 $model = static::findOne(['email' => $email]);
 if ($model == NULL)

RESTful APIs

[238]

 return NULL;

 if (password_verify($password, $model->password))
 return $model;

 return NULL;
}

In the example shown, we're validating the username and password
against the users we created in Chapter 4, Active Record, Models, and Forms.
In this situation, we're validating the password against the previously
created bcrypt hash. Ensure that you reference the credentials listed in
that chapter for an example.

Now, if we query against our API, we will receive a valid response if we have valid
credentials and an error if we provide the wrong credentials.

Query parameter authentication
As an alternative to query parameter authentication, we can grant access to our API
by specifying a query parameter. This can be a global query parameter that we treat
as a secret key, or it can be a per-user token that we issue on our login request. Query
parameter authentication can be implemented by implementing yii\filters\auth\
QueryParamAuth. In the following example, we're looking for a GET parameter called
token, which contains our token:

<?php

namespace app\controllers;
use yii\filters\auth\QueryParamAuth;

use yii\rest\ActiveController;

class UserController extends ActiveController
{
 public function behaviors()
 {
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'tokenParam' => 'token',
 'class' => QueryParamAuth::className(),
];
 return $behaviors;
 }
}

Chapter 9

[239]

Authentication can be performed in our model by implementing yii\web\Identit
yInterface::findIdentityByAccessToken(). The simplest example is to create a
new migration that adds a new column to our user's table called access_token that
is populated on our authentication request. We can then validate against it by adding
the following code to our User model:

/**
 * @inheritdoc
 */
public static function findIdentityByAccessToken($token,
$type=null)
{
 return static::findOne(['access_token' => $token]);
}

OAuth2 authentication
The most complex authentication method in Yii2 is OAuth2 authentication, as
implemented by yii\auth\filters\HttpBearerAuth. Like yii\auth\filters\
QueryParamAuth, yii\auth\filters\HttpBearerAuth can be implemented by
setting the appropriate behavior in the behaviors() method and then implementing
yii\web\IdentityInterface::findIdentityByAccessToken().

<?php

namespace app\controllers;
use yii\filters\auth\HttpBearerAuth;

use yii\rest\ActiveController;

class UserController extends ActiveController
{
 public function behaviors()
 {
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => HttpBearerAuth::className(),
];
 return $behaviors;
 }
}

RESTful APIs

[240]

If you're unfamiliar with the OAuth2 workflow, you can simulate a login request by
setting the Authorization header with a specific Bearer token, as shown here:

Headers:
 Authorization: Bearer <token>

The <token> part of the header is what will ultimately be passed to yii\web\Identi
tyInterface::findIdentityByAccessToken().

Composite authentication
To increase the security of our API, we can bundle several different authentication
filters together by implementing yii\filters\auth\CompositeAuth. To
authenticate against our API, we need to satisfy all the authentication requirements,
as listed in our behaviors() method. Composite authentication can be configured as
follows within our controller:

<?php

namespace app\controllers;
use yii\filters\auth\CompositeAuth;
use yii\filters\auth\HttpBasicAuth;
use yii\filters\auth\QueryParamAuth;

use yii\rest\ActiveController;

class UserController extends ActiveController
{
 public function behaviors()
 {
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => CompositeAuth::className(),
 'authMethods' => [
 HttpBasicAuth::className(),
 QueryParamAuth::className(),
],
];
 return $behaviors;
 }
}

Chapter 9

[241]

Custom authentication filters
As an alternative to built-in authentication providers, we can also define our own
authentication filters. For example, as part of our login request, we may generate
a unique token for the user to make all additional requests against. Rather than
requiring clients of our API to store the users' raw password or pass the credentials
as a GET parameter that may end up in our server log files, we can have our users
submit their authentication token as a unique header. An example class of how to
implement this is shown as follows:

<?php

namespace app\filters\auth;

use yii\filters\auth\AuthMethod;
use yii\web\UnauthorizedHttpException;
/**
 * HeaderParamAuth is an action filter that supports the
authentication based on the access token passed through a query
parameter.
 */
class HeaderParamAuth extends AuthMethod
{
 /**
 * @var string the parameter name for passing the access token
 */
 public $tokenParam = 'x-auth-token';

 /**
 * @inheritdoc
 */
 public function authenticate($user, $request, $response)
 {
 $accessToken = $request->getHeaders()[$this->tokenParam];

 if (is_string($accessToken))
 {
 $identity = $user->loginByAccessToken($accessToken,
 get_class($this));

 if ($identity !== null)
 return $identity;
 }

RESTful APIs

[242]

 if ($accessToken !== null)
 $this->handleFailure($response);

 return null;
 }

 /**
 * @inheritdoc
 */
 public function handleFailure($response)
 {
 throw new UnauthorizedHttpException('The token you are
 using has is either invalid, or has expired. Please
 re-authenticate to continue your session.');
 }
}

Our custom authentication method can then be implemented in our controller,
as follows:

<?php

namespace app\controllers;
use app\filters\auth\HeaderParamAuth;

use yii\rest\ActiveController;

class UserController extends ActiveController
{
 public function behaviors()
 {
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => HeaderParamAuth::className(),
];
 return $behaviors;
 }
}

As you would expect, the x-auth-token parameter will be the token that is passed
to yii\web\IdentityInterface::findIdentityByAccessToken().

Chapter 9

[243]

Action-specific authentication
Authentication can be restricted to certain actions using the only and except
keywords as part of the authenticator behavior. For example, using our previously
created HeaderParamAuth class, we can only require authentication to the delete,
create, and update actions while allowing unauthenticated users to access the main
index action:

<?php

namespace app\controllers;
use app\filters\auth\HeaderParamAuth;

use yii\rest\ActiveController;

class UserController extends ActiveController
{
 public function behaviors()
 {
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => HeaderParamAuth::className(),
 'only' => ['delete', 'update', 'create']
];
 return $behaviors;
 }
}

Checking access
When exposing API endpoints, you often need to bundle both authentication and
authorization. With yii\rest\Controller, this can be handled by overriding the
yii\rest\Controller::checkAccess() method:

/**
 * Checks the privilege of the current user.
 *
 * This method should be overridden to check whether the current
user has the privilege
 * to run the specified action against the specified data model.
 * If the user does not have access, a [[ForbiddenHttpException]]
should be thrown.
 *

RESTful APIs

[244]

 * @param string $action the ID of the action to be executed
 * @param \yii\base\Model $model the model to be accessed. If
null, it means no specific model is being accessed.
 * @param array $params additional parameters
 * @throws ForbiddenHttpException if the user does not have access
 */
public function checkAccess($action, $model = null, $params = [])
{
 // check if the user can access $action or $model
 // throw ForbiddenHttpException if access should be denied
}

Alternatively, you can use the access control filter, as shown in Chapter 7,
Authenticating and Authorizing Users.

Authorization determines which actions require authenticated
access. When working with APIs, you'll need to properly
implement authentication to determine which users, or which set
of users, have access to a specific command. Refer to the material
in Chapter 7, Authenticating and Authorizing Users for more details
on how to authenticate users in your app.

Verb filters
When creating custom API endpoints, you may want to only allow certain HTTP
verbs to be issued against these actions. For instance, a PUT request to an endpoint
that deletes a user doesn't make much sense. One way to control which HTTP verbs
can be executed against our actions is to use yii\filters\VerbFilter. When using
yii\filters\VerbFilter, we simply need to specify which HTTP verbs will be
accepted by each of our public actions. The following example shows the default
verb filter that is used by yii\rest\ActiveController:

public function behaviors()
{
 return [
 'verbs' => [
 'class' => \yii\filters\VerbFilter::className(),
 'actions' => [
 'index' => ['get'],
 'view' => ['get'],
 'create' => ['get', 'post'],
 'update' => ['get', 'put', 'post'],

Chapter 9

[245]

 'delete' => ['post', 'delete'],
],
],
];
}

Cross-origin resource headers
When working with JavaScript applications that issue AJAX requests against your
API, you may want to use cross-origin resource sharing (CORS) headers to ensure
that only domains that you specify can run against your domain. CORS headers can
be implemented by adding yii\filters\Cors to your behaviors() method, as
shown in the following example:

public function behaviors()
{
 return [
 'corsFilter' => [
 'class' => \yii\filters\Cors::className(),
],
];
}

This behavior can be extended by setting specific CORS headers that you want to
specify for your controller:

public function behaviors()
{
 return [
 'corsFilter' => [
 'class' => \yii\filters\Cors::className(),
 'cors' => [
 // Only allow https://www.example.com to execute
 against your domain in AJAX
 'Origin' => ['https://www.example.com'],
 // Only allow POST and DELETE methods from the
 domain
 'Access-Control-Request-Method' => ['POST',
 'DELETE'],
 // Set cache control headers
 'Access-Control-Max-Age' => 3600,
 // Allow the X-Pagination-Current-Page header to
 be exposed to the browser.

RESTful APIs

[246]

 'Access-Control-Expose-Headers' =>
 ['X-Pagination-Current-Page'],
],

],
];

}

CORS headers have a very specific purpose when it comes to
preventing AJAX requests from browsers and other domains
from accessing content on your domain, and they are meant
to be implemented as a security precaution for your end users
rather than your API. CORS headers will not prevent tools such
as CURL or noncompliant browsers from accessing your API.
Before implementing CORS, ensure that you have a concrete
understanding of what they are, what they protect against, and
what headers to use. For more information on CORS, refer to the
W3C reference guide at http://www.w3.org/TR/cors/.

Rate Limiting
When creating APIs, you may want to implement rate limiting within your API to
prevent excessive requests being made to your API and exhausting server resources.
This is extremely important if your API is dependent upon another API that has
rate limits already in place. Rate limiting in Yii2 is implemented by yii\filters\
RateLimiter and yii\filters\RateLimitInterface.

To get started with rate limiting, we first need to add yii\filters\Ratelimiter
to our controller behaviors. The yii\filters\RateLimiter class is coupled to our
user identity class. Consequently, rate limiting will only be applied to actions that are
protected by authentication. Any action that is not protected by an authenticate filter
will not have rate limiting applied to it. The following example illustrates the code
blocks required to implement yii\filters\RateLimiter within our controller:

<?php

namespace app\controllers;
use yii\filters\auth\HttpBasicAuth;
use yii\filters\RateLimiter;
use yii\rest\ActiveController;

http://www.w3.org/TR/cors/

Chapter 9

[247]

class UserController extends ActiveController
{
 public function behaviors()
 {
 $behaviors = parent::behaviors();
 $behaviors['authenticator'] = [
 'class' => HttpBasicAuth::className(),
 'auth' => ['app\models\User', 'httpBasicAuth'],
 'only' => ['delete', 'update', 'create', 'index']
];
 $behaviors['rateLimiter'] = [
 'class' => RateLimiter::className(),
 'enableRateLimitHeaders' => true,
];

 return $behaviors;
 }
}

Next, we need to implement the required methods in our user identity class with the
yii\filters\RateLimitInterface interface. The first method, yii\filters\Rate
LimitInterface::getRateLimit(), defines the number of requests we can make in
a unit of time. For global rate limiting, we can simply return [100, 600], which will
allow 100 requests in 600 seconds. As the complete request and action are passed to
the yii\filters\RateLimitInterface::getRateLimit() method, however, we
can further refine our rate limits for each controller and action pairing:

/**
 * Returns the rate limit
 * @param yii\web\Request $request
 * @param yii\base\Action $action
 * @return array
 */
public function getRateLimit($request, $action)
{
 return [100, 600];
}

yii\filters\RateLimiter is coupled with your user identity. If you
want to implement rate limiting for unauthenticated users, you will need
to implement a custom filter.

RESTful APIs

[248]

Next, we need to implement two methods to load the available rate limits and
update the available rate limits after each request. These two methods are yii\
filters\RateLimitInterface::loadAllowance() and yii\filters\RateLimitI
nterface::saveAllowance(). As rate limit data isn't considered sensitive and won't
have a significant impact upon our application if the data is accidentally removed,
this data can be stored either in our cache component or within a NoSQL solution,
such as MongoDB or Redis. The method signatures are defined as follows:

/**
 * Returns the rate limit allowance
 * @param yii\web\Request $request
 * @param yii\base\Action $action
 * @return array
 */
public function loadAllowance($request, $action)
{
 $allowance = 100; // Fetch the allowance from a datasource
 return [$allowance, time()];
}

/**
 * Saves the rate limit allowance
 * @param yii\web\Request $request
 * @param yii\base\Action $action
 * @param integer $allowance
 * @param Integer $timestamp
 * @return array
 */
public function saveAllowance($request, $action, $allowance,
$timestamp)
{
 // Update a NoSQL solution or a cache
 return true;
}

Combined together, our extended class will look as follows:

<?php

namespace app\models;

use Yii;

Chapter 9

[249]

class User extends \yii\db\ActiveRecord implements
\yii\web\IdentityInterface, \yii\filters\RateLimitInterface
{

 public function getRateLimit($request, $action)
 {
 return [100, 600];
 }

 public function loadAllowance($request, $action)
 {
 return [100, time();
 }

 public function saveAllowance($request, $action,
 $allowance, $timestamp)
 {
 return true;
 }
}

Now, when your query against authenticated API endpoints, the following
additional headers will be returned with the response:

x-rate-limit-remaining: <remaining_rate_limts>
x-rate-limit-limit: <rate_limit_upper_bound>
x-rate-limit-reset: <seconds_until_rate_limit_reset>

Now that you have MinGW and MSYS, there's no need to be jealous of
those with a Linux installation anymore, since they implement in your
system the most important parts of a Linux development environment.

Error handling
By extending yii\rest\Controller (or yii\rest\ActiveController), we can
easily implement error handling in our application by defining a proper error
handler within our configuration, as illustrated in previous chapters:

<?php return [
 // [...],
 'components' => [
 // [...],

RESTful APIs

[250]

 'errorHandler' => [
 'errorAction' => 'user/error',
],
 // [...]
],
];

Unlike view-based responses, we do not need to include a definition within the
actions() method of our controller for the error handler that we want to use.
Instead, we can simply return the error as it occurs, or we can override the error to
display a more generic response:

<?php

namespace app\controllers;
use yii\rest\ActiveController;

class UserController extends ActiveController
{
 public function actionError()
 {
 $exception = Yii::$app->errorHandler->exception;

 if ($exception !== null)
 return ['exception' => $exception];

 }
}

Custom API controllers
While convenient, yii\rest\ActiveController doesn't solve every problem with
creating APIs. When not using yii\rest\ActiveController, you'll want to extend
your controller classes from yii\rest\Controller in order to take full advantage
the built-in REST API defaults implemented by yii\rest\Controller. The
following sections illustrate some additional information on creating custom
API controllers.

Chapter 9

[251]

Returning data
There are several way in which we can think about custom API controllers in
Yii2. The easiest way to think about passing data to our clients is to bypass the
view portion of our MVC model and directly return data from our controllers.
For example, if we were to create a new controller called SiteController within
our controller's namespace, we could directly return data from our newly created
controller, as follows:

<?php

namespace app\controllers;

use Yii;

class SiteController extends \yii\rest\Controller
{
 public function actionIndex()
 {
 return ['foo' => 'bar'];
 }
}

Remember, once we start making changes to our default URL manager
rules, we'll need to add the rules required to route data to other
controllers. This rule will ensure that site/<action> maps back to our
site controller: ['class' => 'yii\web\UrlRule', 'pattern' =>
'site/<action>', 'route' => 'site/index'].

Curling against the site/index endpoint of our API will return the following:

$ curl –I -H "Accept:application/json" /

https://www.example.com/site/index | jq .

{
 "foo": "bar"
}

RESTful APIs

[252]

Response Formatting
Yii2 has a very specific response structure that it will return with the default yii\
rest\Controller. When creating an API, you may already have a specific response
structure you may want to use (for instance, if you're refactoring an existing but
outdated API with a Yii2 API). You may also want to have a uniform structure in
your API responses as the responses provided by yii\rest\Controller and yii\
rest\ActiveController don't match up (as illustrated by the previous sections).

In these situations, you'll need to modify the response structure. To do this, we
simply need to override the response component of our application and modify the
$response->data variable within the beforeSend event with the actual response
that we want. In this example, we will have the following response structure:

{
 "status": <http_status_code>,
 "message": <exceptions_or_messages>,
 "response": <response_data_from_controllers>
}

The code required to make this change is shown as follows:

<?php return [
 // [...],
 'components' => [
 // [...],
 'response' => [
 'format' => yii\web\Response::FORMAT_JSON,
 'charset' => 'UTF-8',
 'on beforeSend' => function ($event) {
 $response = $event->sender;

 if ($response->data !== null)
 {
 $return = ($response->statusCode == 200 ?
 $response->data : $response->data['message']);

 $response->data = [
 'success' => ($response->statusCode ===
 200),
 'status' => $response->statusCode,
 'response' => $return
];
 }

Chapter 9

[253]

 }
],
 // [...],
]
];

Now, if we were to query our API, we would receive a uniform response structure
for both our SiteController and UserController. This is for SiteController:

$ curl –I -H "Accept:application/json" /

https://www.example.com/site/index | jq .

{
 "success": true,
 "status": 200,
 "response": {
 "foo": "bar"
 }
}

This query regards UserController:

$ curl –I -H "Accept:application/json" /

https://www.example.com/users | jq .

{
 "success": true,
 "status": 200,
 "response": {
 "users": [
 {
 "id": 1,
 "email_address": "jane.doe@example.com",
 "first_name": "Jane",
 "last_name": "Joe",
 "full_name": "Jane Joe",
 "updated_at": 1442602004,
 "created_at": 1442602004
 },
 {...},
],
 "_links": {
 "self": {

RESTful APIs

[254]

 "href": "https://www.example.com/users?page=1"
 }
 },
 "_meta": {
 "totalCount": 4,
 "pageCount": 1,
 "currentPage": 1,
 "perPage": 20
 }
 }
}

Summary
In this chapter, we expanded upon our knowledge of everything we've learned thus
far and also learned how to create RESTful JSON and XML APIs in Yii2. First, we
covered the usage of yii\rest\ActiveController, which enabled us to quickly
create CRUD APIs based upon our model classes. We then covered Yii2's built-in
authentication filters and covered how we can protect our resources by requiring
authentication. We also covered the creation of our own authentication filters to
support different authentication schemes. We then covered several other useful API
classes, including yii\filters\VerbFilter, yii\filters\Cors, and learned
how to handle errors within our API. Additionally, we detailed some important
information about creating our own API endpoints by extending yii\rest\
Controller.

Having covered all the information required to build applications in Yii2, we'll spend
the remaining chapters of this book exploring ways in which we can enhance our
applications. In the next chapter, we'll specifically go over one of the most important
aspect of building applications: testing. We'll cover how to set up testing within
our application using a powerful called Codeception, and we will detail how to set
up and create function, unit, and acceptance testing as well as how to create data
fixtures to test with.

[255]

Testing with Codeception
An important but often overlooked aspect of software development is testing our
application to ensure that it performs as expected. There are three basic ways in
which we can test our applications:

•	 Unit testing
•	 Functional testing
•	 Acceptance testing

Unit testing enables us to test individual sections of code before coupling it with our
application. Functional testing allows us to test the functional aspects of code within
a simulated browser, and acceptance testing allows us to test our application within
a real browser and verify that it does what we built it to do. With Yii2, we can use a
tool called Codeception to create and execute unit, functional, and acceptance testing
for our application. In this chapter, we'll cover how to create and run unit, functional,
and acceptance testing in Yii2. In addition to these three types of testing, we can
mock our data using fixtures, which we can use to bring our application to a fixed
state before testing.

As we work through this chapter, we'll be using much of the code from
previous chapters. For your convenience, the source code for this chapter
is provided on GitHub at https://github.com/masteringyii/
chapter10 and is broken into three distinct branches. We'll use the unit
branch in the unit testing section, the functional_and_acceptance
branch in the functional and acceptance testing section, and the fixture
branch in the fixtures section.

https://github.com/masteringyii/chapter10
https://github.com/masteringyii/chapter10

Testing with Codeception

[256]

Reasons for testing
Most software developers will admit that testing is a good thing, but many
developers don't write tests for their application for a variety of reasons,
such as the following:

•	 The fear of testing
•	 Not knowing how to write tests
•	 Thinking that their application is too small for testing
•	 Not having enough time
•	 Budgetary reasons

While many of these reasons are valid, testing can have a profound effect on your
application and can drastically improve the quality of your code. The following list
provides several reasons why tests should be added to your codebase:

•	 Testing can reduce bugs as new features are added
•	 Testing verifies that your code does what you think it does
•	 Testing verifies that your code does what your client wants
•	 Features can be constrained by testing
•	 Testing forces us to slow down and break our applications into small,

manageable components with constraining features
•	 Testing reduces the cost of change by ensuring that a change to a single

feature doesn't break another feature
•	 Testing provides documentation of what our code is supposed to do
•	 Testing reduces the fear that a change will break something in

our application

How to approach testing
There are many factors that go into modern development, costs and development
time being the chief among them. There are several realistic approaches that we can
take for testing in order to work around these constraints.

Chapter 10

[257]

Testing manually
The most rudimentary approach to testing we can take is to test manually as we're
writing code. Whether you realize it or not, every time you make a code change
and reload your browser, you're testing your code. At a cursory glance, manual
testing lets us verify new features and bug fixes that are working, but it requires us
to manually verify the state of our applications after every change. Furthermore,
manual testing requires us to remember every test case we've created. Automated
testing with a tool such as Codeception can reduce this cognitive burden and free up
our time to perform other tasks.

Testing a few core components
A better approach to testing is to automate the testing of just the core components of
our applications. With this approach, we add tests for only the critical paths in our
application, which enables us to verify the important bits of our application at the
cost of reduced tests elsewhere. In situations where time and budget are constrained
but you want to automate the verification of important flows and paths, this
approach is a realistic alternative to no testing whatsoever.

Test-driven development
Test-driven development (TDD) is the philosophy that we should create tests for
our application as we're building it. The primary idea behind TDD is that we can
verify that our code is working by writing a test for it beforehand. With TDD, we
generally write a test beforehand (which will fail), then we write code in order to
make it pass the test, and then we continuously iterate between tests and code until
our feature is completed and our test passes. TDD also forces us to ensure that we
write usable code by passing tests before checking it into our versioning system,
which then encourages us to write good tests.

With TDD, our goal is to have a test for every feature and component and have
many tests that thoroughly cover our application. In an ideal world, TDD is the best
approach to take when working with testing at the cost of requiring more time and
budget to implement.

Testing with Codeception

[258]

Configuring Codeception with Yii2
Before we can use Codeception to test our code, we first need to configure
Codeception to work with Yii2:

1.	 The preferred way to set up Codeception with Yii2 is to install both the
yii2-codeception package and the Codeception base package via
Composer:
$ composer require --dev codeception/codeception

$ composer require --dev yiisoft/yii2-codeception

$ composer require --dev yiisoft/yii2-faker

The --dev flag on our composer command ensures that development
packages are not installed in our production environment. Packages
installed with –dev will be added to the require-dev section of our
composer.json file. Storing Codeception and other testing code reduces
the dependencies we need in production and makes our code more
secure.

The first package contains the Codeception binary that we'll use to generate
and execute our tests, while the second package contains Yii2-specific helpers
and bindings that Codeception will use to tightly integrate into Yii2.

This process may take a long time as Codeception is dependent upon
many different packages, including PHPUnit.

2.	 After installing Codeception, we can execute the command by running the
following command:
$./vendor/bin/codecept

Chapter 10

[259]

By itself, codecept will output all the available commands that Codeception
has to offer.

Testing with Codeception

[260]

3.	 After verifying that Codeception is installed, we need to bootstrap
Codeception by running the following command:
$./vendor/bin/codecept bootstrap

4.	 The bootstrap process will create several files. The first file is called
codeception.yml and lives within the root of our application. The
remaining files exist within the tests folder and will be the directory to
which we add our tests.

5.	 Next, we need to configure Codeception to work with the Yii2 Codeception
module in our codeception.yml file. The required additions are highlighted
in the following code block:
actor: Tester
paths:
 tests: tests
 log: tests/_output
 data: tests/_data
 support: tests/_support
 envs: tests/_envs
settings:
 bootstrap: _bootstrap.php
 colors: true

Chapter 10

[261]

 memory_limit: 1024M
extensions:
 enabled:
 - Codeception\Extension\RunFailed

6.	 Additionally, we need to tell Codeception to autoload our composer
dependencies and Yii2. We can do this by updating the tests/_bootstrap.
php file. To ensure that we test our application in a manner similar to our
web/index.php loads data, we should add the following:
<?php

// Define our application_env variable as provided by nginx/apache
if (!defined('APPLICATION_ENV'))
{
 if (getenv('APPLICATION_ENV') != false)
 define('APPLICATION_ENV', getenv('APPLICATION_ENV'));
 else
 define('APPLICATION_ENV', 'prod');
}

$env = require(__DIR__ . '/../config/env.php');

// comment out the following two lines when deployed to production
defined('YII_DEBUG') or define('YII_DEBUG', $env['debug']);
defined('YII_ENV') or define('YII_ENV', APPLICATION_ENV);

require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');
$config = require(__DIR__ . '/../config/web.php');

(new yii\web\Application($config));

7.	 With Codeception now configured, we can run all of our tests by running the
following command:

$./vendor/bin/codecept run

Testing with Codeception

[262]

The run command will output the following:

Unit testing
The most basic type of tests we can create are called unit tests. As the name suggests,
unit tests are designed to test a unit of work (whether that be a single method,
function, or a larger work unit), and then check a single assumption about that unit
of work. A good unit test will be composed of the following components:

•	 Fully automated: A good unit test is a test that can be fully automated
without human intervention.

•	 Thorough: Thorough unit tests provide good coverage of the code block they
are testing.

•	 Independent: Good unit tests can be run in any order, and their output
should have no effect or side effect on other tests that occur. Furthermore,
each unit test should only test a single logical unit of code. Tests that fail
should pinpoint the exact section of code that failed.

•	 Consistent and repeatable: Unit tests should always produce the same
result and should be dependent upon static data as opposed to generated or
random data.

•	 Fast: Unit tests need to execute quickly. Long tests mean that fewer tests
will be run in a given amount of time, and tests that take too long to execute
will encourage developers to either write fewer tests or skip writing tests
altogether. As unit tests are intended to test small individual units of code,
long-running tests can also be an indicator of a bad or incomplete test.

Chapter 10

[263]

•	 Readable: Good unit tests should be readable and should be either
self-explanatory or thoroughly documented if they require additional
explanation.

•	 Maintainable: Finally, good unit tests should be maintainable. A test we
don't maintain is a test that we don't use or work with.

In this section, we'll be using the source code in the unit branch located
at https://github.com/masteringyii/chapter10.

Generating unit tests
If you're familiar with PHPUnit, writing tests in Codeception should feel very
familiar. For unit testing, Codeception can generate a PHPUnit-like test, but it
can also generate a Codeception-specific unit test that doesn't require PHPUnit
to execute.

To generate PHPUnit-specific tests, we can run the following command, which will
generate a PHPUnit unit test called Example:

$./vendor/bin/codecept generate:phpunit unit Example

Alternatively, we can generate a Codeception-specific test called Example by running
the following command:

$./vendor/bin/codecept generate:test unit Example

Unless you have a specific need for PHPUnit-like tests, Codeception unit
tests should be preferred.

After generating our Codeception test, a file called tests/unit/ExampleTest.php
will be generated, and it will contain the following code. Before we start writing unit
tests for our application, let's explore the basic structure of a Codeception unit
test class:

<?php

class ExampleTest extends \Codeception\TestCase\Test
{
 /**

https://github.com/masteringyii/chapter10

Testing with Codeception

[264]

 * @var \UnitTester
 */
 protected $tester;

 protected function _before()
 {
 }

 protected function _after()
 {
 }

 // tests
 public function testMe()
 {

 }
}

By default, our Codeception unit tests will extend \Codeception\TestCase\Test,
and will implement two protected methods (_before() and _after()) and a
protected property called $tester for Codeception to use internally. The _before()
and _after() methods are intended to set up and tear down tasks that execute
immediately before and after each of our predefined tests within our class.

After the _before() and _after() methods, we have all of the tests that we want
to run. In general, any test that we want to run should be in a public method with a
method name prefix of test. Any public method with this signature will be executed
as a test. As a brief example, let's modify our testMe() method to make a simple
assertion (a statement of whether a given predicate (a function, method, or variable)
evaluates to a boolean value which we can verify is true):

public function testMe()
{
 // Assert that the boolean value "true" is indeed true
 $this->assertTrue(true);
}

Using this simple assertion as an example, we can verify our tests run by
running this:

$./vendor/bin/codecept run

Chapter 10

[265]

Alternatively, we can just run our unit tests by running the following command:

$./vendor/bin/codecept run unit

As you can see from the previous screenshot, our unit test case executed successfully.
We can add extra unit tests by defining additional test methods, as shown in the
following example:

public function testMeToo()
{
 $this->assertFalse(false);
}

Running a second test will then show up in our Codeception output.

Testing with Codeception

[266]

Unit test examples
Now that we know the basics of unit testing with Codeception, let's explore a couple
of examples we can test within applications we've built previously. Starting with the
source code we developed in Chapter 9, RESTful APIs, let's write a few unit tests for
our models.

Testing User model methods
1.	 Our User model is a significant part of our application. Since we've added

both custom code and custom validators, we can write unit tests to verify
that our validators are accurate and that our custom code works as expected.
To get started, let's create a new unit test for our User model:
$./vendor/bin/codecept generate:test unit User

2.	 Since we're testing our User model, we need to explicitly specify that we
want to use that model within our test:
<?php

namespace app\tests\unit\UserTest;

use Codeception\TestCase\Test;
use app\models\User;
use Yii;

class UserTest extends Test {}

3.	 Next, let's define a method to test that our app\models\
User::setFullName() method works:
public function testSetFullName()
{
 $user = new User;
 $user->setFullName('John Doe');

 // Asser the setFullName method works
 $this->assertTrue($user->first_name == "John");
 $this->assertTrue($user->last_name == "Doe");
 $this->assertFalse($user->first_name == "Jane");
 unset($user);

 $user = new User;
 $user->fullName = 'John Doe';

Chapter 10

[267]

 // Asser the full_name setter method works
 $this->assertTrue($user->first_name == "John");
 $this->assertTrue($user->last_name == "Doe");
 $this->assertFalse($user->first_name == "Jane");

 unset($user);
}

4.	 After executing our tests, we can verify our newly passed test case by
viewing the output.

The test cases illustrated here are very rudimentary. Try expanding upon
this test case to ensure complete code coverage of this method.

Let's write another test to the app\models\User::validatePassword() method
that correctly validates the password of an existing user:

1.	 For this test case, we'll be relying upon the data supplied by our migrations.
Before creating the test, ensure that you migrate the database:
$./yii migrate/up --interactive=0

2.	 Next, we'll add a test case that will load our four default users and verify that
their passwords match, as we expect:
public function testValidatePassword()
{
 $user = User::find()->where(['id' => 1])->one();
 $this->assertTrue(
 $user->validatePassword('password1'));

Testing with Codeception

[268]

 $this->assertFalse(
 $user->validatePassword('password2'));

 $user = User::find()->where(['id' => 2])->one();
 $this->assertTrue(
 $user->validatePassword('password2'));
 $this->assertFalse(
 $user->validatePassword('password1'));

 $user = User::find()->where(['id' => 3])->one();
 $this->assertTrue(
 $user->validatePassword('password3'));
 $this->assertFalse(
 $user->validatePassword('password4'));

 $user = User::find()->where(['id' => 4])->one();
 $this->assertTrue($user->validatePassword('admin'));
 $this->assertFalse(
 $user->validatePassword('notadmin'));
}

In this case, information about our users is being loaded from our
migrations, which in some cases makes sense if we want to provide our
end users with sensible defaults. Later on in this chapter, we'll explore
how we can use fixtures to create and populate defaults for testing, which
will eliminate the need to have these defaults as part of our migration file.

3.	 After running our unit tests, we should see the following output:

Chapter 10

[269]

Note how in the previous test case, we tested both the expected result
and the several results that we were expecting to fail. An important part
of unit testing is verifying that both the expected passing cases pass and
invalid or wrong input is not accepted. This ensures that our application
does what we want, while not allowing rogue or bad inputs to be
accepted.

Have you gotten the hang of unit testing yet? Before moving on to functional testing,
let's write a test case to verify that our validators are working:

1.	 Since the validator for our User model validates several different attributes,
we're going check whether our app\models\User::validate() method
returns the expected true or false result and whether the appropriate
validator is called.

2.	 To make our test output more readable, we can include the codeception/
specify composer module in our project, which will allow us to specify
what the expected result for each test section in the output of our tests is
in the event that a test fails. This package can be installed by running the
following command:
$ composer require codeception/specify

To use specify, we need to use it inside our UserTest class, as shown in the
following example:
<?php

namespace app\tests\unit\UserTest;

use Codeception\TestCase\Test;

use app\models\User;
use yii\codeception\TestCase;
use Yii;

class UserTest extends Test
{
 use \Codeception\Specify;
}

3.	 specify can then be used as follows:
public function testValidate()
{

Testing with Codeception

[270]

 $this->specify('false is false', function() {
 $this->assertFalse(false);
 });
}

Now if we run our test case, we should see the following output indicate
specifically that our "false is false" test case has failed:

Test validate (app\tests\unit\UserTest\UserTest::/

testValidate) Ok

4.	 Now that we know how to use the specify module, let's write several test
cases for our validator:
public function testValidate()
{
 $this->specify('email and password are required',
 function() {
 $user = new User;
 // Verify our validation fails as we didn't
 provide any attributes
 $this->assertFalse($user->validate());

 // Verify that the email and password properties
 are required
 $this->assertTrue($user->hasErrors('email'));
 $this->assertTrue($user->hasErrors('password'));
 $user->email = 'user@example.com';
 $user->password = password_hash('example',
 PASSWORD_BCRYPT, ['cost' => 13]);
 $this->assertTrue($user->validate());
 });

 $this->specify('email is unique', function() {
 $user = new User;
 // Verify email is unique
 $user->email = 'jane.doe@example.com';
 $user->password = password_hash('example',
 PASSWORD_BCRYPT, ['cost' => 13]);
 $this->assertFalse($user->validate());
 $this->assertTrue($user->hasErrors('email'));
 });

 $this->specify('first and last name are strings',
 function() {
 $user = new User;

Chapter 10

[271]

 $user->email = 'user@example.com';
 $user->password = password_hash('example',
 PASSWORD_BCRYPT, ['cost' => 13]);
 // Verify first and last name has to be strings
 $user->first_name = (int)7;
 $user->last_name = (int)5;

 $this->assertFalse($user->validate());
 $this->assertTrue($user->hasErrors('first_name'));
 $this->assertTrue($user->hasErrors('last_name'));

 // Verify that strings work
 $user->setFullName('Example User');
 $this->assertTrue($user->validate());
 });
}

5.	 After running our unit tests, we should see the following output, indicating
that our tests have passed. If our tests fail at any point, the specify module
will output the first parameter, indicating what specific part of the test failed.
As our test passes, we will see the following output:

Testing with Codeception

[272]

Yii2 already has a test case for yii\db\
ActiveRecord::validate(). Adding our own test case isn't to
verify that this method works but rather to verify that we have the
correct validators in place.
For more information on the specify module, refer to https://
github.com/Codeception/Specify.

Functional testing
The next type of tests that we can generate are called functional tests. Functional
tests allow us to emulate our application without running it through a web server.
This provides us with a way to quickly test the output of our application without
introducing the overhead of a web server.

This emulation process is achieved by directly manipulating the $_REQUEST, $_POST,
and $_GET parameters before executing our application. As a side effect of this
behavior, however, certain variables, such as $_SESSION and $_COOKIE, as well
as headers, can result in junk errors being thrown, which wouldn't necessarily be
thrown in a real environment. Moreover, with Codeception, our functional tests will
be executing within a single memory container, which may result in a test failing
when run as part of a group as opposed to running a single test. Additionally, unlike
acceptance testing, functional testing can't emulate JavaScript and Ajax requests.

Overall, functional testing provides us with a fast and easy way to prove that the
output of our code does both what we programmed it to do and what our end users
and customers expect it to do. Despite the minor issues functional testing brings up,
at a high level, the report it provides can give us confidence that our code works
as expected and that future changes in our codebase won't change our application
significantly. In this section, we'll go over how to generate and run functional tests
within our application.

In this section, we'll be using the source code in the functional_
and_acceptance branch located at https://github.com/
masteringyii/chapter10.

https://github.com/Codeception/Specify
https://github.com/Codeception/Specify
https://github.com/masteringyii/chapter10
https://github.com/masteringyii/chapter10

Chapter 10

[273]

Setting up functional tests
Since functional testing and API don't really make sense, we'll be writing our
functional tests using the code we wrote earlier in Chapter 6, Asset Management, as the
code outlined in that chapter has several good components we can test. Functional
tests behave quite differently from unit tests, so before we can start writing test code,
we need to make a few changes to our test configuration:

1.	 To get started with functional tests, we first need to make sure that
Codeception is initially installed and configured. This process is
identical to what we performed in the previous section:

°° Install the required composer dependencies:
$ composer require --dev codeception/codeception

$ composer require --dev yiisoft/yii2-codeception

$ composer require --dev yiisoft/yii2-faker

$ composer require --dev codeception/specify

°° Install Bootstrap Codeception:
$./vendor/bin/codecept bootstrap

°° Add the required configuration to tests/_bootstrap.php. Note
that because we're emulating a complete request flow, we need
to prepopulate several variables, such as $_SERVER['SCRIPT_
FILENAME'] and $_SERVER['SCRIPT_NAME']. The relevant sections
are highlighted as follows:
<?php
define('DS', DIRECTORY_SEPARATOR);

defined('YII_TEST_ENTRY_URL') or define('YII_TEST_ENTRY_
URL',
parse_url(\Codeception\Configuration::config()['config']
['test_entry_url'], PHP_URL_PATH));
defined('YII_TEST_ENTRY_FILE') or define('YII_TEST_ENTRY_
FILE',
dirname(__DIR__) . '/web/index-test.php');

// Define our application_env variable as provided by
nginx/apache
if (!defined('APPLICATION_ENV'))
{
 if (getenv('APPLICATION_ENV') != false)
 define('APPLICATION_ENV',
 getenv('APPLICATION_ENV'));
 else

Testing with Codeception

[274]

 define('APPLICATION_ENV', 'prod');
}
$env = require(__DIR__ . '/../config/env.php');
// comment out the following two lines when deployed to
production
defined('YII_DEBUG') or define('YII_DEBUG', $env['debug']);
defined('YII_ENV') or define('YII_ENV', APPLICATION_ENV);
require(__DIR__ . '/../vendor/autoload.php');
require(__DIR__ . '/../vendor/yiisoft/yii2/Yii.php');
$config = require(__DIR__ . '/../config/web.php');

$_SERVER['SCRIPT_FILENAME'] = YII_TEST_ENTRY_FILE;
$_SERVER['SCRIPT_NAME'] = YII_TEST_ENTRY_URL;
$_SERVER['SERVER_NAME'] = parse_url(\Codeception\
Configuration::config()['config']
['test_entry_url'], PHP_URL_HOST);
$_SERVER['SERVER_PORT'] = parse_url(\Codeception\
Configuration::config()['config']
['test_entry_url'], PHP_URL_PORT) ?: '80';

Yii::setAlias('@tests', dirname(__DIR__));

(new yii\web\Application($config));

°° Verify that Codeception is running:

$./vendor/bin/codecept bootstrap

2.	 The first change we need to make is the inclusion of the Yii2 Codeception
module. This module will enable us to take advantage of Yii2-specific
bindings within our test that will help us test our Yii2 application better.
Rather than enabling our module for all of our test types, we can just enable
it for our functional tests by adding the following to tests/functional.
suite.yml:
Codeception Test Suite Configuration
#
Suite for functional (integration) tests
Emulate web requests and make application process them
Include one of framework modules (Symfony2, Yii2,
Laravel5) to use it

class_name: FunctionalTester
modules:
 enabled:

Chapter 10

[275]

 - Filesystem
 - Yii2
 config:
 Yii2:
 configFile: 'tests/config/functional.php'

3.	 Next, we need to disable cross-site request forgery (CSRF) validation on our
forms. Rather than making a global configuration change to our config/
web.php file, we can create a custom configuration in tests/config/
functional.php that includes our config/web.php file and disables CSRF
validation in that file:
<?php
$_SERVER['SCRIPT_FILENAME'] = YII_TEST_ENTRY_FILE;
$_SERVER['SCRIPT_NAME'] = YII_TEST_ENTRY_URL;
/**
 * Application configuration for functional tests
 */
return yii\helpers\ArrayHelper::merge(
 require(__DIR__ . '/../../config/web.php'),
 [
 'components' => [
 'request' => [
 'enableCsrfValidation' => false,
],
],
]
);

4.	 Next, we need to enable our Yii2 module. To enable a new module in
Codeception, we simply need to run the following command:
$./vendor/bin/codecept build

5.	 Finally, we can execute the run command of Codeception to verify that our
changes took place:
$./vendor/bin/codecept run

Testing with Codeception

[276]

6.	 If successful, we should see output similar to what is shown in the
following figure:

Generating functional tests
Unlike unit tests, functional tests are not executed within a generated class. Instead,
they run within a plain PHP file within the tests/functional folder. To get started
with generating functional tests, we need to use the generate:cept command
once again:

$./vendor/bin/codecept generate:cept functional Page

Our functional test will then be generated in tests/functional/PageCept.php and
will contain the following:

<?php
$I = new FunctionalTester($scenario);
$I->wantTo('perform actions and see result');

Now if we execute our tests again, we should see the following:

Chapter 10

[277]

Examples of functional tests
Now that we know how to generate functional tests, let's explore a few examples
of functional testing. If you remember from Chapter 6, Asset Management, our home
page looks as follows:

Let's write a quick functional test to verify that our home page loads and contains the
elements we see on screen:

1.	 With Yii2's Codeception binding, we have several ways to navigate to and
load the data from a page. Within our tests/functional/PageCept.php
test, we can write the following to verify that the home page loads. We can
do this using the FunctionalTester::amOnPage() method, which verifies
that FunctionalTester was able to access the given page:
<?php
$I = new FunctionalTester($scenario);
$I->wantTo('Verify that homepage loads');
$I->amOnPage('/');
$I->amOnPage('site/index');
$I->amOnPage(['/site/index']);

2.	 As you can see, we can load the home page either by querying the root URI
or the site/index action either as a string or an array. If we use the array
syntax, we can pass additional parameters to our page as GET parameters.

Testing with Codeception

[278]

3.	 Now that we've verified that we're on the home page, let's verify that
the 'Now you're thinking with widgets!' string is displayed. With
Codeception, this is exceptionally easy with the following line of code:
$I->see('Now you\'re thinking with widgets!');

4.	 We can additionally verify that the 'Home', 'Register', and 'Login' link
text is displayed using the FunctionalTester::see() method, which scans
the requested document for the presence of the provided text:
$I->see('Home');
$I->see('Register');
$I->see('Login');

5.	 Now let's run our functional tests. As an alternative to running both our unit
and acceptance tests with every run, we can just run our functional tests by
specifying the test type we want to run, as shown in the following example:

$./vendor/bin/codecept run functional

Chapter 10

[279]

Even though we're running several different tests, Codeception will
only report a pass or fail result for the entire test file we created. To gain
more insight into what Codeception is doing, we can tell Codeception
to be more verbose by passing the "-v" flag to our command. Additional
verbosity can be added by adding more "v" flags to our verbose flag (for
example, "-vv" or even "-vvv"):
$./vendor/bin/codecept run functional –vv

6.	 Since we're creating a new test, we should first create a new functional test
file for us to work with. Running the following command will generate a test
file at tests/functional/LoginCept.php:
$./vendor/bin/codecept generate:cept functional Login

Testing with Codeception

[280]

7.	 First, let's write a test to verify that we can click on the "Login" link on our
home page and navigate to our login page:
<?php
$I = new FunctionalTester($scenario);
$I->wantTo('Verify login page');

// Verify homepage link works
$I->amOnPage('/');
$I->click('Login');
$I->amOnPage(['site/login']);

8.	 After verifying that our tests pass, we can verify that the form is present and
that there aren't any errors using the seeElement() and dontSeeElement()
methods:
// Verify form is present
$I->seeElement('input', ['id' => 'userform-email']);
$I->seeElement('input', ['id' => 'userform-password']);

9.	 Then, after verifying that we can see the form elements on the page, let's
test whether our form works by first submitting an invalid username and
password and then submitting a valid username and password combination:
// Verify bad user/pass fails
$I->fillField(['id' => 'userform-email'], 'foo');
$I->fillField(['id' => 'userform-password'], 'bar');
$I->click("Submit");

$I->SeeCurrentUrlEquals('/site/login');

// Verify bad user/pass fails
$I->fillField(['id' => 'userform-email'], 'admin@example.com');
$I->fillField(['id' => 'userform-password'], 'admin');
$I->click("Submit");

$I->SeeCurrentUrlEquals('/site/index');

10.	 Now let's run our Login test. We can run this test independently of all other
tests by calling it directly, as shown in the following example:

$./vendor/bin/codecept functional LoginCept –vv

11.	 As shown in the following screenshot, our functional test iterates through all
of our test and verifies that the login form flow works as expected:

Chapter 10

[281]

Testing with Codeception

[282]

The Yii2 module provides several methods that can be used when
running both functional and unit tests. For a complete list of the methods
provided by the Yii2 Codeception module, ensure that you refer to the
Yii2 Codeception module page at http://codeception.com/docs/
modules/Yii2.

Acceptance testing
The last type of testing we can automate with Codeception is called acceptance
testing. It is very similar to functional testing, with the exception that your
application is tested using a real browser rather than a simulated one. This gives
the advantage of being able to completely simulate end user behavior. Acceptance
testing doesn't have many of the limitations of functional testing, such as memory
limitations, $_COOKIE, $_SESSION, and header limitations. Moreover, acceptance
testing can be done by anyone on your team, as what is tested using acceptance
testing replicates the work you would do to test manually. In fact, one of the only
downsides of running acceptance tests is that due to the entire browser flow,
acceptance tests can be extremely slow for specific tests. In this section, we'll
cover how to set up and run acceptance testing with Codeception.

In this section, we'll be using the source code on the functional_
and_acceptance branch located at https://github.com/
masteringyii/chapter10.

Setting up acceptance testing
Like functional testing, acceptance testing requires some setup in order to get
working with Yii2:

1.	 To get started, we first need to specify the browser we want to use. In our
case, we'll be using a combination of PHP and browser. To do this, we
first need to add the following to our tests/acceptance.suite.yml file.
Additionally, since we want to take advantage of Yii2-specific plugins, we'll
enable the Yii2 module as well:

class_name: AcceptanceTester
modules:
 enabled:
 -
 PhpBrowser:
 url: "http://localhost:8082"

http://codeception.com/docs/modules/Yii2
http://codeception.com/docs/modules/Yii2
https://github.com/masteringyii/chapter10
https://github.com/masteringyii/chapter10

Chapter 10

[283]

 - \Helper\Acceptance
 - Yii2
 config:
 Yii2:
 configFile: 'tests/config/acceptance.php'

If we want to use a real browser, we can do that by enabling the
WebDriver module by adding the following to our modules:enabled
section:

- WebDriver:

 url: http://localhost

 browser: firefox

 restart: true

2.	 Next, we need to rebuild our tests to include the added modules:
$./vendor/bin/codecept build

3.	 Then, we need to configure our tests/acceptance/_bootstrap.php file so
that we can load our Yii2 app in our tests. Fortunately, this is more or less the
same as our functional test bootstrap file:
<?php
 define('DS', DIRECTORY_SEPARATOR);

 defined('YII_TEST_ENTRY_URL') or
 define('YII_TEST_ENTRY_URL', parse_url(\Codeception\
 Configuration::config()['config']['test_entry_url'],
 PHP_URL_PATH));
 defined('YII_TEST_ENTRY_FILE') or
 define('YII_TEST_ENTRY_FILE', dirname(dirname(__DIR__)
) . '/web/index-test.php');

 // Define our application_env variable as
 provided by nginx/apache
 if (!defined('APPLICATION_ENV'))
 {
 if (getenv('APPLICATION_ENV') != false)
 define('APPLICATION_ENV',
 getenv('APPLICATION_ENV'));
 else
 define('APPLICATION_ENV', 'prod');
 }
 $env = require(__DIR__ . '/../../config/env.php');

Testing with Codeception

[284]

 // comment out the following two lines when
 deployed to production
 defined('YII_DEBUG') or define('YII_DEBUG',
 $env['debug']);
 defined('YII_ENV') or define('YII_ENV',
 APPLICATION_ENV);
 require(__DIR__ . '/../../vendor/autoload.php');
 require(__DIR__ . '/../../vendor/yiisoft/yii2/Yii.php');
 $config = require(__DIR__ . '/../../config/web.php');

 Yii::setAlias('@tests', dirname(__DIR__));

 (new yii\web\Application($config));

4.	 Next, we need to define our tests/config/acceptance.php file as follows:
<?php
$_SERVER['SCRIPT_FILENAME'] = YII_TEST_ENTRY_FILE;
$_SERVER['SCRIPT_NAME'] = YII_TEST_ENTRY_URL;

/**
 * Application configuration for functional tests
 */
return require(__DIR__ . '/../../config/web.php');

5.	 Then, we need to generate our first acceptance test using the generate:cept
command:
$./vendor/bin/codecept generate:cept acceptance Page

6.	 Finally, we can run our newly created test by running the run command:

$./vendor/bin/codecept run acceptance

Chapter 10

[285]

Note that we're passing the required APPLICATION_ENV variable to our
built-in server. Additionally, we're using a 8082 high port, as defined
previously in our tests/acceptance.suite.yml file. The high port
number is to avoid the need to run PHP's built-in server with root access,
which is required for ports under 1024.

Examples of acceptance tests
Since acceptance tests are extremely similar to functional tests, we can reuse a lot of
the same tools and methods we used in the previous section. For instance, we can
write an acceptance test to check the home page for the links and text we looked for
earlier in our functional tests, as follows:

<?php

$I = new AcceptanceTester($scenario);
$I->wantTo('Verify that homepage loads');
$I->amOnPage('/');
$I->amOnPage('site/index');
$I->see('Now you\'re thinking with widgets!');
$I->see('Home');
$I->see('Login');
$I->see('Register');

Testing with Codeception

[286]

Note that the only substantial difference here is the usage of AcceptanceTester
instead of FunctionalTester. Running our tests in the verbose mode now will
reveal the following:

$./vendor/bin/codecept run acceptance –vv

Fixtures
The last testing component we'll talk about in this chapter is fixtures. Fixtures are
an important part of testing as they enable us to set up our application state to a
known and precise state before running our unit tests. Unlike these other test types,
however, fixtures are provided directly by Yii2 and integrate into Codeception via
the Yii2 Codeception module.

Chapter 10

[287]

In this section, we'll be using the source code on the fixtures branch
located at https://github.com/masteringyii/chapter10.

Creating fixtures
To get started with using fixtures, we first need to install the required composer
dependencies and then add some configuration to our config/console.php file:

1.	 First, we need to make sure that the yii2-faker composer package
is installed:
$ composer require --dev yii2-faker

2.	 Alternatively, the yii2-faker extension can be installed by adding the
following to your composer.json's require-dev section and then by
executing composer update:

"yiisoft/yii2-faker": "*",

3.	 Then, we need to add the relevant section to our console configuration file:
<?php

Yii::setAlias('@tests', dirname(__DIR__) . '/tests');

return [
 // [...],
 'controllerMap' => [
 'fixture' => [
 'class' => 'yii\faker\FixtureController',
],
],
 'controllerNamespace' => 'app\commands',
 // [...]
];

4.	 Finally, we need to define a configuration file for our unit tests to load from
tests/config/unit.php. To keep things simple, we'll just load our web
configuration file:

<?php
/**
 * Application configuration for functional tests
 */
return require(__DIR__ . '/../../config/web.php');

https://github.com/masteringyii/chapter10

Testing with Codeception

[288]

With the required extension installed, we can create and load fixtures into our app
via the ./yii command-line tool:

./yii help fixture

Defining fixtures
To define new fixtures, we can either extend yii\test\Fixture (for general
fixtures) or yii\test\ActiveFixture (for ActiveRecord entries) and place our
newly created classes in the tests/fixtures folder of our application. After
defining a new fixture, we'll then want to declare the model class we'll want to use
for fixtures. As an example, let's create a fixture of our app\models\User class,
as shown in the following example:

<?php
namespace app\tests\fixtures;

use yii\test\ActiveFixture;

class UserFixture extends ActiveFixture
{
 public $modelClass = 'app\models\User';
}

Now that we've defined our fixture class, we need to create the data that our fixture
will populate. When using yii\test\ActiveFixture, we'll want to place our
data files in @tests/fixtures/data/<database_table_name>.php or @tests/
fixtures/data/user.php, in our case. In this fixture file, we'll provide all the
required mock data that we want to test against:

<?php return [
 'user1' => [
 'id' => 1,
 'email' => 'jane.doe@example.com',

Chapter 10

[289]

 'password' => '$2y$13$iqINH3RvfW29zPupoz2Zeu9cTXUPosjn1V
.yhihP0iZEWFkEPSl6.',
 'first_name' => 'Jane',
 'last_name' => 'Doe',
 'role_id' => 1,
 'created_at' => 1448926013,
 'updated_at' => 1448926013
],
 'admin' => [
 'id' => 4,
 'email' => 'admin@example.com',
 'password' => '$2y$13$uHCvsJWJr.M0vRcDlhWhVO9tTPLh8qD9
 .ngnhwThzzwGNC62.Ugl6',
 'first_name' 	 => 'Site',
 'last_name' 	 => 'Administrator',
 'role_id' 		 => 2,
 'created_at' 	 => 1448926013,
 'updated_at' 	 => 1448926013
]
];

Our fixtures can be loaded by calling the fixture command with the
appropriate namespace:

$./yii fixture/load User --namespace=app/tests/fixtures

Fixtures can then be unloaded using the fixture/unload command:

$./yii fixture/unload User --namespace=app/tests/fixtures

By default, Yii2 will try to load our fixtures from the @app/tests/unit/fixtures
folder. In the previous examples, we overwrote this behavior by supplying the
--namespace parameter. To avoid having to write this each time, we can modify our
console configuration file as follows:

<?php

Yii::setAlias('@tests', dirname(__DIR__) . '/tests');

return [
 // [...],
 'controllerMap' => [
 'fixture' => [
 'class' => 'yii\faker\FixtureController',
 'namespace' => 'tests\fixtures',
],
],
 // [...]
];

Testing with Codeception

[290]

With this change, we can load and unload our fixtures without the need to specify
a namespace.

Using fixtures in unit tests
Now that we know how to create and load fixtures, let's explore how to load them
as part of our tests. To get started with testing with fixtures, we first need to create a
new unit test for our fixtures to run in. As a reminder, new unit tests in Codeception
can be generated as follows:

$./vendor/bin/codecept generate:test un it UserFixture

After creating our unit test, we need to modify our newly created UserFixtureTest
in tests/unit/UnitFixtureTest.php with several changes:

1.	 First, we need to properly namespace our test and include our
UserFixture class:
<?php

namespace app\tests\unit\UserFixtureTest;

use app\tests\fixtures\UserFixture;
use app\models\User;
use Yii;

2.	 Next, we need to have our UserFixtureTest extend \yii\codeception\
DbTestCase and include the unit test configuration file that we created
previously:
class UserFixtureTest extends \yii\codeception\DbTestCase
{
 /**
 * @var \UnitTester
 */
 protected $tester;

 public $appConfig = "@app/tests/config/unit.php";
}

3.	 Finally, we need to tell our test case to load our UserFixture class:

public function fixtures()
{
 return [
 'users' => UserFixture::className(),
];
}

Chapter 10

[291]

Now, after every test we create within our newly created UserFixtureTest class,
our previously created fixtures will be loaded into our database before each test and
then removed after the test is complete. For instance, we can create the following test
to verify that password verification works:

public function testValidatePassword()
{
 $user = User::find()->where(['id' => 1])->one();
 $this->assertTrue($user->validatePassword('password1'));
 $this->assertFalse($user->validatePassword('password2'));
 unset($user);

 $user = User::find()->where(['id' => 4])->one();
 $this->assertTrue($user->validatePassword('admin'));
 $this->assertFalse($user->validatePassword('notadmin'));
 unset($user);
}

Our newly created tests and fixtures can then be run with the following command:

$./vendor/bin/codecept run unit

At the beginning of this test, our fixtures will be loaded, and then our tests will run.
After our test runs, our fixtures will be unloaded, and then we can run another test.
The use of fixtures in this case prevents the results of one test from affecting the
results of another.

Testing with Codeception

[292]

Automatic change testing
An important aspect of testing is ensuring that your tests are run regularly and often.
If you're following the test-driven development philosophy, you should be writing
your tests before writing code and adapting your tests as new code is added. While
this will give you a good idea of what is working and what isn't, it can be extremely
time-consuming, and it doesn't cover cases where team members make changes but
either don't write tests or don't run them before committing and pushing them to
your DCVS repository.

The best way to ensure that your tests are run after every change is to use a third-
party service, such as Travis CI. A tool such as Travis CI will add a webbook to your
repository, and after every commit, it can be configured to run all your tests and
notify you if and when your tests ever start failing.

In general, you should always verify that your code runs and that your
tests pass before committing it to your repository.

Using Travis CI as an example, let's add our repository to Travis CI and enable
automated builds:

1.	 To get started with Travis CI, we first need to log in to https://travis-ci.
org with our GitHub account and then navigate to our profile at https://
travis-ci.org/profile.

Travis CI has tight coupling with GitHub and does not work with other
services, such as GitLab or Bitbucket. The service is free only for public
repositories. There are many other services, however, that can perform
the same service as Travis CI, such as Atlassian Bamboo, drone.io, circleci.
com, GitLab CI, and others. Before using a continuous integration tool,
ensure that you do your research to determine what is best for your team.
For projects that you don't mind being public, Travis CI provides a good
free option.

2.	 After navigating to your profile, you need to enable Travis CI for your
repository. Thanks to the tight coupling Travis CI has with GitHub,
this is as simple as toggling a single switch.

https://travis-ci.org
https://travis-ci.org
https://travis-ci.org/profile
https://travis-ci.org/profile

Chapter 10

[293]

3.	 After establishing your connection to Travis CI, you need to create a
.travis.yml file in your repository. This file contains instructions on how
to build and test your project. While there are many different possible
configurations and matrices that Travis CI can work with, we'll be using a
relatively simple one, as shown in the next section:
sudo: false

env:
 - "APPLICATION_ENV=dev"

language: php

cache:
 directories:
 - vendor

php:
 - 5.6
 - 7

install:
 - composer selfupdate
 - composer global require "fxp/composer-asset-plugin:~1.0"
 - composer install -o -n

Testing with Codeception

[294]

before_script:
 - ./yii migrate/up --interactive=0

script:
 - ./vendor/bin/codecept run

4.	 Our .travis.yml file contains several sections:
°° The language section defines what language we want to use when

Travis CI runs our build.
°° The cache option exists simply to speed up our build and test

process. At the end of each successful build, Travis CI will cache the
contents of our vendor/folder, which will reduce the time it takes
for Composer to install all the required dependencies.

°° The php section lists all the PHP versions we want to test against.
Generally, we want to test against the current and next versions of
PHP so that when that version comes out, we're ready to start using
it. Testing against future versions of PHP allows us to quickly adapt
our code to take advantage of new performance enhancements of
new PHP versions.

°° The install section allows us to define software that needs to be
installed before our build runs. In this section, we define things such
as the composer-asset-plugin and our composer dependencies.

°° The before_script section defines things that should occur before
our build/test script executes.

°° Finally, the script section defines what we want to build or test.

5.	 After defining our .travis.yml file, we need to simply commit the file to
our repository. Since we've already linked Travis CI to our GitHub project,
pushing our project will automatically trigger a build that we can view on
Travis CI. On Travis CI, we can view a history of all the builds that have
occurred for our project. In the event that someone pushes code to our
repository that breaks our build, we will receive a notification and can
notify the person who broke our tests to fix their code before trying again.
Additionally, we can view a complete build output for each commit, which
gives us insight into what is happening in each build.

As an example, the repository for this chapter was linked to Travis CI.
You can see builds in action by navigating to https://travis-ci.
org/masteringyii.

https://travis-ci.org/masteringyii
https://travis-ci.org/masteringyii

Chapter 10

[295]

Summary
We learned quite a bit about testing in this chapter! We first covered how to
set up and configure Codeception to run within our project. We then covered
how to set up unit, functional, and acceptance testing in order to ensure that we
had adequate test coverage of our code base. Next, we covered how to create and
use fixtures to mock data so that our tests run with a consistent test base. Finally,
we covered how to automate the testing of our code with Travis CI, a third-party
continuous integration service.

In the next chapter, we'll cover how to use Yii2's internationalization and localization
features to make our applications capable of running in multiple languages.

[297]

Internationalization and
Localization

When developing modern web applications, we often find the need to ensure
that our language is readable to users who speak and read languages different
from our own. To help facilitate this, Yii2 provides built-in support for both
internationalization (i18n) and localization (l10n). Internationalization is the process
of planning and implementing messages and views such that they can be easily
adapted into other languages. On the other hand, localization is the process of
adapting our applications to a particular language or culture, and including things
such as the look and feel of our application to match the accepted presentation of
information to speakers of a given language or users in a given region or market. In
this chapter, we'll discover how we can use Yii2's built-in features to translate and
localize our applications into multiple languages.

i18n and l10n are numeronyms, not acronyms. Internationalization is
abbreviated to i18n because it begins with the letter "I", is followed by
18 more characters, and ends with the letter "N". Similarly, localization
shortens to l10n because it starts with the letter "L", has 10 more letters,
and then ends with the letter "N". These abbreviations simply exist to
shorten the word and have no other meaning. In this chapter, we'll use
both the full and abbreviated versions to refer to both words.

Internationalization and Localization

[298]

Configuring Yii2 and PHP
Before we can start using Yii2's localization features, we first need to make sure
the intl PHP extension is installed. This extension is used to provide Yii2 with the
majority of the i18n features, including Yii2's message and date formatters. While
Yii2 has some built-in fallbacks in case this extension is not installed, it is highly
recommended that you install it beforehand.

The intl extension
Many default PHP installations come with the intl extension built into the PHP
package, but many do not. Fortunately, there are several ways to check whether the
intl extension is installed. For those who prefer viewing this information in a web
browser, simply create a blank PHP file in your webroot containing the following
and scan the output to check whether the intl extension exists and is enabled:

<?php phpinfo();

If you prefer using the command line, you can run the following command to check
whether intl is installed with your PHP instance:

php –m | grep intl

If the intl extension does not appear in any output, you can either install it through
your systems package manager (apt or yum depending upon your OS), or you can
install it manually. Generally speaking, the extension can be compiled and installed
manually through the pecl command:

sudo pecl install intl

If you're installing the intl extension from the source, you'll need to
make sure that you have the intl library installed, preferably version 49
or higher. If your system has an outdated version of the intl library, you
can download and compile a newer version from http://site.icu-
project.org/download. Additionally, the time zone data shipped
with your intl library may be outdated. Ensure that you refer to the
intl documentation for information on how to update your intl time
zone data at http://userguide.icu-project.org/datetime/
timezone#TOC-Updating-the-Time-Zone-Data.

http://site.icu-project.org/download
http://site.icu-project.org/download
http://userguide.icu-project.org/datetime/timezone#TOC-Updating-the-Time-Zone-Data
http://userguide.icu-project.org/datetime/timezone#TOC-Updating-the-Time-Zone-Data

Chapter 11

[299]

After the compilation finishes, you can then add the following to your php.ini
configuration file:

extension=intl.so

After restarting your web server and PHP process, you should see the intl
extension appear using one of the previously listed commands.

More information on how to install the intl extension can be found on
the PHP manual page at https://secure.php.net/manual/en/
intl.installation.php.

The application language
Before we can start using Yii2's translation features, we need to define the application
our language is written in. Application languages in Yii2 are defined by a unique ID
consisting of a language ID as defined by the ISO-639 format and a region ID defined
by the ISO-3166 format. As an example, en-US represents English as the spoken
language in the United States of America.

Details on ISO-639 can be found at http://www.loc.gov/
standards/iso639-2/, and details on IISO-3166 can be found at
https://www.iso.org/obp/ui/#search.

Yii2 defines two language properties within our configuration file that we can define.
The first sourceLanguage property represents the language or locale our application
is written in and generally does not change during the request life cycle of our
application. The second, language, represents the language or locale that our user is
using, and it can be changed by the end user at any point in time (typically through
the use of a language selector widget placed somewhere on the page). Combined,
these two configuration options allow us to inform Yii2 about how it should treat
messages we wish to be translated. Within our config/web.php or config/
console.php configuration files, these two options can be set as follows:

return [
 'language' => 'ru-RU',
 'sourceLanguage' => 'en-US',
];

By default, Yii2 will set the sourceLanguage property to en-US.

https://secure.php.net/manual/en/intl.installation.php
https://secure.php.net/manual/en/intl.installation.php
http://www.loc.gov/standards/iso639-2/
http://www.loc.gov/standards/iso639-2/
https://www.iso.org/obp/ui/#search

Internationalization and Localization

[300]

Programmatically setting the application
language
If you're developing a multilingual site, rather than specifying a single default
language, you may want to allow the user to select their language from a
drop-down list and change your language programmatically. To do this, simply
define the Yii::$app->language property within your code with the language
code of your choice.

When setting the language property programmatically, you'll typically want to store
the user's language setting either with their user information or as a session variable.
Additionally, you'll want to ensure that you apply the language setting before Yii2
begins processing your messages. A good place to set this would be early in your
controller flow, such as in the init() method of our controller.

Dynamically setting the application language
In addition to manually setting the application language within our controller,
we can also use the content negotiator filter (yii\filters\ContentNegotiator)
to determine the user's language from their Accept-Language headers sent by
their browser. To use the content negotiator filter, we simply need to add yii\
filters\ContentNegotiator to the bootstrap section of your config/web.php
configuration file and specify the languages that we want to support automatically:

return [
 // [...],
 'bootstrap' => [
 [
 'class' => 'yii\filters\ContentNegotiator',
 'languages' => [
 'en',
 'de',
],
],
],
];

The languages property specifies which languages Yii2 will automatically
set Yii::$app->language to if they are present in the Accept-
Language headers. In the previous example, we only set the language
to en or de. If a language other than the ones listed in our application
configuration is present in our Accept-Language headers, we'll default
to the language specified in our sourceLanguage property.

Chapter 11

[301]

Rather than being set globally, we can also set a content negotiator within our
controller's behaviors() methods and specify the languages we want to support
within that controller. This is beneficial when you have a module that may support
more or different languages than your base application. Within our controllers, we
can configure yii\filters\ContentNegotiator as follows:

public function behaviors()
{
 return [
 [
 'class' => 'yii\filters\ContentNegotiator',
 'languages' => [
 'en',
 'de',
],
],
];
}

This yii\filters\ContentNegotiator path can provide more
features than just setting the application language. For more information
on the content negotiation filter, ensure that you check out the Yii2
documentation at http://www.yiiframework.com/doc-2.0/yii-
filters-contentnegotiator.html.

Message translations
Yii2's message translation service translates a given text message from the source
language to another by looking up the message to be translated in a message source
file. If a message is found in a source for the target language, that string is returned
instead of the original message. If the translated text is not found, Yii2 will return the
original message.

The use of Yii2's message translation service is extremely straightforward. The first
step toward translating messages in Yii2 is to wrap any and all messages you want
translated in the Yii::t() static method, which can be called as follows:

Yii::t('app', 'My message to be translated');

The first parameter indicates the category we want to store our messages in, and the
second parameter indicates the message we wanted to be translated.

http://www.yiiframework.com/doc-2.0/yii-filters-contentnegotiator.html
http://www.yiiframework.com/doc-2.0/yii-filters-contentnegotiator.html

Internationalization and Localization

[302]

Message sources
Before Yii2 can translate our messages, however, we first need to define a message
source that will store our base messages and our translated message files. Yii2
provides three distinct message source options:

•	 yii\i18n\PhpMessageSource stores message files in a key value
array format

•	 yii\i18n/DbMessageSource stores messages in a database table
•	 yii\i18n\GettextMessageSource uses GNU Gettext MO or PO files to

store translated messages

The message source we wish to use can be declared in your application configuration
file within the components section, as follows:

<?php return [
 // [...],
 'components' => [
 // [...],
 'i18n' => [
 'translations' => [
 'app*' => [
 'class' => 'yii\i18n\PhpMessageSource',
],
],
],
]
];

In the previous code block, the message source is provided by yii\i18n\
PhpMessageSource. The app* pattern indicates that all messages that begin with
app should be handled by the specified message source. By default, Yii2 will store
messages within the @app/messages folder and will default the source language
to en-US; however, this behavior can be changed by specifying the basePath and
sourceLanguage properties within the category block, respectively, as shown here:

<?php return [
 // [...],
 'components' => [
 // [...],
 'i18n' => [
 'translations' => [
 'app*' => [
 'class' => 'yii\i18n\PhpMessageSource',
 //'basePath' => '@app/messages',
 //'sourceLanguage' => 'en-US',
],

Chapter 11

[303]

],
],
]
];

Furthermore, Yii2 will create message files with the same name as the category. This
behavior can be altered by specifying the fileMap property within the category
configuration. Unless otherwise specified with the fileMap property, all messages
will be stored in @app/messages/<language>/<category>.php.

Default translations
Yii2 also allows us to create fallback messages for categories that don't match other
translations. This can be set by declaring a * category within our configuration file,
as shown in the following example:

<?php return [
 // [...],
 'components' => [
 // [...],
 'i18n' => [
 'translations' => [
 '*' => [
 'class' => 'yii\i18n\PhpMessageSource'
],
],
],
]
];

Framework messages
In addition to specifying default messages, we can also modify the built-in messages
that Yii2 provides natively. By default, Yii2 comes with several translations for things
such as validation errors and other basic strings, all of which are stored within the
yii category. As there may be times where the default Yii messages may not be
appropriate or accurate, you can redefine the default message by setting the yii
category within your configuration file:

<?php return [
 // [...],
 'components' => [
 // [...],
 'i18n' => [
 'translations' => [

Internationalization and Localization

[304]

 'yii' => [
 'class' => 'yii\i18n\PhpMessageSource',
 'sourceLanguage' => 'en-US',
 'basePath' => '@app/messages'
],
],
],
]
];

Handling missing translations
If a message translation is missing from the source file, Yii2 will display the original
message content by default. While it's convenient to ensure that our site displays
at least something, this behavior can be troublesome to debug and identify.
Moreover, we may want to perform additional processing in the event of missing
translations. Fortunately, we can accomplish this by creating an event handler for the
missingTranslation event triggered by yii\i18n\MessageSource, as shown in
the following example:

<?php return [
 // [...],
 'components' => [
 // [...],
 'i18n' => [
 'translations' => [
 'app*' => [
 'class' => 'yii\i18n\PhpMessageSource',
 'on missingTranslation' =>
 ['app\components\TranslationEventHandler',
 'handleMissingTranslation']
],
],
],
]
];

As an example, we can write an event handler to output something notable:

<?php

namespace app\components;

use yii\i18n\MissingTranslationEvent;

Chapter 11

[305]

class TranslationEventHandler
{
 public static function
 handleMissingTranslation(MissingTranslationEvent $event)
 {
 $event->translatedMessage = "@{$event->category}.
 {$event->message}-{$event->language}@";
 }
}

The event handler is only processed for messages in that category. If
you wish to handle the same event for multiple categories, you must
assign the event handler to each category or, alternatively, assign it to
the * category.

Generating message files
After configuring our message sources, we need to generate our message files. To do
this, we will use the message command:

1.	 The first step toward generating our messages files is to create a
configuration file that will define what languages we want to support as well
as specific paths for where the messages should be stored. This can be done
by running the following command:
./yii message/config path/to/messagesconfig.php

2.	 Depending upon the languages we previously specified in our web or
console configuration file, this will generate something similar to the
following:
<?php return [
 // string, required, root directory of all source files
 'sourcePath' => __DIR__ . DIRECTORY_SEPARATOR . '..',

 // array, required, list of language codes that the
 extracted messages
 // should be translated to. For example, ['zh-CN',
 'de'].

 'languages' => ['de'],
 // string, the name of the function for translating
 messages.
 // Defaults to 'Yii::t'. This is used as a mark to find
 the messages to be

Internationalization and Localization

[306]

 // translated. You may use a string for single function
 name or an array for
 // multiple function names.
 'translator' => 'Yii::t',

 // boolean, whether to sort messages by keys when
 merging new messages
 // with the existing ones. Defaults to false, which
 means the new (untranslated)
 // messages will be separated from the old
 (translated) ones.
 'sort' => false,

 // boolean, whether to remove messages that no
 longer appear in the source code.
 // Defaults to false, which means each of these
 messages will be enclosed with a pair of '@@' marks.
 'removeUnused' => false,

 // array, list of patterns that specify which
 files/directories should NOT be processed.
 // If empty or not set, all files/directories will
 be processed.
 // A path matches a pattern if it contains the
 pattern string at its end. For example,
 // '/a/b' will match all files and directories
 ending with '/a/b';
 // the '*.svn' will match all files and directories
 whose name ends with '.svn'.
 // and the '.svn' will match all files and directories
 named exactly '.svn'.
 // Note, the '/' characters in a pattern matches
 both '/' and '\'.
 // See helpers/FileHelper::findFiles() description
 for more details on pattern matching rules.
 'only' => ['*.php'],

 // array, list of patterns that specify which files (not
directories) should be processed.
 // If empty or not set, all files will be processed.
 // Please refer to "except" for details about the patterns.
 // If a file/directory matches both a pattern in "only" and
"except", it will NOT be processed.
 'except' => [
 '.svn',
 '.git',

Chapter 11

[307]

 '.gitignore',
 '.gitkeep',
 '.hgignore',
 '.hgkeep',
 '/messages',
 '/vendor,
],

 // 'php' output format is for saving messages to php files.
 'format' => 'php',

 // Root directory containing message translations.
 'messagePath' => __DIR__,

 // boolean, whether the message file should be overwritten
with the merged messages
 'overwrite' => true
];

3.	 For the most part, the default values provided by Yii2 in this file should be
sufficient. The only values you should consider changing are the languages
option and the format option. Ensure that you set these values appropriately
before proceeding.

4.	 After making the required changes to our messagesconfig.php file, we can
generate our message files by running the message command directly, as
shown in the following example:
./yii message path/to/messagesconfig.php

5.	 The message command is an extremely powerful tool that allows us to
quickly generate messages files that can be handed off to translators. Several
options exist within the configuration file to make message translation
easier. For example, the removedUnused parameter can be set to true to
automatically remove strings from our message file if they are no longer
listed in our source code. Additionally, by setting the overwrite parameter
to true, we can run the message command over and over again to regenerate
our translation files.

Note that the message command doesn't support all path aliases.
When working with a messages file, it's recommended that you use
absolute paths. Additionally, it's recommended that you store your
messagesconfig.php file within the messages/ directory of
your application.

Internationalization and Localization

[308]

Message formatting
When translating messages, you may want to inject variables or data from your
models into the message. To do this, we simply need to embed a placeholder
within our message and then define what the placeholder is as a parameter within
the third property of our Yii::t() method. For example, if we want to greet our
user using their name, we can do that as follows:

<?php
// $model = User::find(1)->one();
echo Yii::t('app', 'Good Morning {name}', [
 'name' => $model->first_name
]);

As an alternative to named parameters, we can also use positional parameters,
as shown in the following example:

$price = 500;
$count = 2;
$subtotal = 1000;
echo \Yii::t('app', 'Price: ${0}, Count: {1}, Subtotal: ${2}', [
 $price,
 $count,
 $subtotal
]);

Yii2 also supports parameter formatting for numbers, currency, dates,
times, original, and plural data. More information can be found on the
Yii2 API at http://www.yiiframework.com/doc-2.0/yii-i18n-
formatter.html and under the parameter formatting section of the
Yii2 guide at http://www.yiiframework.com/doc-2.0/guide-
tutorial-i18n.html#parameter-formatting.

Viewing file translations
As an alternative to translating individual messages, we can also translate entire
view files by saving a translated view file within the subdirectory of our views
folder. As an example, supposing that we had a view script located at views/site/
login.php, we could create a Spanish view file for es-MX by placing a translated
message file in views/site/es-MX/login.php. Assuming that our target and source
language is appropriately set, Yii2 will automatically render the translated file
instead of the base file when our target language is set to es-MX.

http://www.yiiframework.com/doc-2.0/yii-i18n-formatter.html
http://www.yiiframework.com/doc-2.0/yii-i18n-formatter.html
http://www.yiiframework.com/doc-2.0/guide-tutorial-i18n.html#parameter-formatting
http://www.yiiframework.com/doc-2.0/guide-tutorial-i18n.html#parameter-formatting

Chapter 11

[309]

Note that if the source and target language are the same, the
original view will be rendered regardless of the existence of a
translated view file.
Additionally, the use of view file translations doesn't follow
the DRY pattern we've emphasized throughout this book.
Also, handing off complete HTML files with PHP code to your
translators may make the translation of these files difficult, as the
translation industry is based upon string translations rather than
strings within code translations. To keep your application DRY
and avoid any issues that may arise during the translation process,
it is highly recommended that you use the previously mentioned
message translation method rather than view file translations.

Module translations
As separate entities, modules should contain their own message files separate from
your application message files. The recommended way to use messages within
modules is as follows:

1.	 Within the init() method of your module, define a new translation section
for your module:
parent::init();
Yii::$app->i18n->translations['modules/mymodule*'] = [
 'class' => 'yii\i18n\PhpMessageSource',
 'sourceLanguage' => 'en-US',
 'basePath' => '@app/modules/mymodule/messages'
];

2.	 Create a static method wrapper for Yii::t():
public static function t($category, $message, $params = [],
$language = null)
{
 return Yii::t('modules/mymodule/' . $category, $message,
$params, $language);
}

3.	 Finally, create a separate message configuration file within the
messages/ directory of your module that specifies the translator
to be <ModuleName>::t:

<?php return [
 'sourcePath' => __DIR__ . DIRECTORY_SEPARATOR . '..',
 'languages' => ['de'],

 'translator' => 'MyModule::t',

Internationalization and Localization

[310]

 'sort' => false,
 'removeUnused' => false,
 'only' => ['*.php'],
 'except' => [
 '.svn',
 '.git',
 '.gitignore',
 '.gitkeep',
 '.hgignore',
 '.hgkeep',
 '/messages',
 '/vendor'
],
 'format' => 'php',
 'messagePath' => __DIR__,
 'overwrite' => true
];

Messages within our module can then be translated by calling MyModule::t().
Additionally, translated message files can be generated by running the following
command:

./yii message modules/mymodule/messages/messages.php

Widget translations
In a similar vein, widgets can also have their own message translation files by
following the same process outlined for modules. Using our GreetingWidget class
we created in Chapter 5, Modules, Widgets, and Helpers would look as follows:

<?php
namespace app\components;

use yii\base\Widget;
use yii\helpers\Html;

use Yii;
class GreetingWidget extends Widget
{
 public $name = null;

 public $greeting;

Chapter 11

[311]

 public function init()
 {
 parent::init();

 Yii::$app->i18n->translations['widgets/GreetingWidget*'] = [
 'class' => 'yii\i18n\PhpMessageSource',
 'sourceLanguage' => 'en-US',
 'basePath' => '@app/components/widgets/GreetingWidget'
];

 $hour = date('G');

 if ($hour >= 5 && $hour <= 11)

 $this->greeting = GreetingWidget::t("Good Morning");
 else if ($hour >= 12 && $hour <= 18)

 $this->greeting = GreetingWidget::t("Good Afternoon");
 else if ($hour >= 19 || $hours <= 4)

 $this->greeting = GreetingWidget::t("Good Evening");
 }

 public function run()
 {
 if ($this->name === null)
 return HTML::encode($this->greeting);
 else
 return HTML::encode($this->greeting . ', ' . $this->name);
 }

 public static function t($category, $message, $params = [],
$language = null)
 {
 return Yii::t('widgets/GreetingWidget/' . $category, $message,
$params, $language);
 }
}

Consequently, a call to GreetingWidget::t() will render a translated message
that's specific to our widget. Additionally, because widgets support view rendering,
they can also support completely translated view files by following the same process
outlined previously.

Internationalization and Localization

[312]

Summary
Yii2 provides powerful tools to support internationalization and localization within
our application. In this chapter, we covered how to generate and store message
source files, how to generate message and view translations, and how to support
translations within modules and widgets. In the next chapter, we'll cover Yii2's
performance feature, as well as explore several built-in security features that
Yii2 offers.

[313]

Performance and Security
Out of the box, Yii2 is an both a performant and efficient PHP framework. It was
designed to be as fast as possible while still providing a feature-rich toolbox to work
with. There are many factors that determine the performance of our application
that can negatively affect the performance of our application, such as long running
queries and data generation. In this chapter, we'll cover several ways in which we
can optimize and fine-tune Yii2 so that our applications remain performant. We'll
also cover several important aspects of securing our code.

Caching
One of the easiest ways to improve the performance of our applications is to
implement caching. By implementing caching within our application, we can reduce
the amount of time it takes to generate and deliver data to our end users. With
Yii2, we can cache everything from generated data, database queries, and even
entire pages and page fragments. We can also instruct our browsers to cache pages
for us. In this section, we'll cover several different caching techniques that we can
implement within Yii2 in order to improve the performance of our application.

Caching data
Data caching is all about storing commonly generated data so that we can generate
it once for a given period of time rather than on every request, and in Yii2, it is
implemented through the cache component of our application. Yii2 provides a
variety of different classes that we can use to cache data, all of which follow and
use a consistent API by implementing the yii\caching\Cache abstract class.

Performance and Security

[314]

This consistent API enables us to swap out our caching component with any of the
caches listed in the following table without having to make any change to the code
within our application:

Cache Name Description Class reference
yii\caching\
ApcCache

A cache that uses APC PHP extensions.
On a single server configuration, an APC
cache is very performant but suffers from
compatibility issues if PHP Opcache is
enabled.

http://www.
yiiframework.
com/doc-2.0/
yii-caching-
apccache.html

yii\caching\
DbCache

A cache that uses a database table to store
information.

http://www.
yiiframework.
com/doc-2.0/yii-
caching-dbcache.
html

yii\caching\
DummyCache

A placeholder cache that doesn't do any
caching but serves as a standing for a real
cache that can be used during development
in order to ensure that our applications will
work with a real cache.

http://www.
yiiframework.
com/doc-2.0/
yii-caching-
dummycache.html

yii\caching\
FileCache

A cache that stores data in a file store and
is recommended for the storing of pages or
page fragments.

http://www.
yiiframework.
com/doc-2.0/
yii-caching-
filecache.html

yii\caching\
MemCache

An in-memory cache that uses the PHP
memcache or memcached extensions to
store data.

http://www.
yiiframework.
com/doc-2.0/
yii-caching-
memcache.html

yii\caching\
WinCache

A cache that uses the WinCache PHP
extension.

http://www.
yiiframework.
com/doc-2.0/
yii-caching-
wincache.html

yii\redis\Cache A cache that implements the Redis key
value store.

http://www.
yiiframework.
com/doc-2.0/yii-
redis-cache.html

yii\caching\
XCache

A cache that uses the XCache PHP
extension.

http://www.
yiiframework.
com/doc-2.0/yii-
caching-xcache.
html

http://www.yiiframework.com/doc-2.0/yii-caching-apccache.html
http://www.yiiframework.com/doc-2.0/yii-caching-apccache.html
http://www.yiiframework.com/doc-2.0/yii-caching-apccache.html
http://www.yiiframework.com/doc-2.0/yii-caching-apccache.html
http://www.yiiframework.com/doc-2.0/yii-caching-apccache.html
http://www.yiiframework.com/doc-2.0/yii-caching-dbcache.html
http://www.yiiframework.com/doc-2.0/yii-caching-dbcache.html
http://www.yiiframework.com/doc-2.0/yii-caching-dbcache.html
http://www.yiiframework.com/doc-2.0/yii-caching-dbcache.html
http://www.yiiframework.com/doc-2.0/yii-caching-dbcache.html
http://www.yiiframework.com/doc-2.0/yii-caching-dummycache.html
http://www.yiiframework.com/doc-2.0/yii-caching-dummycache.html
http://www.yiiframework.com/doc-2.0/yii-caching-dummycache.html
http://www.yiiframework.com/doc-2.0/yii-caching-dummycache.html
http://www.yiiframework.com/doc-2.0/yii-caching-dummycache.html
http://www.yiiframework.com/doc-2.0/yii-caching-filecache.html
http://www.yiiframework.com/doc-2.0/yii-caching-filecache.html
http://www.yiiframework.com/doc-2.0/yii-caching-filecache.html
http://www.yiiframework.com/doc-2.0/yii-caching-filecache.html
http://www.yiiframework.com/doc-2.0/yii-caching-filecache.html
http://www.yiiframework.com/doc-2.0/yii-caching-memcache.html
http://www.yiiframework.com/doc-2.0/yii-caching-memcache.html
http://www.yiiframework.com/doc-2.0/yii-caching-memcache.html
http://www.yiiframework.com/doc-2.0/yii-caching-memcache.html
http://www.yiiframework.com/doc-2.0/yii-caching-memcache.html
http://www.yiiframework.com/doc-2.0/yii-caching-wincache.html
http://www.yiiframework.com/doc-2.0/yii-caching-wincache.html
http://www.yiiframework.com/doc-2.0/yii-caching-wincache.html
http://www.yiiframework.com/doc-2.0/yii-caching-wincache.html
http://www.yiiframework.com/doc-2.0/yii-caching-wincache.html
http://www.yiiframework.com/doc-2.0/yii-redis-cache.html
http://www.yiiframework.com/doc-2.0/yii-redis-cache.html
http://www.yiiframework.com/doc-2.0/yii-redis-cache.html
http://www.yiiframework.com/doc-2.0/yii-redis-cache.html
http://www.yiiframework.com/doc-2.0/yii-caching-xcache.html
http://www.yiiframework.com/doc-2.0/yii-caching-xcache.html
http://www.yiiframework.com/doc-2.0/yii-caching-xcache.html
http://www.yiiframework.com/doc-2.0/yii-caching-xcache.html
http://www.yiiframework.com/doc-2.0/yii-caching-xcache.html

Chapter 12

[315]

While each cache that's listed implements the yii\caching\Cache
API, some caches, such as yii\redis\Cache and yii\caching\
MemCache, require some additional configuration. Ensure that you refer
to the class reference for the cache you decide to use in your application.

Using yii\caching\FileCache as an example, we can implement caching within
our application by adding the following to our application configuration file:

<?php return [
 // [...],
 'components' => [
 // [...]
 'cache' => [
 'class' => 'yii\caching\FileCache',
]
]
];

After implementing a specific caching system, we can then use our cache by
referencing Yii::$app->cache within our application code.

As mentioned previously, each cache implements a consistent API, as defined by the
yii\caching\Cache abstract class. Consequently, each cache provides the following
methods that we can use to manipulate the data in our cache.

Method Explanation
yii\caching\Cache::add() Stores the value with a given key in the cache

if it does not exist. If the cached item exists, no
operation will occur.

yii\caching\Cache::get() Retrieves an item with a given key from the cache.
yii\caching\Cache::set() Sets an item with a given key into the cache with

the option to specify an expiration date. The cached
items set with an expiration date will automatically
be expunged by either the underlying cache
mechanism or by Yii2 itself.

yii\caching\Cache::madd() Stores multiple items in the cache as a key value
array. If a given cache key already exists, nothing
will occur.
In Yii 2.1, this method will be marked as
deprecated and will be superseded by yii\
caching\Cache::multiAdd().

Performance and Security

[316]

Method Explanation
yii\caching\Cache::mget() Retrieves multiple data keys from the cache

simultaneously.
In Yii 2.1, this method will be marked as
deprecated and will be superseded by yii\
caching\Cache::multiGet().

yii\caching\Cache::mset() Sets multiple cached items represented as a key
value simultaneously into the cache. The cached
items set with an expiration date will automatically
be expunged by either the underlying cache
mechanism or by Yii2 itself.
In Yii 2.1, this method will be marked as
deprecated and will be superseded by yii\
caching\Cache::multiSet().

yii\caching\Cache::exists() Returns true or false if a given cache key exists
within the cache.

yii\caching\Cache::delete() Deletes a given cache key from the cache.

yii\caching\Cache::flush() Flushes all the data from the cache.

For more information on each method and its use, refer to the
noninherited public methods described by the yii\caching\Cache
abstract class at http://www.yiiframework.com/doc-2.0/yii-
caching-cache.html.

In general, our cache can be used by calling any of these methods against our
Yii::$app->cache component, as shown in the following example:

$cache = Yii::$app->cache;
if ($cache->exists('example'))
 $data = $cache->get('example');
else
{
 // Generate data here...
 $data = [];
 // Cache the $data for 100 seconds
 $cache->set('example', $data, 100);
}
return $data;

http://www.yiiframework.com/doc-2.0/yii-caching-cache.html
http://www.yiiframework.com/doc-2.0/yii-caching-cache.html

Chapter 12

[317]

Caching dependencies
In addition to setting a cache with a given expiration time, we can also cache
data with certain dependencies, such as the last modification time of a file of an
expression of some kind, and automatically expire our data should that dependency
change. Yii2 provides several dependencies that we can use.

Method Explanation Class Reference
yii\caching\
ChainedDependency

A dependency that allows us
to chain multiple dependencies
together and expire a cache item
if any of the dependencies fail.

http://www.
yiiframework.com/
doc-2.0/yii-caching-
chaineddependency.
html

yii\caching\
DbDependency

A dependency upon a given
SQL query. Should the result of
the query change, the cache will
be invalidated.

http://www.
yiiframework.com/
doc-2.0/yii-caching-
dbdependency.html

yii\caching\
FileDependency

A dependency upon a file based
upon the last modification time
of the file.

http://www.
yiiframework.com/
doc-2.0/yii-caching-
filedependency.html

yii\caching\
ExpressionDependency

A dependency represented by a
Boolean expression.

http://www.
yiiframework.com/
doc-2.0/yii-caching-
expressiondependency.
html

yii\caching\
TagDependency

A dependency upon an array of
tags that can be managed.

http://www.
yiiframework.com/
doc-2.0/yii-caching-
tagdependency.html

Check out the class reference for each dependency for more information
on its available properties and methods.

Expanding upon our previous example, we can add a cache dependency, as shown
in the following example. In the following code, we create a dependency upon a
file called data.csv, which can contain a report or some other data that we wish to
generate or import into our application:

$cache = Yii::$app->cache;
if ($cache->exists('example'))
 $data = $cache->get('example');
else

http://www.yiiframework.com/doc-2.0/yii-caching-chaineddependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-chaineddependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-chaineddependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-chaineddependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-chaineddependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-dbdependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-dbdependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-dbdependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-dbdependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-filedependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-filedependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-filedependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-filedependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-expressiondependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-expressiondependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-expressiondependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-expressiondependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-expressiondependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-tagdependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-tagdependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-tagdependency.html
http://www.yiiframework.com/doc-2.0/yii-caching-tagdependency.html

Performance and Security

[318]

{
 // Generate data here...
 $data = [];

 $dependency = new \yii\caching\FileDependency(['fileName' =>
 'data.csv']);
 // Cache $data for 100 seconds using the key "example" with a
 FileDependency
 $cache->set('example', $data, 100, $dependency);
}
return $data;

Database query caching
With Yii2, we can also cache the result of a database query. To enable
query caching, we need to set three properties within our database
component: $enableQueryCache, which toggles the query cache on and off;
$queryCacheDuration, which sets the duration queries should be cached for;
and $queryCache, which specifies the cache component that should be used.

The following connection example illustrates how to enable the query cache:

<?php return [
 // [...],
 'components' => [
 // [...]
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' =>
 'mysql:host='127.0.0.1;dbname=masteringyii',
 'username' => '<username>,
 'password'	 => '<password>',
 'charset' 	 => 'utf8',

 'queryCacheEnabled' => true,
 // 0 = Never expires
 'queryCacheDuration' => 0,
 'queryCache' => 'cache'
],

 'cache' => [
 'class' => 'yii\caching\FileCache',
]
]
];

Chapter 12

[319]

After configuring database query caching, we can then cache the results of a single
DAO query by adding or chaining the cache method to our query, as shown in the
following example:

$duration = 100; // 100 seconds
$results = $db->createCommand('SELECT * FROM users WHERE id=1;')-
>cache($duration)->queryOne();

Alternatively, if we have multiple queries we'd like to cache, we can call the yii\db\
Connection::cache() function directly:

$result = $db->cache(function ($db) {
 $result = $db->createCommand('SELECT * FROM users WHERE
 id=1;')->queryOne();
 return $result;
}, $duration, $dependency);

ActiveRecord can also take advantage of query caching by fetching the database
component from the ActiveRecord model, as shown in the next example:

$result = User::getDb()->cache(function ($db) {
 return User::find()->where(['id' => 5])->one();
}, $duration, $dependency);

Moreover, within a query cache, we can exclude certain queries from being cached
by chaining the noCache() method to our query, as illustrated by the following
examples:

$result = $db->cache(function ($db) {
 // Cache queries in this block

 $db->noCache(function ($db) {
 // Do not cache queries in this block
 });

 // Don't cache this query either
 $customer = $db->createCommand('SELECT * FROM
 users WHERE id=1')->noCache()->queryOne();
 return $result;
});

Some databases such as MySQL have their own built-in caching
implemented in the software layer. Implementing both MySQL's native
query cache and Yii2's query cache can cause problems in ensuring that
the right data is presented. Additionally, any data that is returned as a
resource handler cannot be cached by Yii2. Furthermore, some caches,
such as Memcache, limit how much data can be associated with a specific
key. Be cognizant of these limitations when using query caching.

Performance and Security

[320]

Fragment caching
Fragment caching is built on top of data caching. Fragment caching in Yii2 allows
us to cache a fragment of a page and present that cached fragment rather than
regenerating the entire contents of the page on every request. In general, we can
use fragment caching by wrapping our code in the following block:

// $id = ...a unique key...
// $this = ...instance of yii\web\View...;
// Begin our cache and check to see if the data is already cached.
// If content is found, beginCache will output data, otherwise
// the conditional will execute.
if ($this->beginCache($id))
{
 // Our cached content goes here
 $this->endCache();
}

Like data caching, fragment caching has support for several conditions, such as
duration, dependencies, variation, and toggling the fragment cache on and off.
These conditions can be added as key value arrays to the second parameter of the
beginCache() method, as shown in the following example:

if ($this->beginCache($id, [
 // Time we want the fragment cache valid for
 'duration' => 100,

 // Any dependencies we want to add
 'dependency' => [
 'class' => 'yii\caching\DbDependency',
 'sql' => 'SELECT MAX(updated_at) FROM user',
],

 // Conditionally enable the cache for any boolean value
 'enabled' => Yii::$app->request->isGet,

 // Have a variation of this page for every language
 'variations' => Yii::$app->language	

Chapter 12

[321]

]))
{
 // Our cached content goes here
 $this->endCache();
}

Page caching
As an alternative to caching just a fragment of a web page, with Yii2, we can also
cache an entire page and serve the cached copy instead of generating the page on
every page load. This is exceptionally useful when we have a read-heavy application,
such as a blog. Page caching in Yii2 is implemented by adding the yii\filters\
PageCache filter to the behaviors() method of our controller, as shown in the
following example. Like fragment caching, we can specify variations for our page,
dependencies upon which our content should be invalidated, and the duration it
should be cached for. Like other filters, we can also specify the actions we want our
cache to apply to using the only and except parameters. The following example
illustrates the use of page caching:

public function behaviors()
{
 return [
 [
 'class' => 'yii\filters\PageCache',
 'only' => ['article'],
 'duration' => 60,
 'variations' => [
 Yii::$app->language,
 Yii::$app->user->isGuest
],
 'dependency' => [
 'class' => 'yii\caching\DbDependency',
 'sql' => 'SELECT MAX(updated_at) FROM articles',
],
],
];
}

Performance and Security

[322]

HTTP caching
Data, fragment, and page caching are all strategies that we can use to optimize the
server-side performance of our application. To further improve the performance of
our application, we can also send across headers with our application in order to
indicate that we want the client's browser to cache the output of our page. These
three headers are Last-Modified, ETag, and Cache-Control. By sending these
headers along with our application, we can significantly reduce the number of HTTP
requests sent to our application from our clients for pages that don't change often.
HTTP caching in Yii2 is implemented by the yii\filtersHttpCache filter:

•	 The first header, Last-Modified, informs the client about the last time the
page was changed. If a client makes a HEAD request to the server and sees
that the Last-Modified header differs from what it currently has, it will re-
request the page and cache it instead. Otherwise, it will load the page from
the client's cache.

•	 The ETag header is used to represent a hash of the tag. Like the
Last-Modified header, if the ETag hash changes, the browser knows
that it had to re-download the page.

•	 Finally, the Cache-Control header indicates what type of cache the page
should be stored in and for how long. By default, Yii2 will send public;
max-age: 3600 for this header, which will indicate that the client should
cache the content for 3600 seconds or 1 hour.

More information on the Cache-Control header can be found on the w3c
specification reference guide at http://www.w3.org/Protocols/
rfc2616/rfc2616-sec14.html#sec14.9.

An example illustrating the use of all three of these headers combined is illustrated
as follows:

public function behaviors()
{
 return [
 [
 'class' => 'yii\filters\HttpCache',
 'only' => ['index'],
 'lastModified' => function ($action, $params) {
 $q = new \yii\db\Query();
 return $q->from('articles')->max('updated_at');
 },

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

Chapter 12

[323]

 'etag' => function($action, $params) {
 $article = Article::find()->where(['id' =>
 \Yii::$app->request->get('id')])->one();
 return serialize([$article->title,
 $article->content]);
 },
 'cacheControlHeader' => 'public; max-age:3600'
],
];
}

Note that for HTTP caching, you only need to specify the headers you
want to send. Specifying multiple headers can give you more fine grain
control over when caches should be expired.

Caching database schema
In order to make ActiveRecord models work automagically, Yii2 will automatically
query the database to determine the schema of our application at the beginning
of each query. While useful in a development environment, this operation is
unnecessary in production environments where our schema rarely changes.
We can tell Yii2 to cache our database schema to improve the performance of
our database operations by enabling three properties of database component:
$schemeCache, which represents the cache component we want to use;
$schemaCacheDuration, which defines how long we want Yii2 to cache our schema;
and $enableSchemaCache, which enables or disables the schema cache.

The following MySQL database component illustrates the use of the schema
cache properties:

<?php return [
 // [...],
 'components' => [
 // [...]
 'db' => [
 'class' => 'yii\db\Connection',
 'dsn' =>
 'mysql:host='127.0.0.1;dbname=masteringyii',
 'username' => '<username>,
 'password'	 => '<password>',
 'charset' 	 => 'utf8',

Performance and Security

[324]

 'enableSchemaCache' => true,
 'schemaCacheDuration' => 0,
 'schemaCache' 	 => 'cache'
],

 'cache' => [
 'class' => 'yii\caching\FileCache',
]
]
];

When schema cache is enabled, run the cache/flush command after
applying new migrations so that Yii2 can pick up your new database
structure.

General performance enhancements
For considerable performance gains, there are several changes that you can make
to your application as well as your web server environment that can significantly
increase the performance of your application.

Enabling OPCache
Unlike compiled languages such as C and C++, PHP is an interpreted scripting
language. Consequently, every time our web server requests a new page or every
time we run a command from our command line, PHP needs to interpret our
code into machine code that our servers can actually run. Even if our source code
doesn't change, PHP will automatically perform this step on every request. In our
development environments, this allows us to simply make a change to our source
code, save the file, and then reload it in the page to see our changes. In a production
environment, however, this step is unnecessary since our code will only change if we
perform a deployment.

Starting in PHP 5.5, a new tool called OPCache was released by Zend Framework
Technologies Ltd and built into the PHP core. Once enabled, OPCache will cache the
compiled and optimized opcode that our PHP code is generated from and store it in
a shared memory store. If our code is ever run again, OPCache will look inside that
shared memory store for our code and execute it rather than re-interpreting our raw
source code file. Depending upon the size of our application, enabling OPCache can
have significant performance implications for our app. Moreover, since OPCache is
now built into PHP, enabling it is fairly simple.

Chapter 12

[325]

Note that Zend OPCache and APCCache both can be configured to cache
PHP's opcode. It's highly recommended that you do not run both Zend
OPCache and APCCache at the same time as it can cause instability
within PHP. As Zend OPCache is maintained by PHP maintainers, it's
recommended that you use it instead of APC.

Depending upon your package managed, OPCache may either be built into
your PHP instance or provided as an external extension. A simply way to check
whether OPCache is installed or not is to run the following command from your
command line:

$ php –m

If OPCache is installed, you should see Zend OPcache appear in the output. If you
don't see this output, you'll need to install OPCache from your package manager.
Once OPCache is installed, you can enable it by adding the following to your php.
ini file or to a file in your PHP INI includes folder and restarting your web server:

zend_extension=opcache.so
opcache.enable = true
opcache.enable_cli = true
opcache.save_comments = false
opcache.enable_file_override = true

When you perform a deployment, you'll need to clear OPCache for
your new code to take effect. Typically, this is done by restarting your
web server or your PHP process. Alternatively, you can use a tool such
as cachetool (available at https://github.com/gordalina/
cachetool) to clear the cache tool. Using a tool like cachetool is
beneficial because it allows you to clear your OPCache without restarting
your web server and facing potential downtime.

Optimizing Composer dependencies
Another performance change you can make as part of your deployment is to exclude
your development dependencies from your production deployments:

$ composer install --no-dev

https://github.com/gordalina/cachetool
https://github.com/gordalina/cachetool

Performance and Security

[326]

Since our development dependencies are used in development, loading and
registering that code with our application only adds extra overhead to our
application.

Additionally, we can instruct Composer to optimize the autoloader that it generates
by running the following command when we install our composer dependencies:

$ composer install –o

Alternatively, we can generate an optimized autoloader file after installing our
dependencies by running the following command:

$ composer dumpautoload -o

By optimizing Composer's autoloader file, we can reduce the number of file and disk
lookups with which we need to load our classes in our source code, which in turn
will make our application faster.

Upgrading to PHP 7
At the time of publication, PHP 7 has been released, and it contains a refactored
PHP engine that is able to interpret, compile, and execute the same PHP code
with significantly less instructions. By reducing the number of CPU instructions
and memory usage, PHP 7 is significantly faster than PHP 5.6. For significant
performance gains, consider upgrading your PHP instance from 5.6 to 7.

Switch to Facebook's HHVM
As an alternative to upgrading to PHP 7, you can consider leaving the PHP engine
and switching to HHVM, a reengineered engine for PHP created by Facebook. Like
PHP 7, HHVM is significantly faster than PHP 5.6, and for high traffic applications,
it can significantly reduce the costs associated with hosting a high traffic application.
Unlike PHP 7, however, HHVM doesn't have support for all the PHP modules
you may be accustomed to. Moreover, while Yii2 is fully compatible with HHVM,
third-party Composer packages may not be, which may cause problems if thorough
testing is not performed. For more information on HHVM, check out the HHVM
documentation at http://docs.hhvm.com/manual/en/index.php.

http://docs.hhvm.com/manual/en/index.php

Chapter 12

[327]

Security considerations
When using Yii2, it's important to remember to follow security best practices in
order to ensure the security of your application, the servers they run on, the data we
collect, and our end users who entrust us with this information. In previous chapters,
we explored how we can use the yii\base\Security class to safely encrypt and
hash data and how to use hazing algorithms such as Bcrypt to secure passwords.
In this section, we'll cover some additional security best practices that we can apply
when building our applications.

Certificates
In almost every application that Yii2 will be providing the backend for, our clients
(browsers or native clients) will communicate with our application over HTTP
(Hypertext Transfer Protocol). An easy way to ensure that the information our client
submits from their clients reaches our servers in the same state it left in is to encrypt
the traffic between our clients and the server with a certificate signed by a trusted
certificate authority transmitted over the TLS (Transport Layer Security) protocol.

TLS is the successor to SSL (Secure Sockets Layer), and both are often
referred to as SSL certificates. As of 2014, all versions of SSL (1.0, 2.0, and
3.0) have been deprecated due to known security issues with the SSL
protocol itself. Its successor, TLS versions 1.1 and 1.2, are not vulnerable
and are the recommended protocol to use when encrypting data between
clients and servers over HTTP.

Adding a signed and trusted certificate to our server has several major advantages:

•	 Encrypting data in transit prevents data from being viewed and manipulated
by third parties. Health information, credit card information, usernames, and
passwords can all be protected by encrypting data while in transit

•	 Clients can pin certificates that we publish so that they know to communicate
with us only if our certificate matches the one they have pinned. This
prevents Man-in-the-Middle attacks (MITM) and prevents others from
learning about our data. Additionally, when using pinned certificates, our
clients will know not to communicate with servers masquerading as ours.
Again, this protects us and our users

•	 Search engines such as Google and Bing give higher rankings to sites that
use TLS

•	 Implementing TLS in our web server is a simple task, and on modern
computers, it incurs almost no overhead

Performance and Security

[328]

When implementing TLS, there are several resources you can use to determine the
most secure cipher suites and to verify that your configuration is secure. For instance,
the https://cipherli.st site provides a list of modern cipher suites for a variety of
web servers and configurations. Qualys' SSL Labs site (https://www.ssllabs.com/
ssltest/) can also give you a complete report of your TLS configuration and can
validate your web server configuration. Combined, these tools can help better secure
your application and infrastructure.

Cookies
When retrieving data from cookies using yii\web\Request and yii\web\Response,
Yii2 will automatically encrypt your cookie information using your cookie
validation key:

return [
 // [...],
 'components' => [
 // [...]
 'request' => [
 'cookieValidationKey' => '<your secret key here>',
],
],
];

When working with cookies and session cookies, we can take additional protections
by adding additional attributes to our cookies, such as yii\web\Cookie::$secure
and yii\web\Cookie::$httpOnly. By marking our cookies as secure, we can
ensure that our cookies will only be sent over a secure connection, as described
in the previous section. Moreover, by setting our cookies to be httpOnly, we can
ensure that JavaScript and other web scripting languages cannot read our cookies.
By configuring our cookies with these two flags, we can significantly improve the
security of our application.

Protecting against cross-site scripting
As a general rule of web development, any time we display information submitted
by an end user, we should encode it so that we can protect our site and users
against XSS or cross-site scripting. XSS occurs when a user submits data that, when
displayed on our page, can be interpreted by our browser. This could be something
innocuous, such as adding or tags to our markup, or it could be something
more sinister, such as injecting a <script> tag that tracks information about the user
or redirects them to another site all together. Fortunately, Yii2 provides two ways of
working with data submitted by end users that we can display.

https://cipherli.st
https://www.ssllabs.com/ssltest/
https://www.ssllabs.com/ssltest/

Chapter 12

[329]

The first method we can use to protect our site from XSS is to encode end user
data using the yii\helpers\Html::encode() method, as illustrated in the
following example:

<?php echo \yii\helpers\Html::encode($data); ?>

When encoding our data using this method, Yii2 will convert tags such as <
and > into HTML-encoded entities that modern browsers know how to display
and interpret.

In the instance where we do want end user data to be displayed as HTML, we can
use yii\web\HtmlPurifier::purify() to correctly parse our data with the rich
HTML we want without allowing JavaScript code to be injected:

<?php \yii\helpers\HtmlPurifier::process($longData);

HtmlPurifier can be extremely slow even when configured properly.
Be sure you understand and configure HtmlPurifier properly before
deploying your code as it can significantly hurt the performance of your
application. More information on how to configure HtmlPurifier within
Yii2 can be found at http://www.yiiframework.com/doc-2.0/
yii-helpers-htmlpurifier.html, and HtmlPurifier's complete
documentation can be found at http://htmlpurifier.org/.

Enabling cross-site request forgery protection
CSRF (cross-site request forgery) is another common vulnerability that many
sites deal with, which Yii2 can help protect us against. When dealing with client
requests, we generally assume that the request came from the user himself. With
JavaScript, however, we can send false requests in the background without the
user's knowledge. These requests can be as simple as logging a user out of a given
service without their knowledge or scraping a specific page for information about the
user then transmitting it to a malicious server. Yii2 automatically protects us from
CSRF attacks. The only additional protection you can perform is to follow the HTTP
specification (such as not allowing state changes on GET requests).

Note that there may be many times when CSRF needs to be disabled
for one reason or another. Within our controller, we can disable CSRF
for specific actions by adding this code within our action by setting
Yii::$app->controller->enableCsrfValidation to false.

http://www.yiiframework.com/doc-2.0/yii-helpers-htmlpurifier.html
http://www.yiiframework.com/doc-2.0/yii-helpers-htmlpurifier.html
http://htmlpurifier.org/

Performance and Security

[330]

Summary
In this chapter, we covered several different ways in which we can improve and
explore the performance of our application and learned how to improve the security
of our application. We explored how we can use data, page, fragment, HTTP,
database, and schema caching to improve the performance of our application. We
also discovered general improvements we can make to Yii2 and PHP in order to
make our application run faster. Finally, we discovered several ways in which we
can improve the security of our application through the use of certificates, enabling
certain cookie attributes, and protecting our site against XSS and CSRF attacks.

In our final chapter, we'll cover how we can speed up our already fast development
time with Yii2, learn how to explore our application through logging, and discover
fast and secure ways to deploy our application with almost no downtime or
interruption of service.

[331]

Debugging and Deploying
One of the most important tasks when working with modern web applications
is determining what went wrong during the development and runtime of our
application. Without knowing what went wrong, it's impossible to determine the
correct steps to correct the problem. Yii2 provides several tools and components that
make the debugging of our applications painless and simple. In this chapter, we'll
explore several different ways in which we can debug our applications. We'll also
outline some of the best practices for the deployment of our Yii2 application once
we've completed the development.

Debugging
Debugging is an important process in which we can discover what went wrong with
our application. Whether we're solving a problem locally or trying to identify an
issue in our production, our applications need to be configured to supply us with the
required information to quickly and effectively identify and resolve issues as they
arise. In this section, we'll cover how to enable logging within our application, how
to benchmark certain sections of code and handler errors, and general debugging
tools and guidelines.

Debugging and Deploying

[332]

Logging
To help us debug our applications, Yii2 comes built with several different logging
components and log methods that we can implement within our application. To get
started with logging in Yii2, we first need to implement a log component within our
application. Yii2 comes with several different components that we can implement in
concert with one another or disjointedly.

Logger Class Description Class Reference
yii\log\DbTarget Logs information to a

database table
http://www.
yiiframework.com/doc-
2.0/yii-log-dbtarget.
html

yii\log\EmailTarget On logging events, sends an
email to a specified email
address

http://www.
yiiframework.com/
doc-2.0/yii-log-
emailtarget.html

yii\log\FileTarget Logs events to a file http://www.
yiiframework.com/
doc-2.0/yii-log-
filetarget.html

yii\log\
SyslogTarget

Logs events using PHP's
syslog() function

http://www.
yiiframework.com/
doc-2.0/yii-log-
syslogtarget.html

Each of the previously listed loggers have slight variations in their
configuration. For more information on how to specifically configure
each log target, refer to the class reference for that logger class.

To enable a log target within our application, we first need to bootstrap the log
component and then specify the logger target that we want to use within the
components section of our application configuration, as shown in the following
example:

return [
 // [...],

 'bootstrap' => ['log'],

 // [...],
 'components' => [
 // [...],

http://www.yiiframework.com/doc-2.0/yii-log-dbtarget.html
http://www.yiiframework.com/doc-2.0/yii-log-dbtarget.html
http://www.yiiframework.com/doc-2.0/yii-log-dbtarget.html
http://www.yiiframework.com/doc-2.0/yii-log-dbtarget.html
http://www.yiiframework.com/doc-2.0/yii-log-emailtarget.html
http://www.yiiframework.com/doc-2.0/yii-log-emailtarget.html
http://www.yiiframework.com/doc-2.0/yii-log-emailtarget.html
http://www.yiiframework.com/doc-2.0/yii-log-emailtarget.html
http://www.yiiframework.com/doc-2.0/yii-log-filetarget.html
http://www.yiiframework.com/doc-2.0/yii-log-filetarget.html
http://www.yiiframework.com/doc-2.0/yii-log-filetarget.html
http://www.yiiframework.com/doc-2.0/yii-log-filetarget.html
http://www.yiiframework.com/doc-2.0/yii-log-syslogtarget.html
http://www.yiiframework.com/doc-2.0/yii-log-syslogtarget.html
http://www.yiiframework.com/doc-2.0/yii-log-syslogtarget.html
http://www.yiiframework.com/doc-2.0/yii-log-syslogtarget.html

Chapter 13

[333]

 'log' => [
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
 'levels' => ['error', 'warning'],
]
],
],
],
];

In the previous example, we enabled yii\log\FileTarget by itself
for any error and warning log events. Note that multiple loggers can
be enabled concurrently by specifying additional loggers within the
targets array.

Each logging target can be configured to listen to certain events. Yii2 provides five
distinct events that we can log to and several logging methods that we can add to
our code:

•	 Error: This is triggered by Yii:error() when a regular error or a fatal error
occurs. These types of events should be acted upon immediately as they
indicate failure within the application.

•	 Warning: This is triggered by Yii::warning(). These events indicate that
something went wrong within the application.

•	 Info: This is triggered by Yii::info(). Typically, these events are used to
log something useful or interesting that has occurred.

•	 Trace: This is triggered by Yii::trace(), which is usually used during
development to trace a particular piece of code.

•	 Profile: This is triggered by Yii::beginProfile() and Yii::endProfile().

Most of these methods are simply wrappers around Yii::log().

Each log target can be configured to listen to a specific set of events by specifying
the level property of that logger target, and by default, if the level property is not
specified, Yii2 will process messages of any severity.

Debugging and Deploying

[334]

Each log method shares a similar method signature:

function($message, $category='application')

Yii2's log method will allow strings and complex data objects or arrays through
the yii\helpers\VarDumper::export() method. When logging information, it's
important that you specify a category, as that category can be searched and filtered
within our log. As shown in the method signature, Yii2 will log information to the
application category by default. When specifying a category, it's generally good
to specify it in a hierarchical way, such as in a slash-like format:

app\components\MyEvent

Another effective format is to use the PHP magic method, __METHOD__, which will
return the namespace and method the logger was called in:

app\components\MyEvent::myMethod

Within our logger components, we can specify which categories we want our logger
to handle by specifying the categories parameter. The categories parameter can be
configured to listen to specific categories such as yii\db\Connection, but it can also
be configured with wildcards. For instance, if we want to send an email anytime a
category within yii\db is called, we can configure the following logger target:

return [
 // [...],
 'bootstrap' => ['log'],

 // [...],
 'components' => [
 // [...],
 'log' => [
 'targets' => [
 [
 'class' => 'yii\log\EmailTarget',
 'categories' => ['yii\db*'],
 'message' => [
 'from' => ['systems@example.com'],
 'to' => ['administrator@example.com'],
 'subject' => 'Database errors for
 example.com',
],
]
],
],
],
];

Chapter 13

[335]

If you decide to use email logging, you can quickly flood your inbox with
multiple messages or even be rate-limited by your email provider. It's
highly recommended that you specify only the most critical categories for
email logging.

In situations where we're logging multiple categories, such as yii\web\
HttpException, we can also exclude certain categories from being logged by
specifying the except property. For instance, if we want to log all non-HTTP 404
exceptions, we can configure our logger as follows to accomplish this:

return [
 // [...],
 'bootstrap' => ['log'],

 // [...],
 'components' => [
 // [...],
 'log' => [
 'targets' => [
 [
 'class' => 'yii\log\FileTarget',
 'levels' => ['error', 'warning', 'info'],
 'categories' => ['yii\web\HttpException:*'],
 'except' => [
 'yii\web\HttpException:404',
],
]
],
],
],
];

Finally, within our application, loggers can be toggled on and off by setting the
enabled property of the logger target. To programmatically disable a logging
target, we first need to specify a key for our logger target:

return [
 // [...],
 'bootstrap' => ['log'],

 // [...],
 'components' => [
 // [...],
 'log' => [

Debugging and Deploying

[336]

 'targets' => [
 'file' => [
 'class' => 'yii\log\FileTarget',
 'levels' => ['error', 'warning', 'info'],
 'categories' => ['yii\web\HttpException:*'],
 'except' => [
 'yii\web\HttpException:404',
],
]
],
],
],
];

Then, within our code, we can temporarily disable our file target, as specified in
the previous example, using the following code:

Yii::$app->log->targets['file']->enabled = false;

Benchmarking
Another tool that we can use to debug our applications is the profiler tool. The
profile tool allows us to gain an insight into how long a certain piece of code takes to
execute. To use the profiler, we simply need to wrap the code we want to examine in
the following code block:

Yii::beginProfile('myProfile');
 // Code inside this will be profiled
Yii::endProfile('myProfile');

The beginProfile() and endProfile() methods can be nested
within another profiler section. The code within these methods will
be outputted to your log targets for profiling. In production, you
should disable profiling.

Error handling
By default, Yii2 has a fairly comprehensive error handler that will automatically
catch and display all nonfatal PHP errors. The error handler can be an extremely
powerful tool during development as it can provide complete stack traces in the
event that something fails.

Chapter 13

[337]

By default, the error handler is automatically enabled as part of our
application, but it can be disabled by setting the YII_ENABLE_ERROR_
HANDLER constant within our bootstrap file to false.

The error handler is configured within our main application configuration file, and it
supports several different configuration options, as shown in the following example:

return [
 // [...],
 'components' => [
 // [...],
 'errorHandler' => [
 'maxSourceLines' => 20,
 'errorAction' => 'site/error',
 'maxTraceSourceLines' => 13,
 // [...]
],
],
];

Debugging and Deploying

[338]

More information on the error handler and its properties can be found
on the Yii2 class reference page at http://www.yiiframework.com/
doc-2.0/yii-web-errorhandler.html.

By default, the error handler will use two views to display errors:

•	 @yii/views/errorHandler/error.php: This will be used to display errors
without a call stack and is the default view that is used when YII_DEBUG is
set to false

•	 @yii/views/errorHandler/exception.php: This will be used when errors
display a complete call stack

We can define our own error view files by specifying the errorView and
exceptionView properties of our error handler.

As an alternative to the default error page, as presented in the previous screenshot,
errors can be redirected to a different action by specifying the errorAction property
of the error handler. We can then handle errors separately from our application by
adding an errors action to our actions() method and defining an actionError()
action within the specified controller:

<?php
namespace app\controllers;

use Yii;
use yii\web\Controller;

class SiteController extends Controller
{
 public function actions()
 {
 return [
 'error' => [
 'class' => 'yii\web\ErrorAction',
],
];
 }

 public function actionError()
 {
 $exception = Yii::$app->errorHandler->exception;
 if ($exception !== null) {

http://www.yiiframework.com/doc-2.0/yii-web-errorhandler.html
http://www.yiiframework.com/doc-2.0/yii-web-errorhandler.html

Chapter 13

[339]

 return $this->render('error', ['exception'
 => $exception]);
 }
 }
}

Our custom error handler page can then be created within our views/site/error.
php file.

Handling errors within non HTML responses
When working with non-HTML responses such as JSON or XML, Yii2 will be
presented as a simplified error response, as shown in the following example:

{
 "name": "Not Found Exception",
 "message": "The requested resource was not found.",
 "code": 0,
 "status": 404
}

In the event that you wish to display more debugging information in nonproduction
environments, you can create a custom response handler by overwriting the
on beforeSend event of the response component. Our response handler can be
rewritten as follows to achieve this:

<?php
return [
 // [...],
 'components' => [
 // [...],
 'response' => [
 'format' => yii\web\Response::FORMAT_JSON,
 'charset' => 'UTF-8',
 'on beforeSend' =>
 ['app\components\ResponseEvent', 'beforeSend']
],
 // [...]
]
];

Debugging and Deploying

[340]

Our response handler class located at @app/components/ResponseEvent.php can
be written as follows to change the error behavior when YII_DEBUG is set to true:

<?php

namespace app\components;

use Yii;

/**
 * Event handler for response object
 */
class ResponseEvent extends yii\base\Event
{
 /**
 * Before Send event handler
 * @param yii\base\Event $event
 */
 public function beforeSend($event)
 {
 $response = $event->sender;

 if (\Yii::$app->request->getIsOptions())
 {
 $response->statusCode = 200;
 $response->data = null;
 }

 if ($response->data !== null)
 {
 $return = ($response->statusCode == 200 ? $response-
 >data : $response->data['message']);

 $response->data = [
 'data' => $return
];

 // Handle and display errors in the API for easy
 debugging
 $exception = \Yii::$app->errorHandler->exception;
 if ($exception && get_class($exception) !==
 "yii\web\HttpException" &&
 !is_subclass_of($exception,
 'yii\web\HttpException') && YII_DEBUG)

Chapter 13

[341]

 {
 $response->data['success'] = false;
 $response->data['exception'] = [
 'message' => $exception->getMessage(),
 'file' => $exception->getFile(),
 'line' => $exception->getLine(),
 'trace' => $exception->getTraceAsString()
];
 }
 }
 }
}

Now when an error occurs, output similar to the following will be displayed, saving
us the time taken to flip between our browser and our application log:

{
 "data": "<message>",
 "success": false,
 "exception": {
 "message": "Invalid",
 "file": "/path/to/SiteController.php",
 "line": 48,
 "trace": "#0 [internal function]:
 app\\controllers\\SiteController->actionIndex()\n# ...
 {main}"
 }
}

Debugging with the Yii2 debug extension
Another powerful tool that we can use to debug our applications is the yii2-debug
extension. When enabled, the debug extension provides deep insights into every
aspect of our request, ranging from logs, configurations, profiling, requests, asset
bundles, and even emails sent by our application. With this tool, we can find out
exactly what happened during a specific request.

To get started with using the yii2-debug extension, we first need to install it as part
of our composer dependencies:

composer require --dev --prefer-dist yiisoft/yii2-debug

Debugging and Deploying

[342]

After installing the package and running the composer update, we can configure the
debug extension by adding the following to our config/web.php configuration file:

if (YII_DEBUG)
{
 $config['bootstrap'][] = 'debug';
 $config['modules']['debug'] = [
 'class' => 'yii\debug\Module',
 'allowedIPs' => ['*']
];
}

After enabling the extension, we will be able to view it at the bottom of every view of
our application.

By default, the extension will show some basic things about our application;
however, if we click on it, we can gain deep insights into every aspect of our
application for a particular request.

Chapter 13

[343]

Alternatively, we can navigate to the /debug endpoint of our application to view all
the debug requests captured by the extension.

Debugging and Deploying

[344]

Deploying
The final step in working with any Yii2 application is to move it to production and
create a deployment strategy. There are many different tools that we can use to
deploy our code, ranging from Bamboo, TravisCI, Jenkins, Capistrano, and even
manual SSH deployments—just to name a few.

In general, however, there are several key concepts we should keep in mind when
deploying our code:

•	 Deployments should be automated and hands off. In order to be consistent,
your deployments should be run by a tool or service that can run the same
tasks every time. This eliminates any human error during the deployment
and ensures consistency.

•	 Deployments should be fast, providing you with the ability to quickly push
out new features and bug fixes.

•	 The actual building of your application (such as combined and compressed
JavaScript, CSS, and other configurations) should occur on a build server
and then be pushed to your production server in a pre-build manner. This
ensures that your production servers don't have extra tools on them that may
contain security vulnerabilities while also ensuring that your project is built
with the same tools each time.

•	 Deployments should be reversible. If we deploy code and our application
breaks, we should be able to easily roll back to a previous version.

•	 When deploying, we should remove any development tools, scripts, and
our DCVS repository information. This ensures that in case there is a bug
or security vulnerability in our code or our web server, this information is
not exposed.

•	 Directories that contain logs of our other information (such as runtime)
should be stored in a persistent directory and then symlinked back into
our project. This ensures that our logs and other data can persist across
multiple deployments.

•	 Our deployments should be structured in such a way that there is no
interruption of service. Typically, this is achieved by storing our deployment
in a specific folder and then renaming or symlinking it into the directory our
web server is pointed to. This ensures that our site does not experience an
outage when we are making a change.

Chapter 13

[345]

•	 When deploying new code, we should clear any application-specific caches,
such as our schema cache, configuration cache, and PHP OPCache, to ensure
that our new code changes take effect.

•	 Configuration files should never be committed to our DCVS as they contain
database usernames, passwords, and other secret information. Consider
storing this data as environment variables on the servers themselves, or
encrypting them in a way such that only your production servers can
decrypt and use the data.

By following these general guidelines, we can ensure that our Yii2 applications are
deployed seamlessly and easily.

Summary
In this chapter, we covered the basics of debugging and deploying our application.
We covered how to set up logging and benchmarking and how to debug our
application with the yii2-debug extension while also detailing general guidelines
and a few tools we can use to deploy our applications to production.

As you may expect, there's more to Yii2 than what is covered in this book. When
developing Yii2 applications, remember that the Yii2 API documentation located
at http://www.yiiframework.com/doc-2.0/ provides excellent class reference
documentation along with superb documentation on how to use many of the classes.
Having reached the end of the book, you should feel confident in your knowledge
and mastery of Yii2, and you should feel ready to take on any project with Yii2.

http://www.yiiframework.com/doc-2.0/

[347]

Index
A
acceptance testing

about 255, 282
examples 285, 286
setting up 282-285
URL 282

actions, yii\rest\ActiveController
defining 233

ActiveController 225-229
ActiveController actions

customizing 234
disabling 233, 234

ActiveController display fields
configuring 229, 230

Active Record
about 88
behaviors 103, 104
custom validators, adding 97-99
data, deleting 109
data, querying 105, 106
data, saving 108
events, defining 110
model attribute labels 101
model validation rules 96
multiple database connections,

using with 103
pattern 88, 89
relationships 102
validation errors, defining 100
validation rules, executing manually 100
validator error messages, customizing 100
working with 94, 104

Active Record classes
creating 89, 90
creating, with Gii 90

application language
about 299
setting dynamically 300, 301
setting programmatically 300

asset bundles
about 151, 152
asset command line tool 161-164
asset mapping 155
asset options 156
asset publication 157, 158
asset types 156
client cache management 159
configuration 153-155
locations 156
pre-processors, using with 160
using 153

asset command line tool 161-164
authentication filters

about 235
access, checking 243, 244
action-specific authentication 243
composite authentication 240
custom authentication filters 241, 242
HTTP basic authentication 236-238
OAuth2 authentication 239, 240
query parameter authentication 238, 239

authorization
about 184
access control filters 184-188
custom authorization rules 193
permission relationships, creating 191, 192
permissions, creating 191, 192
RBAC, configuring 189, 190
role access, checking for user 194
role-based access control (RBAC) 189

[348]

automatic change testing
defining 292-294

B
base drivers, PHP manual

URL 43
behaviors

URL 104
Boolean options

defining 210
bootstrap-specific widgets

defining 138
URL 138

Bower
about 167
URL 167

built-in console commands
about 25
asset command 26
cache command 26-28
fixture command 28, 29
Gii command 29
help command 25, 26
message command 30
migration command 30, 31

built-in validators
URL 97

built-in widgets
Bootstrap widgets 137, 138
jQuery UI widgets 138
using 137
Yii-specific widgets 139, 140

C
Cache-Control header

URL 322
cachetool

URL 325
caching

about 313
database schema, caching 323, 324
data caching 313-316
fragment caching 320
HTTP caching 322, 323
page caching 321

Cascading Style Sheets (CSS) 151
certificates

advantages 327
cipher suites

URL 328
Codeception

configuring, with Yii2 258-261
URL 272

components 14, 15
components, unit test

Consistent and repeatable 262
Fast 262
fully automated 262
independent 262
Maintainable 263
Readable 263
references 263
thorough 262

Composer
about 1
defining 1-7
modules, managing with 133-135
URL 1

Composer Asset Plugin
about 3
URL 3

Composer CLI
URL 29

configuration
about 7
application environment, setting up 13
configuration files 10
entry scripts 8
requirements checker 7, 8
web environment, setting for Apache 14
web environment, setting for NGINX 13

configuration and usage, Yii2
configuration file 21, 22
console commands, running 22-24
console environment, setting 22
defining 19
entry script 19, 20

configuration files
about 10
database configuration file 10
environment configuration 11-13
parameter configuration 11

[349]

Web and console configuration files 10
console commands

command-line arguments, passing 33-36
creating 31, 32
exit codes 37
formatting 38
help information, generating 32

console interface, Gii
forms, generating with 116, 117
using 93

constants, Yii2 documentation
URL 38

core components
testing 257

cross-origin resource headers 245, 246
Cross Origin Resource Sharing (CORS)

about 245
URL 246

CSRF (cross-site request forgery) 329
custom API controllers

about 250
data, returning 251
response formatting 252, 253

custom URL rule classes 207, 208

D
data

table and column names, quoting 60
data access 106, 107
database access objects (DAO)

about 41, 55
data, querying 55-60
parameter binding 62-64
queries, executing 61, 62
transactions 64

database migrations
database schema, altering 51-54
migrations, running 50, 51
migrations, writing 47-50
schema, defining 46, 47
writing 46

databases
additional configuration options 44-46
connecting to 41-43

data caching
database query caching 318, 319

defining 314
dependencies, caching 317
methods, defining 315, 316
references 314

data decryption 198, 199
data encryption 198, 199
data hashing 199
data providers 74-77
data replication 78-80
data serialization

within responses 231
data source names (DSNs) 42
data widgets 74-77
debugging

about 331
benchmarking 336
error handling 336-339
logging 332-336
with Yii2 debug extension 341, 342

deploying 344
dynamic rule generation 208

E
encryption 197
entry scripts

about 8
Web entry script 8-10

error handling
about 249
within non HTML responses 339-341

events
about 219
class-level events 222
event handlers 219, 220
global events 223
triggering 220-222

events, Active Record
EVENT_AFTER_DELETE 110
EVENT_AFTER_FIND 110
EVENT_AFTER_INSERT 110
EVENT_AFTER_UPDATE 110
EVENT_BEFORE_DELETE 110
EVENT_BEFORE_INSERT 110
EVENT_BEFORE_UPDATE 110
EVENT_INIT 110

[350]

examples, unit test
User model methods, testing 266-271

F
file translations

viewing 308
fixture branch

URL 255
fixtures

about 286
creating 28, 287, 288
defining 288, 289
reference 287
using, in unit tests 290, 291

flash messages 195, 196
formatter

URL 77
forms

about 113
ActiveForm 118-120
generating, with Gii 113
input types 118-120
using 117, 118

functional tests
about 255, 272
defining 272
examples 277-282
generating 276
setting up 273-275
URL 272

G
Gii

about 81
configuring 81, 82
for console applications 85-88
for web applications 82-85

Grunt 168-171

H
hashing 197
helpers

about 143
FileHelper 149
HTML helper 145, 146

inflector 148
JSON helper 147
Markdown helper 147
URL helper 143, 144
variable dumping 148

HHVM
URL 326

HtmlPurifier
about 329
URL 329

I
internationalization 297
intl extension

about 298, 299
URL 298

intl library
URL 298

J
jq

URL 229
jQuery UI

URL 139
JSON formatting

defining 216

L
lazy loading 42
load balancing 78-80
localization 297

M
manual testing 257
message translations

about 301
default translations 303
framework messages 303
message files, generating 305-307
message formatting 308
message sources 302, 303
missing translations, handling 304

method list, HTML helper
URL 146

[351]

migrations
URL 55

models
about 110
attributes 111
scenarios 111, 112
URL 111

module components
controllers 125, 126
defining 124
module class structure 124, 125
views and layouts 126, 127

modules
about 123
accessing 132
bootstrapping 131
components 124
managing, with Composer 133-135
registering 128
registering dynamically 128-131
summary 135

module translations 309, 310

N
new records

creating 109
NodeJS

about 166, 167
URL 166

O
object-relational mapping (ORM) 88
objects 14-16
OCI8 driver

URL 43
Open Database Connectivity (ODBC) 43

P
passwords

hashing 197, 198
verifying 197, 198

path aliases
about 16, 17
URL 17

performance enhancements
Composer dependencies, optimizing 325
defining 324
OPCache, enabling 324, 325
switching, to HHVM 326
upgrading, to PHP 7 326

PHP
configuring 298

Q
Query Builder

about 65
Query construction methods 65
select method 66

R
rate limiting 246-249
Representational State Transfer (REST) 225
request object

URL 213
requests

about 209
client and URL information,

retrieving 212, 213
headers and cookies 211, 212
properties 213
request parameters and data,

retrieving 209-211
response object

URL 218
responses

about 213
file output 218
redirection 217
response body 215-217
response headers, setting 215
status codes, setting 214

role-based access control (RBAC)
about 189
URL 189

routes
parameterizing 205

routing
about 201, 202
catch all route 203

[352]

custom routes 203, 204
default route 203
URL rules 203, 204

S
security considerations

about 327
certificates 327, 328
cookies 328
cross-site request forgery protection,

enabling 329
protecting, against cross-site scripting 328

select method
about 66
data, limiting 69
data, offsetting 69
from method 67
GROUP BY 69, 70
HAVING 69, 70
iterating, over query results 73
joins and unions 70, 71
queries, examining 73
queries, executing 71, 72
results, ordering 69
where method 67

sqlite3
URL 50

SSL Labs site
URL 328

status codes
setting 214
Web exceptions 214, 215

T
test-driven development (TDD) 257
testing

approaching 256
reasons for 256

third-party asset tools
about 165
Bower 167, 168
Grunt 168-171
NodeJS 166, 167

Travis CI
about 292
URL 292

Twitter Bootstrap 3
URL 138

U
UAT 12
unit testing 255, 262
unit tests

examples 266
fixtures, using 290, 291
generating 263-265

URL suffixes 206
user authentication

about 173, 174
user identity interface,

implementing 174-176
with forms 179-183

user identity interface
cookie-based authentication 177, 178
implementing 174-176
working with 178, 179

V
verb filters 244

W
web interface, Gii

forms, generating with 113-115
using 91-93

where method
about 67
hash format 68
operator format 68, 69
string format 67

widgets
about 135
built-in widgets, using 137
custom widgets, creating 140-142
summary 143
using 136, 137

widget translations 310, 311

[353]

Y
Yii2

about 36, 299, 313
Codeception, configuring with 258-261
configuring 298
methods 214
references 74, 76
URL 1

Yii2 API
URL 308

Yii2 class
references 338

Yii2 Codeception module page
URL 282

yii2-composer package
URL 6

Yii2 documentation
URL 127

Yii2 guide
URL 46

yii\caching\Cache abstract class
URL 316

Yii framework
URL 15

yii\log\DbTarget
URL 332

yii\log\EmailTarget
URL 332

yii\log\FileTarget
URL 332

yii\log\SyslogTarget
URL 332

Yii-specific widgets
defining 139

yii\web\HeaderCollection
URL 211

Thank you for buying
Mastering Yii

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Learning Yii Testing
ISBN: 978-1-78439-227-7 Paperback: 222 pages

Embrace 360-degree testing on your Yii 2 projects
using Codeception

1.	 Learn all about testing with an in-depth
analysis of software architecture and modern
testing technologies.

2.	 Boost your testing knowledge and apply it
to real-world scenarios through practical
examples and behind the scenes knowledge.

3.	 Develop your applications using a test-first
approach making full use of Codeception and
Yii 2.

Yii Project Blueprints
ISBN: 978-1-78328-773-4 Paperback: 320 pages

From conception to production, learn how to develop
real-world applications with the Yii framework

1.	 Develop real-world web applications through
easy-to-follow, step-by-step processes.

2.	 Create eight projects from beginning to end to
help you explore the full power of Yii.

3.	 Build a fast, user-based, database-driven
content management system with a dashboard
and RESTful API.

Please check www.PacktPub.com for information on our titles

Web Application Development
with Yii 2 and PHP
ISBN: 978-1-78398-188-5 Paperback: 406 pages

Fast-track your web application development using
the new generation Yii PHP framework

1.	 Implement real-world web application
features efficiently using the Yii development
framework.

2.	 Each chapter provides micro-examples that
build upon each other to create the final
macro-example, a basic CRM application.

3.	 Filled with useful tasks to improve the
maintainability of your applications.

Yii Application Development
Cookbook
Second Edition
ISBN: 978-1-78216-310-7 Paperback: 408 pages

A Cookbook covering both practical Yii application
development tips and the most important Yii features

1.	 Learn how to use Yii even more efficiently.

2.	 Full of practically useful solutions and concepts
you can use in your application.

3.	 Both important Yii concept descriptions and
practical recipes are inside.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Composer, Configuration, Classes, and Path Aliases

	Composer
	Configuration
	Requirements checker
	Entry scripts
	Web entry script

	Configuration files
	Web and console configuration files
	Database configuration
	Parameter configuration
	Environment configuration

	Setting up our application environment
	Setting the web environment for NGINX
	Setting the web environment for Apache

	Components and objects
	Components
	Objects

	Path aliases
	Summary

	Chapter 2: Console Commands and Applications

	Configuration and usage
	Entry script
	Configuration
	Setting the console environment
	Running console commands

	Built-in console commands
	The help command
	The asset command
	The cache command
	The fixture command
	The Gii command
	The message command
	The migration command

	Creating console commands
	Generating help information
	Passing command-line arguments
	Exit codes
	Formatting

	Summary

	Chapter 3: Migrations, DAO,
and Query Building

	Connecting to databases
	Additional configuration options

	Writing database migrations
	An overview of schema
	Writing migrations
	Running migrations
	Altering a database schema

	Database access objects
	Querying for data
	Quoting table and column names

	Executing queries
	Parameter binding
	Transactions

	Query Builder
	Query construction methods
	The select method
	The from method
	The where method
	Ordering results
	Limiting and offsetting data
	Grouping and having
	Joins and unions
	Executing queries
	Examining queries
	Iterating over query results

	Data providers and data widgets
	Data replication and load balancing
	Summary

	Chapter 4: Active Record, Models,
and Forms

	Configuring Gii
	Gii for web applications
	Gii for console applications

	Active Record
	The Active Record pattern
	Creating Active Record classes
	Creating active record classes with Gii

	Working with Active Record
	Model validation rules
	Adding custom validators
	Customizing validator error messages
	Working with validation errors
	Manually executing validation rules
	Model attribute labels
	Active Record relationships
	Using multiple database connections with Active Record
	Behaviors in Active Record

	Working with Active Record
	Querying data
	Saving data
	Deleting data
	Active Record events

	Models
	Model attributes
	Scenarios

	Forms
	Generating forms with Gii
	Generating forms with Gii's web interface
	Generating forms with Gii's console interface

	Using forms
	ActiveForm and input types

	Summary

	Chapter 5: Modules, Widgets,
and Helpers

	Modules
	Module components
	The module class structure
	Controllers
	Views and layouts
	Registering modules

	Accessing modules
	Managing modules with Composer
	Modules in summary

	Widgets
	Using widgets
	Commonly used built-in widgets
	Bootstrap widgets
	jQuery UI widgets
	Yii-specific widgets

	Creating custom widgets
	A summary of widgets

	Helpers
	The URL helper
	The HTML helper
	The JSON helper
	The Markdown helper
	Variable dumping
	Inflector
	FileHelper

	Summary

	Chapter 6: Asset Management

	Asset bundles
	Using asset bundles
	Configuration
	Asset mapping

	Asset types and locations
	Asset options
	Asset publication
	Client cache management with asset bundles
	Using preprocessor with asset bundles
	The asset command line tool

	Third-party asset tools
	NodeJS
	Bower
	Grunt

	Summary

	Chapter 7: Authenticating and Authorizing Users

	Authentication of users
	Implementing the user identity interface
	Cookie-based authentication
	Working with user identities

	Authenticating users with forms

	Authorization
	Access control filters
	Role-based access control
	Configuring RBAC
	Creating permissions and permission relationships
	Custom authorization rules
	Checking if a user has access to a role

	Flash messages
	Hashing and encryption
	Hashing and verifying passwords
	Data encryption and decryption
	Data hashing

	Summary

	Chapter 8: Routing, Responses,
and Events

	Routing
	Default and catch all routes
	Custom routes and URL rules
	Parameterizing routes
	URL suffixes
	HTTP method-specific URL rules

	Custom URL rule classes
	Dynamic rule generation

	Requests
	Retrieving request parameters and data
	Request headers and cookies
	Retrieving client and URL information

	Responses
	Setting status codes
	Web exceptions

	Setting response headers
	The response body
	Redirection
	The file output

	Events
	Event handlers
	Triggering events
	Class-level events
	Global events

	Summary

	Chapter 9: RESTful APIs

	ActiveController
	Configuring ActiveController display fields
	Data serialization within responses
	Disabling ActiveController actions
	Customizing ActiveController actions

	Authentication filters
	HTTP basic authentication
	Query parameter authentication
	OAuth2 authentication
	Composite authentication
	Custom authentication filters
	Action-specific authentication
	Checking access

	Verb filters
	Cross-origin resource headers
	Rate Limiting
	Error handling
	Custom API controllers
	Returning data
	Response Formatting

	Summary

	Chapter 10: Testing with Codeception

	Reasons for testing
	How to approach testing
	Testing manually

	Testing a few core components
	Test-driven development

	Configuring Codeception with Yii2
	Unit testing
	Generating unit tests
	Unit test examples
	Testing User model methods

	Functional testing
	Setting up functional tests
	Generating functional tests
	Examples of functional tests

	Acceptance testing
	Setting up acceptance testing
	Examples of acceptance tests

	Fixtures
	Creating fixtures
	Defining fixtures
	Using fixtures in unit tests

	Automatic change testing
	Summary

	Chapter 11: Internationalization and Localization

	Configuring Yii2 and PHP
	The intl extension

	The application language
	Programmatically setting the application language
	Dynamically setting the application language

	Message translations
	Message sources
	Default translations
	Framework messages
	Handling missing translations
	Generating message files
	Message formatting

	Viewing file translations
	Module translations
	Widget translations
	Summary

	Chapter 12: Performance and Security

	Caching
	Caching data
	Caching dependencies
	Database query caching

	Fragment caching
	Page caching
	HTTP caching
	Caching database schema

	General performance enhancements
	Enabling OPCache
	Optimizing Composer dependencies
	Upgrading to PHP 7
	Switch to Facebook's HHVM

	Security considerations
	Certificates
	Cookies
	Protecting against cross-site scripting
	Enabling cross-site request forgery protection

	Summary

	Chapter 13: Debugging and Deploying

	Debugging
	Logging
	Benchmarking
	Error handling
	Handling errors within non HTML responses

	Debugging with the Yii2 debug extension

	Deploying
	Summary

	Index

