
Teo Lachev

M A N N I N G

Microsoft
Reporting
Services
IN ACTION

TEAM LinG

www.allitebooks.com

http://www.allitebooks.org

Microsoft Reporting Services in Action

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Microsoft Reporting
Services in Action

TEO LACHEV

M A N N I N G

Greenwich
(74° w. long.)

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please go to
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2005 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Linda Recktenwald
209 Bruce Park Avenue Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-22-2

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 08 07 06 05 04

www.allitebooks.com

http://www.allitebooks.org

To my beautiful wife, Elena,
and our lovely children, Maya and Martin,

for your sacrifices in making this book a reality

To my parents
for supporting my decisions to take the road less traveled

and for always being very proud of me

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

brief contents

1 Introducing Microsoft Reporting Services 1

2 Report authoring basics 39

3 Working with data 63

4 Designing reports 102

5 Using expressions and functions 142

6 Using custom code 183

7 Managing the Reporting Services environment 215

8 Securing Reporting Services 260

9 On-demand report delivery 299

10 Reporting for Windows Forms applications 337

11 Reporting for web-based applications 377

12 Reporting for OLAP applications 416

13 Enterprise reporting 456

14 Subscribed report delivery 483

15 Extending Reporting Services 517

16 Performance and scalability 566

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ix

contents
foreword xix
preface xxi
acknowledgments xxiii
roadmap xxv
source code xxviii
author online xxxiii
about the title and cover xxxiv

1 Introducing Microsoft Reporting Services 1
1.1 What is RS? 2

Why do we need RS? 2 ✦ How is RS implemented? 4
RS and the Microsoft BI platform 5

1.2 RS at a glance 6
Authoring features 7 ✦ Management features 8
Delivery features 9 ✦ Extensibility features 9
Scalability features 10 ✦ Security features 10
Deployment features 11

1.3 RS architecture 11
The Report Server 13 ✦ The Report Server database 14
The Report Manager 15

1.4 Understanding Report Processing 17
Execution stage 18 ✦ Rendering stage 18

1.5 Delivering reports 20
On-demand delivery 20 ✦ Subscribed delivery 21

1.6 What is the report lifecycle? 22

1.7 RS in action 23
About the Adventure Works Reporter 23 ✦ Your first
report 24

1.8 Evaluating RS 33

www.allitebooks.com

http://www.allitebooks.org

x CONTENTS

1.9 Summary 35

1.10 Resources 35

Part 1 Authoring reports 37

2 Report authoring basics 39
2.1 The report-authoring process: step by step 40

Analysis 41 ✦ Construction 42 ✦ Testing 42
Deployment 42

2.2 Authoring reports in VS.NET 43
Authoring reports with the Report Wizard 43 ✦ Authoring
reports with the Report Designer 44 ✦ Importing reports
from Microsoft Access 53

2.3 Creating reports programmatically 55
The AW Ad Hoc Reporter sample 56 ✦ Implementation
details 58

2.4 Creating reports with third-party tools 60
Cizer’s Quick Query 60 ✦ Hitachi’s RDL Generator 62

2.5 Summary 62

2.6 Resources 62

3 Working with data 63
3.1 Working with data sources 63

Connecting to the database 64 ✦ Choosing an authentication
mechanism 69 ✦ Deploying data sources 77

3.2 Working with report datasets 77
Understanding the dataset definition 78 ✦ Creating a report
dataset 79 ✦ Using multiple datasets 83

3.3 Authoring dataset queries 84
Using the Graphical Query Designer 84 ✦ Using the Generic
Query Designer 86

3.4 Parameter-driven reports 89
The role of parameters 89 ✦ Building parameter-driven
queries 90 ✦ Setting up the report-level parameters 92
Working with stored procedures 95

3.5 Data limitations 100
Data source limitations 100 ✦ Parameter limitations 101

3.6 Summary 101
3.7 Resources 101

CONTENTS xi

4 Designing reports 102
4.1 Anatomy of a report 103

Getting started with a new report 104 ✦ Understanding report
sections 104 ✦ Understanding report items 105
Understanding data regions 107

4.2 Designing tabular reports 109
Parameterized tabular reports 113 ✦ Tabular reports with
interactive features 117 ✦ Table region limitations 119

4.3 Designing freeform reports 119
Freeform reports with nested regions 119 ✦ Grouping freeform
data 121 ✦ Freeform reports with side-by-side data
regions 123

4.4 Designing Chart Reports 124
The chart data region 124 ✦ Working with charts 126
Nesting chart regions 127

4.5 Designing crosstab reports 129
Matrix region advantages 129 ✦ Working with the matrix
region 130 ✦ Adjusting the report layout 134

4.6 Designing Subreports 135
Laying out the report 136 ✦ Synchronizing the subreport with
the master report 137

4.7 Designing multicolumn reports 138
Setting up multiple columns 139 ✦ Testing multicolumn
reports 139

4.8 Summary 140

4.9 Resources 141

5 Using expressions and functions 142
5.1 Understanding expressions 143

Using the Expression Editor 143 ✦ Expression syntax 145
Determining expression execution order 145 ✦ Understanding
expression scope 146 ✦ Dealing with expression errors 147

5.2 Exploring the Report Object Model 148
Using the ReportItems collection 151 ✦ Using the Fields
collection 155 ✦ Using the Parameters collection 157
Using the Globals collection 159 ✦ Using the User
collection 159

5.3 Working with functions 160
Referencing external functions 160 ✦ Using aggregate
functions 161 ✦ Using other internal functions 165

xii CONTENTS

5.4 Designing reports with navigational features 167
Reports with hyperlinks 168 ✦ Reports with document
maps 170

5.5 Report rendering considerations 173
Exporting reports to HTML 173 ✦ Exporting reports to
MHTML 174 ✦ Exporting reports to HTML with Office Web
Components 174 ✦ Exporting reports to other formats 176

5.6 Designing localized reports 177
Report localization basics 177 ✦ Localization techniques 179

5.7 Summary 181

5.8 Resources 182

6 Using custom code 183
6.1 Understanding custom code 184

Using embedded code 184 ✦ Using external
assemblies 187

6.2 Custom code in action: implementing report forecasting 191
Forecasting with OpenForecast 192 ✦ Implementing report
forecasting features 192

6.3 Using XML-based reports 204
Understanding XML exporting 205 ✦ Exposing the report
content as an RSS feed 205

6.4 Summary 210

6.5 Resources 211

Part 2 Managing reports 213

7 Managing the Reporting Services environment 215
7.1 Managing RS with the Report Manager 216

How the Report Manager works 216 ✦ Managing Report Server
settings 219 ✦ Managing content 223 ✦ Managing report
execution 230 ✦ Managing linked reports 240

7.2 Managing RS with the Web service 242
Understanding the Web service management API 242
Tracing calls to the SOAP API 242 ✦ Deploying reports
programmatically 245 ✦ Batching methods together 249

7.3 Managing RS with the WMI provider 249
Understanding the WMI provider 250 ✦ Implementing an RS
management console 251

CONTENTS xiii

7.4 Other ways to manage Reporting Services 253
Managing RS with the script host 253 ✦ Using other
management utilities 254

7.5 Analyzing report execution 255
Analyzing the Report Server execution log 255 ✦ Analyzing
trace log files 257

7.6 Summary 259

7.7 Resources 259

8 Securing Reporting Services 260
8.1 Exploring Reporting Services role-based security 261

How Windows authentication works 262 ✦ Using role-based
authorization 266 ✦ Managing role-based security with the
Report Manager 272 ✦ Managing role-based security with the
Web service 277

8.2 Understanding code access security 281
Defining code access terminology 281 ✦ Exploring the RS
default security policy 285 ✦ Managing RS code access
security 286

8.3 Best practices for securing reports 290
Filtering data 291 ✦ Using dynamic dataset queries 292
Implementing custom security models 294 ✦ Enforcing a
secured connection to the Report Server 294

8.4 Summary 295

8.5 Resources 295

Part 3 Delivering reports 297

9 On-demand report delivery 299
9.1 How RS provides on-demand report delivery 300

9.2 URL-based report access 301
Understanding URL syntax 302 ✦ Requesting resources
by URL 303 ✦ Requesting reports by URL 305 ✦ Working
with report commands 306 ✦ Working with the HTML
Viewer 309 ✦ URL access in action 312

9.3 Web service-based report access 317
Requesting reports with SOAP 318 ✦ Rendering images 321
Handing report sessions 324 ✦ Automating the report
generation process 327

xiv CONTENTS

9.4 Evaluating URL and Web service access options 331
Evaluating URL access 332 ✦ Evaluating Web service
access 334 ✦ Choosing an integration approach 334

9.5 Summary 335

9.6 Resources 336

10 Reporting for Windows Forms applications 337
10.1 Rich client wanted 338

Report-enabling rich clients 338 ✦ Using the Client-to-Report
Server model 339 ✦ Using the Client-to-Façade-to-Report
Server model 341

10.2 Introducing the Adventure Works Report Wizard 342
Designing the Report Wizard 343 ✦ The Report Wizard step-
by-step 344

10.3 Behind the scenes of the Adventure Works Report Wizard 348
Implementing the application framework 349 ✦ Selecting
reports 354 ✦ Dealing with snapshot reports 359
Handling report parameters 359 ✦ Specifying the export
format 368 ✦ Confirming the report request 368

10.4 Enhancing application performance 370
Using in-memory caching 371 ✦ Using multithreading 372

10.5 Summary 375

10.6 Resources 376

11 Reporting for web-based applications 377
11.1 Understanding web reporting 378

Reporting for intranet applications 378 ✦ Reporting for
Internet applications 379 ✦ Reporting for extranet
applications 382 ✦ Introducing the Adventure Works Web
Reporter 383

11.2 Client-side reporting techniques 384
Requesting reports from hyperlinks 384 ✦ Creating write-back
reports 388 ✦ Using HTTP-POST 390 ✦ Calling the RS
Web service on the client side 392

11.3 Server-side reporting techniques 395
Using the ReportViewer control 396 ✦ Using the Adventure
Works ReportViewer control 399 ✦ Reporting off application
datasets 407 ✦ Business-to-consumer reporting 409
Business-to-business reporting 412

11.4 Summary 414

11.5 Resources 415

CONTENTS xv

12 Reporting for OLAP applications 416
12.1 Understanding OLAP 417

OLTP vs. OLAP 417 ✦ How Reporting Services and Analysis
Services compare 418 ✦ Understanding the OLAP storage
model 419 ✦ Designing OLAP solutions 422

12.2 Implementing an OLAP solution: AW Data Miner 424
Implementing the data warehouse 426 ✦ Implementing the
OLAP cube 427 ✦ Authoring OLAP-based reports
with RS 440 ✦ Implementing AW Data Miner 443

12.3 Summary 453

12.4 Resources 454

13 Enterprise reporting 456
13.1 Understanding enterprise reporting 457

Evaluating enterprise reporting 457 ✦ Introducing the
Adventure Works Enterprise Reporter 458

13.2 Behind the scenes of the Adventure Works Enterprise Reporter 461
Implementing the Report Configuration Store 462
Implementing the presentation layer 463 ✦ Implementing the
Enterprise Reporting Façade 466 ✦ Designing for
scalability 470

13.3 Implementing custom application authorization 472
Understanding the Windows Authorization Manager 472
Securing the AW Enterprise Reporter 478

13.4 Summary 481

13.5 Resources 481

14 Subscribed report delivery 483
14.1 Understanding subscribed report delivery 484

Subscription-based reporting scenarios 484 ✦ The subscriber-
publisher design pattern 484 ✦ How the Reporting Services
subscription-based model works 485

14.2 Configuring subscribed report delivery 488
Creating a new subscription 489 ✦ Choosing the subscription
type 490 ✦ Configuring delivery extensions 493
Managing subscriptions 495

14.3 Subscribed report delivery in action 497
“Pushing” reports via standard e-mail subscriptions 497
Archiving reports to a file share 499 ✦ Sending reports to a data-
driven list of recipients 503 ✦ Triggering subscriptions
programmatically 509

xvi CONTENTS

14.4 Summary 513

14.5 Resources 513

Part 4 Advanced reporting 515

15 Extending Reporting Services 517
15.1 Understanding Reporting Services extensibility 518

Understanding interface-based programming 518 ✦ Working
with interface inheritance 519

15.2 Reporting off ADO.NET datasets with a custom dataset data
extension 523
Design goals and tradeoffs 525 ✦ Authoring dataset-bound
reports 526 ✦ Implementing the custom dataset
extension 533 ✦ Debugging dataset extensions 537

15.3 Distributing reports to Web services using custom delivery extensions 537
Design goals and tradeoffs 538 ✦ Using the custom delivery
extension 539 ✦ Implementing the custom delivery
extension 540 ✦ Debugging custom delivery extensions 544

15.4 Implementing custom security 546
Design goals and tradeoffs 549 ✦ Intranet reporting with
custom security 550 ✦ Implementing the custom security
extension 553 ✦ Debugging the custom security
extension 560

15.5 Using custom HTTP modules 560
The HTTP module design goals and tradeoffs 561
Implementing the custom HTTP module 561

15.6 Considerations for custom rendering extensions 563

15.7 Summary 563

15.8 Resources 564

16 Performance and scalability 566
16.1 Understanding capacity planning 567

Capacity planning fundamentals 567 ✦ The capacity planning
process 572

16.2 Capacity planning with Reporting Services in action 577
Determining requirements 577 ✦ Setting up the testing
environment 580 ✦ Performance testing 584
Analyzing performance results 585 ✦ Identifying resource
constraints 587 ✦ Eliminating resource constraints 589

CONTENTS xvii

16.3 Summary 592

16.4 Resources 593

appendix Installing Reporting Services 594
A.1 Choosing components to install 595

A.2 Selecting the service account 596

A.3 Specifying RS virtual folders 597

A.4 Configuring the Report Server database 599

A.5 Configuring Reporting Services for e-mail delivery 600

A.6 Setting up the RS samples 601

A.7 Configuring RS licensing mode 601

A.8 Post-installation steps 603
Installing RS sample reports 603 ✦ Backing up the
encryption key 604

A.9 Resources 604

index 605

xix

foreword

Let me let you in on a little secret: creating software at Microsoft is pretty similar to
creating software at any other company. I think many people’s perception is that
Microsoft designs products by having an army of market researchers carefully exam-
ining competitive products and surveying consumers to determine exactly what fea-
tures to put in the next release.

The reality is that most of the ideas that go into Microsoft products are the result
of small teams of people brainstorming in front of whiteboards or chatting in hall-
ways. I’m not saying we don’t know what competitors are doing or what customers
are asking for, but the process of translating real-world scenarios to requirements and
designs is much more organic than you might think. This flexible approach allows
teams to take a fresh look at existing problems as well as adapt to industry trends and
customer demands.

Case in point: when we started building Reporting Services, we didn’t set out to
copy what other companies had already done. Instead, we asked questions like “What
does it mean to build an enterprise reporting product?” “How do we enable people to
create powerful data visualizations without writing code?” and, most important of all,
“How can we build a platform that people can leverage in their own applications?” The
answer to this final question ended up driving a major part of the product’s design.

Building a platform is not something to be taken lightly. It requires that you spend
extra time factoring and documenting the interfaces between software components. It
means that your components should not use any “back doors” that are not available
to other developers using the platform. It also can change the order in which you build
the product—you have to focus on the nonvisual parts of the product before you work
on the user-facing ones. For example, the Reporting Services report processing engine
was up and running about a year before the graphical report design tool was ready.
During this time, report definition files had to be hand-coded in order to test any new
report processing features.

The decision to build a platform also means that you will have to spend time on
infrastructure and interfaces at the expense of end-user features. We knew that this
trade-off would mean the first version of Reporting Services might look less feature-rich
than other more “mature” reporting products. We felt like this was the right long-term

xx FOREWORD

strategy, as a strong platform would enable others to fill the gaps instead of having to
wait for us to add every feature. When asked about this approach, I sometimes pose
the question, “Is it better to build a car with a powerful engine and fewer lights on the
dashboard or one with lots of lights that can’t go anywhere?”

One decision we made for our new platform was to bet on another new platform:
.NET. As we had no legacy code to support, we decided early on to make Reporting
Services a 100 percent .NET application. While this may seem like a no-brainer today,
when we started building Reporting Services the CLR and the .NET Framework had
not yet been released. Although building an enterprise-quality server product on such
a new technology stack was a little risky at the time, the decision has paid major div-
idends in developer productivity and product quality.

Ultimately, the barometer of whether we have succeeded is what our customers and
partners are able to build on the platform. Since we released the first version of the
product earlier this year, I have seen applications built by customers leveraging the
Reporting Services platform in ways I never imagined. But a platform isn’t useful if
all developers don’t have the know-how to take advantage of it. Because the product
is so new, detailed information and good examples have been sparse and hard to find.

That’s where resources like Teo’s excellent book come in. This book starts by pro-
viding a solid foundation for using the built-in tools included with Reporting Services
but quickly takes you to the next level by focusing on the programmability and exten-
sibility aspects of the product. The focus on these parts of Reporting Services will help
you leverage and extend the product feature set in your own applications. Teo’s
approach is to provide real-world examples and useful scenarios that walk you through
the details and give you new ideas to explore. Teo has the ability to take complex topics
and break them into smaller sections that can be easily understood. I enjoyed being
one of the book’s technical reviewers as I was able see how various parts of the product
came to life on the page. I encourage you to use the ideas in this book and take Report-
ing Services to the next level.

BRIAN WELCKER

Group Program Manager
Microsoft SQL Server Reporting Services

xxi

preface

In archeology, the Rosetta stone was the key that solved the mysteries of Egyptian
hieroglyphics. I believe that with the release of Microsoft SQL Server 2000 Reporting
Services, code-named Rosetta, Microsoft gives organizations the key they need to
unlock the secrets of enterprise data and unleash the power hidden within.

Looking retrospectively, Microsoft’s reporting strategy has been confusing, at least
for me. Microsoft Access debuted in the early 90s with a powerful report designer that
made desktop reporting child’s play.

Enterprise developers, however, have not been that lucky. The lack of comprehen-
sive native reporting capabilities continues even today in the .NET framework. True,
some progress has been made with the advent of print-related controls, such as Print-
Document, PrintPreviewControl, and so on, but still, dealing with the GDI+ (Graph-
ics Device Interface) API is usually the last thing a developer wants to tackle when
creating the next line-of-business application. For reasons such as these, report-
enabling Microsoft-centric solutions has been traditionally regarded as a tedious chore.

To address this problem, many of us defected to third-party tools. Others chose to
fill the void with homegrown, customized solutions. While these solutions address par-
ticular needs, they can also be costly, time-consuming, and difficult to implement.

I remember with nostalgia a project that I worked on about five years ago. It called
for developing a reporting solution for a major Fortune 100 company. I implemented
the solution as a server-based framework, following a design pattern similar to the one
discussed in chapter 13. I used Microsoft Access as a reporting tool to generate reports
and save them as snapshot files. Once the report was ready, the Report Server would
e-mail it back to the user or send the user a link to the snapshot file.

Implementing this solution was a lot of fun, but it took a significant development
effort. I wouldn’t have had to do all of this if I had had Reporting Services back then.
Instead of implementing a homegrown solution, I could have used RS to report-enable
the applications.

For this reason, I was very excited when I heard about Reporting Services in late
2003. Finally, there was an easy way to report-enable different types of applications.
Subsequently, I was involved in a project where I was able to confirm to myself that,
indeed, RS was the reporting platform I had been dreaming about for years.

xxii PREFACE

To share my enthusiasm I decided to write a book about Reporting Services. While
I contemplated what the book’s scope would be, it dawned on me that I could bring
the most value by following my heart and approaching Reporting Services from a
developer’s point of view. I put myself in a position that many developers could relate
to. Here I am, a developer, consultant, and architect, who is tasked with adding report-
ing features to a given application. How would I go about this?

To answer this question, my book takes a solution-oriented approach, and more
than half of it is devoted to integrating different types of applications with RS. As you
read this book, you will discover a common pattern. It starts by discussing the require-
ments and design goals of a given reporting scenario. Then it discusses the implemen-
tation choices, and finally it explains how the solution is implemented.

I firmly believe that a technical book should go beyond rehashing the product doc-
umentation. I tried my best to follow this path and take up where the RS documenta-
tion (which, by the way, is excellent) leaves off. For this reason, my book should be used
in conjunction with it. When you read the book, you will notice that sometimes, when
I believe I can’t explain things any better, I refer you to the product documentation.

Microsoft Reporting Services in Action is written for report authors, administrators, and
developers who need a detailed and practical guide to the functionality provided by RS.
In the first half, report authors will master the skills they need to create versatile reports.
Administrators will learn the ropes of managing and securing the report environment.

The second half of the book is primarily aimed at intermediate-to-advanced .NET
developers who are planning to leverage RS to add reporting capabilities to their Win-
dows Forms or web-based applications. However, because of the service-oriented
architecture of Reporting Services, the book will also benefit developers who target
other platforms but want to integrate their applications with RS.

Microsoft SQL Server 2000 Reporting Services is a great piece of technology. With
RS, report authors can create reports as easily as you would do it in Microsoft Access.
Make no mistake, though. RS is a sophisticated server-based platform, and its feature
set goes well beyond that of a desktop reporting tool. To use RS effectively, you need
to have a solid grasp of how it works and how it can be integrated with different types
of client applications. I hope this book makes this endeavor easier.

xxiii

acknowledgments

Writing this book has been a lot of fun and a lot of work. Although you see only my
name on the front cover, this book has been a team effort involving many people.

First and foremost, I would like to acknowledge my family for their kind support
in making this book a reality. My wife, Elena, contributed directly to the book by
helping me recover what was lost in the process of translation. To my family I owe my
greatest thanks.

Thanks to the Reporting Services team at Redmond for giving us this great product
and working hard to make it even more successful. You can judge by yourself Microsoft’s
commitment to customer satisfaction by looking at the number of messages answered by
Microsoft engineers on the RS discussion list (microsoft.public.sqlserver.reportingsvcs).

Brian Welcker, Microsoft Group Product Manager for SQL Server Business Intel-
ligence, has been phenomenal in helping me with my project on several fronts, includ-
ing reviewing the book and providing valuable technical feedback, as well as writing
the foreword.

Thanks go to several Microsoft engineers—Brian Hartman, Bryan Keller, Daniel
Reib, and Tudor Trufinescu—for reviewing parts of this book. Not only did these folks
not mind my constant pestering, but they were even more eager to help make this book
as technically accurate as possible.

I am grateful to the Manning team for publishing Microsoft Reporting Services in
Action and demanding my best to ensure that this book meets the highest standards.
Thanks to Dr. Marjan Bace for giving a chance to an aspiring author. Thanks to my
development editors, Ann Navarro and Lianna Wlasiuk, for not losing faith that my
incoherent writings could turn into something readable. As project editor, Mary Pier-
gies has been outstanding in orchestrating the production process. My copy editors,
Liz Welch and Linda Recktenwald, did a great job in polishing my manuscript. Kudos
to my tech editor, Todd Meister, for verifying that the book is technically correct, and
to Susan Forsyth for proofreading the manuscript. Thanks also to Dr. Dave Roberson
for organizing the technical review process and to my technical reviewers, Alexzander
Nepomnjashiy and Mark Monster, for reviewing the manuscript. Thanks to the
book’s publicist, Helen Times, for getting the word out. I am grateful to the rest of
the Manning production team for their many contributions to this book.

xxiv ACKNOWLEDGMENTS

I must also acknowledge my coworkers from Extreme Logic, now part of the
Hewlett-Packard Enterprise Services group, for the productive and competitive
environment that I found so exciting and invigorating. I consider myself very fortu-
nate for having been part of this community for the past four years.

There are a few other people who contributed indirectly to the book. Thanks to
Steven Gould for his Open Source OpenForecast package that I used in chapter 6 for
the report-forecasting example. Thanks to Dino Esposito for his CodeDom sample.
Kudos to Peter Bromberg for the ASP.NET menu control and to Christian Weyer for
the dynamic Web services invocation sample.

My thanks also to the many unnamed developers for their altruistic support on the
.NET discussion lists. I admire your willingness to help. Your contributions kept me
sane during many dire moments in my career! Thanks also to Google for archiving the
newsgroup content and making it easily accessible.

I would especially like to acknowledge my parents, Zlatka and Stefan Lachev, for
supporting me in my choice of studying computer engineering, despite the fact that
a career in medicine or in the army looked much more promising at the time.

Finally, thank you for purchasing this book! I sincerely hope that you will find it
as enjoyable to read as it has been for me to write!

Thanks and happy reporting!

xxv

roadmap

Following the report lifecycle’s logical path, this book explains how you can author,
manage, and deliver RS-based reports.

Chapter 1 provides a panoramic overview of Reporting Services. The chapter is
intended to give you a firm grounding in what RS really is. We look at how RS
addresses the reporting problem area, its feature set, and its architecture. To round out
the chapter we jump right in and create our first report. The chapter concludes with
discussing RS strengths and weaknesses.

Part 1, “Authoring reports,” teaches you the skills that you will need as a report
author to create RS-based reports. It encompasses chapters 2–6.

Chapter 2 focuses on discussing various options for authoring reports. We start by
explaining the report-authoring process. We continue by looking at how we can
author reports with Visual Studio .NET by using the Report Wizard and the Report
Designer and by importing from Microsoft Access. We also discuss how developers
can leverage the open nature of the report definition schema by creating reports pro-
grammatically. We conclude the chapter by mentioning two third-party tools that you
can use to author reports ad hoc or import them from Crystal Reports.

Chapter 3 gets to the gist of the report-authoring process by teaching you how to
work with report data. It discusses the RS data architecture and shows you how to
work with data sources, datasets, and report queries. It emphasizes the role of param-
eters and walks you through the steps for creating parameterized reports.

Chapter 4 teaches you the practical skills needed for authoring different types of
reports with the Report Designer. We create various report samples to complement
our discussion, including tabular, freeform, chart, crosstab, subreports, and multicol-
umn reports.

Chapter 5 shows you how to use expressions and functions to extend your reports
programmatically. It starts by emphasizing the role of expressions and how they can
be used to manipulate the report item properties. It continues by giving you an in-
depth understanding of the RS object model and its collections. Next, we look at the
RS internal functions and how they can be leveraged to add interactive features to our
reports, such as reports with navigational features and document maps, as well as local-
ized reports.

xxvi ROADMAP

Chapter 6 explains how you can supercharge the capabilities of your reports by
using embedded Visual Basic .NET code and external code in the form of .NET assem-
blies. It presents an end-to-end example that demonstrates how you can leverage cus-
tom .NET code to add forecasting features to your reports.

Part 2, “Managing reports,” explains how report administrators can manage and
secure the report repository. It includes chapters 7–8.

Chapter 7 discuses different ways of managing the report catalog. It starts by
explaining how report administrators can use the Report Manager to perform various
management activities. Then, it presents other management options, including using
the RS Web service, WMI provider, RS script host, and other utilities.

Chapter 8 teaches you how you can secure the report catalog. It explores the RS
role-based security model and how it can be leveraged to enforce restricted access to
the Report Server. Then, it explains how code access security works and how you can
adjust it to grant permissions selectively to custom code.

Part 3, “Delivering reports,” discusses how developers can integrate RS with dif-
ferent application scenarios. This part includes chapters 9–14.

Chapter 9 provides an overview of the two application integration options available
with RS, URL and Web service, and how they compare with each other.

Chapter 10 teaches you the skills you need to report-enable WinForm-based appli-
cations. It starts by discussing how RS can be leveraged with different application
designs. The chapter walks you through an end-to-end sample, the Report Wizard,
that demonstrates various practical techniques that you can use to integrate this type
of application with RS.

Chapter 11 covers integrating RS with web-based applications. It demonstrates var-
ious techniques for generating reports on the client side and server side of the appli-
cation. Here, we create an enhanced version of the Report Viewer sample control that
facilitates server-side web reporting.

In Chapter 12, you learn how RS can be used in conjunction with OLAP for imple-
menting synergetic reporting solutions. It walks you through the steps for creating a sample
Analysis Services cube and implementing a WinForm front end with Office Web Com-
ponents for generating dynamic and standard reports.

Chapter 13 shows how you can address some common enterprise reporting needs. Spe-
cifically, this chapter shows you how you can implement a façade layer that supports mul-
tiple reporting providers. In addition, it showcases a possible approach to implement an
application-based security layer by leveraging the Windows 2003 Authorization Manager.

Chapter 14 demonstrates how you can distribute reports via subscriptions. It starts
by explaining how the RS subscribed-delivery process works. Then, it looks at how you
can distribute reports via e-mail and file-share delivery extensions.

Part 4, “Advanced reporting,” teaches you advanced techniques so you can make
the most out of Reporting Services. It consists of chapters 15 and 16.

Chapter 15 discusses the implementation details of three custom extensions that
you can use to extend the features of RS. It starts by implementing a custom dataset

ROADMAP xxvii

extension to report off ADO.NET datasets. Then, we discuss a custom delivery exten-
sion that can be used to distribute reports to an arbitrary Web service. Next, we author
a custom security extension. Finally, we show how to plug in custom HTTP modules
to implement preprocessing tasks before the request reaches the Report Server.

Chapter 16 shows you how to conduct a capacity-planning study to evaluate RS
in terms of performance and scalability. You learn how to establish performance goals,
how to create test scripts with the Application Center Test, and how to stress test your
Report Server installation. You can apply the skills you harvest in this chapter for stress
testing not only the Report Server but any web-based application as well.

xxviii

source code

The book’s source code can be downloaded from Manning’s web site at http://www.
manning.com/lachev. The next sections discuss the software requirements for execut-
ing the code and the steps to set it up.

Instead of partitioning the source code on a per-chapter basis, we decided to con-
solidate most of it in two applications: a WinForm-based AWReporterWin application
and a web-based AWReporterWeb application. This approach has several advantages,
including the following:

• Simplifies the setup—For example, you need only one virtual folder to host the
AWReporterWeb web application.

• Allows the reader to launch the samples conveniently from a single application menu.

• Simulates real-world applications—For example, you can encapsulate the code
logic in a set of common classes.

The trade-off is that you may not have all the software dependencies required to com-
pile the sample applications and you may run into compilation errors, as explained in
the next section.

SOFTWARE REQUIREMENTS

Table 1 outlines the software requirements needed to run all code samples.

Table 1. Software requirements

Software Reason Used in Chapters

Reporting Services 1.0
(Developer or Enterprise
edition)

The Standard edition doesn’t include custom
security extensions and data-driven subscrip-
tions.

All

Microsoft Windows 2003
Server

For the Authorization Manager component.
If you want to skip this sample, you can use
Windows XP or Windows 2000.

13

Microsoft Visual Studio 2003
with .NET Framework 1.1

Required by Reporting Services. All

continued on next page

SOFTWARE REQUIREMENTS xxix

Some samples have more involved setup requirements. For example, chapter 12
requires the Office Web Components Primary Interop Assemblies (PIAs) to be
installed, while chapter 13 requires the Authorization Manager (available only on
Windows 2003 and Windows 2000 as a separate download) to be installed. To pre-
vent compilation errors because of missing external dependencies, we excluded the
source code for these two chapters, the AWReporterWin and AWReporterWeb
projects, respectively. Please follow the setup instructions found in the readme files in
the sample folders to run these samples successfully.

In case you still experience compilation errors as a result of missing external depen-
dencies, we suggest that you resolve the issue by excluding the samples. For example,
let’s say you don’t have Office 2003 and you can’t compile AWReporterWin. To fix
this, right-click on the corresponding folder that contains the sample code in the
Visual Studio .NET 2003 Solution Explorer and choose the Exclude from Project
menu item. Then, compile the project and fix the compilation errors (if any) by com-
menting out any references to the excluded code.

Microsoft SQL Server 2000 Required by Reporting Services. You will
need to install the AdventureWorks2000 data-
base from the RS Setup program.

All

Microsoft Office 2003 For Office Web Components and Access
reporting. You will also need to install the
Office 2003 Primary Interop Assemblies
(PIAs).

12, 13

DynWSLib The Dynamic XML Web Services Invocation
sample for invoking web services dynami-
cally. Can be downloaded for free from got-
dotnet.com.

15

Microsoft WebService Behavior For invoking Web services on the client side
of a web application. Can be downloaded for
free from MSDN.

11

Application Center Test ACT is included with Visual Studio .NET 2003. 16

Analog Web Analyzer For analyzing IIS logs. Can be downloaded for
free from http://www.analog.cx/.

16

Report Magic For reporting off analog files. Can be down-
loaded for free from http://www.report-
magic.org/.

16

Table 1. Software requirements (continued)

Software Reason Used in Chapters

www.allitebooks.com

http://www.allitebooks.org

xxx SOURCE CODE

SETTING UP THE SOURCE CODE

Once you download the source code archive, you can extract the zip file to any folder
of your hard drive. Once this is done, the folders listed in table 2 will be created.

Most of the code samples include readme files with specific step-by-step instructions
that you follow to set up the code sample.

Running the sample reports in Visual Studio .NET

Perhaps most of you will be eager to run the sample reports immediately. To execute the
reports successfully under the Visual Studio .NET Report Designer, follow these steps:

Step 1 Copy the AWC.RS.Library.dll and OpenForecast.dll to the Report Designer
binary folder, C:\Program Files\Microsoft SQL Server\80\Tools\Report Designer.

Step 2 Open the AWReporter.rptproj (found under the Reports folder) in Visual
Studio .NET 2003.

Step 3 Change the data source credentials of the AW2000 Shared DS data source by
double-clicking the AW2000 Shared DS.rds file and switching to the Cre-
dentials tab. Enter the user name and password of a database login that has at
least Read permissions to the tables in the AdventureWorks2000 database.

Table 2. Source code folders

Folder Purpose Used in Chapters

AWReporterWeb An ASP.NET web-based application that demon-
strates various web-based reporting techniques.
You will need to set up an IIS virtual folder point-
ing to this folder.

9, 10, 11, 12, 13, 15

AWReporterWin A WinForm-based application that demonstrates
how you can add reporting features to WinForm
applications.

2, 7, 9, 10, 11, 12,13

AWReportViewer The enhanced version of the ReportViewer sam-
ple control for server-side web reporting.

11

AWRsLibrary For report forecasting. 6

Database A database projects that includes SQL scripts to
create stored procedures and views in the
AdventureWorks2000 database.

As dictated by the code
sample setup instructions

Extensions Includes the custom data, delivery, and security
extensions.

15

OpenForecast The converted to J# OpenForecast package. 6

Performance Testing Includes the test scripts for performance testing
RS.

16

Reports Includes the sample reports that we author in
this book.

All

SETTING UP THE SOURCE CODE xxxi

At this point, you should be able to run most of the reports.
Some reports require a more involved setup process. For example, there are reports

that require that additional assemblies, such as AWC.RS.Extensions.dll and AWC.
RS.Library.dll, be configured properly. The readme files that accompany the sample
code include specific step-by-step instructions about how to configure these assemblies.

Deploying the reports to the Report Server

To run most of the code samples successfully, you need to deploy the sample reports
to the Report Server. Assuming that you have Administrator rights to the report cata-
log, the easiest way to do this is to follow these steps:

Step 1 Copy the AWC.RS.Library.dll and OpenForecast.dll to the Report Server
binary folder, C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
Services\ReportServer\bin. This step is needed because some reports refer-
ence these assemblies, and the deployment process will fail if these assemblies
are not found in the Report Server binary folder.

Step 2 If you haven’t done this already, copy the AWC.RS.Library.dll and Open-
Forecast.dll to the Report Designer binary folder C:\Program Files\Microsoft
SQL Server\80\Tools\Report Designer.

Step 3 Open the AWReporter.rptproj project (found under the Reports folder) in
Visual Studio .NET 2003.

Step 4 Right-click the AWReporter project in the Visual Studio .NET Solution
Explorer and choose Properties to open the project’s properties.

Step 5 Verify that the TargetFolder setting is set to AWReporter and the TargetServer-
URL setting is set to http://<servername>/ReportServer, where <servername>
is the computer name where the Report Server is installed. If RS is installed
locally, the TargetServerURL setting should be http://localhost/ReportServer.

Step 6 Click the Configuration Manager button and verify that both the Build and
Deploy check boxes are selected for Debug configuration. Click OK to dis-
miss the Property Pages dialog.

Step 7 Right-click the AWReporter project again and choose Deploy. This will build
the reports and then deploy them to the report catalog.

Step 8 To verify the setup, open the Report Manager web portal. If RS is installed
locally, the default Report Manager URL will be http://localhost/reports.
Under the Home folder, verify that the AWReporter folder exists. Click its
link and run the Sales By Territory report. If everything is okay, the report
will render in the browser.

xxxii SOURCE CODE

Configuring the AWReporterWeb application

To configure the web-based samples, you need to set up the AWReporterWeb virtual
folder by following these steps:

Step 1 Right-click the AWReporterWeb folder in Windows Explorer and choose
Properties.

Step 2 Select the Web Sharing tab.

Step 3 Click the Share This Folder radio button.

Step 4 In the Edit Alias dialog, enter AWReporterWeb as an alias.

Step 5 Make sure that the Read Access Permission check box is selected and the
Scripts radio button is selected. Click OK to close the Edit Alias dialog.

Step 6 Open the Internet Information Manager (IIS) console. Right-click the
AWReporterWeb folder, choose Properties, and then select the Directory
Security tab. Click the Edit button in the Authentication and Access Control
panel. Uncheck the Enable Anonymous Access check box. Make sure that
the Integrated Windows Authentication check box is selected.

xxxiii

author online

Your purchase of Microsoft Reporting Services in Action includes free access to a private
web forum run by Manning Publications, where you can make comments about the
book, ask technical questions, and receive help from the author and from other users.
To access the forum and subscribe to it, point your web browser to www.manning.com/
lachev. This page provides information on how to get on the forum once you are regis-
tered, what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog among individual readers and between readers and the author can take place.
It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions, lest his interest stray! The
Author Online forum and the archives of previous discussions will be accessible from
the publisher’s web site as long as the book is in print.

ABOUT THE AUTHOR

Teo Lachev has more than 11 years of experience designing and developing Microsoft-
centered solutions. He currently works as a technology consultant for the Enterprise
Application Services practice of Hewlett-Packard. Teo is a Microsoft Certified Solu-
tion Developer and Microsoft Certified Trainer. He lives in Atlanta, Georgia.

You can contact Teo through the Author Online forum, by sending him e-mail at
teo@prologika.com, or by visiting his web site at http://www.prologika.com.

xxxiv

about the title and cover

By combining introductions, overviews, and how-to examples, Manning’s In Action
books are designed to help learning and remembering. According to research in
cognitive science, the things people remember are things they discover during self-
motivated exploration. Although no one at Manning is a cognitive scientist, we are
convinced that for learning to become permanent it must pass through stages of
exploration, play, and, interestingly, re-telling of what is being learned. People
understand and remember new things, which is to say they master them, only after
actively exploring them. Humans learn in action. An essential part of an In Action
guide is that it is example-driven. It encourages the reader to try things out, to play
with new code, and explore new ideas.

There is another, more mundane, reason for the title of this book: our readers are
busy. They use books to do a job or solve a problem. They need books that allow them
to jump in and jump out easily and learn just what they want, just when they want
it. They need books that aid them in action. The books in this series are designed for
such readers.

ABOUT THE COVER ILLUSTRATION
The figure on the cover of Microsoft Reporting Services in Action is a “Giancataro,” who,
judging by his attire, might be a tradesman or basket weaver. We know the illustration is
taken from an Italian source estimated to be about 200 years old. Our efforts to get a
translation of “Giancataro” have failed. The first reader who correctly solves the puzzle
of what the word means will receive a free Manning book of his or her choice. Please
post your translations to the Author Online forum at www.manning.com/lachev.

We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional life of two cen-
turies ago brought back to life by pictures assembled from various collections. This was
a time when the dress codes of two regions separated by a few dozen miles identified
people uniquely as belonging to one or the other. Dress codes have changed since then
and it is now often hard to tell the inhabitant of one continent from another. Perhaps,
trying to view it optimistically, we have traded a cultural and visual diversity for a more
varied and interesting personal, intellectual—and technical life.

1

C H A P T E R 1

Introducing Microsoft
Reporting Services
1.1 What is RS? 2
1.2 RS at a glance 6
1.3 RS architecture 11
1.4 Understanding Report Processing 17
1.5 Delivering reports 20

1.6 What is the report lifecycle? 22
1.7 RS in action 23
1.8 Evaluating RS 33
1.9 Summary 35
1.10 Resources 35

So much information, so little time ... the character “Poison Ivy” would likely say if
the Batman saga was taking place in today’s enterprise.

 We all know that the dot.com boom is history and so are the lavish IT budgets.
In the doldrums of the economic recovery, organizations tend to spend their money
on streamlining internal processes to gain a competitive advantage. According to
Microsoft, today’s information workers spend as much as 80 percent of their time
gathering information, with only 20 percent left to analyze it and make a decision. In
many organizations, such requests consume significant IT and development resources.
Too often, Excel spreadsheets are the prevalent reporting tools today and manual data
entry or “pencil-pushing” is among the top reasons for inaccurate data and wrong
decisions. Aware of these issues, Microsoft initiated the Microsoft SQL Server 2000
Reporting Services project at the beginning of the new millennium, with a bold vision
to “enable employees at all levels of an organization to realize the promise of Business
Intelligence to promote better decision making.”

This chapter provides a panoramic view of Reporting Services (RS). Throughout the
rest of this book I will use the terms Reporting Services and RS interchangeably. You will see

2 CHAPTER 1 INTRODUCING MICROSOFT REPORTING SERVICES

• Why RS is such a compelling choice for enterprise reporting

• The main parts of the RS architecture

• The report-generation process and report lifecycle

• The steps for creating your first RS report

1.1 WHAT IS RS?

Regardless of the alphabet soup of terms and acronyms that are popping up like daisies
almost every day and that have probably become a part of your IT vocabulary—terms
such as BI (business intelligence), OLAP (online analytical processing), data mining,
DSSs (decision support systems), EISs (executive information systems), digital dash-
boards, enterprise portals, and enterprise data buses—the purpose of enterprise report-
ing is to simply “get out” what was “put in.” Therefore, for many applications,
reporting represents the last, and often most important, stage of the IT pipeline.

To clarify the last point, let’s consider a typical scenario that RS can address effec-
tively. Let’s say that an organization has built a web portal for submitting orders
online. As the business grows, the same organization may need to implement a report-
ing infrastructure to analyze sales data and understand its business, for example, to
find out the top-selling products, customer demographics, and so forth. To accom-
plish this goal, the organization could leverage RS.

We use the term report to refer to the web-based or saved-to-file counterpart of a
standard paper-oriented report. For example, an organization may want to give its cus-
tomers an option to generate various reports online—an Order History report, for
instance. Web reporting has traditionally been difficult to implement. Even more dif-
ficult has been exporting reports to different file formats. RS solve both problems ele-
gantly, for two reasons. First, out-of-the-box RS is web-enabled. Second, most popular
export formats are natively supported.

1.1.1 Why do we need RS?

Ironically, despite the important role that reporting plays in today’s enterprise, creating
and distributing reports have been traditionally painstaking and laborious chores. To
understand why we need RS, let’s analyze the reporting problem space.

Table 1.1 lists some of the most pressing issues surrounding the reporting arena
and how RS addresses them.

Table 1.1 How Microsoft RS deals with the reporting problem space

Reporting Need How RS addresses it?

Report authoring can be labor intensive. By using the powerful Report Designer, you can author
reports as easily as you can with Microsoft Access.

Centralized report management is
needed.

RS enables you to save your reports in a single report
repository.

continued on next page

WHAT IS RS? 3

Depending on your particular situation you may find other compelling reasons to
target RS as your reporting platform of choice. We revisit the RS features throughout
this chapter.

Supported report types

Your reporting requirements may call for authoring various types of reports that differ
in complexity. For example, your users may request that a large report include a doc-
ument map for easy navigation. RS lets you design a variety of report types, as listed in
table 1.2.

Reports need to be distributed to
various destinations.

RS supports both on-demand and subscription-based
reporting. Reports can be requested on-demand by Win-
Form and web-based applications. Alternatively, reports
can be distributed to a list of subscribers.

Reports often need to be exported
in different electronic formats.

RS supports many popular export formats out of the box.

Proprietary nature of reporting tools
doesn’t allow you to extend them.

RS has a flexible architecture that allows you to extend
RS capabilities by writing custom code.

Reports need to be secured. RS offers a comprehensive security model that adminis-
trators can leverage to enforce secured access to reports
by assigning users to roles. When the default Windows-
based authentication is not a good fit, it can be replaced
with custom security implementations.

Enterprise reporting solutions
can be costly.

To minimize cost, RS is bundled and licensed with SQL
Server. If you have a licensed copy of SQL Server 2000,
you may run RS on the same server for no additional
license fee.

Table 1.2 RS supports various report types

Report Type Purpose Example

Tabular Displays data in a table format with a
fixed number or rows and columns.

Excel-type reports

Freeform Data regions are positioned arbitrarily
on the page by the report author.

Invoice-invoice details report

Chart Presents data graphically. Employee performance chart

Crosstab (matrix) Data is rotated to present row data as
columns.

A report that shows products on rows
and time on columns

Drilldown Includes expandable sections. A company performance crosstab
report where product can be
expanded by category and brand

continued on next page

Table 1.1 How Microsoft RS deals with the reporting problem space (continued)

Reporting Need How RS addresses it?

4 CHAPTER 1 INTRODUCING MICROSOFT REPORTING SERVICES

Although most popular reporting tools support many of the report types shown in
table 1.2, RS makes the report-authoring process as easy as working with Microsoft
Access reporting functionality. For example, report authors can drag and drop items to
define the report’s appearance.

Now that we understand what RS is, let’s see how it fits in the Microsoft BI vision.

1.1.2 How is RS implemented?

Microsoft released version 1.0 of RS at the beginning of 2004 as an add-on to
Microsoft SQL Server 2000. At a very high level, RS can be defined as a server-based
platform for authoring, managing, and distributing reports. We discuss the RS archi-
tecture in more detail in a moment. For now, note that RS is integrated with and
requires several other Microsoft products, including:

• Windows 2000 or above as a server operating system

• Microsoft SQL Server 2000 (with Service Pack 3a) and above

• Internet Information Server (IIS) 5.0 or above

• .NET Framework 1.1

• Visual Studio .NET 2003 for report authoring and testing

For more information about installing RS, please refer to appendix A.

RS editions

To address different user needs, RS is available in several editions, as you can see by
looking at table 1.3.

Drillthrough Generated from clicking on a hyper-
link.

Customer Order History with hyper-
links on the order identifier to show
the order details report

Interactive Includes interactive features, such as
document maps, hyperlinks, visible-
on-demand sections, and so forth.

Adobe Acrobat–type reports with doc-
ument maps on the left side

Table 1.2 RS supports various report types (continued)

Report Type Purpose Example

Table 1.3 RS supports editions to meet various reporting needs

Edition Choose when…

Standard You need to install RS on a single computer. The Standard edition doesn’t support
clustered deployment to load-balance multiple RS instances.

Enterprise You need all RS features, including load balancing.

Developer You have to integrate RS with client applications or extend its capabilities by writing
.NET code. The Developer edition supports the same feature set as the Enterprise
edition, but it is for use as a test and development system, not as a production server.

Evaluation You need to evaluate RS. The Evaluation edition expires after 120 days.

WHAT IS RS? 5

For more information about how the RS editions differ, refer to the product documen-
tation or the “Reporting Services Features Comparison” section in the RS official web-
site at http://microsoft.com/sql/reporting/productinfo/features.asp.

For information about RS licensing requirements, visit the “How to License
Reporting Services” page at http://www.microsoft.com/sql/reporting/howtobuy/
howtolicensers.asp.

1.1.3 RS and the Microsoft BI platform

RS is positioned as an integral part of Microsoft’s business intelligence (BI) platform.
This platform is a multiproduct offering whose goal is to address the most common
data management and analysis challenges that many organizations face every day, such
as analyzing vast volumes of data, trend discovery, data management, and of course,
comprehensive reporting.

During the RS official launch presentation on January 27, 2004, Paul Flessner,
Microsoft senior vice president of Enterprise Services, outlined the place of RS in the
Microsoft BI platform offering, as shown in figure 1.1.

Table 1.4 outlines the purpose of the major building blocks within the Microsoft
BI platform.

Most of you have probably used more than one of these products in the past to
solve your data management and analysis needs. Indeed, most of them have been
around for a while. What was missing was a product for authoring, managing, and

Figure 1.1 The Microsoft BI platform consists of several products layered on top

of the SQL Server database engine and addresses various data management and

reporting needs.

6 CHAPTER 1 INTRODUCING MICROSOFT REPORTING SERVICES

generating reports that could be easily integrated with all types of applications. RS fills
the bill nicely.

Having introduced you to RS, let’s take a panoramic view of its features to under-
stand why it can be such a compelling choice for enterprise reporting.

1.2 RS AT A GLANCE

Even in its first release, RS offers a broad array of features that can address various
reporting needs:

• Information workers can leverage RS to author both standard (“canned”) reports and
reports with interactive features. Here, we use the term “standard” to refer to
reports that display static data. An interesting aspect of RS is that your reports
can include a variety of features that provide interactivity to users. For example,
the end user can show or hide items in a report and click links that launch other
reports or web pages.

• Third-party vendors can target RS to package reports as a part of their applications.
For example, if customers have RS installed, the vendor setup program can upload
the report files to the Report Server. You’ll see this done in chapter 2. Note that
the next version of RS is expected to include stand-alone controls for generating
reports directly from report files and will not require RS to be installed.

• Organizations can use RS to report-enable their business-to-business (B2B) or business-
to-consumer (B2C) applications. For example, an organization can selectively expose
some of its data in the form of reports to its business partners. You’ll see an
example of a similar integration scenario in chapter 11.

Let’s now get a glimpse of the RS landscape and observe some of RS’s most prominent
landmarks. Don’t worry if you find you are not getting the Big Picture yet. In section
1.3, we take a closer look at the main pieces of the RS architecture.

Table 1.4 The key Microsoft BI platform components

Component Purpose

Microsoft SQL Server A relational database to store data

Analysis Services An analytical processing (OLAP) engine

Data Transformation Services Tools for extracting, transforming and loading data

Reporting Services Server-based reporting platform for report authoring, management
and delivery

Replication Services Replicates data to heterogeneous data sources

Microsoft Office Desktop applications for data analysis and reporting

SharePoint Portal Server Business Intelligence collaboration

Visual Studio.NET A development tool to create .NET-based applications, including
analytical and reporting solutions.

RS AT A GLANCE 7

1.2.1 Authoring features

As a report author, with RS you have several choices for creating reports. We discuss
each of these options in detail in chapter 2. For now, we’d like to introduce you to the
Report Designer; this will likely be the option that you will use most of the time for
report authoring.

Introducing the Report Designer

Using the Report Designer graphical environment, you can create reports of different
types, such as crosstab drilldown reports, like the one shown in figure 1.2.

RS doesn’t restrict your report-authoring options to static paper-oriented reports.
Instead, you can make your reports more versatile and easy to use by adding interactive
features, such as expandable sections, hyperlinks, and document maps. Given its tight
integration with the Visual Studio. NET integrated development environment (IDE),
the Report Designer provides you with access to all report design features as well as
team development features, such as source code management.

About the Report Definition Language

At this point, you may be wondering what an RS-based report file looks like and how
it is stored. RS saves the report as an Extensible Markup Language (XML) file that is
described in a Report Definition Language schema.

Figure 1.2 With RS you can create various types of reports, including drilldown crosstab

reports like this one.

8 CHAPTER 1 INTRODUCING MICROSOFT REPORTING SERVICES

DEFINITION A report definition contains report data retrieval and layout information.
The report definition is described in an XML schema, called the Report
Definition Language (RDL).

Saving reports as XML-based report definition files offers two main advantages:

• It makes the report format open and extensible. Using the XML-based RDL format
is beneficial for achieving interoperability among applications and vendors.
Microsoft is working with other industry leaders to promote RDL as an XML-
based standard for report definitions. Visit the RS official website (check the
Resources section for the link) for a list of Microsoft RS partners.

• It makes the report portable. For example, you can easily save the report to a file
and upload it to another Report Server. In chapter 2 you’ll see how a third-party
reporting tool leverages this feature for ad-hoc reporting.

If you use the Report Designer to create your report, its definition will be automat-
ically generated for you. However, just as you don’t have to use Visual Studio .NET
to write .NET applications, you can write the report definition using an editor of
your choice, such as Notepad, or generate it programmatically (as you will see in
chapter 2). Of course, the Report Designer makes authoring reports a whole lot eas-
ier. Third-party tools will most likely emerge at some point to provide alternative
RDL editors.

1.2.2 Management features

RS facilitates report management by storing reports and their related items in a central
report catalog. To deploy and manage a report, you need to upload it to the report cat-
alog. When this happens, it becomes a managed report.

DEFINITIONS Throughout the rest of this book we will use the terms report catalog and
report repository interchangeably to refer to the RS Configuration Database.
For more information about this database, refer to section 1.3.2.

A managed report is a report that is uploaded to the report catalog.

For .NET developers, the term “managed” has nothing to do with .NET managed
code, although the pattern is the same. While .NET managed code runs under the
supervision of the .NET Common Language Runtime (CLR), a managed report is gen-
erated under the control of the Report Server.

You may wonder what really happens when a report is uploaded to the report cat-
alog. At publishing time, the Report Server parses the report definition (RDL), gen-
erates a .NET assembly, and stores the assembly in the Report Configuration Database
for the report. The RDL file is never used again. When the report is processed, the
assembly is loaded and executed by the Report Server.

A report can include other items, such as images and data source–related informa-
tion. These report-related items are also stored in the report catalog. Finally, the report
catalog captures additional information, called metadata, associated with reports. For

RS AT A GLANCE 9

example, just as you can organize physical files in folders, RS allows you to organize
reports in folders.

DEFINITION The report metadata describes additional configuration information associat-
ed with a report, such as security permissions, the parent folder, and so forth.

RS offers centralized report management that administrators will appreciate. To sim-
plify the administration of the report catalog, RS comes with a tool called the Report
Manager. The Report Manager is implemented as a web-based application, and as
such it is easily accessible. This tool empowers you to manage just about any aspect of
the report repository, including

• Report information and metadata, such as the folder structure and report properties

• Data sources from which the report will draw data

• Report parameters (for parameterized reports)

• Security

1.2.3 Delivery features

Reports hosted under RS can be delivered using on-demand (“pulled”) delivery or sub-
scribed (“pushed”) delivery. The more common scenario is on-demand delivery, where
the user requests the report explicitly. As a report author, you don’t have to do anything
special to web-enable your report because RS does this for you once it is uploaded to
the report catalog.

The “pushed” delivery option alone can justify implementing RS. This option gives
end users the ability to subscribe to reports, so reports will be sent to them when a cer-
tain event is triggered—when a timing event triggers, for instance, for report subscrip-
tions based on a schedule. As another example, a financial institution could allow its
customers to opt in and subscribe to certain reports of interest, such as a monthly bank
statement. Then, at the end of the month, the bank statement report could be gener-
ated and sent to users via e-mail.

We’ll discuss the report-delivery process in more detail in section 1.5.

1.2.4 Extensibility features

An important characteristic of every enterprise-oriented product, such as RS, is that it
has to be easily extendable. Simply put, extensibility relates to the system’s ability to
accommodate new features that are built out of old ones. One of the things I like most
about RS is the extensibility features it includes by virtue of its open and flexible archi-
tecture. Developers can easily extend RS by writing .NET code in their preferred .NET
language. Specifically, you can extend RS in the following areas:

• Custom .NET code—.NET developers can enhance reports programmatically
by writing .NET custom code. Chapter 6 demonstrates how you can add fore-
casting features to your reports by using prepackaged code in the form of
.NET assemblies.

10 CHAPTER 1 INTRODUCING MICROSOFT REPORTING SERVICES

• Data processing extensions—Out of the box, RS can connect to any data source
that has an ODBC or OLE DB provider. In addition, you can write your own cus-
tom data extensions to report off other data structures, as chapter 15 illustrates.

• Delivery extensions—Out of the box, subscribed reports can be delivered via e-
mail or file share delivery extensions. Developers can write their own delivery
extensions to deliver the report to other destinations, such as to web services, as
you’ll learn in chapter 15.

• Security extensions—By default, RS uses the Windows-based security model to
enforce restricted access to the report catalog. If Windows-based security is not
an option, you can replace it with custom security models. You’ll see an example
of how this could be done in chapter 15, where we’ll implement custom
authentication and authorization for Internet-oriented reporting.

• Rendering extensions—Generating reports in other export formats than the ones
supported natively can be accomplished by writing custom rendering extensions.
See section 1.4.2 for more information about the supported export formats.

1.2.5 Scalability features

A scalable application responds well under increased loads. RS can scale up and out to
address the high-volume reporting requirements of large organizations. It is designed
from the ground up to process reports efficiently. For example, it supports several
report caching options, such as report execution caching, snapshots, and report ses-
sions, as we discuss in chapter 7.

Reporting Services Enterprise Edition supports clustered deployment, which you
can use to load-balance several RS servers on multiple machines. This allows enterprise
organizations with high-scalability requirements to scale out RS and provides fault tol-
erance. RS performance is the subject of chapter 16.

1.2.6 Security features

RS is designed to provide a secured environment from the ground up. It offers a com-
prehensive security model for accessing reports that leverages Windows authentica-
tion. This model maps the user Windows account or group to a role, and the role
describes what permissions the user has to access items in the report catalog. Report
administrators can add Windows users to predefined roles or create new ones.

Once again, when the default Windows-based security model is not a good fit, you
can replace it by plugging in your own custom authentication and authorization
implementations in the form of custom security extensions.

To promote trustworthy computing, RS leverages the .NET code-based security to
“sandbox” custom code based on configurable security policies. We discuss the RS
security model in chapter 8.

RS ARCHITECTURE 11

1.2.7 Deployment features

Because it is server-based, RS has zero deployment requirements for integrating with
client applications. For this reason, any type of client applications can target RS, not
only .NET-based applications. Because you can access RS through the two most pop-
ular web protocols, HTTP-GET and Simple Object Access Protocol (SOAP), any web-
capable application can be integrated with RS, regardless of the targeted platform and
development language.

DEFINITIONS The Hypertext Transfer Protocol (HTTP), on which the Internet is based,
comes in two flavors: HTTP-GET and HTTP-POST. While HTTP-GET pass-
es request parameters as a part of the URL, HTTP-POST passes them as
name/value pairs inside the actual message.

Simple Object Access Protocol (SOAP) is a lightweight XML-based proto-
col, layered on top of HTTP, for exchanging structured and type informa-
tion on the Web. In recent years, SOAP has become the industry-standard
protocol for communicating with web services.

Integrating your applications with RS requires a good grasp of its architecture. The
next section outlines the major RS building blocks.

1.3 RS ARCHITECTURE

An important feature of the RS architecture is that it is service-oriented as opposed to object-
oriented. Don Box, a Microsoft prominent architect working on the next-generation web
services, outlines the following four characteristics of a service-oriented architecture:

• Boundaries are explicit. Cross-application communication uses explicit messag-
ing rather than implicit method call invocation.

• Services are autonomous. The lifetime of a service-oriented application is not
controlled by its clients.

• Services share schema and contract, not class. Service-oriented applications adver-
tise their functionality to the outside world using XML-based schemas.

• Service compatibility is determined based on policies. By using policies, service-
oriented applications indicate which conditions must be true in order for the
service to function properly.

You may have used object-oriented reporting tools in the past in which the report con-
sumer instantiates an object instance of the report provider. A characteristic of this
model is that both the report consumer and the report provider instances share the
same process space. For example, to render a Microsoft Access report, you need to
instantiate an object of type Access.Application. Then, you use OLE automa-
tion to instruct Access to open the report database and render the report.

12 CHAPTER 1 INTRODUCING MICROSOFT REPORTING SERVICES

You will probably agree that as useful and widespread as the object-oriented model
is, it is subject to some well-known shortcomings. For example, both the consumer
and provider are usually installed on the same machine. As a consequence, the reports
hosted by the report provider are not easily accessible by geographically dispersed cli-
ents. For instance, only COM-capable clients can interface with Microsoft Access.

A second shortcoming involves application interdependencies. Object-oriented
applications are typically deployed as a unit. All Microsoft Access clients, for example,
need to have the Access type library installed locally in order to establish a reference to it.

To address these shortcomings, RS departs radically from the object-oriented par-
adigm. In terms of reporting, the RS service-oriented architecture offers two distinct
advantages: (1) Administrators can centralize the report storage and management in
one place, and (2) it promotes application interoperability—report consumers can
request reports over standard web protocols, such as HTTP-GET and SOAP.

The RS service-oriented architecture can be better explained in the context of a
three-tier application deployment view, as shown in figure 1.3.

Figure 1.3

Report consumers submit

report requests to the

Report Server, which

queries data sources to

retrieve the report data

and generate the report.

RS ARCHITECTURE 13

The RS architecture includes the following main components:

• The Report Server, whose main task is to generate reports
• The Report Server Configuration Database (the report catalog), which serves as

a centralized report repository
• The Report Manager, a web-based tool for managing the report catalog and

requesting reports.

Let’s explain the role of each component in more detail, starting with the Report Server.

1.3.1 The Report Server

At the heart of the RS architecture is the Report Server engine. The Report Server per-
forms the following main tasks:

• Handles the report requests sent by the report consumers. I will use the term
“report consumer” to describe any client application that requests reports from
the Report Server. Once again, this could be any application regardless of the
language in which it was written or the platform it runs on.

• Performs all chores needed to process the report, including executing and ren-
dering the report, as we discuss in detail shortly.

• Provides additional services, such as snapshots and report caching, authorization
and security policy enforcement, session management, scheduling, and subscribed
delivery.

DEFINITION We will use the term “report request” to refer to the set of input arguments
that the report consumer has to pass to the Report Server to generate a re-
port successfully. At minimum, the report request must specify the path to
the report and the report name. Other arguments can be passed as report
parameters, including rendering format, whether the report should include
the standard toolbar, and so forth.

Looking at figure 1.3, you can see that the Report Server encompasses several compo-
nents, including the Report Processor, Windows Service, and extensions. From an
implementation standpoint, perhaps the best way to describe the Report Server is to
say that it is implemented as a set of .NET assemblies located in the C:\Program
Files\Microsoft SQL Server\MSSQL\RS\ReportServer\bin folder.

NOTE An interesting fact about the Report Server is that it is 100% written in C#
code. As far as I can tell, this qualifies it as the first true .NET server. No,
unfortunately the source code is not provided. Moreover, the Report Server
assemblies are obfuscated to prevent reverse engineering, reuse, and abuse.

As you know, the Report Server’s main role is to generate reports. To accomplish this,
the server retrieves the report definition from the report catalog, combines it with data
from the data source, and generates the report.

Figure 1.3 and the product documentation indicate that the Report Processor
component is responsible for report processing. The implementation details of the

14 CHAPTER 1 INTRODUCING MICROSOFT REPORTING SERVICES

processor are not disclosed at the time of this writing, but most likely the majority of
its functionality is encapsulated in the Microsoft.ReportingServices.Processing.dll
assembly. For the remainder of this book we use the terms Report Processor and Report
Server interchangeably.

Section 1.4 explains the purpose of each of the Report Server components and
shows how they relate to report processing.

From an integration standpoint, perhaps the most important observation that you
need to draw from figure 1.3 is that the Report Server has two web-based communi-
cation façades that expose its functionality to external clients: HTTP Handler, which
accepts URL-based report requests submitted via HTTP-GET, and the Web service
(shown in figure 1.3 as RS WS), which handles SOAP requests. You will see how these
façades impact the report-delivery process in section 1.5.

1.3.2 The Report Server database

When you install RS, the setup program creates the Report Server database. This data-
base is implemented as two physical SQL Server 2000 databases: The Reporting Ser-
vices Configuration Database, ReportServer, hosts the report catalog and metadata. In
this section, we’ll take a closer look at each.

The Reporting Services Configuration Database

The Reporting Services Configuration Database, ReportServer, hosts the report cata-
log and metadata. As we mentioned earlier, in order for a report to be available to the
end users, its report definition file must be uploaded (published) to the catalog.

If you open this database in the SQL Server Enterprise Manager, you will be able
to deduce the purpose of most of its tables. For example, the Report Server Configu-
ration Database keeps the catalog items in the Catalog table, the data source informa-
tion in the Data-Source table, and so forth. Note that querying the report catalog
directly is discouraged by Microsoft. Instead, the recommended way to access the
report catalog is through the Report Server APIs. Microsoft also discourages you from
making data changes directly to the catalog. The reason behind this is that Microsoft
may change the catalog schema in the future but will maintain backward compatibility
through the Report Server API.

As you may recall, RS can be deployed in a load-balanced cluster environment. In this
deployment model, the Report Server database is shared among all nodes of the cluster.

The Reporting Services Temporary Database

The RS setup program also creates a second database, ReportServerTempDB, which is
used by RS for caching purposes. For example, once the report is executed, the Report
Server saves a copy of the report in the ReportServerTempDB database.

DEFINITION Report caching describes the Report Server feature of keeping the report in-
termediate format in the Report Server database for a certain duration.

We’ll return to the topic of report caching in chapter 7.

RS ARCHITECTURE 15

The Adventure Works 2000 sample database

Finally, if you install the RS samples, the setup program installs a sample database
called AdventureWorks2000. This database is also used by other Microsoft products,
such as Commerce Server and Notification Services.

The AdventureWorks2000 database includes a much more “realistic” sales order-
ing database model than the SQL Server sample databases, Northwind or Pubs. You
will quickly realize this by surveying the data held in the more than 60 tables. We’ll
work with this sample database in section 1.7, where you’ll have a chance to create a
report using RS.

1.3.3 The Report Manager

Implemented as an ASP.NET web application, the Report Manager performs two main
tasks: report management and requests for reports. You can think of the Report Man-
ager as an application façade that communicates with the Report Server via the Report
Server APIs. From the Report Server perspective, the Report Manager is no different
than any other client application.

Report management

Users familiar with SharePoint Portal Server will find the Report Manager similar to
this product both in terms of user interface and purpose. As you can with SharePoint,
you can use the Report Manager to create folders, upload resources, manage subscrip-
tions, and set up security.

For example, figure 1.4 shows that I used the Report Manager to navigate to a
folder AWReporter and to retrieve a list of the catalog items under this folder. You can
click on a report link to run a report or access and change the report properties.

In case you’re wondering where the items shown in figure 1.4 come from, we will
create them in the next few chapters when we discuss the report-authoring process.

Keep in mind that in RS you work with virtual folders. Neither the folders nor the
report definition files actually exist in a file system. Instead, they exist in the Report
Server Database as metadata, but they appear as folders and items when you access the
Report Server through the Report Manager.

Requesting reports

Sometimes, building a reporting application might be overkill. Or small companies
might not have the IT resources to do so quickly or simply cannot afford the effort. In
such cases, the Report Manager can be used as a reporting tool. Users can navigate to
the Report Manager portal and request reports on the spot, as figure 1.5 shows.

Even better, users can use the handy toolbar, which the Report Server generates
automatically, to perform various report-related tasks, including specifying parameter
values for reports that take parameters (more on this in chapter 3), paging, zooming,
and exporting the report to different formats.

www.allitebooks.com

http://www.allitebooks.org

16 CHAPTER 1 INTRODUCING MICROSOFT REPORTING SERVICES

Figure 1.4 Users can use the Report Manager portal to generate or manage reports.

Figure 1.5 Small organizations that don’t need to create report-enabled applications can

use the Report Manager to request reports. This figures shows the Employee Sales

Freeform with Chart report generated in HTML.

UNDERSTANDING REPORT PROCESSING 17

Now that we’ve had a 100-foot view tour of the major building blocks of RS, let’s peek
under its hood to see how it processes, renders, and delivers reports.

1.4 UNDERSTANDING REPORT PROCESSING

Report processing encompasses all activities performed by the Report Server to gener-
ate a report. To understand how the Report Server processes a report, let’s see what
happens when the report is requested on demand.

Figure 1.6 depicts what happens when a report hosted under the Report Server is
requested by a report consumer. First, the consumer submits (1) a report request to
the Report Server.

Once the report request is intercepted by the Report Server, it is forwarded (2) to
the Report Processor. The Report Processor parses the request and retrieves (3) the
report definition and metadata from the Report Server Database. The Report Proces-
sor checks whether the user is authorized to access this report. If so, the Report Pro-
cessor processes the report, which involves two stages: execution and rendering.

Let’s get more insight into each of these stages, starting with the execution stage.

Figure 1.6

You can integrate your

applications with RS by

using the two web

communication façades:

HTTP Handler and the RS

Web service.

18 CHAPTER 1 INTRODUCING MICROSOFT REPORTING SERVICES

1.4.1 Execution stage

The report execution phase starts when the Report Server begins processing the report
and finishes when the report is ready for rendering. For the sake of simplicity, let’s
assume that the report is requested for the first time.

Generating the raw report

As we explained earlier, when the report is published, the Report Server parses its
report definition (RDL), generates a .NET assembly, and saves the assembly in the cat-
alog for the report. During the execution phase, the Report Server loads and executes
the assembly. Referring back to figure 1.6, you can see that the Report Server uses a
data extension (4) to query (5) the data source to retrieve the report data, combines
the resulting dataset and report layout information, and produces (6) the report in a
raw form, called intermediate format (IF).

Having the report generated in an intermediate format before it is finally rendered
is beneficial in terms of performance. It allows the Report Server to reuse the same IF
regardless of the requested export format. Developers who are familiar with the inter-
mediate language (IL) code execution model in .NET can think of IF in a similar way.
IL abstracts the platform on which the code executes, while IF abstracts the rendering
format. For example, one report consumer can request the report in an HTML format,
while another can request the same report as PDF. In either case, the Report Server
already has the raw report; the only thing left is to transform it into its final presen-
tation format. During the rendering stage, the Report Server loads the report IF and
renders (7) the report in the requested format using a rendering extension.

Once the report IF is generated, it is saved (cached) in the Report Server Tempo-
rary Database. Note that if the report is cached, the report execution phase may be
bypassed completely for subsequent requests because the Report Server decides to use
the cached IF. We will postpone discussing report caching until chapter 7.

1.4.2 Rendering stage

As shown in figure 1.6, the report-rendering stage represents the second (and last)
stage in the report-processing pipeline. After the Report Server has the report IF, it ren-
ders the report in its final presentation format as per the export format requested by
the user. You will be pleasantly surprised to see the plethora of natively supported for-
mats that a report can be exported to. My favorites are HTML and PDF. For example,
as figure 1.7 shows, I have loaded a report exported to a PDF file in Adobe Acrobat.

The Report Server delegates the report-rendering process to rendering extensions.
RS comes with various rendering extensions that correspond to supported export for-
mats. If the report consumer does not specify the export format explicitly, the report
will be rendered in HTML 3.2 or 4.0, depending on the browser capabilities. Table 1.5
lists each out-of-the box RS supported rendering formats.

As we’ve said before, when the supported formats are not enough, you can write
your own rendering extensions.

UNDERSTANDING REPORT PROCESSING 19

Table 1.5 Report rendering options

Rendering Extension Description

HTML HTML 4.0 (Internet Explorer 5.0 and above), Netscape (6.2
and above), HTML 3.2 otherwise.

HTML with Office Web Components HTML 4.0 with Office Web Components (OWC). Charts are
rendered using the OWC chart control and matrixes are ren-
dered using the PivotTable OWC.

MHTML MIME encapsulation of the Aggregate HTML Documents
standard, which embeds resources such as images, docu-
ments, or other binary files as MIME structures within the
report. This is a good option to minimize the number of round
trips between the browser and server to fetch resources.
MHTML is most useful for sending reports through e-mail, as
we see in chapter 14.

PDF Adobe Acrobat files.

Excel Creates a visual representation of the report in an Excel work-
book and translates Excel formulas whenever possible.
Users can open the report in Excel to change it.

continued on next page

Figure 1.7 With RS you can export your reports to many formats, including Adobe Acrobat

PDF. Here, I have exported this report to Adobe PDF and loaded it in Adobe Reader.

20 CHAPTER 1 INTRODUCING MICROSOFT REPORTING SERVICES

Once the report is generated it is ready to travel to its final destination: the report user.
RS gives you a lot of flexibility to distribute your reports, as you’ll see in the next section.

1.5 DELIVERING REPORTS

As we mentioned earlier, RS supports both on-demand (pull) and subscribed (push)
report delivery. To view a report on demand, the user explicitly requests the report
from the Report Server. Alternatively, the user can choose to subscribe to a report.
With this option, the report is pushed to the subscribers when the report data is
refreshed or on a specified schedule.

Let’s take a closer look at each delivery option.

1.5.1 On-demand delivery

One of the most important decisions you have to make when integrating RS reports
in your application is how the application will access the Report Server to request
reports. While in some cases the system design may dictate the integration option,
occasionally the choice won’t be so straightforward and you may have to carefully eval-
uate the application requirements to determine the best approach. We revisit the on-
demand delivery options in more detail in chapter 9. For now, note that reports can
be requested on-demand in two ways: URL access and the Web service.

URL-based report access

The report consumer requests a report by URL by submitting an HTTP-GET request to
the Report Server. The advantages of URL access are its simplicity and better perfor-
mance. In the simplest case, the consumer can embed the report URL into a hyperlink.

For example, a web-based application can have a drop-down Reports menu where
each link targets a RS report. With the URL access option, the report arguments are

XML Creates an XML document containing the information in the
report. The schema of the XML document generated is
determined by the contents and layout of the report. Users
can use the Data Output tab in the Report Designer to control
how the elements will be rendered.

CSV Comma-separated value file, with no formatting.

Image Renders reports to bitmaps or metafiles, including any format
that GDI+ supports:
BMP, EMF, GIF, JPEG, PNG, RIFF, and WMF.
By default, the image is rendered in TIFF, which can be dis-
played with an image viewer.
Image rendering ensures the report looks the same on every
client. Rendering occurs on the server; all fonts used in the
report must be installed on the server.

Table 1.5 Report rendering options (continued)

Rendering Extension Description

DELIVERING REPORTS 21

passed as query parameters in the report URL. For example, assuming that you have
installed the sample reports included with book source code, the following URL will
run the Territory Sales Crosstab sample report with the start date 3/1/2003 and an end
date of 4/30/2003.

http://localhost/ReportServer?/AWReporter/Territory Sales Crosstab&Start-
Date=3/1/2003&EndDate=4/30/2004

Web service

With RS, reports can also be requested by submitting SOAP-based requests to the
Report Server Web service. The main advantage of this service is that its feature set
goes well beyond just report rendering. It also encompasses an extensive set of methods
to manage all aspects of the Report Server, such as uploading reports, retrieving a list
of resources from the report catalog, and securing RS.

You can think of the Report Server Web service as a façade to the Report Server
that allows RS to be integrated with a broad array of platforms. For example, if you
are building an enterprise application integration (EAI) solution, a BizTalk schedule
might invoke the Web service Render() method, get the XML representation of the
report, retrieve some data from it, and pass it on to another application. Or, if your
reporting application is B2B oriented and your partner has a Web service, you can send
the report results to it in XML.

In some cases, a report consumer will use a combination of both access options to
integrate with RS. For example, a report consumer can use the RS Web service to find
out what parameters a report takes. Then, the application presentation layer can
present the parameters to the user so that the user can enter the parameter values.
When the user submits the report request, the application can use URL access to send
the request to the Report Server.

1.5.2 Subscribed delivery

In the “push” report delivery scenario, the reports are generated and delivered auto-
matically by the Report Server to a delivery target. Reports can also be delivered at
a scheduled time. For example, a financial institution can set up a portfolio balance
report to be generated and delivered through e-mail to its customers at the end of
each month.

The Report Server Windows service (ReportingServicesService.exe) works in tan-
dem with the SQL Server Agent service to generate and deliver subscribed reports.

NOTE SQL Server Agent is a component of Microsoft SQL Server, and it is respon-
sible for running scheduled SQL Server tasks.

For example, if the report is to be generated according to a set schedule, the SQL
Server Agent will create a job and move the subscription to the Subscriptions table
when the time is up. The RS Windows service periodically polls the Report Config-
uration Database to find out whether there are any new subscription jobs. If this is

22 CHAPTER 1 INTRODUCING MICROSOFT REPORTING SERVICES

the case, the Windows service picks up the job, generates the report, and delivers it to
the end users through a delivery extension.

Out of the box, RS comes with two delivery extensions: the e-mail delivery exten-
sion and the file share delivery extension. The e-mail delivery extension delivers the
report via e-mail. The report can be delivered to either subscribed users (opt-in sub-
scription) or to a data-driven list of recipients. The file share extension delivers reports
to a network share. When these two options are not enough, you can write custom
delivery extensions.

Note that the Report Server Windows service doesn’t communicate with the
Report Server through the HTTP Handler or Web service façades. Instead, because it
is installed on the same machine as the Report Server, the Windows service directly
loads and calls the Report Server assemblies. This is beneficial for two reasons. The
first relates to availability. Even if the IIS server is down, the Windows service will still
execute scheduled tasks and deliver reports to subscribers. The other reason is better
performance—the web façades are completely bypassed.

Another task that the Report Services Windows service is responsible for is per-
forming background database integrity checks, as well as other administrative tasks.

Before we see RS in action, it may be beneficial to get a good high-level under-
standing of the report lifecycle. This is important because the remaining chapters of
this book follow an identical flow.

1.6 WHAT IS THE REPORT LIFECYCLE?
By now, you probably realize that the Report Server is a sophisticated reporting plat-
form with a feature set that goes well beyond a desktop reporting tool. To minimize
the learning curve, this book follows a logical path based on the report lifecycle. The
report lifecycle is the process that you typically follow to work with reports, and it
involves three stages: authoring, management, and delivery. Figure 1.8 depicts the
report lifecycle stages.

In the report-authoring stage, you create the RDL file through the use of report-
authoring tools. For example, you can use the Visual Studio .NET Report Designer
to lay out the report. Recall that both report data retrieval and layout information are
described in the RDL file. We’ll discuss many more details of the report authoring
stage in chapters 2–6.

In the report-management stage, you manage the report catalog. As you recall, the
report catalog is stored in the Reporting Services Configuration Database. The report
catalog keeps the report and all related items. Typical management tasks include orga-
nizing reports in folders, uploading reports, and granting users access to run reports.
We’ll take a closer look at report management in chapters 7 and 8.

The report-delivery stage is concerned with distributing the reports to their final
destinations, including end users, printers, or archive folders. A managed report can
be delivered either on-demand or pushed to the subscribed users. Report delivery is
discussed in detail in chapters 9–14.

RS IN ACTION 23

Enough theory! Let’s put in practice what we learned so far and get our hands on RS.

1.7 RS IN ACTION

This section has two main objectives. First, we introduce an imaginary company,
Adventure Works Cycles (AWC), which we reference throughout the rest of this book.
We will discuss various hypothetical reporting challenges that AWC faces and imple-
ment solutions to address them.

Second, we get our feet wet and create our first report using the Visual Studio .NET
Report Wizard and the AdventureWorks2000 sample database. Granted, this is going
to be a simple tabular-style report, but as simple as it is, it showcases all the phases of
the report lifecycle. We also use this report in the next three chapters as a practical
example to expand our knowledge about RS.

1.7.1 About the Adventure Works Reporter

Let’s start with a hypothetical problem statement. You are a developer with AWC, which
manufactures and sells goods to individuals and retailers. The company has enjoyed tre-
mendous success the last few years. Sales are going up exponentially and the customer
base is growing fast. Today, AWC has customers both in the United States and overseas.
It has already implemented a web-based ordering online transaction processing (OLTP)
system to capture sales orders online.

Figure 1.8

Report lifecycle phases include

report authoring, management,

and delivery. In the report-

authoring stage, you lay out the

report. In the report-management

stage, you deploy and manage the

report. Finally, RS gives you many

ways to distribute your reports to

their final destination.

24 CHAPTER 1 INTRODUCING MICROSOFT REPORTING SERVICES

However, success does not come cheap. Data inaccuracy and slow decision making
are among the top complaints by the sales managers. Often, data is captured and con-
solidated in the form of Excel spreadsheets. What is needed is a reporting system to
present the company with data in a format that’s both easy to understand and analyze
and to allow AWC’s management to discover trends and see how the company is per-
forming. You have been designated as a lead developer for the new Adventure Works
(AW) Reporter system. Fascinated by Microsoft SQL Server 2000 RS, you decide to
base your reporting system on it.

NOTE In the real world, you should abstain from reporting off an OLTP data-
base for performance reasons. As the name suggests, OLTP systems must
scale to meet large transaction volumes and handle hundreds and even
thousands of users. Reporting applications usually submit queries to re-
trieve and analyze substantial sets of data, which impose data locks on
many records in the database. This can severely tax your OLTP system
performance. For this reason, reporting and OLTP are usually two mutu-
ally exclusive options. A typical solution involves consolidating OLTP
data and then uploading it to a data warehouse database that is optimized
and designated for reporting purposes only. We discuss OLAP and data
warehousing in detail in chapter 12.

1.7.2 Your first report

One crucial piece of information that the AW management would probably like to
know is what the yearly products sales per territory are. With such a report in hand,
managers can determine how well AW is doing in each sales region. To meet this
requirement, let’s create the Sales by Territory report. Figure 1.9 shows the final version
of the report that we’ll create in this section.

Figure 1.9 Our first report is Sales by Territory.

RS IN ACTION 25

This is just one of the many sample reports we’ll design throughout the course of this
book. We’ll use the Sales by Territory report in subsequent chapters to demonstrate
other RS features.

Table 1.6 shows the list of tasks that we need to accomplish to create the report
organized by the report lifecycle phases.

As you’ll recall, the first phase of the report lifecycle is authoring the report.

Authoring the report

Let’s develop our first report using the Report Designer. To do so, we need to create a
new Visual Studio .NET Business Intelligence (BI) project.

Task: Create a Business Intelligence Project

To create a project, complete the following steps (see figure 1.10):

Step 1 Open Visual Studio .NET and choose File → New → Project.

Step 2 From Project Types, select Business Intelligence Projects.

Step 3 From Templates, select Report Project.

Step 4 In the Location field, enter AWReporter, specify a location, and click OK.

Step 5 Once the project is created, right-click on the AWReporter project node in
the Solution Explorer window and select Properties. The Property Pages dia-
log box appears, as shown in figure 1.11.

Step 6 Verify that the TargetFolder setting is set to AWReporter. This specifies the
folder name in the report catalog where all reports defined in the project will
be deployed.

Step 7 In the TargetServerURL field, enter the Report Server URL. If RS is installed
locally on your machine and you have accepted the defaults during setup, the

Table 1.6 The task map for creating our first report

Phase Task Description

Authoring Create BI project. Create a new BI project in Visual Studio .NET.

Create the report data
source.

Use the Report Designer Data tab to configure a data-
base connection to the AdventureWorks2000 database.

Set the report dataset. Define a dataset query to retrieve the report data.

Lay out the report. Use the Report Wizard and Report Designer to author
the report.

Test the report. Use the Report Designer Preview tab to preview and
test the report.

Management Deploy the report. Use Visual Studio .NET to deploy the report to the
Report Server catalog.

Delivery Ensure on-demand report
delivery.

Use the Report Manager to navigate and render the
report.

26 CHAPTER 1 INTRODUCING MICROSOFT REPORTING SERVICES

Figure 1.10 Use Visual Studio .NET to create a new BI project.

Figure 1.11 Use the report property page to set up the project properties.

RS IN ACTION 27

URL of the Report Server should be http://localhost/ReportServer. Click OK
to close the Property Pages dialog box.

Task: Create the Report Data Source

Next, we create a shared data source pointing to the AdventureWorks2000 sample
database. Don’t worry if the concept of a shared data source is not immediately clear.
When we get to chapter 3 it will all begin to make sense.

Step 1 Right-click on the Shared Data Sources node in the Solution Explorer and
choose Add New Data Source. The familiar Data Links Properties appears,
as shown in figure 1.12.

Switch to the Provider tab and verify that the Microsoft OLE DB Provider
for SQL Server is selected (we will be connecting to a SQL Server database).
Back to the Connection tab, specify:

• The name of the SQL Server that you use to install RS. In my case, the
database is installed locally, which is why the data source name is “.”

• A valid username and password combination for an SQL Server
account that has permissions to query the tables in the Adventure-
Works2000 database. Select the Allow Saving Password check box.

• Select the AdventureWorks2000 database from the “Select the database
on the server” drop-down list. Test the connection by clicking the Test
Connection button. If all is well, click OK.

Figure 1.12

Use the Data Link

Properties dialog box to

establish to set up a data

source pointing to the

AdventureWorks2000

database.

28 CHAPTER 1 INTRODUCING MICROSOFT REPORTING SERVICES

Step 2 By default, RS names the data source with the same name as the database.
Since we are going to use this data source for most of the sample reports in
this book, let’s make the name more descriptive.

Double-click on the AdventureWorks2000.rds file. The Shared Data
Source dialog box appears, as shown in figure 1.13.

Change the Name property of the data source to AW2000 Shared DS and
click OK. Optionally, in the Solution Explorer rename the data source file to
AW2000 Shared DS.rds.

Now it’s time to author the report. We’ll use the handy Report Wizard to save some time.

Task: Set the Report Dataset

Step 1 Right-click on the Reports node in the Solution Explorer and choose Add
New Report.

Step 2 On the Report Wizard welcome screen, click Next.

Step 3 On the Select the Data Source screen, make sure that the Shared Data Source
radio option is selected and that AW2000 Shared DS appears in the Shared
Data Source drop-down list. Click Next.

Step 4 In the Design the Query screen, click the Edit button. The familiar query
designer window appears.

Figure 1.13 Setting up the shared data source to AdventureWorks2000

database.

RS IN ACTION 29

Step 5 Enter the following SQL statement in the query pane:

SELECT ST.Name AS Territory, PC.ProductCategoryID,
 PC.Name AS ProductCategory,
 SUM(SOD.UnitPrice * SOD.OrderQty) AS Sales
FROM SalesOrderDetail SOD
INNER JOIN Product P ON SOD.ProductID = P.ProductID
INNER JOIN SalesOrderHeader SOH ON
 SOD.SalesOrderID = SOH.SalesOrderID
INNER JOIN SalesTerritory ST ON
 SOH.TerritoryID = ST.TerritoryID
INNER JOIN ProductSubCategory PSC ON
 P.ProductSubCategoryID = PSC.ProductSubCategoryID
INNER JOIN ProductCategory PC ON PSC.ProductCategoryID =
 PC.ProductCategoryID
WHERE DATEPART(YY, SOH.OrderDate) = DATEPART(yy, GETDATE())
GROUP BY ST.Name, PC.Name, PC.ProductCategoryID
ORDER BY ST.Name, PC.Name

This query retrieves the product sales orders grouped by territory and product cate-
gory. The AW database groups products in subcategories, which are then rolled up to
product categories. For the purposes of this report, we summarize the sales data by
product categories since this represents the most consolidated level in the product hier-
archy, which is exactly what upper management is interested in seeing. The sales
amount is retrieved from the SalesOrderDetail table. In addition, the query filters the
orders created for the current year. In chapter 3, we’ll make the report parameter driven
by allowing the user to pass an arbitrary date. At this point, click Next.

Task: Lay Out the Report

To lay out the report, perform the following steps:

Step 1 On the Select the Report Type screen, leave the report type set to Tabular.
Click Next.

Step 2 On the Design the Table screen, select all fields except ProductCategoryID
and click Details so the fields appear in the report details section, as shown in
figure 1.14. Click Next.

Step 3 On the Choose the Table Style screen, click Corporate, the click Next.

Step 4 Finally, on the Completing the Report Wizard screen, enter Sales by Terri-
tory as the name of the report. Click Finish, and we’re done!

Visual Studio displays the Report Designer with the Layout tab selected, as shown in
figure 1.15.

The integration with Visual Studio.NET Report Designer allows you to easily pre-
view and test your reports without leaving the Visual Studio .NET IDE.

30 CHAPTER 1 INTRODUCING MICROSOFT REPORTING SERVICES

Figure 1.14 In the Design the Table step, you choose which fields will appear

on the report and how data will be grouped.

Figure 1.15 Use the Report Designer Layout tab to lay out your report.

RS IN ACTION 31

Task: Test the Report

Let’s make some cosmetic changes to enhance our report.

Step 1 Click on the Report Designer Preview tab to see the HTML representation of
the report. Notice the report toolbar at the top, which allows you to zoom,
print, and save the report in different formats. The Sales field needs some
formatting work.

Step 2 Click the Layout tab again to go back to design mode.

Step 3 Right-click on the Sales text box and choose Properties. Specify the format
settings, as shown in figure 1.16.

Click OK to close the Textbox Properties dialog box.

Step 4 Increase the width of the Territory and Product Category columns; stretch
them out as far as there is space within the report width.

Step 5 Right-click again on the Territory text box and go to the field properties.

Step 6 Click the Advanced button and, in the Font tab, change the font weight to
bold and style to Italic. Click OK.

Step 7 Back to the Textbox Properties dialog box, hide the repeating territory names
by selecting the Hide Duplicates check box, as shown in figure 1.17.

Preview the report again. Now it should look like the report shown in figure 1.9. Still
not very pleasing to the eye, but not bad for a few minutes of work!

Figure 1.16 Use the Textbox properties page to set up format settings.

32 CHAPTER 1 INTRODUCING MICROSOFT REPORTING SERVICES

Report management

Once you are satisfied with the report, you will probably need to deploy it to make it
available to all users. This is a report management task that you can accomplish by
using the Report Manager. However, if your Windows account has local administrator
rights on the computer where the Report Server is installed, you can deploy the report
straight from within Visual Studio .NET. Let’s do just that.

Task: Deploy the Report

Step 1 Save your changes.

Step 2 From the Solution Explorer, select the Sales by Territory.rdl node, right-click,
and select View Code. Visual Studio .NET shows you the report definition of
the report. Note that the report RDL includes the report query and layout
information. Since we chose to create a shared data source, the data source
information is not included in the report RDL.

Step 3 In the Solution Explorer, right-click on Sales by Territory.rdl and choose
Deploy. This compiles the report and uploads the report to the report catalog.

Report delivery

Once the report has been promoted to a managed report, it can be delivered to your
end users. Let’s see how users can request the report on-demand by using the Report
Manager as a quick-and-easy report-delivery tool.

Figure 1.17 Select the Hide Duplicates check box to hide the territory name duplicates.

EVALUATING RS 33

Task: On-Demand Report Delivery

Step 1 Open the browser and navigate to the Report Manager URL, which by
default is http://<reportservername>/reports. Notice that below the Report
Manager Home folder there is a new folder, AWReporter, and that its name
matches the TargetFolder setting you specified in the report project settings.

Step 2 Click on the AWReporter folder link to see its content. You should find the
AW2000 Shared DS data source and Sales by Territory report links.

Step 3 Click on the Sales by Territory report link to request the report with the
Report Manager.

As you can see, authoring, managing, and delivering reports with RS is straightfor-
ward. At this point, you may decide to compare RS at a high level with other reporting
tools you’ve used in the past. The next section discusses how RS stacks up against the
competition.

1.8 EVALUATING RS

By the time you read this book, comparison charts will probably be available from
Microsoft and other sources to show how RS compares with other popular reporting
tools. For example, the Resource section at the end of this chapter lists a link to a
detailed feature comparison document between RS and Crystal Reports.

Based on my experience with integrating applications with third-party reporting
packages, I think that as a first iteration, RS is surprisingly feature-rich. My favorite
top ten features, where I believe RS excels, are as follows:

1 Natively exposed as a Web service—The RS reports are widely accessible, and you
don’t have to do anything special to publish your reports as web services because
they are hosted under the Report Server, which provides a web service façade.

2 Support of plethora of export formats—You may be delighted to learn that the
ability to export reports to PDF and Excel is provided out the box. In addition,
reports can be delivered in many other popular formats, including web formats
(HTML), popular image formats (such as TIFF and JPEG), and data formats
(Excel, XML, CSV).

3 On-demand and subscribed report delivery—Another huge plus is the sub-
scribed report delivery option, which allows developers to implement opt-in
report features in their applications.

4 Documented report definition format—Developers can create reports to be
published to the Report Server using Microsoft or third-party design tools that
support the RS XML RDL.

5 .NET Framework integration—In the extensibility area, you’ll appreciate the
fact that you are not locked from a programmability standpoint. As we men-
tioned earlier, when built-in features are not enough, you can reach out and

34 CHAPTER 1 INTRODUCING MICROSOFT REPORTING SERVICES

borrow from the power of the .NET Framework by integrating your reports
with .NET code. In addition, the Report Services programming model is 100
percent .NET-based.

6 Extensible architecture—The RS architecture is fully extensible and allows devel-
opers to plug in their own security, data, delivery, and rendering extensions.

7 Zero deployment—Thanks to its service-oriented architecture, RS has no client
footprint and offers true zero deployment for all application types.

8 Scalability—RS can scale better, since it is designed from the ground up to scale
in web farm environments.

9 Visual Studio .NET integration—Report authors will enjoy the familiar IDE
environment when designing and testing reports.

10 Cost—From a cost perspective, it is hard to beat the bundled with the SQL
Server RS pricing model, especially if you compare it with the five-digit price
tag of third-party reporting tools.

Of course, nothing is perfect, and Report Services has its own shortcomings, some of
which I would like to mention here. As a .NET developer, I would like to see a future
version of RS bring a tighter integration with Visual Studio .NET. Ideally, working
with BI projects should not be much different than working with .NET code projects,
for example, Windows Forms. In the future, I would expect RS to evolve and add the
following features:

• Allow developers to add code-behind files to their reports.

• Instead of Visual Basic .NET only, support all .NET-compatible languages for
writing expressions and report-specific code.

• Use the Visual Studio .NET code editor instead of the Notepad-like Custom
Code Editor.

• Support events; currently, developers cannot write event handlers to respond to
runtime conditions. Microsoft Access, for example, has been enjoying a report
object model with events since its first release. Since the RS generation process is
not event-driven, the only option for implementing runtime code customiza-
tion with Report Services is to use expressions.

• Include more flexible object model, for example, creating report elements
dynamically, and referencing and changing report items from custom code.

• Convert reports from reporting tools other than Microsoft Access.

I hope that the above shortcomings will be addressed in future releases of RS to make
this tool an even more compelling choice for enterprise reporting.

RESOURCES 35

1.9 SUMMARY

This chapter took you on a whirlwind tour of the RS platform. We’ve discussed its role
in the Microsoft BI initiative, as well as its features and high-level architecture. You
have even had a chance to use RS and create a simple report based on the Adventure-
Works2000 sample database. Now that you have a good high-level understanding of
its features, you can begin using RS to report-enable your own applications.

By now, you should understand the major components of RS and their role in the
report lifecycle. In addition, you should see the advantages that the service-oriented
and web-enabled RS architecture has to offer.

Perhaps most important, you should be familiar with the three stages of the report
lifecycle: report authoring, management, and delivery. The remaining chapters explore
each of these stages in this order. In the next chapter, we discuss different ways to cre-
ate RS reports.

1.10 RESOURCES

Microsoft RS website
(www.microsoft.com/sql/reporting/)—First stop for the latest on RS.

Microsoft Business Intelligence Platform website
(www.microsoft.com/sql/evaluation/BI/default.asp) —The Microsoft BI portal
home page.

A feature comparison between RS vs. Crystal Reports
(http://certia.ramblainf.com/pdf/RSvsBO_En_v1.pdf)—Ceria’s Business Intel-
ligence Team has developed a detailed feature comparison document that out-
lines how Microsoft RS stacks against Crystal Enterprise.

A Guide to Developing and Running Connected Systems with Indigo
(http://msdn.microsoft.com/msdnmag/issues/04/01/Indigo/)—In section 1.3 I
emphasized the role of the RS service-oriented programming model. Read Don
Box’s article for more information about SOA.

1P A R T

Authoring reports
The report lifecycle starts with the report-authoring phase. Part 1 teaches you the
skills that you will need to master as a report author to create Reporting Services–
based reports.

We will start by discussing the options RS offers for creating reports. Since most
report authors will probably rely on the integrated with VS.NET Report Designer, we
will explore its report-authoring features in detail.

We will find out how to set up the report data source and work with datasets. We
will also lay out best practices for data management.

The best way to acquire report-authoring skills is by example. For this reason, we
will author various reports, including tabular, freeform, crosstab, chart, and multicol-
umn reports and reports with navigational features.

Often, you may need to enhance your report features programmatically. We will
show how you can do just this by using expressions and functions.

One of the most prominent features of Reporting Services that many developers,
including myself, appreciate is its extensible nature. One way you can extend the capa-
bilities of your reports is to integrate them with custom .NET code that you or some-
body else has written. You will learn how to leverage custom code to supercharge the
capabilities of your reports.

39

C H A P T E R 2

Report authoring basics
2.1 The report-authoring process:

step by step 40
2.2 Authoring reports in VS.NET 43
2.3 Creating reports

programmatically 55

2.4 Creating reports with
third-party tools 60

2.5 Summary 62
2.6 Resources 62

In chapter 1 we discussed the report lifecycle and identified the first stage as the report-
authoring process. Recall that in this stage, you set up the report data and lay out the
report itself. The report data and layout information are described in a report defini-
tion file.

You may wonder what options are available to you as report authors with RS. As
you will see shortly, RS offers not one but several ways to create reports. In this chapter
we discuss

• The report-authoring process

• Authoring reports using Visual Studio .NET (VS.NET)

• Generating the report definition language (RDL) report manually

• Third-party tools for report authoring

Although you will probably rely most of the time on the Report Designer to author
reports, it is important to understand when and how to use the other options. In this
chapter, we provide a panoramic view of report-authoring techniques. In chapter 4 we
discuss how you can use the Report Designer to lay out different types of reports.

40 CHAPTER 2 REPORT AUTHORING BASICS

2.1 THE REPORT-AUTHORING PROCESS:
STEP BY STEP

Before we discuss specific report-authoring options, it may make sense to step back
and reflect on the authoring process to learn how you can create reports that meet user
requirements. Although there is no magic formula for creating successful reports, I rec-
ommend that you follow a guided process for authoring reports similar to the software
development methodology in general.

Figure 2.1 shows the typical steps you should follow when authoring your reports.
Experienced developers will probably recognize these steps immediately. Just as

with software projects, you should resist the temptation to jump into “construction”
(report authoring) before you have a good understanding of what your users want.
Once the report is ready, it has to be meticulously tested before it is deployed to the
report catalog.

Below the name of each step, we’ve listed the typical ways to accomplish the step.
For example, you can author the report with VS.NET, generate the report definition
programmatically, or use third-party tools.

Let’s explain each step in more detail.

Figure 2.1

The report-authoring

process typically consists

of analysis, construction,

testing, and deployment

steps.

THE REPORT-AUTHORING PROCESS: STEP BY STEP 41

2.1.1 Analysis

The objective of the Analysis step is to collect the user requirements and prototype the
report. In this stage, you typically examine existing report artifacts and other data
sources, such as paper reports, spreadsheets, and standard forms, to understand what
data is needed and how it is related. In addition, you conduct Joint Application Devel-
opment (JAD) sessions with your users to clarify the reporting requirements, create
throwaway report prototypes, and in general, do whatever possible to reach a consen-
sus with your users about what the report should look like.

For example, in chapter 1 we created the Sales by Territory report requested by the
Adventure Works management. Here, we’ve assumed that the Analysis step has been com-
pleted and we know exactly what our users want. If that were not the case, however, we
would've started with prototyping the report. First, we could’ve determined what reporting
sources the AWC managers currently use to obtain the same data. Perhaps they use Excel
spreadsheets that we can use to see what the report looks like. Once we’ve determined the
report layout, we need to find where the report data originates. In this case, we need to find
out where the sales data resides—in mainframe, Oracle, or SQL Server databases?

Sometimes, you will find that you don’t have all the data you need to satisfy the
user requirements. For example, you might discover that some of the information is
buried deep within the mainframe abyss and getting it out to daylight will require
another project or two altogether.

NOTE I was involved once in a project with a major corporation to build an
ASP.NET-based prototype whose main objective was to showcase .NET best
development practices. During the requirements-gathering phase, I worked
with one of the in-house business analysts. The application had to simulate
an online food delivery service and allow customers to browse food catego-
ries, select an item, and so forth—in other words, a typical shopping cart
e-store application. One of the client requirements stipulated that we had
to follow the client process methodology, and its first stage was creating use
cases. The business analyst and I divided the use cases among us. You can
imagine my surprise when I was reading the “Cook food” and “Deliver
food” use cases that she had come up with. The “Cook food” use case
included such tasks as “get ingredients,” “heat utensils,” “mix ingredients,”
and “taste food,” whereas “Deliver food” called for the driver checking the
gas tank, filling the tank, and similar tasks. Obviously the analyst was more
familiar with the food-cooking process than software development.

A good approach at the end of this phase is to come up with a paper prototype of the
report that defines the report look and feel. Next, during the report design phase, you
can use this prototype to flesh out the actual report.

Discussing the Analysis step in any greater detail is outside the scope of this book.
However, to emphasize the importance of requirements gathering and analysis, we
use a common pattern for the reporting solutions that we’ll build in subsequent

42 CHAPTER 2 REPORT AUTHORING BASICS

chapters. Notice that each reporting solution starts with defining the user require-
ments and high-level design goals that must be addressed before moving on to the
actual implementation.

2.1.2 Construction

If you make it successfully out of the analysis, you graduate to the report-construction
phase. The main deliverable of the Construction step is the RS-based report. Here, you
will use one of the report-authoring options described in this chapter to create the
report. As we’ve mentioned, there are several techniques you can use to do this, ranging
from taking advantage of the integration with VS.NET Report Designer to generating
the report definition programmatically.

If you create your reports interactively by using the reporting tools we discuss in
this chapter, you will find that report construction is typically a two-stage process
and consists of (1) setting up report data, and (2) arranging report items on the
report canvas.

With RS, to set up the report data you first specify a data source and define one
or more queries, as we discuss in detail in chapter 3. Next, you can use data regions
(such as tables, matrixes, lists, and charts) to display the data on the report and add
other report items to the layout. Chapter 4 shows you how to do just that.

2.1.3 Testing

Similar to how you test software projects, you should perform unit testing with your
reports, as well as QA testing. With VS.NET you can easily preview the report to ensure
that its layout meets the requirements and executes successfully. Once you are satisfied
with the layout, inside the VS.NET IDE you can fully simulate the production report
server environment and determine whether the report will render under given config-
urations. You’ll see how the Report Designer facilitates the report unit testing process
in section 2.2.2.

Once you have finished unit testing, the report goes to QA for final preproduction
testing. If possible, you should designate a separate staging test Report Server for per-
formance and logistics reasons.

2.1.4 Deployment

As we mentioned in chapter 1, to make your report available to end users you have to
deploy it to the report catalog. RS gives you several options for uploading your reports:

• Uploading the report definition file manually using the Report Manager. We’ve
already seen how in chapter 1.

• Uploading the report from within the VS.NET IDE. We explain this technique
in section 2.2.2.

• Uploading the report definition programmatically by calling the Report Server
Web service (see chapter 7 for more on this approach).

AUTHORING REPORTS IN VS.NET 43

The focus of this chapter is to discuss the available options for authoring RS reports.
Let’s begin by finding out how we can do that with VS.NET.

2.2 AUTHORING REPORTS IN VS.NET

Visual Studio .NET provides several options for authoring RS reports:

• The Report Wizard

• The Report Designer

• Importing reports from Microsoft Access

Let’s take a closer look at each of these tools, starting with the Report Wizard.

2.2.1 Authoring reports with the Report Wizard

You are already familiar with the Report Wizard because we used it in chapter 1 to cre-
ate our first report. To start the Report Wizard within VS.NET, right-click on the
project node, then choose Add New Item. Alternatively, as a shortcut you can right-
click on the Reports node and select Add New Report.

As figure 2.2 shows, the Report Wizard supports two report types:

• Tabular, where the report data is laid out in a tabular format. Optionally, you
can define one or more report groups. Grouping allows you to logically organize
the data into different sections, as well as provide subtotals or other summary
information in the group footer.

• Matrix (crosstab), where the report data can be grouped both in rows and col-
umns. With matrix reports, you can define dynamic (expanding) columns to
give the user an option to “drill down” for analyzing data further. We discuss
this type of report in more detail in chapter 4.

One thing that is not that obvious is how the Report Wizard uses report styles to for-
mat the report in one of several predefined styles, including Bold, Casual, Corporate,
Compact, and Plain. If for some reason you want to modify the existing styles or cre-
ate new ones, you can do so by changing the StyleTemplates.xml file located by
default in C:\Program Files\Microsoft SQL Server\80\Tools\Report Designer\Busi-
ness Intelligence Wizards\Reports\Styles. This file enumerates the report styles as
Extensible Markup Language (XML) elements, which you can change using your
favorite text editor.

NOTE The styles that the Report Wizard lets you choose from are used only
once, during the process of generating the report definition (RDL) file, to
define the report appearance. Currently, RS does not support style tem-
plates (“skins”) that define a common look and feel across reports, similar
to the way web developers would use Cascading Style Sheets (CSS) or
themes to control the page appearance. This feature has been slated for a
future RS version.

44 CHAPTER 2 REPORT AUTHORING BASICS

Most of you will probably agree that the Report Wizard is a good starting point when
you need to generate a report quickly. It saves you time by automating some of the
mundane report-authoring tasks, such as laying out the dataset fields. But, as with any
wizard, it has its own limitations. For example, the Report Wizard design options are
limited to Tabular and Matrix reports only. In addition, the Report Wizard doesn’t
support multiple regions, region nesting, or multiple datasets. To get the full design
feature set supported by RS, you need to switch to the Report Designer.

2.2.2 Authoring reports with the Report Designer

Most of us will rely exclusively on the powerful Report Designer to create and design
reports. For this reason, I would like to take some time and give you an overview of
the essentials. Chapter 3 shows you how to use the Report Designer to set up the
report data source and query. In chapters 4 and 5 you’ll learn how the Report Designer
makes authoring different types of reports a breeze.

Figure 2.2 The report types supported by the Report Wizard

AUTHORING REPORTS IN VS.NET 45

NOTE Although most .NET developers will probably enjoy designing and running
reports inside the familiar VS.NET environment, for other report authors, the
full environment could be overkill if they purchase and install VS.NET solely for
the purposes of creating reports. There are plans for a future version of RS that
might include a stand-alone Designer, which would operate outside VS.NET.
Third-party tools would also probably emerge, as mentioned in section 2.4.

If you haven’t done this already, start VS.NET 2003 and open the AWReporter project
(AWReporter.rptproj) that we created in chapter 1. (If you skipped this step, you can
find the AWReporter project included with the book source code.) Then, double-click
on the Sales by Territory report in the Solution Explorer pane to open the report in
layout mode inside the VS.NET Report Designer, as shown in figure 2.3.

The Report Designer itself has a tabbed user interface with Data, Layout, and Pre-
view tabs. Their display order corresponds to the sequence of steps you typically follow
to author the report:

• Data tab—First, you use the Data tab to set up the report data. We discuss this
further in chapter 3.

• Layout tab—Second, you design the report layout. Chapters 4 and 5 examine
designing reports.

• Preview tab—Finally, you test report changes using the Preview tab.

Figure 2.3 The VS.NET Report Designer tabbed window allows you to switch easily from one

mode to another.

46 CHAPTER 2 REPORT AUTHORING BASICS

Working with BI projects

You may wonder how business intelligence (BI) projects differ from other types of
projects supported by VS.NET. When you open a BI project, the VS IDE changes to
accommodate the new project type, as follows:

• Two new menu items (Report and Format) are added to the main menu.

• When the report is in layout mode (the Layout tab is selected), several new tool-
bars appear to facilitate report formatting, such as Layout, Report Borders,
Report Formatting, and Standard.

• A new Fields toolbox is lets you display the report dataset fields. Don’t worry if its
purpose is not immediately clear—we discuss working with data in chapter 3.

• The Report Items section is added to the toolbox (not shown in figure 2.3).
You’ll learn how to work with report items in Chapter 4.

As with any other VS.NET solution, you can add more than one project as a part of a
single solution. One scenario where this could be useful is when you need to step
through custom code executed by a given report, as you’ll see in chapter 6.

You manage the BI project items using the VS.NET Solution Explorer. Each
project has two folders: Shared Data Sources and Reports. As its name suggests, the
Shared Data Sources folder holds the definitions of the data sources, in other words,
the connections, which are shared among all projects. The shared data sources are
saved in XML files with the extension .rds. Don’t worry if the concept of shared data
sources is not immediately clear. It will all make sense in chapter 3.

As we explained in chapter 1, the report definition file describes the report in an
XML-based format called Report Definition Language (RDL). The Reports folder
holds the report definition (*.rdl) files. It is important to note that when you make
changes to the report, you are actually changing the report definition file. To view the
underlying report definition, right-click on the report item and choose View Code. If
you have a brave heart, you can modify the report definition file directly. This could
be useful to quickly propagate changes. For instance, if you change the name of a
dataset column, it is much faster to open the RDL file and perform search-and-replace,
as opposed to locating all affected fields and making the changes in the layout mode
by trial and error.

NOTE I’ve found that the fastest way to copy a report from one project to another
is to create a new blank report and then copy and paste the report RDL.

If you make errors in the report schema, the Report Designer tells you about the prob-
lem promptly, with an informative message, such as this one:

Microsoft Development Environment is unable to load this document.
Deserialization failed: This is an unexpected token. The expected
token is 'NAME'. Line 7, position 9.

AUTHORING REPORTS IN VS.NET 47

Besides the report definition files, you can add other external resources to the BI
project, such as image files and Extensible Stylesheet Language Transformations
(XSLT) transformation files. We will talk more about images and exporting reports to
XML in chapters 4 and 5, respectively. Although I call them “external,” note that when
you upload the report to the report catalog, its associated resources get uploaded to the
Catalog table in the Report Server Configuration Database.

Strangely, VS.NET doesn’t allow you to create new folders below the Reports
folder, although the Report Manager doesn’t prevent you from creating nested folders
within a project folder. Actually, I don’t consider this to be a disadvantage because I
would usually try to keep the folder structure as flat as possible. I recommend that you
either stick with one folder per project or organize the folder structure logically and
physically per applications. For example, an HR and Payroll application can have sep-
arate report folders to hold application-specific reports. We discuss folder manage-
ment in chapter 7.

Previewing reports

As I mentioned earlier, you can unit-test a report on your development machine by
previewing the report. The Report Designer actually provides two ways to preview a
report: the Preview tab and Preview window. Both modes render the report locally. By
“locally,” we mean outside the Report Server. In fact, you don’t even need the Report
Server to preview a report. Being able to work in an offline, “disconnected” mode is
useful for several reasons. The report administrator might enforce secured access to the
Report Server. All new reports may have to go through a verification and approval pro-
cess before they are deployed to the production Report Server. For this reason, you
could install only VS.NET and the Report Designer on your development machine.
The Report Designer allows you to execute the whole report-authoring process on
your computer. Once you are ready, you can ask the report administrator to publish
the report.

You might be curious to know how it is possible to preview the report outside the
Report Server because we mentioned in chapter 1 that a report is processed by the
Report Server. You see, when you install the Report Designer, it installs the whole
binary stack of the Report Server into the Report Designer installation folder. The
Report Designer simply delegates the report rendering to the Report Server binaries,
without asking the Report Server explicitly to do so, as shown in figure 2.4.

As figure 2.4 shows, when a report consumer requests a managed report it asks the
Report Server to generate and return the report. However, when the report is pre-
viewed with the Report Designer, no request is made to the Report Server. Instead,
the Report Designer calls the Report Server binaries that are copied during the RS
setup process in the Report Designer folder. For this reason, you can think of the
Report Designer as a scaled-down Report Server. Of course, its capabilities are limited
to report processing and rendering only.

48 CHAPTER 2 REPORT AUTHORING BASICS

Previewing reports using the Preview Tab

During the report design process, you will find yourself switching often to the Preview
tab to quickly see what the report looks like in its rendered form. The Preview tab is a
mini Report Server by itself, as shown in figure 2.5.

Just as it does when you render a report through the Report Server, the Preview
tab adds the standard report toolbar on the top of the report. The standard toolbar
automatically generates parameter placeholders for parameterized reports. In addition,
it provides zooming, paging, and printing of the report. Preview mode also allows you
to export the report as a file to any of supported rendering formats.

It is important to note that previewing a report using the Preview tab bypasses the
custom code security policy rules defined in the Report Designer configuration file
(rspreviewpolicy.config). As a result, all custom code is granted the FullTrust permis-
sion set. If this security jargon doesn’t make sense now, wait until chapter 8, where
we discuss code access security in detail.

Figure 2.4 When the report is previewed, the Report Designer calls directly the

Report Server binaries.

Figure 2.5 The Report Designer Preview tab allows you test the report in the VS.NET IDE.

AUTHORING REPORTS IN VS.NET 49

Previewing reports using the Preview window

To preview a report in the Preview window, do one of the following:

• Right-click on the report, then choose Run.

or

• Set the StartItem property in the project settings to the name of the report you
want to preview, then press F5.

Why do we need another option for previewing the report? The Preview window offers
two additional features that the Preview tab doesn’t have:

• It facilitates debugging external code by loading the report in a stand-alone
report host process.

• It gives the report author an option to simulate the targeted Report Server
environment.

As you will see in chapters 6 and 15, debugging custom code can be tricky. To facilitate
the debugging process, the Preview window loads the report and the custom assembly
inside a separate process, called ReportHost. This makes debugging a lot easier because
developers can add the custom assembly to the BI solution, set the StartItem project
setting to the report that uses the custom code, and press F5 to debug the project.
When the report calls the custom code, the breakpoints will be hit.

The second reason why the Preview window could be useful is that it can be used
to simulate the Report Server environment as close as possible. The Report Designer
settings are stored in a few configuration files, which mirror the Report Server con-
figuration files. For example, the Report Designer code access security policy is stored
in the rspreviewpolicy.config file, while the Report Server reads its policy from the
rssrvpolicy.config file.

Unlike the Preview tab, when the report is rendered (run) in the Preview window,
the Report Designer applies the settings from these configuration files. If the Report
Designer and the Report Server settings are identical, the report will be subject to the
same security checks as it would if run on the Report Server. We examine RS code
security in chapter 8.

For example, although previewing the Sales by Product Category report (which
we’ll create in chapter 6) under the Preview tab succeeds, it fails when run in the Pre-
view window, as shown in figure 2.6.

In case you are curious, the reason for the failure is that this report references cus-
tom assemblies that require elevated code security rights than those defined by the
default permission set. We discuss code access security chapter 8.

What happens when you press F5 to run the report depends on the Configuration
Manager properties, defined for the active project configuration. Figure 2.7 shows
these properties for the AWReporter project.

50 CHAPTER 2 REPORT AUTHORING BASICS

Figure 2.6 You can use the Report Designer Preview window to find out if the report will

render successfully in production.

Figure 2.7 Configuration Manager properties determine what happens when you run a BI

project. If the Build option is selected, VS.NET will build the project. If the Deploy option is

selected, VS.NET will deploy the report items to the report catalog.

AUTHORING REPORTS IN VS.NET 51

In our case, both the Build and the Deploy check boxes are selected. As a result, when
we press F5, VS.NET will build and deploy all reports within our BI project.

TIP If both the Build and the Deploy options are on, VS.NET will build and rede-
ploy all reports inside your BI project before the report is loaded in the Pre-
view window. This could take a substantial amount of time. Once the reports
are uploaded to the report catalog, you typically don’t want to rebuild and
redeploy them each time you press F5. To skip these two steps and get to the
Preview window faster, clear the Build and Deploy check boxes.

Once you’ve tested the report successfully, you can promote it to a managed report by
deploying it to the Report Server.

Building reports

As a part of the testing process, you need to check if the report can be generated
successfully by building the report. Using the Report Designer, you can do this in
two ways:

• Explicitly—To build the whole project, use the Build menu or right-click on the
project node in the Solution Explorer and choose Build. To build specific
reports, you can select multiple reports by holding the Ctrl key and then build
them by right-clicking on the report and selecting Build.

• Implicitly—Switching to any of the preview modes or deploying the report
causes the Report Designer to build the report automatically.

Building a report doesn’t result in a binary, as you would expect when working with
.NET development projects. Instead, the build process simply verifies that the report
is structured properly and that all field references and expressions are resolvable. If the
Report Designer determines that a validation rule is broken, it reports an exception in
the Task List. For example, if you misspell a field name, the Report Designer will com-
plain with the following exception:

The value expression for the textbox '<textbox name>' refers
to the field '<field name>'. Report item expressions can only
refer to fields within the current data set scope or, if inside
an aggregate, the specified data set scope.

Only a report that compiles successfully can be uploaded to the report catalog. Upon
deploying the report, the Report Server enforces this rule by performing the same
checks that the Report Designer does when you build the report. For example, you
may try to upload a report with syntax errors directly to the report catalog using the
Report Manager. However, the attempt will fail with the same error as the one that the
Report Designer would report in the Task List if you build the report.

52 CHAPTER 2 REPORT AUTHORING BASICS

Deploying reports

Finally, once the report is tested successfully it is ready to be promoted to a man-
aged report.

If you have rights to update the report catalog, you can publish the report straight
from VS.NET. As a prerequisite for this to happen, you have to set the TargetFolder
and TargetServerURL settings in the project properties, as shown in figure 2.8.

The TargetFolder setting specifies the name of the catalog folder that the report
will be uploaded to. If the folder doesn’t exist, it will be created. The TargetServerURL
setting defines the Report Server URL.

BI projects in VS.NET support separate configurations to address different deploy-
ment scenarios. For example, during the QA testing lifecycle, you would typically use a
staging Report Server. Once the report is tested, you would deploy to production. To
address these deployment needs, the project settings include several predefined config-
urations, among them DebugLocal, Release, and Production. You can use these config-
urations any way you want. For example, assuming that you have set up separate staging
and production environments, you can set these configurations as shown in table 2.1.

You can also define additional configurations if needed by clicking on the Config-
uration Manager button.

To deploy a single report from the VS.NET, right-click on its file in the Solution
Explorer and choose Deploy. The Deploy command first builds the report. Then, it
invokes the Report Server Web service to deploy the report to the Report Server. Sim-
ilar to building reports, you can deploy multiple reports by selecting them and choos-
ing Deploy from the context menu.

Finally, just as with any other development project, I strongly suggest that you
put your BI projects under source control, e.g. by using Microsoft Visual SourceSafe.
To accomplish this, right-click on the project node and choose Add Solution to
Source Control.

Figure 2.8

Using the project

properties you can

specify different

configurations to

address various

deployment needs.

AUTHORING REPORTS IN VS.NET 53

You will get more insight into the Report Designer because we’ll be using it through-
out the next few chapters to author various sample reports.

2.2.3 Importing reports from Microsoft Access

There is a good chance that you may be using Microsoft Access for your reporting
needs. Although Access is a great reporting tool and it is getting more enterprise-
oriented with each new release, you may find that moving to Reporting Services could
be beneficial for several reasons:

• RS is designed from the ground up for scalability and performance under high
loads. As we explained in Chapter 1, the Reporting Services architecture is service-
oriented and facilitates integrating RS with all types of client applications. If you
want to integrate Access reports with other applications, you have to rely on leg-
acy technologies, such as OLE Automation, or create your own homegrown
solutions, which can take significant up-front development effort.

• Some RS features simply do not have Access equivalents, such as report schedul-
ing and delivery, report management, and so forth. For example, with RS you
can export reports to many different formats, while Access restricts you to view-
ing reports with the Access viewer and exporting is limited to HTML.

• The RS architecture is extensible, while the Access one is proprietary.

There may be other reasons for upgrading from Access to RS depending on your situation.
Reporting Services supports importing reports from Microsoft Access 2002 and

above only. Microsoft claims that importing from Access preserves 80% of the Access
report features. For a full list of the supported features, please consult the “Importing
Reports from Access” topic in the RS documentation. The most noticeable unsup-
ported feature, which will probably cause quite a bit of pain and suffering during the
migration process, is Access custom modules and events. Since the report generation
process in RS is not event-driven, any custom events that you have defined in your
Access report will be lost. As a remedy, you need to find ways to replace your custom
code with expressions.

Table 2.1 Use different configurations to address different deployment needs.

Configuration Environment Purpose

DebugLocal Local machine For unit testing with a local instance of Report Server. For
example, TargetURL set to http://localhost/ReportServer.

Release Staging For QA testing.

Production Production The production Report Server.

54 CHAPTER 2 REPORT AUTHORING BASICS

Importing Northwind reports

If you decide to move to RS, you can speed the report-migration process by importing
your Access reports. For the time being, Microsoft Access it the only importing option
natively provided by RS. However, by the time you read this book, third-party vendors
will most likely have released converters from other formats. We mention such a tool
in section 2.4.

To demonstrate how this report authoring option works, let’s import reports from
the Northwind database that comes with the Microsoft Access samples.

NOTE The Importing from Access feature is only available if Access 2002 or later
is installed.

Step 1 Create a new BI project and name it Northwind.

Step 2 Right-click on the project (or Reports) node in the Solution Explorer, choose
Import Reports from the context menu, and then select Microsoft Access.

Step 3 Specify the location of the Northwind database and click OK.

You will see the imported reports added one by one to the Northwind BI project. Because
VS.NET doesn’t allow you to pick individual reports, all reports will be imported.

Let’s open the Alphabetical List of Products report in the Report Designer by double-
clicking on its file. The Report Designer opens the report in a layout mode, as shown
in figure 2.9.

As you can see, VS.NET has preserved the report layout. Now, try to preview the
report. The Preview window complains about compilation errors. A look at Task List
reveals that the culprit is the expression defined in the FirstLetterOfName field, which
references the ProductName text box as a report item. Change the expression to

=Left(Fields!ProductName.Value,1)

Now the report runs fine, as shown in figure 2.10.

Figure 2.9 The Alphabetical List of Products report after importing it from Microsoft Access

CREATING REPORTS PROGRAMMATICALLY 55

Strictly speaking, this report could be rendered more efficiently using a table region
instead of using a rectangle item and a list region, but it’s still not bad for a few minutes
of work.

If you are experienced in Access, you can use the import feature not only to facil-
itate the upgrade process but also to minimize the learning curve and come up to speed
quickly with RS. For instance, RS automatically converts Access expressions to their
RS VB.NET equivalents, e.g., [Page] to Globals.PageNumber. It is not perfect, but it
will save you quite a bit of effort to just lay out the report in the Report Designer.

With RS you are not limited to creating reports interactively. Instead, thanks to the open
XML nature of the report definition schema, you can produce reports programmatically.

2.3 CREATING REPORTS PROGRAMMATICALLY

Recall that the report definition of an RS-based report is described in a specification,
called Report Definition Language (RDL). See the Resources section for a link to the
RDL schema on the Microsoft website. RDL is composed of XML elements that con-
form to an XML grammar, which Microsoft created specifically for RS. Microsoft has
worked with other industry leaders to promote this grammar as an XML-based stan-
dard for report definitions. If this effort is successful, RDL may become the de facto
report interchange format of the future.

Widespread RDL adoption will increase the level of interoperability among report
vendors and consumers, just like XML today facilitates interoperability between dif-
ferent platforms. This will open a new world of possibilities. Customers will be able
to choose the best-of-breed products, without having to worry about vendor lock-in.
Vendors can add reporting capabilities to their applications, without having to dis-
tribute report engines for report rendering. As long as the reports conform to RDL, any
RDL-compliant tool can be used as a report generator. For example, a report vendor

Figure 2.10 The Alphabetical List of Products in Preview mode

56 CHAPTER 2 REPORT AUTHORING BASICS

can create an ad hoc reporting tool, which generates RDL files. Once the user is ready
with the report, the report definition can be rendered by any reporting tool that under-
stands RDL.

NOTE Currently RS doesn’t support stand-alone reporting from the report defini-
tion file. Instead, to generate the report you need to upload the report def-
inition to the report catalog. If you are third-party vendor, this means that
your customers must have RS installed to run your reports. However, the next
version of RS, which is expected to be bundled with the SQL Server 2005, will
include WinForm and web-based controls for stand-alone reporting.

Creating reports programmatically by generating the report definition can also be use-
ful if you need to author reports on the fly. I had to implement a similar approach in
one of my recent real-life projects. Imagine that you need to design a multisection
report, where each section shows the sales performance of a particular Adventure
Works office. A client front-end application could let the user select arbitrary sections
to be included in the report. How would you implement this?

One implementation approach could be to filter the report sections at the data
source. Then, you can use a data-bound list region to repeat the sections returned by the
report query. But what if the database-driven approach is not an option? Ideally, in this
case you would want to generate the report sections programmatically, similar to the way
you can create dynamic controls in WinForm or web-based .NET applications. Unfor-
tunately, dynamically generating report items is currently not supported by RS.

As a workaround, you can programmatically generate the report definition. Once
you get the list of the selected sections by the user, you can load the report RDL in an
XML Document Object Model (DOM) and create as many report list items as the
number of the selected sections. Next, you can call the Report Server Web service API
to upload RDL to the report catalog, for example, to the user’s My Reports folder, and
render the report.

2.3.1 The AW Ad Hoc Reporter sample

Because the RDL schema is XML-based, every developer who is familiar with manip-
ulating XML documents with the XML DOM can generate RS report definitions pro-
gramatically. Before you do that, take some time to review the RDL schema
specification, which is described in the RS documentation.

The RDL schema is open and allows developers and vendors to extend it by adding
custom elements and namespaces. For example, you might need to develop a custom
rendering extension to render a report in a format not supported by RS—for example,
fixed text format—and you need to pass the name of the output file to it. Microsoft
has already thought about this and provided a Custom element defined in the schema,
which can be used as a placeholder to pass additional information. You can add your
custom extension parameters to the Custom element. This element is ignored by RS,
which allows you to add whatever you need to it.

CREATING REPORTS PROGRAMMATICALLY 57

A common reporting need for many organizations is empowering the information
workers by giving them options to generate reports ad hoc. To show you how this
could be done with RS, I’ve developed the world’s poorest ad hoc report generator, the
AW Ad Hoc Reporter. The design goals of the AW Ad Hoc Reporter are to

• Allow the user to report off an arbitrary database table
• Allow the user to define a tabular report ad hoc by dragging and dropping columns
• Generate the report definition programmatically

You can find the AW Ad Hoc Reporter under the chapter 2 menu in the AWReporter-
Win sample application included in the book source code. Figure 2.11 shows the AW
Ad Hoc Reporter in action.

Here, I used the Ad Hoc Reporter to author a simple report that has four fields. Once
the Get RDL button is clicked, the Ad Hoc Reporter generates the report definition.

Using the Ad Hoc Reporter

The user specifies the connection string and the full path to the output RDL file. Once
you change the settings, the application “remembers” by storing them in the .NET iso-
lated storage.

After the connection string is specified, you can list the tables in the requested cat-
alog by clicking the Get Schema button. At this point, a call to the database is made
to retrieve the table schema from the requested database.

The list of table names is loaded in the Tables drop-down list. Each time you
change the table in the drop-down list, its column schema is fetched from the database
and shown in the Columns list.

Figure 2.11

The AW Ad Hoc

Reporter allows you to

create simple ad hoc

reports by generating

the report definition file.

58 CHAPTER 2 REPORT AUTHORING BASICS

To specify which columns will be shown on the report, you drag them from the Col-
umns list and drop them on the panel below. Once a column is dropped, the applica-
tion creates a text box to display the column name and adds it to the panel. You can
drop as many columns as there is space available in the panel (about four columns).
Removing columns from the panel is currently not supported.

Once the report layout is defined, you can generate the report definition by click-
ing the Get RDL button. Before doing so, make sure that the predefined RDL schema
(Schema.xml) is located in the application build folder, which by default is bin\debug.

Uploading the report definition file

After the report definition file is generated, you can upload the report to the report
catalog and make it available to your end users. You can do this manually by using the
Report Manager. Alternatively, you can use the Report Server Web service API to
upload it programmatically. You’ll see an example of the latter approach in chapter 7.

Now that you’ve seen how you can use the Ad Hoc Reporter to author report def-
initions programatically, let’s peek under its hood to find out how it is implemented.

2.3.2 Implementation details

Table 2.2 lists some of the RDL schema elements that we are dealing with for the pur-
poses of this example. It by no means provides full coverage of RDL schema. See the
Resources section at the end of this chapter for a link to the RDL section in the RS
online documentation.

Let’s now see how the Ad Hoc Reporter generates the actual report.

Creating the report table region

To simplify authoring the actual report, I don’t generate the report definition file from
scratch. Instead, I use a template in the form of a pre-generated RDL file, Schema.xml,
located in the AWReporterWin/bin/debug folder. This file originated from the report
definition of a very basic tabular report that I authored using the Report Designer, as
shown in listing 2.1.

Table 2.2 The RDL schema elements used in the Ad Hoc Reporter sample

Element Name XPath Description

ReportItems /Report/Body/
ReportItems

Contains the report items that define the contents of a
report region. The region may have its own ReportItems
collection, which lists the report items that belong to this
region.

DataSources /Report/Data-
Sources

Lists the data sources for the report. If the report uses a
shared data source, the datasource element will contain
a reference to the shared data source. Otherwise, it will
contain DataProvider and ConnectionString elements.

DataSets /Report/DataSets Contains the datasets defined in this report.

CREATING REPORTS PROGRAMMATICALLY 59

 <Table Name="table1">
 <Height>0.25in</Height>
 <Details>
 <TableRows>
 <TableRow>
 <Height>0.25in</Height>
 <TableCells>
 <TableCell>
 <ReportItems>
 <Textbox Name="textbox1">
 <Style />
 <Value />
 </Textbox>
 </ReportItems>
 </TableCell>
 </TableCells>
 </TableRow>
 </TableRows>
 </Details>

 <DataSetName>AWReporter</DataSetName>
 <Top>0.375in</Top>
 <Width>1.66667in</Width>
 <Style />
 <TableColumns>
 <TableColumn>
 <Width>1.66667in</Width>
 </TableColumn>
 </TableColumns>
 </Table>

As you can see, the predefined schema has a table region with one column and one
cell only. For the first column that the user drags and drops, I have to update only
the name of the cell. For any subsequent column, I generate a new column and cell
in the table region.

Generating RDL

Let’s now put on our developers’ hats and write some .NET code to generate the report
definition. The bulk of the report-generation logic is encapsulated in the CreateRDL
function, as shown in listing 2.2.

private void CreateRDL()
{
 XmlDocument xmlDoc = new XmlDocument();

Listing 2.1 The predefined tabular report schema

Defines a table with
the name “table1”

Defines the
table cells

Defines the
table dataset

Defines the
table columns

Listing 2.2 Creating the report definition programmatically by loading the report

schema in the XML DOM

60 CHAPTER 2 REPORT AUTHORING BASICS

 xmlDoc.Load (System.IO.Path.Combine(Application.StartupPath,
 "Schema.xml"));

XmlNamespaceManager xmlnsManager =
 new XmlNamespaceManager(xmlDoc.NameTable);
xmlnsManager.AddNamespace("rs","http://schemas.microsoft.com” _
 & “/sqlserver/reporting/2003/10/reportdefinition");
xmlnsManager.AddNamespace("rd",“http://schemas.microsoft.com” _
 & “/sqlserver/reporting/reportdesigner");

 GenerateColumns(xmlDoc, xmlnsManager);
 GenerateCells (xmlDoc, xmlnsManager);
 UpdateDataSource(xmlDoc, xmlnsManager);
 xmlDoc.Save(txtRDLPath.Text);
}

The application loads the schema using the XML DOM. Because the schema defines
XML namespaces, we use the XmlNamespaceManager to add the namespaces to the
XML document. Then, we generate the table region columns and cells. For each cell,
we set the field name to be the same as the column name. After that, we embed the
data source information into the report definition, which includes the connection
string and dataset schema. Finally, we save the RDL file to a location specified by the
user in the Path to RDL text box. Once the report definition is generated, we can test
the report by loading the file in a BI project and previewing the report.

There will be cases when the AW Ad Hoc Reporter will not be enough (OK, I am
also modest, am I not?). Currently, Microsoft doesn’t provide an ad hoc reporting
tool. To fill the void, you can use third-party offerings, as you see in the next section.

2.4 CREATING REPORTS WITH THIRD-PARTY TOOLS

Microsoft is partnering with a number of independent software vendors (ISVs) to
create add-ons to RS to extend its capabilities. I would like to finish this chapter by
mentioning two third-party reporting tools, Cizer’s Quick Query for Microsoft
Reporting Services and Hitachi’s RDL Generator. You may find these products inter-
esting because they address two popular needs: ad hoc reporting and converting
Crystal Reports.

For a full list of the Microsoft partners for RS visit http://www.microsoft.com/sql/
reporting/partners/default.asp.

2.4.1 Cizer’s Quick Query

As of time of this writing, Microsoft doesn’t offer a tool for ad hoc reporting that inte-
grates with RS. To respond to this need, Cizer has developed the Quick Query as a
web-based tool that allows users to craft simple ad hoc reports in a fast and easy way.
No knowledge of report authoring with the Report Designer is required. Many orga-
nizations don’t have dedicated IT resources or expertise to create reports using the

Adds the
namespaces
used in
the RDL
schema

Generates the table region columns

Generates the table region cells

Defines the report
data source

CREATING REPORTS WITH THIRD-PARTY TOOLS 61

VS.NET Report Designer. This is where Quick Query can be useful because it allows
information workers to generate easily their own reports.

Cizer’s Quick Query embraces the Microsoft RDL schema as a report storage
medium and integrates seamlessly with RS. The report administrator can define which
data sources users can report off, such as tables, stored procedures, or SQL statements.
Once the report data sources are set up, users can navigate to the Quick Query portal.
Figure 2.12 shows the Quick Query web portal.

Users can select a data source from the Select Data Source drop-down list. Then,
they can pick which fields from the data source they want to see on the report. Quick
Query supports data grouping, filtering, and parameterized queries.

Once the fields are selected, users can define the report layout and request to see
the report. At this point, behind the scenes Quick Query uploads the report definition
to RS using the Report Server Web service API.

Then, Quick Query requests the report from Report Server by URL and displays it to
the user. Users also have an option to save the ad hoc report definition as an RDL file. In
this case, the tool calls down to Report Server Web services by invoking the GetReport-
Definition() method. This downloads the report definition file to the user machine.

Figure 2.12 Cizer’s Quick Query has a web-based front end that allows end users to create ad

hoc reports.

62 CHAPTER 2 REPORT AUTHORING BASICS

Cizer also offers another product, called Report Builder, that is a report designing
tool, similar to the VS.NET Report Designer. It is also web-based and requires no
client installation.

Check out the Resources section for the URL to Cizer’s home page.

2.4.2 Hitachi’s RDL Generator

Another tool that you may find interesting is the Hitachi’s RDL Generator. It is a con-
version tool that processes existing Crystal Reports (.rpt) formats and converts them
to RDL.

RDL Generator sponsors a simple WinForm interface that allows the user to specify
the location of the Crystal report file. Then, it parses the report, generates the RS
report definition and outputs it in the Preview pane. Once you have the report defi-
nition, you can save it as a file and upload it to the report catalog.

See the Resources section for the URL to this tool.

2.5 SUMMARY

In this chapter we explored the report-authoring process. This process encompasses sev-
eral stages: analyzing reporting requirements, authoring, and testing and deploying the
report. We emphasized that you should resist the temptation of jumping into creating
the report without having a good understanding of what your users want. After all, the
success of reports will be measured by how close they match the user requirements.

In this chapter we also discussed different ways to create reports. The options pro-
vided by RS are the Report Wizard, the VS.NET Report Designer, and importing
reports from Microsoft Access.

Then, we emphasized the advantages of the RDL schema as an interoperable report
storage medium. Thanks to its XML syntax, RDL allows us to generate the report def-
inition programmatically, as we demonstrated with the AW Ad Hoc Reporter sample.

Finally, we saw that third-party vendors can leverage the open nature of the RDL
schema by creating add-on products that extend the RS capabilities.

In the next chapter, we continue to explore the report-authoring process by learn-
ing how to set up the report data.

2.6 RESOURCES

Report Definition Language Specification
(http://www.microsoft.com/sql/reporting/techinfo/rdlspec.asp)

Cizer’s home page (http://www.cizer.com)

Hitachi’s RDL Generator
(http://www.hitachiconsulting.com/Apps/hitachiconsulting/hitachiconsulting/
supportingDocs/CaseStudies/SO-MS%20RDL%20Generator-electronic.pdf)

Report Services Partners
http://www.microsoft.com/sql/reporting/partners/default.asp

63

C H A P T E R 3

Working with data
3.1 Working with data sources 63
3.2 Working with report datasets 77
3.3 Authoring dataset queries 84
3.4 Parameter-driven reports 89

3.5 Data limitations 100
3.6 Summary 101
3.7 Resources 101

By now, you know that the report-authoring process involves working with the report
data. Specifically, you set up the data in the construction phase of the process.

In this chapter, we provide more in-depth coverage about the Report Designer.
You will learn how to use the Report Designer Data tab to set up the report data. We
cover the following topics:

• Setting up the data source

• Defining report datasets

• Creating dataset queries with the Graphical and Generic query designers

• Creating parameter-driven reports

3.1 WORKING WITH DATA SOURCES

In the simplest scenario, you won’t need to integrate your report with a database at all.
Before ruling out this possibility, consider an e-mail campaign scenario where you
need to send reports to subscribers. For example, Adventure Works Cycles may want
to notify its customer base about a new product. In this case, the report will not be
data-driven at all, because it needs only static text and images. If this is the case, you
can proceed to laying out the report itself, as discussed in chapter 4.

Most reporting requirements, however, call for data-driven reports. With the pro-
liferation of database standards and providers, reporting off heterogeneous databases

64 CHAPTER 3 WORKING WITH DATA

has traditionally been difficult even with the most popular reporting tools. For exam-
ple, Microsoft Access is limited to supporting only ODBC-compliant databases. One
of the most prominent strengths of RS is that it can draw data from any data source
that has an ODBC or OLE DB driver. Don’t despair if your data source doesn’t support
ODBC or OLE DB. Developers can extend RS to report off pretty much any data source
that exposes data in a tabular format, as you will see in chapter 15.

While I am not excluding the possibility of reporting off less popular data sources,
such as flat files or Excel spreadsheets, usually your reports will draw data from des-
ignated Online Transaction Processing (OLTP) or Online Analytical Processing
(OLAP) databases.

The first step to creating a data-driven report is to set up a connection to the data-
base where the report data resides.

NOTE The RS documentation uses the term data source to refer to the defini-
tion of a database connection, which, I think, is confusing because the
name “data source” is usually associated with the database itself. Perhaps
the reason behind this is to differentiate between the connection speci-
fication (connection string, credentials, etc.) and the actual physical con-
nection. For sake of simplicity, I will use the terms data source and
connection interchangeably.

3.1.1 Connecting to the database

Before we show you how to define a database connection, note that with RS your
reports are not limited to drawing data from a single data store. Instead, data can orig-
inate from multiple heterogeneous databases. For example, let’s say you need to create
an Employee Sales Summary report that shows salespeople’s performance alongside
human resources (HR)-related data. You may have the sales data captured in a SQL
Server database, whereas the HR data is stored in an Oracle database. One way to con-
solidate data from these two data sources is to link the Oracle database to the SQL
Server. In this case, you will need to connect to the SQL Server database only.

NOTE Microsoft SQL Server 2000 allows you to attach (link) to OLE DB-compliant
data sources called linked servers. Once the linked server is set up, you can
create stored procedures or statements that span both servers.

When using linked servers is not possible, you can define two database connections
that your report will use to draw data from each database, as shown in figure 3.1.

Figure 3.1

With Reporting Services

your report can draw data

from different databases.

WORKING WITH DATA SOURCES 65

Whether you need to fetch data from one database or several, you will have to make
some decisions when setting up the database connection. First, you must decide if the
connection will be set up as report-specific or shared.

Report-specific data source

A report-specific connection gets embedded into the report definition (RDL) file. Use
a report-specific connection when

• You need to encapsulate the database information inside the report defini-
tion file.

• You want to simplify the report distribution and setup.

A report-specific connection makes it possible to distribute both the report layout and
connection information in one file. For example, a third-party vendor might choose
to store database connection information in the RDL file to simplify the process of dis-
tributing the report to its customers. In this case, the connection should be defined as
report-specific.

You create a report-specific connection as a part of setting up the report dataset
(more on this in section 3.2). The process of creating a report-specific connection is
similar to setting up a shared connection, as we discuss in the next section. The only
difference is that you need to deselect the “Use shared data source reference” check box
in the Data Source dialog box, as shown in figure 3.2.

Figure 3.2 To create a report-specific connection, be sure that the “Use

shared data source reference” option is not selected.

www.allitebooks.com

http://www.allitebooks.org

66 CHAPTER 3 WORKING WITH DATA

You can open this dialog box by selecting the dataset in the Dataset drop-down list (on
the Data tab) and clicking the “…” button to open the Dataset Properties dialog box.
Clicking the “…” button located to the right of the Data source drop-down (see fig-
ure 3.10) displays the Data Source dialog box.

Once you finish configuring the data source, its definition will be embedded in the
report, as you can see by inspecting the DataSources element in the report defini-
tion file. As you’ll recall from the Employee Sales Summary example at the beginning
of this chapter, one report can draw its data from more than one data source (report-
specific or shared).

Shared data source

As its name suggests, a shared data source can be used by all reports within the same
Visual Studio .NET (VS.NET) business intelligence (BI) project. A shared data source
offers the following advantages over a report-specific connection:

• Ensures that all physical connections that use the same shared data source specifica-
tion utilize identical connection strings. This is a prerequisite for connection
pooling (more on this in section 3.1.2).

• Centralizes connection management. For example, the report administrator can
use the Report Manager to change the connection authentication settings and
all reports in the project that share the connection will pick up the new settings.

• A shared connection is a securable item. The report administrator can enforce a
role-based security policy to control which users can change the connection
information.

• When working with data-driven report subscriptions, a shared connection can be
used to retrieve the list of subscribers from the subscriber store. More on this in
chapter 14.

To create a new shared connection, right-click on the project node and choose Add
New Item. Then, select Data Source from the Add New Item VS.NET dialog box.
Alternatively, as a shortcut, you can right-click on the Shared Data Sources folder and
select Add New Data Source.

Setting up the connection properties

To set up a report-specific or shared connection, you use the familiar Data Link Prop-
erties dialog box, shown in figure 3.3.

You start setting up the data source by choosing an appropriate data provider. If
you need to connect to an ODBC data source, select Microsoft OLE DB Provider for
ODBC Drivers; otherwise, choose a provider that matches your database.

WORKING WITH DATA SOURCES 67

NOTE Unfortunately, with version 1.0 of Reporting Services, connection strings
cannot be based on expressions. As a result, you may need to change the
connection string manually when moving from a development to a produc-
tion environment. To minimize the migration impact, consider defining
data sources as shared. Using connection strings expressions—for example,
to get the connection string from a report parameter—has been slated for
the next version of RS.

Regardless of the provider choice you make in this dialog box, the Report Server will
use one of four data extensions to talk to the provider, as shown in figure 3.4. To see
this dialog box, once the data source is created, double-click on its file in the Solu-
tion Explorer.

Experienced .NET developers will instantly understand why the number of exten-
sions is limited to four, as we explain next.

Working with data extensions

The number of the supported data extensions for the report data source corresponds
to the number of the .NET data providers included in the .NET Framework.

NOTE In .NET, a data provider is used for connecting the application to a data-
base, executing commands, and retrieving results.

Figure 3.3

Use the Data Link

Properties dialog

box to choose a

data provider.

68 CHAPTER 3 WORKING WITH DATA

Table 3.1 lists the available .NET data providers.
Behind the scenes, the Report Server maps your provider choice to one of the sup-

ported RS data extensions, as shown in figure 3.5.
The Report Server data extensions are just wrappers on top of the .NET data pro-

viders. You can think about them as the Report Server Data layer. The data extensions
are implemented in the Microsoft.ReportingServices.DataExtensions assembly.

NOTE I mention the Microsoft.ReportingServices.DataExtensions assembly for
completeness only. You don’t need to reference it explicitly in your BI project.

The extensions supported by the Report Server are enumerated in the Reporting Services
configuration files. For example, only the extensions listed under the <Data> element
in the RSReportDesigner.config configuration file will appear in the Report Designer

Table 3.1 The available .NET data providers

.NET Provider Description

System.Data.SqlClient Data provider for SQL Server

System.Data.OleDb Data provider for OLE DB-compatible data sources

System.Data.OracleClient Data provider for Oracle

System.Data.Odbc Data provider for ODBC

Figure 3.4 The Report Server will use one of the supported data

extensions to communicate with the data provider.

WORKING WITH DATA SOURCES 69

Data Source dialog box. Similarly, the Report Server will allow only the extensions listed
under the <Data> element in the RSReportServer.config file to execute.

It is important to note that the Report Server data access options are not restricted
to these four data extensions. Developers can extend the Report Server by creating cus-
tom data extensions, as you’ll see in chapter 15.

Once the data provider is selected, you will have to decide how the user will be
authenticated against the data source.

3.1.2 Choosing an authentication mechanism

The second decision that you have to make when setting up the report data source is
what authentication mechanism RS will use to establish the connection. RS provides
four credential options that the Report Server can use to log into the database.

Use the Credentials tab in the Shared Data Source dialog box to specify the authen-
tication settings, as shown in figure 3.6.

During design time, the Report Designer will use the credentials settings to
authenticate against the data source. Note that for security reasons the credential set-
tings are not saved in the data source definition. Instead, VS.NET caches these settings
in memory. If you need to save the credentials it in the data source definition, you can
manually change the report RDL file (for a report-specific data source) or to the RDS
data source file (for a shared data source).

NOTE You will notice that VS.NET doesn’t reflect changes to the credentials set-
tings and may still establish database connections using the old creden-
tials. This is probably a bug, which we hope will be fixed in Report
Services Service Pack 1. To avoid this anomaly, close and reopen VS.NET
after the change.

The Report Designer Data Source dialog box (shown in figure 3.6) is somewhat inade-
quate and doesn’t show all the authentication options that RS supports. For this reason,
let’s discuss the full-blown Report Manager Data Source tab, as shown in figure 3.7.

Figure 3.5 RS supports four data extensions, which correspond to the available .NET data

providers.

70 CHAPTER 3 WORKING WITH DATA

As shown in figure 3.7, you can choose one of the following data source authenti-
cation options:

• The credentials supplied by the user running the report

• Credentials stored securely in the report server

• Windows NT Integrated Security

• Credentials are not required

NOTE To access the screen shown in figure 3.7, use the Report Manager web ap-
plication. Assuming that you have deployed the shared data source to the
AWReporter folder, you can see the share data source properties by re-
questing the Report Manager URL in your browser (e.g., http://localhost/
reports), navigating to the AWReporter folder, and clicking on AW2000
Shared DS link.

These authentication choices might seem bewildering at first, so let’s spend some time
exploring each one.

The credentials supplied by the user running the report

This first option prompts the user for the login credentials. It will cause the Report
Server to generate two fields, Log In Name and Password, in the standard report tool-
bar. If the “Use as Windows credentials…” check box is not selected, the Report Server

Figure 3.6 Use the Credentials tab to set the connection authentication

settings.

WORKING WITH DATA SOURCES 71

will attempt to authenticate the user through standard database authentication. Other-
wise, Windows Authentication will be used.

The “Credentials supplied by the user running the report” option is useful for test-
ing purposes because you can run the report under different login credentials—for
example, to troubleshoot end-user authentication issues. However, in a production
environment, I recommend you avoid this option. In this case, asking the users to sup-
ply the database login credentials may present a security risk. In addition, this option
cannot be used with subscribed “pushed” reports because they are generated in an
unattended mode.

Figure 3.7 Use Report Manager to set up the connection authentication settings that the

Report Server will use to connect to the data source.

72 CHAPTER 3 WORKING WITH DATA

Credentials stored securely in the report server

The second option is “Credentials stored securely in the report server.” The login cre-
dentials you enter here are persisted in an encrypted format inside the DataSource
table in the ReportServer database. Again, if the “Use as Windows credentials…”
check box is not selected, standard database authentication will be attempted; other-
wise, Windows Integrated Authentication will be used. This second option is most
likely your best bet because it

• Promotes database connection pooling because all connections will use the same
connection string.

• Centralizes the credentials maintenance in one place.

• Allows the report to be cached—for more details on caching, refer to chapter 7.

As you can see in figure 3.7, there is an interesting option called “Impersonate the
authenticated user after a connection has been made to the data source.” This option
works only for logins with admin rights and database servers that support user imper-
sonation. In the case of SQL Server, behind the scenes this option executes the
SETUSER system function to impersonate the database connection, so it runs under
the identity of the Windows account of the user requesting the report.

For example, imagine that you log into Windows as AWDomain\Bob. The report
administrator has chosen the “Credentials stored securely…” option and has entered
User Name and Password credentials of an account that belongs to the sysadmin SQL
Server role. Now, you request the Sales by Territory report. The Report Server calls
SETUSER AWDomain\bob. From a database point of view, this is exactly the same as
if Integrated Authentication were used. Because the SQL Server 2000 documentation
says that the SETUSER option may not be supported in future releases of SQL Server,
I advise against using the “Impersonate the authenticated user” option.

Windows NT Integrated Security

Next, we have the Windows NT Integrated Security option. When you use this option,
the Report Server will attempt to establish the connection under the context of the
Windows account of the user requesting the report. If you are a .NET developer, this
is the exactly the same as if you’d specified the “Integrated Security=SSPI” setting in
the connection string. The important thing to remember here is that the Report Server
impersonates the call to the database to run under the context of the report user.

For example, in the previous scenario where Bob is requesting a report, the call to
the database goes under the AWDomain\Bob account. Of course, in order for this to
work, the database administrator has to create a database login for this Windows
account and grant the right privileges. Using the Windows identity for database
authentication is convenient because it allows the database administrator to simplify
the database security model by using existing Windows accounts.

However, for performance reasons, I don’t recommend you use this option for large
reporting applications. Because the connection string for each user will be different

WORKING WITH DATA SOURCES 73

(Windows account names and passwords are different), the connections will not be
pooled. Actually, to be more accurate, you will end up with as many connection pools
as the number of users requesting the report. Not good!

Credentials are not required

You can configure a data source connection to use no credentials. This could be useful
in the following circumstances:

• The data source doesn’t support authentication. For example, in chapter 15 we cre-
ate a custom dataset extension to report off ADO.NET datasets. Because in this
case we won’t have a database to connect to, we can use the “Credentials are not
required” option.

• The credentials are specified in the connection string. As we mentioned at the
beginning of this section, you can store the credentials in the connection string
by manually changing the data source definition.

• The report is a subreport that use the credentials of the parent report to connect to its
data source. In this case the subreport will inherit the data source credentials from
the parent and there is no reason to set up specific credentials.

When you select the “Credentials are not required” option, the Report Server uses a
special account to make the connection. For more information about how to set up
this account, refer to the “Configuring an Account for Unattended Report Processing”
section in the product documentation.

Monitoring database connection pooling

If you have experience in writing Microsoft-centric, data-driven applications, you have
probably heard about database connection pooling. Database connections are expensive
resources. Many database providers, such as the .NET SqlClient provider, perform
connection pooling behind the scenes to minimize the number of open database con-
nections. When a connection is closed, it is returned to the pool. When the application
needs to connect to the database again, the provider checks the pool for available con-
nections. If it finds one, it uses that connection; otherwise, it creates a new one.

So, connection pooling makes your application (in our case, the Report Server)
more scalable. The catch is that two connections can share the same pool only if their
connection strings are exactly the same, including the login credentials. The “Creden-
tials stored securely in the report server” option enforces this rule and enables connec-
tion pooling. Therefore, this is my preferred option for better performance results.

To see how each authentication option affects the number of open database con-
nections, open the Performance console from the Administrative Tools program
group, as shown in figure 3.8.

Let’s first experiment with the “Credentials stored securely in the report server”
option. Before we start, you may want to change the Report Server session timeout
from its default value of 600 to the minimum allowed value of 60 (the SessionTimeout

74 CHAPTER 3 WORKING WITH DATA

column in the ConfigurationInfo table in the ReportServer SQL Server database). This
causes the report session to expire sooner, which in turn forces the Report Server to
query the database when processing the report.

NOTE When you experiment with different authentication options, you might be
surprised to find that no connection to the database is created with the new
credentials. In the case of SQL Server, you may not see the connection when
using the Process Info screen in Enterprise Manager or executing the sp_who
system procedure. The reason for this is most likely the report session caching
that the Report Server does behind the scenes. The default session timeout
specified in the SessionTimeout field in the ConfigurationInfo table
(ReportServer database) is 600 seconds. This means that if the Report
Server decides to reuse the report intermediate format when the report is
requested again, it won’t query the data source within that period. Instead,
it will use the report IF serialized in the Report Server Temporary Database.

We discuss report caching in detail in chapter 7. For the time being,
when you experiment with different authentication connection options,

Figure 3.8 Use the “SqlClient: Current # pooled connections” counter found under the .NET

CLR DATA category to monitor database connection pooling.

WORKING WITH DATA SOURCES 75

you may want to decrease the SessionTimeout value so that the report ses-
sion expires sooner. My experiments show that you cannot completely dis-
able the ReportServer session caching. The minimum value you can set the
SessionTimeout field to is 60 seconds. If you decide to change SessionTime-
out, don’t forget to restart IIS. Alternatively, you can manually delete the
record in the table SessionData (ReportServerTempDb database) or set its
Expiration column to a date in the past.

To monitor database connection pooling, follow these steps:

Step 1 Assuming that RS is installed locally on your computer, open the Report
Manager by navigating to http://localhost/reports in the browser. Navigate
to the AWReporter folder and click on the AW2000 Shared DS data source.

Step 2 Select the “Credentials stored securely…” option and specify the credentials
of a database login that has rights to query the Adventure Works database.

Step 3 Open the Performance Console and add the “SqlClient:Current # pooled
connections” counter found under the .NET CLR Data performance cate-
gory for the _global_ domain.

Step 4 Open another instance of the browser and request the Sales by Territory
report (the encoded report URL should be: http://localhost/Reports/Pages/
Report. aspx?ItemPath=%2fAWReporter%2fSales+By+Territory). Assuming
that there is no other connection with the same credentials, you should see the
pooled connection counter going up. Wait for one minute or remove the ses-
sion record from the SessionData table in the ReportServerTempDB.

Step 5 Repeat the process by opening up another instance of the browser and
requesting the report again. The pooled connection counter should remain
unchanged. This means that the .NET SqlClient provider uses connection
pooling behind the scenes and reuses the already existing connection.

Let’s now change the authentication options of the data source to Windows NT Inte-
grated Security. For the new test, you will need two Windows user accounts, which are
members of the Administrator group. You can use regular user accounts, but you have
to specifically give them rights to the database, while members of the Administrator
group automatically get admin privileges. Fire up the browser again and request the
Sales by Territory report.

Observe the pooled connection performance counter. Now, right-click on the Inter-
net Explorer shortcut and choose Run as. Specify the user name and password for the
second user account. Run the report again, and you will see the counter going up instead
of remaining unchanged. This proves that the Report Server doesn’t pool connections.

Let’s wrap up our overview of authentication options with some recommendations.

76 CHAPTER 3 WORKING WITH DATA

Authentication best practices

To summarize, I recommend that you follow these guidelines for data source authentication:

• Use shared data sources. For example, almost all reports from the AWReporter
project use the AW2000 Shared DS.rds shared data source.

• Use the “Credentials stored securely in the report server” option with standard
or Windows-based authentication.

• Don’t use an account with admin database privileges! Instead, create a new data-
base login and assign it to a role that has only read permissions to the database
you need to report off.

If you use SQL Server, you can assign the login to the db_datareader role, as shown in
figure 3.9.

In my case, I created a new SQL Server login, named it “rs”, and assigned it to
the db_datareader role. Also, I granted the new login rights to the Adventure-
Works2000 database.

As we explained in chapter 2, before the report is run by end users it has to be
uploaded to the report catalog. As a part of the deployment process, you need to ensure
that all data sources that the report uses have also been deployed to the report catalog.

Figure 3.9

With SQL Server you can

set up a database login

with restricted read-only

rights by assigning it to

the db-datareader role.

WORKING WITH REPORT DATASETS 77

3.1.3 Deploying data sources

You don’t need to take any extra steps to upload a report-specific data source. As you’ll
recall, its definition is a part of the report RDL file and travels with it.

Because a shared data source is saved in a separate file, it must be uploaded to the
report catalog so it is available to all reports that use it. Assuming that you have “Man-
age data sources” rights, you can deploy a shared data source straight from the VS.NET
by right-clicking on its file and choosing the Deploy command. Alternatively, the
report administrator can upload the file manually using the Report Manager.

What happens when you redeploy the shared data source from the VS.NET IDE
depends on the OverwriteDataSources project setting (click on the project node in the
VS.NET Solution Explorer and choose Properties). If this setting is false (the default),
once the new data source has been created, any subsequent changes made to that data
source inside the VS.NET project will not be propagated (will not overwrite) the data
source settings in the Report Server database.

Setting OverwriteDataSources to false can be both useful and dangerous. It can be
useful because during the design phase you can change the data source to point to a
local or staging database. You don’t have to know the login credentials for the pro-
duction reporting database. You can use your own set of credentials or use Windows
authentication. It is also dangerous because your development data source may have
more rights to that database than the account that will be used in production envi-
ronment. As a result, when you deploy your report to the production Report Server,
it may fail to execute when attempting to retrieve data.

If OverwriteDataSources is false, then you will see the following warning when you
try to deploy the project within VS.NET:

Cannot deploy data source <data source name> to the server
because it already exists and OverwriteDataSources is not specified.

Once you have the data source connection all set, it is time to craft the dataset(s) that
the report will use.

3.2 WORKING WITH REPORT DATASETS

Just as .NET datasets are used as data carriers in .NET applications, RS datasets are used
to expose data to your report. However, the term dataset as used by RS has nothing to
do with ADO.NET datasets. Instead, it refers to the specification that describes how
the data from the database is retrieved and what that data schema looks like. In this
fashion, an RS dataset can be loosely related to a hybrid between a .NET dataset and
the data adapter used to fill it in with data. Specifically, in RS dataset spells out

• The SQL query or statement that will be used to retrieve the report data
• The data source (connection) that the query will use
• List of database fields (columns) to be used by the report
• Other information that you specify when you set your dataset, such as the

options on the Data Options, Parameters, and Filters tabs

78 CHAPTER 3 WORKING WITH DATA

You use the Report Designer to set up one or more datasets. As with all report-related
elements, the dataset definition is stored in the report definition file.

3.2.1 Understanding the dataset definition

The dataset specification becomes a part of the report definition file and can be found
under the <DataSets> element. For example, listing 3.1 shows the abbreviated
dataset definition for the Sales by Territory report that we created in chapter 1. To
open the report definition, right-click on the Sales by Territory.rdl item in the VS.NET
Solution Explorer and choose the View Code command.

 <DataSets>
 <DataSet Name="AW2000_Shared_DS">
 <Fields>
 <Field Name="Territory">
 <DataField>Territory</DataField>
 <rd:TypeName>System.String</rd:TypeName>
 </Field>
 <Field Name="ProductCategoryID">
 <DataField>ProductCategoryID</DataField>
 <rd:TypeName>System.Byte</rd:TypeName>
 </Field>
<!--more dataset fields…-->
 <Query>
 <DataSourceName>AW2000 Shared DS</DataSourceName>
 <CommandText>
SELECT ST.Name AS Territory, PC.ProductCategoryID, PC.Name AS
<!--the rest of the SQL statement here-->
</CommandText>
 </Query>
 </DataSet>
 </DataSets>
</DataSet>

Unfortunately, you can’t define a dataset as shared inside a VS.NET BI project. There-
fore, the dataset definition is always report-specific. It would be nice if you could
reuse the dataset definition among reports, similar to the way you can create typed
datasets in .NET development projects but this is not possible with version 1.0 of
Reporting Services.

NOTE Microsoft hints that shared queries, which definitions could be shared
among reports, will be supported in a future release of Reporting Services.

Let’s now see how we can set up a report dataset.

Listing 3.1 The DataSet element contains the report dataset definition.

Defines the dataset fields

Defines the
dataset data
source

Defines the dataset query

WORKING WITH REPORT DATASETS 79

3.2.2 Creating a report dataset

To create a report dataset, you will use the Report Designer Data tab. To create a new
dataset, you select New Dataset from the Dataset drop-down control. This brings up
the Dataset dialog box, shown in figure 3.10.

Let’s now discuss briefly each tab, starting with the Query tab.

The Query tab

The Query tab contains the following fields:

• Name—Consider changing the dataset name to something more meaningful,
especially if you need more than one dataset for your report.

• Data source—Clicking the ellipsis button brings you to the Data Source dialog
box (figure 3.11) that you can use to set up a report-specific or shared data source.

• Command type—The command type can be Text if the query string you enter is
a SQL statement, a stored procedure, or TableDirect, in case you want to specify
just the table name and get all data from that table (currently TableDirect is not
supported by the .NET SqlClient provider, so this option cannot be used with
SQL Server).

• Query string—You can type the query text (or stored procedure name) here or
copy and paste it from somewhere else. Alternatively, if you prefer to author
your query in a civilized manner, you can leave the Query string text box blank
and later use the Graphical Query Designer.

Figure 3.10 Use the Query tab in the Dataset dialog box to specify the

dataset name, data source, and query string.

80 CHAPTER 3 WORKING WITH DATA

• Timeout—You can define a timeout value for the query execution. If you leave
it empty, the query doesn’t time out.

NOTE Interestingly, when you open a report in the Report Designer and switch
to the Data tab, the Report Designer will query the database to retrieve the
schema for the underlying datasets. In this way, the Report Designer
detects any changes that might have occurred in the database and synchro-
nizes the report dataset(s) accordingly.

The ellipsis button (next to the Data source field) allows you to create a new data
source, or connection, or to use an existing shared data source (figure 3.11).

The interesting setting here is the Use single transaction option, which is not
checked by default. If you select it, the Report Server will execute the report queries
within a scope of a database transaction. Selecting this option can be useful if you
report off an OLTP database and you want to prevent reading uncommitted “dirty”
data. To understand how transactions can be useful, consider the following example.

Let’s say you have a report with a summary and detail sections—for example, a
summary section showing the overall company performance and a detail section that
breaks down sales by territory. To create this report you’ve decided to use two queries:
one for the summary section and another for the report details. By default the Report
Server will execute these two report queries in parallel. Let’s also assume that you are
reporting off an OLTP database and data is volatile. What will happen if the data

Figure 3.11 You associate the dataset with a data source from the

Dataset dialog box.

WORKING WITH REPORT DATASETS 81

changes while the report is executing? The numbers in both sections may not match
at all, right? To ensure data consistency, you may want to enclose both queries in a
single transaction.

There is a good reason for having the Use single transaction option disabled by
default. Transactions enforce data integrity by means of database locks, and the higher
the transaction isolation level, the more locks are imposed. Database locks and per-
formance are mutually exclusive things, so leave that option deselected unless you have
a good reason to enable it.

The Fields tab

The Fields tab in the Dataset dialog box show the dataset fields once the query is
executed. Sometimes you may notice that the field list doesn’t get refreshed after
the underlying query is changed. If this happens, you have to manually synchronize
the dataset fields. To synchronize the dataset and database schema, you click the
Refresh Fields button. Alternatively, you can use the Fields toolbox to change the
fields manually.

For example, let’s say you add a new field to your SQL statement and the field
doesn’t appear in the Report Designer. To fix this, right-click on any field in the Fields
toolbox and select Add New Field to open the dialog box shown in figure 3.12.

You can also create calculated dataset fields. A calculated field is a field based
on an expression. Because expressions can reference methods in external .NET assem-
blies, the sky is the limit on what the content of a calculated field can be. (We cover

Figure 3.12 Adding a new dataset field using the Fields toolbox

82 CHAPTER 3 WORKING WITH DATA

expressions in chapter 5.) Of course, if the expression involves only database col-
umns, you will be better off using expressions supported by the targeted data source
for performance reasons.

If for some reason you want to change the dataset field name to something other
than the database column name, you can do this by changing the value of the Field
Name property.

The Data Options tab

The Data Options allows you to set additional data options for the query, such as case
sensitivity, as shown in figure 3.13.

For example, when you set the Case sensitivity option to True, the clause where
FirstName = 'john' will not bring up records where the first name start with cap-
ital J.

By default, RS will attempt to derive the values of data options from the data pro-
vider when the report runs. For more information about the query data options, see
the product documentation.

The Parameters tab

The Parameters tab allows you to define parameters for your query. We discuss work-
ing with dataset parameters in section 3.4.

Figure 3.13 You can use the Data Options tab to define additional

options for the dataset query.

WORKING WITH REPORT DATASETS 83

The Filters tab

Use the Filters tab in the Dataset dialog box to limit the data fetched by the query. A
dataset filter works like a SQL WHERE clause but an important distinction exists. While
you can use a WHERE clause in your SQL statement to filter data at a data-source level,
a dataset filter limits the data after it has been retrieved from the data source.

For example, if you want to filter a Products Sales by Quarter report to show sales
product sales only in 2004, you can do so in one of two ways:

• Use a SQL WHERE clause to filter the results at the data source.

• Get the product sales for all years and then eliminate the unwanted records dur-
ing the report generation using a dataset filter.

As you can imagine, filtering at the data source is much more efficient, so report filters
should be used with caution. One possible scenario where filtering can be useful is when
you need to enforce security. Let’s say that the Sales by Territory report takes a parameter
that allows privileged users to request the report for a given territory. However, you want
to prevent regional managers who will run the report from requesting a territory they
don’t supervise. To implement this, create a lookup dataset for parameter available val-
ues. Then, set a filter based on an expression, which restricts the parameter choices based
on the user’s Windows identity. We implement such an example in chapter 8.

Another scenario where filters can be useful is when you need to work with data
sources that don’t support filtering. If you wonder which data sources don’t support
filtering, check out chapter 15 where we write a custom dataset data extension. The
extension allows you to “bind” a report to a .NET dataset. ADO.NET datasets doesn’t
currently support a SQL-like WHERE clause, so you cannot easily filter data at the
dataset level. However, you can use a report filter to limit the dataset rows.

Sometimes, one dataset may not be enough to meet the data requirements of your
report. Fortunately, with RS you can define more than one dataset per a report.

3.2.3 Using multiple datasets

To add another dataset to your report, return to the Data tab, expand the Dataset
drop-down list, and select New Dataset. This opens the Dataset dialog box shown ear-
lier in figure 3.10.

Having multiple datasets can be useful for two main reasons:

• For parameterized reports you can make the report parameters data-driven from
a separate dataset. For example, a typical reporting requirement is to restrict the
parameter choice to a predefined set of values. To accomplish this with RS, you
can use one dataset for the report data and a second one for the parameter
lookup values. We’ll see an example of this in section 3.4.4.

• Different sections of the report can be driven by different datasets, as you’ll see
in chapter 4. As we mentioned earlier, multiple datasets don’t have to fetch their
data from the same data source.

84 CHAPTER 3 WORKING WITH DATA

There are a few important points about multiple datasets that we would like to men-
tion. You cannot join datasets as you could join database tables by using relations, even
if they have the same fields. As a result, you cannot mix fields from different datasets
in a single report region. We look at report regions in chapter 4, but for time being
note that RS supports various report items called regions for different report types,
including charts, tables, pivots, and other regions. To display data in a region, you need
to associate (bind) it with exactly one dataset.

While the Report Designer allows you to drag fields from one dataset to a region
bound to another, you can use only aggregate functions, such as First(), Sum(),
and Avg(), when referencing its fields. If you try to reference the field directly (out-
side an aggregate function), then you will see the following exception during the report
compilation process:

Report item expressions can only refer to fields within the
current data set scope or, if inside an aggregate, the
specified data set scope.

Chapter 5 details the expression scope rules.
For best performance results, I suggest you minimize the number of the report

datasets in your reports. In the best case, you will need only one dataset as an under-
lying source for the report data. You should carefully evaluate if you need additional
datasets for the available values of report parameters.

One scenario where you may require an additional dataset is when you have to
restrict the parameter choices in the report toolbar for reports requested by URL. With
other integration scenarios, the client application may be responsible for collecting and
validating parameters. If this is the case, you won’t need another dataset to define the
parameter lookup values.

3.3 AUTHORING DATASET QUERIES

To fill in a dataset with data, you need to set up a dataset query. One dataset can be
associated with exactly one query. When the report is processed, the Report Server will
execute the dataset query statement against the data source and load the dataset.

To help you with setting up the database queries, the Report Designer comes with
not one but two query designers: Graphical and Generic. The main characteristic of
the first one is convenience, while the second excels in flexibility.

3.3.1 Using the Graphical Query Designer

Figure 3.14 shows the Sales by Territory dataset open in the Report Services Graphical
Query Designer.

You may be familiar with the Graphical Query Designer because it is the same one
that SQL Server Enterprise Manager, VS.NET, and a plethora of other development
tools use. It makes authoring complex SQL statements a breeze. Even users unfamiliar
with the intricacies of SQL can create sophisticated queries in a matter of minutes.

AUTHORING DATASET QUERIES 85

The Graphical Query Designer also has SQL syntax checking to make sure that query
text you specify makes sense and conforms to the SQL grammar supported by the tar-
geted database. Once you craft your query and execute it, the dataset fields will be shown
in the Fields toolbar on the left, as well as on the Fields tab of the dataset properties.

Authoring a dataset query with the Graphical Query Designer is a matter of com-
pleting the following steps:

Step 1 Right-click on the Diagram pane empty area and choose Add Table. Add as
many tables from the data source as needed.

Step 2 Select table columns as needed. The Graphical Query Designer shows the
resulting SQL statement in the SQL pane.

Step 3 Modify the statement as per your requirements using the SQL pane or the
Grid pane.

Step 4 Run the query by clicking the Run button (the one with the exclamation
point) to see the results in the Results pane.

Figure 3.14 Use the Graphical Query Designer to author, test, and run queries.

86 CHAPTER 3 WORKING WITH DATA

3.3.2 Using the Generic Query Designer

Sometimes you will reach the limits of the Graphical Query Designer, as in the follow-
ing two cases:

• You may need to execute multiple SQL statements—for example, to perform
some preprocessing at the data source.

• You need to work with SQL statements generated on the fly.

Let’s discuss each scenario in more detail.

Executing multiple SQL statements

Say you need to run an update query to the SalesOrderDetail table before the sales
order data is retrieved, as shown in listing 3.2.

DECLARE @SalesOrderID int
SET @SalesOrderID = 1

UPDATE SalesOrderDetail
SET UnitPrice = 100
WHERE (SalesOrderID = @SalesOrderID)

SELECT *
FROM SalesOrderDetail

NOTE In the real world, you should avoid retrieving all table columns using the
“*” wildcard in your queries. Instead, for performance reasons you should
limit the number of columns to the ones you need.

Granted, this could be accomplished by encapsulating both statements inside a stored
procedure, but sometimes you may not have this choice.

You may try using the Graphical Query Designer to execute this batch, but
you wouldn’t get too far. The Graphical Query Designer complains with the fol-
lowing error:

This designer does not graphically support the DECLARE CURSOR SQL construct.

My example doesn’t use a SQL cursor at all, but in any case, the Graphical Query
Designer refuses to cooperate. As a workaround, we can switch to the Generic
Query Designer (figure 3.15) by clicking on its button (the one before the exclama-
tion point button).

If the data source credentials have update rights to the database, the SQL block will
execute fine and the dataset fields will be populated based on the columns defined in
the select statement (in this case, all columns from the SalesOrderDetail table).

Listing 3.2 Using batches of statements to update and retrieve data

AUTHORING DATASET QUERIES 87

NOTE The previous query requires UPDATE rights to the AdventureWorks2000
database. If the data source account is restricted, the report will fail to exe-
cute even if the report doesn’t use any of the dataset fields. The reason for
this is that when a report is requested, the Report Server executes all report
queries to populate the report datasets. For this reason, I recommend that
you delete this dataset as soon as you are done experimenting so that it
doesn’t interfere with report processing.

Using expression-based queries

The second scenario where you must use the Generic Query Designer is when you
need to work with expression-based queries. Unlike the Graphical Query Designer, the
Generic Query Designer doesn’t attempt to parse the query text to ensure it is syntac-
tically correct. Instead, it allows you to type whatever you want, and once the query is
constructed, it passes the query directly to the data source. For users familiar with
Microsoft Access, the Access equivalent is a pass-through query.

We haven’t covered expressions yet (see chapter 5), but consider the case where you
want to restrict the results returned from the SalesOrderDetail table only if the
OrderID is specified. To achieve this use a Visual Basic .NET (VB.NET) expression,
similar to this one:

= "select * from SalesOrderDetail " & _
Iif(Parameters!OrderID.Value Is Nothing, "", _
" where SalesOrderID =" & Parameters!OrderID.Value)

Figure 3.15 Executing multiple SQL statements in the Generic Query Designer

88 CHAPTER 3 WORKING WITH DATA

NOTE Expression-based queries are susceptible to SQL injection attacks. SQL injec-
tion happens when some (malicious) SQL code is appended to the legiti-
mate SQL statement contained within the report query. For example, the
SQL statement we’ve just discussed is vulnerable to a SQL injection attack.
A hacker could pass another SQL statement to the OrderID report param-
eter—for example, a data modification statement to change, append, or
delete data. As a result, the expression-based statement may look like this:

= "select * from SalesOrderDetail where
SalesOrderID = 1;UPDATE SalesOrderDetail
(SET // perform data changes here

There are number of strategies for using expression-based statements safely
in your reports. One is to filter out the report parameters for valid SQL
characters—for example, the semicolon delimiter character in our case. For
more information on how to prevent SQL injection attacks, refer to the
security-related resources listed in chapter 7.

When the Generic Query Designer determines that expressions are used, it doesn’t give
you a choice to execute the query by clicking on the exclamation point. As a result, you
won’t be able to get the dataset fields. Instead, you need to add the fields manually, using
either the Fields toolbox or the Fields tab in the dataset properties. Once you have done
this, you can drag the fields to the report layout and execute the report. Finally, if the query
is based on an expression, as in the above case, don’t forget to prefix the text with “=”.

I would like to fast-forward a bit and mention that the ability to use an expression
to generate the SQL statement on the fly opens a whole new world of opportunities.
Your report can call a piece of code defined as an expression or in an external assembly
to get the query statement custom-tailored based on certain conditions. The example
that follows is simple but illustrates the expression’s flexibility. Say you have a function
that returns a SQL statement, like the one shown here:

Function GetSQL (ByVal orderID as Integer) as String
 Return "select * from SalesOrderDetail where " _
 & "SalesOrderID = " _ & orderID
End Function

The GetSQL function can be defined as an embedded function in the report or
located in an external assembly—for example, in the application data layer. We discuss
extending RS with custom code in detail in chapter 6.

Once the GetSQL function is ready, using the Generic Query Designer you can
set your query text to

= Code.GetSQL(Parameters!OrderID.Value)

In this case, we are calling the GetSQL function and passing the value of the
OrderID report parameter. Once we manually define the fields that the query
returns, we can base our report on the results of this generated on-the-fly query. Talk-
ing about flexibility!

PARAMETER-DRIVEN REPORTS 89

Another popular scenario where expression-based queries can be useful is when the
report takes a multivalue parameter. Chapter 10 shows how this can be done.

Now that you know how to create basic dataset queries, let’s see how we can make
them more flexible by using parameters.

3.4 PARAMETER-DRIVEN REPORTS

Your dataset queries won’t be very useful if they don’t allow users to pass parameters.
Report and query parameters give users the option to alter the report execution and
subset of data shown in the report. For example, you can add a parameter to the Sales
by Territory report to enable users to specify the sales year rather than defaulting to the
current year. We’ll see exactly how to do this in section 3.4.2.

3.4.1 The role of parameters

Recall from chapter 1 that the Report Server enjoys a service-oriented architecture that is
entirely server based. We also said that with RS reports can be requested by URL and SOAP.

The Report Server doesn’t offer an object model that can be instantiated and
manipulated locally by the report consumer, as you would have probably done in the
past with other reporting tools—for example, using OLE Automation to control
Microsoft Access. Instead, the only way to control the report-generation process from
outside is by using parameters, as shown in figure 3.16.

If you are accustomed to object-oriented programming, this may seem strange at
first. But consider the benefits. The service-oriented architecture of the Report Server
eliminates tight coupling between the consumer and server. If the Report Server had
an object model that could be instantiated locally by the report consumer, then most
likely its client base would have been restricted to .NET-based applications only.
Instead, thanks to its service-oriented architecture, RS can be integrated with any type
of consumer. Developers familiar with designing stateless web services will find the
Report Server programming model similar.

Figure 3.16 From the report consumer perspective, the Report Server can be viewed as

a black box that accepts report requests and optionally parameters and returns reports.

90 CHAPTER 3 WORKING WITH DATA

The RS report-processing model is stateless because once the report is generated, the
Report Server discards any state associated with the report request. As far as the report-
generation process is concerned, you can think of the Report Server as a black box that
accepts a report request (optionally parameterized) and returns the generated report.
Do you want to sort the report data in a different way? Do you want to filter out the
data that the data source returns? Do you want to show or hide certain report items
based on runtime conditions?

By using parameters, coupled with custom expressions inside the report, you can
achieve just about anything you can otherwise accomplish with an object model. For
example, hardcoding criteria in your queries is convenient for the developer but not
very useful for the end users. Often, you will need to make the report interactive by
allowing the users to pass report parameters. To accomplish this, a parameter value can
be passed to the dataset query or stored procedure to filter out the report data.

3.4.2 Building parameter-driven queries

Let’s see how we can make our Sales by Territory report interactive by allowing the user
to specify the sales year instead of always defaulting to the current year. We can easily
change the report dataset query to use a query parameter. Since we are using SQL
Server as a database, we need to use named parameters.

NOTE The named parameter syntax is specific to the data extension. In the SQL
.NET provider you use named parameters (@varname). With the Oracle
data extension you use named parameters but with a different prefix
(:varname). The OLE DB provider doesn’t support named parameters,
but you can use the question mark (?) for parameter placeholders.

Let’s make the query parameter-driven by following these steps:

Step 1 Start by saving the Sales by Territory report to Sales by Territory Interactive
report. The easiest way to accomplish this is to right-click on the Sales by
Territory report in the Solution Explorer and choose Copy.

Step 2 Right-click on the project node (AWReporter) and choose Paste. Rename the
new report to Sales by Territory Interactive.

Step 3 Open the AW2000_Shared_DS dataset inside the Graphical Query Designer
and replace the DATEPART(yy, GETDATE()) criteria with @Year, as
shown in listing 3.3:

SELECT ST.Name AS Territory, PC.ProductCategoryID, PC.Name AS
 ProductCategory,SUM(SOD.UnitPrice*SOD.OrderQty) AS Sales
FROM SalesOrderDetail SOD INNER JOIN
 Product P ON SOD.ProductID = P.ProductID INNER JOIN
 SalesOrderHeader SOH ON SOD.SalesOrderID=SOH.SalesOrderID
INNER JOIN SalesTerritory ST ON SOH.TerritoryID = ST.TerritoryID
INNER JOIN ProductSubCategory PSC ON P.ProductSubCategoryID =

Listing 3.3 Using a query parameter to filter the query data

PARAMETER-DRIVEN REPORTS 91

 PSC.ProductSubCategoryID
INNER JOIN ProductCategory PC ON PSC.ProductCategoryID =
 PC.ProductCategoryID
WHERE DATEPART(YY, SOH.OrderDate) = @Year
GROUP BY ST.Name, PC.Name, PC.ProductCategoryID
ORDER BY ST.Name, PC.Name

In the listing, we are specifying a named report parameter called Year. Now
run the query. When the Graphical Query Designer parses the query, it dis-
covers the parameter and displays the Define Query Parameters dialog box,
as shown in figure 3.17.

Step 4 Enter 2003 and click OK. The query retrieves the sales orders placed in 2003.

Once the Graphical Query Designer parses the parameter, it will add the parameter to
the parameter list defined for this query, which can be seen on the Parameters tab of

Figure 3.17 To set up a parameter-driven query, specify parameter placeholders.

92 CHAPTER 3 WORKING WITH DATA

the Dataset dialog box (figure 3.18). To view the dataset properties, select it in the
Dataset drop-down list and click on the ellipsis button next to it.

At this point, the parameter is associated with the dataset query. In addition, the
Report Designer automatically creates a report-level parameter with the same name
and links the query-level and report-level parameters together. The reason behind this
behavior is that the Report Designer assumes that the parameter should be accessible
from external callers.

NOTE To pass the parameter value from outside the report—for example, from
client applications—you need to create a report-level parameter.

Let’s now see how we can work with report-level parameters.

3.4.3 Setting up the report-level parameters

To allow end users to set the value of the query parameter, you need to create a report-
level parameter and associate it with the query-level parameter.

If you want to see all report-level parameters defined for a given report, select the Report
Parameters submenu item from the VS.NET Report menu. The Report menu is available
only in Data or Layout mode (when the Data or Layout Report Designer tabs are active).

Figure 3.19 shows the Report Parameters dialog box for the Sales by Territory
Interactive report.

As we said earlier, by default the Graphical Query Designer will assume that the
report parameter will be publicly accessible and pairs each query-level parameter with

Figure 3.18 Use the Dataset dialog box’s Parameters tab to see all

parameters defined in the dataset query.

PARAMETER-DRIVEN REPORTS 93

a report-level parameter. However, you can manually add or remove report-level
parameters if needed.

One scenario that calls for adding parameters manually is when you need more
parameters than the report query(s) takes. For example, you may need a parameter to
pass some value that is used in an expression.

Why would you want to remove a report-level parameter? This can be useful if you
don’t want the users to pass values to it. For example, the query parameter may be
derived internally using an expression and it may not make sense to expose it to the
end user. Parameters don’t have a Visibility property you can set to hide them. Instead,
you achieve the same effect by removing them from the Report Parameters dialog box.

NOTE When you remove a query parameter, the Report Designer doesn’t assume
that you want to remove the report parameter as well. It leaves the report
parameter in the report, which may result in an orphaned publicly accessi-
ble parameter. To “fix” this, open the Report Parameters dialog box and
remove the parameter.

Figure 3.19 Use the Report Parameters dialog box to set up the report parameters.

94 CHAPTER 3 WORKING WITH DATA

Using the Prompt field

The Prompt field allows you to specify a parameter label that will appear on the stan-
dard report toolbar. Enter Year: for the Year prompt.

Leaving the prompt field empty results in a read-only parameter that will not show
in the standard report toolbar when the report is requested by URL. Moreover, trying
to set the parameter explicitly when requesting the report either by URL or SOAP will
result in an error. A read-only parameter must have a default value associated with it.

Read-only parameters can be useful for reports that require fixed parameter values.
For example, you may have a “Sales by Quarter” report that shows the data for a given
quarter that is passed as a parameter value. Let’s say that at some point you want to
prevent users from running this report for an arbitrary quarter. Instead, you decide to
default the parameter value to the current quarter. One way to hide the parameter is
to remove it from the report-level parameters. Another option to hide the parameter
temporarily is to make it read-only by removing the parameter prompt.

Specifying the parameter data type

The Data type drop-down list restricts the available choices to Boolean, DateTime,
Integer, Float, and String. If you wonder why there are no other types available, recall
the fact that RS runs in its own isolated process. This requires all parameter values to
be serialized between the report consumer and the Report Server. For this reason, the
choice of the parameter data types is restricted only to .NET primitive types that can
be passed by value.

Note that the Report Server automatically casts the parameter values to the data
type you specify. For this reason, you can use the methods of the .NET data type struc-
ture to retrieve or set the parameter value. For example, if you set the parameter type
to DateTime, you can use the DateTime.Year property to get to the year because
the values of date type in .NET are represented by the DateTime structure.

We will see more expression examples in chapter 5.

Passing default values

The Allow null value option in the Report Parameters dialog box indicates if NULL
can be passed as a report value. If a default parameter value is not specified, clearing
the check box in effect makes the parameter required. The Allow blank value option
is available only for the String data type and means that an empty string can be passed
as a report value.

Let’s go back to the Sales by Territory Interactive report and change the data type of
the Year parameter to Integer. Finally, to make the parameter required, make sure that
the Allow null value check box is cleared. Now, let’s preview the report (figure 3.20).

The report toolbar changes to accommodate the Year parameter. Note that if
you leave the year field empty, the report is not generated because the year is a requi-
red parameter.

PARAMETER-DRIVEN REPORTS 95

Defining nonqueried lookup parameter values

So far, so good. But what if we want to restrict the user to select a year from a pre-
defined list of years? For example, it doesn’t make sense to allow the user to type 2005
if there are no sales orders placed in that year. To accomplish this, we can define param-
eter available (lookup) values.

In the Report Parameter dialog box, make sure that the Non-queried radio button
is selected in the Available values radio group. Then, type the allowed years in the grid,
as shown in figure 3.21. Let’s also default the Year parameter to 2004 by entering this
value as a Non-queried default value.

Preview the report again using the Preview tab and note that the report is generated
for the default year of 2004 and the Select Year field is now a drop-down list from
which the user can pick one of the available values.

With RS you are not restricted to static available values. You can make the list data-
driven by basing it on a query or expression. If it is based on a query, you can specify
which dataset column will be used for the default value. If the query results in more
than one row, the first one is used.

Next, let’s see how to implement a data-driven lookup list based on a dataset
retrieved from a stored procedure call.

3.4.4 Working with stored procedures

To demonstrate query-driven lookups, let’s pretend that users have requested the abil-
ity to filter out the product sales by territory by choosing the sales territory from a
lookup list. To make the list data-driven, we will create a second dataset that will be

Figure 3.20 The parameterized version of the report takes the year as a parameter.

96 CHAPTER 3 WORKING WITH DATA

generated by a stored procedure. In addition, we will synchronize the Year and Terri-
tory parameters, so that only territories that have sales in that year will be shown.

Because the Adventure Works 2000 database doesn’t come with any stored proce-
dures, I wrote a simple stored procedure called spGetTerritory that takes an
@Year input argument. You can find the spGetTerritory source code in the
sp.sql script found in the Database.dbp project.

Stored procedures advantages

As you’ve seen, the Graphical Query Designer makes generating free SQL statement
easy. However, the easy way is not always the right way. I highly recommend that in
real life you use stored procedures instead of free SQL statements. Stored procedures
offer the following advantages:

• Faster performance—The database servers parse and compile the stored proce-
dure statements.

• Reuse—The SQL statements are located in one place and can be easily reused by
another report.

Figure 3.21 Use the Non-queried option to specify a fixed list of report parameter available

values.

PARAMETER-DRIVEN REPORTS 97

• Encapsulation—As long as you keep the input and output the same, you can
change the stored procedure inner implementation as much as you like.

• Security—Stored procedures can be secured at a database level. In addition,
using stored procedures could help preventing SQL Injection attacks.

In SQL addition, a stored procedure can be used as a substitute of an expression-based
query. Instead of using expression-based queries—for example, to generate SQL
WHERE clauses conditionally—you can do this inside stored procedures.

For these reasons, we use stored procedures in this book wherever it makes sense
to do so.

Using a stored procedure as a dataset query

You can fill your report datasets with data from stored procedures. Let’s see how using
the Graphical Query Designer.

Once you install the spGetTerritory stored procedure, make sure to grant
EXECUTE permissions to the database login that the AW2000 Shared DS shared data
source uses.

The spGetTerritory procedure retrieves the list of the sales territories that
have orders placed in a given year, as shown here:

CREATE PROCEDURE spGetTerritory (@Year int)
AS
SET NOCOUNT ON

SELECT DISTINCT ST.TerritoryID, ST.Name AS Territory
FROM SalesTerritory ST INNER JOIN
 SalesOrderHeader SOH ON ST.TerritoryID = SOH.TerritoryID
WHERE DATEPART(YY, SOH.OrderDate) = @Year
ORDER BY ST.Name

To use this stored procedure as a source for the lookup dataset, follow these steps:

Step 1 Create a new dataset dsTerritory and set the command type to StoredProce-
dure, as shown in figure 3.22.

Step 2 Enter spGetTerritory in the “Query text” textbox or leave the query string
blank at this point and click OK to select it later. The Graphical Query
Designer shows the Stored Procedure drop-down list, which lists all stored
procedures that the AW2000 Shared DS database login has permissions to
execute. Select spGetTerritory, as shown in figure 3.23, and run the query.
The designer displays the familiar Define Query Parameters dialog box.

Step 3 Enter 2004 and click OK to see the stored procedure call results.
Step 4 Now, open the dataset properties. Switch to the Parameters tab and observe

that there is a @Year parameter and its value is set to Parameters!Year.Value.
Because we already have a Year report parameter, which we needed for the
first dataset, the designer has correctly linked the dsTerritory Year parameter
to the Year report parameter.

98 CHAPTER 3 WORKING WITH DATA

Defining query-based lookup parameter values

Now, it is time to set up the available values for the Territory parameter. Open the
Report Parameters menu from the Reports main menu and set up the Territory param-
eter settings, as shown in figure 3.24.

Go back to the Data tab, select the report dataset in the Datasets drop-down list,
and in the Query pane of the Graphical Query Designer change the SQL WHERE
clause of the dataset query to filter data by the Territory parameter, as follows:

WHERE (DATEPART(YY, SOH.OrderDate) = @Year) AND
 (ST.TerritoryID = @Territory)

Figure 3.22 To use a stored procedure as a query statement, enter its

name in the Query string text area.

Figure 3.23 When a stored procedure is used as a query text, the Graphical Query Designer

shows the list of stored procedures.

PARAMETER-DRIVEN REPORTS 99

Now preview the report, as shown in figure 3.25. Note that changing the year results
in refreshing the Product Category drop-down list so only product categories associ-
ated with that year are shown.

You may think that the parameter settings (available, default, and null values) that
you set using the Report Parameters dialog box are useful only if the report includes the
standard report toolbar. Actually, this is not the case. Before the report is processed, the

Figure 3.24 Use the From query settings to define data-driven lookup parameter datasets.

Figure 3.25 The Sales by Territory report with Year and Product Categories

parameters

100 CHAPTER 3 WORKING WITH DATA

Report Server parses the report request, validates the report parameters, and matches
them against the list of available values. For example, if you request the Sales by Ter-
ritory report via the Report Server Web service and pass 2010 as the year parameter,
the Report Server will throw an “invalid parameter” exception.

The automatic validation that the Report Server performs can be both a blessing
and a curse. It could backfire when you don’t really need it. This may be the case when
you have a report that requires multiselect parameters, as the Purchase Orders report
that we create in chapter 10 demonstrates. For example, you could have a report that
takes an Employee parameter. A client front end may allow users to select a single
employee or multiple employees from an Employee list.

At first attempt, you may opt to set up parameter available values in the Report
Designer, so the client application could retrieve them from the Report Server to pre-
populate the parameter list with the lookup values. All will work well until you try to
pass multiple parameter values to the Report Server. When validating the report
parameters, the Report Server will choke and reject the report request because it won’t
find a match against the employee column. This would have been possible if there had
been a way to turn off the available values validation. We see a similar scenario in chap-
ter 10 and discuss possible workarounds.

3.5 DATA LIMITATIONS

Reporting Services goes a long way to satisfy various data needs, but it has its own
limitations. This section discusses a few you may encounter when you set up your
report data.

3.5.1 Data source limitations

The following are not supported:

• Dataset “binding”. First, binding to external datasets—or any other structures
for that matter—is not supported. By external, I mean a dataset that is not pro-
duced as a result of a report query, but rather is passed by another application.
For example, a .NET application may want to retrieve a dataset from its business
layer or a web service and generate a report off its data. As I’ve pointed out, the
reason for this limitation is that the Report Server doesn’t share the client pro-
cess space so passing objects by reference is not possible. As a workaround, you
can write a custom data extension that serializes the dataset and passes it as a
report parameter, as you will see in chapter 15.

• Reporting off XML documents. It would have been nice if you could use an XML
schema to define the report dataset. This would allow XML-enabled applica-
tions, such as Microsoft Word or Excel 2003, to integrate with RS and generate
reports by submitting saved-to-XML documents to the Report Server. In the
case of SQL Server, it could have made it also possible to use FOR XML state-
ments. Again, you have to put on your developer’s hat and create a custom data
extension if the requirements call for reporting off XML.

RESOURCES 101

• Multiple-resultset stored procedures. Only the first resultset is exposed. Output
stored procedure parameters are not supported either.

3.5.2 Parameter limitations

• Custom parameter validation is not supported with RS version 1.0.

• Available values validation cannot be turned off.

There are also other parameter limitations specific to the report toolbar that we discuss
in chapter 9.

3.6 SUMMARY

In this chapter, you learned how to set up report data, which is a prerequisite for cre-
ating data-driven reports. We emphasized the fact that with RS you can report off vir-
tually any data store that exposes its data in a tabular format.

We began by showing you how to set up the report data source. Then, we explored
how to create one or more datasets to feed the report with data.

You saw how to use the Graphical and Generic query designers to author queries,
and we examined the role that parameters play in custom-tailoring report queries.
Along the way, we showed you how to create parameter-driven reports. Finally, we
looked at some limitations of the RS data architecture.

You will use the knowledge you have harvested in this chapter to create many inter-
active parameter-driven reports throughout the rest of this book. In addition, you have
probably started seeing the advantages of the RS service-oriented architecture in terms
of deployment, such as zero client deployment requirements and interoperability with
wide range of clients.

Now that you have a good grasp of working with report data, it is time to see how
you can use the Report Designer to lay out reports. The next chapter will demonstrate
how to design various kinds of professional-looking reports with the Report Designer.

3.7 RESOURCES

Accessing Data with ADO.NET
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/
cpconConnectionPoolingForSQLServerNETDataProvider.asp)—A chapter from
the VS.NET documentation that discusses database connection pooling.

Designing Data Tier Components and Passing Data Through Tiers
(http://msdn.microsoft.com/architecture/application/default.aspx?pull=/library/
en-us/dnbda/html/BOAGag.asp)

A good best practices read from the MSDN .NET Architecture Center, which
might be interesting for .NET developers. Learn how to best expose your data to
Microsoft .NET applications and how to implement an effective strategy for
passing data between the tiers in a distributed application.

102

C H A P T E R 4

Designing reports
4.1 Anatomy of a report 103
4.2 Designing tabular reports 109
4.3 Designing freeform reports 119
4.4 Designing Chart Reports 124
4.5 Designing crosstab reports 129

4.6 Designing Subreports 135
4.7 Designing multicolumn reports 138
4.8 Summary 140
4.9 Resources 141

Once you’ve set up the report data, you can proceed with laying out the report itself.
To accomplish this task with the Report Designer, use the Layout tab. As we saw in
chapter 1, Reporting Services supports various report types. In this chapter, we see how
the Report Designer can help us design many versatile and professional-looking
reports. In the following sections, we

• Discuss the main parts of the report layout

• Explain how to use data regions and report items

• Create many sample reports to put what we’ve learned into practice

Because the report design process is very interactive, the best way to present this chap-
ter is by example. After each report type explanation we will create a sample report. At
the end, we will have worked through creating tabular, freeform, chart, and matrix
reports, as well as subreports and multicolumn reports.

Unlike chapter 1, in which we used the Report Wizard to quickly create the Sales
by Territory report, we will create the sample reports in this chapter using the
Report Designer.

ANATOMY OF A REPORT 103

4.1 ANATOMY OF A REPORT

To be an effective report author, you need to have a good
grasp of a report’s anatomy. RS reports consist of sections
(also called bands) that can contain report elements.
Report elements include data regions and report items.
Take, for example, the Sales by Territory report shown
in figure 4.1.

We have enabled the Page Header and Page Footer
options from the Visual Studio .NET Reports menu, so
the Page Header and Page Footer bands are visible.

The report sections are the page header, report body,
and page footer. To lay out a report, you drag and drop
report elements from the Report Items toolbar (shown
in figure 4.2) to the report body section.

NOTE In my opinion, the Report Items toolbar should have been named Report
Elements because it contains not only report items but data regions as well.
To avoid confusion, I will use the term “report elements” to refer to both
report items and data regions.

For example, instead of using the Report Wizard, we could have authored the Sales
by Territory tabular report from scratch by dragging the table region from the Report
Items toolbar and dropping it in the body section. Then, we could have dragged and
dropped the report dataset fields inside the table region. If we had done this, the table
region would have created textbox report items behind the scenes to display the
dataset data.

Figure 4.1 A report includes header, body, and footer sections.

Figure 4.2 You can drag

data regions and items

from the Report Items

toolbar to the report body.

104 CHAPTER 4 DESIGNING REPORTS

4.1.1 Getting started with a new report

Before you start laying out a new report, we would suggest that you review the report-
level properties and make the appropriate changes right from the beginning. For example,
you may want to review and change the page size and margins settings. Experiment
with the grid setting to set up the layout grid so you can “snap” the report items as you
position them on the report canvas.

To view the report properties, select the report by clicking the Report Selector (the
top leftmost square shown in figure 4.1). Then, right-click and choose Properties, or
work directly with the VS.NET Properties window. You will recognize some of the
report properties, such as the ReportParameters property, which, when selected, opens
the familiar Report Parameters dialog. Please leave the rest of the properties for now.
We will discuss them on an as-needed basis.

Let’s look at each of the parts of the report anatomy in more detail.

4.1.2 Understanding report sections

An RS-based report consists of three main sections:

• Page Header—The page header content is displayed at the top of each page.

• Report Body—A report always has a body section, which is where most of the
report content will be located.

• Page Footer—The page footer content is displayed at the end of each page.

A report can optionally have Page Header and Page Footer bands, displayed at the top
and bottom of each page, respectively. By default, the page header and footer content
appear on every report page, including the first and the last. You can suppress the
header and/or footer on the first and/or last page of the report by changing the Print-
OnFirstPage and PrintOnLastPage setting from the properties.

Headers and footers can contain only static text and images. RS reports don’t have
designated report header and footer elements. Instead, you can use the Report Body
band to place items that need to appear once at the beginning or end of the report.

Let’s now discuss the various building blocks included with the Report Designer
and how they can be used to lay out different types of reports. By no means will we
try to enumerate each property of every report element. For this, you’ll need to turn
to the RS documentation, which provides excellent step-by-step instructions. Instead,
after providing a high-level overview of the report structure and elements, we will walk
you through the process of creating various reports by example.

ANATOMY OF A REPORT 105

4.1.3 Understanding report items

With RS you can use the following report items to display data and graphical elements,
as shown in table 4.1.

Some of the report items shown in table 4.1 deserve more attention.

Working with images

The Report Server supports the following image formats: JPG, BMP, GIF, and PNG. To
display the actual image in the image report item, you set the Source property. The
image source can be defined as

• Embedded—In this case, the image data is serialized (MIME-encoded) and
embedded in the report definition file. When the report is uploaded to the
report catalog, the image is saved in the Report Server database. If you embed
the same image in different reports, each report gets its own copy of the image.
Similarly to working with report-specific data sources, you use the embedded
image option when you want to distribute all report-related items in one file.

• External—The image refers to an image file that is located in the same project.
With this option, only the name of the image is stored in the report definition
file. The actual image is shared across all reports that use it. This simplifies image
maintenance because if the image is updated, the change will propagate through all
reports that reference the image. You typically use external images for implementing
report banners and logos. For example, all the reports inside the AWReporter
project use an external image (AWC.jpg) to display the company logo.

• Database—The image is bound to an image column from the report dataset.
For example, the Product Catalog report included in the RS samples uses this
option to show the product image for each product.

Table 4.1 Use report items to display data and graphical elements.

Report Item Description

Textbox The textbox is the report item that you will use most often to display text informa-
tion. Textbox elements can contain static text or data from the underlying data
source. You can use expressions for the textbox content.

Image You use the image item to display binary images for visual effects (backgrounds,
logos, etc.) or to display data stored as images from the report data source.

Subreport The subreport item defines a placeholder that points to another report.

Line The line item is a graphical element that you can use to enhance the presentation
of your report, e.g., to separate a report group from its details.

Rectangle Rectangles can be used in two ways: as a graphical element and as a container for
other report items. Users familiar with .NET development can make an analogy to
the panel element. Similarly to the panel, you can place report items within a rect-
angle and you can move them with the rectangle.

106 CHAPTER 4 DESIGNING REPORTS

The external image option deserves additional attention. We usually try to shy away
from storing images in the database for performance and maintenance reasons. A bet-
ter approach would be to store just the image URL that points to the image file located
on a network share or another web server.

For example, let’s say you have an employee table that stores the employees’ pic-
tures among other employee-related data. You have two implementation options:

• You can define that column as an image type and store the employee pictures in
binary format.

• Better, you can store just the image URL path, e.g., //imageserver/images/empid.gif.

The release version of RS restricts the external image option to images defined in the
local project only. In fact, it doesn’t allow you to specify image URLs that point to any-
where else but to image files located in the same Business Intelligence project. How-
ever, the RS Service Pack 1 (SP1), which will probably be out by the time you read
this book, will support referencing image files by URL. The preliminary feedback we
got from the RS team is that external images will work the same way as the images
stored in the catalog. A configurable low-privileged user account will be used to
retrieve the image from the given URL. This will allow you to use true “external”
images in your reports.

Working with subreports

The subreport item defines a placeholder that points to another report. Usually, you
opt for subreports when you need to reuse an existing report. Subreports are a popular
reporting technique used to display separate groups of data with many reporting tools,
such as Microsoft Access.

With RS, you should consider using nested data regions instead of subreports for
performance reasons. If you use a subreport within your report, the Report Server has
to process both reports separately. This is less efficient than using a single report with
two regions. However, sometimes you won’t have a choice. For example, nested data
regions have a restriction that they must use the same dataset. If you want to use dif-
ferent datasets that need to display correlated data, then the only choice is to create a
subreport. We will look at subreports in more detail in section 4.6.

Working with rectangles

An important (but not so obvious) use for the rectangle item is to group things
together so that they move as a unit. In this respect, the rectangle item represents a
WinForm panel control that can be used to enclose other controls.

Sometimes, items will get pushed out of alignment with other items on the page.
You can group them together with an invisible rectangle and they will get moved
together. You will see an example of when this could be useful in section 4.3.1.

ANATOMY OF A REPORT 107

4.1.4 Understanding data regions

Besides report items, the Report Items toolbar includes more sophisticated report ele-
ments referred to as data regions.

While you can use stand-alone textbox and image report items to display data, they
are most useful when they display repeating rows of data from a report dataset. In
chapter 3 you saw how RS uses datasets to represent the results of queries returned by
data providers. To bind report items to datasets, you use data regions. In this respect,
.NET developers may relate RS data regions to ASP.NET data-bound controls, such as
the data repeater control.

Table 4.2 lists the data regions that RS supports and how they can be used to create
different types of reports.

To fill in a data region with data you bind the data region to a dataset by setting its
DataSetName property.

NOTE The Report Designer automatically associates a dataset with a data region
when you drag and drop a dataset field to the data region.

Data regions are designed to generate repeating sections of data. For example, to dis-
play the sales numbers of the Adventure Works sales territories in the Sales by Territory
report, we use a table region. During the report processing stage, the Report Server
executes the dataset query, populates the dataset, and passes it to all data regions bound
to it so they can render themselves.

All data regions except the chart region can act as containers for other report items.
Considering again the Sales by Territory report, you can see that the table data region
is a container for the textbox report items that generate the data in the table columns.

Table 4.2 Reporting Services comes with a number of data regions for different types of reports.

Region Report Type Description

Table Tabular The table data region generates as many rows as the number of
records in the underlying dataset. You can optionally group or sort
data by fields or expressions. For example, for the Sales by Terri-
tory report, the Report Wizard automatically generated a table data
region to render the report data in tabular format.

List Freeform When using the list region, you are not restricted to static columns
as with the table region. Instead, you can arrange report items any
way you want. Microsoft Access users will find that the list region
allows them to place items arbitrarily, similarly to how they lay out
a report in Access.

Matrix Matrix (crosstab) The matrix region can include dynamic columns. Dynamic columns
can be configured as hidden. The user can expand a hidden
dynamic column to see more data, i.e., drill down into the data.

Chart Chart As its name suggests, the chart region displays the report data in
chart format. Various kinds of chart types are supported, such as
bar, pie, graph, and many more.

108 CHAPTER 4 DESIGNING REPORTS

At this point, you may ask, “Why do we need data regions at all, when we can place
report items directly onto the report?” The short answer is flexibility. The next section
should make this clear.

Data region advantages

The advantages of using data regions are as follows:

• They can be used as “supercharged” subreports, as we explain next.

• They can be placed side by side and draw data from separate datasets.

Reports can vary greatly in their layout and complexity. A very simple report might
need to display the data in a tabular format only. A more complicated report, however,
may include different sections, each of which might be rendered in a different way.
Those of you familiar with Microsoft Access know that complex reports need to be
broken into subreports. We will discuss subreports in more detail in section 4.6.

With RS, you will find that in most cases you don’t need subreports. Instead, you
can use individual data regions. This is possible because the data regions can be nested
inside other data regions, as we will see shortly in this chapter. In addition, you can
place a data region anywhere you want inside the report body.

You can also position data regions side by side, and each of them can have its own
datasets and be independent from the others. For example, you can place a chart and
table region side by side. The chart region can display the company sales per terri-
tory in chart format, while the table region can provide a breakdown per product
and territory.

Another example where side-by-side data regions could be useful is in a multisec-
tion report. For example, imagine that you need to author a sophisticated report that
includes a few sections. Based on some business rules, the report may not show certain
sections. One way to achieve this requirement would be to break down the report data
in sections and implement each section as a separate data region. Then, you could pro-
grammatically hide the sections during the report runtime using expressions.

Binding data regions to report datasets

In order for the data regions to display data they must be associated with a dataset. You
don’t have to manually bind a data region to a dataset. Once you drag and drop a
dataset field to the data region, the Report Designer links that region to the dataset, as
you can see by inspecting the DataSetName property of the region. You can also man-
ually associate a region to a dataset. This could be useful, for example, if you change
the dataset name.

You can customize the message that is displayed inside a data region if the under-
lying dataset has no rows by using the NoRows property, which every data region
has. The default setting is an empty string. For example, if the report query results
in no rows, you can let the user know by setting the NoRows property to No Data
to Display.

DESIGNING TABULAR REPORTS 109

Setting up paging

As explained in chapter 1, a report can be requested in any RS-supported rendering
format. Some formats, such as image and PDF, support page sizes and will repaginate
the report based on the page size you specify. Others, such as HTML, will not honor
the page size settings and render all data in one page (please see the “Working with
Multiple Pages” topic in the RS documentation for more information). In such cases,
you can use page breaks to improve the report performance.

It may seems strange at first that RS doesn’t specifically include a page break ele-
ment to allow you to arbitrarily force a page break at specific point of the report.
Instead, each data region has several page break–related properties that you can use to
force a page break before and/or after the region. You can also enforce page breaks
before and after region groups. You will see how to use region groups to group related
data together in section 4.2.1.

Version 1.0 of Reporting Services doesn’t support predefined page layouts and
sizes. Instead, you have to explicitly define the page size in units on the Report Prop-
erties dialog.

TIP Sometimes, you may need to have control over the number of rows per
page for tabular reports. You can accomplish this by using details group-
ings (discussed in 4.2.1) based on expressions. For example to display
25 rows per page, follow these steps:

• Add a group to the table and group on the following expression:
=Ceiling(RowNumber(Nothing)/25)

• Turn off the group header and footer.
• Turn on PageBreakAtEnd on the group.

If you need web-style paging, you could try using report hyperlinks, the ap-
proach we describe in chapter 5.

Now that you’ve learned about the report layout at a high level, let’s see how to put this
knowledge in practice by creating different types of reports, starting with tabular reports.

4.2 DESIGNING TABULAR REPORTS

You create tabular reports by using the table data region. You can optionally define
report groups by grouping the table region data by fields or expressions.

Tabular reports with groups

The first report that we created in chapter 1, the Sales by Territory report, is an exam-
ple of a tabular report. Let’s enhance it by grouping data.

If you preview this report, you will notice that we didn’t quite meet the original
requirements. The sales management requested that we group the sales data by terri-
tory. However, we’ve just hidden the duplicated territory names. Let’s fix this by using
table region groups. The final version of the report is shown in Figure 4.3.

110 CHAPTER 4 DESIGNING REPORTS

Creating a table region group

To group the report data by territory, complete the following steps:

Step 1 Open the Sales by Territory Interactive report.

Step 2 Click the table so that the row and column handles appear next to and above
the table region.

Step 3 Right-click the handle of any row and select Insert Group. The Grouping
and Sorting Properties dialog appears, as shown in figure 4.4.

Step 4 Change the group name to grpTerritory.

NOTE I highly recommend that you come up with a good naming convention for
report item names and use it consistently. It doesn’t matter what it is; what
does matter is that you have one. You will realize its benefits when you start
referencing the report items in expressions. I try to use three-letter prefixes,
e.g., txt for textboxes, grp for groups.

Step 5 From the Group On field, select the Fields!Territory.Value field from the
drop-down list.

Step 6 Select the Include Group Footer checkbox to generate group footers after
each group to include the sales totals per territory, and then click OK.

Figure 4.3 Sales by Territory report grouped by territory

DESIGNING TABULAR REPORTS 111

Step 7 Next, move the Fields!Territory.Value to the group header by dragging the
field (select the field and click on the selection border) from the group detail
section to the group header. At this point, your report layout should look like
the one shown in figure 4.5.

Moving the textbox to the group header let us display the territory name
only once, at the beginning of each new group.

Figure 4.4 Creating a new group

Figure 4.5 Adding the territory group headers and footers

112 CHAPTER 4 DESIGNING REPORTS

Creating group subtotals

A common requirement for report groups is to include group subtotals. Let’s create a
group subtotal that shows the sales per territory.

Step 1 In the group footer cell of the Territory column (see figure 4.5), type the fol-
lowing Visual Basic .NET expression:

= Fields!Territory.Value & " Totals:"

Step 2 To create a subtotal for the territory group, enter the following expression in
the group footer cell of the Sales column:

= Sum(Fields!Sales.Value)

Now, let’s create a grand total footer for the whole table.

Step 3 Select the table. Right-click the handle of any row and choose Table Footer.
In the Territory cell type Grand Totals:. In the Sales cell type the same
expression as in the group footer:

= Sum(Fields!Sales.Value)

Using details grouping

The table region grouping capabilities are not limited to creating group headers and
footers only. Instead, the table details data can also be grouped. For example, imagine
that the table dataset contains the daily sales data, but you need to consolidate it by
quarters. One option would be to perform the consolidation at the database by chang-
ing your dataset query. This will also be the best option in terms of performance.

When this is not possible, you can group the details by using the Details Grouping
button on the Groups tab of the table region properties. In our case, to consolidate
the data in quarters, we will need to add two expressions to the Group On grid: one
to group the data by years and one by quarters. If the dataset field that contains the
sales date is named Date, then the expressions will be Fields!Date.Value.Year
and DatePart("q", Fields!Date.Value), respectively.

Using image items

The Sales by Territory report also demonstrates how you can use an external image file
as a background image. The report uses the Confidential.jpg image as a background
image of the table region. Once we created the image, we used the table region prop-
erties to set the BackgroundImage Source property to External, Value to Confiden-
tial.jpg, and BackgroundRepeat to NoRepeat.

Finally, you might want to experiment with borders, fonts, colors, and formatting
to make the report more eye-catching.

DESIGNING TABULAR REPORTS 113

4.2.1 Parameterized tabular reports

Because we can almost feel your resentment toward the Sales by Territory report grow-
ing, we’ll create a new report from scratch to learn more about working with table
regions. Let’s say that the AWC management has requested a report that tracks the
employee performance for a given period of time. To allow users to see the sales data
filtered for a given time period and salesperson, the report needs to be designed as
parameterized. The employee sales data needs to be grouped by employee and then by
product subcategory and sorted by the employee sales total in descending order.

In its final version, the report will look like the one in figure 4.6.
Because you are already familiar with the table region, I’ll highlight a few things

worth mentioning rather than provide step-by-step implementation instructions.

Setting up the report parameter lookup values

Let’s start by setting up the report data. For this report, we have defined two datasets.
First, we have set up a dataset (dsEmployeeSales) to retrieve the available parame-

ters for the Employee parameter. This dataset gets its results from the spGetEmployee-
SalesByProductSubcategory stored procedure, which you can find in the Database
project included with the book source code.

We decided to use a stored procedure to encapsulate the data query. If we had cho-
sen a free SQL statement, we would have had to use an expression to inject the where
clause in the case where the user has requested to see all employees’ sales data. The
stored procedure takes a start date, end date, and EmployeeID as parameters. The
report defaults the start date parameter to 1/1/2003 and the end date to 12/1/2003.

Figure 4.6 The Employee Sales Tabular report with a query-based Employee parameter

114 CHAPTER 4 DESIGNING REPORTS

Next, we created the dsSalesPerson dataset to retrieve a list of all employees from
the Employee table who are also salespeople. This dataset defines the available values
for the Employee parameter. It also gives the user the option to see all employees by
using the UNION SQL operator and adding an additional record with a label of <All>
and a value of -1.

Once you have the lookup dataset defined, use the Report Parameters dialog to
configure the report parameters, as shown in figure 4.7.

To set up the available values for the Employee parameter, select the From
Query option and choose the dsSalesPerson dataset from the Dataset dropdown.
We will use the EmployeeID column from the dataset as an input parameter to the
stored procedure.

Setting up the report header

After we set up the report data, we designed the report as a tabular report.
First, we created the report header. As we mentioned in section 4.1.2, RS doesn’t

provide designated report header and footer sections. Instead, you can achieve the
same effect by placing elements at the top of the body section. For the purposes of
the Employee Sales Tabular report, in the body section of the header, we added a
rectangle report item with two textboxes: one for the name of the report and another

Figure 4.7 Setting up the Employee parameter available values

DESIGNING TABULAR REPORTS 115

to display the parameter information. The second textbox is based on the following
VB.NET expression:

="Sales for " & Parameters!Employee.Label & " from " _
& Parameters!StartDate.Value & " to " & Parameters!EndDate.Value

We will postpone discussing expressions until the next chapter. For now, this is a sim-
ple VB.NET expression, which concatenates the label (the visible text) of the Employee
parameter with the requested date range.

In addition, we used a rectangle for the report header. Inside, we dragged and
dropped the AWC.jpg image file, which you can find included in the project. Because
this image can be potentially used by all corporate reports, for easier maintenance we
decided to reference the image as an external image. The easiest way to do that is to
add the image file to the project. Then, you drag and drop the image to your report.
Another option is to drag and drop the image item from the report toolbox, which
starts the Image Wizard. Please note that as a part of the report deployment process,
you have to deploy all external images that the report uses.

Laying out the tabular report

Now it’s time for the fun part. For the tabular portion of the report we used a table
region called tblEmployeeSales. First, we dragged and dropped a table region from the
toolbox, as shown in figure 4.8. By default, the table region has a table header, details,
footer rows, and three columns.

Once we dragged and dropped the table region below the header rectangle, we popu-
lated it with the dataset fields, as shown in figure 4.9.

The easiest way to accomplish this is by dragging and dropping the fields from the
Fields window to the appropriate cells. Once you drag the first field and drop it onto
the table region, the Report Designer associates the data region and the dataset, as you
can see by looking at the DataSetName region property.

You can manually associate a region with a dataset by expanding the DataSetName
dropdown and specifying a dataset explicitly. Manually associating a region with a
dataset is necessary when you rename the region dataset and when you want to replace

Figure 4.8

The table region with

default settings

Figure 4.9 To populate a table region, drag and drop these dataset fields.

116 CHAPTER 4 DESIGNING REPORTS

the dataset with another one. The Report Designer automatically generates a textbox
report item once the field is dropped into a cell.

Next, we need to create the appropriate table regions groups to group data by
employee and product subcategory.

Grouping the table region data

We defined two groups: grpEmployee and grpProductSubcategory. You can view the
group definitions by clicking anywhere within the table region, selecting the group selec-
tor located on the left row handle, and choosing Edit Group from the context menu.

Alternatively, to get to the Group dialog, you can follow these steps:

Step 1 Once the table is selected, click on the table selector square (the top left-
most square). At this point, the table selection border changes, as shown in
figure 4.10.

This puts the table region in Edit mode, so you can resize it or drag it to a
new location.

Step 2 Now, you can right-click anywhere on the border and choose Properties to
view the table region properties.

The Groups tab shows the defined groups, which in our case look like the ones shown
in figure 4.11.

If you click the Edit button, you will see that the Group on expression for the first
group is set to Fields!EmployeeName.Value. This groups the report data by
employee. The second group is set to Fields!ProductSubcategory.Value. It
groups the product data by category and creates the product subcategory header and footer.

NOTE In general, if you want to achieve better performance, I recommend that
you delegate as much data manipulation and massaging as possible to the
database. This is what the database is designed for. For example, the Em-
ployee Sales Tabular report does all the grouping and sorting in the
spGetEmployeeSalesByProductSubcategory stored procedure. It sorts the
data by Employee Name in ascending order and then by sales amount in
descending order. I use report grouping only to define labels for the col-
umns and totals in the footers.

Figure 4.10 To put the table region in Edit mode, click twice so that the table border selection

changes as shown.

DESIGNING TABULAR REPORTS 117

4.2.2 Tabular reports with interactive features

Another interactive feature, besides parameters, that you can add to your tabular
reports is visible-on-demand groups. For example, if the table region has two groups
nested one within the other, the parent group can act as a toggle to show/hide the
nested group. The table region automatically generates an image that the user can click
to expand/collapse the nested group. This visible-on-demand technique can give your
tabular reports a “briefing” look.

The Employee Sales Tabular Interactive report shown in figure 4.12 demonstrates
the visible-on-demand interactive feature.

The new version of the report hides the product subcategory group by default. The
user can click the plus indicator to expand the Product Subcategory section and see
its details. Users experienced with designing web content will probably agree that
designing collapsible sections using JavaScript code and DHTML is not that straight-
forward. The process usually involves wrapping the section in a DIV element and call-
ing client-side JavaScript code to show/hide the section.

Using the Report Designer, creating a visible-on-demand section is a matter of setting
the nested group visibility to be toggled by the parent group, as shown in figure 4.13.

The choice of which textbox item you select in the Report Item drop-down is
important because the expandable plus image will be placed immediately before this
item. In this case, in the Report Item drop-down, we selected lblProductSubCategory,
which is the name of the textbox with a value of Product Subcategory.

Figure 4.11 Defining table region groups

118 CHAPTER 4 DESIGNING REPORTS

Figure 4.12 This tabular report has visible-on-demand groups that can be expanded by clicking

the plus sign next to them.

Figure 4.13 Creating visible-on-demand groups

DESIGNING FREEFORM REPORTS 119

4.2.3 Table region limitations

To summarize, the table region works great for simple tabular reports. However, when
report complexity increases, you might find the tabular layout restrictive. For example,
with the table region, your layout options are restricted to static columns. If the group
header and table details have the same number of columns, everything is great. Other-
wise, you will find yourself creating new columns and merging existing ones.

For example, the Employee Sales Tabular report sample needs three columns for
the Employee group, while it needs four for the Product subcategory group. To solve
this, we defined four columns at the table level. Then, for the Employee group, we
merged the last two columns by selecting both of them and choosing Merge Cells from
the context menu. As you can see, as the complexity of report layout increases, the
table region might soon get in the way.

4.3 DESIGNING FREEFORM REPORTS

When the table region is not enough, you can use the list region to create freeform
reports. As their name suggests, freeform reports allow you to arrange items arbitrarily
inside the list region.

4.3.1 Freeform reports with nested regions

Figure 4.14 shows the new version of the Employee Sales report (Employee Sales Free-
form), which now uses list and table regions, with the table region nested inside the
list region.

At first glance, the report looks the same. However, the employee information sec-
tion is now located to the left of the product sales section and its text boxes are
arranged in a freeform way, one below the other.

Figure 4.14 Use freeform reports when you need to lay out items arbitrarily on the report

canvas.

120 CHAPTER 4 DESIGNING REPORTS

Working with list regions

Here’s how we authored the report:
First, we dragged and dropped a list region from the report toolbar and named it

lstEmployeeSales. Then, we grouped the list by Employee Name, similar to how the
table region was grouped before. To accomplish this, we selected the list region, right-
clicked, and chose Properties. Then, we clicked the Edit Details Group button, as
shown in figure 4.15.

This brought us to the familiar Grouping Properties dialog where we defined a new
group based on the following grouping expression:

=Fields!EmployeeName.Value

The screenshot in figure 4.15 was taken with Reporting Services Beta 2. Unfortu-
nately, there is a bug in the RTM that the PageBreakAtEnd element does not appear in
the List Group dialog for list regions. The functionality is still there, but you have to
edit the RDL by hand and add <PageBreakAtEnd>True</PageBreakAtEnd>
inside the Grouping element. For the Employee Sales Freeform report this should look
like this:

<Grouping Name="grpEmployee">
 <GroupExpressions>
 <GroupExpression>=Fields!EmployeeName.Value</GroupExpression>
 </GroupExpressions>
 <PageBreakAtEnd>true</PageBreakAtEnd>
</Grouping>

Figure 4.15 Defining list item groups

DESIGNING FREEFORM REPORTS 121

This PageBreakAtEnd bug will be fixed in RS Service Pack 1 slated for a release in
June 2004.

On the same dialog, we also selected the Page Break At End option to generate a
page break after the employee group is generated. Then, we moved the tblEmployee-
Sales region inside the list region and removed all groups from it. As a result, the table
region is now nested inside the list region, so both regions are synchronized.

Laying out the report

Given that we are no longer confined to static columns, we could choose to lay out the
employee fields anywhere we want. We can also add as many fields as we want without
being restricted to static columns. For instance, we added the Bonus field from the
report dataset. Had the Adventure Works database stored pictures of the employees,
we could have added an image report item to display the employee photos as well.

Finally, we enclosed all employee fields in a rectangle to prevent some of the
fields from being pushed down by the table region. Because the list region now
groups the data by employee, the table region needs to show only the product sales
in a tabular form. We defined a table header and footer to show the table region
labels and totals, respectively.

NOTE As we noted before, the rectangle report item can serve as a container for
other items. When enclosing other items, it prevents the table region from
pushing down other items. For example, if we hadn’t used a rectangle to
enclose the employee fields, the last field would have been pushed down
when the report was generated.

4.3.2 Grouping freeform data

While table and matrix regions provide multiple levels of grouping within a single data
region, lists can have only one group. This limitation might not be that obvious from
the Grouping Properties dialog because it allows you to define multiple Group on
expressions. It is important to note, though, that this will not result in true nested
groups because you won’t be able to aggregate the results at a group level. Instead, to
create two nested groups using lists, you must place a list within another list.

Let’s consider an example. What if, for the Employee Sales report, we wanted to
group by territory first and then by salesperson, so we could see the total sales amount
per territory. Figure 4.16 shows what the revised Employee Sales by Territory report
should look like.

There is a new group now, which breaks down the employee sales data by territory.
Although the screenshot doesn’t show it, before the end of each territory group there
is a textbox that totals the sales by that territory.

At your first attempt, you might think that to create the new group you could
define a new Group on expression using the Grouping Properties dialog. If you did
this, however, you would find out that you couldn’t create subtotals on the territory
level. Instead, what you need to do is to add a new list (lstTerritory) and nest the

122 CHAPTER 4 DESIGNING REPORTS

lstEmployee list within it. The prior list will group the data per territory, while the lat-
ter per employee. Figure 4.17 shows lstEmployee nested inside lstTerritory.

TIP As you add items to the report, you might find it difficult to select items.
For example, it is almost impossible to select an enclosing rectangle by try-
ing to click on its boundaries. You can tab among fields until you select the
item you need, but a better way is to use the VS.NET Properties window
and select the item from the drop-down. This will select the item in the Re-
port Designer as well.

Another even faster way to select the item container is to hit the Esc key
object when the child is selected.

Figure 4.16 To achieve additional levels of grouping with freeform reports, you can nest

data regions within other data regions.

Figure 4.17 Nesting lists for additional levels of grouping

DESIGNING FREEFORM REPORTS 123

4.3.3 Freeform reports with side-by-side data regions

As we said at the beginning of this chapter, data regions can coexist peacefully next to
one another and each of them can be bound to its own dataset. This could be useful
when you need to have sections in your report that draw data from separate datasets.

One practical application of using side-by-side regions is creating summary reports.
The Employee Sales by Territory with Summary report does exactly this. Figure 4.18
shows the new report.

The report has a summary section at the top to summarize territory sales data. To
design the report, we created a new dataset (dsTerritorySummary). Then, we added
a new table region (tblSummary) before the lstTerritory region and populated it with
the fields from the dataset, as shown in figure 4.19.

With RS, one report can have many regions of different types placed side by side.
However, as we mentioned in chapter 3, you should try to limit the number of the
report datasets for performance reasons.

Giving only text-oriented reports to users may not be enough. For example, mar-
keting people love charts so that they can spot business trends more easily. The next
section teaches you how to design chart reports.

Figure 4.18 To work with more than one dataset, use side-by-side data regions.

124 CHAPTER 4 DESIGNING REPORTS

4.4 DESIGNING CHART REPORTS

Chart reports display data in an easy-to-understand graphical format. With RS, you
can add different types of charts to your reports, including column, bar, area, line, pie,
doughnut, scatter, bubble, and stock chart types.

4.4.1 The chart data region

The chart data region is a sophisticated control, and explaining it in detail could easily
fill in a whole chapter. Most of you who have experience in authoring chart reports
using other reporting tools, such as Microsoft Graph for charting with Access-based
reports, will probably find the RS chart region similar. In this section we will give you
only the essential knowledge for working with the RS chart region. If you need more
information, please refer to the product documentation.

NOTE If you have experience using the Dundas Software chart control, you’ll find
yourself in familiar waters, since RS uses this control for charting.

To set up a chart report, you drag and drop the chart data region. Figure 4.20 shows
the default appearance of the chart region.

Once the chart region is placed on the report canvas, you can change the chart type
by right-clicking it and using the context menu or by selecting the General tab from
the Chart Properties dialog, as shown in figure 4.21.

Once you have selected the chart type, you need to set up the chart data by defining
the chart values, categories, and series.

Figure 4.19 Your reports can have data regions of different types placed side by side.

DESIGNING CHART REPORTS 125

Figure 4.20

The chart region has

data, series, and

category fields.

Figure 4.21 Changing the chart type to a pie chart.

126 CHAPTER 4 DESIGNING REPORTS

4.4.2 Working with charts

To demonstrate a practical example of a chart report, let’s assume that the AWC sales
management has requested that we change the Employee Sales by Territory with Sum-
mary report. Instead of having the report display the territory sales in a tabular fashion,
the management has requested the data to be presented in a chart format, so they can
easily see which countries are performing best.

Figure 4.22 shows the Employee Sales by Territory with Summary Chart report.
This report uses an exploded pie chart. Once we changed the chart type, we

dragged the Territory field from the dsTerritorySummary dataset and dropped it into
the data fields section. Then, we dragged and dropped the Sales YTD field into the
data fields section, as shown in figure 4.23.

As a result, the chart was configured to display Sales YTD as values and group the
sales data by Territory. In addition, using the Category Groups properties, we sorted
the data by Sales YTD so that the countries will appear on the top of the chart legend.

Also, we enabled the chart point labels (numbers on the slices) by going to the Data
tab on the Chart Properties dialog and clicking the Edit button of the Values section.
We defined the data labels as shown in figure 4.24.

Figure 4.22 You can use chart report to display the report data in an-easy-to-understand

graphical format.

DESIGNING CHART REPORTS 127

Because of the limited space on the chart, we used an expression to show the sales value
in millions. In addition, we enabled the chart legend and set the chart display type to
3D by making changes to the Legend and 3D Effect tabs, respectively.

4.4.3 Nesting chart regions

Let’s look at another example. This time, we need to include a chart in each employee
section showing the employee performance at a glance. The performance metrics
(chart data fields) will consist of the sales amount and number of orders and will be
grouped by product subcategory. Figure 4.25 shows the new Employee Sales Freeform
with Chart report.

Figure 4.23 Setting up the chart data

Figure 4.24

Setting up the

chart point labels

128 CHAPTER 4 DESIGNING REPORTS

For the purposes of this report, we changed the data source to use a free SQL statement
that includes an additional group by clause to group the data by product category.
In addition, we simplified the report by removing the employee filter. This reduces the
report datasets to one because we removed the dsEmployee dataset, which was used to
define the available values for the Employee parameter.

Next, we added a chart region inside the recEmployee rectangle and changed the
chart type to Column, Simple Column. Then, we selected both the Sales and
NoOrders fields and dropped them on the chart data fields section. After that, we
dragged and dropped the ProductSubCategory field to the chart category fields sec-
tion. We also enabled the point labels for both values and made a few other minor for-
matting changes.

Because both the list and chart regions draw their data from the same dataset, they
are in sync with each other. If the chart region needs to fetch its data from a different
dataset, you have to take an extra step to synchronize both regions, for example, by
passing the EmployeeID value from the list region to the chart dataset query.

Sometimes, it is necessary to rotate results in your reports so that columns are pre-
sented horizontally and rows are presented vertically. This is known as creating a
crosstab (pivot) report, or a matrix report according to the RS terminology.

Figure 4.25 You can nest the chart region inside another region.

DESIGNING CROSSTAB REPORTS 129

4.5 DESIGNING CROSSTAB REPORTS

To create crosstab reports with RS, you use the matrix data region. Those of you who
are familiar with Microsoft Access will find the matrix region similar to Access crosstab
queries. Many of you who have created crosstab reports in the past will probably agree
that rotating the data to create this type of report is not easy. The matrix region takes
the burden away from developers by allowing even inexperienced users to create
crosstab reports in minutes.

4.5.1 Matrix region advantages

This control brings this type of report to a whole new level by

• Supporting virtual columns to rotate data automatically

• Including interactive features by supporting expanding rows and columns to
allow the user to drill down into the data

Rotating data with the matrix region

Retrieving data from the database in a crosstab format is not an easy endeavor. In the
case of SQL Server, you have to be well versed in SQL to craft complicated statements
using CASE expressions. This is what a possible SQL Server query might look like if
you want to transpose the sales data from the Adventure Works 2000 database in quar-
ters as columns:

SELECT SUM(CASE DATEPART(QQ, OrderDate)
 WHEN 1 THEN UnitPrice*OrderQty ELSE 0 END) AS Q1,
 SUM(CASE DATEPART(QQ, OrderDate)
 WHEN 2 THEN UnitPrice*OrderQty ELSE 0 END) AS Q2,
 SUM(CASE DATEPART(QQ, OrderDate)
 WHEN 3 THEN UnitPrice*OrderQty ELSE 0 END) AS Q3,
 SUM(CASE DATEPART(QQ, OrderDate)
 WHEN 4 THEN UnitPrice*OrderQty ELSE 0 END) AS Q4
FROM SalesOrderDetail AS SOD INNER JOIN
SalesOrderHeader AS SOH ON SOH.SalesOrderID = SOD.SalesOrderID
WHERE DATEPART(YY,OrderDate) = 2003
GROUP BY DATEPART(yy, OrderDate)

And this is what the result looks like:

Q1 Q2 Q3 Q4
------------ ------------- ------------- -------------
7776157.6018 9737223.6868 16937272.0506 15226227.5317

Now, imagine that you need to display the data in a crosstab report not by quarter but
by month, within a user-defined date range, and you will start appreciating the work
that the matrix region does behind the scenes for you! The matrix region makes craft-
ing sophisticated queries to rotate data unnecessary. Instead, once you’ve defined the
virtual columns, the matrix region transposes and aggregates data automatically.

130 CHAPTER 4 DESIGNING REPORTS

Interactive crosstab reports

Making crosstab reports interactive allows users to drill down through data. For
instance, top managers are usually interested in the high-level view of the company
performance, e.g., sales by country. The mid-level management is concerned with a
more detailed view of information, specific to their domain, e.g., sales by stores.

Crosstab reports with expandable groups allow each tier of users to see the level of
detail they need. In this respect, developers who have used Microsoft Office Web
Components in the past will find the matrix region similar (although less powerful)
to the Pivot Table component. We will talk about building reports using Microsoft
Office Web Components in more detail in chapter 12.

The best way to explain how the matrix region works is to see an example, as the
next section demonstrates.

4.5.2 Working with the matrix region

Going back to our fictitious scenario, the Adventure Works sales management has
requested that you create a Territory Sales report, which will be used by the company’s
top- and mid-level sales managers. The top management would like to see the territory
sales consolidated by country on a yearly basis, while the mid-level management would
need a breakdown by salesperson per month. Instead of creating two reports, you pru-
dently decide to leverage the power of the matrix region and author only one dynamic
report. Figure 4.26 shows the Territory Sales Crosstab report.

The users can expand both rows (territories) and columns (time) to drill down into
employees’ sales data and months respectively. For example, the snapshot shows that
the user has expanded Canada to see the sales data broken down by all salespersons
who handle the Canada region. In addition, the user has decided to see the monthly
sales data for 2004, while the sales data for 2003 is displayed consolidated.

Let’s discuss the essential points of this report design process.

Figure 4.26 Using the matrix region, creating crosstab reports is easy.

DESIGNING CROSSTAB REPORTS 131

Setting up the report data

First, we set up the dsTerritorySales report dataset with the following SQL statement:

SELECT ST.TerritoryID, ST.Name AS Territory, SP.SalesPersonID,
 E.LastName + N', ' + E.FirstName AS EmployeeName,
 SOH.OrderDate AS Date,SUM(SOD.UnitPrice*SOD.OrderQty)AS
 Sales, COUNT(SOH.SalesOrderID) AS NoOrders
FROM SalesOrderDetail SOD
INNER JOIN SalesOrderHeader SOH
 ON SOD.SalesOrderID = SOH.SalesOrderID
INNER JOIN SalesPerson SP
 ON SOH.SalesPersonID = SP.SalesPersonID
INNER JOIN Employee E ON SP.SalesPersonID = E.EmployeeID
INNER JOIN SalesTerritory ST
 ON SP.TerritoryID = ST.TerritoryID
WHERE (SOH.OrderDate BETWEEN @StartDate AND @EndDate)
GROUP BY ST.TerritoryID,ST.Name,SOH.OrderDate,
 SP.SalesPersonID, E.LastName + N', ' + E.FirstName
ORDER BY ST.Name, SOH.OrderDate

Since the matrix rows of this report summarize the information in territories and sales-
persons, the query statement provides these groups. Drilldown per year is achieved
with expressions based on the OrderDate field inside the report. The query also takes
start and end dates as parameters.

Adding the matrix region

Next, we switch to the layout mode and drag and drop the matrix region into the
report, as shown in figure 4.27.

The upper-left cell of the matrix region is the corner cell. You can use it to display
a title for the matrix region. In our case, we used that cell as a container for the AWC
logo image.

The matrix data region makes defining the rows and columns in the crosstab easy.
To group the data into rows and columns you must define the row and column
dynamic groups.

Defining dynamic groups

Dynamic row and column groups can nest within other dynamic row and column
groups. You add dynamic groups by dragging and dropping dataset fields to the Rows
and Columns areas. Report Designer displays a helpful bar hint when you drag the
field over the row or column headers to show you valid places where you can drop the
field to nest the new group inside an existing group.

For example, to drill down by territory and salesperson, we dragged and dropped
the Territory and EmployeeName fields from the dsTerritorySales dataset into the

Figure 4.27

You define dynamic and static matrix groups by dragging

and dropping dataset fields into the respective areas.

132 CHAPTER 4 DESIGNING REPORTS

Rows section. As a result, the matrix region created two dynamic row groups, which
we renamed rowTerritory and rowEmployee respectively, as shown in figure 4.28.

The Columns section is little bit trickier. Here, we need to define dynamic col-
umns for years and months. To achieve this, we created two column groups, colYear
and colMonth, and set them to be based on the Fields!Date.Value.Year and
Format(Fields!Date.Value, "MMM") expressions respectively. Because the Date
field from the report dataset is of type DateTime, you could use the methods and
properties of the .NET DateTime structure to retrieve the year and month portions.
We also formatted the month value to show the abbreviated version of the month, for
example, Jan for January.

Defining static groups

To display the actual data (intersected cells for dynamic row and column groups), you
define static rows or column groups. You are not restricted to one static group. When
you add more than one static group under a given dynamic column, the dynamic
header splits to accommodate the new group. To demonstrate this, we dragged and
dropped both the Sales and NoOrders dataset fields to the matrix region data section,
so the users could see the sales dollar amount alongside the number of orders placed
per territory segment.

Figure 4.28 You can achieve data drilldown with the matrix region by

creating nested column and row dynamic groups.

DESIGNING CROSSTAB REPORTS 133

To get the expand/collapse magic working, we had to change the visibility for the row-
Employee and colMonth groups. Figure 4.29 shows the visibility settings for the
rowEmployee group.

These settings make the rowEmployee group invisible initially. Only when the user
expands the higher-level Territory group does the Employee group become visible. In
a similar way, we set the visibility of colMonth to be toggled by the txtYear field.

One limitation with the interactive features of the matrix region with version 1.0
of Reporting Services is that it doesn’t allow the user to expand all groups at once.

Creating subtotals

With many crosstab reports you may want to sum numeric data horizontally and ver-
tically. The matrix region also allows you to define subtotals to sum the data on row
and column groups. The only aggregate operation supported is summing. You create
subtotals by right-clicking the header of a row or column dynamic group and selecting
Subtotal from the context menu. For the Territory Sales report, we defined subtotals
on the Territory and Year levels. We also made numerous formatting changes, such as
setting border styles, background colors, and formatting settings to make the report
looks better, as shown in figure 4.30.

Figure 4.29 You can toggle the group visibility by changing the Visibility

settings.

134 CHAPTER 4 DESIGNING REPORTS

Currently, the matrix region doesn’t support headers and footers per grouping. It is
designed for a traditional crosstab layout, which has only subtotals. There are plans
that Reporting Services might hybridize the table and matrix regions (most likely by
adding table-like features to the matrix) in the next version.

4.5.3 Adjusting the report layout

The matrix region doesn’t confine you to a fixed row and column layout. For example,
you can get an inverted mirrored layout by changing the Direction property from LTR
(left to right) to RTL (right to left). Also, you can move a given number of columns before
the row header by using the GroupsBeforeRowHeaders property. For example, if you
request sales data that falls in between two years and set GroupsBeforeRowHeaders to 1,
the row header will be positioned between the year columns, as shown in figure 4.31.

One interesting performance optimization detail about the matrix region inner
workings is that, as we mentioned in chapter 1, it doesn’t render all the data at once

Figure 4.30 To create a row or column subtotal, right-click the header and choose

Subtotal.

Figure 4.31 Using the GroupsBeforeRowHeaders property

DESIGNING SUBREPORTS 135

when the report is rendered in HTML. Instead, you will notice that each time you
expand a section, a round trip (HTTP-GET request) occurs to the Report Server to
fetch the data for the expanded section. To be more specific, a matrix report retrieves
all data from the data source when the query is executed, produces the report in inter-
mediate format, and serializes it into data chunks in the ReportServerTempDb data-
base. This process is known as report session caching, and we will discuss this topic in
detail in chapter 7.

When a report row or column is expanded, the matrix region posts back to the
server to retrieve the report for that section. This improves the report performance
because sections are rendered on an as-needed basis. The session management occurs
only when the Report Server renders the report in HTML.

You will see more of the matrix region in chapter 6 when we discuss how to use
expressions in crosstab reports to see forecasted data.

4.6 DESIGNING SUBREPORTS

A subreport is a report item that points to another report. As you have seen, RS gives
you plenty of design choices, and in many cases you won’t need to use subreports at
all. There are two main situations, however, that will necessitate using subreports:

• Reusing existing reports—You can use the subreport region as a placeholder to
host an existing report. For example, you may already have a company sales
summary report, like one of the summary reports we created before. For easier
maintenance, you might want to reuse the report. Each time you change the
report, the change will be propagated to all reports of which this report is part.
Also, in some cases you simply have no other choice.

• Nesting report sections that use different datasets—This will be the case when you
need to nest a data region inside another region and each region uses a different
dataset, as in the following example:

Imagine that the AWC management has requested that we change the Employee Sales
Freeform with Chart report to show an Employee Performance Summary chart that
outlines the employee sales for the past 12 months. In other words, the Employee Per-
formance Summary chart needs to ignore the start date parameter and show the sales
summary for the previous 12 months relative to the end date parameter.

For example, if the user has requested to see the Employee Sales report from 10/
1/2003 to 12/1/2003, the Employee Performance Summary needs to show the
monthly breakdown of employee sales starting with 1/1/2003, as shown in figure 4.32.

The report requirements call for creating a new dataset for the Employee Perfor-
mance Summary chart. Our first impulse might be to base a chart region on the new
dataset and nest it inside the list region. However, the chart region needs to follow the
employee breakdown of the list region. In other words, the chart needs to be synchro-
nized with the employee grouping of the list region.

136 CHAPTER 4 DESIGNING REPORTS

This presents a problem, though, because synchronized nested regions, which use the
same groupings, must use the same dataset. The solution is to create a new subreport
for the chart and synchronize the subreport with the main report. Let’s create the
Employee Performance subreport.

4.6.1 Laying out the report

There is really nothing different about creating a subreport than creating an ordinary
report. As you know by now, we’ll start by setting up the report data.

Setting up the report data

To create the report dataset, we used a free SQL statement as our dataset source, as
shown below:

SELECT E.EmployeeID, E.LastName + N', ' +
 E.FirstName AS EmployeeName,
 SUM(SOD.UnitPrice * SOD.OrderQty) AS Sales,
 COUNT(SOH.SalesOrderID) AS NoOrders,
 DATEPART(yy, SOH.OrderDate) AS Year,
 DATEPART(m, SOH.OrderDate) AS Month
FROM SalesPerson SP
INNER JOIN SalesOrderHeader SOH
 ON SP.SalesPersonID = SOH.SalesPersonID
INNER JOIN Employee E ON SP.SalesPersonID = E.EmployeeID
INNER JOIN SalesOrderDetail SOD
 ON SOH.SalesOrderID = SOD.SalesOrderID
WHERE (SOH.OrderDate BETWEEN DATEADD(mm, - 12, @Date)
 AND @Date)

Figure 4.32 Use subreports when you need to nest report sections that draw data from

separate datasets.

DESIGNING SUBREPORTS 137

AND (E.EmployeeID = @EmployeeID)
GROUP BY E.EmployeeID, E.LastName + N', ' + E.FirstName,
DATEPART (m, SOH.OrderDate), DATEPART(yy, SOH.OrderDate)
ORDER BY DATEPART(yy, SOH.OrderDate), DATEPART(m, SOH.OrderDate)

This statement groups the sales data per employee for the past year relative to the
@Date parameter. It defines two parameters: EmployeeID and @Date. In addition, the
statement breaks down the order date by month and year. This is needed to summarize
the sales data per month. To achieve this, we created a new calculated dataset field
called Date, which is based on the following expression:

= new DateTime (Fields!Year.Value, Fields!Month.Value,1)

This expression simply converts the month and year back to a date that starts at 12:00
A.M. We could have converted the date in the statement itself using SQL expressions,
but we wanted to demonstrate calculated dataset fields.

Configuring the subreport

Next, let’s use a chart region to present the
data in graphical format. Figure 4.33 shows
the subreport in a layout mode. You have
already seen how to configure a chart, but
this time the chart type is Line.

Once the subreport is created, we are
ready to place it inside a subreport region.
The easiest way to do that is to drag the
report from the Solution Explorer and drop
it inside the main report. Because we want to
nest the subreport inside the lstEmployeeSales
region, make sure you drop the subreport
into the recEmployee rectangle.

4.6.2 Synchronizing the subreport with the master report

Finally, we need to synchronize both reports by passing the required parameters to the
subreport. You can set the subreport parameters by using the VS.NET Properties win-
dow. Alternatively, you can right-click on the subreport, choose Properties, and select
the Parameters tab from the Subreport Properties dialog, as shown in figure 4.34.

In our case, for the @Date parameter of the subreport we pass the @EndDate
parameter of the main report. We link the @EmployeeID subreport parameter to the
EmployeeID field of the main report dataset. As a result, each time the main report
starts a new Employee group it passes the Employee ID to the subreport to display the
summary data for that employee only.

Be careful to set all required subreport parameters. If you miss some or set them
up incorrectly, the subreport will not be shown. Instead, the subreport region will
report an exception, “Error: the subreport could not be shown.”

Figure 4.33 Creating a subreport is no

different than creating an ordinary report.

138 CHAPTER 4 DESIGNING REPORTS

4.7 DESIGNING MULTICOLUMN REPORTS

The Report Designer allows you to easily create multicolumn (shaking) reports. Just
like a newspaper, a multicolumn report can conserve space by displaying the report
data in more than one column.

The Products by Subcategory report demonstrates how you can author such
reports, as shown in figure 4.35.

Let’s find out how we can split the report data in multiple columns.

Figure 4.34 Integrating the main report with a subreport

Figure 4.35 Creating multicolumn reports with Reporting Services is easy.

DESIGNING MULTICOLUMN REPORTS 139

4.7.1 Setting up multiple columns

The report shows the product inventory data arranged in three columns to conserve
paper space. The trick to creating this report is to make sure that the report data width
doesn’t exceed the column width, as shown in figure 4.36.

To create the report, we used a list region for the subcategory section and a nested
table region for the product details. We set the body width of the report to 2.75 in.
To achieve the multicolumn layout, we went to the Report Properties dialog (select

Figure 4.36 The Products by Subcategory report in a design mode

Figure 4.37 Setting up the number of columns

140 CHAPTER 4 DESIGNING REPORTS

the report by clicking the Report Selector, right-click, and choose Properties) and set
the number of columns to 3, as shown in figure 4.37.

Currently, RS supports defining multiple columns only at the report level. You can-
not, for example, define a multicolumn layout per region, for example, a table region.

4.7.2 Testing multicolumn reports

When setting up the column widths, you have to ensure that you have enough page
space to accommodate the number of columns, per the formula below:

Page width-(left margin + right margin) >= number of columns *
column width + (number of columns - 1) * column spacing

The Report Designer makes the trial-and-error fitting game unnecessary by showing
you the outline of the columns in layout mode. This allows you to easily see whether
the report width exceeds the page width.

A final note: to see the report rendered correctly in multiple columns, make sure
that you preview the report using the Print Preview button. If you just preview the
report, you won’t see the data flowing in columns because the preview mode doesn’t
take in consideration the page settings.

4.8 SUMMARY

One of main strengths of RS is that it gives us the right tools to easily design many
different types of reports. The Report Designer enables even novice users to create
professional-looking reports in a matter of minutes. We’ve seen that the report data
regions give us a lot of flexibility for laying out our reports. We’ve discussed the effects
of data region nesting and using regions side by side.

We’ve also shown how to create a variety of reports using regions:

• Tabular reports use the table region.

• Freeform reports use the list region.

• Chart reports use the chart region.

• Crosstab reports using the matrix region.

We’ve seen also how and when to create subreports and multicolumn reports.
Now, it is time to add more advanced report authoring techniques to our arsenal

that will help us to create even more sophisticated reports. In the next chapter we’ll
learn how to enhance reports with expressions and functions.

RESOURCES 141

4.9 RESOURCES

The Dundas Software web site (http://www.dundas.com/)

Creating crosstab reports using SQL statements with Microsoft SQL Server http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/acdata/ac_8_
qd_14_04j7.asp

142

C H A P T E R 5

Using expressions
and functions
5.1 Understanding expressions 143
5.2 Exploring the Report Object

Model 148
5.3 Working with functions 160
5.4 Designing reports with navigational

features 167

5.5 Report rendering considerations 173
5.6 Designing localized reports 177
5.7 Summary 181
5.8 Resources 182

Sometimes, reporting requirements may call for advanced techniques that go beyond
the scope of the Report Designer. For example, you may need to implement condi-
tional formatting to change the color of report items based on the some conditions.

Most modern reporting tools support programming primitives of some sort that
developers can use to write expressions and programmatically manipulate report ele-
ments. In this chapter, we will explore how we can use expressions and functions with
Reporting Services to enhance the report capabilities.

Our discussion will cover the following topics:

• Writing expressions

• Working with the Report Object Model global collections

• Using functions

• Using expressions to author reports with interactive features

• Examining RS export formats and how formatting can impact the interactive
features of a report

• Creating localized reports

UNDERSTANDING EXPRESSIONS 143

To round out this chapter, we will show how we can use expressions to add interactive
features to our reports, including reports with navigational features and reports with
document maps.

5.1 UNDERSTANDING EXPRESSIONS

An RS expression is custom code written in Visual Basic .NET that uses a combination
of keywords, operators, functions, and constant values to calculate the value of a report
item or its properties during runtime. You are already familiar with one of most basic
type of inline expressions: the field expression. We used field expressions on many
occasions to display the value of a dataset field by referencing the Fields collection, for
example, =Fields!Sales.Value.

You have probably used expressions with other reporting tools to achieve some
degree of runtime customization, such as implementing calculated fields. For example,
say you want to combine the employee first and last names into one string to set the
value of a textbox report item called txtEmployeeName. With RS, you can achieve this
by using the following inline expression for the Value property of the textbox:

= Fields!FirstName.Value & " " & Fields!LastName.Value

RS does not limit your use of expressions to setting values of textbox report items.
Instead, by using expressions you can manipulate programmatically just about any
property of a report item and region.

NOTE In my opinion, Reporting Services is a bit too expression-oriented. For
example, using expressions is the only way to programmatically change
the values and properties of report items, because you cannot reference
them outside expressions. Trying to change the value of a textbox item
inside custom code is not possible because its value is read-only.

I personally hope future releases will deemphasize the use of expressions.
As a developer accustomed to writing event-driven code, I feel challenged
by the prospect of scattering expressions all over the report. Haven’t we
passed the spaghetti-code era yet? Besides, it will present a maintenance
issue for more complicated reports. Similar to the ASP.NET code-behind
paradigm, my dream reporting programming model would support struc-
tured event handling.

Memorizing the expression syntax can be tedious. To address this, the Report Designer
offers you a helping hand by giving you an Expression Editor.

5.1.1 Using the Expression Editor

The Report Designer allows you to write report expressions by typing the expression
text manually or using the Expression Editor. You will probably find the first method
handy when you want to quickly change the expression text or enter simple expres-
sions. For example, you can click inside a text box and directly type a field expression
to bind the textbox to a dataset field, e.g., =Fields!Sales.Value.

144 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

Alternatively, you can use the Expression Editor. To open the editor, use one of
the following options from within the Report Designer:

• Using the item’s VS.NET Properties window, choose the Expression item from
the available options for any property that can be manipulated by an expression,
for example, the TextBox.Value property.

• From the item’s Properties dialog (right-click the item and choose Properties),
click the fx button located to the right of any property that supports expressions.

• As a shortcut when entering an expression for the textbox Value property, you
can right-click the textbox and choose Expression from the context menu.

Figure 5.1 shows the Expression Editor, which we brought up by right-clicking one of
the textboxes inside the Employee Sales Freeform report and choosing Expression
from the context menu.

As shown in figure 5.1, in this case the Expression Editor shows the fields of the
dsEmployeeSales dataset. As far as manipulating the expression itself, the Expression
Editor gives you options to replace the selected text, insert the expression at the cursor
location, or append the expression at the end by choosing the proper button located
in the center of the dialog.

The Expression Editor doesn’t validate the expression in any way. Sorry, no Intelli-
Sense either! Have you started missing the VS.NET editor yet?

For your convenience, the three most used collections from the Report Server object
model (Globals, Parameters, and Fields) are shown on the left side of the dialog, so
you don’t have to memorize the names of their members. We will revisit these collec-
tions in section 5.2.

Figure 5.1 Use the Expression Editor to create expressions.

UNDERSTANDING EXPRESSIONS 145

5.1.2 Expression syntax

As we explained in chapter 3, the Report Designer verifies the expression syntax during
the report-building process. Just as with any programming environment, you need to
learn to play by the compiler’s rules. There are a few syntax-related rules about expres-
sions worth mentioning before we see some examples.

First, because you author expressions in VB.NET, the expression syntax is not case-
sensitive. For this reason, fields!Sales.value and Fields!Sales.Value are interchangeable.
Be aware, though, that for some reason RS requires that the field names match exactly
the dataset field names despite the fact the Visual Basic is not case-sensitive. If they
don’t, a compilation exception is thrown. For example, if the dataset field is SalesYTD
but you use Fields!salesYTD in your expression, the Report Designer errors out with
the following exception:

The value expression for the textbox 'txtTerritorySalesYTDTotal' refers to
the field 'salesYTD'. Report item expressions can only refer to fields
within the current data set scope or, if inside an aggregate, the specified
data set scope.

Second, to tell RS that you want to use an expression, you must prefix the expression text
with an equal sign (=). I’ve personally forgotten about this rule countless times! The Report
Designer reacts in different ways to remind you about this rule. For example, if you type
the expression in the Properties window, an invalid property exception dialog is shown. Or,
it won’t complain at all for textbox values. In this case, the Report Designer will assume
that you are entering static text, which will be shown as-is when the report is rendered.

Besides these two rules, your expression syntax needs to comply with the syntax of
VB.NET. For VB.NET language reference, please check the VS.NET product documentation.

5.1.3 Determining expression execution order

The Report Server has a rule processor that involves some sophisticated decision mak-
ing to determine the order in which the expressions are executed. For the lack of a bet-
ter term, we will refer to it as an expression sequence processor. When the processor
parses expressions, it also discovers any interdependencies that may exist and ranks the
expressions accordingly. For example, say you have three textbox items, A, B, and C,
inside a list region. A gets its value from a dataset field. B references A, and C references
B. The expression sequence processor will discover that these expressions are interde-
pendent and sort their execution order accordingly. In our example, the value of A will
be set first, followed by the values of B and then C.

If the expressions are not interdependent, our experiments show that they are exe-
cuted sequentially according to their location in the report. For example, expressions
that set properties of the Body band are executed before the expressions in items
located in the body section. Is this important? Well, knowing the order in which the
expression will be executed allows you to write “pseudo” events to do some prepro-
cessing to compensate for the lack of “real” events in Reporting Services.

146 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

Say you want to initialize some class-level variables in custom code before you call
a custom function inside an expression. Also assume that the expression is used to set
the value of a textbox item in a table region. Because currently Reporting Services
doesn’t support events, you may think that you are of out of luck. However, you can
use an expression in the Body band, for example, an expression to set the BorderStyle
property, which will fire before the table region is rendered.

Because there is only one Body band inside the report, this expression will fire once,
which is exactly what you want in order to perform the initialization tasks. Inside the
expression you can call a method in the custom code, which will set the required state.
As you will see in chapter 8, this is exactly the approach we take to author the Show
Security Policy report, so we can initialize the Report Server web service proxy before
we call its methods.

5.1.4 Understanding expression scope

One of the things that you need to consider when referencing report items in expressions
is the concept of expression scope. Simply put, the expression scope defines the boundaries
in which the expression can operate. Each dataset, region, and grouping defines a scope.
The scope rules can get complicated, but the simple rule of thumb is that an expression
cannot reference other items outside its current or containing (outer) scope.

The following example should make this clear. Consider the report layout shown
in figure 5.2.

You may find this layout similar to that of the Employee Sales by Territory with
Summary Advanced report we created in the chapter 4. Here, we have a table region
A placed side-by-side with a list region and another table region B nested inside the
list. This layout defines several scopes, including

• A scope of the report body section
• A scope of table region A
• A scope of the list region
• A scope of table region B

Figure 5.2

Each dataset, region,

and grouping defines

an expression scope.

UNDERSTANDING EXPRESSIONS 147

There may be other scopes, such as those for groups defined inside a region. Based on
the current or containing scope rule we mentioned before, there are some valid and
invalid reference combinations, as shown in table 5.1.

How about referencing the SUM() aggregate in table region A from either the list
region or table region B? At first, you might think that this is not possible because table
A is not in the containing scope of both regions. But as with every rule there are excep-
tions, and the truth is that this combination is allowed. The exception here seems to
be a result of the fact that an expression can reference an aggregate value regardless of
its scope.

At first, the scope rules may seem mind-boggling, but with some experience it gets
easier. Besides, the Report Designer is kind enough to remind us each time we fail to
comply to this rule with one of the following two exceptions:

The value expression for the textbox '<textboxname>' refers to the report
item '<reportitemname>'. Report item expressions can only refer to other
report items within the same grouping scope or a containing grouping scope.

Or, if the referenced textbox gets its value from a dataset field:

The value expression for the textbox '<textboxname>' refers to the field
'<reportitemname>'. Report item expressions can only refer to fields within
the current data set scope or, if inside an aggregate, the specified data
set scope.

5.1.5 Dealing with expression errors

Similar to programming in other languages, report expression code goes through com-
pilation and execution phases. When you build the report or just request to preview
it, the Report Designer parses the report expressions to ensure that the code you
entered actually makes sense. If there are syntax and reference errors, the Report
Designer informs you about them by showing an error message in the Preview tab, as
shown in figure 5.3.

The compilation errors are shown in the Task List. The error messages seem to be
very descriptive and informative. For example, if we misspell the name of the Sales
dataset field as Sale (Fields!Sale.Value), the exception text pinpoints the exact problem:

Table 5.1 Expression reference examples

Valid References Invalid References

An expression for the value of textbox3 that ref-
erences textbox2.

An expression for the value of textbox2 that refer-
ences textbox3. (Table region B is nested in the
list region and it is not in the list’s current or con-
taining scope.)

An expression for the value of textbox3 that ref-
erences textbox4. (The table region is inside the
body region.) However, an expression for the
value of textbox4 cannot reference textbox3.

An expression for the value of textbox3 that refer-
ences textbox1 and vice versa; an expression for
the value of textbox1 that references textbox3;
neither can it reference textbox2.

148 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

The value expression for the textbox 'txtSales' refers to the field 'Sale'.
Report item expressions can only refer to fields within the current data set
scope or, if inside an aggregate, the specified data set scope.

When the exception references a report item, you can double-click on the exception
text to navigate to the item and inspect it.

Some error conditions are discovered only during runtime. For example, you may
have an expression for a calculated field that results in a division-by-zero exception.
The way in which runtime errors are reported depends on how the expression is used.
If the expression is used to get the value of a textbox, #Error is shown in the textbox.
Otherwise, the exception is ignored. For example, if you have an expression to con-
ditionally change the color of a line item from black to red, and the expression errors
out, it will be ignored and the line will be shown in black.

The most common source of runtime errors, which will probably bite you at the
beginning, is omitting the Value property when you reference dataset fields, for exam-
ple, Fields!Sales as opposed to Fields!Sales.Value. Because Fields!Sales references an
object of type field, you will get a runtime error with #Error as the textbox value with-
out any other complaints from the Report Designer.

Circular references are not allowed even if the expression scope is valid. For exam-
ple, if textbox A references textbox B and textbox B references textbox A, you won’t
get a compilation error, but when the report is rendered, the value of B will be set
to #Error.

To make programming with expressions easier, RS exposes report items as collec-
tions referred to as the Report Services Object Model.

5.2 EXPLORING THE REPORT OBJECT MODEL

To use expressions in your reports, you have to have a good grasp of the Report Object
Model. Reporting Services offers a simplified object model, exposed in the form of glo-
bal object collections that you can reference in your expressions.

The Report Object Model can be referenced only internally, that is, from code run-
ning inside the report. You cannot instantiate a report object externally, as you might
have been accustomed to doing with other reporting tools and applications. For exam-
ple, Microsoft Access exposes its object model as an externally creatable object of type
Access.Application that external callers can instantiate using OLE Automation.

Figure 5.3 If an expression cannot be compiled, an error message is

shown in the Preview tab.

EXPLORING THE REPORT OBJECT MODEL 149

At first, the inability to create and manipulate the Report Object Model from outside
might seem restrictive. In my opinion, though, I see it as a compromise, given the other
advantages that the Reporting Services architecture has to offer. You may understand
this better if you consider the fact that the RS architecture is entirely server-based. The
RS process lifetime is not controlled by the client application. Instead, Reporting Ser-
vices runs in its own process and, thanks to its service-oriented architecture, any con-
sumer capable of submitting HTTP GET and SOAP requests can access it. Because RS
runs in its own process, it is not possible to instantiate an RS object locally.

The object model is implemented in the Microsoft.ReportingServices.Processing
assembly, under the Microsoft.ReportingServices.ReportProcessing.
ReportObjectModel namespace, as shown in figure 5.4.

You can find the Microsoft.ReportingServices.Processing assembly in the Report
Server binary folder (C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Ser-
vices\ReportServer\bin) or in the Report Designer folder (C:\Program Files\Microsoft
SQL Server\80\Tools\Report Designer). To browse the object model using the VS.NET
Object Browser, create a new C# or VB.NET project, reference this assembly, and press
Ctrl-Alt-J.

NOTE How do I know where the Report Object Model is implemented? When I
was experimenting with the object model, I wrote a simple but useful func-
tion called ShowItem, which you can find in the AWC.RS.Library assem-
bly, as shown in the following:

Figure 5.4 The Report Object Model is implemented in the Microsoft.

ReportingServices.Processing assembly. It contains five object collections that you

can access programmatically in expressions or custom code.

150 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

public static string ShowItem(object item){
return "Success";
}

The idea was to put a breakpoint inside the body of the function, so I could
break when I called it from expressions inside the report. For example, to
inspect the properties of a dataset field, I could drag and drop a field from
the report dataset on the report and use the following expression for the
textbox value:

=AWC.RS.Library.RsLibrary.ShowItem(Fields!<field name>)

Once I break inside the ShowItem function, I can explore the item argu-
ment in the Watch window. In the case of passing a dataset field, the type
of the argument was Microsoft.ReportingServices.Report-
Processing.ReportObjectModel.Field. Following this hint, I
open the Microsoft.ReportingServices.Processing assembly, which reveals
the object model shown in figure 5.4. Later in this chapter, I will show you
how to debug code in an external assembly.

As we said in chapter 3, the only two ways to control the report output are externally
by using parameters and internally by using expressions.

As we mentioned already, currently the RS Report Object Model doesn’t support
events. Personally, I hope a future release will change this and introduce an eventing
mechanism, similar to the one found in Microsoft Access. For example, a BeforeRe-
portStart event could make it possible for developers to write a custom event handler
to check some business rules and, if certain conditions are not met, stop the report pro-
cessing and throw an exception. Or, such an event could make it possible to perform
some report preprocessing before the report is rendered.

The Report Object Model exposes five collections that are accessible to you as a
developer, as listed in table 5.2.

You can access the items in these collections using all variations of the standard Visual
Basic collection syntax: Collection!ItemName, Collection("ItemName"),
and Collection.Item("ItemName"). Because the Collection!ItemName
syntax is the shortest of the three, we will use it the most. The items inside the Globals

Table 5.2 RS exposes valuable runtime information in the form of five read-only collections.

Collection Purpose

ReportItems Exposes the textbox items in the report

Fields Wraps the fields of a report dataset

Globals Encapsulates some global report properties, such as the number of pages

Parameters Represents the report parameters

User Includes user-related properties

EXPLORING THE REPORT OBJECT MODEL 151

and User collections are also exposed as properties and can be accessed by
Collection.ItemName.

Let’s now discuss each of these collections and how they can be used.

5.2.1 Using the ReportItems collection

The ReportItems collection contains all textbox report items of the type Microsoft.
ReportingServices.ReportProcessing.ReportObjectModel.Report
Item. It allows the report author to reference the values of other textbox items subject
to the scope rules we discussed previously. Please note that we said textbox items,
because the collection contains nothing else.

NOTE Strictly speaking, the ReportItem class serves as a base type, which the
objects inside the ReportItems collection derive from. For example, if you
pass a textbox item to the ShowItem function, mentioned previously, you
will see that its type is Microsoft.ReportingServices.Report-
Processing.ReportObjectModel.TextBox and it inherits from
ReportItem. In addition, if you examine the Microsoft.Reporting-
Services.ReportProcessing.ReportObjectModel namespace
in the Object Browser or .NET Reflector, you will find out that there is a
CheckBox type defined, which is not currently used. I expect the Report
Object Model to evolve in the future and ReportItems collections to
include additional report items besides textboxes.

You would expect the ReportItems collection to include all report items placed on
the report (not just textboxes), but this is not the case. Why? Because with version
1.0 of Reporting Services the report item properties can be changed only by expres-
sions and the textbox values are read-only, there is really no good reason to do so. I
hope the next version will enhance the object model to expose not only all report
items but also their properties (in read-write mode) similar to the WinForm and
ASP.NET object models.

Even better, a future RS object model could support creating report items dynam-
ically in code. This would make it possible to generate report sections conditionally.
For instance, a Body_OnLoad event handler could check some business rules and gen-
erate different report regions based on the result, such as a chart or tabular region. For
now, the best you can do is to hide a region pragmatically by using an expression.

Implementing conditional formatting

A common requirement is to add conditional formatting features to reports, where the
visual appearance of report items (font, color, size, and so on) changes based on some
runtime conditions. Consider an example to demonstrate how the ReportItems col-
lection could be used to customize the appearance of textbox report items.

Let’s change the Employee Sales by Territory with Summary report to check
whether the salesperson has exceeded a certain goal, e.g., $2,500,000. If she has
exceeded her goal, the report will show an indicator and highlight the person’s name

152 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

in bold. I saved the revised version of the report as Employee Sales by Territory with
Summary Advanced.

Figure 5.5 shows what the report looks like when a salesperson has exceeded the
goal. Please note that the conditional formatting is based on the Sales total amount
(not shown on figure 5.5) and not on the Sales YTD amount.

To implement the new report features, we added a new textbox called txtExceeded-
Goal inside the recEmployee rectangle and set its value to Exceeded Goal! and its fore-
ground color to red. Then, in the Advanced Textbox Properties dialog (right-click
txtExceededGoal, choose Properties, and in the TextBox Properties dialog click the
Advanced button), we set its initial visibility to be based on the expression shown in
figure 5.6.

Figure 5.5 Using expressions to implement conditional formatting

Figure 5.6 Using an expression to format conditionally the visibility

of the txtExceededGoal textbox

EXPLORING THE REPORT OBJECT MODEL 153

To retrieve the employee sales total, we used the txtSalesTotal textbox, which happens
to be the one that holds the sales total amount in the tblEmployeeSales table. In terms
of performance, this is also the fastest way to get to the aggregate figure, because we
don’t have to recalculate it. We used the 2,500,000 threshold to toggle the visibility of
txtExceededGoal. Strangely, the Boolean logic for the initial visibility is reversed. If the
expression evaluates to false, the item is visible; otherwise it is hidden.

Similarly, to change the font of the txtEmployeeName field to bold, we imple-
mented this expression:

=Iif(ReportItems!txtSalesTotal.Value < 2500000, "Normal", "Bold")

Figure 5.7 shows this expression in the Weight field of the Advanced Textbox Proper-
ties dialog:

The VB.NET Iif operator will be probably the one you will most often use in your
expressions. In this case, if the sales total is less than the targeted amount, the font
weight is normal; otherwise it is bold.

When the three-part Iif syntax gets in the way, you may find the Switch func-
tion useful. For example, if we wanted to check for more than one condition and
change the color of txtSalesTotal accordingly, we could have used the Switch func-
tion, as shown here:

=Switch(ReportItems!txtSalesTotal.Value < 2500000, "Red",
ReportItems!txtSalesTotal.Value >= 250000 AND

Figure 5.7 Using an expression to set the font weight of the

txtEmployeeName textbox

154 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

ReportItems!txtSalesTotal.Value < 500000, "Yellow",
ReportItems!txtSalesTotal.Value >= 500000, "Green")

NOTE For some reason, the font color is not available on the Font tab under the
Advanced TextBox Properties dialog. It is available only on the VS.NET
Properties window. To change the font color programmatically, expand the
Color property drop-down and select its first item, <Expression…>.

An interesting note about the ReportItem.Value property is that although it references
the value in a textbox item, it preserves the underlying data type. For this reason, we
were able to reference the sales total amount without any type casting.

ReportItems limitations

These two expressions get the work done. However, as any seasoned developer will
point out, our implementation is not very maintainable for two primary reasons:

• We’ve hard-coded the threshold figure twice.

• We’ve coded the same business rule twice.

The first issue could be easily corrected by defining a constant in custom embedded
code for this report. The second issue could be addressed by moving the business logic
inside a VB.NET function defined in embedded code or an external assembly, as we
will discuss in chapter 6. The custom function could then return a Boolean value that
we can evaluate in both expressions.

What if we want to get rid of expressions altogether? For instance, can we replace
both expressions in our case with a call to a single function or use an internal event
to centralize all formatting and data manipulation logic in a single place? We’ve
already said that RS doesn’t support events, so the event option is out. What about the
first option? Can we write a function and pass the whole ReportItems collection?
Unfortunately, the answer is no.

First, the ReportItems collection exposes only the textbox items inside the report,
so we don’t have access to data regions and other report items. You might say that in our
case this is not an issue, because we want to manipulate only textboxes anyway. However,
it so happens that the Value property is the only property available to us. Second, to
make the things even more difficult, the Value property is read-only. In other words,
if we decide to get innovative and pass the txtExceededGoal and txtEmployeeName
items as objects to a custom function, we won’t get too far because we cannot change
the textbox value inside the function. As you are starting to see, the current Reporting
Services programming model leaves some space for future improvements.

So, to recap, the ReportItems collection contains all textbox report items inside the
report, and each ReportItem object has one read-only, publicly accessible property,
Value. This means that the only way to change the textbox value programmatically is
to attach an expression to the Value property inside the Report Designer. By the way,
to reference the value of the current textbox item, you can use Me.Value or just Value.

EXPLORING THE REPORT OBJECT MODEL 155

5.2.2 Using the Fields collection

The Fields collection exposes the fields (columns) from a given row of the report dataset
as objects of the type Microsoft.ReportingServices.ReportProcessing.
ReportObjectModel.Field. .NET developers can draw an analogy between the
RS Field object and DataColumn of the ADO.NET DataTable class. Unlike the Data-
Column class, however, each Field object inside the Fields collection has only two pub-
lic read-only properties, Value and IsMissing.

The Value property can return one of the following:

• Nothing (null in C#), in case there is missing data or the data is NULL. To check
for Nothing you can use the VB.NET function IsNothing() or <field-
name.Value> Is Nothing.

• The field value, whose type is cast to one of the standard .NET data types, such
as Int32, DateTime, and so on. The type translation that Reporting Services
performs behind the scenes is great because it allows you reference the field
value directly in strongly typed .NET functions. For example, you might recall
that for the Year column in the Territory Sales Crosstab report we used the
expression Fields!Date.Value.Year. This was possible because the value of the
Date field was exposed as a .NET DateTime structure.

Dealing with null and missing values

Unfortunately, the automatic conversion that RS does to translate NULL values and
missing data to Nothing may be more trouble than it is worth because sometimes you
do need to differentiate between both conditions. For example, in a matrix report you
may need to react in a different way when there is no data for a given row and column
combination and when the aggregate value is NULL.

One workaround is to replace the NULL values at the data source or in the report
query statement with whatever value makes sense, e.g., ‘NULL’. Then, you can write
a simple VB.NET function like the one below to check for both conditions:

Function GetValue(value As Object) As Object
 If value is Nothing Then
 Return "N/A" ' missing data
 Else
 Return value ' has value or 'NULL'
 End If
 End Function

Another way to differentiate between missing data and NULL values is to base the text-
box on an expression that uses the CountRows() function. We will see an example
of how this could be implemented in chapter 6.

156 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

Checking for missing fields

To make dealing with missing values more confusing, the Field object exposes a prop-
erty called IsMissing. It is important to note that it doesn’t check for missing values.
Instead, it returns true if the field is not found in the report dataset. If you trying to
understand the practical use of this, consider the case when the report dataset is
returned by a call to a stored procedure.

For example, consider the Employee Sales by Territory report that we developed
in the previous chapter to show employee performance. Users belonging to various
security roles, such as administrators and clerks, can request this report. In the second
case, you might not want to reveal the employee-sensitive information, such commis-
sions and bonuses.

You can hide these fields using expressions. Alternatively, you can pass a parameter
to the spGetEmployeeSalesByProductSubcategory stored procedure to exclude these
fields entirely. If you use the latter approach, you can use the IsMissing property to
exclude these fields from expressions that use them. If you don’t check whether they
are available, they will show #Error.

Finally, the Field object also implements an indexer. Currently, its implementation
returns NULL. The next version of Reporting Services may include additional prop-
erties that data providers, such as the SQL Server .NET provider, could return.

Using the Fields collection in expressions

Here’s an example showcasing the Fields collection. We’ll change the Employee Sales by
Territory with Summary Advanced report and replace the # Orders column with the Per-
centage of Employee’s Total column. The new column will show the sales amount for
each product subcategory as a percentage of the sales total, as shown in figure 5.8.

Figure 5.8 Using the Fields collection to implement the calculated field Percentage of

Employee’s Total

EXPLORING THE REPORT OBJECT MODEL 157

To implement the new requirements, we have to change the expression of the corre-
sponding textbox item to

=Fields!Sales.Value/ReportItems!txtSalesTotal.Value

To express the data as a percentage, we changed the textbox format accordingly.
Another way of implementing Percentage of Employee’s Total is to rewrite the

above expression to use the txtSales report item, as follows:

= ReportItems!txtSales.Value/ReportItems!txtSalesTotal.Value

So, should we use the ReportItems or Fields collection? In terms of performance, there
is really not that much difference, because both are exposed internally as collections.
However, if we need to use an aggregate or calculated result that is already available in
a textbox, we would reference it using the ReportItems collection. For example, the
above expression will produce the same result, if it is changed to

=Fields!Sales.Value/Sum(Fields!Sales.Value)

This expression, however, will calculate the sales total for each row in the tblEmployee-
Sales table, which is less efficient than getting the value from the txtSalesTotal textbox.

5.2.3 Using the Parameters collection

The Parameters collection exposes the report parameters as objects of the type
Microsoft.ReportingServices.ReportProcessing.ReportObject-
Model.Parameter. Each Parameter object has two publicly accessible read-only
properties: Label and Value.

Using parameter labels and values

As we saw in chapter 3, you can define a list of available values for a report parameter,
and the list could be explicitly set or dataset-driven. Similarly to a drop-down control,
if you decide to set available values, you can use a pair of values for each report param-
eter: a label for the visible portion and a value for the actual parameter value.

For example, in the Sales by Territory Interactive report, we used the TerritoryID
column from the dsTerritory dataset as the parameter value and the Territory column
as the parameter value. In this case, the Label and Value parameters map to the param-
eter Label and Value properties, respectively. If you don’t use available values, the
Label property returns Nothing, while the Value property returns the parameter value.

We have already seen examples that use the Parameters collection. For example, the
Territory Sales Crosstab report has a subtitle (txtRange), which shows the requested
date range using the passed parameter values.

Implementing dynamic sorting

Now look at another example that will demonstrate how we can leverage report
parameters to implement dynamic sorting. We’ll enhance the Sales by Territory report
to sort the report data by category and sales. We saved the new version of the report as
Sales by Territory with Sorting.

158 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

Figure 5.9 shows what our new sample report looks like.
The table region in version 1.0 of Reporting Services doesn’t support dynamic sort-

ing, e.g., by clicking on the table header. However, we can get around this limitation
by setting up report parameters that the user can pass to specify which column to sort
on and in which direction. For this reason, we defined two report parameters: SortBy
and Direction.

Then, we set the Sorting tab in the table region properties, as shown in figure 5.10.
We sorted the table region data by Territory first. Then, we used two expressions to

dynamically sort by either category or sales, based on the user selection. For example, if
the user has selected to sort by sales in descending order, the third expression result will
evaluate to Sales and the direction to Descending. If the condition is not met, the expres-
sion will return zero, which makes the table region ignore the expression.

Figure 5.9 Using the Parameters collection to implement dynamic sorting

allows the user to specify which column to sort on and in which direction.

Figure 5.10 Use the sorting properties to implement expression-based dynamic sorting.

EXPLORING THE REPORT OBJECT MODEL 159

5.2.4 Using the Globals collection

The Report Server exposes some useful global report properties in the Globals collec-
tion, as shown in table 5.3.

The ExecutionTime property can come in handy when you experiment with report
caching. We will discuss how caching affects the report execution process in chapter 7.
When the Report Server determines that it can use the cached report copy, the report
is not processed at all. Instead, the cached copy of the report is returned to the user.
Hence, the ExecutionTime property will not change within the expiration period.

We have already used the ReportName property in some of the reports we created
so far to display the report name as a report title.

The PageNumber and TotalPages properties can be used only inside the report
page header and footer. For example, the Products by Category multicolumn report
displays the current page in the page footer using the following expression:

="Page " & Globals.PageNumber

5.2.5 Using the User collection

Finally, the User collection contains information about the user who is currently request-
ing the report. Specifically, the User collection exposes the following two properties:

• UserID—When Windows authentication is used, UserID returns the Windows
domain account of the user who runs the report. For example, if Terri has
logged in as Terri to the adventure-works domain, the User.UserID will return
adventure-works\Terri. If custom authentication is used, then UserID will
return whatever the extension sets as a user principal. We will see an example of
how we can use this property to enforce a secured access to report data in the
next chapter.

• Language—The language ID of the user running the report, for example, en-
US, if the language is set to English (United States). The Language property
allows us to localize our reports, as we will see in section 5.5.

Table 5.3 The Globals collection includes some common report properties.

Property .NET Data Type Purpose

ExecutionTime DateTime The date and time when the Report Server started pro-
cessing the report

PageNumber Int32 The current page number

ReportFolder String The full path to the report, e.g., /AWReporter

ReportName String The report name, e.g., Territory Sales

ReportServerUrl String The Report Server URL, e.g., http://servername/Reports

TotalPages Int32 The number of pages

160 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

Often, to increase expression power, you will need to call some piece of prepackaged
code, exposed as a function, as we will discuss next.

5.3 WORKING WITH FUNCTIONS

Reporting Services allows you to reference external and internal (native) functions.
You can use external functions located in .NET standard or custom assemblies.

In addition, RS comes with some native functions that encapsulate commonly used
programming logic, such as functions that produce aggregate values, count dataset rows,
and so forth. We will discuss the RS native functions in section 5.3.2.

5.3.1 Referencing external functions

How you reference external functions depends on where the function is located. RS
has two commonly used .NET assemblies pre-referenced for you: Microsoft.Visual-
Basic and mscorlib. Microsoft.VisualBasic contains the types that form the Visual Basic
runtime. Mscorlib is a special .NET assembly that defines the .NET data types, such as
System.String and System.Int32, as well as many frequently used functions and types
defined under namespaces starting with System, such as System.Collections
and System.Diagnostics.

The following namespaces from the above two assemblies have been already
imported by RS, so you can use their types and methods without having to specify
namespaces:

• Microsoft.VisualBasic—This namespace allows you to access many of
the common VB runtime functions. For example, in the Territory Sales report,
we used the VB.NET Format function located in the Microsoft.VisualBasic
assembly to create a dynamic group, so we can group the report data by month. The
expression we used for this purpose was =Format(Fields!Date.Value,
"MMM"). Or, you can use the MsgBox function to help you while debugging your
embedded code. As you will see in chapter 6, the Report Designer Code Editor
has left a lot to be desired and doesn’t provide debugging capabilities. Please
remember, though, to remove the MsgBox calls before you deploy your report
to the Report Server. If you don’t, you will get #Error in all textboxes that refer-
ence functions with MsgBox in your embedded code.

• System.Convert—Allows you to perform runtime conversion between types,
for example, from string to double using System.Convert.ToDouble().

• System.Math—Provides constants and static methods for trigonometric, log-
arithmic, and other common mathematical functions.

To reference the rest of the System namespaces, you need to specify the fully qualified
class name including the namespace. For example, if you need to use a collection of
the type ArrayList in an expression, you have to use its fully qualified name,
System.Collections.ArrayList.

WORKING WITH FUNCTIONS 161

To use functions located in other .NET assemblies, you need to reference the
assembly first. We will discuss working with custom code in detail in chapter 6.

RS comes with a number of native functions that you can use in your expressions.
Most of these functions are aggregate functions.

5.3.2 Using aggregate functions

Aggregate functions perform a calculation on set of values from data in datasets, data
regions, and groupings and return a single value. Aggregate functions are often used
with data region groups to produce data aggregates in the group footer.

We have already seen many examples where we used the most common aggregate
function, Sum(), to get an aggregated total of the data, such as the Sales Total per
employee or product category in the Employee Sales by Territory report.

Another aggregate function that we used to implement conditional formatting was the
RowNumber() function. The RowNumber() function produces a running count of
the rows within a specified scope. For example, in the Employee Sales by Territory report,
we used RowNumber to alternate the background color for the rows in the tblEmployee-
Sales table region between white and beige. To achieve this effect, we used the following
expression for the BackgroundColor property of the tblEmployeeSales table row to deter-
mine whether the row number is odd or even and to format it accordingly:

=Iif(RowNumber("tblEmployeeSales") Mod 2, "White", "Beige")

Understanding the aggregate scope

If you look at the syntax of the RS aggregate functions, you will notice that all of them
take the argument Scope. This scope can be set to the name of a group, data region,
or dataset. We have already talked about the expression scope, but we would like to
discuss this concept once again in the context of aggregate functions.

To understand how scopes affect aggregates, please recall that a report can have
multiple datasets and data regions. The data regions can coexist side-by-side or be
nested one within the other. But how does an aggregate function determine which
dataset or region provides the data for the aggregate calculation? For example, if you
look at the Employee Sales by Territory Advanced report, we have several expressions
that use the Sum() function to calculate the total sales amount. First, we used it in
the expression that defines the txtTerritorySalesYTDTotal textbox value inside the
tblSummary table region to show the sales total for all sales territories. Second, we used
it inside lstTerritory to get the sales total per territory. Finally, we used the same
expression inside tblEmployeeSales to get the sales total per salesperson. How does
Sum() resolve to the right scope?

Obviously, the Sum() function has some intelligence built into it to determine the
right scope of operation. It so happens that if a scope is not explicitly specified, it
defaults to the innermost containing data region or grouping in which the aggregate
is defined. So, in our example, the scope of the Sum() function defaulted to tblSummary,
lstTerritory, and tblEmployeeSales, in that order.

162 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

Setting the aggregate scope explicitly

Let’s see one more example. We’ll change the Employee Sales by Territory with Sum-
mary Advanced report and add another column to tblEmployeeSales that will show
the percentage of the salesperson’s total relative to the territory total. To achieve this,
we can copy and paste the third table column (Percentage of Employee’s Total) and use
the following expression for the new column:

=Fields!Sales.Value/Sum(Fields!Sales.Value, "grpTerritory")

Now, we explicitly set the aggregate scope to the grpTerritory group scope of the lst-
Territory list region, which groups the data by territory. In this way, we can get to the
territory sales total. Figure 5.11 shows the new version of the Employee Sales by Ter-
ritory with Summary Advanced report.

Of course, in this particular case, we could have used the value in the txtTerritory-
Total textbox, which conveniently displays the territory total, but we wanted to show
you how the scope affects the aggregate calculation.

Understanding aggregate scope rules

There are some rules that govern the valid use of scopes. Failure to follow them results in
the following exception, which you will probably run into quite often at the beginning:

The value expression for the textbox 'txtTerritoryGrandTotal' uses an
aggregate expression without a scope. A scope is required for all aggre-
gates used outside of a data region unless the report contains exactly one
data set.

As the exception text says, one of the rules is that you can specify only an aggregate
scope of a containing group, region, or dataset. To demonstrate this, we’ll change the
Employee Sales by Territory with Summary Advanced report to show the grand total
for all territories for the given time period. At first attempt, you might think that you
can accomplish this by adding a new textbox outside the lstTerritory list region and
setting its value to Sum(Fields!Sales.Value).

Figure 5.11 With aggregate functions, you can set the aggregate scope explicitly.

WORKING WITH FUNCTIONS 163

However, when you run the report, you will get the “wrong scope” exception that we
just discussed. The problem is that because there is no containing scope, the Sum()
function has no idea how to calculate the expression.

You may try to solve this issue by changing the expression to Sum(Fields!
Sales.Value, "lstTerritory") so you “tell” the function to use the lstTerritory
list region. This won’t work either, because you can request only a containing scope.
In our case, because the textbox is outside any region, there is no containing scope.

The right expression in this scenario is Sum(Fields!Sales.Value,
"dsEmployeeSales"), so the Sum() function calculates the total for the whole
dataset, as shown in figure 5.12.

Please note that if the report uses only one dataset, you don’t have to explicitly specify
the dataset name, because the aggregate will default to it if it has no containing scope.

The Report Designer helps you somewhat to adopt the scope mentality. When you
drag and drop a dataset field from another dataset to a region, it automatically gen-
erates an aggregate expression for the textbox value. If the field is numeric, the follow-
ing expression is generated:

=Sum("<field name>", "<dataset name>")

As you can see, the Report Designer explicitly sets the scope to the dataset name that
the field belongs to. If the field is the numeric Sum(), the Report Designer defaults
to Sum(); otherwise it uses the First() aggregate function to retrieve the field value
from the first data row.

Implementing running totals

There are a few other aggregate functions available with RS that allow you to perform
various aggregate calculations, such as counting (Count(), CountDistinct(),
CountRows()) and getting the minimum, average, and maximum values, as well as

Figure 5.12 Creating a grand total by using aggregate functions

164 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

variance and deviation values. Please consult the documentation for a full list of all
aggregate functions supported by RS. Those of you familiar with SQL will find the RS
aggregate functions similar to the ones supported by most databases. The SQL speci-
fication defines five aggregate functions that databases must support (MAX, MIN, AVG,
SUM, and COUNT).

An interesting function that we would like to mention is RunningValue().
This function allows you to implement running total aggregate calculations, as the
Monthly Sales by Product Category report shown in figure 5.13 demonstrates.

The Running Totals column carries over the total from the previous months so the
user can see the accumulated-by-month amount. Running totals reports are not easily
done using straight SQL. With the helpful RunningValue() function, though,
authoring this report with RS is a matter of minutes. The only thing that we have to
do is set the Running Total column expression to

 =RunningValue(Fields!Sales.Value, Sum, "dsSales")

Of course, if you need aggregate operations other than summing, we can replace the
Sum function in RunningValue with any other aggregate function with the excep-
tion of RunningValue, RowNumber, or Aggregate.

The Aggregate() function returns a custom aggregate if the database provider
supports user-defined aggregates. Currently, SQL Server 2000 does not support cus-
tom aggregates. However, the next release, code-named Yukon, will allow developers

Figure 5.13 Use the RunningTotal() function to implement running totals.

WORKING WITH FUNCTIONS 165

to create user-defined aggregate functions. Similar to user-defined functions (UDF),
custom aggregates return a single value and they can be written in any of the supported
.NET languages.

5.3.3 Using other internal functions

RS provides three other helpful functions that you can use in your expressions: InScope,
Level, and Previous.

The InScope() function indicates whether the current report item is within the
specified scope. This is especially useful with matrix regions, as we will see in section 5.4.1
when we discuss reports with navigational features.

Implementing recursive hierarchies

The Level() function returns the level offset as an integer value for recursive hierar-
chy reports. Recursive hierarchy reports are based on self-referential data, which has a
parent-child relationship already defined. A typical example is an organizational hier-
archy, where each employee record in the database has a ManagerID column pointing
to the employee supervisor record. RS allows us to quickly generate reports that take
advantage of such recursive data relationships.

For example, let’s create a report that displays the AWC organizational structure.
Figure 5.14 shows the Corporate Hierarchy report.

The report shows the employee name, his title, and the name and title of his direct
supervisor. In addition, the report gives the user two options to filter the report data.
First, the user can choose to see whom a given employee reports to, and second, it
allows the user to see the employee’s subordinates.

Figure 5.14 Use the Level() function to create recursive hierarchy reports.

166 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

The trick to creating a recursive hierarchy report with RS is to configure the Parent
Group setting on the region Grouping and Sorting Properties dialog, as shown in fig-
ure 5.15.

In our case, we set the Parent Group to the employee’s manager. Once this is done,
RS walks recursively through the employee data, starting with the top manager and
going all the way down. To offset the table region rows in accordance with the
employee hierarchical level, we used the following expression for the left padding set-
ting of the Employee Name textbox (txtName):

=Convert.ToString(2 + (Level()*10)) & "pt", 2pt, 2pt, 2pt

The Level function returns an integer value indicating the hierarchical level of a row.
Thus, for the top manager, Level returns 0; its subordinates have a level of 1, and so
on. We simply use the return value from the Level function to offset the text accord-
ingly. To give the user an option to switch between employees and managers, we added
the Filter parameter with two available values, Employee and Manager, respectively.
Then, we based the report dataset query on an expression that appends the appropriate
WHERE clause accordingly.

Figure 5.15 Use the Parent Group setting to establish the parent-child

relationship.

DESIGNING REPORTS WITH NAVIGATIONAL FEATURES 167

Implementing data differentials

The Previous() function is useful to return the previous aggregate value from the
current or another scope. For example, we can enhance the Monthly Sales by Product
Category and add a % Change column to show the change in percentage from one
month to the next. Figure 5.16 shows the new version of the report.

Looking at the report, the user can see that, for example, the sales were up 71 per-
cent from July to August. We used to the following expression for the value of the txt-
PerChange textbox:

=Iif(Previous(Fields!Sales.Value)>0, _
(Fields!Sales.Value - Previous(Fields!Sales.Value)) _
/Previous(Fields!Sales.Value), "N/A")

First, this expression checks to see whether we have data from the previous month. If
not, N/A is displayed. Otherwise, we use the Previous function to get the sales
amount for the previous month and calculate the difference.

Now that we know how to use expressions and functions, we can make our reports
more interactive by taking advantage of the navigational features that RS provides.

5.4 DESIGNING REPORTS
WITH NAVIGATIONAL FEATURES

With Reporting Services you can add navigational features to your reports in the form
of hyperlinks and document maps. By using these features, you can give the report user
the option to jump quickly to a specific area of a large report or navigate to an external
URL-addressable resource.

Figure 5.16 Using the Previous function to implement the percentage increase

168 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

5.4.1 Reports with hyperlinks

All data regions (including the chart region) support hyperlinks. Hyperlinks in reports
can be used to allow the user to navigate to

• Another report

• A bookmark inside a report, similarly to the way you can use bookmarks in
Microsoft Word documents

• A URL address—The currently supported options are mailto, http, https, news,
and ftp. The URL address can be defined as static text or produced by an expres-
sion. For example, in a report that shows a list of vendors, the vendor name
hyperlink could navigate the user to the vendor’s web site.

NOTE Unfortunately, to prevent executing client-side malicious code, Reporting
Services currently doesn’t support calling JavaScript functions from hyper-
links. Microsoft hints that a future version may allow the administrator to
configure RS to allow additional protocols.

One common use of hyperlinks is to navigate the user to a URL address.

Using hyperlinks to send e-mail

The Territory Sales Drillthrough report (shown in figure 5.17) demonstrates how you
can incorporate navigation capabilities in your reports with hyperlinks.

Now the report displays the salesperson’s name as a hyperlink, so the user can con-
veniently click it to send the salesperson an e-mail message. You can define hyperlinks
for textbox and image report items from the Navigation tab of the item’s Advanced
Properties dialog, as shown in figure 5.18.

In this case, we defined the following expression for the Jump to URL hyperlink
action property:

="mailto:" & Fields!EmailAddress.Value

Figure 5.17 Use hyperlinks to navigate the user to a URL address.

DESIGNING REPORTS WITH NAVIGATIONAL FEATURES 169

Once you set the hyperlink action, RS automatically changes the mouse cursor to a
hand when the user hovers on top of an item with a hyperlink. In addition, we imple-
mented conditional formatting to underline the person’s name only if the Email-
Address field is not null.

Finally, we implemented a tooltip to show the person’s e-mail address by set-
ting the Tooltip property (VS.NET Properties window) of txtEmployee to the fol-
lowing expression:

= Fields!EmailAddress.Value

Hyperlinks are frequently used to create drillthrough reports.

Creating drillthrough reports

The same sample report, Territory Sales Drillthrough, also demonstrates how you can
add drillthrough features to your reports by setting the hyperlink action to open
another report that could show more detailed data for the currently selected item.
With RS, you are not restricted to hard-coding the name of the drillthrough report.
Again, you can use expressions to evaluate a condition and return the report name.

For example, the Territory Sales Drillthrough report evaluates the row grouping
scope of the matrix region using the InScope() function. If the user has expanded
the Employee row group (to drill down and see the salesperson’s data), the sales

Figure 5.18 To add navigational features to your reports, use the

Navigation tab of the report item’s Advanced Properties dialog.

170 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

amount hyperlink navigates the user to the Employee Sales Freeform report so the user
can see the sales breakdown per product category. If the Employee row group is col-
lapsed, the hyperlink opens the Employee Sales by Territory with Summary Chart
report to show the sales data broken down by territory.

To accomplish this we set the Jump to report navigation action of txtSales to

=Iif(InScope("rowEmployee"), "Employee Sales Freeform", "Employee Sales By
Territory with Summary Chart")

To understand what this expression evaluates to, please recall that we have two row
groups defined in the matrix region: rowTerritory and rowEmployee. InScope(“row-
Territory”) always returns true, because the sales territory represents the outermost row
grouping. InScope(“rowEmployee”) returns false if the Employee row group is col-
lapsed and true otherwise. InScope allows you to determine which row or column
group has been expanded and react accordingly.

Using hyperlinks to implement web-style paging

With a little bit of creativity and programming effort, you can use links in your reports
to implement various custom actions. For example, say you have a large report that
takes a very long time to execute and displays hundreds of records. To improve the user
experience, you may want to implement custom paging similar to the familiar web-
based application-paging concept.

The report could retrieve the report data in chunks, for example, a hundred records
at a time. At the end of the report, you can add a textbox with the text “Next page….”
You can make the textbox clickable by defining a link that will point to the same
report. You can use an expression for the link URL to “remember” the current selection
criteria and send it back to the report when a new page is requested.

5.4.2 Reports with document maps

Reports can grow large, which could make it difficult navigating through them and
finding the right information easily. For example, suppose that Adventure Works
Cycles would like to expose its product catalog report online. There are several reasons
of why this could be beneficial:

• Customers and salespersons would be able to access the company product cata-
log over the Internet.

• The catalog would always contain the up-to-date product information.

• Exposing the product catalog as a report would save substantial time in compar-
ison with authoring it and maintaining it using web pages, not to mention that
the users would be able to export the product catalog to one of the many sup-
ported formats.

DESIGNING REPORTS WITH NAVIGATIONAL FEATURES 171

What is a document map?

One potential implementation area of concern is that the product catalog may include
hundreds of products and the user may not be able to find the information of interest
quickly. RS solves this issue elegantly by allowing report authors to implement docu-
ment maps with links to report areas. Similarly to Table of Contents in books, report
document maps present an outline of the report data. In the previous example, the
product catalog map could organize the product data in categories, subcategories, and
products for faster navigation. By the way, this is exactly what the Product Catalog
report, which is included in the Reporting Services samples, does.

Let’s see an example to showcase the advantages of using document maps. We’ll
assume that the AWC management would like to see the company sales quarterly per-
formance for a given period broken out by sales territory and store. Because a sales ter-
ritory could potentially include many stores, the management has requested that we
implement some sort of navigational features so users can find a particular store easily.
There are at least two possible implementation approaches:

• Pass the store name as a parameter. However, this implementation would
require regenerating the report for each store needed.

• Create a document map to organize the sales data in territories and stores.

Figure 5.19 shows the Territory Sales by Store with Map report, which includes a data
map for easier navigation.

Figure 5.19 Adding a document map to the Territory Sales by Store report makes it easy for

users to view and navigate to a store in any given territory.

172 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

As you can see, the report displays a hierarchical document map on the left side listing
territories and stores alphabetically. The user doesn’t have to page through the report
to find a particular store. Instead, he can expand the document map and locate the
store quickly.

Implementing document maps

Authoring the actual report is nothing we haven’t seen so far. We used three regions,
one table and two list regions, to group the data by country, store, and quarter. The
table region (tblStoreSales) is nested inside the store list (lstStore), which in turn is
nested inside the territory list (lstTerritory).

Now comes the fun part. You may think that implementing a document map
might require creating new datasets and expressions. Actually, it really can’t be sim-
pler. The only thing that we had to do was to associate the Label property of the lst-
Territory and lstStore groups to the corresponding document map label, as shown in
figure 5.20.

To achieve the two-level hierarchy of territory and store, for the Territory list we
set the document map label to Fields!Territory.Value, while for the Store list we set
it to the Fields!Store.Value. That’s all there is to it! RS does the heavy lifting to parse
the data recursively and generate the document map when the report is processed.

Figure 5.20 Implement a document map in your reports by associating

the Label property of the group to a document map label.

REPORT RENDERING CONSIDERATIONS 173

As you’ve seen in this section as well as in chapter 4, RS allows you to add a variety of
interactive features to your reports, such as a report toolbar, toggled visibility, naviga-
tional features, and document maps. One thing that may not be clear is how different
export formats impact these features. We’ll round out this discussion by looking at
some considerations that you need to keep in mind with regard to report rendering.

5.5 REPORT RENDERING CONSIDERATIONS

The area of functionality that is most impacted by exporting is the report interactive fea-
tures. Table 5.4 shows the set of supported interactive features for each export format.

With version 1.0 of Reporting Services, export formats are not securable items. In
other words, if the user has rights to render the report, she can export it in any regis-
tered format. If you need to limit the export options, the simple solution will be to do
this in your client application. The disadvantage is that an adept user can bypass the
client application and export the report directly from the Report Server. If this is an
issue, you can implement a façade layer between the client application and the Report
Server to validate the report requests. This approach is similar to the scenario that we
will discuss in chapters 11 and 13.

Alternatively, you can also remove the rendering extension elements in the RSReport-
Server.config configuration file (found under the <Render> section) to eliminate the
possibility that the export format can be used altogether.

5.5.1 Exporting reports to HTML

The Report Server uses the HTML rendering extension to render the report to HTML
by default if a rendering format is not specified. HTML 4.0 is used for up-level brows-
ers, such as Internet Explorer 4.0 or above or Netscape 7.0 or above; otherwise, HTML 3.2
is used.

The report formatting settings, such as fonts, colors, and borders, are encapsulated
in an inline stylesheet included in the page. Charts are always saved as image files.

If not already cached by the browser, images are fetched via additional requests to
the Report Server. In essence, the browser asks the Report Server to send the image
by submitting a URL request to the server, such as the following:

Table 5.4 Interactive features that are supported for each export format

Feature HTML MHTML HTML OWC Excel Image PDF CSV XML

Report toolbar ✓ ✓

Toggled visibility ✓ ✓

Navigational features ✓ ✓ ✓1 ✓

Document maps ✓ ✓ ✓

(✓1) Hyperlinks to static URLs in rows and column groups only

174 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

http://localhost/ReportServer?/AWReporter/Employee Sales Freeform with
Chart&rs:Format=HTML4.0&rs:ImageID=0b326371-9aec-4705-87bf-1af02b3d5e78

One interesting option that exporting to HTML supports is auto-refreshing reports.
For example, you can author a company stock performance report that automatically
refreshes itself on a set schedule to get the latest stock value. You can set up the report
to automatically refresh itself at a certain interval by using the AutoRefresh report
property. You can find this property both on the General tab of the Report Properties
dialog (select the report by clicking the Report Selector, right-clicking the report,
and choosing Properties) and on the report’s Properties window. Behind the scenes,
this property emits a meta browser tag, e.g., <META HTTP-EQUIV="Refresh"
CONTENT="5"> if you set the AutoRefresh property to 5 seconds.

In terms of preserving the report fidelity, HTML is your best choice because it sup-
ports all interactive features, such as hyperlinks, document maps, and expandable
crosstab reports.

There’s one performance consideration when exporting reports to HTML. To ren-
der an HTML report, the browser loads the report in memory. For large reports, this
could result in an “out of memory” exception. To prevent this and display HTML
reports faster, you can define page breaks wherever it makes sense. For example, you
can place a page break at the beginning or end of region groupings.

To enhance the report performance, the Report Server automatically generates a
soft page break after the first page when repaginating HTML reports. Therefore, the
first page of report loads quickly even with large reports.

5.5.2 Exporting reports to MHTML

The MHTML (MIME Encapsulation of Aggregate HTML Documents) format, listed
as Web Archive in the standard report toolbar, encapsulates the report and its images
in a single file. This eliminates the round-tripping to the Report Server to fetch the
report images.

Because MHTML is based on MIME, rendering reports in MHTML format will be
probably the best export option when you need to push the report to the users via e-mail
subscribed delivery, as we will discuss in more detail in chapter 14. MHTML is more
compact than PDF and TIFF formats. Please note, though, that all interactive features
except hyperlinks (drillthrough reports) will be disabled when you export to MHTML.

5.5.3 Exporting reports to HTML

with Office Web Components

This option is the same as HTML with an additional twist: chart and matrix regions
are exported as chart and pivot Office Web Components, respectively. Of course, this
requires that the Microsoft Office Web Components package be installed locally. The
package is available as a stand-alone component of Microsoft Office.

If the Office Web Components package is not installed, the user will be prompted
to download and install it from the Microsoft Office web site, where several localized

REPORT RENDERING CONSIDERATIONS 175

versions are available, as you can see by examining the OWCConfiguration section
in the RSReportServer.config configuration file. If the user doesn’t have a valid
Office license, OWC will be installed in read-only mode and all interactive features
will be disabled.

Why would you export a report to HTML OWC? This export format is especially
useful for chart and crosstab reports because it allows the end users to see data from
different angles by adding/removing columns at will. Figure 5.21 shows the Territory
Sales Crosstab report exported in HTML OWC.

Without any effort on our part the pivot report now has many more interactive fea-
tures. Not only can the users drill down through data, but they can also remove,
replace, and change groups. For example, how about if we want to see data grouped
by time in rows and by territory in columns. To accomplish this we need to just drag
the groups to their new places and remove the groups we don’t want.

OWC is a marvelous piece of technology that we will talk more about in
Chapter 12 when we will see how to integrate Reporting Services with OLAP appli-
cations. For now, we would like to mention one limitation that the HTML OWC for-
mat is a subject to. Typically, to tap into the full power of Office Web Components
you will use them in a client/server model, where they are connected to the backend
database, such as SQL Server or Analysis Services. However, reports that are exported
to HTML OWC use OWC in a disconnected mode, where all the report data is down-
loaded as XML and fed into the component using a special data provider called

Figure 5.21 Exporting reports to HTML OWC format

176 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

MSPersist. As a result, the data shown on the report is always limited to the data
returned by the report query.

5.5.4 Exporting reports to other formats

Here’s a quick recap about the rest of the export formats.

Excel

This format could be useful when you want to manipulate the report data offline in
Microsoft Excel XP or later versions. Exporting to Excel doesn’t require the use of
Office Web Components for matrix and charts regions. Please consult with the docu-
mentation about other considerations when exporting reports to Excel.

Image

Exporting a report as an image allows the report to be rendered in BMP, EMF, GIF,
JPEG, PNG, TIFF, and WMF image formats. The default option is TIF. Different for-
mats can be requested by passing device settings parameters. We will discuss how to
use device settings in chapter 9.

Exporting a report as an image could be useful if you want to show the report easily
on a web page or print it consistently regardless of the printer capabilities. On the
downside, all interactive report features will be lost. Another disadvantage of exporting
to image files is that it substantially increases the report size.

PDF

If the report has a document map, it can be found under the Bookmark tab in Adobe
Reader. All other interactive features are lost.

CSV

You can export reports to comma-delimited files. The field delimiter, record delimiter,
and text qualifier can be fine-tuned by passing specific switches. Please see the docu-
mentation for all considerations regarding exporting reports to CSV.

XML

As you have just seen, reports can be exported to XML. Only the report data is
exported and the report layout information is not preserved.

NOTE Microsoft will probably provide a rendering extension for exporting reports
to RTF format with the next release of Reporting Services. If you don’t
want to wait until then, you have two options. First, you can use third-
party rendering extensions, such as the SoftArtisians’s OfficeWriter, to
export the report to Word format (for more information refer to chapter 16).
Or, with the persisting to XML feature available with Office 2003, another
option for exporting to Word will be to render the report in XML format,
compliant with the Word schema.

DESIGNING LOCALIZED REPORTS 177

5.6 DESIGNING LOCALIZED REPORTS

So far, we have been blissfully ignorant about designing our reports in such a way that
they could support localized user interfaces and regional settings in multiple cultures.
For example, when calculating the sales total we didn’t take in consideration the fact
that the AdventureWorks2000 database captures the currency code along with the
sales data.

NOTE The AdventureWorks2000 database demonstrates a few localization aspects
that you commonly have to deal with. First, as we said, it stores the cur-
rency code in the SalesOrderHeader table. Second, it maintains a currency
conversation table that captures the currency exchange rate on a daily basis.
Also, it stores the product description in several languages in the Product-
Description table. If you have never localized applications before, you
might want to review the AdventureWorks2000 database schema to under-
stand the complexity surrounding this issue.

In addition, on a few occasions, we have been formatting currency amounts as dollars
explicitly, such as $##0.00. For the purpose of demonstrating the report design process
with Reporting Services this is fine, but in real life you need to be aware of how global-
ization requirements affect reporting, and you should author your reports accordingly.

At minimum, if the reports will be requested by international users, I would rec-
ommend that you use culture-neutral format strings to format dates and numbers,
such as “d” for short dates as opposed to mm-dd-yyyy, or N for numbers as opposed
to #,##0. Please check the .NET documentation for a full list of date and numeric cul-
ture-neutral format strings.

5.6.1 Report localization basics

Reporting Services helps you in two ways to localize your reports:

• It exposes the user language code, e.g., en-US, under the User.Language prop-
erty, so you can pass it to the database or react to it programmatically.

• If culture-neutral formatting is used, the Report Server formats the text inside
textboxes in accordance with the user language settings that the browser passes
to the Report Server. In addition, RS sets the Calendar, NumericalLanguage,
and NumericalVariant accordingly.

Beyond that you are on your own. For example, you must take care of translating the
report text into different languages, perform currency conversions, and so on. To dem-
onstrate some localization techniques we modified the Product Catalog sample report
that comes with the RS samples and saved it as Product Catalog Localized inside the
AWReporter project.

Figure 5.22 depicts the algorithm that the Report Server follows to localize the con-
tent inside a textbox report item that is formatted with the currency culture-neutral
format specifiers, such as “c”.

178 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

Each textbox has a Language property that you can explicitly set to a specific locale. If
you do so, the textbox content will be formatted according to the specified language.
Take, for example, the Product Catalog Localized report. You may want to show the
product list price always formatted as dollars, regardless of the fact that international
users can request the report with various language settings. To do this, you change the
Language property of the ListPrice textbox item to English (United States). Of course,
another way to accomplish this would be to use user-defined format specifiers instead
of culture-neutral, such as $#.#00.00. However, I would advise against this practice
because of the rework involved if you change your mind later and decide to localize
the textbox item.

If the textbox language is not set, the report language will be used. To change the
locale at a report level, you change the report Language property.

If the report language is not set, the Report Server will honor the browser language
settings. For example, in the case of Internet Explorer, the user can specify multiple
languages that will be treated by the browser and prioritize them when viewing web
content. In Internet Explorer end users can specify preferred languages by using the
Language Preference dialog, as shown in figure 5.23.

Figure 5.22

Localization

flowchart

DESIGNING LOCALIZED REPORTS 179

If the browser language settings are not set, the Report Server will use the operating
system language settings. Windows users can change these settings by accessing the
Regional and Language Options Control Panel applet.

5.6.2 Localization techniques

So far, we have talked only about how localization affects formatting. What if you need
to localize the report content in different languages or perform currency conversion? As
the AdventureWorks2000 database demonstrates, you can adopt a data-driven approach.

Data-driven localization

The Product Catalog Localized report demonstrates this technique by displaying the
translated product description according the user locale settings. For example, let’s
open the IE Language Preference dialog (see figure 5.23) and move the French (France)
[fr] locale to the top of the browser languages. When we request the report, it localizes
the product description, as shown in figure 5.24.

Here, we are taking advantage of the fact that AdventureWorks2000 database stores
localized product descriptions in the ProductDescription and ProductDescription-
XLocale tables.

To retrieve the correct translated product description, we pass the two-letter language
code to the @Language query parameter. The two-letter language code is returned by
the GetTwoLetterISOLanguageName embedded function, as follows:

Figure 5.23

End users can use the

Internet Explorer

Language Preference

dialog to specify their

preferred languages.

180 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

Function GetTwoLetterISOLanguageName(LocaleID as String) as String
 Dim ci As New System.Globalization.CultureInfo(LocaleID,False)
 return ci.TwoLetterISOLanguageName
End Function

In the @Language query parameter, we pass User.Language to the LocaleID argument.
User.Language returns the four-letter language code, e.g., fr-FR, so we need this func-
tion to get the two-letter code.

Please notice that we have set the List Price locale explicitly to English (United
States). If we hadn’t done so, the list price would appear formatted in Euros, which is
definitely not what we need. If we had wanted to convert the price to another currency,
we could have used the currency exchange rates stored in the CurrencyRate table.

We also provided another simple function inside the report embedded code,
GetLanguageNativeName, to display the language native name on the first page
of the report. For example, for French users it returns français (France), so you can eas-
ily see which locale the user has selected. You can also see how choosing a different
locale impacts the format of dates by looking at the current date displayed on the first
page of the report.

Defaulting the user culture

Okay, but what if you want your report to support only a subset of locales? For exam-
ple, the AdventureWorks2000 database supports only seven languages, and Japanese
happens not to be among the ones supported. What would happen if a user with Jap-
anese language settings requests our report? Well, as far as the currency conversion is

Figure 5.24 Localizing the product description

SUMMARY 181

concerned, we can handle this at the database level. If the language is not supported,
we could default to English and convert the sales amount to dollars.

However, we would need to also take care of changing the language settings of the
report itself to English. If we left the textbox items to use culture-neutral format spec-
ifiers, then RS would happily format the textbox values according to the Japanese
regional settings. We would end up with the sales amount calculated in dollars at the
data source but shown in yens on the report. What a mess!

How can we solve this issue? One option is to base the format settings of all local-
ized textboxes on expressions. Similar to the database approach, the expressions could
call a custom function, which could check for supported locales and default to English.
However, this approach could easily become messy and difficult to maintain.

A better option, in our opinion, would be to check the locale before the report is
rendered and revert the user culture to the default language in case the locale is not
supported. If we could do this, we would solve both the database and formatting
issues. Unfortunately, this approach cannot be implemented with version 1.0 of
Reporting Services. First, with the lack of events, we cannot perform some prepro-
cessing before the report is generated. Using a custom HTTP module to intercept the
report request and change the thread culture will not work either. The reason for this
limitation is that currently the Report Server uses the “accept-language” HTTP header
to determine the user-preferred language. Unfortunately, the request headers collec-
tion is read-only at the time the request arrives at the Report Server.

5.7 SUMMARY

You can greatly enhance your report features by using expressions coupled with func-
tions. You can write expressions manually or use the Expression Editor. The Reporting
Services object model exposes five collections that you can reference in expressions:

• The Fields collection allows you to reference the report’s dataset fields.

• The ReportItems collection exposes all textbox items.

• The Parameters collection allows you to reference the parameter values passed
to the report.

• The Globals and User collections contain some useful global and user-
specific values.

To expand your expression capabilities, you can use native functions that come from
RS or external functions from the prereferenced standard .NET assemblies.

You can use expressions to add interactive features to your reports, such as links and
document maps. You need to be aware of how different export formats impact the report’s
interactive features. The richest format that offers the most interactive features is HTML.

Finally, if international users will see your reports, you can localize your report
by using various techniques, including formatting and expressions based on the
user language.

182 CHAPTER 5 USING EXPRESSIONS AND FUNCTIONS

With RS, you can accomplish much more with expressions than creating calculated
fields and calling a limited number of functions. In chapter 6 we will see how to
unleash the expression capabilities by integrating them with custom code.

5.8 RESOURCES

Globalizing and Localizing Applications (http://msdn.microsoft.com/library/default.
asp?url=/library/en-us/vbcon/html/vboriInternationalization.asp)
A chapter from the Visual Studio .NET documentation that will introduce you
to the internationalization features built into .NET.

183

C H A P T E R 6

Using custom code
6.1 Understanding custom code 184
6.2 Custom code in action: implementing report forecasting 191
6.3 Using XML-based reports 204
6.4 Summary 210
6.5 Resources 211

Reporting Services doesn’t limit your programming options to using inline expressions and
functions. In this chapter, we will show you how to supercharge the expression capabilities
of your reports by integrating them with custom code. Writing custom code allows us to
use advanced programming techniques to meet the most demanding reporting needs.

In this chapter, you will

• See what custom code options RS offers

• Learn how to write embedded code

• Find out how to integrate reports with external .NET assemblies

• Use XSL transformations to produce XML reports

We will put our custom code knowledge into practice by creating an advanced report
that will show forecasted sales data.

With the widespread adoption of the XML as an interoperable data exchange for-
mat, we will also see how we can export reports to XML and custom-tailor the report
output by using XSL transformations.

184 CHAPTER 6 USING CUSTOM CODE

6.1 UNDERSTANDING CUSTOM CODE

As we mentioned in chapter 1, one of the most prominent features of Reporting Ser-
vices is its extensible architecture. One way you can extend the RS capabilities is by
integrating your reports with custom code that you or somebody else wrote. In general,
you have two options for doing so:

• Write embedded (report-specific) code using Visual Basic .NET.

• Use custom code located in an external .NET assembly.

We’ll now discuss each custom code option in more detail.

6.1.1 Using embedded code

As its name suggests, embedded code gets saved inside the Report Definition Language
(RDL) file. Before we jump to a code example, we would like to mention some limi-
tations that embedded code is a subject to:

• You can call embedded code only from within the report that contains the code.
Because embedded code is saved in the RDL file, it is always scoped at the report
level. For this reason, code embedded in one report cannot be referenced from
another report. To create global and reusable functions that could be shared
among reports, you have to move them to an external .NET assembly.

• You are restricted to using Visual Basic .NET only as a programming language
for writing embedded code.

• As we pointed out in chapter 5, inside custom code you cannot directly refer-
ence the report object global collections, such as Fields, ReportItems, and so on.
Instead, you have to pass them to your embedded methods as arguments.

To call embedded code in your report, you reference its methods using the globally
defined Code member. For example, if you have authored an embedded code function
called GetValue, you can call it from your expressions by using the following syntax:

=Code.GetValue()

DEFINITION Shared (called static in C#) methods can be invoked directly through the
class name without first creating an instance of the class. To designate a
method as shared, you use the VB.NET Shared modifier. The embedded
code option doesn’t support shared methods. On the other hand, instance
methods are accessed through instances of the class and don’t require a spe-
cial modifier.

With the exception of shared methods, your embedded code can include any VB.NET-
compliant code. In fact, if you think of the embedded code as a private class inside
your project, you won’t be far from the truth. You can declare class-level members and
constants, private or public methods, and so on.

UNDERSTANDING CUSTOM CODE 185

Maintaining state

One not-so-obvious aspect of working with embedded code is that you can maintain
state in it. For example, you can use class-level members to preserve the values of the vari-
ables between calls to embedded code methods from the moment the report processing
starts until the report is fully processed. We will demonstrate this technique in the fore-
casting example that we will explore in section 6.2.

Please note that state can be maintained within the duration of single report
request only. As we explained in chapter 2, the RS report-processing model is stateless.
For this reason, the report state gets discarded at the end of the report processing.
Reporting Services is a web-based application, and just like any other web application,
once the request is handled, its runtime state gets released. For this reason, subsequent
requests to the same report cannot share state stored in class-level variables.

Let’s now look at a practical example where embedded code can be useful.

Writing embedded code

You can write embedded code to create reusable utility functions that can be called
from several expressions in your report. Let’s examine an example of how we can do
just that.

Suppose that the Adventure Works users have requested that we change the Territory
Sales Crosstab report to display N/A when data is missing, as shown in figure 6.1.

Figure 6.1 You can use embedded code to implement useful utility functions scoped at the

report level.

186 CHAPTER 6 USING CUSTOM CODE

Further, let’s assume that we need to differentiate between missing data and NULL val-
ues. When the underlying value is NULL, we will translate it to zero. To meet this
requirement, we could write a simple embedded function called GetValue.

Using the Code Editor

To write custom embedded code, you use the Report Designer Code Editor, which you can
invoke from the Report Properties dialog. You can open this dialog in either of two ways:

• Select the report by right-clicking the Report Selector and choosing Properties.
• Right-click anywhere on the report outside the body area, and choose Properties.

Then, from the Report Properties dialog, choose the Code tab, as shown in figure 6.2.
Granted, function GetValue can easily be replaced with an Iif-based expression.

However, encapsulating the logic in an embedded function has two advantages. First,
it centralizes the logic of the expression in one place instead of using Iif functions for
every field in the report. Second, it makes the report more maintainable because if you
decide to make a logical change to your function, you do not have to track down and
change every Iif function in the report.

As you can see, the Code Editor is nothing to brag about. It is implemented as a
simple text area control, and its feature set doesn’t go beyond copying and pasting text.
For this reason, I highly recommend that you use a standard VB Windows Forms or
Console application to write your VB.NET code in a civilized manner and then copy
and paste it inside the Code Editor.

The Report Designer saves embedded code under the <Code> element in the RDL
file. When doing so, the Report Designer URL-encodes the text. Be aware of this if
you decide to change the <Code> element directly for some reason.

Figure 6.2

Use the Code Editor for

writing embedded code.

The GetValue function,

shown in the Code Editor,

determines whether a value

is missing or NULL.

UNDERSTANDING CUSTOM CODE 187

Handling missing data

Once the GetValue function is ready, to differentiate between NULL and missing
data in our report, we could base the txtSales and txtNoOrders values on the follow-
ing expressions:

=Iif(CountRows()=0, "N/A", Code.GetValue(Sum(Fields!Sales.Value)))

and

=Iif(CountRows()=0, "N/A", Code.GetValue(Sum(Fields!NoOrders.Value)))

respectively.
The CountRows function returns the count of rows within a specified scope. If no

scope is specified, it defaults to the innermost scope, which in our case resolves to the
static group that defines the values in the data cells. Both expressions first check for miss-
ing data (no rows) by using CountRows and display N/A if no missing data is found.
Otherwise, they call the GetValue embedded function to translate the NULL values.

We recommend that you use embedded code for writing simple report-specific
utility-like functions. When your programming logic gets more involved, you should
consider moving your code to external assemblies, as we discuss next.

6.1.2 Using external assemblies

The second way of extending RS programmatically is by using prepackaged logic
located in external .NET assemblies that can be written in any .NET-supported language.
The ability to integrate reports with custom code in external assemblies increases your
programming options dramatically. For example, by using custom code, you can do
the following:

• Leverage the rich feature set of the .NET Framework. For example, let’s say you
need a collection to store crosstab data of a matrix region in order to perform
some calculations. You can “borrow” any of the collection classes that come
with .NET, such as Array, ArrayList, Hashtable, and so on.

• Integrate your reports with custom .NET assemblies, written by you or third-party
vendors. For example, to add forecasting features to the Sales by Product Category
report in section 6.2, we leveraged the Open Source OpenForecast package.

• Write code a whole lot easier by leveraging the powerful Visual Studio .NET
IDE instead of the primitive Code Editor.

I hope that at some point in future, RS will get better integrated with the Visual Studio
.NET IDE and support other .NET languages besides VB.NET. Ideally, RS should allow
developers to add custom classes to their business intelligence projects and write code
using the Visual Studio .NET editor. If this gets implemented, enhancing RS program-
matically will be no different than writing code in traditional .NET development projects.

Based on preliminary feedback that I got from Microsoft, this seems to be the long-
term direction that RS will follow.

188 CHAPTER 6 USING CUSTOM CODE

Referencing external assemblies

To use types located in an external assembly, you have to first let the Report Designer
know about it by using the References tab in the Report Properties dialog, as shown
in figure 6.3.

Assuming that our report needs to use the custom AWC.RS.Library assembly
(included with this book’s source code), we must first reference it using the References
tab. While this tab allows you to browse and reference an assembly from an arbitrary
folder, note that when the report is executed, the .NET Common Language Runtime
(CLR) will try to locate the assembly according to CLR probing rules. In a nutshell,
these rules give you two options for deploying the custom assembly:

• Deploy the assembly as a private assembly.

• Deploy the assembly as a shared assembly in the .NET Global Assembly Cache
(GAC). As a prerequisite, you have to strong-name your assembly. For more
information about how to do this, please refer to the .NET documentation.

If you choose the first option, you will need to deploy the assembly to the Report
Designer folder so that the assembly is available during the report-testing process.
Assuming that you have accepted the default installation settings, to deploy the assem-
bly to the Report Designer folder, copy the assembly to C:\Program Files\Microsoft
SQL Server\80\Tools\Report Designer. Once you have done this, you can build and
render the report in preview mode inside VS.NET.

Before the report goes live, you need to deploy the assembly to the Report Server
binary folder. Specifically, you need to copy to the assembly to the Report Server binary

Figure 6.3

Use the Report

Properties dialog to

reference an external

assembly.

UNDERSTANDING CUSTOM CODE 189

folder, which by default is C:\Program Files\Microsoft SQL Server\MSSQL\ Reporting
Services\ReportServer\bin.

Please note that deploying the custom assembly to the right location is only half
of the deployment story. Depending on what your code does, you may need also to
adjust the code access security policy so the assembly code can execute successfully. We
will discuss the code access security model in chapter 8. If you need more information
about deploying custom assemblies, please refer to the “Using Custom Assemblies
with Reports” section in the RS documentation.

Calling shared methods

When using custom code in external assemblies, you can call both instance and
shared methods. If you need to call only shared methods (also called static in C#)
inside the assembly, you are ready to go because shared methods are available globally
within the report.

You can call shared methods by using the fully qualified type name using the fol-
lowing syntax:

<Namespace>.<Type>.<Method>(argument1, argument2, …, argumentN)

For example, if we need to call the GetForecastedSet shared method located in
the RsLibrary class (AWC.RS.Library assembly) from an expression or embedded code,
we would use the following syntax:

=AWC.RS.Library.RsLibrary.GetForecastedSet(forecastedSet, forecastedMonths)

where AWC.RS.Library is the namespace, RsLibrary is the type, GetFore-
castedSet is the method, and forecastedSet and forecastedMonths are
the arguments.

If the custom assembly is your own, how can you decide whether to define your
methods as shared or instance? My short answer is to use shared methods if you don’t
need instance methods. Shared methods are convenient to call. However, instance
methods allow you to maintain state within the duration of the report request. For
example, you can preserve the class-level variable values between multiple method invo-
cations of the same type. The state considerations for using code in external .NET
assemblies are the same as the ones we discussed in the section 6.1.1 for embedded code.

One thing to watch for is using shared class-level fields to maintain state because
their values are shared across all instances of the same report. So, depending on how
many users are accessing a single report at any one time, the value of a shared field may
be changing. In addition, the values of shared fields are not private to a report user,
so sensitive user-only data should never be accessed through a shared field or property.
Finally, static class-level fields are subject to multithreading locking issues. To avoid
these issues, create your classes as stateless classes that don’t have class-level shared
fields or use instance class-level fields and methods. For more information about
shared vs. instance methods, see the Visual Studio .NET documentation.

190 CHAPTER 6 USING CUSTOM CODE

Sometimes, you simply won’t have a choice and your applications requirements
will dictate the type of method invocation. For example, if the method needs to be also
invoked remotely via .NET Remoting, it has to be an instance method.

Calling instance methods

To invoke an instance method, you have some extra work left to do. First, you have to
enumerate all instance classes (types) that you need to instantiate in the Classes grid
(see figure 6.3). For each class, you have to assign an instance name. Behind the scenes,
RS will create a variable with that name to hold a reference to the instance of the type.

NOTE When you specify the class name in the Classes grid, make sure that you enter
the fully qualified type name (namespace included). In our example (shown
previously in figure 6.3), the namespace is AWC.RS.Library while the
class name is RsLibrary. When you are in doubt as to what the fully qualified
class name is, use the VS.NET Object Browser or another utility, such as Lutz
Roeder’s excellent .NET Reflector (see section 6.5 for information on this
utility), to browse to the class name and find out its namespace.

For example, assuming that we need to call an instance method in the AWC.RS.Library
assembly, we have to declare an instance variable m_Library, as shown in figure 6.3. In
our case, this variable will hold a reference to the RsLibrary class.

If you declare more than one variable pointing to the same type, each will reference
a separate instance of that type. Behind the scenes, when the report is processed, RS will
instantiate as many instances of the referenced type as the number of instance variables.

Once you have finished with the reference settings, you are ready to call the
instance methods via the instance type name that you specified. Just as with embedded
code, you use the Code keyword to call an instance method. The difference between
a shared and an instance method is that instead of using the class name, you use the
variable name to call the method.

For example, if the RsLibrary type had an instance method named Dummy-
Method(), we could invoke it from an expression or embedded code like this:

Code.m_Library.DummyMethod().

Having seen what options we have as developers for programmatically expanding our
report features, let’s see how we can apply them in practice. In the next section, we
will find out how we can use embedded and external code to add advanced features
to our reports.

CUSTOM CODE IN ACTION: IMPLEMENTING REPORT FORECASTING 191

6.2 CUSTOM CODE IN ACTION:
IMPLEMENTING REPORT FORECASTING

In this section, we will show you how to incorporate forecasting capabilities in our
reports. These are the design goals of the sample report that we are going to create:

• Allow the user to generate a crosstab report of sales data for an arbitrary period.

• Allow the user to specify the number of forecasted columns.

• Use data extrapolation to forecast the sales data.

Here is our fictitious scenario. Imagine that the AWC management has requested to
see forecasted monthly sales data grouped by product category. To make these things
more interesting, let’s allow the report users to specify a data range to filter the sales data,
as well as the number of forecasted months. To accomplish the above requirements, we
will author a crosstab report, Sales by Product Category, as shown in figure 6.4.

The user can enter a start date and an end date to filter the sales data. In addition,
the user can specify how many months of forecasted data will be shown on the report.
The report shows the data in a crosstab fashion, with product categories on rows and
time periods on columns. The data portion of the report shows first the actual sales
within the requested period, followed by the forecasted sales in bold font.

For example, if the user enters 4/30/2003 as a start date and 3/31/2004 as an end
date and requests to see three forecasted months, the report will show the forecasted
data for April, May, and June 2004 (to conserve space, figure 6.4 shows only one
month of forecasted data).

As you would probably agree, implementing forecasting features on your own is not an
easy undertaking. But what if there is already prepackaged code that does this for us? If this
code can run on .NET, our report can access it as custom code. Enter OpenForecast.

Figure 6.4 The Sales by Product Category report uses embedded and external custom code

for forecasting.

192 CHAPTER 6 USING CUSTOM CODE

6.2.1 Forecasting with OpenForecast

Forecasting is a science in itself. Generally speaking, forecasting is concerned with the
process used to predict the unknown. Instead of looking at a crystal ball, forecasting
practitioners use mathematical models to analyze data, discover trends, and make edu-
cated conclusions. In our example, the Sales by Product Category report will predict
the future sales data by using the data extrapolating method.

There are number of well-known mathematical models for extrapolating a set of
data, such as polynomial regression and simple exponential smoothing. Implementing
one of those models, though, is not a simple task. Instead, for the purposes of our sales
forecasting example, we will use the excellent Open Source OpenForecast package,
written by Steven Gould.

OpenForecast is a general-purpose package that includes Java-based forecasting
models that can be applied to any data series. The package require no knowledge of
forecasting, which is great for those of us who have decided to focus on solving pure
business problems and kissed mathematics goodbye a long time ago.

OpenForecast supports several mathematical forecasting models, including single-
variable linear regression, multi-variable linear regression, and so on. The current
OpenForecast version as of the time of this writing is 0.3, but version 0.4 is under
development and probably will be released by the time you read this book. Please see
section 6.5 for a link to the OpenForecast web site.

Let’s now see how we can implement our forecasting example and integrate with
OpenForecast by writing some embedded and external code.

6.2.2 Implementing report forecasting features

Creating a crosstab report with forecasting capabilities requires several implementation
steps. Let’s start with a high-level view of our envisioned approach and then drill down
into the implementation details.

Choosing an implementation approach

Figure 6.5 shows the logical architecture view of our solution.

Figure 6.5 The Sales by Product Category report uses embedded code to call the AwRsLibrary

assembly, which in turns calls the J# OpenForecast package.

CUSTOM CODE IN ACTION: IMPLEMENTING REPORT FORECASTING 193

Our report will use embedded code to call a shared method in a custom assembly
(AwRsLibrary) and get the forecasted data. AwRsLibrary will load the existing sales
data into an OpenForecast dataset and obtain a forecasting model from OpenForecast.
Then, it will call down to OpenForecast to get the forecasted values for the requested
number of months. AwRsLibrary will return the forecasted data to the report, which
in turn will display it.

We have at least two implementation options for passing the crosstab sales data to
AwRsLibrary:

• Fetch the sales data again from the database. To accomplish this, the report
could pass the selected product category and month values on a row-by-row
basis. Then, AwRsLibrary could make a database call to retrieve the matching
sales data.

• Load the existing sales data in a structure of some kind using embedded code
inside the report and pass the structure to AwRsLibrary.

The advantages of the latter approach are as follows:

• The custom code logic is self-contained. We don’t have to query the database again.

• It uses the default custom code security policy. We don’t have to elevate the default
code access security policy for the AwRsLibrary assembly. If we choose the first
option, we won’t be able to get away with the default code access security setup,
because RS will grant our custom assemblies only Execution rights, which are
not sufficient to make a database call. Actually, in the case of OpenForecast, we
had to grant both assemblies FullTrust rights because any J# code requires Full-
Trust to execute successfully. However, we wouldn’t have had to do this if we
had chosen C# as a programming language.

• No data synchronization is required. We don’t have to worry about synchronizing
the data containers, the matrix region and the AwRsLibrary dataset.

For the above reasons, we will choose the second approach. To get it implemented, we
will use an expression to populate the matrix region data values. The expression will
call our embedded code to load an array structure on a row-by-row basis. Once a given
row is loaded, we will pass the array to AwRsLibrary to get the forecasted data.

Now, let’s discuss the implementation details, starting with converting OpenFore-
cast to .NET.

Migrating OpenForecast to .NET

OpenForecast is written in Java, so one of the first hurdles that we had to overcome
was to integrate it with .NET. We had two options to do so:

• Use a third-party Java-to-.NET gateway to integrate both platforms. Given the
complexities of this approach we quickly dismissed it.

194 CHAPTER 6 USING CUSTOM CODE

• Port OpenForecast to one of the supported .NET languages. Microsoft provides two
options for this. First, we can use the Microsoft Java Language Conversion
Assistant (see section 6.5 for more information) to convert Java-language code
to C#. Second, we could convert OpenForecast to J#. The latter option would
have preserved the Java syntax although that code will execute under the control
of the .NET Common Language Runtime instead of the Java Virtual Machine.

We decided to port OpenForecast to J#. The added benefit to this approach is that the
Open Source developers could maintain only one Java-based version of OpenForecast.
Porting OpenForecast to J# turned out to be easier than we thought. We created a new
J# library project, named it OpenForecast, and loaded all *.java source files inside it.
We included the .NET version of OpenForecast in the source code that comes with
this book.

Figure 6.6 shows the converted to J# version of OpenForecast open in Visual Stu-
dio.NET.

We had take care of only a few compilation errors inside the MultipleLinearRegres-
sion, because several Java hashtable methods are not supported in J#, such as keySet(),
entries(), and hashtable cloning. We also included a WinForm application (Test-
Harness) that you can use to test the converted OpenForecast. We included the Open-
Forecast DLL so you could still run the report even if you don’t have J# installed.

Figure 6.6 To convert Java-based OpenForecast to .NET, we migrated its code to J#.

CUSTOM CODE IN ACTION: IMPLEMENTING REPORT FORECASTING 195

Implementing the AwRsLibrary assembly

The next step was to create the custom .NET assembly, AwRsLibrary, that will bridge
the report-embedded code and OpenForecast. We implemented AwRsLibrary as a C#
class library project. Inside it we created the class RsLibrary that exposes a static
(shared) method, GetForecastedSet. The abbreviated code of this method is
shown in listing 6.1.

public static void GetForecastedSet(double[] dataSet,
 int numberForecastedPoints) {
 DataSet observedData = new DataSet();
 Observation dp;
 for (int i=0;i<dataSet.Length-numberForecastedPoints;i++) {
 dp = new Observation(dataSet[i]);
 dp.setIndependentValue("x", i);
 observedData.add(dp);
 }

 ForecastingModel forecaster = new MultipleLinearRegressionModel();
 forecaster.init(observedData);
 DataSet requiredObservations = new DataSet();
for (int i=dataSet.Length-numberForecastedPoints;
 i < dataSet.Length; i++) {
 dp = new Observation(0.0);
 dp.setIndependentValue("x", i);
 requiredObservations.add(dp);
 }

 forecaster.forecast(requiredObservations);

 int index = dataSet.Length - numberForecastedPoints;
 Iterator it = requiredObservations.iterator();
 while (it.hasNext()) {
 dataSet[index] = ((DataPoint)it.next()).getDependentValue();
 index++;
 }
}

The GetForecastedSet method receives the existing sales data for a given product
category in the form of a dataSet array, as well as the number of the requested months
for forecasted data. Next, integrating with OpenForecast is a matter of five steps.

Step 1 We create a new OpenForecast dataset and load it with the existing data from
the matrix row array.

Step 2 We obtain a given forecasting model. OpenForecast allows developers to get
the optimal forecasting mathematical model based on the given data series by

Listing 6.1 The report-embedded code calls the AwRsLibrary

GetForecastedSet method, which in turns calls OpenForecast.

Define an OpenForecast dataset and
load it with the matrix row array

Obtain a forecasting
model from

OpenForecast

Specify placeholders for
the forecasted data

Perform
forecasting

Populate the input array

196 CHAPTER 6 USING CUSTOM CODE

calling the getBestForecast method. This method will examine the
dataset and will try a few forecasting models to select the most optimal. If the
returned model is not a good fit, you can request a forecasting model explic-
itly by instantiating any of the classes found under the model’s project folder.

NOTE When testing the report, I noticed that with my sales data getBestFore-
cast() returns the PolynomialRegressionModel model, which returns
negative values when the sales data varies considerably. For this reason, I
explicitly request the MultipleLinearRegressionModel model. I recom-
mend that you try getBestForecast() first for your forecasting appli-
cations, and only if the returned model doesn’t meet your needs should you
request a model explicitly.

Step 3 We prepare another dataset to hold the forecasted data and initialize it with
as many elements as the number of forecasted months.

Step 4 We call the forecast method to extrapolate the data and return the forecasted
results.

Step 5 We load the forecasted data back to the dataSet array so we can pass it back
to the report’s embedded code.

Once we have finished with both the AwRsLibrary and OpenForecast .NET assem-
blies, we need to deploy them.

Deploying custom assemblies

As we explained in section 6.1, we need to deploy custom assemblies to both the
Report Designer and Report Server binary folders. The custom assembly deployment
process consists of the following steps:

Step 1 Copy the assemblies to the Report Designer and Report Server binary folders.

Step 2 Adjust the code-based security if the custom code needs an elevated set of
code access security permissions.

To make both assemblies, AwRsLibrary and OpenForecast, available during design
time, we have to copy AWC.RS.Library.dll and OpenForecast.dll to the Report
Designer folder, which by default is C:\Program Files\Microsoft SQL Server\80\Tools\
Report Designer.

Similarly, to successfully render the deployed report under the Report Server, we
have to deploy both assemblies to the Report Server binary folder, which by default
is C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportServer\
bin. In fact, the Report Server will not let you deploy a report from within the VS.NET
IDE if all referenced custom assemblies are not already deployed.

The default RS code access security policy grants Execution rights to all custom
assemblies by default. However, J# assemblies require FullTrust code access rights.
Because the .NET Common Language Runtime walks up the call stack to verify that

CUSTOM CODE IN ACTION: IMPLEMENTING REPORT FORECASTING 197

all callers have the required permission set, we need to elevate the code access security
policy for both assemblies to full trust. This will require changes to the Report Designer
and Report Server security configuration files.

We will provide more details about how code access security works and how it can
be configured in chapter 8. If you don’t want to wait until then, you can find a copy
of our rssrvpolicy.config configuration file enclosed with the AwRsLibrary project.
Toward the end of the file, you will see two CodeGroup XML elements that point to
the AwRsLibrary and OpenForecast files. You will need to copy these elements to the
Report Server security configuration file (rssrvpolicy.config).

In addition, as we discussed in chapter 2, if you want to preview (run) the report in
the Preview window from the Report Designer, you will need to propagate the changes
to the Report Designer security configuration file (rspreviewpolicy.config) as well.

Once the custom assemlies are deployed, we will need to write some VB.NET
embedded code in our report to call the AwRsLibrary assembly, as we will discuss next.

Writing report embedded code

To integrate the report with AwRsLibrary we added an embedded function called
GetValue to the Sales by Product Category report as shown in listing 6.2.

Dim forecastedSet() As Double ' array with sales data
Dim productCategoryID As Integer = -1
Dim bNewSeries As Boolean = False
Public Dim m_ExString = String.Empty

Function GetValue(productCategoryID As Integer, _
 orderDate As DateTime, _
sales As Double, reportParameters as Parameters, _
txtRange as TextBox) As Double

 Dim startDate as DateTime = reportParameters!StartDate.Value
 Dim endDate as DateTime = reportParameters!EndDate.Value
Dim forecastedMonths as Integer = _
 reportParameters!ForecastedMonths.Value

 If (forecastedSet Is Nothing) Then
 ReDim forecastedSet(DateDiff(DateInterval.Month, _
 startDate, endDate) + forecastedMonths)
 End If

 If Me.productCategoryID <> productCategoryID Then
 Me.productCategoryID = productCategoryID
 bNewSeries = True
 Array.Clear(forecastedSet, 0, forecastedSet.Length - 1)
 End If

 Dim i = DateDiff(DateInterval.Month, startDate , orderDate)

Listing 6.2 The embedded GetValue function calls the AwRsLibrary assembly.

Redim the array only once
to hold existing sales data
plus forecasted sales

The array holds
sales data per
product category

198 CHAPTER 6 USING CUSTOM CODE

 'Is this a forecasted value?
 If orderDate <= endDate Then
 ' No, just load the value in the array
 forecastedSet(i) = sales
 Else
 If bNewSeries Then
 Try
 AWC.RS.Library.RsLibrary.GetForecastedSet(_
 forecastedSet, _
 forecastedMonths)
 bNewSeries = False
 Catch ex As Exception
 m_ExString = "Exception: " & ex.Message
 System.Diagnostics.Trace.WriteLine(ex.ToString())
 throw ex
 End Try
 End If
 End If ' is it forecasted value
 Return forecastedSet(i)
End Function

Because the matrix region data cells use an expression that references the GetValue
function, this function gets called by each data cell. Table 6.1 lists the input arguments
that the GetValue function takes.

To understand how GetValue works, note that each data cell inside the matrix
region is fed from the forecastedSet array. If the cell doesn’t need forecasting (its corre-
sponding date is within the requested date range), we just load the cell value in the
array and pass it back to display it in the matrix region. To get this working, we need
to initialize the array to have a rank equal to the number of requested months plus the
number of forecasted months. Once the matrix region moves to a new row and calls

Table 6.1 Each data cell inside the matrix region will call the GetValue embedded function

and pass the following input arguments.

Argument Purpose

productCategoryID The productCategoryID value from the rowProductCategory row grouping
corresponding to the cell

orderDate The orderDate value from the colMonth column grouping corresponding to
the cell

sales The aggregated sales total for this cell

reportParameters To calculate the array dimensions, GetValue needs the values of the report
parameters. Instead of passing the parameters individually using Parame-
ters!ParameterName.Value, we pass a reference to the report Parameters
collection.

txtRange A variable that holds the error message in case an exception occurs when
getting the forecasted data

Call AwRsLibrary
to get the
forecasted set

CUSTOM CODE IN ACTION: IMPLEMENTING REPORT FORECASTING 199

our function, we are ready to forecast the data by calling the AwRsLibrary.Get-
ForecastedSet method.

Implementing the Sales

by Product Category crosstab report

The most difficult part of authoring the report itself was setting up its data to ensure
that we always have the correct number of columns in the matrix region to show the
forecasted columns. By default, the matrix region won’t show columns that don’t have
data. This will interfere with calculating the right offset to feed the cells from the array.

Therefore, we have to ensure that the database returns records for all months
within the requested data range. To implement this, we need to preprocess the sales
data at the database. This is exactly what the spGetForecastedData stored procedure
does. Inside the stored procedure, we prepopulate a custom table with all monthly
periods within the requested date range, as shown in listing 6.3.

CREATE PROCEDURE spGetForecastedData (
 @StartDate smalldatetime,
 @EndDate smalldatetime
)
AS

DECLARE @tempDate smalldatetime

DECLARE @dateSet TABLE
 (
 ProductCategoryID tinyint,
 OrderDate smalldatetime
)

SET @tempDate = @EndDate

WHILE (@StartDate <= @tempDate)
BEGIN
 INSERT INTO @dateSet
 SELECT ProductCategoryID, @tempDate
 FROM ProductCategory

 SET @tempDate = DATEADD(mm, -1, @tempDate)
END

SELECT DS.ProductCategoryID, PC.Name as ProductCategory,
 OrderDate AS Date, NULL AS Sales
FROM @dateSet DS INNER JOIN ProductCategory PC ON
 DS.ProductCategoryID=PC.ProductCategoryID
UNION ALL

Listing 6.3 The spGetForecastedData stored procedure ensures that the

returned rowset has the correct number of columns.

Define a custom table to hold all months
within the requested date range

Insert the
month records

Return the actual sales data
plus the dummy records

200 CHAPTER 6 USING CUSTOM CODE

SELECT PC.ProductCategoryID, PC.Name AS ProductCategory,
 SOH.OrderDate AS Date,
 SUM(SOD.UnitPrice * SOD.OrderQty) AS Sales
FROM ProductSubCategory PSC INNER JOIN
 ProductCategory PC ON PSC.ProductCategoryID =
 PC.ProductCategoryID
INNER JOIN
 Product P ON PSC.ProductSubCategoryID =
 P.ProductSubCategoryID
INNER JOIN SalesOrderHeader SOH INNER JOIN
 SalesOrderDetail SOD ON SOH.SalesOrderID =
 SOD.SalesOrderID
ON P.ProductID = SOD.ProductID
WHERE (SOH.OrderDate BETWEEN @StartDate AND @EndDate)
GROUP BY SOH.OrderDate, PC.Name, PC.ProductCategoryID
ORDER BY PC.Name, OrderDate

Finally, we union all records from the @dateSet table (its Sales column values are set
to NULL) with the actual SQL statement that fetches the sales data.

Once the dataset is set, authoring the rest of the report is easy. We use a matrix
region for the crosstab portion of the report. To understand how the matrix region
magic works and how it invokes the embedded GetValue function, you may want
to replace the expression of the txtSales textbox with the following expression:

= Fields!ProductCategoryID.Value & "," & Fields!Date.Value _
 & "," & Format(Fields!Sales.Value, "C")

Figure 6.7 shows what the Sales by Product Category crosstab report looks like when
this expression is applied.

As you can see, we can easily get to the corresponding row and column group values
that the matrix region uses to calculate the aggregate values in the region data cells.
Now we have a way to identify each data cell. The matrix region is set up as shown
in table 6.2.

Figure 6.7 How the matrix region aggregates data

CUSTOM CODE IN ACTION: IMPLEMENTING REPORT FORECASTING 201

To implement conditional formatting for the forecasted columns (show them in bold),
we used the following expression for the font property of the txtSales textbox:

=Iif(Code.IsForecasted(Fields!Date.Value, Parameters!EndDate.Value),
"Bold", "Normal")

This expression calls the IsForecasted function located in the report-embedded
code. The function simply compares the sales monthly date with the requested end
date and, if the sales date is before the end date, returns false.

The only thing left for us to do is to reference the AwRsLibrary assembly using the
Report Properties dialog’s References tab, as shown previously in figure 6.3. Please note
that for the purposes of this report, we don’t need to set up an Instance Name (no need
to enter anything in the Classes grid), because we don’t call any instance methods.

Debugging custom code

You may find debugging custom code challenging. For this reason, I would like to
share with you a few techniques that I have found useful for custom code debugging.

There aren’t many options for debugging embedded code. The only one I have
found so far is to use the MsgBox function to output messages and variable values
when the report is rendered inside the Report Designer. Make sure to remove the calls
to MsgBox before deploying the report to the Report Server. If you don’t, all MsgBox
calls will result in an exception. For some reason, trace messages using System.Diag-
nostics.Trace (OutputDebugString API) inside embedded code get “swallowed” and
don’t appear either in the VS.NET Output window or by using an external tracing tool.

When working with external assemblies, you have at least two debugging options:

• Output trace messages.

• Use the VS.NET debugger to step through the custom code.

Tracing

For example, in the AwRsLibrary.GetForecastedSet method, we are outputting
trace messages using System.Dianogistics.Trace.WriteLine to display the observed and
forecasted values. To see these messages when running the report inside VS.NET or Report
Server, you can use Mark Russinovich’s excellent DebugView tool, shown in figure 6.8.

Table 6.2 The trick to getting the matrix region populated with forecasted values is to base its

data cells on an expression.

Matrix Area Name Expression

Rows rowProductGroup =Fields!ProductCategory.Value

Columns colYear =Fields!Date.Value.Year

colMonth =Fields!Date.Value.Month

Data txtSales =Code.GetValue(Fields!ProductCategoryID.Value,
Fields!Date.Value, Sum(Fields!Sales.Value), Parameters,
ReportItems!txtRange)

202 CHAPTER 6 USING CUSTOM CODE

For more information about DebugView, see section 6.5.

Debugging custom code

You can also step through the custom assembly code using the VS.NET debugger by
attaching to the Report Designer process, as follows:

Step 1 Open the custom assembly that you want to debug in a new instance of
VS.NET. Set breakpoints in your code as usual.

Step 2 In your custom assembly project properties, expand the Configuration Prop-
erties node and select Debugging. Set Debug Mode to Wait to Attach to an
External Process.

Step 3 Open your business intelligence project in another instance of VS.NET.

Step 4 Back at the custom assembly project, click on the Debug menu and then
choose Processes. Locate the devevn process that hosts that the Business Intelli-
gence project and attach to it. In the Attach To Process dialog, make sure that
the Common Language Runtime check box is selected, and click Attach. At
this point, your Processes dialog should look like the one shown in figure 6.9.

In this case, we want to debug the code in the AwRsLibrary assembly
when it is invoked by the Sales by Product Category report. For this reason,
in the AwRsLibrary project we attach to the AWReporter devenv process.

Figure 6.8 Outputting trace messages from external assemblies in DebugView

CUSTOM CODE IN ACTION: IMPLEMENTING REPORT FORECASTING 203

Step 5 In the Business Intelligence project, preview the report that calls the custom
assembly. Or, if you have already been previewing the report, press the
Refresh Report button on the Preview Tab toolbar. At this point, your break-
points should be hit by the VS.NET debugger.

As you will soon find out, if you need to make code changes and recompile the custom
assembly, trying to redeploy it to the Report Designer folder results in the following
exception:

Cannot copy <assembly name>: It is being used by another person or program.

The problem is that VS.NET IDE holds a reference to the custom assembly. You will
need to shut down VS.NET and then redeploy the new assembly. To avoid this situa-
tion and make the debugging process even easier, you could debug the custom assem-
bly code by using the Report Host (Preview Window). To do this, follow these steps:

Step 1 Add the custom assembly to the VS.NET solution that includes your BI project.

Step 2 Change the BI project start item to the report that calls the custom code, as
shown in figure 6.10.

Step 3 Press F5 to run the report in the Preview window. When the report calls the
custom code, your breakpoints will be hit.

Figure 6.9 To debug custom assemblies, attach to the Visual Studio instance that hosts your

BI project.

204 CHAPTER 6 USING CUSTOM CODE

NOTE As explained in chapter 2, what happens when you press F5 to debug a
report depends on your project settings. If both the Build and Deploy
options are selected in Configuration Manager, VS.NET will build and
deploy all reports in your Business Intelligence project before the report is
displayed in the Preview window. To avoid this problem and launch your
report faster, clear these options or switch to DebugLocal configuration.
This configuration doesn’t include the Deploy option by default.

When using the Preview window approach, VS.NET doesn’t lock the custom assem-
blies. This allows you to change the build location of your assembly to the Report
Designer folder so that it always includes the most recent copy when you rebuild the
assembly. As we explained in chapter 2, running your projects in the Preview window
is a result of the code access security policy settings specified in the Report Designer
configuration file (rspreviewpolicy.config).

Let’s now look at another way of using custom code in reports in the form of XSL
transformations.

6.3 USING XML-BASED REPORTS

So far in this chapter, we’ve seen how we can use custom code to extend report capa-
bilities programmatically. For all its flexibility, custom code has its limitations. For
example, besides hiding report items, you cannot control the report output program-
matically. However, if you export your reports to XML, you can use custom code in
the form of XSL transformations to precisely control the XML presentation of the
report, as we will discuss next.

Strictly speaking, from an implementation standpoint, exporting a report to XML
is no different than exporting it to any other rendering format, because the actual work

Figure 6.10 Use the Report Host debug option to avoid locking assemblies.

USING XML-BASED REPORTS 205

is performed by the XML rendering extension (Microsoft.ReportingServices.XmlRen-
dering.dll), which happens to be one of the supported RS extensions. However, I
decided to devote a special place for it because, in my opinion, this is an extremely use-
ful and important option.

Given the fact that the IT industry has embraced XML as the de facto standard for
data exchange between heterogeneous platforms, exporting a report to XML opens a
whole new world of opportunity. For example, in the B2B (business-to-business) sce-
nario, an organization could expose an inventory report to its vendors. A vendor could
request the report in XML to find out the current inventory product levels. The XML
document could then be sent to a BizTalk server, which could extract the product
information and send it to the manufacturing department. We will implement a sim-
ilar solution in chapter 11.

6.3.1 Understanding XML exporting

The content of the following report elements could be exported to XML: textbox, rect-
angle, subreport, table region, list region, and matrix region. As a report author, you
have full control over the XML presentation of these elements. To customize the XML-
rendered output of the report, you use the Data Output tab of the report element’s
property pages. Which settings can be customized depends on the type of the element.
In general, you can specify the following:

• Whether the report element and its content (for regions, groups, and rectangles)
will be exported

• The XML element name
• Whether the report element will be rendered as an XML attribute or element

For example, at a report level, you can specify the root node name and XML schema.
At the region level, you can specify whether the region and its items will be rendered
at all. At the textbox level, you can tell the Report Server whether the textbox content
will be rendered as an XML attribute or element.

When the Data Output settings are not enough, you can further fine-tune the XML out-
put by using custom XSL transformations. For example, while skipping report elements is
easy, adding additional XML nodes is not. In cases such as this, you can write an XSL trans-
formation that will be applied by the Report Server after the report is rendered to XML.

Let’s now look at a practical example that demonstrates how exporting to XML
could be useful.

6.3.2 Exposing the report content as an RSS feed

While I was trying to figure out what a good XML report could be, my favorite RSS reader
(IntraVNews) popped up a new window to let me know about the current news headlines.
For those of you who are not familiar with this great information medium, RSS (which
stands for all of the following: RDF Site Summary, Rich Site Summary, or Really Simple
Syndication) is an XML-based format that allows information workers to describe and
syndicate web content. Many organizations and individuals use RSS for blogging.

206 CHAPTER 6 USING CUSTOM CODE

DEFINITION A blog, short for web log, is a personal journal that is frequently updated and
intended for general public consumption.

This inspired me to see if we could expose a report as an RSS feed. To give our example
a touch of reality, let’s say that Adventure Works Cycles would like to take advantage
of the increasing popularity of blogging with RSS feeds. In particular, the company
management has requested these requirements:

• Future promotional campaigns must be exposed as an RSS feed. The AWC cus-
tomers could subscribe to the feed using their favorite RSS newsreader and be
notified about future product promotions.

• Each promotional item must include a hyperlink that will show more details
about the campaign, such as discounted products and their sale prices.

Implementation options

How can we implement the above requirements? One approach could be to add the
promotional information as static or dynamic web content to the company’s web por-
tal. For example, the products page could include a section that lists the current pro-
motions. As far as exporting the promotional data as XML for the purposes of the RSS
feed, we could create a Web Service that would query the Adventure Works database,
retrieve the promotion details in XML, and write them into an RSS blog file.

Another implementation option could be to author an RS report that would supply
both the HTML and XML content. The RSS Web Service could then request the report
as XML and append the promotional information to the RSS blog file. The RSS item
hyperlink could bring the customer to the HTML version of same report. Of course,
the latter option assumes that you are willing to allow web users to access your Report
Server directly by URL. This is not as bad as it sounds. If Windows authentication is
an issue, you can replace it with a custom security extension to authenticate and autho-
rize your web users, as we will discuss in Chapter 15.

Which approach will work better for you depends on your particular needs and
limitations. In our case, we will go for the latter to demonstrate the exporting-to-XML
feature. To recap, our design goals for the new report sample will be as follows:

• Export the report to RSS-compliant XML format.

• Append the report XML to an RSS feed (we will postpone the actual implemen-
tation to chapter 9).

Implementing the report

Let’s start by creating a new report called Sales Promotion. The report gets the promo-
tional data from the SpecialOffer and SpecialOfferProduct tables. In addition, it takes
one parameter, Campaign ID, which the user can use to request a specific campaign.

For example, figure 6.11 shows the second page of the Sales Promotion report
when the user requests a campaign with an ID of 2.

USING XML-BASED REPORTS 207

As you can see, this report is very similar to the RS Product Catalog report sample, so
we won’t spend much time discussing its implementation details. Instead, we will focus
on explaining how to export the report’s content to XML.

Understanding the RSS schema

What the report’s XML output needs to be depends on which version of the RSS spec-
ification you have to support. For example, listing 6.4 shows what the sales promotion
RSS feed should look like if it conforms to RSS version 2.0.

<rss version="2.0">
<channel>
 <title>AWC Promotions</title>
 <link>http://www.adventure-works.com/</link>
 <description>Great discounted deals!</description>
 <language>en-us</language>
 <ttl>1440</ttl>

 <item xmlns:n1="http://www.awc.com/sales" xmlns:xs="http://www.w3.org/
2001/XMLSchema">
 <title>LL Road Frame Sale!!!</title>
 <link>http://localhost/reportserver?/AWReporter/Sales
 Promotion&SpecialOfferID=2&rs:Command=Render&rs:Format=XML
 </link>
 <description>Great LL Road Frame Sale!!!</description>
 <pubDate>Saturday, January 10, 2004</pubDate>

Figure 6.11 The Sales Promotion report serves as both the RSS feed source and the HTML

campaign details page.

Listing 6.4 The Sales Promotion RSS feed to which the AWC subscribers will

subscribe to be notified about sales promotions

General feed-related header

Feed item

208 CHAPTER 6 USING CUSTOM CODE

 </item>
 <item xmlns:n1="http://www.awc.com/sales" xmlns:xs="http://www.w3.org/
2001/XMLSchema">
 <!-Another item information here-
 </item>
</channel>
</rss>

Given the above feed, figure 6.12 shows how it gets rendered in the IntraVNews RSS
Reader, which is integrated with Outlook:

Let’s now examine what needs to be done to massage the report output in order to
make it compliant with the RSS schema.

Defining the report XML output

The first step required to export the report to an RSS-compliant format is to fine-tune
its XML output. We’ve made a few changes using the Data Output tab for various ele-
ments, so the report renders to the abbreviated XML schema shown in listing 6.5.

<SalesPromotion xmlns="http://www.awc.com/sales" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="..." Name="Sales
Promotion" Date="2004-01-10T00:00:00.0000000-05:00">
 <Promotions>
 <Promotion Description="LL Road Frame Sale!!!">
 <ProductInfo>
 <Products>
 <Product ProductNumber="FR-T98U-44"
 Product="HL Touring Frame - Blue, 44" Color="Blue"
 Size="44" Weight="2.92" ListPrice="1003.9100"/>
 <Product ProductNumber="FR-T98R-44" Product="HL Touring Frame -
Red, 44" Color="Red"
 Size="44" Weight="2.92" ListPrice="1003.9100"/>
 </Products>

Figure 6.12 The AWC Promotions feed rendered in IntraVNews

Listing 6.5 The Sales Promotion report rendered in XML

The Promotion
element will
represent an item in
the RSS feed

USING XML-BASED REPORTS 209

 </ProductInfo>
 </Promotion>
 </Promotions>
</SalesPromotion>

The most important change that you have to make is to explicitly set the XML Schema
setting at the report level, as shown in figure 6.13.

If the Data Schema setting is not specified, the Report Server will autogenerate the
XML document global namespace to include the date when the report is processed.
This will interfere with referencing the document elements from an XSL transforma-
tion, so make sure you explicitly set the schema namespace.

Writing the XSL tranformation

Once you have finished making adjustments to the XML schema, the next step will be
to write an XSL transformation to transform the XML output to an RSS-compliant for-
mat. To fit the Sales Promotion output to the RSS schema, we wrote the simple XSL
transformation shown in listing 6.6.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:n1="http://www.awc.com/sales"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xsl:template match="/">
 <xsl:for-each select="n1:SalesPromotion/n1:Promotions/

Figure 6.13

Use the Data Output

report settings to

define the report XML

root element name

and namespace.

Listing 6.6 Use XSL transformations to fine-tune the report’s XML output.

210 CHAPTER 6 USING CUSTOM CODE

 n1:Promotion">
 <item>
 <title><xsl:value-of select="./@Description"/></title>
 <link>http://www.adventure-workds.com/promotions</link>
 <description>Great <xsl:value-of select="./@Description"/>
 Items discounted
 <xsl:value-of select="./@DiscountPct"/> percent! Offer
 expires on
 <xsl:value-of select="./@StartDate"/>
 </description>
 <pubDate><xsl:value-of select="./@StartDate"/></pubDate>
 </item>
 </xsl:for-each>
 </xsl:template>
</xsl:stylesheet>

The XSL transformation simply loops through all sales promotions and outputs them
in XML according to the RSS item specification. Strictly speaking, in our case there is
always going to be only one XML sales promotion node, because we use a report
parameter to select a single campaign. Finally, we need to add the XSL transformation
file to our project. Similarly to working with images, we have to add the XSLT file to
the same report project and subsequently upload it to the report catalog when the
report is deployed. The Report Server cannot reference external XSLT files.

The last implementation step is to take care of appending the current sales promo-
tion item to the RSS blog file. The easiest way to accomplish this would be to manually
update the RSS feed XML file on the web server when there is a new promotional cam-
paign. RSS newsreaders could reference this file directly, for example, by going to
http://www.adventure-works.com/promotions.rss. Of course, if the requirements call
for it, the process could also be fully automated. We will see how this could be done
in chapter 9, where we will implement a table trigger that invokes a custom web service
when a new sales promotion record is added to the database.

To subscribe to the RSS feed, AWC customers would configure their favorite RSS
readers to point to the blog file. Once they do so, they will be notified each time the
blog file is updated.

6.4 SUMMARY

In this chapter we learned how to integrate our reports with custom code that we or
someone else wrote.

For simple report-specific programming logic, you can use embedded VB.NET
code. When the code complexity increases or you prefer to use programming lan-
guages other than VB.NET, you can move your code to external assemblies.

For interoperability with different platforms and languages, you can export your
reports to XML. You can control precisely the report output by using the Data Output
tab coupled with custom XSL transformations.

Loop through all Promotion elements
Generate an RSS item

RESOURCES 211

By now, you should have enough knowledge to be able to author reports with
Reporting Services. We’ll now move on to the second phase of the report lifecycle:
report management.

6.5 RESOURCES

The OpenForecast web site (http://openforecast.sourceforge.net/)

Microsoft Java Language Conversion Assistant
(http://msdn.microsoft.com/vstudio/downloads/tools/jlca/default.aspx)
Converts Java-language code to C#

Mark Russinovich’s DebugView tool
(http://www.sysinternals.com/ntw2k/freeware/debugview.shtml)

What is RSS?
(http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html)
A good introduction to RSS

Lutz Roeder’s .NET Reflector
(http://www.aisto.com/roeder/dotnet/)
Similar to the VS.NET Object Browser, Reflector is a class browser for .NET
components.

2P A R T

Managing reports
Once your report is ready, you will probably need to make it available to the end
users. A common requirement posed to enterprise-wide reporting frameworks, such
as Reporting Services, is to facilitate report access and management by keeping all
report configuration in a single place. To respond to this need, RS captures reports
and their related items in a centralized report catalog.

In part 2 we will put on our report manager’s hats to find out what techniques are
available for carrying out the second phase of the report lifecycle—report manage-
ment. Most of our time will be spent discussing how we can leverage the Report Man-
ager web application to perform various management tasks, such as uploading reports,
organizing reports in folders, configuring and working with server-side settings, con-
figuring report caching, and so forth.

As a versatile reporting platform, RS provide ways to address various management
needs. We will explore other management options supported by RS, such as the RS
Web service, WMI provider, RS Scripting Host, and specialized utilities.

An important task that every report manager needs to master is how to secure the
report catalog. We will look at how the RS role-based security mechanism works and
how it can be configured to enforce restricted access to the report catalog. Finally, you
will learn how to configure RS code access security to grant the minimum set of per-
missions that reports with custom code need to execute successfully.

215

C H A P T E R 7

Managing the Reporting
Services environment
7.1 Managing RS with the Report

Manager 216
7.2 Managing RS with

the Web service 242
7.3 Managing RS with the WMI

provider 249

7.4 Other ways to manage
Reporting Services 253

7.5 Analyzing report execution 255
7.6 Summary 259
7.7 Resources 259

Reporting Services provides all the tools you need to support the full lifecycle of a
report. In a typical enterprise environment, there are usually three different groups of
people who get involved with each of the three phases of a report’s lifecycle:

• Report authors focus on authoring reports using the Report Designer.

• Administrators are concerned with managing the report repository.

• Developers report-enable their applications to allow users to request reports on-
demand or via subscriptions.

In this chapter, we will wear administrators’ hats and discuss how we can manage the
report environment. As we will find out, Reporting Services provides not one but sev-
eral maintenance options for performing various administration tasks. We’ll discuss
each option as follows:

• The Report Manager

• The RS Web service

• The Reporting Services WMI Provider

216 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

• The Scripting Host

• Other administration utilities

Let’s start our tour by looking at how report administrators can leverage the Report
Manager web portal to manage the report catalog.

7.1 MANAGING RS WITH THE REPORT MANAGER

The report administrator’s responsibilities typically include performing various day-
to-day tasks to maintain the report catalog. For example, the administrator may want
to grant rights to certain users or Windows groups to run a given report.

To reduce the management effort, Reporting Services includes a user-friendly web-
based tool called the Report Manager.

The Report Manager serves the following main tasks:

• Report delivery—End users can use the Report Manager to request reports
on demand.

• Report management—Report administrators can use the Report Manager to
manage all aspects of the report catalog.

Before we explore the Report Manager portal, it will be beneficial to start with a 1,000-
foot view of its architecture.

7.1.1 How the Report Manager works

From an implementation perspective, the Report Manager is simply a web-based front
end to the Report Server, as shown in figure 7.1.

From an application standpoint, the Report Manager is implemented as an
ASP.NET application, consisting of maintenance pages, styles, images, and other
web resources.

Figure 7.1 The Report Manager is implemented as an ASP.NET application that accesses the

Report Server via HTTP-GET and XML SOAP. HTTP-GET requests are used to render reports;

XML SOAP requests are used for all other report management tasks.

MANAGING RS WITH THE REPORT MANAGER 217

Installing the Report Manager

The Report Manager’s default installation settings are listed in table 7.1.

The Reporting Services Setup program doesn’t allow you install the Report Manager
separately from the Report Server, which forces you to have both components installed
on the same box. This is because deploying the Report Manager on a separate com-
puter requires that you use Kerberos as an authentication protocol so that the user cre-
dentials are properly delegated between the Report Manager and the Report Server.

NOTE The Kerberos protocol originated at MIT more than a decade ago. The
Windows implementation of Kerberos allows an application to flow an
authenticated identity across multiple physical tiers of the application. For
more information about how to configure Kerberos, refer to section 7.7.

If enabling Kerberos is not a problem, moving the Report Manager to a separate
machine is not difficult. Thanks to the xcopy ASP.NET deployment, this is as easy as
creating a new IIS virtual root and copying all Report Manager files to it. Once you
have done this, you should verify that the ReportServerUrl setting in the RSWeb-
Application configuration file points to the correct Report Server URL.

Configuring the Report Manager

The ASP.NET and Report Manager–specific configuration settings are defined in the
web.config and RSWebApplication.config configuration files, respectively. Some of the
configuration settings worth mentioning are listed in table 7.2.

The Report Manager uses ASP.NET sessions to maintain folder view preferences, such
as showing/hiding folder details. For this reason, the Report Manager ASP.NET session
state cannot be turned off.

Table 7.1 The Report Manager’s default installation settings

Setting Value

Vroot Reports

Physical Folder C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\ReportManager

URL http://<reportserver>/reports

Table 7.2 The Report Manager configuration settings

Setting File Description

DefaultTraceSwitch Web.config Defines the level of tracing information
output

ReportServerUrl RSWebApplication.config Specifies the URL address of the Report
Server

MaxActiveReqForOneUser RSWebApplication.config Limits the number of open HTTP requests
by user. Useful for preventing denial of
service attacks.

218 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

The Report Manager is configured to use Windows-based authentication to
authenticate users. In addition, it is configured by default to impersonate the user, as
you can see by examining the <identity> element in the web.config configuration
file. As a result, all requests to the Report Web Server for both report rendering and
management go out under the identity of the Windows user.

The Report Manager web application

To access the Report Manager portal, enter its URL address in a browser, which by
default is http://<servername>/reports, where <servername> is the name of the com-
puter where the Report Manager is installed.

Figure 7.2 shows the Contents tab of Report Manager Home page. Your Contents
tab may differ from mine, depending on what custom folders you have created below
the Home folder and if the My Reports feature has been enabled (see section 7.1.2).

Users familiar with Microsoft SharePoint will find the Report Manager look and
feel similar. The UI interface is very intuitive, so I won’t spend much time discussing
each individual page. Instead, I will focus on a few topics that warrant more explana-
tion. If you need more information about working with the Report Manager, please
consult the Reporting Services documentation.

Using the Report Manager for report delivery

The Report Manager can be used as a quick-and-easy report delivery tool. Organiza-
tions that cannot afford or don’t need customized reporting applications will appreci-
ate this option.

To render a report using the Report Manager, navigate through the folder structure
and click the Report link. Behind the scenes, report rendering is accomplished through
client-side URL (HTTP-GET) requests to the Report Server. To accomplish all tasks

Figure 7.2 The Report Manager Portal is used for rendering reports and managing the report

catalog.

MANAGING RS WITH THE REPORT MANAGER 219

other than report rendering, the Report Manager calls the RS Web service on the server
side using XML SOAP requests.

7.1.2 Managing Report Server settings

The Site Settings menu of the Report Manager allows the report administrator to man-
age some important Report Server settings and tasks, including role-based security,
shared schedules, execution logging, and report history.

The Site Settings page is shown in figure 7.3.
The changes that you make on the Site Settings page are saved in the Configuration-

Info table in the Report Server Configuration database. Some of the settings are self-
explanatory. For example, the Report Execution timeout setting limits the report
execution time to the specified number of seconds.

We’ll explain how to manage the My Reports, schedule, and job features here, but
we will postpone discussing role-based security to chapter 8. If you feel you need more
information about the system settings, please check the “Report Server System Prop-
erties” section in the product documentation.

Figure 7.3 Use the Site Settings page to manage server-side settings, enable the MyReports

feature, and manage shared schedules, jobs, and so on.

220 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

Enabling My Reports

An interesting Reporting Services feature is My Reports. My Reports provides a per-
sonal, private workspace per user. In a typical enterprise environment, the administra-
tor may restrict public access to report folders but grant users restricted rights to
upload, manage, and view their own reports in the “sandboxed” My Reports area.

To enable the My Reports feature (it is disabled by default), select the Enable My
Reports To Support User-Owned Folders For Publishing And Running Personalized
Reports check box.

The administrator can specify which security role will be mapped to My Reports
to further restrict the allowable tasks that users can perform. The choices are the
Browser, Content Manager, My Reports, and Publisher roles. We will postpone dis-
cussing these roles to chapter 8. For the time being, note that the default role (My
Reports) grants the users rights to create and manage reports, folders, and resources
in their private workspace.

When My Reports is enabled, two things happen. First, the Report Manager cre-
ates a catalog folder called Users Folders. This folder will contain a personal folder for
each Windows user. Next, a My Reports link is added to the Home page of the Report
Manager. To activate My Reports, a report user must click this link, which in turn cre-
ates a private catalog folder for this user.

After the personal folder is created, clicking My Reports on the Home page navi-
gates the user to her personal folder.

Managing schedules

Using the Report Manager, the report administrator can schedule certain report activ-
ities to run in an unattended mode once or on a recurring basis. For example, you may
need to distribute a report on a regular basis to subscribed users. To accomplish this,
you can create a shared schedule to trigger the subscription event.

The following activities can be scheduled:

• Delivering reports through subscriptions (“pushed” reports)—We will look at sub-
scribed report delivery in chapter 14.

• Generating report snapshots—We will explain what report snapshots are in sec-
tion 7.1.4.

• Adding report snapshots to the report history—We will discuss report snapshot his-
tory in section 7.1.4.

• Expiring a cached report copy—Caching is also explained in section 7.1.4.

Similarly to working with data sources, you can create two types of schedules:

• Report-specific schedules—A report-specific schedule is associated with a single
report. You can create a report-specific schedule from the report’s Execution
property page.

MANAGING RS WITH THE REPORT MANAGER 221

• Shared schedules—As its name suggests, a shared report schedule can be shared
by reports and subscriptions that need to occur at the same time. Once the
shared schedule is created, you can select its name from a drop-down list during
the process of scheduling the activity, as we will show in section 7.1.4.

You should use shared schedules whenever you can because of the following advantages
they offer:

• Centralized maintenance—Let’s say the employees of the Sales department have
subscribed to some monthly summary reports to be e-mailed to them on the
first day of each month. To simplify the report maintenance, you decide to use a
shared schedule to initiate the subscribed delivery. If the users later change their
mind and request the reports to be delivered on the last day of the month, you
need only update the shared schedule.

• Security—Similar to a shared data source, a shared schedule is a securable item
and can be managed by users who have rights to execute the Manage Shared
Schedules task.

You create or manage shared schedules using the Manage Shared Schedules link under
the Other section of the Site Settings page. This will bring you to the Schedule page,
as shown in figure 7.4. The SQL Server Agent service must be running to make
changes to a schedule.

For example, the screenshot in figure 7.4 shows that we have created a schedule
that runs on a quarterly basis. To see all reports that depend on the shared schedule,
click the Reports link.

The RS Windows service (not to be confused with the RS Web service) (Report-
ingServicesService.exe) works with the SQL Server Agent to coordinate the running of
scheduled tasks. Here is a simplified picture of what happens behind the scenes. When
a schedule is created, the Report Server creates a SQL Server Agent job and schedules
it to run when the event is due. When the time is up, the SQL Server Agent creates a
record in the Event table in the Report Server database.

The RS Windows service periodically polls this table for new events. The polling
interval can be controlled by the PollingInterval setting in the RSReportServer.config
configuration file. The default value is 10 seconds. In case there is a new event, the Win-
dows service queries the report catalog to get a list of the scheduled tasks that are up.
Then, it calls down to the Report Server (directly, not via the web façades) to execute
the tasks. Finally, if the schedule is reoccurring, the Windows service creates a new SQL
Server Agent job and schedules it to run according to the specified schedule interval.

As a developer, you can programmatically log an event in the Report Server data-
base by invoking the FireEvent SOAP API. This could be useful if you want to disre-
gard the schedule and initiate the execution of a certain task explicitly. For example, as
a report administrator, you may have set up the product catalog report to be e-mailed
automatically to Internet customers on a monthly basis. However, you may also need
to send the report immediately when a new product is entered into the sales database.

222 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

To meet this objective, you can use a table trigger attached to the Product table to
invoke FireEvent when a new record is added to this table. We will see an example of
how this scenario could be implemented in chapter 14.

Managing jobs

Sometimes, you may need to examine the current task activity of the Report Server.
For example, users may complain that reports are taking a long time to execute and
you need to find out how many report requests are pending.

To see the list of all running jobs, click the Manage Jobs link in the Other section
of the Site Settings page. For example, figure 7.5 shows that we are currently executing
the Sales By Territory Interactive report.

Figure 7.4 Use the Schedule page to specify the shared schedule settings.

MANAGING RS WITH THE REPORT MANAGER 223

There are two types of running jobs that the Report Server supports: user jobs and sys-
tem jobs. A user job is any job that is explicitly initiated by a user, such as all actions
that the user can initiate through the Report Manager. These include requesting a
report, viewing the report history, subscribing to a report, and so on. A system job is
a job running in unattended mode and initiated by the Report Server. System jobs
include scheduled snapshots and data-driven subscriptions.

The list of running jobs is retrieved from the RunningJobs table in the Report
Server database. When the Report Server initiates a new user or system job, it creates
a record in this table. The RS Windows service periodically scans this table at an inter-
val specified under the RunningRequestsDbCycle setting in the RSReportServer.con-
fig configuration file.

The administrator can attempt to cancel a running job by selecting the job and
clicking the Cancel button. This in turns invokes the CancelJob web method of the
RS Web service, which attempts to terminate the background thread servicing the
report request. Canceling a job doesn’t guarantee that the job will be immediately ter-
minated. Sometimes, hung jobs may require you to manually restart the Report
Server. Because the Report Server’s lifetime is controlled by IIS, to restart it you will
need to restart IIS.

Let’s now see how we can use the Report Manager to manage the report catalog.

7.1.3 Managing content

In a typical enterprise environment, the report administrator will spend most of her
time managing content. Content management tasks include creating folders, upload-
ing resources in these folders, and managing resources. For example, just as you would
avoid saving all your files in the root folder of your hard drive, you would stay away

Figure 7.5 Use the Manage Jobs page to see a list of all running user and system jobs.

224 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

from uploading all reports to the Home folder. Instead, from the Home page you
could use the New Folder button to create subfolders below the Home folder.

While how you organize folder content on your PC hard drive is a matter of per-
sonal preference, the RS folder namespace is publicly accessible. Therefore, as a respon-
sible administrator you need to carefully plan its structure before reports go “live.” If
you don’t, you risk breaking client applications or links that have dependencies on the
report folders.

Understanding the folder namespace

Similarly to an OS file system, the Report Manager organizes reports in folders. The
RS folder namespace is a hierarchy that contains predefined (Home and My Reports)
folders and user-defined folders that the administrator creates. For example, figure 7.2
shows that we have created two folders, AWReporter and SampleReports.

The main purpose of having a folder namespace is to uniquely identify a resource
in the report catalog. For example, just as you could have many files named readme.doc
on your PC hard drive, you could have many reports named the same in the report
catalog. However, you cannot have two reports with the same name uploaded to the
same folder.

Although you may find the folder concept similar to the Windows folder structure,
please note that the folders that you create in the Report Manager are virtual and they
do not map to physical folders. Instead, the folders and their contents are uploaded
to the Report Server Configuration database and stored in the report catalog (Catalog
table). This table defines a self-referential integrity relationship where each record ref-
erences its parent. The top folder is predefined and is called Home. When you click
a folder link, the Report Manager simply calls down to the RS SOAP API to query the
Report Server Configuration database and find out which child records are linked to
this folder.

Using the Report Manager, the report administrator can perform the folder tasks
listed in table 7.3.

Table 7.3 Use the Report Manager to perform a variety of management tasks.

Task Example

Upload content
to a folder

Once a new report is created, the administrator has to upload it to the report
catalog to make the report globally available.

Move content
between folders

Sometimes, the administrator may need to reorganize report content just as you
may need to use Windows Explorer to move files from one folder to another.

Create subfolders Establishing a good hierarchical structure is an important task that every admin-
istrator must carefully evaluate. For example, one of the decisions that you
must make as early as possible before setting up the report catalog is how the
folder namespace should be organized, i.e., per department, application, and
so on.

continued on next page

MANAGING RS WITH THE REPORT MANAGER 225

To perform these folder tasks, the administrator would access the folder or resource
properties and initiate the appropriate action from there. For example, figure 7.6
shows the Properties page of the AWReporter folder that contains our sample reports.

Use the folder’s Properties page to perform various management tasks. For exam-
ple, to delete the folder, click the Delete button.

For some reason, copying folders and resources is not supported. As a workaround,
you could upload the files manually.

Move folders and
all of their content
to another folder

The Report Manager allows you to move the entire content of a folder to
another folder. For example, a company may go through a reorganization in
which some departments are consolidated into one department. Using the
Report Manager, you could update the report catalog to reflect the new organi-
zational structure.

Delete folders and
all of their content

With the Report Manager you delete resources when they are no longer
needed.

Hide folders and
resources

To reduce folder clutter, users can exclude resources from the folder view by
hiding them.

Modify folder
names

Similarly to using Windows Explorer, the report administrator can rename
folders.

Table 7.3 Use the Report Manager to perform a variety of management tasks. (continued)

Task Example

Figure 7.6 Use the folder properties to perform various management tasks, including

renaming, deleting, and moving the folder.

226 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

Uploading resources

Once the folder structure is established, the administrator can upload report content
manually using the Upload File link (see figure 7.2). As we mentioned in chapter 2, if
the report author has the appropriate security permissions, the Report Designer will
create the project folder straight from the VS.NET IDE when the project is deployed.
As a part of the deployment process, the Report Designer links the project folder to
the root (Home) folder and names it according to the TargetFolder setting you speci-
fied on the project’s properties.

The Report Designer doesn’t allow you to create additional folders below the root
project folder. However, the Report Manager doesn’t expose this restriction. You can
create as many nested folders as you like.

There are two common situations when uploading files manually may be necessary:
when the report author doesn’t have the rights to upload the reports directly from the
Report Designer and when the report definition file is authored by an outside party.

What resources can be uploaded to a folder? The Report Server doesn’t enforce spe-
cial rules and allows any file to be uploaded to the report catalog. However, in my
opinion, it only makes sense to upload the following resources:

• Report definition (*.RDL) files

• Shared data source (*.RDS) files

• Image files

• XSL transformation files (*.XSL)

• HTML pages

But wait, you may say, what if the report needs other types of files, for example, an
XML file from which to read some settings? Should you upload it to the Report Server
catalog so you don’t have to specify the absolute or relative file path when you need to
load it in XML DOM using custom code?

The answer is, unfortunately, no. Just like any other resource, the file gets serialized
and saved to the Report Server database, so it is not physically present in the Report
Server virtual root or elsewhere on the file system. For this reason, it makes sense to
upload only external resources that Reporting Services supports, which currently
include images, XSLT files, and HTML pages.

For example, for the purposes of the AWReporter sample reports, besides the report
definition files and the shared data source files, you need to upload to the report cat-
alog the awc.jpg logo image file and the confidential.jpg image file, as well as the Sales-
Promotion.xsl file that we used to fine-tune the XML output of the Sales Promotion
report in chapter 6.

Uploading HTML pages could be useful for reports with navigational features. For
example, you may have a report with hyperlinks that display context-sensitive help for
different sections of the report. You can put the help content in HTML pages and
upload them with the report.

MANAGING RS WITH THE REPORT MANAGER 227

By the way, the file size limit for external files is 4 MB. The 4-MB limit is a browser
upload control limitation. You can post larger resources through the SOAP manage-
ment API.

Managing folders

How should you partition the folder structure so it is well organized and yet simple to
maintain? My advice is to keep it as flat as possible. The advantages of having a flat
physical structure are twofold:

• It simplifies the folder maintenance.

• It shortens the report path, which, in turn, makes it easier to request reports
programmatically or manually (how do you feel when you have to type in those
long URLs in the browser?).

In general, there are two considerations that will affect the folder structure: logical par-
titioning (for example, you may need to organize your reports in such a way that they
reflect organizational hierarchy, client applications, and so on) and security.

There may be other considerations that will affect the folder organization, such as
which organizational segment a given Report Server instance serves, how to deal with
shared resources, and so forth. Let’s look at an example to clarify the last point. To
simplify things, we’ll assume that our hypothetical company, Adventure Works Cycles,
has only one instance of the Report Server installed in its headquarters.

The AWC management has requested the following:

• Reports should be organized logically per department and then per application.

• Cross-department reporting is not permitted.

Given the above requirements, figure 7.7 shows what a possible folder structure might
look like.

To meet the logical organization requirements, the administrator could create sub-
folders for each department. Then, the folder namespace could be further broken
down into subfolders per application. As we will see in chapter 8, folders and resources
are securable items. To meet the security requirements, the administrator can grant the
sales employees permissions to browse the Sales folder but revoke their access to the
HR folder.

Subject to security permissions, a report in one folder can reference resources from
another folder. For example, the administrator can upload the AWC company logo to
the Shared folder. Then, all reports can reference the logo by setting the image item’s
Value property to /Shared/AWC.JPG.

Those of you who are familiar with web development may think that to reference
a parent folder you can use the “../” specifier. RS simplifies folder navigation by allow-
ing you to reference a folder by its relative path to the root Home folder. For exam-
ple, reports under the App1 folder can reference Resource 2 under the App 2 folder

228 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

as /Sales/App 2/Resource 2. When you are in doubt, make sure that your folder reference
matches the value in the Path column of the Catalog table in the Report Server database.

Managing reports

To manage a published (managed) report, you use the report’s Properties page, as
shown in figure 7.8.

Use the General link to complete the following tasks:

• Change the report name and description.

• Hide the report from the folder view.

• Download or change the report definition (RDL) file by clicking the Edit and
Update links, respectively.

• Create a linked report, as we will discuss in section 7.1.5.

To avoid confusion and clutter, the administrator can hide folders or resources by
selecting the Hide In List View check box. For example, it is unlikely that you want
your users to see shared data source definitions and resources other than the reports
in the folder list view. They might confuse these items for reports and attempt to exe-
cute them.

There is no special security permission required to see a hidden item. The item is
simply excluded from the folder view but the user can see all items by clicking the
Show Details button. The Show Details mode also displays the last time the reports
were run.

Use the Parameters link to manage the report parameters (figure 7.9).

Figure 7.7

You could organize your folder

namespace to reflect your

company’s organizational

structure. Here, the folder

namespace is organized

hierarchically by department and

then by application The Shared

folder is for shared resources.

MANAGING RS WITH THE REPORT MANAGER 229

Unfortunately, the Parameters page allows you to maintain existing parameters only.
Moreover, the only permitted operations are changing the default values and making
the parameter read-only. As we explained in chapter 3, you can make a parameter read-
only by clearing the Prompt User check box. When you do this, the Report Server will
exclude the parameter from the report toolbar. Moreover, report consumers won’t be
able to supply a parameter through URL access. RS Service Pack 1 will give you an
option to both hide the parameter and allow report consumers to pass the parameter
value by URL.

Figure 7.8 Use the report’s Properties page to manage the report.

Figure 7.9 Use the Parameters link to manage the report parameters, including the

parameter’s default value and prompt settings.

230 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

The Data Sources link allows you to manage the report’s data source, which could be
set up as report-specific or shared. We emphasized the advantages of using shared data
sources back in chapter 3.

The Execution link allows you to control the report execution by using one of the
two mutually exclusive report caching options, execution and snapshot caching, as we
discuss next.

7.1.4 Managing report execution

As we explained in chapter 1, the Report Server processes reports in two stages: execu-
tion and rendering. During the report execution stage, the Report Server retrieves the
report data, combines the resulting dataset with the report layout information, and
generates the report’s intermediate format (IF), which can be cached for fast retrieval.
The report administrator can use the Execution link to manage report caching.

Typically, report data doesn’t change that often. For example, to allow client appli-
cations to efficiently access the report data, an OLAP database could be created exclu-
sively for reporting purposes. In this scenario, report data could be bulk uploaded on
a regular basis (e.g., daily) from the OLTP to the OLAP database.

To make report processing more efficient, you can take advantage of the relatively
static nature of report data by caching the report’s intermediate format. RS supports
three forms of caching, as listed in table 7.4.

Table 7.4 RS supports the report session, execution, and snapshot caching options.

Caching

Option
Purpose How Does It Work?

Default

Setting

How To

Configure

Report
session
caching

Ensures data consis-
tency within a config-
urable time window
(report session) by
correlating the client
with the cached
report IF.

RS executes the report each
time a request from a differ-
ent client arrives and caches
the report’s IF per client in the
ChunkData table. For each
subsequent request from the
same client that includes the
session identifier, RS uses the
cached IF until the report ses-
sion expires.

By default,
the ses-
sion dura-
tion is 600
seconds.

Cannot be
turned com-
pletely off. The
session dura-
tion is con-
trolled by the
SessionTime-
out setting in
the Configura-
tionInfo table.

Report
execution
caching

Improves perfor-
mance by potentially
serving all report
requests from the
same cached IF
instance.

RS serves all requests for the
same report from a single
cached IF instance stored in
the ChunkData table.

Off Use the
report’s Execu-
tion properties
in the Report
Manager.

Snapshot
caching

Captures the report
execution at a spe-
cific point of time,
usually on a regular
basis.

RS stores the report IF in the
SnapshotData table and
serves all requests from it.

Off Use the
report’s Execu-
tion properties
in the Report
Manager.

MANAGING RS WITH THE REPORT MANAGER 231

Please note that all options cache the report’s intermediate format (IF), not the final
rendered output. Having so many caching options may be confusing, so let’s discuss
each option in more detail.

Report session caching

It turns out that while the last two caching options are user-configurable and can be
turned off (disabled by default), report session caching is not. Judging by the questions
posted on the RS discussion list, report session caching is confusing for many people.
For this reason, we’ll explain why report session caching is needed and how it works.

For non-snapshot reports, the Report Server always caches the report’s IF implicitly
for the duration of the report session.

DEFINITION A report session is a configurable time period within which the Report Server
can serve subsequent report requests from the same client and for the same
report from the cached report IF. A report session is always associated with
exactly one client. In this respect, .NET developers can relate report sessions
to ASP.NET sessions. However, the Report Server doesn’t use ASP.NET ses-
sions at all.

The premise here is that it is likely that the report’s consumer may request the same
report again within a certain period of time, for example, to export the report to a dif-
ferent format or for report paging. When a report is processed, the Report Server stores
its IF in the ReportServerTempDB database and uses the cached copy until the report
session expires, as shown in figure 7.10.

The important observation that you can make by looking at figure 7.10 is that with
report session caching, the Report Server caches the report’s IF per client and the
cached report copy is correlated with the client.

Why do we need report sessions? Report session caching ensures data consistency
and improves performance.

Figure 7.10 With report session caching, the Report Server caches the report’s

intermediate format as many times as the number of the client applications

requesting the same report.

232 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

The main reason for having report session caching is to ensure that the report data
doesn’t change within a given period of time. To understand the need for this, consider
the following example. Imagine that you have a presentation and you run a multipage
Sales Summary report. Each page displays the sales data for a given company branch.
When you navigate from one page to another, the browser asks the server to return the
next page of the report. Now, let’s imagine that while you are paging from branch A to
branch B, the sales data for branch A changes. You navigate back to the page that dis-
plays the details for branch A, and all of sudden the report shows different numbers.
Not a very compelling presentation, right?

Another unfavorable outcome may happen when you try to export the report and
you realize later that the exported copy has different data. To ensure data consistency
within a configurable period of time, the Report Server always performs report session
caching for non-snapshot reports by saving the report’s IF in the ReportServer-
TempDB database.

Report session caching is also useful for processing reports more efficiently. Let’s
say you’ve authored a crosstab report with interactive features such as the Territory
Sales Crosstab report we created in chapter 4. The user can expand the report sections
to see more data. To process interactive reports more efficiently, the Report Server
does not render the whole report at once. Instead, it renders different portions on an
as-needed basis.

Finally, because the report session state is stored in the database, it could survive
the lifetime of the Report Server application domain. For example, if IIS is restarted,
the session state is not lost.

You cannot completely turn off report session caching. However, you can specify
the session expiration interval and how the Report Server correlates the report’s con-
sumer with the session.

You can manage the report session timeout by changing the value of the Session-
Timeout setting in the ConfigurationInfo table in the Report Server database. Based
on our experiments, the minimum value seems to be 60 seconds. The UseSession-
Cookies setting from the same table determines how the report’s consumer application
will be correlated to the report session. By default, the Report Server will use a session
cookie to match the client application with the report session.

If using cookies is not an option when reports are requested by URL, you can con-
figure the Report Server to use cookie-less report sessions by setting UseSessionCookies
to false. In this case, instead of sending a cookie, the Report Server adds the session
identifiers to the report’s URL address. This is also called URL munging.

When a new report request arrives, the Report Server looks for a session identifier.
The Report Server does some decision making to determine whether to serve the
report from the report session, if available, or process the report anew. Specifically, the
Report Server checks the following:

MANAGING RS WITH THE REPORT MANAGER 233

• Does the report session match the session identifier included in the report
request? We will see how a client application can specify the session identifier in
chapter 9.

• Has the report session expired?
• Are the report parameter values the same as the ones passed with previous

report requests?

If the Report Server decides to service the report from the same report session, the ses-
sion expiration timeout is renewed. For this reason, don’t be surprised if the report
doesn’t show the most current data for subsequent requests. This situation may lead to
data inaccuracy because data has become outdated (“stale”).

NOTE In general, all caching techniques result in outdated data. As a developer
and administrator, you have to carefully evaluate how much “staleness” is
acceptable.

As I mentioned, the default report session duration is 10 minutes. If the
Report Server decides to use the report session, it will serve the report from
the cached copy within the report session duration. But is 10 minutes
acceptable? If you configure the session duration to expire too soon, you
will lose the performance benefits of caching. If the report is cached for too
long, data can get stale.

Sometimes, you may want to force the Report Server to abandon the report session
and execute the report anew. As a developer, you can do this in a couple of ways,
depending on how the report is requested. If the report’s consumer requests the report
by URL, you can send the rs:ClearSessionID command to the Report Server, as will
discuss in chapter 9.

If the report is requested by SOAP, you can programmatically abandon the session
by clearing the SessionId property of the SessionHeaderValue proxy class. If the
report’s consumer doesn’t support cookies, the session ID can be explicitly specified
in the request URL or as an argument to the Render method call, as we will discuss
in chapter 9.

From the end-user perspective, if the report includes the standard toolbar, the end
user can click the Refresh Report button (or press Ctrl-F5) to clear the session.

Report execution caching

Optionally, the report administrator can turn on report execution caching using the
report execution page. To access this page, click the Execution link (see figure 7.8).
Report execution caching is another big area of confusion. To make things even more
confusing, the pre-release documentation of Reporting Services referred to this form
of caching as in-memory caching, which is totally incorrect. When report execution
caching is enabled, the report’s IF is not cached in memory at all.

Just like report sessions, report execution caching uses the report’s IF cached in the
ReportServerTempDB database. So what’s the difference? While report session caching

234 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

is correlated with the client, report execution caching is global. In other words, with
the latter form of caching, several client applications (or users, for that matter) may
access the same cached instance of a given report, as shown in figure 7.11.

How is report execution caching implemented? As we’ve just seen, with report ses-
sion caching, when different clients request the same report the Report Server executes
the report for each client and caches as many instances of the report’s IF in the Chunk-
Data table as the number of clients. If report execution caching is on, only one instance
of the report’s IF is cached in the ChunkData table. All subsequent requests will use
that instance.

Therefore, while report sessions guarantee data consistency within the duration
of the report session, the main goal of report execution caching is better perfor-
mance. If the report doesn’t have parameters, only one instance of the report is
cached. Otherwise, several instances of the report are cached, a separate instance for
each set of parameters.

The following conditions have to be met to enable report execution caching:

• The report cannot use Windows authentication in expressions or to connect to
the database. For example, you cannot use User.UserID in your expressions, nor
can you use Windows authentication to log in to the database by impersonating
the user (the Windows NT Integrated Security option on the data source prop-
erties). However, if the data source connection uses Windows Authentication
with stored credentials (the Use As Windows Credentials When Connecting To
The Data Source option), then the report can be cached in the execution cache.

• The report doesn’t prompt the user for database login credentials.

Let’s see an example that will demonstrate the effect that this form of caching has on
the report’s execution. Suppose that the AWC management has requested a report that
shows the territory sales by quarter. The Territory Sales by Quarter report meets this
requirement (figure 7.12).

Figure 7.11 With report execution caching, one cached IF instance can be used by

more than one client.

MANAGING RS WITH THE REPORT MANAGER 235

The report accepts a parameter so that the user can filter the report data by quarter.
For simplicity’s sake, we restricted the available parameter values to the 2003 quarters
only, with Q1 as the default quarter. To demonstrate how execution caching affects the
report’s execution, the report shows the report’s execution time below the title. If the
report is not cached, each time you request the report the execution time changes,
which means that the Report Server does indeed process the report.

Because it is likely that data for past quarters will be relatively static, let’s change
the execution options to cache the report in the execution cache for 10 minutes by
using the Execution link in the Report Manager, as shown in figure 7.13.

Now, request the report several times for the same quarter. You will notice that the
execution time doesn’t change, which means the report is effectively cached.

When the report has parameters, a separate copy of the report is cached for each
set of parameters. To see this, change the quarter to Q2 and run the report again.
Observe that the execution time changes because the Report Server needs to process
the report to reflect the new parameter value. If you run the report again for Q2, the

Figure 7.12 Once report execution caching is enabled, it doesn’t get processed by the

Report Server when requested with the same parameters.

Figure 7.13 Use report execution caching for more efficient report processing.

236 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

Report Server will use the cached copy for Q2. If you request to see the report for Q1,
you will notice that the cached copy is served. This means that now there are two
cached instances for the same report.

When is the cached instance removed from the execution cache? There could be
several reasons to cause the Report Server to swap the report out of the cache, includ-
ing the following:

• The Report Server application domain is restarted, for example, by stopping
and starting IIS.

• The cached instance has expired based on the expiration options you specified.

• The cache instance is explicitly invalidated by calling the RS Web service
FlushCache method.

• The report’s execution options have changed.

• Other events have taken place, such as a change to the report definition file and
data source.

You can force the Report Server to expire the report’s cached instance (if any) on a set
schedule. This is useful when you want to ensure that the Report Server will process
the report at specified time. Consider again the Territory Sales by Quarter report; the
administrator could set the execution cache to expire at the beginning of every quarter
by setting the Quarterly Schedule shared schedule. This will ensure that the report
requested for the previous quarter reflects the latest changes.

Snapshot caching

The Report Server manages the first two caching options internally, and so you have
little control over them. For example, you don’t know when the report will be
requested for the first time and when the Report Server will start the cache expiration
stopwatch. Sometimes, it makes more sense to save report instances at a specific point
by configuring the report for snapshot execution. Snapshot caching offers the follow-
ing advantages:

• It improves the report performance by serving the report from the cached copy
in the Report Server database. This could be especially useful for large reports
that might take a long time to execute. Such reports can be scheduled to be gen-
erated during off-peak hours.

• It allows the report administrator to maintain a snapshot history log and com-
pare different snapshot runs of the report.

When a report is configured to be executed as a snapshot, the Report Server saves the
report’s IF in the Report Server Configuration database (SnapshotData table), as shown
in figure 7.14.

At this point you may wonder how snapshot caching differs from execution cach-
ing. Unlike reports configured to use execution caching, snapshots

MANAGING RS WITH THE REPORT MANAGER 237

• Are usually executed in unattended mode—Typically, snapshots are generated as a
result of a time event. However, the administrator can explicitly create a snap-
shot using the Report Manager portal, or developers can call the UpdateReport-
ExecutionSnapshot SOAP API to generate it programmatically.

• Refresh the report cached copy at a specific point of time—Unlike execution caching,
the report administrator can control exactly when the snapshot cache is refreshed.

• Require default parameter values in the case of parameter-driven reports
• Are not interactive—Snapshots don’t allow the user to change the report parame-

ters if the report is parameter-driven.
• Save the report’s IF in the Report Server Configuration database, as opposed to

the Report Server Temporary database

Snapshot caching is subject to the same limitations as execution caching. In addition,
because the snapshot execution is unattended, the user cannot set the parameter values
if the report accepts parameters. For example, if you schedule the Territory Sales by
Quarter report for a snapshot execution, you will see that the Quarter parameter is dis-
abled. If the report is parameter-driven, the Report Server will use the parameter
default values. In fact, the Report Server will refuse to schedule the report for snapshot
execution if default values are not specified for all parameters.

To explain how snapshots can be useful, let’s revisit the Territory Sales by Quarter
report. Let’s assume that once the quarter is up, the data for the previous quarter doesn’t
change. In addition, we will assume that the users want to run the report to see the sales
results for the previous quarter only (users can’t specify the quarter interactively).

Given the new set of requirements, we can optimize our report by capturing a snap-
shot of the report on a quarterly basis. As a prerequisite, we need to default the Quarter
parameter to a given quarter, e.g., Q1. Figure 7.15 shows how we can set the snapshot
execution using the Report Manager.

Of course, instead of waiting for the current quarter to end, for testing purposes we
could see the effect of the snapshot execution sooner by changing the schedule interval

Figure 7.14 With snapshot caching, the Report Server stores the report’s IF in the

Report Server Configuration database.

238 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

to a minute or two. Alternatively, we could manually generate the snapshot by selecting
the Create a Snapshot of the Report When the Apply Button Is Selected check box on
the report’s Execution Properties page and clicking the Apply button. This would create
the snapshot immediately. If the Store All Report Execution Snapshots in History
option is checked on the History tab, we must remember to cancel the snapshot execu-
tion after we finish experimenting to prevent filling up the History table.

Once you have finished setting the execution options, run the report. You will
notice that the report data is filtered by the default quarter and the parameter is dis-
abled. Similar to execution caching, the report’s executing time doesn’t change and
reflects the time when the snapshot was created.

By default, only one snapshot run is kept in the Report Server Configuration data-
base, and it gets replaced each time a new snapshot is generated. You can keep a his-
torical log of the snapshot executions by enabling the snapshot history. This allows
you compare snapshot executions, similar to how Microsoft Project allows you create
and compare project baselines.

For example, in our scenario the administrator can decide to keep the snapshot exe-
cutions for the past four quarters so that management can compare the sales perfor-
mance from one quarter to the next. You can use the Report History tab (not the
Properties tab) to see or delete the snapshot executions.

To change the snapshot history options, click the History link on the Properties
tab, as shown in figure 7.16.

If the Allow History To Be Created Manually check box is selected, a New Snap-
shot button will appear on the report’s History tab that you can use to create snapshots
manually. The rest of the options are self-explanatory.

Let’s recap our discussion about caching by exploring how all three forms of cach-
ing impact the report’s execution.

How caching affects the report’s execution

The Report Server goes through some decision making to find out whether to serve
subsequent report requests from the cached report copy or to generate the report anew.
Figure 7.17 depicts a simplified diagram that shows how report caching affects the
report’s execution phase.

Figure 7.15 You can trigger the snapshot execution from a report-specific

or shared schedule.

MANAGING RS WITH THE REPORT MANAGER 239

Figure 7.16 Use the History tab to manage the snapshot history.

Figure 7.17 RS supports three caching options: report session, execution, and

snapshot caching. Report caching may bypass the execution phase completely.

240 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

As the diagram in figure 7.17 depicts, the Report Server first checks to see if there is a
valid report session associated with the report request. To do so, the Report Server
examines the client request for a session identifier and queries the SessionData table in
the Report Server Temporary database in an attempt to find a match. If there is one,
the Report Server will serve the report from the report session cache. Otherwise, the
Report Server will check the report execution options.

If the report is configured to be executed as a snapshot and a snapshot-cached
instance is available, the Report Server will use it. If snapshot caching is turned off,
the Report Server checks to see if the report is configured for execution caching. If this
is the case, the report will serve it from the execution cache (if the execution cache is
available and can be used).

Finally, if the report is not cached or the cached copy cannot be used, the Report
Server will execute the report and cache it according to its execution settings. If the
report is configured for snapshot execution, the Report Server will store the report’s
IF in the Report Server Configuration database. Otherwise, the Report Server will save
the report’s IF in the Report Server Temporary database.

To recap, the report can be serviced potentially from one of the following three places:

• Source database—If the report is requested for the first time or has been invali-
dated, for example, the report session has timed out

• ReportServerTempDB—If the Report Server decides to reuse the report IF from
the report session or execution cache

• Report Server Configuration database—For snapshots only, if a snapshot instance
has been generated

7.1.5 Managing linked reports

Reporting Services allows you to create “wrappers” on top of existing reports in the
form of linked reports. You can think of a linked report as a shortcut to another report.
Similar to a file shortcut, a linked report is not a copy of the original report. Instead,
it simply points to the original report.

Understanding linked reports

Linked reports inherit the following information from the report they are associated
with: report definition, report data source, and report datasets. A linked report cannot
change these items because they are inherited from the base report. However, a linked
report can have different

• Role-based security policy

• Parameters

• Properties

• Catalog location

MANAGING RS WITH THE REPORT MANAGER 241

While the parameter default values can be different, and you can change whether they
are prompted or not, you can’t add parameters to the report nor can you change their
available values.

Why would you ever want to create linked reports? The simple answer is flexibility.
Let’s see a concrete example to demonstrate how linked reports can be useful.

Implementing linked reports

In the previous section, we set up the Territory Sales by Quarter report for snapshot
execution. Although snapshots can be very useful for generating reports according to
a schedule, they impose some restrictions, including the fact that the user cannot
change the report parameters. But what if we want the best of both worlds? What if
some users would like to see the report for an arbitrary quarter, while others want the
report to show the data from the previous quarter only?

One approach would be to clone the Territory Sales by Quarter report. But this
would present a maintenance issue. Each time we needed to make changes to the
report layout, we would have to remember to propagate the changes to the report copy
as well. A more elegant approach would be to create a linked report pointing to the
original. We can easily accomplish this with the Report Manager by performing a cou-
ple of steps:

Step 1 Navigate to the Territory Sales by Quarter Properties page.

Step 2 Click the Create Linked Report button. Enter a name and optionally a
description for the linked report, as shown in figure 7.18. You can also
change the location of the linked report if you want to place it in a different
folder than AWReporter.

By default, the linked report inherits all properties from the original, including the exe-
cution properties. To cancel the snapshot execution for the linked report, go to the linked
report’s Execution tab and select the Render This Report with the Most Recent Data
radio button. Once this is done, the users can render the report for any available quarter.

Another practical use for linked reports is security, because the linked report can
have a different role-based security policy than the report it is linked to.

Figure 7.18 You can use a linked report as a shortcut to an existing report.

242 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

While in most cases the report administrator will use the Report Manager portal to
interactively manage the report environment, some application integration scenarios
may require managing RS programmatically. To accomplish this you can use the RS
Web service.

7.2 MANAGING RS WITH THE WEB SERVICE

As we explained, the Report Manager is just a presentation façade to the Report Server.
Behind the scenes, the RS Web service receives SOAP requests from the Report Man-
ager and forwards them to the Report Server. When the Report Manager is not
enough, you can build client applications that call the SOAP management API directly.
For example, you can create an ad hoc reporting tool that calls down to the RS Web
service to upload the generated report definition file to the report catalog.

7.2.1 Understanding the Web service management API

To allow external applications to manage the report environment, the RS Web service
provides a number of web methods, which can be logically grouped in the categories
shown in table 7.5.

The RS Web service also provides a set of web methods for report rendering that we
will discuss in chapter 9. For a full list of the Report Server web methods please see the
product documentation.

7.2.2 Tracing calls to the SOAP API

When incorporating RS management capabilities in your applications, you may not
know which Web service method you need to call and how to call it. In most cases,
you will be able to easily find the web method you need to accomplish a given task
programmatically just by looking at its name.

Table 7.5 The RS Web service API includes many methods for performing various management-

related tasks.

Category Purpose Web Method Examples

Content Management Manage site settings, folders,
reports and resources

CreateFolder, SetReportDefinition

Role-based Security Manage tasks, roles, and policies CreateRole, ListTasks

Data Source Manage report data sources CreateDataSource, SetDataSource-
Contents

Report Parameters Manage report parameters GetReportParameters, SetReport-
Parameters

Report History Manage report history CreateReportHistorySnapshot,
ListReportHistory

Report Scheduling Manage shared schedules CreateSchedule, ListSchedules

Subscribed Delivery Manage subscriptions CreateSubscription, ListSubscriptions

Linked Reports Manage linked reports CreateLinkedReport, ListLinkedReports

MANAGING RS WITH THE WEB SERVICE 243

When in doubt, you can use the Report Manager as a learning tool. Because the
Report Manager calls down to the RS Web service for all management tasks, you can
use a tracing utility (such as SOAP Trace or tcpTrace) to intercept the SOAP traffic
between the Report Manager and Report Server.

We will show you how to use the SOAP Trace utility to accomplish this. The steps
to use tcpTrace are similar. Both utilities work by capturing the HTTP traffic to a vir-
tual port. We provided the download links for both utilities at the end of this chapter.

Using SOAP Trace

For example, let’s assume that you need to write a client application that lists all
resources located in a given catalog folder. You are not sure which web method to call
and which arguments to pass, but you know the Report Manager does this already. You
want to find out what happens behind the scenes when you click on a folder in the
Report Manager to see the folder content.

As we mentioned, to get started with SOAP Trace, you first need to set up a virtual
port to capture the SOAP traffic.

To create a virtual port, change the ReportServerUrl setting in the RSWebAppli-
cation.config file to include a virtual port number such as

http://<servername>:8080/ReportServer

Once this is done, you can open the SOAP Trace utility and create a new formatted
trace, as shown in figure 7.19.

The settings shown in figure 7.19 assume that the Report Server is installed locally.
If this is not the case, then you must replace localhost with the name of the computer
on which the Report Server is installed.

Now, open your browser and request the ReportServerURL, as specified in RSWeb-
Application.config. At this point, SOAP Trace should capture the SOAP requests that
the Report Manager sends to the Report Server. Navigate to the folder in question and
explore the SOAP messages captured, as shown in figure 7.20.

Among the captured message calls, you will find a call to the ListChildren
method that looks promising. A quick look at the documentation confirms that

Figure 7.19

Trace the Report

Manager to Report

Server traffic using the

SOAP Trace utility.

244 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

ListChildren “gets a list of children of a specified folder.” As you can see, in this
case ListChildren passes the name of the folder to the Item argument and false
to the Recursive argument to indicate that it needs a “shallow” traversal, where the
resources in the subfolders are excluded.

You can use the tracing technique we’ve just shown you to watch the entire con-
versation between the Report Manager and the Report Server and mimic it in your
applications. If you need a code sample that demonstrates how you can call the SOAP
API to manage programmatically the report catalog, have a look at the RS Catalog
Explorer application that comes with RS.

Using the RS Catalog Explorer

The RS team has provided a useful WinForm .NET-based application called the RS
Catalog Explorer. You can find the RS Catalog Explorer sample application under the
Samples folder, which by default is C:\Program Files\Microsoft SQL Server\MSSQL\
Reporting Services\Samples\Applications\RSExplorer.

Just like its web-based counterpart, the Report Manager, the RS Catalog Explorer
can be used as a report rendering and management tool. For example, figure 7.21
shows that we used the RS Catalog Explorer to navigate to the AWReporter folder and
launch the Employee Sales Freeform with Chart report.

Figure 7.20 Once the Report Manager submits a SOAP request, the SOAP Trace utility will

capture it and show the request/response message.

MANAGING RS WITH THE WEB SERVICE 245

The report properties window on the right displays some report-related properties that
you can update, such as the report name. When you do so, RS Catalog Explorer calls
the RS SOAP API to propagate the change to the report catalog. The source code is
included in both VB.NET and C#. We highly recommend that you carefully examine
this sample, especially if you need to integrate RS with WinForms client applications.

Now that you’ve been introduced to the Report Server management API, let’s see
how you can use them to perform management tasks.

7.2.3 Deploying reports programmatically

Thanks to the fact that the Report Server exposes its functionality through a series of
SOAP APIs, you can easily create client applications to manage the report catalog. Let’s
write some code to demonstrate how this could be done.

The RDL deployment sample

Back in chapter 2, we saw how to create report definitions programmatically. Now,
let’s see how easy it is to upload the generated definition to the report catalog in order
to create a new report. You can find the sample under the Chapter 7 menu in the

Figure 7.21 You can add management features to your applications, as the RS Catalog

Explorer sample demonstrates.

246 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

AWReporterWin application that comes with this book’s code. Once you click on the
RDL Deployment menu, you will be presented with the options shown in figure 7.22.

You need to specify the full path to the report definition language (RDL) file. If you
have run the AdHoc sample, the Catalog Folder Path text box will default to the path
where the AWReporter.rdl file is located. If you don’t want to run the AdHoc sample,
you’ll have to specify a valid path to any RDL file.

You also need to specify the path of the folder where the report will be uploaded
to in the RS report catalog, as well as the report name. Once this is done, you can click
the Deploy RDL button to upload the file and create the report. Let’s now discuss the
implementation details.

Setting up the Web service proxy

When accessing XML Web services in managed code, you typically use a proxy class to
let the .NET Framework handle all of the SOAP invocation and plumbing details.
Visual Studio .NET makes it easy to create a Web service proxy class by allowing you
to create a web reference to the Web service. In our case, this is what we have to do to
establish a web reference to the Reporting Web service:

Step 1 Right-click the References node in the Solution Explorer and choose Add
Web Reference. The Add Web Reference dialog appears.

Step 2 Specify the RS Web service endpoint (the URL to the ReportService.asmx page)
in the URL field, for example, http://<servername>/ReportServer/Report-
Service.asmx. If the Report Server is deployed on your local machine, you can
click the Web Services on the Local Machine hyperlink and choose RS Web Ser-
vice. VS.NET parses the Web service description and lists all web methods.

Step 3 Specify the Web Reference Name, as shown in figure 7.23. This defines the
namespace for the proxy class. For the purposes of the AWReporterWin
application, we changed the reference name from localhost to RS. Once you
click the Add Reference button, the proxy class will be generated.

To see the proxy class, make sure that the Solution Explorer shows all files (the Show
All Files button is activated). Then, you can expand the web reference node. The proxy

Figure 7.22

The RDL Deployment

sample demonstrates

how to deploy reports

programmatically.

MANAGING RS WITH THE WEB SERVICE 247

class name is named Reference.cs if it is a C# project, or Reference.vb in the case of a
VB.NET project.

In case you want to trace the SOAP requests going out of the application using a
trace utility, you can modify the URL address in the proxy constructor in the proxy
class to include a virtual port, for example,

this.Url = "http://localhost:8080/ReportServer/ReportService.asmx";

Then, you can use tcpTrace or SoapTrace to capture the SOAP traffic, as we discussed pre-
viously. Don’t forget to take out the virtual port of the URL when you’re finished tracing.

Implementing the sample

To centralize the proxy management in one place, we created the RsHelpers wrapper,
which encapsulates the proxy instantiation and sets up the authentication credentials.
When the application needs the proxy, it gets it from the RsHelpers.Proxy accessor.

The actual report deployment is done in the DeployRDL function. Listing 7.1
shows the abbreviated code.

private void DeployRDL() {
 string[] permissions = {"Create Report"};
 StringBuilder sb = new StringBuilder();

Figure 7.23 Adding a web reference to the Report Server Web service

Listing 7.1 You can use the RS Web service API to deploy the report definition.

248 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

 Byte[] definition = null;
 Warning[] warnings = null;

 if (!RsHelpers.HasPermissions(PermissionType.Item,
 txtFolderPath.Text, permissions)) {
 MessageBox.Show(String.Format("You don't have sufficient
 rights to …”))
 return;
 }

 FileStream stream = File.OpenRead(txtRDLPath.Text);
 definition = new Byte[stream.Length];
 stream.Read(definition, 0, (int) stream.Length);
 stream.Close();

 ReportingService rs = RsHelpers.Proxy;
 warnings = rs.CreateReport(txtReportName.Text,
 txtFolderPath.Text,true, definition, null);
}

b First, we check to see whether the user has permissions to create reports in the speci-
fied folder by calling the HasPermissions helper function. This function accepts
as arguments the type of the permissions we want to check (item or system), the
report item path, and an array of the permissions we want to check. In this case,
checking for Create Report rights is sufficient. The HasPermissions wrapper calls
the GetPermissions web method, which returns a string array of all permissions
that the user has to a given report item. HasPermissions then enumerates
through both arrays (requested and granted permissions) and return true only if all
requested permissions are successfully matched.

If the user has the rights to create reports, the report definition is uploaded via a
call to the CreateReport web method.

c Next, we load the report definition to a byte array.

d Then, we invoke CreateReport by passing the report name, folder path, and the
report definition. We also specify that we want to overwrite the report if it exists.
CreateReport optionally takes an array of properties you can pass to the last
parameter, for example, the report description.

That’s it! Once you execute the code, the report will be uploaded to the report catalog
and you can use the Report Manager to navigate to it and run it.

Sometimes, when executing a series of interrelated web methods, you want to
ensure that all of them will complete successfully or be rolled back in case of a failure.
With RS, this can be achieved by encapsulating the web method calls in a batch.

Check whether the
user has permissions
to create reports in
the report catalog

b

Load the report
definition

c

Upload the report to
the report catalog

d

MANAGING RS WITH THE WMI PROVIDER 249

7.2.4 Batching methods together

The RS Web service supports executing management-related web methods within the
scope of a single database transaction with a READ COMMITED isolation level. If any
of the batch methods fails, the transaction will be rolled back and all catalog changes
will be undone.

For example, let’s say that you want to distribute several reports to your customers
and these reports are interdependent, such as subreports and related drillthrough
reports. You want to make sure that the report deployment is an all-or-nothing oper-
ation and you don’t leave the catalog database in an inconsistent state.

To achieve this you might take advantage of method batching. You can write a sim-
ple application or a script that executes all deployment methods in a transactional
batch, as follows:

try {
 BatchHeader bh = new BatchHeader();
 bh.BatchID = rs.CreateBatch();
 rs.BatchHeaderValue = bh;
 rs. CreateReport ("Report1", …);
 rs. CreateReport ("Report2", …);
 rs.ExecuteBatch();
}
catch (SoapException ex) {
 rs.CancelBatch();
}

Developers experienced in writing transaction code will find the batch semantics
familiar. When you group web method calls in a batch, the Report Server logs the
methods in a Batch table in the Report Server database but doesn’t execute them.
When the ExecuteBatch method is executed, the Report Server creates an explicit
transaction and executes all methods within its scope.

If all methods execute successfully, the Report Server commits the database trans-
action. If the transaction errors out, you can call CancelBatch to delete the batch
records from the Batch table.

One final note about batching. After you execute or cancel the batch, you need to
clear out the batch header after ExecuteBatch (or CancelBatch), otherwise the
proxy will continue to send the header and you will still be operating under a batch.

Using the RS Web service is not the only way to programmatically manage the
report catalog. RS also provides a Windows Management Instrumentation (WMI) pro-
vider that can be used to manage the settings of multiple RS installations.

7.3 MANAGING RS WITH THE WMI PROVIDER

As useful as the Report Manager is for administering the report environment, it has its
limitations. For example, it allows us to manage only the site settings of one Report
Server (the one specified in the Report Manager configuration file).

250 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

In a typical enterprise environment, however, there may be multiple installed instances
of Report Server. For example, you might have one instance serving the reporting needs
of customers on the Web and another for intranet use. Or, to scale out, you can have a
web farm of report servers. As an administrator, you might need to manage the server
settings from a single location. This is exactly the purpose of the RS WMI provider.

7.3.1 Understanding the WMI provider

The WMI provider is built on top of the Windows Management Instrumentation
infrastructure baked into the Windows operating system.

NOTE WMI is a system management infrastructure embedded in the Windows
OS. It provides an object-oriented interface that developers can use to inter-
act with system management information and the underlying WMI APIs.

With the WMI provider, developers can write code to programmatically access the
configurations settings of a given installation instance of the Report Server and Report
Manager in an object-oriented way. Specifically, it offers the MSReportServer_Con-
figurationSetting and MSReportServerReportManager_ConfigurationSetting classes.

The first class wraps the Report Server configuration settings stored in the RSReport-
Server.config file. The second represents the Report Manager configuration settings
located in the RSWebApplication.config file. Please consult with the documentation
for a detailed coverage of the WMI provider functionality.

Let’s demonstrate how the WMI provider can be useful. Because RS doesn’t come
with a management console snap-in, we wrote a simple RS Console, as shown in
figure 7.24. (Version 2.0 of Reporting Services will include a management console
integrated with the SQL Server 2005 management tool.)

Empowered with the RS Console, you can manage the settings of an arbitrary
Report Server instance installed in your enterprise by specifying the Report Server
name. The RS Console shows you the settings for a given Report Server and allows you
to make changes. This could be particularly useful when you need to change the

Figure 7.24

Use this sample RS

Console to make changes

to the RS configuration

files of multiple Report

Server installations.

MANAGING RS WITH THE WMI PROVIDER 251

Report Server database settings. These settings are stored in encrypted format, as you
can see by looking at the RSReportServer.config file.

For this reason, making changes to the Report Server database settings is not an
easy task. In fact, the Report Server provides a utility, rsconfig.exe, whose sole purpose
is to manage the encrypted database settings. If you are like us, you won’t be too
excited about working with this command-line utility and messing with switches,
which makes the RS Console an even more appealing choice.

7.3.2 Implementing an RS management console

Working with the WMI provider is straightforward. Listing 7.2 shows the abbreviated
code of the GetServerProperties function, which populates the grid with the
configuration settings of the specified server.

private void GetServerProperties()
{
 string WmiNamespace = @"\\" + txtServer.Text +
 @"\root\Microsoft\SqlServer\ReportingServices\v8";
string WmiRSClass = @"\\" + txtServer.Text +
 @"\root\Microsoft\SqlServer\ReportingServices\” +
 “v8:MSReportServer_ConfigurationSetting";
 ManagementClass serverClass;
 ManagementScope scope;
 scope = new ManagementScope(WmiNamespace);

 scope.Connect();
 serverClass = new ManagementClass(WmiRSClass);
 serverClass.Get();
 ManagementObjectCollection instances=serverClass.GetInstances();
 IEnumerator enumerator = instances.GetEnumerator();
 bool result = enumerator.MoveNext();
 m_instance = (ManagementObject)enumerator.Current;

 PropertyDataCollection instProps = m_instance.Properties;
 EntityProperty ds = new EntityProperty ();
 ds.Property.RowChanged += new
 DataRowChangeEventHandler(this.grdProperties_ChangedEvent);

 foreach(PropertyData prop in instProps)
 {
 ds.Property.AddPropertyRow(prop.Name,
 prop.Value!=null?prop.Value.ToString():"<null>");
 }

 ds.AcceptChanges();
 ds.Property.DefaultView.AllowNew = false;
 ds.Property.DefaultView.AllowDelete = false;
 grdProperties.DataSource = ds.Property;
}

Listing 7.2 Getting the server settings

Instantiate the WMI
provider to read the
Report Server
configuration settings

b

Instantiate a .NET type
dataset to hold the settings

c

Load the datasetd

Show the settings to the user by
binding the dataset to the grid

e

252 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

b First, we initialize the WMI namespace and class name. Because we are interested in
managing the Report Server settings, we use the MSReportServer_ConfigurationSetting
class. Then, we instantiate the WMI provider and retrieve all Report Server instances
installed on the specified server. For simplicity’s sake, we default to the first instance.

NOTE Currently, Reporting Services doesn’t support multiple instances on a sin-
gle server. Microsoft hints that future versions may support this installa-
tion option.

c Next, we get all settings and load them in a grid. For easier data binding and filtering,
we decided to create a typed dataset, EntityProperty, to hold the settings. The dataset
defines a table called Property with two columns, Name and Value. After we instanti-
ate the typed dataset, we hook its RowChanged event to an event handler. This event
will be triggered when a dataset row is modified, which in turn enables the Save Con-
fig button.

d,e Next, we load the dataset with all configuration settings returned by the WMI pro-
vider and bind it to the grid control. As you can see in figure 7.24, the provider
decrypts the database authentication settings for us.

Once the grid is loaded, the user can change settings at will. Currently, the WMI pro-
vider doesn’t support deleting existing settings or creating new ones. The Save-
ServerProperties function writes the changes back to the configuration file, as
shown below:

private void SaveServerProperties() {
 EntityProperty.PropertyDataTable ds = (EntityProperty.PropertiesDataT-
able)grdProperties.DataSource;
 DataView view = new DataView(ds);

 view.RowStateFilter = DataViewRowState.ModifiedCurrent;

 PropertyDataCollection instProps = m_instance.Properties;
 for(int i = 0;i < view.Count ;i++) {
 string name = view[i]["Name"].ToString();
 instProps[name].Value = view[i]["Value"].ToString();
 }
 m_instance.Put();
}

Here, we filter out only the changed settings by using a filtered view on top of the
typed dataset. Then, we write the changed values back to the WMI provider settings
collection. Finally, we call the provider Put() method to persist the settings into the
configuration file.

Sometimes, writing a full-fledged application to automate maintenance tasks may
be overkill. RS provides other options that a savvy administrator can add to his belt
of management tools, as we will discuss in the next section.

OTHER WAYS TO MANAGE REPORTING SERVICES 253

7.4 OTHER WAYS TO MANAGE
REPORTING SERVICES

RS provides two other options for performing management tasks:

• Executing scripts with the RS script host

• Using specialized management utilities

Let’s round out our report management discussion with a high-level overview of
these options.

7.4.1 Managing RS with the script host

Traditionally, administrators have relied on scripts to perform routine day-to-day chores.
Responding to this common need, RS comes with a script host that can be used to run
scripts written in VB.NET. Scripting offers several advantages, including the following:

• It doesn’t require advanced development skills.

• Scripts can be easily executed from the command line, batch files, or login scripts.

• Scripts can be easily scheduled to run at specific times.

Exploring RS scripting

RS provides a script host utility (rs.exe), which can process and run a script file you
pass in. You write RS scripts in VB.NET and you store them as files with the .RSS exten-
sion. Inside the script you can call any of the RS Web service methods.

The RS script host automatically connects to the requested Report Server, creates
a proxy class, and exposes it as a global variable, rs. The host accepts command-line
switches, which you can use to specify input parameters, including the Report Server
URL, the script file, the user credentials to log on to the Report Server, variables, and
so on.

Let’s now look at a quick example of how scripting with the RS script host can facil-
itate the management effort. For a detailed discussion of the RS script host please refer
to the product documentation.

Scripting with the RS script host

The RS team has provided two sample scripts that demonstrate how you can use script-
ing to cancel a given running job and publish reports. These scripts should be enough
to get you going. For example, we were able to quickly retrofit the PublishSample-
Reports sample and create a useful script to deploy a report. The RDLDeploy script
uploads a given report definition file to the report catalog. You can find the DeployRDL.rss
in the Chapter 7 folder in the AWReporterWin sample application. To keep things
simple, we excluded the role-based security verification.

The bulk of the work is performed by the PublishReport function, whose
abbreviated code is shown below:

254 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

Public Sub PublishReport(ByVal reportName As String)
 Dim stream As FileStream = File.OpenRead(filePath)
 definition = New [Byte](stream.Length) {}
 stream.Read(definition, 0, CInt(stream.Length))
 stream.Close()
 warnings = rs.CreateReport(reportName, parentPath, True, _
 definition, Nothing)
End Sub

The code should look familiar to you because the RDLDeploy sample we discussed in
this chapter serves the same purpose. You can execute the DeployRDL script from the
command prompt using the following syntax:

rs -i RdlDeploy.rss -s http://servername/reportserver -v file-
Path="C:\Books\RS\Code\AWReporterWin\bin\Debug\AWReporter.rdl" -v folder-
Path="AWReporter" -v reportName="AdHocReport"

where
-i specifies the input filename
-s specifies the Report Server URL
-v specifies an input variable

In this case, similarly to the RDLDeploy sample, we upload the AWReporter report def-
inition file to the AWReporter catalog folder and name the new report AdHocReport.

7.4.2 Using other management utilities

Reporting Services provides the additional management utilities shown in table 7.6.
Please see the documentation for a more detailed explanation of their purpose and usage.

One of these utilities deserves more attention. As a first task after installing RS, we
would advise all Report Server administrators to use the rskeymgmt utility to extract
and back up the public encryption key. The Report Server uses this key to encrypt data
in the report server database or catalog.

What is the encryption key good for? Chances are that you may need to change
the account that the RS Windows service (ReportingServicesService.exe) runs under.
Or, when deploying RS on a web farm environment you may need to set up a new
RS installation which points to an existing report catalog. If the encryption key is dif-
ferent, the Report Server will not initialize. Therefore, it is absolutely crucial that you
back up and store the encryption key in a safe place.

Table 7.6 RS comes with a few management utilities that report administrators can use to

perform specialized tasks.

Utility Purpose

rsactivate Activates a Report Server in a web farm or recovers from a hardware failure

rsconfig Changes the encrypted Report Server database settings

rskeymgmt Backs up and restores the encryption keys used by the Report Server

ANALYZING REPORT EXECUTION 255

Analyzing the report execution statistics is an essential task that all report adminis-
trators worth their salt will need to perform on a regular basis. To assist report admin-
istrators in their effort to analyze and troubleshoot report processing, RS performs
detailed logging. Let’s see how you can use the RS logs to analyze report execution.

7.5 ANALYZING REPORT EXECUTION

Reporting Services maintains a variety of log files that capture the output from the
three RS server-side components: the Report Server, the Report Manager, and the RS
Windows service. Table 7.7 summarizes these log files.

Let’s discuss in more detail the first two logging options, starting with the Report
Server execution log.

7.5.1 Analyzing the Report Server execution log

By analyzing the historical log, the administrator should be able to answer such ques-
tions as, “Which are the top requested reports by day, month, and user?”, “Which
reports didn’t execute successfully and why?”, and “How long does it take on average
for a given report to execute?” The Report Server can be set to store report execution
statistics in the ExecutionLog table. The execution log is turned on by default and
keeps the log data for 60 days. You can modify these settings from the Site Settings
menu in the Report Manager.

Retrieving the execution log data

There’s really nothing stopping you from querying the ExecutionLog table and its
related tables directly. But to save you time and effort, the RS team has provided a use-
ful DTS package called ExecutionLog, which you can find in the Extras folder on the
RS setup CD.

When run, the package performs ETL (Extract, Transform, and Load) tasks to
extract the execution log data from the Report Server database, transform it into a for-
mat suitable for reporting, and load the data into a separate database for reporting pur-
poses. Please read the “Querying and Reporting on Report Execution Log Data”

Table 7.7 RS maintain a variety of log files to capture the output from the Report Server, the

Report Manager, and the RS Windows service.

Log Purpose

The Report Server execution log Captures report execution statistics useful for auditing purposes

Trace logs Stores essential statistics for monitoring and troubleshooting RS

The Microsoft Windows Event log Records RS events, such as startup and shutdown events

Setup logs Created by the RS Setup program, these logs can be used to
troubleshoot setup issues. For more information about these
logs, consult the product documentation.

256 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

section in the product documentation for the steps needed to install the ExecutionLog
DTS package.

Interpreting the execution log data

Once you install and run the package, you are ready to create useful reports and ana-
lyze the execution log data. What better way to practice your RS skills than creating RS
reports for this purpose? Actually, the RS team has already done this for you and pro-
vided the ExecutionLog Business Intelligence project, which you can find in the Extras
folder as well.

The project contains several useful reports that you can run right away or customize
to fit your specific needs. For example, the ReportsExecutedByDay report (figure 7.25)
shows you the report activity and top requested reports per day.

Glancing at the report chart, we can easily see that the Report Server took the most
hits on Tuesday during the requested week.

Another report that could help the administrator troubleshoot reports that didn’t
execute successfully is the Report Status Rates report shown in figure 7.26.

Figure 7.26 reveals that the Employee Sales Freeform report failed to execute due
to an invalid parameter. If the administrator needs more details about the failed exe-
cution, the next step would be to run the Report Parameters report to find out exactly
which parameters have been passed in.

Figure 7.25 Use the ExecutionLog Business Intelligence project to analyze

the statistics captured in the Execution Log.

ANALYZING REPORT EXECUTION 257

7.5.2 Analyzing trace log files

Each of the RS server-side main components—the Report Server, the Report Manager,
and the Windows service—maintains its own trace log file. The information captured
in these files conveys vital statistics, which are useful for auditing and troubleshooting
the report execution.

For example, by examining the log files the administrator can find out who has
accessed the Report Server and what action has been requested.

Managing trace log files

The trace log files can be found in the C:\Program Files\Microsoft SQL Server\
MSSQL\Reporting Services\LogFiles folder. Table 7.8 outlines their purpose.

Reporting Services starts a new log file under two conditions: at the start of a new day
and when the server-side component is started. For example, if you restart IIS and then
navigate to the Report Manager, new log files will be created to capture the Report
Manager and Report Server trace output.

Figure 7.26 The Report Status Rates report

Table 7.8 Reporting Services maintain three configuration files, one for each server-side

component.

Log Filename Description

ReportServerService_<timestamp>.log Trace log for the Report Server Windows service and
Web service

ReportServerWebApp_<timestamp>.log Trace log for Report Manager

ReportServer_<timestamp>.log Trace log for the Report Server

258 CHAPTER 7 MANAGING THE REPORTING SERVICES ENVIRONMENT

As an administrator, you can specify the level of details for the logged data by
adjusting the DefaultTraceSwitch setting in the configuration files. The supported
values range from 0 (no tracing) to verbose. In addition, you can instruct the Report
Server to purge the old log files by using the KeepForFiles configuration setting.

Examining trace content

The log data is stored in plain text so report administrators can use their favorite text
editor to open and search the logs. For example, this is what the log entry looks like
after a user has requested the Sales by Territory report:

w3wp!runningrequests!7bc!03/24/2004-22:20:17:: v VERBOSE: User
map'<Users><User><Name>"user identity"</Name><Paths><Path>http://localhost/
ReportServer/reportservice.asmx</Path><NrReq>1</NrReq></Paths></User></
Users>'
w3wp!library!7bc!03/24/2004-22:20:17:: i INFO: Call to GetPermissions:/
AWReporter/Sales By Territory

Performing runtime tracing

Sometimes, you may want to watch the tracing output in real time, for example, to see
the sequence of events before an exception is thrown. Or, you may need to see the trac-
ing output from all three components in one place.

Fortunately, the information captured in the log files is also output to the default
trace listener. This allows you to watch the tracing output using tools such as Mark
Russinovich’s DebugView trace monitor, as shown in figure 7.27.

In this way, not only will you be able to get a consolidated picture of how the dif-
ferent components interact, but you will also be able to watch the tracing statements
output by custom code and extensions.

Figure 7.27 Using DebugView to watch the tracing output during runtime

RESOURCES 259

7.6 SUMMARY

In this chapter we have shown how to manage the Report Server environment. Most
of the time, you will rely on the Report Manager to perform day-to-day administration
activities, such as managing folders, reports, and resources.

We also emphasized the fact that behind the scenes the Report Manager performs
management tasks using the RS SOAP APIs. You can call these APIs programmatically
in your applications to query and manage the report repository.

If you need to manage multiple Report Servers from a single location, you can use the
RS WMI provider. We showed you how this could be done in the RS Console sample.

You can also write script files in VB.NET and execute them with the RS script host.
This option doesn’t require advanced development skills. Scripts can be easily exe-
cuted and scheduled to run at specific time.

RS also provides a few management utilities that you can use to perform specific
tasks, such as activating a Report Server instance, changing database settings, and sav-
ing the encryption keys.

To keep track of report execution, we recommend that you turn on report execution
logging and analyze its statistics on a daily basis. To do so, use the ExecutionLog DTS
package to import the execution log statistics and the reports in the ExecutionLog
Business Intelligence project.

Our report management journey will not be complete if we don’t discuss arguably
the most important aspect of RS management, which is securing the Report Server
environment. Chapter 8 will teach us how to do exactly this.

7.7 RESOURCES

SOAP Toolkit version 3.0 (http://www.microsoft.com/downloads/details.aspx?
FamilyID=c943c0dd-ceec-4088-9753-86f052ec8450&DisplayLang=en)
A link to the Microsoft MSDN download center where you can download the
SOAP Toolkit, which includes the SOAP Trace utility.

TcpTrace (http://www.pocketsoap.com/tcptrace/)
A great utility that captures the TCP traffic between a client and a server.

How To: Implement Kerberos Delegation for Windows 2000 (http://msdn.
microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/
SecNetHT05.asp)
This article lists the steps required to configure Kerberos authentication.

260

C H A P T E R 8

Securing Reporting Services
8.1 Exploring Reporting Services role-based security 261
8.2 Understanding code access security 281
8.3 Best practices for securing reports 290
8.4 Summary 295
8.5 Resources 295

Security can no longer be downplayed. Ironically, if you read computer books pub-
lished in the not-so-distant past, you will usually find the security chapter pushed
toward the end of the book, if not in the appendix. Sort of like, “You will probably
never need this stuff, but just in case…” Things have certainly changed! The explosion
of viruses and hacker attacks in recent years has pushed security concerns to the fore-
front of development and application design. To address this issue, the Common Lan-
guage Runtime (CLR) and .NET Framework include classes that enable developers to
write secure code easily.

You won’t get far with Reporting Services if you don’t have a good grasp of how
its security works. In this chapter, we will explore the two security models that RS pro-
vides: role-based security and code access security.

Administrators can leverage the role-based security model to secure access to report
resources, as well as define the permitted actions that a given user is allowed to perform.

Code access security can be used to “sandbox” custom code by taking advantage
of the code access security infrastructure baked into the .NET CLR.

We will start our discussion by examining the role-based security model first, fol-
lowed by code access security. Finally, we will discuss various strategies for securing
reports, such as data filtering, dynamic queries, and data hiding.

Because the RS security model is layered on top of the OS and .NET security,
understanding security is not easy, and explaining this topic in detail is beyond the

REPORTING SERVICES ROLE-BASED SECURITY 261

scope of this chapter. Therefore, we will assume that you have a basic knowledge about
how Windows and ASP.NET security work.

8.1 EXPLORING REPORTING SERVICES
ROLE-BASED SECURITY

You will probably find the RS role-based model similar to the security models of other
Microsoft and third-party products or homegrown solutions you have come across in
the past. In a nutshell, it provides the necessary infrastructure for the following:

• User authentication—During the authentication stage the role-based security
model determines who the user is by obtaining her identity from a trusted
authority. For example, let’s say a user called Terri logs in to her machine as
AW\Terri (AW is Terri’s login domain) and runs a report. If Windows authenti-
cation is used, at the end of the authentication phase the Report Server will
know that the identity of the user is AW\Terri.

• User authorization—Authorization occurs after authentication and determines
what the user can do. Given the previous example, during the authorization
process the Report Server would verify whether Terri has sufficient rights to run
the report by checking the role-based security policy established for her.

In .NET security terminology, the terms user and principal are used interchangeably.
For example, if you want to obtain the security context of the current user when Win-
dows-based authentication is used, you can retrieve the current principal from
Thread.CurrentPrincipal. The IPrinicipal object returned from the call implements
the IIdentity interface. You can query IIdentity.Name to obtain the user’s identity after
the user is authenticated.

Once the user’s identity is verified, the user can execute tasks or request RS
resources subject to the authorization rules set up by the report administrator.

The RS role-based security model serves two purposes:

• It provides the infrastructure to define user roles and assign users to these roles.

• It grants or revokes access to a specific task or resource based on the user’s role
membership.

A distinguishing feature of RS role-based security is that it is fully customizable. By
default, RS relies on Windows authentication to authenticate users. This configuration
will probably meet the security needs of most intranet-based applications. For example,
Windows authentication allows the report administrator to leverage the pre-established
user and group accounts in Active Directory.

When Windows authentication is not an option, developers can replace it with a
custom security model in the form of a security extension. For example, using Windows
accounts to authenticate web users is often impractical with most Internet-oriented

262 CHAPTER 8 SECURING REPORTING SERVICES

applications. Instead, with this type of application, once the user enters her credentials,
the application typically authenticates the user via a database lookup. To add reporting
features to such applications, you can write a custom security extension to pass the
user’s identity to the Report Server. We will see how to do just that in chapter 15. This
chapter explains the RS role-based security model in the context of the default authen-
tication mechanism, which once again is Windows authentication.

8.1.1 How Windows authentication works

The Report Server delegates the security-related tasks to a security extension. A security
extension is a .NET assembly that handles the authentication and authorization of
users or groups in RS. When the Report Server needs to authenticate the user or verify
that the user is allowed to perform a given task, it asks the extension to do so.

Because the Report Server web application is configured for Integrated Windows
authentication, the security extension gets the Windows identity of the user from
Internet Information Services (IIS). IIS authenticates the user and passes the Windows
access token to the Report Server.

Although IIS provides several authentication mechanisms, RS supports the Basic
and Integrated (NTLM or Kerberos) authentication options only.

NOTE Strictly speaking, although you are discouraged from doing so, you can
configure the Report Server virtual root to allow anonymous access. This
could be useful in situations when you don’t care about the identity of the
user, for example, when you want to allow any user to access the Report
Server with the same level of permissions. The net effect of enabling anon-
ymous access is that you disable the RS role-based security policy. The rea-
son for this is that the Report Server sees all requests as coming under a
single Windows account, which by default is IUSR_<computer name>.

Therefore, the role-based security policies cannot be enforced per user,
which is a sure recipe for chaos. Please note that you still have to establish
a security policy for this Anonymous account (or the Windows groups it is
a member of) in the Report Server and map it to a role. Because the Report
Server will be unable to differentiate the user requests, to be able to manage
the report catalog you will need to grant this account system administrator
rights. This means that any user will be able to change the Report Server
configuration at will. When anonymous access is mandatory, I strongly
suggest that you use custom security authentication performed by the
application or a custom security extension.

By default, RS is installed in a locked-down mode, and only members of the Windows
local administrators group can manage the report environment and run reports. Sim-
ilar to the Windows NTFS model, to prevent an accidental lockout, this security policy
cannot be removed. As a result, Reporting Services will always allow local administra-
tors on the Report Server machine the right to view items and change security policies,
even if they’re not explicitly defined in a role-based security policy.

REPORTING SERVICES ROLE-BASED SECURITY 263

To allow other users to request reports or manage RS, you must create additional
security policies and add Windows built-in accounts and/or groups to them. Typi-
cally, to simplify the role assignment management, you will organize the Windows
user accounts into groups. This will require that you work hand-in-hand with the net-
work administrator to define the appropriate Windows group memberships and create
new groups if needed.

To understand how Windows authentication can be used for securing client appli-
cations, consider two common integration scenarios:

• Client-to-Report Server

• Client-to-Façade-to-Report Server

NOTE Another common way to describe the above scenarios is to use the “tier”
paradigm. Because the Report Server can be viewed as a separate tier, the
first scenario could also be named “three-tiered,” while the second could be
called “multi-tiered.” You choose.

Let’s discuss how security relates to each of these models, starting with the Client-to-
Report Server model.

Exploring the Client-to-Report Server model

The Client-to-Report Server scenario is better suited for intranet-based report con-
sumers. With this model, the report consumer, which could be WinForm or web-
based, accesses the Report Server on the client side of the application, and the call goes
out under the Windows identity of the user.

Figure 8.1 depicts the Client-to-Report Server integration approach.
By the way, this is the model that the Report Manager uses for report rendering.

When the user clicks the report link inside the Report Manager, an HTTP-GET request
is made to the Report Server under the identity of the interactive user.

In figure 8.1 Terri is logged in to the AW domain as AW/Terri. Terri then goes to
the Report Manager portal to run a report. IIS authenticates Terri as AW/Terri and

Figure 8.1 The Client-to-Report Server model is most suitable for intranet-based applications

and promotes direct access to the Report Server.

264 CHAPTER 8 SECURING REPORTING SERVICES

passes the security token to the Report Server. Next, the Report Server checks the role-
based security policy for Terri and grants or refuses access to the requested report. Let’s
assume that Terri is granted permissions to run the report, and the report needs to
access a data source to display some data. How the database authenticates the request
depends on which data source authentication options have been set for this report, as
we discussed in chapter 3. The possible outcomes are these:

• Credentials Stored Securely in the Report Server—If the Use as Windows Creden-
tials When Connecting to the Data Source option is set, the database will use
Windows Integrated authentication to authenticate the call using the Windows
account credentials the administrator has set up. Otherwise, the data source will
use standard authentication. In both cases, the call to the database will go under
a designated account (depicted as uid/pwd on figure 8.1), which facilitates con-
nection pooling.

• Windows NT Integrated Security—If the database is installed on the same machine
as the Report Server or on another machine with Kerberos delegation enabled, the
call to the database will go out under AW/Terri. If the database is on another
machine and Kerberos is not enabled, the remote call will use a NULL session and
it will fail. As we pointed out in chapter 3, in general you should avoid imperson-
ating the user so you don’t lose the benefits of connection pooling.

For the Client-to-Report Server scenario, we recommend the following security
configuration:

• Use the default Windows-based authentication coupled with role-based security
to enforce restricted access to the Report Server.

• Use the Credentials Stored Securely in the Report Server data source option
with Windows or standard authentication for accessing the data source.

Sometimes, this scenario won’t be that simple and your integration requirements may
rule out the possibility of direct access to the Report Server. In such cases, the Client-
to-Façade-to-Report Server model may be a better fit.

Exploring the Client-to-Façade-to-Report Server model

Things get trickier when an additional layer is introduced between the report con-
sumer and the Report Server. We will refer to this as a façade to emphasize the fact that
it is located in front of the Report Server, as shown in figure 8.2.

Why would you add yet another layer? Besides increasing the complexity, such a
layer can serve the following purposes:

• It may encapsulate the application’s business rules. For example, it may represent
the business layer of a WinForm three-tiered application, which could be
exposed either as Web services or as a set of .NET remote objects. We will dis-
cuss this approach in more detail in chapter 10.

REPORTING SERVICES ROLE-BASED SECURITY 265

• It may represent the server-side web layer of the report consumer for both intranet
and Internet web-based applications. For example, the Report Manager can be
viewed as a façade to the Report Server. We will look into possible implementa-
tion approaches in chapter 11.

• It may be needed to isolate the report consumer from the Report Server. For exam-
ple, in the business-to-business extranet scenario, it is unlikely that an organiza-
tion will allow direct access to the Report Server. Instead, a Web service façade
could be built to expose some of the RS functionality. We will discuss the extra-
net scenario in more detail in chapter 11.

• It may enforce custom security rules to extend or replace the Report Server role-based
security model when the latter is not enough. We will see how this could be imple-
mented in chapter 13.

For simplicity’s sake, the scenario shown in figure 8.2 assumes that the report con-
sumer runs under the Windows identity of the user. This is the typical case with intra-
net applications. Things can get more complicated with other implementation
approaches. For example, in the extranet scenario, the report consumers can use client
certificates for authentication, which can be mapped to Windows accounts. Or, an
Internet-based application can use the ASP.NET Forms Authentication model, as we
will discuss in chapter 11.

From the Report Server standpoint, how the report consumer is implemented is
not important. All the Report Server sees are incoming requests under a given Win-
dows identity. From the report consumer façade standpoint, however, which identity
will be passed to the Report Server is very important. Basically, the façade layer has
two choices:

• Impersonate the user by passing the user’s identity to the Report Server.

• Pass its identity. This model is sometimes referred to as a trusted subsystem.

Figure 8.2 In the Client-to-Façade-to-Report Server model, an additional layer is introduced

between the report consumer and the Report Server.

266 CHAPTER 8 SECURING REPORTING SERVICES

Impersonating the user

If the façade decides to impersonate the user, the original user’s security context and
identity will flow to IIS and then to the Report Server. This is the approach the Report
Manager takes for submitting SOAP requests to the Report Server on the server side of
the application.

To impersonate the user in ASP.NET applications, you can use the <impersonate>
element in the web.config configuration file. You can impersonate the user’s identity
or use a specific Windows account. If the façade and the Report Server are located on
separate machines, you must enable Kerberos authentication to flow successfully the
user identity between the Façade and the Report Server because NTLM doesn’t support
delegation. Then the authentication works as we described in the Client-to-Report
Server scenario.

Passing the façade identity

Instead of impersonating the user, the façade can pass its own identity. To accomplish
this, you would typically change the identity of the ASP.NET worker process to run under
a designated domain account. If you decide to use a local computer account, you’ll have
to clone this account to the Report Server machine to keep the security gods happy.

As figure 8.2 shows, the ASP.NET worker process runs under a domain account
AW/UID, which is passed on to the Report Server. If the façade layer runs under IIS 5
(Windows 2000), this will require that you change the <processModel> element
in machine.config. If IIS 6 is used (Windows 2003), you can change the identity of
the application pool to which the application belongs. In addition, you’ll need to add
the account that you used for the pool identity to the Windows 2003 IIS_WPG group.

Once the façade identity is set up, you must map it to the appropriate role in the
Report Server so that it has proper access to RS resources. If the façade will fulfill
report-rendering tasks only, you could create a security policy to grant the façade
account Browser role permissions.

While the trusted subsystem approach simplifies the authentication process
between the façade and the Report Server, you need to take care of authenticating the
end users and authorizing them at the façade layer. We will discuss a possible imple-
mentation approach in chapter 12.

Authenticating the user represents one half of the security equation. After the authen-
tication, the user must be authorized to access a given resource from the report catalog.

8.1.2 Using role-based authorization

Regardless of which authentication model is used, Windows or custom authentica-
tion, Reporting Services authorizes requests based on the membership that the user has
in one or more RS roles. RS offers a comprehensive role-based security model to autho-
rize user requests. We will first discuss the theory behind this model and then demon-
strate how you can manage the role-based security infrastructure with the Report
Manager and the Report Server Web service.

REPORTING SERVICES ROLE-BASED SECURITY 267

To explain the RS role-based model and how its pieces fit together, we put together
the database diagram shown in figure 8.3.

Please note that this diagram doesn’t exactly match the Report Server physical data-
base model. You will find only the Users, Roles, and Policies tables in the Report
Server database; the rest are fictitious. Where, then, does the Report Server store the
rest of the role-based security items? If you examine the actual Policies table, you will
notice that it uses proprietary structures to define the role assignment relationship.
When the administrator creates a new security policy for a given user to a securable
item, a new record is added to the Policies table. This record specifies the item that
is secured, the user’s Windows account, and the role-based security policy stored as an
XML fragment.

Strictly speaking, although not so obvious, tasks in RS are further broken out and
consist of entities called permissions. However, for simplicity, permissions are not
exposed in the Report Manager UI, so you can’t see them. The reason for this is that
a task is a fixed collection of permissions and can’t be changed.

How do you find out what permissions are available with RS? In section 8.1.4 we
will author a sample report called Show Security Policy, which will list the permissions
associated with a given user and report item. To accomplish this, we will use the
GetPermissions SOAP API, which returns a collection of permissions, such as
Create Data Source, Create Folder, etc.

At this point you may be curious as to how permissions can be used if tasks are fixed
entities. RS permissions could be useful if you need to write a custom security exten-
sion and you need to deal with permissions, for example, if you want the Report Man-
ager to disable controls according to the security policy associated with the interactive
user. We will show how to write a custom security extension in chapter 15.

Figure 8.3 Reporting Services comes with a comprehensive role-based security model based

on the user’s membership in one or more roles.

268 CHAPTER 8 SECURING REPORTING SERVICES

Understanding tasks

A task defines a set of permissions that can be enforced through role-based security. For
example, RS defines a task called View Reports, which allows users to run reports. RE
defines two types for tasks: system-level tasks and item-level tasks.

System-level tasks represent maintenance actions, such as Define Roles. Item-level
tasks define user permissions, such as View Reports, View Folders, and so on. Another
way to differentiate between these two types is to note that system-level tasks work on
global items (which do not have catalog paths), while item-level tasks work on items
with paths.

You can find the full list of predefined tasks under the Site Settings menu. Cur-
rently, RS doesn’t support custom tasks. For this reason, you will not find a Task table
in the Report Server database. In addition, you cannot map users directly to tasks.
Instead, to use a task, you need to assign it to a role.

Defining roles

As its name suggests, the role-based security infrastructure in RS uses the concept of
roles to assign a set of permissions to users with the same security requirements. Simply
put, a role is a named set of tasks. Currently, RS doesn’t support nested roles. For exam-
ple, you cannot set up a Content Manager role to include the Browser role.

Because the relationship between roles and tasks is many-to-many, the documen-
tation uses the term role definition to represent the tasks-to-role membership. For
example, RS includes the predefined item-level Browser and Content Manager roles,
and both of them include the View Reports task.

NOTE Strictly speaking, Reporting Services implements the roles-to-tasks rela-
tionship by a bit-masked value defined in the TaskMask column in the
Roles table. For this reason, the terms role and role definition are inter-
changeable. However, I broke it down into two tables to make the concept
easier to understand.

Similar to the task types, RS classifies roles in two categories: system roles and item-
level roles.

System-level roles

Most applications need an Administrator role that has unrestricted access to the appli-
cation in order to perform application-wide maintenance tasks. Reporting Services is
no exception. It defines two system roles, as shown in table 8.1.

Table 8.1 Predefined system roles

System-Level Role Rights

System User View system properties and shared schedules

System Administrator System User rights plus the rights to view and modify system role assign-
ments and role definitions

REPORTING SERVICES ROLE-BASED SECURITY 269

System-level roles can include only system-level tasks. When you install RS, the
Setup program maps the Windows local administrators group to the System Admin-
istrator role.

Item-level roles

Item-level roles contain item-level tasks. Table 8.2 shows the predefined item-level roles.

Unlike working with tasks, you can define custom system and item-level roles, as well
as modify the predefined roles. Let’s say that you don’t like the predefined task map-
ping for the Content Manager role. For example, you don’t want members of this role to
be able to view reports. You can use the Site Settings menu to either change the role
definition or create a new item-level role.

Understanding securable items

Table 8.3 lists the RS resources that can be secured through role-based security.

Table 8.2 Predefined item-level roles

Item-Level Role Rights

Browser View folders and reports and subscribe to reports

Content Manager All item-level permissions

My Reports Publish reports and linked reports; manage folders, reports, and resources in
a user’s My Reports folder

Publisher Publish reports and linked reports to the Report Server

Table 8.3 RS securable resources

Securable

Resource
Description

Folders Viewing folders and navigating through the folder hierarchy requires the rights to
execute the View Folders task. If the user doesn’t have the rights to view a
folder, the folder is excluded from the folder view. Requesting the folder explic-
itly through URL access or Web service results in a security exception. Managing
folders requires the Manage Folders task.

Reports In order to view a report, the user must have the rights to execute the View
Reports task. To manage the report, the user must have the Manage Reports
rights.

Shared data
sources

The user needs the Manage Reports rights to change the report data source.
After that, no special permissions are required to render reports that use a
shared data source. To view the shared data source definition, the user must
have the View Data Sources permission. To manage it, the rights to execute the
Manage Data Sources tasks are required.

Other catalog
items

The View Resources permission is required to view an image item. Similarly,
View Resources is required to apply an XSL transformation.

continued on next page

270 CHAPTER 8 SECURING REPORTING SERVICES

Tasks and roles are useful only when they are associated with users in order to enforce
restricted access to the Report Server. To accomplish this, the administrator defines
role-based security policies.

Defining policies

A policy defines the relationship among users, roles, and securable items. In other
words, a policy determines the permitted tasks that the user can perform on a given
securable item, such as a folder or report. The RS role-based security policy is additive,
which means that the user is granted the union of the permitted tasks defined in the
roles to which the user is mapped.

Let’s consider the example shown in figure 8.4.
In this example, David Campbell is assigned to both the Sales Managers and Sales

Windows groups of the AW domain. The RS administrator assigned the Sales Managers

Report History Managing the report snapshot history requires the rights to execute the Manage
Report History task.

Subscriptions Managing user report subscriptions requires the rights to execute the Manage
Individual Subscriptions task. Managing report subscriptions of other users
requires the rights to execute the Manage All Subscriptions task.

Table 8.3 RS securable resources (continued)

Securable

Resource
Description

Figure 8.4

The RS role-based

security model is

additive, and the user

is granted the union of

the permitted tasks.

REPORTING SERVICES ROLE-BASED SECURITY 271

group to the Content Manager role when defining the role-based security for the
AWReporter folder. The AW Sales group is mapped to the Browser role.

What will be the resultant set of permitted tasks that David Campbell gets? The
answer is that he will be able to execute all tasks defined for the Content Manager and
Browser roles. If these two roles include the default set of tasks, David will be able to
manage the AWReporter folder (create and delete folders, add reports), as well as see
all reports in the AWReporter folder.

Overriding security policy

inherited from the parent folder

You can enforce role-based security on folders and their content. By default, the secu-
rity policy propagates through the children of the parent folder, similarly to the way
Windows access control list (ACL) permissions are inherited from the parent folder by
its descendants. However, the inheritance chain can be overridden if the subfolders or
resources must have different permissions than their parent.

For example, considering again the scenario shown in figure 8.4, what if the AWRe-
porter folder contains some sensitive reports that only the members of the Sales Man-
agers group should see? To accomplish this requirement, we can remove the AW/Sales
group from the policy list of restricted reports.

What happens when you break the policy inheritance chain at a specific securable
item? The Report Server simply assigns a new policy list to this item, which by default
gives Content Manager rights to members of the Windows local administrators group.

It is not difficult to understand how the Report Server determines whether the user
is permitted to execute a given task on a secured item. First, the Report Server deter-
mines whether the item inherits the security policy of its parent. If the security chain
is broken at the item level, the Report Server evaluates its policy list to find out which
tasks have been assigned to the role(s) the user belongs to. If the security policy is
inherited, the Report Server walks recursively up the inheritance chain to find out
which of the item ascendants define the security policy.

Simplifying security policy management

To simplify the folder permissions, we suggest that you stick to policy inheritance as
much as possible. The approach we recommend is to enforce the minimum set of per-
missions at the top Home folder. Then, work your way down by adding or taking out
permissions on its children on an as-needed basis.

Let’s consider a more involved example. Let’s say you want to organize your RS folder
namespace per department and application, similar to the one shown in figure 8.5.

First, under the Home folder you create department folders, for example, Sales and
HR. Then, you create application folders under the department folders, for example,
AWReporter for the Sales department to contain all of the sample reports from this
book. How can you minimize role-based security maintenance and yet ensure that you

272 CHAPTER 8 SECURING REPORTING SERVICES

enforce a comprehensive level of security? Let’s say you don’t want users from other
departments to be able to browse the Sales folder and see its contents.

To simplify the security infrastructure, you can take advantage of the inheritance
feature of the role-based security policy. You can allow only AW domain administra-
tors to manage the full folder namespace by assigning them to the Content Manager
role. You can assign all other domain users to the Browser role so they can browse the
Home folder. For the Sales folder you can break the folder’s inheritance chain. You
can remove the Users group from the Browser role and grant the Sales Managers and
Sales groups the Content Manager and Browser roles, respectively. You don’t have to
perform any extra steps if you want the same permissions to propagate to the AWRe-
porter folder.

When the user doesn’t have permissions to view a given securable item, the item
is excluded from the results of the Web service method call. For example, if the user
clicks on the Home folder to see its subfolders, the Report Server will return only the
subfolders to which the user has View permissions. Behind the scenes, the Report
Manager invokes the ListChildren SOAP API, which excludes restricted resources.
This makes developing client applications a lot easier because you don’t have to filter
out the results to enforce restricted access—one less thing to worry about when writing
custom applications that target RS.

Now that we’ve explained the theory behind the RS role-based security model, let’s
see how we can manage it using the Report Manager.

8.1.3 Managing role-based security

with the Report Manager

It is important to note that when you use the Report Manager to set up a role-based
security infrastructure, you are securing not the Report Manager but the Report
Server. The policy changes that you make using the Report Manager are persisted in
the Report Server database. For this reason, these changes will affect all report consum-
ers that use the same instance of the Report Server.

Figure 8.5

The report administrator

can simplify role-based

security management by

using policy inheritance.

REPORTING SERVICES ROLE-BASED SECURITY 273

Managing the role-based security infrastructure with the Report Manager is easy.
Let’s see whether we can convince you of this by showing what needs to be done to
secure the resources in the AWReporter folder. Our fictitious scenario will be similar
to the examples we discussed previously. It will include the following actions:

• Creating a few Windows user accounts

• Assigning them to Windows groups

• Assigning the Windows groups to predefined and custom roles

• Enforcing a role-based security policy on the AWReporter folder and its resources

To make our example more realistic, we’ll define the new accounts and groups in cor-
respondence with the AWC organizational structure. Back in chapter 5, we created a
Corporate Hierarchy report that we can use to get started, as shown in figure 8.6.

Our requirements are as follows:

• Only the members of the Sales Managers and Sales groups can access the
AWReporter folder.

• The members of the Sales Managers group have unrestricted access to AWRe-
porter folder.

• The members of the Sales group are able to run reports only.

• The AWC network administrator can manage the AWReporter folder and its
resources but cannot view any reports in this folder.

Figure 8.6 Use the Corporate Hierarchy report to see the AWC organizational structure.

274 CHAPTER 8 SECURING REPORTING SERVICES

Creating Windows user accounts and groups

The Employee table in the AdventureWorks2000 database can give us the necessary
details to set up the Windows accounts, as shown in table 8.4.

To set up these accounts, open the Computer Management console and create the
three Windows groups (AW Sales Managers, AW Sales, and AW Sales Admin) listed in
table 8.4. In the process of doing so, don’t forget to uncheck the User Must Change
Password at Next Logon check box. Then, create the three Windows user accounts
(Stephen, David3, and Ashvini) and assign them to the appropriate groups.

Creating custom roles

To meet the last of our requirements, we need to create a new role because none of the
predefined roles includes only management tasks. We can create a custom role with
the Report Manager by following these steps:

Step 1 Click the Site Settings menu.

Step 2 Click the Configure Item-Level Role Definitions link.

Step 3 Click the New Role button. The New Role screen appears (figure 8.7).

Step 4 Name the new role Sales Admin and assign to it all management tasks shown
in figure 8.7.

We now have a custom role that we can use to define the role-based security policy for
the network administrator.

Defining security policies

Next, we will enforce restricted access to the AWReporter folder. Using the Report
Manager, navigate to the AWReporter folder and click the Security tab on the folder’s
Properties page. If you haven’t made any changes to the default security policy, you will
see a single button named Edit Item Security. When you click it, you will see the con-
firmation prompt shown in figure 8.8.

Click OK to confirm your intention to override the security policy inherited from
the Home folder. The user interface changes and now shows two buttons (figure 8.9).

The default security policy allows only local administrators to access this folder
by granting them permissions to execute all tasks of the Content Manager role. We
will now define three additional security policies that will grant different levels of

Table 8.4 Test accounts and groups needed to run the role-based security sample

User Name Login ID Password Description Windows Group

Stephen Jiang Stephen Stephen Sales Manager AW Sales Managers, Users

David Campbell David3 David3 Sales Representative AW Sales, Users

Ashvini Sharma Ashvini Ashvini Network Administrator AW Sales Admin, Users

REPORTING SERVICES ROLE-BASED SECURITY 275

Figure 8.7 With RS you can create a custom role that includes one or more

predefined tasks.

Figure 8.8 When the security policy inherited from the item parent is not a good fit, you can

override it.

Figure 8.9 Use the report’s Security tab to create new role-based

security policies.

276 CHAPTER 8 SECURING REPORTING SERVICES

access to the AWReporter folder for the Sales Managers, Sales, and Sales Admin Win-
dows groups.

Let’s start with granting the members of the Sales Managers group the Content
Manager rights to the AWReporter folder. Click the New Role Assignment button to
create a new security policy, as shown in figure 8.10.

Create two more role assignments to assign the members of the AW Sales group
to the Browser role and the members of the AW Sales Admin group to the Sales Admin
role. When you return to the Security tab, your screen should look like the one shown
in figure 8.11.

We’ve finished! You can test the role-based security policies by logging on to Win-
dows as each of the three users. For example, if you log on as Ashvini, you will be able

Figure 8.10 You create a new role-based security policy by assigning

Windows user or group accounts to roles.

Figure 8.11 Based on your security requirements, you may need to create several security

policies to provide restricted access to the report based on the users’ role membership.

REPORTING SERVICES ROLE-BASED SECURITY 277

to manage the AWReporter folder and its resources, but you won’t be able to run any
of the reports. When you click the report’s link, the Report Manager will not render
the report. Instead, the report’s Properties page will be open.

But wait, you say, what if we need to enforce a more restrictive policy on specific
resources? For example, what if we want to prevent the members of the AW Sales
group from running the Sales by Territory report? To accomplish this, we can enforce
a report-specific security policy by overriding the AWReporter folder policy. To do so,
we can click the Edit Item Security button found on the Security tab of the report’s
Properties page. When we do this, we are presented again with the confirmation
prompt shown on figure 8.8 asking us whether we really want to break the security
policy inheritance.

Once we confirm our intention, we can delete the AW Sales group from the policy
list, which, in turn, will prevent its group members from rendering the report. If we
later change our mind, we can always restore the policy inheritance by clicking the
Revert to Parent Security button.

As we explained in chapter 7, the Report Manager is just a user-friendly application
layer on top of the Report Server. To perform all management tasks, behind the scenes
the Report Manager calls down to the RS Web service. In a similar way, you can man-
age programmatically the RS role-based security in your applications by invoking the
Web service’s security-related methods, as we will discuss next.

8.1.4 Managing role-based security with the Web service

As we discussed in chapter 7, the RS Web service provides a series of security-related
methods that you can use to manage programmatically all aspects of the role-based
security infrastructure. When the Report Manager is not enough, you can create cus-
tom applications (or reports) that call the security API directly.

For example, as an administrator, you may be interested in authoring a report that
lists the permissions that a given user has to all resources within a given folder. Or, you
may have defined resource-specific security policies already, and you need a report that
shows you where the role assignment takes place.

Determining role-based security policies

Requirements like the ones above go beyond the Report Manager feature set. However,
with a little bit of programming effort, you can author such reports easily by directly
calling the Web service authorization APIs.

Figure 8.12 shows the Show Security Policy report, which fulfills the above requirements.
The Show Security Policy report takes as parameters the user’s Windows login

name and password, as well as the Report Server Web service URL. If the Item Name
parameter is left NULL, the report will show which permissions the user has to all
securable resources. For example, figure 8.12 shows that we wanted the report to indi-
cate which permissions Ashvini has to the resources located in the AWReporter folder.

278 CHAPTER 8 SECURING REPORTING SERVICES

Alternatively, the administrator can enter the name of a resource (in the Item Name
parameter) to filter the report for a single resource in order to see the security policy
defined for this item only.

TIP In the real world you will rarely know the user’s password. If you don’t need
the user’s permission set but only want to see to the user’s roles, then you
can use the approach suggested by Tudor Trufinesco, a Microsoft engineer
from the RS team. You can use an account with Admin rights to call Get-
Policies on all the items in the catalog and find out which ones are not
inherited. Then you can display or parse the XML policy in the report.

Let’s look at how this report is implemented.

Calling security-related Web service methods

Implementing the Show Security Policy report is straightforward. The report takes
advantage of the self-referential integrity defined in the Catalog table in the Report
Server database and the RS recursive hierarchy-reporting feature, which we discussed
back in chapter 5. The report traverses recursively the Report Server folder namespace
and checks the type of the item. If the item is a folder, the item name is shown in bold.
For each securable item, the report shows the name of the parent from which the secu-
rity policy is inherited, as well as the set of permissions that the user has to this item.

To obtain this information, the Show Security Policy report calls down to the
AwRsLibrary custom assembly. Specifically, it calls the PolicyInheritedFrom
method to get the inheritance information and the GetPermissions method to get
the list of allowed permissions. Listing 8.1 shows the abbreviated custom code.

Figure 8.12 You can query and manage the role-based security infrastructure by calling the RS

Web service in your applications and reports.

REPORTING SERVICES ROLE-BASED SECURITY 279

public string SetProxy (string uid, string pwd, string rsUrl) {
 m_rs = new ReportingService();
 m_rs.Url = rsUrl;
 m_uid = uid;
 m_pwd = pwd;
 return "None";
}

public string GetPermissions(string itemPath) {
 string result = null;

 m_rs.Credentials = new NetworkCredential(m_uid, m_pwd);
 String[] permissions = m_rs.GetPermissions(itemPath);
 System.Array.Sort(permissions);
 result = String.Join(",", permissions);

 return result;
}

public string PolicyInheritedFrom(string itemPath) {
 bool inheritParent;
 string rolePath = itemPath;
 m_rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 m_rs.GetPolicies(rolePath, out inheritParent);
 while (inheritParent) {
 rolePath = GetParentPath(rolePath);
 m_rs.GetPolicies(rolePath, out inheritParent);
 }
 return FormatPath(itemPath, rolePath);
}

The GetPermissions method calls the RS Web service’s GetPermissions web
method under the context of the user whose security policy we need to check. The method
returns a string array of the allowed permissions, which we sort and flatten to a string.

The PolicyInheritedFrom method invokes the GetPolicies web method
to find out which ascendant in the catalog hierarchy defines the security policy for each
item displayed in the table region. To accomplish this, PolicyInheritedFrom
calls GetPolicies recursively until inheritParent is false. Finally, it evaluates
the item path and returns one of the following values:

• Self—If the item defines its own policy

• Parent—If the security policy is inherited from the item parent

• Home—If the item inherits the root folder security policy

• In all other cases, the path to the ascendant item that defines the security policy

Listing 8.1 The Show Security Policy custom code

Gets the list of
permissions
associated
with the given
resource

Gets the role-based
policies recursively
for the specified
report item

280 CHAPTER 8 SECURING REPORTING SERVICES

Implementing “pseudo” report events

Besides showing how you can use the security-related Web service API, this example
also demonstrates how you can implement “pseudo” events in your reports. For exam-
ple, we use an expression for the Body BorderStyle property to initialize the Web ser-
vice proxy and some class-level variables inside the custom code.

Strictly speaking, we could have made the class stateless by passing the user cre-
dentials to the GetPermissions method, but we wanted to demonstrate how you
can execute custom methods in a specific order. To ensure that the SetProxy method
is called only once and before the other two custom methods, we used the following
expression for the BorderStyle property of the Report Body band:

=Code.m_Library.SetProxy(Parameters!Uid.Value, Parameters!Pwd.Value, Param-
eters!Url.Value)

This expression will be executed before the expressions in the table region, and it can
be safely used to initialize the custom code state. Because we are calling instance meth-
ods in the custom assembly, we reference the assembly in the Report Properties dialog,
as shown in figure 8.13.

Before testing the report, don’t forget to follow the steps for deploying the RsLibrary
assembly and elevating its code access security to the Report Designer and Report
Server folders, as we discussed in chapter 6.

So far, we’ve seen how to enforce secured access to the Report Server catalog based
on the user’s role membership. As we explained in chapter 6, developers can expand the
report capabilities by using custom code. When this happens, you, as an administrator,
need to know how to properly configure the RS code access security, as we’ll discuss next.

Figure 8.13

Referencing the

RsLibrary class

UNDERSTANDING CODE ACCESS SECURITY 281

8.2 UNDERSTANDING CODE ACCESS SECURITY

As long as you don’t plan to extend RS with custom code, you can live a happy and
oblivious life without worrying about RS code access security (CAS). In fact, even if you
decide to use custom code, for example, to call code in an external assembly or create a
custom data extension, you may find that in most cases the default code access security
settings defined in the Report Server configuration files fulfill your needs. If this is the
case, the only code access-related management task you need to learn is how to register
the custom assemblies with the Report Server and Report Designer.

Sometimes, however, you may need to adjust the default code access policy. Usu-
ally, this will happen when the custom assembly needs more rights than the default
permissions granted by the Report Server. You will know that this is the case when the
Report Server complains with a SecurityException error. As a responsible administra-
tor, you should learn how to solve this issue by giving the failing assembly the mini-
mum set of permissions it needs to execute successfully. If you elevate the code access
security too much, you open security holes that could be exploited by malicious code.

In my opinion, CAS is one of the most valuable, and arguably most misunderstood,
services that the .NET Common Language Runtime (CLR) provides. In a nutshell, this
security model grants permissions to code, not users. This is important because even
if the Report Server runs under a highly privileged account, the CLR will sandbox cus-
tom code to restrict the actions it can execute. For example, the default RS code access
security policy prevents custom code from writing to the Windows file system.

Because RS is written entirely in .NET-managed code, it can take full advantage of
the code access security infrastructure built into the .NET CLR. To understand how
you can manage the RS code access security model, first you need to learn how it
works. By no means will we attempt to provide thorough coverage on this topic, which
could easily fill a whole book. If you need more detail, please refer to the resources in
section 8.5 at the end of this chapter.

8.2.1 Defining code access terminology

When RS loads an assembly, the .NET CLR goes through some decision making to
determine what the assembly can do. As a part of this process, the CLR gathers some
information about the assembly, which is called evidence. The assembly evidence is
then passed to the CLR code access security policy for evaluation.

Finally, the assembly is given a set of permissions, as shown in figure 8.14.

Figure 8.14 The CLR code access security policy takes the assembly evidence as

input and produces a permission set as output.

282 CHAPTER 8 SECURING REPORTING SERVICES

Let’s now discuss each of these terms in more detail.

Exploring evidence

The assembly evidence provides the code access security policy the following informa-
tion about the assembly:

• The assembly origin, which tells the CLR where the assembly is loaded from,
including the site, URL, zone, and application directory

• For strongly named assemblies, the assembly author information, which includes
the assembly’s strong name and publisher information

For example, as we saw in chapter 6, the Sales by Product Category report uses custom
code located in the AWC.RS.Library.dll assembly. When RS processes the report, it
gathers the following evidence about the assembly:

• Zone—MyComputer, because the code is loaded from the local file system

• URL—file://C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\
ReportServer\bin\ AWC.RS.Library.dll

Because the assembly is not strongly named, there will be no evidence about its pub-
lisher and strong name.

Once the assembly evidence is obtained, it is evaluated based on the security policy
configured by the administrator.

Understanding code access security policies

The administrator can set up the security policy at the hierarchical levels listed in
table 8.5.

The first three security policy levels are defined in configuration files under the
C:\WINDOWS\Microsoft.NET\Framework\<version number>\CONFIG folder. An
application can override these setting by using an application-specific configuration
file to scope the policy at the application level (more on this in a moment).

The recommended way to make changes to .NET configuration policy files is to
use the Caspol utility or the .NET Configuration management console (shown in fig-
ure 8.15).

Table 8.5 The code-based security policy is evaluated at four security levels.

Security Level Purpose

Enterprise Applies to all machines that are part of an Active Directory installation

Machine Specifies the machine-wide policy settings

User Spells out the user-specific policy settings

AppDomain Includes settings specific to the application host domain. In case of RS, this is the
Report Server host domain.

UNDERSTANDING CODE ACCESS SECURITY 283

The fourth policy level, AppDomain, is not shown in the .NET Configuration console
and it must be set programmatically. An application can use the AppDomain policy
level to dynamically sandbox the .NET code by further restricting the set of permis-
sions granted by the other three policy levels.

To use the AppDomain policy level, an application can create a separate applica-
tion domain and call AppDomain.SetAppDomainPolicy. The security policy config-
uration file can be loaded via a call to SecurityManager.PolicyLevelFromFile.

Overriding code access security policy

Now you know why the Enterprise, Machine, and User policies don’t seem to apply to
the RS code access security model. When the Report Server is initialized, it reads the
securityPolicy element from the Report Server web.config file to determine the
name of the configuration file that contains the CAS policies. By using the App-
Domain policy level, the Report Server overrides the three levels with the policy set-
tings from this file.

Figure 8.15

To manage the .NET

code access security

policy, use the .NET

Configuration console.

284 CHAPTER 8 SECURING REPORTING SERVICES

NOTE Although I highly discourage you from doing so, you can entirely bypass
the Report Server CAS policy by commenting the securityPolicy
element. The net effect of doing so is reverting to the code access secu-
rity policies defined in the .NET configuration files that you can manage
using the .NET Configuration management console.

When the CLR evaluates the security policies, it starts from the enterprise-level policy
and works its way down to determine the intersection of the permissions grants. Each
policy level consists of three elements: a code group hierarchy, a list of predefined per-
mission sets, and a list of fully trusted assemblies at this policy level.

Defining code groups

As figure 8.15 shows, the policy levels can be further broken down into code groups.
Most code groups are instances of System.Security.Policy.UnionCodeGroup. The CLR
runtime comes with a number of predefined code groups. Four of them—Local Intra-
net, Internet, Restricted, and Trusted—correspond to Internet Explorer security zones.
In fact, one of the easiest ways to elevate (or decrease) the allowed permissions in these
zones is to use the Internet Explorer security-related settings. From the RS point of
view, the only zone of interest is the MyComputer zone, because all custom code is
loaded from the local file system.

To filter out the allowable permissions, each code group has a membership con-
dition. For example, if you look at the properties of the My Computer code group,
you will see that it defines a Zone membership condition, which applies the security
policy to assemblies from the MyComputer zone only and assigns the FullTrust
named permission set to it. As a result, if an assembly is evaluated as belonging to this
code group and no further restrictions are imposed, its code can execute unrestricted.

To further restrict the security policy, each code group can contain nested code
groups. When the CLR evaluates the code group membership of a given assembly, it
traverses the code group hierarchy to find the right match for the assembly.

Using permission sets

Each code group can have a predefined set of permissions, also known as a named per-
mission set. You can think of permission sets as equivalent to the role definition concept
we discussed in the role-based security section. Similarly, you can relate the code access
permissions to role tasks.

For example, figure 8.16 shows the predefined permissions for the Execution per-
mission set. To bring up this dialog, click the Execution permission set in the .NET
Configuration console (see figure 8.15); then right-click the Security permission item
in the right pane and choose View Permission from the context menu.

As you can see, the only allowable permission here is to execute code. This means
that if a custom assembly needs to write to a file under the default Execution permis-
sion set, the method call will fail with a security exception.

UNDERSTANDING CODE ACCESS SECURITY 285

Most permission sets are instances of the System.Security.NamedPermissionSet class.
The predefined permission sets cannot be modified. Instead, if they don’t meet your
security needs, you can create new permission sets. You may find this process similar
to working with the RS role-based security model when you create new roles that
include different sets of tasks.

8.2.2 Exploring the RS default security policy

How does our code access discussion relate to RS? As we mentioned, any custom
code executed under the Report Server and Report Designer (in the Preview win-
dow) is subject to code access security restrictions. Not all custom code is created
equal, though. To determine which permissions need to be assigned to the executing
code, the Report Server categorizes the code by mapping it to a specific code access
security policy.

Defining default code access permissions

RS defines default code access security policies for each category of custom code, as
shown in table 8.6.

Figure 8.16

By default, the Report

Server is configured to

grant custom code

Execution rights only.

Table 8.6 RS default code access security policies

Code Category Membership Condition Permission Set

Report Server native assemblies Strong Name Full Trust

Custom extensions My Computer Zone Require Full Trust

Expressions My Computer Zone Execution

Custom assemblies My Computer Zone Execution

286 CHAPTER 8 SECURING REPORTING SERVICES

For example, looking at table 8.6, we can see that if a report calls external code in a
custom assembly, code in this assembly will be assigned the Execution permission set
by default. This is fine if this assembly is self-contained and doesn’t access external
resources that require a more restrictive set of permissions, for example, writing to files,
opening database connections, and so on. If it does, then we need to adjust its code
access policy accordingly.

Understanding configuration files

The default RS security policy is defined in policy configuration files. RS has three pol-
icy configuration files, one per each component, as shown in table 8.7.

Why do we need to enforce code access security policy for the Report Designer? As
you would recall from our discussion in chapter 2, the Report Designer gives you the
option to run the report in the Preview window. You can use the Preview window to
simulate the Report Server environment by cloning its code access settings to the rspre-
viewpolicy.config configuration file. When you run the report (by pressing F5), the
Report Host will read and apply these settings to sandbox the custom code that the
report uses.

The Preview window mode allows the author of the report to change the code
access security policy locally, and once the custom code executes properly, to propa-
gate the configuration changes to the Report Server policy file. Please note that pre-
viewing reports using the Report Designer’s Preview tab bypasses the Report Designer’s
security policy and grants the FullTrust permission set to custom assemblies. Once
again, to see the effect of the policy settings from the rspreviewpolicy.config configu-
ration file, preview the report in the Preview window by running the report in Debug
mode (F5).

8.2.3 Managing RS code access security

The report administrator can easily adjust the code access security policies by making
changes to the appropriate configuration files. For example, let’s say our custom assem-
bly, MyAssembly, requires the ability to read from the file C:\MyFile.xml. Because the
default code access policy gives custom assemblies only Execution rights, when the
assembly attempts to read from the file, it will fail.

Table 8.7 Policy configuration files

Component Configuration File Path

Report Server rssrvpolicy.config C:\Program Files\Microsoft SQL Server\MSSQL\
Reporting Services\ReportServer

Report
Manager

rsmgrpolicy.config C:\Program Files\Microsoft SQL Server\MSSQL\
Reporting Services\ReportManager

Report
Designer

rspreviewpolicy.config C:\Program Files\Microsoft SQL Server\80\Tools\
Report Designer

UNDERSTANDING CODE ACCESS SECURITY 287

As an administrator, you can rectify this situation in two ways. The first one is eas-
ier and not recommended. You can modify the Report Server policy file to give all cus-
tom assemblies FullTrust execution rights by making the following changes to
rssrvpolicy.config (and rspreviewpolicy.config for testing purposes):

<CodeGroup class="FirstMatchCodeGroup" version="1"
 PermissionSetName="FullTrust" Description="This code group
 grants MyComputer code Execution permission. ">

The important change here is that instead of Execution rights, now all custom code
will be given FullTrust rights. Of course, the net effect of doing this will be kissing code
access security good-bye for custom code execution. Therefore, you should resist the
temptation to take the easy way and open security holes.

Defining custom permission sets and code groups

When you need to elevate the code access security policy, the recommended approach
is to grant permissions on an as-needed basis. First, you can define a named permission
set that includes the FileIOPermission permission to read from the file, as follows:

<PermissionSet class="NamedPermissionSet"
 version="1"
 Name="MyFilePermissionSet"
 Description="Grant access to read from myfile.xml.">
 <IPermission class="FileIOPermission"
 version="1"
 Read="C:\MyFile.xml"/>
</PermissionSet>

Once the permission set is defined, you can then create code groups to associate cus-
tom assemblies with the named permission set. For example, the code group definition
might look like this:

 <CodeGroup class="UnionCodeGroup"
 version="1"
 PermissionSetName="MyFilePermissionSet"
 Name="MyAssemblyCodeGroup"
 Description="A code group specifically created for
 myassembly.dll">
 <IMembershipCondition class="UrlMembershipCondition"
 version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
 Services\ReportServer\bin\myassembly.dll"/>
</CodeGroup>

Please note also that the CAS security is layered on top of the OS security. Therefore,
in addition to the CAS settings, you need also to grant the appropriate ACL permis-
sions to any files that the custom assembly needs. In this case, the custom assembly
requires at least Read permissions to MyFile.xml. To satisfy this requirement, we need to
open the file (or its containing folder) properties and grant the Report Server process

288 CHAPTER 8 SECURING REPORTING SERVICES

account (by default, ASP.NET with IIS5 or Network Service with IIS6) Read permis-
sions to this file.

How do you know which code access permissions a given assembly requires? Well,
if the assembly developer has taken the effort to declare the required permissions using
attributes, you can use the PermView.NET utility. Most often, though, you will find
that this is not the case and you will need to rely on other sources, such as the product
documentation or your peers from newsgroups. This entails the trial-and-error
approach, which could be painful.

NOTE I struggled quite a bit to find out why the OpenForecast assembly, which
we discussed in chapter 6, was failing to execute regardless of the fact that
it was given FullTrust permission rights. I went through all possible permu-
tations but to no avail. The strange thing was that neither OpenForecast
nor its caller was accessing external resources. I went to the trouble of con-
verting it to C# only to realize that the C# version was executing properly.
Finally, I resorted to using System.Diagnostics.Trace.WriteLine to find out
at what point the code was failing. Using the DbgView utility I was able to
pinpoint the security violation to an overridden implementation of the
toString method inside the OpenSource DataSet structure. My code
was calling this method to output the observed and forecasted values.
Removing the tracing calls fixed the problem. The exact reason for the
security violation was beyond me, but the moral of my story is this. If giving
your custom code FullTrust permissions doesn’t help, you should start
exploring your code to find out at what point it fails. Once you manage to
identify the offending line, the next step will be to find out which code
access security permissions it requires. As a last resort, if nothing else works,
you could bypass the Report Server CAS policy by commenting out the
securityPolicy element in web.config, as I noted before. Before you decide
to do this, however, make sure that you have a convincing story when you
are asked to stand before the CAS court.

Currently, to the best of my knowledge, there is no tool to help you troubleshoot code
access security problems. What I would like to see in future versions of the .NET
Framework is more explanatory error descriptions when a security exception is
thrown. At least the exception message should spell out name of the failing permission
and the offending line of code. My experience is that often this information is missing.

Granting custom assemblies FullTrust rights

Back in chapter 6 we said that AWC.RS.Library and OpenForecast assemblies require
full trust permissions to execute successfully. Let’s see what changes are required to
accomplish this. The assemblies don’t require any custom permission sets. To elevate
the code access security policy for both assemblies from Execution to FullTrust, we
need to add the following lines to the Report Designer (rspreviewpolicy.config) and
Report Server (rssrvpolicy.config) security configuration files:

UNDERSTANDING CODE ACCESS SECURITY 289

<CodeGroup
 class="UnionCodeGroup"
 version="1"
 PermissionSetName="FullTrust"
 Name="SharePoint_Server_Strong_Name"
 />
</CodeGroup>
<CodeGroup class="UnionCodeGroup" version="1"
 PermissionSetName="FullTrust" Name="AWCLibrary">
 <IMembershipCondition class="UrlMembershipCondition" version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
 Services\ReportServer\bin\AWC.RS.Library.dll"/>
</CodeGroup>
<CodeGroup class="UnionCodeGroup" version="1"
 PermissionSetName="FullTrust" Name="OpenForecast">
 <IMembershipCondition class="UrlMembershipCondition" version="1"
 Url="C:\Program Files\Microsoft SQL Server\MSSQL\Reporting
 Services\ReportServer\bin\OpenForecast.dll"/>
</CodeGroup>

It is important to note that when elevating the code access rights for custom code, you
need to do so for all custom assemblies where this code resides because CLR will check
the entire call stack. This is why we specifically granted full rights to both the
AWC.RS.Library and OpenForecast assemblies.

Dealing with unmanaged resources

Sometimes, granting your custom code the FullTrust permission set may not be
enough. This may be the case when you need to deal with unmanaged resources.

For example, you could have authored a custom dataset extension that opens a
database connection through the .NET System.Data.SqlClient.SqlConnection man-
aged wrapper to a SQL Server database. A database connection is an unmanaged
resource, and your custom code requires explicit permissions to execute unmanaged
code. Specifically, you need to declare a new permission set, as shown here:

 <PermissionSet class="NamedPermissionSet" version="1"
 Unrestricted="true" Name="MyPermission">
 <IPermission
 class="SecurityPermission"
 version="1"
 Flags="UnmanagedCode" />
</PermissionSet>

Then you need assert the permission needed in your custom code before accessing the
unmanaged resource:

SqlClientPermission permission = new
 SqlClientPermission(PermissionState.Unrestricted);
try {

permission.Assert(); // Assert security permission!

For
reference
only

Grant Full Trust to
AWC.RS.Library.dll

Grant Full Trust to
OpenForecast.dll

290 CHAPTER 8 SECURING REPORTING SERVICES

SqlConnection con = new SqlConnection("...");
con.Open();

 //do something with the connection
}

When the custom code is called from a report expression, you need to always assert the
permission because the code access security checks walk up each stack frame and
expect permissions at each level. The default code access security policy grants report
expressions Execution rights only, so the security check will fail. Assert will short-
circuit the stack walk at the current frame.

The MSDN documentation specifically states which permissions are needed by cer-
tain method calls. For example, in the case of the SqlConnection class, the documen-
tation says, “SqlConnection makes security demands using the SqlClientPermission
object.” The CodeAccessSecurityPermission.Assert method call instructs
CLR to grant your code the requested permission, regardless of the fact that its callers
might not have rights to this permission.

For more information about code access security considerations, check out the
security chapter in the product documentation.

8.3 BEST PRACTICES FOR SECURING REPORTS

If everything we discussed so far sounds mind-boggling, here is what we would like for
you to take with you from this chapter. Your specific application needs will dictate the
choice of which authentication options to use. However, as with almost any architec-
ture design, you should carefully weigh the different implementation approaches and
make a tradeoff between flexibility and simplicity.

Unless you are architecting an enterprise-wide reporting services infrastructure,
don’t try to make your security implementation too sophisticated. Try to take advan-
tage as much as possible of the RS role-based security model. Some of the questions
that you should ask yourself should be these:

• What is the application architectural model? WinForm or web-based? Intranet,
extranet, or intranet?

• How strict are the security requirements? How sensitive is the report information?

• How granular does the security policy level need to be? For example, do you have
to enforce restricted access at the report level or do you need a more granular level
of security? Do you need to secure some portion of the data inside the report?

• Can you use Windows-based authentication?

• To simplify the role-based security setup with Windows-based authentication,
can you group the accounts into Windows groups?

Sometimes, you may find the RS role-based security model too coarse. Such will be the
case when you need to secure sensitive data inside the report, or what I refer to as “hor-
izontal security.”

BEST PRACTICES FOR SECURING REPORTS 291

Take, for instance, the Employee Sales Freeform report we created in chapter 4. This
report shows sensitive data, such as salesperson performance, bonus, and commission.
What if we want each salesperson to be restricted to seeing his own sales data without
being able to request the report for other sales representatives? Further, what if we want
only the members of a certain Windows group, such as Sales Managers, to be able to see
the sales data for the sales representatives of whom the manager is in charge?

In such cases, you will need to take extra steps to supplement the role-based secu-
rity model or, in more extreme cases, to replace it altogether. Let’s consider some prac-
tical security-related techniques you can use to provide a more granular level of
security policy.

8.3.1 Filtering data

The first approach involves filtering the sensitive data at the data source or by using
dataset filters. Let’s say we want to restrict a salesperson to view his sales performance data
only when requesting the Employee Sales Freeform report. Let’s assume also that the
Employee table in the database defines a column for the user login ID, which is exactly
the case with the Employee table in the AdventureWorks2000 database. It defines a
LoginID column, which we can use to filter the available values for the Employee param-
eter. We saved the modified version of the report as Employee Sales Freeform Secured.

In this report, we demonstrate data filtering at the data source. To implement this,
we replaced the dataset query of the Employee parameter with the following statement:

SELECT EmployeeID, LastName + N','
 + FirstName AS EmployeeName, LoginID
FROM dbo.Employee
WHERE (SalesPersonFlag = 1) AND (LoginID = @LoginID)
ORDER BY EmployeeName

The LoginID parameter is defined as dataset-specific, as shown in figure 8.17.
As we discussed in chapter 5, the User.UserID property returns the Windows login

ID if the default Windows-based authentication is used. Therefore, after the lookup
dataset is filtered, the user will see his name only in the Employee parameter drop-
down. In fact, in this scenario, you can go one step further and take out the Employee
parameter entirely.

NOTE The AdventureWorks2000 database uses adventure-works as a domain name
in the LoginID column of the Employee table. To test the Employee Sales
Freeform Secured report, replace the domain name with your login domain
name or your computer name, if the Report Server is installed locally.

For example, assuming that you created the test accounts shown in
table 8.4 as local computer accounts and the Report Server is installed locally,
make sure that you replace the domain name in the LoginID column with the
name of your computer, that is, <mycomputername>\David3. Then, to test
the report, you can either log in locally or establish a remote connection to
your computer from another box using the test account credentials.

292 CHAPTER 8 SECURING REPORTING SERVICES

8.3.2 Using dynamic dataset queries

Another variation of data filtering is using dynamic queries, where a stored procedure
or an expression determines what data will be fetched based on the user’s identity.

Let’s consider a more complicated scenario than the one we discussed in the above
section. This time we want to factor in the user’s Windows group membership. For
example, we want to allow members of the Sales Managers Windows group to be able
to select any salesperson. However, we still want to allow members of the Sales Win-
dows group to be able to see their sales data only.

Determining the user’s Windows group membership

With a little bit of embedded custom code, implementing these requirements is
straightforward. We could write a simple function to tell us whether the user is a mem-
ber of a given Windows group. A possible implementation of such a function is the
IsInRole function.

Function IsInRole(ByVal roleName as String) As Boolean
 Dim myPrincipal As WindowsPrincipal =
 New WindowsPrincipal(WindowsIdentity.GetCurrent())

 Return myPrincipal.IsInRole(roleName)
End Function

You can find this function as embedded code in the Employee Sales Freeform Secured
report sample. The IsInRole function calls the WindowsPrincipal.IsInRole
method and returns true if the user is a member of the passed role, or false otherwise.

Figure 8.17 Data hiding based on the login ID

BEST PRACTICES FOR SECURING REPORTS 293

Implementing the dataset query

The next step is trivial. We can pass the Boolean flag to the parameter (or report)
dataset stored procedure, which can filter the data accordingly. If the user is a sales
manager, the stored procedure will return all salespersons, just as the original version
of this report (Employee Sales Freeform) does. Otherwise, the Employee parameter
will contain only the name of the user.

Of course, if needed, you can call the GetPolicies method of the RS Web ser-
vice to find out to which role(s) this user or Windows group has been mapped. We
saw an example of how to call this method in the Show Security Policy report. The
GetPolicies method returns an array of Policy objects, which represents the secu-
rity policies associated with a given item, as shown in figure 8.18.

To see the definition of the policy object, step through the PolicyInherited-
From method in the AwRsLibrary assembly, and once you’ve invoked the Get-
Policies SOAP API, display the policies collection in the Object Browser (Ctrl-Alt-J).

Once we know the user’s association with a given Windows group, we can find out
what role he is mapped to by enumerating the report’s security policy.

Figure 8.18 The GetPolicies SOAP API returns an array of Policy objects.

294 CHAPTER 8 SECURING REPORTING SERVICES

Hiding data

Sometimes, we might just need to hide some report elements. For example, let’s say we
have a report that shows the employee’s salary and only users of the HR department
can see it. Similar to the Dynamic Queries approach, we can determine whether the
report user is a member of the HR group.

Then we can use an expression for the salary item’s visibility to hide it if the user
is not a member, for example:

= Not Code.IsInRole("HR")

8.3.3 Implementing custom security models

There could be cases when RS role-based security might not be enough and you need
to replace the Report Server’s role-based security with your own solution. There are
two main scenarios that may call for a custom security implementation.

First, the application may need to check some business rules before granting the
user the rights to view a report. For example, let’s say you have a report that shows the
consolidated sales data from all the company’s branches. The users can see the report
only after all branches have submitted their data. In a typical three-tier model, this rule
will be evaluated in the application business layer.

In this scenario, the business layer can serve as a façade to the Report Server. The
added benefit of this approach is that it simplifies the role-based security maintenance,
as we discussed in the Client-to-Facade-to-Report Server scenario. Instead of imper-
sonating the user, the request to the Report Server could go out under the Windows
account of the business layer’s process identity. If this is the case, the report adminis-
trator is concerned with setting up the appropriate security for this account only. We
will see a possible implementation of this approach in chapter 10.

Second, the Report Server security model needs to be integrated with the application
security model. The application may already have a custom security implementation in
place. For example, the application might use the Windows 2003 Authorization Man-
ager to implement secured access to areas of the application based on predefined roles.
Supporting two role-based security models may present a challenge for the report
administrator. In this case, the application will be responsible for enforcing restricted
access to the Report Server. We will see how this could be done in chapter 13.

8.3.4 Enforcing a secured connection to the Report Server

Sometimes, a report might contain sensitive information, such as a customer’s credit
card numbers. This is especially true when reports are requested over the Internet. In
this case, the report data must be encrypted when it is transmitted between the Report
Server and the report consumer to prevent hackers from sniffing the data. For imple-
menting secure data transfer, you can use Secure Sockets Layer (SSL).

With RS, the report administrator can configure which Report Server operations
require an SSL connection by using the SecureConnectionLevel setting in the RSReport-
Server.config file. The allowable range of values is between zero (no SSL required) and

RESOURCES 295

three (all access to the Report Server must be encrypted). For example, let’s say you
want to enforce that all reports must be viewed over an SSL connection. To accomplish
this, you can elevate SecureConnectionLevel to two. It is important to note that if a
secured connection is enforced, the Report Server will demand that both the HTTP-
GET and SOAP types of requests use SSL. Because the RS folders do not correspond
to physical folders, you cannot enforce SSL on a per-folder or report basis. It is an all-
or-nothing proposition.

Sometimes, you may need to enable SSL selectively. For example, an organization
might need an encrypted connection for web reporting only. One possible solution
would be to use separate Report Servers—one to serve Internet customers with a
secure SSL connection and another for internal reporting needs. For more information
about the SecureConnectionLevel setting, please refer to the product documentation.

8.4 SUMMARY

As a report administrator, you shouldn’t take report security lightly. Reports often con-
tain sensitive data that must be guarded. You can use the RS role-based security model
to restrict user access to RS resources based on the Windows identity of the user. To
set up a comprehensive role-based security infrastructure, you define policies that spell
out which tasks a given user or group is permitted to execute on a given resource.

The Report Manager makes managing role-based security easy. Alternatively, you
can manipulate the role-based model programmatically by calling the Web service
security management APIs.

When your reports call custom code or when you need to extend RS with custom
extensions, you need to be cognizant of how the CLR code-based security model
works. As we recommended, you should grant code access permissions selectively to
allow the custom code the minimum set of rights it needs to execute successfully.

Finally, to implement a more granular security level to the report data, you can use
several approaches, including data filtering, dynamic queries, and data hiding. When
they are not enough, you can implement custom security techniques, some of which
we will discuss in subsequent chapters.

After reading chapters 7 and 8, you should feel comfortable managing Reporting
Services. Now it is time to learn about the third phase of the report lifecycle: report
delivery. In the next chapter, we will see what options developers have to integrate RS
with different types of applications.

8.5 RESOURCES

The Microsoft MSDN Security Center
(http://msdn.microsoft.com/security/)
Tons of excellent information to help you secure your applications, including
entire books.

296 CHAPTER 8 SECURING REPORTING SERVICES

“Building Secure ASP.NET Applications: Authentication, Authorization, and
Secure Communication”
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/
secnetlpmsdn.asp)
This guide presents a practical, scenario driven approach to designing and
building secure ASP.NET applications.

“Code Access Security”
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/
cpconsecuritypolicymodel.asp?frame=true)
From the .NET Framework Developer’s Guide

“Code Access Security in SQL Server 2000 Reporting Services”
(http://msdn.microsoft.com/library/?url=/library/en-us/dnsql2k/html/
dngrfCodeAccessSecurityInSQLServer2000ReportingServices.asp?frame=true)
This article outlines the new code access security policies of Microsoft® SQL
Server™ 2000 Reporting Services.

“The Security Infrastructure of the CLR Provides Evidence, Policy, Permissions,
and Enforcement Services”
(http://msdn.microsoft.com/msdnmag/issues/02/09/SecurityinNET/)
In this article, Don Box explains how code access security works in the CLR.

“Security in .NET: Enforce Code Access Rights with the Common Language
Runtime”
(http://msdn.microsoft.com/msdnmag/issues/01/02/CAS/)
Keith Brown’s article on the same topic.

3P A R T

Delivering reports
Often, your reporting requirements will call for integrating Reporting Services
with custom applications. The focus of part 3 is the third and final phase of the
report lifecycle—report delivery. Here, we will implement various reporting solutions
to demonstrate how you can integrate RS with different application scenarios.

We will start by exploring the two access options available with RS: URL and Web
service. We will find out how these options compare in the context of different deploy-
ment needs, such as intranet, Internet, and extranet applications.

We will implement an end-to-end code sample that demonstrates how you can
report-enable a WinForm application. We will also discuss various techniques for
requesting RS reports on the client and server sides of a web application. You will
learn how to use RS to generate dynamic reports with Analysis Services. You will also
find out how you can create a custom enterprise framework that supports multiple
report providers.

We will round out this part by exploring the second option that RS offers for dis-
tributing reports—through subscriptions.

299

C H A P T E R 9

On-demand report delivery
9.1 How RS provides on-demand

report delivery 300
9.2 URL-based report access 301
9.3 Web service-based report access 317

9.4 Evaluating URL and Web service
access options 331

9.5 Summary 335
9.6 Resources 336

Once a report is deployed to the report catalog and configured properly, it is ready to
fulfill its ultimate purpose, which is to be delivered to the end users. We can accom-
plish this in one of the following ways:

• On-demand delivery, where the report is explicitly requested by the consumer
of the report

• Subscribed delivery, where the report is pushed to recipients

Delivering reports through subscriptions is the subject of chapter 14. In this chapter
we will provide an overview of on-demand report delivery. Specifically, this chapter
discusses the two access options available to report consumers for submitting report
requests to the Report Server:

• URL, where reports are requested via the HTTP-GET protocol

• RS Web service, where reports are requested via SOAP protocol

This chapter covers just the basics of integrating Reporting Services with client appli-
cations, but it is important because it lays down the foundation for the next four chap-
ters. In the subsequent chapters, we will apply what we will learn in this chapter to add
on-demand reporting capabilities to several different types of report consumers.

300 CHAPTER 9 ON-DEMAND REPORT DELIVERY

9.1 HOW RS PROVIDES
ON-DEMAND REPORT DELIVERY

Let’s say you have authored a set of reports and deployed them to the report catalog.
Now you want to provide users with a way to request reports on demand. You could
use the Report Manager (we saw how to use the Report Manager as a quick-and-easy
report-rendering tool in chapter 7), but that might not always provide the functional-
ity you are looking for. Although useful, the Report Manager will sometimes be insuf-
ficient to fully meet your report delivery needs. For example, this may be the case when

• You need to integrate RS with custom applications—Many application scenarios
call for report-enabling existing or new applications. In most cases, these scenar-
ios rule out using the Report Manager because the application will be responsi-
ble for supplying the details of the report request, such as the parameter values,
export format, and so on.

• Your reporting needs go beyond the Report Manager feature set—For example, you
may need to validate the report parameters before the user submits the report
request. As we mentioned in chapter 3, the standard report toolbar that the
Report Server generates when reports are requested by URL provides limited
parameter validation capabilities.

In such cases, a more flexible approach would be integrating the Report Server with
your custom applications. The Report Server has two access options to support various
integration scenarios:

• URL access—Where the request is submitted via the HTTP-GET protocol

• Web service access—Where the request is submitted via the SOAP protocol

Figure 9.1 depicts these two integration options.

Figure 9.1 The Report Server supports two access options: URL and SOAP.

URL-BASED REPORT ACCESS 301

In the sections that follow, we will explore each access option in more detail and point
out its strengths and weaknesses.

9.2 URL-BASED REPORT ACCESS

A report consumer can request a resource from the Report Server by submitting an
HTTP-GET request that specifies the resource URL. For example, you can request the
Sales by Territory report in the browser by navigating to the following URL:

http://localhost/reportserver?/AWReporter/Sales By Territory

The Report Server’s entry point for HTTP-GET requests is the ReportService-
HttpHandler HTTP handler. The handler intercepts HTTP-GET requests, parses
them, and forwards them to the Report Server for processing.

NOTE If your reporting requirements rule out URL access, you can set up the
Report Server to reject incoming HTTP-GET requests by commenting
out the <httpHandlers> section in the Report Server web.config file.

As a developer, you can use different techniques in your applications to programmat-
ically request reports by URL. At its simplest, a WinForm-based client could allow the
end user to request a report by clicking a hyperlink. For example, a .NET-based Win-
Form application could use a LinkLabel control with the report’s hyperlink embedded
in the control’s label. When static hyperlinks cannot be used, a WinForm client can
shell out to the browser or use the Microsoft WebBrowser ActiveX control to render
the report, as we will demonstrate in section 9.2.6.

The web-based reporting model of RS integrates well with browser-based applica-
tions. You have already seen an example of a web-based application that requests
reports by URL: the Report Manager. Web developers can use a variety of client and
server-side integration techniques to report-enable their applications, as we will discuss
in detail in chapter 11.

Finally, both types of applications can leverage other techniques to meet more
exotic integration requirements. For example, you may need to implement an appli-
cation that crawls and parses the report’s content similarly to the way web robots and
crawlers, such as Google and Yahoo, index web content. To accomplish this require-
ment, a legacy WinForm client can use the XMLHTTP component on the client side
or ServerXMLHTTP on the server side of the application to programmatically submit
web requests and “scrape” the received report payload. Both components are included
with Internet Explorer. A .NET-based client can accomplish the same thing by using
the System.Net.WebRequest object.

Table 9.1 summarizes these techniques.
To report-enable your applications by URL, you need to learn the URL syntax sup-

ported by the Report Server.

302 CHAPTER 9 ON-DEMAND REPORT DELIVERY

9.2.1 Understanding URL syntax

The URL access option uses a typical HTTP-GET syntax, where additional arguments
can be passed as query parameters, as follows:

http://<ComputerName>/<ReportServerVroot>?[/<ResourcePath>]&pre-
fix:param=value[&prefix:param=value]...n]

Table 9.2 lists the supported URL arguments.

The URL syntax is not case sensitive. Please note the question mark that prefixes the
ResourcePath argument. It is easy to miss (I’ve done it many times), but if you omit it,
the URL request will fail.

You will notice that when you submit URL requests from the browser, the browser
URL-escapes the string. For example, “/” is encoded as “%2f.” You don’t have to do this
explicitly when you define static hyperlinks or submit URL requests programmatically,

Table 9.1 Techniques for integrating report consumers with the Report Server by URL

Application Type Implementation Approaches

WinForm LinkLabel buttons pointing to the URL address of the report; Microsoft Web
Browser ActiveX Control; shell to the browser

Web-based Client-side report generation: all anchor-capable elements, such as hyperlinks,
images, and frames; server-side report generation; HTML fragments;
Response.Write

Both XMLHTTP; ServerXMLHTTP (native code); WebRequest (managed code)

Table 9.2 To request a report by URL, you create an HTTP-GET request that includes

URL arguments.

Argument Description Example

ComputerName Specifies the name of the computer hosting
the Report Server

localhost

ReportServerVroot Specifies the Report Server’s virtual root name ReportServer

ResourcePath Specifies the catalog path to the resource rela-
tive to the root (Home) folder. Cannot be
longer then 260 characters.

/AWReporter/Sales By
Territory

prefix Specifies the command type. Can be one of
the following values:
rs—for commands targeting the Report Server
rc—for commands targeting the HTML Viewer
dsu and dsp—for specifying the user name
and password when the “The credentials sup-
plied by the user running the report” data
source option is used.
blank—a report parameter is assumed

http://localhost/reportserver?/
AWReporter/Sales By Territory
Interactive&Year=2004&Terri-
tory=1&rs:Command=Render

param Specifies the name of the command or
parameter

See the example above,
where Year and Territory are
report parameters

URL-BASED REPORT ACCESS 303

because the browser (or the Web Browser ActiveX control) handles this automatically
for you.

Now that you know the URL syntax, let’s see how to request RS resources by URL.

9.2.2 Requesting resources by URL

With RS you are not limited to requesting just reports. Instead, you can ask the Report
Server to return any resource stored in the report catalog. For example, you may have
a web page that needs to show the Adventure Works company logo, which is stored as
an image file in the report catalog. To accomplish this, you can set the image source to
the URL address of the image item, as shown here:

NOTE Please don’t get me wrong. I am far from advocating that you use the report
catalog as a document repository. It should be used only to store report-
related items.

The response that the Report Server sends back depends on the type of requested
resource.

Requesting folders

Just as you would use Windows Explorer to see the files a given folder contains, you
may want to see the contents of an RS folder. To see the folder contents using the URL
access options, you would use the following syntax:

http://<ComputerName>/ReportServer?/<FolderPath>

where <FolderPath> is the path to the folder in the report catalog.
Optionally, for faster performance, you can tell the Report Server that you mean

to view the folder contents by using the ListChildren command. If you don’t use this
command, the Report Server has to determine the type of the resource being requested
and use the default command.

For example, to view the contents of the AWReporter folder, you would use the fol-
lowing syntax:

http://localhost/ReportServer?/AWReporter&rs:Command=ListChildren

If a folder is requested, the Report Server renders the folder’s contents, as shown in fig-
ure 9.2.

When you request a folder, the names of the resources contained in that folder
appear as hyperlinks. When the link point to another folder, the user can click the
hyperlink to drill down further in the folder namespace. Otherwise, the hyperlink will
render the resource. As with the Report Manager, the Report Server will show only
resources that the user has the rights to view (at least Browser rights are required to
view a resource).

Currently, there doesn’t seem to be a way to suppress the default Report Server
behavior to generate hyperlinks when a folder is requested. It would be useful if a future

304 CHAPTER 9 ON-DEMAND REPORT DELIVERY

edition were to introduce a List Folder Contents right, just like the List Folder Contents
ACL permission that Windows has. This would allow a user to view only the folder con-
tents without being able to read the resource in case she doesn’t have Browser rights.

Requesting data sources

Although we do not recommend this for security reasons, you can allow users to view
the definition of a shared data source using the following syntax:

http://<ComputerName>/ReportServer?/<FolderPath>/
 <DataSourceName>

where <FolderPath> is the folder path of the folder where the shared data source
resides and <DataSourceName> is the name of the shared data source. Optionally,
as a performance enhancement technique, you can let the Report Server know that you
indeed mean to view the data source definition by using the GetDataSourceContents
command, as follows:

http://localhost/ReportServer?/AWReporter/AW2000 Shared DS&
rs:Command=GetDataSourceContents

This request asks for the contents of the AW2000 Shared DS shared data source. When
a shared data source is requested, the Report Server will stream its definition in XML,
as shown here:

<DataSourceDefinition>
 <Extension>SQL</Extension>
 <ConnectString>data source=.;…</ConnectString>
 <!-The rest of the data source definition-
 </DataSourceDefinition>

Even though the password is not returned, you should avoid allowing users to see the
data source definition for security reasons. To prevent users from doing so, exclude
the View Data Sources task from their security policy, as we discussed in chapter 8.

Figure 9.2 Requesting the AWReporter folder resources by URL

URL-BASED REPORT ACCESS 305

Requesting other resources

If a report is requested, the Report Server renders the report in the specified format.
We’ll discuss this in detail in section 9.2.3.

If an image is requested, the image will be rendered in the browser. For other
resource requests, the Report Server will stream the file content to the browser.

In most cases, your applications will request reports by URL. To custom-tailor the
report output, you can use a variety of commands, which we will discuss in section 9.2.4.
First, though, let’s take a closer look at how to request a report.

9.2.3 Requesting reports by URL

When requesting reports, at minimum you need to specify the report path and the
name of the report, for example:
http://localhost/reportserver?/AWReporter/Sales By Territory

Here, we are requesting the Sales by Territory report located in the AWReporter folder.
As we mentioned in section 9.2.1, you can also optionally pass other arguments to
control the report processing (see table 9.2).

One of most common uses of the URL arguments is to pass parameter values when
requesting parameterized reports.

Passing report parameters

To request a report that takes parameters, you append them to the URL string in the
form of query parameters. For example, the URL string to request the Sales by Terri-
tory Interactive report for the year 2004 and Northwest is
http://localhost/reportserver?/AWReporter/Sales By Territory Interac-
tive&Year=2004&Territory=1

There are a few rules worth mentioning when requesting parameterized reports, as follows:

• Default values—If the parameter has a default value and you want to use it when
requesting the report, you don’t have to pass the parameter value explicitly.

• Parameters with labels and values—If the parameter is defined with a label and a
value, the value must be passed. The previous example adheres to this rule by
using the value of the Territory parameter (1), not its label (Northwest).

• Missing parameter value—If you don’t pass the parameter value in the URL
request and the parameter doesn’t have a default value, the Report Server will
react to this condition differently depending on the export format requested. If
HTML is requested and the report toolbar is not suppressed, the Report Server
will generate the parameter area of the report toolbar so that the user can enter
the report parameters. In all other cases, an exception will be thrown.

• Parameter validation—The parameter validation and type casting are performed
on the server side. If a parameter doesn’t validate successfully, the Report Server
throws an exception, for example:

306 CHAPTER 9 ON-DEMAND REPORT DELIVERY

“The value provided for the report parameter 'Territory' is not valid
for its type. (rsReportParameterTypeMismatch)”.

The Report Server doesn’t set any specific HTTP response codes when reporting errors.
Instead, the error string is shown in the browser. Therefore, you cannot programmat-
ically react to error conditions when requesting reports via URL.

9.2.4 Working with report commands

The Report Server recognizes several commands that you can specify by using the rs argu-
ment, such as commands for exporting reports and requesting report history snapshots.

For a full list of all supported commands refer to the product documentation.

Rendering commands

For better performance, you can explicitly tell the Report Server that you mean to ren-
der a report by using the rs:Command=Render argument, for example:

http://localhost/reportserver?/AWReporter/Sales By Territory&
rs:Command=Render

If you don’t specify this argument, the Report Server will incur a slight performance
hit to find out what type of resource you are requesting.

Exporting commands

Another useful command that you will frequently need is the Format command, in
order to export reports in a given format. For example, to export the Sales by Territory
report as PDF, you can send the following URL to the Report Server:

http://localhost/ReportServer?/AWReporter/Sales By Territory&
rs:Command=Render&rs:Format=PDF

When the Report Server receives a request to export a report, it renders the report in
the specified format and streams it back to the report consumer. It notifies the con-
sumer about the export format by using the ContentType header. For example, the
above request will produce an HTTP response with a content type of application/pdf.
If the request is initiated within a browser, the browser will pop up the all-too-familiar
prompt to ask the user whether to open or save the streamed content.

If the export format is not explicitly specified, the report is rendered in HTML. If
the Report Server can determine the type of browser (if the Accept HTTP header is
specified), it renders the report in HTML 4.0 for up-level browsers (for example, Inter-
net Explorer 4.x and later) or HTML 3.2 otherwise.

All export formats support additional parameters that can be passed to control their
output. The documentation refers to these parameters as device settings. For example,
let’s say you want to export a report as an image in a format other than the default
image format, which happens to be TIFF. You can achieve this by using the Output-
Format device setting, as follows:

URL-BASED REPORT ACCESS 307

http://localhost/ReportServer?/AWReporter/Sales By Territory&
rs:Command=Render&rs:Format=IMAGE&rc:OutputFormat=JPEG

Another useful device setting is HTMLFragment, which you can use to render a report
as an HTML fragment (without the HTML, HEAD, and BODY HTML tags), as follows:

http://localhost/ReportServer?/AWReporter/Sales By Territory&
rs:Command=Render&rc:HTMLFragment=true&rc:Toolbar=false

Rendering a report as an HTML fragment could be especially useful for web-based
reporting, where the report needs to be generated on the server side and “injected” into
the page. We will see a practical example of how this can be done in chapter 11.

For a full list of supported device settings, please see the product documentation.

Snapshot history commands

As you will probably recall from chapter 7, a report can be executed and cached as a
snapshot on a regular basis. The Report Server can be configured to save the snapshot
runs in the snapshot history.

You can use the Snapshot command to request a specific snapshot run from the
report history, based on the date it was generated, for example:

http://localhost/ReportServer?/AWReporter/Territory Sales
by Quarter&rs:Snapshot=2004-01-16T02:28:01

The Snapshot command accepts as a parameter value the date and time when the snap-
shot was generated. The snapshot time has to be converted to GMT.

Commands for interactive features

One of the most valuable aspects of URL access is that it supports all of the interactive
features that we discussed in chapters 4 and 5. There are a few commands that you can
use to control these interactive features.

For example, in chapter 4 we authored a report (Employee Sales Tabular Interac-
tive .rdl) that demonstrated visible-on-demand sections. Specifically, the Product Sub-
category sections are hidden when the report is initially requested but can be expanded
by clicking the plus sign (+).

Instead of hiding all items, sometimes you may need to show a certain section
expanded. To accomplish this, you can use the ShowHideToggle command, for example:

http://localhost/reportserver?/AWReporter/Employee Sales Tabular
Interactive&StartDate=1/1/2003&EndDate=12/1/2003&Employee=-1
&rs:Format=HTML4.0&rs:Command=Render&rs:ShowHideToggle=29

The net effect of using the ShowHideToggle command in this example is that the
first Product Subcategory section (the one for Tsoflias, Lynn) will be expanded when
the report is requested. As it names suggests, ShowHideToggle toggles the section
visibility with each subsequent request (if the item is hidden, it will be expanded, and
vice versa).

308 CHAPTER 9 ON-DEMAND REPORT DELIVERY

How do you get the section identifier? Unfortunately, there is currently no way to
programmatically find out what the section identifiers are. Instead, you need to look
at the source of the rendered report. Each expandable section is assigned an ID num-
ber when the report is requested. The section identifiers are formatted as ID=
”<section identifier”>.

The inability to determine the section identifiers in advance makes the commands
that target interactive features by section identifiers (ShowHideToggle for expandable
sections, BookmarkID to jump to a report bookmark, and DocMapID to scroll to a
particular document map section) of limited use to developers.

Managing report sessions

As we explained in chapter 7, to ensure data consistency and optimize report perfor-
mance, the Report Server uses report sessions. When the Report Server creates a ses-
sion for a given report, it caches the report’s intermediate format (IF) in the Report
Server Temporary Database (ReportServerTempDB) for a configurable period of time.

By default, to correlate the report consumer with the session, the Report Server uses
cookies. If cookies are used to track sessions, you don’t have to do anything special
from a programming standpoint to manage sessions. The Report Server will automat-
ically generate a cookie for each report session and add it to the HTTP response header.
The cookie will then ping-pong between the browser and the Report Server with each
subsequent report request.

For example, the following trace excerpt shows the cookie’s HTTP header after we
requested several reports using the same instance of the browser:

Cookie:%2fAWReporter%2fSales+By+Territory+Interactive=
52v13e55bfox0zisan0rsqjy; %2fAWReporter%2fzzTest=
gbsyl4mapuz0m555spbbdsje; %2fAWReporter%2fCorporate+Hierarchy=
gqn5cn5543bjmy45bak5al55;

Sometimes the report session caching may get in the way. For example, you may need
to view the report with the most recent data. As we explained in chapter 7, you cannot
turn off report session caching. However, you can use either of the following
approaches to clear the report session so that the report is processed anew:

• If the standard report toolbar is not suppressed, you can click the Refresh
Report button (not the browser’s Refresh button) or press Ctrl-F5. When you
do this, the HTML Viewer intercepts the request and sends the ClearSession
command (rs:ClearSession=true) to the Report Server to clear the report ses-
sion. The Report Server will then process the report again.

• Send the ClearSession command explicitly as a part of the URL request.

Refreshing the report in the browser (by pressing F5) doesn’t clear the session. This
means that if the report session is valid (hasn’t expired, has the same set of parameters,
and so on), the Report Server will serve the report from the same report session.

URL-BASED REPORT ACCESS 309

For browsers that are configured not to support cookies, you can use cookie-less report
sessions by setting the UseSessionCookies setting in the ConfigurationInfo table in the
RS Configuration Database to false. In this case, instead of sending a cookie, the
Report Server adds a parameter to the URL to identify the session.

One of the main advantages of requesting reports by URL is the handy report tool-
bar that the Report Server generates by default, as we will discuss next.

9.2.5 Working with the HTML Viewer

When a report is requested by URL and rendered in HTML, the Report Server gener-
ates a useful toolbar, called the HTML Viewer, at the top of the report, as shown in
figure 9.3.

You can appreciate the effort that the RS team has done for you by acknowledging
the breadth of features that this toolbar provides. It is a mini-application by itself! The
RS documentation refers to the HTML framework that hosts the toolbar and the
report as the HTML Viewer.

HTML Viewer features

You will find the HTML Viewer very similar to the report toolbar, which the Report
Designer generates in report preview mode. Table 9.3 outlines the interactive features
supported by the HTML Viewer.

The HTML Viewer is also somewhat customizable. As a part of the URL report
request, you can include HTML Viewer–specific commands to customize certain
aspects of the HTML Viewer.

Figure 9.3 When reports are rendered via URL, the Report Server generates the

HTML Viewer toolbar.

310 CHAPTER 9 ON-DEMAND REPORT DELIVERY

Customizing the HTML Viewer

The Report Server supports a series of commands that are specifically targeted to the
HTML Viewer. These commands can be classified in two categories:

• Commands for controlling the visibility of the toolbar or its items

• Commands for performing an action, for example, zoom at a specified level, go
to a specified page, and so on

With so many URL commands available, you may find it difficult to construct the
right syntax of the URL report request. You may be tempted to try URL request trac-
ing of the requests submitted by the HTML Viewer, similar to the technique I
showed you in chapter 7 for tracing SOAP calls. Unfortunately, I haven’t been very
successful in my attempts to set a virtual port in SOAP Trace or tcpTrace that I can
use for tracing URL requests, either from the Report Manager or from the browser.
The problem stems from the fact that when the Report Server renders the HTML
page for the report, it defaults to the computer name where the Report Server is
installed. For this reason, you can capture the first URL request by redirecting it to
a virtual port, such as http://servername:8080/reports...., but rendering the report
subsequently by pressing the View Report button from the report toolbar will bypass
the virtual port.

Table 9.3 The HTML Viewer provides a set of interactive features.

Feature Description

Show/hide
Document Map

Toggles the document map’s visibility for reports with document maps.

Parameter
placeholders

Generates parameter placeholders for parameterized reports. For exam-
ple, the screenshot in figure 9.3 shows that the Territory Sales by Store
with Map report takes two parameters, Start Date and End Date. If a
parameter has a list of available values, the HTML Viewer will automati-
cally generate a drop-down list. If a parameter has a default value, its
placeholder will be set accordingly. Only parameters that are set to prompt
the user are shown.

Zooming Zooms the report in or out.

Finding text For example, as figure 9.3 shows, after I performed a search for the
word Bike, if a match is found, the browser scrolls and highlights the
match. For multipage reports, clicking Next to search subsequent pages
causes the HTML Viewer to submit additional requests to the Report
Server.

Exporting Exports the report to all of the formats supported by the Report Server,
e.g., PDF.

Refresh Report Refreshes the report by resubmitting the URL request and clears the
report session.

Online help Navigates to the HTML Viewer online help.

URL-BASED REPORT ACCESS 311

As you can see by looking at the HTML source of the page, the reason for this is
that the action URL of the form that includes the report’s rendered presentation
doesn’t include the port number. As a workaround, you can examine the IIS web logs
to find out what URL requests have been sent by the browser. Alternatively, you may
find useful the custom HTTP module that we’ll implement in chapter 15. It outputs
all incoming HTTP-GET and SOAP requests to the default trace listener so that you can
use a tool such as DebugView to watch the traffic.

An example of the first category of commands is the Toolbar command. You can use
this command to request that the report toolbar won’t be rendered at all, as follows:

http://localhost/reportserver?/AWReporter/
Sales by Territory&rc:Toolbar=false

Or, let’s say that you want to instruct the Report Server not to render the toolbar
parameter area. This could be useful when you embed the parameters programmati-
cally in the report URL and you don’t want the user to see the report parameter area at
all. You can accomplish this by using the Parameters command.

For example, the following command will render Sales by Territory report and will
exclude the parameter section from the HTML Viewer toolbar:

http://localhost/reportserver?/AWReporter/
Sales by Territory Interactive&Year=2004&Territory=1&rc:Parameters=false

NOTE Reporting Services Service Pack 1, which will be probably released by the
time you read this book, will allow you to pass parameter values in the URL
that aren’t prompted or displayed in the parameters area of the HTML
Viewer. This behavior is different from the read-only parameters (parame-
ters that don’t have prompts) that we discussed in chapter 3 because with
read-only parameters you cannot pass the parameter value.

In addition, SP1 will introduce the rc:Parameters=collapsed HTML Viewer
command, in which the parameters area is accessible but initially hidden.

An example of an action command is Zoom. Use this command to zoom the report
in or out before it is rendered. The following URL request zooms the report to its
page width:

http://localhost/reportserver?/AWReporter/
Sales by Territory Interactive&Year=2004&Territory=1&rc:Zoom=Page Width

For a full list of all HTML Viewer–targeted commands, please see the product
documentation.

HTML Viewer limitations

The HTML Viewer saves you a lot of effort when integrating applications with RS. It
is one of the biggest selling points for choosing the URL access option to render
reports. However, it may also be its Achilles’ heel. Why? You see, outside the supported

312 CHAPTER 9 ON-DEMAND REPORT DELIVERY

commands, the HTML Viewer is not customizable. The area that takes the most crit-
icism and requests for enhancements is the parameters section.

For example, what if you want to implement your custom parameter validation?
Or, what if you want to validate the parameters on the client side before the report
is submitted? What if you need multi-select parameters? Or multi-value parameters
that can be selectively turned on and off based on other parameter values? All of these
are valid questions and concerns, but currently they go beyond the HTML Viewer
feature set.

Another frequently requested feature is the ability to print reports. Currently, the
HTML Viewer doesn’t include a print button. If your requirements call for this fea-
ture, you may find useful the “Printing Reports Programmatically Using C# and SQL
Server 2000 Reporting Services” sample listed under section 9.6.

NOTE Reporting Services Service Pack 1 scheduled for release in June 2005 will
allow you to pick a custom style sheet for the HTML Viewer.

You can expect Microsoft to make the HTML Viewer more flexible and customizable
in the future. For example, there are plans that the toolbar will support custom valida-
tion by the virtue of ASP.NET user controls in the next release. Until that time, how-
ever, you have to take the HTML Viewer as it is or provide your own custom
application front end to replace it. To demonstrate the latter approach, the next chap-
ter shows how a WinForm application can handle report parameter validation.

Now that we’ve covered the theory behind URL access, let’s see a code sample that
demonstrates how a client application can be integrated with the Report Server by URL.

9.2.6 URL access in action

The AccessOptions code sample demonstrates how a WinForm-based report con-
sumer can leverage both access options (URL and SOAP) to request reports. It can be
launched from the chapter 9 menu in the AWReporterWin sample application.

AccessOptions demonstrates two possible implementation approaches to integrate
a WinForm-based report consumer with Reporting Services by URL:

• Using the Microsoft WebBrowser ActiveX control

• Shelling out to the browser

We kept the code simple on purpose. We will base a more involved example upon this
code in chapter 10, where we will implement the Report Wizard sample. For now, our
design goals for the AccessOptions example are:

• To show you the minimum steps to access reports using both the URL and Web
service access options

• To provide enough implementation details so you can compare both approaches

Figure 9.4 shows the Access Options form.

URL-BASED REPORT ACCESS 313

To run a report by URL, the user has to specify the Report Server URL, the report path,
and the export format. In the case of parameterized reports, the user must also enter
all parameters (name and value) in the Parameters grid. To submit the report request
by URL, the user can choose one of two options:

• Using the Microsoft WebBrowser control (the default option if the URL radio
button is selected)

• Shelling to the Internet Explorer (the Shell to IE option)

Let’s first see how this code sample integrates with the Report Server by URL. Then in
section 9.3.1 we will see how we can do this by using the RS Web service.

Using the Microsoft WebBrowser ActiveX control

To request reports by URL, a WinForm application can leverage the Microsoft Web
Browser ActiveX control to embed the report inside a form. Once practical scenario
where embedding the report can be useful is when your requirements call for imple-
menting a Report Search form. Once the user selects a report, you may want to display
the report inside the search form instead of navigating to a new form.

If you haven’t used the Microsoft WebBrowser control in the past, you will be
happy to find that it allows you to add browsing, document viewing, and data down-
loading capabilities to your applications. Because the WebBrowser control is COM-
based, this approach is also suitable for classic Windows-based applications, for exam-
ple, Visual Basic 6 clients.

Figure 9.4 The Access Options sample demonstrates how a WinForm application can request

reports via URL or the RS Web service (SOAP).

314 CHAPTER 9 ON-DEMAND REPORT DELIVERY

To use the WebBrowser control in WinForm .NET applications, you first have to ref-
erence it in your project. To do so, follow these steps:

Step 1 Right-click on the toolbox and choose Add/Remove Items.

Step 2 On the Customize Toolbox dialog, flip to the COM Components tab and
select the Microsoft Web Browser component, as shown in figure 9.5. The
WebBrowser control’s library name is shdocvw.dll.

Step 3 Click OK. Visual Studio.NET will add the control’s icon to the toolbox.
From there, you can drag and drop the control onto your form.

If you need more information about the WebBrowser control, check the resources in
section 9.6.

Loading the export formats

When the Access Options form is loaded, the Format drop-down is populated with
the rendering formats that the Report Server supports. Instead of hard-coding the
drop-down items, a better approach is to call the ListExtensions method of the
RS Web service. Although the method call incurs a performance hit, the advantage of
the latter approach is flexibility, because you don’t have to redistribute the application
if new rendering extensions have been added. This is the approach that the
LoadFormats function takes, as shown in listing 9.1.

Figure 9.5 Referencing the Microsoft WebBrowser control

URL-BASED REPORT ACCESS 315

 private void LoadFormats()
 {
 ReportingService rs = RsHelpers.Proxy;
 Extension[] extensions = null;
 extensions = rs.ListExtensions(ExtensionTypeEnum.Render);

 foreach (Extension extension in extensions) {
 if (extension.Name.ToLower()!="null")
 cmbFormat.Items.Add(extension.Name);
 }
 cmbFormat.SelectedText = "HTML4.0";
}

Because this method is executed when the form loads, make sure to update the
Report Server URL, which defaults to localhost, before running the sample. The
ListExtension method returns an array of all supported rendering extensions as
specified in the RSReportServer.config file. Each rendering extension is exposed as
of type Extension.

Please note that the code specifically ignores the NULL rendering extension. This
extension is not a rendering extension per se because it doesn’t render reports in any
specific format. Instead, it is useful for prepopulating the report session cache for sub-
scribed report delivery, as we will explain in more detail in chapter 14. Because this
is a “dummy” extension and cannot be used for report rendering, we skip it.

For the sake of simplicity, we don’t retrieve the list of report parameters from the
RS Web service, nor do we validate the parameters in any way. As we mentioned, we
will show you a more realistic example in chapter 10. For the purposes of this sample,
the user is responsible for setting up the parameters correctly. To show the parameters
in the grid, we use a typed dataset, EntityParameter, which we bind to the grid.

Requesting the report

Once the user has filled in the report parameters (if any), we are ready to request the
report by calling the RunByURL function, whose abbreviated code is shown in listing 9.2:

private void RunByURL()
 {
 StringBuilder urlBuilder = new StringBuilder();
 urlBuilder.Append(txtServer.Text);
 urlBuilder.Append ("?");
 urlBuilder.Append (txtReportPath.Text);

 EntityParameter.ParametersDataTable table =

Listing 9.1 Use the ListExtensions SOAP API to populate the drop-down list

with export formats.

Call the ListExtensions
API to get the

supported formats

Load the export formats
in the drop-down

Skip the NULL
rendering
extension

Listing 9.2 WinForm clients can use the Microsoft WebBrowser control to

place the report inside a form.

Use a StringBuilder
object to construct
the report URL

Append the report
parameters for
parameterized reports

316 CHAPTER 9 ON-DEMAND REPORT DELIVERY

 EntityParameter.ParametersDataTable)grdParams.DataSource;

 foreach (EntityParameter.ParametersRow row in table.Rows){
 urlBuilder.Append (String.Format("&{0}={1}",
 row.Name, row.Value));
 }
 urlBuilder.Append (@"&rs:Format=" + cmbFormat.Text);
 urlBuilder.Append (@"&rs:Command=Render");

 ReportBrowser reportBrowser = new ReportBrowser();
 reportBrowser.RenderReport(urlBuilder.ToString());
 reportBrowser.Show();
 }

First, the code crafts programmatically the report URL according to the URL syntax
rules that we discussed in section 9.2. We set up the report path, followed by the report
parameters and the specified export format.

Once the URL string is constructed, we instantiate the ReportBrowser form to ren-
der the report using the Microsoft WebBrowser control. Inside the ReportBrowser
form, we call the Microsoft WebBrowser control’s Navigate method and pass the
report URL:

public void RenderReport(string url){
 Object optional = System.Reflection.Missing.Value;
 webBrowser.Navigate(url, ref optional, ref optional,
 ref optional,ref optional);
}

At this point the report is displayed. If there are any errors, they will be shown in the
WebBrowser control.

Shelling out to the browser

Sometimes, you may just need a quick way to show the report in the browser by nav-
igating to the report’s URL address. You can do this by simply shelling out the report
request to the browser. To accomplish this task, .NET developers can use the
Process.Start method to start the application associated with a file extension.

When the Shell to IE option is selected on the Access Options form, once the
report URL is ready, displaying the report in the browser takes one line of code:

Process.Start ("IExplore", url).

When you don’t need to embed the report in a form, you should consider shelling out
to the browser as a more lightweight implementation approach of requesting a report
by URL.

As you’ve seen, requesting reports by URL is easy. However, there will be cases
when URL access is not a viable option. When the URL is not enough, developers can
report-enable their applications by calling the RS Web service, as we will discuss next.

Use the
ReportBrowser
form that includes
the WebBrowser
control to display
the report

WEB SERVICE-BASED REPORT ACCESS 317

9.3 WEB SERVICE-BASED REPORT ACCESS

Requesting reports on demand via SOAP calls to the RS Web service is your second
(and final) integration option. The entry point for SOAP requests is the ReportSer-
vice.asmx page. Here are some application scenarios that may require integration with
the RS Web service:

• When direct access to the Report Server is not an option—For example, an Intranet-
oriented application may rule out direct access to Report Server for security reasons.

• When a distributed application needs to validate the report request against some
business rules before the request is handed out to the Report Server—This calls for
server-side report generation, which rules out the URL access option.

• When you need to generate one or more reports in unattended mode—The AWC
Campaigner example that we’ll look at in section 9.3.4 demonstrates this scenario.

• When you need to come up with a hybrid approach that encompasses both the URL
and Web service access options—For example, you may need to implement both
report rendering and management features in your applications, similar to the
feature set supported by the Report Manager. While your application could
request reports by URL, only the Web service supports the management API.

The widespread adoption of SOAP facilitates integrating Reporting Services with
many types of report consumers and platforms. Because SOAP has been embraced as
an industry standard for communication with Web services, most platforms provide
programmatic ways for handling SOAP messages and invoking web methods. For
example, a web-based application running on UNIX can send a SOAP request to the
RS Web service and then generate the report on the server side of the application.

Table 9.4 outlines some common techniques that developers writing Microsoft-
centric applications can use to integrate their applications with the RS Web service.

Invoking the Report Server SOAP API is easy with .NET clients (both WinForm and
web-based) because .NET provides native support for calling Web services. .NET
developers are for the most part abstracted from the SOAP message complexities when

Table 9.4 Techniques to integrate report consumers with the RS Web Service

Client Type Application Example Implementation Approaches

WinForm .NET-based applications
Legacy applications writ-
ten in Visual Basic 6.0

Web service proxy (.NET)
Microsoft SOAP Toolkit (legacy applications, e.g.,
Visual Basic 6.0)

Web-based .NET-based applications
Other web-based
applications

Web service proxy (.NET) to submit the report request
on the server side
Microsoft Web service behavior for Internet Explorer to
submit the report request on the client side

318 CHAPTER 9 ON-DEMAND REPORT DELIVERY

using Visual Studio .NET. As we saw in chapter 7, in VS.NET you can establish a web
reference to the Web service. Once this is done, invoking the RS Web service is not
much different than invoking a local object. We will see a code sample that demon-
strates requesting report by SOAP in section 9.3.1.

Legacy clients, for example, Visual Basic 6.0 clients, can integrate with the RS Web
service by using the Microsoft SOAP toolkit (see section 9.6). Finally, other types of
clients can use whatever infrastructure the programming language and platform sup-
port for Web service calls.

For example, developers can expand the Internet Explorer capabilities in the form of
client-side JavaScript code called a behavior. For web-based applications that target Inter-
net Explorer and need to submit request reports on the client side of the application, you
can download and use the Microsoft Web service behavior, as we will see in chapter 11.

Next, let’s see how a report consumer can request reports with SOAP.

9.3.1 Requesting reports with SOAP

As we saw in chapter 7, the RS Web service provides a series of methods that you can
use to query and manage the report catalog. It also provides methods related to report
rendering and execution. The pivotal method is the Render method, which you can
use to render reports on demand. It takes several arguments that you have to set before
invoking the method, such as an array of parameters for parameterized reports, the
export format, specific device settings, and so on.

If the method succeeds, it returns the report payload as a byte array. In most cases,
this means that an extra step is needed on your part, as the developer, to render the
report to the user. For example, this may involve saving the byte array to a file and
shelling out to it.

Invoking the Render method

To understand how you can call the Render method, let’s return to the Access
Options example we used in section 9.2.6. This time we will see how we can request
the report with SOAP. To do so, select the second radio button called Web Service.

When you click the Run Report button, AccessOptions invokes RunByWS func-
tion, whose abbreviated code is shown in listing 9.3.

private void RunByWS()
 {
 ReportingService rs = RsHelpers.Proxy;
 rs.Url = txtServer.Text + @"/ReportService.asmx";

 byte[] result = null;
 string reportPath = txtReportPath.Text;
 string historyID = null;
 string format = cmbFormat.Text;

Listing 9.3 To request a report by the RS Web service, call the Render Report

SOAP API.

WEB SERVICE-BASED REPORT ACCESS 319

 string devInfo = null;
 DataSourceCredentials[] credentials = null;
 string showHideToggle = null;
 string encoding;
 string mimeType;
 Warning[] warnings = null;
 ParameterValue[] reportHistoryParameters = null;
 string[] streamIDs = null;
 ParameterValue[] proxyParameters = null;

 EntityParameter.ParametersDataTable userParameters =
 (EntityParameter.ParametersDataTable)grdParams.DataSource;

 if (userParameters.Rows.Count > 0) proxyParameters = new
 ParameterValue[userParameters.Rows.Count];

 for (int i = 0; i<userParameters.Rows.Count;i++) {
 proxyParameters[i] = new ParameterValue();
 proxyParameters[i].Name = userParameters[i].Name;
 proxyParameters[i].Value = userParameters[i].Value;
 }

 result = rs.Render(reportPath, format, historyID, devInfo,
 proxyParameters, credentials, showHideToggle,
 out encoding, out mimeType,
 out reportHistoryParameters,
 out warnings, out streamIDs);

 string filePath = Util.GetFileForReport(reportPath,
 cmbFormat.Text);
 FileStream stream = File.Create(filePath, result.Length);
 stream.Write(result, 0, result.Length);
 stream.Close();
 Process.Start(filePath);
}

One of the benefits of using the RS Web service is that it allows us to request the report
in an object-oriented way.

First, we obtain a reference to the Web service proxy by calling the
RsHelpers.Proxy utility function. This function also takes care of setting the
proxy credentials. Next, we set up the Web service URL to the ReportService.asmx end
point. Then, we initialize the Render arguments to their default values.

The Render method is an all-encompassing method for report rendering. For
example, by setting appropriate arguments, we can request a cached report from the
snapshot history. We will see how this can be done in chapter 10. For now, we will
ignore the report history parameters. We will also ignore the device settings.

Get the
parameters
from the
data grid

b

Prepare the
parameter array

c

Call the Web service to
render the report

d

Get the file path where the report payload will be savede

Persist the report
payload to a file f

Shell out to the application
associated with the exported formatg

320 CHAPTER 9 ON-DEMAND REPORT DELIVERY

b,c To specify the report parameters for parameterized reports, we load an array of the
ParameterValue structures.

d Then, we call the Render method to request the report.
Finally, we need to take an extra step for showing the report. When a report is

requested by URL, the browser does this automatically for us. However, when request-
ing reports via SOAP, we are on our own. To display the report, we save the report
payload to a file with the appropriate extension. For example, if the report is requested
in HTML, the file extension is .HTML; if it is IMAGE, then the extension is .TIF (the
default image format), and so on.

e,f We save the report file in the Application Data folder under the user called Docu-
ment and in the Setting folder. To get the file path and name right, we use a simple
GetFileForReport helper function that takes the report name and export format
and returns the full path to the file.

g Once the file is saved, we shell out to it using Process.Start. This will start the applica-
tion associated with the file extension to load the file and display the report.

Dealing with errors

Unlike with the URL access option, using SOAP allows you deal gracefully with error
conditions. The Report Server exposes exceptions as SOAP faults. The Common Lan-
guage Runtime subsequently maps them to a .NET exception of type System.
Web.Services.Protocols.SoapException. This allows developers to code
defensively using Try…Catch blocks, as the following example shows:

try {
…Invoke a web method
}
catch (SoapException ex){
 // RS exception
 switch (ex.Detail["ErrorCode"].InnerText)
 {
 case "rsReportParameterValueNotSet":
 Util.ShowErrorMessage("The report parameters do not
 match.\n" + ex.Detail.InnerText); return;
 case "rsItemNotFound":
 Util.ShowErrorMessage("Wrong report name."); return;
 default: throw;
 }
}
catch (System.Exception ex) {

 // something else is wrong
}

The bulk of the exception information is exposed as an XML string under the Detail
property of the SoapException class. For this reason, you can get to the error code
using the SoapException.Detail property and to the error message itself using the

WEB SERVICE-BASED REPORT ACCESS 321

Detail.InnerText or Detail.InnerXml (to get as XML) property. For a full list of the RS
error codes, please see the product documentation.

9.3.2 Rendering images

As you have begun to see, requesting reports by SOAP is more involved than the URL
option. Another area that requires additional effort on your part is rendering reports
that include images. When you export such reports to multistream exporting formats,
such as all HTML flavors besides MHTML, the report images and charts are not ren-
dered by default. The reason for this odd behavior is that when the web browser
renders an HTML page, it spawns additional requests to the web server to download
the images included in the page. This presents an issue for dynamically generated
images, such as charts.

To address this dilemma, when generating the report the Report Server serializes
the images in the report session cache associated with the report. Unfortunately, in the
case of rendering reports by SOAP, the image URLs don’t include the session identifier
of the report session that the Report Server has created for the report. As a result, the
Report Server is unable to match the request with the report session, and the image
download request fails. Even if the session identifier were included in the image URL,
it would be of little help because direct access to the Report Server is usually not an
option when requesting reports by SOAP.

Handling images for exported-to-HTML reports could be quite a hassle. Currently,
there are three workarounds for this problem:

• For external images, use the HTMLFragment setting.

• Download the images explicitly using the RenderStream method.

• Use cookie-less report sessions. In this case, the image URLs will have the ses-
sion ID on them.

Let’s look at the first two options in more detail.

Rendering external images

As you would recall from chapter 4, you can use the image report item to reference
external images by specifying their relative path in the report catalog. This is what we
did to display the AWC company logo in our reports. One option to display external
images when requesting reports via SOAP, is to render the report as a HTML fragment
by setting the HTMLFragment device info setting to true.

When this setting is used, the web server will include the SessionID in the image
URL string. Then the HTTP-GET request to the Report Server that the browser will
spawn to download the image will succeed. This is as simple as it gets but requires
direct HTTP access from the browser to the Report Server. Besides, it doesn’t work
with chart reports because the Report Server generates the chart images dynamically.

Let’s if we can derive to a “universal” image handing solution that works for all
types of images and integration scenarios.

322 CHAPTER 9 ON-DEMAND REPORT DELIVERY

Downloading the images explicitly

For intranet-oriented applications you can explicitly download and save the report
images using the RenderStream web method. This approach involves two imple-
mentation steps:

• Setting the StreamRoot device setting to a location where the images will be
downloaded

• Enumerating through the image streams and downloading the images explicitly

Rendering images by using the RenderStream method is simple. You can set the
StreamRoot device setting to a common folder on the user’s hard drive, for example,
the Documents and Settings folder. This is the approach we demonstrate in the Access
Options sample, as shown in listing 9.4:

devInf="<DeviceInfo><StreamRoot>" + Application.UserAppDataPath+
 "/</StreamRoot></DeviceInfo>";

result = rs.Render(…) // render the report

// render the images when report is exported to HTML
if ("html" == format.Substring(0, 4).ToLower()){
 foreach (string streamID in streamIDs) {
 byte [] image = rs.RenderStream(reportPath, format,
 streamID, null, null, proxyParameters,
 out optionalString, out optionalString);

 FileStream stream=File.OpenWrite(Application.UserAppDataPath
 + Path.DirectorySeparatorChar + streamID);
 stream.Write(image, 0, image.Length);
 stream.Close();
 }
}

b First, we use the StreamRoot device setting to set the image URLs to point to the
user’s application folder. Then, we render the report. When the Report Server pro-
cesses the report, it will see the StreamRoot setting and will adjust the report image
URLs accordingly. In the example above, the image URL will be set like so:

file:///C:/Documents and Settings/<user>/Application Data/AWC/Win/1.0.0.0/

<streamID>

c The last argument of the Render method takes a StreamIds argument in the form of
a string array. When the Render method returns, the array will be loaded with the
stream identifiers of all report images and charts that the report includes. You may
think that the stream identifiers correspond to the report item identifiers as defined

Listing 9.4 Downloading the images explicitly by using the RenderStream API

Use the StreamRoot device setting
to specify the download location b

Handling images
explicitly is an issue
only when exporting
to HTML

c

Get the image
payload by calling
RenderStream

d

Download the
image to a folder e

WEB SERVICE-BASED REPORT ACCESS 323

in the Report Server catalog, but such is not the case. The Report Server assigns them
during report processing.

NOTE The Report Server prefixes the chart stream identifiers with C_. You can
take advantage of this naming convention if you want to render only the
chart images.

d Next, we loop through all image identifiers and download the images by calling the
RenderStream web method. One thing that we want to bring to your attention is
that you must pass the report parameters when calling the RenderStream method
for parameterized reports so that the Report Server can correlate the report request
with the right report session. If you don’t, you will get the “Stream could not be
found” exception.

e When RenderStream returns, we save the image as a binary file to the folder spec-
ified by the StreamRoot device setting.

So, as you’ve seen, using RenderStream to render report images is not that difficult.
Unfortunately, this approach is often impractical with web-based applications, as we
will discuss next.

Proposing a universal image handler approach

Dealing with images gets trickier for web-based applications. In this case, you don’t
have access to the user’s local environment to save the image files. Instead, your only
option is to download the images to a globally accessible file store.

For intranet-based applications, you can set the StreamRoot device setting to a net-
work file share. Needless to say, you need to take care of deleting the image files on a
regular basis to avoid filling up the server.

What about Internet-based applications? In this case, storing files on a network
share is not an option because it won’t be accessible to your web users. You may think
that you can get around this predicament by setting StreamRoot to a virtual root on
your web server. Unfortunately, this doesn’t always work. To understand the problem,
consider the following example.

Let’s say your application’s virtual folder is AWReporterWeb and it has a subfolder
called temp. If you set StreamRoot to

http://<servername>/AwReporterWeb/temp

the image URLs will be adjusted to

http://<servername>/AwReporterWeb/temp/<streamID>

where streamID is the image identifier.
All is great, except the fact that the stream identifier doesn’t have a file extension,

and IIS will have no clue as to how to process this request. Therefore, IIS will complain
with a “Page not found” exception.

324 CHAPTER 9 ON-DEMAND REPORT DELIVERY

NOTE Strictly speaking, file extensions in the image URLs are missing only when the
Report Server is running on Windows 2003. Reporting Services Service
Pack 1, scheduled for release sometime in June 2005, is set to fix this prob-
lem, and StreamRoot will work across all supported operating systems. How-
ever, even if this is fixed, I still believe that using a server-side image handler
page (see chapter 11) could be useful because it can handle the image file
bookkeeping chores, such as deleting the image file once it is rendered.

One possible workaround is to implement a server-side image handler page and adjust
StreamRoot to point to that page. We will postpone the actual implementation until
chapter 11.

There’s one last and important consideration about the RenderStream method.
The Render and RenderStream calls need to share the same report session. Han-
dling report sessions with SOAP access requires more programming effort on your
part, as we will discuss next.

9.3.3 Handing report sessions

Recall our discussion in chapter 7 that when a new non-snapshot report request
arrives, the Report Server caches the report’s IF in the RS Temporary Database in the
form of a report session.

NOTE Ensuring data consistency by using report sessions is more of a concern
with URL access than with SOAP. When the report is requested via SOAP,
the whole report payload is streamed back to the client. This means that
you will get all pages of a multipage report, and no additional requests to
the Report Server are necessary when the user pages from one page to the
next. On the other hand, when the report is request by URL, only the first
page is rendered. Navigating to another page initiates a new URL request.
That said, you might still want to consider leveraging report sessions with
SOAP as a performance enhancement technique.

Unlike the automatic report session management that the browser provides when the
report is rendered by URL, you have to take care of correlating the report sessions your-
self when requesting the report by SOAP. The reason for this is that the Web service
proxy keeps only one session identifier, so each subsequent report request overrides the
report session identifier set by the previous request.

There are two cases when you may need to take care of handing the report sessions
by yourself:

• Rendering the report images via calls to RenderStream—Please note that this is
needed only if the session identifier is overridden by another report request.
Typically, you will download the report images via calls to RenderStream
immediately after the report is rendered. If this is the case, you don’t have to
handle report sessions explicitly because the proxy will already have the session
identifier associated with the report.

WEB SERVICE-BASED REPORT ACCESS 325

• Optimizing the Report Server’s performance—As we explained in chapter 7, if the
Report Server can correlate the report request with a session, it will bypass the
execution phase and use the cached copy. As you will see in chapter 16, report
session caching can boost the Report Server’s performance considerably. If the
report data are not volatile and some data “staleness” is tolerable, we recom-
mend that you leverage report session caching.

To understand how to handle report sessions when requesting reports via SOAP, you
need to know how the Web service proxy stores the session identifiers.

How SOAP access handles report sessions

When the report is requested via SOAP, the Report Server exposes the report
session–related properties under the SessionHeader proxy class. The SessionId mem-
ber of this class returns the report session identifier that matches the SessionID primary
key in the SessionData table from the ReportServerTempDB database. You can check
the IsNewExecution property to find out whether the call to the Render method has
resulted in a new execution. If IsNewExecution is false, the Report Server has served
the report request from an already existing report session.

The Report Server overwrites the SessionID member after each call to the Render
method. Therefore, if you are not proactive, two subsequent report requests will share
the same sessions only if they ask for the same report (assuming that the parameter set
is the same).

For example, let’s say you run report A, then report B, and then report A again.
When report B is rendered, its session identifier will overwrite the previous session
identifier, which means that you will lose report A’s session identifier. When report
A is run again, even if the parameter set is the same, its execution will create a new
report session and IsNewExecution will return true.

Therefore, if you need to leverage report sessions, you need to write some code to
store the report session identifiers and correlate them with the requested reports. Next
we’ll discuss a possible implementation approach that does this.

Correlating the report request with a report session

You could keep the reports-to-session association in a collection of some kind. For
example, a hashtable collection, as shown in listing 9.5, can do this by storing the
report names and session identifiers as name-value pairs.

Hashtable sessionCollection = new Hashtable();
rs.Render("reportA"….);
sessionCollection.Add("reportA", rs.SessionId);
rs.Render("reportB ");
sessionCollection.Add("reportB ", rs.SessionId);
// need to call report A again

Listing 9.5 Correlating the report request with the report session

326 CHAPTER 9 ON-DEMAND REPORT DELIVERY

SessionHeader sessionHeader = new SessionHeader();
sessionHeader.SessionId=sessionCollection["reportA"].ToString();
rs.SessionHeaderValue=sessionHeader;
rs.Render(“reportA”….);

Each time we render a report we retrieve the session identifier from the Web service
proxy and stuff it into the hashtable collection. When the same report needs to be ren-
dered again, we set the proxy’s SessionId accordingly.

Now that you’ve learned the SOAP access basics, we’ll look at a practical example
that emphasizes its advantages over URL access.

SOAP and report interactive features

One important limitation that you will inevitably discover when requesting reports by
SOAP is that most interactive features, such as drilldown, drillthrough, document
maps, toggled visibility, and document maps, rely on URL access.

For example, request the Sales by Territory Crosstab report using the Access Options
sample. As you would recall from chapter 4, this report allows the end user to drill down
by expanding row or column groups. At first glance, when this report is requested by
SOAP, it appears that the drilldown interactive feature is unaffected. Don’t be fooled,
though! This feature relies on direct access to the Report Server by URL.

The way this works is that when the interactive feature is requested by the end user
(in this case by clicking the + indicator) the HTML Viewer framework fires an HTTP-
GET request to the Report Server to refresh the report. Once again, in order for the
request to succeed, the Report Server must be directly accessible by HTTP-GET. In
many cases, this will present a problem because you would typically choose SOAP over
HTTP-GET when direct access to the Report Server by URL is not an option, for
example, to generate reports on the server side of an Internet web-based application.

As a developer, there is really nothing you can do to change this behavior and
avoid using HTTP-GET for interactive features. This poses an interesting dilemma,
which may further complicate your decision-making process when you are pondering
which access option to choose. How important are the report’s interactive features
to your end users? If interactivity is a must, then your choice is predetermined and
it is URL access. Of course, we are not excluding the possibility of a hybrid approach
where the report is rendered initially by SOAP but URL access is used to support the
interactive features.

But what about security if URL access is the only option? This is an especially valid
question for Internet-oriented web applications. The good news is that you can have
the best of both worlds: URL access to provide a rich user experience and a compre-
hensive level of security that doesn’t rely on Windows authentication. To accomplish
the second objective, you may need to write a custom security extension to replace the
default RS Windows-based security mechanism. In chapter 15 we will show you how
you can do just this.

WEB SERVICE-BASED REPORT ACCESS 327

At this point you are probably ready to throw SOAP out the window. After all, it
is more difficult to implement and cannot be used for reports with interactive features.
Not so fast! As you will see next, requesting reports by SOAP can be very useful.

9.3.4 Automating the report generation process

While URL access is more suitable for interactive applications when the user can ini-
tiate the report request explicitly, it falls short when the report needs to be generated
in an unattended mode, such as for automating the report generation as a result of an
event. For example, in the business-to-business scenario, a vendor may need to pull a
report on a regular basis to find out the customer’s inventory level. If the inventory
level falls below a certain threshold, the vendor system can send a notification to the
manufacturing department. We will implement a similar example in chapter 11.

Thanks to its object-oriented nature, when reports need to be generated in n unat-
tended mode, SOAP may be a better choice than URL. Let’s examine a simple code
demo to emphasize this point.

An automation solution: AW Campaigner

Back in chapter 6 we demonstrated how to export the Sales Promotion report to an
RSS-compliant XML format. When there is a new campaign, the report’s author could
run the report by passing the offer identifier, export the report to the XML, and update
the RSS blog file manually.

Let’s enhance this example by implementing the AW Campaigner solution for
automating the whole process. To fulfill the new requirements, our implementation
approach will involve the following steps:

Step 1 Create a table trigger that will fire when a campaign record is inserted into
the SpecialOffer table and invoke the stored procedure.

Step 2 Create a SQL Server stored procedure that will invoke a custom Web ser-
vice façade.

Step 3 Create a Web service façade that will run the report and update the RSS file.

Figure 9.6 shows the sequence diagram of our solution.
The AW Campaigner process is initiated when a record is inserted into the Spe-

cialOffer table. This causes the trgSpecialOffer trigger to fire. The trigger calls the
spUpdateRssFeed stored procedure. The stored procedure in turn invokes our Start-
Campaign web method of the Campaigner Web service.

The Campaigner Web service then requests the Sales Promotion report via SOAP.
It asks the report to be exported as XML. Finally, the Campaigner Web service updates
the RSS blog file.

The source code of the Campaigner Web service can be found under the Chapter09
folder in the AWReporterWeb web project, while the stored procedure and trigger
script files are included in the Database project.

Next, we’ll explain how each component is implemented.

328 CHAPTER 9 ON-DEMAND REPORT DELIVERY

Triggering the process

The campaign process starts when a new offer record is inserted into the SpecialOffer
table. The trgSpecialOffer trigger is implemented as an AFTER INSERT trigger on the
SpecialOffer table, as shown in listing 9.6.

CREATE TRIGGER trgSpecialOffer ON [dbo].[SpecialOffer]
AFTER INSERT
AS

/* Get the new special offer id. */
DECLARE @SpecialOfferID int
SELECT @SpecialOfferID = SpecialOfferID
FROM inserted

DECLARE @Result varchar(8000)
EXEC spUpdateRssFeed @SpecialOfferID, @Result OUT

The trigger gets the identifier of the record from the inserted table and calls the
spUpdateRssFeed stored procedure, passing the special offer identifier to it.

One thing to watch for when you work with triggers is that all database operations
inside the trigger are performed within the scope of an implicit transaction. This bit me
quite badly at first. I wondered why the web method call inside the spUpdateRssFeed
stored procedure never succeeded. Upon further investigation, I realized that the trigger

Figure 9.6 The AW Campaigner Web service sequence diagram shows that

a table-level trigger initiates the blog file update process.

Listing 9.6 When a new record is inserted into the SpecialOffer table,

the trgSpecialOffer trigger fires.

WEB SERVICE-BASED REPORT ACCESS 329

locks the new record. When the Sales Promotion report tries to read it, the SELECT state-
ment gets deadlocked and the web method call inside spUpdateRssFeed eventually
times out.

To solve this issue, I added the NOLOCK table hint in the report query. The
NOLOCK table hint permits the report to read “dirty” data that has not yet been com-
mitted. For the purposes of the Campaigner scenario, this is fine, because the trigger
is defined as AFTER INSERT, which means that the record has been inserted success-
fully. In other cases, however, you have to take into account the fact that the update
operation may fail, in which case the database changes will get rolled back.

Invoking the Campaigner Web service

The main role of the spUpdateRssFeed stored procedure is to invoke the AW
Campaigner web service. The abbreviated spUpdateRssFeed stored procedure
code (excluding the error-handling logic) is shown in listing 9.7.

CREATE PROCEDURE spUpdateRssFeed(@SpecialOfferID int,
 @Response varchar(8000) out)
AS
DECLARE
 @Url varchar(1000)
 ,@obj int
 ,@hr int
 ,@status int
 ,@msg varchar(255)

 set @Url = 'http://localhost/AWReporterWeb/Chapter9/Campaigner.asmx/
StartCampaign?CampaignID=' + CAST(@SpecialOfferID AS VARCHAR(10))
 exec @hr = sp_OACreate 'MSXML2.ServerXMLHttp', @obj out
 exec @hr = sp_OAMethod @obj, 'Open', NULL, 'GET', @Url, false
 exec @hr = sp_OAMethod @obj, 'send'
 exec @hr = sp_OAGetProperty @obj, 'status', @status OUT
 exec @hr = sp_OAGetProperty @obj, 'responseText', @response OUT
 exec @hr = sp_OADestroy @obj
 return

The stored procedure uses the XMLHTTP component included with the Microsoft
XML Parser (MSXML) to invoke the Campaigner Web service. (If you need more back-
ground information about this technology, please see the resources in section 9.6.) The
latest MSXML version as of the time of this writing is 4.0. However, to be on the safe
side, we attempt to instantiate version 2.0 of MSXML, which should be installed on
your SQL Server box by default. SQL Server 2000 comes bundled with Internet
Explorer 5.0, which includes MSXML 2.0.

Listing 9.7 The spUpdateRssFeed stored procedure uses the XMLHTTP

component to invoke the Campaigner Web service.

330 CHAPTER 9 ON-DEMAND REPORT DELIVERY

Once the XMLHTTP object is instantiated, we invoke the StartCampaign
method of the Campaigner Web service and pass the new record identifier.

Implementing the Campaigner Web service

The StartCampaign web method renders the Sales Promotion report as XML for
the given special offer identifier. We have already seen how to request a report by SOAP
in the Access Options sample.

Next, StartCampaign calls the AddSpecialOffer method. This method
uses XML DOM to load the XML report payload. To do this, we use a memory stream
to wrap the payload array and load the XmlDocument from it.

MemoryStream stream = new MemoryStream(specialOffer);
XmlDocument specialOfferDoc = new XmlDocument();
specialOfferDoc.Load(stream);

Finally, StartCampaign updates the RSS blog file (AWCSpecialDeals.xml). This is
the file that the RSS newsreaders need to reference when subscribing to the AWC feed.
The StartCampaign method simply appends the XML definition of the new special
offer item to the end of the file. This should be enough to trigger a new item notifica-
tion in the newsreader.

Securing AW Campaigner

Setting up security for the Campaigner sample warrants more explanation. In real life,
it is likely that its three components (SQL Server database, Campaigner Web service,
and Report Server) will be located on separate machines. From an implementation
standpoint, our sample resembles the Client-to-Facade-to-Report Server scenario that
we discussed in chapter 8.

Table 9.5 shows the Windows authentication setup that we used for testing.

Table 9.5 Setting up Windows authentication. All three components of AW Campaigner

(database, Campaigner Web service, and Report Server) may be running on separate machines.

To integrate them successfully, you need to set up Windows authentication so that the remote

calls succeed.

Component Authentication Identity

SQL Server Standard or Windows Integrated Local system

AWReporterWeb
(Campaigner Web service)

Anonymous access (rights to
write to AWCSpecialDeals.xml)

Application pool identity changed to
a domain account (or member of
Users for local machine testing)

Report Server Windows Integrated The Campaigner application pool
identity mapped to the Browser role
for the Sales Promotion report and
SalesPromotion.xslt

EVALUATING URL AND WEB SERVICE ACCESS OPTIONS 331

In our test environment, the SQL Server runs under the context of the Local System
account. Because this is a local account, its identity cannot cross the machine bound-
ary when the web method invocation occurs. For this reason, you have at least two
choices for authenticating the SQL Server call to the Campaigner Web service:

• Change the SQL Server process identity to a domain account or a local account
that is duplicated on the machine where the Campaigner Web service is installed
(has the same name and password)

• Set up the AWReporterWeb vroot to allow anonymous access

For testing purposes, we decided to adopt the latter approach. In real life, you should
carefully consider the ramifications of using Anonymous access. When Anonymous
access is enabled, IIS authenticates all users using a low-privileged Windows account
(IUSR_computername by default), which is a member of the Guest Windows group.
All requests to access local resources will go under the identity of this account. In our
case, the StartCampaign method needs to write to the blog file. For this reason,
you need to grant the Anonymous account write permissions to this file. Alterna-
tively, you can change the Anonymous identity to an account that has an elevated set
of permissions.

Finally, you need to take care of setting the identity of the cross-machine call from
the Campaigner Web service to the Report Server. Here, again you have two options:

• Impersonating the user—Assuming that Anonymous access is enabled, this
means that we will pass the identity of the anonymous account to the Report
Server. Again, in order for the cross-machine call to succeed between the Cam-
paigner machine and the Report Server machine, this account has to be a
domain account or a duplicated local account, which exists on both machines.

• Using the trusted subsystem approach by passing the Campaigner Web service iden-
tity to the Report Server—You can change the identity of the ASP.NET worker
process on the machine where the Campaigner Web service is running to a
domain account.

In both cases, you have to set up a role-based security policy in the Report Server to
grant the Campaigner account sufficient rights to view the Sales Promotion report and
SalesPromotion.xsl file.

Now that you have a good high-level overview of both access options available for
requesting reports, we’ll wrap up our discussion by finding out how they stack against
each other.

9.4 EVALUATING URL AND
WEB SERVICE ACCESS OPTIONS

Choosing the right integration scenario for report-enabling your applications can be
challenging. You need to make a careful decision between the ease of use in the case of

332 CHAPTER 9 ON-DEMAND REPORT DELIVERY

URL access and the flexibility offered by the RS Web service. Here are some of the
questions that you need to ask yourself:

• Is this an intranet or Internet-oriented application? While both access options can
be used with intranet-oriented applications, unless you use a custom security exten-
sion, Internet reporting in most cases will require requesting reports by SOAP.

• Can the Report Server be accessed directly by the client application? If the answer
is no (for security, or other reasons), then SOAP is the only choice.

• Does the report request need to be validated before it is handed out to the Report
Server? If business rules need to be validated before the report request is
authorized, SOAP may be the better choice.

• How will the report parameters be handled? If the HTML Viewer fits the bill, it
would be naïve not to take advantage of URL access.

In general, we recommend that you evaluate URL access first and only if it doesn’t meet
your integration requirements should you settle on Web service access. As you’ve seen
in this chapter, there are good reasons to keep things simple, and simplicity is the big-
gest strength of URL access.

Let’s enumerate the pros and cons of each option in more detail to help you with
the decision-making process.

9.4.1 Evaluating URL access

In general, URL access is best suited for interactive, intranet-oriented applications
where the report request can originate on the client side of the application.

Pros of URL access

• Simplicity—Compared to requesting reports by SOAP, URL access is far easier.
There are no post-processing steps required to render the report payload. The
browser handles report sessions automatically. In case of HTML reports, you
don’t have to worry about downloading the image files. Taking care of the
report images and charts could be a hassle, especially for Internet-based reports,
as we will discuss in chapter 11.

• Relatively easy to integrate with client applications—Due to the venerable history
of the HTTP protocol, most development tools and platforms can handle
HTTP-GET requests and responses.

• No client footprint—Usually, there will be nothing that you need to install to
integrate a client application with RS by URL. It could be as easy as embedding
the report’s URL in a hyperlink. For example, you can have a SharePoint Web
part that references a report by URL.

• Interactive features—You can leverage URL access to provide a rich user experi-
ence by adding interactive features to your reports, such as drilldown, toggled

EVALUATING URL AND WEB SERVICE ACCESS OPTIONS 333

visibility, document maps, navigational features, and the HTML Viewer. When
a report with interactive features is requested in HTML, the Report Server
embeds the request-specific details, such as the parameter values, in the report
page. When the interactive feature is requested by the end user, for example, to
perform a drilldown, the report spawns an HTTP-GET request to the Report
Server to refresh itself.

• Performance—The performance advantages of URL access are several. First, the
report payload is smaller compared to requesting a report by SOAP. When the report
is requested by URL, the Report Server doesn’t have to serialize the report pay-
load to a byte array before sending it to the consumer. Second, URL access
doesn’t require any preprocessing by the report consumer to render the report.
In contrast, if you request the report from the Web service, in most cases you
will need to save the report payload to a disk file and shell out to it so that the
user can see it. Finally, report sessions are handled automatically by the browser,
which can speed up subsequent requests to render the same report.

Cons of URL access

• Restricted to report rendering —You can only render reports using URL access to
the Report Server. For all other tasks, you will need to use the RS Web service.

• Not object-oriented—Crafting these query parameters can be difficult! However,
you can get around it by creating a wrapper, which will generate the right URL
syntax for you. For example, the RS Catalog Explorer demonstrates this approach
by using a helper class, called URLAccessBuilder. We will use a similar approach in
chapter 10 to abstract the URL syntax technicalities.

• Not suitable for server-side report rendering—The URL access option is more suit-
able for interactive applications that generate reports on the client side. For
example, you cannot programmatically catch exceptions and react to error con-
ditions. In addition, requesting reports by URL requires direct access to the
Report Server. This could be an issue in cases where there is a façade between
the consumer and the Report Server and you need to validate business rules val-
idation, provide custom security, or abstract the Report Server.

• URL length limitations—Many browsers impose restrictions on the maximum
length of the URL address. For example, Internet Explorer has a maximum URL
length of 2 KB (2,084 characters). This makes passing large data structures as
report parameters impossible. For instance, you won’t be able to pass application
datasets as a report parameter from a WinForm front end to a report. Although
the custom dataset extension, which we are going to create in chapter 15, allows
you to report off application datasets, the serialized dataset payload may often
exceed 2 KB. As a workaround to this limitation, you can use HTTP-POST, as
we will demonstrate in chapter 11.

334 CHAPTER 9 ON-DEMAND REPORT DELIVERY

9.4.2 Evaluating Web service access

On the other hand, the Web service access option may be more suitable for generating
reports on the server side of the application.

Pros of Web service access

• Broad set of features—Unlike the URL access option, the RS Web service is not
limited to report rendering. It exposes the full functionality of the Report Server
as a series of web methods.

• An industry standard for exchanging messages between heterogeneous platforms—
This increases the RS client base to applications running on other platforms.

• Object-oriented access—Requesting a report via SOAP is as easy as instantiating
the Web service proxy and calling its methods. In addition, the Report Server
exposes exceptions as SOAP faults, which allows developers to code defensively.

• Flexible invocation—As we’ve seen, interfacing with the Web service doesn’t
require user interaction.

Cons of Web service access

• HTML Viewer not available—Unlike the URL option, a report rendered via
SOAP doesn’t include the HTML Viewer toolbar. For this reason, development
effort will typically be required upfront for interactive client applications, for
example, to get the report parameters, export format, and so on.

• Interactive features rely on URL access—In general, you will find that requesting
reports from the Web service will give you a reduced interactive feature set. For
example, although interactive features, such as drilldown, hyperlinks, and docu-
ment maps, are available when reports are rendered via SOAP, they rely on URL
access to the Report Server. This could be a problem if the Report Server is
behind a façade and direct HTTP-GET access to the Report Server is impossible.

• More involved report rendering—Extra steps are required for report rendering
and maintaining report sessions.

• Slower performance—Report serialization results in an increased report payload.
The percentage of increase varies based on the export format and the report itself,
but experiments show an added overhead of about 20–30 percent. This could be
an issue with low-speed connections between the client and the Report Server.

9.4.3 Choosing an integration approach

So, where does this chapter’s discussion leave us in terms of integrating client applica-
tions with Reporting Services? We saw that there are two options available when add-
ing on-demand reporting capabilities to client applications: URL and SOAP. How
would you choose between them? In some cases, the application requirements will dic-
tate the access option and you won’t have much choice. For example, as we have seen,

SUMMARY 335

the AW Campaigner requirements mandate the use of the RS Web service for report
rendering in unattended mode.

In other cases, you have to carefully weigh the pros and cons of each option before
deciding which one will be better suited for your particular situation. Once again, we
recommend that you consider the URL access option first. It supports all interactive
features, plus it is easier to integrate with client applications.

The main advantages of using the Web service are its flexible invocation options
and extensive set of web methods. However, introducing additional layers and using
SOAP for report rendering will often necessitate extra development effort and com-
promises in the interactive feature set.

One excellent approach would be to take the best of both worlds by using URL for
report rendering and SOAP for everything else. There may be other factors that might
influence your decision, including the type of the application (WinForm or web-
based) and restrictions that the application’s requirements might impose. For this rea-
son, we will revisit this topic in subsequent chapters and make more specific recom-
mendations as we discuss different application scenarios.

9.5 SUMMARY

In this chapter we laid out the foundation for the next four chapters. We discussed the
two options that the Report Server offers for integrating with client applications.

First, we discussed the URL access option. We explored its syntax and discussed the
HTML Viewer, which is available only with this option. Then we saw a practical exam-
ple, the AccessOptions code sample, which demonstrated how a WinForm-based
application could submit a report request by URL.

Second, we discussed the RS Web service integration option. We saw how we can
address some of its complexities, such as handling report sessions and images. Again,
we looked at the AccessOptions sample to find out how a client application could
leverage this option to request reports by SOAP.

Finally, we rounded up our discussion by comparing both integration options. We
pointed out that URL access is the fastest and easiest way to request reports and that
it supports all of a report’s interactive features. For these reasons, we recommended
that you consider URL access first when choosing an integration approach for report-
enabling your applications.

However, URL access may not be a good fit with more involved integration sce-
narios, such as when you need to generate reports in an unattended mode, as we dem-
onstrated in the AW Campaigner code sample. In this case, you should consider
integrating your applications with the RS Web service by SOAP.

Let’s now apply what we’ve learned in this chapter by discussing how we can inte-
grate Windows Forms applications with RS.

336 CHAPTER 9 ON-DEMAND REPORT DELIVERY

9.6 RESOURCES

WebBrowser Control Overviews and Tutorials (http://msdn.microsoft.com/
library/default.asp?url=/workshop/browser/webbrowser/browser_control_ovw_
entry.asp)
Provides an overview and tutorial articles for the Microsoft WebBrowser control.

Microsoft XML Parser (MSXML)
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/xmlsdk/html/
xmmscXMLOverview.asp)
The MSXML 4.0 Software Development Kit (SDK) provides conceptual and
reference information for developers using MSXML.

Printing Reports Programmatically Using C# and SQL Server 2000 Reporting
Services
(http://blogs.msdn.com/bryanke/articles/71491.aspx)
Learn a technique for printing reports programmatically using the Reporting
Services XML Web service and C#.

337

C H A P T E R 1 0

Reporting for Windows
Forms applications
10.1 Rich client wanted 338
10.2 Introducing the Adventure

Works Report Wizard 342
10.3 Behind the scenes of the Adventure

Works Report Wizard 348

10.4 Enhancing application
performance 370

10.5 Summary 375
10.6 Resources 376

Reporting is an integral part of every complete Windows-based application. Yet, pro-
viding comprehensive reporting capabilities in these applications has often proved to
be a tedious chore. Microsoft Reporting Services helps developers to report-enable
their Windows Forms (WinForm) applications.

In this chapter, we will discuss practical techniques that can help you integrate your
WinForm applications with RS. Our discussion will include the following topics:

• Report-enabling rich clients

• Client-to-Report Server reporting

• Client-to-Façade-to-Report Server reporting

• Techniques for enhancing an application’s performance

To show you how these pieces fit together, this chapter provides a complete end-to-end
example: the AWC Report Wizard. This tool empowers the employees of our fictitious
company, Adventure Works Cycle, to generate standard reports.

338 CHAPTER 10 REPORTING FOR WINDOWS FORMS APPLICATIONS

10.1 RICH CLIENT WANTED

Windows Forms applications are often referred to as “rich” clients. This term empha-
sizes the fact that this type of application enjoys the full feature set of the operating
system on which it runs. The main characteristics of a rich client are as follows:

• Feature-rich UI, including drag and drop, toolbars and menus, animation, and
so on

• Easier to implement than its web-based counterpart—Implementing rich client
features in web-based applications could be difficult if not impossible.

• Unrestricted security permissions—When installed locally, WinForm applica-
tions enjoy unrestricted permissions, while web-based applications and down-
loaded controls are usually “sandboxed.”

• Access to all hardware resources and peripherals, such as drives, printers, scan-
ners, and ports

NOTE Although locally installed WinForm .NET applications are granted unre-
stricted permissions by default, the administrator can control the permitted
operations granted to their code by using code access security policies, as
we explained in chapter 8.

Based on my experience, however, many organizations shy away from designing home-
grown solutions as WinForm applications. Instead, they usually opt for web-based
designs. Why is that, considering all the advantages that the rich client model has to offer?
There are a few good reasons, but the top one I hear is the difficult deployment model.
WinForm applications usually have binary dependencies to other system or third-party
libraries. For this reason, they need to be explicitly installed on the client machine.

In the past, this has led to many problems, including the notorious “DLL Hell”
phenomenon, where a rogue installation program replaces system files, which in turn,
causes one or more existing applications to stop working. To further complicate the
matter, after the application is rolled out to the end users, some infrastructure has to
be set up to handle the application updates, such as bug fixes and new versions.

The Microsoft .NET Framework introduces several new features aimed at simpli-
fying the WinForm application deployment, such as web-based deployment, version-
ing, and side-by-side execution. Expect these features to improve in the next versions
of Windows and .NET. For example, the forthcoming release of Visual Studio .NET,
code-named Whidbey, will feature the “ClickOnce” deployment model. It will allow
us to create rich clients that can automatically update themselves from a central web
location. For this reason, I predict that the pendulum will start swinging back in the
near future and the rich client will take the place it deserves.

10.1.1 Report-enabling rich clients

Let’s now see how what we learned in chapter 9 applies to report-enabling WinForm
clients. As you would recall, in chapter 9 we said that RS offers two options for requesting

RICH CLIENT WANTED 339

reports. First, you can requests reports by URL. This is the simplest and easiest way to
request reports. Second, when URL access is impractical, you can request reports by
SOAP. The main characteristic of the second access option is the increased feature set
accessible via a wide spectrum of SOAP APIs that goes beyond requesting reports only.

These two access options map to the two application design models that we dis-
cussed in chapter 8 in the following ways:

• Client-to-Report Server—With this model, the client application requests reports
by URL via direct access to the Report Server.

• Client-to-Façade-to-Report Server—With this model, an additional layer, which
we will call a façade, is introduced between the client and the Report Server.
The façade submits report requests on the server side of the application by call-
ing the RS Web service.

When evaluating both patterns, I recommend that you consider the Client-to-Report
Server model first. In hindsight, if there is one thing that my consulting career has
taught me, it is to keep things simple, unless there is a good reason to deviate from
the KIS principle (Keep It Simple). Translated to WinForm reporting this means that
you should

• Request reports by URL whenever possible

• Take advantage of the Report Server role-based security model whenever possible

My advice is to avoid the temptation to make your reporting architecture too flexible
and sophisticated. As usual, there is a delicate balance between flexibility and complex-
ity. If you focus on the side of flexibility, you may end up with an over-engineered solu-
tion with a reduced reporting feature set.

Let’s now examine how the Client-to-Report Server reporting model can be
applied to WinForm applications.

10.1.2 Using the Client-to-Report Server model

The Client-to-Report Server model can be used with both client/server and distrib-
uted application designs. Yes, the latter case doesn’t necessarily invalidate requesting
reports by URL.

For example, if the client needs to evaluate some business rules before the report
is submitted, it could ask the business layer to do so and, if the validation is successful,
request the report on the client side, as shown in figure 10.1.

There are good reasons to keep things simple and favor the Client-to-Report Server
model, including the following:

• Easy integration with RS—You don’t need to take extra steps to handle report
images, report sessions, and presenting the report to the end user.

• The HTML Viewer—As we mentioned in the previous chapter, when reports are
requested by URL, they are rendered inside the HTML Viewer, which sponsors

340 CHAPTER 10 REPORTING FOR WINDOWS FORMS APPLICATIONS

the handy report toolbar. The HTML Viewer can simplify some mundane
reporting tasks, such as handling parameters, exporting to different formats,
zooming, and so on.

• Support of all interactive features—URL access preserves all interactive report fea-
tures when reports are exported to HTML because most of the interactive fea-
tures, such as expandable sections, document maps, and toggled visibility,
require additional HTTP-GET requests.

• Faster performance—No additional overhead is incurred to serialize the report
payload to a binary array and render the report on the client side.

In terms of security, the Client-to-Report Server design fits naturally into the role-
based security model of the Report Server. If restricted report access is required, the
administrator can assign the Windows user accounts and groups to RS roles and estab-
lish security policies to secure items in the report catalog. We discussed the role-based
security model in detail in chapter 8.

One thing that you should be cautious about is performing security checks
inside the presentation layer. An adept user could figure out the report’s URL and
request the report directly in the browser, bypassing the presentation layer. Instead,
for applications with stringent security requirements, you should consider the fol-
lowing approaches:

• Using the security techniques based on user identity, such as the ones we discussed
in chapter 8—For example, your report can pass the interactive user identity
obtained from the User.UserID property to the data source to filter data per user

• Using custom code in your reports to access the application business logic layer
for business rules validation, as shown in figure 10.1

• Migrating to the Client-to-Façade-to-Report Server model

Figure 10.1

The WinForm version

of the Client-to-

Report Server model

promotes requesting

reports by URL.

RICH CLIENT WANTED 341

Sometimes, things are more complicated, and the Client-to-Report Server model may
not be a good fit. If this is the case, you can use the Client-to-Façade-to-Report Server
model with WinForm clients.

10.1.3 Using the Client-to-Façade-to-Report Server model

Consider using the Client-to-Façade-to-Report Server model in these situations:

• When a level of indirection is required between the client and the Report Server—
For example, an additional layer may be needed to support multiple report pro-
viders, including RS, as we will discuss in chapter 13.

• When server-side reporting is needed—For example, with distributed applica-
tions, reports may need to be generated off application datasets available on the
server side. For instance, you may want to generate a report in the business layer
from a dataset retrieved from the application data layer using the custom dataset
extension, which we will create in chapter 15.

• When the role-based security model is not a good fit—For example, the report
request needs to pass some business rules validation, or a custom security
authentication is required.

Figure 10.2 depicts the Client-to-Façade-to-Report Server model.
We use the term façade broadly to denote the layer that sits between the client and

the Report Server. This façade may represent the application business layer or may be
implemented as a designated service layer that “wraps” the Report Server. The Win-
Form client submits a report request to the Reporting Façade, which, in turn, requests
the report via SOAP from the Report Server.

While the main advantage of this model is flexibility, it introduces some challenges,
including the following:

• Additional development effort—Because reports generated by SOAP don’t include
the HTML Viewer, the application is responsible for taking care of all chores
associated with requesting reports, such as collecting and validating parameters,
handling report images and export formats, and so on.

Figure 10.2 In the Client-to-Façade-to-Report Server model a façade layer is introduced

between the client and the Report Server for business rules validation, security, and other

reasons.

342 CHAPTER 10 REPORTING FOR WINDOWS FORMS APPLICATIONS

• Reduced interactive feature set—All interactive report features, such as drilldown,
drillthrough, and document maps rely on URL access.

• Less efficient than the Client-to-Report Server model—Requesting reports by
SOAP incurs performance degradation, as well as requires extra steps on the pre-
sentation layer side for report rendering.

In terms of security, we would recommend that you take advantage of the Report
Server role-based security to simplify user authentication and authorization if possible.
To accomplish this, the Reporting Façade could impersonate the user and pass the
user’s identity to the Report Server. When using RS role-based security is not possible,
the façade could be responsible for user authentication and authorization. In this case,
the Report Server could be configured to grant the façade’s identity a restricted set of
permissions, such as report viewing only.

In most cases, the application’s requirements will dictate the choice of the report-
ing model. In some cases, however, it may be more practical to support both models.
This is the approach that our sample application, the AWC Report Wizard, will take.
It defaults to requesting reports following the Client-to-Report Server model, but it
allows the administrator to selectively configure reports to be generated following the
Client-to-Façade-to-Report Server pattern.

10.2 INTRODUCING THE
ADVENTURE WORKS REPORT WIZARD

Here is our hypothetical scenario for this chapter. You have been tasked to report-
enable the next version of one of the Adventure Works line-of-business WinForm
applications. To make our report-integration task more interesting, we will assume
that this application is implemented as a typical distributed application, with presen-
tation, business, and data layers. For the sake of simplicity, we will not be interested in
the application specifics. Instead, we will scope our work to enhancing the application
to generate the sample reports we authored in chapter 4.

After evaluating the user’s requirements, you’ve proposed a reporting solution
based on, you guessed it, Reporting Services. Here are the RS features that the Adven-
ture Works Report Wizard sample demonstrates:

• Retrieving a list of reports from the report catalog

• Determining the report execution options-live or snapshot reports

• Working with custom properties

• Requesting snapshot reports and working with snapshot history

• Obtaining the report parameters

• Authoring reports with multi-value parameters

• Retrieving the supported export formats by the Report Server

• Requesting reports by URL and RS Web service

INTRODUCING THE ADVENTURE WORKS REPORT WIZARD 343

10.2.1 Designing the Report Wizard

The Report Wizard demo can be launched from the Chapter10 main menu in the
AWReporterWin project. As a prerequisite for running the Report Wizard, you need
to upload the book’s sample reports to the Report Server. As usual, before discussing
the actual implementation of our sample, we will start with defining the user require-
ments and high-level design goals.

Defining application requirements

Our hypothetical application is based on the following high-level reporting requirements:

• Provide an intuitive, user-friendly tool for generating standard reports on demand.
• Implement the tool as a “wizard,” which will walk the user through a series of

steps to collect the details of the report request and generate the report.
• Support both client-side (Client-to-Report Server) and server-side (Client-to-

Façade-to-Report Server) report request options. By default, the reports will be
requested and rendered on the client side by URL. However, some reports may
require business rules validation that needs to be performed on the server side.
In this case, the report administrator should be able to configure the report to
be generated on the server-side of the application by SOAP.

• Allow the user to generate both snapshots and live reports.
• Wherever needed, customize the RS report parameter features to provide additional

functionality, such as client-side parameter validation and multi-select parameters.
• Leverage the existing Active Directory user and group setup to enforce restricted

access using the Report Server role-based security model.
• Process report requests efficiently by taking advantage of performance enhance-

ment techniques, such as caching and multithreading.

Undestanding the workflow of the application

As you’ve seen, RS provides a plethora of report execution and rendering options. For
example, reports can be cached as snapshots. They could accept parameters and could
be exported to different formats that support various device settings.

While the rich feature set of RS is great in terms of flexibility, it may present addi-
tional challenges for application developers. How would you tell the user that the
report is configured to be executed as a snapshot? How would you handle report
parameters? What if you need to check some business rules on the server side of the
application before submitting the report request? How would you generate larger
reports more efficiently? The challenge is to implement a user-friendly and flexible
application layer that will allow the end users to select the right report options and sub-
mit report requests easily.

For these reasons, we decided to implement the Report Wizard. Instead of providing
the users with intimidating choices, the Report Wizard will be “smart” enough to eval-
uate the user’s selection and branch the program logic to the right step accordingly.

344 CHAPTER 10 REPORTING FOR WINDOWS FORMS APPLICATIONS

Figure 10.3 shows the workflow that the Report Wizard follows to request a report.
The Report Wizard workflow encompasses the following steps:

Step 1 WELCOME Greets the end user.

Step 2 REPORTS Allows the user to select a report to run.

Step 3 SNAPSHOT For snapshot reports, gives the user an option to run the report
as a snapshot or pick a specific version from the snapshot history.

Step 4 PARAMETERS If the report is configured for custom parameters, handles
the report parameters.

Step 5 EXPORT Allows the user to specify the report export format and additional
device settings.

Step 6 CONFIRMATION Asks the user to confirm the report request. If the report
is configured for server-side execution, gives the user an option to submit the
report request asynchronously.

Now, let’s discuss the purpose of each step and how it fits in the workflow process
shown in figure 10.3.

10.2.2 The Report Wizard step-by-step

As with many wizard-like applications, the Report Wizard sponsors an easy-to-navigate
user interface that allows the user to advance to the next step or move backwards to
the previous step.

Figure 10.3 The Report Wizard walks the user through a series of steps to generate the report.

INTRODUCING THE ADVENTURE WORKS REPORT WIZARD 345

Step Welcome

This step is the familiar greeting step, as shown in figure 10.4.
From an implementation standpoint, this is by far the easiest step! No, Merlin is

not animated.

Step Reports

This step lists all reports that the user is permitted to request based on the predefined
Report Server role-based security policy, as shown in figure 10.5.

The successful outcome of this step is the selection of a single report. The Report
Wizard then evaluates the selected report to determine whether it is configured for a
snapshot or for live execution. In the former case, Step Snapshot is shown. In the latter
case, the Report Wizard checks to see whether the report requires custom parameters.
If so, Step Parameters is shown; otherwise, the Report Wizard advances to Step Export.

Step Snapshot

If the report is configured for snapshot execution, this step allows the user to specify
the snapshot execution options, as shown in figure 10.6.

If the snapshot history is enabled, the user can request a specific history to be run
from the Snapshot History grid. Alternatively, the user can select the Run the Report
as a Snapshot option to request the latest snapshot cached copy of the report.

Figure 10.4 Step Welcome greets the user.

346 CHAPTER 10 REPORTING FOR WINDOWS FORMS APPLICATIONS

Figure 10.5 Step Reports prompts the user to select a report.

Figure 10.6 If the report is configured for snapshot execution, Step Snapshot

allows the user to select a specific history run.

INTRODUCING THE ADVENTURE WORKS REPORT WIZARD 347

Step Parameters

As we said in chapter 9, sometimes the HTML Viewer toolbar may fall short in han-
dling more involved report parameter requirements. The trivial workaround is to del-
egate this responsibility to the application. In our case, the Report Wizard will handle
the report parameters in these situations:

• When the report is configured explicitly to require custom parameters—For exam-
ple, one of the report parameters may be a multi-select parameter. In other
cases, client-side parameter validation may be required.

• When the report is configured to be requested on the server side of the application, for
example, from the business layer—Because in this case the report will be
requested via SOAP, the HTML Viewer won’t be available. Therefore, the appli-
cation has to take care of gathering and validating the report parameters.

The Report Wizard handles the report parameters in Step Parameters (shown in fig-
ure 10.7).

Step Parameters supports custom parameter data types, such as multi-select, as well
as optional client-side validation. For example, as figure 10.7 shows, the report in this
case takes an Employee multi-select parameter, which is a feature that is currently not
supported by the HTML Viewer.

Figure 10.7 Step Parameters handles the report parameters when the HTML Viewer

is not enough.

348 CHAPTER 10 REPORTING FOR WINDOWS FORMS APPLICATIONS

Step Export

During this step, the user specifies the report’s export format and device settings, as
shown in figure 10.8.

We discussed the available export format and device settings in chapters 6 and 9,
respectively.

Step Confirmation

Once the report request is ready, the only thing left to do is to ask the user to confirm it
before it is handed out to the Report Server by showing Step Confirmation (figure 10.9).

If the report is configured to be requested on the server side of the application, the Report
Wizard gives the user an option to request the report to be generated asynchronously.

Now that we’ve seen how the Adventure Works Report Wizard works, let’s look
behind the scenes to see how it is implemented.

10.3 BEHIND THE SCENES OF THE
ADVENTURE WORKS REPORT WIZARD

We thought that many of you might appreciate a behind-the-scenes tour, especially if
your reporting requirements call for a similar implementation approach.

Figure 10.8 Step Export prompts the user to specify the export format and device

settings.

THE ADVENTURE WORKS REPORT WIZARD 349

As an added bonus, we hope you will find some useful programming techniques that
you can add to your programming arsenal, such as form inheritance, CodeDom code
generation, dynamic control creation, caching, multithreading, and more.

10.3.1 Implementing the application framework

As with any real-life application, it is always a good idea to spend some time up front
and design a framework layer to take care of essential programming aspects, including
storing and passing data among the application tiers and encapsulating common pro-
gramming logic in a set of reusable classes.

Let’s see how the Report Wizard framework handles these programming tasks.

Choosing the data entity

The Report Wizard stores the report request details in an application-defined structure
called ReportEntity that is located under the Entities folder in the AWReporterWin
project. We use this entity for two purposes: to maintain state by capturing the user
choices as the user navigates from one step to another and to encapsulate the report
request details when submitting the request to the report façade in the case of reports
generated on the server side of the application.

As with any custom structure, we have several implementation options. You have
probably used several of them in the past, including custom classes, arrays, XML,
datasets, and so forth. We decided to use a typed dataset for the following reasons:

Figure 10.9 Confirming the report request

350 CHAPTER 10 REPORTING FOR WINDOWS FORMS APPLICATIONS

• Typed datasets are based on XML schemas. This could be useful if you need to
implement a report façade on top of RS. Using an XML schema allows you to
advertise to the outside world how the façade needs to be called. In this case, the
XML schema serves as a contract to which external callers must adhere when
submitting report requests.

• Typed datasets are serializable structures. When a typed dataset is transmitted
between two application domains, the .NET Framework serializes it automati-
cally to XML.

• Unlike the plain-vanilla datasets, typed datasets are strongly typed structures. This
offers two benefits. First, calls to the typed dataset methods and properties are
checked and verified during the code-compilation phase. Second, developers
can access the typed dataset members in an object-oriented way, for example,
Report.Path, as opposed to ds.Tables[“Report”].Columns[“Path”].

• Typed datasets support all of the dataset functionality. Because typed datasets inherit
from the System.Data.DataSet class, they support all dataset features, including
searching for rows, tracking row changes, data relations, nulls, and so on. In addi-
tion, typed datasets can be bound to controls that support data binding.

NOTE During one of my project assignments, there was a fierce discussion about
which approach reigns supreme when it comes to passing data between the
application tiers: custom-defined entity classes or typed datasets. By the
time I joined the project, the jury had already sentenced typed datasets for
execution and had decided in favor of custom classes.

Subsequently, the client realized the complexities surrounding custom
entity implementation, for example, handing of nulls, serialization, data
binding, and so on, and admitted that they were well on their way to reinvent
the typed dataset wheel. Some bridges were burned but, in the end, the archi-
tect’s decision was reversed and typed datasets were reinstated. The moral of
this story is that you should evaluate typed datasets as a medium to pass data
between the application tiers before you decide on homegrown solutions.

Typed datasets are not perfect and are subject to several limitations, including these:

• Typed datasets are regenerated when the schema is saved. Each time you change and
save the schema, VS.NET regenerates the typed dataset. This makes it impractical
to add extra members and methods to the typed dataset because they will be
wiped out if someone inadvertently updates the schema. One workaround is to
subclass the typed dataset class, but this has its own complexities too.

• You have little control over the typed dataset generation process. For example, a
typed dataset defines the table columns as internal, which makes them inacces-
sible if the typed dataset is defined in an external assembly.

Let’s now see how the Report Wizard uses typed datasets to capture the report request details.

THE ADVENTURE WORKS REPORT WIZARD 351

Implementing the report entity

Figure 10.10 shows the ReportEntity XML schema, which we generated using the
VS.NET XML Schema Editor.

The schema consists of two elements: Report and Parameters. The Report element
has the same attributes as the Report Server CatalogItem structure that the List-
Children web method returns. We defined some extra attributes for the Report
Wizard’s purposes, as shown in table 10.1.

The second schema element, Parameters, captures the report parameters. The rela-
tion defines the one-to-many relation between the Reports element and the Param-
eters element.

Once we decided on a data entity strategy, the next step was to refactor some com-
mon programming logic that all Report Wizard steps need.

Table 10.1 ReportEntity exposes a series of properties to capture the report request details.

Name Type Description

CustomParams Boolean Defines whether the report requires custom parameters

SessionID String Stores the report session ID, when the report is requested via SOAP

ExecutionOption Short Corresponds to the RS ExecutionSettingEnum enumeration and
stores the report execution option (0-live, 1-snapshot)

HistoryID String Stores the history ID if the user has selected to run a snapshot his-
tory (snapshot reports only)

ExportFormat String Stores the requested export format, e.g., HTML4.0

DeviceSettings String Captures the user-specified device settings, e.g., Toolbar=true,
Parameters=false, etc.

RemoteCall Boolean False, if the report is configured for client-side generation; true, if
the report is configured for server-side generation

Figure 10.10

The report request

details are captured

in a ReportEntity

type dataset.

352 CHAPTER 10 REPORTING FOR WINDOWS FORMS APPLICATIONS

The StepBase form

Because all steps of the wizard share a common look and features, it makes sense to
refactor the common logic and move it into a base class. Indeed, each step of the wiz-
ard, which we collectively refer to as the step forms, is implemented as a WinForm that
inherits from the StepBase form.

The StepBase form defines several members, including the ones shown in table 10.2.

The StepBase form is implemented as a borderless form (FormBorderStyle=None) so
that its descendants can be seamlessly “docked” to the GroupBox control (grpStep)
placed on the ReportWizard form.

When the user advances to the next step by clicking the Next button, the Report
Wizard calls the LoadStep function (shown in listing 10.1), located inside the
ReportWizard form.

private void LoadStep () {
 StepBase frm = null;
 switch (m_nextStep) {
 case WizStep.Welcome : frm = new StepWelcome(); break;
 case WizStep.Reports : frm = new StepReports();break;
 case WizStep.Snapshots : frm = new StepSnapshot();break;
 case WizStep.Parameters : frm = new StepParameters();break;
 case WizStep.Export : frm = new StepExport();break;
 case WizStep.Confirmation:frm = new StepConfirmation();break;

Table 10.2 StepBase has several properties (accessors) that all steps will inherit.

Member Implementation Type Description

IsValid Property Boolean Returns the status of the step validation.
True, if the step is valid. Some steps require
validation. For example, if a report defines
custom parameters, validation is required to
ensure that all required parameters have
been filled in. Before the Report Wizard
loads a new step, it calls IsValid to find out
whether the step is valid.

Result Property Object Returns the step results. A step may return
some data to the ReportWizard form. For
example, Step Reports return the selected
report.

WizForm Property ReportWizard Returns a reference to the ReportWizard
form. Used by the step forms to invoke the
Report Wizard’s members.

OnStatusChanged Event Raised by the step forms. The Report Wiz-
ard uses this event to configure its UI, e.g.,
to enable or disable the navigation buttons.

Listing 10.1 Using the factory design pattern to load the steps of the wizard.

THE ADVENTURE WORKS REPORT WIZARD 353

 }

 frm.TopLevel = false;
 frm.Parent = this.grpStep;
 frm.Location = new Point (2, 10);
 frm.Show();
 // unload the previous step
 if (grpStep.Controls.Count>1) {
 StepBase oldStep = (StepBase) grpStep.Controls[0];
 oldStep.Close();
 }
}

Because all step forms inherit from StepBase, the Report Wizard instantiates the steps
through a reference to the StepBase base class. Then, the Report Wizard sites the form
by hooking it to the group box container located inside StepBase and sets the group
box as the form parent. Next, the Report Wizard positions the form within the Group-
Box control. Finally, it unloads the previous step.

The ReportWizard form

The Report Wizard follows the factory design pattern for loading and executing the
report-generation steps. You can think of it as a controller that orchestrates the report
request’s workflow. The Report Wizard supports backward and forward step naviga-
tion. For navigating backwards, the Report Wizard maintains the step chain history in
the form of a stack collection. When the user advances to the next step, the Report
Wizard follows this process:

Step 1 Calls the StepBase virtual IsValid method, which the step can override to
provide a step-specific validation.

Step 2 Retrieves and stores the step results.

Step 3 Determines the next step to be executed.

Step 4 Loads the next step.

For the developer’s convenience, the Report Wizard exposes the ReportEntity object
through a series of public properties, shown in table 10.3.

Table 10.3 The Report Wizard forms public properties that the step forms can query.

Member Type Description

Reports EntityReport Returns a list of reports. Once Step Reports is exe-
cuted, the Report Wizard stores the report list in a
instance of the ReportEntity object.

SelectedReport EntityReport.ReportRow Returns a reference to the report selected by the user
in Step Reports.

ReportRequest EntityReport Clones and returns the selected report.

Sites the
step form

Unloads the
previous step

354 CHAPTER 10 REPORTING FOR WINDOWS FORMS APPLICATIONS

Each step form can reference these properties to access the data it needs from the
ReportEntity object. For example, a step can call SelectedReport to obtain a reference
to the report selected in Step Reports.

10.3.2 Selecting reports

Step Reports presents the user with a list of reports. The user has to select exactly one
report to advance to the next step. The abbreviated form code to retrieve the report list
is shown in listing 10.2.

private void GetReports()
{
 ReportingService rs = RsHelpers.Proxy;
 CatalogItem[] items = null;
 EntityReport entityReports = WizForm.Reports;

 items = rs.ListChildren(reportPath, false);

 foreach (CatalogItem item in items){
 if (item.Type == ItemTypeEnum.Report)
 entityReports.Report.AddReportRow(item.ID, item.Name, item.Descrip-
tion,
 item.Path, item.CreatedBy, item.CreationDate,
 item.ExecutionDate, false, null, -1, null, null, null, false);
 }

 // pass the reports to the Report Wizard form
 WizForm.Reports = entityReports;
 foreach (EntityReport.ReportRow reportRow in entityReports.Report){
 ListViewItem reportItem = new ListViewItem();
 reportItem.Text = reportRow.Name;
 reportItem.SubItems.Add(reportRow.Description);
 reportItem.SubItems.Add(reportRow.CreatedBy);
 reportItem.SubItems.Add(reportRow.CreatedDate.ToString());
 reportItem.Tag = reportRow.ID;
 lstReports.Items.Add (reportItem);
 }
}

We’ll discuss a few implementation areas of Step Reports in more detail in the next
few sections.

Retrieving the report list

b The list of reports is retrieved in the GetReports function via a call to the Report
Server ListChildren() web method. As we mentioned back in chapter 8, the
ListChildren method factors in the Report Server role-based security policy.

Listing 10.2 Step Reports retrieves the reports that the user has the rights to

run by calling the RS ListChildren API.

Retrieves the
catalog resources in
the specified folder

b

Populates the report
entity with the reports

c

Loads the reports in the
ListView control

d

THE ADVENTURE WORKS REPORT WIZARD 355

Therefore, if the user is not permitted to view a given report, the report will be
excluded from the results. The ListChildren method returns all catalog items
associated with the specified folder as a collection of CatalogItem objects. Each cata-
log item exposes a number of reserved properties, such as the item name, path, and
so on.

c Next, we filter out only the report items from the CatalogItem collection and store
them in an instance of the ReportEntity object.

d Finally, we populate the ListView control with the reports to show them to the user.

NOTE Why did I choose the ListView control over the Windows Forms DataGrid
control? In the latter case, I could have just bound the typed dataset to the
grid instead of iterating through the report items again. At first, this was the
approach I intended to take. All went well until I wanted to disallow the
default multirow selection. It turns out that this wasn’t easy and required
subclassing the grid control and overriding the mouse events. At this point,
I thought that this would be overkill for the purposes of my demo and
decided to switch to the plain-old ListView control. If you use a third-party
grid control, which doesn’t have the Windows grid limitations, by all
means use data binding to simplify the presentation logic.

The rest of the code logic in this form is straightforward. The form validation rules
consist of checking whether a report item is selected in the grid. Finally, the step
returns the report identifier of the selected report.

Once the user clicks the Next button, the control returns to the Report Wizard form.

Retrieving the report details

Now that the user has selected the report, the Report Wizard needs to retrieve the
report details to find out which form to display next. Listing 10.3 shows the abbrevi-
ated code from the “Next” programming logic applicable to Step Reports.

m_selectedReport = (EntityReport.ReportRow)
m_entityReports.Report.Rows.Find((string) result);

GetReportProperties(m_selectedReport.ID);

if (m_selectedReport.ExecutionOption==-1) {
 executionOption = GetReportExecutionOption(m_selectedReport.Path);
 m_selectedReport.ExecutionOption = (short) executionOption;
 m_selectedReport.AcceptChanges();
}

switch (executionOption) {
 case ExecutionSettingEnum.Snapshot : m_nextStep = WizStep.Snapshots;
break;

Listing 10.3 Evaluating the report selection

Retrieves the report
custom properties

Is this a snapshot report?

356 CHAPTER 10 REPORTING FOR WINDOWS FORMS APPLICATIONS

 case ExecutionSettingEnum.Live : {
 if (HasCustomParameters())
 m_nextStep = WizStep.Parameters;
 else
 m_nextStep = WizStep.Export;
 break;
 }

private void GetReportProperties (string reportID){
 // Set the item namespace header to be GUID-based
 m_reportService.ItemNamespaceHeaderValue = new ItemNamespaceHeader();
 m_reportService.ItemNamespaceHeaderValue.ItemNamespace =
 ItemNamespaceEnum.GUIDBased;
 Property[] properties = null;
 Property[] props = new Property[2];
 props[0] = new Property();
 props[0].Name = CUSTOM_PARAMS;
 props[1] = new Property();
 props[1].Name = REMOTE_CALL;

 properties = m_reportService.GetProperties(reportID, props);

 if (properties.Length > 0) {
 foreach (Property property in properties) {
 switch (property.Name) {
 case CUSTOM_PARAMS: m_selectedReport.CustomParams = true; break;
 case REMOTE_CALL :
 if (property.Value.ToLower() == "true") {
 m_selectedReport.RemoteCall = Boolean.Parse(property.Value);
 break;
 }
 } // end switch
 } // end foreach
 } // end if
 else m_selectedReport.CustomParams = m_selectedReport.RemoteCall = false;

 m_selectedReport.AcceptChanges();
}

private ExecutionSettingEnum GetReportExecutionOption (string report) {
 ScheduleDefinitionOrReference scheduleDefinition = null;
 ExecutionSettingEnum result = ExecutionSettingEnum.Live;

 result = m_reportService.GetExecutionOptions(report,
 out scheduleDefinition);
 return result;

}

The code starts by filtering out the selected report in the ReportEntity object. Next,
we need to determine which properties have been defined for this report.

The Report Wizard defines two
custom Boolean properties, custom
parameters and remote invocation

Retrieves the report’s execution
options from the Report Server

THE ADVENTURE WORKS REPORT WIZARD 357

Using custom properties

After the Report Wizard gets the selected report, it calls the GetReportProperties
function to find out whether the report has custom properties defined in the Report
Server catalog. RS allows you to define custom properties on a per–catalog item basis.
If you open the Catalog table in the RS Configuration Database (ReportServer), you
will notice that there is a column named Property that you can use to associate any
user-defined properties you need with a given catalog item.

NOTE You can use the Web service proxy ItemNamespaceHeaderValue prop-
erty to retrieve the item’s properties by either its identifier (primary key) or
path. For some obscure reason, the GetProperties method is the only
method available to support the ItemNamespaceHeaderValue proxy
property. The rest of the web methods identify catalog items by their path only.

There are two restrictions to which user-defined properties are subject. First, because
the properties are defined as an XML snippet, they have to conform to the rules of a
well-formed XML document. Second, each property must be entered as a name-value
pair. Nested properties are not supported.

The Report Server offers a pair of methods that you can use to manipulate the cat-
alog item properties, as follows:

• GetProperties—Returns both reserved and user-defined properties. The
reserved properties correspond to the properties of the CatalogItem class, which
is returned from a call to GetChildren. Similarly to using a SQL WHERE
clause to filter out the data at a database level, you can optionally pass a filter to
the Report Server to get only a subset of the user-defined properties.

• SetProperties—Updates the catalog item properties.

Of course, you can update the Property column manually at your own risk. To do so,
you need to scroll down in the Property cell for the given report and enter the new
property element, abiding by the XML syntax rules. If you make errors in the property
syntax, the call to the GetProperties method will fail. Once again, the recom-
mended approach to making changes to the report catalog is through the SOAP API,
which in this case is SetProperties.

For the purposes of the Report Wizard demo, we use a couple of custom properties,
as shown in table 10.4.

Table 10.4 Reporting Services allows developers to associate custom properties with

catalog items.

Property Type Purpose Example

CustomParameters Boolean If CustomParameters is true,
the Report Wizard will handle
the report parameters.

<CustomParameters>True
</CustomParameters>

continued on next page

358 CHAPTER 10 REPORTING FOR WINDOWS FORMS APPLICATIONS

So, this is easy. If you need the Report Wizard to handle the report parameters for you,
you can add a new CustomParameters property to the list of properties and set its
value to True.

Similarly, if a given report needs to be generated by SOAP, you can add a
RemoteCall property and set its value to true.

Once again, these are user-defined properties, so don’t expect to find them in the
product documentation or when you install the sample reports. Instead, you have to
manually add them to the Property column of the report you need to test.

To help you configure the Report Wizard sample, we provided a script file (Set-
Properties.rss.), which you can find under the Chapter10 folder in the AWReporter-
Win project. To run the script, go to the command prompt and navigate to the folder
where SetProperties.rss is located. Then, assuming that the Report Server is installed
locally and the folder where the sample reports are located is called AWReporter, type
the following command:

rs -i SetProperties.rss -s http://localhost/reportserver

-v folderPath="AWReporter"

The SetProperties script file calls the SetProperties SOAP API to configure the
custom properties for two reports: CustomParameters=True for the Purchase
Orders report and RemoteCall=True for the Employee Sales Freeform report.

The Report Wizard’s GetReportProperties method calls the RS Get-
Properties SOAP API to find out if these properties are defined. If this is the case,
it updates two flags in the Report Entity object. We will see in a moment how the
Report Wizard utilizes these user-defined properties.

Determining the report’s execution options

As we said in chapter 7, you can configure a report to be executed as a snapshot, in
which case the Report Server saves the report’s intermediate format (IF) in the RS Con-
figuration Database and serves all subsequent requests using the cached instance.
Because a snapshot represents a static capture of the report at a specific point in time,
the Report Server doesn’t allow you to pass report parameters because the snapshot
already includes the parameterized data.

To determine the next step after Step Reports, the Report Wizard queries the Report
Server to find out how the report is configured to be executed. Then, it saves the exe-
cution option in the ExecutionOption field of the ReportEntity object. If the report is

RemoteCall Boolean If true, the report request pro-
cess will follow the Client-to-
Façade-to-Report Server pat-
tern.

<RemoteCall>True</Remote-
Call>

Table 10.4 Reporting Services allows developers to associate custom properties with

catalog items. (continued)

Property Type Purpose Example

THE ADVENTURE WORKS REPORT WIZARD 359

configured for snapshot execution, the Report Wizard advances to Step Snapshot. If this
is not the case and the report requires custom parameters, the Report Wizard proceeds
with Step Parameters. If custom parameters are not required, for example, the HTML
Viewer will be used, Step Parameters is bypassed and Step Export is shown.

Let’s assume that the selected report is configured for snapshot execution. In this
case, the Report Wizard will display Step Snapshot.

10.3.3 Dealing with snapshot reports

Step Snapshot allows the user to execute the report as a snapshot or to request a specific
snapshot history run, if the report administrator has enabled the snapshot history
option. In the latter case, the snapshot is retrieved via a call to the ListReport-
History SOAP API, as shown in listing 10.4.

private void GetSnapshotHistory() {
 ReportHistorySnapshot[] items = null;
 items = rs.ListReportHistory(WizForm.SelectedReport.Path);

 foreach (ReportHistorySnapshot item in items) {
 ListViewItem reportItem = new ListViewItem();
 reportItem.Text = item.HistoryID;
 lstSnapshotHistory.Items.Add (reportItem);
 }
}

The snapshot history is obtained via a call to the ListReportHistory web method
and loaded in a ListView control. If the user selects a history snapshot, the Report Wiz-
ard saves the history identifier in the HistoryID field of the ReportEntity object.

Because a snapshot report can have only fixed parameter values, when the user
clicks Next, the Report Wizard advances to Step Export.

If the report is not configured to be executed as a snapshot, which step will be
shown next depends on whether the report is configured for custom parameters. If this
is the case, Step Parameters is shown.

10.3.4 Handling report parameters

Handling report parameters on your own could be a tricky business. If your applica-
tion design follows the Client-to-Report Server pattern and requests reports via URL,
you should try whenever possible to delegate this responsibility to the HTML Viewer.

Your application will typically need to handle parameters by itself in the follow-
ing scenarios:

• The report is requested by SOAP—As you know by now, when the report is
requested by SOAP, the HTML Viewer is not rendered at all.

Listing 10.4 If a report is configured for snapshot execution, the snapshot

history can be obtained by calling the ListReportHistory API.

Retrieves the
snapshot history runs

Displays the
snapshot history

360 CHAPTER 10 REPORTING FOR WINDOWS FORMS APPLICATIONS

• The HTML Viewer is not enough—For example, when you need to handle multi-
value parameters.

• The parameters need to be validated before the request is submitted

A good approach would be to use the HTML Viewer by default and treat the reports
that require custom parameters as exceptions to the rule. This is the approach that the
Report Wizard takes. Let’s look at an example of a report that requires a multivalue
parameter and therefore needs special attention.

Dealing with multivalue parameters

Let’s say that the AWC Sales department has requested a report that shows the purchase
orders by salesperson, date range, and order number. Figure 10.11 illustrates the Pur-
chase Orders report.

The report itself is nothing to brag about. What makes it special is that it sponsors
a multivalue Employee parameter. This allows the end user to type a comma-
separated list of Employee identifiers to see the purchase orders submitted by multi-
ple salespersons.

Figure 10.11 Handling custom parameters

THE ADVENTURE WORKS REPORT WIZARD 361

To implement the multivalue Employee parameter, we need to base the report query
on the following expression:

SELECT Employee.EmployeeID, …
FROM SalesOrderHeader LEFT OUTER JOIN Employee ON …
WHERE EmployeeID IN (" & Parameters!Employee.Value & ")
AND OrderDate BETWEEN '" & Parameters!StartDate.Value
 & "' AND '" & Parameters!EndDate.Value & "'
AND PurchaseOrderNumber LIKE '" &
 Parameters!OrderNumber.Value.Replace("*", "%") & "'”

As you can see, we used the SQL IN operator to construct a WHERE criteria to filter the
purchase orders for multiple salespersons. In addition, we used the SQL LIKE operator
in the WHERE clause to support wildcards for the purchase order number.

The users can run this report as it is, but you will probably agree that the Employee
parameter is not very intuitive. Users usually don’t memorize employee identifiers.
Instead, they may prefer the Employee parameter to show the salesperson’s name.
From an implementation standpoint, what is really needed is a lookup table for the
Employee parameter to resolve the employee name to the employee identifier.

This is exactly where Step Parameters comes in because it can handle multivalue
parameters. You can delegate the task of handing parameters to the Report Wizard by
setting the CustomParameters property to true for a given report.

<Properties>
 <Language>en-US</Language>
 <!--other properties may appear here-->
 <CustomParameters>True</CustomParameters>
</Properties>

As we discussed before, the Report Wizard will query the report catalog for this prop-
erty and, if found, will show Step Parameters.

There could be several approaches that you can use to handle custom parameters
inside your applications. Which one will be most suitable will depend on your specific
reporting requirements. I thought that it might be useful to share with you one pos-
sible design I have used in the past.

Using a database-driven approach

to handle parameters

In this case, the parameter metadata is stored in the database. Figure 10.12 depicts
what the database schema may look like.

The design goals of the database-driven approach are as follows:

• Store the parameter metadata in a database.

• Define custom parameter data types.

• Allow the client application’s user interface to self-configure based on the parame-
ter metadata.

362 CHAPTER 10 REPORTING FOR WINDOWS FORMS APPLICATIONS

The idea behind the database-driven approach is simple. We want to allow the report
administrator to be able to define custom parameter data types. For example, the Pur-
chase Orders report requires a multi-select parameter. Given the model shown in fig-
ure 10.12, the report administrator could define a new data type called MultiSelect.
Optionally, the administrator could define parameter operators that will be evaluated
during the parameter validation. For example, if the parameter data type is DateTime,
the report administrator could define a BETWEEN operator to enforce a business rule
stating that the date entered by the user has to fall within a certain date range.

Once the parameter infrastructure is set, the client reporting application could
adjust its user interface to handle the custom parameter types. For example, if the
parameter is of the type MultiSelect, the front end might display a listbox control pre-
populated with the available parameter values. Or, if the parameter type is DateTime,
the application might display a DateTimePicker control.

The Report Wizard approach

For the purposes of the Report Wizard demo, we chose a lightweight version of the
database-driven approach. To simplify the demo setup, we decided to use an XML
configuration file (Parameters.xml) to store the custom parameters. Listing 10.5
shows what the configuration file might look like in the case of the employee multi-
select parameter.

Figure 10.12 One approach to handling parameters in your applications is to store

the parameter configuration in the database.

THE ADVENTURE WORKS REPORT WIZARD 363

<?xml version="1.0" encoding="utf-8" ?>
<reports>
 <report id="4b90f039-32db-464a-b6b6-97ba89856191">
 <customparameters>
 <parameter name="Employee" type="100">
 <availablevalues>
 <availablevalue value="20" label="Abbas, Syed"/>
 <availablevalue value="23" label="Campbell, David"/>
 <availablevalue value="38" label="Blythe, Michael"/>
 <availablevalue value="26" label="Ito, Shu"/>
 <availablevalue value="36" label="Tsoflias, Lynn"/>
 </availablevalues>
 </parameter>
 </customparameters>
 <validationCode>
public static bool EvalParameters(System.Data.DataTable
 parameters) {
 bool result = true;
 System.Data.DataRow row=parameters.Rows.Find("StartDate");

 DateTime startDate=Convert.ToDateTime(row["Value"].ToString());
 row = parameters.Rows.Find("EndDate");
 DateTime endDate = Convert.ToDateTime(row["Value"].ToString());
 if (startDate>endDate) {
 MessageBox.Show("The start date cannot ….");
 result = false;
 }
 return result;
}
 </validationCode>
 </report>
</reports>

RS defines an enumeration called ParameterTypeEnum that defines integer values for
the five supported parameter types (System.String=4, System.DateTime=1, and so
on). To integrate our custom-defined parameter types with the RS predefined types,
we decided to define integer type identifiers starting with 100.

You may be tempted to use the available parameter values that you can set up using
the Report Designer Report Parameters menu to populate the list of allowed choices
for custom multivalue parameters. This approach could have been a good fit for
lookup tables because the GetReportParameters web method returns both the
parameter label and value fields. Unfortunately, it won’t work because with version 1.0
of RS there is no way to disable the available values validation that the Report Server
performs to match the parameter against the list of the available values. Let’s explain
this limitation in more detail.

Let’s say you base the available values of the Employee parameter on a database
query that returns EmployeeID and Name. Assuming that your application supports

Listing 10.5 The Report Wizard parameter configuration file

Links the parameters
to a given report

Defines a custom parameter type

Defines the parameter
validation rules

364 CHAPTER 10 REPORTING FOR WINDOWS FORMS APPLICATIONS

multivalue parameters, the request to render a report for a single salesperson will suc-
ceed because the Report Server will find a match for the employee identifier among
the available values. However, a request for multiple employees (for example, “21,
23”) will fail because an exact match does not exist. We hope the next version of RS
will allow turning the validation off. For the time being, your application needs to take
care of populating the lookup table, for example, by asking the business layer to supply
the list. To simplify things, we hard-coded the lookup list inside the configuration file.

Configuring the user interface

to handle custom parameters

The Report Wizard retrieves the report parameters by calling the GetReport-
Parameters SOAP API of the RS Web service. Considering the limitations of
parameter available values we just mentioned, in case you have configured the avail-
able values for a given parameter and if you want to use them, you can set the For-
Rendering argument to true to get these values. GetReportParameters returns
an array of ReportParameter objects. ReportParameter exposes a series of public
properties you can query to determine how the parameters are configured. For the
purposes of the Report Wizard, we are interested only in the parameter name, type,
default value, and whether it is required.

Because we’ve decided that the HTML Viewer is getting in our way, our application
needs to take its place and provide some sort of user interface that will self-adjust based
on the parameter type. When the user selects a parameter, the Report Wizard config-
ures the user interface in accordance with the parameter type, as shown in listing 10.6.

private void ConfigureParameterPanel() {
 ListViewItem selectedParam = lstParameters.SelectedItems[0];
 System.Windows.Forms.Control control = null;
 lblParamName.Text = selectedParam.Text;

 short paramType = (short)GetParameterType(
 WizForm.SelectedReport.ID, selectedParam.Text);

 switch (paramType) {
 case (short) ParameterTypeEnum.DateTime: {
 control = new DateTimePicker();
 //…
 }
 case PARAM_TYPE_MULTISELECT: {
 // create a new ListView control to allow multi-select
 control = new ListView();
 ((ListView)control).View = View.List;
 ReportParameter reportParameter = GetParameter
 (selectedParam.Text);
 // Get the parameter valid values

Listing 10.6 Configuring the user interface

Determines the
parameter type

b

For the date type, we use
the DateTimePicker control

c

For multivalue parameters,
we use the ListView control

d

THE ADVENTURE WORKS REPORT WIZARD 365

 ValidValue[] validValues = GetMultiParameterValues(
 WizForm.SelectedReport.ID, selectedParam.Text);

 //load the list view with the parameter valid values
 foreach(ValidValue validValue in validValues) {…}
 }
 default: {
 control = new TextBox();
 //…
 break;
}
 }

 pnlCustomParam.Controls.Clear();
 control.Parent = pnlCustomParam;
 //…
}

b First, we determine the parameter type by calling the GetParameterType function.

c If the parameter type is DateTime, we will present the user with the DateTimePicker
control to enter the parameter value.

d If the parameter is a multi-value parameter, we load the parameter lookup values in a
ListView control that allows multi-selection.

e For all other parameter types, we use a TextBox control.

f Finally, we create the control, place it on the pnlCustomParam, and size it appropriately.

At this point, the user interface is configured and the user can set the parameter value.
Once the Apply button is clicked, the code needs to validate the parameter’s value.

Validating parameters with custom validation rules

An essential chore when working with custom parameters is validating their values.
While the HTML Viewer is limited to checking only the parameter data type before
the report request is submitted, the Report Wizard can validate just about any business
rule. For example, if you consider again the Purchase Orders report, you may need to
ensure that the end date is greater than the start date.

The Report Wizard design goals applicable to custom parameter validation are
as follows:

• Allow the report administrator to add ad hoc parameter validation rules.

• Store the rule logic in an external storage medium.

• Dynamically execute and evaluate the business rules.

• Do not require recompilation of the client application when new rules are
added or existing rules have changed.

For all other data types, we use the TextBox controle

Creates the control
dynamically and positions
it on the panel

f

366 CHAPTER 10 REPORTING FOR WINDOWS FORMS APPLICATIONS

• Provide a flexible rule validation; for example, the rule may need to perform
cross-parameter validation, call external assemblies, or in general perform all
possible tasks that .NET code can do.

But where would you put the validation logic? Ideally, you would want to associate the
validation rule with the parameter so that the Report Wizard could check the rule
when evaluating the parameter’s value. If you decide to follow the database-driven
approach for the custom parameter configuration, you could store the validation logic
as a code snippet inside the Parameters table. Then, your application could execute the
code dynamically.

In the pre-.NET era, one way for extending the application’s capabilities ad hoc was
by scripting. For example, you could use the JavaScript Eval function to execute
script code dynamically. However, for the purposes of the Report Wizard demo, we
decided to use the CodeDom technology available in .NET for dynamic code compi-
lation and execution. For more information, please check the resources in section 10.6
for a link to Dino Esposito’s excellent article, “Using an Eval Function in Web Ser-
vices.” I was able to retrofit Dino’s approach easily and allow the Report Wizard to
execute parameter-specific business rules. Let’s see how this is done.

The Report Wizard validation process first checks to see whether all required
parameters have values. Next, the Report Wizard checks to see if the parameter has a
custom business rule associated with it. If you look back at listing 10.6, you can see
that the Employee parameter has a business rule associated with it, which is imple-
mented as a C# function called EvalParameters. The .NET Framework includes
code generators and code compilers for C#, JScript, and VB.NET, so we could have
written this function in any of these languages. If the parameter has a custom valida-
tion rule, the Report Wizard invokes the Eval function, passing the code of the rule
and the list of the report parameters, as shown in listing 10.7.

public bool Eval(string csCode, System.Data.DataTable parameters)
{
CSharpCodeProvider c = new CSharpCodeProvider();
ICodeCompiler icc = c.CreateCompiler();
CompilerParameters cp = new CompilerParameters();
cp.ReferencedAssemblies.Add("system.dll");
cp.ReferencedAssemblies.Add("system.xml.dll");
cp.ReferencedAssemblies.Add("system.data.dll");
cp.ReferencedAssemblies.Add("system.windows.forms.dll");

cp.CompilerOptions = "/t:library";
cp.GenerateInMemory = true;
StringBuilder sb = new StringBuilder("");
sb.Append("using System;");
sb.Append("using System.Xml;");
sb.Append("using System.Data;");
sb.Append("using System.Windows.Forms;");

Listing 10.7 Evaluating custom business rules

Adds references
to external
assemblies

b

Stores the compiled code in memoryc

Adds
namespaces

d

THE ADVENTURE WORKS REPORT WIZARD 367

sb.Append("namespace AWC.Reporter.Win { class ParameterValidator {");
sb.Append(csCode);
sb.Append("}}");
CompilerResults cr = icc.CompileAssemblyFromSource(cp, sb.ToString());
System.Reflection.Assembly a = cr.CompiledAssembly;
Object o;
MethodInfo mi;
o = a.CreateInstance("AWC.Reporter.Win.ParameterValidator");
Type t = o.GetType();
mi = t.GetMethod("EvalParameters");
bool result;
object[] arguments = new object[]{parameters};
result = (bool) mi.Invoke(o, arguments);
return result;
}

When working with dynamic code, you may want to minimize trial-and-error head-
aches by first testing your validation functions as static code in a VS.NET project
before trying to execute it dynamically.

In this case, we are passing a list of all report parameters so that we can perform
cross-parameter validation, for example, how the start date compares to the end date.

First, we instantiate the C# code compiler. Then, we load the validation code in
an instance of a StringBuilder class.

b Next, we add the referenced assemblies, as you would typically do when working with
code projects inside the VS.NET IDE.

c Then, we instruct the code compiler to put the dynamically generated assembly in
memory as opposed to on the disk

d Next, we include the namespaces we need for the purposes of the parameter valida-
tion logic.

e In order for the .NET Common Language Runtime to be able to execute a piece of
code, it must be defined inside a type. For this reason, we create a class called Param-
eterValidator and define it inside a namespace called AWC.Reporter.Win.

Then, we compile the code and store its intermediate language in memory.

f Next, we instantiate the temporary assembly.

g We reflect on it to execute the EvalParameters function.

The EvalParameters function returns a Boolean value that represents the valida-
tion outcome: true, if the validation has succeeded, or false otherwise. For example, if
you enter a start date that is greater than the end date, the EvalParameters func-
tion displays an error message and returns false.

As you can see, dynamic code execution adds a lot of flexibility when you need to
add ad hoc custom business rules to your applications.

Defines the
validator class e

Instantiates
the class

f

Reflects on the class
type and invokes the
EvalParameters method

g

368 CHAPTER 10 REPORTING FOR WINDOWS FORMS APPLICATIONS

Once the report parameters have been taken care of, we can advance to Step
Export, where the user can specify the report’s export format and device settings.

10.3.5 Specifying the export format

Step Export shows the export formats that RS supports as well as device settings asso-
ciated with the selected format. The export formats are retrieved via a call to the
ListExtensions API, as you saw when we discussed the AccessOptions sample in
chapter 9.

Strangely, the RS Web service doesn’t include a SOAP API that returns a list of the
supported device settings for a given export format. As a workaround, we created our
own configuration file (DeviceSettings.xml) to define the relationship between export
formats and device settings.

We also defined some business rules in this step to disallow some combinations.
Specifically, if the report is configured to take custom parameters, we default the
Parameters device setting to false so that the Parameters section of the HTML Viewer
toolbar is hidden.

Also, we set the Toolbar setting to false if the report is configured for Client-to-
Façade-to-Report Server execution, because reports rendered via SOAP don’t include
the HTML Viewer.

10.3.6 Confirming the report request

Finally, the user is presented with Step Confirmation to validate the report request
before it is submitted to the Report Server. The step invokes the ReportRequest acces-
sor of the Report Wizard form to get the report request details. Because the Report-
Entity object contains all reports from Step Reports, ReportRequest filters and clones
only the selected report and its associated parameters.

m_reportRequest = new EntityReport();
System.Data.DataRow[] rows = new
 System.Data.DataRow[]{m_selectedReport};
m_reportRequest.Merge(rows);
rows = m_selectedReport.GetChildRows("ReportParameters");
m_reportRequest.Merge(rows);
return m_reportRequest;

Next, Step Confirmation shows the XML representation of the report request to the user
so it could be verified. If all is well, the user clicks the Finish button to request the
report. At this point, control is returned to the Report Wizard, which generates the report
via the Client-to-Report Server or the Client-to-Façade-to-Report Server model.

Let’s see how each of these models is implemented.

Client-to-Report Server report generation

If the report is not configured for remote execution, the Report Wizard generates it
by URL.

THE ADVENTURE WORKS REPORT WIZARD 369

To facilitate building the URL report request string, we created a helper function
called BuildURL, which is defined as a static method in the RsHelpers class. This
function takes the report request entity as a parameter and returns the report’s URL.
Once you have the report’s URL ready, requesting the report is a matter of shelling out
to the browser, as you saw back in chapter 9.

Process.Start ("IExplore", reportURL);

Client-to-Façade-to-Report Server report generation

As we mentioned, by default the Report Wizard generates reports by URL. You can
configure a report to be requested on the server side of the application by adding the
RemoteCall custom property to the Property column in the Catalog table. For
example, to request the Employee Sales Freeform report in this way, add the following
XML element to the report properties:

<RemoteCall>True</RemoteCall>

Once this is done, the Report Wizard will send the report request to the Reporting
Façade. To simulate a distributed application, we created a Web service façade (Report-
Facade.asmx), which you can find under the Chapter10 folder in the AWReporter-
Web application.

NOTE Some of you may be curious about why I decided to implement the façade
as a Web service instead of choosing .NET Remoting as a cross-machine
communication mechanism. Indeed, I was initially planning to use .NET
Remoting until I realized that Microsoft has deprecated this technology in
the long term.

The next version of Windows, code-named “Longhorn,” promotes the
use of SOAP for communicating with service-oriented applications. For this
reason, developers are advised to use .NET Remoting sparingly. For more
information about building service-oriented applications, please see sec-
tion 10.6.

The ReportFacade Web service exposes the RenderReport method:

[WebMethod]
public byte[] RenderReport(ReportRequest reportRequest,
 out string sessionId){
 string optionalString = null;
 byte[] reportPayload = RsAdapter.RenderReport(reportRequest,
 out optionalString);

 sessionId = optionalString;
 return reportPayload;
}

This method delegates the responsibility of requesting the report to the RsAdapter. If
you wonder why we have chosen to name the class “RsAdapter”, wait until chapter 12
when we explain the “adapter” concept in detail. RenderReport method, which

370 CHAPTER 10 REPORTING FOR WINDOWS FORMS APPLICATIONS

generates the report via SOAP, as we saw in chapter 9. There are several points worth
mentioning about the inner workings of this method.

The first one has to do with security. By default, the call to the Report Server will
go out under the process identity of the Web application. This means that if you
don’t take extra steps to change the ASP.NET process identity (or the application
pool’s identity in IIS 6), the call will fail. Please refer to chapter 8 to learn more about
how to properly set up the Windows authentication in this scenario. If you want the
Report Server to see the report request coming under the identity of the interactive
user (the user who has started the AWReporterWin application), you can impersonate
the user by using the identity element in the application’s web.config configuration
file, as follows:

<identity impersonate="true"/>

Alternatively, you can explicitly set the identity of the call by setting up the Report
Server proxy credentials in the RsHelpers.Proxy accessor, as follows:

rsProxy.Credentials=new System.Net.NetworkCredential("username",
 "password");

Second, as we mentioned in chapter 9, when requesting reports by SOAP, you have to
take an extra step to display the report’s images by saving the image streams to a shared
location (one to which the interactive user has read permissions). The Reporting
Façade does this by configuring the StreamRootPath device setting to point to a temp
folder before calling the Report Server Render method. Then, the Reporting Façade
downloads the images explicitly to this folder. Needless to say, you have to take care of
cleaning up this folder, for example, by scheduling a job that deletes the files in this
folder on a regular basis.

Finally, if you want to leverage report session caching to process report more effi-
ciently, you should take care of saving the report session identifier and passing it back
to the Report Server when requesting the same report. The Reporting Façade does this
by returning the session identifier through the sessionId output argument of the
RenderReport method. After the call is completed, the Report Wizard updates the
SessionID property of the ReportEntity object and sends it back when the same report
is requested.

Now that we’ve seen how a WinForm client can provide an application front
end to facilitate the report-generation process, let’s see how we can make it more
efficient by discussing some performance-enhancement techniques, including cach-
ing and multithreading.

10.4 ENHANCING APPLICATION PERFORMANCE

Writing efficient and responsive code is an essential design goal for any successful
reporting application. As a developer, you can use various techniques to improve the
user’s experience and streamline report processing.

ENHANCING APPLICATION PERFORMANCE 371

One of the easiest ways to provide fast access to application resources is by caching
them in memory.

10.4.1 Using in-memory caching

Whenever possible, you should abundantly use in-memory caching to speed up the
data retrieval in your applications. Because data stored in the computer’ memory can
be retrieved extremely fast, serving its cached instance is very efficient.

For this reason, we recommend that you take advantage of in-memory caching
whenever possible. For example, you can cache in memory the returned data from the
calls to the Report Server web methods.

Microsoft Application Blocks

Microsoft has released a number of Application Blocks that implement common
design patterns for .NET applications. If you haven’t heard about them, I strongly urge
you to explore their features and consider using them instead of reinventing the wheel.
The Application Blocks have saved me a lot of time and effort in some of my projects.

One of the blocks is specifically designed to facilitate in-memory caching. The
Report Wizard takes advantage of the Caching Framework Application Block to cache
in memory the list of reports returned from Step Reports. The premise here is that
because the Report Server catalog data is not volatile, it is unlikely that it will be
changed for a certain duration. The cache duration is specified in the application’s con-
figuration file.

Implementing in-memory caching

The Reports accessor (shown in listing 10.8) is called from the Step Reports
Form_Load event to return the report list. Here, we need to check to see whether the
report list is cached, and if it is, return the cached copy so that Step Reports can bypass
the ListChildren call.

public EntityReport Reports {
 get {
 m_entityReports = (EntityReport)
 CacheManager.GetCacheManager().GetData(“reports”);
 if (m_entityReports == null)
 m_entityReports = new EntityReport(); // not cached

 return m_entityReports;
 }
 set {
 m_entityReports = value;
 ICacheItemExpiration[] exp = new
 AbsoluteTime(DateTime.Now.AddMinutes(10));
 CacheManager.GetCacheManager().Add(CONFIG_REPORT_CACHE_KEY,

Listing 10.8 The Report Wizard caches the list of reports in memory as a

performance-enhancement technique.

Is the report list cached?b

Caches the
report list

c

372 CHAPTER 10 REPORTING FOR WINDOWS FORMS APPLICATIONS

 m_entityReports, exp, CacheItemPriority.Low, null);
 }
}

b We ask the CacheManager to return the cached report list if it exists. If the report list is
cached, the Report Wizard returns the cached instance. Otherwise, Step Reports makes a
call to the ListChildren web method to retrieve the reports from the report catalog.

c Once the ListChildren call is made, Step Reports calls the Reports accessor to pass the
reports to the Report Wizard. At this point, the Report Wizard caches the reports for
the specified duration in the application’s configuration file.

10.4.2 Using multithreading

Another technique that you can use to make your reporting applications more respon-
sive is multithreading. Traditionally, creating multithreaded classic applications has
always required advanced programming skills. The .NET Framework makes this
almost child’s play. In many cases, you don’t even have to create and manage threads
by yourself. Instead, you can draw a thread from the application thread pool, do some-
thing with it, and when you have finished, the .NET runtime will recycle the thread
and return it to pool. For example, in .NET, any method can be called asynchronously
using an asynchronous delegate, which executes the method on a thread from the
application pool.

The advantage of using multithreading is that you don’t block the main applica-
tion thread. This allows the user to continue working with the application instead of
just sitting there and waiting for a long-running task to finish. For example, a report
may take a long time to be processed by the Report Server. If you request the report
via SOAP, the call to the Render method will block until the report is ready. This
will freeze the main application thread and your application will become unresponsive.
Instead, a better approach would be to return control to the user as soon as the request
is submitted by invoking the Render method asynchronously.

The Report Wizard follows this design pattern when executing reports in the Client-
to-Façade-to-Report Server scenario if the Don’t Make Me Wait check box on Step
Confirmation is selected.

NOTE There is no need to use multithreading when requesting reports via URL
using Process.Start because the call to Process.Start is nonblocking and
returns immediately.

With .NET, calling a web method asynchronously is a three-step process, as shown in
listing 10.9.

private void GenerateReportBySOAP(EntityReport reportRequest,
 bool async){
 if (!async) {

Listing 10.9 Requesting a report asynchronously

ENHANCING APPLICATION PERFORMANCE 373

 byte[] reportPayload=m_reportFacade.RenderReport(
 facadeRequest, out sessionID);
 UpdateSession(sessionID);
 ShowReport (reportPayload, filePath, sessionID);
 }
 else
 m_reportFacade.BeginRenderReport(facadeRequest,
 AsyncCallback(ReportReady), filePath);

private void UpdateSession(string sessionID) {
 // save the report session id
 this.SelectedReport.SessionID = sessionID;
 this.SelectedReport.AcceptChanges();
}

void ReportReady(IAsyncResult res) {
try {
 string filePath = (string)res.AsyncState;
 string sessionId = null;
 ShowReport(m_reportFacade.EndRenderReport(res,
 out sessionId), filePath,sessionId);

}
catch(WebException ex) {
 Util.ShowErrorMessage(ex);
}
}

private void ShowReport(byte[] reportPayload, string filePath,
 string sessionId) {
 if (this.InvokeRequired == false) {
 this.SelectedReport.SessionID = sessionId;
 this.SelectedReport.AcceptChanges();

 FileStream stream = File.Create(filePath,
 reportPayload.Length);
 stream.Write(reportPayload, 0, reportPayload.Length);
 stream.Close();
 Process.Start(filePath);
 }
 else {
 ShowReportDelegate showReport = new
 ShowReportDelegate(ShowReport);
 this.BeginInvoke(showReport, new object[] {reportPayload,
 filePath, sessionId});
 }

}

Let’s discuss each of these steps in more detail.

Invokes the web
method
asynchronously

b

Creates a callback
function

c

Retrieves the
call results

d

374 CHAPTER 10 REPORTING FOR WINDOWS FORMS APPLICATIONS

Submitting the report request asynchronously

The .NET Framework has built-in support for invoking web methods asynchronously.
When VS.NET generates a web reference to a Web service, it also emits in the proxy
code a couple of BeginXxx/EndXxx methods for each web method. For example,
if you examine the source code of the RS Web service proxy inside the AWReporter-
Win project, you will see that it includes the BeginRender and EndRender
method pairs, which allows us to invoke the Render method asynchronously.

b Invoking the web method asynchronously—Given that, the first step to request asyn-
chronously is to call the BeginRender method. This method takes three argu-
ments. The first one is the report request entity that the Render method takes. The
session identifier is excluded from the argument list because it is declared as out of
parameter.

The second argument is an instance of an AsyncCallback delegate that points to
the ReportReady callback function. The ReportReady function will be called
when the web method calls completes.

The third argument is of the type AsyncState. This is an open-ended argument that
you can use to pass anything you want. In our case, we pass the file path where the
report payload will be saved if the Render method is executed successfully. Once we
call BeginInvoke, .NET will dispatch a background thread from the application
thread pool to invoke the Render method and will return the control immediately
to our application.

c Receiving the report payload—The second step involves writing the callback function. The
function’s signature must match the AsyncCallback delegate, which has a single argument
of the type IAsyncResult.

This function is called when the Web service call returns something. To get the
results, we must call the EndRender method. If the web method has been executed
successfully, we are ready to show the report. If, on the other hand, the call has been
terminated abnormally, EndRender will throw a WebException, which is why we
wrap the call in a try-catch statement.

The most important point to observe here is that this function will be executed on
the thread that services the web method call, which will always be different than the
primary UI thread.

d Displaying the report—Finally, we are ready to show the report to the user. When cre-
ating multithreaded WinForm applications, you must take the necessary steps to
ensure thread safety. Specifically, you must abide by the most important threading
rule, which states that you should access UI resources on the thread on which they are
created. In most cases, the UI resources will be created on the primary UI thread and,
for this reason, this is the only thread that’s allowed to access the form object and its
controls. Applied to the Report Wizard demo, this means that we need to marshal the
web method results to the primary UI thread.

SUMMARY 375

NOTE Strictly speaking, in our case, we don’t have to do this because we are not
accessing controls created on the primary UI thread. Instead, we just need to
update the report’s session identifier in the RequestEntity object and save the
report’s payload to a file. However, I decided to demonstrate how you can
implement safe threading with WinForms in case you need it. For example,
in real life, you may want to show the outstanding report requests in a win-
dow so that the user knows when a given report request has finished execut-
ing. In this case, you must access this window through the primary UI thread.

The .NET Form object exposes a Boolean property called InvokeRequired, which
you can use to find out whether the call is executed on the primary UI thread. In our
case, if the ShowReport function is called on a background thread as a result of the
web method’s asynchronous execution, we will use BeginInvoke to serialize and
marshal the function call on the primary UI thread. Now we can safely access windows
created on the primary thread. For more information about creating multithreaded
rich clients, please refer to the resources in section 10.6.

10.5 SUMMARY

This chapter has been quite a “brain crunch.” We have explored a code-intensive, end-
to-end example and discussed possible strategies and techniques for integrating Win-
Form applications with Reporting Services. Traditionally, report-enabling WinForm
applications has been a difficult task that has required third-party tools or homegrown
solutions. As you have seen, RS fills in this space elegantly and allows you to add on-
demand reporting capabilities to both client/server and distributed applications.

In this chapter, we discussed the advantages of the rich client for building intranet-
reporting applications. The Report Wizard code sample demonstrated how we can
report-enable WinForm applications using the Client-to-Report Server and Client-to-
Façade-to-Report Server design patterns.

To enhance the application performance, consider using in-memory caching and
executing tasks on a background thread.

After reading chapter 9, you should have enough background information to know
how to programmatically request reports using either URL or SOAP. More important,
you know how to choose between these two options based on your application’s
requirements.

Next, we’ll see how we can integrate RS with the second most popular type of appli-
cation—web-based.

376 CHAPTER 10 REPORTING FOR WINDOWS FORMS APPLICATIONS

10.6 RESOURCES

“Introducing Client Application Deployment with ClickOnce’”
(http://msdn.microsoft.com/vbasic/whidbey/default.aspx?pull=/library/en-us/
dnwinforms/html/clickonce.asp)
Discusses the forthcoming new deployment model for WinForm applications
in the next version of Visual Studio.NET.

“Using an Eval Function in Web Services”
(http://msdn.microsoft.com/msdnmag/issues/02/09/CuttingEdge/)
Demonstrates how the CodeDom technology can be used to compile and exe-
cute code dynamically.

“Safe, Simple Multithreading in Windows Forms”
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnforms/html/
winforms01232003.asp)
A three-part article that shows how to use multithreading in WinForm applications.

Microsoft patterns and practices for Application Architecture and Design
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnanchor/html/
Anch_EntDevAppArchPatPrac.asp)
An essential read on the best practices for Microsoft-centered application devel-
opment. Includes the documentation of the Microsoft Application Blocks.

377

C H A P T E R 1 1

Reporting for web-based
applications
11.1 Understanding web reporting 378
11.2 Client-side reporting techniques 384
11.3 Server-side reporting techniques 395
11.4 Summary 414
11.5 Resources 415

Nowadays everyone wants to be on the Web. In a response to this trend, many organi-
zations have built web-based solutions to reach a broad audience of users. While the tools
to create such applications have matured, web reporting often boils down to tabular
reports in the form of HTML tables. Many reporting vendors have attempted to fill in
this gap with a certain degree of success, but only a few offer complete solutions to
address the full spectrum of web reporting needs. For example, exposing reports as Web
services has been traditionally difficult if not impossible with third-party products.

Microsoft Reporting Services can be easily integrated with different types of web
applications. Organizations can use RS to make data easily accessible to internal users,
customers, and partners by integrating this reporting platform with their intranet,
Internet, and extranet applications.

In this chapter, we will discuss different techniques for report-enabling your web
applications. We will start by seeing how to request reports on the client side of the
application, including

• Static and application-generated hyperlinks
• Submitting report requests through HTTP-POST

378 CHAPTER 11 REPORTING FOR WEB-BASED APPLICATIONS

• Write-back reports
• Requesting reports via SOAP

Then, we will discuss various ways for generating server-side reports, including

• The ReportViewer sample control that comes with the RS samples
• The enhanced version of the ReportViewer control that will support generating

reports on the server side of the web application
• Reporting off application datasets
• Business-to-consumer (B2C) reporting and business-to-business (B2B) reporting

Let’s start by laying out the theory first, and then we’ll discuss different report integra-
tion scenarios for web-based applications.

11.1 UNDERSTANDING WEB REPORTING

Thanks to its web-enabled and open architecture, RS integrates well with web-based
applications. As we saw in chapter 9, RS provides two options that developers can use
to request reports: URL access that relies on HTTP-GET and Web service access that
uses SOAP.

These options fit nicely into the web-based model because most web-based appli-
cations support HTTP-GET or SOAP. However, report-enabling web-based applica-
tions may bring additional challenges, the first and foremost being security.

From the deployment standpoint, most web applications can be categorized as
intranet, Internet, and extranet applications.

11.1.1 Reporting for intranet applications

Intranet applications are deployed and used in an isolated and secured intranet envi-
ronment. Access to this type of application is restricted to a limited group of autho-
rized users (such as employees who belong to a domain).

In terms of reporting, intranet web-based applications could follow an identical
implementation approach to their WinForm counterparts.

Applying the Client-to-Report Server model

As you would probably recall in our discussion from chapter 10, we recommended the
Client-to-Report Server model for intranet-oriented applications. Figure 11.1 depicts
this model.

Figure 11.1

Intranet applications

typically follow the Client-

to-Report Server pattern,

where reports are

requested by URL.

UNDERSTANDING WEB REPORTING 379

The report consumer, which in this case is the web browser, directly accesses the
Report Server to request reports by URL on the client side of the application. At its
simplest implementation, using your favorite browser to request a report by typing the
report’s URL follows the Client-to-Report Server model.

As we explained in chapter 9, there are several advantages of requesting reports
via URL, such as its simplicity, its interactive feature support, and its native RS secu-
rity support.

Security considerations

As with the WinForm scenario, you have to be cognizant of the potential security risk
when reports are requested on the client side of the application. This is especially true
with web-based applications because the client-side scripting environment is generally
not secured. A hacker could easily intercept the URL request and exploit it for her own
malicious purposes. This is especially a concern when a report is requested in HTML
because the report’s URL address and parameters get embedded into the HTML page.

If exposing the URL address is an issue, you can leverage various client-side techniques
to hide the URL address from prying eyes, as we will discuss in section 11.2.1. In the case
of more stringent security requirements, this model could be replaced with the Client-to-
Façade-to-Report Server model, where the report request is validated and the report gen-
erated entirely on the server side of the application, as we discussed in chapter 8.

11.1.2 Reporting for Internet applications

While intranet-oriented applications have the luxury of executing reports in a secure
and well-controlled environment, this is not the case with Internet reporting, where
you will face additional challenges. For example, directly accessing the Report Server
and requesting reports by URL is usually not an option with Internet reporting because
of the stringent security requirements that are frequently enforced upon this type of
application. In addition, Windows authentication is rarely a feasible option, because
creating and maintaining Windows accounts for hundreds and often thousands of
users presents a maintenance challenge.

Given the latter limitation, here are two possible approaches for report-enabling
Internet-oriented web applications in terms of security:

• The Client-to-Façade-to-Report Server model in which secured access is enforced
on the server side of the application.

• Client-to-Report Server model with custom security—As discussed in chapter 8,
developers can replace the RS security model with a custom security extension.
We will see how this could be done in chapter 15.

Either way, validating the user request requires you to write additional code to enforce
secure access to the Report Server.

Now, let’s discuss each of these deployment models in more detail to find out how
they could be applicable for the Internet scenario.

380 CHAPTER 11 REPORTING FOR WEB-BASED APPLICATIONS

Web reporting with the Client-to-Façade-to-Report

Server model

With this model, the user request is checked before it is handed out to the Report
Server. This calls for introducing a Reporting Façade to isolate the Report Server from
the clients, as shown in figure 11.2.

The main characteristics of using this model with Internet-oriented web applica-
tions are as follows:

• The presentation layer communicates with the façade using HTTP-GET or
HTTP-POST.

• The Reporting Façade layer requests reports via SOAP.

• The details of the report request are never revealed to the end user.

The façade’s role in web-based applications is usually a responsibility of server-side code
logic encapsulated in web pages or business layer components. For example, this is what
a typical report request flow might look like for an Internet-oriented application:

Step 1 The user accesses the reporting page.

Step 2 The user fills in the report request details, such as the report name, parame-
ters, export format, etc.

Step 3 The user submits the page.

Step 4 When the page is submitted to the web server, the user request is validated.

Step 5 The page invokes the Render SOAP API to generate the report on the server
side of the application.

In terms of security, we recommend the following setup:

• An application-based mechanism to authenticate the users, for example, Forms
Authentication

• Passing the façade’s identity to the Report Server using the trusted subsystem
approach we discussed in chapter 8

Authenticating web users with the Client-to-Façade-to-Report Server model is the
responsibility of the Reporting Façade, as you have undoubtedly noticed with most

Figure 11.2 Typically, Internet-oriented applications generate reports on the server side of the

application following the Client-to-Façade-to-Report Server model.

UNDERSTANDING WEB REPORTING 381

commercial web sites. For example, an ASP.NET application can use Forms Authenti-
cation to validate the user credentials against the database store. We will see a B2C
example that uses Forms Authentication shortly in this chapter.

Once the user is authenticated, the façade submits the report request under its own
identity. For example, you can grant a minimum set of permissions to the Windows
account that the façade runs under, such as Browser role permissions. In this scenario,
the Report Server will see all report requests coming under the Reporting Façade’s
identity. The disadvantage of this approach is that your application has to validate the
users before the report request is made to the Report Server.

When the application requirements call for strict security, the Client-to-Façade-to-
Report Server model will be our recommended approach.

Web reporting with the Client-to-Report Server model

Sometimes, your reporting requirements may call for granting web users direct access
to the Report Server, as was the case with the intranet-reporting model we discussed
in section 11.1.1. For example, you may want to give your users a better experience by
allowing them to request reports with interactive features by URL.

NOTE RS allows you to expose the Report Server for Internet access so that users
outside the Report Server domain can request reports by URL. In general,
you should carefully evaluate this approach because of the security vulner-
abilities it entails, such as denial of service attacks.

Here is how you can configure the Report Server for Internet access. Let’s
say the Report Server computer name is myreportserver and its fully qualified
Internet-addressable name is myreportserver.adventure-works.com. To make
the Report Server accessible via the Internet you add a ReportServerExternalURL
setting in the RSReportServer.config configuration file. In our case this setting
should be set as follows:

<ReportServerExternalURL>http://myreportserver.adventure-
works.com/</ReportServerExternalURL>.

Because using Windows-based authentication with Internet-oriented applications is
often impractical, to apply the Client-to-Report Server model with this type of appli-
cation you can write a custom security extension to authenticate the user against a data
store before the request reaches the Report Server. The advantages of this approach
compared to the Client-to-Façade-to-Report Server model are as follows:

• Requesting reports by URL—We’ve emphasized on a few occasions the benefits of
URL access, including full support of all interactive features, simplicity, and so on.

• Discriminating web users—Similarly to way the Windows authentication works,
with custom security the user’s identity is passed to the Report Server. This
means that you can use role-based security to enforce secured access to the
report catalog based on the user’s identity or role membership.

382 CHAPTER 11 REPORTING FOR WEB-BASED APPLICATIONS

On the downside, this approach requires upfront development to write a custom secu-
rity extension. In addition, depending on how strict your security requirements are,
giving web users direct access to the Report Server may present a risk.

We will postpone implementing the custom security extension to chapter 15,
where we will see a practical example of how custom authentication could be useful
with Internet-oriented applications.

11.1.3 Reporting for extranet applications

Many B2B integration solutions are implemented as extranet applications. Extranets
allows business partnerships to streamline their internal processes by electronically
exchanging information. To accomplish this, an organization makes select information
available to third parties while still maintaining complete security over its core data.

For example, Adventure Works Cycles may want to expose its product inventory
data to its vendors in a form of a XML report. This will allow the company’s vendors
to automate their supply chain processes. A vendor could create a system to pull the
report on a regular basis in unattended mode. When the inventory level of a certain
product falls below the threshold value, the vendor system could initiate an automated
product delivery to Adventure Works. We will see a scaled-down example of this sce-
nario in section 11.3.5.

Figure 11.3 depicts the high-level deployment view of the extranet-reporting scenario.
The implementation approach shown in figure 11.3 promotes the Client-to-

Façade-to-Report Server model. While you could allow direct access to the Report
Server from extranet consumers, in reality, you may want to “wrap” it by introducing
a Reporting Façade layer. In the extranet scenario, such a level could be useful to pro-
vide the following features:

• Authenticate the external consumers

• Expose a limited subset of reporting features—For instance, in the previous sce-
nario, Adventure Works may use a façade to disallow exporting the report in
formats other than XML.

• Provide the input/output schema definitions—These definitions could serve as a
contract to which the consumers must adhere when submitting report requests.

Figure 11.3 In the extranet scenario, a façade layer could provide selective access to the

Report Server in the form of a Web service.

UNDERSTANDING WEB REPORTING 383

For maximum interoperability, the façade layer is typically implemented as a Web ser-
vice. In terms of security, there are several well-known approaches that you can use to
authenticate incoming requests to the façade, including these:

• IP address filtering—Access to the façade is restricted to a limited set of IP addresses.

• Windows authentication—The external clients can be authenticated with Win-
dows user accounts.

• Client certificates—Each external vendor could be given a certificate. Client cer-
tificates can be mapped to Windows users.

• Application-based security—For example, you can use the Microsoft Web Ser-
vices Extension toolkit to implement an application authentication model that
follows the WS-Security specification.

For more information about different strategies for securing extranet applications,
please see the resources in section 11.5.

Now that we’ve discussed at a high level how we can report-enable the three web-
based application types, let’s examine some practical web-reporting techniques. We
will refer collectively to our web samples as the Adventure Works Web Reporter, or
AWReporterWeb for short.

11.1.4 Introducing the Adventure Works Web Reporter

Once you’ve authored your report in RS, there are myriad ways to get it to your web-based
users. From an implementation standpoint, we can organize the web reporting techniques
into two categories: client-side reporting techniques and server-side reporting techniques.
This breakdown reflects the location from which the report request originates.

In the case of client-side reporting, the report request is initiated on the client side
of the application, for example, by clicking a hyperlink on a page rendered in the
browser. Most of the techniques in this category follow the Client-to-Report Server
pattern and request reports by URL.

In the latter case, the report is requested and rendered on the server side of the
application, for example, by using ASP.NET server-side code. In general, the tech-
niques under this category follow to the Client-to-Façade-to-Report Server approach
and request reports by SOAP.

The AWReporterWeb code examples can be found under the Chapter11 folder in
the AWReporterWeb project. Once you request the default.aspx page, you will be pre-
sented with the drop-down main menu, as shown in figure 11.4.

Figure 11.4

The main menu of the AWReporterWeb

project displays two menus: one for the

client-side reporting samples and one

for the server-side reporting samples.

To see the server-side menu items,

hover your mouse cursor on top of the

Server-side Reporting menu.

384 CHAPTER 11 REPORTING FOR WEB-BASED APPLICATIONS

The main menu is implemented as a drop-down menu. The client-side reporting sam-
ples can be initiated from the Client-side Reporting menu, while the server-side
reporting samples can be launched from the Server-side Reporting menu.

NOTE I used Peter Bromberg’s excellent ASP.NET menu sample to easily integrate
his menu control with my web application. The menu items are specified
in the menu.xml file. The menu control loads the menu definition and
applies XSLT transformation to render the menu in DHTML.

For more implementation details about the menu control, check the
resources in section 11.5.

Let’s now discuss the AWReporterWeb client-side reporting samples in the order in
which they appear on the menu.

11.2 CLIENT-SIDE REPORTING TECHNIQUES

Requesting reports on the client side may be a good fit for intranet-based applications
where the reports are rendered in a secured environment. Whenever possible, when
report-enabling this type of application try to take advantage of URL access and lever-
aging the RS role-based security model.

Let’s start by discussing the easiest and quickest ways to render reports and then
move to more advanced techniques.

11.2.1 Requesting reports from hyperlinks

One way to get a report on the web is to request it by clicking on a hyperlink. The
Requesting Reports with Hyperlinks (Hyperlinks.aspx) page of the AWReporterWeb
project shown in figure 11.5 demonstrates the following common hyperlink tech-
niques: static, dynamic, and server-side generated.

In its simplest implementation, you can use static hyperlinks to run reports. By
static, we mean a hyperlink that includes the report’s URL address.

Alternatively, you can use dynamic hyperlinks to run reports. By the term dynamic
hear we mean hyperlinks that are constructed on the client side of the application so
they don’t contain fixed URL report addresses.

Finally, you can also use server-side generated hyperlinks in which the hyperlinks are
generated on the server side of the web application.

Figure 11.5 You can use static and dynamic hyperlinks to requests reports by URL.

CLIENT-SIDE REPORTING TECHNIQUES 385

Using static hyperlinks

By using static hyperlinks you can easily integrate your reports with other web-based
applications. For example, a SharePoint-based web portal can have web parts that use
static hyperlinks to render reports of interest.

The Requesting Reports with Hyperlinks page of the AWReporterWeb project lists
several reports that you navigate to based on a static hyperlink. These hyperlinks also
demonstrate how to use the URL syntax we discussed in chapter 9.

The Sales by Territory report’s URL demonstrates a static hyperlink at its simplest:

http://localhost/reportserver?/AWReporter/Sales by Territory

This hyperlink will generate the Sales by Territory report in the default format, which
is HTML4.0 for up-level browsers or HTML3.2 for down-level browsers.

The Employee Sales Freeform report’s URL demonstrates how to request a param-
eterized report from a hyperlink:

http://localhost/reportserver?/AWReporter/Employee Sales Freeform&Start-
Date=1/1/2003 12:00:00 AM&
EndDate=12/1/2003 12:00:00 AM&Employee=-1

The Sales by Territory with Chart report’s URL demonstrates how to embed Report
Server commands and device settings into a static hyperlink:

http://localhost/reportserver?/AWReporter/Employee Sales
Freeform with Chart&StartDate=1/1/2003 12:00:00 AM&
EndDate=12/1/2003 12:00:00 AM&rs:Format=PDF&rs:Command=Render

Although the static hyperlink approach excels in simplicity, it falls short in terms of
customization and security. For example, when using static hyperlinks, you have little
control over the appearance of the browser window. At most, you can request the
report to be rendered in a new instance of the browser or a particular frame by setting
the hyperlink’s target property to _blank. Using static hyperlinks may also present a
security risk because the user can see and change the report’s URL at will to request
another report or modify the report’s parameters.

Fortunately, with RS you are not restricted to static report hyperlinks only. Often,
your application requirements may rule out hard-coding the report’s URL address in
the hyperlink. In such cases, you can dynamically construct the link on the client or
server side of the application.

Using dynamic hyperlinks

Dynamic hyperlinks can be useful when you need to custom-tailor the browser win-
dow and hide the report request’s details by using familiar client-side web techniques.

For example, the Territory Sales Drillthrough report’s URL demonstrates how you
can use JavaScript code to customize the browser window:

<A onclick='window.open("http://localhost/reportserver?/
AWReporter/Territory Sales Drillthrough&

386 CHAPTER 11 REPORTING FOR WEB-BASED APPLICATIONS

StartDate=1/1/2003 12:00:00 AM&
EndDate=12/1/2003 12:00:00 AM&
rs:Command=Render", "_blank", "location=no,tool-
bar=no,left=100,top=100,height=600,width=800")'>

The onclick JavaScript handler displays the report in a customized browser window,
as shown in figure 11.6.

To hide the report’s URL from the end user, the window doesn’t have a toolbar or
address bar. In addition, the JavaScript code sizes and positions the window explicitly.
This approach may offer a good compromise between simplicity and security for intranet-
based applications.

The Territory Sales Crosstab report’s URL extends the dynamic hyperlink tech-
nique by allowing the user to enter the report’s parameters and encapsulates the report
request in a client-side JavaScript function, as shown in figure 11.7.

In this example, the onclick event handler attached to the hyperlink toggles the
visibility of the parameter section. Once the parameters are entered, the user can
request the report by clicking the Run Report button.

Figure 11.6 Use dynamic hyperlinks when you need to customize the browser window.

CLIENT-SIDE REPORTING TECHNIQUES 387

The button event handler invokes the requestReport client-side function and
passes the start and end date parameters as arguments:

function requestReport(startDate, endDate) {
 window.open("http://localhost/reportserver?/
 AWReporter/Territory Sales
 Crosstab&StartDate=" + startDate + "&EndDate=" + endDate+
 "&rs:Command=Render", "_blank", "location=no,toolbar=no,
 left=100, top=100, height=600,width=800")
}

The reportRequest function renders the report in a customized browser window,
as we saw in the previous example.

Using server-side generated hyperlinks

Most web-based applications require some server-side preprocessing before the page is
rendered. For example, it is a common requirement to generate HTML tables on the
server side of the application that include clickable hyperlinks to bring the user to
another page or report that shows more details.

To see how to integrate a report’s hyperlinks with a server-side-generated ASP.NET
grid, click the Employee Orders link from the main menu of the AW Web Reporter.
The Salesperson Orders (EmployeeOrders.aspx) page is shown in figure 11.8.

The EmployeeOrders.aspx page retrieves the sales order information from the
Adventure Works database using a data reader. The user can click the Details hyperlink

Figure 11.7

You can use client-side

JavaScript to generate

the report’s hyperlink.

Figure 11.8 Report hyperlinks can be generated on the server side.

388 CHAPTER 11 REPORTING FOR WEB-BASED APPLICATIONS

to see the order details. This action displays the Sales Order Details report, which hap-
pens to be one of the Reporting Services sample reports.

The hyperlink passes the order number from the same grid row as the report param-
eter. This is accomplished by defining the Details column as a grid template column:

<asp:TemplateColumn HeaderText="Details">
 <ItemTemplate>
 <a href="#" onclick="javascript:requestReport
 ('<%#DataBinder.Eval(Container.DataItem,"SalesOrderNumber")
 %>');">Details
 </ItemTemplate>
</asp:TemplateColumn>

For those of you not familiar with the ASP.NET data binding model, the odd-looking
DataBinder expression retrieves the SalesOrderNumber field from the underlying data
reader row and injects it into the page. As a result, when the page is rendered, the
onclick event for the first record will be set to something like this:

onclick="javascript:requestReport('SO5812');"

The requestReport JavaScript client-side function submits the report request as
we’ve just seen.

11.2.2 Creating write-back reports

By “write-back” reports, we will mean reports that allow the users to update the
report’s data and post back the changes to the report’s database, very much like the way
server-side web pages work. This sounds like a cool thing, doesn’t it? The only caveat
is that RS (or any other reporting tool that we know of) doesn’t support write-back
reports. However, as a workaround, you can leverage the RS navigation features to inte-
grate your reports with server-side pages. Let’s see how this could be done.

As you saw in chapter 5, your reports can include navigational features in the form
of hyperlinks. Hyperlinks don’t have to request RS reports only. Instead, you can
“reverse” their purpose and use hyperlinks inside your reports to perform some cus-
tom action.

Let’s say the AWC sales management has realized that sometimes the sales order
data is entered erroneously. The management has requested that you enhance the Sales
Order report to meet the following requirements:

• The sales administrator can request a report for a given salesperson and date range.

• If wrong sales order data is entered, the sales administrator must be able to
change the order’s details.

• The changes have to be persisted back to the data source.

At first look, you may think that these requirements call for application-based reporting
because RS doesn’t currently support write-back reports. However, you can get around
this limitation by using hyperlinks in your reports that request server-side pages.

CLIENT-SIDE REPORTING TECHNIQUES 389

To see how to implement this type of functionality, click the Write-back link from
the main menu of the AW Web Reporter. The Write-back menu item renders the Sales
Order Writeback report, as shown in figure 11.9.

The navigation action for the Sales Order report item is set to the following hyperlink:

="http://localhost/AWReporterWeb/Chapter11/Client/
 Writeback.aspx?SO=" & Fields!SalesOrderNumber.Value

As a result, when the user clicks on a sales order number, the hyperlink requests the
Writeback Demo (Writeback.aspx) page (figure 11.10), passing the Sales Order Num-
ber as a query parameter.

The report will open the page in a new browser window by default. However, you
can use the LinkTarget device setting in the report request’s URL to instruct the report
to load the page in a specific frame, for example, rc:LinkTarget=myFrameName.

Writeback.aspx queries the database and populates the Sales Person drop-down
with the list of all salespersons. Next, it retrieves the sales order details. The user can
change the order data and click the Update Order hyperlink to submit the page and
propagate the changes to the database. In our case, to simplify things, we just output
the field values back to the page.

Figure 11.9 You can use RS navigational features to implement write-back reports.

390 CHAPTER 11 REPORTING FOR WEB-BASED APPLICATIONS

11.2.3 Using HTTP-POST

All of the examples so far in this chapter have used HTTP-GET to submit the report
request to the Report Server on the client side of the application. Sometimes, using
HTTP-POST as a web protocol may be a better choice because of the following advan-
tages it has over HTTP-GET:

• The report URL address is less exposed than with HTTP-GET—The report request
details are more hidden from prying eyes and cannot be easily changed.

• Unlimited parameter length—As we said in chapter 9, many browsers impose
limitations on the length of the URL string in the case of the HTTP-GET proto-
col. In contrast, with HTTP-POST, the length of the request parameters (report
parameters, commands, and device settings) is unlimited, because the name/
value pairs are transferred in the request’s HTTP header, not in the URL.

Submitting the report request via HTTP-POST

To view a report requested by HTTP-POST, click the Report Picker link from the main
menu of the AW Web Reporter. The Report Picker page is shown in figure 11.11.

NOTE Because the Report Picker and the samples that follow use the credentials of
the interactive user to invoke the RS SOAP API, make sure that the
AWReporterWeb application is configured for Integrated Windows secu-
rity and Anonymous access is disabled.

The Reports and Export Format drop-downs are populated with server-side code, which
is similar to the Report Wizard sample code that we discussed in chapter 10. The Reports
drop-down is set to post back the page automatically. When the report selection changes,
the page posts back to itself to retrieve and display the report parameters.

The page gets the report parameters on the server side by invoking the Get-
ReportParameters RS web method. Then, the page loops through the report

Figure 11.10 Report links can point to any URL-addressable resource including

ASP.NET pages to implement write-back features.

CLIENT-SIDE REPORTING TECHNIQUES 391

parameters and loads them into a DataTable object. Finally, the page binds the param-
eter table to the Parameter grid control. The grid’s Value column is implemented as
a template column similar to that in the Sales Orders sample report.

To request the report via HTTP-POST on the client side of the application, the
page defines a second form that includes a few hidden fields to capture the report
request’s details and post them back to the Report Server:

<FORM id="frmRender" action="http://localhost/reportserver?"
 method="post" target="report">
 <INPUT type="hidden" value="Render" name="rs:Command">
 <INPUT type="hidden" value="HTML4.0" name="rs:Format">
 <INPUT type="hidden" value="_blank" name="rc:LinkTarget">
</FORM>

The hidden fields serve as placeholders for Report Server commands and device settings.

Handling parameters

As part of submitting the report request via HTTP-POST, we need to send the param-
eter values. Handling the report parameters is tricky because a report could have an
arbitrary number of parameters. For this reason, we need to generate the parameters’
placeholders dynamically. This is done inside the runReport client-side JavaScript
function, as shown in listing 11.1.

var reportServerUrl = null;
function runReport() {
 frmRender.action = reportServerUrl +
 frmReports.drpReports.value;
 frmRender.Format.value = frmReports.drpExport.value;

 var parameters = frmReports.txtParameter;
 var paramUrl ="";

Figure 11.11

Use HTTP-POST to

hide the URL address

details and unlimited

parameter length.

Listing 11.1 Submitting a report via HTTP-POST

Generates the action
target of the form

b

Gets a reference to the
parameter textboxes

c

392 CHAPTER 11 REPORTING FOR WEB-BASED APPLICATIONS

 var oldParameters = frmRender.Parameter;
 if (oldParameters!=undefined) {
 var count = parameters.length
 for (i=0;i<count;i++) {
 oldParameter = oldParameters[i];
 frmRender.removeChild(oldParameter);
 i--;count--;
 } // end for
 } // end if

 if (parameters.length>0) {
 for (i=0;i<parameters.length;i++) {
 var newParam = document.createElement("INPUT");
 newParam.type = "hidden";
 newParam.id = "Parameter";
 newParam.name = parameters[i].name;
 newParam.value = parameters[i].value;
 frmRender.appendChild(newParam);
 } // end for
 } // end if

 window.open("about:blank", "report",
 "location=yes,toolbar=no,left=100,
 top=100,height=600,width=800")

 frmRender.submit();
}

The runReport function is invoked from the onclick event of the Run
Report hyperlink.

b First, we set the form’s action to the report’s URL. Next, we set the Format hidden
field to the selected export format.

c,d Next, we remove the parameters from the previous report run.

e Then, we loop through all parameter textbox controls in the grid. For each parameter,
we create a new hidden input element and set its name and value. To render the
report, we create a new named browser window.

f Finally, we submit frmRender to the Report Server and display the report in a cus-
tom-tailored browser window.

11.2.4 Calling the RS Web service on the client side

To round up the client-side web-reporting techniques, we would like to show you a way
to submit the report request via SOAP on the client side of the application. There are at
least two good reasons for generating reports via SOAP with web-based applications:

• URL access to the Report Server is not allowed—For example, security require-
ments may force the report administrator to disallow requesting reports via

Removes the old parameters
from the previous run

d

Generates as many hidden fields
as the report has parameters

e

Submits the form
via HTTP-POST

f

CLIENT-SIDE REPORTING TECHNIQUES 393

HTTP-GET or POST. As we mentioned in chapter 9, you can do this by taking
out removing the ReportServiceHttpHandler declaration from the Report
Server’s web.config file.

• “Pseudo” web-based rich clients—The web application can be designed to behave
like a WinForm stateful application, where the data retrieval and rendering are
done entirely on the client side, for example, by using XSL transformations.
This approach has been popular with “fat” DHTML clients that don’t post their
pages back to the web server.

To submit the report request via SOAP on the client side of a web-based application,
you can use the Microsoft WebService behavior.

Using the Microsoft WebService behavior

If your target browser is Internet Explorer, you can use the Microsoft WebService
behavior to call web methods on the client side of the application using your favorite
scripting language. To learn more about the WebService behavior, please see the
resources in section 11.5.

The Web Behavior sample builds upon the Report Picker sample to demonstrate
how reports can be requested via SOAP. At first look, the WebBehavior.aspx page
appears identical to the ReportPicker.aspx page. However, the client-side reporting
model is very different. Now, when the report request is submitted, the page doesn’t
post to itself. Instead, it invokes the RS Web service to request the report via SOAP
and render it on the client side of the application.

Once we downloaded the WebService behavior file (webservice.htc) from the
Microsoft web site, we configured it as follows. First, we created a DIV element to
expose the WebService behavior as a DHTML element:

<div id="proxy" style="BEHAVIOR: url(webservice.htc)"></div>

Next, we changed the page body element to invoke the JavaScript init() function
so that we could initialize the behavior to point to the RS Web service by calling the
useService method:

<body onload="init()">
function init() {
 proxy.useService("http://localhost/reportserver/
 reportservice.asmx?WSDL","RS");
}

The second argument of the useService method allows you to specify a friendly
name for the Web service.

394 CHAPTER 11 REPORTING FOR WEB-BASED APPLICATIONS

Requesting reports

Requesting a report using the WebService behavior resembles the asynchronous report
generation pattern that we discussed in chapter 9. Listing 11.2 shows the implemen-
tation details.

function runReport() {
 var optional;
 var objCall = proxy.createCallOptions();
 objCall.funcName = "Render";
 objCall.params = new Array();
 objCall.params.Report = frmReports.drpReports.value;
 objCall.params.Format = "XML";
 objCall.params.HistoryID = optional;
 var parameters = frmReports.txtParameter;
 if (parameters.length>0)
 objCall.params.Parameters = getParameters(parameters)

 proxy.RS.callService (fnHandler, objCall);
}

function parameter() {
 this.Name = null;
 this.Value = null;
 return true;
}

function getParameters(parameters) {
 reportParams = new Array();
 for (i=0;i<parameters.length;i++) {
 var newParam = new parameter();
 newParam.Name = parameters[i].name;
 newParam.Value = parameters[i].value;
 reportParams[i] = newParam;
 }
 return reportParams;
}

function fnHandler(res) {
 if (!res.error) {
 var decodedResult = decode(res.value.Result);
 OpenReport (decodedResult);
 }

 else alert(res.errorDetail.string);
}

Clicking the Run Report hyperlink triggers a call to the runReport JavaScript function.

Listing 11.2 Requesting a report by SOAP using the Microsoft WebService

behavior

Prepares the report requestb

Sets the report parametersc

The report
parameter definition

d

Enumerates the
report parameters

e

The resultant
callback function

f

SERVER-SIDE REPORTING TECHNIQUES 395

b We start by defining our report request to the Render web method. We decided to
hard-code the report format as XML so that we could save the report’s payload as a
disk file. To accomplish this, we use the FileSystemObject object, which currently
doesn’t provide the ability to save binary data to a file.

NOTE You may need to adjust the browser’s security settings to prevent client-side
JavaScript errors when using FileSystemObject.

c Next we populate the report parameters e by calling the getParameters func-
tion, which loops through the parameter elements on the page and adds them to an
array object.

d Because the Render method defines the parameter argument as of the Parameter-
Value type, we need to define a JavaScript structure that matches the ParameterValue
layout. This is exactly what the parameter() function does.

f Next, we call the Render method asynchronously and pass a pointer to the
fnHandler callback function, which will be called automatically when the web
method returns something. If the call completes successfully, we decode the results
from Base64 encoding. Finally, we call the OpenReport function to save the report’s
payload to a text file and shell out to the browser so we can see the file’s contents.

While intranet-based applications could enjoy the simplicity and the rich feature set
of the Client-to-Report Server reporting model, other scenarios may require server-
side report generation by following the Client-to-Façade-to-Report Server pattern.
The next section shows you how you can do just that.

11.3 SERVER-SIDE REPORTING TECHNIQUES

While client-side reporting is simple, many web applications include dynamically gen-
erated content in the form of server-side web pages. From the reporting perspective,
there will be cases when you need to perform certain aspects of the report-generation
process on the server side, ranging from validating the report’s parameters to generat-
ing the report entirely on the server side.

There are at least a couple of ways to integrate RS with server-side web pages:

• Use the ReportViewer sample control

• Generate the report on the server side of the application.

First, in this section we will discuss how the ReportViewer control can be used as a
server-side reporting technique.

Then, we will supercharge it to achieve “true” server-side report generation. We
will also see how the enhanced version can help us to report off application datasets,
which is a common application requirement for B2C applications.

Finally, we will discuss how reports can be integrated in the B2B scenario.

396 CHAPTER 11 REPORTING FOR WEB-BASED APPLICATIONS

11.3.1 Using the ReportViewer control

To facilitate integrating RS on the server side of the application, Microsoft has pro-
vided an interesting sample called ReportViewer. As the documentation says, “Report-
Viewer is an ASP.NET server control developed using Visual Studio .NET. The server
control is based on a real-world scenario and it demonstrates how to develop a custom
control that you can use to integrate Reporting Services reports in a Web application.
ReportViewer server control uses Reporting Services URL access functionality to ren-
der and navigate reports in a Web browser.”

We highly recommend that you explore the ReportViewer source code even if you
don’t plan to use it in your applications. You can learn a lot from it, especially if you are
new to developing ASP.NET web server controls.

Understanding ReportViewer

The ReportViewer control sample is implemented as a .NET web control library and,
as such, it can be used only with ASP.NET applications. Both VB.NET and C# source
code is included with the sample.

Follow these steps to reference the ReportViewer control in your ASP.NET applications:

Step 1 Compile the source code of the control. If you have accepted the default
installation settings, the ReportViewer source code can be found under
C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\Samples\
Applications\ReportViewer.

Step 2 Right-click the VS.NET toolbox and choose Add/Remove Items.

Step 3 In the Customize Toolbox dialog, make sure that the .NET Components tab
is selected. Click the Browse button and navigate to the ReportViewer binary
file (ReportViewer.dll). After you confirm the selection, the ReportViewer
control should be added to the toolbox.

Step 4 Now you can drag and drop the control onto your web form, just as you
would do with other controls on the toolbox.

ReportViewer allows you to configure the following report request details in an object-
oriented way during the application design or runtime:

• General report parameters, including the report path, i.e., /AWReporter/Employee
Sales Freeform, and the Report Server URL, i.e., http://localhost/ReportServer

• HTML Viewer commands, including the visibility of the toolbar (rs:Toolbar)
and parameters (rs:Parameters), as well as zooming

• Rendering format, i.e., HTML4.0

For the rest of the report request’s details, such as the report’s parameter values, the
control relies on the HTML Viewer toolbar, which is rendered by default when the
report is requested by URL.

SERVER-SIDE REPORTING TECHNIQUES 397

The ReportViewer control allows you to add “pseudo” server-side reporting capabili-
ties to your applications. What we mean by this is that, while the control allows you
to configure the report request on the server side, the request itself is submitted on the
client side of the application.

The sequence diagram shown in figure 11.12 should make this clear.
This is what happens during the application runtime when an ASP.NET page ren-

ders the control:

1 ReportViewer generates a report placeholder that will host the rendered report,
by injecting an IFRAME HTML element into the hosting page. The SRC prop-
erty of the frame will be set to the report’s URL string, per the ReportViewer
property values set by the developer.

2 When the page is rendered in the browser, the IFRAME element requests the
report by URL.

3 The rendered report is displayed in the IFRAME element.

For example, let’s say you’ve set up the ReportViewer control during design time with
the settings listed in table 11.1.

Table 11.1 Based on the settings you enter, ReportViewer

generates an IFRAME element and sets its URL accordingly.

Setting Value

ServerUrl http://localhost/reportserver

ReportPath /AWReporter/ Corporate Hierarchy

Toolbar True

Format HTML4.0

Zoom 100%

Figure 11.12

While the ReportViewer

can be configured on the

server side of an ASP.NET

application, the report

request is submitted on

the client side.

398 CHAPTER 11 REPORTING FOR WEB-BASED APPLICATIONS

Given the above settings, here is the IFRAME element definition that the Report-
Viewer control will inject in the hosting page:

<iframe src="http://localhost/reportserver?/AWReporter/Corporate Hierar-
chy&rs:Command=Render&rc:parameters=true&rc:toolbar=true&
rs:Format=HTML4.0" width="800px" height="100%" style="border: 1
solid #C0C0C0" border="0" frameborder="0">
</iframe>

Let’s see a practical example that uses the ReportViewer control.

Using ReportViewer

The ReportViewerDemo.aspx page builds upon the ReportPicker example we saw ear-
lier, but now it uses the ReportViewer control, as shown in figure 11.13.

Once the user picks a report, specifies the export format, and clicks the Run Report link,
the page posts back to itself. Then, on the server side, we set the ReportViewer.ReportPath
property to the selected report and the Format property to the desired export format.
Once the page is rendered, the report will be displayed in the generated IFRAME.

The most important point about ReportViewer is that the report is requested by URL
on the client side of the application. Therefore, in our opinion, the ReportViewer con-
trol will be a good fit for intranet-based applications or Internet-oriented applications
that are configured for custom security. As we stressed on numerous occasions, URL
access should be your preferred choice because of the advantages that we discussed in
detail in chapter 9. In such an environment, the ReportViewer hybrid design allows
developers to have the best of both worlds:

• Server-side control configuration—For example, the application can configure
the control on the server side in an object-oriented way and shield the developer
from the URL syntax technicalities.

• Client-side URL-based report generation with all the advantages it has to offer.

Figure 11.13 The Report Viewer Demo page

SERVER-SIDE REPORTING TECHNIQUES 399

Let’s now see how we can enhance the ReportViewer control to support server-side
report generation.

11.3.2 Using the Adventure Works ReportViewer control

Depending on your reporting requirements, the ReportViewer control may not be a
good fit because it is subject to the following limitations and restrictions:

• Direct access to the Report Server may not be an option.

• ReportViewer doesn’t support server-side report generation.

• ReportViewer relies on the RS HTML Viewer control to handle report parameters.

The last limitation presents a problem if you need to report off data available only on
the server side of the applications, such as ADO.NET datasets.

When report-enabling Internet-oriented applications, what you may need is an
enhanced version of ReportViewer that is capable of generating reports entirely on the
server side. For this reason, we decided to supercharge the ReportViewer control.
Enter the Adventure Works Report Viewer, or AWReportViewer for short.

The AWReportViewer design goals

The main design goals for the AWReportViewer control are as follows:

• Support both client-side and server-side report generation—We left the client-side
report-generation logic the same to make the new version compatible with the
ReportViewer implementation. If the server-side option is set, the control ren-
ders the report as an HTML fragment if the requested export format is HTML.
For export formats different than HTML, the control downloads the report to
the client.

• Expose the control functionality as a set of properties and methods—Similar to its
cousin the ReportViewer control, AWReportViewer allows the developer to set
the report’s properties in an object-oriented way during application design time
and runtime.

• Facilitate reporting off application datasets—The control has a DataSource prop-
erty, which the developer can set to an instance of an ADO.NET dataset. For
this option, the control relies on the custom dataset data extension that we’ll
discuss in detail in chapter 15.

• Implement the control as a web server control—This allows developers to drag and
drop the control on the page canvas and easily manipulate its position, layout,
and report-related properties during design time.

400 CHAPTER 11 REPORTING FOR WEB-BASED APPLICATIONS

Configuring AWReportViewer

You can find the AWReportViewer C# source code under the Code/AWReportViewer
folder. To use the control in your web applications, reference it similarly to the way
you did the ReportViewer control.

Once you drag and drop the control onto an ASP.NET page, you will see some
extra properties grouped under the Server-side Execution Options category, as shown
in figure 11.14.

The purpose of these properties is shown in table 11.2.

Table 11.2 The AWReportViewer server-side properties

Property Type Availability Purpose

DataSource System.Data.DataSet Runtime only Set to an instance of an
ADO.NET dataset for report-
ing off application datasets.

ServerSide Boolean Design time/runtime Set to true to generate the
report on the server side.

continued on next page

Figure 11.14 The AWReportViewer includes properties for server-side

report generation.

SERVER-SIDE REPORTING TECHNIQUES 401

In addition, the control exposes a publicly accessible method called AddParameter,
which you can use to configure programmatically the report’s parameters.

As we said, the control can be used for both client-side and server-side report gen-
eration. When the ServerSide property is set to true, the client-side properties, such
as ParametersVisible, ToolbarVisible, and so on, are irrelevant and are disabled. When
ServerSide is set to false, the server-side properties are not accessible.

AWReportViewer in action

Let’s now look at an example to demonstrate how the AWReportViewer control can be
useful for Internet-based reporting.

Imagine that the AWC management has decided to enhance their Internet portal
by allowing users to generate some reports. The new requirements are as follows:

• The users can export the reports in any of the supported formats.

• Due to security restrictions, the reports must be generated on the server side.

To meet these requirements, the AWReportViewerDemo.aspx page takes advantage of
the server-side report-generation capabilities of the Adventure Works ReportViewer
control. From an implementation standpoint, the sample page is similar to the Report-
Picker example.

The AWReportViewer control is configured as shown in figure 11.14. After the
user has specified the report, export format, and report parameters, the page posts back
to itself. Then, the RunReport OnClick event handler calls the SetParameters
function to configure the report’s parameters:

private void SetReportParameters() {
 ParameterValue[] parameters = null;
 if (grdParams.Items.Count>0) {
 parameters = new ParameterValue[grdParams.Items.Count];

 foreach (TableRow row in grdParams.Items) {
 reportViewer.AddParameter(row.Cells[0].Text,
 (TextBox)row.Cells[1].FindControl("txtParameter")).Text);
 }
 }
}

ImageDownloadPath String Design time/runtime Specifies the location where
the report images will be
downloaded. The path is rela-
tive to the application’s root
path.

StreamRoot String Design time/runtime Specifies the URL location of
the image handler page.

Table 11.2 The AWReportViewer server-side properties (continued)

Property Type Availability Purpose

402 CHAPTER 11 REPORTING FOR WEB-BASED APPLICATIONS

To retrieve the user-specified parameters from the ASP.NET grid, we loop through the
grid rows to get to the parameter label and value. For each parameter, we call the
AWReportViewer public method AddParameter to add the parameter to a collec-
tion of the report’s parameters. Next, the page overrides the ReportPath and Format
AWReportViewer properties as per the user selection.

During the page-rendering phase, the page asks the AWReportViewer to render
itself. When the control is configured for server-side reporting, the AWReportViewer
requests the report via SOAP. If the export format is one of the HTML flavors, the con-
trol embeds the report inside the page as an HTML fragment, as shown in figure 11.15.

If the report is requested in another format, the report’s payload is streamed back
to the browser. As you can see, the client is not aware of, and therefore cannot spoof,
the report request because the whole report-generation process is server-oriented.

Now that you’ve seen how the AWReportViewer can be used, let’s take a behind-
the-scenes tour to find out how it is implemented.

Figure 11.15 Rendering a report with the AWReportViewer control

SERVER-SIDE REPORTING TECHNIQUES 403

Setting design goals

Granted, we could generate reports on the server side without the help of a server-side
control. However, we liked the control implementation approach because of the fol-
lowing advantages it offers:

• Code encapsulation—All code logic is implemented in the web control.

• Reuse—The control can be easily reused by another ASP.NET application.

• Object-oriented access—AWReportViewer exposes a set of public properties
and methods.

• Easy configuration—The AWReportViewer properties can be set during both
design time and runtime.

• Handling report images for HTML reports—The control takes care of displaying the
report images when the report is generated on the server side of the application.

We found enhancing the ReportViewer control for generating server-side reports
to be straightforward. The area that had to undergo the most changes was the con-
trol’s Render method. The hosting ASP.NET page asks the control to render itself
on two occasions:

• When the control needs to be redrawn during design time—For example, when
you drag and drop the control on the page canvas, the page asks the control to
show its “face.”

• During runtime, when the page asks each of its child controls to render itself

Let’s now see how AWReportViewer generates the report on the server side by calling
the RS Web service.

Rendering reports

Listing 11.3 shows the server-side report-generation logic.

byte[] result = RenderReport();
if (IsHtmlReport) {
 string res = Encoding.UTF8.GetString(result);
 output.Write(res);
}
else {
 HttpResponse response=System.Web.HttpContext.Current.Response;
 response.ClearContent();
 response.ClearHeaders();
 string fileName = GetFileName(this.ReportPath, this.Format);
 response.ContentType =
 GetContentType(Path.GetExtension(fileName));
 response.AddHeader ("content-disposition", "attachment;
 filename=\"" + fileName + "\"");

Listing 11.3 Server-side report rendering

Requests the report via SOAPb
For HTML reports renders the report as an HTML fragmentc

For other export formats streams
the report to the browserd

404 CHAPTER 11 REPORTING FOR WEB-BASED APPLICATIONS

 response.BinaryWrite(result);
 response.Flush();
 response.Close();
}

b First, we generate the report by SOAP. The process is similar to the examples we
looked at in chapter 9, so we won’t be discussing it here. Once the report is generated,
we need to display it on the page.

c If the requested format is one of the HTML flavors, such as HTML4.0, HTML3.2, or
HTMLOWC, the report is rendered as an HTML fragment by turning on the HTML-
Fragment device setting. This setting instructs the Report Server to remove the
HTML, HEAD, and BODY elements from the HTML representation for the report.
Then the report output is embedded in the hosting page, at the location where the
AWReportViewer control is placed on the page.

d In the case where the export format is other than HTML, AWReportViewer streams
the report’s payload to the browser. To accomplish this, we first clear the response
buffer. Then, we let the browser know the type of the response stream, for example,
application/pdf in the case of Adobe PDF. We also need to specify the filename,
which we default to the report name with an appropriate file extension as per the
specified export format.

For example, if the user has requested the Employee Sales Freeform report in PDF, the
filename will be Employee Sales Freeform.pdf. Finally, we stream the report to the
browser using the Response.BinaryWrite method. This will force the browser
to display the familiar download confirmation dialog, just as it does when we export a
report using the HTML Viewer.

Handling images

As we said in chapter 9, when you generate an HTML-based report via SOAP, you have
to take care of the report’s images. While for intranet-based applications you can
download the image streams to a network file share, Internet-oriented applications
make this option impractical.

Because the AWReportViewer control could be used in both scenarios, we decided
to implement a flexible image-handling mechanism that works for both types of appli-
cations. The design goals of our image handler were

• Create a server-side image handler page to render the images
• Download the report images to a configurable image store
• Allow developers to easily configure the location of the image store, as well as

the image handler end point

To make the image handler easily configurable, the AWReportViewer control exposes a
couple of properties. You can use ImageDownloadPath to specify the image’s download

SERVER-SIDE REPORTING TECHNIQUES 405

location. The default value is /temp, meaning that by default the report images will be
downloaded to the AWReporterWeb/temp folder. In our implementation, the folder
has to be relative to the application’s root folder. However, if this is not convenient for
you, you can modify the code to handle an alternative location. Please note that
because the image handler page (more on this in a moment) takes care of streaming
the images, the image store doesn’t have to be accessible by the interactive users.

The second property, StreamRoot, corresponds to the StreamRoot device info set-
ting. If left blank, it defaults to the ImageDownloadPath property. You will typically
set StreamRoot to point to the image handler page’s URL using the following syntax:

http://<webservername>/<applicationroot>/ImageHandler.aspx?ID=

When the report is processed, the Report Server will parse the StreamRoot setting and
adjust the image’s URLs accordingly. Specifically, it will append the image stream’s
identifier to the end of the URL string. When the report is rendered on the client side,
the browser will invoke the image handler page and pass the stream’s identifier as a
query parameter.

We implemented the image handler page as an ASP.NET page (ImageHandler.
aspx), which can be found under the AWReporterWeb project’s root. The page
attempts to load the image from a location specified in the application’s configuration
file. Because AWReportViewer and the image handler may reside in different web
applications, you need to ensure that both are configured to use the same image store.

Next, the page converts the image to a byte array and streams it back to the
browser. The added advantage of the image hanlder approach is that you don’t have
to take care of the image’s housekeeping chores because page deletes the image once
it is done with it.

Implementing control properties

The last area that deserves more attention is the control property synchronization. As
we mentioned, the control has built-in logic that determines which properties will be
available for server-side and client-side modes. To accomplish this, we had to imple-
ment the ICustomTypeDescriptor interface and override the property descrip-
tor. If you look at the custom properties declaration inside the control’s source code,
you will see that they are decorated with attributes, as in the following example:

[Browsable(true), ReadOnly(true),
 Category("Server-side Execution Options"),
Description("Set this to an instance….")]
public System.Data.DataSet DataSource {}

You can use property attributes such as these to let the VS.NET Designer get more insight
about your custom properties so it can configure the Properties window accordingly.
For example, the DataSource property is decorated with the Browsable attribute set
to true, which means that we want this property to appear in the VS.NET Properties
window. It is also marked with a ReadOnly attribute, so the property appears disabled.

406 CHAPTER 11 REPORTING FOR WEB-BASED APPLICATIONS

To override the design time property configuration, you need to implement the
ICustomTypeDescriptor interface as we did with the AWReportViewer control.

The ICustomTypeDescriptor interface has many methods but, with the
exception of GetProperties (shown in listing 11.4), all are implemented as simple
pass-through methods.

public PropertyDescriptorCollection
 GetProperties(System.Attribute[] attributes) {

 PropertyDescriptorCollection filteredProperties = new
 PropertyDescriptorCollection(null);
 PropertyDescriptorCollection existingProperties;
 PropertyDescriptor tempProperty = null;

existingProperties = TypeDescriptor.GetProperties(this.GetType(),
 attributes);
 foreach (PropertyDescriptor pd in existingProperties)
 filteredProperties.Add(pd);

 tempProperty = filteredProperties["ToolbarVisible"];
 if (tempProperty !=null) {
 filteredProperties.Remove(tempProperty);
 tempProperty = TypeDescriptor.CreateProperty
 (tempProperty.ComponentType,
 tempProperty, new System.Attribute[] {this.ServerSide ==
 multiState.True?ReadOnlyAttribute.Yes:ReadOnlyAttribute.No});
 filteredProperties.Add(tempProperty);
 }
 // configure more properties here…
}

Our GetProperties implementation filters the existing properties by adding them
to a new collection called filteredProperties.

Then, we configure the properties according to the report-generation option. For
example, if ServerSide is true, we disable the ToolBarVisible property because the
HTML Viewer is not available with reports requested via SOAP.

Debugging AWReportViewer

To understand how the AWReportViewer works, you may want to step through its
code using the VS.NET debugger. We have found that the easiest way to debug the
control during runtime, that is, when the page is rendered, is to set the web control
library’s debug mode to URL, as shown in figure 11.16.

The Start URL property points to the hosting ASP.NET page, which in our case is
AWReportViewerDemo.aspx. With this setup, when you press F5, VS.NET will load

Listing 11.4 To override the web control properties, you need to

implement ICustomTypeDescriptor.

Gets a list of all of the AWReportViewer properties

Copies the properties to a new collection

Configures them
according to the
report-generation
mode

SERVER-SIDE REPORTING TECHNIQUES 407

the hosting page, which, in turn, will call the control’s Render method. Now, the
VS.NET debugger should stop at your breakpoints inside this method.

As we mentioned, VS.NET will ask the control to render itself during design time
as well. If you want to debug the control code during design time, you can set the
Debug Mode property to Program. In addition, you will need to set the Start Appli-
cation setting to the full path of the Visual Studio 2003 executable, which by default
is C:\Program Files\Microsoft Visual Studio .NET 2003\Common7\IDE\devenv.exe.
Finally, you will need to set the Command Line Arguments to the full path of the
AWReporterWeb project, for example, C:\Books\RS\Code\AWReporterWeb\AWReporter-
Web.csproj.

With this setup, putting the AWReportViewer in debug mode will result in a new
instance of VS.NET that will load the AWReporterWeb project. This will allow you
to open the control’s hosting page inside the second instance of VS.NET, which will
fire the control’s Render method when the page asks the control to render itself.

One interesting feature supported by the AWReportViewer control is reporting off
ADO.NET datasets, as we will discuss next.

11.3.3 Reporting off application datasets

We can’t resist the temptation to fast-forward a bit and show you how you can use the
AWReportViewer control to report off application datasets.

Figure 11.16 To debug the AWReportViewer control, set its mode to URL and its Start URL

setting to the ASP.NET page that hosts the control.

408 CHAPTER 11 REPORTING FOR WEB-BASED APPLICATIONS

The ApplicationDataset.aspx page does just this. It uses AWReportViewer to ren-
der the Salesperson Summary report, shown in figure 11.17. This report is special
because it accepts a DataSource parameter that can be used to pass a serialized copy
of an ADO.NET dataset. To report off datasets, the report uses the custom dataset data
extension, discussed in detail in chapter 15.

Once you have authored a report that uses the custom dataset extension, rendering
the report with AWReportViewer is easy, as you would probably agree by looking at
the RenderReport method found in the ApplicationDataset.aspx page:

private void RenderReport() {
 salespersonSummary = new
 AWC.Reporter.Web.Entities.SalespersonSummary();
 sqlDataAdapter.Fill(salespersonSummary);

 // bind the dataset to the report viewer
 reportViewer.DataSource = salespersonSummary;
 reportViewer.Visible = true;
}

For the purposes of this demo we decided to use a typed dataset, although there’s noth-
ing from stopping you from using plain-vanilla ADO.NET datasets. The salesperson-
Summary variable is set to an instance of the typed dataset. In real life, the ASP.NET

Figure 11.17 Use the AWReportViewer control to report off ADO.NET datasets by setting its

DataSource property to a “plain-vanilla” or typed dataset.

SERVER-SIDE REPORTING TECHNIQUES 409

front end will most likely get the dataset from the application data layer. In our case,
we populate the dataset with the results of a SQL statement. Finally, we bind the
AWReportViewer control to the dataset.

To pass the dataset as a parameter to the Salesperson Summary report we need to
serialize it first. If you use the AWReportViewer control, you can skip this part because
the control’s DataSet property does this for you, as shown in listing 11.5.

public System.Data.DataSet DataSource {
 get {return null;}
 set {
 if (_parameterValues["DataSource"]!=null)
 _parameterValues.Remove("DataSource");

 StringBuilder stringBuilder = new StringBuilder();
 StringWriter stringWriter = new StringWriter(stringBuilder);
 value.WriteXml(stringWriter, XmlWriteMode.WriteSchema);
 _parameterValues.Add("DataSource",stringBuilder.ToString());
 stringWriter.Close();
 }
}

The DataSource property implementation serializes the dataset content and schema to
an instance of StringBuilder. Then, for the developer’s convenience, it creates a new
report parameter to pass the serialized dataset copy to the report.

Now that we’ve covered various web-reporting techniques, let’s see how we can use
some of them to implement a more realistic business-to-consumer (B2C) Internet-
oriented reporting example.

11.3.4 Business-to-consumer reporting

Most popular commercial web sites allow customers to view their order history. Fol-
lowing this trend, imagine that the AWC management has requested that you enhance
the company’s web portal to support a similar feature, which we will call My Orders.
Our design goals for the My Orders sample are as follows:

• Authenticate web users using ASP.NET Forms Authentication

• Show a report that lists the orders submitted by the customer

Figure 11.18 shows what the My Orders page looks like. The page lists the customer’s
order history, including the item details.

The source files for the My Orders sample are located under the Chapter11/B2C
folder inside the AWReporterWeb project.

Let’s start by implementing the first requirement, which calls for a comprehensive
security model for authenticating web users.

Listing 11.5 The implementation of the DataSet accessor serializes the passed

dataset and passes it under a DataSource report parameter.

410 CHAPTER 11 REPORTING FOR WEB-BASED APPLICATIONS

Authenticating web users

As we said at the beginning of this chapter, most ASP.NET-based Internet applications
authenticate the users using application-based authentication. To implement this we
can take advantage of the ASP.NET Forms Authentication security model baked into
the .NET Framework.

To configure the AWReporterWeb application for Forms Authentication, you
need to change the AWReporterWeb web.config file as follows:

• Comment out the <authentication mode="Windows"> element.

• Enable the <authentication mode="Forms"> element.

Once this is done, run the B2B sample from the B2C Demo menu found under the
Server-side Reporting menu. At this point, the application should pop up the Login
Form shown in figure 11.19 to prompt the user for login credentials.

For detailed coverage of ASP.NET Forms Authentication, please check the VS.NET
product documentation. In essence, if the user needs to be authenticated, ASP.NET
redirects the request to a page that you have specified in the application’s configuration
file. In our case, the loginUrl attribute dictates that the web form used to authenticate
the user be Chapter11/B2C/Login.aspx.

Figure 11.18 The Customer Orders report demonstrates the My Orders feature.

Figure 11.19

With ASP.NET Internet

applications you can use Forms

Authentication to authenticate

the user.

SERVER-SIDE REPORTING TECHNIQUES 411

To specify which resources require authenticated access, we used another web.config
file located in the B2C folder. If you inspect this file, you will see that it includes the
following section:

<location path="MyOrders.aspx">
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</location>

What this means is that unauthorized users will not be permitted to access the
MyOrders.aspx page. Instead, they will be redirected to the Login.aspx page. To keep
things simple, the Login web form takes only the customer identifier. We authenticate
the user on the server side of the page, as follows:

string customerID = txtCustomerId.Text;
if (IsAuthentic(customerID))
 FormsAuthentication.RedirectFromLoginPage(customerID, false);

else
 lblStatus.Text = "Login Failed!";

We pass the identifier that the user has entered to the IsAuthentic function, which
queries the Customer table in the AdventureWorks2000 database. If a match is found,
we call the FormsAuthentication.RedirectFromLoginPage method. This
method serves two purposes:

• Issue an authentication ticket in a form of a cookie to the browser

• Redirect the user to the originally requested page

In our case, we request that the cookie will be created as a session cookie by passing
false to the method’s second argument. The browser will pass the cookie with each sub-
sequent request to the AWReporterWeb site. The Forms Authentication mechanism
will parse each request in an attempt to find this cookie to determine whether the user
has been authenticated or not. For this reason, only the first request to the My Orders
page will pop up the Login Form for the duration of the browser session.

Implementing the My Orders page

Implementing the MyOrders.aspx page is nothing we haven’t seen so far. To facilitate
generating the report on the server side, we use the AWReportViewer control, which
is preset with the following properties:

• ReportPath—/AWReporter/Customer Orders

• Format—HTML4.0

• ServerSide—True

412 CHAPTER 11 REPORTING FOR WEB-BASED APPLICATIONS

With this configuration, the AWReportViewer control will generate the Customer Orders
report on the server side as an HTML fragment that will be injected into the page output.

The only thing left is to take care of the CustomerID parameter that the Customer
Orders report takes. The following line of code passes this parameter to the AWReport-
Viewer control inside the MyOrders Page_Load event:

reportViewer.AddParameter("CustomerID", User.Identity.Name);

User.Identity.Name matches the first argument of the FormsAuthentication.
RedirectFromLoginPage method call, which, in our case, is the customer identifier.

Another popular web reporting scenario that you may need to support is business-
to-business reporting. Let’s finish this chapter by seeing how RS can be used with
B2B applications.

11.3.5 Business-to-business reporting

Our sample will implement the hypothetical scenario that we described in section 11.1.3.
We will build a solution that will expose the Adventure Works Cycles product inven-
tory levels to their outside partners. The AWC vendors will be able to request the prod-
uct inventory report in XML in order to automate the vendor-to-AWC supply chain.
To implement this fictitious scenario we will create the following components:

• An Inventory Levels report to expose the inventory information about the ven-
dor’s products in XML

• A Web service façade to authenticate the vendor request and return the Inven-
tory Levels report

• A simple WinForm client to test the façade

Implementing the Inventory Levels report

The Inventory Levels report takes the vendor’s identifier as a parameter, queries the
product inventory data, and produces the output shown in figure 11.20.

Figure 11.20 Vendors will request the Inventory Levels report in XML to find out their product

inventory levels.

SERVER-SIDE REPORTING TECHNIQUES 413

Granted, the report layout has left much to be desired, but remember that this report
is not intended to be displayed interactively. Instead, the façade will export the report as
XML and pass the XML report’s payload to the caller. We used the Data Output prop-
erty tab of several report items to customize the report’s XML output until it con-
formed to the schema we wanted.

Implementing the façade

The Inventory Levels façade can be found under the B2B folder in the AWReporter-
Web project. To test the façade successfully, please make sure that the application is set
to use Windows Authentication in the web.config file.

NOTE If using Windows Authentication with your real-life extranet applications
is impractical, you can use other techniques to secure access to the Web ser-
vice façade, as we explained in section 11.1.3. For the purposes of our
demo, we use Windows Authentication because we set the web service
proxy to use DefaultCredentials in order to pass the credentials of the inter-
active user to the Report Server.

The façade exposes a web method called GetProductInventory that has the fol-
lowing signature:

[WebMethod]
public EntityInventory GetProductInventory(int vendorID)

The AWC vendors will call this method to get the inventory data for their products. For
this reason, GetProductInventory takes the vendor’s identifier as an argument.

As you can see, this method returns the inventory data as an object of an
EntityInventory type, which happens to be implemented as a typed dataset.
While we could have returned the XML report’s payload as a plain string, you should
avoid doing so because the façade’s consumers won’t be able to determine beforehand
what the response schema looks like. In our case, the EntityInventory XML
schema matches the report’s output. The easiest way to define the schema is to derive
it from the report’s XML output using VS.NET by following these steps:

Step 1 Export the Inventory Levels façade in XML and save it as a file.

Step 2 Open the file in VS.NET. Right-click anywhere inside the file and choose Cre-
ate Schema. This will produce the XML Schema file with an .xsd extension.

Step 3 Fine-tune the schema, for example, change the data type of the attributes.

Step 4 Right-click on the schema and choose Generate Dataset to get the typed
dataset class.

Using XML schemas allows the façade’s callers to find out the response definition by
querying the EntityInventory schema as follows:

http://<servername>/AWReporterWeb/Chapter11/B2B/
 InventoryLevel.asmx?schema=EntityInventory

414 CHAPTER 11 REPORTING FOR WEB-BASED APPLICATIONS

This will allow the AWC partners to create strongly typed objects on their side to hold
the method results similar to the EntityInventory typed dataset.

The façade requests the Inventory Levels report via SOAP. Once the façade obtains the
report’s payload in XML, it loads it into an instance of the EntityInventory typed dataset:

MemoryStream stream = new MemoryStream(result);
stream.Position = 0;
stream.Seek(0,SeekOrigin.Begin);
inventory = new EntityInventory();
inventory.ReadXml (stream);

Here, we push the report’s payload into memory so that we can load the typed dataset.

Tesing the B2B solution

To test the sample, we created a simple WinForm client, Inventory Browser, shown in fig-
ure 11.21, which you can find under the Chapter11 folder in the AWReporterWin project.

Inventory Browser calls down to the façade and saves the report to a disk file. Then,
it uses the WebBrowser control to display the file’s contents. As we said before, in real
life, the façade’s consumers could parse the report’s payload and pass the data to other
systems. For example, the Inventory Browser could pass the inventory data to a Biz-
Talk schedule, which could orchestrate the supply chain application’s integration.

11.4 SUMMARY

As you have seen in this chapter, RS allows you to get your reports on the web in many
ways. The implementation approach you choose will vary based on the application
type. You may find that integrating RS with intranet-based applications is similar to
doing so with their WinForm counterparts. In this case, URL access may prove to be
the easiest and richest way to report-enable your intranet application.

Internet-based applications often call for server-side report generation. To facilitate
this, you can build a web control similar to the Adventure Works Report Viewer that

Figure 11.21 Use the Inventory Browser WinForm client to test the B2B sample.

RESOURCES 415

we implemented in this chapter. Besides rendering the report on the server side of the
application, such a control can facilitate reporting off data sources not natively sup-
ported by RS, such as external datasets.

Finally, extranet applications often follow the Client-to-Façade-to-Report Server
design pattern. Thanks to RS’s flexible exporting options, you can custom-tailor the
report’s XML output to meet your integration needs.

Sometimes the user requirements will demand more flexible reporting options than
generating standard reports. The next chapter shows you how you can achieve this goal
by integrating RS with OLAP applications.

11.5 RESOURCES

Building Secure ASP.NET Applications: Authentication, Authorization, and
Secure Communication
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/
secnetlpmsdn.asp)
This guide presents a practical, scenario-driven approach to designing and
building secure ASP.NET applications.

Web Services Enhancements (WSE) 1.0 SP1 for Microsoft .NET
http://www.microsoft.com/downloads/details.aspx?FamilyId=06255A94-2635-
4D29-A90C-28B282993A41&displaylang=en
Web Services Enhancements for Microsoft .NET (WSE) is an add-on to
Microsoft Visual Studio .NET and the Microsoft .NET Framework, providing
developers the latest advanced Web services capabilities to keep pace with the
evolving Web services protocol specifications, such as WS-Security, WS-Routing,
WS-Attachments, and DIME specifications.

Generic ASP.NET XML/XSL DHTML Menu ServerControl
http://www.gotdotnet.com/Community/UserSamples/Details.aspx?SampleGuid=
175796d4-d08b-4130-8bbf-8d1a7fa94d85
Generic ServerControl takes your custom XML, XSL, JavaScript, and CSS files
and renders your DHTML drop-down or other menu. A sample implementa-
tion is included along with the article and documentation.

About the WebService Behavior
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/webservice/
overview.asp
The WebService behavior enables client-side script to invoke remote methods
exposed by Web services, or other web servers, that support the SOAP and Web
Services Description Language (WSDL) 1.1.

416

C H A P T E R 1 2

Reporting for
OLAP applications
12.1 Understanding OLAP 417
12.2 Implementing an OLAP solution: AW Data Miner 424
12.3 Summary 453
12.4 Resources 454

Many organizations have realized the benefits of data warehousing and Online Ana-
lytical Processing (OLAP) technologies for analyzing vast amounts of data efficiently.
In this chapter, we will see how Reporting Services can be integrated with OLAP appli-
cations to create versatile reporting solutions. Our discussion will center on the follow-
ing topics:

• Overview of data warehousing and OLAP

• Using Microsoft Analysis Services cubes as data sources for standard reports

• Dynamic reporting using Microsoft Office Web Components

• Creating solutions with standard and dynamic reporting features

To see a practical application, we will build a scaled-down OLAP-based solution to
address the reporting needs of the Adventure Works business analysts. Powered with
the Adventure Works Data Miner, our users will be able to analyze data from different
angles for discovering trends and decision-making purposes.

UNDERSTANDING OLAP 417

12.1 UNDERSTANDING OLAP

The terms OLAP and data warehouse are often used interchangeably, although an
important distinction exists. As its name suggests, a data warehouse can be simply
described as a place that stores vast volumes of data. The term OLAP, on the other
hand, represents the tools used to make the warehouse data available for fast retrieval
and analysis. OLAP solutions facilitate data mining and reporting because they are
designed to meet the following characteristics:

• Deliver a great user experience by allowing the users to easily slice and dice
warehouse data

• Provide a central repository of consistent data

• Answer complex queries quickly

• Provide a variety of powerful analytical and reporting tools

If you are currently reporting off OLTP databases, you may wonder at what point you
need to consider switching to OLAP. The next section should make this clear.

12.1.1 OLTP vs. OLAP

While the process of generating reports from OLTP databases may be fine for small
applications, it can quickly become inefficient and cumbersome as data grows both in
size and complexity. In fact, there is a contradiction between OLTP systems that are
designed for transactional efficiency and OLAP systems that are designed for efficient
queries. Table 12.1 contrasts the design characteristics of these technologies.

Because the OLTP and OLAP design characteristics are conflicting, an organization can
use a data warehouse to offload the transactional data as it accumulates in the OLTP
system and store it in a format optimized for data analysis and reporting.

For example, while an OLTP database stores data in a normalized form, it is per-
fectly fine for an OLAP database to denormalize the data, even if this results in redun-
dant information. Moving the historical data to a central data warehouse database
allows the OLTP system to operate at maximum efficiency because high volumes of

Table 12.1 OLTP vs. OLAP

OLTP Database Warehouse Database

Designed for real-time business operations Designed for data analysis

Optimized for heavy transaction loads Optimized for data retrieval and reporting

Volatile data Usually read-only data. New data is appended on a
regular basis.

Usually small in size May contain large volumes of data, often in the
range of gigabytes or even terabytes

Frequently supports many concurrent users Supports few concurrent users

418 CHAPTER 12 REPORTING FOR OLAP APPLICATIONS

analytical and reporting queries are handled by OLAP servers retrieving data from the
data warehouse without impacting the performance of OLTP.

Besides performance, another valid reason for using OLAP with warehousing is data
consolidation. While an OLTP system usually has all of its data located in one database,
a warehouse typically consolidates data from several OLTP databases. For example,
Adventure Works Cycles may have a SQL Server–based online sales ordering system, an
Oracle-based HR system, and an IBM AS/400 mainframe–based invoicing system.

While OLAP systems offer distinct advantages in terms of reporting, you need to
consider also the following pitfalls before you decide to jump on the OLAP bandwagon:

• Increased complexity—Implementing a well-designed OLAP solution is not a sim-
ple undertaking and requires careful planning and significant development effort.

• Data dependency—Data warehouses are dependent on other OLTP systems. If
the OLTP data needs to be updated, the changes have to be propagated to the
warehouse as well. Given the fact that data is usually transformed using sophisti-
cated algorithms and massaging techniques before it enters the warehouse, syn-
chronizing the warehouse data with the OLTP source may be rather involved.

The Microsoft OLAP offering is a product called Analysis Services. Just like Reporting
Services, Analysis Services is an add-on to SQL Server 2000. Those of you who have
used or built Microsoft-centric OLAP solutions may wonder how the products com-
pare. After all, both products are designed to be used for data analysis and reporting.
The next section should make this clear.

12.1.2 How Reporting Services and

Analysis Services compare

You shouldn’t view these products as competing with each other. Instead, they are
complementary technologies that address different user needs, as shown in figure 12.1.

Figure 12.1 shows that a small percentage of users will use Analysis Services com-
pared to the larger population of users who will use RS to meet their reporting needs.

According to Microsoft, in today’s enterprise environment, a relatively small num-
ber of users need advanced reporting features. These users will access vast volumes of
a company’s historical data to analyze the company’s performance and reach business
decisions. An OLAP data warehouse solution based on Analysis Services could meet
the complex requirements posed by this type of user. OLAP technology enables data
warehouses to be used effectively for online analysis, providing rapid responses to
sophisticated analytical queries.

For example, queries asked often by data analysts include the following:

• Show me the top-selling products.
• Show me product sales grouped by year and quarter on columns and product

categories on rows.
• What is the company’s sales performance for the past year broken down by

quarter and month?

UNDERSTANDING OLAP 419

Answering questions like these typically requires processing vast volumes of data,
which is what OLAP technologies are designed for.

Most users of the data warehouse are information consumers, who will regularly
use standard reports that others have developed. This is where RS could be useful. It
provides a set of tools and applications that you can use to author, publish, and man-
age such reports.

Thus, Reporting Services and Analysis Services are not competing products but
rather complementary technologies that can be used together to provide synergistic
data analysis capabilities. In fact, you can architect a business intelligence solution that
takes the best of both worlds by integrating these two platforms, as we will see shortly.

At this point, the OLAP concept may look appealing to you, and you may wonder
how OLAP works. The next section should make this clear.

12.1.3 Understanding the OLAP storage model

As we explained in section 12.1.1, OLAP is a great technology that your users can lever-
age to access vast volumes of data efficiently. But as the character Spider-Man will con-
clude wisely, with great power comes great responsibility. Because OLAP solutions are not
simple to implement, they require careful and responsible planning and architecting.

We’ll now cover a few essential data warehouse concepts that will help you to
implement the Adventure Works Data Miner solution.

Figure 12.1 Reporting Services is positioned to meet the reporting needs

of 65–80 percent of information workers.

420 CHAPTER 12 REPORTING FOR OLAP APPLICATIONS

OLAP cubes

The pivotal storage entity in the data warehouse model is the OLAP cube. You can con-
ceptualize the cube as a hybrid between a table and a view in the relational database
model. Similarly to a view, each cube has its schema defined as a set of joined data
warehouse tables from which the cube draws its source data. Similarly to tables, cubes
represent the most granular OLAP data storage entity.

Unlike the relational database entities, however, cubes are not limited to storing
and displaying information in a two-dimensional format. Instead, cubes can be and
often are multidimensional. For this reason, we consider the term cube to be a mis-
nomer because it implies only three dimensions, while a data warehouse cube can
include (and usually has) many dimensions. The multidimensional nature of the cube
storage model lets OLAP users analyze the information from many angles. Smart OLAP
front-end reporting systems know how to manipulate and present the cube model in
a user-friendly way to facilitate data drilldown and trend analysis.

One way to explain the cube terminology is to look at a crosstab report produced
with RS, such as the Territory Sales OLAP report, which we will author in this chapter.
Figure 12.2 shows the report.

This report draws its data from the Sales cube, which we will implement shortly.
The report labels, which the Dimension lines point to, are called cube dimensions. The
grid cells, which the Measures lines point to, are the cube measures.

Figure 12.2 The pivotal OLAP storage medium is the OLAP cube, and it consists of dimensions

and measures.

UNDERSTANDING OLAP 421

Measures and fact tables

Measures represent the numerical values that you need to monitor your business. For
example, the Sales cube defines the Sales Dollars and Sales Units measures. A Call Cen-
ter cube may define measures such as Calls Received, Calls Handled, Call Time, and
so on. The data warehouse measures are physically stored in fact tables. These tables
are usually narrow (have few columns) but can have thousands to millions of rows of
historical data.

Dimensions, levels, and dimension tables

Dimensions represent the various categories into which the cube measures can be orga-
nized. The Sales cube has several dimensions, including the three used by the Territory
Sales OLAP report: Territory, Employee, and Time. Dimensions allow analysts to see
the cube data from different angles.

Dimensions can be further broken down into levels. For example, the Time dimen-
sion in the Sales cube has Year, Quarter, and Month levels (the Month level is not used
in the Territory Sales OLAP report).

The cube dimensions are stored in dimension tables, which are linked to the fact
table similarly to the way lookup tables are linked to other tables in a typical rela-
tional database.

Aggregations

Granted, the previous report can be produced from relational database tables, which
is what we did to author the Territory Sales Crosstab report in chapter 4. “Then,” you
may ask, “why do we need a cube?”

The main purpose of having a cube is to retrieve and store the aggregation results
efficiently. For example, the mathematical operations of count and sum are the most
frequent functions performed on warehouse data. They are called aggregations. If you
look back at figure 12.2, you will notice that the report measures are summarized in
each of the dimension intersections. For example, the sales total for Europe for 2002
is $6,206,505, while the Internet Users total for Quarter 4 of 2001 is $3,625,702.

While in this case the matrix region does the heavy lifting of summarizing the infor-
mation, performing aggregations on vast volumes of data, especially with dynamic
reports, can tax the performance of the relational database. When cubes are used,
aggregations are precalculated in the cube when the cube is processed, which occurs
before the end users access the cube. Once this is done, queries are answered using the
aggregated values.

Remember, warehouse data is typically appended on a regular basis, meaning that
data aggregations can be precalculated as soon as new data is added. Generally, aggre-
gations are calculated immediately after the cube is initially populated or there is a
change in the cube’s content.

422 CHAPTER 12 REPORTING FOR OLAP APPLICATIONS

12.1.4 Designing OLAP solutions

Once the warehouse storage model is designed, the next step is to populate it and ana-
lyze the warehouse data on a regular basis.

Figure 12.3 depicts the high-level data process flow in a typical OLAP solution.
The diagram shows the distinct stages of the data flow from its source to the end

user. Each of these stages could be the subject of a separate book and, in fact, there
are such books available, as you could see by looking at the resource in section 12.4.

Because this book discusses Microsoft technologies, you should know that the
Microsoft Business Intelligence platform provides a complete set of tools to help you
implement each stage of your data warehouse project. One of the most attractive
aspects of using Microsoft technologies is that most of the tools are bundled with SQL
Server and, therefore, will not incur any additional licensing costs.

Loading data in the warehouse

First, we have extraction, transformation, and loading (ETL) processes, which import
the data from the OLTP source database to the warehouse on a regular basis. This phase
will probably be the most difficult and time-consuming part of your OLAP system

Figure 12.3

Implementing an OLAP

solution involves setting up

the warehouse schema,

loading the warehouse,

loading aggregates in cubes,

and implementing data

analysis and reporting

solutions.

UNDERSTANDING OLAP 423

implementation. Often, to fully meet the user’s reporting requirements, you will need
to extract data from several OLTP systems that may not be easily accessible. For exam-
ple, direct access to mainframe systems is usually not an option. In this case, data has
to be exported on a regular basis from the OLTP system to flat files and then uploaded
to the warehouse.

One of the most important decisions that you have to make when architecting a
warehouse is the level of data consolidation. Because the main purpose of a warehouse
is to show historical patterns for trend analysis, it rarely makes sense to import the
OLTP data at its most granular level. Instead, the data warehouse measures are typi-
cally grouped around coarser time periods, such as days or months. Storing data at lev-
els that are too granular may unnecessarily increase the size of the warehouse and
impact its performance. Consolidating data too much may not address more detailed
queries posed by the warehouse users.

During the ETL stage, you will also need to take care of resolving the data incon-
sistencies by scrubbing and transforming the source data. For instance, during one of
my OLAP projects, I found out that all the OLTP source systems had a different way
of storing the employee information. As a result, matching employee data from one
database to another presented a challenge. To handle cases like this, you would prob-
ably need a staging database as an intermediate “cleansing” store where you could per-
form several passes of data scrubbing and massaging before the data is loaded into the
warehouse database.

For ETL tasks, you can use the Microsoft Data Transformation Services (DTS).
DTS sponsors a graphical designer that you can use to define various tasks to extract,
transform, and consolidate data from disparate sources. If you have installed the Exe-
cution Log sample that we discussed in chapter 7, you have seen how DTS can be used
to import data.

For data warehouse hosting, you can use the SQL Server relational database. In my
opinion, SQL Server is one of the best products Microsoft has ever invented. SQL
Server has been holding the top TPC (Transaction Processing Council) benchmarks
in the price/performance category, as you could see online at http://www.tpc.org.

Processing OLAP cubes

The next stage of data lifecycle is loading the OLAP cubes with the calculated data
aggregations. To accomplish this, you need to “process” the cube. During the process-
ing phase, the cube reads and updates the dimension tables, reads the fact table, calcu-
lates specified aggregations, and stores the results.

As we’ve already mentioned, the Microsoft OLAP product is called Analysis Ser-
vices. We will see Analysis Services in action in section 12.2.

Once the new data is uploaded into the cube, the cube is available for querying
and reporting.

424 CHAPTER 12 REPORTING FOR OLAP APPLICATIONS

Data analysis and reporting

Finally, after a cube is processed, data is ready to travel to its final destination—reports.
You can author reports that query the cube data and display it in the form of standard
or dynamic reports, as we will see shortly in this chapter.

For data analysis and reporting, you can use Microsoft Reporting Services or
Microsoft Office to report off Analysis Services cubes.

Now that we’ve taken a whirlwind tour of OLAP, let’s see how we can put our
knowledge into practice by implementing an OLAP solution to meet the needs of the
Adventure Works business analysts.

12.2 IMPLEMENTING AN OLAP SOLUTION:
AW DATA MINER

Here is our hypothetical scenario that will drive the Adventure Works Data Miner
solution. Despite the sluggish economy in the recent years, Adventure Works Cycles
has been enjoying phenomenal business growth. However, the company’s expansion
has brought its own challenges, first and foremost of which is the most common data-
related problem—that there is always too much of it. After analyzing the current situ-
ation, you have identified the following problem areas:

• Historical data is not available. To keep an OLTP system’s performance at its peak,
the database administrator periodically truncates the sales data. This makes it
impossible for business analysts to analyze historical data and discover trends.

• Data sources are disparate. Data is captured and stored in several OLTP systems.
Relating and consolidating data from these systems is very difficult.

• Performance is slow. Business analysts complain that ad hoc data-mining queries
take a long time to execute and sometimes result in errors. Upon further investi-
gation, you have found out that the source of these problems is related to the
database locks imposed by the queries in the OLTP database.

• Standard reports don’t address all reporting needs. Although the standard reports
produced by RS meet the requirements of most information workers, they don’t
fully address the needs of the company’s business analysts and decision makers.
They have requested an OLAP system that will allow them to easily view the
data from different angles.

To solve the above problems, you propose a Microsoft-centric OLAP solution based on
the following approach:

• A data warehouse will be implemented. DTS processes will extract sales data on a
monthly basis, consolidate it, and upload it to a central data warehouse database.

• An OLAP cube will be created. An Analysis Services cube (Sales cube) will be
designed and loaded with the data warehouse data to provide fast response
times to data-mining queries.

IMPLEMENTING AN OLAP SOLUTION: AW DATA MINER 425

• Standard RS-based reports will be authored to report off the OLAP cube.

• A user-friendly application front end will be provided for dynamic reporting. We
will implement the Adventure Works Data Miner (AW Data Miner) WinForm
application to provide dynamic reports produced by Microsoft Office Pivot-
Table and ChartSpace components linked to the OLAP cubes. In cases where
reports need to show information not available in the data warehouse, the
OLAP solution will generate standard “canned” reports produced by Microsoft
Reporting Services.

Table 12.2 shows the list of tasks that we need to accomplish to implement the Adven-
ture Works Data Miner solution.

As the task map indicates, we will start by implementing the data warehouse model.

Table 12.2 The task map for implementing the Adventure Works Data Miner solution

Phase Task Description

Implementing the
data warehouse

Create the data warehouse
storage model

Create the physical database model

Define measures Define SalesDollars and SalesUnits measures

Define dimensions Define Customers, Territory, Product, and
Employee dimensions

Load the data warehouse Execute ETL tasks to load the data warehouse
with data from the AdventureWorks2000 OLTP
database

Implementing the
OLAP cube

Create the cube Create the Sales cube

Create the fact table Choose the Sales data warehouse table as the
cube’s fact table

Create the cube dimen-
sions

Set up the Customers, Territory, Product,
Employee, and Time dimensions

Fine-tune the cube
schema

Optimize the cube’s schema for performance
and reporting

Process the cube Process the cube to make it available for query-
ing and reporting

Data analysis and
reporting

Author an OLAP-based
report

Use RS to create an OLAP-based report to query
the Sales cube using an MDX statement

Author dynamic reports Use Microsoft Office Web Components (OWC)
to create dynamic pivot and chart reports

Integrate OWC and RS Demonstrate how a standard RS-based report
can be launched from Office Web Components

426 CHAPTER 12 REPORTING FOR OLAP APPLICATIONS

12.2.1 Implementing the data warehouse

For simplicity and portability reasons, we used a Microsoft Access–based database
called AdventureWorks.mdb to capture the warehouse data. This database will serve
as a source for the Sales cube that we will build using Analysis Services. Needless to say,
in the real world you should use a more powerful database server to host the data ware-
house database, such as Microsoft SQL Server.

You can find the AdventureWorks database (AdventureWorks.mdb) under the
Code/Database folder. Our warehouse dimensional model is shown in figure 12.4.

The model consists of a single fact table, Sales, and six dimension tables. The data
in the fact table represents the consolidated monthly sales data from the Adventure-
Works2000 relational database.

The consolidated historical data spans three years and includes more than 100,000
records.

Defining measures

The Adventure Works warehouse database has two measures defined in the Sales table:

• SalesDollars—Which represents the sales dollar amount

• SalesUnits—Which captures the number of products sold

Defining dimensions

We’ll use the dimension tables in our sample data warehouse to form the following
dimensions:

Figure 12.4 The Data Miner warehouse schema consists of one fact table

(Sales) and several dimension tables.

IMPLEMENTING AN OLAP SOLUTION: AW DATA MINER 427

• Customer—The Customer dimension has two levels: Customer Type, such as
Store, Individual, or Retail, and Customer Name.

• Territory—This dimension has also two levels: Territory Group, such as North
America, and Name, such as Southeast.

• Product—The Product dimension has three levels: Product Category, Subcate-
gory, and Product Name.

• Employee—The Employees table will be used to form a recursive cube dimension
demonstrating a typical HR hierarchy, where each employee is linked to a manager.

Loading the data warehouse

While in real life, you would typically use Microsoft DTS to transform and upload
data, to keep things simple, we loaded the warehouse database from a set of database
views referencing the appropriate tables in the AdventureWorks2000 database. You
can find the views in the views.sql script in the Database.dbp project under the Code/
Database folder. The SQL views are included for your reference only because the data
is already uploaded to the Access database.

The Sales view serves as a data source for populating the Sales table. It also con-
solidates sales data by grouping it by month. The other views facilitate loading the
warehouse dimensions.

12.2.2 Implementing the OLAP cube

Once the warehouse database (AdventureWorks.mdb) is loaded, it is time to design the
Analysis Services cube. Unfortunately, the current version of Analysis Services doesn’t
support exporting cubes. As a result, we were left with two implementation choices to
make the cube model available to you:

• We could walk you through the steps needed to create the cube with Analysis Services.

• We could export the cube using Microsoft Query so you could bind the Data
Miner application to the local version of the cube.

For the purposes of the demo, we decided to show you the “real thing” by walking you
through the process of creating the Sales cube with Analysis Services.

Creating the Sales cube

A prerequisite task for creating a cube is setting the database connection to the data
warehouse database. Follow these steps to set up a database connection to the
AdventureWorks2000 database in Analysis Services:

Step 1 Open the Analysis Manager and connect to a computer running Analysis Ser-
vices. Right-click on the computer name and choose New Database to create a
new database definition. Name the database AdventureWorks and click OK.

Step 2 Just like a report can draw data from more than one data source, an Analysis
Services cube can have more than one data source. For the purposes of our

428 CHAPTER 12 REPORTING FOR OLAP APPLICATIONS

demo we need only one data source that points to the MS Access Adventure-
Works.mdb database. To create the data source definition, expand the
AdventureWorks database node. Right-click the Data Sources node and
choose New Data Source.

Step 3 Choose Microsoft Jet 4.0 OLE DB Provider and browse to the location of the
AdventureWorks.mdb database.

Once the database connection is ready, we can create the Sales cube by right-clicking
the Cubes node inside the Analysis Services console and choosing New Cube → Wiz-
ard. We will use the Cube Wizard to help us set up the cube model.

Setting up the fact table

In this section, we need to specify the name of the table from the data warehouse data-
base that will serve as the cube’s fact table. A cube can have only one fact table. Follow
these steps to set up the fact table:

Step 1 From the Select a Fact Table from a Data Source screen, choose the Sales
table, as shown in figure 12.5.

Step 2 On the next screen, the wizard prompts you to select the columns from the
Sales table that will represent the cube measures. In our case, we have only
two measures: Sales Units and Sales Dollars. Select both, as shown in
figure 12.6, and click Next to continue.

Figure 12.5 Select the Sales table as the cube’s fact table.

IMPLEMENTING AN OLAP SOLUTION: AW DATA MINER 429

The next step of the wizard is about setting the cube dimensions. You can create the
cube dimensions as private or shared. A private dimension can be used only within
the cube that defines it. A shared dimension can be reused across cubes, similarly
to the way a shared report data source can be used by more than one report. Shared
dimensions allow us to standardize metrics across multiple cubes and link cubes in
queries, very much like the way we can link relational tables by using joins. For the
purposes of our demo, we will create all dimensions as shared.

Back in the Cube Wizard, click the New Dimension button. The Dimension Wiz-
ard appears. We will create several different types of dimensions, starting with the Cus-
tomer dimension.

Setting up the Customer dimension

The Customer dimension will allow OLAP users to drill down into the sales data by
customer type and name. Follow these steps to set up the Customer dimension:

Step 1 Choose the Star Schema radio button to create the Customer dimension
from a single table.

Step 2 On the next screen, select the Customers table and click Next.

Step 3 Because this dimension has two levels, on the next screen select both Cus-
tomer Type and Name in that order, as shown in figure 12.7.

Figure 12.6 Select Sales Dollars and Sales Units as cube measures.

430 CHAPTER 12 REPORTING FOR OLAP APPLICATIONS

Step 4 Accept the default settings on the next two screens and name this dimension
Customer. Make sure that the Share This Dimension with Other Cubes
check box is selected.

Setting up the Employee dimension

The Employee dimension is going to be a recursive dimension because it will allow us
to drill down recursively in the employee hierarchy. Here are the steps to create the
Employee dimension:

Step 1 Use the Dimension Wizard to create the Employee dimension as a parent-
child dimension.

Step 2 On the next screen, select the Employees table.

Step 3 Set the Employee dimension as shown in figure 12.8.

Step 4 Here, we are instructing Analysis Services to create a hierarchy by linking the
ManagerID column to the EmployeeID column. Skip the next two screens
and name the new dimension Employee.

Figure 12.7 Set up the Customer dimension so that we can query the sales data by

customer.

IMPLEMENTING AN OLAP SOLUTION: AW DATA MINER 431

Setting up the Product dimension

This will be a typical three-level dimension, consisting of Product Category, Subcate-
gory, and Product Name. Follow these steps to set up the Product dimension:

Step 1 Click the New Dimension button to restart the Dimension Wizard. This
time, choose the Snowflake Schema option because this dimension will
encompass more than one table.

Step 2 On the next screen, choose the Product, Product Subcategory, and Product
Category tables.

Step 3 On the Create and Edit Joins screen, remove the default table relations that
the wizard suggests and link the tables by dragging and dropping columns, as
shown in figure 12.9. Click Next to continue.

Step 4 On the Select the Levels for Your Dimension screen, select the Product-
Category.Name, ProductSubcategory.Name and Product.Name columns in
that order, as shown in figure 12.10.

Because all three of these columns are named the same, the wizard adds
sequential numbers to differentiate them. We will fix this issue later.

Step 5 Finally, name the new dimension Product.

Figure 12.8 Set up the Employee dimension so we can query the cube by

salesperson.

432 CHAPTER 12 REPORTING FOR OLAP APPLICATIONS

Figure 12.9 Set up the Product dimension so that we can query the cube by product.

Figure 12.10 The Product dimension consists of Product Category, Subcategory,

and Product Name.

IMPLEMENTING AN OLAP SOLUTION: AW DATA MINER 433

Setting up the Territory dimension

The Territory dimension allows the users to drill down by sales territory and region.
The process of setting it up is identical to creating the Customer dimension, as follows:

Step 1 Base this dimension on the star schema.

Step 2 Select the Territory table.

Step 3 To specify the dimension levels, select the Group and Name columns in that
order, as shown in figure 12.11.

Step 4 Finally, name the new dimension Territory.

Setting up the Time dimension

Almost all cubes will require a Time dimension. Analysis Services knows how to cre-
ate time dimensions based on the type of date columns, which means that you don’t
need a separate dimension table. In real life, however, you should create a separate
time dimension table for flexibility and performance reasons. First, a separate time
dimension table allows you to add additional columns, which you can use as custom
members when querying cubes. For example, you may need to define a column called
Holiday to track non-workdays. Second, such a table could have a primary integer
key, which takes less space than the date type. This minimizes storage space with large
fact tables.

Figure 12.11 Set up the Territory dimension so that we can query the cube by

territory.

434 CHAPTER 12 REPORTING FOR OLAP APPLICATIONS

Figure 12.12 Set up the Time dimension from the fact table.

Figure 12.13 The Time dimension will consolidate data per year, quarter, and

month.

IMPLEMENTING AN OLAP SOLUTION: AW DATA MINER 435

For the purposes of this demo, we will create the
Time dimension off the OrderDate column, as
shown in the following steps:

Step 1 Create a new dimension based on the
star schema.

Step 2 Choose the fact table named Sales as a
dimension source table.

Step 3 On the Select the Dimension Type screen,
choose Time Dimension. The wizard will
correctly default the Date column drop-
down to the only date column in this
table: Month, as shown in figure 12.12.

Step 4 Because sales data in the warehouse data-
base is grouped by month, on the next screen choose the Year, Quarter,
Month dimension structure, as shown in figure 12.13.

Step 5 Name the new dimension Time.

We have finished setting up the cube dimensions. Name the cube Sales and exit
the wizard. Figure 12.14 shows what the cube structure should look like when you
return to the Analysis Manager console.

NOTE One of the activities that the Dimension Wizard performs behind the
scenes is creating joins between the dimensions and fact tables. To accom-
plish this, the Dimension Wizard tries to find matching column names
between the dimension and the fact table. Of course, as you could imagine,
this will succeed if the columns are named the same. If they are not, upon
exiting the Dimension Wizard you may get an error message, “Unable to
find an automatic join between the cube’s fact table and the following
dimension tables….” Then, the wizard will open the Cube Editor to give
you chance to define the missing relationship(s). To “help” the wizard, in
the Cube Editor drag and drop the column from the dimension table onto
the corresponding column from the fact table.

The cube schema is almost done. We can use the cube as it is now, but let’s add a few
touches to finalize the cube schema. We will use the Analysis Services Dimension Edi-
tor to make the changes.

Figure 12.14 The Sales cube

structure

436 CHAPTER 12 REPORTING FOR OLAP APPLICATIONS

Fine-tuning the Customer dimension

One optimization technique that we want to take advantage of is to set up unique
dimension member keys for better performance. If you select the Optimize Schema
command under the Tools menu, Analysis Services will evaluate each dimension to
determine whether it can be optimized. If the dimension member keys are unique,
which is the case when the Member Key Column property references a primary key,
Analysis Services will use the foreign key in the fact table instead of the key in the
Dimension table. Therefore, Analysis Services will not use the Dimension table
when retrieving the data. Fewer joins lead to faster cube processing.

Fine-tune the Customer dimension by following these steps:

Step 1 Right-click the Customer dimension and choose Edit. Expand the dimen-
sion properties by clicking the Properties button on the bottom of the
Dimension Editor’s left pane.

Step 2 Select the Customer level. Switch to the Advanced property tab and change
the All Caption property from All Customer to All Customers.

Step 3 Select the Name level and click the Basic property tab. Change the Mem-
ber Key Column property to "Customers"."CustomerID", as shown in
figure 12.15.

Figure 12.15 Use unique member keys for better performance.

IMPLEMENTING AN OLAP SOLUTION: AW DATA MINER 437

Step 4 While the Name level is selected, switch to the Advanced tab and change the
Member Keys Unique property to True. Click the Save button on the toolbar
to persist your changes to the Customer dimension.

Fine-tuning the Employee dimension

The Employee dimension is a recursive dimension. By default, Analysis Services will
name each hierarchical level sequentially, for example, Level01 for the top manager,
Level02 for her subordinates, and so on. Let’s come up with better captions for the lev-
els, by following these steps:

Step 1 Open the Employee dimension and select the Employee level. Switch to the
Advanced tab and set the All Level property to No to prevent Analysis Ser-
vices from showing the All Dimension member. Next, set the Member With
Data property to Non-leaf Data Visible. This is needed because the Employee
dimension is hierarchical and not all of its members will have associated data
in the fact table.

Step 2 Select the Employee Id level. Switch to the Advanced tab. The Level Naming
Template property is blank by default. Set up the Level Naming Template
property as shown in figure 12.16.

Step 3 Back on the Advanced tab, change the Root Member If property to Parent Is
Blank, Self, or Missing. This prevents Analysis Services from repeating the
parent name in case the employee hierarchy is unbalanced.

Fine-tuning the Product dimension

It may be confusing for the user to have Product Category, Subcategory, and Product
Name all named the same. Let’s assign unique names to all levels of the Product dimen-
sion by taking these steps:

Figure 12.16

Use the Level Naming

Template to define

names for recursive

hierarchies.

438 CHAPTER 12 REPORTING FOR OLAP APPLICATIONS

Step 1 Select the Name level and change its Name property to Category.

Step 2 Select the Name 1 level and change its Name property to Subcategory.

Step 3 Select the Name 2 level and change its Name property to Product. On the Basic
tab, change the Member Key Column property to "Product"."ProductID". On
the Advanced tab, change the Members Keys Unique property to True.

Fine-tuning the Territory dimension

Again, let’s choose more descriptive names for the levels for the Territory dimension:

Step 1 Select the Group level and change its Name property to Territory Group.

Step 2 Select the Name level and change its Name property to Region. Change the
Member Key Column property to "Territory"."TerritoryID".

Fine-tuning the Time dimension

Let’s start by changing the name of the All member of the Time dimension:

Step 1 In the Dimension Editor click on the root node called Time.

Step 2 Switch to the Advanced tab and set the All Caption property to All Periods.

By default, Analysis Services displays the full name of the month. Besides being too
verbose, this will make integrating our RS reports with the PivotTable component
more difficult. To change the Month member name, follow these steps:

Step 1 Select the Month level of the Time dimension.

Step 2 On the Basic tab change its Member Name Column property to DatePart
('m',"Sales"."Month"). Preview the Data tab and verify that the Month level
of the Time dimension now shows the months as numbers.

The cube schema is ready! Finally, we need to process the cube.

Adjusting the cube schema

Once the cube model is set up, the cube has to be processed before it is available for
querying. To process the cube, perform the following steps:

Step 1 Right-click the Sales cube and choose Edit to open the cube in the Cube Editor.

Step 2 In the right pane, on the Schema tab, set the table relations as shown in fig-
ure 12.17.

To fix a table relation, select the existing relation and delete it. Then, drag
a field from the Sales fact table and drop it onto its corresponding field in the
dimension table. For example, to link the Sales table with the Employees
table, drag the SalesPersonID field from the Sales fact table and drop it onto
the EmployeeID field of the Employees dimension table.

IMPLEMENTING AN OLAP SOLUTION: AW DATA MINER 439

Choosing a cube storage model

Before we can process the Sales cube, we need to set up its storage configuration. With
Analysis Services, you have complete control over the storage location and size of the
cube aggregations. The easiest way to set the cube’s storage options and process the cube
is to use the Storage Design Wizard by following these steps:

Step 1 In the Cube Editor, select the Design Storage option from the Tools menu.
The Storage Design Wizard appears.

Step 2 Explore the various data storage options. Leave the default setting, which
is MOLAP.

Figure 12.17 Use the Data tab to set up the table relations.

440 CHAPTER 12 REPORTING FOR OLAP APPLICATIONS

Step 3 This step allows you to specify the aggregation settings. Leave the defaults
and click the Start button. Click Next to advance to the Process Cube screen
and initiate this task.

Processing the cube

The Storage Design Wizard then processes the cube. If everything is okay, you should
see a confirmation of your success, as shown in figure 12.18.

Now, you can switch to the Data tab in the Cube Editor and test the cube’s data.
Experiment with different combinations of dimensions and measures by dragging
and dropping them on the columns or rows of the grid to analyze the data from dif-
ferent angles.

Now that the cube is ready, let’s see how we can report off its data. First, we will
create a standard (“canned”) report with RS that use the OLAP cube as a data source.
Next, we can give our users the ability to create ad hoc reports by taking advantage
of the smart Office Web Components that know how to manipulate multidimen-
sional data sources.

12.2.3 Authoring OLAP-based reports with RS

Can you use RS to report off OLAP cubes? You bet! As we discussed in chapter 3,
thanks to its flexible data architecture, RS reports can retrieve data from any ODBC
and OLE DB–compliant data source, including Analysis Services cubes.

The only difference between reports drawing their data from an OLAP-based data
source instead of a relational database is setting up the report’s data source. Unlike rela-
tional databases, cubes hosted in Analysis Services don’t understand SQL. Instead, you
must retrieve data from cubes by using Multidimensional expressions, or MDX for short.

Microsoft introduced the MDX extensions with SQL Server 7 OLAP Services to
make accessing data from multiple dimensions easier and more intuitive. Although it

Figure 12.18 When the cube schema is ready, you must process the cube to make it

available for querying.

IMPLEMENTING AN OLAP SOLUTION: AW DATA MINER 441

is technically an extension to SQL and is similar to SQL in syntax, MDX is a separate
and more difficult language. If you are new to MDX, you may find the MDX resources,
which are listed in section 12.4, useful.

NOTE I was initially planning in this chapter to focus more on MDX queries until
I come across the excellent “Integrating Analysis Services with Reporting
Services” white paper (see section 12.4) from Microsoft. After reading this
document, I realized that I don’t have much to say about writing MDX que-
ries to access Analysis Services cubes. This is where I thought that the con-
cept of “dynamic reporting” with Microsoft Office Web Components
would nicely complement the article to round out how RS can be inte-
grated with Analysis Services.

You will probably find the RS matrix region very useful when authoring OLAP stan-
dard reports. Thanks to its drilldown capabilities, it naturally fits into the multidimen-
sional nature of OLAP data.

Let’s see how we can convert the Territory Sales Crosstab report to draw its data
from the Sales cube instead of the relational database. We already mentioned the new
version of this report in section 12.1.3.

Let’s start by copying the Territory Sales Crosstab report and changing the name
of the new report to Territory Sales OLAP.

Setting up the report’s data source

The first step of modifying the Territory Sales OLAP report to meet the new require-
ments is to change its data source by switching to the Microsoft OLE DB Provider for
OLAP Services 8.0, as shown in figure 12.19.

Also, we need to set the initial catalog to the name of the Analysis Services database
we created in section 12.2.2 to host the Sales cube, which in our case is AdventureWorks.

Creating the report’s dataset

To reproduce the Territory Sales Crosstab report, we need to craft an MDX statement
to retrieve the data we need in three dimensions. This is what the final version of our
query looks like:

SELECT {[Measures].[Sales Dollars], [Measures].[Sales Units]}
 ON COLUMNS,
 {CrossJoin([Territory].Children, [Employee].Members)} ON ROWS,
 {Descendants([Time].[All Periods], [Time].[Quarter])} ON PAGES
FROM Sales

Even if you don’t have a good grasp of MDX, you will probably be able to deduce what
is going on here. We retrieve the two measures, Sales Dollars and Sales Units, on the
COLUMNS dimension, which will be used to populate the matrix’s data cells.

442 CHAPTER 12 REPORTING FOR OLAP APPLICATIONS

Because we want to show both the Territory and Salesperson dimensions as matrix row
groups, we use the MDX CrossJoin function, which returns an MDX set on the
ROWS dimension. The [Employee].Members statement returns all items of the Employee
dimension. We use the Children statement to retrieve only the items at the Territory
group level.

Finally, to set the matrix’s column groups, we need to fetch the members of both
the year and quarter levels of the Time dimension. We accomplish this by using the
Descendants statement. This statement retrieves the dimension members between two
specified levels.

NOTE You may need to pass parameters to your MDX queries. Unfortunately,
in SQL Server 2000, Analysis Services doesn’t support parameterized
MDX. As a workaround, you need to base your query on an expression
and concatenate the parameter values. For practical examples about how
to do this, you may find useful the OLAP Sample Reports download that
the Reporting Services team has published on MSDN. For more infor-
mation, please see section 12.4.

Once the query is crafted, there are only a few final touches left. First, let’s change the
dataset’s field names to abbreviated captions, so we can reference these fields easier, for
example, Year as opposed to [Time].[Year].[MEMBER_CAPTION]. We can accom-

Figure 12.19

To report off Analysis

Services cubes, use

Microsoft OLE DB

Provider for OLAP

Services 8.0.

IMPLEMENTING AN OLAP SOLUTION: AW DATA MINER 443

plish this by using the Fields toolbox window or accessing the dataset properties (Fields
tab). Next, we need to go through all the matrix region textboxes and groups and
adjust their underlying field names accordingly to match the dataset fields.

While standard OLAP-based reports could be useful, the powerful data-analysis
capabilities of OLAP could be better realized when cubes are integrated with smart cli-
ent applications. We’ll see how to do this next by leveraging the Microsoft Office Web
Components.

12.2.4 Implementing AW Data Miner

By now you probably see RS as a powerful platform for creating, managing, and dis-
tributing standard reports. As we said in section 12.1.2, in a typical enterprise environ-
ment, this type of report will usually meet the reporting needs of 60–80 percent of the
users. However, a relatively small group of information workers representing the com-
pany’s business analysts, statisticians, information explorers, and decision makers may
need more dynamic and interactive report features.

To respond to this need, we will create a WinForm application (AW Data Miner)
that has the following high-level design goals:

• Allow the Adventure Works business analysts to easily create dynamic reports ad
hoc from the OLAP Sales cube.

• Support crosstab and chart reports.

• Support preconfigured standard and user-defined reports. Users can save their
personalized version of the reports, very much like the My Reports feature in RS.

• Allow users to drill through the sales data to see the daily sales orders. Because the
Sales data warehouse consolidates data per month, we will accomplish this by inte-
grating the Monthly Order Summary RS report with the PivotTable component.

The concept of dynamic reporting may be new to you, so we’ll discuss it in more detail
in the next section.

Understanding dynamic reporting

To understand what we mean by dynamic reporting, let’s revisit the crosstab reports
that we can create with RS by using the matrix region. Granted, the matrix region pro-
vides a certain level of interactivity. It allows the report users to drill down the data by
expanding groups, which happens to be of the most popular interactive feature
requested by business analysts. However, the matrix region has one important limita-
tion. It can operate only within the underlying query’s data. This makes it impossible
to see the data from dimensions other than the ones the query fetches.

Let’s take for example the Territory Sales OLAP report we just authored. It allows
the users to drill down into the sales data by year, territory, and salesperson. But what
if we want to see a breakdown of sales by product and year? Or, what if we need the

444 CHAPTER 12 REPORTING FOR OLAP APPLICATIONS

report to show how many products have been sold by each store? How about the top-
selling products? There are countless angles from which a business analyst may want
to see the data. Well, we have two options for solving this dilemma. One approach is
to create some additional standard reports. However, by taking this route, it is unlikely
that we will be able to answer in full the plethora of questions that may be posed by
information explorers. Besides, it can quickly become counterproductive from the
standpoints of both maintenance and development effort.

What we really need is some kind of a smart ad hoc reporting tool that can
empower our users to create dynamic reports on the fly. By the term dynamic, we mean
fully interactive reports, where changing dimensions, sorting, grouping, and querying
data in different ways is just a click away. Ideally, such a tool would abstract both
report authors and consumers from the MDX technicalities by allowing them to sub-
mit the correct MDX query behind the scenes when the user interface changes. Enter
Microsoft Office Web Components!

Understanding Microsoft Office Web Components

Microsoft Office Web Components (OWC) is a marvelous piece of technology that we
highly recommend you consider for building OLAP-based solutions. OWC was first
introduced with Microsoft Office 2000 as a collection of COM (ActiveX) controls,
covering spreadsheet, charting, and pivot (crosstab) functions. Therefore, these con-
trols are typically used with rich web or WinForm-based clients, where OWC is prein-
stalled on the client side. In terms of licensing, each user needs a valid Office license
to be able to use OWC interactively.

The latest version of OWC included with the Microsoft Office 2003 suite is version
11. It is also available as a separate download from the Microsoft web site, as detailed
in the section 12.4. However, to use OWC from .NET-based applications, you will also
need the OWC Primary Interop Assemblies (PIAs).

To facilitate integrating Office 2003 with .NET applications, Microsoft has
released a series of interop assemblies called Office 2003 Primary Interop Assemblies.
A primary interop assembly is a specialized .NET assembly that contains definitions
(as metadata) of types implemented with COM. Currently, Office 2003 PIAs are dis-
tributed only on the Microsoft Office 2003 Setup CD.

There are two OWC components that report authors may find particularly attrac-
tive for creating dynamic reports: PivotTable and ChartSpace.

Understanding OWC PivotTable reports

The PivotTable component is a mini-application by itself, as figure 12.20 shows.
You can think of the PivotTable component as a matrix region on steroids. Simi-

larly to the matrix region, you can use PivotTable to create crosstab drilldown reports.
However, it also supports changing dimensions and measures at will. For example, the
user can drag and drop a dimension on the row or column area. If you don’t need the

IMPLEMENTING AN OLAP SOLUTION: AW DATA MINER 445

dimension anymore (or one of its levels), you can remove it by dragging and dropping
it outside the component area.

It addition, PivotTable sponsors a handy toolbar, packed with features, including:

• Dimension member filtering and sorting

• Top/bottom filtering—For example, you can select the Product Name column
and instruct PivotTable to show you only the five top-selling products.

• Calculated fields

• Exporting to Excel

PivotTable can retrieve its data from the following data sources:

• Tabular data sources, such as a relational database

• Multidimensional data sources, such as an OLAP cube

• XML, by using the same data provider (Microsoft Persistence provider) that
reports that have been exported to HTML OWC RS use

Figure 12.20 Use the OWC PivotTable component to add dynamic reporting features to your

WinForm or web-based applications.

446 CHAPTER 12 REPORTING FOR OLAP APPLICATIONS

Understanding OWC chart reports

Similarly to the RS chart region, the ChartSpace component (shown on figure 12.21)
supports different types of charts, including area, column, pie, doughnut, and so on.

As with the PivotTable component, you can interact with ChartSpace by using the
familiar drag-and-drop technique to add or remove dimensions and measures. The
ChartSpace component can draw its data from the cube it is connected to, or it can
be synchronized with a PivotTable component, as the Data Miner sample will dem-
onstrate shortly in this chapter.

How Do Office Web Components Work?

The interaction between OWC and OLAP servers follows the client/server model, as
shown in figure 12.22.

Figure 12.21 Use the OWC ChartSpace component to create dynamic chart reports.

Figure 12.22 When the user interacts with an OWC component, it creates and sends MDX

queries through the OLE DB providers to the OLAP server.

IMPLEMENTING AN OLAP SOLUTION: AW DATA MINER 447

The OWC components communicate with the OLAP server via an OLE DB provider.
For example, in the case of Analysis Services, OWC uses Microsoft OLE DB Provider
for OLAP. Once the component is connected to the server, it populates the Field List
window with the available measures and dimensions from the cube.

As the user interacts with an OWC component, for example, drags and drops
dimensions and measures, the component creates and sends MDX queries behind
the scenes to the OLE DB provider, which in turn communicates with the server to
fetch the data. As most of you who have used MDX before would agree, this is one
of the most appealing aspects of OWC. You can build a complete OLAP reporting
solution without having to write a single MDX query statement, because OWC does
this for you.

If you are concerned with performance issues that the OWC client-server may
exhibit, please note that the data payload between OWC and the server is actually quite
small, because OWC sends the query string and gets only the aggregated values from
the OLAP server.

Setting up Microsoft Office Web Components

You will probably face two predicaments when building OWC-centered solutions. The
first one has to do with the lack of quality programming documentation. .NET devel-
opers will be the most unconvinced, because all of the documentation samples use
scripting languages. It seems to me that the Microsoft OWC team is the last holdout
of legacy technologies within Microsoft. This is probably related to the fact that in the
past many organizations have shied away from using WinForm clients because of the
deployment issues we described in chapter 8.

The second issue again concerns .NET developers and is related to the convoluted
setup process required to configure OWC with Visual Studio .NET. For the purposes
of the Data Miner demo, migrating some web-based OWC code from one of my appli-
cations to .NET took a substantial number of hours to work around all the setup issues.
To avoid setup headaches, we’ll show you what needs to be done to configure OWC
for .NET development.

First, you need to make sure that you install the OWC Primary Interop Assemblies
on your development machine, as well as on all clients that will run your application.
As we mentioned before, the OWC PIAs are available only on the Office 2003 Setup
CD, and they are not installed by default. To install them, you have to run the Office
Setup and select the .NET Programmability Support component from the Office 2003
Web Components section, as shown in figure 12.23.

The Setup program will install the PIAs in the .NET Global Assembly Cache
(GAC). Once you have installed the OWC PIAs, you can add the components to your
toolbox in Visual Studio .NET. The PivotTable control is listed as the Microsoft
Office PivotTable 11.0 control under the Customize Toolbox COM tab, while the
ChartSpace control’s name is Microsoft Office Chart 11.0. Once you reference the
controls, check the VS.NET references. There should be a reference to the OWC11

448 CHAPTER 12 REPORTING FOR OLAP APPLICATIONS

library that should point to the .NET Global Assembly Cache folder. If it doesn’t,
either PIAs are not installed or you will have to refresh the reference.

You will also notice that VS.NET has helpfully created an interop assembly called
AxOWC11. The purpose of this assembly is to host the OWC class wrappers. Unfor-
tunately, this assembly won’t allow you to sink many of the OWC events, as docu-
mented in Knowledge Base Article 328275. The article outlines the steps to regenerate
the wrapper assembly for OWC version 10, which are also applicable for version 11.

Because you need to reference PIAs, and getting them from the GAC is like per-
forming brain surgery, we included the AxOWC11 source code and binary in the
AWReporterWin\OWC11 folder. You’ll need to remove the autogenerated reference
to AxOWC11 inside VS.NET and replace it with a reference to our version so you can
handle events successfully. You don’t have to do this for the Data Miner demo because
its project file already has the correct reference.

Now that you have a good understanding of how the Office Web Components
work, let’s see how we can leverage them for the purposes of the Adventure Works
Data Miner demo.

Implementing the AW Data Miner presentation layer

Let’s start by taking a quick walk-through of the AW Data Miner user experience. Fig-
ure 12.24 shows the AW Data Miner UI. This sample can be launched from the
Chapter12 menu in the AWReporterWin project.

As figure 12.24 shows, we selected the Sales by Territory and Product Category for
2004 report from the My Reports drop-down. The Pivot tab is selected and shows the
pivot version of this report, which displays some data from the Sales cube we authored
in section 12.2.2.

We can drag measures and dimensions from the PivotTable Field List and drop
them onto rows or columns to see the data from different angles. Once we’re happy
with the new version of the report, we can save it as our personal report. We can also
switch to the Chart tab to see a chart report that uses the same data as the pivot report.

As you would probably agree, this sample is packed with features. However, it took
us only a few hours to implement it thanks to the Office Web Components.

Let’s now take a behind-the-scenes tour of the Adventure Works Data Miner, start-
ing with the My Reports feature.

Figure 12.23

To integrate OWC with

.NET applications you

have to install the

OWC PIAs.

IMPLEMENTING AN OLAP SOLUTION: AW DATA MINER 449

Implementing the My Reports feature

Once we figured out the setup issues, implementing the Data Miner demo was straight-
forward. The Data Miner sample follows a design pattern similar to the one demon-
strated by Dave Stearns in his book Programming Microsoft Office 2000 Web Components.
This approach has proven very successful in some of my real-life applications. In its sim-
plest implementation, you may find that one screen, the one shown in figure 12.24, may
be able to satisfy most of your users’ dynamic reporting requirements.

Most of the implementation effort of the Data Miner demo went into implement-
ing the My Reports feature. It allows the users to retrieve preconfigured reports, per-
sonalize them any way they want, and save them for future retrieval. To accomplish
this, we used the XMLData property, which represents in XML the current report def-
inition (excluding the data) of the OWC PivotTable or ChartSpace component. In this
respect, you can relate XMLData to the RDL report definition in RS.

Figure 12.24 The Adventure Works Data Miner solution uses Office Web Components to allow

the user to create ad hoc reports.

450 CHAPTER 12 REPORTING FOR OLAP APPLICATIONS

TIP Here is a tip in case you need to convert a dynamic report generated with
OWC to an RS-based report. Although XMLData is not based on the RDL
schema, you can write an XSL transformation to generate the RS report def-
inition from XMLData. Then, you can upload the report definition to the
report catalog, as we showed in chapter 7.

XMLData is a read/write property and can be used to save and restore the report layout.
All three of the UI Office Web Components—PivotTable, ChartSpace, and Spread-
sheet—expose this property. Although the Data Miner sample persists only the Pivot-
Table report definition, with a minimum amount of programming effort you should
be able to enhance it to support saving and restoring chart report layouts as well.

To capture the report layouts, we created a table called Reports in the Adventure-
Works warehouse database. This table has a Category field that classifies the report
as standard or user-defined. In addition, the table saves the user’s identity in the
format DomainName/UserName. Users can see only the standard reports defined
in this table plus the user-defined reports they have authored. To facilitate the
access to the database, we built a web service façade, MyReports, which you can
find under the Chapter12 folder in the AWReporterWeb project. The façade
exposes two web methods, GetReports and SaveReports, to retrieve or change the
report definitions, respectively.

When the Data Miner application starts, it calls down to the façade to retrieve the
report list. It caches the reports in an ADO.NET dataset. The application’s user inter-
face logic prevents the user from making modifications to standard reports. All
changes to the user-defined reports are cached locally in the dataset. When the user
clicks the Update My Reports button, the modified user-defined reports are sent to
the façade, which in turn propagates the changes to the database.

Implementing dynamic chart reports

To generate the chart report when the Chart tab is clicked, we bind the ChartSpace
component to the PivotTable control, as shown in listing 12.1.

private void LoadChart() {
 ChChart chart;
 PivotView pview = pivotTable.ActiveView;
 chartSpace.DataSource = (msdatasrc.DataSource)
 pivotTable.GetOcx();
 chartSpace.DisplayFieldList = true;
 chartSpace.AllowUISelection = true;

 if (chartSpace.Charts.Count == 0)
 chart = chartSpace.Charts.Add(0);
 else
 chart = chartSpace.Charts[0];

Listing 12.1 Creating chart reports bound to the PivotTable control

Binds the chart to the
PivotTable component

Gets the chart or
creates one if needed

IMPLEMENTING AN OLAP SOLUTION: AW DATA MINER 451

 chart.HasTitle = true;
 chart.Title.Caption = pview.TitleBar.Caption;
}

If you use the PivotTable component on the same form, the easiest way to configure
the chart is to synchronize it with the PivotTable control itself. Once this is done, the
chart series will be automatically bound to the Pivot Column field and the chart cate-
gories to the Pivot Row field.

Next, we set up some chart properties to allow users to drag dimensions and mea-
sures from the Field List and select chart elements. The ChartSpace control can have
more than one chart associated with it. In our case, we need only one chart. Once the
chart is created, we set its title to match the title of the pivot report.

Implementing drillthrough reporting

One of the most useful OLAP features is drilling down through data from one dimen-
sion level to the next. Eventually the user will reach the lowest level in the dimension
hierarchy. A common requirement is to allow the users to drill through data. For exam-
ple, the Sales data warehouse that we built in this chapter consolidates data per month.
However, a business analyst may question the accuracy of the current month’s sales fig-
ures and would like to see a daily breakdown of the sales orders. Unfortunately, this
level of data is not available in the data warehouse.

However, provided that daily sales data is available in another data source, such as
the OLTP system or the staging database, we could allow the business analyst to gen-
erate a standard report by double-clicking the pivot cell or selecting the report’s name
from a context menu. In this way, we can integrate the dynamic pivot-based reports
with a standard report generated by RS.

The most challenging aspect of implementing this is to ensure that the intersected
dimensions of the user’s selection give us enough information to set the standard
report’s parameters. For example, in the above scenario, the user must have the Time
dimension expanded all the way down to the Month level so that we can determine
the selected month.

Determining the user’s selection

The PivotTable component exposes the user’s selection under its Selection property.
Each time the user selects a new item, the SelectionChanged event fires. We used this
event to output the row and column dimension members for demonstration purposes.
When the user double-clicks on a cell or right-clicks to access the context menu, we
validate the user’s selection in the IsSelectionValid function, which is shown in
listing 12.2.

452 CHAPTER 12 REPORTING FOR OLAP APPLICATIONS

private bool IsSelectionValid() {
 string selection = pivotTable.SelectionType;
 PivotAggregates aggregates = null;
 PivotAggregate aggregate = null;
 bool valid = false;
 string uniqueName = null;

 if (selection != "PivotAggregates") return false;
 aggregates = (PivotAggregates)pivotTable.Selection;
 aggregate = aggregates[0];
 if (aggregate.Value == System.DBNull.Value) return false;

 uniqueName = aggregate.Cell.ColumnMember.UniqueName;
 valid = IsDateDimensionExpanded(uniqueName);
 if (!valid) {
 uniqueName = aggregate.Cell.RowMember.UniqueName;
 valid = IsDateDimensionExpanded(uniqueName);
 }
 return valid;

}

At different times, the user may select different PivotTable areas. We are interested
only in the case when a data cell is selected. If this is true, the Selection property will
return PivotAggregates.

Next the code checks to see whether the cell is empty. Then it tries to find the Time
dimension in both rows and columns. Finally, we call the IsDateDimension-
Expanded function to find out whether the dimension is expanded all the way to the
Month level. If this is the case, we consider the
selection to be valid because we can retrieve
the corresponding year and month to construct
the report’s parameters.

Implementing custom actions

OWC allows you to easily change the context
menu and add your own items. Before the con-
text menu is expanded, the PivotTable compo-
nent fires the BeforeContextMenu event. If the
user’s selection is valid, we can use this event to
add the Show Monthly Orders Summary
Report command, as shown in figure 12.25.

When the user clicks a context menu item,
the PivotTable control fires the Command-
Execute event. The CommandExecute event

Listing 12.2 Determining the user’s selection

Is a data cell
selected?

No data in
the data cell

Reference the time dimension

Is the time dimension
expanded to the Month level?

Figure 12.25 Office Web Components

allows developers to define custom

actions that can be launched from the

context menu.

SUMMARY 453

handler requests the Monthly Order Summary report, which we authored with
Reporting Services. Figure 12.26 shows this report.

The Data Miner sample requests this report by URL. The report takes a single
parameter, Date, which we set to the selected date in the Time dimension of the Pivot-
Table control.

As you can see, OWC components give you a lot of flexibility to perform various
custom actions. Another useful practical application of this could be to request a
server-side web page to write back data, similar to the write-back sample we discussed
in chapter 11. Finally, Analysis Services also support custom actions, including shell-
ing out to an executable and requesting a page by URL. For more information, check
out the “Creating Actions” topic in the Analysis Services documentation.

12.3 SUMMARY

The chapter has been a whirlwind tour of OLAP tools and technologies and how they
can be used for business intelligence reporting. By now, you should understand how
the various pieces of the Microsoft Business Intelligence stack fit together to form a
comprehensive reporting framework.

We hope the last few chapters have helped you realize the benefits of Reporting
Services for generating standard reports. In many cases, you will probably find that by
integrating your applications with RS, you will be able to satisfy the reporting needs
of the majority of the information workers in your organization.

However, sometimes a small group of users may require more advanced reporting fea-
tures, such as multidimensional queries and dynamic reporting. In this chapter, we have
shown how you can use OLAP technologies coupled with RS to create all-encompassing

Figure 12.26 The Monthly Order Summary report will be requested via a drillthrough custom

action from an OWC PivotTable report.

454 CHAPTER 12 REPORTING FOR OLAP APPLICATIONS

reporting solutions to meet the most demanding reporting requirements in today’s
enterprise environment.

Before we leave the enterprise space, in the next chapter we’ll discuss some strate-
gies to address other challenges that large-scale reporting solutions may face.

12.4 RESOURCES

“Integrating Analysis Services with Reporting Services” white paper from Microsoft
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsql2k/html/
olapasandrs.asp)

Professional SQL Server 2000 DTS (Data Transformation Services), by Mark Chaf-
fin, Brian Knight, and Todd Robinson, ISBN: 0764543687
Shows you how Microsoft DTS (Data Transformation Services) helps you
extract, transform, and load transaction data into a data warehouse.

Microsoft SQL Server 2000 Analysis Services Step by Step, by OLAP Train and Reed
Jacobson, ISBN: 0735609047
A good introduction to implementing OLAP solutions with Microsoft Analysis
Services.

Programming Microsoft Office 2000 Web Components, by Dave Stern, ASIN:
073560794X
A great starting point for getting into Office Web Components.

MDX Solutions: With Microsoft SQL Server Analysis Services, by George Spofford,
ISBN: 0471400467
A detailed reference guide for using Multidimensional Expressions (MDX) to
query Microsoft Analysis Services.

“Manipulate and Query OLAP Data using ADOMD and Multidimensional
Expressions” (http://www.microsoft.com/msj/0899/mdx/mdx.aspx)
An excellent introductory article to MDX and ADOMD.

Reporting Services 2000 - OLAP Sample Reports
(http://www.microsoft.com/downloads/details.aspx?FamilyID=f9b6e945-1f4c-
4b7c-9c83-c6801f0576ff&DisplayLang=en)
Contains a couple of sample reports illustrating how to use Analysis Services
cubes as a data source.

The OWC 2003 download URL
(http://www.microsoft.com/downloads/details.aspx?FamilyID=7287252c-
402e-4f72-97a5-e0fd290d4b76&DisplayLang=en)

“Introducing the Office Web Components”
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dno2kta/
html/ofintrowbcom.asp)
Excerpted from Programming Microsoft Office 2000 Web Components.

RESOURCES 455

Microsoft Office XP Web Component Toolpack
(http://www.microsoft.com/downloads/details.aspx?FamilyID=beb5d477-
2100-4586-a13c-50e56f101720&DisplayLang=en)
The toolpack contains valuable samples and walkthroughs of the Office XP
Web Components, which for the most part are compatible with Office 2003
Web Components.

456

C H A P T E R 1 3

Enterprise reporting
13.1 Understanding enterprise reporting 457
13.2 Behind the scenes of the Adventure Works Enterprise Reporter 461
13.3 Implementing custom application authorization 472
13.4 Summary 481
13.5 Resources 481

Today’s enterprise reporting requirements are more complex and diverse than ever
before. They present a new set of challenges, including

• Delivering a flexible solution that can grow with the evolving needs of the user
• Supporting multiple report providers to prevent vendor lock-in to a proprietary

infrastructure or tool
• Facilitating the report management by centralizing the report configuration in

one place
• Protecting the company data by integrating the report solution with existing

enterprise security frameworks

In many cases, the optimal approach to address the above needs is to implement a cus-
tom reporting framework. In this chapter we will show how the sample framework
that we will build, the Adventure Works Enterprise Reporter, can help you to imple-
ment some of these requirements.

UNDERSTANDING ENTERPRISE REPORTING 457

13.1 UNDERSTANDING ENTERPRISE REPORTING

Just as with any enterprise-oriented solutions, implementing an enterprise reporting
framework is not a trivial undertaking. For example, in one of my real-world projects,
we had to derive to a solution that met the following requirements:

• New providers had to be plugged seamlessly with the reporting framework. Our
system had to support both homegrown reporting providers as well as third-
party products, such as Reporting Services, Crystal Reports, and so on.

• The reporting framework had to be able to integrate easily with different types of
applications. To meet this requirement we implemented a Web service communi-
cation façade so that client applications could submit SOAP-based report requests.

• The report-to-report provider relationship had to be transparent to clients. In
other words, the client would not be aware of which reporting provider would
handle a given report. To meet this requirement, we had to implement a report
catalog that stored the report configuration.

• The framework had to handle core architectural services, such as security, cach-
ing, report serialization, and so on.

Do some implementation aspects of our framework look familiar to you? In a nutshell,
we reinvented Reporting Services with a twist so that it could support multiple report-
ing providers. As you would imagine, the development effort required to implement
our homegrown framework wasn’t trivial. For this reason, before you embark on a sim-
ilar endeavor, it may make sense to consider other less-involved design patterns that
may offer a reasonable compromise between flexibility and simplicity.

Our advice is to tackle this dilemma from the standpoint of simplicity, as opposed
to trying to implement full-blown flexible solutions. A famous novelist was once asked
how he knew when his novel was complete, to which he answered, “When there is
nothing left to take out.” We would suggest that you adopt this design paradigm when
architecting your enterprise reporting solution as well.

13.1.1 Evaluating enterprise reporting

To better understand why we advocate simplicity, let’s look at some tradeoffs that you
will need to consider as you design a custom enterprise reporting solution.

Increased complexity

The report request may need to traverse several layers before reaching the report pro-
vider. For example, once the client initiates the report request, it may need to go to be
validated by the application business layer. Next, the business layer will submit the
request to the communication layer of the reporting framework. Here, we will need to
validate the request again, parse it, invoke the report adapter, and so on.

Compare this invocation pattern with directly accessing the Report Server by URL in
the case of Reporting Services, and you will start to understand the price of flexibility.

458 CHAPTER 13 ENTERPRISE REPORTING

Reduced feature set

You may find that when dealing with heterogeneous report providers you need to use
the least-common-denominator approach, such as supporting only the on-demand
report delivery model. For example, with RS you can deliver reports to subscribed
users. However, Microsoft Access doesn’t offer this feature.

This leaves you with two implementation options if you need to support both RS
and Access. First, you may decide not to support the subscribed report delivery feature
at all. Or, you can opt to support this feature only for RS reports. The latter option
will entail more complicated logic to build a provider-specific report request.

Reinventing the wheel

In your quest to abstract report providers, you may find that you have to reimplement
a subset of the provider features that you need. For example, as we have seen, RS sup-
ports different forms of caching. To make your reporting solution vendor-neutral, you
may decide to design your own middle-tier caching mechanism.

Given the above tradeoffs, sometimes your reporting requirements may call for a
sophisticated and flexible reporting framework as opposed to integrating your appli-
cations with a single reporting provider, such as with RS only. Let’s look at a frame-
work example, the Adventure Works Enterprise Reporter, to see how it addresses some
of the enterprise challenges you may face in real life.

13.1.2 Introducing the Adventure Works Enterprise Reporter

Let’s put ourselves in a hypothetical situation that many enterprise architects will
probably be able relate to. While moving to RS is a long-term management objective
in Adventure Works, in the short term replacing all disparate reporting providers to
RS is not feasible. Instead, we’ve been tasked with consolidating the most popular
report providers under a single layer, which we will call the Reporting Façade. The end
result of this vision is a common reporting model where developers don’t have to
worry about provider specifics. Instead, to report-enable their applications, they need
to integrate them with the Reporting Façade.

Here are the specific requirements that will drive the Adventure Works Enterprise
Reporter implementation:

• Isolate the provider implementation details from the report consumers—To prevent
tight coupling between the report provider and the client, we will introduce a
Reporting Façade layer. This layer will abstract the report provider’s implemen-
tation details. The Reporting Façade takes the report request as input and pro-
duces the report’s payload as output.

• Support multiple report providers—Our reporting framework should provide
seamless integration with multiple report providers.

• Enforce a trustworthy reporting environment—Different report providers may sup-
port different security mechanisms to authenticate and authorize users. For this

UNDERSTANDING ENTERPRISE REPORTING 459

reason, one of the main goals for our framework is to act as a gatekeeper that val-
idates report requests before handing them to the provider for processing.

• Implement a centralized report configuration store—While some providers, such
as RS, offer centralized report management, others don’t. For this reason, it
makes sense to centralize the report metadata in one place.

Here, we use the term “metadata” to refer to the information describing the reports. An
example of report metadata is the definition of parameters that the report takes, as well
as the provider which will be responsible for generating the report. In this respect, our
configuration store is similar to the RS catalog: it isolates the client from the report-
specific details. At best, the only information that the client will need in order to request
a report is the report’s identifier, the available export formats, and the parameter list.

Supporting multiple report providers

Perhaps the most important feature of the above design goals is supporting multiple
report providers. In a typical enterprise environment, you will often witness a hodge-
podge of technologies. While by now you are probably convinced that RS has many
appealing features, upgrading the existing report providers to RS won’t happen over-
night, or it may not be an option at all. Therefore, our solution needs to deal with
today’s enterprise realities where RS may have to coexist with other reporting tools.

To support multiple providers, we will introduce the concept of adapters. Most of
you have probably built database-driven applications that interface with data stores via
ODBC or OLE DB drivers. Similarly, our enterprise façade will interface with the
report providers using adapters. Thanks to the adapter design pattern, plugging a new
provider into our framework will be a matter of creating and registering a new adapter.

Now that we’ve described our envisioned reporting framework, we’ll discuss how
to implement it.

High-level architectural view

Based on our design goals, figure 13.1 shows the high-level architectural view of
our solution.

Figure 13.1 At the heart of the AW Enterprise Reporter is the Enterprise Reporting

Façade, which intercepts the report requests from the report consumers and

forwards them to the appropriate report providers.

460 CHAPTER 13 ENTERPRISE REPORTING

At a high level, our reporting framework will be implemented as a server-based layer
that could be accessed by different types of consumers, such as WinForm or web-based
client applications. At the heart of it is the Reporting Façade, which accepts incoming
report requests submitted by the consumer, sends the requests to the report providers,
and returns the generated reports.

As we explained, the Reporting Façade communicates with the report providers via
adapters. For example, as figure 13.1 shows, to generate an RS-based report, the
Reporting Façade will use a Reporting Services adapter; to generate a Microsoft
Access–based report, it will use a Microsoft Access adapter, and so forth.

To understand how the Adventure Works Enterprise Reporter works, let’s look at the
report processing flow among the different layers and find out how they work together.

Report processing flow

Figure 13.2 shows the sequence diagram of the report processing flow in the Adventure
Works Enterprise Reporter.

Let’s discuss the purpose of the main components shown in the diagram, starting
with the report consumer’s role.

Figure 13.2 The report processing sequence diagram of the Adventure Works Enterprise

Reporter solution

BEHIND THE ADVENTURE WORKS ENTERPRISE REPORTER 461

The report consumer

The report consumer initiates the report request. The report request is described in
XML and contains the minimum set of consumer-related input details that the façade
needs to generate the report, including the following:

• The report identifier—A unique identifier that corresponds to the primary key
of the report in the Report Configuration Store. As we said, the main goal of
the Report Configuration Store is to centralize the report configuration details
in a single report repository.

• The report parameters—For parameterized reports, the report consumer needs to
specify the parameter values.

• The export format—The format that the report will be rendered to, such as
HTML, PDF, and so on.

Once the report consumer creates the report request, it submits the request to the
Reporting Façade.

The Reporting Façade

The Reporting Façade provides the following services:

• Validates the report request against an application-defined security policy

• Queries the Report Configuration Store to retrieve the report details in order to
find out which adapter is associated with this report

• Instantiates the adapter and forwards the report request to it

Report adapters and providers

Based on the incoming generic request, the adapter formulates a provider-specific
report request and forwards it to the report provider. The report provider generates
the report.

Once the report is ready, the adapter serializes the report’s payload and sends it
back through the call chain. The report consumer receives the result, deserializes the
report’s payload, and either renders the report on the screen or processes it in unat-
tended mode.

Let’s now take a behind-the-scenes tour of Adventure Works Enterprise Reporter
to find out how it is implemented.

13.2 BEHIND THE SCENES OF THE
ADVENTURE WORKS ENTERPRISE REPORTER

We will now direct our attention to the implementation details by tracing the call from
the client to the report provider. Our discussion will focus on the following architec-
tural topics:

462 CHAPTER 13 ENTERPRISE REPORTING

• The Report Configuration Store schema.

• Submitting report requests

• The Reporting Façade layer

• Implementing provider-specific adapters to generate RS and Microsoft Access reports

Let’s start by looking at the Report Configuration Store.

13.2.1 Implementing the Report Configuration Store

One of the most common requirements imposed on enterprise reporting solutions is
that they should provide a centralized report repository. The purpose of the Report
Configuration Store is to hold the report’s metadata. To be available for querying by
report consumers, the Report Configuration Store could be located in either a rela-
tional database or Windows Active Directory. In the Adventure Works Enterprise
Reporter sample, the Report Configuration Store fulfils the following tasks:

• Defines the report export formats

• Describes the report parameters

• Defines the report-to-adapter relationship

Figure 13.3 depicts the database schema of our Report Configuration Store.

Figure 13.3 Use the AW Enterprise Reporter client to test the Reporting Façade.

BEHIND THE ADVENTURE WORKS ENTERPRISE REPORTER 463

You will probably notice that we built this diagram upon the report parameter schema
(not shown here) that we discussed back in chapter 10. Table 13.1 explains the role of
the new tables.

In real life, report consumers will retrieve the list of reports and export formats from
the Reporting Facade. Similar to RS, the façade could apply application-defined secu-
rity policies and return only the reports that the user is permitted to run.

To keep things simple, for the purposes of the Enterprise Reporter demo, we sim-
ulate the configuration store by using name-value settings defined in the AWReporter-
Web web.config configuration file in the format

 <add key="report identifier" value="adapter class name",
 "assembly name"/>

These settings define the report-adapter relationship. For example, to describe that a
report with an identifier of 1 is serviced by the RS adapter, we can add the following
configuration setting:

<add key="1" value="AWC.Reporter.Web.Adapters.RsAdapter,
AWC.Reporter.Web, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=null"/>

The preconfigured settings in the web.config file define four reports; two define RS
reports and the other two define Microsoft Access reports.

13.2.2 Implementing the presentation layer

To simulate a report consumer requesting reports from the Reporting Façade, we
developed a simple WinForm client, as shown in figure 13.4. You can launch it from
the Chapter13 menu in the AWReporterWin project.

Table 13.1 The Configuration Store tables

Table Purpose

Report Stores all reports

ExportFormat Defines the report export formats, e.g., PDF, Excel, Access Snapshot, etc.

ReportFormat Defines the relationship between reports and export formats

Adapter Defines the report adapter details, such as the adapter type and assembly path

ReportAdapter Defines the relationship between reports and adapters

Figure 13.4

Similar to the RS

configuration database, the

Report Configuration Store

stores the report’s metadata

in a central repository.

464 CHAPTER 13 ENTERPRISE REPORTING

For simplicity’s sake, we didn’t implement the following features:

• Retrieving the report list

• Retrieving the export formats supported by the report provider

• Handling the report parameters

As we mentioned, in the real world, the report consumer could fulfill the above tasks
by calling the Reporting Façade. As you would expect, various report providers may
differ substantially in their supported feature set. For example, the subset of the avail-
able export formats between RS and Access is limited to HTML and Excel.

For the purposes of the demo, we decided to use the least-common-denominator
approach and restrict the list of available formats to these two formats only. To make your
applications more flexible, you should enhance our implementation and query the façade
to get the report formats supported by a given report provider. This will allow you to use
provider-specific formats. For example, when using Microsoft Access, you may want to
request the report in a Microsoft Snapshot format to get a full-fidelity copy of the report.

To handle the report’s parameter list, you could follow the approach we discussed
in chapter 10. As you will probably recall, it promotes storing the parameter’s meta-
data in a custom database and dynamically configuring the presentation layer to han-
dle different parameter types.

Submitting report requests

Once the user is ready with the report selection, we can generate a report request and
submit it to the Reporting Façade. We have a number of request serialization options
to choose from, as we mentioned in chapter 10. For the purposes of the Enterprise
Reporter demo, we decided to reuse the Report Request entity that we created in the
Report Wizard sample. The Report Request entity is based on a typed dataset and its
definition is included in the AWReporterWeb project.

If you look at the façade communication layer (the EnterpriseReporting.asmx Web
service) you will notice that its RenderReport method takes a single parameter of
type ReportRequest. Given that, generating the report request on the consumer side
is easy, as shown listing 13.1.

private void RunReport() {
 byte[] reportPayload = null;
 ReportRequest reportRequest = new ReportRequest();
 reportRequest.Report.AddReportRow(cmbReport.SelectedValue,
 cmbReport.Text, String.Empty, String.Empty,
 GetUserIdentity(), DateTime.Now, DateTime.Now,
 false, null, 0, null, cmbFormat.Text, null, false);

 ReportingFacade facade = GetFacadeProxy();
 reportPayload = facade.RenderReport(reportRequest);

Listing 13.1 Requesting a report

Creates a
report request

b

Invokes the façade’s
RenderReport
method

c

BEHIND THE ADVENTURE WORKS ENTERPRISE REPORTER 465

 string filePath = Util.GetFileForReport(cmbReport.Text,
 cmbFormat.Text);
 FileStream stream = File.Create(filePath,reportPayload.Length);

 stream.Write(reportPayload, 0, reportPayload.Length);
 stream.Close();
 Process.Start(filePath);
}

b First, the code creates a new instance of the ReportRequest entity. You may wonder
how we can reference the ReportRequest entity because it is physically located in the
Reporting Façade assembly. To obtain its proxy code, we established a web reference
to the Reporting Façade Web service. This caused Visual Studio .NET to generate the
signature of the ReportRequest entity in the proxy source code. Strictly speaking, we
don’t need all columns of ReportRequest, because we will pass to the façade only the
report’s identifier, export format, and parameters (if any). The Reporting Façade will
query the Report Configuration Store to get the rest of the report’s details.

The code also stores the Windows identity of the user in the format Domain\User-
Name inside the request entity to pass it to the façade. Passing the user’s identity could
be useful when the Reporting Façade doesn’t support or cannot retrieve the Windows
identity of the user. Our implementation of the façade ignores this argument because
it is configured to use Windows authentication and can retrieve the user’s identity on
its own.

NOTE If you need to delegate the user’s credentials to the report provider config-
ured for Windows authentication, you will need to enable Kerberos so that
the user’s credentials flow from the Reporting Façade and the report pro-
vider, as we discussed in chapters 7 and 8.

c Next, we call down to the façade to generate the report.

d Once we receive the report from the facade, we deserialize the report’s content to a
physical file and render it by shelling out to the application associated with the file
extension. This is very similar to the way the Report Wizard demo renders reports, as
we saw in chapter 10.

Securing the presentation layer

Something that may not be obvious is that the report consumer configures the user
interface according to the application-based security model (discussed in detail in sec-
tion 13.3).

Although all configured reports are loaded into the Report drop-down list, the
WinForm client prevents the user from requesting a report that the user is not per-
mitted to run. To accomplish this, the client retrieves the list of the permitted reports
from the façade using the following code:

public static void ConfigureSecurity() {
 ReportingFacade facade = AWER.GetFacadeProxy();

Deserializes
the report’s
payload to
disk

d

466 CHAPTER 13 ENTERPRISE REPORTING

 user = facade.GetApplicationUser();
 user.Operations.PrimaryKey =
 new DataColumn[]{user.Operations.IdColumn};
}

The GetApplicationUser façade method returns an entity of type UserEntity.
This entity contains all application-defined operations that the interactive user is
allowed to perform.

We also define a primary key on the ID column in the typed dataset so that we
can easily search on it. When the user changes the report selection in the drop-down,
the event handler determines whether the report identifier of the selected report is
among the permitted reports. If this is not the case, the code logic disables the Run
Report button.

A better implementation from a security standpoint would be to enhance the
façade to filter out the report list before it is returned to the client. As we saw in chapter
10, this is exactly how the RS ListChildren method works. However, we decided
to enforce the security policy on the client side to showcase how the client can con-
figure the application user interface because this is a common application requirement.

Once the report request is ready, it is submitted to the Reporting Façade.

13.2.3 Implementing the Enterprise Reporting Façade

For maximum interoperability, the Reporting Façade is implemented as a Web service.
Let’s now look at the following implementation sketches of the Reporting Façade layer:

• Processing report requests

• Handling multiple report providers

• Generating Microsoft Access reports

• Validating report requests using Windows Authorization Manager

Processing report requests

To submit report requests, report consumers call down to the Reporting Façade Web
service communication layer. Specifically, the report consumers call the Render-
Report web method (listing 13.2).

 [WebMethod]
 public byte[] RenderReport(ReportRequest reportRequest) {
 string reportId = reportRequest.Report[0].ID;

 if (!SecurityManager.IsOperationPermitted(Int32.Parse(reportId)))
 throw new System.Security.SecurityException(…);

 string reportAdapterFullTypeName =

Listing 13.2 Rendering reports

Retrieves the
report identifier

b

Authorizes
the request c

BEHIND THE ADVENTURE WORKS ENTERPRISE REPORTER 467

 ConfigurationSettings.AppSettings[reportId];

 IReportAdapter reportAdapter = (IReportAdapter)
 GenericFactory.Create(reportAdapterFullTypeName);

 byte[] reportPayload = reportAdapter.RenderReport(reportRequest);
 return reportPayload;
 }

b First, the code inside the RenderReport method retrieves the report identifier
from the report request entity.

c Next, it calls down to a custom class called Security Manager to authorize the report
request. Although the presentation layer enforces security checks, the façade dupli-
cates them on the server side. This is done to prevent a scenario where some mali-
cious code could bypass the client security and access the façade directly.

d Next, the code queries the configuration store to determine which adapter is respon-
sible for servicing the report request.

e Then, it instantiates the adapter and binds to it.

f Finally, the RenderReport method sends the report’s payload to the report consumer.

Using report adapters

The Enterprise Reporting Façade supports multiple report providers. Because this
book is about Microsoft technologies, we decided to restrict the list of supported pro-
viders to the two most popular Microsoft reporting tools: Reporting Services and
Access. To add another report provider to the Enterprise Reporter, you will have to
write an adapter for that provider.

The only rule that the façade enforces on the adapter is that it must implement the
IReportAdapter interface. If you are new to interface-based programming, you
may take a little detour to the first section of chapter 15 to find out how it works.

The IReportAdapter interface has the following signature:

public interface IReportAdapter {
 byte[] RenderReport(ReportRequest reportRequest);
}

Because each adapter will implement this interface, the adapter must implement the
RenderReport method. This method accepts the report request of a ReportRequest-
type entity and returns the report serialized as a byte array.

Once the façade authorizes the report request, it queries the configuration store to
find out which adapter will handle the report request. Then, it invokes the Generic-
Factory.Create method to instantiate the report adapter.

Queries the configuration
store to get the adapter
metadata

d

Instantiates
the adapter

e

Renders the report f

468 CHAPTER 13 ENTERPRISE REPORTING

Loading report adapters

This implementation of the dynamic adapter loading and binding was built on the
approach demonstrated in the Microsoft Configuration Application Block (see the
resources in section 13.5). This implementation uses the factory design pattern to load
the adapter assembly and late-bind to it using the .NET Activator class, as shown in
listing 13.3.

public static object Create(string assemblyName, string typeName,
 object[] constructorArguments) {

 Assembly assemblyInstance = null;
 Type typeInstance = null;

 if (assemblyName.IndexOf(Path.DirectorySeparatorChar)>0)
 assemblyInstance = Assembly.LoadFrom(assemblyName.Trim());
 else
 assemblyInstance =
 Assembly.Load(assemblyName.Trim());

 typeInstance = assemblyInstance.GetType(typeName.Trim(),
 true, false);

 if(constructorArguments != null)
 return Activator.CreateInstance(typeInstance,
 constructorArguments);
 else
 return Activator.CreateInstance(typeInstance);
}

For maximum flexibility, our implementation of the generic factory supports loading the
adapter assembly from both the application binary folder as well as an arbitrary location.
In the first case, we use the AssemblyLoad method, which probes the application
domain’s base path to find the assembly. To try the second scenario, change the applica-
tion’s configuration file and define the adapter assembly location; for example:

<add key="1" value="AWC.Reporter.Web.Adapters.RsAdapter,
 c:\somepath\AWC.Reporter.Web.dll"/>

Please note that in our case the adapters are part of the AWReporterWeb code-behind
assembly because their source is located inside the AWReporterWeb project. In real
life, you will probably want to move the adapter implementation to a separate assem-
bly. This approach will allow you to change the adapter implementation and add new
adapters without recompiling the application.

Once the adapter assembly is loaded, we reflect on it to get to the adapter type,
which is passed as one of the Create method arguments. Finally, we instantiate the
adapter and return the reference to the façade layer.

Listing 13.3 Using the factory design pattern to load the adapter

Loads the adapter
assembly from a
specific location

Loads the adapter assembly from
the application domain base path

Instantiates the adapter
type by late binding to it

BEHIND THE ADVENTURE WORKS ENTERPRISE REPORTER 469

IReportAdapter reportAdapter = (IReportAdapter)
 GenericFactory.Create(reportAdapterFullTypeName);
byte[] reportPayload = reportAdapter.RenderReport(reportRequest);

Because all adapters implement a common interface, the façade can cast the reference
to IReportAdapter and call the Render method to invoke the adapter-specific
report-rendering implementation.

Generating Microsoft Access reports

While requesting RS reports by SOAP is nothing we haven’t seen before, generating
Access reports deserves more explanation. To accomplish this, the Reporting Façade
uses the AccessAdapter adapter. Listing 13.4 shows how this adapter generates Access-
based reports.

 public byte[] RenderReport(ReportRequest reportRequest) {
 MsAccess.Application oAccess = null;
 byte[] reportPayload = null;

 AWC.Reporter.Web.Entities.ReportRequest.ReportRow rptRst =
 reportRequest.Report[0];

 string fileName = Path.GetTempFileName();

 oAccess = new MsAccess.Application();
 oAccess.OpenCurrentDatabase('…', false, null);
 oAccess.DoCmd.OpenReport(rptRst.Name,
 MsAccess.AcView.acViewPreview,
 null, null, MsAccess.AcWindowMode.acWindowNormal, null);

 oAccess.DoCmd.OutputTo(AcOutputObjectType.acOutputReport,
 String.Empty, GetAccessReportFormat(rptRst.ExportFormat),
 fileName, null, null, null);

 reportPayload = ConvertPayload (fileName);
 File.Delete(fileName);

 return reportPayload;
 }

b First, the code generates a temporary file to which we will export the report.

c Next, it instantiates an object of type MsAccess.Application via Object Link-
ing and Embedding (OLE) automation.

Listing 13.4 Generating Microsoft Access reports

Creates a temporary file to
save the report’s payload

b

Instantiates Access
through OLE automation

c

Opens the Access
reporting database

d

Renders the report e

Exports the report
to the temp file

f

Serializes the report
payload to a byte array

g

470 CHAPTER 13 ENTERPRISE REPORTING

NOTE In the real world you should avoid using Microsoft Access with high-
volume reporting applications. Microsoft Access was designed as a desktop
application and was never intended to be used in a multithreaded server
environment. Here, we use Microsoft Access for demonstration purposes
only. If you need to use Access as a report provider, consider serializing the
report requests in a queue of some sort, as we explain in section 13.2.4.

For the purposes of our demo, we use Microsoft Access 2003 to generate reports. To
facilitate integrating .NET code with the Office 2003 suite, Microsoft includes a set of
.NET assemblies called Office Primary Interop Assemblies (PIAs) on the Office 2003
Setup CD. Once the PIAs are installed, you can create a reference to the Microsoft
Access 11.0 Object Library found on the COM tab of the Reference dialog. Because
the Office Setup program installs PIAs in the Global Assembly Cache (GAC), you can
verify that the Access reference is correct by checking to see if it points to the GAC.

d Next, the code opens the Access database by getting its location from the application’s
configuration file.

e,f Next, we generate the report and export it in the requested format.

g Once the report is saved, we call the ConvertPayload helper function to serialize
the report’s payload to a byte array. Finally, we delete the temporary file.

13.2.4 Designing for scalability

Scalability is an important requirement for every enterprise system. Our Reporting
Façade may need to handle a large number of report requests. While Microsoft Report-
ing Services is designed to scale well under an increased load, other report providers
may not.

For example, Microsoft Access is a file-based database and doesn’t perform well
with many concurrent users. Therefore, in the real world you may need to architect
your enterprise reporting framework in such a way that it performs equally well with
heterogeneous report providers.

Let’s discuss one common design pattern that you can use to make the Reporting
Façade more scalable. I used a similar design pattern successfully during one of my
projects a few years ago when I had to implement a Report Server–type application.

Using the asynchronous design pattern

Good design is the foundation of a highly scalable enterprise reporting framework.
One excellent way to make the application more scalable is by performing operations
in an asynchronous manner, as shown in figure 13.5.

The basic idea behind the asynchronous design pattern is simple. Instead of pro-
cessing the report requests synchronously, we will log them in a queue and process
them on a first-in first-out (FIFO) basis. This architecture will require introducing a
new component whose main goal is to read the messages from the queue. We will call
this component the Queue Listener Service.

BEHIND THE ADVENTURE WORKS ENTERPRISE REPORTER 471

While you can log the messages to the database, you may want to consider integrating
your application with a product specifically designed for message queuing. If the
Reporting Façade is running on a Windows 2000 or later operating system, consider
using Microsoft Message Queuing (MSMQ), which is baked into the Windows oper-
ating system.

For more information about building solutions with MSMQ, please see the
resources in section 13.5.

Generating reports asynchronously

This is what the report request-response sequence may look like with the asynchro-
nous pattern:

Step 1 The report consumer prepares the report request as it typically would.

Step 2 Instead of submitting the report request to the façade, the report consumer
submits the request to a publicly available queue. This is important because the
client is not forced to wait for the report request to complete. Instead, similarly
to the multithreaded design we discussed in chapter 9, the client can continue
its work immediately after submitting the request asynchronously.

Step 3 On the server side, the Queue Listener Service waits for the message’s arrival.
Once it has been notified by the queue, it retrieves the message and sends the
report request to the façade.

Step 4 The façade processes the report request as it normally would.

Step 5 The façade sends the report payload asynchronously, for example, by e-mail,
to the report consumer.

The Queue Listener Service doesn’t have to process the report request in a sequential
manner. In the real world, you could implement a sophisticated multithreaded queue
listener service capable of processing the report requests on background threads. Even

Figure 13.5 Use the asynchronous design pattern to make the Reporting Façade scale better

by queuing the report request in an MSMQ message queue.

472 CHAPTER 13 ENTERPRISE REPORTING

better, the listener could be designed as self-tuning, where it could create threads on
demand when the load increases.

We will leave the construction of the asynchronous reporting solution to you.
Developers who have previously used message queuing in their applications will prob-
ably find implementing it a simple matter.

Besides providing efficient access to reports, our Reporting Façade should provide
a robust security model to authenticate and authorize the report requests, as we will
discuss next.

13.3 IMPLEMENTING CUSTOM
APPLICATION AUTHORIZATION

While RS provides a comprehensive role-based authorization model, other report pro-
viders may not. A common requirement for many enterprise-wide applications is inte-
grating them with security frameworks that are already in place. Such frameworks will
typically enforce application security policies to control access to application resources,
including windows, reports, and privileged operations.

Typically, the application will configure the user interface based on the role mem-
bership that the logged-on user has. For instance, it may disable or hide certain menu
items and buttons, configure screens in read-only mode, and employ other techniques
to hide data or prevent data changes. In addition, a well-written distributed enterprise
application will implement the same security checks in the business layer to enforce
an even greater level of application security.

In the past, you may have used homegrown solutions to implement custom autho-
rization features in your applications. For the purposes of our Enterprise Reporting
framework, we will design a security layer that uses the Windows 2003 Authorization
Manager (AzMan). For an excellent introduction to AzMan, please read Keith
Brown’s article listed in the resources in section 13.5.

13.3.1 Understanding the Windows Authorization Manager

You will probably find the Authorization Manager’s security model similar in many
aspects to the RS role-based security model. Table 13.2 lists the security entity equiv-
alents of both models.

Table 13.2 AzMan model vs. RS role-based security model

Authorization Manager Entity RS Role-Based Equivalent

Operation Permission

Task Task

Role Role

Group N/A

Role Assignment Role Assignment

IMPLEMENTING CUSTOM APPLICATION AUTHORIZATION 473

As you can see, the security models are very similar. However, as you will soon find
out, the AzMan model is much more flexible. Armed with the Authorization Manager,
we can easily fulfill the following security requirements:

• Implement a role-based security infrastructure similar to the RS role-based model.

• Support application-defined operations, tasks, and groups.

• Provide a user-friendly interface that the security administrator can use to con-
figure the custom security infrastructure.

While discussing the Authorization Manager in detail is beyond the scope of this
chapter, we will walk you through the process of defining a custom authorization secu-
rity policy for the needs of our Reporting Façade. The steps to accomplish this goal
are as follows:

Step 1 Create an authorization store that will hold the role-based security infrastructure.

Step 2 Define two application groups: Sales Managers and Sales Representatives.

Step 3 Assign the appropriate Windows user accounts to these groups.

Step 4 Configure the Sales Representatives group to have rights to run Access reports.

Step 5 Set up the Sales Managers group to include all of the Sales Representatives’
rights plus the ability to run RS reports.

Just as RS stores the security setup in the configuration database, the Authorization
Manager saves the authorization infrastructure in an authorization store.

Creating the authorization store

One of our favorite AzMan features is its user-friendly Microsoft Management Con-
sole, which makes setting up the security infrastructure a breeze.

NOTE Unfortunately, while the AzMan runtime is supported on Windows 2000
(please see section 13.5 for a link to a Windows 2000 AzMan download),
its console is available only on Windows 2003.

To create the authorization store, open the Authorization Manager console (choose
Start → Run and type azman.msc). Switch to Developer mode by right-clicking the
Authorization Manager node and choosing Options.

Authorization Manager supports two options for the location of the authoriza-
tion store:

• XML file—Opting for an XML authorization store gives you ease of use and
portability. This is also the only option if you don’t have Active Directory
installed or you don’t have write permissions to it.

• Windows Active Directory—Choosing Active Directory as an authorization store
offers an added level of security and a centralized location for your application
security definitions.

474 CHAPTER 13 ENTERPRISE REPORTING

We recommend that you use XML as an authorization store during application devel-
opment and then switch to Active Directory during deployment. For the purposes of
our demo, we will use an XML-based file store, which we have already created for you.
Instead of hard-coding the URL to an XML file in your code, we recommend that you
specify it in the application configuration file, as we have done in the Enterprise
Reporter sample.

To open the authorization store, perform the following steps:

Step 1 Right-click the Authorization Manager node and choose the Open Authori-
zation Store option.

Step 2 Browse to the location of the AWReporterWeb installation folder. The
authorization store’s filename is AWReporter.xml, and it is located under the
Chapter13/Security subfolder. Don’t forget to adjust the azManConfiguration-
Store setting in the AWReporterWeb web.config file to reflect the correct
location of this file. In addition, if you need to make changes to the authori-
zation store, make sure that the file is not marked as read-only to avoid errors
when AzMan writes to the authorization store.

Step 3 Open AWReporter.xml in the AzMan console, as shown in figure 13.6.

The security entities are shown in the left pane. One configuration store can hold the
security settings of more than one application. In our case, we’ve defined only one
application, called AWReporter. When you click on a security entity, its details are
shown in the right pane.

Setting up the application groups

Unlike the RS role-based mode, with Authorization Manager you are not restricted to
creating role assignments based only on Windows groups. Instead, you can set up

Figure 13.6 The Microsoft Windows Authorization Manager sponsors a user-friendly console

that you can use to configure the authorization store.

IMPLEMENTING CUSTOM APPLICATION AUTHORIZATION 475

application-defined groups. This is great because you don’t have to chase down the
network administrator to create new Windows groups in Active Directory for the pur-
poses of your application’s security infrastructure.

To meet the Adventure Works Enterprise Reporter’s security needs, we defined two
application groups, Sales Managers and Sales Representatives, as shown in figure 13.7.

Of course, instead of creating application groups, we could have taken advantage
of predefined Active Directory Windows groups and completely skipped this step.

In this case, we assigned the local Administrators group to the Sales Managers
application group and the local Users groups to the Sales Representatives application
group. You will need to delete our assignments and re-create them because the security
identifiers (SIDs) of our Windows accounts won’t match yours.

Defining operations

Next, we need to define the elements that we need to secure. With AzMan, an opera-
tion is a logical concept and can represent anything you want, such as “Run ABC
report,” “Process order,” “Update Customer,” and so on. The Authorization Manager
could care less about how the application will use the operations.

Because we need to enforce secured access to all the four configured reports, we
defined four operations. Operations op_rpt_EmployeeSalesFreeform and op_rpt_
TerritorySalesCrosstab represent the Employee Sales Freeform and Territory Sales
Crosstab RS reports, respectively. Operations op_rpt_SalesByCategory and op_rpt_
Catalog represent the Sales by Category and Catalog Access reports, which you can
find in the Northwind.mdb sample database included with Microsoft Office.

In the process of creating a new operation, you will need to assign it a unique inte-
ger identifier. While the name of the operation is insignificant, the operation’s iden-
tifier is important because this is how your application can query AzMan to find out
whether a certain operation is permitted for a given user.

Figure 13.7 With AzMan you can define application groups.

476 CHAPTER 13 ENTERPRISE REPORTING

Defining tasks

Just as you can group tasks into roles with RS, you can group operations into tasks with
AzMan to create more granular security assignments. Unlike RS, however, the Autho-
rization Manager doesn’t force you to use tasks. Instead, you can define security poli-
cies using operations and/or tasks.

An example of a practical use of tasks is a workflow application. Each workflow can
consist of a number of steps. You can define the workflow steps (screens) as operations
and then define the workflows as tasks. During the application runtime, the application
can hide a workflow from the list of the available workflows if the user doesn’t have
access to it. If she does have access, the application can start the workflow and further
restrict the user’s access to the individual steps. For example, if the user doesn’t have
access to a certain step, this step can be skipped or displayed in a read-only mode. Of
course, as we said, you can forgo the task concept altogether and define only operations.

To demonstrate how tasks can be used with AzMan, we defined two tasks. The
task_SalesRepReports task defines the operations (reports) that the sales represen-
tatives can execute. With AzMan, tasks can be nested. The second task, task_Sales-
ManagerReports, encompasses the first task plus the operations permitted for the
Sales Manager group, that is, the RS reports, as shown in figure 13.8. Alternatively,
instead of nesting tasks, we could have assigned all four operations to task_Sales-
ManagerReports.

You may be curious about the purpose of the Authorization Script button. The
Authorization Manager allows you to fine-tune the security checks by using business

Figure 13.8

Unlike RS, the

Authorization Manager

allows you to define

your own tasks.

IMPLEMENTING CUSTOM APPLICATION AUTHORIZATION 477

rules implemented as scripts. The application developer can attach a VBScript or
JScript authorization script to a task. The script will be executed at the time of the
access request. This allows you to use information available only at runtime, such as
“current time” or “order total” to make an authorization decision.

For more information about authorization scripts, please check the “Using
Dynamic Business Rules in Windows Server 2003 Authorization Manager” article
listed in section 13.5.

Defining roles

Once we’ve defined operations and tasks, we are ready to assign them to roles. Just as with
RS, tasks and operations are useful only if they assigned to roles. We created two role def-
initions that you may find similar to the RS Browser and Manager predefined roles.

First, we created a role called role_Browser and assigned the task_SalesRepReports
task to it. As a result, all role assignments including this role will have rights to run
the Microsoft Access reports.

Next, we created a role called role_Admin. Similarly to tasks, AzMan allows you
to nest roles to simplify the operations to role assignments. In our case, role_Admin
includes role_Browser, as well as task_SalesManagerReports, as shown in figure 13.9.

As a result, all role assignments that include the role_Admin role will have permis-
sions to run both Access and RS reports.

Figure 13.9

With the Authorization

Manager you can

assign tasks and

operations to roles.

478 CHAPTER 13 ENTERPRISE REPORTING

Defining role assignments

Now that we have set up the security entities, it is time to define the security policy by
assigning roles to users. A role assignment can include Windows groups, individual
Windows user accounts, as well as application groups. We used the application groups
that we defined previously to create the following role assignments:

• role_Browser, which has the Sales Representatives application group assigned to it

• role_Admin, which has the Sales Managers application group assigned to it

We have finished configuring the Enterprise Reporting Façade authorization store!
Now it is time to write some code to enforce authorization checks in the Reporting
Façade layer. To implement this we will create a Security Manager class that will wrap
the AzMan API.

13.3.2 Securing the AW Enterprise Reporter

This is how the Reporting Façade uses the Security Manager layer at a high level:

Step 1 The facade calls SecurityManager.GetApplicationUser to get a
User entity object. This object contains only the operations (reports) that the
user is permitted to run.

Step 2 The façade then passes the serialized copy of the User object to the report
consumer.

Step 3 The consumer can then proceed with configuring the application’s security ele-
ments (menus, buttons, and so on) by checking whether the appropriate opera-
tions are among those found in the User object, as we explained in section 13.2.2.

Initializing the authorization store

The SecurityManager class has a static constructor that performs two initialization tasks.
First, it retrieves the authorization store’s URL from the application’s configuration file
and initializes the store. In our case, the authorization store is the AWReporter.xml file
we created previously. Second, because a store can span several applications, the code
instructs AzMan to open the application we need.

Creating a security principal

Similarly to the .NET security model, we need to implement an object to represent the
user and hold the user-specific security settings. This is done in the GetApplication-
User method, as shown in listing 13.5.

public UserEntity GetApplicationUser() {
 UserEntity user = new UserEntity();
 user.User.AddUserRow (GetUserIdentity().Name, null);

Listing 13.5 The GetApplicationUser method creates an UserEntity object

that encapsulates the user-specific details.

IMPLEMENTING CUSTOM APPLICATION AUTHORIZATION 479

 // retrieve permitted operations for this user from AzMan
 GetUserOperations(user);
 user.AcceptChanges();

 return user;
 }

The GetApplicationUser method returns a typed dataset entity called User-
Entity, whose schema is shown in figure 13.10.

In the real world, the UserEntity object could capture some useful information about
the interactive user. For example, besides storing the user’s identity, you could enhance
the Security Manager to query the Windows Active Directory and retrieve the user’s
full name and e-mail address.

The Operations element represents the permitted operations. The actual relation-
ship between the User and Operations elements is one-to-many. However, it is not
defined in the typed dataset schema because there will always be only one user (one
user row in the typed dataset).

To load the permitted operations we call the AzMan API.

Getting permitted operations

This is where the crux of the Authorization Manager logic is. Listing 13.6 shows the
GetUserOperations code.

private void GetUserOperations(UserEntity user) {
 HybridDictionary applicationOperations =
 GetApplicationOperations();

 int index = 0;

 object[] operations = new object[applicationOperations.Count];
 foreach (DictionaryEntry o in applicationOperations) {
 operations[index] = ((Operation)o.Value)._id;
 index++;
 }
 object[] results = GetAuthorizedOperations(operations);

Figure 13.10 AW Enterprise Reporter uses the UserEntity typed dataset to

store the user details.

Listing 13.6 Retrieving permitted operations

Retrieves all application-
defined operations

Filters out only
the permitted
operations

480 CHAPTER 13 ENTERPRISE REPORTING

 for (int i = 0; i < results.Length; i++)
 Operation appOperation = (Operation)
 applicationOperations[operations[i]];

 if ((int)results[i] == 0)
 user.Operations.AddOperationsRow(appOperation._id,
 appOperation._name, appOperation._description);
 }
}

First, the code calls GetApplicationOperations to retrieve the list of all opera-
tions defined for this application. The Authorization Manager API allows you to pass
an array of operations that needs to be matched against the authorization store. In our
case, we verify all operations in one shot. This allows us to pass all permitted opera-
tions back to the client and avoid round trips when the client needs to check the user’s
access to a given operation.

For better performance, GetApplicationOperations caches the collection
of application operations in the ASP.NET Cache object. If there is a cached copy,
GetApplicationOperations returns it; otherwise, it enumerates the operations
in the AzMan authorization store and builds the Operations collection. The Opera-
tions collection is a collection of Operation types, where each operation has the fol-
lowing properties: ID, Name, and Description. These correspond to the operation
properties we defined using the Authorization Manager console.

Then, the code calls to the GetAuthorizedOperations method to filter out
only the operations permitted for this user. GetAuthorizedOperations does
this by retrieving the Windows token of the application’s user and calling the Access-
Check Authorization Manager API.

clientContext = _application.InitializeClientContextFromToken
(ulong)Security.GetUserIdentity().Token, null);
object[] results = (object[])clientContext.AccessCheck(_applicationName,
scopes, operations, null, null, null, null, null);

The result of this call is an array that has as many elements as the passed operations
array, with values of zero in case the operation is permitted or one otherwise.
GetUserOperations proceeds by filtering out only the permitted operations and
adding them to the UserEntity object.

The Security Manager also defines the IsOperationPermitted method,
which checks the user’s access to a single operation using the AzMan API. As we have
seen before, the façade calls this method to double-check whether the user has rights
to run the requested reports.

Loads the user
entity object
with permitted
operations

RESOURCES 481

13.4 SUMMARY

Microsoft Reporting Services is a full-feature reporting tool designed to meet the
reporting needs of today’s enterprise. Sometimes, you may need to build large-scale
reporting solutions using both RS and other third-party or homegrown reporting
tools. Such hybrid systems usually pose tough requirements and demand scalable,
secure, and flexible architectures. Armed with the techniques we discussed in this
chapter, you are well prepared to face these challenges and build sophisticated enter-
prise reporting frameworks.

In this chapter, we walked through the process of designing and implementing a
custom enterprise reporting framework. First, we emphasized the tradeoffs surround-
ing the design and implementation of all-encompassing reporting solutions, such as
increased complexity, reduced features set, and reinventing functionality already avail-
able in third-party reporting platforms, such as RS.

Thanks to the rich capabilities of the Microsoft .NET platform, we can easily add
enterprise features to our applications. For example, we discussed how MSMQ could
be used to process report requests asynchronously. In addition, we showed how the
Microsoft Authorization Manager can help us implement a custom authorization
security model.

With the completion of this chapter, we’ve covered what you need to know to add on-
demand reporting capabilities to your applications by integrating them with RS. Let’s
now explore the second report delivery option that RS offers: subscribed report delivery.

13.5 RESOURCES

“Use Role-Based Security in Your Middle Tier .NET Apps with Authorization
Manager,” by Keith Brown
(http://msdn.microsoft.com/msdnmag/issues/03/11/AuthorizationManager/
default.aspx)
A great introductory article to the Windows 2003 Authorization Manager for
implementing a custom authorization framework.

Authorization Manager Runtime Download for Windows 2000
(http://www.microsoft.com/downloads/details.aspx?FamilyID=7edde11f-bcea-
4773-a292-84525f23baf7&DisplayLang=en)

“Using Dynamic Business Rules in Windows Server 2003 Authorization Manager”
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetserv/
html/AzManBizRules.asp)

“Building Distributed Applications with .NET”
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/
html/bdadotnetasync2.asp)
Discusses how to use recoverable messages, transactions, and acknowledgements
with MSMQ and the Microsoft .NET Framework.

482 CHAPTER 13 ENTERPRISE REPORTING

Microsoft patterns & practices for Application Architecture and Design
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/
html/cmab.asp)
Includes reference architectures and application blocks.

483

C H A P T E R 1 4

Subscribed report delivery
14.1 Understanding subscribed report delivery 484
14.2 Configuring subscribed report delivery 488
14.3 Subscribed report delivery in action 497
14.4 Summary 513
14.5 Resources 513

In this fast-paced information age, we all know the value of having access to accurate,
relevant, and up-to-the-minute data. Most of us enjoy various subscription-based ser-
vices, such as magazine or e-mail subscribed delivery. Regardless of the type of infor-
mation being delivered, these services share a common model. The subscriber imitates
the subscription service for a given period of time. The service provider delivers the
service either on a regular basis or as a result of an event.

In chapter 9, we provided an overview of how RS provides on-demand delivery,
and in chapters 10–13, we showed how to implement on-demand reporting features
for various types of client applications. With on-demand report delivery, the interac-
tive user explicitly initiates the report request.

In this chapter, we will discuss the second report delivery scenario supported by
Reporting Services, where the reports are “pushed” to the user automatically by the
Report Server. As you will see, RS offers a flexible and extensible subscription-based
reporting model, suitable for both Internet and intranet-based reporting solutions.

Our discussion will cover the following main topics:

• Overview of the subscribed report delivery process
• Creating standard subscriptions
• Creating data-driven subscriptions
• Triggering the subscribed report delivery process programmatically

484 CHAPTER 14 SUBSCRIBED REPORT DELIVERY

14.1 UNDERSTANDING
SUBSCRIBED REPORT DELIVERY

I love subscription-based information delivery! As I type this chapter, there are several
subscription-based applications running on my computer. Microsoft Outlook lets me
know when a new e-mail arrives. My favorite RSS aggregator, IntraVNews, notifies
me when my feeds are updated. The Microsoft Messenger Alerts service interrupts me
every now and then to tell me how much value my favorite stocks have lost during the
course of the day’s trading session.

The subscription-based delivery model is great because I don’t have to poll the
information sources to find out when data has changed. Instead, as long as I am sub-
scribed, information is delivered to me. This saves me a lot of time and, as the famous
adage says, time is money.

How does all this translate to reporting? There are many reporting scenarios that
may call for delivering reports via subscription, as we will discuss next.

14.1.1 Subscription-based reporting scenarios

You can use subscribed report delivery to meet various reporting requirements, includ-
ing the following:

• “Pushing” reports to users on a regular basis—There could be many valid reasons why
an organization might want to implement automatic report delivery. For example,
a sales manager may want to subscribe his subordinates to receive an employee per-
formance report on a quarterly basis. The company’s CEO may require that the
company sales report be sent to the top managers periodically. A financial institu-
tion may want to distribute the monthly statement report to its customers.

• Generating reports when the underlying data changes—For example, an organiza-
tion may want to e-mail the updated product catalog report when a new prod-
uct is introduced.

• Offloading long-running reports—Some reports may take substantial time and
resources to be processed. Such reports could be scheduled to be generated dur-
ing off-peak hours.

• Report archiving—The report administrator may need to periodically archive
reports to a network share for auditing purposes.

Now that we’ve seen some popular subscription scenarios, let’s discuss how the RS sub-
scribed delivery process works.

14.1.2 The subscriber-publisher design pattern

The RS subscribed delivery model follows the subscriber-publisher (also called
observer) design pattern. This pattern is very popular with many modern programming
frameworks. For example, one of the main reasons for the immense success of
Microsoft Windows is its event-driven architecture.

UNDERSTANDING SUBSCRIBED REPORT DELIVERY 485

Figure 14.1 shows how you can use the subscriber-publisher programming model in
your applications.

The process is initiated by the subscriber (1) when it informs the publisher of its
intent to be notified when a certain event of interest takes place.

When the event occurs (2), the publisher notifies (3) the subscriber about the
event’s occurrence.

The publisher typically runs in unattended mode, such as a background service lis-
tening to incoming events. For example, as I type on my laptop keyboard, each key-
stroke generates a hardware interrupt request. The CPU intercepts the request and
generates a software interrupt. The event traverses the operating system and applica-
tion layers to output the character on the screen. In this example, you can view the
keystroke as an event source, the CPU as a publisher, and the OS and application layers
as subscribers.

Let’s now see how the subscriber-publisher pattern applies to the RS subscription-
based delivery mechanism.

14.1.3 How the Reporting Services

subscription-based model works

In a nutshell, when a report is scheduled for subscribed delivery, report processing is
triggered as a result of an event, such as a timing event from a schedule. The generated
report is then delivered asynchronously to its subscribers, as shown in figure 14.2.

With RS, here’s how the subscriber-publisher pattern applies: the subscriber is typ-
ically the report’s end user who subscribes herself or other users on their behalf. For
example, a manager could subscribe herself and her subordinates to receive a report.
The publisher is the Report Server, and the event source is the SQL Server Agent.

To better understand the process flow, we could break down subscribed report
delivery into two phases:

• Creating the report subscription interactively by the user

• Processing and delivering the report asynchronously

Figure 14.1 In the subscriber-publisher model, the client (subscriber) subscribes to one or

more events. When the event occurs, the publisher notifies the subscriber.

486 CHAPTER 14 SUBSCRIBED REPORT DELIVERY

In the sections that follow, we’ll refer back to figure 14.2 to explain each phase.

Creating report subscriptions

While we are not excluding the possibility of more sophisticated ways to generate sub-
scriptions, such as by applications running in unattended mode, typically the user will
create the subscription interactively by using a client application, which we will call a
report consumer. For example, the user could access b the Report Manager to initiate
the subscription process.

Once user has entered the subscription details, the report consumer invokes c one
of the CreateSubscriptionXXX RS Web service SOAP APIs to save d the sub-
scription details in the Report Catalog and schedule the subscription.

NOTE Some of you may need to create subscriptions programmatically using the
SOAP API. The documentation has good examples of how this could be
done for both subscription types supported by RS. For this reason, I
decided not to include a code sample to demonstrate this concept. If the
documentation samples are not enough, you can use the tracing technique
I showed you in chapter 7 to find out how the Report Manager uses the
Web service API to create and schedule subscriptions.

At this point, the Report Server has saved the subscription details in the Subscriptions
table in the report catalog, and control is returned to the report consumer. This step
concludes the interactive, synchronous part of the subscription process.

Executing report subscriptions

RS supports two kinds of events that can trigger the subscribed delivery:

• Time-based events, such as events generated by a subscription-specific or
shared schedule

• Snapshot refreshes (for snapshot reports only), where the subscription process-
ing is initiated when the snapshot data is updated

Figure 14.2 With the subscription-based report delivery model, the report processing is

triggered by an event and the generated report is delivered asynchronously to its subscribers.

UNDERSTANDING SUBSCRIBED REPORT DELIVERY 487

Going back to figure 14.2, here is a simplified version of the process flow for executing
subscriptions. Once the subscription event is up, the SQL Agent job inserts e a record
into the Event table. As we saw in chapter 7, the Reporting Services Windows Service
(ReportingServicesService.exe) scans this table on a regular basis to see if any new
events have been published. As you will probably recall, the polling interval can be
configured by adjusting the PollingInterval setting in the RSReportServer.config con-
figuration file.

In case there is a new event, the Reporting Services Windows Service picks it up
f and handles the event. Specifically, for a time-based subscription this means cre-
ating a notification record in the Notifications table. The Windows Service polls
the Notifications table periodically. When it discovers a new entry, the Windows
Service creates g a notification object. If the subscription is data-driven (more on
this in section 14.2.2), the Windows Service creates as many notifications as the
number of recipients.

Next, the Report Server instantiates the delivery extension associated with the sub-
scription and passes h the notification object to it.

DEFINITION Delivery extensions are .NET assemblies that implement the Reporting Ser-
vices delivery extension API. Delivery extensions are able to receive noti-
fications from the Report Server and distribute reports to various
destinations. Out of the box, RS comes with two delivery extensions for e-
mail and file share delivery. Developers can write custom delivery exten-
sions to distribute reports to other destinations, as we will demonstrate in
chapter 15.

Finally, the delivery extension distributes the report to its final destination, for exam-
ple, by sending an e-mail to the recipient in the case of e-mail delivery or saving the
report’s payload to a network share for file share delivery.

As you’ve just seen, the second phase of subscribed report delivery is executed
entirely in unattended mode. Therefore, subscribed reports are subject to the same
limitations as report snapshots, which we discussed in chapter 7. Specifically, these
limitations are as follows:

• The identity of the interactive user is not available during the report’s process-
ing stage.

• Report parameter values must be specified when the subscription is created.

• Stored data source credentials must be used for database authentication.

Let’s explain each of these limitations in more detail.
First, the user-specific information is not available when reports are delivered via

subscriptions. Specifically, this means that it is not possible to access the properties of
the User global collection, for example, to get the user’s identity or the language iden-
tifier. Failure to abide by this rule results in the following error message when an
attempt is made to create a new subscription:

488 CHAPTER 14 SUBSCRIBED REPORT DELIVERY

Subscriptions cannot be created because the credentials used to
run the report are not stored, the report is using user-defined
parameter values, or if a linked report, the link is no longer
valid.

Second, because the report is generated in unattended mode, the report parameter val-
ues have to be known by the time the report is processed. If you look at the signatures
of both subscription-related web methods, CreateSubscription and Create-
DataDrivenSubscription, you will notice that they take a Parameters array of
type ParameterValue, which you can use to fill in and pass the report parameters.
If you use the Report Manager to create the subscription, you will notice that it gen-
erates parameter placeholders for each parameter on the Subscriptions page.

NOTE If a user creates a subscription with a certain parameter, and then the
administrator sets the report to snapshot execution but chooses a new
parameter value, if the subscription is run, then it will be deactivated. Deac-
tivating the subscription provides an indication that the report has been
modified. To reactivate the subscription, the user needs to open and then
save the subscription.

If the parameter has a default value, you can use it if you don’t want to specify the
value explicitly.

Finally, stored credentials must be used for authenticating against the data source,
because subscriptions are processed in an unattended mode and it is not possible to
supply the credentials interactively.

Having discussed subscribed report delivery at a high level, let’s now see how the
end user can configure and manage subscriptions using the Report Manager.

14.2 CONFIGURING SUBSCRIBED REPORT DELIVERY

Subject to security permissions, with RS each end user can use the Report Manager
web application to subscribe to a report of interest. For example, a sales manager can
subscribe to receive the Territory Sales Crosstab report that we authored in chapter 4
on a regular basis, for example, each quarter.

To create a new subscription, the user must specify the following:

• The report that the subscription will be attached to—A subscription is always
associated with exactly one user and one report.

• The subscription type, for example, standard or data-driven—We will discuss
the supported subscription types in section 14.2.2.

• The delivery extension type, for example, e-mail or file share delivery

• The event that will trigger the subscription, such as a timing event based on a schedule

• The report parameter values for parameterized non-snapshot reports

Although the process of creating subscriptions looks involved, the Report Manager
makes it easy, as we will discuss next.

CONFIGURING SUBSCRIBED REPORT DELIVERY 489

14.2.1 Creating a new subscription

In the typical scenario, the enterprise users will access the Report Manager portal to
create and manage the subscriptions they own, as shown in figure 14.3.

To create a new standard subscription with the Report Manager, the end user per-
forms the following steps:

Step 1 Navigate to the report the user wants to subscribe to.

Step 2 Click the New Subscription button found on the View and Subscriptions tabs.

Step 3 Enter the subscription details.

These steps require Manage Individual Subscriptions rights. The report administrator
sets up these permissions as mentioned in chapter 8.

Some delivery extensions may call for a more involved setup process. For example,
most organizations will be cautious about letting users send reports via e-mail to an
arbitrary list of recipients. For this reason, the Report Server is set up by default to
require a two-phase setup process for configuring e-mail subscriptions, as follows:

• Creating the subscription—This phase can be performed by individual users and
requires only Manage Individual Subscription rights. During this phase the Report
Manager prevents the user from entering the recipients’ addresses by disabling the
To field and hiding the Cc (Carbon copy) and Bcc (Blind carbon copy) fields.

• Finalizing the subscription—By default, only users with rights to execute the
Manage All Subscriptions task can enter the recipients’ addresses.

NOTE The availability of the e-mail address fields (To, Cc, and Bcc) is controlled by
the SendEmailToUserAlias setting in the Report Server configuration file
(RSReportServer.config). If this setting is True (the default), only users who
have the Manage All Subscriptions right can change these fields. If the setting
is False, these fields are enabled for any user who has the Manage Individual
Subscriptions right. For better security, I suggest that you leave this setting set
to True so that the report administrator can control the e-mail recipient list.

Let’s now discuss what types of subscriptions are natively supported by Reporting Services.

Figure 14.3 End users can use the Report Manager to create subscriptions.

490 CHAPTER 14 SUBSCRIBED REPORT DELIVERY

14.2.2 Choosing the subscription type

With RS you can create two types of subscriptions:

• Standard subscriptions—With this type of subscription, the subscription configu-
ration details are fixed and must be known at the time the subscription is set up.

• Data-driven subscriptions—With data-driven subscriptions, many aspects of the
subscription can be dynamic. For example, a data-driven e-mail subscription
can retrieve the list of recipients from a database. The Report Server will retrieve
them from a data store when the subscription is processed.

These two types correspond to the CreateSubscription and CreateData-
DrivenSubscription SOAP APIs, respectively. Let’s find out how we can create
and manage both types of subscriptions.

Setting up standard subscriptions

The configuration details of standard subscriptions, such as the report’s export format,
list of recipients, and so forth, are static. For example, with standard e-mail subscrip-
tions the report administrator enters a fixed list of e-mail recipients by specifying each
recipient’s e-mail address.

As we said, standard subscriptions require only Manage Individual Subscriptions
rights, which the predefined Browser role already includes.

To create a standard subscription using the Report Manager, the end user will fol-
low these steps:

Step 1 Navigate to the report of interest.

Step 2 Click the Subscriptions tab, as shown in figure 14.4.

Step 3 Click the New Subscription button.

Clicking the New Subscription button opens the Report Delivery Options screen. The
options on this screen may vary depending on the selected delivery extension, as we
will discuss by example in section 14.3.

You use standard subscriptions when the subscription details for all recipients are
the same. For example, you may want to push a report by e-mail to a small list of recip-

Figure 14.4 To create a standard subscription with the Report Manager, click the New

Subscription button found on the report’s Subscriptions tab.

CONFIGURING SUBSCRIBED REPORT DELIVERY 491

ients. All recipients will receive the report in a single format, such as PDF. No person-
alization is necessary; e.g. you don’t have to greet the recipient by first name. In this
case, a standard e-mail subscription is a good choice.

Sometimes your requirements may call for more flexible subscription options, such
as when you want to allow the recipients to specify their preferred report format. In
this case, you can use data-driven subscriptions.

Setting up data-driven subscriptions

As its name suggests, data-driven subscriptions permit certain subscription properties
to be retrieved from the database during runtime, including

• The list of recipients
• The report rendering format
• The report parameters
• Extension-specific properties, such as Priority and Subject for reports delivered

via e-mail

As you could probably imagine, data-driven subscriptions give you a lot of flexibility
by allowing you to customize the report’s content and destination. Here are some sce-
narios where data-driven subscriptions could be useful:

• An organization can e-mail the product catalog report to its customers who
have placed orders in the past six months.

• Reports can be personalized by synchronizing the report parameters with the
results from the subscription query. For instance, an Order History report could
greet the user by his name.

• An organization could permit the report’s users to customize certain aspects of
the report delivery during the subscription process. For example, a customer
could be given an option to specify the preferred report format, such as
MHTML or PDF, during the subscription process.

Data-driven subscriptions mandate having Manage All Subscriptions rights. If the
role-based security policy of the interactive user includes this task, then the New Data-
driven Subscription button is visible in the Report Manager interface, as shown in fig-
ure 14.4.

Data-driven subscriptions require a data store that holds the subscriber’s data. As
a part of setting up a data-driven subscription, you need to specify a database query
to retrieve the recipient list. This query could be one of the following:

• A nonparameterized SQL SELECT statement that retrieves the recipient list
from a database table or view, for example:
 select * from recipients where type='individual'

• A stored procedure call prefixed with EXEC, for example:
 EXEC spGetRecipients parameter1, parameter2,…

492 CHAPTER 14 SUBSCRIBED REPORT DELIVERY

The statement must produce a rowset with as many rows as the number of recipients.
The Report Manager Subscription Wizard facilitates the query setup process, as shown
in figure 14.5.

In this case, we omitted the EXEC command from the stored procedure call, which
resulted in an error when the Validate button was clicked. The validation logic checks
to determine whether the query is syntactically correct by parsing and sending the
query to the data source. It doesn’t validate whether the returned data is semantically
correct or if the call has resulted in an empty dataset.

The Subscription Wizard is kind enough to list the delivery extension’s publicly
available properties. You can use fields from the query to set these properties, as we
will see in a data-driven subscription example in section 14.3.3. During runtime, the
Report Server will execute the query to get the list of recipients. For each recipient row,

Figure 14.5 The Report Manager Subscription Wizard makes setting up the subscription

query easy.

CONFIGURING SUBSCRIBED REPORT DELIVERY 493

the Report Server will set the data-driven properties of the delivery extension and ask the
extension to distribute the report.

Developers writing custom delivery extensions will appreciate the data-driven sub-
scription model because querying the database and setting up the subscription prop-
erties are responsibilities of the Report Server, not the extension. This allows the
developer to focus only on implementing the delivery logic by shifting the task of gen-
erating the list of recipients to the Report Server. Once the delivery extension is ready,
it can be used as both a standard and a data-driven extension. We will see how this
can be done in chapter 15.

14.2.3 Configuring delivery extensions

As a part of the subscription configuration process, you need to select the extension
responsible for delivering the report to its final destination. If you use the Report Man-
ager, you will define the subscription-delivery extension association using the Report
Delivery Options page (see figure 14.7), which is the first page shown after you click
the New Subscription or New Data-driven Subscription button.

Out of the box, RS comes with two extensions to address two of the most common
delivery scenarios:

• E-mail delivery extension—Sends reports to one or more recipients via e-mail

• File share delivery extension—Persists reports as disk files to a target folder, such
as a network share

When these two extensions are not enough, you can extend RS by plugging in custom
extensions. We will see how to accomplish this by creating a Web service delivery
extension in chapter 15, which can be used to send reports to a Web service.

When you set up your subscription you may wonder why none of the HTML-based
export flavors appears in the Format drop-down. This could be explained by the fact
that all HTML formats except MHTML are multistream rendering formats and require
additional trips to the Report Server to fetch the report’s images.

While a delivery extension can render the report’s image streams on the server,
“shredding” the report in this way may be unacceptable. For example, in the case of
e-mail report delivery, using an HTML-based format may result in several mail attach-
ments, one for the report body and one for each report image. Therefore, if you need
to send reports in HTML format, consider the MHTML export option, which embeds
the images inside the report’s payload.

Configuring the e-mail delivery extension

Delivering reports successfully via the e-mail delivery extension requires a preconfig-
ured and functioning mail server.

494 CHAPTER 14 SUBSCRIBED REPORT DELIVERY

NOTE Windows 2000 and 2003 include SMTP services that you can use to send
e-mail. Windows 2003 also comes with a POP3 service that you can lever-
age to receive e-mail in your applications if they need this functionality. For
more information about how to set up these services, please refer to the
resources in section 14.5.

Once the e-mail server is ready, you need to configure the Report Server to use it for
e-mail delivery. To accomplish this, you need to change the e-mail extension settings
found under the <Report Server Email> element in the RSReportServer.config
configuration file. The RS documentation explains the role of these settings in detail,
so we won’t discuss them here.

TIP Many organizations use Microsoft Exchange Server as an e-mail server. If
you want to use an existing Exchange Server for e-mail report delivery, here
is how to configure the Report Server. First, you need to find the fully qual-
ified domain name (FQDN) of the Exchange server. One of way to accom-
plish this, besides harassing the network administrator, is to look at the
message header of any of the e-mail messages received in your Outlook
Inbox. To do this, open a received e-mail and from the View menu select
Options. In the Internet Headers textbox you will see something like this:

Microsoft Mail Internet Headers Version 2.0
Received: from <exchange server FQDN> ([xxx.xx.xxx.xxx]) by
<exchange Server FQDN > with Microsoft SMTPSVC(xxx.xx.xxx.xxx);
 Sat, 13 Mar 2004 11:44:49 -0600

In my case, the first Exchange Server FQDN gave me the fully qualified
name of the Exchange Server responsible for servicing the outgoing e-mail
in my domain.

Sometimes the FQDN of the Exchange Server that you will get from the message head-
ers may point to an incoming mail server that may not necessarily be the server respon-
sible for outbound mail messages. Check with your network administrator to verify if
this is the case. In addition, an outbound Exchange server may require authentication
to avoid relaying.

NOTE Once you get the name of the Exchange Server, you can change the
SMTPServer setting in RSReportServer.config to point to that Exchange
Server. In my case, changing this setting and setting the “From” e-mail
account were sufficient to send reports via e-mail successfully.

It is important to note that the RS e-mail extension doesn’t verify the status of the e-mail
delivery. For example, the Report Server has no way of knowing whether the e-mail deliv-
ery to a given recipient address has failed. Developers who have written code in the past
to send e-mail programmatically should be able to relate to this limitation easily.

As far as the Report Server is concerned, the execution of the subscribed delivery task
is successful as long as the e-mail is relayed successfully to the mail server. Therefore, you

CONFIGURING SUBSCRIBED REPORT DELIVERY 495

need to work with the mail server’s administrator to ensure that the report has indeed
been delivered successfully to all subscribers.

Configuring the file share delivery extension

Configuring file share delivery is easy. As a part of the subscription process, you need
to specify the file share location and credentials in order to access the file share.

The file share path must be specified in Uniform Naming Convention (UNC) for-
mat. The UNC format requires the following syntax:

\\<computername>\<sharename>

Make sure that the shared folder exists because the file delivery extension doesn’t create
the folder, so the delivery process will fail otherwise.

You also need to enter the credentials (user name and password) of the Windows
account that will be used to access the file share.

Once the subscription is configured, it can be managed via the Report Manager UI.

14.2.4 Managing subscriptions

The report administrator configures the role-based security policies that dictate which
rights a given user has for managing report subscriptions. For example, typically the
end users will have rights to manage the subscriptions they own, while the report
administrator will be responsible for managing all subscriptions.

Using My Subscriptions

End users who have Manage Individual Subscriptions rights can view and use the
options on the Report Manager’s My Subscriptions page. This page lists the subscrip-
tions they own, as shown in figure 14.6.

Figure 14.6 Users can use the My Subscriptions page to manage the subscriptions they own.

Here, the user is subscribed to the Sales by Territory report.

496 CHAPTER 14 SUBSCRIBED REPORT DELIVERY

The My Subscriptions page is similar to the screen linked to the Subscriptions tab, but
it doesn’t give the user an option to create new subscriptions. Using My Subscriptions
or the Subscriptions tab from the report properties allow users to

• Make changes to an existing subscription

• See the last date and time when the subscription was run

• Verify the subscription status

• Delete the subscription

Managing all subscriptions

Users with Manage All Subscriptions rights can manage the subscriptions they own
plus those of other users. The Report Manager doesn’t include a screen that shows a
single view of all subscriptions. Instead, you need to drill down to individual reports
to see the subscriptions associated with each report.

For example, to see all time-based subscriptions, the administrator would follow
these steps:

Step 1 Click the Manage Shared Schedules link from the Site Settings menu.

Step 2 Select the schedule of interest.

Step 3 View the reports linked to that schedule.

Step 4 Click the Subscriptions tab for each report to get to the subscriptions associ-
ated with that report.

As a workaround, if you want to see all subscriptions, you can create a database
view that links the Subscriptions, Catalog, and Users tables to return the report and
user names.

The administrator can prevent individual users from creating subscriptions by set-
ting up a new role that doesn’t include the Manage Individual Subscriptions task and
assign users to this role. Alternatively, assuming that the users belong to the Browser
role, the administrator can exclude the Manage Individual Subscriptions task from
this role.

Sometimes, you may want to prevent users from selecting specific delivery options.
For example, strict security requirements may disallow sending reports via e-mail. The
administrator can disable delivery extensions by removing their definitions from the con-
figuration files. In the above scenario, to prevent the Report Manager from showing
the Report Server Email delivery option in the Deliver By drop-down, the adminis-
trator can remove or comment out the corresponding element from the RSWeb-
Application.config configuration file.

SUBSCRIBED REPORT DELIVERY IN ACTION 497

NOTE Removing a delivery extension from the RSWebApplication.config file will
only prevent this extension from showing in the Report Manager UI. You
can still use the SOAP subscription-related APIs to create subscriptions asso-
ciated with the excluded extension. If you want to prevent users from cre-
ating subscriptions with a given delivery extension, you will need to remove
it from the RSReportServer.config file.

Now that we’ve covered the theory behind subscribed report delivery, let’s put it into
action to address some common subscription-based needs.

14.3 SUBSCRIBED REPORT DELIVERY IN ACTION

In this section, we will implement the following examples:

• A standard e-mail subscription

• A standard file-based subscription

• A data-driven e-mail subscription

• Triggering a subscription programmatically

14.3.1 “Pushing” reports via standard e-mail subscriptions

In our fictitious scenario, the AWC North American Sales Manager, Stephen Jiang,
will subscribe his subordinates to receive the Employee Sales Freeform with Chart
report, which we created in chapter 4. We will assume that Stephen has rights to exe-
cute the Manage Individual Subscriptions task included by default in the Browser role.
To simulate this scenario, we could reuse Stephen’s Windows account that we created
in chapter 8. If you decide to do so, please remember to grant this account Browser
permissions to the AWReporter folder.

To make the things more interesting, we will also assume that Stephen doesn’t have
the Manage All Subscriptions rights and that SendEmailToUserAlias is set to True
(the default value). As a result, the e-mail address fields (To, Cc, and Bcc) will appear
disabled for Stephen. Therefore, the report administrator will need to finalize the sub-
scription that was initiated by Stephen by entering the recipients’ e-mail addresses.

Creating a standard e-mail subscription

Start by logging in to Windows with Stephen’s login credentials. Next, perform the fol-
lowing steps:

Step 1 Use your favorite browser to open the Report Manager web application.

Step 2 Navigate to the Employee Sales Freeform with Chart report.

Step 3 Select New Subscription from the View or Subscriptions tab. This will ini-
tiate the process of creating a new subscription, as shown in figure 14.7.

498 CHAPTER 14 SUBSCRIBED REPORT DELIVERY

As you can see, the Report Manager adjusts the user interface to reflect the fact that
Stephen doesn’t have rights to execute the Manage All Subscriptions task. Specifically,
the following changes are made:

• The To field is disabled, so Stephen can’t enter the recipients’ e-mail addresses.
• The Cc, Bcc, and Reply-To fields are missing.
• The screen doesn’t give the user an option to run the subscription on a

shared schedule.

Some of the available fields deserve more attention. The default Subject field has two
predefined variable placeholders, @ReportName and @ExecutionTime. During runt-
ime, the Report Server will replace them with their counterparts from the Global
object collection, ReportName and ExecutionTime. While you may think that you
can use the rest of the Global variables, for example, TotalPages or ReportServerUrl,
this is not the case. Why? I don’t know. A good case could be made to support param-
eter values, results from a call to custom code, and so on. Unfortunately, the Report
Server is currently wired to support only these two variables.

Figure 14.7 Using the Report Manager to create an individual e-mail subscription

SUBSCRIBED REPORT DELIVERY IN ACTION 499

Checking the Include Report check box will embed the report in the e-mail
when the export format is a Web archive (MHTML) or enclose it as an e-mail attach-
ment otherwise.

If selected, the Include Link check box will add the report’s URL to the body of the
e-mail. This could be useful when you want to let the user conveniently request the report
to see the latest data.

The Priority field reflects the status under which the e-mail will be sent. For exam-
ple, if the subscription is created with a high priority, Microsoft Outlook will show
an exclamation mark in the Importance field.

Finally, for parameter-driven reports, the Report Manager generates placeholders
for each report parameter. For non-snapshot reports, the user can enter the parameter
values or opt to use the default values.

While Stephen can create a subscription-specific schedule to trigger the subscribed
delivery, he won’t get very far. The e-mail server will error out when trying to resolve
the recipients’ addresses. In short, the security-conscious user interface of Report Man-
ager is good enough to log the subscription request but not to execute it successfully.
Doing so will require intervention by the report administrator.

Finalizing the e-mail subscription

We will now assume that Stephen has notified the report administrator of his intention
to distribute the report to a fixed number of sales representatives.

Next, the report administrator will navigate to the report and override Stephen’s
subscription, as shown in figure 14.8.

In our scenario, the report administrator would enter the e-mail addresses of
Stephen’s subordinates.

TIP You will probably recall that in chapter 5 we authored the Corporate Hierar-
chy report. You can create similar reports to find out who reports to whom.

The e-mail addresses shown in figure 14.8 are taken from the AdventuresWorks2000
database and are fictitious. To test the example successfully, you may want to enter
valid e-mail addresses in the To field. In addition, you may want to change the sched-
ule duration to a shorter interval, such as every five minutes. Don’t forget to stop the
schedule or dissociate the report from it when you have finished experimenting to pre-
vent filling up your e-mail box!

That’s it! At this point the standard e-mail subscription is scheduled and ready for
execution. When the schedule is up, the Report Server will generate the Employee
Sales Freeform with Chart report and mail it to the specified recipients.

14.3.2 Archiving reports to a file share

In this scenario, we will archive the Territory Sales by Quarter report that we authored
in chapter 7 each time its underlying data is refreshed. As you will probably recall, we

500 CHAPTER 14 SUBSCRIBED REPORT DELIVERY

configured this report to be executed as a snapshot that will be refreshed on a quarterly
basis. We set the snapshot execution process to be triggered by a shared schedule.

This time we will extend our example by creating a subscription that will run each
time the snapshot is refreshed. The subscription will export the report in PDF and use
the file share delivery extension to save the report as a file to a network share.

Setting up the target folder

Start by choosing the target folder where the report archive will be created. The file
share delivery extension doesn’t create the specified folder if it doesn’t exist, so we need
to specify an existing folder. For the purposes of this demo, we’ve chosen to export
the report to the C:\Reports folder. In real life, you will probably want to use a glo-
bally accessible network share. As we’ve discussed, the target folder must be specified
in the Uniform Naming Convention (UNC) format that includes the computer’s
network name. In our example, the UNC format for C:\Reports is \\<computer-
name>\C$\Reports.

Figure 14.8 The report administrator can finalize the report subscription by entering the

recipients’ addresses.

SUBSCRIBED REPORT DELIVERY IN ACTION 501

NOTE In our case we use an administrative share (indicated by the $ sign). In real
life, you should use network shares that are off the root of the server, for
example, <computername>\Reports.

As we’ve said, to create file share subscriptions, the user must have Manage Individ-
ual Subscriptions rights. Unlike working with e-mail subscriptions, however, the
Report Manager doesn’t enforce any additional security rules. Therefore, users with
Manage Individual Subscriptions rights will be able to configure execution-ready file
share subscriptions.

You may wonder why file share subscriptions are more relaxed in terms of security.
In my opinion, the reason for this laissez-faire approach is that file share delivery is nat-
urally more restricted than e-mail delivery because the report cannot be exported out-
side the organization’s boundaries. In addition, access to UNC shares can be controlled
by other means, such as using Windows Access Control Lists (ACL).

Configuring file-share delivery

Once you’ve decided on the target folder, follow these steps to configure the Territory
Sales by Quarter report for file-share delivery.

Step 1 Using the Report Manager, navigate to the Territory Sales by Quarter report.

Step 2 Verify that the report is scheduled for a snapshot execution by checking the
Execution tab’s properties. If it isn’t, follow the directions in chapter 7 to
configure the report for snapshot execution that is triggered by the shared
Quarterly Schedule.

Step 3 Click the New Subscription button from the View or Subscriptions tab.
Configure the file share delivery as shown in figure 14.9.

To export the report to a target folder, we use the Report Server File Share delivery
option, which will delegate the report distribution to the file share extension. To
append the export format extension we select the Add a File Extension When the File
Is Created check box. This will allow the user to double-click on the file and load the
report in the application that is associated with the file extension, for example, Adobe
Acrobat for files with the .PDF extension.

In my case, the share UNC path is \\teo\c$\reports because my computer name is
named teo. The export format is set to Adobe Acrobat (PDF). The file share extension
requires you to specify the credentials of a Windows account that has write access to
the target folder. The overwrite options are self-explanatory.

To trigger the subscription when the report snapshot is refreshed, we choose the
When the Report Content Is Refreshed option. This option is available only for snap-
shot reports.

502 CHAPTER 14 SUBSCRIBED REPORT DELIVERY

Parameter limitations

Finally, please note that the parameter placeholders are disabled. As we discussed in
chapter 7, once the snapshot parameter values have been defined, they cannot be
changed prior to the report’s execution. In our case, this means that the report will fil-
ter the report data for the third quarter.

The administrator has to remember to change the parameter value on the report’s
Parameters tab before the next quarterly execution. Of course, this could be avoided
by changing the report to filter the underlying data using the system date instead of
using a report parameter.

Figure 14.9 To configure a file share subscription for report archiving, specify the file share

path in UNC and the account credentials.

SUBSCRIBED REPORT DELIVERY IN ACTION 503

Observing the subscription results

Once we’ve defined the file share subscription, we are ready to put it in action.
Instead of waiting for the next quarter, let’s change the Quarterly shared schedule

interval to five minutes. Then, switch to the Territory Sales by Quarter report’s Sub-
scription tab, as shown in figure 14.10.

Please note that the Trigger column shows SnapshotUpdated to signify that the sub-
scription will be triggered by a snapshot refresh.

Once the schedule is up, the Report Server will process the report and will ask the
file share extension to deliver the report. As a result, the report will be saved to the spec-
ified target folder.

14.3.3 Sending reports to a data-driven list of recipients

While distributing reports to a fixed list of recipients may be useful for intranet-
oriented reports, it may be impractical when reports need to be delivered to web-based
subscribers. For example, imagine that Adventure Works would like to send the Prod-
uct Catalog report to its web customers on a regular basis. Hard-coding hundreds and
thousands of customers’ e-mail addresses would present a maintenance challenge.

In addition, a common requirement for Internet-oriented applications is to support
report personalization features and custom-tailor the report to meet the specific require-
ments of the user. For example, it is unlikely that all customers would like to receive the
Product Catalog report exported in the same format. Instead, a better approach would
be to allow the subscribers to specify the export format, such as PDF, HTML, and so
forth. All of these requirements call for a more flexible subscribed delivery option.

On the provider side, many organizations may want to implement custom delivery
rules to filter out the list of recipients who will receive the report. For example, to fight
the recent proliferation of spam e-mail, government regulations in the U.S. dictate that
all commercial e-mail must allow the subscribers to be able to opt out at will from
e-mail distribution lists.

Another common scenario that requires validating business rules is when an orga-
nization wants to deliver reports only to recipients who meet specific criteria. For
example, Adventure Works may want to distribute the product catalog report only to
subscribers who have placed orders in the past six months.

Figure 14.10 Using the Subscription tab to observe the subscription run

504 CHAPTER 14 SUBSCRIBED REPORT DELIVERY

To address needs such as these, RS supports data-driven subscriptions. In this section,
we will implement a data-driven e-mail subscription to meet the following design goals:

• Create a data store to capture the subscribers’ data. In real life, the AWC cus-
tomers will typically use a web-based front end to opt in for subscribed report
delivery. The data store could also save the customers’ subscription preferences.

• Configure an e-mail data-driven subscription to send the Customer Order His-
tory report to all subscribers. As you’ll probably recall, we created this report in
chapter 11 to show the orders placed by the customer in the past.

• Allow the report’s recipients to customize the report by specifying the export
format and e-mail priority.

Creating the subscriber data store

The AdventureWorks2000 database model supports several types of customers,
including individuals, stores, and retail. The individuals’ profile data is captured in the
Individual table. If you look at the definition of this table you will see that among
other things it stores the customers’ names and e-mail addresses, which makes this
table suitable for a recipient data store. Unfortunately, the AdventureWorks2000 data
is not consistent. Specifically, the orders placed by individuals don’t have matching
records in the Individual table.

To fix this, you need to add customer records into the Individual table with iden-
tifiers matching the CustomerID column in the SalesOrderHeader table. To make
your life easier, we’ve provided a SQL script that you can run to insert a few customer
records. The script is called Recipients.sql and it is located in the Database.dbp
project. If you want to test the e-mail delivery end to end, make sure to change the
customers’ e-mail addresses to valid e-mail addresses.

To simulate an opt-in distribution list, we created a database view, called Recipi-
ents, which you can find in the Views.sql script located in the same project. The view
simply filters out data in the Individual table to return only the customers whom we’ve
added using the Recipients.sql script. In real life, instead of a view, you may want to
use a stored procedure to implement additional business rules.

Figure 14.11 shows what the subscriber data looks like as returned by the view.
To implement the view we decided to reuse the CreditCardNumber and Email-

Promotion columns from the Individual table to store the report format and e-mail
priority data, respectively. We did so to avoid adding columns to the Individual table.

Figure 14.11 Creating a view to serve as a subscriber data source

SUBSCRIBED REPORT DELIVERY IN ACTION 505

Once you’ve created the view, don’t forget to grant permissions to it for the data-
base login that the AW2000 Shared DS data source uses to log in to the Adventure-
Works2000 database.

Configuring the e-mail data-driven extension

Now it is time to create the subscription. Open the Report Manager portal and navi-
gate to the Customer Orders report. Click the Subscriptions tab and choose New
Data-driven Subscription.

Step 1: Specifying the delivery option

The Data-driven Subscription Wizard starts, as shown in figure 14.12.
Here, we’ve chosen to distribute the report via e-mail. In addition, we’ve indicated

that the subscriber data store will be queried using a shared data source, which we will
specify in the next step. Click Next to advance to the second step.

Step 2: Selecting the data source

If you have selected to use the shared data source option in Step 1, you need to tell the
Subscription Wizard where it is located, as shown in figure 14.13.

In our case, we’ve selected the AW2000 Shared DS data source because the Recip-
ient view is located in the AdventureWorks2000 database.

Step 3: Setting up the recipient query

Next, we need to set up the query that will return the list of recipients, as shown in
figure 14.14.

Figure 14.12 In Step 1 of the Subscription Wizard, choose the delivery extension.

506 CHAPTER 14 SUBSCRIBED REPORT DELIVERY

Figure 14.13 In Step 2 specify the data source that will be used to get the

subscriber data.

Figure 14.14 In Step 3 specify the query statement used to return the recipient list.

SUBSCRIBED REPORT DELIVERY IN ACTION 507

Here, we are selecting all records from the Recipient view.

Step 4: Specifying the delivery extension settings

The next step is the most important step of setting up the data-driven subscription.
Here, we will need to map the recipients’ addresses and optionally other extension-
specific properties to the query fields, as shown in figure 14.15.

Set the extension properties as shown in table 14.1.

Table 14.1 Extension properties can be mapped to query fields.

Extension Property Setting Comment

To EmailAddress (database field) Data-driven from the recipient query

Cc No Value We won’t cc the e-mail to another
recipient

Bcc No Value We won’t bcc the e-mail to another
recipient

Reply-To No Value No need to specify an explicit return
address

Include Report True The report will be embedded when the
report format is MHTML or attached
otherwise

Render Format Format (database field) Data-driven from the recipient query

Priority Priority (database field) Data-driven from the recipient query

continued on next page

Figure 14.15 In Step 4 specify the delivery extension settings.

508 CHAPTER 14 SUBSCRIBED REPORT DELIVERY

As you can see, data-driven subscriptions give you a lot of flexibility to customize the
report’s execution. Any of the delivery extension properties can be set to get its value
from the recipients’ rowset. In our scenario, our web customers could specify the
report’s format and e-mail priority.

Step 5: Configuring report parameters

During the next step, we need to take care of the report parameters, as shown in
figure 14.16.

The Customer Orders report takes a single parameter, CustomerID. To synchro-
nize the report with the recipients’ rowset, we need to link this parameter to the
CustomerID column returned by the query.

Step 6: Setting up the subscription event

Finally, let’s set this subscription to be triggered on a quarterly basis by using the pre-
defined Quarterly Schedule, as shown in figure 14.17.

Subject @ReportName was executed at
@ExecutionTime

Will be replaced automatically by the
Report Server to read “Customer Orders
was executed at <the time when the
schedule is triggered>”

Comment No Value No need for comments

Include Link False Web-based recipients won’t normally have
URL access to the Report Server, so there
is no need to give them an option to
request the report by URL

Table 14.1 Extension properties can be mapped to query fields. (continued)

Extension Property Setting Comment

Figure 14.16 In Step 5 we need to filter the customer orders per recipient. We do this

by setting the CustomerID report parameter to the CustomerID column from the

recipients’ rowset.

SUBSCRIBED REPORT DELIVERY IN ACTION 509

That’s it! We managed to set up an automated data-driven report delivery in six easy
steps. We can apply a similar approach to implement an e-mail campaigner service to
send the product catalog by e-mail to a list of subscribers when there is a new product
promotion. Or, a spam service? Just kidding to see if you are still here! You can further
enhance this scenario to add more personalization features. For example, you could
easily modify the Customer Orders report to greet the user by name.

You can use any delivery extension with data-driven subscriptions. For example,
with file share subscriptions, the recipient’s data source could keep the target folders
where the reports need to be saved.

With RS you are not limited to triggering your subscriptions on a fixed schedule.
Instead, you can programmatically fire subscriptions, as we will discuss next.

14.3.4 Triggering subscriptions programmatically

While running subscriptions at a reoccurring scheduled interval can be very useful,
sometimes you may need to programmatically trigger the subscribed delivery process.

For example, say you have scheduled an e-mail delivery of the Adventure Works
product catalog to a list of subscribers on a quarterly basis. However, the company
management has requested the report to also be distributed when a new product is
added to the catalog. How would you implement this?

Publishing events programatically

One option to trigger a subscription programmatically is to reset the subscription
schedule to run when a new product is added. While this will work, it requires manual
intervention. Ideally, what we need is the ability to automate the process by being able
to pragmatically fire the subscription event. Can we do this with RS? You bet.

The RS Web service already includes a web method for this task. It is called
FireEvent, and it has the following signature:

public void FireEvent(string EventType, string EventData);

Figure 14.17

In Step 6 we

specify how the

data-driven

subscription will

be triggered.

510 CHAPTER 14 SUBSCRIBED REPORT DELIVERY

It is one of the event types listed under the EventProcessing element in the RSReport-
Server.config configuration file. The event data is the identifier of the item that trig-
gered the event and can be of the following values:

• For subscriptions based on shared schedules, the EventData is the schedule
identifier, as specified in the ScheduleID column in the Schedule table.

• For subscriptions with private schedules, the EventData corresponds to the sub-
scription identifier, which is the value of the SubscriptionID column from the
Subscriptions table.

In a nutshell, triggering the subscription programmatically involves inserting an event
record into the Event table in the Report Server database. While there’s nothing stop-
ping you from writing a table trigger on the Adventure Works Product table to insert
a new record in the Event table when a new product has been added, the recom-
mended way is to use the FireEvent API.

TIP If you decide to log the event directly into the Event table, you may wonder
how to get the event type and data. One way to obtain them is to wait for
the subscription schedule to run and then query the Event table in the
Report Server catalog. To avoid racing with the Reporting Services Win-
dows Service to determine who will get to the logged event first, you can
stop the Reporting Services Windows Service.

Among other things, when the FireEvent API is used, the Report Server could ver-
ify that the call is permitted as configured by the administrator’s role-based security
policy. Only callers who have rights to execute the Generate Events system-level task
are trusted to fire events programmatically, as shown in figure 14.18.

Figure 14.18 Calling FireEvents requires Generate Events rights.

SUBSCRIBED REPORT DELIVERY IN ACTION 511

Interestingly, by default the System Administrator role doesn’t include this task. There-
fore, as a prerequisite for running our sample successfully, you need to grant the
FireEvent caller Generate Events rights.

Implementing the solution

Once the security policy is set up, we are ready to implement the code sample. Table 14.2
lists the task map of our solution.

Similarly to the Campaigner example we discussed in chapter 9, we will use a table
trigger to call a web method, which in turn calls the FireEvent API. Why don’t we
call the FireEvent method directly from the trigger? If we do this, it will require
hard-coding the event type and data inside the trigger, which is something that we
would like to avoid. Instead, we will write a new web method, called FireSub-
scription, which you can find in the Campaigner Web service source code under
the Chapter09 folder in the AWReporterWeb project.

The FireSubscription source code is shown in listing 14.1.

[WebMethod]
public void FireSubscription(string reportPath, string userName) {
 ReportingService rs = new ReportingService();
 rs.Credentials=System.Net.CredentialCache.DefaultCredentials;

 DataRetrievalPlan dataRetrievalPlan = null;
 ExtensionSettings extSettings;
 string desc;
 ActiveState active;
 string status;

Table 14.2 The task map for programmatically firing a subscription

Component Task Description

Table Trigger Create INSERT table trigger Write an ON INSERT table trigger attached to
the Product table that will fire when a new
product is added.

Call web method
FireSubscription

Inside the trigger, call a custom web method
called FireSubscription. Pass the report and
user identity with which the subscription is
associated.

Web method
FireSubscription

Call ListSubscriptions Get the list of subscriptions associated with the
report-user combination.

Call GetDataDrivenSubscription-
Properties

Retrieve the subscription properties to get to
the event details.

Call FireEvent Call FireEvent to publish the event
programmatically.

Listing 14.1 Triggering a subscription programmatically using the FireEvent API

512 CHAPTER 14 SUBSCRIBED REPORT DELIVERY

 string eventType;
 string matchData;
 Subscription[] subscriptions = null;
 ParameterValueOrFieldReference[] extensionParams = null;

 subscriptions = rs.ListSubscriptions(reportPath, userName);

 if (subscriptions != null) {
rs.GetDataDrivenSubscriptionProperties(
 subscriptions[0].SubscriptionID,
 out extSettings, out dataRetrievalPlan, out desc, out active,
 out status, out eventType, out matchData,
 out extensionParams);

 rs.FireEvent(eventType, matchData);
 }
}

To make the FireSubscription method more generic, we pass the report path of
the report that needs to be delivered as well as the owner’s name in the format
DOMAIN\USERNAME. The latter argument is needed because, as you will probably
recall, a subscription is associated with exactly one user and one report.

The call to the ListSubscription web method returns a list of subscriptions
associated with the requested report-user combination. For the sake of simplicity, we
default to the first subscription. If you need to support reports that have more than
one subscription per given user, you may want to pass the subscription identifier as a
third argument to FireSubscription.

Next, we need to get the subscription properties by calling the GetDataDriven-
SubscriptionProperties web method. This is needed to get the event type and
data before the call to FireEvent. Because there are two types of subscriptions, stan-
dard and data-driven, the RS Web service API includes two web methods, GetSub-
scriptionProperties and GetDataDrivenSubscriptionProperties.

In our case, we assume that we need to trigger a data-driven subscription. Once the
GetDataDrivenSubscriptionProperties call executes successfully, the event
type and data are exposed under the eventType and matchData arguments respec-
tively. Finally, we call the FireEvent method to log the event that will trigger the
subscription processing.

The only piece left to implement is the INSERT trigger attached to the Products
table. This trigger will invoke the FireSubscription method when a new prod-
uct is added to the Products table in the AdventureWorks2000 database. It will be very
similar to the trgSpecialOffer trigger discussed in chapter 9, so we will leave its imple-
mentation details to you.

Gets the list of subscriptions for the
requested report and user name

Gets the subscription properties

Fires the
event

RESOURCES 513

14.4 SUMMARY

In this chapter we explored the second option for distributing reports with Reporting
Services—via subscriptions. Coupled with requesting reports on demand, subscribed
report delivery should address the most common distribution requirements for mak-
ing the reports available to your users.

Once you’ve read this chapter along with chapter 7, you should know when and
how to use both delivery options appropriately. When the report’s requirements call
for immediate synchronous access to the report, the on-demand option could be a bet-
ter fit. Alternatively, when a report needs to be executed on a regular basis in unat-
tended mode, it can be scheduled and “pushed” to recipients via subscribed delivery.

With subscribed report delivery, users can subscribe to reports that are distributed
to them or other destinations as a result of an event. RS supports standard and data-
driven subscriptions. Standard subscription options are fixed, while data-driven sub-
scription options can be set during runtime when the subscription is executed.

We put these concepts into practice by implementing various examples. We
showed how we can create standard e-mail and file share delivery subscriptions. Then,
we demonstrated how data-driven subscriptions work to deliver reports to a data-
driven list of recipients. Finally, we looked at how developers can programmatically
trigger subscriptions using the FireEvent API.

By now, you would probably agree that RS gives you a lot of flexibility in all three
phases of the report’s lifecycle: authoring, management, and delivery. But, as flexible
as it is, there will be cases when RS may not fit all reporting needs out of the box.

In such cases, you will probably appreciate the extensible nature of the RS archi-
tecture that allows developers to plug in programming logic in the form of custom
extensions, as we will discuss in chapter 15.

14.5 RESOURCES

“E-mail Services” topic from the Windows 2003 product documentation
Learn how to configure an e-mail server using the Windows 2003 SMTP and
POP3 services.

4P A R T

Advanced reporting
One of the most appealing features of Reporting Services is that it can be easily
extended by writing custom add-ons in the form of extensions. Part 4 discusses the
implementation details of three custom extensions that you can use to extend the
RS features.

You will see how you can author a dataset data extension to report off ADO.NET
datasets. You will learn how to distribute reports to web services by means of a custom
delivery extension. You will find out how to replace the RS Windows-based security
model with a custom security extension.

Besides being feature-rich, your reporting solutions must also perform and scale
well under increased user loads. To ensure that these objectives are met, you need to
learn how to evaluate the Report Server performance and capacity before “going live”
in a production environment. You will learn how to establish performance goals, how
to create test scripts with Application Center Test, and how to stress-load your Report
Server installation.

517

C H A P T E R 1 5

Extending Reporting
Services
15.1 Understanding Reporting Services

extensibility 518
15.2 Reporting off ADO.NET datasets

with a custom dataset data
extension 523

15.3 Distributing reports to Web services
using custom delivery extensions 537

15.4 Implementing custom security 546
15.5 Using custom HTTP modules 560
15.6 Considerations for custom rendering

extensions 563
15.7 Summary 563
15.8 Resources 564

An important characteristic of every enterprise-oriented framework, such as Reporting
Services, is that it has to be easily extensible. Simply put, extensibility relates to the sys-
tem’s ability to accommodate new features that are built out of old ones. When a soft-
ware platform is extensible, it allows developers to custom-tailor it to meet their
specific needs. For example, when your reporting requirements rule out Windows-
based security, RS allows you to replace it with custom security models.

One of the most prominent and appealing aspects of RS is its modular architec-
ture, which is designed for extensibility. We’ve already witnessed this in chapter 6
when we saw how we could supercharge our reports by writing custom code. In this
chapter, we will explore additional ways to take advantage of the unique extensibility
model of RS by writing custom extensions. Specifically, we will develop the follow-
ing extensions:

• A dataset data extension to report off ADO.NET datasets

• A Web service delivery extension to distribute reports to Web services

518 CHAPTER 15 EXTENDING REPORTING SERVICES

• A security extension to implement custom authentication and authorization

• An HTTP module for tracing requests

By the time you finish reading this chapter, you should have enough knowledge to
develop, install, and manage custom extensions. First, though, let’s discuss the essential
concepts that you need to know to effectively leverage the extensibility features of RS.

15.1 UNDERSTANDING REPORTING
SERVICES EXTENSIBILITY

You can extend RS by plugging in custom extensions written in .NET code. In order
to do that, you need to be familiar with the concept of interface-based program-
ming. Based on my experience, many developers find working with interfaces dif-
ficult to grasp.

For this reason, we would like to make a little detour at the beginning of this chap-
ter and explain the basic concepts and benefits of this style of programming. By no
means will our discussion attempt to provide exhaustive coverage of this topic. If you
need more information, refer to the .NET product documentation, which includes
many technical articles on object-oriented programming.

15.1.1 Understanding interface-based programming

Suppose that you are an architect on the RS team and you are responsible for designing
a flexible model for plugging in delivery extensions. As we saw in chapter 14, RS comes
with two extensions out of the box: e-mail and file share extensions. As useful as these
extensions are, it is unlikely that they will meet all subscription-based distribution
requirements. For example, what if an organization wants to automate the report-
printing process by sending reports directly to a printer? Instead of enduring the Her-
culean effort of creating and supporting all possible delivery scenarios out there, you
prudently decide to let customers author and plug in their own extensions.

What implementation pattern will you choose? Obviously, you need to establish
some standardization to which other developers will need to conform. Once you’ve
come up with an easy-to-follow standard pattern, you could use generic code logic to
load and execute custom extensions. As a seasoned architect, you set the following
high-level design goals for the envisioned extensibility model:

• It must allow developers to write and plug in their own extensions.

• The extensibility model shouldn’t require an intimate knowledge of how the
extension is implemented or what it does for that matter. In other words, as
long as the extension adheres to the standard, it can be treated as a “black box.”

• The extensibility model should be as robust as possible. For example, it should
be able to determine at runtime whether a given custom extension follows the
standard design pattern and, if it doesn’t, the Report Server will not attempt to
load it.

UNDERSTANDING REPORTING SERVICES EXTENSIBILITY 519

Let’s now discuss how we can implement the above requirements. To enforce a com-
mon standard for report delivery, you can lay out the following rules:

• Each custom extension type must expose a method that the Report Server will
invoke to distribute the report.

• This method must have at least one argument that the Report Server will use to
pass the report notification object.

Given the above specifications, figure 15.1 shows how two custom delivery extensions
could be implemented.

Let’s say that the first extension supports report delivery to a printer similarly to
the sample that comes with RS, while the second can be used to distribute reports to a
Web service. In the first case, you’ve decided to encapsulate the delivery logic in a method
called Deliver, while in the latter, in a method called Distribute.

Once the custom extensions are registered with the Report Server, you can define
subscriptions that use these extensions, as we discussed in chapter 14. During runtime,
the Report Server will instantiate the appropriate extension and delegate the report
delivery to it. Everything looks great! Or does it?

15.1.2 Working with interface inheritance

Upon further inspection, several issues surface. First, the Report Server has to know
beforehand not only the type name of the extension but also the name of the method
responsible for the report delivery. One possible workaround would be to save the
method name in the configuration file too, but this will present a maintenance issue.
Another solution would be to change the specification and stipulate that all delivery
methods must have the same name, for example, Deliver. However, this approach

Figure 15.1 Without interfaces, it is difficult to achieve standardization. For

example, this figure shows two possible implementation approaches to

implement custom delivery extensions. Because they don’t follow a single

standard, it is difficult for the Report Server to integrate them.

520 CHAPTER 15 EXTENDING REPORTING SERVICES

is not easily enforceable, especially by people who are as opinionated and strong-willed
as developers tend to be.

Second, the Report Server won’t be able to easily inspect the signature of the deliv-
ery method in advance to check to see if it follows the specification. For example, what
if the developer has neglected to specify an argument for the notification object? This
will certainly result in a runtime exception. Finally, there is no easy way for the Report
Server to invoke the delivery method.

Interface inheritance

The above issues can be easily overcome by using interface inheritance. At this point,
you may be curious as to what an interface really is. We can loosely define an interface
as a set of methods, properties, and events that define an object’s characteristics and
behavior. You define an interface similarly to the way you define a class. For example,
in the above scenario, this is what the delivery extension interface may look like in C#:

interface IDeliveryExtension {
 void Deliver (Notification notification);

}

By convention, the interface name is prefixed with a capital I. Please note that an inter-
face contains only the method’s signatures, not their implementation. In addition,
unlike working with objects, an interface cannot be instantiated. In fact, the whole
purpose of having an interface is to inherit from it, as shown in figure 15.2.

Now both extension classes inherit from the IDeliveryExtension interface,
which in C# is denoted by the colon (:). When a class inherits from an interface, we
say that the class implements this interface.

Figure 15.2 Using interface inheritance to enforce a specification. Now both

extensions follow the same standard. The Report Server can load them by using

the factory design pattern.

UNDERSTANDING REPORTING SERVICES EXTENSIBILITY 521

Interface inheritance offers the following benefits:

• Standardization
• Dynamic type discovery
• Polymorphism
• Multiple inheritance

Achieving standardization by using interfaces

Once a class inherits from an interface, it must implement all methods included in the
interface definition. In addition, the implementation of the method names and signa-
tures must match those defined in the interface. The compiler enforces these rules dur-
ing code compilation.

Therefore, to enforce a common standard, we can change our specification to
stipulate that all custom extensions must inherit from the IDelivery interface.
This means that all custom extensions will expose a method called Deliver, which
takes exactly one parameter of the type Notification, as required by the definition
of the interface.

Dynamic type discovery

But what if the developer forgets to inherit the custom extension class from our inter-
face? After all, a standard is only good when it is followed. You see, the second advan-
tage of using interface inheritance, as well as object inheritance for that matter, is that
the caller can easily discover whether an object implements a given interface during
runtime. For example, we can write the following code in the Report Server to find
out if the custom extension indeed adheres to our specification:

// instantiate the custom extension using Factory design pattern.
if (typeof(customExtension) is IDeliveryExtension)
 // do something with the extension
else
 throw new Exception("This custom extension doesn’t
 implement IDeliveryInterface");

Here, we use the C# type of operator (the VB.NET equivalent is TypeOf) to check to
see whether the extension class implements the required interface after the custom
extension object is instantiated. If this is not the case, we can react to this condition by
throwing an exception.

Polymorphism

Interface inheritance allows us to use another powerful object-oriented technique
called polymorphism. It allows the caller to treat different objects in the same way. We
already used this technique in chapter 13. First, we implemented two pluggable report
adapters that inherited from a common IReportAdapter interface. Then, we used
the factory design pattern to instantiate the requested adapter and cast its reference
to IReportAdapter.

522 CHAPTER 15 EXTENDING REPORTING SERVICES

In our scenario, polymorphism helps to expand the above example and work with
the custom extension objects in this way:

// instantiate the custom extension using Factory design pattern.
if (typeof(customExtension) is IDeliveryExtension)
 // cast to IDeliveryExtension to call Deliver
 ((IDeliveryExtension) customExtension).Deliver(notification);
else
 throw new Exception("This custom extension doesn’t
 implement IDeliveryInterface");

Once we make sure that the extension object is of the right type, we can cast to its base
interface and call the Deliver method. As you can see, by using the interface inher-
itance, the caller can easily discover the type of the object during runtime and treat all
objects that implement the required interface in the same way.

Implementing multiple interfaces

Finally, unlike class inheritance, with interface inheritance you can implement as many
interfaces as you’d like. For example, to introduce a common standard that all custom
delivery extensions will follow to retrieve the configuration information, we could
come up with the following interface:

interface IExtension {
 void SetConfiguration(string);
}

Once a custom extension implements the IExtension interface, the Report Server
can call its SetConfiguration method to pass the extension’s configuration set-
tings that can be defined in the Report Server configuration file. This looks like a cool
feature, so let’s enhance our printer delivery extension to implement both the
IDeliveryExtension and IExtension interfaces, as follows:

public class WebServiceDeliveryProvider : IDeliveryExtension, IExtension {
 public void Deliver (Notification notification) {…}
 public void SetConfiguration (string configSettings) {…}
}

Please note that, in most cases, the Report Server makes multiple interface inheritance
unnecessary because the more “specialized” interfaces inherit from the IExtension
interface. This means that all custom extensions indirectly inherit from IExtension.

Extending RS with interface inheritance

Now that you have a good grasp of interface inheritance, you are ready to extend the
RS features by writing custom data, delivery, rendering, and security extensions. To
make your life easier, Microsoft has encapsulated all RS-related interface definitions
into a single Microsoft.ReportingServices.Interfaces library.

Figure 15.3 shows the publicly available type definitions included in this library.

REPORTING WITH A CUSTOM DATASET DATA EXTENSION 523

Therefore, as a prerequisite for writing a custom extension, in your project you need
to set up a reference to this library, which can be found in both the Report Server
binary folder (C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\
ReportServer\bin) and the Report Manager binary folder (C:\Program Files\Microsoft
SQL Server\MSSQL\ReportManager\bin).

For your convenience, we have encapsulated all custom extensions that we will dis-
cuss in this chapter in a single project called AWC.RS.Extensions. This setup also sim-
plifies configuring the code access security for the custom extensions because you need
to grant full trust permission to this assembly only. This project also includes our ver-
sions of both the Report Server and Report Manager configuration files to help you
configure the sample extensions properly.

Now, let’s put interface-based programming into action by creating our first cus-
tom extension.

15.2 REPORTING OFF ADO.NET DATASETS
WITH A CUSTOM DATASET DATA EXTENSION

Why would you want to write a custom data extension because, with RS, a report can
draw its data from virtually any database? One good reason would be to report off cus-
tom data structures, such as ADO.NET datasets and XML documents. For example,
version 1.0 of Reporting Services doesn’t support natively binding and reporting off

Figure 15.3 The Microsoft.ReportingServices.Interfaces library includes all interface

definitions.

524 CHAPTER 15 EXTENDING REPORTING SERVICES

application ADO.NET datasets. However, developers can write a custom data exten-
sion to expose an ADO.NET dataset as a report’s data source.

There are at least two approaches to implement this process:

• The custom extension calls an external .NET assembly to get the dataset. This is the
approach that the product documentation demonstrates. The advantage of this
approach is better performance because the dataset doesn’t have to cross pro-
cess boundaries. However, this comes at the expense of flexibility. For example,
this approach cannot be easily retrofitted to support the scenario where a
three-tier application needs to report off datasets returned from the data tier
layer. In addition, the application cannot preprocess the dataset before the
report is generated.

• The application passes the copy of the dataset that has been serialized to XML to the
Report Server. This approach allows a report consumer’s application to obtain a
dataset during runtime, for example, from a data layer, and “bind” it to a report.
This is the design pattern that our dataset extension will follow.

Figure 15.4 depicts a typical integration scenario for requesting a report that uses the
custom dataset extension.

The report consumer will typically obtain the dataset from the application data layer.
Then, the report consumer will serialize the dataset to XML and request the report by
passing the serialized dataset copy as a report parameter. Assuming that the report is
configured to use the custom dataset extension, the Report Server will ask the exten-
sion to provide the report data. To do this, the extension reconstructs the dataset and
exposes its data through a well-defined set of interfaces. During the report-processing
phase, the report draws its data from the dataset. Finally, the generated report is sent
back to the report consumer.

As noted before, an alternative usage scenario could be reporting off datasets that
are persisted as XML files. In this case, the application will be responsible for saving
the dataset to a file and passing the file’s location as a report parameter.

Figure 15.4 A report consumer can use a custom dataset extension to report off

application datasets.

REPORTING WITH A CUSTOM DATASET DATA EXTENSION 525

15.2.1 Design goals and tradeoffs

The high-level design goals for our custom dataset data extension are as follows:

• The custom dataset extension should be integrated seamlessly with the RS data archi-
tecture. From report design point of view, the use of datasets should be transpar-
ent to the report’s author.

• Dataset table columns will be exposed as fields in the Report Designer to facilitate
the familiar drag-and-drop technique for laying out the report. For this reason, the
custom dataset extension promotes the use of XML schemas and typed datasets
during the report’s design phase.

• The dataset data extension will support reporting off an arbitrary table from a mul-
titable dataset.

• The dataset data extension will support reporting from serialized datasets, as well as
datasets saved to XML files. The latter option could be useful for reports with
interactive features.

NOTE Adding interactive features to dataset-bound reports presents an unusual
challenge. As we explained in chapter 11, these features rely on HTTP-GET,
which cannot be used with large parameters. As a workaround, consider sav-
ing the dataset as an XML file and passing the file path as a report parameter.

Our implementation of the custom extension will be subject to the following tradeoffs:

• Performance overhead is incurred from serializing and marshaling the dataset
between the application and the Report Server. When a .NET dataset crosses the
application’s domain boundary, the .NET Framework automatically serializes it
to XML. The dataset is subsequently deserialized into the receiving application’s
domain (the Report Server process).

• Data relations are not supported. An ADO.NET dataset can include several tables
joined with data relations. Unfortunately, ADO.NET datasets currently don’t
support SQL-like SELECT statements to fetch data from joined tables. As a
result, supporting queries from multiple tables linked with data relationships
could become rather involved. If this is a definite requirement, you may try to
extend the sample by implementing row filtering, for example, by using the
GetChildRows method of the DataRow object. That said, please note that
the report’s author can configure our extension and specify which table from a
multitable dataset will be used for reporting.

• Requesting a dataset-bound report via HTTP-GET is impractical. Due to the query
parameter’s size limitation of the HTTP-GET protocol, the report consumer
would typically use SOAP for passing the serialized dataset copy to the Report
Server. If URL access is the preferred option, you have two choices. First, you
could use HTTP-POST to pass the ADO.NET dataset. As we mentioned in
chapter 11, HTTP-POST enjoys almost unlimited parameter length because the

526 CHAPTER 15 EXTENDING REPORTING SERVICES

parameter name/value pairs are transferred in the request’s HTTP header instead
of in the form of a URL query string. The Report Picker code sample that we
discussed in chapter 11 demonstrated how a web application can leverage
HTTP-POST to request reports. Another option for getting around the HTTP-
GET request limitations would be to save the dataset to a file on the server side
of the application and pass the file path as a report parameter.

Now, let’s see how we can use the custom dataset extension to report off application
datasets. Inside the AWReporter BI project, you will find the TestDS report that we will
use to demonstrate how to create dataset-bound reports.

15.2.2 Authoring dataset-bound reports

Before using the custom dataset extension to create dataset-bound reports, we need to
configure it properly. We included detailed setup instructions in the readme file found
under the DataExtensions\Dataset folder in the AWC.RS.Extensions project.

Once the extension is set up, you can follow the task map shown in table 15.1 to
author a dataset-bound report.

As noted in the table, the first task for creating a dataset-bound report is to define
the schema.

Creating the dataset schema

While there’s nothing stopping you from hard-coding the dataset field names inside
report items, a better approach would be to expose the dataset schema in the Report
Designer. Once this is done, the report’s author can drag and drop dataset fields to
the report canvas, as she would do when working with extensions natively supported
by RS.

Table 15.1 The task map for creating a dataset-bound report

Phase Task

Create the dataset schema. Create a typed dataset.
Or, infer the schema from a persisted-to-file dataset.

Set up the report dataset. Create a private data source.
Set up the query parameters.
Retrieve the dataset fields.
Configure the DataSource report-level parameter.

Lay out the report. Use the Report Designer’s Layout tab to drag and drop dataset fields.

Test the report. Use the Report Designer’s Preview tab to test the report.

Deploy the report. Use VS.NET or the Report Manager to deploy the report to the Report
Server.

Request the report. Request the report programmatically on demand via SOAP.

REPORTING WITH A CUSTOM DATASET DATA EXTENSION 527

With the custom dataset extension, you can expose the dataset schema in one of
the following ways:

• Create a typed dataset—With Visual Studio .NET, you can create typed datasets
easily. The end result is a file with the .xsd extension. The Test Harness applica-
tion includes a typed dataset called EntitySalesOrder.xsd. It was created by using
the SQL Data Adapter component found on the Data tab of the VS.NET toolbox.

• Infer the schema from a persisted dataset—The custom extension can be config-
ured to infer the dataset schema from a dataset that has been saved to a file. For
example, the Test Harness application includes the DatasetSalesOrder.xml file,
which contains the XML presentation of a dataset. The file could include only
the schema, only the data, or both the dataset schema and the data. The custom
extension uses DataSet.ReadXml to load the dataset and infer its schema.

Now that we have the dataset schema, we are ready to author the dataset-bound report.

Setting the report dataset

Let’s start by setting up a new private data source that points to the dataset schema
file. Begin by creating a new report. Flip to the Report Designer Data tab and create
a new dataset.

Creating a private data source

From the Dataset properties dialog, click the button next to the Data Source drop-
down to create a new data source, as shown in figure 15.5.

Figure 15.5

Using the dataset

extension to set up

the report’s data

source

528 CHAPTER 15 EXTENDING REPORTING SERVICES

If the dataset extension is configured properly, it will be listed in the Type drop-down.
Set the data source type to Dataset Extension.

NOTE If you are creating a new dataset and the standard UDL dialog pops up instead
of the Data Source dialog shown in figure 15.5, you can set up the dataset
data source using any of the OLE DB providers, such as the Microsoft OLE DB
provider for SQL Server. Once the data source is configured, access the dataset
properties and click the “…” button next to the Data Source drop-down on
the Query tab. This should bring you to the dialog shown in figure 15.5, from
which you can change the extension type to Dataset Extension.

Leave the Connection String blank because the dataset extension doesn’t establish a
database connection. Remember, the report’s data will be encapsulated inside the
dataset that will be passed as a report parameter. The Credentials tab is also not appli-
cable in our case because the extension doesn’t establish a database connection. To
move past the Report Wizard validation, choose the Windows Authentication (Inte-
grated Security) option from the Credentials tab.

Back in the Dataset properties dialog, in the Query String text area, enter the name
of the dataset table off which you want to report, as shown in figure 15.6.

A dataset can have multiple tables. In case there is only one table or you want to
default to the first table, you can enter Nothing as a query string. Initially, we were
planning to default to the first table in case the query text was left blank, but the
Report Designer insisted that we specify a query string. For the purposes of the TestDS
report, enter SalesOrderHeader (or Nothing) as query text because this is the name
of the first (and only) dataset table.

Figure 15.6

Setting the query

string to the dataset

table used for

reporting

REPORTING WITH A CUSTOM DATASET DATA EXTENSION 529

Setting up the query parameters

Now, we are ready to set up the query parameters. Because the query string we just
entered is not a valid SQL statement, we need to switch to the Generic Query
Designer. Now, run the query by clicking the Exclamation button. The Generic Query
Designer will ask the data extension to parse the query text and return a list of the
query parameters.

The custom dataset extension is wired to prompt for a parameter named Data-
Source. When designing the report, you need to set this parameter to the path point-
ing to the dataset schema file. During runtime, you will use this parameter to pass the
serialized copy of the dataset or the path to the persisted dataset file.

Figure 15.7 shows that we entered the full path to the EntitySalesOrder.xsd typed
dataset file as a parameter value.

Retrieving the dataset fields

Now, click OK so that the data extension can parse the dataset schema and return
the fields of the requested table, as shown in figure 15.8.

TIP You may wonder why the Generic Query Designer doesn’t show any data
after you click the Exclamation button. The reason for this is that a typed
dataset schema contains only the dataset’s definition, not its data. How-
ever, if you use a dataset that has been saved to a file instead of only its
schema, then the Generic Query Designer will show the table records in the
query pane.

Figure 15.7 Setting up the DataSource parameter to the dataset schema file

530 CHAPTER 15 EXTENDING REPORTING SERVICES

At this point, the Fields toolbar should show all table columns, as defined in the
dataset schema. In addition, the Parameter tab of dataset properties should include the
DataSource parameter.

Configuring the DataSource report-level parameter

Next, you need to verify that the DataSource parameter is linked to the DataSource
report-level parameter, as shown in figure 15.9.

This is perhaps the most crucial step of the dataset-driven report-authoring process.
As we noted before, during runtime the report consumer will pass the dataset as a
report-level parameter. By linking the DataSource report-level parameter to its query
counterpart, we ensure that the dataset will indeed be passed to the dataset extension.
If your report needs more parameters, you can define them using the Report Param-
eters dialog.

Figure 15.8 Retrieving the list of table fields

Figure 15.9

Verifying that the

DataSource

parameter is linked

to the DataSource

report-level

parameter

REPORTING WITH A CUSTOM DATASET DATA EXTENSION 531

Laying out the report

Now that the report dataset is set up, we can proceed to laying out the report itself
using the familiar drag-and-drop approach. Switch to the Report Designer’s Layout
tab and lay out the report as you normally would.

For example, figure 15.10 shows that we used a table region to create a tabular
report. Then we dragged and dropped some dataset fields into the table region.

Testing the report

To successfully preview the report in the Report Designer, you have to feed it data by
setting the report’s DataSource parameter. During design time, you may find it more
convenient to use one of the following techniques:

• Copy and paste an XML snippet from the dataset’s serialized copy.

• Specify the path to the dataset that was saved to disk.

For example, figure 15.11 shows that we used the first approach and entered the fol-
lowing string as the DataSource value:

Figure 15.10 Using the Report Designer’s Layout tab to lay out the report

Figure 15.11 Using an XML snippet as a report’s data source during design time

532 CHAPTER 15 EXTENDING REPORTING SERVICES

<SalesOrderHeader>
 <SalesOrderID>5001</SalesOrderID>
 <CustomerID>304</CustomerID>
 <PurchaseOrderNumber>PO29199294</PurchaseOrderNumber>
 <OrderDate>2003-09-01</OrderDate>
</SalesOrderHeader>

Deploying the report

Once you have finished with the report, you can deploy it to the Report Server, so that
it is available for delivery.

As you know by now, the easiest way to do this (if you have Content Manager per-
missions to the Report Server repository) is to deploy it straight from the Visual Studio
IDE by right-clicking the report file and choosing the Deploy command from the con-
text menu.

Alternatively, you can deploy the report manually by uploading its report defini-
tion file using the Report Manager web application.

Requesting the report

When requesting a dataset-bound report, the client application must set the Data-
Source parameter as follows:

• If the report is accessed by SOAP, the application can pass the serialized dataset or
the path to the dataset file (if the application has persisted the dataset beforehand).

• Due to the size limitations of the HTTP-GET query string, passing a large
dataset as a query parameter is not possible. For this reason, this protocol will
seldom be used to request dataset-bound reports. As noted before, if the URL
method must be used, the report consumer can save the dataset to a file and
pass the file path to the DataSource parameter. Alternatively, the report con-
sumer can leverage HTTP-POST.

The implementation pattern that a client application will typically follow when
requesting a dataset-bound report by SOAP is shown in listing 15.1.

ReportingService rs = new ReportingService();
// Set the Render method arguments
ParameterValue[] proxyParameters = new ParameterValue[1];

DataSet ds = new DataSet();

sqlDataAdapter.Fill(ds);
proxyParameters[0] = new ParameterValue();
proxyParameters[0].Name = "DataSource";
proxyParameters[0].Value = entitySalesOrder.GetXml();
result = rs.Render(…);

Listing 15.1 Passing a dataset to Reporting Services

Create a
parameter
placeholder

b

Get the datasetc

Pass the dataset’s
serialized-to-XML
copy

d

REPORTING WITH A CUSTOM DATASET DATA EXTENSION 533

b First, we create at least one parameter placeholder for the DataSource parameter.

c In this case, the application uses a plain-vanilla dataset. However, there’s nothing
stopping you from using typed datasets if your application’s design supports them.

d Next, the application serializes the dataset to XML and passes the serialized copy
under the DataSource parameter.

To facilitate the TestDS report testing, we enclosed a simple WinForm-based client
that takes the Report Server’s URL and report path and uses similar code to request the
report by SOAP.

Now that you’ve seen how to use the custom dataset extension to create dataset-
bound reports, let’s discuss its implementation.

15.2.3 Implementing the custom dataset extension

Armed with the FsiDataExtension source code (included with the RS samples) and the
RS product documentation, we found the process of implementing the custom dataset
extension straightforward.

Custom dataset extension types

Table 15.2 lists the types used to implement the custom dataset extension.

At first look, you may find dealing with so many interfaces mind boggling, but you
may find that your requirements call for implementing many interface methods as
simple passthroughs.

Table 15.2 To plug into the Report Server data architecture, the custom dataset extension has

several classes that implement standard interfaces.

Type Inherit From Purpose Implemented?

DsConnectionWrapper IDbConnection,
IDbConnection-
Extension, IExtension

Responsible for establishing a
database connection

No

DsTransaction IDbTransaction Enlists the database com-
mands in the data source trans-
action

No

DsCommand IDbCommand,
IDbCommandAnalysis

Responsible for handling the
report query string

Yes

DsDataParameter IDataParameter Represents a query parameter Yes

DsDataParameter-
Collection

ArrayList, IData-
ParameterCollection

Holds a collection of query
parameters

Yes

DsDataReader IDataReader Handles the access to the
dataset data

Yes

534 CHAPTER 15 EXTENDING REPORTING SERVICES

Runtime conversation map

Figure 15.12 shows a simplified version of the conversation map between the Report
Server and the custom extension during runtime.

First, the Report Server instructs the dataset extension to establish a database con-
nection by passing the connection string to it. Then, the Report Server asks the Con-
nection object to return a reference of type IDbCommand.

Next, the Report Server calls the IDbCommand.CreateParameter method as
many times as the number of parameters the report query has. The Command object
responds by returning an object of type IDataParameter for each parameter.

NOTE It is important to note that the Report Server will pass only the query
parameter to the data extension and not the report-level parameters. If a
report-level parameter is not linked to the query parameter, it won’t be
passed. An important consequence of this rule is that you can’t get a refer-
ence to the report-level parameters inside the dataset extension if they are
not linked to the query parameters.

Because each parameter is of a common base type, the Report Server knows how to set it
up. After the parameter is initialized, the Report Server invokes the IDataParameter-
Collection. Add method so that you could append this parameter to the parameter
collection. Once the parameters have been taken care of, the Report Server calls the
ExecuteReader method of the Command object to get a reference to an object of
type IDataReader.

For each report dataset field, the Report Server calls the IDataReader.Get-
Ordinal to get the positional index of each field in the reader’s field collection. This is
needed because later the Report Server will ask for the value of the field by its positional

Figure 15.12 A sequence diagram of custom dataset extension processing. The Report Server

calls the implemented interface methods to configure the extension and retrieve the data.

REPORTING WITH A CUSTOM DATASET DATA EXTENSION 535

index. Once the fields are matched, the Report Server asks the reader repeatedly to
advance to the next row of the rowset until the end of the rowset is reached. For each
field, the Report Server calls the IDataReader.GetValue method to retrieve the
field’s value.

You may be curious to know how the Report Designer discovers the report query’s
parameters during design time in order to prompt the user for their values. To support
this feature, the developer of the extension can implement the IDbCommandAnalysis
interface in the Command object. This interface exposes a single method, Get-
Parameters. When you click the exclamation mark to run the report query, the
Report Designer probes the extension to find out if it implements this interface, and if
this is the case, it calls the GetParameters method. This method is responsible for
parsing the query string and returning a collection with the parameter’s placeholders.

Now that we’ve discussed the high-level interaction between the Report Server and
the extension, let’s talk about some implementation sketches.

Implementing IDbConnection

You can relate the IDbConnection interface to the ADO.NET connection wrappers,
for example, SqlConnection. The main purpose of this object is to establish a database
connection to the data source, if this is needed. As noted before, in our case we have
nothing to connect to because all data is either passed as a dataset during runtime or
is retrieved from a dataset file.

In cases where you do need to connect to a data source, you use the IDb-
Connection.Open method to establish a database connection. Prior to calling this
method, the Report Server will call the IDbConnectionExtension public prop-
erties to pass the user’s credentials that you set on the Data Source Credentials property.
Strictly speaking, in our case, we didn’t have to implement the IDbConnection-
Extension interface at all, but we decided to do this so that you could see the
sequence of events when you step through the extension code.

Implementing IDbCommand

The main tasks of the object that implements the IDbCommand interface are to pop-
ulate the query parameters and to execute the report query and then return a reference
to a data reader object that allows the caller to process the results.

In this respect, you can relate the IDbCommand interface to the ADO.NET Com-
mand objects, such as SqlCommand. The Report Server passes the query text prior to
executing the ExecuteReader method. In our case, the query text represents the
name of the table off which we want to report. Then, ExecuteReader instantiates
the reader object and calls LoadDataset to retrieve the rowset.

536 CHAPTER 15 EXTENDING REPORTING SERVICES

Implementing IDataReader

This is where the crux of the data retrieval and processing logic is. Similarly to the
ADO.NET IDataReader, an object that implements this interface is responsible for
providing a means to read the rowset in a forward-only fashion. The bulk of the data
retrieval and manipulation logic (exception handling excluded) is shown in listing 15.2.

internal void LoadDataset() {
 string dataSource = null;
 DsDataParameter parameter = m_parameters.GetByName(Util.DATA_SOURCE)
 as DsDataParameter;
 dataSource = parameter.Value.ToString();

 m_dataset = GetDataSet(dataSource);

 if (m_cmdText.Trim().ToLower()=="nothing")
 m_datatable = m_dataset.Tables[0];
 else {
 m_datatable = m_dataset.Tables[m_cmdText];
 }

 m_ie = m_datatable.Rows.GetEnumerator();
}

private DataSet GetDataSet(string dataSource) {
 DataSet dataset = new DataSet();

 if (dataSource.IndexOf("<")>=0) {
 StringReader reader = new StringReader(dataSource);
 dataset.ReadXml(reader);
 }
 else {
 FileIOPermission permission = new
 FileIOPermission(FileIOPermissionAccess.Read, dataSource);
 permission.Assert();
 dataset.ReadXml(dataSource);
 }

 return dataset;
}

b First, we attempt to find a parameter named DataSource. As you will probably recall,
the value passed to this parameter can be one of the following: the serialized-to-XML
dataset copy or a file path to the persisted-to-file dataset. GetDataSet determines
what the value of the DataSource represents by inspecting its payload.

c In the first case, we deserialize the dataset from its XML payload.

d In the latter, we read the dataset’s content from the file. Note that we are specifically
demanding a read permission to the physical file. Regardless of the fact that the code

Listing 15.2 Retrieving the rowset

Gets the DataSource
parameter

b

References the requested
table inside the dataset

e

Sets up the row
enumerator

f

A serialized
copy of the
dataset has
been passed

c

A path to a persisted-
to-file dataset has
been passed

d

DISTRIBUTING REPORTS USING CUSTOM DELIVERY EXTENSIONS 537

access policy of the dataset extension assembly is configured for Full Trust rights, CAS
is layered on top of the OS security. For this reason, if you decide to use persisted
datasets, make sure you grant the ASP.NET workers’ process identity at least read per-
missions to their files.

e Once the dataset is successfully deserialized, we reference the table specified by the
query text.

f Finally, we save the row enumerator to a class-level variable to save its state between
subsequent calls to IDataReader.Read.

15.2.4 Debugging dataset extensions

You will probably find that the easiest way to step through a custom dataset extension
is to follows these steps:

Step 1 Add the custom dataset extension project to your Business Intelligence solu-
tion in VS.NET.

Step 2 Set the StartItem setting of your Business Intelligence project to the name of
the report that uses the extension.

Step 3 Set breakpoints in the data extension code.

Step 4 Run the report in Debug mode (F5). Once you click the ViewReport but-
ton, your breakpoints should be hit.

As you’ll probably agree, authoring custom data extensions is not that difficult. Once
you get used to interface-based programming, you will probably find writing different
types of extensions similar. Let’s now see how we can create custom delivery extensions.

15.3 DISTRIBUTING REPORTS TO WEB SERVICES
USING CUSTOM DELIVERY EXTENSIONS

As you will probably recall, in chapter 11 we discussed how RS could be used in the
B2B scenario. Back then, we exposed the Inventory Level report as a Web service that
the Adventure Works partners could use to request the report on demand. Instead of
“pulling” the report, let’s now implement a mechanism that will allow Adventure
Works to “push” the report to the vendor’s Web service on a regular basis through sub-
scribed report delivery.

Figure 15.13 depicts the high-level architectural view of our solution.
In our hypothetical scenario, the report’s administrator could configure one or

more reports for subscribed delivery to the vendor’s Web service that we created in
chapter 14. As part of the subscription setup process, the report’s administrator will
specify the following Web service particulars:

• The end point URL

• The Web service name (type name)

• The web method name responsible for receiving the report’s payload

538 CHAPTER 15 EXTENDING REPORTING SERVICES

As figure 15.13 depicts, once the subscription is triggered, the Report Server will
instantiate our extension and pass the notification object to it. Next, the custom deliv-
ery extension will ask the Report Server to render the report and will serialize the
report’s payload to an XML document. Finally, the custom extension will dynamically
invoke the Web service and pass the report’s payload to the web method.

15.3.1 Design goals and tradeoffs

The high-level design goals for our custom delivery extension are as follows:

• The custom delivery extension should plug seamlessly into the presentation layer of
the Report Manager. To accomplish this requirement, the extension will imple-
ment an intuitive user interface to help the end user configure the extension.

• The custom delivery extension must validate the user’s input on the client and
server sides.

• Because the custom extension can send the report to an arbitrary Web service, it
should support dynamic binding to the Web service by constructing the web service
proxy during runtime.

Our implementation of the custom delivery extension will be subject to the follow-
ing tradeoffs:

• The custom extension will pass the report’s payload (exported as XML) to the first
argument of the web method. Therefore, the target web method must be parame-
terized, and the first argument must be a string data type. Enhancing the custom
delivery extension to fit your specific Web service requirements should be simple.

• Currently, the extension doesn’t provide a user interface for configuring the export
format; it renders the report as XML before passing it to the Web service. Enhancing
the custom delivery extension to let the user choose the export format should be
easy. For example, similarly to the e-mail and file share extensions, the custom
extension web control could include a drop-down that is populated with the
results from a call to the ListExtensions SOAP API, as we saw in chapter 9.

Figure 15.13 Using a custom delivery extension to distribute reports to a Web

service

DISTRIBUTING REPORTS USING CUSTOM DELIVERY EXTENSIONS 539

Now that you have a high-level understanding of what the custom delivery extension
does, let’s see how we can put it into action.

15.3.2 Using the custom delivery extension

Before using the custom delivery extension to distribute reports to Web services, we need
to configure it properly. We included detailed setup instructions in the readme file found
under the DeliveryExtensions\WebService folder in the AWC.RS.Extensions project.

Once the custom delivery extension is configured, we can use the Report Manager
to create a report subscription that uses the extension. We’ve already shown how to
do this in chapter 14, so we’ll discuss only the custom delivery extension specifics.

After we’ve decided on the subscription type, either a standard or data-driven sub-
scription, we need to choose a delivery extension, as shown in figure 15.14.

If the custom delivery extension is registered properly, it will appear in the Deliv-
ered By drop-down as Web Service Delivery. In case you are wondering where this
name comes from, it is returned by our implementation of the IExtension.
LocalizedName property inside the extension’s source code. As its names suggests,
this property lets the developer localize the extension name based on the user’s lan-
guage settings.

The user interface of the custom delivery extension consists of three text placehold-
ers for the Web service description language URL, its type, and its method name. The
default settings are retrieved from the RSReportServer.config configuration file but
can be overwritten by the user.

Figure 15.14 To use the custom Web service delivery extension, select it from the

Delivered By drop-down in the Report Manager UI.

540 CHAPTER 15 EXTENDING REPORTING SERVICES

15.3.3 Implementing the custom delivery extension

Once we stepped through the printer delivery extension that comes with the RS sam-
ples and understood its inner workings, retrofitting its code to meet our requirements
was easy. To understand how the custom Web service extension works, it may be ben-
eficial to break its functionality in two stages:

• Design time, when the extension is hosted in the Report Manager and used for
setting up the subscription

• Runtime, when the Report Server asks the extension to deliver the report

To mirror the above stages, we separated the extension login into two source files:
WebServiceDeliveryUIControl, which encapsulates the extension UI, and WebService-
DeliveryProvider, to host the runtime functionality.

Implementing the user interface

As we’ve seen, the Report Manager will ask our extension to render itself as a part of
the subscription setup process. From an implementation standpoint, this requires
writing a custom web control that is implemented in the WebServiceDeliveryUICon-
trol class.

This control implements the ISubscriptionBaseUIUserControl inter-
face, which, in turn, inherits from IExtension. Figure 15.15 shows a simplified ver-
sion of the conversation map between the Report Manager and the custom delivery
extension during design time.

When the Web service delivery extension is selected on the Subscription setup
page, the Report Manager instantiates the WebServiceDeliveryUIControl web control
and calls the IExtension.SetConfiguration method first. When you register

Figure 15.15 The conversation map between the Report Manager and the custom delivery

extension

DISTRIBUTING REPORTS USING CUSTOM DELIVERY EXTENSIONS 541

a custom delivery extension, you can optionally specify configuration settings in
both the Report Server and Report Manager configuration files. As noted before, we
use the Report Server settings to specify the default Web service specifics. You can
also use the Report Manager’s configuration file to define any UI-related settings. In
our case, the custom delivery extension doesn’t need any UI-specific settings. For this
reason, the SetConfiguration call passes an empty string.

Next, the Report Manager sites the control that invokes the control’s Init
method. At this point, the web control is supposed to render itself. In our case, this
boils down to creating three textbox controls and some validation controls to validate
the user-entered values on the client side. Because the web control has access to all of
the ASP.NET functionality, you can use any ASP.NET-compatible control for the user
interface. For example, if you decide to expand the extension to allow the user to spec-
ify the report’s format, you can use a drop-down control that contains the supported
export formats.

Each control gets its default value by calling the GetValue private member. To
retrieve the configuration settings defined in RSReportServer.config, GetValue
accesses the ISubscriptionBaseUIUserControl.ReportServerInfor-
mation.ServerSettings. This call triggers the invocation of IExtension.
SetConfiguration by the Report Manager to pass the server-side configuration
settings in XML. The ServerSide property exposes them as an array of Settings []
objects. The code iterates through this array to find the setting that corresponds to the
textbox. At this point, the web control is rendered on the screen.

Once the user posts the page back to the server, the Report Manager calls the
ISubscriptionBaseUIUserControl.UserData property to pass the user-
entered values. Finally, the Report Manager calls IDeliveryExtension.Vali-
dateUserData to give the control a chance to inspect the user-entered values and
throw an exception in case they are not valid.

If everything is fine, the Report Manager calls to the Report Server Web service API
to persist the subscription configuration in the Report Server database.

Implementing the runtime functionality

The runtime interaction is much simpler. When the subscription is triggered, the
Report Server first calls IExtension.SetConfiguration to pass the user-
entered extension-specific values. Then, the Report Server prepares a notification
object and invokes the method.

In the case of a data-driven subscription, the Report Server invokes IDelivery-
Extension.Deliver for each recipient. The notification object encapsulates
everything the extension needs to deliver the reports and notify the Report Server
about the delivery status.

First, the code retrieves the user-entered values from the Notification.User-
Data property. Then, it calls the DeliverReport method, which is where the bulk
of the custom delivery logic resides, as shown in listing 15.3.

542 CHAPTER 15 EXTENDING REPORTING SERVICES

private void DeliverReport(Notification notification,
 SubscriptionData data) {
 StringWriter stringWriter = null;
 m_files = notification.Report.Render("XML", @"<DeviceInfo/>");

 if (m_files[0].Data.Length > 0) {
 byte[] reportPayload = new byte[m_files[0].Data.Length];
 m_files[0].Data.Position = 0;
 m_files[0].Data.Read(reportPayload, 0, reportPayload.Length);
 m_files[0].Data.Flush();

 string payload = Convert.ToBase64String(reportPayload);
 StringBuilder stringBuilder = new StringBuilder();
 stringWriter = new StringWriter(stringBuilder);
 XmlTextWriter writer = new XmlTextWriter(stringWriter);
 writer.Formatting = Formatting.Indented;
 writer.WriteStartElement("Report");
 writer.WriteElementString("ReportPayload", payload);
 writer.WriteEndElement();

 DynamicWebServiceProxy ws = new DynamicWebServiceProxy();
 ws.WSDL = data.WSDL;
 ws.TypeName = data.typeName;
 ws.MethodName = data.methodName;
 ws.AddParameter(stringBuilder.ToString());
 string result = ws.InvokeCall() as string;

 if (result==null) throw new Exception(…);
 }

 notification.Status=String.Format("Report delivered to {0}",
 data.WSDL);
 }

b First, the code instructs the Report Server to render the report in XML. As listing 15.3
shows, rendering the report is as simple as calling the Notification.Report.
Render method. It really can’t be simpler!

c Once the report is rendered, its payload is exposed as one or more streams. As we
noted in chapter 14, if you request the report in one of the HTML multistream ren-
dering formats (all HTML formats except MHTML), the first stream will include the
report’s payload, while the subsequent streams will include the report’s images. Sin-
gle-stream rendering formats will always produce only one stream with the images
embedded in it. Because we are rendering the report in XML, we can get the entire
report results from the first stream.

Listing 15.3 Implementing the report delivery

Renders the
report

b

Gets the
first stream

c

Processes
the report’s
payload

d

Sends the
report’s
payload to
the Web
service

e

Notifies the Report Server
about the delivery status

DISTRIBUTING REPORTS USING CUSTOM DELIVERY EXTENSIONS 543

d Next, we create a simple XML document to contain the Base64-encoded version of
the report’s payload, so that it can be sent over the web to the target Web service.

e Finally, we send the XML payload to the target Web service.

Delivering the report to a Web service

Now for the fun part! As we’ve mentioned, our custom delivery extension supports
sending the report’s payload to an arbitrary Web service. This presents an implemen-
tation challenge, though. Because the Web service’s end point is not known until runt-
ime, we cannot “early bind” to it by establishing a web reference. Instead, we need to
generate the Web service proxy dynamically.

How should we go about implementing this? Before I decided to write my own
dynamic Web service invocation using CodeDom, it dawned on me that someone else
might have already done this. Indeed, a quick Google search confirmed my hypothesis.

It turned out that there is already a great Dynamic Web Service invocation library,
DynWSLib, written by Christian Weyer (see the resources in section 15.8). As the
author says, “Given the URL to the Web Service WSDL file, the type and method
name, DynWSLib uses CodeDom to generate the proxy. For better performance,
DynWSLib caches the generated proxy library as a file in the system temp folder.” A
quick DynWSLib test convinced me that this is exactly what I needed to dynamically
invoke an arbitrary web method.

As you can see in listing 15.3, we instantiate DynWSLib and pass the user-entered
WSDL URL, type, and method name. Next, we pass the report’s payload as a param-
eter to the proxy. Finally, we invoke the web method. Under the Chapter15 folder in
the AWReporterWeb project, you will find a simple Web service, Reporter.asmx,
which the default extension configuration settings point to. It simply gets the report’s
payload and outputs it using Trace.WriteLine.

Please note that you won’t get far testing the custom extension if you don’t adjust the
code access security policy for both the AWC.RS.Extensions and DynWSLibrary assem-
blies to full trust. In addition, you need to grant full rights to the cached Web service
proxy library. This presents a challenge because DynWSLib generates a unique name for
the temporary file for each Web service. You need to grant full trust rights to all assem-
blies in that folder, as the setup instructions for the custom delivery extension explain.

NOTE For some obscure reason that I wasn’t able to figure out, the system Temp
folder appears to be treated differently by the RS code access security policy.
Despite the fact that I assigned Full Trust rights to folder and its contents
(by using the * wildcard), I wasn’t able to get past code access security. I was
getting a target invocation exception. Strangely, switching to another folder
seemed to keep the CAS gods happy. Therefore, as a workaround, you may
want to change the DynWSLib source code to save the temporary file to
another folder, for example, C:\Temp. Let me know if you find a way to
get CAS working with the system Temp folder.

544 CHAPTER 15 EXTENDING REPORTING SERVICES

15.3.4 Debugging custom delivery extensions

Debugging a custom delivery extension is tricky because it isn’t loaded when the report
is generated, so using the dataset extension debugging approach won’t work. Because
a custom delivery extension could be invoked from both the Report Manager and the
Report Server Windows Service, the debug instructions vary.

Design time debugging

During design time, the Report Manager process invokes the custom extension. To be
able to debug your custom extension, change its project’s Debug mode to Wait to
Attach to an External Process. Then, start the Report Manager and manually attach
to its process from the Debug → Processes menu in VS.NET, as shown in figure 15.16.

In our case, we used Windows 2003 as the operating system, so we attached to the
w3wp.exe IIS worker process. If you use Windows 2000, you’ll need to attach to the
ASP.NET worker process, aspnet_wp.exe. Finally, set the When Debugging Is Stopped
option to Detach from This Process to keep the Report Manager process running once
you stop the debugger session. Terminating the aspnet_wp.exe or w3wp.exe process
will affect all ASP.NET applications running on the server, which is something you
wouldn’t normally want to do. To step through the extension code, create a new sub-

Figure 15.16 To debug your custom extension during design time, attach to the Report

Manager process.

DISTRIBUTING REPORTS USING CUSTOM DELIVERY EXTENSIONS 545

scription in the Report Manager that uses your extension or edit an existing one. At
this point, your breakpoints should be hit.

Runtime debugging

To debug a custom delivery extension during runtime, for instance, when the subscrip-
tion is triggered by a schedule, follow the design time debugging steps shown previously,
but this time attach to the Report Server’s Windows Service process (Reporting-
ServicesService.exe), as shown in figure 15.17.

This should come as no surprise to you, if you recall that it is the Report Server’s
Windows Service that monitors the report catalog for the event’s occurrence and ini-
tiates the subscribed report delivery. For this reason, the delivery extension is loaded
during runtime in the ReportingServicesService process.

TIP I’ve found that the easiest way to trigger the subscription execution for debug-
ging purposes is to base the subscription on a schedule that’s configured to run
once. To use this approach, stop the ReportingServicesService Windows Ser-
vice and wait until the event record is inserted into the Event table in the
Report Server database. Then, start the Windows Service and attach your
extension to its process, as explained previously. To trigger the subscription’s
execution, paste the event record in the Event table. The next time the Win-
dows Service polls this table, it will pick up the event and run your extension.

Figure 15.17 To debug a custom delivery extension during runtime, attach to the

ReportingServicesService Windows Service process.

546 CHAPTER 15 EXTENDING REPORTING SERVICES

There are two debugging issues associated with debugging custom delivery extensions.
The first one is that to successfully call the Notification.Render method to ren-
der the report, you need to be logged in to your login domain controller. If you are
logged in using a disconnected session, the call results in the following exception:

Report Server has encountered a configuration error;
more details in the log files, AuthzInitializeContextFromSid:
Win32 error: 1053

The feedback we got from the Microsoft RS team is that this behavior is by design
because the Report Server needs to access the domain controller to check permissions
for the subscription owner. This may change in a future version and may include a way
to disable subscription checks.

Second, by default, the Windows Service will time out the debugging session after
a minute even if you are stepping through the code. Not only does this prevent longer
debugging sessions, but it also terminates the Windows Service process. To prevent
this from happening, you need to create a Registry key, as shown in table 15.3.

Once you have created this Registry key, you must restart the RS Windows Service
(ReportingServicesService) and attach to its process as described previously. Now your
debugging session shouldn’t time out. Please note that this setting disables the man-
agement thread that ensures that the Windows Service is up and running correctly. For
this reason, while you can leave this permanently set to 1 on your development
machine, you should set it to 0 on your production server (or delete it entirely).

15.4 IMPLEMENTING CUSTOM SECURITY

As we explained in chapter 8 and chapter 11, with some types of applications, the default
Windows-based security model of RS may become impractical. This will typically be the
case with Internet-oriented web-based applications serving hundreds and often thou-
sands of users. This will typically leave you with two implementation choices:

• Request the report on the server-side of the web application by calling to the RS
Web service—The advantage of this approach is better security because the
report is rendered entirely on the server-side.

• Request the report on the client-side of the application by URL—As you know
by now, URL access offers a number of benefits, including support for all inter-
active features, the HTML Viewer toolbar, etc.

Requesting reports by URL with Internet-oriented application almost always will
require replacing the default RS Windows-based security model. Fortunately, the

Table 15.3 Create the UnderDebugger Registry setting to prevent the RS Windows Service

from timing out the debug session.

Parent Key Name Value

HKLM\Software\Microsoft\Microsoft SQL Server\80\Reporting Services UnderDebugger 1

IMPLEMENTING CUSTOM SECURITY 547

extensible RS architecture allows developers to replace the default security model with
custom security extensions. This scenario allows you to configure the Report Server
for Anonymous access and route the authentication and authorization checks through
the custom security extension. I personally don’t know of many other products that
support pluggable authentication and authorization modules.

If you haven’t done this already, before going any further, please read the “Using
Forms Authentication in Reporting Services” white paper listed in the resources in sec-
tion 15.8. This article, as well as the accompanying code sample, will give you the
essential knowledge that every developer must have before implementing custom secu-
rity extensions with RS.

Using custom security with Internet-oriented applications can be a good option for
these reasons:

• The application can request reports by URL on the client side by directly accessing the
Report Server. For example, a web page can include a View My Reports hyper-
link with the URL address of the report.

• The Report Server can discriminate among web users. For example, an online hotel
portal can assign users to Silver, Gold, and Platinum roles and give users differ-
ent levels of access based on their user membership. In this respect, custom
security is no different than the default Windows-based security model.

Figure 15.18 depicts how your applications can leverage a custom security extension
to implement your own authentication and authorization rules.

Although the RS custom security architecture is most suitable for and works best
with web-based applications, any type of application can leverage it, including Win-
Form clients and Web services.

NOTE Bending the custom security model to work with non-web clients boils
down to writing additional code for storing the session cookie returned by
the LogonUser method and sending it back with each request to the
Report Server. This requires that you overwrite the RS Web service proxy.
For more information, please check the LogonUser documentation.

Figure 15.18 You can use a security extension for custom authentication and authorization.

548 CHAPTER 15 EXTENDING REPORTING SERVICES

.NET developers familiar with the ASP.NET Forms Authentication will probably find
the RS custom security model similar. Here is the sequence flow (shown in
figure 15.18) between the client and the Report Server, configured to use a custom
security extension:

1 The client application displays a login form to prompt the user for credentials,
such as the user name and password. In the case of ASP.NET applications, Forms
Authentication can be used to redirect the user to the login form automatically.

2 Once the user’s credentials are collected, the application invokes b the
LogonUser RS web method to log the user on to RS. For example, a web
application that leverages Forms Authentication can call the LogonUser SOAP
API once the user is authenticated in the logon page.

3 Next, the Report Server asks c the custom security extension to authenticate
the user. How the custom security extension does this is of no concern to the
Report Server. Typically, with a large number of users, a database store will be
used to store the user’s profile and credentials.

4 If the user is successfully authenticated, the LogonUser method returns d a
ticket in the form of a session cookie, which the Report Server expects to find in
subsequent calls from the client. When a browser is used as a client, the session
cookie will be automatically passed back when a URL request is made to render
a report. When other types of clients are used, you will need to take an extra
step to pass the cookie explicitly with the call to the Report Server.

5 The client submits e the report request by URL to the Report Server.

6 The Report Server asks f the custom security extension to authorize the user
request.

7 If the request is successfully authorized, the Report Server generates the report
and sends g it back to the client.

Although the scenario depicted in figure 15.18 specifically refers to requesting reports,
any type of action against the report catalog will be subject to custom authorization
checks. For example, if the client is the Report Manager, each time the user initiates a
new action from the portal, the Report Server will call the custom authentication to
authorize it.

NOTE Before you jump onto the custom security bandwagon, please carefully
evaluate the implications of doing so, including the following:

• Version 1.0 of RS doesn’t support a mixed-security mode. As a conse-
quence, once you switch to custom security, you won’t be able to use
Windows-based security anymore, even for administrator access to the
Report Server.

• You may need to implement features that you take for granted when Win-
dows authentication is used. For example, if you need to assign users to

IMPLEMENTING CUSTOM SECURITY 549

groups for easier maintenance, you will have to roll off your own group
membership infrastructure. You may consider using the Microsoft
Authorization Manager, which we discussed in chapter 13, when your
requirements call for a more involved application security model.

• Because the report consumers will access the Report Server directly, you may
need to secure the connection to the Report Server using SSL. This is espe-
cially important for Internet-oriented applications. If you don’t, a
hacker may sniff the network traffic and intercept the login credentials.

• Configuring RS for custom security is an involved process that requires a
number of steps to set up the Report Server and Report Manager. Going
back to Windows-based security and “undoing” all steps could be quite
a hassle, so make sure that you know what you’re getting yourself into.

Because in most cases the main purpose of using custom security is to allow
reports to be request by URL, you may need to take extra steps to protect
the data. For example, you will need to ensure that a customer can see only
her order history data by filtering the orders at the data source.

There may be other tradeoffs applicable to your particular situation.

Now that we’ve seen at a high level how custom security works, let’s examine its imple-
mentation details.

15.4.1 Design goals and tradeoffs

Here is our hypothetical scenario. In chapter 11, we discussed a possible approach that
Adventure Works Cycles can follow to implement the My Orders feature. As you will
probably recall, this feature allows AWC web-based customers to view their order his-
tory. The implementation approach in chapter 11 relied on the AWReportViewer con-
trol for rendering the Customer Orders report via SOAP on the server side. Let’s now
change our implementation approach by allowing the customers to request the report
by URL on the client side of the application.

This approach has a number of advantages, including simplicity and a rich user
experience. Because the report is now requested by URL, we can add interactive fea-
tures to the report, such as toggling visibility, drilldown, and so on. While we can reap
the benefits that URL access has to offer, we shouldn’t compromise the application’s
security in doing so. To ensure secure access to the Report Server, we will use a custom
security extension to authenticate and authorize the report requests.

Here are the high-level requirements for our solution:

• Allow customers to access reports by URL.

• Enforce restricted access to the Report Server by implementing a custom secu-
rity extension.

• Authenticate users against a user profile store. In our case, the profile store will
be represented by the Individuals table in the AdventureWorks2000 database.

550 CHAPTER 15 EXTENDING REPORTING SERVICES

• Implement horizontal data filtering at the data source based on the user’s iden-
tity to ensure that a customer can see only her own orders.

• Implement the necessary infrastructure to provide administrator-level access to
the Report Server using a designated admin account.

• Support assigning customers to groups for easier maintenance. Creating role-based
security policies for hundreds and thousands of web customers is impractical.
Instead, a better approach would be to assign customers to groups, for example,
Individual or Store groups, to reflect the existing customer types in the Adventure-
Works2000 database.

Our implementation will be a subject to the following tradeoffs:

• To keep the solution as lightweight as possible, we won’t require the customer to enter
a password. Needless to say, in real life, you should provide as robust authentica-
tion as possible. The Microsoft custom security sample shows you some practi-
cal techniques for using strong passwords. Once again, consider using SSL to
secure the connection to the Report Server.

• For the sake of simplicity, we won’t provide the database infrastructure needed to
support organizing customers in groups. Instead, we will use the customer’s identi-
fier as a user name and a hard-coded group name called Individual. During the
authorization stage, we will check the name and, if it is a valid number, we will
assume that the customer belongs to the Individual group. In real life, your
authorization logic will typically make a database call to determine the level of
access the user has based on his group membership.

• Unlike the Microsoft custom security sample, we won’t be implementing a login form
to log the user to the Report Server in case the session has expired or the user has
bypassed the application authentication. In our opinion, having too many login
screens may be confusing for the user and may present a security risk. Instead,
our design pattern promotes a single logon to both the application and the
Report Server, which will be the responsibility of the application. In cases where
the user requests an RS resource without being authenticated or the RS cookie
session has expired, we will display an error page and prompt the user to log in
again to the web application.

Now, let’s see how our solution works from an end-user perspective.

15.4.2 Intranet reporting with custom security

We will assume that the Adventure Works customers have been already registered and
their profile data is captured in the Individual table. The first step that the report
administrator needs to do is grant the users access to view the appropriate reports.

IMPLEMENTING CUSTOM SECURITY 551

Setting up role-based security policies

This step should look familiar to you. The report administrator will use the Report
Manager portal to create role-based security policies for the AWC customers. In real
life, the Report Manager portal won’t be configured for Internet access, and only a few
privileged users will be assigned as administrators. Ideally, you should be able to con-
figure the Report Manager with Windows-based security for user authentication,
while the Report Server could be configured with custom security.

However, as we’ve mentioned, currently RS doesn’t support a mixed security
model. For this reason, once we switch to custom security, we need to take care of
authenticating the user’s access to the Report Manager, as well as the Report Server.
Therefore, once the user accesses the Report Manager, the authentication screen
shown in figure 15.19 is displayed.

If you have followed the setup instructions, there will be predefined admin
account, rstester, which you can use to log in to the Report Manager portal.

Next, we need to grant rights to those web customers who will be able to access
the Customer Orders Custom Auth report. Our custom security extension supports
creating role-based security policies using individual and group accounts. For the pur-
poses of our demo, let’s grant Browser role rights for the Home and AWReporter fold-
ers to the accounts shown in figure 15.20.

Figure 15.19

Enforcing secured

access to the Report

Manager portal

Figure 15.20 Creating individual and group security policies

552 CHAPTER 15 EXTENDING REPORTING SERVICES

Here we created one group-based security policy (the Individual group) and two individ-
ual security policies that correspond to two of the customer identifiers created by the
Recipients.sql script (please see the readme file for setup instructions). The Individual-
based security policies are for demonstration only. Even if we don’t set them up, all cus-
tomers listed in the Individual table will be authenticated successfully because they
belong to the Individual group. When creating a new security policy, the Report Server
asks the custom security extension to validate the user, so make sure that the customer
identifiers you use exist in the Individual table.

Requesting reports

Once the security policies have been set up, customers can request reports using the
AWReporterWeb web application by navigating to the default page. To simulate this,
expand the client-side Reporting menu and choose Custom Security. If the application
is set up correctly to use Forms Authentication, at this point you should see the Adven-
ture Works Portal Login form, as shown in figure 15.21.

The Custom Security menu points to the MyOrders page located under the
Chapter15 folder. Because this page is defined in the application’s configuration file as
secured, the ASP.NET Forms Authentication security framework automatically navigates
to the designated login page, Login.aspx. Once the customer posts to the page, it calls
the LogonUser method to pass the customer’s credentials to the Report Server.

Next, the MyOrders page is displayed. Unlike its chapter 11 implementation, this
time the page sponsors a URL link to the Customer Orders Custom Auth report.
Using the link, the user can see her order history by requesting the report by URL, as
shown in figure 15.22.

To emphasize the difference between this implementation of the report and the
one discussed in chapter 11, we changed the Customer Orders report to include inter-
active features as well as the HTML Viewer toolbar. When examining this report,
please note that we changed the report query to filter the data based on the identity
of the user. In our case, we set the user’s identity to match the customer’s identifier.
In this way, we enforce at the data source the security-related business rule that a cus-
tomer can see only her own orders.

Having seen how our demo works, let’s delve into the technical details to find out
how it is implemented.

Figure 15.21

To request a report,

the customer has to

be authenticated by

the application.

IMPLEMENTING CUSTOM SECURITY 553

15.4.3 Implementing the custom security extension

You can find the custom security extension code under the SecurityExtensions folder
in the AWC.RS.Extensions project. Detailed setup instructions can be found in the
readme file located in this folder. Because setting up the custom extension requires
changing almost all configuration files, we copied our version of the Report Server and
Report Manager configuration files to the ConfigurationFiles/CustomSecurity folder.

The custom security extension was built upon the Microsoft sample extension. Once
again, read that white paper if you feel that you need more background information.

Custom security extension types

Table 15.4 lists the most significant security extension components and their purpose.

Figure 15.22 With custom security, web users can request reports by URL.

Table 15.4 The custom security extension implements several interfaces for plugging into the

Report Server security architecture.

Source File Inherit From Purpose

AuthenticationExtension IAuthenticationExtension Include custom authentication implementation

Authorization IAuthorizationExtension Include custom authorization implementation

continued on next page

554 CHAPTER 15 EXTENDING REPORTING SERVICES

Our custom authentication logic is encapsulated in the AuthenticationExtension class,
which implements the IAuthenticationExtension interface. It includes code
for validating the user against the user profile’s database store.

The Authorization class implements the IAuthorizationExtension inter-
face. Its main task is to authorize the user’s actions against the predefined role-based
security policy. The Authorization class includes several overloaded versions of Check-
Access that will be called by the Report Server. Which version of CheckAccess
will be called depends on the type of action attempted.

Why do we need two login pages? The UILogon page is meant to authenticate the
user when the user tries to access the Report Manager portal, as shown in figure 15.19.
The second login screen, Logon, is used to authenticate the user when she tries to
browse the report catalog. As we’ve said, in our case, we don’t allow bypassing the
application’s authentication and hitting the Report Server directly, so the implemen-
tation of this page is very simple. It prompts the user to log in again by clicking a
hyperlink that will bring her to the application’s login screen.

Let’s now see how the custom security extension works by looking at the processes
of authentication and authorization in detail.

Runtime conversation map

As we explained in chapter 8, when implementing custom security models, we need
to differentiate between the processes of authentication and authorization. During the
authentication phase, we determine the identity of the user, while the authorization
phase is concerned with verifying the user’s rights to the requested resource.
Figure 15.23 shows the simplified sequence of events for both phases.

As figure 15.23 depicts, authentication must take place before the request is autho-
rized. After a successful authentication handshake, the Report Server sends the appli-
cation a ticket in the form of a session cookie. The Report Server automatically checks
this cookie during subsequent requests to the Report Server catalog. If the cookie is
not found or it is invalidated, the Report Server will display the Logon page.

Logon Page System.Web.UI.Page The login page for authenticating the user if
direct browsing of the report catalog is permit-
ted. Our implementation simply returns an
error message.

UILogon Page System.Web.UI.Page The login page for authenticating the user for
access to the Report Manager

Table 15.4 The custom security extension implements several interfaces for plugging into the

Report Server security architecture. (continued)

Source File Inherit From Purpose

IMPLEMENTING CUSTOM SECURITY 555

NOTE Although you can use the same settings in the Report Server web.config file
to configure the cookie (name, expiration, and so on) as you would when
using ASP.NET Forms Authentication, the two cookies are not compatible.
In other words, if you have a web application that needs to support both
ASP.NET Forms Authentication and custom security, you will end up with
two cookies—one generated by the ASP.NET Forms Authentication APIs
and another generated by the Report Server when the LogonUser API is
called. As a consequence, you will typically need to synchronize both cook-
ies to expire at the same time by using the same timeout setting in the con-
figuration files.

If the cookie is valid, authorization takes place. Here, the request is validated against
the predefined role-based security policy set up by the report administrator. Your cus-
tom authorization logic has the final say when the request is authorized successfully.
This adds a lot of flexibility because developers can implement custom rules to validate
the request, as we will see shortly.

Implementing custom authentication

From client perspective, the first task that the application has to do to grant the user
access to the Report Server is to call the RS LogonUser web method and pass the
user’s credentials.

Figure 15.23 The runtime conversation map of the custom security extension events

556 CHAPTER 15 EXTENDING REPORTING SERVICES

NOTE The RS documentation erroneously states that the LogonUser method
must be called over a secured (SSL) connection. While you must definitely
consider securing the connection to the Report Server with your real-life
applications, you don’t need SSL when calling this method.

Another consideration to watch for, which bit me at the beginning, is
that when using the Report Manager with custom security, you need to
enter the portal’s URL exactly as specified under the ReportServerUrl ele-
ment in the RSWebApplication.config Report Manager configuration file.
If you don’t do this, for example, if you use localhost as a server name, you
will get an exception and custom security won’t work. However, you can
request reports using localhost.

After the LogonUser call, the Report Server invokes the IAuthentication-
Extension methods in the sequence shown in figure 15.23.

First, the Report Server invokes the IAuthenticationExtension.Set-
Configuration method to give the authentication extension a chance to configure
itself by passing the Configuration XML fragment from the RSReportServer.config
configuration file. In our case, the configuration section includes the connection string
to the user’s profile store as well as the credentials that the report administrator can
use to log in to the Report Manager. The premise here is that, in real life, you will typ-
ically keep the administrator’s credentials and the user’s profile store separate. Of
course, there’s nothing stopping you from putting the administrator’s credentials in
the user’s profile store if your application’s design calls for it.

Once the extension is initialized, the Report Server calls GetUserInfo to obtain
the user’s identity. This method is also called with each request to the Report Server.
In our case, we set the user identity as follows:

userIdentity = HttpContext.Current.User.Identity;

When the user is not yet authenticated (IAuthenticationExtension.Logon-
User is not yet called), the Report Server will set the user’s identity to a temporary
user. The userIdentity object passed as an out argument to GetUserInfo is of the
type System.Security.Principal.IIdentity interface, so it can be set to
any valid object that implements this interface.

NOTE I was initially tempted to implement the user-to-group membership assign-
ment in GetUserInfo. My envisioned approach was to check the user’s
profile store and assign the user to one or multiple roles as you could do
when using ASP.NET Forms Authentication, for example:

// check the group membership and assign user to the Individual
role
HttpContext.Current.User = new GenericPrincipal (userIdentity,
 new string[] { "Invididual" });

Then, my plan called for verifying the user group in CheckAccess by
using the IPrincipal.IsInRole() method and authorizing the user

IMPLEMENTING CUSTOM SECURITY 557

based on the group membership. Unfortunately, while this approach will
work, GetUserInfo is called repeatedly within a single request, and per-
forming a database lookup each time may very well hinder the application’s
performance. For this reason, I abandoned my original plan in favor of per-
forming the database lookup in the CheckAccess overloads, as suggested
by Bryan Keller, a Microsoft engineer from the RS group.

After several SetConfiguration and GetUserInfo calls, eventually the Report
Server will call the LogonUser method to ask you to validate the user’s credentials.
The Report Server will conveniently pass the user name and password that were sent
in the LogonUser web method call. Our implementation of LogonUser performs
a database lookup against the Individual table in an attempt to find a customer iden-
tifier that matches the user name. If this is the case, we will consider the user valid and
set the method’s return value to true.

Please note that the Report Server will call IAuthentication.LogonUser
only once during the lifetime of the user’s session as a result of the call to the
LogonUser web method. As we’ve noted before, if the user is authenticated success-
fully, the Report Server will issue a ticket in the form of a cookie that will be checked
automatically with each request to determine if authentication has already taken place.
The cookie’s details are specified in the Report Server’s web.config configuration file.
In our case, we set the cookie to expire after one hour, as shown below:

<authentication mode="Forms">
 <forms loginUrl="logon.aspx" name="sqlAuthCookie"
 timeout="60" slidingExpiration="true" path="/">
 </forms>
</authentication>

ASP.NET developers familiar with the ASP.NET Forms Authentication model will find
this syntax familiar. For example, you can use the same declaration attributes to con-
figure the RS custom authentication.

You may wonder how the Report Server validates the user name when the admin-
istrator creates a new role-based security policy using the Report Manager portal.
When an attempt is made to change the role-based security policy of a given item in
the report catalog, the Report Server calls IAuthenticationExtension.
IsValidPrincipalName (not shown in the sequence diagram). The Report
Server will pass only the user name (not the password) and ask your authentication
extension to verify that the user name is valid.

You can view the call to IsValidPrincipalName as a safeguard against the
possibility that some malicious code could try to exploit the RS role-based security pol-
icy to gain access to the report catalog. Interestingly, the Report Server calls
IAuthenticationExtension.IsValidPrincipalName for each user or
group assigned to the catalog item. If a match is not found, an exception is raised and
the attempt to change the role-based security policy won’t succeed.

558 CHAPTER 15 EXTENDING REPORTING SERVICES

Implementing custom authorization

Once authenticated, our custom authorization model needs to verify that the user has
adequate rights to perform the attempted action. How involved this will get will
depend on your security requirements. In the simplest case, you won’t have to change
the authorization code included in the Microsoft sample at all. Its authorization imple-
mentation checks to see whether the user has permissions to perform the requested
action. If you don’t need to support assigning users to groups, the sample authorization
implementation will most likely suffice for your needs.

Similarly to the authentication model, the authorization process starts when the
Report Server calls IAuthorizationExtension.SetConfiguration to give
your custom authorization extension a chance to configure itself using the setting in
the configuration file. In our case, the configuration section includes only the admin-
istrator’s name. This is needed because we want to bypass the authorization check if
the user has admin rights.

Depending on the type of attempted action, the Report Server will call different
CheckAccess overloads. For example, in the case when a report is requested, the
Report Server will call the following overload:

public bool CheckAccess(string userName, IntPtr userToken,
 byte[] secDesc, ReportOperation requiredOperation)

If the report includes images, the Report Server will also call the CheckAccess overload
that takes ResourceOperation as the last argument:

// Overload for Report operations
public bool CheckAccess(string userName, IntPtr userToken,
 byte[] secDesc, ReportOperation requiredOperation) {

 if (0 == String.Compare(userName, m_adminUserName, true,
 CultureInfo.CurrentCulture)) return true;

 IPrincipal user = HttpContext.Current.User;
 if (Util.IsNumeric(userName)) userName = "individual";

 AceCollection acl = DeserializeAcl(secDesc);
 foreach(AceStruct ace in acl) {
 if (0 == String.Compare(userName, ace.PrincipalName,
 true, CultureInfo.CurrentCulture) {)
 foreach(ReportOperation aclOp in ace.ReportOperations)
 if (aclOp == requiredOperation) return true;
 }
 }
 return false;
}

All CheckAccess variations take as an argument the security descriptor of the
requested item in the form of a serialized array. In your CheckAccess implementa-
tion, you can deserialize the item’s security descriptor in the form of an AceCollection

Allows unrestricted
access for the administrator

Assigns
the user to
a group

Traverses the role-based
security policy to determine the
user’s access to this resource

IMPLEMENTING CUSTOM SECURITY 559

class to find out which role-based security policies have been defined for this item.
The Report Server passes all role-based security policies defined for the requested cat-
alog item, not just the ones defined for the interactive user. It simply tells you, “Here
are all role-based policies defined in the report catalog for this item.” This is great
because it can greatly simplify your authorization implementation, as you will see in
the next section. It is important to note that your authentication extension can take
the stand and have a final say before the Report Server grants or revokes access to the
requested resource. Our default implementation is to loop through the role-based pol-
icies and find out whether the user has been associated at all with the requested
resource. If this is the case, the code verifies whether the user indeed has rights to the
requested operation.

NOTE If you change the CheckAccess overloads you may need to change also the
implementation of the IAuthorizationExtension.GetPermissions method.
GetPermissions returns the list of permissions available to a given user and
it is only called by the Report Manager. Although the sequence diagram on
Figure 15.23 doesn’t show it, the Report Manager calls Authorization-
Extension.GetPermissions to adjust its UI based on the security policy
defined for the logged on user.

Assigning users to groups

But wait, you may say! Do I have to create a role-based policy for each user? Just imag-
ine the nightmare that will follow if the report administrator needs to maintain hun-
dreds and thousands of role-based security policies with large sites that support many
registered users, such as Adventure Works. In such cases, groups provide a practical
solution for implementing more granular security assignments because rights are
granted to groups, not individual users.

Can groups be used with custom security? You bet, provided that you are willing
to write some code. Currently, the Report Server doesn’t have any notion about
assigning users into application groups. While you may implement a custom infra-
structure to support assigning users to one or more application groups, for example,
database-driven or based on the Authorization Manager (see chapter 12), the Report
Server doesn’t have the means to differentiate users and groups. However, because it
will pass all security policies defined to the requested item to the CheckAccess over-
loads, you can easily perform additional lookups to resolve the user-role relationship.
For example, if the user is not explicitly granted permissions to request reports, you
can find out which roles she belongs to and iterate through the AceCollection collec-
tion to find out whether these roles have been given the rights to do so.

There are at least two approaches that we can think of for supporting group assign-
ments. As we mentioned before, assigning the user to groups in GetUserInfo is
impractical because it is called many times within each request. One approach would
be to use a custom HTTP handler, similar to the one we will discuss shortly, to perform
the database lookup based on the user’s identity, create a new GenericPrincipal object,

560 CHAPTER 15 EXTENDING REPORTING SERVICES

and assign the groups (roles) to that user. The advantage of this approach is that it cen-
tralizes the group assignments in one place. In addition, it allows the developer to use
IPrincipal.IsInRole to simplify the authorization checks. The disadvantage is
that it requires a custom HTTP handler. Microsoft doesn’t officially support using
HTTP handlers to extend RS.

Another approach would be to use the CheckAccess overloads for additional
authorization rules, such as group membership. This is the approach we decided to
implement for both report and resource authorization checks. We kept our imple-
mentation simple on purpose. The code checks only to see if the user name is a valid
number, because the custom identifiers are numeric. If this is the case, we reset the user
name to Individual. In other words, we assume that the user can belong to only one
group. Then, we leave the rest of the authorization logic to find out if a principal
named Individual has been assigned the rights to request the resource.

If you want, you could extend our sample by allowing accounts defined in the Store
table to log in to the Adventure Works portal. In this case, you could assign these
accounts to a group called Store, which may have a different level of access to the
report catalog. Your application requirements may call for assigning users to multiple
groups. Thanks to the fact that the authorization checks are performed in the custom
security extension, you can make them as flexible and sophisticated as needed.

15.4.4 Debugging the custom security extension

Debugging the custom security extension is easy when you follow these steps:

Step 1 Request the MyOrders.aspx page from the AWReporterWeb application.
This will start the aspnet_wp (w3wp in IIS6) process. Alternatively, you can
open the Internet Information Services (IIS) management console and
browse the ReportService.asmx page.

Step 2 Open the AWC.RS.Extensions project.

Step 3 From the Debug menu in VS.NET select Processes, find the aspnet_wp
(w3wp) process, and attach to it. When the Attach to Process dialog opens,
make sure that the Common Language Runtime program type is selected.

Step 4 Log in using the Login form in AWReporterWeb. At this point, the call to
the LogonUser web method will be made, and the breakpoints in your cus-
tom authentication extension should be hit.

Step 5 Click the My Order History link found in the MyOrders.aspx page. This
will request the Customer Orders report. At this point, the breakpoints in
your custom authorization extension should be hit.

15.5 USING CUSTOM HTTP MODULES

Finally, we would like to show you how you can extend RS with custom HTTP mod-
ules. Those of you who are experienced in ASP.NET development will probably recall
that the ASP.NET processing pipeline supports plugging in custom HTTP modules.

USING CUSTOM HTTP MODULES 561

You can think of HTTP modules as filters that can inspect and possibly change the
contents of the HTTP request and response messages as they pass through the pipeline.
The HTTP modules are the modern equivalents of the legacy pre-.NET ISAPI filters.
However, while ISAPI filters can be implemented only in C++, ASP.NET HTTP mod-
ules can be coded in any of the supported .NET languages.

NOTE There is one setback worth mentioning about the HTTP modules and RS.
Currently, RS does not officially support HTTP module extensibility. This
may change in subsequent releases, but with version 1.0 you are on your own.

15.5.1 The HTTP module design goals and tradeoffs

The original scenario that I intended to demonstrate with a custom HTTP module was
defaulting the user’s language settings to a specific culture. This could be especially use-
ful for Internet-based reporting where the reports can be requested by a variety of inter-
national users. In such a case, while an organization may want to take advantage of the
culture-neutral formatting supported by RS, it may want to limit the number of sup-
ported cultures. If a report request originates from a user with an unsupported culture,
the HTTP module will revert to the default culture. From an implementation stand-
point, this could have been accomplished by changing the thread culture before the
request reached the RS runtime. Unfortunately, my plans were upset when I realized
that RS uses the accept-language header to determine the user’s culture. And, of course,
the HTTP header collection is read-only and cannot be changed by the HTTP module.

At this point, I was running out of ideas as to what my HTTP module could do
because we can extend RS in almost all possible aspects by using extensions. As we
mentioned section 15.4, HTTP modules are typically used to implement custom secu-
rity management, for example, by assigning users to application groups to simplify the
role-based security maintenance. For the purposes of my demo, however, I decided to
use an HTTP module as a tracing tool to output incoming URL and SOAP calls. As
we noted in chapter 9, tracing URL requests from the HTML Viewer or Report Man-
ager is tricky because they bypass the virtual port settings of the trace tools. The cus-
tom HTTP module makes tracing easier by writing the requests to the default trace
listener. This allows you to use Mark Russinovich’s excellent DbgView tool to mon-
itor all incoming RS traffic.

15.5.2 Implementing the custom HTTP module

You can find the custom HTTP module source code and setup instructions under the
HttpModules/AWRsHttpModule folder in the AWC.RS.Extensions project.

You will probably appreciate the heavy lifting that the ASP.NET pipeline model
does behind the scenes to plug in custom HTTP handlers and shield the developer
from the plumbing details. For example, implementing the tracing logic requires only
a few lines of code:

public class AwRsHttpModule : IHttpModule {

 public void Init(HttpApplication app) {

Hooking the
OnBeginRequest event

b

562 CHAPTER 15 EXTENDING REPORTING SERVICES

 app.BeginRequest += new EventHandler(this.OnBeginRequest);
 }

public void OnBeginRequest(object obj, EventArgs ea) {
 bool soapRequest = false;
 HttpApplication app = (HttpApplication) obj;
 HttpContext ctx = app.Context;

 soapRequest = (ctx.Request.Headers["SOAPAction"]!=null);

 if (!soapRequest) {
 Trace.WriteLine("AwRsHttpModule - URL request: "
+ ctx.Request.Url);
 }
 else {
 stream = ctx.Request.InputStream;
 byte[] requestBody = new byte[stream.Length];
 stream.Read(requestBody,0,requestBody.Length);
 ctx.Request.InputStream.Position = 0;
 string request =
 System.Text.ASCIIEncoding.ASCII.GetString(requestBody);
 Trace.WriteLine("AwRsHttpModule - SOAP request: " +
 ctx.Request.Headers["SOAPAction"]);
 Trace.WriteLine("AwRsHttpModule - SOAP payload:"+request);
 Trace.WriteLine("AwRsHttpModule - SOAP request: "
+ ctx.Request.Headers["SOAPAction"]);
 }
}

Every HTTP module must implement the IHttpModule interface. This interface
has only two methods: Init and Dispose.

b We use the Init method to hook the OnBeginRequest event, which fires when a
new HTTP request arrives.

c Inside OnBeginRequest, the code obtains a reference to the ASP.NET context.

d Then the code examines the value of the SOAPAction header to determine whether
this is a URL or SOAP request.

e In the case of a SOAP request, we save the request’s body stream to an array to convert
it to a string.

Once you deploy the HTTP module, you can fire DbgView to watch the traffic, as
shown in figure 15.24.

Depending on your particular needs, you may have other reasons to use custom
HTTP modules. For example, you may need to verify the request by inspecting the
report request and rejecting it under some conditions. The commented code in
OnBeginRequest shows how you can properly terminate the current request and
return an error to the browser if certain conditions are not met.

Getting to the current
request context

c

In case of a URL request, output the request’s URLd

In case of a SOAP request, output the SOAP actione

SUMMARY 563

15.6 CONSIDERATIONS FOR CUSTOM
RENDERING EXTENSIONS

But wait! What about a custom rendering extension sample?
Unfortunately, although I was initially planning to write one, I had to scope it out

for several reasons. First, at the time of this writing, the custom rendering extensions
are not documented. Based on the feedback I got from Microsoft’s RS team, a docu-
mentation refresh has been slated for one of the public SQL Server 2005 betas.

Second, given the flexible XML exporting capabilities of RS, there aren’t many for-
matting gaps left that would require you to write a custom extension. Granted, export-
ing to Microsoft Word could be useful, but this would require significant effort well
beyond the scope of this book. As you could imagine, writing custom rendering exten-
sions is not easy.

You can expect a proliferation of rendering extensions from third-party vendors in
the near future. For example, if you want to create reports with Microsoft Word or
earlier versions of Excel within RS, then consider the SoftArtisans OfficeWriter, which
will be integrated with RS in the third quarter of 2004. While RS supports only Office
XP or later and Office Web Components, the OfficeWriter helps fill in the missing
format gaps by providing Microsoft Word and native Excel Binary Interchange File
Formats (BIFF) from versions 97 through 2003. See the resources in section 15.8 for
a link to the SoftArtisians web site.

15.7 SUMMARY

Having read this chapter, you should view Reporting Services as a reporting frame-
work that you can use to create versatile reporting solutions. In my opinion, no matter
how hard Microsoft works to enhance RS, it will not be able to meet all possible inte-
gration requirements. In cases such as these, you need to take the road less traveled and
custom-tailor RS to meet your particular needs.

Figure 15.24 Use the custom HTTP module to watch the traffic coming into the Report Server.

564 CHAPTER 15 EXTENDING REPORTING SERVICES

Thanks to the extensible architecture of RS, .NET developers can easily extend or
replace RS’s “canned” features by writing add-ons in the form of custom extensions.
In this chapter, we showed you how you can do just that by enhancing the RS data
processing, delivery, and security features.

To demonstrate how you can extend the RS data processing features, we authored
a custom dataset extension that you can use to report off ADO.NET datasets.

To showcase how you can distribute your reports in flexible ways, we created a cus-
tom delivery extension. You can use it to send reports to Web services.

When Windows-based security is not a good fit, you can replace it by writing a cus-
tom security extension. We did exactly this to show how custom security extensions
can be leveraged in the Internet reporting scenario.

If you need to perform some preprocessing tasks before the report request reaches
the Report Server, you can write custom HTTP modules.

Finally, although we didn’t demonstrate it, to export reports to formats not sup-
ported by RS, you can write custom rendering extensions.

Another important and often-neglected requirement posed to enterprise-oriented
applications is that they need to perform and scale well under heavy loads. The next
chapter discusses practical techniques you can leverage to ensure that your report-
enabled solutions are well prepared to meet the anticipated request loads.

15.8 RESOURCES

Custom Dataset Data Extension for Microsoft Reporting Services
(http://www.gotdotnet.com/Community/UserSamples/Details.aspx?Sample-
Guid=B8468707-56EF-4864-AC51-D83FC3273FE5)
My custom dataset extension uploaded to the gotdotnet site.

Christian Weyer’s Dynamic XML Web Services Invocation sample
(http://www.gotdotnet.com/Community/UserSamples/Details.aspx?Sample-
Guid=e9c2f46f-449b-4344-b796-7d8b63a2f954)
Dynamically creates a proxy from the Web service WSDL file.

 “Using Forms Authentication in Reporting Services” white paper on MSDN
(http://msdn.microsoft.com/library/?url=/library/en-us/dnsql2k/html/
ufairs.asp?frame=true)
A must read for implementing custom security extensions.

“Securely Implement Request Processing, Filtering, and Content Redirection with
HTTP Pipelines in ASP.NET”
(http://msdn.microsoft.com/msdnmag/issues/02/09/httppipelines/)
A great article by Tim Ewald and Keith Brown to introduce you to the architec-
ture of the ASP.NET pipeline and show you how to create your own HTTP
modules and handlers.

RESOURCES 565

The SoftArtisians OfficeWriter
(http://officewriter.softartisans.com/officewriter-250.aspx)
In the third quarter of 2004, the SoftArtisans OfficeWriter will fully support
and integrate with Microsoft SQL Server Reporting Services, making the distri-
bution of Excel and Word reports over the Web easier than ever.

566

C H A P T E R 1 6

Performance
and scalability
16.1 Understanding capacity planning 567
16.2 Capacity planning with Reporting Services in action 577
16.3 Summary 592
16.4 Resources 593

To realize the full potential of a report-enabled application, developers must meet the
users’ demands, which typically consist of quality of service, quality of content, and
efficient access to the application’s resources. So far, this book has shown you how
applications integrated with RS can meet the first two objectives.

Let’s discuss in this chapter how we can ensure that our reporting solutions also
perform and scale well to meet increased user loads. To ensure that these objectives
are met, you need to learn how to evaluate the application’s performance and capacity
before “going live” in a production environment. The specific areas that are the focus
of this chapter are as follows:

• Explaining the capacity planning process
• Establishing a performance goal
• Stress-testing the Report Server
• Identifying performance bottlenecks
• Optimizing the application’s performance

Although this chapter specifically targets evaluating the Report Server’s performance
and scalability, you can use the same principles to plan the capacity requirements of
other web-based applications.

UNDERSTANDING CAPACITY PLANNING 567

16.1 UNDERSTANDING CAPACITY PLANNING

Reading the messages posted on the Reporting Services discussion list, I frequently
come across questions related to RS scalability and performance. Usually people ask,
“Is Reporting Services capable of supporting X number of users?” or “What are the rec-
ommended hardware and software specifications to handle high loads?”

Answering questions like these is not easy. It is hard to predict how variables in
application design, database schema, user behavior, and architecture will combine to
affect the application’s performance. Because no exact formulas can be given, the bur-
den of ensuring that your reporting solutions will meet the anticipated load is shifted
to you. Microsoft has done their job by giving you a platform that can scale up and
out. Your job is to prove that your homegrown reporting solutions meet your specific
performance and capacity requirements.

16.1.1 Capacity planning fundamentals

Conducting a capacity planning study is not difficult. While discussing this subject in
detail is beyond the scope of this book, we will give you the essential knowledge and
techniques needed to get you started. If you need more information, please refer to the
resources in section 16.4.

We’ll start by explaining some essential capacity planning concepts.

Performance vs. scalability

The terms performance and scalability are often used interchangeably, but an important
distinction exists. Performance usually measures how fast the application’s code exe-
cutes. On the other hand, scalability is concerned with how the application responds
under increased user loads.

An application that scales well usually performs well. The reverse is not necessarily
true. An application may exhibit excellent performance with a small number of users
but may grind to a halt in a high-volume environment. Take, for example, Microsoft
Access database applications. When serving a handful of clients, this type of applica-
tion performs well. However, due to the desktop file-based nature of the Access Jet
engine database, the application’s performance deteriorates quickly as the number of
users increases. In this respect, the application is not scalable.

When conducting a capacity planning study of Reporting Services, you are trying
to understand how the Report Server responds at various user load levels. In general,
you want to measure the latency, throughput, and utilization of the Report Server by
simulating simultaneous report requests by virtual users. Ideally, at the end of your
study, you will find out that your Report Server site exhibits low latency, high
throughput, and low utilization.

568 CHAPTER 16 PERFORMANCE AND SCALABILITY

Understanding latency

Latency is the delay experienced between the time when the client makes a report
request and the Report Server receives the report’s payload. Latency is typically mea-
sured in terms of seconds or milliseconds. Some stress-testing tools, such as the Visual
Studio .NET Application Center Test, use the time to last byte (TTLB) metric to repre-
sent latency. The request-response trip delay depends on two major latency factors:
network and application latencies. Network latency characterizes the time spent to
move data through the wire. Application latency, on the other hand, refers to the delay
incurred to process the report request on the server side.

Figure 16.1 depicts how the application and network latencies impact the overall
report request’s round trip in a typical on-demand reporting solution.

As shown on figure 16.1, the total latency time from the point of requesting the
report to rendering it on the screen can be calculated with the following formula:
Total latency (response time) = (A1+A2+A3+A4+A5) + (N1+N2+N3+N4),
where An represents application latencies and Nn stands for network latencies, as
explained in table 16.1.

Table 16.1 The report request’s round trip incurs application and network latencies. To

improve the performance and scalability of your reporting environment, you need to find ways

to minimize these latencies.

Latency Reason

A1 Prepare the report request on the client, e.g., validate the report request, prepare the
report parameters, etc.

A2 Process the report request

A3 Process the report query

A4 Generate the report

continued on next page

Figure 16.1 The report’s request-response trip incurs network and application

latencies.

UNDERSTANDING CAPACITY PLANNING 569

How much the network delays impact the report request’s total latency depends to a
great extent on the type of the reporting application and your deployment scenario.
For example, with intranet-based reporting applications deployed on a 100Mb corpo-
rate network, network latency may not be an issue at all. However, it may become a
constraining factor with Internet-oriented solutions, where slow dial-up connections
are still prevalent.

One way to reduce the network delays on the trip from the Report Server back to
the client is to minimize the network traffic by requesting reports by URL instead of
SOAP. As we discussed in chapter 9, the latter access option adds about 20–30 percent
overhead for serializing the report’s payload to a binary array.

Minimizing the application’s latencies is often more of an art than a science. With
custom applications, you would typically use code profilers to determine which code
sections take up the most time and seek ways to optimize them. Of course, with RS,
this is not an option because you don’t have access to its source code. Instead, you need
to focus on optimization techniques within your reach. For example, as we discussed
in chapter 7, you can use several report-caching techniques to minimize the report’s
processing time. If caching doesn’t conflict with your particular reporting require-
ments, we recommend that you use it abundantly. For example, the easiest way to
reduce the time spent on the Report Server to generate a report is not to generate it
at all but to serve it from a cached copy.

Another potential area that may negatively affect the latency of the server-side
application is the time required to process the report query. If you determine that the
database is a constraining factor, you can use query profilers, such as the Microsoft
SQL Server Query Analyzer, to find out how you can optimize your report queries.
Alternatively, you can use the report’s execution log (see section 16.2.1) to determine
how much time the Report Server has spent on processing the query and executing and
rendering the report.

“How can I get a latency breakdown of the request-response round trip?” I hear you
ask. I’ve used a third-party tool, Compuware Application Expert, to a great degree of
success to address similar questions with my performance-related projects. To use this
tool, you first need to capture the network traffic of the request-response round trip
using network-tracing tools, such as the Microsoft Network Monitor. For the best
results, you may want to obtain network traces from all nodes involved in your reporting

A5 Render the report, e.g., in the case of a SOAP call save the report’s payload to a file
and shell out to it

N1, N4 Network delays between the client and the Report Server

N2, N3 Network delays between the Report Server and the database server

Table 16.1 The report request’s round trip incurs application and network latencies. To

improve the performance and scalability of your reporting environment, you need to find ways

to minimize these latencies. (continued)

Latency Reason

570 CHAPTER 16 PERFORMANCE AND SCALABILITY

solution, such as the client application, the Report Server, and the database server
where the report data resides.

Once you have captured the network traffic, you can import it into the Application
Expert to get a conversation map showing you the network and application latencies.
This tool supports also what-if analysis. Let’s say you need to find out how a 56K dial-
up connection will impact the report’s response time. Application Expert includes a
predictor component that uses sophisticated algorithms to extrapolate the latency map
to factor in various network connection speeds.

Understanding throughput

For the purposes of planning the capacity of your RS environment, by the term
throughput we mean the number of report requests that the Report Server can process
within a given unit of time.

No matter how scalable a given application is, its throughput-versus-load graph
will eventually reach its peak, as shown in figure 16.2.

In this respect, you can visualize your reporting application as a highway. When
traffic is light, vehicles move quickly. However, as most big city dwellers can relate,
once all highway lines are saturated, traffic jams follow and throughput decreases.
Therefore, when we evaluate the capacity of a given RS installation, we apply increas-
ing loads to the Report Server to find out the point of maximum throughput.

How do we measure the application’s throughput? Often, people want to know
how many concurrent users a given web application, in our case the Report Server, can
handle. In our opinion, trying to quantify the application’s throughput using concur-
rent users could be highly inaccurate. First, it is not clear within what time frame the
users are considered to be concurrent. Second, “concurrent users” is an ambiguous
term that may mean different things to different people. For example, many people
use this term to refer to the number of users logged on to the application. But should
a user who has logged on to the Report Manager to request five reports and then has
gone on a one-hour lunch break be considered a concurrent user?

Instead, we typically measure throughput in requests per second (RPS) or pages per
second (PPS). What’s the difference between the two? Readers experienced with web

Figure 16.2

When measuring the

application’s throughput,

we must find at what

point its graph peaks.

UNDERSTANDING CAPACITY PLANNING 571

development will probably recall that rendering one page in a browser can result in
several round trips to the server. For example, when you request a report that includes
images in HTML, the browser will spawn additional requests to fetch the images.
Therefore, a page is more granular than a request because one page (report) may
require several requests.

NOTE For the purposes of stress-testing the Report Server, we need to differentiate
between requests and pages only when the report is requested in a multi-
stream format. The multistream formats supported natively by the Report
Server are all HTML options except MHTML. Because browsers tend to
cache images, you may find it easier to ignore the image requests, especially
with high-speed networks.

But wait, all reports are not created equal, right? While some may take seconds to ren-
der, others may need significant processing resources. What, then, does a request
really mean, and how can we use it to represent various reports? These are excellent
questions that deserve more attention. The short answer is that there isn’t an exact rule
to correlate requests with the actual reports. Let’s go back to our highway example to
clarify this.

Imagine that you need to measure the highway throughput for a given period of
time. One way to do this is to count how many vehicles of different types, such as trac-
tor-trailers, minivans, cars, and so on, have gone down the highway during the time
period in question. The advantage of this approach is its accuracy. On the negative
side, it is more involved because it is difficult to work with multiple units. For exam-
ple, how many cars can be substituted for a tractor-trailer? What car models are we
talking about? As they say, the devil is in the details. To simplify things, you can intro-
duce an abstraction metric called a “vehicle” that you would use to represent an aver-
age vehicle on the highway. This simplifies your task considerably because now you
are not concerned with the type of vehicles. In fact, you can use automatic counting
equipment to count the vehicles for you.

In a similar way, you can use requests per second to represent the number of suc-
cessfully completed report requests that the Report Server can handle within a second.
Instead of requests per second, you may prefer to use other metrics. For example,
another common stress-testing metric is the number of virtual users that the applica-
tion can handle before its utilization exceeds the specific threshold values. Please note,
though, that this approach is more involved to set up because you need to simulate
the users’ request patterns. For instance, once the user has requested the report, she
will typically analyze it or print it before requesting another report. When using virtual
users, you need to examine the report’s execution history and factor in the user’s think
time. Another disadvantage of this method is that it may require a significant number
of test client machines to “saturate” the web server.

If you want, you can conduct two sets of tests to use both approaches—requests
per second and virtual users. Ideally, in this case, your test findings should match.

572 CHAPTER 16 PERFORMANCE AND SCALABILITY

Understanding utilization

While determining the maximum load that the Report Server can handle is useful,
often we need to find out how our report-enabled applications can scale better to meet
our performance goal. In other words, an essential objective of every capacity planning
study is to find what performance bottlenecks cause the throughput graph to decline,
as shown in figure 16.2.

You can determine resource constraints by examining the utilization of your sys-
tem. You typically do this by monitoring a set of performance counters. Specifically,
you need to monitor the utilization of the following resources at minimum:

• CPU

• Memory

• Database server

Table 16.2 lists the most frequently used Windows performance counters to track the
utilization of these resources.

RS comes with its own performance counters that you can use to track the utilization
of the RS Web service and Windows Service. For more information about the RS-
related counters, please see the product documentation.

16.1.2 The capacity planning process

A successful capacity planning study necessitates a guided process that shouldn’t be
much different than the software development methodology in general. The capacity
planning process consists of several stages, as shown in figure 16.3.

As you can see, the capacity planning process is an iterative one. At the end of each
iteration, we compare the performance results against preestablished performance
goals. If our objectives are not met, we need to find the reasons why and think of ways
to improve the system’s scalability.

Let’s discuss each of the stages in more detail.

Table 16.2 Windows performance counters that you can use to monitor the Report

Server’s usage

Resource Performance Counter Purpose

CPU Processor(_Total)\% Processor Time Represents the average CPU utilization. The
average CPU utilization on any processor
should not exceed 60–70%.

CPU Process(aspnet_wp)\% Processor
Time (or Process(w3wp)\% Proces-
sor Time for Windows 2003)

The percentage of the CPU utilization spent in
the ASP.NET worker thread

SQL Server Process(sqlservr)\% Processor Time The percentage of the CPU utilization con-
sumed by SQL Server

Memory Memory\Available Bytes The amount of available RAM memory in bytes

UNDERSTANDING CAPACITY PLANNING 573

Determining requirements

This is arguably the most important phase of the capacity planning effort. As with any
software project, you shouldn’t underestimate the importance of getting and docu-
menting the application’s performance requirements. My overall impression is that
developers tend to ignore establishing performance goals for their applications. In
most cases, the result of this optimistic approach is poor scalability, which necessitates
total redesign of the application.

NOTE I was once involved in a large-scale web-based project. My first task was to
find out why the application was performing poorly. After stress-testing the
system, I found out that it couldn’t handle more than one request per sec-
ond! For a web-based application this was clearly unacceptable. After a long
and painstaking process of running tests against each application tier, I
found several performance bottlenecks. The most significant were related to
the poor throughput when requesting data from the mainframe database. In
addition, I discovered that, enamored with XML, the application developers
had abundantly used XML DOM manipulations and XSL transformations
in each tier of the application. The application was moving ever-growing

Figure 16.3 The capacity planning process consists of several stages and

may include more than one iteration until the performance goals are met.

574 CHAPTER 16 PERFORMANCE AND SCALABILITY

XML payloads between the web server and the browser. XSL transforma-
tions were used on the client side to render the presentation screens.

“Fixing” the application to scale better wasn’t easy. It had to be totally
redesigned and rewritten in ASP.NET. After several iterations, the applica-
tion finally met the performance goals and was deployed to the high-volume
production environment. The moral of this story is that you must plan for
performance as early as possible in the application’s lifecycle.

After you determine the application’s performance requirements, you need to quan-
tify them in performance metrics. For applications integrated with RS, these metrics
could include

• Requests per second—This is the total number of report requests that the web
server (or cluster) can handle.

• Utilization counters—For example, the average CPU utilization of any of the
web server’s processors should stay below 70 percent, the memory consumption
shouldn’t top 80 percent, and so on.

• Response time—The industry standard response time for web-based applications
is no more than 10 seconds measured from the time the request is made until
the page is rendered to the browser or the response is received from the web
server. This is a reasonable latency time for report rendering as well.

• Application availability—For example, your reporting requirements may call for
99.9 percent availability. Aside from scalability, this is one of the main reasons
to use a cluster or web servers, as we will discuss in section 16.2.6.

While the last three of the above-mentioned metrics are easy to formulate, establishing
a throughput benchmark may require more effort. Basically, to accomplish this you
can use the following two approaches:

• Empirical—If RS is deployed and running in a production environment, this
will be our preferred method because it is more realistic and accurate. This method
involves analyzing the report’s execution log to gather some statistics about the
application’s usage. This is the method that we will demonstrate shortly.

• Theoretical—If production data is not available, you can derive the throughput
metrics by calculating the envisioned load. For example, let’s say you determine
that your user base will consist of 5,000 users and each user may request up to
100 reports per day. Assuming that the report requests are distributed evenly
throughout the day, this means that the Report Server needs to handle about six
requests per second ((5,000 x 100)/(24 x 3600) = 6 requests/sec.).

The performance goal you establish at the end of the “Determining requirements”
phase will serve as a benchmark against which you will measure the actual performance
and determine whether additional performance optimization work is required.

UNDERSTANDING CAPACITY PLANNING 575

Establishing a testing environment

This phase typically involves the following steps:

Step 1 Understanding the application architecture—In general, you need to have an
intimate knowledge about the architecture of the reporting application. This
necessitates working hand-in-hand with the application’s developers and
report authors throughout the entire capacity-planning effort.

Step 2 Setting up the testing environment—You should get a dedicated test server
with hardware and software specifications matching as closely as possible the
production server setup. Otherwise, your test results will be skewed.

Step 3 Creating test use cases—In a typical web application, you should create test
use cases that you will later script and stress test. For example, you may
come up with a use case called User Login that involves two web pages: the
home page and the login page. For reporting applications, you could iden-
tify a representative set of reports that need to be tested. You can analyze the
RS Execution Log to find out the most requested reports.

Step 4 Preparing test scripts—This is where you will put on your developer’s hat and
create test scripts using your favorite stress-testing tool. You will use the
scripts to apply an ever-increasing load to the Report Server to determine its
maximum throughput.

Once the test environment is set up, it is time to find out whether your specific RS
installation can stand up to the test and deliver what is expected of it.

Performance testing

This is my favorite sit-and-watch step. Most stress tools are designed to simulate mul-
tiple users submitting requests via HTTP-GET or HTTP-POST. For example, ACT can
be used to generate customizable loads and offers a rich set of reporting features for
analyzing performance data.

The main objective of this phase is to produce the graph shown previously in
figure 16.2. My favorite method to accomplish this is to increase the number of the
Application Center Test’s virtual users (connections) by a factor of two, for example,
one, two, four, eight, and so on. Eventually, the web server utilization will max out.
At this point, you will know the maximum throughout that your particular RS instal-
lation can handle expressed in requests per second.

Next, you compare these results against the previously established performance
benchmark. If the results meet or exceed your expectations, you can congratulate your-
self. Otherwise, you need to cancel your vacation and go back to the drawing board
and identify the performance bottlenecks.

576 CHAPTER 16 PERFORMANCE AND SCALABILITY

Identifying performance bottlenecks

A bottleneck is a resource constraint, either hardware or software, that prevents perfor-
mance from increasing. As noted previously, you determine the performance bottle-
necks at a high level by examining the performance counters. Identifying performance
bottlenecks is not always easy, but here are some tips you may find useful:

• Often, with web-based applications such as Reporting Services, the web server
processor will become the first resource constraint. The Processor: % Processor
Time/Total is the best counter for viewing processor saturation. If the processors
are running between 90 and 100 percent, then they are most likely the bottleneck.

• If there is heavy disk activity, then the memory is likely to be the bottleneck.
The Memory: Available Bytes performance counter can tell you how much
physical memory is remaining and available for use.

• If the database server’s processor is highly utilized, then this is an indication that
the database may be a resource constraint. In the case of the SQL Server, check the
Process(sqlservr)\% Processor Time counter to find out whether this is the case.

• If the ASP.NET Applications/Requests Queued counter fluctuates considerably
during the test run, and the processor utilization remains low, this is an indica-
tion that the report is most likely calling custom code that is receiving more
calls than it can handle.

• If none of these resources is a problem, yet the requests/second still do not
increase despite the increased load, then the network card bandwidth should be
examined. The best counter to use to examine the network card saturation bot-
tlenecks is Network Interface: Bytes Total/sec. The bytes/sec should be less than
40 percent of the total available bandwidth.

Once you identify the resource contention area, you can focus on finding ways to elim-
inate it.

Eliminating performance bottlenecks

There are a number of performance-enhancing techniques you can try based on your
particular situation. For example, if the CPU utilization is high, you may want to con-
sider using report execution or session caching. As we discussed in chapter 9, when
reports are requested via URL, report sessions are handled automatically. With SOAP
access, you have to go an extra step to correlate the report with the session.

Another potential area that may lead to a high CPU utilization is if your reports
use resource-intensive custom code. If you suspect this to be the case, you can use
third-party profilers, such as the Compuware DevPartner to find which portions of
your code are the most processor-intensive.

If your report queries process vast volumes of data, you may want to explore
options to decrease the amount of data displayed. For example, you may want to con-
sider implementing web-style paging to display one page of a report at a time with a

CAPACITY PLANNING WITH REPORTING SERVICES IN ACTION 577

handful of records. Finally, when performance-optimization techniques don’t yield
results, you can add more processing power by scaling RS up and out.

Now that we have covered the fundamentals of the capacity-planning process, let’s
see how we can apply them in practice.

16.2 CAPACITY PLANNING WITH
REPORTING SERVICES IN ACTION

Here is our hypothetical scenario that will drive the capacity-planning effort for
Adventure Works. As we’ve mentioned on several occasions throughout this book,
Adventure Works is blessed with success. The company is expanding by acquiring
some of their competitors. As a part of this process, the IT management needs to plan
for growth. You’ve been tasked to find out whether the reporting infrastructure can
handle an increased load that is expected to be 10 times greater than before. To esti-
mate the impact, you decide to perform a capacity-planning study by following the
steps we just discussed.

You can find the ACT scripts we used in this chapter included in the book’s source
code under the Performance Testing folder.

16.2.1 Determining requirements

As noted before, in this stage we need to determine the capacity planning requirements
and establish a performance goal. The bulk of the effort will be spent on quantifying
the anticipated load in requests per second (reports per second). In our hypothetical
scenario, RS has already been deployed and is running in production. Therefore, as a
first step, we need to analyze the RS Execution Log to find out the following:

• How many report requests has the Report Server handled for a given period?

• How were these requests distributed?

Once we answer these questions, we can easily extrapolate the increased load.

Determining the number of report requests

By far, the easiest way to find out how many reports the Report Server has handled
within a given period of time is to analyze the report’s execution log.

NOTE If you are evaluating web-based applications other than Report Server, you
can determine the number of report requests by examining the web server
logs. There are many third-party commercial and free tools you can use to
analyze web server log files. For example, for my real-world projects I have
used the Analog log analyzer to a great degree of success. Among the several
analyzers that I’ve tried in the past, I’ve found the Analog’s output to be the
most accurate. The tool is also free of charge. If you need glitzier and more
convincing presentation formats than those produced by Analog, you may
want to try another free tool, ReportMagic. See the resources in section
16.4 to find out how to obtain Analog and ReportMagic.

578 CHAPTER 16 PERFORMANCE AND SCALABILITY

As we discussed in chapter 7, RS stores important execution statistics in the Execution-
Log table in the RS Configuration Database (ReportServer). We also said that to con-
vert the statistics to a format that is easy to understand, you can use the Execution Log
DTS package (RSExecutionLog_Update.dts) included with the RS Setup CD. This
package extracts the report’s execution log data, transforms it, and uploads it to a sep-
arate SQL Server 2000 database called RSExecutionLog.

The data captured in the RSExecutionLog database includes a wealth of informa-
tion associated with the report’s execution, as well as vital performance-related metrics.
For example, the ExecutionLogs table in the RSExecutionLog database includes report
response times as well as times spent in retrieving data (TimeDataRetrieval column)
and in executing (TimeProcessing column) and rendering (TimeRendering column)
the report. For this reason, the report’s execution log should be your first resource
when troubleshooting performance issues with your reports.

Finding out the number of reports handled by the Report Server from the report’s
execution log is a matter of running the following simple query against the Execution-
Logs table:

SELECT COUNT(*) AS ReportCount
FROM ExecutionLogs INNER JOIN
 Reports ON ExecutionLogs.ReportKey = Reports.ReportKey
WHERE ReportType = 2 /*reports only*/
AND TimeStart BETWEEN <start date> AND <end date>

where <start date> and <end date> specify the time period we are interested in.
If you are running the Report Server in a web farm environment and you need to

find out how many reports a particular node in the cluster has handled, you can filter
the query further by the MachineKey column.

To derive the number of requests per second, a weekly time period should be suf-
ficient. Let’s say that after you run this query you determine that for a given week your
Report Server handled 2,000 reports. This number includes both on-demand (user)
and subscribed (system) report requests.

We need to account for the extra load incurred by the web server to handle images
for multistream rending formats, Report Manager pages, and so on. To be on the safe
side, let’s increase this number by 50 percent. As a result, we come up with the esti-
mate that, for that week, the Report Server handled about 3,000 report requests. If the
web server where RS is installed hosts other web applications, we need to account for
their load as well. As you’ve already guessed, determining the Report Server’s load, as
well as that of any other type of application, is not an exact science but rather an edu-
cated guess.

Determing request distribution statistics

One more thing we need to account for is the fact that it is unlikely that all requests
were distributed evenly during the day. For example, typically more requests are sub-

CAPACITY PLANNING WITH REPORTING SERVICES IN ACTION 579

mitted within normal working hours. To find out the request distribution statistics, I
authored the ReportsExecutedByHour chart report, which you can find included with
the book’s source code (in the Performance Testing folder). I based this report on the
ReportsExecutedByDay sample report, which happens to be one of the reports
included in the ExecutionLog Business Intelligence project. As mentioned in chapter 7,
you can find the ExecutionLog sample reports on the RS Setup CD.

The Reports Executed By Hour chart report accepts a start date parameter and
breaks down the report’s execution statistics per hour for all report requests handled
after that date, as shown in figure 16.4.

Examining the distribution chart shown in figure 16.4, we determined that all of
the activity for the given week occurred within the period 7 a.m.–10 p.m.

NOTE As attentive readers will probably point out, the report count shown in the
chart report doesn’t total to our hypothetical metric of 2,000 report requests.
This is because I ran the report against my local report execution log, which,
of course, doesn’t represent a real-world production environment.

Therefore, within that week, the web report server has handled about 0.07 requests per
second (3,000/(13 hrs. x 3600 sec.). As you can tell, my web server hasn’t been
very busy, but your production load will likely be many times that number.

As the new capacity requirements state, our web server is expected to handle a ten-
fold increase in load in the future. This means that the anticipated load will be about
0.7 requests per second (0.07 requests per sec. x 10). Finally, let’s account for
the unexpected, such as holiday seasons, end-of-quarter activity, and so on, by tossing
in another 50 percent increase. This means that our throughput performance goal will
be about one request per second.

Figure 16.4 To account for the load distribution pattern, use the Reports

Executed By Hour sample report.

580 CHAPTER 16 PERFORMANCE AND SCALABILITY

As we’ve discussed before, besides throughput, there are other important perfor-
mance metrics to consider. Table 16.3 lists all performance goals for the Adventure
Works scenario.

Now that we have established our performance goals, we can continue with the next
phase of the capacity planning effort: setting up the testing environment.

16.2.2 Setting up the testing environment

The prerequisite for successfully executing this phase is setting up the machines used
for testing. You should have dedicated machines for the client and the test server. You
will use the client machine to run the ACT tests, while the server will host RS. Once
again, the server configuration should match the production server setup as closely as
possible to avoid skewing the results. On the other hand, you don’t need a beefed-up
client because it will spend most of its time waiting for the server to respond.

Table 16.4 lists the configuration details of the client and server machines that we
used for testing. Both the Report Server and SQL Server 2000 were installed on the
server machine.

As you can see, my server configuration is somewhat modest. In the real world, I would
recommend that you consider a more powerful server machine, for example, a two-
way server with several gigabytes of RAM.

Creating use cases

Creating use cases for testing reports usually boils down to identifying a good represen-
tative set of reports that will be stress-tested. Again, the easiest way to accomplish this is
to examine the RS Execution Log. While there isn’t a precise formula for determining a

Table 16.3 Performance goals for the Adventure Works scenario

Metric Goal

Latency Less than 10 seconds to render a report

Throughput 1 request/sec.

Utilization (CPU) Less than 70% on average

Utilization (memory) Less than 80%

Table 16.4 The configuration specifications of the test machines

Client Server

Make Dell Dimension 4550 Compaq Evo N610c

OS Windows Server 2003 Windows Server 2003

CPU Speed 2.5 GHz 2.5 GHz

RAM 512MB 1GB

CAPACITY PLANNING WITH REPORTING SERVICES IN ACTION 581

good representative set, scripting the top 10 reports will be sufficient in most cases. To
find out the most popular reports, you can create a query that retrieves this informa-
tion from the Execution Logs and Reports table, as shown below:

SELECT TOP 10 COUNT(Reports.Name) AS ReportCount,
 Reports.Name AS ReportName
FROM ExecutionLogs INNER JOIN
 Reports ON ExecutionLogs.ReportKey=Reports.ReportKey
WHERE Reports.ReportType = 2
GROUP BY Reports.Name, Reports.ReportType
ORDER BY COUNT(Reports.Name) DESC

For the sake of simplicity and for the purposes of our hypothetical capacity-planning
study, we will limit the number of scripted reports to three, as follows:

• Employee Sales Summary
• Territory Sales Drillthrough
• Purchase Orders

In addition, we will assume that the types of the requests for these reports are divided
equally between URL and SOAP access.

TIP If you need to do so, you can account for disproportional request access dis-
tributions (URL vs. SOAP) programmatically in your test scripts. One reason
why you may want to do so is to simulate as close as possible your produc-
tion environment, for example, to account for the increased size of the
report’s payload in the case of SOAP. Unfortunately, the report’s execution
log doesn’t capture the type of request access. However, you can examine the
IIS log files to find out the URL-to-SOAP access ratio. For example, let’s say
that after analyzing the IIS logs you find that only 10 percent of the report
requests have been submitted via the RS Web service (SOAP) and the rest via
URL (HTTP-GET). You can simulate these distribution statistics by adding
scripting logic to fire a SOAP request after nine HTTP-GET requests.

Having identified the reports to be tested, it is time to use your favorite stress-testing
tool to craft a script that will be used to simulate the request load.

Creating test scripts

To stress test the report server, I created an ACT script that you can find in the AWRe-
porter.act Application Center Test project. Although ACT doesn’t have ambitions to
be a high-level stress-testing package, it is my tool of choice because of the following
advantages it has to offer:

• Flexibility—I’ve used ACT on several real-life projects and found it to be very
flexible. Because you can write tests using your preferred scripting language, you
can do with ACT anything that can be done with scripting, such as manipulat-
ing files using the File System Object, reading environment variables, logging,
and so on.

582 CHAPTER 16 PERFORMANCE AND SCALABILITY

• Ease of use—Many stress-testing tools require that you use C++ or proprietary
language derivatives for scripting. Most Visual Basic or Java programmers will
find themselves instantly at home using VBScript or JScript languages.

• Excellent reporting capabilities

• Cost—ACT is bundled with Visual Studio .NET.

Of course, ACT is far from perfect. One feature that I hope a future release will bring
is tighter integration with the VS.NET IDE environment for easier debugging. Another
welcome addition would be the ability to write scripts in managed code instead of
using script languages.

The best way to get started creating scripts is to use the New Test Wizard’s auto-
record feature. This starts an instance of the Internet Explorer browser so that you can
request the desired report by URL. Then, you can examine the produced script and
custom-tailor it to meet your particular needs.

Most Visual Basic programmers will find my report-testing script easy to under-
stand. The only area that deserves more attention is generating SOAP requests, as
shown in listing 16.1.

Sub SendRequestSoap(payloadFile)
 Set oRequest = Test.CreateRequest
 oRequest.Path = "/ReportServer/ReportService.asmx"
 oRequest.Verb = "POST"
 oRequest.HTTPVersion = "HTTP/1.1"
 set oHeaders = oRequest.Headers
 oHeaders.RemoveAll
 oHeaders.Add "Accept", "image/gif, image/x-xbitmap, …"
 oHeaders.Add "Accept-Language", "en-us"
 oHeaders.Add "User-Agent", "…"
 oHeaders.Add "Host", "(automatic)"
 oHeaders.Add "Content-Length", "(automatic)"
 oHeaders.Add "Content-Type", "text/xml; charset=utf-8"
 RemoveCookies()
 oHeaders.Add "SOAPAction", _
 "http://schemas/.../reportingservices/Render"
 oRequest.Body = GetXMLRequest(payloadFile)

 Set oResponse = g_oConnection.Send(oRequest)
 CheckResponse oResponse, payloadFile
End Sub

SOAP requests can become rather verbose, so embedding them in the script page may
be impractical. Instead, you can follow these steps to facilitate submitting report
requests to the RS Web service:

Listing 16.1 Generating SOAP report requests with the Application Center

Test project

Sets the path to
point to the
Reporting Services
Web service

Sets the request
content type to
text/xml

Removes all browser cookies Sets the SOAP
action to the Render
web method

Gets the report’s
payload from the file

CAPACITY PLANNING WITH REPORTING SERVICES IN ACTION 583

Step 1 Use the Access Options sample (chapter 9) and your favorite tracing tool to
capture the SOAP report request’s payload.

Step 2 Save the payload to a disk file.

Step 3 To submit a report request, read the contents of the file using the File System
object and set the request body.

This is exactly the design pattern that SendRequestSoap follows. It accepts the full
path to the report request file. First, the code creates a report request using the ACT
object model. Next, it sets the request path to point to the RS Web service end point.
Because the Report Server relies on Windows authentication, we need to change the
HTTP version from the default 1.0 to 1.1. When this is done, ACT will handle the
authentication handshake between the browser and the server automatically.

Next, we need to set the required HTTP headers. We start by clearing the
browser’s cookies collection. For URL requests, this is done to prevent the automatic
report session caching that the Report Server automatically performs behind the
scenes. While, in real life, you should use caching techniques abundantly, we wanted
to avoid report sessions so they won’t skew up the results. As we’ve said, when request-
ing reports via SOAP, this is not required because you have to set explicitly the session
identifier anyway.

The code continues by defining the SOAP action attribute, which is mandatory for
SOAP-based calls. Then, we call the GetXmlRequest helper function to read the
report’s payload from the file and set the request body accordingly. Once the request
is submitted, we check the response code to find out whether the request has resulted
in an exception and, if so, log the exception accordingly.

TIP Dealing with SOAP exceptions is easy if you follow this tip. When a SOAP
exception is thrown, the Report Server will set the response code to indicate
that an error condition has occurred. However, the actual exception mes-
sage is in the SOAP response’s payload and it won’t be logged by default.
To find out more about what went wrong, you can intercept the ACT
request using a tracing tool, such as MSSoapT or tcpTrace. To redirect the
request to the virtual port, you will need to change the RS_PORT constant
in the ACT script accordingly, for example, to 8080. Now, you can run the
script to fire a single request and look at the SOAP response’s payload to get
to the exception message. Alternatively, you can use DebugView to trace
the Report Server’s output.

Once the script is ready, you can run it and verify that it runs successfully. In our script,
we have implemented a logging feature that you can use to examine the status of the
request by setting the g_iDebugMode variable to 1. When you have finished debug-
ging the script, don’t forget to reset it to zero to avoid additional performance overhead
and filling up your hard drive.

584 CHAPTER 16 PERFORMANCE AND SCALABILITY

16.2.3 Performance testing

Let’s put our test script into action to find out how scalable our web server is. As we’ve
discussed before, to accomplish this, we need to apply an ever-increasing load to the
web server until its throughput graph peaks. Let’s start by defining only one virtual
user using the script properties, as shown in figure 16.5.

Don’t forget to specify some time for warming up the web server. After a certain
period of inactivity, the Report Server’s web application will time out and shut down.
By warming up the web server, you ensure that the initialization tasks don’t skew
your results.

Now comes the fun part! Run the script and enjoy the show, as figure 16.6 depicts.

NOTE ACT runs scripts under a designated Windows user account called
ACTUser. Based on my experience, the default permissions assigned to this
account are insufficient to execute scripts successfully. You will know that
this is the case when you receive an “Access Denied” error when you start
the script. If this happens, elevate the ACTUser account’s permissions, for
example, by assigning it to the local Administrators group.

You may want to configure the script to run for at least five minutes to get stable sta-
tistics. When a script is run, ACT displays valuable metrics in the Status area. The most
interesting measure of these is perhaps the Requests Per Second (RPS) indicator, which

Figure 16.5

Finding out the

throughput graph’s peak

requires that you gradually

apply an ever-increasing

load to the web server by

incrementing the number

of simultaneous browser

connections.

CAPACITY PLANNING WITH REPORTING SERVICES IN ACTION 585

reflects the throughput capacity. Please note, though, that this indicator is updated on
a regular basis, and it may not reflect the final RPS result.

16.2.4 Analyzing performance results

Once the script is run, you may want to analyze its execution by examining the ACT
Overview Summary report, as shown in figure 16.7.

Analyzing figure 16.7, we can see that the web server has processed 40 requests and
the RPS ratio is 0.67 with one virtual user. In addition, the Average Time to Last Byte
(TTLB) metric tells us that ACT has received the complete report payload within about
1.5 seconds.

Another interesting report is the Requests: Summary report shown in figure 16.8.
Using this report, we can see how both report access options, SOAP and URL, stack

against each other. For example, when requesting the Employee Sales Freeform report,

Figure 16.6 While the script is running, ACT displays performance metrics in the Test Status

window.

586 CHAPTER 16 PERFORMANCE AND SCALABILITY

we can see that accessing the report via SOAP adds about 20 percent more overhead
to the report’s payload. This stems from the fact that when a report is requested by
SOAP, the report’s payload is serialized to a binary array.

Surprisingly, despite the increased payload, requesting reports via SOAP is some-
what faster than URL access, as you can see by looking at the Time to Last Byte (TTLB)
column. For high-speed 100Mbit networks, such as my LAN, the SOAP overhead

Figure 16.7 Analyzing the script results with the Overview Summary

report.

CAPACITY PLANNING WITH REPORTING SERVICES IN ACTION 587

should be negligible. However, it may be a constraining factor for low-speed networks,
such as 56K dial-up connections.

Now, run a few more iterations by increasing the number of connections by a fac-
tor of two. When you do this, ACT creates additional threads to simulate concurrent
users. ACT may not create as many threads as the number of connections. Instead, it
is intelligent enough to adjust the thread pool on an as-needed basis. For example, if
the web server doesn’t return responses quickly, new threads won’t be created.

You don’t have to plot the throughput graph manually because ACT does this for
you. In our case, for the six report requests we scripted, the server throughput graph
maxed out with about five simultaneous users, as shown in figure 16.9.

Before you jump to quick conclusions, please note that the point of this chapter
is not to show how scalable (or not scalable, for that matter) Reporting Services is.
Instead, its goal is to teach you how to conduct a comprehensive capacity-planning
study to determine whether your particular reporting environment meets the antici-
pated load. As we’ve said, there are many hardware- and software-related factors that
will affect the server throughput, so your results may be completely different than ours.

Analyzing the throughput graph, we conclude that the results don’t meet our per-
formance goal. Specifically, the maximum requests/sec. ratio of 0.7 is less than the
benchmark—one request/sec. Therefore, we need to identify the source of the perfor-
mance bottleneck.

16.2.5 Identifying resource constraints

We can use the ACT Performance Counters report, shown in figure 16.10, to identify
the resource constraints at a high level.

Figure 16.8 To compare SOAP vs. URL access statistics, use the Requests: Summary report.

588 CHAPTER 16 PERFORMANCE AND SCALABILITY

Figure 16.9 The throughput graph depicting requests/sec vs. browser connections

Figure 16.10 Using the ACT Performance Counters report to identify high-

level performance bottlenecks

CAPACITY PLANNING WITH REPORTING SERVICES IN ACTION 589

A quick look at this report reveals the following:

• Even with one connection, the average CPU utilization of 75 percent is above
the targeted threshold of 70 percent.

• The memory is not a constraint.

• The processor time spent on carrying out SQL Server activities (not shown in
figure 16.10) is low; therefore, the database is not a constraint, either.

As we expected, due to the processor-intensive report-generation activities, CPU utili-
zation is a major resource constraint. Analyzing the results from the successive runs
reveals that the CPU utilization reaches 85 percent when the throughput graph peaks
at five concurrent users. Therefore, we need to continue our study by finding ways to
eliminate this performance bottleneck.

16.2.6 Eliminating resource constraints

When CPU utilization is a constraining factor, you basically have two ways to increase
the web server’s throughput: optimize report performance and add more processing
power by scaling up or out.

These two approaches are not mutually exclusive. In my opinion, the best approach
will be to optimize the application’s performance before scaling up or out.

Optimizing report performance

With custom applications, determining the code bottlenecks requires meticulous and
painstaking profiling using code profilers. When doing so, a useful approach is to fol-
low the method of the biggest returns. In a nutshell, this entails identifying the 10
slowest code areas and seeking ways to optimize them. However, with off-the-shelf
applications such as Reporting Services, this is not an option, unless your reports make
extensive use of custom code. Instead, you can try other ways to take some of the bur-
den off the CPU, such as using different forms for report caching.

Let’s see how report execution caching affects server utilization by changing the
execution options for all three scripted reports. As we discussed back in chapter 7, this
option causes the Report Server to cache the report’s intermediate format in the data-
base and to serve subsequent requests from the cached copy. Figure 16.11 shows what
the new throughput graph looks like when we reran the tests after turning on report
execution caching.

Not bad, I would say, for a few seconds of work! All of a sudden, we can now scale
to 15 requests per second. But please don’t get me wrong. I am not trying to advocate that
you fire the Report Manager and turn on report execution caching for all reports. For
example, if a report needs to display the most recent data, it may not be a good candidate
for caching. But definitely do consider all three forms of report caching—report execution
caching, snapshots, and report sessions—as performance-enhancement techniques.

590 CHAPTER 16 PERFORMANCE AND SCALABILITY

Scaling up

Sometimes, there may not be much you can do to improve the web server’s perfor-
mance. If this is the case, you can scale Reporting Services up (vertical scalability) and
out (horizontal scalability).

NOTE By the time you read this book, the Microsoft RS team will probably have
released a white paper about RS performance and scalability. The white
paper will include performance tests comparing scaling up and out
approaches. The document is meant to help customers understand the scal-
ability characteristics of RS and determine hardware and software require-
ments needed to support planned deployments.

You scale RS up by beefing up your server hardware, that is, by adding memory or CPU
power. The memory capacity recommended by Microsoft for a production report
server is 4GB of RAM.

When scaling up by adding more processors, note that you shouldn’t expect linear
scalability. For example, adding a second CPU may result in a 60 percent increase in
performance, while adding a third CPU, only 30 percent more.

When scaling up becomes counterproductive, you can scale out RS by deploying
it in a web farm environment.

Figure 16.11 Using report caching is the easiest way to increase the Report Server’s

scalability.

CAPACITY PLANNING WITH REPORTING SERVICES IN ACTION 591

Scaling out

You scale out RS by distributing the processing load across multiple report servers.
Scaling out offers the following advantages:

• Allows you to incrementally add (or remove) resources as needed

• Makes it possible to balance heavy workloads across multiple servers configured
in a web farm environment

• Offers fault tolerance because even if one of the clustered servers fails, the rest of
the cluster is unaffected

Figure 16.12 depicts a typical scale-out scenario where the Report Server is deployed
in a web farm environment.

Scaling out works well because it results in almost linear scalability to the point
where another resource is pushed past its limits, such as database, memory, or network
utilization. In general, even if only one web server meets your performance objectives,
we suggest that you pair it with a second server for fault-tolerance reasons.

The Reporting Services Enterprise and Developer editions support scaling out.
When you scale out RS, multiple report servers share a single Report Server database
(or a cluster of Report Server databases). When the RS Setup program detects that the
Report Server database already exists, it assumes a web farm deployment and doesn’t
create the Report Server database.

For more information about setting up RS, please read appendix A. For more infor-
mation about configuring RS in a clustered web farm environment, read the “SQL
Server 2000 Reporting Services Deployment Guide” document and the “Installing
Reporting Services” section of the RS product documentation (see section 16.4).

Figure 16.12 A typical enterprise deployment model using a cluster of Report Servers and

clustered Report Server databases

592 CHAPTER 16 PERFORMANCE AND SCALABILITY

16.3 SUMMARY

Thanks to its web-oriented stateless architecture, RS is well positioned to meet the
high-volume reporting requirements of today’s enterprises. This chapter has given you
the necessary skills to find out whether your specific reporting infrastructure will meet
your capacity needs.

Specifically, we discussed the capacity-planning process and learned how to estab-
lish performance goals.

Next, we showed how we can stress test the Report Server with the Visual Studio
.NET Application Center Test.

Finally, we looked at ways to identify performance bottlenecks and increase the
Report Server’s capacity by scaling up and out.

Well, we are at the end of the RS (code-named Rosetta) journey! We’ve traveled a
long and, hopefully, enjoyable road to see how Reporting Services can help us author,
manage, and integrate reports with our applications. We hope you have found this
product to be a well-rounded, comprehensive reporting platform.

Having barely rolled out the first release, Microsoft is hard at work on its next major
version of Reporting Services, which will coincide with the Microsoft SQL Server 2005
release. Among other features, the new release is expected to include the following:

• Graphical Query Generator for Analysis Services data sources

• Management through the new Windows-based SQL Server management tool

• New embeddable WinForm and ASP.NET controls to allow standalone report-
ing without the need for a separate report server

• Custom report items and the ability to add server-side controls

• Multivalued parameters (generation of IN clauses and so on)

• Auto-sort and auto-filter report features (a la Microsoft Excel)

• All of this should convince you that RS is here to stay and will only get better.
Happy reporting with Reporting Services!

RESOURCES 593

16.4 RESOURCES

Performance Testing Microsoft .NET Web Applications
(http://www.amazon.com/exec/obidos/tg/detail/-/0735615381/
qid=1080272077/sr=8-1/ref=sr_8_xs_ap_i1_xgl14/104-6183135-
6491931?v=glance&s=books&n=507846)
Direct from a Microsoft team that has analyzed hundreds of web-based and
.NET-based applications, this book shows developers how to plan and execute
performance tests, configure profile tools, analyze data from Microsoft Internet
Information Services, analyze transaction costs, and more.

The “Performance” chapter from the Visual Studio .NET documentation
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/
html/vxconperformanceoverview.asp)
Discusses how to write efficient and scalable .NET applications.

The Compuware Application Expert tool
(http://www.compuware.com/products/vantage/appexpert.htm)
An excellent tool that you can use to find out how changes in network band-
width, latency, load, and TCP window size affect the application’s response time.

The Analog analyzer
(http://www.analog.cx/)
Analog is a tool that you can use to measure the usage on your web server. It
tells you which pages are most popular, from which countries people are visit-
ing, from which sites they tried to follow broken links, and all sorts of other
useful information.

ReportMagic for Analog
(http://www.reportmagic.org/)
By harnessing the power of Analog and building readable, compelling reports,
Report Magic can help you and the rest of your organization understand how
your web site is used.

“SQL Server 2000 Reporting Services Deployment Guide”
http://www.microsoft.com/technet/prodtechnol/sql/2000/deploy/
rsdepgd.mspx

“Installing Reporting Services” section from RS Books Online
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/RSINSTALL/
htm/gs_installingrs_v1_8jom.asp)

594

A P P E N D I X

Installing Reporting
Services
A.1 Choosing components to install 595
A.2 Selecting the service account 596
A.3 Specifying RS virtual folders 597
A.4 Configuring the Report Server

database 599

A.5 Configuring Reporting Services for
e-mail delivery 600

A.6 Setting up the RS samples 601
A.7 Configuring RS licensing mode 601
A.8 Post-installation steps 603
A.9 Resources 604

Before you run the Reporting Services Setup CD, it may make sense to take the “think
before you leap” approach and spend some time planning your deployment. To help you
in this process, Microsoft has provided the excellent “SQL Server 2000 Reporting Ser-
vices Deployment Guide” (see the resources in section A.9). As the document says, the
“guide provides a high-level overview of Reporting Services components, describes the
hardware and software requirements for deploying Reporting Services, and offers instal-
lation and configuration instructions. It is meant to provide you with sufficient guide-
lines to install and configure Reporting Services.”

Another document that you may need to review is the “Installing Reporting Ser-
vices” section from RS Books Online (see the resources in section A.9). It discusses the
RS editions, as well as deploying RS in a web farm environment.

Here are some lessons learned from trenches that could make your setup experi-
ence smoother:

• RS installs only on the default web site. However, it is okay if the default web site has
been redirected to point to a folder other than the default (C:\Inetpub\wwwroot).

APPENDIX INSTALLING REPORTING SERVICES 595

• RS will not install on a computer with Terminal Services installed. The setup process
will fail with the error “SQL Setup failed to connect to the database service for server
configuration” when configuring the Report Server database. As a workaround,
uninstall Terminal Services, reboot, install RS, and then reinstall Terminal Services.

• Make sure that IIS is functioning properly and that you can browse pages. This
sounds like a no-brainer, but you will be surprised at how often people forget to
check that darn Bypass Proxy Server for Local Addresses check box on the IE Con-
nections settings when a web proxy server is used. If the setup fails at the end with
the mysterious warning message “Setup cannot initialize report server,” remember
this tip before you spend hours uninstalling and installing IIS over and over again.

• If you are deploying RS on a web farm environment, the new instance will not be acti-
vated at the end of the Setup program. Don’t panic if you see the “RS Report Server Not
Activated” error message when you open the Report Manager web application. To acti-
vate the new RS instance, run the rsactivate utility. Please see the “Activating a Report
Server” topic in the product documentation about how to use the rsactivate utility.

• If you need to reinstall RS, note that uninstalling it doesn’t remove the Report
Server database. Consequently, when installing RS again and pointing to the same
SQL server, the Setup program assumes web farm deployment. To avoid this,
before installing RS make sure you delete the Report Server databases (Report-
Server and ReportServerTempDB).

• The setup program uses Windows integrated security to log on to the SQL
Server where the Report Server databases need to be installed and it doesn’t sup-
port standard security. For this reason, make sure that your Windows logon has
admin rights to that SQL Server.

With these tips in mind, go ahead and insert the RS Setup CD into your CD-ROM
drive. If your computer has been set up with the CD Autoplay feature, the RS Setup
program starts automatically. Otherwise, run setup.exe manually from the CD.

A.1 CHOOSING COMPONENTS TO INSTALL

After the familiar licensing agreement step, the Setup program checks to see if the
computer on which you are installing RS meets the minimum hardware and software
requirements. If all is well, you will see the Feature Selection screen (figure A.1).

Which components you need to install depends on your deployment scenario, as
table A.1 shows.

Table A.1 The components required per your deployment needs

Deployment Need Components

Evaluate RS by installing it on your local computer. Install both server and client components.

Install on a production or testing server. Install only the server components.

Author reports or extend RS programmatically.
Report Server is installed on another machine.

Install only the client components. Visual Studio
.NET 2003 is required.

596 APPENDIX INSTALLING REPORTING SERVICES

As shown in figure A.1, by default the Setup program doesn’t install the Reporting
Services sample reports and AdventureWorks2000 database. If you are new to RS,
we highly recommend that you install and explore the RS samples. Because this
book’s sample reports use the AdventureWorks2000 database, make sure that the
appropriate installation option is selected. The next steps assume that you are install-
ing all RS components.

Click Next. The Setup program now shows the Service Account screen.

A.2 SELECTING THE SERVICE ACCOUNT

In the Service Account screen (figure A.2), you need to specify which account the RS
Windows Service (ReportingServicesService.exe) will run under. Please note that there
is an error at the bottom of the screen. It is not the Report Server Web service that we
are configuring here but the Report Server Windows Service.

Among other things, the RS Windows Service executes tasks in unattended mode,
for example, scheduled report delivery and snapshot reports.

Your account options are

• Local built-in account

• Domain user account

Figure A.1 In the Feature Selection step you select the RS components

that you want to install.

APPENDIX INSTALLING REPORTING SERVICES 597

I strongly suggest you consider using a domain account, especially if you are planning
to use data-driven report subscriptions. This type of subscription allows you to distrib-
ute (“push”) reports to a data-driven list of recipients. If the recipient’s data store is
located on another machine and you want to use Windows authentication between the
RS Windows Service and the database server, don’t use a local built-in account, such
as the default NETWORK SERVICE account. The reason for this is that you must set
the corresponding account on the database server with the same password in order for
Windows authentication to succeed on both machines.

You can always change the account the RS Windows Service runs under using the
Services applet. Make sure that the Auto-start the Service check box is selected so that
Windows automatically starts the RS Window Service when the computer is rebooted.
Click Next.

A.3 SPECIFYING RS VIRTUAL FOLDERS

If you are installing the RS server components, you need to specify the virtual directo-
ries (vroots) of the Report Server and Report Manager, as shown in figure A.3.

The Report Server web application hosts the web communication facades (URL
and RS Web service) that the client applications will use to integrate with the Report

Figure A.2 In the Service Account step you specify the account under

which the RS Windows Service will run.

598 APPENDIX INSTALLING REPORTING SERVICES

Server. The default virtual folder is ReportServer. If you later (after the setup is com-
plete) change your mind and decide to use a different virtual root name, be sure to
update both the Report Manager RSWebApplication.config and Report Server RSReport-
Server.config files to reflect the new URL.

If you opted to install the Report Manager in the Feature Selection step, specify
the virtual root of the Report Manager in the second textbox. Optionally, you can
select the “Redirect…” check box to change the home page on the server to automat-
ically redirect to the Report Manager web application. For example, if this check box
is selected, and the user types http://<computername>/, she will be redirected to the
Report Manager web application.

One thing that can get you in trouble is the “Use SSL…” check box, which is
selected by default. Chances are that you won’t have SSL configured (server certificate
installed) on your local or intranet IIS server. If this is the case, deselect this check box.
If you leave it selected, you won’t be able to access the Report Server if IIS is not con-
figured for SSL. That’s said, you should definitely consider securing the connection
between clients and the Report Server, especially for Internet reporting.

Click Next to advance to the Report Server Database screen.

Figure A.3 In the RS Virtual Directories step you specify the Report

Server and Report Manager virtual directories.

APPENDIX INSTALLING REPORTING SERVICES 599

A.4 CONFIGURING THE
REPORT SERVER DATABASE

As a part of the setup process, RS creates the Report Server Database, which consists
of two SQL Server 2000 databases:

• ReportServer—This is the Report Server Configuration Database that will host
the report catalog.

• ReportServerTempDB—The Report Server uses this database for caching purposes.

The Report Server Database screen is shown in figure A.4.
In this step you specify the following:

• The SQL Server 2000 instance where these two databases will be installed
• The name of the Report Server Configuration Database
• The login credentials that the Report Server and RS Windows Service will use

to connect to the Report Server Database to perform ongoing operations

If the database already exists on the specified SQL Server instance, the Setup program
assumes that you will deploy RS on a web farm environment, where multiple report
servers share the same Report Server Database.

Figure A.4 In the Report Server Database step you specify where the

ReportServer and ReportServerTempDB databases will be installed and

how RS will connect to them.

600 APPENDIX INSTALLING REPORTING SERVICES

The login credentials section deserves more attention and some planning on your part.
The reason for this is that the Report Server saves the login credentials in encrypted
form. If you later change your mind and decide to use different credentials, you’ll need
to run a special utility (rsconfig.exe) to properly encrypt the new login credentials.

The default Credentials Type is Service Account. This choice is good if RS and the
Report Server Database are installed on the same computer. In this case, RS will use
a local service account to log in to the Report Server Database using Windows authen-
tication. Using Service Account as a Credentials Type requires you to install SQL
Server hotfix 821334 (see the resource in section A.9).

If RS and the Report Server Database reside on separate computers, you need to
specify a SQL Server (standard authentication) or Windows (Windows authentica-
tion) account that RS will use to connect to the database. If you specify a SQL Server
account, Setup creates the account if it does not already exist. If you specify a Windows
account, the user account must already exist. The account specified is granted the pub-
lic and RSExecRole roles for the Report Server Database (ReportServer) and the RSExec-
Role role for the master, msdb, and ReportServerTempDB databases.

When you click Next, the Setup program will check to see if the target SQL Server
meets these prerequisites:

• SQL Server 2000 Service Pack 3a is installed.

• Hotfix 821334 is applied if you specified Service Account for connecting to
that server.

If these conditions are not met, you will need to cancel the setup process, install the
required components, and resume the setup.

A.5 CONFIGURING REPORTING SERVICES
FOR E-MAIL DELIVERY

Reporting Services supports subscribed report delivery where reports can be e-mailed
to recipients. On the Report Server Delivery Settings screen (figure A.5) you configure
the RS Windows Service for e-mail delivery.

The Setup program asks you for the name of the SMTP server or another e-mail
server, such as Microsoft Exchange, to which RS will delegate the e-mail delivery. In
addition, you can specify the From Address to which the recipients can send e-mail.

If you don’t plan to use e-mail subscribed delivery or if you don’t know how to
configure these settings, you can leave them blank. You can specify them later by mak-
ing appropriate changes to RSEmailDPConfiguration section in the Report Server con-
figuration file (RSReportConfig.config). We provide more details about how you can
set up e-mail delivery in chapter 14.

APPENDIX INSTALLING REPORTING SERVICES 601

A.6 SETTING UP THE RS SAMPLES

If you opted to install the RS samples in the Feature Selection step, the Setup program
will ask you to specify the SQL Server instance where the sample Adventure-
Works2000 database will be installed, as shown in figure A.6.

As we mentioned, you need the AdventureWorks2000 database in order to run the
sample reports included with the book’s source code.

A.7 CONFIGURING RS LICENSING MODE

We are almost finished. In the Licensing Mode page you need to specify the type of
license you purchased for RS (figure A.7).

You can choose either a per-seat license or a per-processor license. For more infor-
mation about RS licensing, please see the resources in section A.9.

Next, you sit and watch the Setup program install RS. This should result in the cre-
ation of two SQL Server 2000 databases (ReportServer and ReportServerTempDB)
and two IIS virtual folders named by default Reports and ReportServer.

The Reports virtual folder hosts the Report Manager web application and points
by default to C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\
ReportManager.

Figure A.5 In the Report Server Delivery Settings step you configure the

Report Server for e-mail report delivery.

602 APPENDIX INSTALLING REPORTING SERVICES

Figure A.6 In the Report Server Samples Setup step you specify the SQL

Server that will host the AdventureWorks2000 sample database.

Figure A.7 In the Licensing Mode step you specify the licensing details.

APPENDIX INSTALLING REPORTING SERVICES 603

The ReportServer virtual folder represents the ReportServer entry point and points
by default to C:\Program Files\Microsoft SQL Server\MSSQL\Reporting Services\
ReportServer.

In addition, Setup installs the ReportServer Windows Service and the Adventure-
Works2000 SQL Server database for the report samples.

A.8 POST-INSTALLATION STEPS

To verify that RS is installed successfully, please read the steps in the “Verifying an
Installation of Reporting Services” topic in RS Books Online (see the resources in sec-
tion A.9).

A.8.1 Installing RS sample reports

The Setup program doesn’t upload the sample reports that come with RS to the report
catalog. If you are new to RS and you want to run these reports, follow these steps (you
will need local administrator rights to the machine where RS is installed):

Step 1 Open the SampleReports.sln solution in Visual Studio .NET 2003.

Step 2 Right-click the SampleReports project node in the Solution Explorer, and
choose Properties from the context menu.

Step 3 In the SampleReports Property Pages dialog, enter the URL address of the
Report Server to which the reports will be uploaded in the TargetServerURL
setting. Optionally, if you don’t want to name the folder SampleReports, spec-
ify the name of the folder that will include the sample reports in the Target-
Folder setting. Click OK to close the dialog.

Step 4 Back in the Solution Explorer, double-click the AdventureWorks.rds shared
data source to open the Shared Data Source dialog.

Step 5 Switch to the Credentials tab and verify the credentials to connect to the
AdventureWorks2000 database. You need to specify Windows or SQL Server
credentials of an account that has at least Read rights to the tables in the
AdventureWorks2000 database. Click OK to close the dialog.

Step 6 Right-click the SampleReports project node in the Solution Explorer and choose
Deploy. This will build the reports and upload them to the report catalog.

Step 7 To verify that the sample reports are installed correctly, navigate to the Report
Manager web application (http://<servername>/reports), open the Sample-
Reports folder, and run some reports.

To set up the book’s source code, follow the directions listed in the “Source Code” sec-
tion in this book’s Preface section.

604 APPENDIX INSTALLING REPORTING SERVICES

A.8.2 Backing up the encryption key

We would strongly advise all report server administrators to use the rskeymgmt utility
to extract and back up the public encryption key as one of your first post-installation
tasks. The Report Server uses this key to encrypt data in the Report Server Database
or catalog.

What is the encryption key good for? Chances are that you may need to change
the account under which the RS Windows Service (ReportingServicesService.exe)
runs, or you may want to set up a new RS installation to use an existing report catalog.
If the encryption key is different, the Report Server will not initialize. Therefore, it is
absolutely crucial that you store the encryption key in a safe place. Please consult the
RS product documentation about how to use the rskeymgmt utility to back up the
encryption key.

A.9 RESOURCES

“SQL Server 2000 Reporting Services Deployment Guide”
(http://www.microsoft.com/technet/prodtechnol/sql/2000/deploy/
rsdepgd.mspx)

“Installing Reporting Services” section from RS Books Online
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/RSINSTALL/
htm/gs_installingrs_v1_8jom.asp)

Hotfix 821334 for Windows authentication using a local service account
http://support.microsoft.com/default.aspx?scid=kb;en-us;821334&Product=sql

“How to License Reporting Services”
(http://www.microsoft.com/sql/reporting/howtobuy/howtolicensers.asp)

“Verifying the Reporting Services Installation”
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rsinstall/
htm/gs_installingrs_v1_4q61.asp)

“Installing a Report Server Web Farm”
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rsinstall/
htm/gs_installingrs_v1_2ckm.asp)

605

index

Symbols

@ExecutionTime 498
@ReportName 498

A

accept-language header 181, 561
access control list 271, 287
access options 300

evaluating 331
Access snapshot format 464
AccessAdapter adapter 469
ACL. See access control list
ACT 575, 581
Activator class 468
ACTUser account 584
ad hoc reporting 57, 60
adapter design pattern 459
adapters 459–463

configuring 468
implementing 467
loading 469

ADO.NET
custom dataset extension 523
dataset reporting 73, 83, 407
reporting approaches 524

Advanced Textbox Properties 152
Adventure Works Cycles 23

introduced 23
Adventure Works Enterprise

Reporter 460
process flow 460

Adventure Works Report Viewer
399

Adventure Works Reporter
introduced 23

Adventure Works Web Reporter
383

AdventureWorks
warehouse database 426

AdventureWorks Access Database
426

AdventureWorks2000 504
AdventureWorks2000 database 23

and localization 177
aggregate functions 161
aggregate scope 161, 187

specifying explicitly 162
Aggregate() function 164
aggregations 421
Allow null value option 94
Analog analyzer 593
Analog log analyzer 577
Analysis Manager console 435
Analysis Services 6, 423

Cube Editor 438
definition 418
Level Naming Template 437
optimizing cube schema 436
parent-child dimension 430
vs. Reporting Services 418

analyzing report execution 255
anonymous access 262, 331,

547
AppDomain CAS policy 282

AppDomain policy level. See code
access security

AppDomain.SetAppDomain-
Policy 283

application blocks 482
Application Center Test 568, 575,

581, 592
advantages 581
New Test Wizard 582
Overview report 585
Performance Counters report

587
Requests Summary report

585
application framework 349
application pool 266
application security 472
application-defined groups 475
ArrayList collection 160
ASP.NET

control 592
Forms Authentication 557
menu sample 384
worker process 266

AssemblyLoad method 468
asserting permissions 290
AsyncCallback delegate 374
asynchronous design pattern 470
asynchronous report delivery

with subscriptions 485
asynchronous report generation

348, 471
with WinForm clients 372

606 INDEX

asynchronous Web service calls
374

AsyncState 374
authenticating, web users 410
Authentication 547

and data sources 69
defined 261
vs. data source authentication

264
Authoring features 7
authorization

creating policies 274
creating roles 274
defined 261
policies 270
policy inheritance 271
policy management 271
roles 268
tasks 268

Authorization Manager 294,
472–473, 481, 549
AccessCheck API 480
and Windows 2000 481
application groups 474
Authorization Store 473
console 473
creating authorization stores

473
defined 472
dynamic rules 481
operations 475
role assignments 478
roles 477
security model 472
tasks 476
vs. RS role-based security

472
authorization store

initializing 478
auto-filtering 592
AutoRefresh property 174
auto-refreshing reports 174
availability 574
available parameter values 363
available values

data-driven 95
non-queried 95

Avg function 84

AW Report Wizard
requirements 343
workflow 343

AW2000 Shared DS data source
505

AWC.RS.Extensions assembly 523
AWReportViewer

configuring 400
control 549
control properties 405
debugging 406
design goals 399, 403
handing images 404
handling parameters 401
rendering reports 403
server-side properties 400
using 401

AwRsLibrary 192, 195, 197–199,
201

AwRsLibrary assembly 193
AzMan. See Authorization Man-

ager
azman.msc 473

B

BackgroundColor property 161
BackgroundImage Source property

112
BackgroundRepeat property 112
bands. See report sections
Base64-encoding 543
based reporting applications

and latency 569
Basic authentication 262
batching 249
BeginInvoke 375
BeginRender 374
BI 2

Microsoft Business Intelligence
Platform 5

Binary Interchange File Formats
(BIFF) 563

binding data regions 107
BizTalk 414
blog file 206, 210
blogging 205
BMP 176

body section, used for pseudo
events 146

BookmarkID command 308
BorderStyle property 280
browser language settings 178
Browser role 220, 268–269, 271,

276, 551
Browser task 489
Build configuration 51, 204
build menu 51
building reports 51

explicitly 51
implicitly 51

Business Intelligence Project
creating 25
working with 46

Business Intelligence solution 46
business-to-business reporting 412
business-to-consumer reporting

409

C

C# code compiler
CodeDom 367

CacheManager 372
caching

and effect on report execution
238

report sessions 231
Caching Framework Application

Block 371
calculated fields 81, 137, 143, 148
Calendar property 177
callback function 374
Campaigner Web service 327
capacity planning

determinig requirements 573
overview 567
process 572

case sensitivity and datasets 82
Caspol utility 282
Catalog table 224, 228, 278, 357,

496
CatalogItem collection 355
CatalogItem object 351, 355,

357
Ceiling() function 109

INDEX 607

charts 135
data fields section 126
data region 124
Data tab 126
designing reports 124
image identifiers 323
legend 126
nesting reports 127
point labels 126
region 128
reports xxix–xxx, 3, 107, 175
types 124

ChartSpace 425, 450
ChartSpace component 446
CheckAccess 558
Children statement 442
ChunkData table 234
circular references

and expressions 148
Cizer’s home page 62
Cizer’s Quick Query 60
Cizer’s Report Builder 62
ClearSession command 308
ClickOnce 376, 604

deployment model 338
client-side reporting 383

dynamic hyperlinks 385
hyperlinks 384
server-side generated hyperlinks

387
static hyperlinks 385

client-side validation 347
Client-to-Façade-to-Report Server

264, 337, 380
and extranet applications 382
application scenarios for Win-

Form clients 341
challenges for WinForm clients

341
introduced 339
report generation for WinForm

clients 369
scenarios 341
security, WinForm clients 342,

370
Client-to-Report Server 263, 337,

378–379, 381, 395
advantages for WinForms 339

introduced 339
report generation with Win-

Form clients 368
CLR. See Common Language

Runtime
clustered deployment 10
code access policy 537
code access security 197, 260, 296,

338
and custom assemblies 189
and custom delivery extensions

543
bypassing 284
code groups 284
configuration files 286
custom permission sets 287
dealing with unmanged re-

sources 289
default RS settings 285
elevating 288
managing 286
overriding 283
overview 281
permission sets 284
policies 196, 281–282, 543

Code Editor 186–187
Code element 186
code generators 366
code groups 284

creating 287
Code keyword 190
Code member 184
code profilers 569, 589
code sample

Access Options 312, 583
Ad Hoc Reporter 56
Adventure Works Data Miner

424
Adventure Works Enterprise

Reporter 458
Adventure Works Report View-

er 399
Adventure Works Report Wiz-

ard 342
Adventure Works Web Report-

er 383
ApplicationDataset 408
AW Campaigner 327

AWReporter Demo 402
AWRsHttpModule 561
Campaigner 511
Campaigner Web service 330
Data Miner 427
GetProductInventory 413
Inventory Browser 414
Inventory Levels 413
RDL deployment 245
Report Picker 390, 526
RS Console 250
SetProperties 358
standard e-mail subscription

497
triggering subscription 511
Using rs.exe 253
Web Behavior 393
Writeback Demo 389

code security policy 193
Code tab 186
code-based security 10
CodeDom 349, 376, 543

using for custom parameters
366

CodeGroup element 197
collapsed command 311
collection syntax 150
Color property 154
column groups 132
COLUMNS dimension 441
CommandExecute event 452
Common Language Runtime 188,

260
compiling reports 51
Computer Management console

274
Compuware Application Expert

569, 593
Compuware DevPartner 576
concurrent users 570
conditional formatting 151, 169,

201
Configuration Manager 49
Configuration Properties 202
ConfigurationInfo table 74, 219,

232, 309
connection

database connection 64

608 INDEX

connection pooling 264
connection string 73
Content Manager role 220, 269,

271, 274
converting from Access 53
cookie management

and custom security 555
cookie-less report sessions 309
cookies, for report session manage-

ment 308
Count() function 163
CountDistinct() function 163
CountRows() function 155, 163,

187
CPU utilization 572, 576
Credentials Stored Securely in the

Report Server 264
and connection pooling 73

Credentials tab 528
CrossJoin function 442
crosstab reports 43, 129, 175, 191

defined 3
designing 129
dynamic groups 131
static groups 132
subtotals 133

Crystal Reports
converting from 62

CSV export format 20
cube

aggregations 421
creating 427
dimension tables 421
dimensions 421
fact table 421
measures 421
private dimensions 429
processing 440
schema 438
shared dimensions 429
star schema 433
storage model 439

Cube Editor, Data tab 440
CultureInfo 180
culture-neutral format strings 177
CurrentPrincipal 261
custom application authorization

472

custom application security 294
custom assembly deployment

196
custom authentication 159

implementing 555
custom authorization

implementing 558
custom code 161, 295, 517

debugging 201–202
debugging challenges 49
options 184
tracing 201

custom configuration store 459
custom data entities 349
custom data extensions 100

debugging 537
custom dataset data extension

and typed datasets 527
download location 564
implementing 533
testing 531

custom delivery extension 487,
537
debugging 544
implementing 540

Custom element, RDL 56
Custom .NET code 9
custom parameters 345, 347

and self-configured UI 364
validation 312

custom properties 357
for handling custom parameters

361
Custom report items 592
custom security 261, 379

GenericPrincipal 559
group assignments 559
IPrincipal.IsInRole 560
limitations 548
vs. anonymous access 262

custom security extension 379,
382, 546
advantages 381
cons 382
debugging 560
implementing 553

CustomParameters property
357

D

data consolidation 418, 423
data differentials 167
Data element

RSReportDesigner.config 68
RSReportServer.config 69

data extension 524
defined 68
supported 67

data hiding 294
Data Link Properties 66
Data Output settings 205
Data Output tab 205, 208, 210
data processing extensions 10
data provider 66
data reader 387
data regions 42, 103

advantages 108
and multi-section reports 108
binding 108
chart 107
defined 107
list 107
matrix 107
overview 107
placing side by side 108
table 107
using in place of subreports 106

Data relations 525
data source 63–64

authentication options 69
defined 64
deploying 77
limitations 100
properties 66
report specific 65
shared 66

data source authentication
best practices 76
credentials stored securely in

the report 72
credentials supplied by the user

running report 70
no credentials 73
Windows NT Integrated Secu-

rity 72
Data Source dialog 65, 79

INDEX 609

Data Source tab
Report Manager 69

Data Sources page 230
Data tab 45, 63, 66, 80, 92
Data Transformation Services 6,

423–424, 427
data type casting 94
data warehouse 417

vs. OLAP 417
database authentication

and Client-to-Report Server
model 264

database connection pooling
72–74, 101
monitoring 75
prerequisites 73

database schema
retrieving 57

Database server utilization 572
Database.dbp 427, 504
DataBinder 388
data-bound controls 107
Data-driven localization 179
data-driven subscription 487, 491,

504
defined 490
example 503
recipient query 491
scenarios 491

dataset 107
accessing bound reports 532
creating 79
creating a schema 526
creating queries 84
definition 77–78
fields 81
filters 83

Dataset dialog 81, 92
dataset-bound reports 526
DataSetName property 107–108,

115
DataSets element 58
DataSource parameter

and custom dataset extension
529

DataSource table
ReportServer database 72

DataSources element 58, 66

DatePart function 112
DateTime parameters 365
DateTime structure 94
DateTimePicker control 365
db_datareader role 76
DbgView 561

utility 288
dealing with nulls 155
Debug menu 560
Debug Mode setting 202
debugging reports 51
debugging web controls 406
DebugLocal configuration 52–53,

204
DebugView 311, 583

tool 201, 211, 258
DefaultTraceSwitch setting 217,

258
delivery extensions 487

configuring 493
defined 10
settings 507
supported 22

delivery features 9
Deploy

configuration 51, 204
menu 52

deploying reports 52
first report 32
from VS.NET 52
programmatically 245
single report 52

deployment features 11
deployment guide 591
deployment options 42
Descendants statement 442
Details Grouping button 112
developer edition 4, 591
device settings 368

as shown in figure 10.8. 348
HTMLFragment 404
overview 306

Dimension Wizard 435
dimensions 421

fine tuning 436
Direction property 134
distributed applications 339
DLL Hell 338

DocMapID 308
document map 170

and rendering formats 173
defined 171
implementing 172
label 172

drilldow report
defined xxviii, xxx, 3

drilling down 43
drill-through reporting 169

and Office Web Components
451

defined xxix–xxx, 3–4
DTS. See Data Transformation

Services
Dundas Software 124, 141
dynamic columns 43, 132
dynamic connection strings 67
dynamic hyperlinks 384–385
dynamic reports

benefits 444
defined 443

dynamic sorting 157
Dynamic Web Service invocation

543
Dynamic XML Web Services Invo-

cation sample 564
DynWSLib 543

E

Edit Details Group button 120
Edit Item Security 274
e-mail data-driven extension

configuring 505
e-mail delivery extension 493

configuring 493
introduced 22

embedded code 193, 197
Code Editor 186
definition 184
example 185
limitations 184
maintaining state 185
overview 184
vs. expressions 186

embedded functions
expression-based queries 88

610 INDEX

EMF 176
encryption key 254
EndRender 374
Enterprise CAS policy 282
enterprise edition 4, 591
enterprise reporting 457

complexities 457
configuration store 462
framework requirements 457
report adapters 468
reporting façade 461

errors, dealing with for SOAP
access 320

Eval javascript function 366
evaluation edition 4
event

RS Report Object Model 150
subscriber-publisher design pat-

tern 485
Event table 487, 510, 545
EventData 510
EventProcessing 510
evidence 281
Excel export format 19
Exchange Server

using as mail server 494
ExecuteReader 534
execution caching 230, 233, 589

example 234
how is affected by parameters

235
invalidating 236
prerequisites 234

execution log 255
defined 255
sample 423

Execution Log DTS package 578
Execution page 220, 230, 235
Execution permission set 284, 286
Execution rights 196
execution stage 17, 230
Execution tab 501
ExecutionLog Business Intelli-

gence project 256, 579
ExecutionLog DTS package

255–256
ExecutionLog table 255, 578, 581
ExecutionTime 159

expanding columns. See dynamic
columns

exploded pie chart type 126
export format 173, 348, 368

CSV 176
Excel 176
HTML 173
HTML OWC 174
image 176
MHTML 174
PDF 176
XML 176

exporting
to XML 204
using HTML Viewer 310

Expression Editor 143, 181
expression scope 146
expression sequence processor 145
expression-based queries 87, 97
expressions

compilation errors 147
dealing with errors 147
defined 143
disadvantages 143
execution order 145
overview 143
scope 146
syntax rules 145
using for calculated fields 81

extensibility 184
defined 517
features 9

Extension object 315
external code 187

advantages when using custom
code 187

calling instance methods 190
calling shared methods 189
deployment 188
referencing 188

external functions 160
external resources 47
Extraction, transformation, and

loading 422
extranet applications 382

reporting model 382
security considerations 383

F

façade 339
façade layer

and extranet applications 382
defined 264, 341
using for custom security 294

fact table, creating 428
factory design pattern 353, 468
field expression 143
Fields collection 143, 155–157
Fields tab 81
Fields toolbox 46, 88
Fields window 115
File Share delivery option 501

configuring extension 493, 495
example 499

FileSystemObject 395
filtering data 83
Filters tab 83
finding text

using HTML Viewer 310
First() function 84, 163
folder namespace 303

defined 224
logical partitioning 227
organizing 272
overview 224

folder Properties page 225
folders

requesting by URL 303
forecasting 192
form inheritance 352
Format command 306
Format function 132
Format menu 46
Forms Authentication 265,

380–381, 409, 548, 552, 556,
564
configuring 410

FQDN 494
freeform reports 107

defined xxviii, xxx, 2–3
designing 119
grouping data 121
with nested regions 119
with side-by-side data regions

123

INDEX 611

FullTrust permission 193, 284,
286–287

fully qualified type name 190
functions, aggregate 161

overview 160

G

Generate events
task 511

generating RDL 56
Generic Query Designer 86, 529

expression-based queries 87
GetApplicationOperations API

480
getBestForecast method 196
GetChildRows method 525
GetDataSourceContents com-

mand 304
GetProperties. See SOAP API
GIF 176
Global Assembly Cache 188

and PIAs 448
Globals collection 159
Graphical Query Designer 84, 92

and parameters 91
Diagram pane 85
Grid pane 85
limitations 86
Results pane 85
SQL pane 85
stored procedures 97

Graphical Query Generator 592
Group dialog 116
group on expressions 121
group-based security policy

custom security 552
Grouping and Sorting Properties

dialog 110, 120–121, 166
groups

creating 109
defintion 43

Groups tab, table region 116
GroupsBeforeRowHeaders prop-

erty 134

H

hidden parameters 311
History tab 238
History table 238
Hitachi’s RDL Generator 62

home page 62
Home folder 224, 226, 271–272,

274
horizontal data filtering 550
horizontal security 290
HTML

and subscriptions 493
export format 19
fragment 404
fragment reports 307
OWC 445
OWC export format 19

limitations 175
HTML 4.0 173
HTML Viewer 333–335, 339,

341, 347, 359, 396, 404, 552
commands 310
features 309
limitations 311
overview 309
replacing 364
using for parameters 360

HTMLFragment device setting
307, 321

HTMLOWC 404
HTTP 1.1 583
HTTP Handler 560

introduced 14
HTTP modules 311, 560

definition 560
implementing 561
security 562

HTTP Pipelines 564
HTTP POST. See web reporting

using HTTP POST
HTTP-GET

defined 11
requests 301

HTTP-POST 333, 525–526
advantages for requesting re-

ports 390
defined 11

hyperlinks
using for sending e-mail 168

I

IAsyncResult 374
IAuthentication interface

LogonUser 557
IAuthenticationExtension inter-

face 554, 556
GetUserInfo 556
IsValidPrincipalName 557
SetConfiguration 556

IAuthorizationExtension interface
554
CheckAccess 554
SetConfiguration 558

ICustomTypeDesciptor interface
405–406

IDataParameter interface
533–534

IDataParameterCollection inter-
face 533–534

IDataReader interface 533–534,
536
GetValue 535
implementing 536

IDataReader interfaceGetOrdinal
534

IDbCommand interface 533–535
CreateParameter 534
ExecuteReader 535

IDbCommandAnalysis interface
533, 535
GetParameters 535

IDbConnection interface 533,
535

IDbConnectionExtension inter-
face 535

IDbTransaction interface 533
IDelivery interface 521
IDeliveryExtension interface

Deliver 541
ValidateUserData 541

identity impersonate 370
IExtension interface 522

SetConfiguration 540–541
IExtension.LocalizedName 539

INDEX 613

ListChidren command 303
live execution 345
LocaleID 180
localized reports 159, 177

techiniques 179
locks database 81
log files 255
Longhorn 369

M

Machine CAS policy 282
MachineKey 578
Manage all subscriptions

task 491
Manage individual subscriptions

task 495–496
Manage Jobs 222
Manage Shared Schedules task 221
managed report 8, 47, 51–52
management API 242
management features 8
management utilities 254
management with Web service 242
managing content 223
managing folders 227
managing jobs 222
managing reports 228
margins settings 104
matrix region 193, 198, 200, 421

advantages 129
and OLAP reports 441
interactive features 130
rotating data 129

matrix report region 43, 107
columns section 132
rendering 134
Rows section 132
subtotals 133
virtual columns 129

MaxActiveReqForOneUser set-
ting 217

MDX 440
parameterized queries 442

measures 420
Member Keys Unique 437
Member Name

property 438

memory capacity recommenda-
tions 590

Memory utilization 572
menu control for ASP.NET 415
method batching 249
MHTML 321, 493, 499, 542, 571

advantages for e-mail delivery
493

export format 19
Microsoft Access

generating reports using OLE
Automation 469

importing reports 53
supported versions 53
vs. Reporting Services 53

Microsoft Application Blocks 371,
376

Microsoft Business Intelligence
Platform 5, 422

Microsoft Configuration Applica-
tion Block 468

Microsoft Graph 124
Microsoft Java Language Conver-

sion Assistant 194, 211
Microsoft Message Queuing 471,

481
Microsoft Messenger 484
Microsoft Network Monitor 569
Microsoft Office 2003 444
Microsoft Office Chart 11.0 447
Microsoft Office PivotTable 11.0

447
Microsoft Office Web Compo-

nents 130
Microsoft OLE DB Provider for

ODBC Drivers 66
Microsoft OLE DB Provider for

OLAP 447
Microsoft Outlook 484
Microsoft Persistence provider

445
Microsoft Query 427
Microsoft SOAP toolkit 318
Microsoft SQL Server 2000

Reporting Services. See Report-
ing Services

Microsoft WebService behavior
393

Microsoft XML Parser 329
Microsoft XML Parser SDK 336
Microsoft.ReportingSer-

vices.DataExtensions 68
Microsoft.ReportingServices.Inter-

faces 522
Microsoft.ReportingServices.Pro-

cessing assembly 149
Microsoft.ReportingServices.Xml-

Rendering 205
Microsoft.VisualBasic assembly 160
Microsoft.VisualBasic namespace

160
missing data 186–187
missing fields 156
missing parameter value

URL access 305
mixed-security mode 548
mixed-security model 551
MOLAP 439
mscorlib assembly 160
MsgBox function 160

used for debugging 201
MSMQ. See Microsoft Message

Queuing
MSReportServer_Configuration-

Setting 252
MSSoapT 583
multicolumn reports

designing 138
testing 140

Multidimensional expressions 440
multiple columns 139
multiple datasets 83

limitations 84
when to use 83

multiple report providers
supporting 459

multiple SQL statements
executing 86

Multiple-resultset stored proce-
dures 101

multi-select parameters 347
implementing 362

multi-stream exporting formats
321

multi-stream rendering formats
542, 578

614 INDEX

multi-threaded WinForm applica-
tions 374

multi-threading 372, 376
multi-value parameters 89, 312,

360, 592
IN operator 361

My Reports 220
AW Data Miner 449

My Reports folder 224
My Reports role 220, 269
My Subscriptions 495
MyComputer zone 284

N

named parameters 90
NamedPermissionSet class 285
naming convention

for report items 110
navigation action

bookmarks 168
report 168
URL address 168

navigational features 167, 388
and rendering formats 173
defined 167
hyperlinks 168
used for write-back reports 388

nested expression scopes 147
nested groups 121
nesting regions 122, 161
.NET Configuration console 282
.NET data provider

definition 67
.NET Reflector 190, 211
.NET Remoting 190, 369
.NET SqlClient provider 73
network capture 570
network delays and latency 569
New Data-driven Subscription

button 493
New Subscription button 493
newsreaders 206
NoRows property 108
Northwind database 54
Nothing values 155
Notification object 541

UserData property 541

notification object 487, 538
Notification.Render 546
Notifications table 487
NULL rendering extension 315
NULL session 264
NULL values 186

dealing with 155
NumericalLanguage property 177
NumericalVariant property 177

O

Object Browser 293
object collections 144
object-oriented programming 518

model 12
observer design patter 484
ODBC-compliant databases 64
Office Web Components 174,

176, 443
as ad-hoc tool 444
how they work 446
implementing custom actions

452
installing 447
Primary Interop Assemblies

444
Office Web Components 2003

454
OfficeWriter 176, 565
OLAP 2, 64, 418

complexities 418
cube 420
cube processing 423
goals 417
integrating with Reporting Ser-

vices 441
overview 417
Sample Reports 454
solutions 422
storage model 419
vs. OLTP 417

OLE Automation 469
OLE DB-compliant databases 64
on-demand delivery 9, 20, 299,

483
access options 300
overview 300

Online Transaction Processing 64
OpenForecast

migrating to .NET 193
overview 192
supported forecasting models

192
Oracle data extension 90
OutputDebugString 201
OutputFormat

device setting 306
OverwriteDataSources

setting 77
OWC. See Office Web Compo-

nents
OWC11 library 448
OWCConfiguration section 175

P

page body 104
Page Break property 109
page breaks 109, 121
Page Footer 104

menu 103
section 103

Page Header 104
menu 103
section 103

page size property 104
PageBreakAtEnd element 120
PageBreakAtEnd property 109
PageNumber 55, 159
PageNumber property 159
pages per second 570
paging

explicit 109
using hyperlinks 170

parameter available values 363
parameter default values

URL access 305
parameter limitatinos 101
parameter lookup values 113
Parameter object 157
parameter placeholders 310
parameter type validation 100
parameter validation

URL access 305
parameter-driven queries 90

INDEX 615

parameter-driven reports 89
and subscriptions 499

parameterized reports
and multiple datasets 83

parameters
and snapshots 502
and subscriptions 488
custom parameters 359
data type 94
database-driven approach 361
default values 94
handing with HTTP-POST

391
non-queried available values 95
prompt 94
query-based available values 98
validating 366
validating custom parameters

365
Parameters collection 157

defined 157
labels and values 157

Parameters command 311, 396
Parameters page 229
Parameters tab 82, 91, 97
ParameterTypeEnum 363
ParameterValue object 320, 395,

488
Parent Group setting 166
PDF export format 19
performance

bottleneck defined 576
bottlenecks, identifying and

eliminating 572, 576
defined 567
scalability white paper 590
WinForm clients 370

Performance Console 73
performance counter 572

ASP.NET Applications/Re-
quests Queued 576

memory: available bytes 576
network interface: Bytes Total/

sec 576
Process(aspnet_wp)\% Proces-

sor Time 572
Process(sqlservr)\% Processor

Time 572, 576

Processor(_Total)\% Processor
Time 572

Processor: % Processor Time/
Total 576

performance counters 572
performance metrics 580
performance testing 584
permission set 267

creating 287
defined 284

PermView utility 288
persisted to files datasets 524
personalizing subscriptions 491,

503
PIA. See Primary Interop Assemblies
pivot reports 129
PivotTable 425, 444, 450

determining user selection 451
Selection property 451
vs. matrix region 130

PNG 176
Policies table 267
policy inheritance 271, 277
PollingInterval setting 487
polymorphism 521
PolynomialRegressionModel

model 196
POP3 513
POP3 service 494
Preview tab 45, 48, 95, 147

and custom security 48
Preview window 49, 197,

203–204, 285
advantages 49
and CAS 286
and custom security 49
how to use 49
simulating Report Server envi-

ronment 49
previewing reports 47

for unit testing 42
how it works 47
preview tab 47
preview window 47

Previous() function 165, 167
Primary Interop Assemblies 444,

470
installing 447

primary UI thread 374
principal 261
printing reports 312
printing reports programmatically

312
PrintOnFirstPage

property 104
PrintOnLastPage property 104
private assembly deployment 188
private data source

and custom dataset extension
527

Processes dialog 202
processModel

model 266
Process.Start 369, 372

method 316, 320
production configuration 52–53
profile store 549
project configurations 49, 52
Properties dialog 144
Properties window 144
pseudo events 145, 280
publisher 485
Publisher role 220, 269
pushing reports 484
Put() WMI method 252

Q

QA testing 42
query hints, using to prevent locks

329
query parameters and custom

dataset extension 529
Query tab 79
query timeout 80
Queue Listener Service 470
queuing 470

R

raw report 18
RDL. See Report Definition Lan-

guage
read-only parameters 94, 311
recipient data store 504
recipient query 505

616 INDEX

rectangle report item 106, 115,
121, 128
used to enclose fields 121
using to enclose other items

106
recursive hierarchies 165
RedirectFromLoginPage method

Forms Authentication 411
References tab 188
Refresh meta tag 174
Refresh Report button 308
refreshing fields 81
Release configuration 52–53
RemoteCall property 358
Render command 306
rendering extensions 563

defined 10
rendering formats 18
rendering page 230
rendering reports

first report 33
rendering stage 17–18
RenderReport web method 464
Replication Services 6
report 103

anatomy 103
archiving 484
catalog 8, 51, 216
construction phases 42
consumer 13, 461
datasets and scope 163
defined 2
definition 39, 65, 184, 226
delivery 20, 22, 32, 216
elements 103
execution 230, 234
execution caching and its effect

on performance 589
execution options 358
files copying 46
footer 104
forecasting 191
header 104, 114
image 105
interactive features and SOAP

326
intermediate format 18, 74,

589

lifecycle 22, 39, 215
line 105
management 15, 22, 32,

215–216
overview 105
paging 109
properties 104
prototype 41
providers 461
rectangle 105
rendering 173
rendering commands 306–307
repository 8
response times 578
sections 103–104
selecting 122
subreport 105
textbox 105
types 3

report authoring 22, 40
analysis 41
construction 42
deployment 42
options 43
testing 42

Report Borders
toolbar 46

report caching 230, 576
and ExecutionTime 159
using to minimize RS latencies

569
Report Configuration Store

462
schema for enterprise reporting

461–462
Report Definition Language 7–8,

184, 450
advantages 55
extend 56
generating programatically 55
main advantages 8
making changes 46
schema 55
specification 62
used for ad hoc reporting 61
viewing 46

Report Delivery Options screen
490

Report Designer 102, 104,
107–108, 115–116, 122, 140,
286
folder 188, 196
introducing 7
tabbed user interface 45
vs. Report Server 47

report execution log 569, 574,
577–579, 581
analyzing 578
determining the number of re-

port requests 577
finding out the most popular re-

ports 581
Report Execution timeout setting

219
report exporting commands 306
Report Formatting toolbar 46
Report item dropdown

using for visible on-demand
groups 117

Report Items toolbar 103
Report Items toolbox 46
Report Manager 15

and Client-to-Server model 263
and impersonating the user 266
and subscriptions 486
configuring 217
deployment 217
how it works 216
implementation 216
installing 217
main tasks 15, 216
overview 216
session state 217
using for report delivery 218

Report menu 46, 92
Report Object Model

limitations 148
overview 148

report parameters
creating 92
data-driven subscriptions 508
role of 89
using for dynamic sorting 158

Report Parameters submenu 92
Report processing 17

execution stage 18

618 INDEX

Reporting Services (continued)
shortcoming 34
software dependencies 4
top ten favorite features 33
vision 1
why it is needed 2

Reporting Services Web service 21
Reporting Services Windows Ser-

vice 546
running scheduled tasks 221

ReportItem class 151
ReportItems collection 151

defined 151
limitations 154

ReportItems element 58
report-level parameter 92, 534

and custom dataset extension
530

creating manually 93
orphaned 93
removing 93
using for passing data 92

ReportMagic 577, 593
ReportName property 159
ReportParameter object 364
ReportParameters property 104
ReportRequest entity 465, 467
Reports

table 581
Reports folder 46
Reports menu 103
ReportServer database 14
ReportServerTempDB 14
ReportServerUrl 159, 498

setting 243
ReportServerUrl setting 217,

556
ReportService.asmx 246, 317,

319
ReportServiceHttpHandler 301
ReportViewer

and URL access 398
configuring 396
how it works 397
limitations 399
overview 396
server-side configurable options

396

ReportViewer control
configuring 398
overview 396

request distribution 578
requesting reports by SOAP 318
requesting reports by URL 305
requests per second 570, 574
resources

and the report catalog 226
response time 574
retrieving reports 354
Revert to Parent Security button

277
rich client

advantages 338
deployment model 338
overview 338

role
and custom security 551
defined 268

role-based authorization
overview 266

role-based security 261, 340,
354
and the Web service 277
defined 270
managing with Report Manager

272
overview 261
purpose 261

Roles table 267–268
Root Member If

property 437
Rosetta 592
Rosetta Stone xxi
row groups 132
RowNumber() function 109, 161
ROWS dimension 442
RPS 584
RS Catalog Explorer 244, 333
RS Windows Service

subscribed report delivery 487
rsactivate 254
rsconfig 254
rs.exe 253
RSExecutionLog database 578
rskeymgmt utility

purpose 254

rsmgrpolicy.config 286
rspreviewpolicy.config 197, 204,

286
RSReportServer.config 494, 510

SMTP 494
RSS 327, 484
RSS feed 205
RSS schema 207
RSS specification 207, 211
rssrvpolicy.config 197, 286
running jobs 223

cancelling 223
types of 223

running totals 163
RunningJobs table 223
RunningRequestsDbCycle setting

223
RunningValue() function 164

using for running totals 164

S

sample report
Sales by Territory Interactive

90, 92
sample, RS management console

251
scalability 470, 567

defined 567
features 10

scalability linear
achieving by scaling out 591

scaling out 591
scaling up 590
Schedule page 221
schedules

overview 220
report-specific 220
shared 221

script host 253
scripting 253

with Authorization Manager
477

securable items 269
securable resources 277
SecureConnectionLevel setting

294–295
securing presentation layer 465

INDEX 619

securing reports 290
filtering data 291
hiding data 294
with dynamic queries 292

security
evaluating requirements 290
features 10
overriding policy 277

security extension 261
defined 10, 262

Security Manager 467, 478
SecurityException 281
SecurityManager.PolicyLevel-

FromFile 283
securityPolicy element 283,

288
SelectionChanged event 451
SendEmailToUserAlias setting

489, 497
server-side generated 384

hyperlinks 387
server-side report generation 383,

399
ServerXMLHTTP 302

component 301
Service Pack 1 106
service-oriented architecture 11,

89, 149
benefits for integrating 89

session caching
configuring 232
how it works 231
overview 230
using cookies 232

session cookie and custom security
547–548, 554

session identifier 232
SessionData table 325
SessionHeader proxy class 325
SessionHeaderValue proxy class

233
SessionId member 325
SessionID property 233, 370
SessionTimeout setting 73, 232
setting

PollingInterval 221
TargetFolder 25
TargetServerURL 25

UnderDebugger 546
UseSessionCookies 232

Settings object 541
setup logs 255
SETUSER system function 72
shaking reports 138
shared class-level fields 189
shared connection 65
shared data source 46, 65, 226,

228
advantages of 66
creating 27–28, 66
definition 304
requesting by URL 304

Shared Data Sources folder 46
shared methods

calling 189
defined 184
vs. instance methods 189

shared queries 78
shared schedules

advantages 221
using for subscriptions 501

SharePoint Portal Server 6
Show Details button 228
Show/hide Document Map 310
ShowHideToggle command 307
side-by-side data regions 108,

123
site settings 219, 268
Site Settings menu 274
Site Settings page 219
SMTP 513
SMTP service 494
SMTPServer setting 494
snapshot caching 230, 236, 307,

345, 358
advantages 236
limitations 237
vs. execution caching 236

Snapshot command 307
snapshot execution 345
snapshot history 220, 237, 307,

345
Snapshot refreshes 486
snapshot reports 240, 359, 486

and subscriptions 500
SnapshotData table 236

snapshots 220
SnapshotUpdated status 503
snowflake dimensions 431
SOAP

defined 11
overhead 569, 586
role of 317

SOAP API 357–358
calling from client-side script

392
CancelBatch() 249
CancelJob() 223
CreateDataDrivenSubscrip-

tion() 488, 490
CreateReport() 248, 254
CreateSubscription() 486, 488,

490
ExecuteBatch() 249
FireEvent() 222, 509–510
FlushCache() 236
GetDataDrivenSubscription-

Properties() 512
GetPermissions() 248, 267,

278
GetPolicies() 278–279, 293
GetProperties() 357
GetReportDefinition 61
GetReportParameters()

363–364, 390
GetSubscriptionProperties()

512
ListChildren() 243, 272, 351,

354, 371–372, 466
ListExensions() 314, 368, 538
ListReportHistory() 359
ListSubscription() 512
LogonUser() 548, 552, 555,

557
Render() 319, 370, 395
RenderReport() 466
RenderStream() 322–324
SetProperties() 357–358
UpdateReportExecutionSnap-

shot() 237
SOAP exceptions

dealing with when using ACT
583

SOAP requests 582

INDEX 621

tcpTrace 243, 247, 259, 310, 583
test scripts 575

creating 581
test use cases 575, 580
testing environment

for performance testing 575,
580

the Generic Query Designer
executing multiple statements

86
The Report Designer

overview 44
third-party tools 60
thread culture 181
throughput 570, 573, 575

and virtual users 571
concurrent users 570
establishing benchmark

574
establishing benchmark

empirically 574
establishing benchmark theo-

retically 574
finding the peak 570
requests per second 570

TIFF 176
tight coupling 89
time dimension 433
time to last byte 568, 585
Time-based events, 486
TimeDataRetrieval time 578
TimeProcessing time 578
TimeRendering time 578
Toggled visibility

and rendering formats 173
toolbar 48
Toolbar command 311, 396
Tooltip property 169
TotalPages 159, 498
TotalPages property 159
trace log files

analyzing 257
managing 257

trace logs 255
tracing

DebugView 258
utilities 243
web methods 242

Transaction Processing Council
423

transactions 80
triggering subscriptions 545
trusted subsystem 265–266, 331,

370, 380
TTLB 568
typed datasets 464

advantages 349
and custom dataset extension

525
clients limitations 350

TypeOf operator 521

U

unattended report requesting 327
UNC 495
UnderDebugger setting 546
Uniform Naming Convention

definition 500
UnionCodeGroup 284
unit testing 42
up-level browsers 173
uploading report definition files

58
uploading reports 51
uploading resources 226
URL access 20, 300, 339

and custom security extensions
547

and Internet reporting 379
and security 326
commands 306
cons 333
disabling 301
evaluating 332
integration techiniques 301
overview 301
passing parameters 305
performance advantages 333
programming techniques 301
pros 332
report session management 308
requesting images 303
requesting resources 303
security considerations 379
shelling out to the browser 316

syntax 302
url encoding 302
using LinkLabel 302

URL length limitations 333
URL munging 232
Use single transaction option 80
User CAS policy 282
User collection 159, 487
user identity 261
user job 223

definition 223
user principal 478
user-defined aggregate functions

165
UserEntity entity 466
UserID property 159, 234
User.Language property 177
Users Folders 220
Users table 267, 496
User.UserID 291
UseSessionCookies setting 232,

309
utilization 572, 575

V

Value property
Field object 155
ReportItem 154

View Code command 78
View Data Sources task 304
ViewReport button 537
virtual users 575
visible-on-demand groups 117
Visual SourceSafe 52

W

web access 334
web behaviors 318
Web Browser control 301, 303,

312–313, 316
referencing 314

web farm 591
web log 206
web method

FireEvent 221
invoking asynchronously 374

M A N N I N G $39.95 US/$55.95 Canada

Business reporting is a lifeline of business, so a better reporting
environment is a big deal. With a sophisticated, modern tool like
Microsoft Reporting Services, you can report-enable any type of

application, regardless of its targeted platform or development language.

Written for information workers, system administrators, and developers,
this book is a detailed and practical guide to the functionality provided by
Reporting Services. It systematically shows off many powerful RS features
by leading you through a dizzying variety of possible uses. Following a typ-
ical report lifecycle, the book shows you how to create, manage, and deliv-
er RS reports.

In the first half, you will master the skills you need to create reports.
System administrators will learn the ropes of managing and securing the
report environment. The second half of the book teaches developers the
techniques they need to integrate RS with their WinForm or web-based
applications. It exercises RS through a wide variety of real-world scenar-
ios—one of this book’s strengths are its many useful examples.

What’s Inside
■ Extend RS with custom code
■ Expose reports as RSS feeds
■ Implement dynamic reports with Office Web Components
■ Create reports off ADO.NET datasets
■ Deliver reports to Web Services
■ Customize RS security
■ Evaluate RS performance and capacity
■ and much more

A technology consultant with the Enterprise Application Services practice
of Hewlett-Packard, Teo Lachev has more than 11 years’ experience design-
ing and developing Microsoft-centric solutions. He is a Microsoft
Certified Solution Developer and a Microsoft Certified Trainer. Teo lives
in Atlanta, GA.

Microsoft Reporting Services IN ACTION
Teo Lachev

,!7IB9D2-djeccb!:p;n;T;T;p
ISBN 1-932394-22-2

www.manning.com/lachev

Ask the Author Ebook edition

AUTHOR
✔

ONLINE

✔

