murach’s
ASP.NET 4.5

web programming
“th"VB 2012

Mary Delamater
Anne Boehm

http://www.allitebooks.org

WWW.aI | itebooks.cogl

http://www.allitebooks.org

TRAINING & REFERENCE

murach’s
ASP.NET 4.5

web programming
“th"VB 2012

Mary Delamater
Anne Boehm

MIKE MURACH & ASSOCIATES, INC.

4340 N. Knoll Ave. » Fresno, CA 93722
www.murach.com ® murachbooks@murach.com

ivww . al litebooks.cond

http://www.allitebooks.org

Authors: Mary Delamater
Anne Boehm

Editor: Mike Murach
Cover design: Zylka Design

Production: Maria Spera

Books for .NET developers

Murach’s Visual Basic 2012

Murach’s ASP.NET 4.5 Web Programming with VB 2012
Murach’s ADO.NET Database Programming with VB

Murach’s C# 2012
Murach’s ASP.NET 4.5 Web Programming with C# 2012
Murach’s ADO.NET Database Programming with C#

Books for open-source web developers
Murach’s HTMLS and CSS3

Murach’s JavaScript and jQuery

Murach’s JavaScript and DOM Scripting

Murach’s PHP and MySQL

Books for Java programmers
Murach’s Java Programming

Murach’s Java Servlets and JSP (2" Ed.)
Murach’s Android Programming

Books for database programmers
Murach’s SQL Server 2012 for Developers

Murach’s MySQL

Murach’s Oracle SQL and PL/SQL

For more on Murach books,
please visit us at www.murach.com

© 2013, Mike Murach & Associates, Inc.
All rights reserved.

Printed in the United States of America

10987654321
ISBN: 978-1-890774-76-9

ivww . al litebooks.cond

http://www.allitebooks.org

Contents

Introduction

Section 1

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5

Section 2

Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11

Section 3

Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17

Section 4

Chapter 18
Chapter 19
Chapter 20
Chapter 21

Section 5

Chapter 22
Chapter 23
Chapter 24

The essence of ASP.NET programming

An introduction to ASPNET programming

How to develop a one-page web application

How to use HTMLS5 and CSS3 with ASP.NET applications
How to develop a multi-page web application

How to test and debug ASP.NET applications

ASP.NET essentials

How to use the standard server controls

How to use the validation controls

How to work with state, cookies, and URL encoding
How to use master pages

How to use themes

How to use site navigation and ASP.NET routing

ASP.NET database programming

An introduction to database programming

How to use SQL data sources

How to use the GridView control

How to use the DetailsView and FormView controls
How to use the ListView and DataPager controls
How to use object data sources with ADO.NET

Finishing an ASP.NET application

How to secure a web site
How to authenticate and authorize users

How to use email, custom error pages, and back-button control

How to configure and deploy ASP.NET applications

Going to the next level

How to use ASPNET Ajax
How to create and use WCF and Web API services
An introduction to ASPNET MVC

Reference Aids

Appendix A

How to install and use the software and downloadable files

ivww . al litebooks.cond

XiX

31
77
117
165

191
231
263
295
323
341

371
399
441
481
521
551

597
613
649
679

701
733
763

795

http://www.allitebooks.org

WWW.aI | itebooks.cogl

http://www.allitebooks.org

Expanded contents

Expanded contents

Section 1 The essence of ASP.NET programming

Chapter 1

Chapter 2

An introduction to ASP.NET programming

An introduction to web applications........c...cccemnnnemmrmmnnemrneeenen, 4
Two pages of a Shopping Cart application
The components of a web applicationc.cccecereurnene.
How static web pages are processed.........
How dynamic web pages are processed

An introduction to ASP.NET development.........ccccinunnsmmemmmisssmensnns 12
Five ways to develop ASP.NET applications.........cccoccceeverveineieeneenieneineieeneeenens 12
Three environments for developing ASP.NET applications..........c.ccccveeveenevrcnnenennee 14
What about Visual Studio 20137cccoeeveinevinccieiniiicenene
The components of the NET Framework
How state is handled in ASP.NET applications..........cccccceveeieenevenienenencenenieeneennens 18

How an ASP.NET application WOrkscccouucecmriiismnsenisinsnsnennns
The user interface for the Future Value application
The files used by the Future Value application..................

The aspx code for the Default form..........coccceveeinennnene. .
The Visual Basic code for the Default form.........ccccoeeivniccninniinncciieccee

How to develop a one-page web application
How to work with ASP.NET web sites

How to start 2 New Web SIt€cccveeeiveeeireeennieiereeereeenee e

How to add a web form to @ Web Site.......covivviiiiieiiiiicicceee ettt
How to work with the Visual Studio IDE
How to add folders and files to a web site
How to open or close an IIS EXpress Web Site.......ccocovvevieineieineineneincieenecnnns
How to convert a file-system web site to ILS EXPress.........cocoevevenennvenccnecinenecnnens 42

How to use Visual Studio to build a web form........cccccceeiiemecnns 44
How to enter the HTML for a web form
How to add a table t0 @ fOIM.....c..ccviiiiiiiiiiciice ettt ettt ereeereeere e
How to add text to the cells 0f @ table.......c.cccveiieiuieirieiiieiieieeree e
How to add web server controls to a form .
How to set the properties of the CONLrOlS.........coeveererriniernieneieree e

Common properties for Web Server CONLrolSoceveerererireienienieieereeeenee e 50

How to add validation controls to a form
An introduction to the validation controls
How to use the required field validatorc.ccccoeeeviiriiiniennenecneneeceneeeeeeeiene
How to use the range validatorc.coeoevenieeiiiniiiiniiieectneeecee e
How to work with unobtrusive validation
The aspx code for the Future Value form

How to add Visual Basic code to a form
How t0 use the Code EditOr......c.ccouiiiiiiiiiecieceeci ettt eeeeane e
How to use page and control events.........ccccocevereeeenuennne

The Visual Basic code for the Future Value form

How to test a web application........ccccvussserrrmmssssssnrmmssssenmmsssssenemns
How to run an ILS EXPress Web SIte.......c.ccvvireiereininieinieinienieenreeeeseeesreeenesnenennens
How to view the HTML that’s sent to the browser..........c.ccceevrineineniineinenecnnens

ivww . al litebooks.cond

vii

http://www.allitebooks.org

viii

Expanded contents

Chapter 3

Chapter 4

How to use HTML5 and CSS3
with ASP.NET applications

The Future Value application with CSS formattingcccosrvivsannnns 78
The user interface

The HTML that’s generated for @ NeW fOrm.......cccoeveievieieniniinennccecescsee 78
The aspx code for the appliCaAtIONccvivuerirerieieieteeerere e 80
The CSS style sheet for the appliCationce.eeieierienierienenerreeeteeee e 82
The HTML and CSS skills that you need........cc.occceeeirrccccennveceaees 84
How to code HTML €lementscccooiiiiiiiiiiiiiiiiiin s
How to use the HTMLS5 semantic elements
How to use the div and span elements with HTMLS5cccccvviniininniniininienne 88
How to provide CSS styles for an HTML page..........cccccevveieiiiniciiinnicciiieciinn, 90
How to code the basic CSS SElECtOrS........c.civivuiuiuiiiiiiiiiiiieiieceeceeeeeaieae 92
How to code CSS rule sets and COMMENLScccueueiiririiininieeiieieeieeeeeneneaes 94
How to ensure cross-browser compatibilityc.cccccveeirineininiinenninencneecnnens 96
Visual Studio features for working with HTMLccccciminsmeennnnns 98
How to use the features for entering HTMLc..ccccociiiiininininiiiiieceeeecee 98
How to add the attributes for the WAI-ARIA accessibility standards.......c..c.cceceeueee 100
Visual Studio features for working with CSS........cccccciiiiiniienn. 102
How to create and edit an external style sheetc.cccceeecnee

How to use Visual Studio to create and modify styles

How to use the Apply Styles windowccccccuenenee

How to use the CSS Properties WindOWcc.cccccoiviriiiiiniciiniiiciiecceececeens
How to use the Manage Styles WindOWc.coccouriniiineninineinineceeecseeceeeeeee

How to develop a multi-page web application

Introduction to the Shopping Cart application.........ccccennisseeensnnns 118
The two pages of the Shopping Cart application..........ccceeevererreriireneneneneeeeenen 118
The files and folders used by the Shopping Cart application.........cc.ccccevereerercennnee. 120

How to work with multi-page web sites.......c...ccccmnisimmrrnnisienennns 122
How to create a web site that has starting folders and files............ccoceeinniiinnen 122
How to change the starting page for a Web Sitec..cocovevivineienennineieneiieeceene 124
How to rename or delete folders and filescccceeeiviiiciniiiinincccce

How to add a class t0 @ WEb Site.........ccccorieuiuiiriiiiniiiiciiiccceccc e

How to redirect or transfer to another page.
How to USe Cross-page POSHINGccccceeiruiuimiirieieiiiiiect et
How to code absolute and relative URLSc.cccoviiiiiiiniininiiiiiiiiiciccicnicenee

How to create and use data SoUrcescoimmmimersmssmesan. 134
How to create an SQL data sourceccoeveeveenene

How to configure an SQL data source...................

How to bind a drop-down list to a data source.........c.cceceeveeueeen.

How to use Visual Basic code to get data from a data SOurce..........ccoceevevvererercnnene

How to use session state...........cccccevicrrrrirrrrememr e e
HOW SESSION StALE WOTKSeoeiveieeieeiiiee ettt e et et eeae e e e eenreeeeeenreeeeas
How to work with data in SeSSION StALe.........c..cvierieerieirierriecieere et

The business classes of the Shopping Cart application
The members of the three business classes
The code for the Product class.....................
The code for the CartItem Class.........cocvieiuiieiiiiieiie e
The code for the CartltemList Classcc.coeiuieiiiieiiieeeeeeee e

WWW.aI | itebooks.cogl

http://www.allitebooks.org

Chapter 5

Section 2

Chapter 6

Expanded contents

The web forms of the Shopping Cart application.............cccueuees 152
The aspx code for the Order PABE........coeevverieerieiienieirceene e 152
The Visual Basic code for the Order page........c..ccceverueereieeneineneieneecneneeeseeeenens 154
The aspx code for the Cart page

The Visual Basic code for the Cart pagec.coeeveerueirueieeneineneeeneecseeeeseeeenens 158
How to test and debug ASP.NET applications

How to test an ASP.NET web Site.......cccusmmnimmmimmmssnmmsnmsnisnnnnin 166
HOW 10 tEST @ WED SILE ..eeveeieieieieiesier ettt ettt s 166
How to test a web site in two or more browsers at the same time..........ccocceevverenene 168
How to use the Exception Assistant

How to use the Page Inspector....................

How to use the debugger...........om e
HOW 10 USE BreakpPOints.......cc.eviiiiiiniiiriinieiirtcceet ettt
HOW 10 USE traCePOINTS.......ciuiiiiiiiiiiii s
How to work in break mode............ccccooiiiiiiiiii
How to use the debugging windows to monitor variables.........c..cccocevecerieeccnennnnenn. 180
How to use the trace feature..........coimmmensee———— 182
How to enable the trace featlrecooeoevereririinieniiieiee et 182
HoOW t0 Interpret traCe OULPUL.....c..eovevuereereriieiieteteeteete ettt ettt et see e sieebeene 182
How to create CuStOM traCe MESSAZES. ..cververrerrerriereerterinrenreesiestetentesensessessessesseeneens 184

ASP.NET essentials

How to use the standard server controls

An introduction to the standard server controls...............cccuuees 192
The server controls You’ll use the MOSt.....cc.ceceruieieriinienenincneeieceee e 192
How to use Visual Basic to work with the data in server controls.............ccccoeeeveeenns 194
How to set the focus, default button, tab order, and access keys for a form 196
How to use the common server controlsccceeeeeeeecccccciccennn 198
How to use labels and text boxes.................

How to use check boxes and radio buttons..

How to use image and hyperlink controlsccccoeoerenerneinenennenencceeneene
How to use the file upload CONLrolcoeciierievirieinenieinceese e
How to use the button controls..........ccevvemeemininneseenennn
How to use buttons, link buttons, and image buttons.................... et 206
How to use the Command event

How to use the list controls
How to create drop-down lists and list boxes
How to use the properties for working with 1ist CONtrolsc.ccceeecererierinerinenencnn 212
How to use the members for list item collections
How to use check box lists and radio button lists

How to use bulleted 1iStS.......ceovieiiiieiiieeiieeieeeiie e

A CheckOut page that uses server controls..........c.cccriiermiinenen 218
The user interface and link elements.............ccoooviieiiiiiiicciicce e 218
ThE ASPX COUR ..vnrentitiniirieeieetet ettt ettt et ee e 220
The code-behind file for the CheckOut page..........cceeeverenenineneiieicienerenceeeeee 222
An introduction to the other standard server controis............... 224
When and how to use the other standard server CONtrolS...........cccooeveevieereereenneenneenns 224
How to use the Wizard CONLIOlcocviiviiiuiiiiieiieiieieeieee et 226

ivww . al litebooks.cond

http://www.allitebooks.org

X

Expanded contents

Chapter 7

Chapter 8

Chapter 9

How to use the validation controls

Introduction to the validation controls.........ccucmmsnmmerieninnneim. 232
How ASP.NET processes the validation CONtrols........c..ceceeeeeeieiesienienencncnenenenne 232
How to set the attributes of the validatorsceeeveeveerenineniinieieiceeecsesereeene 234
How to provide for unobtrusive validationccoceoeruerenerenieienienieencneseseniene 236
How to use the validators ... 238
How to use the required field validator ettt 238
How to use the compare validatorc.coceoeereirinieinenincree e 240
How to use the range validatorcocoviiiiineiiiniiinecrcee e 242
How to use the regular expression validator............coecvereineinenieneniecneceeeeenne 244
How to create regular expressions..................

How to use a custom validator............ccceeeuieviencnnne.

Validation techniques.........c.ccoiiincmmmemrnnnnene..

How to use the validation summary control..............

How to use validation ZrOUPSccceeeuereriiriententenienieeteeieeieeit ettt ere e aens

A CheckOut page that uses validation controls............c.ccueeeeene 254
The USET TNLEITACEeeveviiiiiiiiieiciee ettt 254
The aspx code

The Visual BasiC COAEocovimiiiiiiiiiiiicecceeeeee ettt 258

How to use view state........cccummmmmmmnamnmsnsenssssase.
How to WOrk With VIEW SEALEovevirierieriiiiieiieteteect e
How to use view state for your oWn data.........c.ccceveriirenineninienienecenceeneeeeene
How to use session state........cccccccuurinunecens

How to work with Session State...........cccoveveenueennenee

When to save and retrieve session state items

Options for storing session state data and tracking session IDs..............cccceeeuinnne 272
How to use application state and cachingccccusnsererrmsssseenrensns 274
How application state and caching WOTKccccvererinineniininieicicencene e 274
How to work with application state and cache dataccccecerieievenienencncnicnenene 276
How to work with application @VENLS........c.ccevereriierienienieniinteeeeiieieieteeseeee e 278
How to use cookies and URL encodingcccccmmmnnsmmmrmnnsssmenennns 280
HOW t0 Create COOKIES......c.ooiriiuimiiiiiiiiiiciccce et 280
How to work with COOKIEScuiuiiviiiiiiiiiiciiiiiicccc e 282
How to enable or disable COOKIESccoueuiiiriiiiiiiiiiiciciceccc e 284
How t0 use URL €NCOAINGooveiiiiriiiiiiiiiiniccniecetceeee et 286
An application that uses cookies, application state,

E= T Lo o T 11 4T

The Order and CheckOut pages
The critical Visual Basic code for the Order and CheckOut pages

How to use master pages

How to create master Pages.....cc.c.cccerrmnnmremmmnssmsmrmmssssmsmssnsssmmmsnnas

An introduction to0 MASLEr PAZESccueueuiirurueuiuiiieieiiieieiiteieee et ese e
How to create @ MaSter PAZEccoevveieriiriiriiieniieiieieteteteete ettt
How to work with the ClientIDMode Propertyc.cccevueveerieriueeniieneieinicneenenens

How to create and develop content pages
How to create a content pagec.ceeveveveererenieneneeeenenen
How to add CONtENt t0 @ PAZE....ceveeveereeieiinierierieriteitet ettt sttt ettt

ivww . al litebooks.cond

http://www.allitebooks.org

Chapter 10

Chapter 11

Section 3

Chapter 12

Expanded contents

How to customize content pages...........cccoemiimsicnnieniieenaaes 306
How to add default content to @ MaStEr PAZEccvverveveruereriinieeriereeeenieeee e eeenee 306
How to override and accept the default content from a content pageccc.c..... 306
How to expose a public property in a master page

How to access a public property from a CONtent Page..........ocoeeervereerereeenreeeennencnne 308
The Shopping Cart applicationccuerermmmmseerrmmmsrenmmeremm.. 310
Two pages of the Shopping Cart appliCationcc..cceevererienererieiierienenereseeeeaen 310
The aspx code for the MASEr PAZE.......covervirririririeieieeeeete ettt 312
The code-behind file for the MaSter PAgecceeeveeeveviereneniniceeecetceeerceee 314
The aspx code for the Order page

The aspx code for the Cart PAZEcovevvererererieieeeeneneeeete et
The Load event handler in the code-behind file for the Cart page........c.ccoceveveeuenen. 318
How to use themes

An introduction to themes............ooic e 324
A page with two different themes applied..........ccoevrverinininiininnncnreecee 324
How themes WOkccocciiviiiiiiiniiiiiece e

The difference between customization and style sheet themes e
How to work with themes and skins........cicismnmimensmsmmmmmanm
How to create and use themes and SKinScc.cecveverereninininenieiececene e
The skln and CSS files for the Bats themecccoveverininininiiiiceneeereeeee
How to apply themes and SKiNSc..cocevereriiiiniineneniiineeeeetet e
HOW 0 T@MOVE thEeMES......cuiiieiiiiiieieiericreree ettt

How to use site navigation and ASP.NET routing

How to use the navigation controls
An introduction to the navigation controls

How to use ASP.NET routingcccceceeminmmmminmenisssnmmmsesssssmsnnssnnensas
An introduction to ASP.NET routing and friendly URLS.......c..cccecevinininninineene
How to create a route collectionccceecceeineincncnennene.

How to work with route parameters
How to work with file paths.......ccccoceoeninniiiinncee
The Visual Basic code for the Order page with a dynamic route

How to use the navigation controls with ASP.NET routing........ 362
The global.asax file for the Shopping Cart application with friendly URLs............. 362
The web.sitemap file with traditional URLS...........cccccccoeiiiiiniiinniiiiiiene

The web.sitemap file with friendly URLSccccccccoiiiiiniiiniiiiiiciiicce

ASP.NET database programming

An introduction to database programming

An introduction to relational databases............cccccceeriimrmririnrenenees 372
How a table iS 0rganized.........c.cccovveeeiiiiiiiiiiiiiiiececeee e 372
How the tables in a database are related..

How the columns in a table are defined............c..ccooeiivieiieciicecece e 376
The design of the Halloween databaseccoeeeiiiniiiiniiiinniccieieciceecees 378

Xi

Xii

Expanded contents

Chapter 13

Chapter 14

How to use SQL to work with the data

in a relational database.............cooiriiicc e 380
How to query a single table.......c..ccoviieiniiiniiiiiicncee e 380
How to join data from two Or More tablescoccivireririeinieirenecneeesee e 382
How to add, update, and delete data in a tablecoceceveeniininenenincnccnceene 384
How to work with other database objects...

How to work with VIewsScccoccciiiiiiiiiiiiiiiceeee

How to work with Stored proCeAUIES........coeverieierierieniiniineneeeeeei et
An introduction to ADO.NET 4.5ccccocmmmmneminmnnenssmsnsesnsmssae s
How the basic ADO.NET components Work...........ccccceeerueueuinieriuecniinneiincicnnens 390
Concurrency and the disconnected data architecturecoceeeeieueeieincineninen. 392
How to work with data without using a data adaptercccceceeevivniiinccincnen 394

How to use SQL data sources

How to create a SQL data source........coumemimsmmmmmmsnsmssmmssmasmn

How the SqlDataSource control WOTKS.........cceouereerieriinininenieieientenienese e sesieeieene
How to ch00se @ data SOUICE LYPE ..eoveruerieriiriieiiiiieieteete ettt ettt
How to choose a data CONNECHIONcc.evuerieriiriiiiiieieniite ettt
HoOW t0 Create @ CONMMECTION.cueieiiriererierieeitetetet ettt ettt s ebeene
How to save the connection string in the web.config file....
How to configure the Select Statementc..ceveviereerieriinineninieieieeese e
How to create @ Where ClauSe.......ccvevueverieriireniiniieeeteeteete ettt
How select parameters WOTKcoeoeverererinietinteeteesteeeeeeeet et

How to use custom statements and stored procedures 414
How to enter custom statements
How to select stored procedures
How to create a Select statement with the Query Builder..............ccccceeiiniinnn 416
How to define the parametersccccveveiiuiiriiiiinieeieceecce e

How to use the DataList control..........ccoccuemmimmiinniininnniineseemnnnn
How the DataList control Works............cccceeeevveeennennn.

How to define the templates for a data list...
How to format @ data LiSt........cccueieuiieiieeiie ettt et e aae e

How to use data binding ..o
How to bind a list control to @ data SOUICEcccovvurueuiiiieieciniiieicice e
How to bind the controls in a template...........ccoceeiviieiiiiniiiiececeeen

A Product List applicationccccciimissmmmimmssssssnmsssssmssnisssssssnnissssnsns

The user interface

The aspx file

How to use the advanced features of a SQL data source........... 434
How to create a data source that can update the databasec.cccceeerenccnennnnnns 434
How to change the data Source modecoeereeirienienieinieineneceeeesee e 436
HOW 10 USE CACING ...c.viiiiiiiiiiiieitric ettt e 436

How to use the GridView control

How to customize the GridView control........c..cccceiiviniinccncemnennnnn
How the GridView control works..........cccccceeveeevneennes.

How to define the fields in a GridView control
Elements used to create and format fieldscooeiieiiieiiiiiiiccccecce e,
HOW t0 €Nable SOTTING ...cevioviiiiieiieieieteereeee ettt
How to enable paging........
How to customize paging

Chapter 15

Chapter 16

Expanded contents

A list application that uses a GridView control

The Product List appliCation........c..cc.coeveririirieieniiiienietnicieeniet et eaeeenen
The aSPX fII...oiiiiiciiiic e
How to update GridView data.........ccermmsssmemrmmssssmensmnnssseesmmnssssnsns
How to work with command fields

How to use events raised by the GridView controlcoccecevieienenenenicneneneeeene
How to insert a row in a GridView COntrolcccccoiiiiiniiiincnicccecceeeee

A maintenance application that uses a GridView control........... 464
The Category Maintenance appliCation..........c.coecveerueirueierenieieenieenieeeeneeeeneenens 464
THE @SPX T8 ..uiieiieiiieitee ettt sttt 466
The code-behind fileccooueiriiiiniiinii et 470
How to work with template fieldscccunumemrmmmneeenmmeemmmmneen. 472
How to create template fieldS........ooevereririniiniiieieeeeeeeee e 472
The template version of the Category Maintenance application..........ccoceeeeeeeennenee. 474
The aspx code for the template VErSIONcccceceeveiiriereneneneneeicierteneniene e 474

How to use the DetailsView and FormView controls

How to use the DetailsView control
An introduction to the DetailsView control............cccoeevveeeneenn...

Attributes and child elements for the DetailsView controlccccoceveeeeevieeeeennenne
How to define the fields in a DetailsView control...........ccccoveeveecieeiieecieeiecieeeeeeae
HOW t0 enable PAZING......c.cviiriiiriiiiirieieere ettt
How to create a Master/Detail PAgec.cocevveereieinieinenieiencineecseeeee e

How to update the data in a DetailsView control
An introduction to command buttons
How to add command BULLONScc.eeuerereriiriiiiteieceteeeeee et
How to use events raised by the DetailsView controlccceceevevienenencncnicneennene
How to create template fieldS........ooevereriiiniiiiieiee e

The Product Maintenance application...........ccceeuvnmrrmmnnnsmeneennnnas
The operation of the application....
The aspx file.....cccceovvvuiiniiincincnne
The code-behind fileccceiviiiiiiiiiniiiiiicc e

How to use the FormView control.........ccimimsmnemmsmsmnmaninsn

An introduction to the FormView controlcccoccoiiiiiiniininiicncccieeene
How to work with the Item templatec.ccocceceverenveniennee.

How to work with the Editltem and Insertltem templates

A Shopping Cart application that uses a FormView control...... 512
The operation of the appliCationcoeciierieeriieiiieniii e 512
The aspx file for the Order Pagecoeeererievirieiiinieincene e 514
The code-behind file for the Order page...........coeveerieireinineieeecsceereeceeceeaene 514

How to use the ListView and DataPager controls

How to use the ListView control
An introduction to the ListView control
How to configure a ListView control.......
How to work with the Layout template...........ceceeeerieneniininenenieieieeeienienese e
How to work with the Item templateccocceeeiininininineeeeeeeceeseeae
How to provide for sorting....................

How to provide for paging...
How to customize paging
How to group ListView data

Xiv

Expanded contents

Chapter 17

Section 4

Chapter 18

A list application that uses a ListView controlccccociriviinnnns 538
The Product List @ppliCation..........ccccueueuiiiiiueuiiiinieiciieicieeeee e
The aSPX fII...oiiiiiiiiiicc e

How to update ListView data
How to use buttons to perform update operations......................
How to work with the Editltem and Insertltem templates
How to use events raised by the ListView control.......c..ccceeeirievieniencnencncnieneneene

How to use obhject data sources with ADO.NET

An introduction to object data sources..........cccccoiriirinneees 552
How 3-layer applications work in ASP.INETcccoociiiiiiiiniiiiiccce,

How to create and work with ADO.NET classes
How to use the ObjectDataSource controlcccoeererieinierinenennenecneeeeneene
How to configure an ObjectDataSource control...........c.ccoeceiviiiiiniieeiieincicinenens
How to work with bound CONtrols............cccceieiiiiiiininiiiiccccce e

A Product List applicationcccciumismsmrmimmssssrsnmssssssssnisssssssenissssnss
The ASPX FI1E ..ottt
The ProductDB Classc..coueiiriiniineniieetceeeeeeesese ettt

How to create a data access class.......cccccvemecremcecee e cccssssscse e e
How to design a data acCess ClaSS........ocereiriieiriiinireeec e
How to create a select MEthOdoeeciiieciiiiiiieeiie et
How to create update, delete, and insert methodsc.ccocecveerinecnenniencnenenenn 570
How to use attributes to mark a data access Classcceeveevieiieieciieeeeeeeeee e 572

A Category Maintenance application
The desi@N....c.eeveieiiiiriieniereeee e

The ASPX FI1E ..ottt
The code-behind fileo
The CateOTY ClaASS...cveoverieriieiieierteeteet ettt ettt b e
The CategOryDB Classcc.eeteriiririninieeeeteeeee ettt

How to use paging and sorting with object data sources.......... 586
How to configure an ObjectDataSource control for paging and sorting
The aspx file that provides for paging and SOItingcccccceeeiviriecinieiiinieeeene
The code-behind file that provides for SOrtingccoceeeevieeuiniririecninnciieeeene
How to create a data access class that provides for paging and sorting.........c...........

Finishing an ASP.NET application

How to secure a web site

An introduction t0 SSL.......ccoimrimnierner e 598
How secure connections WOIKcccocuvieueuiiniiiiiinieeiecccerece e 598
How to enable SSL for a project that uses IIS EXPIessccccceeeivivncicinccinnne. 600
How digital secure certificates WOrkccccceveueuioininciiiiiciiiieceeecccees
How to use a secure connection

How to request a secure connection

How to force a page to use a secure connection

A Halloween Store application that uses SSL........cccccveiiniinenene 608
The operation of the Halloween Store applicationc.ceccveevveneincieeneencnienens 608

The code for the Halloween Store appliCationc..cccoeeveereirenieinerieeneieenienens 608

Chapter 19

Chapter 20

Chapter 21

Expanded contents

How to authenticate and authorize users

An introduction to authentication........c..ccccci i, 614
Three types of AUtheNtiCAtIONc..eeiivieriiriiriririeieeeeee et 614
How forms-based authentication WOTKScccoooiiiiiiiiiiiieeeiicciieeiee et 616
How to set up authentication and authorization 618
How to use SQL Server Express LocalDB

with the Web Site Administration TOOLcccoevviiiiiiiiiieeeeeee e

How to start the Web Site Administration Tool s
How to enable forms-based authentiCation..............c..cceeveeeeeriesiesiesrieereeereeere e
How to create and Manage rolescoevverieereiiinieinennenecert et
How to create and manage users

How to create and manage access rules

How to use the login controls.........ccerrmmnsmerrmmssesesmmnsmessmmsseesmns
How to use the Login control
How to use the LoginStatus and LoginName controls..........ccoceecvevienienenencnieneneene 630
How to use the CreateUserWizard controlccccooviiiinciininiinccceccceeee

How to use the PasswordRecovery control ...
How to use the ChangePassword control.....
How to use the LoginView CONIOLcoccoeririiniinieniininenerieeeteeeiee e

The Authentication applicationc.cccccivivimrmnns s
TRE PAZES ..
The direCtory SEIUCLUIEc.cuiiieiiiiieieiiiieeee et
The access rules...............
The Web.cONfig fIlES ..ot

How to use email, custom error pages,
and back-button control

How to send email
An introduction to email

How to use a third-party SMTP SEIrVer.....c..cocoveriiniiniinieniniieeieeeeceseseseseeiene 654
How to create an email MESSAZE.......coevververuerereriiniiiieteieteete ettt 656
How to send an email MESSAZEeoueveruirierereriiriieteteeteete ettt ettt sae e 658
How to add an attachment to an email MesSaAZe.......c.ccvververvirirerieieiiienienereeeeene 660
How to create an HTML message

How to create an HTML message with an embedded image...........cccceovevveverenenneene 664
How to use custom error handling......c....cccmuiiememmmnnmmmrmnnnseenenns 666
An introduction to custom error handling..........ccceceveiriiniineiinenencecrec e 666
How to get and use the Exception object for an errorc.cccevevvecencnncnccncnnnnenn 668
How to create a custom class for handling eXceptionsc.ecceeeivvvucuicirieiccnnne. 670
How to handle HTTP errors with the web.config fileccccoceiiiniiniiinccinne 672
How to handle the back-button problem.............cccciiiiniinceeminnnnns 674
An introduction to the back-button problem..........c.cceereviririrenieierieenenenenenene 674
How to use the Post-Redirect-Get patterncoceevveveerierenenenieieieieenesesesieeeene 676
HOW 0 USE tIMESLAIMPS ..eveeiiieiieieieieeterteeeee ettt sttt et se e s ebeene 678

How to configure and deploy ASP.NET applications

How to use the Web Site Administration Tool
How to use the Security tab........ccoceeieieieiieiieiereeeeeeeeeee

How to use the Application tab............ccooeiiriiiinininiiiccc e
How t0 use the Provider tab..........c.coccviiiiiiieiieiiiiiieeeeereereeee e

An introduction to deploymentccccoiniimmrniimsssmsnnssss s
Three ways to deploy an ASP.NET application............cocceeevereriniencnenenencnieennen
How to use XCopy deplOymMENLcc.ccuevueriereririenienteieniinteeeeeiteitetetesenieste e siesiene

XV

XVi

Expanded contents

Section 5

Chapter 22

Chapter 23

How to use one-click deployment...........cccoemiimninniiiinees 686
How to create a publish profileccoceoeiiiiiiniiiicccccce 686
How to define the CONNECHIONco.civiriiuiriiiiiiiceniceeeeete e 686
How to set the file and database options...

How to preview the files to be deployed...........cccoccvivriiiiiniiiiniiiicieccae 688
How to publish the Web Site..........ccocioiiiiiiiiiiiiiiccc e 688
How to create and use a Setup program........cccemsssseeessmssssasensnnas 690
How to create a setup project using InstallShield...........cccoeveneninininiininiinenne 690
How to configure an InstallShield project for deployment to IISccccoceoeveninene 692
How to add output files to an InstallShield project

How to create and use the installation files for a Setup program.........c.ccecceveverenene 696

Going to the next level

How to use ASP.NET Ajax

An introduction to Ajax
Examples of Ajax applications
HOW AJaX WOTKS...coviitiiiieiieiieeeeee ettt et s

An introduction to ASP.NET AjaX.....cccuscrrvsmrssmmssssmsserssnsmssmsnssmsnsaens 706
How ASPNET AjaX WOTKS......cueoieiriiiiinieinieieienteiietereee ettt 706
The ASP.NET Ajax SErVer CONLIOIS . ..coueuirtiiiirieiieienteieneeieteseeetetenteteseeaeere s saeeenen 708
The ASP.NET Ajax Control TOOIKIt.......ccocevieviriiiieniiiiiieenieeeecniet e 710

How to use the ASP.NET Ajax server controls........cccceccrmiinnenas 712
How to use the ScriptManager controlccccecuevvevinencnenncn.

How to use the ScriptManagerProxy control
How to use the UpdatePanel COntrol.........c..cocueeeviinieniniinineninieieieteecsese e
How to use the Timer controlc.cccoooiiiiiiiiiiiieeee s
How to use the UpdateProgress CONtrol.......c..cevevierereninineninieieieieiencsesesieeiene

An application that uses ASP.NET AjaXcccccumsamrrcsmenisssmsnssannsns 722
The View Products page

The ProductView class.........

The ProductVIiewList Classccccuvviiiiiiiiiiiiiiiicicceeece e
The aspx file and the first UpdatePanel control
The second UpdatePanel control
The code-behind filecccoiviiiiiiiiiiiiiic e 730

How to create and use WCF and Web API services

An introduction to web services.....cccccciin s ——— 734
SOAP SEIVICES. ..ueiiuiieeiii ettt et ettt e e e e et e et e e et e e eataeeetteeeaaeeeataeeeseeeenseeeareas 734
REST SEIVICES...utiiiiiieciiietie ettt e e ettt e et e e e ae e eveeetaeeeaseeeveeesneeanns 734
How to create a WCF service.......cccuceicisicmcmremrirnnens e snscsscemecmenns 736
How to start a WCF service appliCationcoccoveceriererenieinieineniecneniecseeceeeneeeenne 736
How to code a service contract interface and a data contract classccceeune..... 738
How to code a service contract class that implements the interface................c......... 740
How to view and test @ WCEF SEIVICE.......ccvevviiiieieeeieetieeieeeee ettt 742
How to create a web site that consumes a WCF service............ 744
The Edit Categories page of the WCF client web Site........cocevereriiiencncncnencncnnnne

How to add a WCEF service reference to a client web site
How to consume @ WCF SEIVICE.......ccouiiiiiiiiiiciieeciec ettt

Chapter 24

Expanded contents

How to create a Web API serviceccooceimiiiiciennesneeea, 750
How t0 start @ Web APL SEIVICE......c.ooivieriiiiieiiiniecneecceeeee e 750
How to write a web service Controller...........cocovenieinieniniieinieiceceecee e 752
How to view and test @ Web APL SErViCe.......co.eovvirieinenininieinieieiecsceeseee e 754
How to create a web site that consumes a Web API service756
The Edit Categories page of the Web API client web Site........ccccoevenerenineencneenene 756
How to consume a Web API service using jJQUETYc..coeeveerverenineninieierienienieniene 758
How to consume a Web API service using Visual BasiCcccccceveveniniiienecniennene. 760

An introduction to ASP.NET MVC
An introduction to MVC

The MVC design patterncccoceeveeereuennns e

The Shopping Cart as an MVC application............ccccoevveueuiininieiniieciiinicicsieeene 766
An introduction to ASP.NET MVCccccccimimmmmnnsmmsnmsninen, 768
How to start an ASPNET MVC appliCationc.ccoccveeeeneenienienenenenieeeeeeeeee 768
The folders and files for a new MVC application...........cceeererenenenieienenenenennns 770
The Razor view engine and SYNTAX........ccocerueruerrerenerieieientenienienie et seeseennens 772
How to work with routing "

How to create @ MOdelcoouiuiviiiiiiiiiiiicce e
How to create @ CONLrOLIEToouiiiiiiiiiiiicicce s 776
HOW 10 CIEALE @ VIEW ..ottt s 778
How to work with VIeWS.........ccmmimi e, 780
How to work with regular VIEWS..........cccceiviiiiiiiiiiiiiiiicccccce 782
How to work with strongly-typed VIEWS...........ccceciriiiiininiieiininieiciiececeecenene 784
How to work with controls and postbacks........cccrmmssseemrmnsssseensnn 786
How to work With CONrols..........ocooiiiiiiiiiiiiiii e 786
How to work with redir€Ction..........cc.coiiiiiiiiiiiiiiicicce e 788
How to add AutoPostBack functionality with JQUETY......cccceceeveeieriininineninieeeeee 790
How to work with the FormCollection 0bjectc.cceceeveerienienienininenieieieeeeenee 790

How to work with model bindingccccoveveveririnininiieeeeeeee e 792

XVii

Introduction

ASPNET is one of the primary technologies for developing web applications
today. Together with Microsoft’s Visual Studio, it provides a host of productivity
features that you let you quickly build professional e-commerce applications.

Because this book assumes that you already know the basics of Visual
Basic, it gets you off to a fast start with ASPNET. In fact, by the end of chapter
5, you’ll know how to use ASP.NET and Visual Studio to develop and test
multi-page database applications. You’ll also know how to integrate HTMLS5
and CSS3 into your ASP.NET applications.

But this is much more than a beginning book. By the time you’re done,
you’ll have all the skills you need for developing e-commerce web applications
at a professional level. You’ll also find that this book does double duty as the
best on-the-job reference book that money can buy.

What this book does

To be more specific about what this book presents, here is a brief description
of each of its sections:

e Section 1 is designed to get you off to a fast start. It shows you how to
use Visual Studio and ASP.NET to develop both one-page and multi-page
Web Forms applications that get data from a database. It shows you how to
integrate HTMLS and CSS into your web applications. It even shows you
how to test and debug your web applications, a part of the job that many
books treat too lightly or too late. At that point, you’re ready for rapid
progress in the sections that follow.

e Section 2 presents the other skills that you’re likely to use in every
ASP.NET application that you develop. That includes how to use the server
controls and validation controls, as well as how to use state, cookies, and
URL encoding to control the operation of an application. It also includes
how to use master pages, themes, site navigation, ASP.NET routing, and
friendly URLSs to create user-friendly web sites.

e Insection 3, you’ll learn how to use the data access features of
ASP.NET. That includes using SQL data sources, which reduce the amount
of data access code that you need to write for an application. It includes
bound controls that are designed to work with data sources, including the
GridView, DetailsView, FormView, ListView, and DataPager controls.
And it includes object data sources, which make it easier to build 3-layer
applications that separate the presentation code from the data access code.

e Section 4 presents the skills that you need for finishing an e-commerce
application. Here, you’ll learn how to secure data transmissions between
client and server, how to authenticate and authorize users, how to use email,
how to prevent problems caused by Back button refreshes, and how to
deploy your applications. At this point, you've learned everything you need
to know to develop and deploy e-commerce web applications.

XX

Introduction

e Then, section 5 shows you how to take your applications to another
level. First, you’'ll learn how to use ASPNET Ajax to build rich Internet
applications (RIAs). Then, you’ll learn how to create and consume WCF and
Web API services. Last, you’ll be introduced to ASPNET MVC, which is
completely different than developing web applications with Web Forms, but
does a better job of separating the presentation, business, and database code.

To get the most from this book, we recommend that you start by reading the
first section from start to finish. But after that, you can skip to any of the other
sections to get the information that you need, whenever you need it. Since this
book has been carefully designed to work that way, you won’t miss anything by
skipping around.

Why you’ll learn faster and better with this book

Like all our books, this one has features that you won’t find in competing
books. That’s why we believe you’ll learn faster and better with our book than
with any other. Here are some of those features.

e Because section 1 presents a complete subset of ASP.NET in just 5 chapters,
you’re ready for productive work much faster than you are when you use
competing books. This section also uses a self-paced approach that lets
experienced programmers move more quickly and beginners work at a pace
that’s right for them.

e Because the next 3 sections present all of the other skills that you need for
developing e-commerce web applications, you can go from beginner to
professional in a single book.

e If you page through this book, you’ll see that all of the information is
presented in “paired pages,” with the essential syntax, guidelines, and
examples on the right page and the perspective and extra explanation on the
left page. This helps you learn faster by reading less...and this is the ideal
reference format when you need to refresh your memory about how to do
something.

e To make sure that you learn ASP.NET as thoroughly as possible, all of
its features are presented in the context of complete applications. These
applications include the web forms, the aspx code, and the Visual Basic
code. As we see it, the best way to learn ASP.NET is to study applications
like these, even though you won’t find them in most competing books.

What software you need

To develop ASP.NET applications, you can use any of the full editions of
Visual Studio 2012. These editions come with everything you need, including
Visual Studio, Visual Basic 2012, a built-in web server called IIS Express that’s
ideal for testing ASP.NET applications on your own computer, and a scaled-back
version of SQL Server called SQL Server Express LocalDB.

Introduction XXi

For a no-cost alternative to the commercial packages, you can download
Visual Studio Express 2012 for Web from Microsoft’s web site. It too provides all
of the items listed above, it’s a terrific product for learning how to develop
ASPNET applications, and both the applications and the skills that you develop
with it will work with any of the full editions of Visual Studio. For information
about installing these products, please refer to appendix A.

At this writing, a new release of Visual Studio called Visual Studio 2013 is
promised for later this year. Please note, however, that this release won’t have
any effect on the ASP.NET or Visual Basic skills that are presented in this book.
Instead, Visual Studio 2013 focuses on other types of enhancements. So whether
or not you upgrade to 2013, this book presents the skills that you need for
developing web applications at a professional level.

How our downloadable files can help you learn

If you go to our web site at www.murach.com, you can download all the files
that you need for getting the most from this book. These files include:

e all of the applications in this book
e the starting code for the exercises at the ends of the chapters
e the solutions to the chapter exercises

These files let you test, review, and copy the application code. In addition, if you
have any problems with the exercises, the solutions are there to help you over
the learning blocks. Even when you’ve come up with a solution that works, our
solution may show you a more elegant way to handle a problem. Here again,
appendix A shows you how to download and install these files.

3 companion books for ASP.NET programmers

As you read this book, you may discover that your Visual Basic skills aren’t
as strong as they ought to be. In that case, we recommend that you get a copy
of Murach’s Visual Basic 2012. It will get you up-to-speed with the language. It
will show you how to work with the most useful .NET classes. And as a bonus, it
will show you how to develop Windows Forms applications.

The second companion is Murach’s SQL Server for Developers. To start, it
shows you how to write SQL statements in all their variations so you can code
the right statements for your data sources. This often gives you the option of
having Microsoft SQL Server do more, which simplifies your application code.
Beyond that, this book shows you how to design and implement databases and
how to use features like stored procedures.

Another book that we recommend is Murach’s ADO.NET Database
Programming with Visual Basic. This book shows you how to write the ADO.
NET code that you need for using object data sources in your applications. It
gives you insight into what ADO.NET is doing as you use SQL data sources.
And it shows you how to work with XML, create reports, and use LINQ and the
Entity Framework.

XXii Introduction

2 books for every web developer

Although chapter 3 presents a subset of the HTML and CSS skills that you
need for ASP.NET programming, every web developer should have a full set of
these skills. For that, we recommend Murach’s HTMLS5 and CSS3. Beyond that,
every web programmer should know how to use JavaScript and jQuery for client-
side programming. For that, we recommend Murach’s JavaScript and jQuery.

If you’re new to these subjects, these books will get you started fast. If you
have experience with these subjects, these books make it easy for you to learn
new skills whenever you need them. And after you’ve used these books for
training, they become the best on-the-job references you’ve ever used.

Support materials for trainers and instructors

If you’re a corporate trainer or a college instructor who would like to use this
book for a course, we offer an Instructor’s CD that includes: (1) a complete set
of PowerPoint slides that you can use to review and reinforce the content of the
book; (2) instructional objectives that describe the skills a student should have
upon completion of each chapter; (3) test banks that test mastery of those skills;
(4) extra chapter exercises and projects that prove mastery; and (5) solutions to
the extra exercises and projects.

To learn more about this Instructor’s CD and to find out how to get it, please
go to our web site at www.murach.com and click on the Trainers or Instructors
link. Or, if you prefer, you can call Kelly at 1-800-221-5528 or send an email to
kelly@murach.com.

Please let us know how this book works for you

This is the fifth edition of our ASP.NET book. For each edition, we’ve added
the new features of ASP.NET, but we’ve also tried to improve the content and
structure of the book. This time, with help from a new author, we’ve tried to
improve both the technical excellence and educational effectiveness of every
chapter in this book.

Now that we’re done, we hope that we’ve succeeded in making this edition
our best one ever. So, if you have any comments, we would appreciate hearing
from you. If you like our book, please tell a friend. And good luck with your web

M by

Anne Boehm, Author Mary Delamater, Author
anne@murach.com mary@techknowsolve.com

The essence
of ASP.NET programming

This section presents the essential skills for designing, coding, and testing
ASP.NET web applications. After chapter 1 introduces you to the concepts
and terms that you need to know for ASP.NET programming, chapter 2
shows you how to develop a one-page web application with ASPNET. That
includes designing the form for the application and writing the Visual Basic
code that makes it work, and that gets you off to a fast start.

Next, chapter 3 shows you the right way to use HTMLS5 and CSS3 with
an ASP.NET application, and chapter 4 shows you how to develop a
two-page Shopping Cart application that gets product data from a database.
At that point, you’ll know how to build multi-page applications. Then,
chapter 5 shows you how test and debug ASP.NET applications.

When you finish all five chapters, you’ll be able to develop real-world
applications of your own. You’ll have a solid understanding of how
ASP.NET works. You’ll be ready for rapid progress as you read any of the
other sections of the book...and you can read those sections in whatever
sequence you prefer.

An introduction
to ASP.NET programming

This chapter introduces you to the basic concepts of web programming and
ASP.NET. Here, you’ll learn how web applications work and what software
you need for developing ASPNET web applications. You’ll also see how the
HTML code for a web form is coordinated with the Visual Basic code that
makes the web form work the way you want it to. When you finish this chapter,
you’ll have the background that you need for learning how to develop
ASPNET web applications with Visual Studio 2012.

An introduction to web applicationscccoevivieemrnnniieeenen
Two pages of a Shopping Cart application
The components of a web application..................
How static web pages are processed............c.....
How dynamic web pages are processed

An introduction to ASP.NET development.........cccccusiieeeren
Five ways to develop ASP.NET applications..........cccccecereriecnuencnne.
Three environments for developing ASP.NET applications
What about Visual Studio 20137ccceeerireenninecinneeeneeenens
The components of the NET Framework...........
How state is handled in ASP.NET applications

How an ASP.NET application works........cc.cceussamrrnses
The user interface for the Future Value application............cccceceeneee
The files used by the Future Value applicationcccoeceeeeveeuennene
The aspx code for the Default form...........ccoceevvevereneneneieeenieene
The Visual Basic code for the Default form.........c.cocceecnienicnecne.

Perspectiveccviicieerimiciims s s

Section 1 The essence of ASP.NET programming

An introduction to web applications

A web application consists of a set of web pages that are generated in
response to user requests. The Internet has many different types of web applica-
tions, such as search engines, online stores, auctions, news sites, social sites, and
games.

Two pages of a Shopping Cart application

Figure 1-1 shows two pages of an ASPNET web application. In this case,
the application is for an online store that lets users purchase Halloween products,
including costumes, masks, and decorations. In chapter 4, you’ll learn how to
build this application.

The first web page in this figure is used to display information about the
products that are available from the Halloween store. To select a product, you
use the drop-down list that’s below the banner at the top of the page. Then, the
page displays information about the product including a photo, short and long
descriptions, and the product’s price. The application gets the data for these
pages from a database.

If you enter a quantity in the text box near the bottom of the page and click
the Add to Cart button, the second page in this figure is displayed. This page
lists the contents of your shopping cart and provides several buttons that let you
remove items from the cart, clear the cart, return to the previous page to continue
shopping, or proceed to a checkout page.

Of course, the complete Halloween Superstore application also contains
other pages. For example, if you click the Check Out button in the second page,
you’re taken to a page that lets you enter the information for completing the
order. As you go through this book, you’ll learn how to add other pages to this
application.

Chapter I An introduction to ASP.NET programming

The Order page of a Shopping Cart application

X =)
|@ http://localhost:58362/ Order.aspx LP-BeX | 5y fod
& Chapter 4: Shopping Cart % u o -

Hanweeh Superst ore

r the little goblin in all of us

Please select a product |Flying Bats [=]

Flying Bats
Bats flying in front of moon
Bats flying in front of a full moon make for an eerie spectacle.

$69.99

Quantity 1]

[Add to Cart |[Goto Cart

L& —

The Cart page of a Shopping Cart application

X Y)
| @ http://localhost:58362/ Cart.aspx p-Bex| &
& Chapter 4: Shopping Cart % u o -

Hanweeh Superst ore

For the little goblin in all of us

Your shopping cart

Darth Vader Mask (1 at $19.99 each) | Remove ltem |
Flying Bats (1 at $69.99 each)

Continue Shopping] [Check Out

Figure 1-1 Two pages of a Shopping Cart application

Section 1 The essence of ASP.NET programming

The components of a web application

The diagram in figure 1-2 shows that web applications consist of clients and
a web server. The clients are the computers, tablets, and mobile devices that use
the web applications. They access the web pages through programs known as
web browsers. The web server holds the files that make up the pages of a web
application.

A network is a system that allows clients and servers to communicate. The
Internet is a large network that consists of many smaller networks. In a diagram
like the one in this figure, the “cloud” represents the network or Internet that
connects the clients and servers.

Networks can be categorized by size. A local area network (LAN) is a small
network of computers that are near each other and can communicate with each
other over short distances. Computers in a LAN are typically in the same build-
ing or adjacent buildings. This type of network is often called an intranet, and it
can run web applications that are used throughout a company.

In contrast, a wide area network (WAN) consists of multiple LANSs that
have been connected. To pass information from one client to another, a router
determines which network is closest to the destination and sends the information
over that network. A WAN can be owned privately by one company or it can be
shared by multiple companies.

An Internet service provider (ISP) is a company that owns a WAN that is
connected to the Internet. An ISP leases access to its network to companies that
need to be connected to the Internet. When you develop production web applica-
tions, you will often implement them through an ISP.

To access a web page from a browser, you can type a URL (Uniform
Resource Locator) into the browser’s address area and press Enter. The URL
starts with the protocol, which is usually HTTP. It is followed by the domain
name and the folder or directory path to the file that is requested. If the file name
is omitted in the URL, the web server looks for a default file in the specified
directory. The default files usually include index.html, index.htm, default.html,
and default.htm.

Chapter I An introduction to ASP.NET programming

The components of a web application

The components of an HTTP URL

http://www.modulemedia.com/ourwork/index.html
|]]] I

protocol domain name path file name

Description
e A web application consists of clients, a web server, and a network.

o The clients use programs known as web browsers to request web pages from the
web server. Today, the clients can be computers, smart phones, or tablets.

e The web server returns the pages that are requested to the browser.
e A network connects the clients to the web server.

e To request a page from a web server, the user can type the address of a web page,
called a URL, or Uniform Resource Locator, into the browser’s address area and
then press the Enter key.

e A URL consists of the protocol (usually, HTTP), domain name, path, and file
name. If you omit the file name, the web server will look for a file named
index.html, index.htm, default.html, or default.htm.

e Anintranet is a local area network (or LAN) that connects computers that are near
each other, usually within the same building.

o The Internet is a network that consists of many wide area networks (WANs), and
each of those consists of two or more LANs. Today, the Internet is often referred to
as “the Cloud”, which implies that you don’t have to understand how it works.

o An Internet service provider (ISP) owns a WAN that is connected to the Internet.

Figure 1-2 The components of a web application

Section 1 The essence of ASP.NET programming

How static web pages are processed

A static web page like the one in figure 1-3 is a web page that doesn’t
change each time it is requested. This type of web page is sent directly from the
web server to the web browser when the browser requests it. You can spot static
pages in a web browser by looking at the extension in the address bar. If the
extension is .htm or .html, the page is a static web page.

The diagram in this figure shows how a web server processes a request for
a static web page. This process begins when a client requests a web page in a
web browser. To do that, the user can either enter the URL of the page in the
browser’s address bar or click a link in the current page that specifies the next
page to load.

In either case, the web browser builds a request for the web page and sends
it to the web server. This request, known as an HTTP request, is formatted using
the HyperText Transfer Protocol (HT'TP), which lets the web server know which
file is being requested.

When the web server receives the HTTP request, it retrieves the requested
file from the disk drive. This file contains the HTML (HyperText Markup
Language) for the requested page. Then, the web server sends the HTML back
to the browser as part of an HTTP response.

When the browser receives the HT'TP response, it renders (translates) the
HTML into a web page that is displayed in the browser. Then, the user can view
the content. If the user requests another page, either by clicking a link or enter-
ing another URL into the browser’s address bar, the process begins again.

WWW.aI | itebooks.cogl

http://www.allitebooks.org

A static web page

Chapter 1

An introduction to ASP.NET programming

PN
l\;i//l | D http://www.murach.com/books/htm5/index.htm
[0 Murach's HTMLS and €553 %

MURACH

Murach's HTML5 and C3S3
by Zak Ruvalcaba and Anne Boehm

18 chapters, 635 pages, 254 figures
Published December 2011

ISBN 978-1-890774-55-0

murach’s
HTML5

Table of contents
Who this book is for

Book price: $54.50; SAVE 30%, now just $§38.15

eBook price: $44.50; SAVE 30%, now just $31.15

Book + eBook: $64.50; Best Value! SAVE 30%, now just $45.15
What people say
about this book

Related books

HTMLS and CSS53 are changing how web pages are developed in
some exciting new ways! The trick is learning how to use this
new functionality as quickly, as easily, and as sensibly as

possible.
FREE download of That's where this book comes in. Whether you're new to web
chapter 5 development...or whether you're an experienced web developer add ebook
srhn'e honn fructratod b tho closse nacn and asanina haloe in tho

How a web server processes a static web page

Description

e Hypertext Markup Language (HTML) is used to design the pages of a web
application.

o A static web page is built from an HTML document that’s stored on the web server
and doesn’t change. The file names for static web pages usually have .htm or .html
extensions.

e When the user requests a static web page, the browser sends an HTTP request to
the web server that includes the name of the file that’s being requested.

e When the web server receives the request, it retrieves the HTML for the web page
and sends it back to the browser as part of an HTTP response.

e When the browser receives the HTTP response, it renders the HTML into a web
page that is displayed in the browser.

Figure 1-3 How static web pages are processed

10

Section 1 The essence of ASP.NET programming

How dynamic web pages are processed

A dynamic web page like the one in figure 1-4 is a page that’s created by a
program on an application server. This program uses the data that’s sent with the
HTTP request to generate the HTML that’s returned to the server. In this exam-
ple, the HTTP request included the product code. Then, the program retrieved
the data for that product from a database server, including the path to the photo
for the product.

The diagram in this figure shows how a web server processes a dynamic web
page. The process begins when the user requests a page in a web browser. To do
that, the user can click a link that specifies the dynamic page to load or click a
button that submits a form that contains the data that the dynamic page should
process.

In either case, the web browser builds an HT'TP request and sends it to
the web server. This request includes whatever data the application needs for
processing the request. If, for example, the user has entered data into a form, that
data will be included in the HTTP request.

When the web server receives the HTTP request, the server examines the file
extension of the requested web page to identify the application server that should
process the request. The web server then forwards the request to that application
server.

Next, the application server retrieves the appropriate program. It also loads
any form data that the user submitted. Then, it executes the program. As the
program executes, it generates the HTML for the web page. If necessary, the
program will also request data from a database server and use that data as part of
the web page it is generating.

When the program is finished, the application server sends the dynamically
generated HTML back to the web server. Then, the web server sends the HTML
back to the browser in an HTTP response.

When the web browser receives the HTTP response, it renders the HTML
and displays the web page. Note, however, that the web browser has no way to
tell whether the HTML in the HTTP response was for a static page or a dynamic
page. It just renders the HTML.

When the page is displayed, the user can view the content. Then, when the
user requests another page, the process begins again. The process that begins
with the user requesting a web page and ends with the server sending a response
back to the client is called a round trip.

When you build ASP.NET applications, Internet Information Services (IIS)
is used for the web server, and ASP.NET is used for the application server.
You’re also likely to use Microsoft’s SQL Server for the DBMS (database
management system).

Chapter I An introduction to ASP.NET programming

A dynamic web page

2 Chapter 4: Shopping Cart x u

PS5
@|@ http://localhost58362/ Order.aspx LD~Bex | S5 5y foh

_Ha”-oweeh Su—per‘sfore

For the little goblin in all of us

Please select a product |Michael Head [=]

Michael Head

Mini Michael Meyers head

For classic horror lovers! The infamous Halloween murderer's
shrunken head is a perfect party prop.

$29.99

Quantity

[Add to Cart || Goto Cart

&

How a web server processes a dynamic web page

Description

A dynamic web page is a web page that’s generated by a program running on a server.

When a web server receives a request for a dynamic web page, it looks up the
extension of the requested file and passes the request to the appropriate application
server for processing.

When the application server receives the request, it runs the appropriate program.
Often, this program uses data that’s sent in the HTTP request to get related data
from a database management system (DBMS) running on a database server.

When the application server finishes processing the data, it generates the HTML for
a web page and returns it to the web server. Then, the web server returns the HTML
to the web browser as part of an HTTP response.

The process that starts when a client requests a page and ends when the page is
returned to the browser is called a round trip.

When you build ASP.NET applications, Internet Information Services (IIS) is used
for the web server and ASP.NET is used for the application server.

Figure 1-4 How dynamic web pages are processed

11

12

Section 1 The essence of ASP.NET programming

An introduction
to ASP.NET development

In the topics that follow, you’ll be introduced to the five ways to develop
ASPNET applications, the three types of development environments you can
work in, and more.

Five ways to develop ASP.NET applications

Figure 1-5 summarizes the five ways that you can develop ASPNET applica-
tions when you use Visual Studio 2012. That is likely to be four more than you
need.

ASPNET Web Forms were introduced in 2002. They were a replacement for
ASP (Active Server Pages), which is now called Classic ASP. In contrast to ASP,
ASP.NET Web Forms let you work with a design model like the one for
Windows Forms.

The primary focus of ASPNET is Rapid Application Development (RAD).
ASP.NET accomplishes this by letting web developers work with server
controls on a design surface. Then, ASPNET converts the server controls to
HTML. Today, 70% or more of ASPNET development is done with Web Forms,
and that’s how you’ll learn to develop web applications in this book.

In recent years, though, Microsoft added ASPNET MVC to its web devel-
opment offerings. It provides a way to implement the Model-View-Controller
(MVC) pattern that offers improved separation of concerns and unit testing.

Separation of concerns refers to breaking an application into components
so each one deals with a single concern. For example, one component can be
responsible for communicating with the database, another for presenting infor-
mation to users, and so on. This enables code reuse, limits the number of places
a change needs to be made, and lets more than one person work on an applica-
tion at the same time.

Unit testing refers to a process in which blocks of code are used to test
whether other blocks of code do what they’re supposed to do. This leads to more
thorough testing because the unit tests can be run each time a change is made to
the code.

Because the benefits of ASPNET MVC are compelling, about 30% of
ASP.NET web development is done with MVC. On the other hand, MVC devel-
opment is more difficult than Web Forms development, and MVC isn’t designed
for Rapid Application Development. As a result, MVC is used primarily for
large, commercial applications that are developed by teams, and Web Forms are
used for most other applications.

The other three ways to develop ASP.NET applications that are presented in
this figure have limited use. That’s why they aren’t presented in this book.

Chapter I An introduction to ASP.NET programming

The two main ASP.NET technologies

ASP.NET Web Forms
ASPNET MVC

Three other ASP.NET technologies

ASP.NET Web Pages with Razor
ASP.NET Dynamic Data Entities
ASP.NET Reports Web Site

What the technologies do

ASP.NET Description

Web Forms A development environment similar to Windows Forms, with controls on
a design surface. Its focus is on Rapid Application Development (RAD).

MVC A development environment similar to PHP or classic ASP. It uses the
Model-View-Controller (MVC) design pattern and the Razor templating
engine for in-line data binding. Its focus is on separation of concerns and
unit testing, and it gives the developer complete control over the HTML.

Web Pages with Razor A version of Web Forms that uses the Razor templating engine for in-line
data binding without having to use the MVC design pattern. It is used in
simple scenarios.

Dynamic Data Entities A version of Web Forms that uses Entity Framework and Routing to
dynamically generate data-driven web sites. It is used in simple scenarios.

Reports Web Site A Web Forms site that includes a report.

Description

Microsoft has developed several ASPNET technologies over the years. The two
most popular are ASPNET Web Forms and ASPNET MVC.

Web Forms is the oldest and most established technology. It provides for RAD
(Rapid Application Development) by letting developers build web pages by
working with controls on a design surface.

MVC (Model-View-Controller) is relatively new to the NET family. It addresses
perceived weaknesses in Web Forms, such as inadequate separation of concerns
and the difficulty of unit testing.

Web Pages with Razor, Dynamic Data Entities, and Reports Web Sites are recent
additions to ASP.NET. Each has a narrow area of applicability.

Because 70% or more of ASP.NET web development is done with Web Forms,
that’s what this book shows you how to do.

Because most of the other 30% of ASP.NET web development is done with MVC,
the last chapter in this book introduces that approach. Then, you can decide
whether it is something that you need to learn for the work that you do.

Figure 1-5 Five ways to develop ASP.NET applications

13

14 Section 1 The essence of ASP.NET programming

Three environments
for developing ASP.NET applications

Figure 1-6 shows three development environments for ASPNET applica-
tions. In a standalone environment, a single computer serves as both the client
and the server. In an intranet environment, the clients are connected to the server
over an intranet. And in an Internet environment, the clients are connected to the
server over an Internet.

In all three environments, the clients need an operating system like Windows
7 or 8 that supports ASPNET 4.5 development, the .NET Framework 4.5, and
Visual Studio 2012. Since the .NET Framework 4.5 comes with Windows 7 and
8 and also with Visual Studio 2012, you don’t need to install it separately.

For the server, you need to install IIS as the application server and a database
management system like SQL Server. In a standalone environment, you're likely
to use IIS Express and SQL Server Express LocalDB, which come with Visual
Studio 2012. But in an intranet or Internet environment, you’re likely to use a
full version of IIS and SQL Server.

In an intranet environment, the server also requires either FPSE (FrontPage
Server Extensions) or WebDAV (Web-based Distributed Authoring and
Versioning), depending on which version of 1IS the server uses. FPSE and
WebDAYV provide the services that Visual Studio 2012 uses to communicate with
the web site on the server. Normally, though, you don’t have to worry about this
because the network manager sets this up.

In an Internet environment, the server also requires an FTP server, which
is used to copy the files in a web site between the client computer and the
server. The FTP server uses File Transfer Protocol (FTP) to perform the copy
operations, and IIS can be configured to act as an FTP server as well as a web
server. Here again, you usually don’t have to worry about this because the server
manager sets this up.

The table in this figure shows that Visual Studio 2012 is available in several
editions. Most professional developers will work with either Professional or
Premium. But large development teams may use Ultimate, which includes
features that provide for specialized development roles such as architects,
developers, and testers.

A free alternative is Visual Studio Express 2012 for Web. This edition is
designed for individual developers, students, and hobbyists, and almost every-
thing that you’ll learn in this book will work with the Express edition. Whenever
something doesn’t work or works differently in the Express edition, the related
figure will note the differences.

If you’re learning on your own, you will most likely work in a standalone
environment using Visual Studio 2012 Express for Web, IIS Express, and SQL
Server Express LocalDB, which are all free. If you’re working in a computer lab
for a course, you will most likely work in an intranet environment, but it could
also be an Internet environment. To install the client software that you’ll need for
any of these environments, you can follow the procedures in appendix A.

Chapter I An introduction to ASP.NET programming 15

Standalone development

Intranet development

Internet development

The four editions of Visual Studio 2012

Edition Description

Visual Studio Express 2012 for Web Free edition for web development in Visual Basic or C#.
Visual Studio Professional 2012 Lets you build Windows, web, mobile, and Office apps.

Visual Studio Premium 2012 For individuals or teams, it includes basic tools for testing,
database deployment, and change and lifecycle management.

Visual Studio Ultimate 2012 For teams, it includes full testing, modeling, database, and
lifecycle management tools.

Description
e When you use standalone development, a single computer serves as client and
server.

e When you use intranet development, a client communicates with a server over a
local area network (LAN). For this, the server requires either FPSE (FrontPage
Server Extensions) or WebDAV (Web-based Distributed Authoring and Versioning).

e When you use Internet development, a client communicates with a server over
the Internet. For this, the server requires an FTP server. The FTP server uses File
Transfer Protocol (FTP) to transfer files between the client computer and the
server.

Figure 1-6 Three environments for developing ASP.NET applications

16 Section 1 The essence of ASP.NET programming

What about Visual Studio 2013?

At this writing, a new release of Visual Studio called Visual Studio 2013
is promised for later this year. Note, however, that this release won’t have any
effect on the ASP.NET or Visual Basic skills that are presented in this book.
Those are the skills that you need for developing Web Forms applications at a
professional level, and they are going to work the same way with Visual Studio
2013.

Instead of enhancements to ASP.NET or Visual Basic, Visual Studio 2013
focuses on other types of enhancements. After Visual Studio 2013 is released, we
will evaluate these enhancements to see whether any of them affect this book. If
so, we will post that information to the FAQs for this book on our web site.

The components of the .NET Framework

Because you should have a basic understanding of what the .NET
Framework does as you develop applications, figure 1-7 summarizes its major
components. As you can see, this framework is divided into two main compo-
nents, the .NET Framework Class Library and the Common Language Runtime,
and these components provide a common set of services for applications written
in .NET languages like Visual Basic or C#.

The .NET Framework Class Library consists of classes that provide many of
the functions that you need for developing .NET applications. For instance, the
ASPNET classes are used for developing ASP.NET web applications, and the
Windows Forms classes are used for developing standard Windows applications.
The other .NET classes let you work with databases, manage security, access
files, and perform many other functions.

The Common Language Runtime, or CLR, provides the services that are
needed for executing any application that’s developed with one of the .NET
languages. This is possible because all of the .NET languages compile to a
common Intermediate Language (or IL), which is stored in an assembly.

The CLR also provides the Common Type System that defines the data types
that are used by all the .NET languages. That way, you can use the same data
types no matter which .NET language you’re using to develop your applications.

Chapter I An introduction to ASP.NET programming

The .NET Framework

.NET Applications

Visual Basic Visual C# Visual C++ Visual F#

.NET Framework v

.NET Framework Class Library

Windows Forms classes ASP.NET classes Other classes

Common Language Runtime

Managed applications Common Type System Intermediate Language

Operating System and Hardware

Windows 7 Windows 8 Other Operating Systems

Description

.NET applications work by using services of the .NET Framework. The NET
Framework, in turn, accesses the operating system and computer hardware.

The .NET Framework consists of two main components: the .NET Framework
Class Library and the Common Language Runtime.

The .NET Framework Class Library provides pre-written code in the form of
classes that are available to all of the .NET programming languages.

The Common Language Runtime, or CLR, manages the execution of .NET
programs by coordinating essential functions such as memory management and
security.

The Common Type System is a component of the CLR that ensures that all . NET
applications use the same data types regardless of what programming languages are
used.

All .NET programs are compiled into Microsoft Intermediate Language (MSIL) or
just Intermediate Language (IL), which is stored in an assembly. This assembly is
then run by the CLR.

Figure 1-7 The components of the .NET Framework

17

18 Section 1 The essence of ASP.NET programming

How state is handled in ASP.NET applications

Although it hasn’t been mentioned yet, a web application ends after it gener-
ates a web page. That means that any data maintained by the application, such
as variables or control properties, is lost. In other words, HTTP doesn’t maintain
the state of the application. This is illustrated in figure 1-8.

Here, you can see that a browser on a client requests a page from a web
server. After the server processes the request and returns the page to the browser,
it drops the connection. Then, if the browser makes additional requests, the
server has no way to associate the browser with its previous requests. Because of
that, HTTP is known as a stateless protocol.

Although HTTP doesn’t maintain state, ASPNET provides several ways to
do that, as summarized in this figure. First, you can use view state to maintain
the values of server control properties. For example, you can use view state to
preserve the values of the items in a drop-down list. Because ASP.NET imple-
ments view state by default, you don’t need to write any special code to use it.

Second, you can use session state to maintain data between executions of
an application. To make this work, ASP.NET creates a session state object that
is kept on the server whenever a user starts a new session. This session object
contains a unique session ID, and this ID is sent back and forth between the
server and the browser each time the user requests a page. Then, when the server
receives a new request from a user, it can retrieve the right session object for
that user. In the code for your web forms, you can add data items to the session
object so their previous values are available each time a web form is executed.

Third, you can use an application state object to save application state data,
which applies to all of the users of an application. For example, you can use
application state to maintain global counters or to maintain a list of the users
who are currently logged on to an application.

Fourth, you can use server-side caching to save data. This is similar to
application state in that the data saved in the cache applies to all users of an
application. However, caching is more flexible than application state because
you have control over how long the data is retained.

Last, you can use the profile feature to keep track of user data. Although
a profile is similar to a session state object, it persists between user sessions
because it is stored in a database. Because profiles are used infrequently, they
aren’t presented in this book, but you will learn how to use the other four ways
to handle state.

Chapter I An introduction to ASP.NET programming

Why state is difficult to track in a web application

Client Server
First HTTP request:

The browser requests a page.
Browser > Web server

First HTTP response:
The server returns the
requested page and the
application ends.
Browser Web server
Next HTTP request:

The browser requests another
page. The server has no way
to associate the browser with

its previous request.
Browser Web server

Concepts

State refers to the current status of the properties, variables, and other data main-
tained by an application for a single user. The application must maintain a separate
state for each user currently accessing the application.

HTTP is a stateless protocol. That means that it doesn’t keep track of state between
round trips. Once a browser makes a request and receives a response, the applica-
tion terminates and its state is lost.

Five ASP.NET features for maintaining state

Feature Description
View state Implemented by default, so no special coding is required. See chapter 2.
Session state Uses a session state object that is created when a user starts a new session.

Application state Uses an application state object that is created when an application starts.
The values of this object are available to all users of the application until
the application ends. See chapter 8.

Server-side caching Like application state, the values in a server-side cache can be shared
across an application. Unlike application state, a cache item is maintained
only until its expiration time is reached. See chapter 8.

The values in this object are available until the session ends. See chapter 4.

Profiles One profile can be maintained for each user of an application. The data in
a profile is stored in a database and maintained from one user session to
another.
Description

ASP.NET provides five ways to deal with the stateless protocol of a web applica-
tion. The two that you’ll use the most are view state and session state.

Figure 1-8 How state is handled in ASP.NET applications

19

20

Section 1 The essence of ASP.NET programming

How an ASP.NET application works

With that as background, you’re ready to learn more about how an
ASP.NET application works. That’s why this topic presents a one-page Future
Value application.

The user interface
for the Future Value application

Figure 1-9 presents the user interface for a one-page application called the
Future Value application. In ASP.NET, pages like this are called web forms. To
make these pages work, each form contains ASP.NET server controls that let the
user interact with the page. For instance, this page contains these server controls:
a drop-down list, two text boxes, a label that displays the future value, and two
buttons. It also uses validation controls that check the user entries for validity.

To use the Future Value application, the user selects a monthly investment
amount from the drop-down list, enters data into the two text boxes, and clicks
the Calculate button. Then, if the data is valid, the future value is displayed.
Otherwise, error messages are displayed below the buttons. To clear the controls,
the user can click the Clear button.

The processing for the Calculate and Clear buttons is done on the server.
That means that when either button is clicked, the form is submitted to the
server, the Visual Basic code on the server processes the data in the form, and the
form is returned to the browser. In other words, clicking either button leads to a
round trip.

For example, when the Calculate button is clicked, the Visual Basic code
on the server calculates the future value, and the form is returned to the browser
with the future value displayed. That’s a round trip. Similarly, when the Clear
button is clicked, the Visual Basic code on the server resets the value in the
drop-down list to 50 and clears the text boxes and the Future Value label. Then,
the form is returned to the browser. That’s also a round trip.

In some cases, though, the form isn’t submitted to the browser when the
Calculate button is clicked. That happens when JavaScript is enabled in the
user’s browser and one or more entries are invalid. Then, the JavaScript code that
has been generated from the validation controls runs in the browser, detects the
invalid entries, and displays appropriate error messages...without submitting the
form to the server. That saves a round trip.

What if JavaScript isn’t enabled in the user’s browser? Then, the form is
submitted to the server, and the server checks the entries for validity. That too is
done by the code that’s generated by the validation controls. In this example, that
means a round trip occurs each time the user clicks the Calculate button if Java-
Script is disabled. Fortunately, though, most browsers have JavaScript enabled.

Chapter 1

An introduction to ASP.NET programming

The Future Value application after the user clicks the Calculate button

=)

P-BeX|)iy s

AP
I\',_'{/" @ http://localhost:65381/Ch01 FutureValue/Default.aspx
@& Chapter1: Future Value x

MURACH

401K Future Value Calculator

Monthly investment |50 [=]
Annual interest rate 5.0

Number of years 10

Future value $8,234.94

l Calculate] I Clear]

-

1,

L

o)

The Future Value application with error messages displayed

m@g

o-2ex| s &

(5 || @ http://localhost:65381/Ch01 FutureValue/Default.aspx
@ Chapter 1: Future Value x

|
MURACH

401K Future Value Calculator

Monthly investment |50 [=]
Annual interest rate 55
Number of years

Future value

Clear

Interest rate must range from 1 to 20. Number of years 1s required.

N

Description

e To calculate the Future Value of a monthly investment, the user selects a value in the
drop-down list, enters values into the two text boxes, and clicks the Calculate button.

e If JavaScript is enabled in the browser, it is used to check the user’s entries for
validity. If the entries are valid, the form is submitted to the server, the future value
is calculated, and the page is returned to the browser with the future value displayed.
If the entries are invalid, error messages are displayed by the JavaScript and the

form isn’t submitted.

o If the user clicks on the Clear button, the form is submitted to the server, the
drop-down list is reset to 50, the text boxes are cleared, and the page is returned to

the browser.

e [If JavaScript isn’t enabled in the browser, the page is always submitted when the user
clicks the Calculate button and the server does the validity checking.

Figure 1-9 The Future Value application

21

22 Section 1 The essence of ASP.NET programming

The files used by the Future Value application

Figure 1-10 presents the Future Value form as it appears in the Web Forms
Designer that you use when you develop web forms with Visual Studio 2012. In
chapter 2, you’ll learn how to use this Designer, but for now just try to get the
big picture of how this form works.

If you look closely at the Designer window in the middle of Visual Studio,
you can see the table that’s used for this form. You can also see the server
controls: the drop-down list that’s used to select a monthly investment amount,
text boxes for interest rate and number of years, a label for displaying the result
of the future value calculation, and Calculate and Clear buttons.

If you look at the Solution Explorer to the right of the Designer window, you
can see the folders and files that this application requires. These are summarized
in the table in this figure.

The first two files in the table are for the web form. The file with aspx as the
extension (Default.aspx) contains the code that represents the design of the form.
This code consists of standard HTML code plus asp tags that define the server
controls. We refer to this as aspx code, because the file that contains the code has
the aspx extension.

The file with aspx.vb as the extension (Default.aspx.vb) contains the Visual
Basic code that controls the operation of the form. The vb file extension indi-
cates that it is a Visual Basic file. This is called a code-behind file because it
provides the code behind the web form.

The third file in the table in this figure is the web.config file. It contains
configuration information like which version of the .NET Framework is being
used.

The fourth file is the jpg file for the logo that’s displayed at the top of the
form. This file is in the Images folder that’s shown in the Solution Explorer.

These four files and the Images folder are all that this one-page application
requires. However, two other folders are often used for Web Forms applications.
An App_Code folder is used for user classes, and an App_Data folder is used
for databases or files. You’ll see these used in the Shopping Cart application in
chapter 4.

Before I go on, you should realize that the aspx and Visual Basic code for a
web form doesn’t have to be in separate files. However, by keeping the aspx and
Visual Basic code in separate files, you separate the presentation elements of a
page from its Visual Basic coding. This is one way that ASPNET Web Forms
provides for separation of concerns.

Chapter 1

An introduction to ASP.NET programming

The Future Value form in Design view of Visual Studio 2012

This item does not supp

M ChOlFutureValue - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = o x
FILE EDIT VIEW WEBSITE BUILD DEBUG TEAM SQL FORMAT TOOLS TEST ANALYZE WINDOW HELP
o - B - (S b Intemet Explorer - Debug - S _ - | (NewInline Style (Mone) (Default - | =
Toolbex e v @3 [Defaultaspy 8 X Al Solution Explorer an
i 5
Search Toolbox P~ :|d|v| - @ e-eqd
H m
4 Standard = D Search Solution Explorer (Ctrl- 2 =
ko Pomter Mt : %7 Solution 'ChO1FutureValue' (L
: / olution utureValue
9 AdRotator i LTRACH !
|
i= BulletedList : 4 & Images
Butien 401K Future Value Calculator Ed Murachlogops
Calendar H 4 @) Default.aspx
CheckBox . ; 1 Default.aspxvb
onthly investment I Unbound vI
8= CheckBoxlist thty : y 1 Web.config
= DropDownList Annual interest rate IB.U
3 FileUpload |10
HE HiddenField [IbIFutureValue]
A Hyperlink
El Image
= Calculate | Clear |
B ImageButton
El ImageMap
A Label {Interest rate is required. Interest rate mmst range from 1 to 20.
T gNu.mber of years is required. Years must range from 1 to 45. .
EE ListBox 4 »
IE_‘ Literal - & Split | © Source | E‘<html>”<body>H<fmm#fnrm1> <div> |E| 4 »

ort previewing

The files in the Future Value application

Folder File Description
(root) Default.aspx The aspx file for the default page.
(root) Default.aspx.vb The code-behind file for the default page.
(root) web.config An XML file that contains configuration data for the
application like which .NET Framework is being used.
Images MurachLogo.jpg The logo image for the form.
Description

e For each web form in an application, ASPNET 4.5 keeps two files. The file with
the aspx extension holds the HTML code and the asp tags for the server controls.
The file with the aspx.cs extension is the code-behind file that contains the VB code
for the form.

e When you use Visual Studio to build an ASP.NET application, the name of the first
form is Default.aspx and its code-behind file is Default.aspx.vb.

e Every ASPNET application also includes a web.config file with configuration data.
o The Future Value application also contains a folder named Images that contains the
jpg file for the logo that’s displayed at the top of the page.

e Two other folders that you’ll find in many ASP.NET applications are an App_Code
folder for user classes, and an App_Data folder for databases or files.

Figure 1-10 The Future Value application in Visual Studio 2012

23

24 Section 1 The essence of ASP.NET programming

The aspx code for the Default form

To give you some idea of how aspx code works, figure 1-11 shows the aspx
code for the Default form. Most of this code is generated by Visual Studio as you
use the Web Forms Designer to design a form, so you don’t have to code it all
yourself. But you should understand how this code works.

The first set of tags for each web form defines a page directive that provides
four attributes. The Language attribute says that the language is Visual Basic.
The AutoEventWireup attribute says that the event handlers must specify the
events that they’re handling. The CodeFile attribute says that the code-behind
file is named Default.aspx.vb. And the Inherits attribute specifies the class named
_Default.

The second set of tags defines a DOCTYPE declaration, which tells the
browser that HTMLS will be used for this page. If you aren’t already using
HTMLS, you can learn more about it in chapter 3.

The html tags mark the beginning and end of the HTML document, and the
head tags define the head section for the document. Here, the title tags define the
title that is displayed in the title bar or tab of the browser when the page is run.
In addition, the style tags define the styles used by the page, which aren’t shown
in this example.

The content of the web page itself is defined within the div tags, which are
within the body and form tags. Notice that the first form tag includes a Runat
attribute that’s assigned a value of “server.” That indicates that the form will be
processed on the server by ASP.NET. This attribute is required for all ASPNET
web forms and all ASP.NET server controls.

The asp tags within the div tags define the server controls that appear on the
page. Since these controls include the Runat attribute with a value of “server,”
they will be processed on the server by ASP.NET. The last phase of this process-
ing is generating the HTML for the controls so the page can be displayed by a
browser.

The last two asp tags are for the Calculate and Clear buttons. As you will
see, the Visual Basic code for this form includes event handlers for the click
events of these buttons.

The aspx code for the Clear button includes a CausesValidation attribute.
This attribute tells the page whether to fire the validation event used by the vali-
dation controls. Setting this attribute to False for the Clear button means that the
data validation controls will do their work when you click the Calculate button,
but not when you click the Clear button.

Within the form, an HTML table is used to format the server controls. Here,
the first four rows include the server controls that accept the user entries and
display the future value. The fifth row provides vertical spacing. And the last row
includes the Calculate and Clear button controls.

After the table are four field validator controls that aren’t shown. These are
server controls that provide the validity checking and display the error messages,
both in the browser with JavaScript and on the server with Visual Basic. In the
next chapter, you’ll learn how to build this web form with its controls.

Chapter I An introduction to ASP.NET programming

The aspx file for the Default form (Default.aspx)

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html>

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head id="Headl" runat="server">
<title>Chapter 1l: Future Value</title>
<style><!=-- CSS code for the generated styles --></style>
</head>
<body>
<form id="forml" runat="server">
<div>
<br
<hl style="color: #0000FF">401K Future Value Calculator</hl>
<table class="style2">
<tr>
<td class="style3">Monthly investment</td>
<td><asp:DropDownList ID="ddlMonthlyInvestment"
runat="server" Width="106px"></asp:DropDownList></td>
</tr>
<tr>
<td class="style3">Annual interest rate</td>
<td><asp:TextBox ID="txtInterestRate" runat="server"
Width="100px">6.0</asp:TextBox></td>
</tr>
<tr>
<td class="style3">Number of years</td>
<td><asp:TextBox ID="txtYears" runat="server"
Width="100px">10</asp:TextBox></td>
</tr>
<tr>
<td class="style3">Future value</td>
<td><asp:Label ID="lblFutureValue" runat="server"
Font-Bold="True"></asp:Label></td>
</tr>
<tr>
<td class="style3"> </td>
<td> </td>
</tr>
<tr>
<td class="style3"><asp:Button ID="btnCalculate"
runat="server" Text="Calculate" Width="100px" /></td>
<td><asp:Button ID="btnClear" runat="server"
Text="Clear" Width="100px"
CausesValidation="False" /></td>
</tr>
</table>

<!-- aspx code for the field validators -->
</div>
</form>
</body>
</html>

Figure 1-11 The aspx code for the Default form of the Future Value application

/>

25

26 Section 1 The essence of ASP.NET programming

The Visual Basic code for the Default form

To give you some idea of how the Visual Basic code for a form works, figure
1-12 presents the code-behind file for the Default form. Here, the highlighted
code is specific to ASP.NET. The other code is standard Visual Basic code.

The first highlighted code is a class declaration. Usually, a form class will
have the same name as the form, but ASP.NET uses _Default (with a leading
underscore) as the class name for the Default form.

Because the class declaration uses the Partial keyword, this is a partial class
that must be combined with another partial class when it’s compiled. In fact,
the code in this partial Visual Basic class is combined with the compiled code
in its aspx file. The rest of this class declaration indicates that this class inherits
the System.Web. UL Page class, which is the .NET class that provides the basic
functionality of ASP.NET pages.

Each time this web form is requested, ASP.NET initializes it and raises the
Load event, which is handled by the Page_Load procedure. You will often see a
page property called IsPostBack used in the Page_I.oad procedure to determine
whether or not a page is being posted back. If the value is False, the page is
being loaded for the first time.

In this figure, the Page_L.oad method checks the IsPostBack property to
see if it is False. If it is, the page is being loaded for the first time so the code
executes a loop that puts a range of dollar amounts into the drop-down list for
monthly investment. Otherwise, nothing is done by this procedure.

Another page property that you will often use is called IsValid. This property
indicates whether the page’s validation controls detect invalid data in the server
controls when the Calculate button is clicked. This property is used in the
btnCalculate_Click procedure that is executed when the user clicks on the
Calculate button, which starts a postback.

The btnCalculate_Click procedure starts by checking the IsValid property to
see if the data is valid. If it is, this procedure retrieves the values from the server
controls, converts them to the proper data types, and sends them to the
CalculateFutureValue procedure for processing. When that procedure returns the
future value, the btnCalculate_Click procedure formats the result as currency
and puts it in the future value label. Then, the form is returned to the browser.

The btnClear_Click procedure is executed when the user clicks on the
Clear button. This too starts a postback. Then, after the Page_I.oad procedure is
executed, the btnClear_Click procedure clears the server controls by setting the
index of the drop-down list to -1 and setting the text box and label properties to
empty strings.

Since this book assumes that you already know how to use Visual Basic,
you should be able to follow the Visual Basic code in this figure. The new
points to note are (1) the Page_I.oad procedure is executed each time the page
is requested, (2) the IsPostBack property tells whether a page is being requested
for the first time, and (3) the IsValid property tells whether the validator controls
have detected invalid data.

Chapter I An introduction to ASP.NET programming

The code-behind file for the Default form (Default.aspx.cs)

Partial Class _Default
Inherits System.Web.UI.Page

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
If Not IsPostBack Then
For i As Integer = 50 To 500 Step 50
ddlMonthlyInvestment.Items.Add(i.ToString)
Next
End If
End Sub

Protected Sub btnCalculate_Click(sender As Object,
e As EventArgs) Handles btnCalculate.Click
If IsValid Then
Dim monthlyInvestment As Integer =
CInt (ddlMonthlyInvestment.SelectedValue)
Dim yearlyInterestRate As Decimal = CDec(txtInterestRate.Text)
Dim years As Integer = CInt(txtYears.Text)

Dim futureValue As Decimal =
Me.CalculateFutureValue (monthlyInvestment,yearlyInterestRate,
years)

lblFuturevValue.Text = FormatCurrency(futurevalue)
End If
End Sub

Protected Function CalculateFutureValue(monthlyInvestment As Integer,
yearlyInterestRate As Decimal,
years As Integer) As Decimal

Dim months As Integer = years * 12
Dim monthlyInterestRate As Decimal = yearlyInterestRate / 12 / 100
Dim futurevValue As Decimal = 0

For i As Integer = 0 To months - 1
futurevalue = (futurevValue + monthlyInvestment) *
(1 + monthlyInterestRate)
Next

Return futurevValue
End Function

Protected Sub btnClear_Click(sender As Object,
e As EventArgs) Handles btnClear.Click
ddlMonthlyInvestment.SelectedIndex = -1
txtInterestRate.Text = ""
txtYears.Text = ""
1blFuturevalue.Text = ""
End Sub

End Class

Figure 1-12 The C# code for the Default form of the Future Value application

27

28 Section 1 The essence of ASP.NET programming

Perspective

Now that you’ve read this chapter, you should have a general understanding
of how ASP.NET applications work and what software you need for developing
these applications. With that as background, you’re ready to learn how to
develop ASP.NET applications of your own. You’ll start that process in the next

chapter.
Terms
web application Web Forms
web page ASP (Active Server Pages)
client classic ASP
web browser RAD (Rapid Application
web server Development)
network MVC (Model-View-Controller)
intranet separation of concerns
LAN (local area network) unit testing
Internet FPSE (FrontPage Server Extensions)
WAN (wide area network) WebDAV (Web-based Distributed
ISP (Internet service provider) Authoring and Viewing)
URL (Uniform Resource Locator) FTP server
protocol FTP (File Transfer Protocol)
domain name .NET Framework
path .NET Framework Class Library
static web page CLR (Common Language Runtime)
HTML (Hypertext Markup Language) IL (Intermediate Language)
HTTP request compile
HTTP (HyperText Transfer Protocol) assembly
HTTP response state
render HTML in the browser stateless protocol
dynamic web page view state
application server session state
database server web form
DBMS (database management server control
system) aspx code
round trip code-behind file
IIS (Internet Information Services) page directive
Summary

o A web application consists of a set of web pages that are run by clients, a
web server, and a network. Clients use web browsers to request web pages
from the web server. The web server returns the requested pages.

WWW.aI | itebooks.cogl

http://www.allitebooks.org

Chapter I An introduction to ASP.NET programming 29

A local area network (LAN) connects computers that are near to each other.
This is often called an intranet. In contrast, the Internet consists of many
wide area networks (WANS).

One way to access a web page is to type a URL (Uniform Resource Locator)
into the address area of a browser and press Enter. A URL consists of the
protocol (usually, HTTP), domain name, path, and file name.

To request a web page, the web browser sends an HTTP request to the web
server. Then, the web server gets the HTML for the requested page and
sends it back to the browser in an HTTP response. Last, the browser renders
the HTML into a web page.

A static web page is a page that is the same each time it’s retrieved. In
contrast, the HTML for a dynamic web page is generated by a server-side
program, so its HTML can change from one request to another. Either way,
HTML is returned to the browser.

For ASP.NET applications, the web server is usually Internet Information
Services (I11S) and ASP.NET is the application server. The web server also
requires a database management system (DBMS) like SQL Server.

Today, the most popular way to develop ASP.NET applications is to use Web
Forms. 1t encourages Rapid Application Development (RAD), and it accounts
for about 70% of ASP.NET development.

The other popular way to develop ASP.NET applications is to use ASP.NET
MVC (Model-View-Controller). It provides better separation of concerns and
unit testing, and it accounts for about 30% of ASP.NET development.

To develop ASP.NET applications on your own computer, you need
Windows 7 or later, Microsoft .NET Framework 4.5, Visual Studio 2012,
IIS Express, a DBMS like SQL Server Express LocalDB, and one or more
browsers.

When you develop ASP.NET applications on an intranet or the Internet, IIS
is on the web server and the DBMS is on the web server or a database server
so the client doesn’t need them.

The .NET Framework provides the services that ASP.NET applications use
to access the operating system and computer hardware. Its main components
are the Class Library and the Common Language Runtime (CLR).

HTTP is called a stateless protocol because it doesn’t keep track of the data
(state) between round trips. However, ASP.NET provides five ways to keep
track of state including view state and session state.

The pages in an ASP.NET application are called web forms. They contain
server controls like drop-down lists, text boxes, labels, and buttons.

Each page in an ASP.NET application consists of an aspx file for the HTML
and server controls and an aspx.vb file for the Visual Basic in the
code-behind file.

Before a web form can be run, its aspx and Visual Basic files are compiled
into an assembly that consists of Intermediate Language (IL) that is run by
the CLR.

30 Section 1 The essence of ASP.NET programming

Before you do the exercises for this book...

Before you do the exercises for this book, you should install the software that’s
required for this book as well as the downloadable applications for this book.
Appendix A shows how to do that.

Exercise 1-1 Use Visual Studio to run
the Future Value application

In this exercise, you’ll run the Future Value application. This will test whether
you’ve successfully installed the software and applications for this book.

Start Visual Studio and open the Future Value application
1. Start Visual Studio.

2. Use the FILE>Open—>Web Site command (or the FILE->Open Web Site
command if you're using Visual Studio Express) to open the web site at this
location:

C:\aspnet45_vb\Ex0lFutureValue
In the dialog box that’s displayed, just navigate to the Ex01FutureValue folder
and click the Open button.

Run the Future Value application
3. Press F5 to run the application. That should display the Future Value form in
Visual Studio’s default web browser.

4. Without changing the values that are displayed, click the Calculate button.
This starts a postback that returns the page with the result of the calculation.

Click the Clear button to clear the values from the text box controls.

Click the Calculate button again. Then, note the error messages that are
displayed. These messages were generated by the validation controls.

7. Click the Clear button again. Note that the error messages go away. That’s
because the Clear button has its CausesValidation attribute set to False.

8. Select an investment amount from the drop-down list, enter an annual interest
rate greater than 20 and a number of years greater than 45. Then, click the
Calculate button to see the error messages that are displayed.

9. Change the interest rate to 5 and the number of years to 30. Then, Click the
Calculate button to see that the future value is displayed, which means the
entries were valid.

10. Experiment on your own if you like. When you’re through, use the
FILE->Close Solution command to close the web site, and click on the No
button when the ensuing dialog box asks whether you want to save a file.
Then, close Visual Studio.

2

How to develop a one-page
web application

In the last chapter, you were introduced to the basic concepts of web
programming and ASP.NET. Now, this chapter shows you how to use Visual
Studio to develop the Future Value application that you reviewed in the last
chapter. If you’ve used Visual Studio to develop Windows applications, you’ll
see that you develop ASP.NET applications in much the same way. As a result,
you should be able to move quickly through this chapter.

How to work with ASP.NET web sitesccccccimniniininisiinnes 32
How t0 Start @ NEW Web SIt€.......ccocvviiviieeiiieiieieeeeee e 32
How to add a web form to @ Web Site.........ccoeevieceiiiieiiiieceeceeceece e 34
How to work with the Visual Studio IDE...........cc..ccoooiiviiiiiiiieeceeeeeee 36
How to add folders and files to @ Web Siteccceeveeeivieriiieeieecieeeciee 38
How to open or close an IIS Express web site........cccoeoeeniccnenncnicncncnne. 40
How to convert a file-system web site to IIS EXpressccceeecvevvvccniencnncns 42
How to use Visual Studio to build a web form................... 44
How to enter the HTML for a web formccocoooeiieiiiiiieeeeee e 44
How to add a table to a form ... 46
How to add text to the cells of a table...........cceeeveiieiiieiieiiieeeeeeeeeee e 46
How to add web server controls t0 a form..........c..cooeveeevveeeieeecieeeceeeeeeeeeeen. 48
How to set the properties of the CONtrols............cccocoveieiinciciincnininiicns 48
Common properties for web Server Controlsccoeceievveiceriieincneecnns 50
How to add validation controls to a form..........c..ceeeenneneees 52

An introduction to the validation COntrolscccceveveverrcrrerieneneneneeene. 52
How to use the required field validator
How to use the range validator.........cocoeeeeriiiieiinenenineeceeeeseeeee

How to work with unobtrusive validationcc.cceeeeveeerieeneeneeseeeeeeene 56
The aspx code for the Future Value form..........cocoooiieiniiiineiiiccee, 58
How to add Visual Basic code t0 a formcccerrsssssrerersns 62
How to use the Code EditOr......cc..couieiiiiiiciieiieiceieceeceeeeeeece e 62
How to use page and control EVENLScc.coueveeereeenienieneeeneneecnreeeeneenes 64
The Visual Basic code for the Future Value form..........ccccccoovvevievnrinnennnne. 66
How to test a web applicationcccceeeririmincrmrininssmeneenns 68
How to run an IIS Express web site

How to view the HTML that’s sent to the browserccccccoeeveveieecinneeenn. 70
Perspective ... s 72

32 Section 1 The essence of ASP.NET programming

How to work with ASP.NET web sites

This chapter starts by presenting some basic skills for working with
ASP.NET applications. Once you’re comfortable with those skills, you’ll be
ready to learn how to build your first ASP.NET application.

How to start a new web site

In the web development world, the terms web site, web application, and
web project are often used interchangeably. When you use Visual Studio 2012,
though, these terms have specific meanings.

In ASP.NET, a web project is either an ASP.NET Web Forms Site (often
called a web site) or an ASP.NET Web Forms Application (often called a web
application). Both of these project types can be used for simple display web sites
or interactive web applications. The difference is in how the projects are config-
ured, compiled, and deployed. The first table in figure 2-1 lists the main differ-
ences between the two project types.

Because Web Forms Applications are pre-compiled and deployed as a single
assembly, they can perform better and protect your code from being seen. As
a result, they are commonly used for professional applications. They are also
recommended for use with Visual Studio 2013.

Because Web Forms Sites are deployed as individual files and compile when
requested, they are easier to work with and easier to change. As a result, they
work better while you’re learning. That’s why all of the applications in this book
are Web Forms Sites. Note, however, that the forms development and Visual
Basic coding are the same with either project type.

To start a new Web Forms Site, you use the dialog box shown in this figure.
Here, you select the language you want to use, the type of web site you want to
create, and the location for the web site. You also select the template that you
want to use.

For this book, all the web sites use the ASP.NET Empty Web Site template.
When you use this template, the starting web site contains only a web.config file,
which stores information about the web site. For professional web sites, though,
you may want to use the ASP.NET Web Forms Site template.

To specify the location of the web site, the Web Location drop-down list
gives you three options. The simplest option is to create a file-system web site.
This type of web site can be in any folder on your local disk, or in a folder on a
shared network drive. By default, Visual Studio will run a file-system web site
using the IIS Express web server.

The second option, HTTP, lets you create a web site that runs under IIS on
your local computer or on a computer that can be accessed over a local area
network. The third option, FTP, lets you create a web site on a remote server by
uploading it to that server using FTP.

The dialog box in this figure specifies a file-system web site named
ChO2FutureValue that will be in the aspnet45_vb folder on the C: drive of the

Chapter 2 How to develop a one-page web application 33

The New Web Site dialog box

("New Web site [EERES)
P Recent MET Framework 4.5 ~ Sortby: Default | = Search Installed Templates (Ctrl+ 2@ -
4 Installed ‘ 3\3‘;’ ASP.NET Empty Web Site Visual Basic Type: Visual Basic
4 Templates An empty Web site

gj ASP.NET Web Forms Site Visual Basic
Visual C#
Samples El' ASP.NET Web Site (Razor v1) Visual Basic
P Online VB
@ ASP.NET Web Site (Razor v2) Visual Basic
ﬁ ASP.MET Dynamic Data Entities Web Site Visual Basic
-,
Q‘: WCF Service Visual Basic
;=I;' ASP.NET Reports Web Site Visual Basic
Web location: File System - Chaspnetdd_vb\Ch02FutureValue -
Web Forms Site vs. Web Forms Application
Feature Site Application
Project Files None One or more
Compilation At run time Pre-compiled to single assembly
Class file location App_Code folder Anywhere in folder structure
How to start (VS) FILE>New—>Web Site FILE->New—>Project
How to start (VS Express) ~ FILE->New Web Site FILE>New Project

Three web location options for ASP.NET web sites
Description

File System A web site created on your local computer or in a shared folder on a network.

HTTP A web site created under the control of an IIS web server.
FTP A web site created on a remote hosting server.
Description

o In ASP.NET, a web project is either a Web Forms site (web site) or a Web Forms
application (web application).

e To create a new web site, use the commands shown in the first table above. Note the
slight variation in the commands for the Express edition of Visual Studio.

e When you create a new web site, Visual Studio creates a solution folder and file for
the web site in the default location for solution files, which is Visual Studio
2012/Projects in your My Documents folder. It also creates a web site on the IIS
Express web server.

e By default, new web sites use .NET Framework 4.5, but the drop-down list at the
top of the dialog box lets you change that,

Figure 2-1 How to start a new web site

34

Section 1 The essence of ASP.NET programming

computer. Then, when the OK button is clicked, Visual Studio creates the folder
named ChO2FutureValue and puts the web.config file for the web site in that
folder. It also creates a solution file in the default folder for those files, and a site
named ChO2FutureValue on the IIS Express web server.

By default, Visual Studio 2012 creates a solution file for your web site in My
Documents\Visual Studio 2012\Projects. This solution file is stored in this folder
no matter where the web site itself is located. If you want to change this default
location, you can go to TOOLS—>Options, expand the Projects and Solutions
node, select the General category, and enter the location in the Projects Location
text box.

When you create a new web site, Visual Studio 2012 also lets you choose a
target framework. By default, NET Framework 4.5 is used. Then, you can use
the features that this framework provides within your web applications. If you’ll
be deploying the application to a server that doesn’t have .NET Framework 4.5,
however, you may want to target NET Framework 4.0 or earlier. Then, you can
be sure that you’ll only use the features that that framework provides.

How to add a web form to a web site

If you start a web site from the ASPNET Empty Web Site template, you’ll
need to add a web form to the web site. To do that, you can use the Add New
Item dialog box shown in figure 2-2. From this dialog box, you select the Web
Form template. Then, you enter the name you want to use for the new form and
click the Add button to add it to your web site.

When you add a new web form, be sure that the language setting is Visual
Basic and that the Place Code in Separate File box is checked. These
settings are easy to overlook, but difficult to change manually if they’re set
wrong when you create the page. Also, be sure to enter a name for the form
unless you want the default name, Default.aspx, to be used.

If you select the Place Code in Separate File box, two files are added to your
project. For instance, files named Default.aspx and Default.aspx.vb were added
to the project in this figure. The Default.aspx file will be used for the HTML and
ASP code that defines the form, and the Default.aspx.vb file will be used for the
Visual Basic code that determines how the form works. After the files are added
to the project, Visual Studio displays the aspx file for the web form.

Another way to add a web form is to use the Add>Web Form command in
the shortcut menu for the project. When you choose this command, the dialog
box that’s displayed only lets you specify the name for the form. Then, the form
that’s created uses Visual Basic by default, and the code for the form is placed in
a separate file, which is usually what you want.

To add an existing web form from another web site to your web site, you can
use the second procedure in this figure. You might want to do that if you need to
create a form that’s similar to a form in another web site. When you add the aspx
file for a form, the code-behind file is added too. Then, you can modify the aspx
and Visual Basic code so the form works the way you want it to in your new web
site.

Chapter 2 How to develop a one-page web application

The Add New ltem dialog box for adding a new web form

' ™
Add New Item - Ch02FutureValue (2 [
4 Installed Sort by: Default | & Search Installed Templates (Ctrl+E) P~

xfsua: E‘::'c Web Form e © Type: Visual Basic
sua A form for Web Applications

VB

P Online @ Content Page (Razor) Visual Basic
VB
(@] Empty Page (Razor) Visual Basic
VB
(@] Helper (Razor) Visual Basic

@ Layout Page (Razor) Visual Basic
VB

l‘;‘] Web API Controller Class Visual Basic

@ Web Page (Razor) Visual Basic

H Master Page Visual Basic

Name: Default.aspx Place code in separate file
[] Select master page

Add [Cancel

Two ways to open the Add New ltem dialog box

Right-click the project in the Solution Explorer, and choose Add=>Add New Item
from the shortcut menu.

Click on the project in the Solution Explorer to select it, and then choose the
WEBSITE->Add New Item command.

How to add a new web form to a project

In the Add New Item dialog box, select the Web Form template, enter a name for
the form or leave it as Default.aspx, check the Place Code in Separate File box, and
click the Add button.

Choose Add->Web Form from the shortcut menu for the project. Then, enter a
name for the form in the dialog box that’s displayed and click the OK button.

How to add an existing web form to a project

In the Solution Explorer, right-click the project and choose Add—>Add Existing
Item. Then, locate the form you want to add, select it, and click the Add button.

Description

If there’s a web form in another application that is like one that you’re going to
develop, you can copy that form into your web site. That copies both the web form
and the code-behind file. Then, you can modify the aspx code and Visual Basic
code so the form works the way you want it to.

The drop-down list above the list of templates lets you change the order of the
templates. The two buttons let you choose whether the templates are displayed as
small icons or medium icons.

Figure 2-2 How to add a web form to a web site

35

36 Section 1 The essence of ASP.NET programming

How to work with the Visual Studio IDE

Figure 2-3 shows the Visual Studio IDE after a form named Default has been
added to the Future Value web site. If you’ve used Visual Studio for building
Windows applications, you should already be familiar with the Toolbox, Solution
Explorer, and Properties window, as well as the Standard toolbar. They work
much the same for web applications as they do for Windows applications.

For instance, the Solution Explorer shows the folders and files of the web
site. In the example in this figure, the Solution Explorer shows the collapsed web
form and the web.config file. To expand the web form and see the code-behind
file, you click on the arrowhead to the left of the web form.

To design a web form, you use the Web Forms Designer that’s in the center
of Visual Studio. When you add a new web form to a web site, this Designer is
displayed in Source view, which shows the starting HTML code for the form.
However, you’ll do much of the design in Design view, which you can switch
to by clicking on the Design button at the bottom of the Designer. You can also
work in Split view, which includes both Source view and Design view.

As you work in the Designer, you’ll notice that different toolbars are enabled
depending on what view you’re working in. In Source view, for example, the
Standard and HTML Source Editing toolbars are enabled. In Design view, the
Standard and Formatting toolbars are enabled. This is typical of the way Visual
Studio works.

As you build a web site, you can close, hide, or size the windows that are
displayed. You’ll see some examples of this as you progress through this chapter,
and this figure presents several techniques that you can use for working with the
windows.

After you’ve designed a web form, you’ll need to switch to the Code Editor,
which will replace the Designer in the center of the screen. Then, you can write
the Visual Basic code in the code-behind file for the form. One way to switch to
the Code Editor is to double-click on the code-behind file in the Solution Explor-
er. You’ll learn more about that in a moment.

As you work with Visual Studio, you’ll see that it often provides several
ways to do the same task. Some, of course, are more efficient than others, and
we’ll try to show you the best techniques as you progress through this book.
Often, though, how you work is a matter of personal preference, so we encour-
age you to review and experiment with the toolbar buttons, the buttons at the top
of the Solution Explorer, the tabs at the top of the Web Forms Designer or Code
Editor, the shortcut menus that you get by right-clicking on an object, and so on.

For instance, to see which toolbars are displayed, you can right-click in
the toolbar area, which displays a list of all of the toolbars with the active ones
checked. You can then check one of the toolbars to activate it. Or, to see what
toolbar buttons or controls are available, you can hover the mouse over a button
or control. That also works for the buttons at the tops of windows like the Solu-
tion Explorer.

Chapter 2 How to develop a one-page web application

Visual Studio with the Designer in Source view and three other windows

m Ch02FutureValue - Microsoft Visual Studio Express 2012 for Web Quick Launch (Ctrl+Q) P = 0O x
FILE EDIT VIEW WEBSITE BUILD DEBUG TEAM TOOLS TEST WINDOW HELP
P Q- B - @ W - &' = b IntemetExplorer - & Debug ~ A _: B * % DOCTYPEXHTMLS - _
i p! g =% =
Toolbox =i v [3 NIEENTEE + Solution Explorer 8
Search Toolbox o~ <¥@ Page Language="VB" AutoEventWireup="false" Code¢ m -2 0 I§|—|
N
apandae - <!DOCTYPE html> Search Solution Explorer (Ctrl+;) P~
ko Pomter fa] Solution 'ChD2FutureValue' (1 project)
@3 AdRotator El<html xmlns="http://www.w3.org/1999/xhtml"> L dinion Lurevaie (S projs
! ¢head _w B 4 B Ch02FutureValue
= BulletedList El<head runat="server”: il
— <titlex</title> I =
Button | </head> El MurachLoge.jpg
Calendar I'_—I'l(body> 4 1 Default.aspx
CheckBox El <form id="forml” runat="server"> 1) Default.aspx.vb
(=] <div> r
B= CheckBoxlist 1 Web.config
3B DropDownlList L <fdiv> :
%) FileUpload | </form> R
S HiddenFi | </body> form1 <FORM> .
@l HiddenField
| </html> a
A HyperLink zvlv ~
Bl Image B ASP.NET -
B ImageButton DefaultButton
ImageMap DefaultFocus -
A Label ¥ ASP.NET
LinkButton wo% - 4 L4
EE ListBox + G Design | @ Split |“ Source | E||<body>| <form#forml> |E|

How to work with views and windows
e To change the Web Forms Designer from one view to another, click on the Design,
Split, or Source button at the bottom of the Designer window.

o To hide a window, click on its Auto Hide button, which is a pin icon. Then, the
window is shown as a tab at the side of the screen. To display the window again,
move the mouse pointer over the tab or click on it. To restore the window, display it
and click on the Auto Hide button.

o To size a window, place the mouse pointer over one of its boundaries and drag it.

e To close a window, click on the close button in its upper right corner. To redisplay
it, select it from the View menu.

Description

e The primary window for designing web forms with Visual Studio is the Web Forms
Designer, or just Designer, that’s in the middle of the IDE.

e The three supporting windows are the Toolbox, the Solution Explorer, and the
Properties window.

e Visual Studio often provides several different ways to do the same task. In this
book, we’ll try to show you the techniques that work the best.

Figure 2-3 How to work with the Visual Studio IDE

37

38 Section 1 The essence of ASP.NET programming

How to add folders and files to a web site

Right after you start a new web site, it makes sense to add any other fold-
ers or files that the application is going to require. To do that, you can use the
shortcut menus for the project or its folders in the Solution Explorer as shown in
figure 2-4. As you can see, this menu provides a New Folder command as well
as an Existing Item command.

For the Future Value application, I first added a folder named Images. To do
that, I right-clicked on the project at the top of the Solution Explorer, chose Add
and then the New Folder command, and entered the name for the folder. Then,

I added an image file named MurachlLogo.jpg to the Images folder. To do that, I
right-clicked on the folder, chose Add and then Existing Item, and selected the
file from the dialog box that was displayed.

Those are the only other folders and files that are needed for the Future
Value application, but often you’ll need others. For instance, the application in
chapter 4 requires three existing business classes, a database, and a number of
image files.

Chapter 2 How to develop a one-page web application

The Future Value project as a new folder is being added

M ChO2FutureValue - Microsoft Visual Studio Express 2012 for Web Quick Launch (Ctrl+Q) P = o x
FILE EDIT VIEW WEBSITE BUILD DEBUG TEAM TOOLS TEST WINDOW HELP
e I~ J - - nternet Explorer = & ebug - _i DOCTYPE: XHTMLS -
(<] [~ | Expl &1 Deb A _: 5 -
Toolbox e » R X Defaultaspx® & X Al Solution Explorer X
Search Toolbox P~ <¥@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.a 4 &loe-2w I§|—| cc
-
4 Standard -~ <IDOCTYPE html> Search Solution Explorer (Ctrl+;) L~
B o &1 Solution 'Ch02FutureValue (1 project)
7 AdRotator H<html xmlns="http://www.w3.org/ 1999/ xhtml"> Lol £ R RS ([l
i Fay g
= Bulletedist Fl<head runat="server™ & Build Web Site
<titler</titlex
Button </head> Scopeto This
(SR El<body> New Solution Explorer View
CheckBox EII <form_id="form1™ runat="serwver”>
B CheckBordict B <d: ‘g Add NewItem... Ctrl+Shift+A Add b
% DropDownList » O Eisting Item... Shift+Alt+A Add Reference...
M Fielniond </1 ‘@ Mew Folder Add Service Reference... x
5 Bin Add ASP.NET Folder » | M Manage NuGet Packages... -
F App_Code MNew Virtual Directory... & Copy Web Site...
E App_GlobalResources Web Form Start Options... -
E App_LocalResources Web User Contral L} Set as StartUp Project
E App_WebReferences JavaScript File Use Visual Studio Development Server... -
y App_Data Style Sheet & View in Browser (Internet Explorer) Ctrl+Shift+W
e App_Browsers gk View in Page Inspector Ctrl+K, Ctrl+G
E B Split | Source | E||<htm|>||<body>| <forr)
= Theme Browse With...
This itern does not support previewing Refresh Folder E

How to add a folder to a web site

To add a standard folder, right-click on the project or folder you want to add the
folder to in the Solution Explorer and choose Add—>New Folder. Then, type a name
for the folder in the dialog box that’s displayed and press Enter.

To add a special ASP.NET folder, right-click on the project in the Solution Explorer
and choose Add->Add ASP.NET Folder. Then, select the folder from the list that’s
displayed.

How to add an existing item to a web site

o In the Solution Explorer, right-click on the project or folder that you want to add an
existing item to. Then, select Add->Existing Item and respond to the dialog box.

Description

e When you create a new web form, Visual Studio generates the starting HTML for
the form and displays it in Source view of the Web Forms Designer.

e Before you start designing the first web form of the application, you can use the

Solution Explorer to add any other folders or files to the web site.

Figure 2-4 How to add folders and files to a web site

39

40 Section 1 The essence of ASP.NET programming

How to open or close an lIS Express web site

Web sites created in Visual Studio 2012 use /IS Express by default. To open
them, you can use their solution files. In contrast, web sites created in earlier
versions of Visual Studio or sites that are downloaded from another location use
the development server that’s part of Visual Studio. To open these sites, you use
their file locations.

Figure 2-5 shows two ways to open an IIS Express web site. The first way
is to display the Open Project dialog box. Then, you can locate the web site’s
folder, double-click the folder to reveal the solution file, and double-click the
solution file to open the web site.

The other way to open an IIS Express web site is to use the Recent Projects
and Solutions command to display a list of the most recent solution files that you
have opened. Then, you select the web site’s solution file and click it to open the
web site.

You can also open sites from the Start Page by using the Recent list or the
Open Project link. The items in the Recent list are links to solution files, so
clicking them will open their web sites. The Open Project link opens the dialog
box shown in this figure. If you know that you are going to be working on the
same web site for a while, you can pin it to the Recent list on the Start Page
by clicking on the pin icon for it. Then, it will be available each time you open
Visual Studio.

With that as background, here’s a caution. Although it might seem like you
should open a web site by using the Open Web Site command rather than the
Open Project command, that will create another solution file with another name.
Yes, everything will still work, because a web site can have multiple solution
files pointing to it. But that isn’t a good practice.

To close a project, you use the Close Solution command. After you close a
project for the first time, you’ll be able to find it in the Recent list on the Start
Page and also in the list of projects that you see when you use the Recent Proj-
ects and Solutions command.

Chapter 2 How to develop a one-page web application 41

The Open Project dialog box

r A
m Cpen Project ﬂ
"
@f\“}v| .« Projects » ChD2FutureValue - | L2 | | Search Ch02FutureValue Pl
Organize = Mew folder =~ 0 @
>
A -
B Microsoft Visual Studio 2012 @™ e
| Projects fa3 Ch02FutureValuesin 8/9/2013 217 PM
»-{ Favorites
Ml Desktop m

& Downloads

= Recent Places

& SkyDrive
&3 Libraries
@ Documents
A Music | < | i I G
File name: Chi2FutureValue.sln - ’AIIProjectFiles (*.sln;* . dsw; * e VI
[Open |v] [Cancel]
L oy

Two ways to display the Open Project dialog box

e Use the FILE->Open—>Project/Solutions command (or the FILE->Open Project
command for VS Express).

e Use the FILE->Recent Projects and Solutions command.

How to complete the Open Project dialog box

e Locate the web site folder and double-click it to display the solution file. Then,
double-click the solution file.

o By default, the starting location for this dialog box is Visual Studio 2012\Projects
in the My Documents folder. However, you can navigate to other locations, which
you will need to do for projects started as Web Forms Applications instead of Web
Forms Sites.

How to close a solution
e Use the FILE->Close Solution command.

How to open projects from the Start Page

e Click the link for a project in the Recent list, or click the Open Project link to
display the Open Project dialog box.

e To pin a web site to the Recent list so it stays there, hover the mouse over the web
site name and click the pin icon.

Description

e The Recent list and the Open Project command are also available from the Start
Page that’s displayed when you start Visual Studio.

Figure 2-5 How to open or close an IIS Express web site

42 Section 1 The essence of ASP.NET programming

How to convert a file-system web site
to 1IS Express

Previous versions of Visual Studio used a development server to host
ASP.NET web sites. This allowed developers to avoid installing and configuring
the IIS web server. Unfortunately, the development server didn’t work as well as
IIS for testing a web site so there were problems with this approach. The good
news is that Visual Studio 2012 uses the new IIS Express web server instead
of the development server, and IIS Express gets installed along with any of the
Visual Studio editions.

The trouble is that web sites created in earlier versions of Visual Studio, or
web sites downloaded or moved from another location, will use the development
server by default. As a result, you will need to change the web.config files for
those sites so they will use IIS Express.

To help you do that, the first procedure in figure 2-6 shows how to open a
file-system web site that doesn’t use IIS Express. One way that you can tell that
it isn’t using IIS Express is that the project in the Solution Explorer includes the
entire path for the file, not just its name. Then, if you open and run it, it will use
the old development server and work like a file-system web site in a previous
version of Visual Studio.

It’s better, though, to convert a file-system web site to IIS Express using
the second procedure in this figure. You will know that you have successfully
converted to IIS Express when the project name no longer includes the path. You
will also be able to see your project in the list of IIS Express sites in the Open
Web Site dialog box when you click on Local IIS. However, you shouldn’t open
a web site that way.

Chapter 2 How to develop a one-page web application

The Open Web Site dialog box

Open web site [EER)
ﬂ File System)
File System Select the folder you want to open. ‘WX
a & 05(C) P
> Apps
ei > Lo ASP 4.5 with C# (SkyDrive) n
Local IS 4 aspnetds_vh
Ch01FutureValue
@ Ch02FutureValue
S Ch03FutureValue =

FTP Site ChD4Cart

Ch0&Cart

@ >), ChOTCart
o . -

, 5 ChO8Cart
emote Site . ChOOCart

> Ch10Cart
Bﬁ b ChllCartMavigation

Source Ch13ProductList

Control b Chl4CategoryMaint

Chl4CatMaintTemplates

Chl4ProductList

Chl5Cart

Chl5ProductMaintDetailsView

Chl5ProductMaintFormView

Chl6ProductList

Chl7CategoryMaint

Chl17ProductList e

Folder:
Chaspnetd5_vb\Ch02FutureValue

[Open l l Cancel]

How to open a web site that doesn’t use IIS Express

e Use FILE->Open—>Web Site (or FILE->Open Web Site for VS Express) to display
the Open Web Site dialog box. Then, click on File System, navigate to and select
the folder for the web site, and click the Open button.

How to switch a web site to the IIS Express web server

e In the Solution Explorer, right-click the project and choose Use IIS Express. Then,
follow the instructions in the message boxes that follow.

¢ You will know that you have been successful when the Solution Explorer displays
just the project’s name, rather than the entire file path.

How to see the IIS Express web sites
e In the Open Web Site dialog box, click on Local IIS.

Discussion
e When you create a new web site, Visual Studio 2012 uses the /IS Express web
server.

e When you open a web site developed with a previous version of Visual Studio or
on another computer like one of our downloadable applications, Visual Studio uses
its development server, not IIS Express. Then, you can convert the web site to IIS
Express.

Figure 2-6 How to convert a file-system web site to 1IS Express

43

Section 1 The essence of ASP.NET programming

How to use Visual Studio
to build a web form

Now that you know how to start, open, and close a web site, you’re ready to
learn how to build a web page with HTML, web server controls, and validation
controls. If any of this seems confusing as you read about it, the exercise at the
end of this chapter will show you that all of the skills are quite manageable.

How to enter the HTML for a web form

Figure 2-7 presents the primary ways to add HTML to a web form. For
many HTML elements, the easiest way to add them is to type the HTML for the
elements directly into the source code, taking full advantage of IntelliSense. In
this figure, for example, you can see how IntelliSense provides a snippet for an
h1 element. Just remember to press the Tab key twice to insert both the starting
and ending tag for an element.

For some elements, though, it’s better to insert a snippet using the second
technique in this figure. To do that, you move the insertion point to where you
want the snippet, right-click to display a menu, select Insert Snippet, select
HTML, and select the HTML element that you want to insert. If, for example,
you insert the snippet for an img element, the HTML includes the src and alt
attributes.

This figure also shows how you can add an img element to the HTML by
dragging the image from the Solution Explorer and dropping it wherever you
want it. If you drop it in Design view, the Accessibility Properties dialog box is
displayed. And that makes it easy to enter the Alternate Text property, which gets
converted to an alt attribute in the HTML.

Whether or not you use the Accessibility Properties dialog box, the alt attri-
bute should always be coded for an img element because it improves accessibil-
ity. Specifically, this attribute is used by screen readers to describe an image for
the visually impaired. If an image is used for decorative purposes only, the value
of this attribute should be an empty string (*”’).

In contrast, the Long Description property in the Accessibility Properties
dialog box gets converted to the longdesc attribute. However, that attribute isn’t
supported by HTMLS or any modern browser. As a result, you should ignore it
and leave it blank.

Usually, you’ll want to make a few adjustments and additions to the HTML
right after the form is added to the web site. For instance, you’ll want to enter
a title for the form in the title element that’s in the head section. That’s the title
that’s displayed in the title bar or tab of the browser when the form is run. You’ll
also want to add an h1 element to the form that describes what the page does.

After making the HTML entries, you can use either Source view or Design
view to add web server controls to the form. If you work in Design view, though,
you’ll want to switch back to Source view from time to time. That way, you can
review the source code that has been added, make sure the code is in the right
location, and make adjustments to the source code.

The Future Value form in Split view after an img element has been added

Chapter 2 How to develop a one-page web application

M ChO2FutureValue - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = 0 x
FILE EDIT WVIEW WEBSITE BUILD DEBUG TEAM SQL FORMAT TOOLS TEST ANALYZE WINDOW HELP
B 9 - = | b IntemetExplorer ~ Debug ~ A _° B "2 % HIMLS -2
Toolbox SR R W Defaultaspy™ & X ~ Solution Explorer i > Ix
Search Toolbox P~ E|<htm1 xrr1n5=::httu:fﬁmm,wlorgflgggthtml“) + & -2 w E——“ "
4 Standard . El<head runat="server”: L -
<title>Chapter 2: Future Valued/title> Search Solution Explorer (Ctrl+;) 2 -
Point

4 omer </head>] Solution 'ChO2FutureValue' (1 p =

3 AdRotator [<body>

= <img src="Images/MurachLogo.jpg" alt="Murach Logo"/: 4 © Cho2FutureValue

i= BulletedList b= e g §0-JPE E o (e

@ But = MurachLogo,

Hen g ‘e asp:DynamicHyperLink - b @?efaul\‘ltma‘; XOQDJPQ -

Calendar E| ‘m asp:HiddenField “(% AP D

Hrsei 100% - 40 aspiHyperlink 4

8= CheckBoxlist 0 Design virgl! asp:PlaceHolder 10 synchronize views. Properties TEx

= DropDownlist hl <HTML ELEMENT > -

8] Marlk ippet for a block el it [ms;

%3 FileUpload 1 h2 arkup snippet for a blocl EEI':I']EI'I =:e | &

B HiddenField o) h3 i

A Hyperlink o1 hd

B Image o kS R

B ImageButton -

El ImageMap 1 4

A Label w & Design = Source | E <h> EI
Error List

How to add HTML elements to a form

Enter the code for the element in Source view. As you work, Visual Studio’s
IntelliSense will help you enter snippets, tags, attributes. To add a snippet, press the
Tab key twice.

To insert a snippet for an HTML element without using IntelliSense, move the
insertion point to where you want the snippet. Then, right-click, select Insert
Snippet, select HTML, and select the element that you want inserted.

Two ways to add an img element to a form

Insert a snippet for the element. That includes the src and alt attributes, but you
have to add the values.

Drag the image from the Solution Explorer to the Designer. This inserts an img
element with a valid src attribute. In Design view, the Accessibility Properties
dialog box is also displayed.

How to add and remove comments

To add a comment at the insertion point, click the Comment button in the HTML
Source Editing toolbar, or press Ctrl+K and then Ctrl+C. If you select lines of code
before you do this, the lines will be commented out.

To remove a comment, move the insertion point into it and click the Uncomment
button, or press Ctrl+K and then Ctrl+U. If you select lines of code that have been
commented out before you do this, they will be uncommented.

How to synchronize the views when you’re working in Split view

Save the file or click on the message that’s displayed between the views.

Figure 2-7 How to enter the HTML for a web form

45

46 Section 1 The essence of ASP.NET programming

How to add a table to a form

By default, forms use flow layout. This means that the text and controls you
add to a form are positioned from left to right and from top to bottom. Because
of that, the position of the controls can change when the form is displayed
depending on the size of the browser window and the resolution of the display.

Usually, though, you will want more control than flow layout provides. One
way to get that control is to use a table, which you’ll learn about now. Another
way is to use CSS, which you’ll learn about in the next chapter.

Figure 2-8 shows how to add a table to a form in Design view. In this case,

a table of six rows and two columns has already been added to the form, but the
Insert Table dialog box is displayed to show what the settings are for that table.
Usually, you can keep the dialog box entries that simple, because you can easily
adjust the table once it’s on the form.

The easiest way to resize a row or column is to drag it by its border. To
change the width of a column, drag it by its right border. To change the height of
a row, drag it by its bottom border. You can also change the height and width of
the entire table by selecting the table and then dragging it by its handles.

You can also format a table in Design view by selecting one or more rows or
columns and then using the commands in the TABLE menu or the shortcut menu
that’s displayed when you right-click the selection. These commands let you
add, delete, or resize rows or columns. They also let you merge the cells in a row
or column. If, for example, you want a control in one row to span two columns,
you can merge the cells in that row.

Note that when you make some of these changes, Visual Studio adds class
attributes to the HTML elements as well as a style element in the head section
of the form that contains the rule sets for the classes. You’ll see this when you
review the aspx code for the Future Value form.

How to add text to the cells of a table

In figure 2-8, you can see that text has been entered into the cells in the first
four rows of the first column of the table. To do that, you just type the text into
the cells. Then, you can format the text by selecting it and using the controls in
the Formatting toolbar or the commands in the Format menu. If, for example,
you want to bold the four text entries, you can select the four cells that contain
the text and click on the Bold button in the Formatting toolbar.

Chapter 2 How to develop a one-page web application

The Future Value form with a table that has been inserted into it

How to add a table to a form

e Use the TABLE—>Insert Table command to display the Insert Table dialog box.
Then, set the number of rows and columns that you want in the table, set any other
options that you want, and click OK.

How to format a table after it has been added to a form

e To resize a row, drag it by its bottom border. To resize a column, drag it by its right
border. To resize the entire table, select the table and then drag one of its handles.

e To select rows, columns or cells, drag the mouse over them or hold the Ctrl key
down as you click on the cells. To add, delete, size, or merge selected rows or
columns, use the commands in the TABLE menu or the shortcut menu.

How to add text to a table and format it
e To add text to a table, type the text into the cells of the table.

o To format the text, select it and use the controls in the Formatting toolbar or the
commands in the Format menu.

Description
e To control the alignment of the text and controls on a web form, you can use tables.

e Some of the formatting that you apply to tables, rows, and columns is saved in CSS
rule sets in a style element in the head section of the HTML.

Figure 2-8 How to add a table to a form and add text to the table’s cells

M ChO2FutureValue - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = a
7
FILE EDIT VIEW WEBSITE BUILD DEBUG TEAM SQL Insert Table m
Q- B D - = | Firefox ~ Debug
Size
VTl ¢ = ES m— Rows: |6 2 Columns: 2 =
Search Toolbox P~ T B
4 Standard -
o | o] spectywet: :
k Pointer BI o) _ ‘ e
i B roje
i= BulletedList @ In percent
= i
; Bu € Cell padding: |1 = [Spedify height:
(L) utton .
- 401K Future ¥ , § Inpixeis
Calendar Cell spacing: |2 = 0
........................... TEETEL
CheckBox B 4 4
8= CheckBoxlist Monthly investment Borders
= DropDownlList Annual interest rate Size: 0 z *
43 FileUpload Number of years Color: - Z]
i HiddenField : Future value [F Collapse table border
A Hyperlink Background
I i
M image H . Color: - IZ
B ImageButton
B 1 o [Use background picture
magelvlap -
A Label Properties...
LinkButton Set
EE ListBox [set as default for new tables
4
G Literal
Error List

47

48 Section 1 The essence of ASP.NET programming

How to add web server controls to a form

Figure 2-9 shows how to add web server controls to a form. To do that, you
can just drag a control from the Standard group of the Toolbox and drop it on the
form. Or, you can move the cursor to where you want a control inserted and then
double-click on the control in the Toolbox. This works whether you’re placing a
control within a cell of a table or outside of a table, and whether you’re in Source
view or Design view.

Here again, you can add a web server control to a form by inserting a snip-
pet. But this time, after you select the Insert Snippet command, you select
ASP.NET and then the server control that you want to add.

Once you’ve added the controls to the form, you can resize them in Design
view by dragging the handles on their sides. If the controls are in a table, you
may also want to resize the columns or rows of the table. But keep in mind that
you can resize a cell as well as the control within a cell, and sometimes you have
to do both to get the formatting the way you want it.

How to set the properties of the controls

After you have placed the controls on a form, you need to set each control’s
properties so the control looks and works the way you want it to. To set those
properties, you can work in the Properties window as shown in this figure. To
display the properties for a control, just click on it in Design or Source view.

In the Properties window, you select a property by clicking it. Then, a brief
description of that property is displayed at the bottom of the window. To change
a property setting, you change the entry to the right of the property name by
typing a new value or choosing a new value from a drop-down list. In some
cases, a button with an ellipsis (...) on it will appear when you click on a prop-
erty. Then, you can click the button to display a dialog box that helps you set the
property.

Some properties are displayed in groups. In that case, a + symbol appears
next to the group name. To expand the properties in the group, just click the +
symbol, which then changes to a — symbol.

To display properties alphabetically or by category, you can click the appro-
priate button at the top of the Properties window. At first, you may want to dis-
play the properties by category so you have an idea of what the different proper-
ties do. Once you become more familiar with the properties, though, you may be
able to find the ones you’re looking for faster if you display them alphabetically.

Another way to set properties for some controls is to use the control’s smart
tag menu. In this figure, for example, you can see the smart tag menu for the
drop-down list. Because smart tag menus help you set common properties,
they’re displayed automatically when you drag a control to a form in Design
view. Later, you can display the smart tag menu of a control by hovering the
mouse pointer over it until its smart tag appears and then clicking on that tag.

As you work with properties, you’ll find that many are set the way you want
by default. In addition, some properties such as Height and Width are set as you
size and position the controls in Design view. As a result, you usually only need
to change a few properties for each control.

Chapter 2 How to develop a one-page web application

The Future Value form after six server controls have been added to it

m ChD2FutureValue - Microsoft Visual Studio Quick Launch (Ctrl+Q) L = 0
FILE EDIT VIEW WEBSITE BUILD DEBUG TEAM SQL FORMAT TABLE TOOLS TEST ANALYZE WINDOW HELP
o - =N - @~ P Ficfox - Debug - | S _ (NewlnlineStyle - [{[] Mone) ~ (Defautt~ B 1
Toolbox s v B X ~ Properties i v BOX
Search Toolbox P “ ddiMonthlylnvestment System. -
N ‘ : @ .
k Pointer .
/ (Expressions) =
B3 AdRotator LIL]RACH
(D) ddiMonthlylny
i= BulletedList AccessKey
Button A dDataB Fal
- 401K Future Value Calculator ppowiutat Fabe
Calendar AutoPostBack False
CheckBox asp:DropDownList#ddMonthiyIny.. BackColor
8= CheckBoxList Monthly imvestment !Unhound Lﬁ DropDownlist Tasks sesValidat False
. : iChoose Data Source... | ntiDMode Inherit
& DropDownList Anmual interest rate 6.0
Y FileUpload Number of years lmi Edit ltems... I:;s ;
______) ! ember
il Hldden.FleId Future value [IbIFutureValue] [T Enable AutoPostBack ——
L ot DataTextField
Bl Image S | cl | DataTextForm e
B ImageButten geuate ear ¥ DataSourcelD
El ImageMap 4 » The centrol ID of an IDataSource
A Label - B Split | < Source | E| <asp:DropDownlist#ddIMont... > |E| that will be used as the data sour...

Drag margin handles to resize margins. Press SHIFT or CTRL for more options.

How to add a web server control to a web form

e Drag the control from the Standard group in the Toolbox to the form or to a cell
in a table on the form. Or, move the cursor to where you want the control in either
Source or Design view, and double-click on the control in the Toolbox to place it
there.

e To insert a snippet for a server control in Source view, move the insertion point to
where you want the snippet. Then, right-click, select Insert Snippet, select
ASP.NET, and select the control that you want inserted.

How to set the properties for a control

e Select a control by clicking on it, and all of its properties are displayed in the
Properties window. Then, you can select a property in this window and set its value.

o To change the Height and Width properties, drag one of the handles on a control.
This also changes the Height and Width in the Properties window.

e To sort the properties in the Properties window by category or alphabetically, click
on one of the buttons at the top of the window. To expand or collapse the list of
properties in a group, click on the + or — symbol for the group.

e To display a smart tag menu for a control in Design view, select the control and
click the Smart Tag icon on the right of the control. In Source view, click in the
aspx code for the control and hover over the line that appears under the <asp> tag
to reveal the smart tag icon and then click on it,

Description
o Many web server controls have smart tag menus that provide options for perform-
ing common tasks and setting common properties.

Figure 2-9 How to add web server controls to a form and set their properties

12u01dx3 uonnjog

49

50 Section 1 The essence of ASP.NET programming

Common properties for web server controls

The first table in figure 2-10 presents the properties for web server controls
that you’re most likely to use as you develop web forms. If you’ve worked with
Windows controls, you’ll notice that many of the properties of the web server
controls provide similar functionality. For example, you use the ID property to
identify a control that you need to refer to in your Visual Basic code, and you
can use the Text property to set what’s displayed in or on the control.

In contrast, the AutoPostBack, CausesValidation, EnableViewState, and
Runat properties are unique to web server controls. As you should already know,
the Runat property just indicates that the control must be processed by the web
server. The other three properties are more interesting.

The AutoPostBack property determines whether the page is posted back to
the server when the user changes the value of the control. Note that this property
is only available with certain controls, such as drop-down lists, check boxes, and
radio buttons. Also note that this property isn’t available with button controls.
That’s because button controls always either post a page back to the server or
display another page.

The CausesValidation property is available for button controls and deter-
mines whether the validation controls are activated when the user clicks the
button. This lets the browser check for valid data before the page is posted back
to the server. You’ll learn more about validation controls in a moment.

The EnableViewState property determines whether a server control retains
its property settings from one posting to the next. For that to happen, the
EnableViewState property for both the form and the control must be set to True.
Since that’s normally the way you want this property set, True is the default.

The second table in this figure lists four more properties that are commonly
used with drop-down lists and list boxes. For instance, you can use the Items
collection to add, insert, and remove Listltem objects, and you can use the
Selected Value property to retrieve the value of the currently selected item.
Although you can set these properties at design time, they are often set by the
Visual Basic code in the code-behind file. You’ll learn more about these proper-
ties when you review the code-behind file for the Future Value form.

Chapter 2 How to develop a one-page web application 51

Common web server control properties
Property Description

AutoPostBack Determines whether the page is posted back to the server when the
value of the control changes. Available with controls like check boxes,
text boxes, and lists. The default value is False.

CausesValidation Determines whether the validation specified by the validation controls
is done when a button control is clicked. The default value is True.

EnableViewState Determines whether the control maintains its view state between
HTTP requests. The default value is True.

Enabled Determines whether the control is functional. The default value is
True.

Height The height of the control.

ID The name that’s used to refer to the control.

Runat Indicates that the control will be processed on the server by ASP.NET.

TabIndex Determines the order in which the controls on the form receive the
focus when the Tab key is pressed.

Text The text that’s displayed in the control.

ToolTip The text that’s displayed when the user hovers the mouse over the
control.

Visible Determines whether a control is displayed or hidden.

Width The width of the control.

Common properties of drop-down list and list box controls

Property Description

Items The collection of ListItem objects that represents the items
in the control. Although you can set the values for these list
items at design time, you normally use code to add, insert, and
remove the items in a drop-down list or list box.

SelectedItem The ListItem object for the currently selected item.

SelectedIndex The index of the currently selected item starting from zero. If
no item is selected in a list box, the value of this property is -1.

SelectedValue The value of the currently selected item.

Note

e When buttons are clicked, they always post back to the server or display other
pages. That’s why they don’t have AutoPostBack properties.

Figure 2-10 Common properties for web server controls

52

Section 1 The essence of ASP.NET programming

How to add validation controls
to a form

A validation control is a type of ASPNET control that’s used to validate
input data. The topics that follow introduce you to the validation controls and
show you how to use two of them. Then, in chapter 7, you can learn how to use
all of these controls.

An introduction to the validation controls

Figure 2-11 shows the Validation group in the Toolbox. It offers five controls
that can be called validators. These are the controls that you use to check that the
user has entered valid data. You can use the last control in this group, the valida-
tion summary control, to display all the errors that have been detected by the
validators on the form.

To add a validation control to a web form, you can use the same techniques
that you use to add a server control. Before you can access the validation
controls in the Toolbox, though, you need to open the Validation group by click-
ing on the arrowhead to its left. You can also add a validation control to a form
by inserting a snippet.

In this example, four validators have been added to the form: two required
field validators and two range validators. In this case, the controls have been
added below the table so ASPNET will use flow layout to position the controls.
However, these controls could have been added to a third column of the table.
Although these controls don’t show when the form is displayed, the messages in
their ErrorMessage properties are displayed if errors are detected.

Validation tests are typically done on the client before the page is posted
to the server. That way, a round trip to the server isn’t required to display error
messages if invalid data is detected.

In most cases, client-side validation is done when the focus leaves an input
control that has validators associated with it. That can happen when the user
presses the Tab key to move to the next control or clicks another control to move
the focus to that control. Validation is also done when the user clicks on a button
that has its CausesValidation property set to True.

To perform client-side validation, a browser must have JavaScript enabled.
Because most browsers enable it, validation is usually done on the client.
However, validation is always done on the server too when a page is submitted.
ASP.NET does this validation after it initializes the page.

When ASP.NET performs the validation tests on the server, it sets the IsValid
property of each validator to indicate whether the test was successful. Then, after
all the validators are tested, it sets the IsValid property of the page to indicate
whether all the tests were valid. This is the property that’s usually tested by the
Visual Basic code when the page is posted to the server. You’ll see how this
works when you review the code-behind file for this form.

Chapter 2

How to develop a one-page web application

The validation controls on the Future Value form

FILE EDIT VIEW

I» Standard
I: Data
4 Validation

Pointer

RangeValidator

RequiredField...

v EE S &

I» Navigation

I Login

> WebParts

I» AJAX Extensions
I Dynamic Data

I: Reperting

I HTML

4 General

There are no usable

o crozFutureValue -

L0~ s =<

Toolbox i - 0 x W
Search Toolbox Do~ i

CompareValid...
CustomValida...

RegularExpres...

ValidationSum...

Microsoft Visual Studio
WEBSITE ~ BUILD DEBUG

TEAM
P Internet Explorer ~

5QL FORMAT TABLE

Debug -~

Quick Launch (Ctrl+ Q)

TOOLS

-

a Wy
MURACH

Monthly investment
Anmmal interest rate
Number of years
Future vale

Calculate |

401K Future Value Calculator
[Unbond =]

o
——

[IblFutureValue]

Clear |

Interest rate is required. Interest rate must range from 1 to 20.
Number of years is required Y ears must range from 1 to 45,

TEST AMALYZE

A _ . (Newlnline Style - {Mone)
~ Solution Explorer
@ o-a

Search Solution Explorer (Ctrl+;) O ~

R Selution 'Ch02FutureValue' (1 proje:
4 & Ch02FutureValue

b il Images

4 @) Default.aspx

1) Default.asprevb
) Web.config

WINDOW HELP

p - O x

+ (Default~ B -

5]

oy

=]
salya‘dmd

m Required field validators

Range validators

FIIIIII

How to add a validator to a web form

e In either Design or Source view, move the insertion point to where you want the
validator and double-click on the validator in the Validation group in the Toolbox.
Or, drag the validator from the Toolbox to where you want it.

e In Source view, right-click, select Insert Snippet, select ASP.NET, and select the
validator control that you want to insert.

How to set the properties for a validation control
e In either Design or Source view, use the Properties window.

e In Source view, enter the properties for the validator with help from IntelliSense.

Description

® You can use validation controls to test user entries and produce error messages. The
validation is typically done when the focus leaves the control that’s being validated
and also when the user clicks on a button that has its CausesValidation property set

to True.

o Each validation control is associated with a specific server control, but you can
associate more than one validation control with the same server control.

o [f the user’s browser has JavaScript enabled, the validation controls work by
running JavaScript in the browser. Then, if the validation fails, the page isn’t posted
back to the server, which saves a round trip. If the browser doesn’t have JavaScript
enabled, the validation is done on the server.

Figure 2-11

An introduction to the validation controls

53

54

Section 1 The essence of ASP.NET programming

How to use the required field validator

To use the required field validator, you set the properties shown in the table
at the top of figure 2-12. These are the properties that are used by all the
validators.

To start, you associate the validation control with a specific input control on
the form through its ControlToValidate property. Then, when the user clicks on
a button whose CausesValidation property is set to True, the validator checks
whether a value has been entered into the input control. If not, the message in
the ErrorMessage property is displayed. The error message is also displayed if
the user clears the value in the input control and then moves the focus to another
control.

The Display property of the validation control determines how the message
in the ErrorMessage property is displayed. When you use flow layout, Dynamic
usually works the best for this property. However, if you use a validation
summary control, as explained in chapter 7, you can change this property to
None.

If you look at the aspx code in this figure, you can see how the properties are
set for a required field validator that validates the text box with txtInterestRate as
its ID. Here, the ForeColor property of the required field validator is set to “Red”
so the error message will be displayed in that color. In the next chapter, you’ll
learn how to use CSS to get the same result.

How to use the range validator

The range validator lets you set the valid range for an input value. To use
this control, you set the properties in the first table in this figure, plus the proper-
ties in the second table. In particular, you set the minimum and maximum values
for an input value.

The aspx code in this figure also shows how the properties are set for the
range validator for the text box with txtInterestRate as its ID. For this to work
correctly, you must set the Type property to the type of data that you’re testing.
Because the interest rate entry can have decimal positions, for example, the Type
property for its range validator is set to Double. In contrast, because a year entry

should be a whole number, the Type property for its range validator should be set
to Integer.

Chapter 2 How to develop a one-page web application

Common validation control properties

Property Description

ControlTovalidate The ID of the control to be validated.

Display Determines how an error message is displayed. Specify Static
to allocate space for the message in the page layout, Dynamic
to have the space allocated when an error occurs, or None to
display the errors in a validation summary control.

ErrorMessage The message that’s displayed in the validation control when
the validation fails.

Additional properties of a range validator

Property Description

MaximumValue The maximum value that the control can contain.
MinimumValue The minimum value that the control can contain.

Type The data type to use for range checking (String,
Integer, Double, Date, or Currency).

The aspx code for a RequiredFieldValidator control

<asp:RequiredFieldValidator ID="RequiredFieldValidatorl" runat="server"
ControlToValidate="txtInterestRate" Display="Dynamic"
ErrorMessage="Interest rate is required." ForeColor="Red">
</asp:RequiredFieldvValidator>

The aspx code for a RangeValidator control

<asp:RangeValidator ID="RangeValidatorl" runat="server"
ControlTovValidate="txtInterestRate" Display="Dynamic"
ErrorMessage="Interest rate must range from 1 to 20."
MaximumValue="20" MinimumValue="1" Type="Double" ForeColor="Red">
</asp:RangeValidator>

Description

o The required field validator is typically used with text box controls, but can also be
used with list controls.

o The range validator tests whether a user entry falls within a valid range.

o If the user doesn’t enter a value into a control that a range validator is associated
with, the range validation test passes. Because of that, you should also provide a
required field validator if a value is required.

Figure 2-12 How to use the required field and range validators

55

56

Section 1 The essence of ASP.NET programming

How to work with unobtrusive validation

ASP.NET 4.5 has a new feature called unobtrusive validation that you need
to be aware of. This feature controls how the client-side validation of the valida-
tion controls is done. Figure 2-13 shows the two settings for unobtrusive valida-
tion that a web site can have.

A setting of Webforms means that unobtrusive validation is enabled and
ASP.NET will use jQuery for validation. jQuery is a JavaScript library that
provides for cross-browser compatibility and reduces the amount of JavaScript
that an ASP.NET application requires. A setting of None means that unobtrusive
validation is disabled and ASP.NET will do the validation the way it was done
in previous versions, which is to use script elements within the HTML to supply
the JavaScript for the validation.

The benefit of using unobtrusive validation is that it reduces the amount of
JavaScript that has to be generated. That’s why ASPNET 4.5 enables unobtru-
sive validation by default.

The problem with this is that if you start a web site from the Empty Web Site
template, unobtrusive validation is enabled but the jQuery library and configura-
tion needed to use it are not there. This means that if you try to use a validation
control, you will get an error. There are two ways to fix this.

One way is to add the components that are required by unobtrusive valida-
tion. To do that, you can use NuGet, which is a Visual Studio feature that makes
it easy to add third-party and open-source packages to an application. You’ll
learn more about NuGet later, but this figure shows how to use NuGet to install
the package that provides everything you need to make unobtrusive validation
work in your web site.

The other alternative is to disable unobtrusive validation. To do that for one
page, you can set the UnobtrusiveValidationMode property to None in the Load
event handler for the page, as shown in this figure. To do that for all pages in a
web site, you can add an appSettings element like the one in this figure to the
web.config file.

Chapter 2 How to develop a one-page web application

Two values for the UnobtrusiveValidationMode setting

Description

Webforms Uses the jQuery library for the validation that’s done by the validation controls.

None Uses the older method of generating the JavaScript code for the validation
controls and including it within script elements in the HTML for the page.

The Manage NuGet Packages dialog box

r ™y
Ch02FutureValue - Manage NuGet Packages m
P Installed packages Stable Only ~ Sort by: Most Downloads - aspnetscriptmanagerjquery X "

4 Online *on AspNetScriptManager.jQ. :
Created by: D: Edward:
This package contains the m 3 by ?mlan WET <
All AspNet ScriptManagerjQu... Id: AspNet.ScriptManager.jQuery
MNuGet official package source Version: 20.1
Search Results +m AspNetScriptManagerjQuery.ULCombin... Ll e
e This package contains the Downloads: 22976
b Updates AspNet ScripthManager.jQuery.ULCombined... Repart Abuse
Description:
P Recent packages
W Microsoft.ScriptManager.jQuery This package contains the
ssenct This contents of this package has been AspNet ScriptManager jQuery assembly that
moved to the AspMet.ScriptManager.jQuer... will automatically register jQuery 2.0.1 with
the ScriptManager as "jquery”.
W Microsoft.ScriptManager.jQuery.ULCom... Dependendies:

ssomrr This contents of this package has been

moved to the AspNet.ScriptManager,jQuer... DAE (BN s A,

Each item above may have sub-

Each package is licensed to you by its dependencies subject to additional license
owner. Micrasoft is not responsible Sy

for, nor does it grant any licenses to,

third-party packages. 1

Lo J

How to install the NuGet package for jQuery validation

e Right-click on the project and select Manage NuGet Packages. In the left panel of
the dialog box that appears, click on NuGet Official Package Source. Next, use the
box in the upper right to search for AspNet.ScriptManager.jQuery. Then, click on
the Install button.

A Load event handler that turns off unobtrusive validation for a page

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
UnobtrusiveValidationMode = System.Web.UI.UnobtrusiveValidationMode.None
End Sub

A web.config setting that turns off unobtrusive validation for a site

<appSettings>
<add key="ValidationSettings:UnobtrusiveValidationMode" value="None"/>
</appSettings>

Description

e ASPNET 4.5 provides a new option called unobtrusive validation. When it is
enabled, a JavaScript library named jQuery is used to do the validation that’s
specified.

o Unobtrusive validation is on by default when you start a new web site from the
Empty Web Site Template. So if you’re using the validation controls, you either
need to turn unobtrusive validation off or install the NuGet package for jQuery
validation.

Figure 2-13 How to work with unobtrusive validation

57

58 Section 1 The essence of ASP.NET programming

The aspx code for the Future Value form

Figure 2-14 presents the aspx code for the Future Value form. To help
you see how the code relates to the form in the browser, this figure starts with
the form displayed in Internet Explorer. Here, you can see that the title in the
browser tab is the same as the title in the title element in the head section of the
HTML.

After the title element, you can see a style element that includes two CSS
rule sets. You can also see class attributes in the table and td elements that refer
to these rule sets. In the next chapter, you’ll learn how this works, but for now
realize that ASPNET does this automatically when you use the Designer to
format the elements on a page, even though this isn’t the best way to handle this
formatting.

Within the body element, the first two elements are for the image and the
h1 heading. You can see how these are rendered in the browser. This is followed
by a form element that contains a div element. These form and div elements are
generated by ASPNET when you add a new form to a web site.

Within the div element is a table that contains six tr elements, one for each
row. Within each of these elements are two td elements, one for each column.
That’s the way the HTML for a table works. In the first td element for each of
the first four rows, you can see the text that has been entered. In the second td
element for each of these rows, a server control has been added. For instance, the
control in the first row is a drop-down list, and the control in the second row is a
text box. You can see how this table is rendered in the browser.

For each control, the ID property is used to give the control an identifier
that’s easy to refer to. Here, ddl is used as a prefix for a drop-down list and txt is
used as a prefix for a text box. That makes it easy to tell what type of control an
identifier refers to. These identifiers are followed by names that clearly identify
the controls. Within those names, the first letter of each word is capitalized,
which makes the names easier to read. This is the naming convention that’s used
throughout this book and the one that we recommend.

Chapter 2 How to develop a one-page web application

The design of the Future Value form

l @ Chapter 2: Future Value x

A [ESEE)
| _-:II:;:;\:I & http://localhost:54720/Default.aspx P~-BC >I(| {nj

File Edit View Favorites Tools Help

MURACH

401K Future Value Calculator

Monthly investment 50 |Z|
Annual interest rate 5

Number of years

Future value

[Caleulate [Clear

Interest rate must range from 1 to 20.
Number of years is required.

The aspx code for the Future Value form

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"

Inherits="_Default" %>

<!DOCTYPE html>

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title>Chapter 2: Future Value</title>
<style type="text/css">
.auto-stylel {
width: 100%;
}
.auto-style2 {
width: 172px;
}
</style>
</head>
<body>

<h1>401K Future Value Calculator</hl>
<form id="forml" runat="server">
<div>
<table class="auto-stylel">
<tr>

<td class="auto-style2">Monthly investment</td>
<td><asp:DropDownList ID="ddlMonthlyInvestment"

runat="server" Height="22px" Width="147px">

</asp:DropDownList></td>
</tr>

Figure 2-14 The aspx code for the Future Value form (part 1 of 2)

59

60

Section 1 The essence of ASP.NET programming

In the code for the first text box control, you can see that the Text attribute
has been set to a value of 6.0. That is the interest rate that will be displayed when
the form is first displayed in the browser. In contrast, the value for the second
text box control is coded between the opening and closing tags for the control.
These are two different ways to set the starting value for a control.

In the code for the fifth row of the table, you can see that ASP.NET has put
a non-breaking space () in the cell for each column. It does that for all of
the empty cells in a table.

In the sixth row, you can see the aspx code for the Calculate and Clear
buttons. Here, the Clear button contains a CausesValidation property, which is
set to False. This property tells the page not to do validation when the button is
clicked. Because the default value of the CausesValidation property is True for
buttons, this property doesn’t need to be set for the Calculate button.

This table is followed by the code for the validation controls. Because these
controls are outside the table, their placement will be determined by flow layout.
To have some control over this layout, a break element (
) is coded after the
two interest rate validators. That means the error messages for the interest rate
will be displayed on one line, and the messages for the years will be on another
line. However, the Display property for these validators has been set to Dynamic,
which means that space will be allocated for them only when it is needed.

Chapter 2 How to develop a one-page web application

The aspx code for the Future Value form (continued)

<tr>
<td class="auto-style2">Annual interest rate</td>
<td><asp:TextBox ID="txtInterestRate" runat="server"
Text="6.0"></asp:TextBox></td>

</tr>
<tr>
<td class="auto-style2">Number of years</td>
<td>
<asp:TextBox ID="txtYears" runat="server">1l0
</asp:TextBox></td>
</tr>
<tr>

<td>Future value</td>
<td><asp:Label ID="lblFutureValue" runat="server"
Font-Bold="True"></asp:Label></td>

</tr>

<tr>
<td class="auto-style2"> </td>
<td> </td>

</tr>

<tr>

<td class="auto-style2">
<asp:Button ID="btnCalculate" runat="server"
Text="Calculate" Width="122px" /></td>
<td>
<asp:Button ID="btnClear" runat="server" Text="Clear"
Width="123px" CausesValidation="False" /></td>

</tr>

</table>

<asp:RequiredFieldValidator ID="RequiredFieldvalidatorl"
runat="server" ErrorMessage="Interest rate is required."
ControlTovValidate="txtInterestRate" Display="Dynamic"
ForeColor="Red">

</asp:RequiredFieldvalidator>

<asp:RangeValidator ID="RangeValidatorl" runat="server"
ErrorMessage="Interest rate must range from 1 to 20."
ControlToValidate="txtInterestRate"
Display="Dynamic" ForeColor="Red" Type="Double"
MaximumValue="20" MinimumValue="1">

</asp:RangeValidator>

<asp:RequiredFieldvValidator ID="RequiredFieldvalidator2"
runat="server" ErrorMessage="Number of years is required.”
ControlToValidate="txtYears" Display="Dynamic" ForeColor="Red">

</asp:RequiredFieldvalidator>

<asp:RangeValidator ID="RangeValidator2" runat="server"
ErrorMessage="Years must range from 1 to 45."
ControlToValidate="txtYears" Type="Integer" Display="Dynamic"
ForeColor="Red" MaximumValue="45" MinimumValue="1">

</asp:RangeValidator>

</div>
</form>
</body>
</html>

Figure 2-14 The aspx code for the Future Value form (part 2 of 2)

61

62

Section 1 The essence of ASP.NET programming

How to add Visual Basic code
to a form

To add the functionality required by a web form, you add Visual Basic code
to its code-behind file. This code responds to the events that the user initiates on
the form. This code also responds to events that occur as a form is processed.

How to use the Code Editor

Figure 2-15 shows how to use the Code Editor to enter and edit Visual Basic
code, starting with three ways to start an event handler. If, for example, you
double-click outside the body of the form in Design view, an event handler for
the Load event of the page is started. Or, if you double-click a control, an event
handler for the default event of the control is started. If you double-click on a
button control, for example, an event handler for the Click event of that control
is created. Then, you can enter the code that you want to be executed within the
braces of the event handler.

To create event handlers for other control events, you can use the Events
button at the top of the Properties window. When you click this button, a list of
all the events for the control that’s currently selected is displayed. Then, you can
double-click on any event to generate an event handler for that event.

You can also code procedures other than event handlers by entering the code
for the procedure directly into the Code Editor window. Then, you can call those
procedures from the event handlers for the form.

As you enter Visual Basic code, be sure to take advantage of the snippets
that ASP.NET offers. If, for example, you insert the snippet for a For loop, all
of the code that you need for that structure is inserted into the code-behind file.
Then, you can modify that code to suit your requirements. As you work, the
Code Editor also provides IntelliSense that makes it easier to enter code.

When you test a web form, you may want to comment out portions of code
by putting those portions of code within Visual Basic comments. Then, because
comments are ignored, you can test the form to see whether those statements
were the cause of a problem. Later, you can uncomment those lines of code and
test again.

Chapter 2 How to develop a one-page web application

The Code Editor for a web form

B Cho2FutureValue - Microsoft Visual Studie Quick Launch (Ctrl+Q) p = O
FLE EDT VIEW WEBSITE BULD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW HELP

f0-0 B-@ B D0 - pFidfx-Debug - Al 0% N .

g Default.aspy™ ~ Solution Explorer :: w B X
§ @ binCelculate - % Cick ' W e-an

| +
el - B .
=] Protected Sub btnCalculate_Click(sender As Object, e As Eventfrgs) Handles btn o Search Selution Explorer (¢ 2

If IsValid Then &7 Selution 'Ch02FutureValue'
Dim monthlyInvestment As Integer = (Int(ddlmnthlylnvestment,s| 4 B Ch02FutureValue
- CInt(Object As Expression) As Integer b Images
End T = "
End Sub & DataSourceObject e
= 1spx.vb
End Class J DataTextFormatString
A EnableViewState
@ MergeStyle
Public Overrides Property SelectedIndex As Integer Pl Selectedindex

Gets or sets the index of the selected item in the Systemn Web.ULWebControls.DropDownList £ SelectedIndexChanged

control. K Selectedltem

K SelectedValue

K SelectMethod -

Comman | All

100% - 4

Three ways to start an event handler

e In the Designer, double-click outside the body of a web form to start an event
handler for the Load event of the page.

e Double-click on a control in the Designer to start an event handler for the default
event of that control.

e Sclect a control in the Designer, click the Events button in the Properties window
(the button with the lightning bolt), and double-click the event you want.

Two ways to insert a code snippet

o Enter the first letters of the type of statement that you want to enter, select the state-
ment in the drop-down Intellisense list, and press the Tab key twice.

e Move the insertion point to where you want the snippet. Right-click, select Insert
Snippet, select Code Patterns, select the pattern type, and select the snippet.

How to comment out a portion of code

e Select the lines of code that you want to comment out. Then, click on the Comment
button in the Text Editor toolbar or press Ctrl+K, Ctrl+C. To uncomment the lines,
select them and click the Uncomment button or press Ctrl+K, Ctrl+U.

Description

e An event handler is a Visual Basic procedure that is executed when an event occurs,
and Visual Studio will generate the starting code for an event handler.

o The Code Editor includes editing features such as IntelliSense, automatic indenta-
tion, snippets, and syntax checking.

e If syntax errors are detected, they are underlined with a wavy line.

e To enter a procedure other than an event handler, you type the procedure from
scratch.

Figure 2-15 How to use the Code Editor to enter and edit Visual Basic code

salpadolg

63

64

Section 1 The essence of ASP.NET programming

How to use page and control events

The first table in figure 2-16 presents some of the common events for work-
ing with web pages. The Init and Load events of a page occur whenever a page is
requested from the server. The Init event occurs first, and it’s used by ASP.NET
to restore the view state of the page and its controls. Because of that, you don’t
usually create an event handler for this event. Instead, you add any initialization
code to the event handler for the Load event. You’ll see how this works in the
next figure.

In contrast, the PreRender event is raised after all the control events for the
page have been processed. It’s the last event to occur before a page is rendered to
HTML. In section 2, you’ll see how this event can be useful when working with
data in session state.

The second table in this figure lists some of the common events for web
server controls. When the user clicks a button, for example, the Click event of
that control is raised. Then, the page is posted back to the server, the event
handlers for the Init and Load events of the page are executed, followed by the
event handler for the Click event of the control that was clicked.

The TextChanged event occurs when the user changes the value in a text
box. In contrast, the CheckedChanged event occurs when the user clicks a radio
button or checks a check box, and the SelectedIndexChanged event occurs when
the user selects an item from a list.

If you want the event handler for one of these events to be executed imme-
diately when the event occurs, you can set the AutoPostBack property of the
control to True. Then, the event handler will be executed after the Init and Load
event handlers for the page. If you don’t set the AutoPostBack property to True,
the event is still raised, but the event handler isn’t executed until another user
action causes the page to be posted to the server. Then, the event handlers for the
Init and Load events of the page are executed, followed by the event handlers for
the control events in the order they were raised.

In this figure, you can see the event handler for the Click event of the Clear
button on the Future Value form. This event handler resets the value in the
drop-down list to the first value in the list by setting the SelectedIndex property
of the control to 0. This handler also resets the text boxes and label to empty
strings. Note that the name of this event handler is btnClear_Click, which is the
ID of the button followed by an underscore and the name of the event.

Like other Visual Basic event handlers, it is the Handles clause that wires
this event handler to the event. This is done by specifying the form or control
name, a period, and the event name. In the examples in this book, all of the
events are wired this way, but in chapter 6 you’ll see another way that events can
be wired with ASP.NET.

Chapter 2 How to develop a one-page web application

Common ASP.NET page events
Event Method name Occurs when...

Init Page_Init A page is requested from the server. This event
is raised before the view state of the page
controls has been restored.

Load Page_Load A page is requested from the server, after all
controls have been initialized and view state has
been restored. This is the event you typically
use to perform initialization operations such as
retrieving data and initializing form controls.

PreRender Page_PreRender All the control events for the page have been
processed but before the HTML that will be
sent back to the browser is generated.

Common ASP.NET control events

Event Occurs when...

selects or unselects a check box.

Click The user clicks a button, link button, or image button control.
TextChanged The user changes the value in a text box.
CheckedChanged The user selects a radio button in a group of radio buttons or

SelectedIndexChanged The user selects an item from a drop-down list or a list box.

Code for the Click event of the btnClear button

Protected Sub btnClear_Click(sender As Object, e As EventArgs)
Handles btnClear.Click
ddlMonthlyInvestment.SelectedIndex = 0
txtInterestRate.Text = ""
txtYears.Text = ""
l1blFuturevalue.Text = ""
End Sub

Description

e All of the events handlers for an ASPNET web page and its server controls are
executed on the server. Because of that, a page must be posted back to the server
before its events can be handled.

e When a page is posted back to the server, the Init and Load events are always raised
so any event handlers for those events are run first. Then, the event handlers for any
control events that were raised are executed in the order in which they were raised.

Figure 2-16 How to use page and control events in your Visual Basic code

65

66 Section 1 The essence of ASP.NET programming

The Visual Basic code for the Future Value form

Figure 2-17 presents the Visual Basic code for the code-behind file of the
Future Value form. It consists of three event handlers that handle the Load event
for the page and the Click events of the Calculate and Clear buttons. This code
also includes a procedure named CalculateFutureValue that is called by the event
handler for the Click event of the Calculate button.

In this code, the highlighted properties are the ones that are commonly tested
in the code for web forms. The first one is the IsPostBack property that’s used
in the Page_Load procedure. If it is True, it means that the page is being posted
back from the user. If it is False, it means that the page is being requested by the
user for the first time.

As a result, the statements within the If statement in the Page_Load proce-
dure are only executed if the page is being requested for the first time. In that
case, the values 50 through 500 are added to the drop-down list by using the Add
method of the Items collection for the list. For all subsequent requests by that
user, the IsPostBack property will be True so the values aren’t added to the
drop-down list. Instead, the values are restored from view state.

The other page property that’s commonly tested is the IsValid property. It’s
useful when the user’s browser doesn’t support the client-side scripts for the
validation controls. In that case, the application has to rely on the validation
that’s always done on the server. Then, if IsValid is True, it means that all of the
input data is valid. But if IsValid is False, it means that one or more controls
contain invalid input data so the processing shouldn’t be done.

In the btnCalculate_Click procedure, you can see how the IsValid test is
used. If it isn’t True, the processing isn’t done. But otherwise, this procedure
uses the SelectedValue property of the drop-down list to get the value of the
selected item, which represents the investment amount. Then, it uses the Text
properties of the text boxes to get the years and interest rate values. After it gets
these values, it converts them to their data types (integer and decimal). Last, it
calls the CalculateFutureValue procedure to calculate the future value, uses the
FormatCurrency method to convert the future value to a string with currency
format, and puts the formatted value in the label of the form. When this proce-
dure ends, the web form is sent back to the user’s browser.

With the exception of the IsPostBack and IsValid properties and the state-
ment at the beginning of the Page_Load event handler that turns off unobtrusive
validation, this is all standard Visual Basic code. Because of that, you shouldn’t
have any trouble following it. But if you do, you can quickly upgrade your
Visual Basic skills by getting our latest Visual Basic book.

Chapter 2 How to develop a one-page web application

The Visual Basic code for the Future Value form

Partial Class _Default
Inherits System.Web.UI.Page

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
UnobtrusiveValidationMode =
System.Web.UI.UnobtrusivevValidationMode.None
If Not IsPostBack Then
For i As Integer = 50 To 500 Step 50
ddlMonthlyInvestment.Items.Add(i.ToString)
Next
End If
End Sub

Protected Sub btnCalculate_Click(sender As Object,
e As EventArgs) Handles btnCalculate.Click
If IsValid Then
Dim monthlyInvestment As Integer =
CInt (ddlMonthlyInvestment.SelectedValue)
Dim yearlyInterestRate As Decimal = CDec(txtInterestRate.Text)
Dim years As Integer = CInt(txtYears.Text)

Dim futureValue As Decimal =
Me.CalculateFutureValue (monthlyInvestment,
yearlyInterestRate, years)

lblFuturevValue.Text = FormatCurrency(futurevalue)
End If
End Sub

Protected Function CalculateFutureValue(monthlyInvestment As Integer,
yearlyInterestRate As Decimal,
years As Integer) As Decimal

Dim months As Integer = years * 12
Dim monthlyInterestRate As Decimal = yearlyInterestRate / 12 / 100
Dim futurevValue As Decimal = 0

For i As Integer = 0 To months - 1
futurevalue = (futurevValue + monthlyInvestment) *
(1 + monthlyInterestRate)
Next

Return futurevValue
End Function

Protected Sub btnClear_Click(sender As Object,
e As EventArgs) Handles btnClear.Click
ddlMonthlyInvestment.SelectedIndex = 0
txtInterestRate.Text = ""
txtYears.Text = ""
1blFuturevalue.Text = ""
End Sub

End Class

Figure 2-17 The Visual Basic code for the Future Value form

67

68 Section 1 The essence of ASP.NET programming

How to test a web application

After you design the forms and develop the Visual Basic code for a web
application, you need to test it to be sure it works properly. Then, if you discover
any errors, you need to find the errors, correct them, and test again. For now,
you’ll just learn how to test a web site with IIS Express. But in chapter 5, you’ll
learn more about testing and debugging.

How to run an IIS Express web site

To run a web site that uses IIS Express, you can use one of the techniques
in figure 2-18. Before Visual Studio runs the web site, though, it compiles the
aspx and Visual Basic code for the web forms. Then, if the web forms compile
without errors, Visual Studio runs the web site using IIS Express and displays
the starting page of the web site in your default browser. At that point, you can
test the application to make sure that it works the way you want it to.

However, if any errors are detected as part of the compilation, Visual Studio
opens the Error List window and displays the errors. These can consist of syntax
errors that have to be corrected as well as warning messages. In this figure, just
one error message and no warning messages are displayed.

To fix an error, you can double-click on it in the Error List window. This
moves the cursor to the line of code that caused the error in the Code Editor. By
moving from the Error List window to the Code Editor for all of the messages,
you should be able to find the coding problems and fix them.

Keep in mind, though, that the error may not be in the statement in the line
of code that causes the problem. For instance, the message in this example says
that monthlyInvestment hasn’t been declared, but the problem is that this vari-
able was spelled differently when it was declared. To fix that, you need to fix the
declaration.

After you fix all of the compilation errors and run the application in the
browser, you should be aware that an exception may occur. That happens when
ASPNET can’t execute one of the statements in the Visual Basic code, even
though it compiled without error. Then, if the exception isn’t handled by the
application, ASP.NET switches to the Code Editor window and highlights the
statement that caused the exception. At that point, you can stop the application
by clicking on the Stop Debugging button in the Debug toolbar or using the
DEBUG->Stop Debugging command. Then, you can fix the problem and test
again.

In addition to testing whether the web site runs without error, you should
also test to see that it displays correctly in different browsers. Visual Studio
makes it easy to change the default browsers for this purpose by providing a
drop-down browser list. After you use that list to change the default browser, you
can click on the browser name or press F5 to run the web site in that browser.

Chapter 2 How to develop a one-page web application

Visual Studio with the Error List window and browser list displayed

m ChD2FutureValue - Microsoft Visual Studic Quick Launch (Ctrl+Q) P = | x
FILE EDIT VIEW WEBSITE BUILD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW HELP
0.0 p-muw < - EEEEEEER s - AL WR TR N
g‘ DEENIELVRUNE I Default.aspx P Internet Explo Internet Explorer ¥ Solution Explorer = w X 3
=1]
g “3_Default Firefox . o -2 3
If Isvalid Th — &
s.a * en | Fraglatlian: T Search Solution Explorer ((2 ~ "
Dim monthlynvestmen Internet Explorer vestment.SelectedValue o
Dim yearlyInterestRi P tRate.Text) &7 Selution 'Ch02FutureValue'
Dim years As Integel Opera Internet Browser 4 @ Ch02FutureValue
Page Inspector b Images
Dim futureValue As |) e(monthlyInvestment,
Safari MnEAAN LOVESTIEDL 4 &) Default.aspx
yearlyInterestRate, !
313 Default.aspxvb
Browse With... v D Web.confi
0% - 4 » sb-connig

Error List > ox
T - Search Error List P~
Description + File Line Column Project -
k31 ‘monthlylnvestment’ is not declared. Uefault.aspxvb 24 bb ChUZFutureValue
It may be inaccessible due to its

protection level, v d »

How to run an application

To run an application in the default browser, press F5 or click on the browser name
in the Standard toolbar.

To change the default browser, select a browser from the drop-down browser list.

The first time you run an ASP.NET application, a dialog box will appear asking
whether you want to modify the web.config file to enable debugging. Click OK.

How to stop an application

Click the Close button in the upper right corner of the browser. For some browsers
like Internet Explorer, that will stop the application in Visual Studio.

In Visual Studio, click the Stop Debugging button in the Debug toolbar or press
Shift+F5. This also stops an application when an exception occurs.

How to fix syntax errors and exceptions

e To go to the statement that caused a syntax error, double-click on the error in the
Error List window. That will give you a clue to the cause of the error.

e When an exception occurs, the application is interrupted and the statement that
caused the error is displayed in Visual Studio. Then, you can stop the application
and debug it.

Description

¢ Each time you modify and run an application, the aspx code and Visual Basic code
is compiled. If any errors are detected, a dialog box asks whether you want to
continue by running the last successful build. If you click No, the application isn’t
run and an Error List is displayed.

o [f a statement can’t be executed when the application is run, even though it compiles

successfully, an exception will occur. Then, you need to debug the problem.

Figure 2-18 How to run a web site with 1IS Express

69

70 Section 1 The essence of ASP.NET programming

How to view the HTML that’s sent to the browser

To view the HTML for a page that’s displayed in a browser, you can use one
of the techniques in figure 2-19. Though you won’t need to view this code often,
it gives you a better idea of what’s going on behind the scenes. It can also be
helpful when you need to see exactly how ASP.NET has rendered the aspx code
to HTML.

For the example in this figure, I copied the HTML code for the Future Value
web form from the web browser into Notepad. Then, I formatted the code to
make it easier to follow. In contrast, the code that’s displayed in the web browser
isn’t formatted so it’s harder to review.

In this example, you can see some of the HTML that has been rendered for
the Future Value form after the user has selected a value from the drop-down list,
entered values into the text boxes, and clicked the Calculate button. This code is
instructive in several ways.

First, note that this code doesn’t include any asp tags. That’s because these
tags have been converted to HTML. For instance, the aspx for the drop-down list
in the first row of the table has been converted to an HTML select element that
contains one option element for each value in the list.

Second, note that view state data is stored in a hidden input field named
_VIEWSTATE. However, the value of this field is encrypted so you can’t read it.
Because the data in view state is passed to and from the browser automatically,
you don’t have to handle the passing of this data in your code.

Third, note that the values that the user entered are included in the HTML.
For instance, the selected value in the drop-down list is 250, and the value in the
first text box is 5.5. This illustrates that you don’t need view state to save the
information that’s entered by the user. Instead, view state is used to maintain the
state of properties that have been set by code. For example, it’s used to maintain
the values that are loaded into the drop-down list the first time the user requests
the form.

Fourth, note the script element that comes right after the view state data.
Although I've replaced the JavaScript code that it contained with a comment,
this is one of several script elements that were generated for this form. They
provide the JavaScript code for validating the data in the browser.

Fifth, note that the HTML for a label server control is a span element, not a
label element as you might expect. In the last line in this example, you can also
see that the error message for a validation control is displayed in a span element.
As you will see in the next chapter, you sometimes need to know how a server
control is rendered in HTML if you want to apply CSS formatting to it, and
reviewing the source code is one way to find out.

Keep in mind that this HTML is generated automatically by ASP.NET,
so you usually don’t have to worry about it. You just develop the application
by using Visual Studio, and the rest of the work is done for you. Sometimes,
though, reviewing the source code can help you solve a debugging problem.

Chapter 2 How to develop a one-page web application

Some of the HTML for the Future Value form after a post back

l<body=

<h1>401K Future value Calculator</hi>
<form method="post” action="Default.aspx” onsubmit="javascript:return webrForm_onsubmit();" id="forml">

l<div class="aspNetHidden">

l<input type="hidden" name="__EVENTTARGET" id="_EVENTTARGET" value="" />
l<input type="hidden" name="__EVENTARGUMENT" "_EVENTARGUMENT" walue="" />
<}gput type="hidden" name="_VIEWSTATE" id="_VIEWSTATE" value="PwXLyOv7RgViG5ilbva/FBGdLXcx42VEVIGN3uUBWCaxrzaThr)
</a1ve>

<

l<script type="text/javascript'>
/7 one of several script elements that contains JavaScript code
l</script>

l<div class="aspNetHidden">
rdi <input type="hidden" name="_EVENTVALIDATION" id="__EVENTVALIDATION" walue="15CCEy9CLE81ZkpLdDEDVFi2Ch1NNY
</ div>
<div>
<table class="auto-stylel”>
<trs
<tg class="auto-style2">Monthly investment</td>
<td>
<select name="ddImonthlyInvestment” id="ddIMmonthlyInvestment" style="height:22px;width:147px;
<option value="50">50</option>
<option value="100">100</option>
<option value="150">150</option>
<option va]ue="200">200<foption>
<option selected” value="250">250</option>
<option "300">300</option>
<option value="350">350</option>
<option value="400">400</option>
<option value="450">450</option>
<option value="500">500</option>
</select>

</td>

</tr>

<tr>
<tg class="auto-style2"=annual interest rate</td>
<td>

<input name="txtInterestRate” type="text"” value="5.5" id="txtInterestRate"” />

</td=

</tr>

<tr>
<tg class="auto-stylez2">Number of years</td>
<td>

<input name="txtyears" type="text" value="20" id="txtyvears" />
</td>
</tr>
<trs
<td>Future value</td>
<td>
y d{span id="1blFuturevalue” style="font-weight:bold;">$109,406. 01k /span>
</td>
</tr>
<tr>
<td class="auto-style2"> </td>
<td= </td>
</tr>
<tr>
<td class="auto-style2">
y d<1nput type="submit" name="btnCalculate"” value="Calculate" onclick="javascript:webForm_DoPost]
</td>
<td>
y d{input Type="submit" name="btnClear” value="Clear" id="btnClear” style="width:123px:" />
</td>
</tr>
</table>
Interest rate is required.

How to view the HTML for a page in a browser

e Select the View—>Source command from the browser’s menu or right-click on the
web page and select the View Source command from the shortcut menu.

Description

e When an ASP.NET page is requested by a browser, ASP.NET generates the HTML
for the page and returns that HTML to the browser.

e View state data is stored in a hidden input field within the HTML. This data is
encrypted so you can’t read it.

o [f the page contains validation controls, the HTML for the page contains script
elements that include the JavaScript that does the validation.

e Values that the user enters into a page are returned to the browser as part of the
HTML.

Figure 2-19 How to review the HTML that’s sent to the browser

71

72 Section 1 The essence of ASP.NET programming

Perspective

The purpose of this chapter has been to teach you the basic skills for creat-
ing a one-page ASP.NET application with Visual Studio. If you’ve already used
Visual Studio and Visual Basic to develop Windows applications, you shouldn’t
have any trouble mastering these skills. You just need to get used to using the
properties and events for web server controls and validation controls.

As you will see in the next chapter, though, you should also have a solid
set of HTML and CSS skills. That way, you can separate the content for a web
page (the HTML) from its formatting (the CSS), and that makes it easier to
develop and maintain the pages of a web site.

Terms
web project flow layout
Web Forms site IntelliSense
web site snippet
Web Forms application web server control
web application smart tag menu
web form property
Web Forms Designer validation control
Designer validator
Toolbox required field validator
Solution Explorer range validator
Properties window unobtrusive validation
Source view jQuery
Design view event handler
Split view Code Editor
IIS Express syntax error
development server exception
Summary

e When you use ASP.NET, a web project is either a Web Forms site (or just
web site) or a Web Forms application (or just web application).

e When you use Visual Studio to design web forms, the primary window is the
Web Forms Designer (or just Designer). It is supported by the Toolbox, the
Solution Explorer, and the Properties window.

e When you run a web site developed with a previous version of Visual Studio
or developed on another system, Visual Studio will use the development
server by default. However, you can change that so Visual Studio will use
1IS Express.

e When you use the Designer to build a web form, you can work in Source
view, Design view, or Split view.

Chapter 2 How to develop a one-page web application

In Source view, IntelliSense and snippets help you enter the tags and attri-

butes for HTML elements and web server controls. In Design view, the
Toolbox makes it easy to add web server controls to a form and the Proper-
ties window helps you set the properties for the controls.

ASPNET provides validation controls that provide for both client-side and
server-side data validation. For client-side validation, JavaScript must be
enabled in the user’s browser, but most browsers have it enabled.

When unobtrusive validation is used for a web site, ASPNET will use a
JavaScript library called jQuery for the validation. That option is on by
default when you start a new web site.

Visual Studio provides a Code Editor with IntelliSense and snippets that
makes it easier to enter the Visual Basic statements for the event handlers
and other procedures that a web site requires.

Three of the page events that can trigger an event handler are the Init, Load,
and PreRender events. The first two are raised when a page is posted back
to the server. The last one is raised right before the HTML is generated for a
page.

Four of the server control events that can trigger an event handler are the
Click event for a button, the TextChanged event for a text box, the
CheckedChanged event for a check box or radio button, and the
SelectedIndexChanged event for a list.

The IsPostBack property of a page can be used to tell whether a page is
being posted back from a browser or loaded for the first time. The IsValid
property of a page can be used to tell whether the validation controls have
found that all of the entries are valid.

If you try to run a web form that has syntax errors in the Visual Basic code,
Visual Studio stops compiling the assembly and displays the errors in an
Error List window.

An exception occurs when ASP.NET can’t execute one of the statements in
the Visual Basic code, even though it compiles without error. Then, you need
to stop the application, find the cause of the exception, and fix it.

If you view the source code while a page is displayed in a browser, you can
see the hidden fields that are used for view state, the scripts that are used for
data validation, and the HTML that’s generated for the server controls.

73

74 Section 1 The essence of ASP.NET programming

Before you do the exercises for this book...

If you haven’t already done so, you need to install the software that’s required
for this book as well as the downloadable applications. Appendix A shows how
to do that.

Exercise 2-1 Build the Future Value application

This exercise guides you through the development of the Future Value
application that’s presented in this chapter. This will give you a chance to
experiment with the many features that Visual Studio offers.

Start, close, and open the web site and use IIS Express for it
1. Start Visual Studio. If the Start Page is displayed, click its close button to
close this page.

2. Start an empty file-system web site as shown in figure 2-1. It should be named
Ex02FutureValue and stored in the C:\aspnet45_vb directory.

3. Add a web form as shown in figure 2-2 using the default name. Be sure that
the Place Code in Separate File option is checked.

4. Add a folder named Images to your project and add the MurachLogo.jpg file
to it using the techniques in figure 2-4. The jpg file is in the C:\aspnet45_vb
directory, but you’ll have to change the file type to Image Files or All Files
(**) to see this file.

5. Close the web site using the technique in figure 2-5. Then, open the web site
again using the Open Project dialog box that’s shown in this figure. This
shows that a solution file has been created for this web site.

6. Use FILE®>Open—>Web Site (or FILE>Open Web Site for VS Express) to
display the Open Web Site dialog box. Then, click on Local IIS to see that the
web site is an IIS Express web site.

Use the Web Forms Designer to build the form
7. Open the Default.aspx web form and switch to Source view. Type “Chapter 2:
Future Value” in the title element in the head section of the HTML.

8. Move the cursor to the end of the opening body tag and press the Enter key to
create a new line. Next, drag the Murach logo file from the Images folder in
the Solution Explorer to the new line. That should create an img element with
a properly coded src attribute. Now, add an alt attribute to this element with
“Murach Logo” as its value, and switch to Design view to see the changes.

9. Switch to Source view, place the insertion point after the img element, and
add an h1 element that has “401K Future Value Calculator” as its content.

10.

11.

12.

13.

14.

15.

16.

Chapter 2 How to develop a one-page web application

Switch to Design view to see this change. Then, run the form in the default
browser by pressing the F5. That automatically saves the changes to the
Default.aspx file. When the dialog box asks whether you want to modify the
web.config file to enable debugging, click the OK button. After your form is
displayed in the default brower, close the browser. If your default browser is
Internet Explorer, this should stop the application.

Return to Visual Studio. If the Toolbox isn’t available, that means the web
form is still running. So, click the Stop Debugging button in the Debug
toolbar to stop the application.

In Design view, use the techniques in figure 2-8 to add a table that provides
for six rows and two columns to the div element. Next, add the text shown
in the first four rows to the first column of the table. Then, drag the right
boundary of the first column to reduce its width as shown in this figure.

Switch to Source view to see the HTML for the table. Note that a style
element has been added to the head section and class attributes have been
added to the table element and some of the td elements. This HTML was
generated when you reduced the width of the first column by dragging its
boundary. Note too that non-breaking space characters () have been
generated for the empty td elements.

Switch to Design view and use the techniques in figure 2-9 to add the
drop-down list, text boxes, label, and buttons shown in that figure to the table.
Then, adjust the size of the list, text box, and buttons, but not the label, so the
table looks the way you want it to.

Use the techniques of figure 2-9 and the summary in figure 2-10 to set the
ID and Text properties of the controls. For the Clear button, also set the
CausesValidation property to False.

Press F5 to run the application, and check the web form to make sure it looks
the way it’s supposed to. Then, switch to Visual Studio and click the Stop
Debugging button in the Debug toolbar.

Add the validation controls

17.

18.

19.

In Source view or Design view, add the validation controls for the text boxes
as shown in figures 2-11 and 2-12.

In Design view, double-click outside the body of the web form to start an
event handler for the Load event of the page in the code-behind file for the
form. Then, turn off unobtrusive validation by adding the statement in the
Load event handler shown in figure 2-13. IntelliSense makes this easy.

Press F5 to run the application. Then, test the field validators by leaving fields
blank or entering invalid data. The validation will be done when the focus
leaves a text box or when you click on the Calculate button.

75

76 Section 1

20.

The essence of ASP.NET programming

Stop the application. Then, if necessary, fix any problems and test again. If,
for example, validation is done when you click the Clear button, you can fix
that by setting its CausesValidation property to False.

Add the Visual Basic code and test as you go

21.

22.

23.

24.

25.

26.

Double-click outside of the body of the form to switch to the Code Editor.
That will take you to the Load event handler that you started earlier.

Finish the code for the Load event handler as shown in figure 2-17, taking full
advantage of the IntelliSense that’s provided. Then, press F5 to compile and
test this event handler. If any syntax errors are detected, use the techniques in
this figure to fix them.

Switch back to Design view, and double-click on the Clear button to start an
event handler for the Click event of that button. Then, enter the code for this
event handler as shown in figure 2-17, and test again.

Enter the code for the CalculateFutureValue procedure that’s shown in figure
2-17. When you’re ready to add the For loop, enter the first two letters (fo),
which will display For in the Intellisense list, and press the Tab key twice to
insert the code. Then, finish the coding for this procedure. You may also want
to try the other technique in figure 2-15 for inserting the snippet for a For
loop.

Switch back to Design view, and double-click on the Calculate button to start
an event handler for the Click event of that button. Next, enter the code for
this event handler, but be sure to use the snippet for the If statement. This
procedure should call the CalculateFutureValue procedure as in figure 2-17.
Then, test this code.

If necessary, fix any design or coding problems that remain. When you’re
through, the application should work the way you want it to.

Do more testing and experimenting

27.

28.

20.

30.

Set the EnableViewState property of the drop-down list to False, and test
the application to see what happens. When an exception occurs, stop the
application and reset the property.

Set the EnableClientScript property for all four validators to False so the
validation will only be done on the server. Then, test the application to make
sure that the validation still works. When you’re through testing, end the
application and reset these properties.

Run the application again, and use the technique in figure 2-19 to review

the HTML that’s sent to the browser. There, you can see the HTML that’s
generated for the web form, the input elements with the “hidden” type that are
used for view state, and the script elements that contain the JavaScript that’s
used for client-side validation.

When you’re through experimenting, close the project. Then, close Visual
Studio.

3

How to use HTML5
and CSS3 with ASP.NET
applications

In chapter 2, you learned how to build the Future Value application without
worrying about the HTML or CSS that was generated by Visual Studio.

But there is a right way to use the HTML and CSS for a web application.
Specifically, the HTML should provide the content and structure for a web
page, and the CSS should provide the formatting. That separates the concerns,
and that’s what you’ll learn how to do in this chapter.

The Future Value application with CSS formatting........... 78
The USET TNLEITACE ..c..evieeeiiiiieiieiieer et 78
The HTML that’s generated for a new formc.cocueeevenininicnencncncnene 78

The aspx code for the appliCation.........ceeeveeieienirenenieieteeesesereeeeeene 80
The CSS style sheet for the application..........ccueeevererieienienienienenercnenene 82
The HTML and CSS skills that you need...........ccccoviemenns 84
How to code HTML elements

How to use the HTMLS semantic elementscccceeveeeeieeenienieneneeieeneenes 86
How to use the div and span elements with HTMLS5............ccccoeininiinns 88
How to provide CSS styles for an HTML page............90

How to code the basic CSS SEleCtOrS......c.ovuiriirinerineinieeeereeeeteeeeseeeene 92
How to code CSS rule sets and cOMMENLSccecerueinenenenencneneenieennens 94
How to ensure cross-browser compatibilityc.coccoveveneineneicneriivcnencnnens 96
Visual Studio features for working with HTML.................. 98
How to use the features for entering HTML.........cccoocooiiniiniiiiiiee 98
How to add the attributes for the WAI-ARIA accessibility standards 100
Visual Studio features for working with CSS................... 102
How to create and edit an external style Sheetccocevereninininicnineene 102

How to use Visual Studio to create and modify styles.......c.ccoceeererercnenne 104
How to use the Apply Styles Window........cccceevererieieneneneneneneneeeeeene 106
How to use the CSS Properties WindoW..........cccceceeievenenenenieneneneeneennens 108
How to use the Manage Styles Window........c.ccoeevererieienenicnieneneneneeneens 110

Perspectivecicierimimiinmrrr s e e 112

78

Section 1 The essence of ASP.NET programming

The Future Value application
with CSS formatting

Figure 3-1 presents another version of the Future Value application that you
learned to develop in the last chapter. This time, a table isn’t used to align the
labels and server controls. Instead, CSS is used for all of the formatting includ-
ing the alignment. This separates the formatting (the CSS) from the content (the
HTML), and that’s a best practice for today’s web sites.

The user interface

In this figure, you can see that the user interface doesn’t look exactly like the
one in the last chapter. Instead, the form is centered on the screen with a black
border around it, and the error messages are displayed to the right of the server
controls that get the entries. In this example, the user has entered 33 for the
annual interest rate, and the error message says the rate must range from 1 to 20.

The HTML that’s generated for a new form

When you create a new form with Visual Studio, it generates the code that’s
shown in the first example in this figure. Then, the second example shows how
you can modify the generated code.

Here, the DOCTYPE declaration at the top of the page says that HTML5
will be used for the HTML document (or page). If you’re familiar with the
declarations for earlier versions of HTML, you know that they were far more
complicated than that.

This declaration is followed by the html element that includes all of the other
elements for the page. Within its opening tag, you can see the xmlns attribute
that was generated by ASP.NET. Although this attribute isn’t necessary when
you use HTMLS, it doesn’t hurt anything. So, you can either leave it the way it is
or delete it, whichever you prefer.

In the head element, you should code a value in the title element that will
be displayed in the browser’s title bar or tab when the application is run. In the
browser in this figure, you can see the contents of the title element in the tab for
the application.

When you use an external style sheet for the CSS that will format a page,
you also code a link element within the head element. This link element identi-
fies the external style sheet that will be used. More about that in a moment.

Last, you can usually delete the div tags that are generated by ASP.NET
because they aren’t needed within a form element. Besides that, you should use
the HTMLS5 semantic elements instead of div elements to show the structure of a
document.

WWW.aI | itebooks.cogl

http://www.allitebooks.org

Chapter 3 How to use HTML5 and CSS3 with ASP.NET applications

The user interface for the Future Value application

Ii —'fll’_‘|@ http://localhost:50295/Default.aspx L~RLeX | i g o
(& Chapter 3: Future Value X u
MURACH
401K Future Value Calculator
Monthly investment: 50 [=]
Annual interest rate: 33 Interest rate must range from 1 to 20.
Number of years: 10
Future value:
i Calculate i [Clear
L

The HTML that’s generated for a new form

<!DOCTYPE html>

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title></title>

</head>
<body>

<form id="forml" runat="server">

<div>

</div>

</form>
</body>
</html>

The HTML after it has been modified for this application

<!DOCTYPE html>

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title>Chapter 3: Future Value</title>
<link href="Styles.css" rel="stylesheet">

</head>
<body>

<form id="forml" runat="server">

</form>
</body>
</html>

Description

e The DOCTYPE element indicates that HTMLS5 will be used for the document.
o The title element specifies the name that will be shown in the browser’s title bar or

tab.

o The link element references the external style sheet that contains the CSS for the

page.

Figure 3-1 The user interface and starting HTML for the Future Value application

79

80 Section 1 The essence of ASP.NET programming

The aspx code for the application

Figure 3-2 presents the aspx code for this version of the Future Value appli-
cation. It includes a header element for the header of the document and a section
element for all of the other content of the document. These are HTMLS5 semantic
elements.

The header element contains one standard HTML img element. It displays
the logo at the top of the page. The section element starts with a standard HTML
h1 element that displays the heading right below the logo.

Within the form element, you can see four standard label elements. They
precede and identify the four server controls: the drop-down list, the two text
boxes, and the label control that will display the result. The last two server
controls are button controls for the Calculate and Clear buttons.

After each of the server controls for the text boxes, you can see two vali-
dators. The first is a required field validator. The second is a range validator.
Because these validators come right after the text boxes that they validate, CSS
can be used to align them so they are displayed to the right of the boxes that they
relate to.

Using the techniques that you learned in the last chapter, you should be able
to create a page like this without much trouble. But at that point, the layout of
the page will be a mess. Then, you have to create the external style sheet and the
styles that will format the page.

As you will see in a moment, you can use id or class attributes to select the
elements that you want to format with CSS. That’s why the CssClass attributes
have been added to the code in this figure. For instance, the drop-down list and
the two text boxes have been coded with the CssClass attribute set to “entry”.
Similarly, the four validators have their CssClass attributes set to “validator”,
and the two buttons have their CssClass attributes set to “button”. When the form
is rendered, these attributes are converted to HTML class attributes that you can
use for formatting with CSS.

When you start using CSS to format your pages, you may not know which
controls you need to set ID or CssClass attributes for. That’s okay, though,
because you can switch back and forth between the style sheet and the Designer.
Then, after you get more familiar with the use of CSS, you’ll have a better idea
of how to set the ids and classes before you create the styles in the external style
sheet.

Chapter 3 How to use HTML5 and CSS3 with ASP.NET applications

The aspx code for the body of the Future Value application

<body>
<header>

</header>
<section>
<h1>401K Future Value Calculator</hl>
<form id="forml" runat="server">
<label>Monthly investment:</label>
<asp:DropDownList ID="ddlMonthlyInvestment" runat="server"
CssClass="entry"></asp:DropDownList>

<label>Annual interest rate:</label>
<asp:TextBox ID="txtInterestRate" runat="server"
CssClass="entry">6.0</asp:TextBox>
<asp:RequiredFieldvalidator ID="RequiredFieldvalidatorl"
runat="server" CssClass="validator"
ErrorMessage="Interest rate is required."
ControlToValidate="txtInterestRate"
Display="Dynamic">
</asp:RequiredFieldvalidator>
<asp:RangeValidator ID="RangeValidatorl" runat="server"
CssClass="validator"
ControlTovalidate="txtInterestRate" Display="Dynamic"
ErrorMessage="Interest rate must range from 1 to 20."
MaximumValue="20" MinimumvValue="1"
Type="Double">
</asp:RangeValidator>

<label>Number of years:</label>
<asp:TextBox ID="txtYears" runat="server"
CssClass="entry">10</asp:TextBox>
<asp:RequiredFieldvalidator ID="RequiredFieldvalidator2"
runat="server" CssClass="validator"
ControlToValidate="txtYears" Display="Dynamic"
ErrorMessage="Number of years is required.">
</asp:RequiredFieldvalidator>
<asp:RangeValidator ID="RangeValidator2" runat="server"
CssClass="validator" ControlToValidate="txtYears"
Display="Dynamic"
ErrorMessage="Years must range from 1 to 45."
MaximumValue="45"
MinimumValue="1" Type="Integer">
</asp:RangeValidator>

<label>Future value:</label>
<asp:Label ID="lblFutureValue" runat="server" Text="">
</asp:Label>

<asp:Button ID="btnCalculate" runat="server" Text="Calculate"
CssClass="button" />
<asp:Button ID="btnClear" runat="server" Text="Clear"
CssClass="button" CausesValidation="False" />
</form>
</section>
</body>
</html>

Figure 3-2 The aspx code when CSS is used for the formatting

81

82 Section 1 The essence of ASP.NET programming

The CSS style sheet for the application

Figure 3-3 presents the CSS style sheet for the Future Value application. If
you’re new to CSS (Cascading Style Sheets), you just need to understand what
each of the rule sets in this figure apply to because you’re going to learn more
about CSS in a moment.

For instance, the first three rule sets apply to the HTML body, hl, and label
elements. In this case, the names before the braces { } are just the names of the
HTML elements.

The next three rule sets are for the elements with class attributes equal to
entry, validator, and button. Note that these names are preceded by dots (periods)
to indicate that they are class names.

The last three rules sets are for elements with the id attributes that are speci-
fied. For instance, the first rule set is for the element with an id attribute equal to
ddiMonthlyInvestment. In the style sheet, the ids are preceded by the pound sign
(#) to indicate that they are ids.

As you learn more about CSS, you can refer back to this page to see how the
CSS leads to the formatting shown in figure 3-1. For instance, the width prop-
erty in the rule set for the body says that the body should be 550 pixels wide.
The margin property says the body should have no top or bottom margin, but it
should be centered horizontally in the browser (auto). And the border property
says that the body should have a solid blue border that’s 2 pixels wide.

Figure 3-3

Chapter 3 How to use HTML5 and CSS3 with ASP.NET applications

The external style sheet for the Future Value application

/* The styles for the elements */
body {

font-family: Arial, Helvetica, sans-serif;

font-size: 85%;

width: 550px;

margin: 0 auto;

padding: 10px;
background-color: white;
border: 2px solid #0000FF;

}

hl {
font-size: 140%;
color: #0000FF;
padding: O0;
margin-bottom: .5em;

}

label {
float: left;
width: 10em;

}

/* the styles for classes */

.entry {
margin-left: lem;
margin-bottom: .5em;
width: 1l0em;

}

.validator {
font-size: 95%;
color: red;
margin-left: lem;

}

.button {
margin-top: lem;
width: 1l0em;

}

/* The styles for the server controls */

#ddlMonthlyInvestment {
width: 10.5em;

}

#lblFuturevValue {
font-weight: bold;
margin-left: lem;

}

#btnClear {
margin-left: lem;

}

The CSS for the Future Value application

83

84 Section 1 The essence of ASP.NET programming

The HTML and CSS skills that you need

Although this book assumes that you are already familiar with HTML and
CSS, the next six topics present a quick review of the HTML and CSS skills that
you need for developing web applications. If you don’t already have these skills,
we recommend Murach’s HTMLS5 and CSS3 as a companion to this book.

How to code HTML elements

Figure 3-4 shows how to code HTML elements like those in the table within
an HTML document. To start, each HTML element is coded within a fag that
starts with an opening bracket (<) and ends with a closing bracket (>). For
example, <h1>, <p>, and
 are all HTML tags.

Most HTML elements are made up of three parts. The start tag marks the
start of the element. It consists of the element name (such as h1) plus one or
more optional attributes (such as id or class) that provide additional information
for the tag. After the start tag is the content, which is the text or other data that
makes up the element. After the content is the end tag that marks the end of the
element. The end tag consists of a slash followed by the element’s name.

Not all HTML elements have content and end tags, though. For instance, the

 and elements don’t have closing tags. These can be referred to as
self-closing tags.

Most attributes are coded with an attribute name, an equals sign, and a
value in quotation marks, as shown in the second group of examples in this
figure. Here, for example, the <a> element has an href attribute that provides the
URL that the link should go to when it is clicked, as well as a title attribute that
provides the content for the link.

Boolean attributes, however, can be coded with just the name of the attribute.
For instance, the checked attribute for the input element in the second group
indicates that the checked attribute is “on”, so the check box that this element
represents will be checked. If a Boolean attribute isn’t coded, the attribute is
considered to be “oft™.

You can also code comments within an HTML document as shown in the
second last example in this figure. That way, you can describe sections of code
that might be confusing. You can also use comments to comment out a portion of
HTML code. That way, the code is ignored when the web page is displayed in a
browser. That can be useful when testing a web page.

If you want to code a space within a line that the web browser doesn’t
ignore, you can use (for non-breaking space) as shown in the last
example in this figure. This is just one of the many character entities that you
can use to display special characters in HTML, and Visual Studio automatically
puts these characters into the empty cells of each row when it generates a table.
Note that each character entity starts with an ampersand (&) and ends with a
semicolon (;).

In the table at the top of this figure, you can see that some of the elements
are block elements and some are inline elements. The difference is that by default
block elements are displayed on their own lines. In contrast, inline elements flow

Chapter 3 How to use HTML5 and CSS3 with ASP.NET applications

Common HTML elements

Element Type Defines

hl Block A level-1 heading with content in bold at 200% of the base font size.

h2 Block A level-2 heading with content in bold at 150% of the base font size.

P Block A paragraph at 100% of the base font size.

img Block An image that will be displayed on the page.

form Block A form that can be submitted to the web server for processing.

a Inline A link that goes to another page or a location on the current page
when clicked.

input Inline A control on a form like a text box or button.

label Inline A label that identifies a control on a form.

br A line break that starts a new line.

How to code HTML elements

Two block elements with opening and closing tags
<hl>Halloween SuperStore</hl>
<p>Here is a list of links:</p>

Two self-closing tags

How to code the attributes for HTML elements

How to code an opening tag with attributes

How to code a Boolean attribute
<input type="checkbox" name="mailList" checked>

How to code an HTML comment

<!-- The text in a comment is ignored -->

How to code a character entity for a space

<td> </td>

Description

An HTML document contains HTML elements that specify the content of a web
page.

By default, block elements are displayed on new lines, but inline elements flow to
the right of the elements that precede it.

An attribute consists of an attribute name, an equals sign, and a value in quotation
marks. But to show that a Boolean attribute is on, you can code just the name of the
attribute.

Comments can be used to describe or comment out portions of HTML code.

Character entities provide for special characters, like a non-breaking space
().

Figure 3-4 Basic rules for coding HTML elements

85

86 Section 1 The essence of ASP.NET programming

to the right of preceding elements and don’t start new lines. As a result, you need
to use a br element after an inline element if you want to start a new line after it.

When you use HTMLS, you can use the syntax for either of its predecessors:
HTML or XHTML. In this figure, the examples are for HTML, which has a less
rigid syntax. For instance, these self-closing tags have the HTML syntax:

And these have the XHTML syntax:

For consistency, you might want to use XHTML syntax because that’s what
Visual Studio generates. But the code works either way. We do, however, recom-
mend that you use lowercase for all HTML code, even though HTMLS allows
mixed cases.

Incidentally, you may have noticed in the first two chapters that we refer
to HTML elements by the name used in the opening tag. For instance, we refer
to h1 and img elements. To prevent misreading, though, we enclose one-letter
element names in brackets. As a result, we refer to <a> elements and <p>
elements. That will continue throughout this book.

How to use the HTML5 semantic elements

By default, Visual Studio uses HTMLS when you create a new web page,
and figure 3-5 presents the HTMLS5 semantic elements that improve the structure
of an HTML page. By using them, you improve the search engine optimization
(SEO) of your web pages, at least in some search engines. So, if you aren’t
already using them, you should start soon.

Besides SEO improvements, the semantic elements make it easier to apply
CSS to these elements because you don’t have to code id attributes that are used
by the CSS. Instead, you can apply the CSS to the elements themselves. You’ll
learn more about this in a moment.

Be aware, however, that older browsers won’t recognize the HTML5 seman-
tic elements, which means that you won’t be able to use CSS to apply formatting
to them. So, if you want your CSS to work in older browsers, you need to code
a script element in the head section of the HTML document that provides a
JavaScript shiv. You also need to use CSS to identify the semantic elements as
block elements. In a moment, you’ll learn how to do both.

Chapter 3 How to use HTML5 and CSS3 with ASP.NET applications

The primary HTML5 semantic elements

Element Contents

header The header for a page.

section A generic section of a document that doesn’t indicate the type of content.
article A composition like an article in the paper.

nav A section of a page that contains links to other pages or placeholders.
aside A section of a page like a sidebar that is related to the content that’s near it.
figure An image, table, or other component that’s treated as a figure.

footer The footer for a page.

A page that’s structured with header, section, and footer elements

<body>
<header>
<hl>San Joaquin Valley Town Hall</hl>
</header>
<section>
<p>Welcome to San Joaquin Valley Town Hall. We have some
fascinating speakers for you this season!</p>
</section>
<footer>
<p>© San Joaquin Valley Town Hall.</p>
</footer>
</body>

The page displayed in a web browser

San Joaquin Valley Town Hall

Welcome to San Joaquin Valley Town Hall We have some fascinating speakers for
you this season!

© San Joaguin Valley Town Hall.

Description

HTMLS provides new semantic elements that you should use to structure the
contents of a web page. Using these elements can be referred to as HTMLS
semantics.

All of the HTMLS elements in this figure are supported by the modern browsers.
They will also work on older browsers if you use the workarounds in figure 3-10.
Two benefits that you get from using the semantic elements are (1) simplified
HTML and CSS, and (2) improved search engine optimization (SEO).

Figure 3-5 How to use the HTML5 semantic elements

87

88 Section 1 The essence of ASP.NET programming

How to use the div and span elements
with HTML5

If you’ve been using HTML for a while, you are certainly familiar with the
div element. It has traditionally been used to divide an HTML document into
divisions that are identified by id attributes, as shown in the first example of
figure 3-6. Then, CSS can use the ids to apply formatting to the divisions.

But now that HTMLS is available, div elements shouldn’t be used to struc-
ture a document. Instead, they should only be used when the HTMLS5 semantic
elements aren’t appropriate and no structure is implied. If, for example, you want
to group a series of elements so you can apply CSS to them, you can put them
within a div element. But that doesn’t affect the structure of the content that’s
implied by the HTMLS elements.

Note too that div elements are often used in JavaScript applications. If, for
example, a section element contains three h2 elements with each followed by a
div element, JavaScript can be used to display or hide a div element whenever
the heading that precedes it is clicked. Here again, this doesn’t affect the struc-
ture of the content that’s implied by the HTMLS elements.

Similarly, span elements have historically been used to identify portions of
text that can be formatted by CSS. By today’s standards, though, it’s better to use
elements that indicate the contents of the elements, like the cite, code, and <q>
elements.

But here again, span elements are often used in JavaScript applications. This
is illustrated by the second example in this figure. Here, span elements are used
to display the error messages for invalid entries.

Similarly, ASP.NET generates span elements for the messages that are
displayed by its validators. ASP.NET also generates span elements for its label
server controls. This is illustrated by the third example in this figure.

Chapter 3 How to use HTML5 and CSS3 with ASP.NET applications

The div and span elements
Element Description

div A block element that provides a container for other elements.
span An inline element that lets you identify text that can be formatted with CSS.

The way div elements were used before HTML5

<div id="header">
<hl>San Joaquin Valley Town Hall</hl>
</div>
<div id="contents">
<p>Welcome to San Joaquin Valley Town Hall. We have some
fascinating speakers for you this season!</p>
</div>
<div id="footer">
<p>© San Joaquin Valley Town Hall.</p>
</div>

Span elements in the HTML for a JavaScript application

<label for="email_ addressl">Email Address:</label>
<input type="text" id="email_addressl" name="email_ addressl">
*

<label for="email_ address2">Re-enter Email Address:</label>
<input type="text" id="email_ address2" name="email_ address2">
*

Span elements generated by ASP.NET
for two validators and a label control

<label>Number of years:</label>
<input name="txtYears" type="text" value="10" id="txtYears" class="entry" />
<span id="RequiredFieldvValidator2" class="validator"
style="display:none;">Number of years is required.
<span id="RangeValidator2" class="validator"
style="display:none;">Years must range from 1 to 45.

<label>Future value:</label>

Description

e Before HTMLS, div elements were used to organize the content within the body of
a document. Then, the ids for these div elements were used to apply CSS format-
ting to the elements.

e Today, HTMLS5 semantic elements should replace most div elements. That makes
the structure of a page more apparent.

e Before HTMLYS, span elements were used to identify portions of text that you could
apply formatting to. Today, a better practice is to use elements that identify the
contents, like the cite, code, and <g> elements.

e Be aware, however, that ASPNET generates span elements for validators and also
for label server controls.

Figure 3-6 How to use the div and span elements with HTML5

89

90 Section 1 The essence of ASP.NET programming

How to provide CSS styles for an HTML page

Figure 3-7 shows the three ways that CSS styles can be provided for an
HTML page. The first way is to code a link element in the head section of an
HTML document that specifies a file that contains the CSS for the page. This file
is referred to as an external style sheet, and it’s a best practice to provide styles
in this way. That separates the HTML from the CSS.

The second way is to code a style element in the head section that contains
the CSS for the page. This can be referred to as embedded styles. The benefit of
using embedded styles is that you don’t have to switch back and forth between
HTML and CSS files as you develop a page. Overall, though, it’s better to use
external style sheets because that makes it easier to use them for more than one
web page.

The third way to provide styles is to code style attributes within HTML
elements. This can be referred to as inline styles. But then, there’s no separation
between the HTML and the CSS.

When you develop a web page as in chapter 2, Visual Studio generates both
embedded and inline styles. But as you’ve seen in figures 3-2 and 3-3, it’s better
to put all of the styles for a page in an external style sheet. For some web forms,
it also makes sense to use two or more external style sheets for a single page, as
illustrated by the last example in this figure.

When you provide external styles, embedded styles, and inline styles, the
inline styles override the embedded styles, which override the external styles. If,
for example, all three types of styles set the font color for h1 elements, the inline
style will be the one that’s used. Similarly, if two external style sheets are used
for a page, the styles in the second style sheet override the ones in the first sheet.

When you provide the styles for a web page in an external style sheet, you
need to attach the style sheet to the page. To do that, you code a link element
in the head section of the HTML that points to the style sheet, as shown by the
examples in this figure. This figure also shows two ways to generate the link
element for an external style sheet with Visual Studio.

Chapter 3 How to use HTML5 and CSS3 with ASP.NET applications

Three ways to provide styles

Use an external style sheet by coding a link element in the head section
<link rel="stylesheet" href="styles/main.css">

Embed the styles in the head section
<style>
body {
font-family: Arial, Helvetica, sans-serif;
font-size: 87.5%; }
hl { font-size: 250%; }
</style>

Use the style attribute of an element to provide inline styles
Warning!

The sequence in which styles are applied
e Styles from an external style sheet

¢ Embedded styles
o Inline styles

A head element that includes two external style sheets

<head>
<title>The Halloween Store</title>
<link rel="stylesheet" href="main.css">
<link rel="stylesheet" href="order.css">
</head>

The sequence in which styles are applied
e From the first external style sheet to the last

How to generate a link element for an external style sheet

To generate a link element in Source view, drag the style sheet from the Solution
Explorer into the head element for the page.

To generate a link element in Design view, choose the FORMAT —Attach Style
Sheet command and select the style sheet from the Select Style Sheet dialog box.

Description

It’s a best practice to use external style sheets because that leads to better separa-
tion of concerns. Specifically, you separate the content for a page (HTML) from its
formatting (CSS).

Using external style sheets also makes it easy to use the same styles for two or
more pages. In contrast, If you use embedded styles or inline styles, you have to
copy the styles to other documents before you can use them again.

If more than one rule for the same property is applied to the same element, the last
rule overrides the earlier rules.

Figure 3-7 Three ways to provide CSS styles for an HTML page

91

92 Section 1 The essence of ASP.NET programming

How to code the basic CSS selectors

Figure 3-8 shows how to code the basic CSS selectors for applying styles to
HTML elements. To start, this figure shows the body of an HTML document that
contains a section and a footer element. Here, the hl element is assigned an id
of “first_heading”, and the two <p> elements in this section have class attributes
with the value “blue”. Also, the <p> element in the footer has a class attribute
with two values: “blue” and “right”. This means that this element is assigned to
two classes.

The three rule sets in the first group of examples are type (or element) selec-
tors. To code a type selector, you just code the name of the element. As a result,
the first rule set in this group selects the body element. The second rule set
selects the section element. And the third rule set selects all <p> elements.

In these examples, the first rule set changes the font for the body element,
and all of the elements within the body inherit this change. This rule set also sets
the width of the body and centers it in the browser. Then, the second rule set puts
a border around the section element and puts some padding inside the section.
Last, the rule set for the paragraphs sets the margins for the sides of the para-
graphs in this sequence: top, right, bottom, and left. That’s why the paragraphs in
the section are indented.

The two rule sets in the second group of examples use class selectors to
select HTML elements by class. To do that, the selector is a period (.) followed
by the class name. As a result, the first rule set selects all elements that have been
assigned to the “blue” class, which are all three <p> elements. The second rule
set selects any elements that have been assigned to the “right” class. That is the
paragraph in the footer division. Here, the first rule set sets the color of the font
to blue and the second rule set aligns the paragraph on the right.

The rule set in the last example uses an id selector to select an element by
its id. To do that, the selector is a pound sign (#) followed by the id value that
uniquely identifies an element. As a result, this rule set selects the h1 element
that has an id of “first_heading”. Then, its rule set sets the margins for the
heading.

One of the key points here is that a class attribute can have the same value
for more than one element on a page. Then, if you code a selector for that class,
it will be used to format all the elements in that class. In contrast, since the id
for an element must be unique, an id selector can only be used to format a single
element.

Another key point is that a more specific style overrides a less specific style.
For instance, an id selector is more specific than a class selector, and a class
selector is more specific than a type selector. That means that a style for an id
selector will override the same style for a class selector, which will override the
same style for a type selector. Beyond that, the rules in a rule set flow from top
to bottom. So, if you’ve set multiple rules for a property of an element, the last
one will override the previous ones.

As you may know, there are many other types of selectors that you can use
with CSS. But the ones in this figure will get you started with CSS. They are also
the only ones that are used by the applications in this book.

Chapter 3 How to use HTML5 and CSS3 with ASP.NET applications

HTML that can be selected by element type, class, or id

<body>
<section>
<hl id="first_heading">The Speaker Lineup</hl>
<p class="blue">October 19: Jeffrey Toobin</p>
<p class="blue">November 16: Andrew Ross Sorkin</p>
</section>
<footer>
<p class="blue right">Copyright SJV Town Hall</p>
</footer>
</body>

CSS rule sets that select by element type, class, and id

Three rule sets with type selectors
body {
font-family: Arial, Helvetica, sans-serif;
width: 400px;
margin: lem auto; }
section {
border: 2px solid black;
padding: lem; }
p { margin: .25em 0 .25em 3em; }

Two rule sets with class selectors
.blue { color: blue; }
.right { text-align: right; }

One rule set with an id selector
#first_heading { margin: 0 lem .25em; }

The elements displayed in a browser

The Speaker Lineup

October 19: Jeffrey Toobin
November 16: Andrew Ross Sorkin

Copyright SJV Town Hall

Description

* You code a selector for all elements of a specific type by naming the element. This
is referred to as a type or element selector.

¢ You code a selector for an element with a class attribute by coding a period fol-
lowed by the class name. Then, the rule set applies to all elements with that class
name. This is known as a class selector.

® You code an id selector for an element with an id attribute by coding a pound sign
(#) followed by the id value. This is known as an id selector.

Figure 3-8 How to code the basic CSS selectors

93

94 Section 1 The essence of ASP.NET programming

How to code CSS rule sets and comments

CSS code consists of rule sets that are applied to HTML elements by their
selectors. This is illustrated by the six rule sets in figure 3-9. As you can see,
each rule set consists of a selector, a set of braces { }, and one or more rules
within the braces. Within each rule, there’s the name for a property, a colon, the
value or values for the property, and an ending semicolon.

Now, to give you a better idea of how CSS works, here’s a quick description
of the rule sets in this figure. Remember, though, that this book is about ASP.
NET, not CSS, so it isn’t going to try to teach you how to use the dozens of
properties that CSS provides. For that, you’ll need our HTML5 and CSS3 book.

The first rule set consists of seven rules. The first rule specifies the font to be
used for the body of the document, and all the elements within the body inherit
that font. The second rule specifies that the base font for the application should
be 85% of the default font size for the user’s browser. If you refer back to figure
3-4, you can see that a <p> element will be 100% of that base font size, and an
h1 element will be 200% of that size.

The third rule for the body of the document sets its width to 550 pixels.
Then, the fourth rule specifies no margin on the top or bottom of the body, and
an automatic margin to the left and right of the body. The automatic margins are
what centers the body in a browser window.

The fifth rule for the body provides 10 pixels of padding within the body.
Then, the last two rules for the body say that the background color should be
white and the body should have a solid border around it that’s two pixels wide
and blue (#0000FF). In figure 3-1, you can see the padding at the top, left, and
bottom of the body, and you can see the border around it.

The second rule set is for all h1 elements. It sets the font size to 140% of the
base font, the color to blue, the padding to 0, and the bottom margin to .5 em.
Since an em is a unit of measure that’s roughly equal to the width of a capital
M in the font that’s being used, it varies based on the font size that’s used for an
element. In this case, that .5 em margin provides the space after the heading that
separates it from the labels and controls that follow it.

The third rule set applies to all of the label elements on the page. Here, the
first rule floats the labels to the left. That means that the control that follows
each label will flow to the right of it. Also, since validators become HTML span
elements, they will flow to the right of the controls. Then, the second rule sets
the width of each label to 10 ems. That provides the alignment for the four labels
and controls without using a table.

The fourth rule set applies to all elements that have their class attributes set
to “entry”. That includes the drop-down list and the two text boxes below it. The
three rules for this rule set provide a left and bottom margin and set the width for
those controls.

The fifth rule set is for the control that has ddIMonthlylnvestment as its id
attribute, which is the drop-down list. This rule set sets the width of the control
to 10.5 ems. But look, that control has already been formatted by the rule set for
the “entry” class, which set its width to 10. However, since an id selector is more

Chapter 3 How to use HTML5 and CSS3 with ASP.NET applications

Some of the styles in the external style sheet in figure 3-3

/* The styles for the elements */
body {
font-family: Arial, Helvetica, sans-serif;
font-size: 85%;
width: 550px;
margin: 0 auto;
padding: 10px;
background-color: white;
border: 2px solid #0000FF;

font-size: 140%;
color: #0000FF;
padding: O0;
margin-bottom: .5em;

}

label {
float: left;
width: 1l0em;

}

/* the styles for classes */

.entry {
margin-left: lem;
margin-bottom: .5em;
width: 1l0em;

}

/* The styles for the server controls */

#ddlMonthlyInvestment {
width: 10.5em;

}

#1lblFuturevValue {
font-weight: bold;
margin-left: lem;

Description

A CSS rule set consists of a selector and one or more rules within braces. In Visual
Studio, a rule set is called a style rule.

A CSS selector consists of the identifiers that are coded at the beginning of the rule
set. If more than one selector is coded for a rule set, the selectors are separated by
commas.

A CSS rule consists of a property, a colon, a value, and a semicolon. Although the
semicolon for the last declaration in a block is optional, it’s a best practice to code
it.

To make your code easier to read, you can use spaces, indentation, and blank lines
within a rule set.

CSS comments begin with the characters /* and end with the characters */. A CSS
comment can be coded on a single line, or it can span multiple lines.

Figure 3-9 How to code CSS rule sets and comments

95

96 Section 1 The essence of ASP.NET programming

specific than a class selector, the second rule overrides the first rule so the width
is set to 10.5 ems.

The last rule set is for the control with IblFutureValue as its id. That’s the
label control that is used to display the Future Value result when the user clicks
the Calculate button. This rule set provides a left margin for the label and sets
the text in the label to bold.

How to ensure cross-browser compatibility

If you want your web site to be used by as many visitors as possible, you
need to make sure that your web pages are compatible with as many browsers as
possible. That’s known as cross-browser compatibility. That means you should
test your applications on as many browsers as possible, including the five brows-
ers summarized in figure 3-10.

The table in this figure shows the current release numbers of these browsers
and their rating for HTMLS5 support. To get an updated version of this informa-
tion, you can go to the URL shown in this figure. This web site will also rate the
browser that you’re using when you access it.

In general, Internet Explorer (IE) gives web developers the most problems
because it’s the least standard. In contrast, the other four browsers generally
support the same features so if a web page runs on one of them, it will also run
on the others. The other four browsers also provide for automatic updates, but IE
typically hasn’t done that.

To provide for old browsers that don’t support the HTMLS5 semantic
elements, you need to use the two workarounds shown in this figure. The
first one is to include a script element that runs a JavaScript shiv that tells the
browser that the semantic elements are being used. The script element in this
example gets the shiv from a Google web site, but it is also available from other
sites. It consists of just one line of code for each of the semantic elements, so it
loads fast and runs quickly.

However, before you can start using CSS to format the semantic elements
in older browsers, you also need to code the CSS rule set that’s shown as the
second workaround. This rule set tells older browsers that the semantic elements
are block elements. Otherwise, the browsers might treat them as inline elements.

Because this is a book on ASP.NET, not HTMLYS5, these workarounds aren’t
shown in any of the applications in this book. You just need to be aware that
you still need to use these workarounds for production applications that use the
semantic elements.

For this book, you should test all of your applications on Internet Explorer as
well as one other browser, like Chrome or Firefox. That will be an adequate test
of browser compatibility. In contrast, you should test production applications on
all five of the browsers, including the older versions of these browsers that are
still in use.

Chapter 3 How to use HTML5 and CSS3 with ASP.NET applications

The current browsers and their HTMLS5 ratings (perfect score is 500)

Browser Release = HTML5 Test Rating
Google Chrome 27 463
Opera 12 419
Mozilla Firefox 22 410
Apple Safari 6 378
Internet Explorer 10 320

The web site for these ratings

http://www.html5test.com

Guidelines for cross-browser compatibility

Test your web pages on all of the major browsers, including all of the older
versions of these browsers that are still commonly used.

Use the HTMLS features that are supported by all of the modern browsers, espe-
cially the HTMLS5 semantic elements. But use the two workarounds that follow so
these applications will run on the older browsers too.

The two workarounds for using the HTML5 semantic elements

The JavaScript shiv that lets older browsers know about the elements
<script src="http://htmlS5shiv.googlecode.com/svn/trunk/html5.js"></script>

The CSS rule set that sets the eight semantic elements to block elements
article, aside, figure, figcaption, footer, header, nav, section {

display: block;
}

Description

Today, there are still differences in the way that different browsers handle HTML
and CSS, and especially HTML5 and CSS3.

As a developer, though, you want your web pages to work on as many different
web browsers as possible. This is referred to as cross-browser compatibility.

To provide for cross-browser compatibility, you need to test your applications on
all of the browsers that your users might use.

In general, Internet Explorer gives web developers the most problems because it is
the least standard and hasn’t provided for automatic updates.

Eventually, all browsers will support HTMLS5 and CSS3 so the workarounds won’t
be necessary.

Figure 3-10 How to ensure cross-browser compatibility

97

98

Section 1 The essence of ASP.NET programming

Visual Studio features for working
with HTML

In the last chapter, you learned the basic techniques for entering and editing
the HTML for a form. Now, you’ll learn about the enhanced features that Visual
Studio offers for working with HTML.

How to use the features for entering HTML

Figure 3-11 shows some of the advanced IntelliSense features for working
with HTML. In particular, snippets of code are offered as you enter the start of
a tag in Source view of the Designer. For instance, the first example shows that
the snippet for the link element is offered when you enter the letter /, Then, if
you press the Tab key twice, the snippet is added to the source code. In this case,
that’s a complete link element with the href attribute ready for your entry.

The second example shows how the smart indent feature works. If you press
the Enter key when the insertion point is in the content area of an element, the
ending tag is dropped down two lines and the cursor is indented in the middle
line ready for your content entry.

This figure also summarizes three other features that help you enter the
HTML for a form. If you experiment with these features, you’ll quickly see what
a big help Visual Studio is.

Chapter 3

How to use HTMLS5 and CSS3 with ASP.NET applications

IntelliSense as an HTML element is entered in Source view
IntelliSense options including snippets are displayed as you start a tag

E||<htm1>
E<head runat="server">

o
asp:Literal
3 aspiLocalize

<titlexChapter 3: Future Value</title:

& [T i
[literal Markup snippet for a stylesheet relationship

Press the Tab key twice to enter the snippet for the tag

E||<h‘tm1>
H<head runat="server":

<titlexChapter 3: Future Value</title:
<link href="#" rel="stylesheet” />

The smart indent feature

If you press the Enter key when the cursor is in the content area...

T
El<body:
<header:k/header>

...the ending tag is dropped down two lines with the cursor where you want it

é(body)
<|I'=1leader‘>

</header:>

Other Video Studio features for entering HTML
e If you change the starting tag for an element, the ending tag will be automatically

changed too.

e If you enter the opening tag followed by the letters that are capitalized in the
name of a control, like <cb for the asp:CheckBox control, IntelliSense will list the

control.

e When you start the entry of an attribute, IntelliSense lists the attributes that apply to

the HTML element.

Description

e Visual Studio provides many features that make it relatively easy to enter HTML
code, including IntelliSense and snippets.

Figure 3-11

How to use the Visual Studio features for entering HTML

99

100 Section 1 The essence of ASP.NET programming

How to add the attributes
for the WAI-ARIA accessibility standards

The accessibility of a web site refers to the qualities that make it accessible
to as many users as possible, especially disabled users. For instance, visually-
impaired users may not be able to read text that’s in images so you need to
provide other alternatives for them. Similarly, users with motor disabilities may
not be able to use the mouse, so you need to make sure that all of the content and
features of your web site can be accessed through the keyboard.

To a large extent, this means that you should develop your applications so
the content of your web site is still usable if images aren’t used and the mouse
and JavaScript are disabled. A side benefit of doing that is that your site will also
be more accessible to search engines, which rely primarily on the text portions
of your pages.

Beyond that, you can adhere to the WAI-ARIA specification for the World
Wide Web Consortium (W3C), which makes rich Internet applications even
more accessible to the disabled. As figure 3-12 shows, Visual Studio 2012
provides IntelliSense features that support these recommendations. Here, the first
example shows how IntelliSense lists the WAI-ARIA values for the role attribute
that tells a user what role an HTML element plays on the form. The second
example shows how IntelliSense lists the ARIA attributes for an HTML element.

Because this is a book on ASP.NET, not accessibility, these features aren’t
shown in the applications for this book. For most professional web sites, though,
you should provide a high level of accessibility. To help you learn more about
accessibility, this figure lists three sources of information.

Chapter 3 How to use HTML5 and CSS3 with ASP.NET applications

IntelliSense with a list of WAI-ARIA values for the role attribute

EII <nav role="menubar":
Bl <uls
<1i role=""
 & menu "
</nav> = menubar
= menuitem
= menuitemcheckbox
= menuitemradio

IntelliSense with a list of ARIA attributes for an HTML element

<div
[=

|accesskey |*

aria-activedescendant
aria-atomic

aria-autocomplete

=]

=]

=]

=]

@ aria-busy
@ aria-checked

@ aria-controls

@ aria-describedby
=]

aria-disabled -

Types of disabilities

e Visual
e Hearing
e Motor

e Cognitive

Information sources

e The WebAIM web site provides a good starting point for learning about accessi-

bility at http://www.webaim.org.

o The World Wide Web Consortium (W3C) provides a full set of accessibility guide-
lines at http://www.w3.org/TR/WCAG.

o W3C also provides a specification called WAI-ARIA (Web Accessibility
Initiative—Accessible Rich Internet Applications) that shows how to make rich
internet applications more accessible to the disabled at
http://www.w3.org/TR/wai-aria.

Description

o Accessibility refers to the qualities that make a web site accessible to users, espe-
cially disabled users.

o The IntelliSense for Visual Studio 2012 supports the WAI-ARIA attributes for
accessibility.

Figure 3-12 How Visual Studio provides for the WAI-ARIA accessibility standards

101

102

Section 1 The essence of ASP.NET programming

Visual Studio features
for working with CSS

Next, you’ll learn how to use the Visual Studio features for working with
CSS. Some of these are especially useful if you don’t have much experience
with CSS.

How to create and edit an external style sheet

Figure 3-13 starts by showing how to create an external style sheet that is
added to the project folder. Then, if you haven’t already done so, you can add
a link element to the head section of the HTML that points to the external style
sheet. To do that, you can use one of the techniques in figure 3-7 or just enter the
link element into the aspx source code.

To enter and edit rule sets in the external style sheet, you first open it in
the Editor window. Then, you can go to work. As you work, IntelliSense will
help you by listing properties, values, and snippets. In this figure, for example,
IntelliSense shows the options that make it easy to select the solid value for the
second parameter in the rule for the border property.

As you enter the selector for a rule set, you may realize that you haven’t set
up the id or class attribute that you need for a style. Or, you may not remember
the id or class attribute that you used. In either case, you can switch to the aspx
code for the form and add the attribute or get the information that you need.

To see the changes that your CSS has made to a page, you can switch to
Design view for the page or pages that your CSS affects. If Design view doesn’t
clearly show the changes that you made, you can test the form in one or more
browsers. That’s the sure way to know how your CSS is working.

As you work with styles, you may want to add comments or you may want
to comment out one or more rule sets or rules. To do that, you can use the
techniques in this figure. This makes working with comments much easier, and
the keystrokes work the same with HTML code.

Visual Studio 2012 also provides hierarchical indentation if you code
relational selectors, like parent, child, and sibling selectors. If, for example, you
provide a rule set for nav elements followed by a rule set for ul elements that
are children of nav elements, the second rule set will be indented to show this
hierarchical structure. For the applications in this book, though, relational selec-
tors aren’t needed so you won’t see this indentation.

If you want to see a summary of the selectors for the rule sets you’ve
created, you can open the CSS Outline window as shown in this figure. Then,
you can expand the Elements, Classes, and Element IDs groups to see the selec-
tors for the styles in your style sheet. If you click on one of the selectors, the
insertion point will jump to the selector for that rule set in the style sheet.

If your CSS skills are strong, this may be all you need to know to create
effective style sheets. Otherwise, the Visual Studio features that are presented
next are likely to be useful.

Chapter 3 How to use HTML5 and CSS3 with ASP.NET applications

An external style sheet in Visual Studio

m ChD3FutureValue - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = | x
FILE EDIT VIEW WEBSITE BUILD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW HELP
Q- H - 9 - = p InternetExplorer ~ Debug - & : Y4 *0 % Semi-expandec - =
g‘ CSS Outling o w 30X Default.aspx ® X + Solution Explorer =i w B X g
T =
é" 4 [@ Style Sheet /* The styles for the elements */ == & -2 m v e
4 g Elements Elbody { - - 2
M body font-family: Arial, Helvetica, sans-serif; Search Solution Explorer ((@ =
m hl f:;::’l;; 3?%; &7 Solution 'ChO3FutureValue'
m label MreEE 3 oup 4 @ ChD3FutureValue

margin: @ auto;

4l Classes padding: 18px; b Images
O .entry background-color: white; 4 &) Defaultaspx
0O button border: 2px ;J 1 Default.aspx.vb
O wvalidator L border: header | border: 5px solid red;} Styles.css

4 i ElementIDs ¥ Web.config

dashed
inset
outset

m A single line segment.

[#ddiMonthlyln
[#lblFutureValu
[#btnClear

B @ Blocks

O O B O

4 | W00% - A » 4 »

How to create an external style sheet
e Right-click on the project in the Solution Explorer. Then, choose the Add—> Style
Sheet command, type the name for the new style sheet, and click OK.

How to enter and edit the styles for an external style sheet
e Open the style sheet in the Editor, and enter the styles into the style sheet.

o If necessary, modify the aspx code so it provides the ids and class names that you
need for the selectors in the style sheet.

e After you enter a rule set or a series of rule sets, switch to Design view to see
whether the styles are working the way you want them to. Or, test the form in a
browser.

How to comment out and uncomment one or more rules
e Press Ctrl+K, Ctrl+C to comment out selected rules, or Ctrl+K , Ctrl+U to uncom-
ment them. Or, click the Comment or Uncomment button in the Style Sheet toolbar.

How to use the CSS Outline window
e Use the VIEW > Other Windows—>Document Outline command to open this window.
Then, to navigate to a rule set in the style sheet, click on its selector in this window.

Description

o If you know how to use CSS, the easiest way to develop a style sheet is to enter and
edit the code in the Style Sheet editor.

e As you enter CSS code, Visual Studio provides IntelliSense and snippets, including
support for CSS3 and vendor-specific properties
(like -moz- and -webkit- properties).

e By default, if you use relational selectors like parent, child, and sibling selectors,
Visual Studio displays the rule sets with hierarchical indentation.

Figure 3-13 How to create and edit an external style sheet

103

104 Section 1 The essence of ASP.NET programming

How to use Visual Studio
to create and modify styles

To simplify the task of creating style rules, you can use the New Style dialog
box shown in figure 3-14. To access it, you can use either of the techniques
in this figure. Then, you can select an element, id, or class from the Selector
drop-down list that will be used as the selector for the rule set. You can choose
Existing Style Sheet from the Define In drop-down list. And you can browse to
the style sheet you want to use by clicking the Browse button. In this example,
the rule set will be added to an external style sheet named Styles.css.

At that point, you can set the rules for the rule set. To help you do that, the
New Style dialog box provides a list of style categories. Then, when you click on
a category, the controls in the dialog box change so it’s easy for you to apply all
of the rules in that category. For instance, the dialog box in this figure shows the
properties in the Box category, which include the padding and margin properties.
Here, the padding has been set to 10 pixels for all four sides of the body, the top
and bottom margins have been set to 0 pixels, the right margin has been set to
“auto”, and the left margin is being set to auto.

As you select style properties, a preview of the style is shown at the bottom
of the dialog box. Here, you can see that the body has a border around it, which
was set in the Border category. Although this illustration doesn’t show the
padding and margin settings, the Description area below the preview lists all of
the rules in the rule set. When you’ve set all the properties for a rule set, you can
click the OK button to create it.

Modifying a style is similar, except that you access the Modify Style dialog
box in the way that’s shown in this figure and the controls at the top of the
New Style dialog box aren’t in the Modify Style dialog box. In that dialog box,
though, you select a category and use the controls to set any of the properties in
that category, just as you do in the Add Style dialog box.

If your CSS skills aren’t that strong, the New Style and Modify Style dialog
boxes make it easier to enter and edit the styles for a selector. By clicking the
categories, you can see all of the properties that can be applied to a selection
so you don’t have to remember them. Then, you can use the controls for each
property to set values that are valid. Although this may take longer than entering
rules from memory, it makes creating and modifying styles relatively foolproof.

Chapter 3 How to use HTML5 and CSS3 with ASP.NET applications

The New Style dialog box

f B
New Style M
Selector: body - [Apply new style to document selection
Define in: [E)cisﬁng style sheet v] URL: Styles.css -
Category:
Fl“g(t padding: Same for all margin: [Same for all
Blo - -
Background top: 10 -] - top: 0 - v
Border right: | 10 = | px right: auto v = px
Position bottom: | 10 = | px bottom: 0 v = pxow
Layout left: | 10 = | px left: = | px
List
Table €S5S box model reference: inherit
Top (value)
hargin
Baorder
Faddin,
Bottom

Preview:

AaBbYyGglLJj

Description: font-family: Arial, Helvetica, sans-serif; font-size: 85%; background-color: #FFFFFF;
border: 2px solid #0000FF; padding: 10px; margin-top: Opx; marginight: auto; margin-
bottom: Opx

OK] [Cancel] [Apply]

How to create a new style

From Design view, open the New Style dialog box by choosing the
FORMAT->New Style command or by selecting Apply New Style from the Target
Rule drop-down list in the Formatting toolbar. You can also open this dialog box
from the Apply Styles window in the next figure.

In the New Style dialog box, enter or select the Selector for the style, select
Existing Style Sheet from the Define In list, and use the Browse button for the URL
entry to find the style sheet you want the new style to be placed in.

To specify the rules for the style, select a Category and set the values for the prop-
erties in that category. Then, continue with any of the other categories.

How to modify a style

o In the Editor for a style sheet, right-click in a style and select Build Style or click
on the Build Style button in the Style Sheet toolbar. You can also open this dialog
box from the Apply Styles window in the next figure.

o In the Modify Style dialog box, select a category and set or reset the values for the
properties in that category. Then, continue with any of the other categories.

Description

[]

The New Style and Modify Style dialog boxes let you set all the rules for a style.
This can make it easier if your knowledge of properties is limited.

Figure 3-14 How to use Visual Studio to create and modify styles

105

106 Section 1 The essence of ASP.NET programming

How to use the Apply Styles window

This chapter ends by showing how to use three windows that are designed
for working with styles. Each of these can be useful in some circumstances.

So, here’s a quick tour of them, starting with the Apply Styles window in figure
3-15.

In this example, the Apply Styles window shows the styles for the external
style sheet named Styles.css that has been applied to the Future Value form. Note
that the Apply Styles window is only displayed when a form is open in one of
the Designer views, and the Apply Styles window only shows the styles for class
and id selectors. However, if you click on an element in the Designer and a rule
set has been set up for that element type, the selector for the rule set is shown at
the bottom of the window in the Contextual Selectors section, like the h1 selec-
tor in this example.

When the Apply Styles window is open, you can move the pointer over a
style to see its rules. You can also use the drop-down list for a style to start a
new style or modify the style. Those are easy ways to open the New Style and
Modify Style dialog boxes. If you want to delete a style, you can use the
drop-down list for that too.

As the Apply Styles window implies, you can also use it to apply styles. This
works best for class styles. Then, if you select one or more elements and click on
a style for a class, Visual Studio adds the required class attribute to the selected
elements.

If you’re using one external style sheet for all styles, the Apply Styles
window will look the way it does in this figure. But if you’re using more than
one external style sheet, embedded styles, or inline styles, those styles will also
be shown in the Apply Styles window. That makes it easy to delete the styles that
you don’t want.

Chapter 3 How to use HTML5 and CSS3 with ASP.NET applications

The Apply Styles window

M ChO3FutureValue - Microsoft Visual Studio Quick Launch (Ctrl+Q) L2 = 0 x
FILE EDIT VIEW WEBSITE BUILD DEBUG TEAM SQL FORMAT TABLE TOOLS TEST ANALYZE WINDOW HELP
o - B 9 - - P IntemetExplorer = Debug - A _° hl(Styles.css) = Headingl~ -

é:_" Apply Styles = wow J3 INSETMIEETGETE A Styles.css ~ Solution Explorer = v [X g
B . - EHheader class="entry"» + ™ . vom
= Bl L Options <img id="logo" alt="Murach logo" src="Imz a G o-en g’
Sfheader> Search Solution Explorer (¢ P
Clear Styles Elsection» .
5 cform id="forml" runat="server"s fa] Selution 'Ch03FutureValue'
5ty <h1:4@1K Future Value Calculator</hl: 4 © ho3FutureValue
4 Classes <label>Monthly investment:</label> P Images
 button <asp:DropDownList ID="ddlMonthlyInves 4 £) Default.aspx
<label»Annual interest rate:</label: 1) Defaultaspxvb
<asp:TextBox ID="txtInterestRate” rur Styles.css
v edlty y | <asp:RequiredFicldvalidator ID="F¥ ;
- p:RequiredFieldvalidator 0 Web.config
1 4
v validator -entry {
margin-left: 1em; . -
4 1IDs margin-bottom: Sem; i
width: 10em;
v #bmnClear }

Eap

+ #ddMonthlyInvestment [A1]

401K Future Value Calculator
Monthly investment: Unbound vI‘

v #IblFutureValue

4 Contextual Selectors

4 Styles.css Annual interest rate: 6.0 [-
| +hl 1 »
& Design o Source | [4] <h1> M 5

Col 17

How to display the Apply Styles window
o In any of the Designer views, use the VIEW > Apply Styles command.

How to use the Apply Styles window
o To view the properties for a style, just point to the style in the Apply Styles window.

e To apply a class style to one or more elements, select the elements and click on the
style in the Apply Styles window. That adds the appropriate class attribute to the
HTML for the elements.

e To apply one or more class styles to a single element, select the element, hold down
the Ctrl key, and click on the styles that you want to apply in the Apply Styles
window. Repeat this process to remove one or more classes from an element.

e To start a new style, click the New Style button in the Apply Styles toolbar. Or,
select any style and choose New Style from its drop-down list.

e To modify an existing style, select it and choose Modify Style from its drop-down list.
o To delete a style, select it and choose Delete Style from its drop-down list.

e To remove all class and inline styles for selected elements, click Clear Styles. This
removes the class and style attributes from the elements.

Description

e The Apply Styles window lets you work with the styles defined in external style
sheets as well as embedded styles and inline styles. It lists the styles for class and id
selectors.

e The Apply Styles window has a toolbar that lets you create a new style, attach a style
sheet to the current page, or control how the styles are displayed in the window.

Figure 3-15 How to use the Apply Styles window to work with styles

107

108 Section 1 The essence of ASP.NET programming

How to use the CSS Properties window

Figure 3-16 presents the CSS Properties window. This window makes it easy
to analyze the styles that have been applied to an element in the Designer. This is
useful when the styles for an element aren’t working the way you want them to.
This window also makes it easy to modify a style.

The CSS Properties window is divided into two panes. When you select
an element in Design view, the Applied Rules pane lists the rule sets that have
been applied to the element. In addition, the CSS Properties pane lists all of the
properties that can be applied to the element. Then, if you click on the Summary
button at the top of the window, only those properties that have been applied to
the element are displayed.

In this figure, for example, the drop-down list is selected in the Designer,
and the Applied Rules pane shows that the rule sets for the body element, the
“entry” class, and the ddIMonthlyInvestment id have been applied to it. In addi-
tion, the CSS Properties pane shows the properties that have been applied to the
element. These properties are grouped by the same categories that are used in the
New Style and Modify Style dialog boxes.

In this case, the font-family and font-size properties are set by the rule set
for the body. The margin-bottom, margin-left, and width properties are set by
the rule set for the “entry” class. And the width property is set again by the rule
set for the id. But since an id selector is more specific than a class selector, the
second width property overrides the first, which is indicated by the line through
the first width property.

To use this window to modify a style, you can select the rule set in the
Applied Rules pane to display the style properties in the CSS Properties pane.
Then, you can click on a property to select it and change the value of the prop-
erty in the column to its right. Because of the use of categories, this is similar to
modifying the style in the Modify Style dialog box.

Chapter 3

The CSS Properties window

How to use HTMLS5 and CSS3 with ASP.NET applications

m ChD3FutureValue - Microsoft Visual Studio Quick Launch (Ctrl+Q) ,p = 0
FILE EDIT VIEW WEBSITE BUILD DEBUG TEAM 5QL FORMAT TABLE TOOLS TEST ANALYZE WINDOW HELP
Q- B-add 9 - p Internet Explorer = Debug - S : #ddIMenthlylnv - (None) = ;

CS5 Properties Ml Default.aspx® B X Styles.css

4
o
[=]
o
g [En =
é’ Applied Rules
“E body <body>
‘% .entry <asp:DropDown...
o #ddIMonthlyl... <asp:DropDown...
CSS Properties ! —
4 Font Annual interest rate: I 6.0
font-family Arial, Helvetica, ... range from 1 to 20
i 85% i : :
(i Number of years: I 10
4 Box !
i botomiE range from 1 to 45
margin-left en Future value: [IblFutureValue]
4 Position
width dlen Calculate | Clear |
width 10.5em

4

B Split | @ Source |

How to display the CSS Properties window

Interest rate is required. Interest rate m

MNumber of years is required. Years mu

E| <asp:DropDownList.entry#d...> |E|

e Inany of the Designer views, use the VIEW—=>CSS Properties command.

How to use the CSS Properties window

e To review the properties for an element, select it and click the Summary button.
Then, the Applied Rules pane shows all of the rule sets that have been applied to
the element, and the CSS Properties pane shows all of the rules that have been
applied. If a rule has been overridden, it is crossed out in the CSS Properties pane.

e To modify the styles for an element in the Designer, select it. Or, to modify the
styles for an existing rule set, select it in the Applied Rules pane. Then, in the CSS
Properties pane, click on a property and change the value in the column to the right

of it.

o To sort the properties by category, alphabetically, or by the properties that have

been applied, use the buttons in the toolbar for this window.

Description

e The CSS Properties window can be used to review the styles applied to a selected

element. It can also be used to modify styles.

o This window is especially useful for analyzing the styles for a selected element
when more than one rule set applies to it. Then, you can see the sequence in which
the rules are applied, and any rules that are overridden are crossed out.

Figure 3-16

How to use the CSS Properties window to work with styles

J210(dx3 uonnjog saipadoiy

109

110 Section 1 The essence of ASP.NET programming

How to use the Manage Styles window

Figure 3-17 shows how to use the Manage Styles window. This window is
useful when you want to move a rule set from one style sheet to another. To do
that, you just drag and drop the rule set.

In the example in this figure, you can see the styles in the external style sheet
named Styles.css. You can also see one style in the Current Page style sheet,
which is the embedded style sheet for the page. Then, to move the style from
the embedded style sheet to the external style sheet, you drag it to Styles.css and
drop it there. That doesn’t remove the style element in the head section of the
HTML, but it does leave that element empty.

You can also use this window to change the sequence of rule sets within a
style sheet by dragging and dropping them. But before you can do that, you need
to use the Options list to set the display to Categorize by Order.

Chapter 3 How to use HTML5 and CSS3 with ASP.NET applications

The Manage Styles window

B Split | @ Source |

Drag margin handles to resize margins. Press SHIFT or CTRL for more options.

E| <asp:Button.button#btnCal...> |E|

How to display the Manage Styles window
e Inany of the Designer views, use the VIEW->Manage Styles command.

How to use the Manage Styles window

e To move a style from one style sheet to another, drag and drop it on the style sheet

name or “Current Page”.

e To change the order of the styles in the style sheet, select Categorize by Order from
the drop-down Options list in the Manage Styles toolbar. Then, drag and drop a

style in its new location.

e To display the properties of a style in the Manage Styles window, point to it.

e To show the preview for a style, select it in the Manage Styles window. If the
preview isn’t displayed, select Display Selected Style Preview from the drop-down

Options list.

Description

e The Manage Styles window provides a convenient way to move the styles used by a
page from one style sheet to another. That includes the styles in both embedded and

external style sheets.

e All styles in an external style sheet appear under the name of that style sheet.

o All styles in an embedded style sheet appear under the Current Page heading, but
only when a control that uses an embedded style is selected in the Designer.

Figure 3-17

How to use the Manage Styles window to work with styles

m ChD3FutureValue - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = 0O X
FILE EDIT VIEW WEBSITE BUILD DEBUG TEAM 5QL FORMAT TABLE TOOLS TEST ANALYZE WINDOW HELP
Q- B-add 9 - P Internet Explorer ~ Debug y- | : butten (Current = (None) = ;
g_' Manage Styles M Default.aspx® & X Styles.css* - _é-u
g Q| 1 Options ~ a2
| I3
> ;
= g
e AaBbYyGgLllj E*
t% 3
! z
0 4 Stylescss 401K Future Value Calculator 5
; 4 EEmEds Monthly investment: |Unh0und vll :
= + body L
m .
= ¥ hl Annual interest rate: Ia_g
“ label ’ Interest rate is required. Interest rate mus
4 Classes range from 1 to 20. _
v .entry Number of years: |1g
R ’ MNumber of years is required. Years must
4 IDs range from 1 to 45.
& valug- [IbIFutureValue]
 #btnClear
+ #ddIMonthlylnvestment Calculate L Clear |
+ #blFutureValue
4 Current Page
4 (Classes v
i bution _ 8

111

112

Section 1 The essence of ASP.NET programming

Perspective

Now that you’ve completed this chapter, you know the right way to use
HTML and CSS in a Web Forms application. That means using HTML for the
content and structure of a page and using CSS in an external style sheet for all
of the formatting. That separates the content and structure of each page from its
formatting. And that makes it easier to create and maintain a web page.

Because this book is about ASPNET programming, not HTML and CSS,
this chapter has presented only what you need to know about HTML and CSS
for this book. As you will see, all of the applications in this book use simple
HTML and CSS, and the programming is the same whether the formatting is
simple or complex.

Of course, there’s a lot more to HTML and CSS than what’s presented in
this chapter. So if you want to learn more, we recommend Murach’s HTMLS5
and CSS3. Its first six chapters are a crash course in the HTMLS and CSS3
skills that every web developer should have, and those skills will help you get
the most from the Visual Studio features for working with HTML and CSS.
After you read those chapters, our HTMLS and CSS3 book becomes your best

on-the-job reference.

Terms

CSS (Cascading Style Sheets)
HTML document

HTML element

tag

start tag

attribute

content (HTML)

end tag

self-closing tag

comment

comment out

character entity

block element

inline element

HTMLS semantic elements
HTMLS semantics

SEO (search engine optimization)
style sheet

external style sheet
attach a style sheet
embedded styles

inline style

CSS selector

element (or type) selector
class selector

id selector

rule set

style rule

rule

property

em

cross-browser compatibility
JavaScript shiv

snippet

accessibility

hierarchical indentation

Chapter 3 How to use HTML5 and CSS3 with ASP.NET applications

Summary

A best practice today is to use HTML for the content and structure of a web
page and CSS for formatting the page. To do that, you use external style
sheets to provide the CSS for your pages.

To attach an external style sheet to a web page, you code a link element in
the head section of the HTML document for the page. That element points to
the location of the style sheet.

By default, block elements in HTML are displayed on their own lines in
browsers. In contrast, inline elements flow into the spaces above them and
don’t start new lines.

The HTML)5 semantic elements include the header, section, nav, aside, and
footer elements. Using them makes it easier to apply CSS and also improves
SEO (search engine optimization) in some search engines.

Now that the HTMLS5 semantic elements are available, a div element should
only be used when there isn’t an appropriate semantic element for the
purpose.

ASPNET generates span elements for validators as well as label controls.
These are inline elements that usually flow to the right of preceding inline
elements.

Embedded styles are coded in a style element in the head section of an
HTML document, which provides some separation between HTML
elements and their styles. But inline styles are coded as attributes in the
HTML elements themselves.

The basic CSS selectors are type (or element) selectors, class selectors, and
id selectors. Those are the ones that are used in the applications for this book.

When you use CSS, you need to understand the order in which styles over-
ride other styles. For instance, more specific styles override less specific
styles, and the last style that’s applied overrides previous styles.

A CSS rule set consists of one or more rules, and each rule consists of a
property name and values. In ASP.NET, rule sets are referred to as style rules.

To assure cross-browser compatibility, you need to test your web applica-
tions in all of the browsers that are likely to access your application.

To make sure the HTMLS semantic elements work in older browsers, you
need to add a script element for a JavaScript shiv to the head section of
the HTML document. You also need to provide a CSS rule set that sets the
semantic elements to block elements.

Visual Studio provides features for working with HTML that include
IntelliSense, snippets, and support for the WAI-ARIA accessibility
specification.

Visual Studio provides features for working with CSS that include
IntelliSense, snippets, and the Apply Styles, CSS Properties, and Manage
Styles windows.

113

114

Section 1 The essence of ASP.NET programming

Exercise 3-1 Develop the Future Value application
with an external style sheet

In this exercise, you’ll develop the Future Value application with an external style
sheet used for all formatting. This will make you work with HTML and CSS.

Open the Future Value web site and convert it to IIS Express

1. Open the Ex03FutureValue web site in the c:aspnet45_vb folder. It already
contains a web form named Default.aspx, a code-behind file for the form that’s
just like the one in chapter 2, and a folder named Images that contains an
image file named MurachLogo.jpg.

2. Use the procedure in figure 2-6 of the last chapter to convert this web site to
IIS Express.

3. Open the Default.aspx file and note that the form already contains the labels
and controls needed by the Future Value application, but it doesn’t contain an
HTML table for layout and it doesn’t contain any styling information.

4. View the form in Design view to see that the labels and controls flow to the
right of the elements that precede them. This is because the labels and controls
are inline elements and ASP.NET uses flow layout by default.

5. Run the application in a browser and click on the buttons to see that the
application works, even though the formatting is a mess.

Begin styling the form

6. Put a br element (
) after the drop-down list, each text box, and the label
server control (not the HTML label elements). Then, view the form to see that
each label starts on a new line followed by its control.

7. Set the CssClass attributes for the drop-down list and the text boxes to “entry”.

Create and attach an external style sheet

8. Using figure 3-13 as a guide, add a style sheet to the project named Styles.css,
and add the rule set for the body selector that’s shown in 3-3. If an option like
Helvetica isn’t available through IntelliSense, type it in. For the background
color use “white”, and for the border color use “blue”.

9. Using figure 3-7 as a guide, drag the style sheet from the Solution Explorer
and drop it into the head section of the HTML for the form. That should
generate a link element that attaches the style sheet to the form. Then, run the
form to make sure that the style sheet has been attached properly and the form
is centered in the browser with a blue border around it.

10. Using figure 3-14 as a guide, use the New Style dialog box to add the h1 rule
set in figure 3-3. To do that, you need to use the Font and Box categories.
Then, note the changes in Design view.

11. Use the same technique to add the style for the label elements that’s shown in
figure 3-3. You’ll find the width property in the Position category, and the float
property in the Layout category.

12.

Chapter 3 How to use HTML5 and CSS3 with ASP.NET applications

Using whichever technique you prefer, add the rule sets for the “entry” class
selector that’s shown in figure 3-3. Then, note the changes in Design view as
the formatting starts to take shape.

Create and test the rest of the styles

13.

14.

15.

16.

Add the rule set for the “button” class that’s in figure 3-3 to the style sheet,
and check that change in Design view. Oops! The CssClass attributes for the
buttons haven’t been set yet.

Use the Designer to set the CssClass attributes for the buttons and note that
“button” is available from the drop-down list because that class is already in
the style sheet. Then, check the change in Design view.

Add the three rule sets for the id selectors in figure 3-3. After each one, check
the changes in Design view.

Test the form in one or more browsers. It should look the way it is in figure
3-1. If it doesn’t, fix the problems.

Add the validation controls and their CSS

17.

18.

19.

20.

Add required field validators like those in figure 3-2 after the TextBox
controls. But be sure that each validator comes after the TextBox control
and before the br element that follows it. (You don’t need to add the range
validators.)

Add the rule set for a new “validator” class to the style sheet as in figure 3-3.
Then, add the required CssClass attributes to the validator controls. One way
to do that is to use the Apply Styles window as in figure 3-15.

Open the code-behind file for the form and notice that unobtrusive validation
has been turned off, as shown in figure 2-13.

Test the application. It should work the way it did in chapter 2. The only
difference should be in the formatting.

Experiment with some of the Visual Studio features

21.

22.

23.

Using figure 3-14 as a guide, use the Modify Style dialog box to go through all
of the settings in the rule set for the body element. Then, modify the rule set
for the body element so its border is double.

Using figure 3-16 as a guide, use the CSS Properties window to review the
properties for the DropDownList control. Note that the first width property
has been crossed out because it has been overridden by the second width
property.

Using figure 3-17 as a guide, use the Manage Styles window to review the
styles for the web form. As you do that, experiment with the settings in the
drop-down list in the toolbar.

24. When you’re through experimenting, close the web site.

115

4

How to develop a
multi-page web site

In chapter 2, you learned how to develop a simple, one-page web site. Then,

in chapter 3, you learned how to use HTML and CSS with any web site. Now,
you’ll how to develop a multi-page web site, which requires several new skills,
including how to use session state and how to get the data for a web form from

a database.

Introduction to the Shopping Cart application 118
The two pages of the Shopping Cart applicationcoceceveieereirennencns 118
The files and folders used by the Shopping Cart application...................... 120
How to work with multi-page web sitescccccc....

How to create a web site that has starting folders and files
How to change the starting page for @ Web Site.........cecvevreriercnerenennenene
How to rename or delete folders and filesccoevereinennincicncnncniennn
How to add a class to @ Web Siteccocvvviiiiiiiiniiiiiiiiicc
How to redirect or transfer to another page..........coeeeveeveenecenineicnenennenn
How to use cross-page postingc.cceceecevennee

How to code absolute and relative URLs......

How to create and use data sources.......c..covusmsmssmsissnninans

How to create an SQL data SOUICEccveeveeieriieeiieiieeeie e
How to configure an SQL data source..............
How to bind a drop-down list to a data source
How to use Visual Basic code to get data from a data sourcecc........ 140

How to use session stateooconeecccccece e seeseeeeme e
How session state WOrkscccccovveenee.
How to work with data in session state

The business classes

of the Shopping Cart application...........cccuecceriiiinmisecnenns 146
The members of the three business Classescocveveereeierenerenieesieeeiennnn 146
The code for the Product Class.........c..ccoveeveniieneininieicncincecreeeeenene
The code for the Cartltem class
The code for the CartltemList Classcccocerueereiineniineineiececeeene 150
The web forms of the Shopping Cart application........... 152
The aspx code for the Order Page.........cccevevueeeerieiieieereeeee e
The Visual Basic code for the Order page....
The aspx code for the Cart page...................
The Visual Basic code for the Cart page..........cceeeerveeeeenieireieeseeceeeenne

Perspective ...

118 Section 1 The essence of ASP.NET programming

Introduction to the Shopping Cart
application

In this chapter, you’ll learn to build two pages of a Shopping Cart applica-
tion. This application gets product data from a database, stores data in session
state, and uses three business classes. So even though this is application is
simple, you’re going to learn a lot about developing web applications with
ASPNET and Visual Basic.

The two pages of the Shopping Cart application

Figure 4-1 shows the two pages of the Shopping Cart application. The Order
page, named Order.aspx, includes a drop-down list from which the user can
select a product. The product names in this list are retrieved from an SQL Server
database via an SqlDataSource control, or just data source. Then, since the
AutoPostBack property of the drop-down list is set to True, the page is posted
back to the server.

On the server, the code-behind file for the Order page gets the data for the
selected product from the data source, which has retrieved the data for all of the
products from the SQL Server database. Then, the data for the selected product
is displayed in several labels, and the ImageUrl property of the Image control on
the right of the page is set to the URL for the image.

Once a product is selected, the user can enter a quantity and click the Add to
Cart button. However, validation controls make sure that the entry is an integer
that ranges from 1 to 500. If the entry is valid, the code-behind file for the Order
page updates a list that represents the user’s shopping cart. Because this list must
be updated each time a product is added to the cart, the list that represents the
shopping cart is saved in a session state object so it is available throughout the
user’s session. Then, the code behind file passes control to the Cart page.

The code-behind file for the Cart page gets the list for the cart from the
session state object and displays the page shown in this figure. Then, the user
can click the Remove Item button to remove the selected item or the Empty Cart
button to remove all of the items. In either case, the code-behind file for the Cart
page updates the cart list for the session state object, makes the changes, and
redisplays the page.

On the Cart page, the user can also click the Continue Shopping button to
return to the Order page or the Check Out button to go to a page that gets the
data for completing the purchase. In this case, though, the checkout page hasn’t
been implemented yet so a message to that effect is displayed when the user
clicks the Check Out button.

Chapter 4 How to develop a multi-page web site 119

The Order page

B BIE=)
|@ http://localhost:55336/Order.aspx PrBex | f% 5h¢ dek
@ Chapter 4: Shopping Cart x u 'i -

File Edit View Favorites Tools Help

Hanbweeh Superstore

or the little goblin 1n all of us

Please select a product |Flying Bats (=]

Flying Bats
Bats flying in front of moon

Bats flying in front of a full moon make for an eerie spectacle.

$69.99 each

Quantity 1

[Add to Cart |[GotoCart

The Cart page
(L v E=EE)
|@ hitpi//localhost:55336/ Cart.aspx p-Bex| Ty
@ Chapter 4: Shopping Cart x u 'i -‘_

File Edit View Favorites Tools Help

Hanbweeh Superstore

or the little goblin 1n all of us

Your shopping cart
Austin Powers (1 at $79.99 each) | Remove ltem |
T&L Machine (1 at $99.99 each)

Continue Shopping] [Check Cut

L J

Figure 4-1 The two pages of the Shopping Cart application

120 Section 1 The essence of ASP.NET programming

The files and folders used
by the Shopping Cart application

Figure 4-2 summarizes the files and folders used by the Shopping Cart
application. By default, Visual Studio places new web form files and their
code-behind files in the application’s root folder, but other files are placed in
special folders. The first table in this figure lists the most commonly used special
folders. Besides these folders, though, you can create your own folders. For
example, it’s common to create an Images folder to store any image files used by
the application.

The App_Code, App_Data, App_Themes, and Bin folders are used for
certain types of files required by the application. For instance, class files (other
than the class files for web pages) are stored in the App_Code folder, and any
database files used by the application are stored in the App_Data folder. In
contrast, the App_Themes folder is used to store any theme data, which you’ll
learn more about in section 2. And the Bin folder is used to store any compiled
assemblies, such as class libraries, that are used by the application.

The second table in this figure lists the specific files and folders that make
up the Shopping Cart application. As you can see, the App_Code folder contains
three class files named Cartltem.vb, CartltemList.vb, and Product.vb that define
the Cartltem, CartltemList, and Product classes required by the application. And
the App_Data folder contains an SQL Server database file named
Halloween.mdf.

The Shopping Cart application also includes folders named Images and
Styles. The Styles folder contains the CSS files for the web site. The Images
folder includes just one image file, banner.jpg, which provides the banner that’s
displayed at the top of each page. However, this folder also includes a subfolder
named Products, which includes a separate image file for each product in the
Products table of the database. Then, because the name of the file for each
product is retrieved from the SQL Server database, the application can display
the correct image for each product.

Finally, the root folder for the application contains two files for each of the
application’s web pages: one for the page itself, the other for the code-behind
file. The root folder also contains a web.config file that is added automatically
when you create an application.

Chapter 4 How to develop a multi-page web site 121

The Solution Explorer for the Shopping Cart application

Solution Explorer

@ e-cudp o

Search Solution Explorer (Ctrl+;) P

fad Selution 'Ch04Cart' (1 project)
4 (& Ch04Cart
4 | App_Code
VB Cartltem.vb
VB CartltemList.vb
VB Product.vb
4 @l App_Data
b @ Halloween.mdf
4 | Images
b B Products
E bannerjpg
4l Styles
Cart.css
Main.css
Order.css
b gk Cart.aspx
4 Order.aspx

&1 Web.config

Special folders used in ASP.NET 4.5

Description
App_Code Non-page class files that are compiled together to create a single assembly.
App_Data Database files used by the application.

App_Themes Themes used by the application.
Bin Compiled code used by the application, including class libraries.

Files in the Shopping Cart application

Folder File Description

App_Code Cartltem.vb A class that represents an item in the shopping cart.
App_Code CartltemList.vb A class that represents the shopping cart.
App_Code Product.vb A class that represents a product.

App_Data Halloween.mdf The Halloween database file.

Images banner.jpg An image file that displays at the top of each page.
Images\Products (multiple) Contains an image file for each product in the database.
Styles (multiple) The CSS files used to style the web pages.

(root) Cart.aspx The aspx file for the Cart page.

(root) Cart.aspx.vb The code-behind file for the Cart page.

(root) Order.aspx The aspx file for the Order page.

(root) Order.aspx.vb The code-behind file for the Order page.

(root) web.config The application configuration file.

Figure 4-2 The files and folders used by the Shopping Cart application

122

Section 1 The essence of ASP.NET programming

How to work
with multi-page web sites

To create a multi-page web site, you need to learn some new skills like
how to change the starting page for a web site, how to transfer from one form
to another, and how to add classes to your site. Before you learn these skills,
though, you’ll learn how to create a web site that includes starting folders and
files.

How to create a web site
that has starting folders and files

All of the web sites in this book are started from the ASPNET Empty Web
Site template. However, there is another template called the ASPNET Web
Forms Site template that you should be aware of. When you start a web site from
this template, it generates a multi-page web application that has Default, About,
Contact, Register, and Login pages, including the folders and files shown in
figure 4-3.

Although this template produces far more folders and files than you need for
most web sites, it is a useful source of ideas and code. If you run this applica-
tion, you can see how it works. Then, you can study the code for its pages to see
how they are implemented. Note, however, that much of this code won’t make
sense until you get further into this book. For instance, you won’t understand the
App_Code and App_Data folders and files until you complete this chapter. And
you won’t understand the Site.master file until you read chapter 9.

One feature of Visual Studio that’s illustrated by the folders and files of this
template is the use of NuGet packages. NuGet is a Visual Studio feature that
makes it easy to install the third-party libraries and tools that are in the NuGet
Gallery. The NuGet Gallery is the central package repository for the Microsoft
development community and is hosted by CodePlex. Codeplex, in turn, is an
open source development community hosted by Microsoft. You can see what’s in
the NuGet Gallery by using the WEBSITE->Manage NuGet Packages command
in Visual Studio or by going to http://nuget.org.

When you install a NuGet package using the Manage NuGet Packages
command, NuGet adds the folders and files for the package to your solution plus
any required references and any required changes to your web.config file. Later,
if you decide to uninstall the package, NuGet removes the folders and files and
undoes any changes it made.

In figure 2-13 of chapter 2, you learned how to install a NuGet package
called AspNet.ScriptManager.jQuery that provides for unobtrusive validation. If
you open the packages.config file in a site that’s created by the Web Forms Site
template, you’ll see that this NuGet package is installed by default, along with
several other packages. The packages.config file also shows the other NuGet
packages that Microsoft thinks you might need for your web site.

Chapter 4 How to develop a multi-page web site

A web site created from the ASP.NET Web Site template

xoqoo) sRiojdsg anag

4

8 Split | © Source |

M localhost_59339 - Microsoft Visual Studio
FILE EDIT WVIEW WEBSITE BUILD DEBUG

e-o B-

Default.aspx* & X

w9

your logo here

FeaturedContent (Custom
hgroup title]

.Modify this template to jump-start your ASP.NET
application.

utorials, and samples

We suggest the following:

Getting Started

ASP.NET Web Forms lets you build dynamic websites using a familiar drag-and-
drop, event-driven model. A design surface and hundreds of controls and
components let you rapidly build sophisticated, powerful Ul-driven sites with data

access. Learn more...

Add NuGet packages and jump-start your coding
NuGet makes it easy to install and update free libraries and tools. Learn more.. -

P Internet Explorer - Debug - 5 -

Quick Launch (Ctrl+Q) P = 0 x

TEAM SQL FORMAT TOOLS TEST ANALYZE WINDOW HELP

(Mew Inline Styls | 1 0" |(None) v
packages.config i X -~ EEIMIHESNIEIEY ~ 0 X
Site.Master eoo f;ﬁ Y@' 20 E__“ "

-
Register Login Search Solution Explorer (Ctrl+;) PR3

m Solution 'localhost_59339" (1 project)
Home About 4 (3 Ch04WebSiteTemplate
a Account
b ¢R) Login.aspx
b @) Manage.aspx
b g OpenAuthProviders.ascx
b ¢ Register.aspx
b ¢R) RegisterExternalLogin.aspx
¥ Web.config
b App_Code
i App_Data
b bin
Pl Content
b themes
Site.css
b Images
b i Scripts
b g Aboutaspx
¢ Bundle.config
b gf) Contact.aspx

sapadolg

Contact

b ¢ Default.aspx
[faviconico
@ Global.asax
& packages.config
B[] Site.master
1 Web.config

»

E| | <div.content-wrapper> | | <hgroup.title> | <hl> |E|

Solution Ex... | Team Explo... | Class View

Some of the folders and files created by the Web Forms Site template

Folder File Description
Content (multiple) CSS files for themes, including jQuery UI CSS files.
Scripts (multiple) JavaScript, jQuery, and jQuery Ul files.
(root) Global.asax A file for working with application objects.
(root) packages.config Config file for NuGet packages.
(root) Site.master The master page for the web site.
Description

e When you start a web site from the ASP.NET Web Forms Site template, you get an
application that provides Default, About, and Contact web pages, plus Register and
Login pages. Then, you can modify these files to jump start your own application
or just study them to see how they work.

o Besides the files for the web pages, this template provides other folders and files
that are a useful source of code and ideas. As you progress through this book, you’ll
learn more about many of these files.

Figure 4-3

How to create a web site with starting folders and files

123

124 Section 1 The essence of ASP.NET programming

How to change the starting page for a web site

If a web site consists of a single form, that form is displayed when you run
the application. However, if a web site contains two or more forms, the current
form (the one that’s selected in the Solution Explorer) is displayed when you
run the application. Or, if a form isn’t selected, the form named Default.aspx is
displayed.

But what if a form isn’t selected and the web site doesn’t contain a
Default.aspx file? Then, the browser displays a directory listing in the browser
when the application is run. So, to make sure that the correct page is displayed
when you run an application, you should always set the starting page for a
multi-page application, as shown in figure 4-4.

How to rename or delete folders and files

Figure 4-4 also shows how to rename or delete the folders and files in a web
site. Note, however, that we don’t recommend the use of the Rename command
for web forms. That’s because this command renames the aspx and code-behind
files for a form, but doesn’t change the name of the Inherits class in the page
directive for the form. And that can lead to errors later on.

If you do have to rename a web form, we recommend the technique in this
figure. That is, create a new web form, copy and paste the code from the old files
into the new ones, and then delete the old files.

For other types of folders and files, the Rename and Delete commands work
well. However, if you think that you might need a file or web form later on, you
can use the Exclude from Project command instead of the Delete command. That
doesn’t actually delete the file, and you can restore it by using the Include in
Project command.

Chapter 4

The menu for changing the starting page, renaming files, and deleting files

How to develop a multi-page web site

w ChD4Cart - Microsoft Visual Studio Quick Launch (Ctrl+Q) P - B x
FILE EDIT VIEW WEBSITE BUILD DEBUG TEAM SQL TOOLS TEST AMALYZE WINDOW HELP
i B - W - @ - | P IntemetExplorer ~ Debug - | A _ HTMLS _
Toolbox << w QX |Cartaspe £ X bl Solution Explorer -1 x5
=
Search Toolbox o~ <%0 Page Language="VB" AutoEventWireup="false" CodeFile="Car < @ -2 0 ﬁl_‘ vy
- o
4 Standard - <IDOCTYPE himl> Search Solution Explorer (Ctri+;) 2 - :
Point:
h Pointer . . 531 Solution "CHOCart' (L project)
£ AdRotator E||<htln1 x¥mlns="http://www.w3.0rg/1999/xhtml™> 7 @ G "
I= BulletedList Cl<head id="Headl™ runat="server":
- <title>Chapter 4: Shopping Cart</title> b i App_Code
Button «link href="styles/Main.css” rel="stylesheet” type="text, b App_Data
Calendar <link href="Styles/Cart.css” rel="stylesheet” type="text, b Images
CheckBox E‘;“Za“ b [Styles
<body> L
8= CheckBoxlist g {h ders e 3] Cartaspx
. gacer . Open 1 Order.aspx
& DropDownlist <img src="Im: Open With... {1 Web.config
1 FileUpload </header>
S HiddenField EI| <section> Scope to This
il HiddenFiel g
= <form id="for =3 ey Solution Explorer View
A Hyperlink <h1>Your
B Image <aspilisi <> View Code F7
ImageButton = <d1v<::;‘ [& View Designer Shift+F7
E ImageMap ¢ View Markup
A Label <asp View Component Designer
. 4
LinkButton <fdivs & View in Browser (Internet Explorer)
EE ListBox = <div id=" gh View in Page Inspector Ctrl+K, Ctrl+G
B iteral <asp[Browse With...
Iil LDCH?'ZE <asp Set As Start Page %
RS </div> Build Page
. e
S E <P 1@5’:‘ @ Check Accessibility...
E PlaceHolder
¢ Exclude From Project
® RadicButton </p>
= X cut Ctrl+X
1= RadioButtonList <casp:sqll
B Substitution % <l ' Ol Copy Ctrl+C
Bl Table + G Design | @ Split | e Sourc on (e =
= L Rename

How to change the starting page for a web site

e Right-click on the aspx file and select Set As Start Page from the shortcut menu.

How to rename a web form

e Create a web form with the new name. Next, copy and paste the aspx and Visual
Basic code from the old web form into the new one, but don’t include the page

directive for the old aspx file. Then, delete the old form.

How to rename a single file

e Right-click on the file, select Rename from the shortcut menu, and change the name.

How to delete a file from the web site

e Right-click on the file and select Delete from the shortcut menu. If the file is an aspx
file, that will delete both the aspx file and its code-behind file from the web site.

e Another alternative is to select Exclude from Project from the shortcut menu for the file.

Description

e By default, the starting page for an ASPNET web site is Default.aspx. If that isn’t
the page that you want the site started with, you need to change the starting page.

e Warning: If you use the Rename command to rename a web form, the file names are
changed, but the name of the Inherits class in the page directive isn’t changed.

Figure 4-4 How to change the starting page and rename

or delete folders and files

125

126 Section 1 The essence of ASP.NET programming

How to add a class to a web site

To add a new class to the web site, you use the Add New Item dialog box,
as shown figure 4-5. From this dialog box, you select the Class template, enter
the name for the class, and click the Add button. Then, Visual Studio will create
a file that contains the declaration for the new class, and you can complete the
class by coding its properties and methods.

Before you create a new class, you’ll typically add the special App_Code
folder to the web site so you can add the class to that folder. But if you don’t do
that, Visual Studio will display a dialog box when you create a new class that
indicates that the class should be placed in an App_Code folder and asks if you
want to place the class in that folder. If you click the Yes button in this dialog
box, Visual Studio will create the App_Code folder and place the new class in it.

To add an existing class to a web site, you use the Add Existing Item
command. Then, the class file that you select is copied to your web site.

You can also use an existing class that is stored in a class library. This is
a collection of classes compiled into a single assembly with a .dll file exten-
sion. To use the classes in a class library, you add a reference to the library as
described in this figure. That will add the library to the Bin folder and make its
classes available to your web site.

Chapter 4 How to develop a multi-page web site

The dialog box for adding a new class to the App_Code folder

. b
Add New Item - Ch04Cart (-2 [
4 Installed Sort by: Default ~| i Search Installed Templates (Ctrl+E) P~
Visual Basi VB A . .
isusibasic E.TI Helper (Razor) Visual Basic Ups i b

Visual C#

An empty class declaration

VE
P Online "-I;l Web API Controller Class Visual Basic

'f? ADO.NET Entity Data Model Visual Basic

VE
!.-I;J Class Visual Basic
@ Class Diagram Visual Basic
I-J DataSet Visual Basic
<>

'@ EF 5.x DbContext Generator Visual Basic

B unQtosqL Classes Visual Basic

MName: |Carﬂtemlvb Place code in separate file
Select master page

L& 4

Two ways to open the Add New ltem dialog box

Right-click the App_Code folder in the Solution Explorer, and then choose
Add->Add New Item from the shortcut menu.

Click on the App_Code folder in the Solution Explorer to select it, and then choose
the WEBSITE->Add New Item command.

How to add a new class to a web site

From the Add New Item dialog box, select the Class template, name the class, and
click the Add button. Then, Visual Studio will create the file with the declaration
for the class.

If you try to add a class directly to the project instead of to the App_Code folder,
Visual Studio will warn you that the class should be placed in the App_Code folder
and ask you if you’d like to place the class in this folder. If you click the Yes button,
Visual Studio will create the App_Code folder and place the class in this folder.

How to add an existing class to a web site

To add a class from another project to a web site, right-click the App_Code folder
in the Solution Explorer and select Add->Existing Item. Then, locate the class
file you want to add, select it, and click the Add button. The file is copied to your
project.

How to use a class that’s part of a class library

Right-click the project in the Solution Explorer and select Add Reference from the
shortcut menu. Click the Browse tab in the dialog box that’s displayed, and then
locate and select the dllI file for the class library you want to use. The class library is
added to the project’s Bin folder, which is created if it doesn’t already exist. To use
the classes in the class library without qualification, add a using statement for the
class library.

Figure 4-5 How to add a class to a web site

127

128

Section 1 The essence of ASP.NET programming

How to redirect or transfer to another page

When you develop an application with two or more pages, you’ll need to
know how to go from one page to another page. For example, when the user
clicks the Add to Cart button on the Order page of the Shopping Cart applica-
tion, the Cart page should be displayed. Similarly, when the user clicks the
Continue Shopping button on the Cart page, the Order page should be displayed.
Three ways to do that are presented in figure 4-6.

When you use the Transfer method of the HttpServerUtility class, ASP.
NET immediately terminates the execution of the current page. Then, it loads
and executes the page specified on the Transfer method and returns it to the
browser. The drawback to using this method is that when the new page is sent to
the browser, the browser has no way of knowing that the application returned a
different page. As a result, the URL for the original page is still displayed in the
browser’s address box. This can be confusing to the user and prevents the user
from bookmarking the page.

The Redirect method of the HttpResponse class works somewhat differ-
ently. When this method is executed, it sends a special message called an HTTP
redirect message back to the browser. This message causes the browser to send
a new HTTP request to the server to request the new page. Then, the server
processes the page and sends it back to the browser. Although this requires an
extra round trip, the user friendliness of this method usually outweighs the small
performance gain that you get when you use the Transfer method.

Unlike the Transfer and Redirect methods, the RedirectPermanent method is
typically used when a page is physically moved or renamed within a web site.
Suppose, for example, that you create a web site that includes a page named
Products.aspx that’s stored in the project folder. But later, you decide to create a
subfolder named Customer, and you move the Products page to this folder. Then,
you can use the RedirectPermanent method as in the third example in this figure
to redirect to the page. The main advantage of using this method is that search
engines will store the new URL. That way, if the page is requested at the old
location, it can be displayed from its new location.

Chapter 4 How to develop a multi-page web site

The Transfer method of the HttpServerUtility class

Method Description

Transfer (URL) Terminates the execution of the current page and
transfers control to the page at the specified URL.

The Redirect and RedirectPermanent methods of the HttpResponse class

Method Description

Redirect (URL) Redirects the client to the specified URL and
terminates the execution of the current page.

RedirectPermanent (URL) Permanently redirects to the specified URL and
terminates the execution of the current page.

Code that transfers control to another page

Server.Transfer("Cart.aspx")

Code that redirects the client to another page

Response.Redirect("Cart.aspx")

Code that permanently redirects the client to another page

Response.RedirectPermanent ("Customer/Products.aspx")

Description

o The Transfer method is a member of the HttpServerUtility class, which contains
helper methods for processing web requests. To refer to this class, you use the
Server property of the page.

o The Redirect and RedirectPermanent methods are members of the HttpResponse
class, which contains information about the response. To refer to this class, you use
the Response property of the page.

e When you use the Transfer method, the current page is terminated and a new page
is processed in its place. This processing is efficient because it takes place on the
server, but the URL in the browser’s address bar isn’t updated.

e When you use the Redirect method, the server sends a special message to the
browser called an HTTP redirect message. Then, the browser sends an HTTP
request to the server that requests the new page. This requires an extra round trip,
but the URL for the current page is shown in the browser’s address bar.

o If you change the name or location of a page, you can use the RedirectPermanent
method to identify the new URL for the page. Then, search engines will store that
URL and use it to display the page when they receive a request for the old URL.

Figure 4-6 How to redirect or transfer to another page

129

130 Section 1 The essence of ASP.NET programming

How to use cross-page posting

A fourth way to transfer to a different web page is to use cross-page posting
as described in figure 4-7. To use cross-page posting, you specify the URL of
another page in the PostBackUrl property of a button control. Then, when the
user clicks the button, an HTTP Post message that contains the URL specified
by the PostBackUrl property is sent back to the server. As a result, the page
with that URL is loaded and executed instead of the page that was originally
displayed.

For example, the Go to Cart button on the Order page uses cross-page post-
ing to go to the Cart page. As a result, the PostBackUrl property of this button
is set to Cart.aspx as shown in this figure. Then, when the user clicks the Go
to Cart button, ASP.NET loads and executes the Cart.aspx page instead of the
Order.aspx page.

Notice that the URL in the PostBackUrl property of this control starts with
a tilde (~) operator. This operator is added automatically when you set the
PostBackUrl property from the Properties window, and you’ll learn more about
it in the next topic.

If the user enters data into one or more controls on a page that uses
cross-page posting, you can use the PreviousPage property to retrieve the data
entered by the user. Usually, you’ll do this in the page’s Load event handler. As
the example in this figure shows, you should first check to make sure that the
PreviousPage property refers to a valid object. If it doesn’t, it means that either
the page isn’t being loaded as the result of a cross-page posting, or the request
came from another web site. In either case, no previous page is available.

If the PreviousPage property refers to a valid object, there are two ways
you can use it to retrieve data from the previous page. First, you can use the
FindControl method to find a control on the previous page. Because this method
returns an object, you’ll need to convert it to the appropriate control before you
can work with its properties. For example, the code in this figure finds a text box
on the previous page, converts it to a text box, and then uses its Text property to
retrieve the data that the text box contains.

The other alternative is to use custom properties as in the third example in
this figure. This requires code in two more places. First, you must add a custom
property in the code-behind file of the previous page. Second, you must add
a PreviousPageType directive at the top of the aspx file of the new page, just
below the Page directive. Once these two pieces of code are in place, the custom
property is available from the PreviousPage object.

Because of the extra programming that’s required to retrieve data entered
by the user, cross-page posting is best used when no user input needs to be
processed. For instance, since no data needs to be processed when the user clicks
the Go to Cart button on the Order page, cross-page posting is used instead
of the Response.Redirect or Server. Transfer method. However, the Response.
Redirect method is used for the Add to Cart button on the Order page so the
selected product and the quantity entered by the user can be easily retrieved.

Chapter 4 How to develop a multi-page web site

The PostBackUrl property of the Button control
Property Description

PostBackUrl Specifies the URL of the page that should be
requested when the user clicks the button.

Members of the Page class used with cross-page posting
Property Description

PreviousPage Returns a Page object that represents the previous page.

Method Description

FindControl(id) Returns a Control object with the specified id. You must cast the
Control object to a specific control before you can work with it.

The aspx code for a button that posts to a different page

<asp:Button ID="btnCart" runat="server" Text="Go to Cart"
CausesValidation="False" PostBackUrl="~/Cart.aspx" />

How to use the FindControl method to get data from another page

Protected Sub Page_Load(sender As Object,
e As EventArgs) Handles Me.Load
If PreviousPage IsNot Nothing Then
lblQuantity.Text =
CType (PreviousPage.FindControl("txtQuantity"), TextBox).Text
End If
End Sub

How to use a custom property to get data from a previous page

Code that sets a property in the previous page
Public Property QuantityText As String
Get
Return Me.txtQuantity.Text
End Get
End Property

A PreviousPageType directive in the new page
<%@ PreviousPageType VirtualPath="~/Order.aspx" %>

Code in the new page that gets the value from the property
If PreviousPage IsNot Nothing Then
lblQuantity.Text = PreviousPage.QuantityText

Description

e Cross-page posting lets you use the PostBackUrl property of a button to specify the
page that should be requested when the user clicks the button.

e When you post to another page, the previous page is available via the PreviousPage
property. If you use custom properties to get data from the previous page, you must
code a PreviousPageType directive right below the Page directive at the top of the
aspx file.

Figure 4-7 How to use cross-page posting

131

132 Section 1 The essence of ASP.NET programming

How to code absolute and relative URLs

In chapter 1, you learned about the basic components of an absolute URL,
which includes the domain name of the web site. When coded within a Transfer
or Redirect method, an absolute URL lets you display a page at another web site.
For example, the first two statements in figure 4-8 display a page at the web site
with the domain name www.murach.com. The first statement displays a page
named Default.aspx in the root directory of the web site. The second statement
displays a page named Search.aspx in the Books directory of the web site.

To display a page within the same web site, you can use a relative URL.
This type of URL specifies the location of the page relative to the directory that
contains the current page. This is illustrated by the third and fourth statements in
this figure. The third statement displays a page that’s stored in the same directory
as the current page. The fourth statement displays a page in the Login subdirec-
tory of the directory that contains the current page.

The next two statements show how you can use a relative URL to navigate
up the directory structure from the current directory. To navigate up one direc-
tory, you code two periods followed by a slash as shown in the fifth statement.
To navigate up two directories, you code two periods and a slash followed by
two more periods and a slash as shown in the sixth statement. To navigate up
additional directories, you code two periods and a slash for each directory.

To navigate to the root directory for the host, you code a slash as shown in
the seventh statement. You can also navigate to a directory within the root direc-
tory by coding the path for that directory after the slash, as shown in the eighth
statement.

In addition to coding URLs on Transfer, Redirect, and RedirectPermanent
methods, you can code them for the attributes of some server controls. This is
illustrated by the last two examples in this figure. The next to last example shows
how you might set the PostBackUrl attribute of a button control. And the last
example shows how you might set the ImageUrl attribute of an image control.

Notice that both of these URLs start with a tilde (~) operator. This operator
causes the URL to be based on the root directory of the web site. For example,
the Cart.aspx file in the first URL is located in the root directory, and the banner.
jpg file in the second URL is located in the Images subdirectory of the root
directory.

Keep in mind, though, that the tilde operator only works on the server.

For example, it will work in the Response.Redirect method or in the ImageUrl
property of an Image server control, but it won’t work in the src property of an
HTML img element unless the img element has a runat="server” attribute.

Although you can use relative URLs in examples like these, it’s easier to
maintain URLSs that use the tilde operator when you move pages or files from
one folder to another. That’s because it’s easier to maintain a URL that’s relative
to the root directory of the web site than it is to maintain a URL that’s relative
to another page. For that reason, you should use the tilde operator whenever you
code a URL for an attribute of a server control.

Chapter 4 How to develop a multi-page web site

Examples of absolute and relative URLs

Statements that use absolute URLs
Response.Redirect ("http://www.murach.com/Default.aspx")
Response.Redirect ("http://www.murach.com/Books/Search.aspx")

Statements that use relative URLs that are based on the current directory
Response.Redirect ("Checkout.aspx")
Response.Redirect("Login/Register.aspx")

Statements that use relative URLs that navigate up the directory structure
Response.Redirect("../Register.aspx")
Response.Redirect("../../Register.aspx")

Response.Redirect ("/Register.aspx")

Response.Redirect ("/Login/Register.aspx")

Server control attributes that use URLs that are based on the root directory

of the current web site
PostBackUrl="~/Cart.aspx"
ImageUrl="~/Images/banner.jpg"

Description

When you code an absolute URL, you code the complete URL including the
domain name for the site. Absolute URLSs let you display pages at other web sites.

When you code a relative URL, you base it on the current directory, which is the
directory that contains the current page.

To go to the root directory for the host, you code a slash. Then, you can code one or
more directories after the slash.

To go up one level from the current directory, you code two periods and a slash. To
go up two levels, you code two periods and a slash followed by two more periods
and a slash. And so on.

If you’re specifying a URL for the attribute of a server control, you can use the web
application root operator (~) to base the URL on the root of the web site.

Figure 4-8 How to code absolute and relative URLs

133

134 Section 1 The essence of ASP.NET programming

How to create and use data sources

To connect to a database and work with its data, you can use an
ASP.NET control called a data source. To illustrate how this works, the
following topics show you how to work with a data source control called
SglDataSource. This control can be used to retrieve data from an SQL database
file, such as a Microsoft SQL Server database file.

How to create an SQL data source

ASP.NET provides several data source controls in the Data group of the
Toolbox, including the SqlDataSource control. Figure 4-9 shows how to create
this type of data source.

If you are going to use the SQL data source to connect to a local database
file, you must first create a database and add it to the App_Data folder of the web
site. For example, the Shopping Cart application for this chapter has an SQL
Server database file named Halloween.mdf in the App_Data folder.

Since the data source isn’t displayed on the page when the application is run,
it doesn’t matter where you place it on the page. However, if the data source is
going to be bound to a control, it makes sense to place it near that control.

After you add the SQL data source to the page, a smart tag menu is avail-
able. Click it and then choose the Configure Data Source command to bring up
the first page of the Configure Data Source wizard, which is shown in this figure.
From this dialog box, select the database file you want to use for the data source.

Once you’ve selected the data source, you must configure the data source
as described in the next figure. Then, you can bind it to the drop-down list as
described in the figure after that.

Chapter 4 How to develop a multi-page web site

The first page of the Configure Data Source wizard

[Al
Configure Data Source - SglDataSourcel m

ij Choose Your Data Connection
N

Which data connection should your application use to connect to the database?

[’ MNew Connection...
Halloween.mdf

[#] Connection string

Previous lext > Finish Cancel

How to create an SQL data source

1. In the Web Forms Designer, open the Data group of the Toolbox and drag the
SqlDataSource control to the form in either Design or Source view.

2. Select Configure Data Source from the smart tag menu for the data source, which
displays the Configure Data Source dialog box shown above.

3. From the drop-down list, select the database file or connection string that you want
to use, and click Next.

4. If this is the first time you’re connecting to the database file, a dialog box asks

whether you want to save the connection to the application configuration file. Then,

leave the Yes box checked, enter a name for the connection, and click Next.
5. Complete the Configure Data Source wizard as described in the next figure.

Description

o Before you create a data source for a local database file, you must add the database
file to the App_Data folder.

o Data source controls are visible in the Designer, but don’t show when the web site
runs.

Figure 4-9 How to create an SQL data source

135

136 Section 1 The essence of ASP.NET programming

How to configure an SQL data source

The previous figure showed you how to complete the first page of the
Configure Data Source wizard by selecting the SQL database file to use. Figure
4-10 shows you how to complete the rest of the Configure Data Source wizard.
The second page of the wizard, shown in this figure, lets you specify the query
that retrieves data from the database.

To create a query, you can code an SQL Select statement. Or, you can
choose columns from a single table or view and let the wizard generate the
Select statement for you. For now, we’ll use the second technique.

To select columns from a table, use the Name drop-down list to select the
table you want to select the columns from. Then, check each of the columns you
want to retrieve in the Columns list. In this figure, I chose the Products table
and selected six of its columns. As you check the columns, the wizard creates
an SQL Select statement that’s shown in the text box at the bottom of the dialog
box.

The first two buttons to the right of the Columns list let you specify addi-
tional options for selecting data. If you want to select just the rows that meet
certain criteria, click the WHERE button and specify the criteria you want. Or,
if you want to specify a sort order, click the ORDER BY button and choose
the columns you want the data sorted by. In this figure, I used the ORDER BY
button to specify that the data should be sorted on the Name column, so the
Select statement includes an Order By clause.

When you finish specifying the data you want the data source to retrieve,
click Next. This takes you to the last page of the wizard, which includes a Test
Query button. If you click this button, the wizard retrieves the data that you have
specified. You can then look over this data to make sure it’s what you expected.
If it isn’t, click the Previous button and adjust the query. If it is, click Finish.

Chapter 4 How to develop a multi-page web site 137

The second page of the Configure Data Source wizard
rConﬁgure Data Source - SglDataSourcel m1

ij Configure the Select Statement

How would you like to retrieve data from your database?

() Specify a custom SQL statement or stored precedure

@ Specify columns from a table or view

Mame:

’Products hd

Columns:

[k [T] Return only unique rows
ProductlD l WHERE...]
Name

ShortDescription l
LongDescription

[CategorylD l
ImageFile

[] OnHand

ORDER BY... l

Advanced... l

SELECT statement:

SELECT [PreductID], [Mame], [ShortDescription], [LongDescription], [ImageFile], [UnitPrice] FROM [Preducts] ORDER BY =«
[Mame]

-

The aspx code for an SQL data source control

<asp:SqglDataSource ID="SqglDataSourcel" runat="server"
ConnectionString='<%$ ConnectionStrings:HalloweenConnectionString %>'
SelectCommand="SELECT [ProductID], [Namel, [ShortDescription],
[LongDescription], [ImageFile], [UnitPrice]
FROM [Products] ORDER BY [Namel]">
</asp:SqglDataSource>

Description

e The Configure Data Source wizard lets you create a query using SQL. You can

enter the Select statement for the query directly, or you can let the wizard construct
the Select statement from your selections.

You can click the WHERE button to specify one or more conditions that will be
used to select the records.

® You can click the ORDER BY button to specify a sort order for the records.

e You can click the Advanced button to include Insert, Update, and Delete statements
for the data source.

e When you click the Next button, you are asked whether you want to preview the
data that’s going to be returned by the data source. To do that, click Test Query.

Figure 4-10 How to configure an SQL data source

138 Section 1 The essence of ASP.NET programming

How to bind a drop-down list to a data source

Once you’ve created a data source, you can bind it to a drop-down list,
as shown in figure 4-11. To start, select the Choose Data Source command
from the smart tag menu for the drop-down list. Then, when the Data Source
Configuration Wizard is displayed, choose the data source in the first drop-down
list. In this figure, I chose SqlDataSourcel, the data source that was created in
the previous figures.

Next, select the column that provides the data you want displayed in the
drop-down list. The column that you select here is used for the drop-down list’s
DataTextField property. In this figure, I chose the Name column so the
drop-down list displays the name of each product in the data source.

Finally, select the column that you want to use as the value of the
item selected by the user. The column you select here is used for the list’s
DataValueField property, and the value of that column can be retrieved by using
the list’s Selected Value property. In this figure, I selected the ProductID column.
As a result, the program can use the SelectedValue property to get the ID of the
product selected by the user.

Chapter 4 How to develop a multi-page web site 139

The Data Source Configuration Wizard dialog box
r Data Source Configuration Wizard M1

i? Choose a Data Source

Select a data source:

’SqIDataSource_‘I. -

Select a data field to display in the DropDownList:

MName -

Select a data field for the value of the DropDownList:
ProductlD R

Refresh Schema

l OK l l Cancel

The aspx code for a drop-down list that’s bound to a data source

<asp:DropDownList ID="ddlProducts" runat="server"
AutoPostBack="True" DataSourceID="SqglDataSourcel"
DataTextField="Name" DataValueField="ProductID">
</asp:DropDownList>

Attributes for binding a drop-down list

Attribute Description
DataSourceID The ID of the data source that the drop-down list should be bound to.
DataTextField The name of the data source field that should be displayed in the

drop-down list.

DataValueField The name of the data source field whose value should be returned by
the SelectedValue property of the drop-down list.

Description

e You can bind a drop-down list to a data source so the list automatically displays
data retrieved by the data source.

e You can use the Data Source Configuration Wizard dialog box to configure the data
binding for a drop-down list. To display this dialog box, select the Choose Data
Source command from the list’s smart tag menu.

e Alternatively, you can use the Properties window or edit the aspx code directly to
set the data binding attributes for a drop-down list.

Figure 4-11 How to bind a drop-down list to a data source

140 Section 1 The essence of ASP.NET programming

How to use Visual Basic code
to get data from a data source

For the Shopping Cart application to work, it must retrieve the data for the
product selected by the user from the drop-down list. Although there are several
ways to do that, none of them are easy.

One way is to create a second data source that queries the database again
to retrieve the data for the selected product, and then use a special type of ASP.
NET server control called a DetailsView control that is bound to this second data
source. You’ll learn how to do that in section 3.

Another way is to write code that retrieves the product data from the existing
SQL data source. That’s the technique that the Shopping Cart application uses.
However, to make this work, you must use the classes, methods, and properties
that are summarized in figure 4-12.

The example in this figure shows how to retrieve data from a row that
matches the ProductID value returned by the SelectedValue property of the
drop-down list. First, you use the Select method of the SqlDataSource class with
the Empty argument to retrieve all of the rows specified by the data source from
the underlying SQL database. Then, because the return type of this method is
IEnumerable, you must convert the returned object to a DataView object so you
can use the methods of that class.

Once you have the rows in a DataView object, you can use the RowFilter
property to filter the rows so only the row selected by the user is available.

To do that, you build a filter expression that lists the column name and value.
For example, ProductID="jar01' filters the data view so only the row whose
ProductID column contains jar01 is included. The second statement in this figure
creates a filter expression for the ID of the product the user selected.

Once you’ve filtered the DataView object so only the selected row is avail-
able, you can use the Item property of the DataRow View object to retrieve the
data for a column. Also, since the Item property is the default property, you can
omit “Item” from your code.

Here, the first Item property identifies the only row that has been selected, so
its value is 0, and this row is returned as a DataRowView object. Then, you can
use the Item property of the DataRowView object to specify the index or name
of the column you want to retrieve from the row. In this example, column names
are used for the columns that need to be retrieved. (Although using an index
value is a little more efficient, specifying the column name makes the code more
understandable.)

Once you establish the row and column index for each value, all that
remains is to convert this value to the appropriate type. In this example, all of
the columns except the UnitPrice column are converted to strings using their
ToString methods, and the UnitPrice column is converted to a decimal type.

In this example, the values that are retrieved from the data source are stored
in local variables. Later in this chapter, though, you will see similar code that
retrieves these values and stores them in a Product object.

Chapter 4 How to develop a multi-page web site

The Select method of the SqlDataSource class

Method Description

Select(selectOptions) Returns an I[Enumerable object that contains the rows retrieved
from the underlying database. To get all the rows, the selectOptions
parameter should be DataSourceSelectArguments.Empty.

Properties of the DataView class for retrieving rows

Property Description

RowFilter A string that is used to filter the rows retrieved from the database.
Item(index) Returns a DataRowView object for the row at the specified index position.

Properties of the DataRowView class for retrieving columns

Property Description

Item(index) Returns the value of the column at the specified index position as an object.
Item(name) Returns the value of the column with the specified name as an object.

Code that gets product information for the selected product

Dim productTable As DataView = CType(SglDataSourcel.Select(
DataSourceSelectArguments.Empty), DataView)

productTable.RowFilter = "ProductID = '" & ddlProducts.Selectedvalue & "'"

Dim row As DataRowView = CType(productsTable(0), DataRowView)

Dim id As String = row("ProductID").ToString

Dim name As String = row("Name").ToString

Dim shortDescription As String = row("ShortDescription").ToString
Dim longDescription As String = row("LongDescription").ToString
Dim unitPrice As Decimal = CDec(row("UnitPrice"))

Dim imageFile As String = row("ImageFile").ToString

Description

e The Select method of the SqlDataSource class returns an IEnumerable object that
contains the rows retrieved from the database. To work with these rows, you must
cast the IEnumerable object to a DataView object.

e The RowFilter property of the DataView class lets you filter rows in the data view
based on a criteria string.

® You can use the Item property of the DataView class to return a specific row as a
DataRowView object. Then, you can use the Item property of the DataRow View
class to return the value of a specified column. The parameter for the column can be
an integer that represents the column’s position in the row or a string that represents
the name of the column. Since Item is the default property for these classes, you
can omit it in your code.

e The DataView and DataRow View classes are stored in the System.Data namespace.

Figure 4-12 How to use Visual Basic code to get data from a data source

141

142 Section 1 The essence of ASP.NET programming

How to use session state

In chapter 1, you learned that HTTP is a stateless protocol. You also learned
that ASPNET uses session state to keep track of each user session and that you
can use session state to maintain program values across executions of an applica-
tion. Now, you’ll learn how to use session state.

How session state works

Figure 4-13 shows how session state solves the problem of state manage-
ment for ASP.NET applications. As you can see, session state tracks individual
user sessions by creating a session state object for each user’s session. This
object contains a session ID that uniquely identifies the session. This session
ID is passed back to the browser along with the HTTP response. Then, if the
browser makes another request, the session ID is included in the request so
ASP.NET can identify the session. ASP.NET then matches the session with the
session state object that was previously saved.

By default, ASP.NET sends the session ID to the browser as a cookie. Then,
when the browser sends another request to the server, it automatically includes
the cookie that contains the session ID with the request. In section 2, you’ll learn
more about how cookies work. You’ll also learn how to implement session state
by including the session ID in the URL for a page instead of in a cookie.

Although ASP.NET automatically uses session state to track user sessions,
you can also use it to store your own data across executions of an application.
This figure lists three typical reasons for doing that. First, you can use session
state to maintain information about the user. After a user logs in to an applica-
tion, for example, you can use the login information to retrieve information
about the user from a file or a database. Then, you can store that information in
the session state object so it’s available each time the application is executed.

Second, you can use session state to save objects that the user is working
with. To illustrate, consider a maintenance application that lets the user change
customer records. In that case, you can save the customer record that’s currently
being modified in the session state object so it’s available the next time the
application is executed.

Third, you can use session state to keep track of the operation a user is
currently performing. For example, if a maintenance application lets the user
add or change customer records, you can save an item in the session state object
that indicates if the user is currently adding or changing a record. That way, the
application can determine how to proceed each time it’s executed.

Chapter 4 How to develop a multi-page web site

How ASP.NET maintains the state of a session

First HTTP request:

The browser requests a page.
ASP.NET creates a session
state object and assigns an ID
for the session.

Client Server

Browser » Web server

First HTTP response:

The server returns the
requested page along with the
session ID.

Session ID Web server

Browser

Next HTTP request:

The browser requests another
page. The server uses the session
ID included in the request to
associate the browser with the
correct session state object.

Browser Session ID | Web server

Typical uses for session state

To keep information about the user, such as the user’s name or whether the user
has registered.

To save objects the user is working with, such as a shopping cart or a customer
record.

To keep track of pending operations, such as what steps the user has completed
while placing an order.

Description

ASP.NET uses session state to track the state of each user of an application. To do
that, it creates a session state object.

The session state object includes a session ID that’s sent back to the browser as a
cookie. Then, the browser automatically returns the session ID cookie to the server
with each request so the server can associate the browser with an existing session
state object.

If you want your application to work on browsers that don’t support cookies, you

can configure ASP.NET to encode the session ID in the URL for each page of the
application. You’ll learn more about this in chapter 8.

You can use the session state object to store and retrieve items across executions of
an application.

Figure 4-13 How session state works

143

144 Section 1 The essence of ASP.NET programming

How to work with data in session state

Figure 4-14 shows how you can use the session state object to store applica-
tion data. To do that, you use the members of this object, which is created from
the HttpSessionState class. To access this object from a web form, you use the
Session property of the page.

The session state object contains a collection of items that consist of the
item names and their values. One way to add an item to this collection is to use
the Item property as shown in the first example. (In this case, since Item is the
default property, it is omitted.) Here, an object named “cart” is assigned to a
session state item named Cart. If the Cart item doesn’t exist when this statement
is executed, it will be created. Otherwise, its value will be updated.

Another way to add an item to the session state collection is to use the
Add method, as in the second example. Here again, if the item already exists,
it’s updated when the Add method is executed. Otherwise, it’s added to the
collection.

You can also use the Item property to retrieve the value of an item from the
session state collection as shown in the third example. Here, the value of the Cart
item is retrieved and assigned to the cart variable. Once again, you don’t have to
explicitly specify the Item property in this example because the Item property
is the default property. However, because the value of a session state item is
stored as an Object type, you typically convert it to the appropriate type. In this
example, the value of the Cart item is converted to a sorted list because the cart
variable it’s assigned to is defined as a sorted list.

Because the session state object uses valuable server memory, you should
avoid using it to store large items. Or, if you must store large items in session
state, you should remove the items as soon as you’re done with them. To do that,
you use the Remove method as in the fourth example in this figure.

The first four examples in this figure use the Session property of the page to
access the session state object. Because Session is a property of the System.Web.
Ul Page class, however, you can only use this property from a class that inherits
the System.Web.UIL Page class. In other words, you can only use it from a
code-behind file for a page.

To access session state from a class that doesn’t inherit the System.Web.

Ul Page class, such as a database or business class, you use the Session property
of the HttpContext object for the current request. To get this HttpContext object,
you use the Current property of the HttpContext class as illustrated in the last
example in this figure.

Chapter 4 How to develop a multi-page web site

Common members of the HitpSessionState class

Property Description

SessionID The unique ID of the session.

Item(name) The value of the session state item with the specified name. (Item is
the default property of the HttpSessionState class, so you can omit it
when you access a session state item.)

Count The number of items in the session state collection.

Method Description

Add(name, value) Adds an item to the session state collection.
Clear() Removes all items from the session state collection.
Remove (name) Removes the item with the specified name from the session state collection.

A statement that adds or updates a session state item

Session("Cart") = cart

Another way to add or update a session state item

Session.Add("Cart", cart)

A statement that retrieves the value of a session state item
Dim cart As SortedList = CType(Session("Cart"), SortedList)

A statement that removes an item from session state

Session.Remove("Cart")

A statement that retrieves the value of a session state item from a class
that doesn’t inherit System.Web.Ul.Page

Dim cart As SortedList = CType(HttpContext.Current.Session("Cart"),
SortedList)

Description

o The session state object is created from the HttpSessionState class, which defines a
collection of session state items.

e To access the session state object from the code-behind file for a web form, use the
Session property of the page.

e To access the session state object from a class other than the code-behind file for a
web form, use the Current property of the HttpContext class to get the HttpContext
object for the current request. This object contains information about the HTTP
request. Then, you can use its Session property to get the session state object.

o By default, session state objects are maintained in server memory. As a result, you
should avoid storing large items in session state.

Figure 4-14 How to use session state for storing and retrieving data

145

146

Section 1 The essence of ASP.NET programming

The business classes
of the Shopping Cart application

Now that you’ve learned the basic skills for developing a multi-form appli-
cation, you’re ready to see all the aspx and Visual Basic code for the Shopping
Cart application that’s shown in figure 4-1. This starts with the Visual Basic code
for the business classes.

The members of the three business classes

Figure 4-15 summarizes the members of the three business classes used by
the Shopping Cart application. As you can see, the Product class is a simple class
that contains only properties. An object created from this kind of class is some-
times referred to as a Data Transfer Object, or DTO. As its name implies, a DTO
is used primarily to store and transfer data. Product objects are used to transfer
data between the Order page and the business classes.

The Cartltem class contains a Product property, which is a Product object,
and a Quantity property, which is an integer. Its constructor lets you either create
a Cartltem object and populate its Product and Quantity properties. In contrast
to the Product class, the Cartltem class contains methods as well as properties.
Its first method adds to the Quantity property. Its second method returns a string
containing quantity and product information, formatted in a single line. Although
a Cartltem object is also used to transfer data, it isn’t a DTO because it has
additional functionality.

The CartltemList class is a container class. In effect, it is the shopping cart.
An object created from this class stores and keeps track of Cartltem objects. It
contains an internal list to store Cartltem objects, a read-only property to display
the number of Cartltem objects it contains, Item properties to set a Cartltem
object by index and to get a Cartltem object by index or product ID, and meth-
ods to add and remove Cartltem objects and to clear the entire CartltemList
object.

The CartltemList class also contains a shared method called GetCart that
retrieves a CartltemList object from the session state object if one is there.
Otherwise, this method creates a CartltemList object and adds it to the session
state object.

Chapter 4 How to develop a multi-page web site 147

Common members of the Product class

Property Description.

ProductID Gets and sets the ID of a Product.
Name Gets and sets the name of a Product.
ShortDescription Gets and sets the short description of a Product.

LongDescription Gets and sets the long description of a Product.
UnitPrice Gets and sets the unit price of a Product.
ImageFile Gets and sets the name of the image file for a Product.

Common members of the Cartltem class

Constructor Description

Property Description

Product Gets and sets the Product of a Cartltem.

Quantity Gets and sets the quantity of a Cartltem.
AddQuantity(quantity) Adds the quantity that’s passed to it to the quantity for a

Cartltem. Only called when the item is already in the cart.

Display() Returns a string with Cartltem data formatted so it can be
displayed in one line of the list box on the Cart page.

Common members of the CartltemList class

Constructor Description

Property Description

Count Gets the number of items in the CartItemList.
Item(index) Gets and sets a Cartltem using the index that’s passed to it.
Item(id) Gets a Cartltem using the product ID that’s passed to it. If

the product isn’t found, it returns null.

Method Description

GetCart() Gets the CartltemList from or creates it in session state.
AddItem(product, gquantity) Adds a Cartltem to the CartltemList.

RemoveAt (index) Removes the Cartltem at the index from the CartltemList.
Clear() Removes all Cartltem objects from the CartltemList.

Figure 4-15 The members of the classes used by the Shopping Cart application

148 Section 1 The essence of ASP.NET programming

The code for the Product class

Now that you have a general idea of what the members of three business
classes do, you can study the code for these classes. To start, figure 4-16 shows
the Visual Basic code for the Product class. This class represents a product that
the user can order from the Shopping Cart application. It has a property for
each of the columns in the Products table in the SQL Server database except
CategoryID and OnHand.

The code for the Cartltem class

Figure 4-16 also shows the code for the Cartltem class, which represents one
item in the shopping cart. Its constructor accepts two parameters that are used to
initialize the Product and Quantity properties. These properties hold the Product
object and quantity for the cart item.

The Cartltem class also includes two methods. The first one, AddQuantity, is
used to add the quantity that’s passed to it to the cart item. This method is called
when the user adds a quantity to the cart for a product that’s already in the cart.
The second one, Display, returns a string that formats the data in a cart item so it
can be displayed in one line of the list box on the Cart page.

Note here that the Cartltem class and the Product class are defined using
auto-implemented properties. This is because the properties don’t do anything
but store and retrieve the values passed to them. Usually, this is all you will
need when working with properties. Sometimes, though, you will want to do
something with the property value, like run some data validation code or use it
in a calculation. When that is the case, you will need to use private fields that are
accessible through standard properties.

Chapter 4 How to develop a multi-page web site

The code for the Product class

Imports Microsoft.VisualBasic

Public Class Product
Public Property ProductID As String
Public Property Name As String
Public Property ShortDescription As String
Public Property LongDescription As String
Public Property UnitPrice As Decimal
Public Property ImageFile As String

End Class

The code for the Cartltem class

Imports Microsoft.VisualBasic
Public Class CartItem

Public Sub New(product As Product, quantity As Integer)
Me.Product = product
Me.Quantity = quantity

End Sub

Public Property Product As Product
Public Property Quantity As Integer

Public Sub AddQuantity(quantity As Integer)
Me.Quantity += quantity
End Sub

Public Function Display() As String
Dim displayString As String = Product.Name & " (" &
Quantity.ToString & " at " &
FormatCurrency(Product.UnitPrice) & " each)"
Return displayString
End Function
End Class

Description
e The Product class represents a product.

e The Cartltem class represents a product that the user has added to the shopping cart
plus the quantity ordered.

e The Product and Cartltem classes are defined with auto-implemented properties.
However, if you need to do more than just store the property values, you need to
use private fields that are accessible through standard properties.

Figure 4-16 The code for the Product and Cartltem classes

149

150 Section 1 The essence of ASP.NET programming

The code for the CartlitemList class

Figure 4-17 shows the code for the CartltemList class, which represents a
list of Cartltem objects. This list is defined in a private field named cartltems at
the beginning of the class. Then, the constructor for this class initializes this field
with a new List(Of Cartltem) object.

Next, the Count property is a read-only property that simply returns a count
of the items in the list. It’s followed by an overloaded Item property, which is
the default property. The first Item property gets and sets a cart item in the list
using the index that’s passed to it. This property is used to get the items in the
cart when they’re displayed in the list box on the Cart page. The second Item
property is a read-only property that gets a cart item using the product ID that’s
passed to it. This property is used to determine if a product is already in the cart.
Notice that if a product with the specified ID isn’t found, this property returns
Nothing.

The first method, GetCart, gets the CartltemList object that’s stored in
session state. Then, it checks to see if that object is equal to Nothing. If it is,
it means that a cart hasn’t yet been created for the current user. Then, a new
CartltemList object is created and added to Session state.

You should notice two things about this method. First, it’s a shared method.
That makes sense because it simply retrieves the CartltemList object that’s
stored in session state. It doesn’t work with the current CartltemList object.
Second, because this code is not in a code-behind file, you can’t use the Session
property of the page to refer to the session state object. Instead, you have to refer
to the session state object through the HttpContext object for the current request.

The next method, AddItem, adds a new cart item to the cart item list. It
accepts a Product object and quantity as parameters. Then, it creates a Cartltem
object from these values and adds the cart item to the cart item list.

The last two methods, RemoveAt and Clear, should be easy to understand.
The RemoveAt method simply removes the cart item at the given index from the
list of cart items. And the Clear method removes all the cart items from the list.

Notice that the methods that add and remove items from the cart don’t refer
to session state directly. That’s because session state is an object. So when you
retrieve the cart from session state, you store it in a reference type variable.
Then, when you use that variable to add and remove items from the cart, the
session state object is updated automatically. This will make more sense when
you see the code for the Order and Cart pages.

Chapter 4 How to develop a multi-page web site 151

The code for the CartltemList class

Imports Microsoft.VisualBasic
Public Class CartItemList
Private cartItems As List(Of CartItem)
Public Sub New()
cartItems = New List(Of CartItem)
End Sub

Public ReadOnly Property Count As Integer
Get
Return cartItems.Count
End Get
End Property

Default Public Property Item(index As Integer) As CartItem
Get
Return cartItems(index)
End Get
Set(value As CartItem)
cartItems(index) = wvalue
End Set
End Property

Default Public ReadOnly Property Item(id As String) As CartItem

Get
For Each c¢ As CartItem In cartlItems
If c.Product.ProductID = id Then
Return c
End If
Next
Return Nothing
End Get

End Property

Public Shared Function GetCart() As CartItemList
Dim cart As CartItemList =
CType (HttpContext.Current.Session("Cart"), CartItemList)
If cart Is Nothing Then
HttpContext.Current.Session("Cart") = New CartItemList
End If
Return CType (HttpContext.Current.Session("Cart"), CartItemList)
End Function

Public Sub AddItem(product As Product, quantity As Integer)
Dim ¢ As New CartItem(product, quantity)
cartItems.Add(c)

End Sub

Public Sub RemoveAt(index As Integer)
cartItems.RemoveAt (index)
End Sub

Public Sub Clear()
cartItems.Clear()
End Sub
End Class

Figure 4-17 The code for the CartltemList class

152

Section 1 The essence of ASP.NET programming

The web forms
of the Shopping Cart application

This chapter ends by presenting the aspx and Visual Basic code for the Order
and Cart pages. If you’ve followed everything to this point, you shouldn’t need
much explanation. But the code is described in detail in case you need that.

The aspx code for the Order page

Figure 4-18 shows the aspx code for the Order page, which is shown in its
rendered form in figure 4-1. This code includes HTMLS5 semantic elements like
the header and section elements, and it is formatted by the two external style
sheets that are in the Styles folder. This is consistent with the recommendations
of chapter 3.

The header element defines an image that’s used for the banner. The section
element defines the page’s form, and within the form are the HTML elements
and server controls that make up the main section of the page.

To start, there is a label with the text ‘“Please select a product”, a drop-down
list named ddIProducts, and the SQL data source that the drop-down list is bound
to. Here, the AutoPostBack attribute for the drop-down list is set to True so the
page will be posted back to the server when the user selects a product. In addi-
tion, the DataSourcelD, DataTextField, and DataValueField attributes specify
how the drop-down list is bound to the SQL data source.

This is followed by a div element with an ID of productData. This element
starts with four label controls that will display the product information like
name, short description, and long description. This is followed by a label for the
Quantity entry and a text box control for receiving the entry. That is followed by
two validation controls that will test the entry to make that it’s there and that it
ranges from 1 to 500.

The div element ends with two button controls. In the code-behind file for
this page, you’ll see the event handler that is called when the first button is
clicked. In contrast, the btnCart button uses the PostBackUrl property to indicate
that the Cart.aspx page should be requested when the button is clicked. Since its
CausesValidation attribute is set to False, the validation controls for the
txtQuantity text box won’t be executed when the Go to Cart button is clicked.

Finally, just under the productData div, there is an Image server control. This
control displays the image associated with the specified product. The CSS in the
external style sheet for this page causes this image to flow to the right of the div
element that contains the labels, text boxes, and buttons.

Note that the page uses HTML img and label elements as well as Image and
Label server controls. How do you know which to use? You should use HTML
elements for items that don’t change, like logo images and descriptive labels.
You should use server controls for items that will be changed by the code-behind
Visual Basic code, like the descriptions, price, and image for each product.

Chapter 4 How to develop a multi-page web site

The aspx file for the Order page (Order.aspx)

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Order.aspx.vb"
Inherits="Order" %>

<!DOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title>Chapter 4: Shopping Cart</title>
<link href="Styles/Main.css" rel="stylesheet" />
<link href="Styles/Order.css" rel="stylesheet" />
</head>
<body>
<header>

</header>
<section>
<form id="forml" runat="server">
<label>Please select a producté </label>
<asp:DropDownList ID="ddlProducts" runat="server"
AutoPostBack="True" DataSourceID="SglDataSourcel"
DataTextField="Name" DataValueField="ProductID">
</asp:DropDownList>
<asp:SqglDataSource ID="SqglDataSourcel" runat="server"
ConnectionString='<%$ ConnectionStrings:HalloweenConnectionString %>'
SelectCommand="SELECT [ProductID], [Name], [ShortDescription],
[LongDescription], [ImageFile], [UnitPrice]
FROM [Products] ORDER BY [Name]">
</asp:SqglDataSource>
<div id="productData">
<asp:Label ID="lblName" runat="server"></asp:Label>
<asp:Label ID="lblShortDescription" runat="server"></asp:Label>
<asp:Label ID="lblLongDescription" runat="server"></asp:Label>
<asp:Label ID="1blUnitPrice" runat="server"></asp:Label>
<label id="lblQuantity">Quantity </label>
<asp:TextBox ID="txtQuantity" runat="server"></asp:TextBox>
<asp:RequiredFieldvalidator ID="RequiredFieldvalidatorl"
CssClass="validator" runat="server"
ControlTovValidate="txtQuantity" Display="Dynamic"
ErrorMessage="Quantity is a required field.">
</asp:RequiredFieldvalidator>
<asp:RangeValidator ID="RangeValidatorl"
CssClass="validator" runat="server"
ControlToValidate="txtQuantity" Display="Dynamic"
ErrorMessage="Quantity must range from 1 to 500."
MaximumValue="500" MinimumValue="1" Type="Integer">
</asp:RangeValidator>

<asp:Button ID="btnAdd" runat="server" Text="Add to Cart" />
<asp:Button ID="btnCart" runat="server" Text="Go to Cart"
PostBackUrl="~/Cart.aspx" CausesValidation="False" />
</div>
<asp:Image ID="imgProduct" runat="server" />
</form>
</section>
</body>
</html>

Figure 4-18 The aspx code for the Order page

153

154 Section 1 The essence of ASP.NET programming

The Visual Basic code for the Order page

Figure 4-19 presents the code for the Order page’s code-behind file. This
code starts by declaring a module-level variable that will hold a Product object
that represents the item that the user has selected from the
drop-down list.

The Page_lLoad procedure starts by calling the DataBind method of the
drop-down list if the page is being loaded for the first time (IsPostBack isn’t
True). This method binds the drop-down list to the SQL data source, which
causes the data source to retrieve the data specified in its SelectCommand
property.

Then, the Page_load procedure calls the GetSelectedProduct procedure,
which is coded in this file. This procedure gets the data for the selected product
from the SQL data source and returns a Product object. That object is stored in
the selectedProduct variable, which is available to all of the procedures in this
class.

Finally, the Page_lLoad procedure formats the labels and the image control
to display the data for the selected product. At that point, the Order page is sent
back to the user’s browser.

For many applications, you don’t need to call the DataBind method in the
Page_l.oad procedure when you use data binding. Instead, you let ASPNET
automatically bind any data-bound controls. Unfortunately, this automatic data
binding doesn’t occur until after the Page_ILoad procedure has been executed. In
this case, because the GetSelectedProduct procedure won’t work unless the
drop-down list has already been bound, the application calls the DataBind
method to force the data binding to occur earlier than it normally would.

If the user clicks the Add to Cart button, the btnAdd_Click procedure is
executed. After checking that the page is valid, this procedure calls the GetCart
method of the CartltemList class to get the cart that’s stored in session state.
Remember that if a cart doesn’t already exist in session state, this method creates
a new CartltemList object and stores it in session state. Also remember that
GetCart is a shared method, so you call it from the class rather than an object
created from the class.

Next, this procedure tries to get the cart item for the product that’s selected
by the drop-down list. To do that, it uses the Item property of the CartltemList
object with the ID of the selected product as the index. If an item isn’t found
with this ID, the AddItem method of the CartltemList object is called to add an
item with the selected product and quantity to the list. In contrast, if an item is
found with the product ID, the AddQuantity method of the Cartltem object is
called to add the quantity to the item. Finally, this procedure uses
Response.Redirect to go to the Cart.aspx page.

Chapter 4 How to develop a multi-page web site

The code-behind file for the Order page (Order.aspx.vb)

Imports System.Data

Partial Class Order
Inherits System.Web.UI.Page

Private selectedProduct As Product

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
If Not IsPostBack Then ddlProducts.DataBind()

selectedProduct = Me.GetSelectedProduct()

1blName.Text = selectedProduct.Name

lblshortDescription.Text = selectedProduct.ShortDescription

lblLongDescription.Text = selectedProduct.LongDescription

1blUnitPrice.Text =

FormatCurrency(selectedProduct.UnitPrice) & " each"

imgProduct.ImageUrl = "Images/Products/" & selectedProduct.ImageFile

End Sub

Private Function GetSelectedProduct() As Product
Dim productsTable As DataView =
CType(SglDataSourcel.Select(DataSourceSelectArguments.Empty),

DataView)
productsTable.RowFilter =
"ProductID = '" & ddlProducts.SelectedValue & "'"

Dim row As DataRowView = CType(productsTable(0), DataRowView)

Dim p As New Product
p.ProductID = row("ProductID").ToString
p.Name = row("Name").ToString
p.ShortDescription = row("ShortDescription").ToString
p.LongDescription = row("LongDescription").ToString
p.UnitPrice = CDec(row("UnitPrice"))
p.ImageFile = row("ImageFile").ToString
Return p
End Function

Protected Sub btnAdd_Click(sender As Object,
e As EventArgs) Handles btnAdd.Click
If Page.IsValid Then
Dim cart As CartItemList CartItemList.GetCart
Dim cartItem As CartItem = cart(selectedProduct.ProductID)

If cartItem Is Nothing Then
cart.AddItem(selectedProduct, CInt(txtQuantity.Text))

Else
cartItem.AddQuantity(CInt (txtQuantity.Text))

End If

Response.Redirect("Cart.aspx", False)

End If
End Sub
End Class

Figure 4-19 The Visual Basic code for the Order page

155

156 Section 1 The essence of ASP.NET programming

The aspx code for the Cart page

Figure 4-20 shows the aspx code for the second page of the Shopping Cart
application, Cart.aspx, which is rendered in figure 4-1. Here, the shopping cart
is displayed in a ListBox control, and the CSS in the external style sheet for this
page causes the Remove and Empty buttons to flow to the right of the list box.

The Click events of these two buttons, as well as the CheckOut button, will
be handled by event handlers in the code-behind file. In contrast, the Continue
button uses the PostBackUrl attribute to return to the Order.aspx page. All four
buttons are styled by a CSS rule set for the button class.

The IblMessage label is used to display messages to the user. Notice here
that the EnableViewState property of this label is set to False. That way, the
value of this label isn’t maintained between HTTP requests. So if an error
message is displayed in this label, it won’t be displayed the next time the page is
displayed.

Chapter 4 How to develop a multi-page web site

The aspx file for the Cart page (Cart.aspx)

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Cart.aspx.vb"

Inherits="Cart" %>

<!DOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title>Chapter 4: Shopping Cart</title>
<link href="Styles/Main.css" rel="stylesheet" type="text/css" />

<link href="Styles/Cart.css" rel="stylesheet" type="text/css" />
</head>

<body>
<header>

</header>
<section>
<form id="forml" runat="server">
<hl>Your shopping cart</hl>
<asp:ListBox ID="lstCart" runat="server"></asp:ListBox>
<div id="cartbuttons">
<asp:Button ID="btnRemove" runat="server" Text="Remove Item"
CssClass="button" />

<asp:Button ID="btnEmpty" runat="server" Text="Empty Cart"
CssClass="button" />
</div>
<div id="shopbuttons">
<asp:Button ID="btnContinue" runat="server"
PostBackUrl="~/Order.aspx" Text="Continue Shopping"
CssClass="button" />
<asp:Button ID="btnCheckOut" runat="server" Text="Check Out"
CssClass="button" />
</div>
<p id="message">
<asp:Label ID="lblMessage" runat="server"
EnableViewState="False"></asp:Label>
</p>
</form>
</section>
</body>
</html>
Description

e The Cart.aspx page uses a list box to display the shopping cart.

e The IblMessage server control has its EnableViewState property set to False so
messages set by the Visual Basic code will clear when the page posts back.

e The btnContinue button uses cross-page posting to post back to the Order.aspx
page. The other buttons post back to the Cart page.

Figure 4-20 The aspx code for the Cart page

157

158 Section 1 The essence of ASP.NET programming

The Visual Basic code for the Cart page

Figure 4-21 presents the code-behind file for the Cart page. This code starts
by declaring a module-level variable that will hold the CartltemList object for
the shopping cart. Then, each time the page is loaded, the Page_Load procedure
calls the GetCart method of the CartltemList class to retrieve the shopping cart
from session state and store it in this variable.

If the page is being loaded for the first time, the Page_Load procedure also
calls the DisplayCart procedure. This procedure starts by clearing the list box
that will display the shopping cart items. Then, it uses a For loop to add an item
to the list box for each item in the shopping cart list. Notice that this statement
uses the Count property of the CartltemList object to get the number of Cartltem
objects in the cart, and the Display method of the Cartltem objects to get the
strings to display in the list box control.

If the user clicks the Remove Item button, the btnRemove_Click procedure
is executed. This procedure begins by making sure that the cart contains at least
one item and that an item in the shopping cart list box is selected. If so, the
RemoveAt method of the CartltemList object is used to delete the selected item
from the shopping cart. Then, the DisplayCart procedure is called to refresh the
items in the list box.

If the user clicks the Empty Cart button, the btnEmpty_Click procedure is
executed. This procedure calls the Clear method of the CartltemList object to
clear the shopping cart. Then, it calls the Clear method of the Items collection of
the list box to clear that list.

Please note, though, that instead of using the Clear method to clear the list
box, this procedure could call the DisplayCart procedure. Similarly, the
btnRemove_Click procedure could use the Remove method of the Items collec-
tion of the list box to remove the item at the selected index instead of calling the
DisplayCart procedure. This just shows that there is usually more than one way
that functions like these can be coded.

Also note that the Cart page doesn’t contain a procedure for the Click
event of the Continue Shopping button. That’s because this button uses the
PostBackUrl property to post directly to the Order.aspx page. As a result, the
Cart page isn’t executed if the user clicks the Continue Shopping button.

Chapter 4 How to develop a multi-page web site

The code-behind file for the Cart page (Cart.aspx.vb)

Partial Class Cart
Inherits System.Web.UI.Page

Private cart As CartItemList

Protected Sub Page_Load(sender As Object, e As EventArgs) Handles Me.Load
cart = CartItemList.GetCart
If Not IsPostBack Then Me.DisplayCart()

End Sub

Private Sub DisplayCart()
lstCart.Items.Clear()
Dim item As CartItem
For i As Integer = 0 To cart.Count - 1
item = cart(i)
lstCart.Items.Add(item.Display)
Next
End Sub

Protected Sub btnRemove_Click(sender As Object,
e As EventArgs) Handles btnRemove.Click
If cart.Count > 0 Then
If 1lstCart.SelectedIndex > =1 Then
cart.RemoveAt (lstCart.SelectedIndex)
Me.DisplayCart()
Else
lblMessage.Text = "Please select the item you want to remove."
End If
End If
End Sub

Protected Sub btnEmpty Click(sender As Object,
e As EventArgs) Handles btnEmpty.Click
If cart.Count > 0 Then
cart.Clear()
lstCart.Items.Clear()
End If
End Sub

Protected Sub btnCheckOut_Click(sender As Object,
e As EventArgs) Handles btnCheckOut.Click
lblMessage.Text = "Sorry, that function hasn't been " &
"implemented yet.'
End Sub
End Class

Figure 4-21 The Visual Basic code for the Cart page

159

160 Section 1 The essence of ASP.NET programming

Perspective

The purpose of this chapter has been to get you started with the develop-
ment of multi-page web applications. Now, if this chapter has worked, you
should be able to develop multi-page applications of your own. Yes, there’s a
lot more to learn, but you should be off to a good start.

Frankly, though, much of the Visual Basic code in the Shopping Cart
application is difficult, even in a simple application like this one. So if your
experience with Visual Basic is limited, you may have trouble understanding
some of the code. You may also have trouble writing the same type of code for
your new applications.

If that’s the case, we recommend that you get our latest Visual Basic book.
It will quickly get you up to speed with the Visual Basic language. It will show
you how to use dozens of the .NET classes, like the List(Of T) class. It will
show you how to develop object-oriented Windows applications. It is a
terrific on-the-job reference. And it is the perfect companion to this book,
which assumes that you already know Visual Basic.

Terms

NuGet package data source

class library bind a data source

HTTP redirect message session state

cross-page posting session state object

custom property session ID

absolute URL cookie

relative URL Data Transfer Object (DTO)
Summary

In an ASP.NET web site, the App_Code folder is used for non-page classes,
and the App_Data folder is used for database files.

When you start a new web site from the ASP.NET Web Forms Site template
instead of the Empty Web Site template, many folders and files are included.
These can be a source of ideas for the new web site as well as other web
sites.

By default, the starting page for a web site is the Default.aspx page, but you
can change that to whichever page you want.

If your web site needs to use classes that are part of a class library, you can
add the class library assembly to the Bin folder of the web site.

In the code-behind file for a web form, you can use the Transfer method
to go to another page without going back to the browser. Or, you can use
the Redirect method to send an HTTP redirect message to the browser that
causes the browser to request the new page.

Chapter 4 How to develop a multi-page web site

With cross-page posting, the PostBackUrl property of a button specifies the
page that’s requested when the user clicks the button. Then, you can use the
PreviousPage property along with the FindControl method or custom proper-
ties to get the data from the previous page.

To identify the page that control should be transferred to, you can use an
absolute or a relative URL.

In an ASP.NET web site, a data source can be used to get the data from
specific rows and columns of a database like an SQL Server database. Then,
you can bind the data source to a control like a drop-down list. You can also
use Visual Basic to get data from a data source.

ASP.NET uses session state to create a session state object for each user of
an application. This object can be used to store data that’s used across the
pages of an application.

To make session state work, ASP.NET creates a session ID that’s sent to
the browser as a cookie. Then, the browser returns this ID to the server with
each request so the server can associate the user with the right session state
object.

Exercise 4-1 Build the Shopping Cart
application

This exercise guides you through the process of building a Shopping Cart
application like the one that’s presented in this chapter. To save time, though,
youwll start from a web site that has the folders and files for the images, database,
non-page classes, and style sheets needed by the application.

Open the web site and review its folders and files
1. Open the web site named Ex04Cart in the C:\aspnet45_vb directory. Then,
change this web site to IIS Express.

2. Run the application to see that a Directory Listing is displayed in the browser,
which means the starting page hasn’t been set. Then, stop the application, and
set the starting page to the Order form.

3. Run the application again. When the Order page is displayed, click on the
Go to Cart button to go to the Cart page. Note that both forms have all of the
controls that are required, but only the Go to Cart button works.

4. Stop the application, return to Visual Studio, and review the folders and files.
Note that the App_Code folder contains the three class files that this web site
uses, the App_Data folder contains an SQL Server database (Halloween.mdf),
and the Styles folder contains three style sheets that format the controls on
the two forms. Note also that the aspx files for the web forms include all of
the controls including the validation controls, but their code-behind files don’t
contain any procedures.

5. Open the web.config file and note that unobtrusive validation has been turned
off for the entire web site by using the third method shown in figure 2-13 of
chapter 2.

161

162 Section 1 The essence of ASP.NET programming

Build out the Order page

6.
7.

Open the Order form in Source view.

Add an SqlDataSource control right after the code for the drop-down list, and
configure the data source to get product data from the Halloween database as
shown in figures 4-9 and 4-10. Use HalloweenConnectionString as the name
of the connection string for the database, and click on the Test Query button in
the last step to see the data that’s returned by the data source.

Switch to Design view and display the smart tag menu for the drop-down list.
Then, set Enable AutoPostBack to True, and bind the drop-down list to the
data source as described in figure 4-11. If necessary, click the Refresh Schema
link so you can see the field names in the drop-down lists of the dialog box.

Run the application to see how the drop-down list works. Now, you should be
able to select a product from the list. Although the page will post back when
you do that, nothing will happen.

Add the Visual Basic code for the Order form
As you enter the Visual Basic code for the Order form, be sure to take full
advantage of the IntelliSense and snippets that Visual Studio provides.

10.

11.

12.

13.

14.

In Design view, double-click outside the body of the Order form to switch to
the code-behind file in the Code Editor and start an event handler for the Load
event. Then, add a module-level declaration for a Product object before the
Load event handler, as shown in figure 4-19. This is the object that’s defined
by the Product class in the App_Code folder.

Before coding the Load event handler, enter the GetSelectedProduct
procedure that’s shown in figure 4-19. This should be coded right after the
code for the Load event handler. The GetSelectedProduct procedure gets the
data for the product that’s selected in the drop-down list. Then, it instantiates
a new Product object. Last, it puts the database data for the product in the
properties of the Product object, and it returns that Product object. After you
code this procedure, be sure to add an Imports statement for the
System.Data namespace.

Enter the code for the Load event handler that binds the SQL data source

to the drop-down list the first time the page is requested. After that, add the
code that displays the data and image for the selected product in the Order
form each time the page is requested. To do that, use the GetSelectedProduct
procedure that you just entered.

Run the application to test the code. Now, when you select a product from the
list, the appropriate data for the product should be displayed on the page.

In Design view, double-click on the Add to Cart button to open the Code
Editor and start an event handler for the Click event of that button. Then, add
code to the event handler so it adds the selected product to the session object.
To do that, you can use the GetCart and AddItem methods of the CartltemList
class, the Item property of the CartltemList class, and the AddQuantity
method of the Cartltem class, as shown in figure 4-19.

Chapter 4 How to develop a multi-page web site

Build out the Cart page and add its Visual Basic code

15.

16.

17.

18.

19.

Open the aspx file for the Cart page in Design view, and set the PostBackUrl
property of the Continue Shopping button so it displays the Order page. Now,
test that change to make sure the button works correctly.

In Design view, double-click outside the body of the page to start a Load event
handler and switch to the Code Editor. But before you code the Load event
handler, code the DisplayCart procedure that’s called by the event handler. It
is shown in figure 4-21. Here, IstCart refers to the list box that’s on the form.

Before the Load event handler, declare a module-level CartltemList variable
that can be accessed by all the procedures for this form. Then, code the Load
event handler. Within this event handler, you can use the GetCart method of
the CartltemList class to get the cart from session state, and you can use the
DisplayCart procedure to display the cart items in the list box, as shown in
figure 4-21.

Run the application to test this code. Now, when you select a product on the
Order page, enter a quantity, and click the Add to Cart button, the application
should add the item to the cart and display it in the Cart page.

Add the event handlers for the Click events of the Remove, Empty, and Check
Out buttons. To start the event handler for each button, switch to Design view
and double-click on the button. Then, add the code for the event handlers as
shown in figure 4-21.

Test everything and experiment

20.

21.

22.

At this point, the entire application should work correctly. If it doesn’t, find
the problem and fix it.

If you want to experiment with any aspect of this application, do that now. For
instance, add the total price (quantity times unit price) for each item in the
cart so each line in the cart looks like this:

Austin Powers (2 @ $79.99 each = $159.98)

When you’re through experimenting, close the solution.

163

How to test and debug
ASP.NET applications

If you’ve done much programming, you know that testing and debugging are
often the most difficult and time-consuming phase of program development.
Fortunately, Visual Studio includes an integrated debugger that can help you
locate and correct even the most obscure bugs. And ASP.NET includes a trace
feature that displays useful information as your ASP.NET pages execute.

In this chapter, you’ll learn how to use both of these debugging tools.
You’ll also learn how to test an application to determine if it works properly
in multiple browsers at the same time. And you’ll learn how to use the Page
Inspector to analyze the HTML and CSS for a page.

How to test an ASP.NET web site
How to test @ Web SItecovvieiiiiiieiicciiiecee e
How to test a web site in two or more browsers at the same time....
How to use the Exception ASSISTANtccccvvevererieieieierienenenenesenieeieene
How to use the Page INSPeCtorc..eveviererenininiiiiiceereeneseeeeeeene

How to use the debuggercccoommmmiinimemmmnnneeermnneeneen
How to use breakpointsocveceeriereriereneniieieeeeeeieeee e
HOW t0 USE traCePOINLSecveevieieieieierie ettt
How to work in break mode ...
How to use the debugging windows to monitor variables................

How to use the trace featurecoecmeremrincrernssnseninen
How to enable the trace featurec.coceeeeerieenenienicceecece

How to interpret trace output..........cccecevueeeeernenene

How to create custom trace messages

Perspective ..eiriimissmrrnmmssssssnrisssssssnesssssss s esssssssnsensnsssenennnns

166 Section 1 The essence of ASP.NET programming

How to test an ASP.NET web site

When you test a web site or application, you try to make it fail. In other
words, the goal of testing is to find all of the errors. When you debug an applica-
tion, you find the cause of all of the errors that you’ve found and fix them.

To test an ASP.NET application, you typically start by running it from Visual
Studio in the default browser. Then, you test the application with other web
browsers to make sure it works right in all of them, even if they’re all using the
same application at the same time.

How to test a web site

Unless you’ve changed it, Windows uses Internet Explorer as its default
browser. Figure 5-1 presents six different ways you can run a web application
with the default browser. Three of these techniques start the debugger so you can
use its features to debug any problems that might arise. The other three don’t
start the debugger.

The first time you run a web application using one of the first three tech-
niques, Visual Studio displays a dialog box indicating that debugging isn’t
enabled in the web.config file. From this dialog box, you can choose to enable
debugging, or you can choose to run the application without debugging. In
most cases, you’ll enable debugging so you can use the debugger with your
application.

All of the techniques in this figure except the View in Browser command
start the application and display the application’s designated start page. However,
the View in Browser command displays the selected page. For example, if you
right-click the Cart page and choose View in Browser, the Cart page will be
displayed. This command is useful if you want to test a page without having to
navigate to it from the designated start page.

Once you’ve thoroughly tested an application with your default browser,
you’ll want to test it for browser incompatibilities. To do that, you need to run
your application in all of the common browsers to make sure it looks and works
the same in all of them. To do that, you can use the techniques in this figure. You
can either change the default browser that Visual Studio uses, or you can use the
Browse With dialog box to temporarily change the browser.

Chapter 5 How to test and debug ASP.NET applications 167

Choosing the browser for testing an application

B¢ Choscart - Microsoft Visual Studio Quick Launch (Ctrl+Q) £ - 0O x
FILE EDIT VIEW WEBSITE BUILD DEBUG TEAM SQL TOOLS TEST AMALYZE WINDOW HELP
B - WM - 8l > Internet Explorer ~ [T RRRANNY: "N HTMLS .
Toolbox MRS COrderaspx & X P Intemet Explorer Ik ~ Solution Explorer = - 1 x au
- . " " -]
Search Toolbox P <X Page Firefox false" CodeFile="Ordi% &lo-en ET' %
. -]
b Standard o <1DOCTYPE Google Chrome Search Solution Explorer (Ctrl+;) @ ~
4 Data +| Internet Expl
) = B . %] Solution ‘Ch04Cart' (1 project) =
k Pointer El<html sl Opera Internet Browser L 4 © ChodCart
El Chart El<head run
- ctitl Page Inspector lesr b App_Code
EM Datalist <link Safari Vlesheet” /> b i App_Data
B DataPager <link B With tylesheet™ /> b Images
@ DetailsView </head> rowse .. - b B Styles
. b v A » b &) Cartaspx
«8 EntityDataSource 100 % P
@ FormView v & Design | @ Spit b &) Orderaspx -

How to run an application in the default browser with debugging

e Click the browser name in the Standard toolbar, press F5, or choose the
DEBUG->Start Debugging command.

How to run an application without debugging

e Press Ctrl+F5, choose DEBUG-> Start Without Debugging, or right-click a page in
the Solution Explorer and choose View in Browser.

How to stop an application that’s run with debugging

e Press Shift+F5, click the Stop Debugging button in the Debug toolbar, or choose
DEBUG->Stop Debugging.

How to run an application in a different browser

e If you want to change the default browser, click on the down arrow to the right
of the browser name in the Standard toolbar, as shown above. Then, run the
application.

e If you want to run an application in a different browser without changing the
default, click on Browse With in the drop-down list or Browse With in the shortcut
menu for a form. Then, in the Browse With dialog box, select the browser you want
to use and click the Browse button to run the application without debugging.

Description

e If you run an application with debugging, you can use Visual Studio’s built-in
debugger to find and correct program errors.

Figure 5-1 How to test a web site

168 Section 1 The essence of ASP.NET programming

How to test a web site in two or more browsers
at the same time

As you learned in chapter 3, you always need to test your web sites in all of
the common browsers to prevent browser incompatibilities. For database appli-
cations, though, you also need to test your applications in two or more browsers
at the same time. That way, you can find and correct concurrency errors. Those
errors can occur when two different users try to make changes to the same row in
a database table at the same time.

Figure 5-2 shows how to run your web site in more than one browser on
your own computer when you’re using IIS Express. This is possible because IIS
Express, which hosts your web site, automatically starts when you open Visual
Studio. This means that as long as Visual Studio is running, you can run your site
in more than one browser. You just need to know the URL of your site.

The easiest way to get the URL is to run your web site from within Visual
Studio using one of the methods in the previous figure. Then, copy the URL
from the browser’s address bar and paste it into one or more additional browsers.
This is illustrated by the Internet Explorer and Firefox browsers in this figure. In
this example, Internet Explorer was opened by Visual Studio so the Visual Studio
debugger can be used to debug any errors that occur. Then, the Firefox browser
was opened separately and the URL was copied from Internet Explorer into the
Firefox address bar.

Chapter 5 How to test and debug ASP.NET applications 169

The Cart application running in two browsers at the same time

(T =3
':/GJ' @ localhost:57183/Ch4Cart/Order.aspx wve | |' Google R ‘ G @ [:E]V |
‘ [} Chapter 4: Shopping Cart I + l

Hau-oween Su-Per‘sTo re ‘
(=[O i

GG))|@ hittp://localhost:57183/Ch04 Cart/Order.aspx PD-BEX |l @ Chapter & Shopping Cartt X 5 fes

Please seleq
Flying Bai H ll S .
alloweenh duperstore
Bats flying i For the little goblin in all of us
$69.99 ea Please select a product |Austin Powers [=]
Austin Powers
Quantity | Austin Powers costume
Add to Carl Be the most shagadelic guest at this years party, baby.
$79.99 each
e —
Quantity

[Addto Cart | [Goto Cart

How test a web site in two or more browsers with lIS Express

o IIS Express automatically starts when you start Visual Studio 2012. Then, you can
open your web site in multiple browsers by opening new browsers and copying the
URL from your default browser into the address bars of the other browsers.

Description

e When you run an application in two or more browser windows simultaneously, you
can test whether the application handles concurrency errors properly.

o If you open one of the browsers that’s testing an application from within Visual
Studio, you can use the debugger to help you debug.

Figure 5-2 How to test a web site in two or more browsers at the same time

170

Section 1 The essence of ASP.NET programming

How to use the Exception Assistant

As you test an ASP.NET application, you may encounter runtime errors
that prevent an application from executing. When that happens, an exception
is thrown. Often, you can write code that anticipates these exceptions, catches
them, and processes them appropriately. If an exception isn’t caught, however,
the application enters break mode and the Exception Assistant displays a dialog
box like the one in figure 5-3.

As you can see, the Exception Assistant dialog box indicates the type of
exception that occurred and points to the statement that caused the error. In many
cases, this information is enough to determine what caused the error and what
should be done to correct it. For example, the Exception Assistant dialog box
in this figure indicates that the input string isn’t in a correct format, and that the
problem was encountered in this line of code for the Order page:

cart.AddItem(selectedProduct, CInt(txtQuantity.Text))

Based on that information, you can assume that the Text property of the
txtQuantity control contains a value that can’t be converted to an integer, since
the AddItem method of the cart object accepts an integer as its second parameter.
This could happen if the application didn’t check that the user entered an integer
value into this control. (To allow this error to occur, I disabled the validators for
the Quantity text box on the Order page.)

Many of the exceptions you’ll encounter will be system exceptions like the
one shown here. These exceptions apply to general system operations such as
arithmetic operations and the execution of methods. If your applications use
ADO.NET, you can also encounter ADO.NET and data provider exceptions.

If, for example, the connection string for a database is invalid, a data provider
exception will occur. And if you try to add a row to a data table with a key that
already exists, an ADO.NET error will occur. More about this in section 3.

In some cases, you won’t be able to determine the cause of an error just by
analyzing the information in the Exception Assistant dialog box. Then, to get
more information about the possible cause of an exception, you can use the list
of troubleshooting tips in the dialog box. The items in this list are links that
display additional information in a Help window. You can also use the other
links in this dialog box to search for more help online, to display the content of
the exception object, and to copy the details of the exception to the clipboard.
If you still can’t determine the cause of an error, you can use the Visual Studio
debugger to help you locate the problem.

Chapter 5 How to test and debug ASP.NET applications 171

The Exception Assistant dialog box

M Ch04Cart (Debugging) - Microsoft Visual Studio Quick Launch (Ctrl+Q) A = 0O x
FILE EDIT VIEW WEBSITE BUILD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW HELP

- BT Y R - | P Continue = |Debug A 9 2606 B_ wlE O N -

g Onkmpe Catmn .

g @ binAdd - # Click

bk

|4 smi0jdxg wea| saiojdxg uoyn|os

E Protected Sub btnAdd Click(sender As Object, e As EventArgs) Handles btnAdd.Click
Tf Page.IsValid Then

‘get cart from session state and selected item from cart

Dim cart As CartTtemlist = CartTtemList.GetCart()

Dim cartItem As CartItem = cart(selectedProduct.ProductID)

'if item isn’t in cart, add it; otherwise, increase its quantity
If cartItem Is Nothing Then
[+ cart.AddItem(selectedProduct, CInt(txtQuantity.Text)l

Else

cartItem.# ! InvalidCastException was unhandled by user code

End If

Response.Redir
End If Troubleshooting tips:

End Sub Make sure the source type is convertible ta the destination type. -
End Class

X

Conversion from string ™" to type ‘Integer’ is not valid.

When casting from a number, the value must be a number less than infinity.

m

Get general help for this exception.
InnerException: When converting a string to DateTime, parse the string to take the date before putting each variable into the DateTime object.

InnerException: Make sure your method arguments are in the right format. .

Search for more Help Online...

Exception settings:
Break when this exception type is user-unhandled
Actions:
View Detail...
00% =~ 4 Copy exception detail to the clipboard

Open exception settings

Autos Locals Watch1

Description

e If you run an application with debugging and an exception occurs, the application
enters break mode and the Exception Assistant displays a dialog box like the one
above.

e The Exception Assistant provides the name and description of the exception, and it
points to the statement in the program that caused the error. It also includes a list of
troubleshooting tips that you can click on to display more information.

e The information provided by the Exception Assistant is often all you need to
determine the cause of an error. If not, you can close this window and then use the
debugging techniques presented in this chapter to determine the cause.

e If you continue program execution after an exception occurs, ASPNET terminates
the application and sends a Server Error page to the browser. This page is also
displayed if you run an application without debugging. It provides the name of the
application, a description of the exception, and the line in the program that caused
the error.

Figure 5-3 How to use the Exception Assistant

172 Section 1 The essence of ASP.NET programming

How to use the Page Inspector

When you test an application, you of course test to make sure all of the
Visual Basic code and all of the operations work correctly. But you also test to
make sure that the pages are formatted correctly in all browsers. If they aren’t,
you need to fix the HTML or CSS code so they are.

To help you fix problems like that, ASP.NET provides the Page Inspector
that’s shown in figure 5-4. When you run an application in the Page Inspector,
the pages are rendered within Visual Studio, and you can actually test the
application there. But whenever you want to inspect the aspx, HTML, and CSS
code for a control, you can click on the Inspect button and then move the mouse
pointer over the control.

This is illustrated by the example in this figure. Here, the ListBox control
is highlighted after the user has added one item to the cart. Then, in the HTML
window below the Cart page, you can see the HTML that has been generated
for the list box: one select element that contains one option element. In the CSS
window, you can see the CSS that has been applied to the list box. And in the
window to the right of the Cart page, you can see the aspx code for the list box.
Since the related code is highlighted in the HTML and aspx windows, it’s easy
to see the relationships between the aspx and HTML code.

One of the best uses for the Page Inspector is to see the HTML that’s
generated for a server control. That’s easier than running the application in
the browser and viewing the source code there. In the case of the list box, for
example, you may decide that you want to add margins or padding to the items
that it contains by applying CSS to its option elements.

To make the Page Inspector especially useful, you can add and modify
code while the Page Inspector is running and see the changes right away. If, for
example, you add a style to the style sheet for a page, the change will be shown
in the Page Inspector right away. You can also check or uncheck boxes in the
CSS window to see the effect of turning a style on or off.

The best way to master the Page Inspector is to experiment with it. You may
also want to search for one of the several training videos that show how to use
it on the Internet. Although you won’t need to use the Page Inspector often, it
occasionally comes in handy.

Chapter 5 How to test and debug ASP.NET applications

The Cart page for the Shopping Cart application in the Page Inspector

Dq Iocalhost 61614 - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = 0O X
FILE EDIT WVIEW WEBSITE BUILD DEBUG TEAM SQL TOOLS TEST ANALYZE 'WINDOW HELP
Bl < I B - e - - P IntenetExplorer - Debug - @ A _° HTMLS .
g Chapter 4: Shopping Cart - Page Inspector AR Cartaspx £ X Order.aspx m X -
& @0Frblems [Blsowse| © © @ @ hitps/localhostb1614/Cartaspy +
. -
= 2 tml>
=
Elk"ht'tg:[gm.w}.org[lBBE[xhtml">
5! Eeadl” runat="server™>
o
= . “hapter 4: shopping Cart</title>
2 U pplng Cart ~ef="5tyles/Main.css" rel="stylesheet”

~ef="Styles/Cart.css” rel="stylesheet"

Austin Powers (1 at $79.99 each) Remove ltem
&
Empty Cart =

3:Image ID="Imagel" runat="server” Imaj
4

E|h>

Efm id="forml” runat="server”>

<hl>Your shopping cart</hl>
[casp:ListBox ID="1stCart" runat="serw
[Continue Shopping | | Check Out Fl <div id="cartbuttons">

<asp:Button ID="btnRemove™ runat='

map sse|y Jauojdxg wea) Jaiojdxg uonnjog sarpadolg

4 »
onclick="btnRemove_Click" Css(
& Inspect m Files ¥ <asp:Button ID="btnEmpty" runat=":
T Hrmeraps s S spes . onclick="btnEmpty_Click™ CssC
<script src="/WebResource.axd? = | Styles | Trace Styles Layout Attributes </div> P
d=KQDGYieBoQtHIPNWBSy 1IpbXbUwWELS] 4 inherited - [<div id="shopbuttons">
NHF- . <asp:Button ID="btnContinue™ runai
k3 rBOFHUML9bdvKCyY71qi tbbalxtpXiM 4 <body> body { Main.css PostBackUrl="~/Order.aspx” Te;
ORBQ5H3LoilaeZtXDECHr fzNISVmGd z9m font-family: Arial, He <asp:Button ID="btnCheckOut™ runai
kllMS?l&t=6?4773951}9@?069@0@. Efont-size: 85%; onclick="btnCheckOut Click™ /:
type="text/javascript”></script> </div>
b <div class="aspNetHidden">..</div> 1 Bl <p id="message">
<h1>Your shopping cart</hi> adilstcart { Cart.css <asp:label ID="1blMessage™ runat='
alcselect name="lstCart" [#float: left; , CssClass="button”></asp:label:
- . e </p>
id="lstCart"” size="4"> el . .
onts o mustin P a FIheight: 135px; <asp:SqlDataSource ID="SqlDataSourcel’
option value="Austin Powers
P margin-bottcm: lem; rm b

at $79.99 each)™>Austin Powers 0% - o

3
(1 at $79.99 each)</option> [#margin-left: Bpx; =
</selects 1 T om G Design | @ Split [4] <aspiLisia o]

How to run an application with the Page Inspector

o In the Solution Explorer, right-click on a project or page and select View in Page
Inspector from the shortcut menu. Or, you can select Page Inspector from the
drop-down browser list in the Standard toolbar.

How to inspect the controls on a web page

e Click on the Inspect button in the Page Inspector. Then, move the mouse pointer
over any control to see the aspx code for it, the HTML that’s generated for it, and
the CSS that’s applied to it.

Description

e The Page Inspector lets you view the HTML that’s generated for the controls on a
form. This is easier than running the application in a browser and viewing its source
code. The Page Inspector also shows the CSS that’s used to format each HTML
element.

o When you use the Page Inspector, you can test the application by entering values
and using the controls. Then, you can see how your operations affect the HTML.

e If you change the aspx or CSS code, the changes are immediately reflected in the
Page Inspector. You can also check or uncheck a CSS rule to see its effect on the

page.

Figure 5-4 How to use the Page Inspector

173

174 Section 1 The essence of ASP.NET programming

How to use the debugger

The topics that follow introduce you to the basic techniques for using the
Visual Studio debugger to debug an ASP.NET application. Note that these
techniques are almost identical to the techniques you use to debug a Windows
application. If you’ve debugged Windows applications, then, you shouldn’t have
any trouble debugging web applications.

How to use breakpoints

Figure 5-5 shows how to use breakpoints in an ASP.NET application. Note
that you can set a breakpoint before you run an application or as an application
is executing. Remember, though, that an application ends after it generates a
page. So if you switch from the browser to Visual Studio to set a breakpoint, the
breakpoint won’t be taken until the next time the page is executed. If you want
a breakpoint to be taken the first time a page is executed, then, you’ll need to set
the breakpoint before you run the application.

After you set a breakpoint and run the application, the application enters
break mode before it executes the statement that contains the breakpoint. In this
illustration, for example, the application will enter break mode before it executes
the statement that caused the exception in the last figure to occur. Then, you can
use the debugging features to debug the application.

In some cases, you may want to set more than one breakpoint. You can do
that either before you begin the execution of the application or while the applica-
tion is in break mode. Then, when you run the application, it will stop at the first
breakpoint. And when you continue execution, the application will execute up to
the next breakpoint.

Once you set a breakpoint, it remains active until you remove it. In fact, it
remains active even after you close the project. If you want to remove a break-
point, you can use one of the techniques presented in this figure.

You can also work with breakpoints from the Breakpoints window. To
disable a breakpoint, for example, you can remove the check mark in front of the
breakpoint. Then, the breakpoint isn’t taken until you enable it again. You can
also move to a breakpoint in the Code Editor window by selecting the break-
point in the Breakpoints window and then clicking on the Go To Source Code
button at the top of this window, or by right-clicking on the breakpoint in the
Breakpoints window and choosing Go To Source Code from the shortcut menu.

If you experiment with the Breakpoints window, you’ll see that it also
provides other features like labeling groups of breakpoints, filtering breakpoints,
and setting break conditions and hit counts. But these features are more than
you’ll need for most applications.

If you’re using Visual Studio Express for Web, you’ll see that it supports
most, but not all, of the debugging features described in this chapter. For
instance, the Breakpoints window isn’t available with the Express Edition, and
that edition only provides one Watch window.

Chapter 5 How to test and debug ASP.NET applications 175

The Order page with a breakpoint

M Ch04Cart (Running) - Microsoft Visual Studie Quick Launch (Ctrl+Q) A = 0O x
FILE EDIT VIEW WEBSITE BUILD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW HELP

S < I - Gl g - - Continue = [Debug A_-1nmd L.

Orderasprvb # X Order.aspx Cart.aspx Cartltemlistvb X ~
@, binAdd - ¥ Cick
5 Protected Sub btnAdd_Click(sender As Object, e As EventArgs) Handles btnAdd.Click
Tf Page.IsValid Then
'get cart from session state and selected item from cart
Dim cart As CartItemlList = CartTtemList.GetCart()
Dim cartItem As CartItem = cart(selectedProduct.ProductID)

%0Q|00]

bk .
sanuadog Jai0jdxg uonn|os

'if item isn’t in cart, add it; otherwise, increase its quantity
If cartItem Is Nothing Then
(]

Else

cartItem.AddQuantity (CInt(txtQuantity.Text))
End If
Response.Redirect("Cart.aspx”, False)
End If
End Sub

End Class -
100% ~ 4 3

Breakpoints > ix

New- X P& 6 = Columns - | Search: - InColumn: Al visible - E

Mame Labels = Condition Hit Count
Rl JOrder.aspivb, line 44 character 17 (no condition) break always (currently 0)

Autos Locals Watch1

How to set and clear breakpoints

e To set a breakpoint, click in the margin indicator bar to the left of the statement at
which you want the break to occur. The statement will be highlighted and a break-
point indicator (a large dot) will appear in the margin. You can set a breakpoint
before you run an application or while you’re debugging the application.

e To remove a breakpoint, click the breakpoint indicator. To remove all breakpoints at
once, use the DEBUG->Delete All Breakpoints command.

e To disable all breakpoints, use the DEBUG->Disable All Breakpoints
command. You can later enable the breakpoints by using the DEBUG->Enable All
Breakpoints command.

o To display the Breakpoints window, use the DEBUG—>Windows—>Breakpoints
command. Then, you can use this window to go to, delete, enable, disable, label, or
filter breakpoints.

Description

e When ASP.NET encounters a breakpoint, it enters break mode before it executes
the statement on which the breakpoint is set. Note, however, that can’t set break-
points on blank lines.

Figure 5-5 How to use breakpoints

176 Section 1 The essence of ASP.NET programming

How to use tracepoints

Visual Studio also provides a feature called tracepoints. A tracepoint is a
special type of breakpoint that performs an action when it’s encountered. Figure
5-6 shows how tracepoints work.

To set a tracepoint, you use the When Breakpoint Is Hit dialog box to
indicate what you want to do when the tracepoint is “hit.” In most cases, you’ll
use the Print a Message option to display a message in the Output window. This
message can include the values of variables and expressions that you code within
braces as well as special keywords.

For example, the message shown here will include the value of the
Selected Value property of the ddIProducts control. You can see the output from
this tracepoint in the Output window in this figure. Here, the first tracepoint
message was displayed the first time the page was requested. The second
message was displayed when a product was selected from the drop-down list.
And the third message was displayed when a quantity was entered and the Add
to Cart button was clicked.

Notice that the Output window is also used to display Visual Studio
messages like the first one shown in this figure. Because of that, this window is
displayed automatically when you run an application. If you close it and want to
reopen it without running the application again, you can use the VIEW > Output
command.

By default, program execution continues after the tracepoint action is
performed. If that’s not what you want, you can remove the check mark from the
Continue Execution option. Then, the program will enter break mode when the
tracepoint action is complete.

After you set a tracepoint on a statement, the statement will be highlighted
and a breakpoint indicator will appear in the margin. If program execution will
continue after the tracepoint action is performed, the indicator will appear as a
large diamond. But if the program will enter break mode, the standard break-
point indicator is used.

Tracepoints are useful in situations where a standard breakpoint would be
cumbersome, like in the execution of a loop. For example, suppose you have a
loop that does 100 iterations, and an exception occurs in the middle somewhere.
Imagine how tedious it would be to manually continue execution until you get to
the error. In contrast, a tracepoint will give you a report of the loop’s execution
with just one click of the Start Debugging button.

Chapter 5

The Order page with a tracepoint and the dialog box used to set it

How to test and debug ASP.NET applications

177

M Ch04Cart - Micresoft Visual Studio

FILE EDIT VIEW WEBSITE BUILD DEBUG TEAM 5QL

TOOLS

Quick Launch (Ctrl+Q) p =
TEST ANALYZE WINDOW

[T S T

HELP

‘o o B -@HE| 90 -

P Internet Explorer ~ D

Cartaspx

#z Order

5 Private Function GetSelectedProduct() As Produ
'get row from DataSource control based on
Dim productsTable As DataView = CType(SqlD

%0q|00]

* productsTable.RowFilter = "Productls = '™

Dim row As DataRowView = CType(productsTab.

"create a new product cbject and load with
Dim p As New Product()

p.ProductID = row("ProductID").ToString()
p.Name = row("Name").ToString()

p.LongDescription = row("LongDescription™)
p.UnitPrice = CDec(row("UnitPrice™))
p.ImageFile = row("ImageFile").ToString()

p.ShortDescription = row("ShortDescription’

Bl =

When Breakpoint Is Hit

Specify what to do when the breakpoint is hit.
Print a message:
Product ID: {ddIProducts.SelectedValue}

Continue execution

You can include the value of a variable or other expression in the message by placing
it in curly braces, such as "The value of x s fx}." To insert a curly brace, use "\{". To
insert a backslash, use ™\".

The following special keywerds will be replaced with their current values:
SADDRESS - Current Instruction, SCALLER - Previous Function Name,
SCALLSTACK - Call Stack, SFUNCTION - Current Function Name,

SPID - Process Id, SPMNAME - Process Name

STID - Thread Id, STNAME - Thread Name

=N

J210jdx3 uonnjog sapadoig

Return p
End Function

= Protected Sub btnAdd_Click(sender As Object, e l
‘ If Page.IsValid Then

100% =~ 4 \ /
Error List
Ready Ln22 Col9 Ch9
Output from the tracepoint in the Output window
Output v aXx
Show output from: Debug - E ma
ProductID: “"pow8l " -
'iexplore.exe' (Script): Loaded 'Script Code (Windows Internet Explorer)'.
ProductID: "bats@l
ProductID: "batsel
The thread '<No Name>' (@x488) has exited with code 8 (Bx@).
The thread '<No Name>' (@x15f8) has exited with code @ (@x8).
ProductID: "pow8l
ProductID: "jar@l
ProductID: "jarél
The program '[5848] iexplore.exe' has exited with code @ (8x8).
The program '[6176] iisexpress.exe: Managed (v4.8.38319)' has exited with code @ (8x8).
-
4]

Description

Figure 5-6

A tracepoint is a special type of breakpoint that lets you perform an action. When
ASP.NET encounters a tracepoint, it performs the action. Then, it continues execu-
tion if the Continue Execution option is checked or enters break mode if it isn’t.

You typically use tracepoints to print messages to the Output window. A message
can include text, values that are coded within braces { }, and special keywords.

To set a tracepoint, right-click on a statement and choose Breakpoint->Insert
Tracepoint. Then, complete the When Breakpoint Is Hit dialog box and click OK.
You can also convert an existing breakpoint to a tracepoint by right-clicking on its
indicator and choosing When Hit.

If program execution will continue after the tracepoint action is performed, the
tracepoint will be marked with a large diamond as shown above. Otherwise, it will
be marked like any other breakpoint.

How to use tracepoints

g x

INS

178 Section 1 The essence of ASP.NET programming

How to work in break mode

Figure 5-7 shows the Order page in break mode. In this mode, the next state-
ment to be executed is highlighted. Then, you can use the debugging information
that’s available to try to determine the cause of an exception or a logical error.

A great way to get information about what your code is doing is to use data
tips. A data tip displays the current value of a variable or property when you
hover the mouse pointer over it. You can also see the values of the members of
an array, structure, or object by placing the mouse pointer over the plus sign in a
data tip.

For example, this figure shows a data tip for a Cartltem object, which
displays its Product and Quantity properties. Since the mouse pointer is over
the plus sign for the Product property, its member values are visible. You can
see all this information, just by hovering the mouse pointer over variables and
properties.

You can also see the values of variables and properties in the debugging
windows in the bottom of the Visual Studio window. For example, the Locals
window is visible in this figure. You’ll learn more about the Locals window and
some of the other debugging windows in a minute.

Once you’re in break mode, you can use a variety of commands to control
the execution of the application. The commands that are available from the
DEBUG menu or the Debug toolbar are summarized in the table in this figure.
You can also use shortcut keys to start these commands.

To execute the statements of an application one at a time, you use the Step
Into command. Each time you use this command, the application executes
the next statement, then returns to break mode so you can check the values of
properties and variables and perform other debugging functions. The Step Over
command is similar to the Step Into command, but it executes the statements in
called procedures without interruption (they are “stepped over”).

The Step Out command executes the remaining statements in a procedure
without interruption. When the procedure finishes, the application enters break
mode before the next statement in the calling procedure is executed.

If your application gets caught in a processing loop so it keeps executing
indefinitely without generating a page, you can force it into break mode by
choosing the DEBUG->Break All command. This command lets you enter break
mode any time during the execution of an application.

Chapter 5 How to test and debug ASP.NET applications

The Shopping Cart application in break mode

B¢ choscCart (Debugging) - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = 0O x

FILE EDIT VIEW WEBSITE BUILD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW HELP

- BT - & -| p Continue - Debug A_nmd 26 G6q B n -

5 [Orderaspuvh ® X Orderaspx Cart.aspx CartitemListvh X +

g ElH (General) ~ BEE (Declarations) -
Dim cartItem As CartItem = cart(selectedProduct.ProductID) —

“if item isn’t in cart, add it; otherwise, increase its quantity
If cartItem Is Nothing Then

sapadosg siojdig wea| smi0jdxg uonnyos

[} cart.AddItem(selectedProduct, CInt(txtQuantity.Text))
Else B @ cart| {CartltemList} =
cartIte O &@; cartltems Count = 2
End If B@ () {Cartltem) h
0% ~ 4 B @ (1) {Cartltem} Jrder to evaluate an indexed property, the property must be qualified and the arguments must be explicitly supplied by the user.
E}F Praduct | {Product] [¥eluate an indexed property, the property must be qualified and the arguments must be explicitly supplied by the user. [
K ImageFile Q ~ "coolljpg" _
N — == o
a:EM % LongDescription @, ~ "Bats flying in front of a full moon make for an eerie spectacle.’ | © & | = = | Columns
& " N
= < (ﬁ Name Q. - "Flying Bats Labels | Condition Hit Coun
=i 1€ & Productld Q- "bats0l " !
8 F ShortDescription @ ~ "Bats flying in front of moon” hneticharactenld) {nolcopci nyibeaicald
LA 1€ & UnitPrice 69.95D
De 1) {Cartrem; Carmrern
= /& Product {Product} Product
J ImageFile "cooll.jpg" Q - String
& LongDescription “Bats flying in front of a full moc @ = String
& Name "Flrinn Rate" Q - Skinn ~] 4
Autos | Locals | Watch 1 Call Stack | Brezkpoints Command Wi... Immediate Wi... | Qutput | Error List

Commands in the DEBUG menu and toolbar

Command Keyboard Function

Start/Continue F5 Start or continue execution of the application.

Break All Ctrl+Alt+Break Stop execution and enter break mode.

Stop Debugging Shift+F5 Stop debugging and end execution of the application.

Restart Ctrl+Shift+F5 Restart the entire application.

Step Into F11 Execute one statement at a time.

Step Over F10 Execute one statement at a time except for called procedures.
Step Out Shift+F11 Execute the remaining lines in the current procedure.

Description

e When you enter break mode, the debugger highlights the next statement to be
executed. Then, you can use the debugging windows and the buttons in the DEBUG
menu and toolbar to control the execution of the program and determine the cause
of an exception.

e To display the value of a variable or property in a data tip, position the mouse
pointer over the variable or property in the Code Editor window.

e To display the members of an array, structure, or object in a data tip, position the
mouse pointer over it to display its data tip, and then point to the plus sign in the data
tip.

* You can use the Step Into, Step Over, and Step Out commands to execute one or
more statements and return to break mode.

o To stop an application that’s caught in a loop, switch to the Visual Studio window

and use the DEBUG—>Break All command.

Figure 5-7 How to work in break mode

179

180 Section 1 The essence of ASP.NET programming

How to use the debugging windows
to monitor variables

If you need to see the values of several application variables or properties,
you can do that using the Autos, Locals, or Watch windows. By default, these
windows are displayed in the lower left corner of the IDE when an application
enters break mode. If they’re not displayed, you can display them by selecting
the appropriate command from the DEBUG-> Windows menu. Note, however,
that the Express Edition of Visual Studio provides only one Watch window, but
the full editions provide four.

The contents of the Locals and Watch windows are illustrated in figure 5-8.
The Locals window displays information about the variables within the scope of
the current procedure. If the code in a form is currently executing, this window
also includes information about the form and all of the controls on the form. The
Autos window is similar to the Locals window, but it only displays information
about the variables used in the current statement and the previous statement.

Unlike the Autos and Locals windows, the Watch windows let you choose
the values that are displayed. For example, the Watch window in this figure
displays the SelectedValue property of the ddIProducts control as well as the
properties of the cart object. Besides variable values, you can add properties of
the page or of business classes to the Watch window, as well as the values of
expressions. In fact, an expression doesn’t have to exist in the application for you
to add it to a Watch window.

To add an item to a Watch window, you can type it directly into the Name
column. Alternatively, if the item appears in the Code Editor window, you can
highlight it in that window and then drag it to a Watch window. You can also
highlight the item in the Code Editor or a data tip and then right-click on it and
select the Add Watch command to add it to the Watch window that’s currently
displayed.

The Immediate window is useful for displaying the values of variables or
properties that don’t appear in the Code Editor window. To display a value,
you type a question mark followed by the name of the variable or property. For
instance, the first query in the Immediate window in this figure displays the
selected value in the drop-down list, and the second query displays the properties
of the selectedProduct variable.

The commands that you enter into the Immediate window remain there
until you exit from Visual Studio or explicitly delete them using the Clear All
command in the shortcut menu for the window. That way, you can edit and reuse
the same commands from one execution of an application to another without
having to reenter them.

To execute a command that you’ve already entered in the Immediate
window, scroll through the commands in the window to find the one you want.
As you scroll, the commands are displayed at the bottom of the window. Then,
you can select one and press Enter to execute it.

Chapter 5 How to test and debug ASP.NET applications

The Locals window and a Watch window

Name Value Type - Name Value Type
@ Me {ASP order_aspx} Order K ddIProducts SelectedValue "bats01 " Q, ~ String
=8 an {CortiamLis Cortemist c
= System.Colle = & cartlterns Count=2 System. Collectic
@ 0 {Cartltem} @ 0 {Cartltem} Cartltern
E e 1) {Cartltem} @ (1) {Cartltem} Cartltem
= S Product {Product} Product & Count 2 Integer
K Imag "cooll jpg" Q - String K Ttem In order to evalu Q. -~ Cartltem
F Long "Bats flying in front @, - String K ltem In order to eval. Q, ~ Cartltem
J Nam "Flying Bats" Q, - String -
Autos | Locals | Watch1 Autos Locals Watch1
Immediate Window * 1 x

?dd1Products.SelectedValue -
"bats@l :
?selectedProduct
{Product}
ImageFile: "cooll.jpg"
LongDescription: "Bats flying in front of a full moon make f
Name: "Flying Bats"
ProductID: “"batsel
ShortDescription: "Bats flying in front of moon™
UnitPrice: 69.99D

Description

The Locals window displays information about the variables within the scope of the
current procedure.

The Watch windows let you view the values of variables and expressions that you
specify, called watch expressions. You can display up to four Watch windows in the
full edition of Visual Studio but only one in the Express edition.

To add a watch expression, type a variable name or expression into the Name
column, or highlight a variable or expression in the Code Editor window and drag it
to the Watch window. You can also right-click on a variable, highlighted expression,
or data tip in the Code Editor window and choose Add Watch.

To delete a row from a Watch window, right-click the row and choose Delete
Watch. To delete all the rows in a Watch window, right-click the window and
choose Select All to select the rows, then right-click and choose Delete Watch.

You can use the Immediate window to display specific values from a program
during execution. To display a value in the Immediate window, enter a question
mark followed by the expression whose value you want to display. Then, press the
Enter key.

To remove all commands and output from the Immediate window, right-click the
window and choose the Clear All command from the shortcut menu. To execute an
existing command, scroll to find it, select it, and press Enter.

To display any of these windows, click on its tab if it’s visible or select the appro-
priate command from the DEBUGWindows menu.

Figure 5-8 How to use the debugging windows to monitor variables

181

182

Section 1 The essence of ASP.NET programming

How to use the trace feature

The trace feature is an ASP.NET feature that displays information that you
can’t get by using the debugger. The trace feature is most useful when trouble
shooting a web site that you can’t debug in Visual Studio, such as a production
web site on a remote server. When you’re working from Visual Studio, though,
you shouldn’t need the trace feature because the debugger works so well.

How to enable the trace feature

To use the trace feature, you must first enable tracing. To do that, you add a
Trace attribute to the Page directive of the page that you want to trace, as shown
in the first code example in figure 5-9. Or, to enable tracing for every page in the
web site, you add an element to the web.config file, as shown in the second code
example in this figure. Then, trace information will be added to the end of each
page’s output each time the page is requested.

How to interpret trace output

In figure 5-9, you can see the start of the output for the Cart page after
the user added an item to the shopping cart. After the request details, the trace
information provides a list of trace messages that are generated as the applica-
tion executes. Here, ASP.NET automatically adds Begin and End messages when
major page events such as Prelnit, Init, and InitComplete occur. If you scroll
down to see all of these trace messages, you can see the variety of events that are
raised during the life cycle of a page.

After the trace messages, you’ll find information about the controls used
by the page, the items in the session state object, the cookies that were included
with the HTTP request, the HT'TP request headers, and the server variables. In
this figure, for example, you can see the session state and cookies data for the
Cart page of the Shopping Cart application. In this case, an item named Cart has
been added to the session state object. And a cookie named ASPNET_Sessionld
is used to keep track of the user’s session ID so the user’s session state object
can be retrieved.

Chapter 5 How to test and debug ASP.NET applications

The beginning of the trace output for the Cart page

@. ‘|:§ http://localhost57183/Ch04Cart/Ca O ~ B & X || (2 Chapter 4; Shopping Cart ‘ |

File Edit View Favorites Tools Help

Request Details

Session Id: 4lzilg5smfaef2gvehjd0zgy Request Type: GET
Time of Request: 6/5/2013 11:45:44 AM Status Code: 200

Request Encoding: Unicode (UTF-8 Response Encoding: Unicode (UTF-8

race Information

Category Message From First(s) From Last(s)
aspx.page Begin Prelnit
aspx.page End Prelnit 0.000034 0.000034
aspx.page Begin Init 0.000046 0.000012
aspx.page End Init 0.000074 0.000029
aspx.page Begin InitComplate 0.000087 0.000013
aspx.page End InitComplete 0.000099 0.000011

4 | n

The session and cookies information for the Cart page

ﬁ)| @ nitp://localhosts7183/ChosCat/Ca © ~ B €& X || @ Chapter&: Shopping Cart ‘

File Edit View Favorites Tools Help

Session Key Type Value
CartltemList CartItemList

Application State

Application Ke Value
Request Cookies Collection

Name Value Slze
ASP.NET_Sessionld 4zilgSsmfaef2gvehjdozgy

4 | n

|m

A Page directive that enables tracing for the Cart page

A web.config setting that enables tracing for the entire web site

<system.web>
<trace enabled="true" pageOutput="true" />
</system.web>
Description
e The ASPNET ftrace feature traces the execution of a page and displays trace
information in tables at the bottom of that page.
[]

Figure 5-9 How to enable the trace feature and interpret trace output

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Cart.aspx.vb"
Inherits="Cart" Trace="true" %>

To activate the trace feature for a page, you add a Trace attribute set to True to its
Page directive. To activate the trace feature for the web site, you add a trace
element to the web.config file as shown above.

183

184 Section 1 The essence of ASP.NET programming

How to create custom trace messages

In some cases, you may want to add your own messages to the trace
information that’s generated by the trace feature. This can help you track the
sequence in which the procedures of a form are executed or the changes in the
data as the procedures are executed. Although you can also do this type of track-
ing by stepping through the procedures of a form with the debugger, the trace
information gives you a static listing of your messages.

Note, however, that you can also create this type of listing using tracepoints
as described earlier in this chapter. The advantage to using tracepoints is that
you can generate trace information without adding code to your application. In
addition, this output is generated only when you run an application with debug-
ging. In contrast, you have to add program code for custom trace messages, and
the trace output is generated whenever the trace feature is enabled. If you don’t
have access to the debugger, though, trace messages are a good troubleshooting
option.

To add messages to the trace information, you use the Write or Warn method
of the TraceContext object. This is summarized in figure 5-10. The only differ-
ence between these two methods is that messages created with the Warn method
appear in red. Notice that to refer to the TraceContext object, you use the Trace
property of the page.

When you code a Write or Warn method, you can include both a category
and a message or just a message. If you include a category, it will show in the
category column in the trace output. If you include just a message, the category
column is left blank, as shown in this figure. In most cases, you’ll include a
category because it makes it easy to see the sequence in which the methods were
executed. However, leaving the category blank can make it easier to see your
custom messages in a long list of trace output.

If you want to determine whether tracing is enabled before executing a Write
or Warn method, you can use the IsEnabled property of the TraceContext object
as shown in the example in this figure. Normally, though, you won’t check the
IsEnabled property because trace statements are executed only if tracing is
enabled.

Chapter 5 How to test and debug ASP.NET applications

Common members of the TraceContext class
Property Description

IsEnabled True if tracing is enabled for the page.
Method Description

Write(message) Writes a message to the trace output.

Write(category, message) Writes a message to the trace output with the specified category.

Warn(message) Writes a message in red type to the trace output.
Warn(category, message) Writes a message in red type to the trace output with the speci-
fied category.

Code that writes a custom trace message

If Trace.IsEnabled Then
Trace.Write("Page_Load", "Binding products drop-down list.")
End If

A portion of a trace that includes a custom message

(P =)
e&) @ http://localhost51029/Order.aspx O v B G X H @ Chapter &: Shopping Cart X fnr v 8
race Information i
Category Message From First(s) From Last(s) E
aspx.page Begin Prelnit
aspx.page End Prelnit 0.000019 0.000019
aspx.page Begin Init 0.000029 0.000010
aspx.page End Init 0.000048 0.000019
aspx.page Begin InitComplete 0.000056 0.000008
aspx.page End InitComplete 0.000063 0.000008
aspx.page Begin PreLoad 0.000072 0.000009
aspx.page End PreLoad 0.000081 0.000009
aspx.page Begin Load 0.000088 0.000008
Page_Load Binding products drop-down list. 0.002883 0.002794
aspx.page End Load 0.004464 0.001581
aspx.page Begin LoadComplete 0.004479 0.000015
aspx.page End LoadComplete 0.004488 0.000009 -
4 1 | 3
Description
® You can use the TraceContext object to write your own messages to the trace
output. The TraceContext object is available through the Trace property of a page.
e Use the Write method to write a basic text message. Use the Warn method to write
a message in red type.
e Trace messages are written only if tracing is enabled for the page. To determine
whether tracing is enabled, you use the IsEnabled property of the TraceContext
object.
e If you are using the Write method, or for some other reason you can’t see the red

type, trace messages without a category can be easier to find in a long list of trace
information.

Figure 5-10 How to create custom trace messages

185

186 Section 1 The essence of ASP.NET programming

Perspective

As you can now appreciate, Visual Studio provides a powerful set of tools
for debugging ASP.NET applications. For simple applications, you can usually
get the debugging done just by using breakpoints, data tips, and the Autos or
Locals window. You may also need to step through critical portions of code
from time to time.

For complex applications, though, you may discover the need for some
of the other features that are presented in this chapter. With tools like these, a
difficult debugging job becomes manageable.

Terms
testing breakpoint
debugging break mode
browser incompatibilities tracepoint
concurrency error data tip
exception watch expression
debugger trace feature

Summary

e When you fest an application, you try to find all of its errors. When you
debug an application, you find the causes of the errors and fix them.

e To test for browser incompatibilities, you need to run your web site in all of
the common browsers.

o To test database applications for concurrency errors, you need to run your
web site in more than one application at the same time and access the same
rows in the database.

e Visual Studio’s debugger provides many features including the ability to
set a breakpoint, step through the statements in an application when it is
in break mode, and view the changes in the data after each statement is
executed.

e Tracepoints are like breakpoints but they also let you perform actions like
printing messages in the Output window.

e Data tips provide an easy way to view the data when an application is in
break mode. But you can also use the Locals, Watch, and Immediate
windows to do that.

e The trace feature is useful when you have to test an application and Visual
Studio isn’t available. This happens when the web site has already been
deployed on a remote server.

Chapter 5 How to test and debug ASP.NET applications

Exercise 5-1 Use the Visual Studio debugger

In this exercise, you’ll use the debugger to step through the Shopping Cart appli-
cation that you studied in chapter 4. However, you’ll work with another version
of it so you can experiment without changing the original version.

Use breakpoints, step through statements, and view data tips
1. Open the Ex05Cart web site in the aspnet45_vb directory. Then, change this
web site so it uses IIS Express, and set the starting page to the Order page.

2. Display the code for the Order page, and set a breakpoint on the statement in
the Load event handler that calls the GetSelectedProduct procedure.

3. Run the application in the default browser. When the application enters break
mode, point to the IsPostBack property to see that its value in the data tip
is Nothing. Then, point to the data tip and click the pin icon so the data tip
remains open.

4. Press the F11 key to execute the next statement. Notice that this statement is
in the GetSelectedProduct procedure. Press the F11 key two more times to see
that only one statement is executed each time.

5. Click the Step Out button in the Debug toolbar to skip over the remaining
statements in the GetSelectedProduct procedure. This should return you to the
Page_load procedure.

6. Click the Continue button in the Debug toolbar. This should execute the
remaining statements in the Page_Load procedure and display the Order page.

7. Select another product from the combo box. This should cause the
application to enter break mode again and stop on the statement that calls the
GetSelectedProduct procedure. Notice that the data tip for the IsPostBack
property is still displayed, but now its value is True.

8. Press the F10 key to execute the Step Over command. This should step over
all statements in the GetSelectedProduct procedure and enter break mode
before the next statement in the Page_Load procedure is executed. This should
also display the data tip for the selectedProduct variable.

9. Point to the plus sign for the selectedProduct data tip to see the values of
its members. Next, point to the Text property of the variables that follow to
display their values. Then, step through the statements that assign the product
properties to the Text property of the labels and note how these values change.

Use the Locals window, a Watch window, and the Immediate window

10. Click on the Locals window tab and note the values that are displayed.
Click the plus sign next to the form object (Me) to expand it and review
the information that’s available. When you’re done, click the minus sign to
collapse the information for this object.

11. Remove the breakpoint from the Page_l.oad procedure. Then, set another
breakpoint on the statement in the GetSelectedProduct procedure that sets the
value of the selected product’s name, continue execution of the application,
and select another product. When the application enters break mode again,

187

188 Section 1

12.

13.

14.

The essence of ASP.NET programming

click on the Locals window tab and note the variables that are displayed. They
should include all of the variables that are in scope.

Display a Watch window. Add the Name column of the DataViewRow object

to this window by selecting it and then dragging it from the Code Editor

window. In the Watch window, it should look something like this:
row["Name"].ToString

Then, enter an expression into the Watch window that displays the Count

property of the DataView object. It should look something like this:
productsTable.Count

Enter the same expression into the Immediate window, preceded by a question
mark. Press the Enter key to see the value that’s displayed. It should be 1.

Click the Stop Debugging button in the Debug toolbar to end the application.
Note that the breakpoint remains in the Code Editor even after you have
stopped debugging.

Exercise 5-2 Use the trace feature

In this exercise, you’ll use the trace feature of ASP.NET to display trace output
on the Order page of the Shopping Cart application that you created in the
exercises for chapter 4.

L.
2.

If it’s not already open, open the Ex05Cart web site.

Display the Order page in the Web Forms Designer and switch to Source
view. Then, enable tracing for the page by adding a Trace attribute to the Page
directive as shown in figure 5-9.

Run the application and notice that the trace output is displayed below the
controls on the Order page. View the trace information. In particular, review
the session state information.

Add a product to the cart and go to the Cart page. Notice that the trace output
isn’t displayed on that page. Click on Continue Shopping to go back to the
Order page. View the session state information again and notice there is now
a Cart object in the session state data. When you’re done viewing the trace
information, end the application.

Use custom trace messages

5.

Add two custom trace messages to the GetSelectedProduct procedure as
shown in figure 5-10. Put the first message at the top of this procedure. To do
that, use the Trace.Warn method with the method name as the category and
have the message indicate that the method is starting. Put the second message
at the bottom of the GetSelectedProduct procedure, right before the Return
statement. Use the Trace.Write method, but don’t include a category, and have
the message indicate that a new Product object has been created.

Run the application to see what messages are displayed. Then, click the Add
to Cart button and see what messages are displayed.

End the application, remove the trace messages from the code, and remove the
Trace attribute from the Page directive. Then, close and save the solution.

ASP.NET essentials

The six chapters in this section expand upon the essentials that you learned
in section 1. To start, chapter 6 shows you how to work with the server
controls that can be used for developing web pages. Then, chapter 7 shows
you how to work with the validation controls, and chapter 8 presents the
several ways that you can manage the state of an application or form.

The next three chapters present features of ASPNET that make it easier
to develop professional web sites. Chapter 9 shows you how to use master
pages to create pages with common elements, and chapter 10 shows you
how to use themes to customize the formatting that’s applied to the pages
of a web application. Then, chapter 11 shows you how to use ASP.NET
routing to provide friendly URLSs that improve search engine optimization
and how to use the site navigation controls to make it easy for users to
navigate through your site.

To a large extent, each of the chapters in this section is an independent
unit. As a result, you don’t have to read these chapters in sequence. If, for
example, you want to know more about state management after you finish
section 1, you can go directly to chapter 8. Eventually, though, you’re
going to want to read all six chapters. So unless you have a compelling
reason to skip around, you may as well read the chapters in sequence.

How to use the standard
server controls

In section 1, you learned the basic skills for working with some of the common
server controls: labels, text boxes, buttons, and drop-down lists. Now, you’ll
learn more about working with those controls as well as how to use the rest of
the standard server controls.

An introduction to the standard server controls
The server controls you’'ll use the mMOSt........cc.ecevveeirerierirecinienierneecneeae
How to use Visual Basic to work with the data in server controls
How to set the focus, default button, tab order,

and access keys for a form.........ooooviviiniiniinc e 196
How to use the common server controls........ccccveeeceeeee. 198
How to use labels and teXt DOXESc.vevveeerieieeerierieeeete e 198
How to use check boxes and radio buttons............ccoeveeeeveeveeeceeeeeeeeeennene 200

How to use image and hyperlink controls
How to use the file upload control.....................

How to use the button controls
How to use buttons, link buttons, and image buttonscccceeveveeruenenne.
How to use the Command eVeNt............cccooeevveeeriecrieciierieee et

How to use the list controls.............ccccoeeeciimrrriirieerece e
How to create drop-down lists and list boxes...........cocccvevereeueneee

How to use the properties for working with list controls....
How to use the members for list item collections
How to use check box lists and radio button 1istsccceevveeviievirecerennene
How t0 use bulleted JiStS........ccvieviiiieiieiierieeieeee et

A CheckOut page that uses server controls....................
The user interface and link elements.........c.ocoeeverecirniecrenerercnineecrenes
The aspX COAe ...cuveveeeiieiieieieiceeee e

The code-behind file for the CheckOut page

An introduction

to the other standard server controls.........ccovcemeeminrnninnnn
When and how to use the other standard server controls
How to use the Wizard control............c..cooviieiiieeiiiieiiiciee e

Perspectivecoicivmrimiriinmrrr i e e

192

Section 2 ASP.NET essentials

An introduction
to the standard server controls

The standard server controls are the ones in the Standard group of the
Toolbox. These are the ones that get data from and present data in a web form.

The server controls you’ll use the most

The two tables in figure 6-1 summarize the standard server controls that
you’ll use the most. If you’ve developed Windows applications or HTML pages,
you should already be familiar with the operation of most of these controls. For
instance, labels, text boxes, check boxes, radio buttons, drop-down lists, and
buttons work the same way in Web Forms that they work in Windows applica-
tions and HTML pages.

In fact, the ASPNET server controls are rendered as HTML elements. This
is summarized by the second column in the tables in this figure, which pres-
ent the HTML elements that ASP.NET generates for each type of control. For
instance, a Label control is rendered as a span element, and a TextBox control
is rendered as an input element. Similarly, some controls get rendered as two
or more HTML elements. For instance, an ImageMap control gets rendered as
an img element plus a related map element, and a DropDownList control gets
rendered as a select element plus one option element for each item in the list.

What isn’t shown in this table is that the type attribute of an HTML input
element determines how the element looks and works. For instance, a typical text
box is rendered as an input element with its type attribute set to “text”, a check
box is rendered as an input element with its type attribute set to “checkbox”, and
a file upload control is rendered as an input element with its type attribute set to
“file”.

For the most part, you don’t need to know what HTML elements the server
controls are rendered to. But if you use CSS to format those controls, you do need
to know what elements are generated so you can code the selectors for the rule
sets correctly. If necessary, you can view the source code when a page is rendered
in a browser, but this table gives you a general idea of what you can expect.

This figure also answers the question: When should you use HTML elements
instead of server controls, and vice versa? In brief, you should use HTML
elements whenever the contents aren’t going to change. If, for example, a label
that identifies a text box isn’t going to change, you should use the HTML label
element instead of the Label control. In contrast, if the label is going to display
text that is changed by the code-behind file based on user actions, the Label
control is the right choice.

The other time to use server controls is when you don’t know how to code
the HTML that you need. Then, you can use the Properties window to set the
properties for the corresponding server control and get the result that you want
without using HTML. This makes sense when you just want to prototype an
application and don’t want to take the time to learn how to code the HTML.

In the long run, though, you should learn how to use HTML instead of server
controls whenever the data in the elements isn’t going to change.

Chapter 6 How to use the standard server controls

Common server controls

Name HTML Prefix Description

Label span 1bl A label that displays descriptive information.

TextBox input txt A text box that lets the user enter or modity a text value.

CheckBox input/label chk A check box that can be turned on or off.

RadioButton input/label rdo A radio button that can be turned on or off, but only one
button in a group can be on.

Button input btn A button that submits a page for processing.

LinkButton <a> lbtn A link button that submits a page for processing.

ImageButton input ibtn An image button that submits a page for processing.

Image img img A control that displays an image.

ImageMap img/map imap A control that displays an image with one or more click-
able areas that submit the page for processing.

HyperLink <a> hlnk A link that goes to another page or position on a page.

FileUpload input upl A file upload control that consists of a text box and a

Browse button that lets the user upload one or more files.

List server controls

Name HTML Prefix Description

DropDownList select/option ddl A drop-down list that lets the user choose one item.

ListBox select/option 1st A list box that lets the user choose one or more items.

CheckBoxList input/label cbl A list of check boxes that can be turned on or off.

RadioButtonList input/label rbl A list of radio buttons, but only one can be turned on
or off.

BulletedList ul or ol/li blst A bulleted list or numbered list.

When to use HTML elements instead of server controls

e When the contents of the controls aren’t going to change, you should use HTML
elements instead of server controls because server controls have some overhead.

When to use server controls instead of HTML

e When the contents of the controls are going to change, you should use server
controls so it’s easy to change the controls by using Visual Basic in the code-behind
file.

e If you don’t know how to code the HTML for the elements you want to use, server
controls can help you get around that. Just add the controls to a form, use the
Properties window to set their attributes, and let ASPNET generate the HTML.

Description

e In the tables above, the HTML column shows the HTML elements that are
rendered for each server control. The Prefix column shows prefixes that are
commonly used in the IDs for these controls.

Figure 6-1 The standard server controls that you'll use the most

193

194 Section2 ASP.NET essentials

How to use Visual Basic to work
with the data in server controls

Like other objects, server controls have events that are fired when certain
actions are performed on them. The table at the top of figure 6-2 summarizes
some of these events for the common controls. When you click on a button
control, for example, the Click event is fired. And when you change the text in a
text box, the TextChanged event is fired.

If your application needs to respond to an event, you code a procedure called
an event handler. When you generate a Visual Basic event handler from Visual
Studio, as explained in chapter 2, the Handles clause in the Visual Basic code
wires the event handler to the event. This is illustrated by the first example in this
figure. Here, the Handles clause says that the event handler will handle the Click
event of the button named btnCancel.

You should know, however, that an event can also be wired to an event
handler by an On attribute in the aspx code. This is illustrated by the second
example in this figure. Here, the OnClick attribute of a button named btnCancel
indicates that an event handler named btnCancel_Click will be executed when
the Click event of the control is raised. This is the way events are wired when the
AutoEventWireup attribute for a page is set to True. However, since Visual Basic
event handlers aren’t wired this way by default, all of the other examples in this
book use the Handles clause for wiring.

The third example in this figure shows that the Load event handler is often
used to load data into the server controls of a form. Here, data from a database
is used to change the Text properties of two Label controls and the ImageUrl
property of an Image control. This example is taken from the Cart application
that you studied in chapter 4, and it shows how easy it is to change the data in
server controls.

You can also use one event handler to handle events from two or more
controls. To do that, you code more than one event in the Handles clause,
separated by commas. You’ll see an example of an event handler like this later in
this chapter.

Chapter 6 How to use the standard server controls

Common control events

Event On Attribute Controls

Click onClick Button, image button, link
button, image map

Command OonCommand Button, image button, link
button

TextChanged onTextChanged Text box

CheckedChanged onCheckedChanged Check box, radio button

SelectedIndexChanged onSelectedIndexChanged Drop-down list, list box, radio
button list, check box list

A Click event hander that is wired by a Handles clause

The aspx for a button control
<asp:Button id="btnCancel" runat="server" Text="Cancel Order" />

The event handler for the Click event of the control
Protected Sub btnCancel_Click(sender As Object,
e As EventArgs) Handles btnCancel.Click
Session.Remove("Cart")
Response.Redirect ("Order.aspx")
End Sub

A Click event handler that is wired by an On attribute

The aspx for a button control
<asp:Button id="btnCancel" runat="server" Text="Cancel Order"
OonClick="btnCancel_ Click" />

The event handler for the Click event of the control

Protected Sub btnCancel Click(sender As Object, e As EventArgs)
Session.Remove("Cart")
Response.Redirect ("Order.aspx")

End Sub

A Load event handler that changes the data in server controls
Protected Sub Page_Load(sender As Object,
e As EventArgs) Handles Me.Load
If Not IsPostBack Then ddlProducts.DataBind()
selectedProduct = Me.GetSelectedProduct()
lblName.Text = selectedProduct.Name
lblShortDescription.Text = selectedProduct.ShortDescription
imgProduct.ImageUrl = "Images/Products/" & selectedProduct.ImageFile
End Sub

Description

¢ You can code event handlers that are called when events like those in the table
above are fired. Often, though, you’ll process the data in the Load event handler for
the page.

¢ By default, the Handles clause is used for wiring events to Visual Basic event handlers.
However, events can also be wired by using the On attributes in the table above.

Figure 6-2 How to use Visual Basic to work with the data in server controls

195

196 Section2 ASP.NET essentials

How to set the focus, default button, tab order,
and access keys for a form

Before you learn how to use specific server controls, figure 6-3 shows you
how to do some housekeeping for the controls on a form. First, it shows how to
set the control that receives the focus when the form is rendered in the browser.
To do that, you can use the DefaultFocus attribute of the form. In the aspx
example in this figure, this attribute is set to the txtName control, which is the
first text box on the form, so the user can start entering data in that text box.

Second, this figure shows how to set the default button for a form. That’s the
button that’s activated by default when you press the Enter key. To identify that
button, you set the DefaultButton attribute of the form. In the aspx example in
this figure, this attribute is set to the btnSubmit button. Because of that, the form
is posted back to the server when the Enter key is pressed, and the event handler
for the Click event of that button is executed.

Third, this figure shows how to set the tab order for the controls on a form.
That’s the order in which the focus is moved from one control to another when
the user presses the Tab key. By default, this is the sequence of the controls in
the HTML, not including labels, and most browsers include links in the tab
order. That means that if you set the focus to the first control on the form, the
tab order is likely to work the way you want it to. Otherwise, you can use the
Tablndex attribute to set the tab order for specific controls, but you usually won’t
need to do that.

Last, this figure shows how to set the access keys for the controls on a form.
These let the user select controls by using keyboard shortcuts. If, for example,
you designate F as the access key for an input field that accepts a customer’s first
name, the user can move the focus directly to this field by pressing Alt+F in the
Internet Explorer, Chrome, or Safari browsers.

To create an access key, you add the AccessKey attribute to the control you
want to create the keyboard shortcut for. Note, however, that the access keys
that you define can conflict with the access keys that are defined for a browser.
Because of that, you’ll want to be sure to test them with all the modern browsers.

When you use access keys with text boxes that are identified by label
elements or Label controls, you can assign the access key to the label and then
underline the appropriate letter of the label. In this case, you should also code
the for attribute for a label element or the AssociatedControlID attribute for a
Label control to specify the control that should receive the focus when the user
presses the access key.

You can also specify an access key for a button control as illustrated by
the aspx code in this figure. However, you can’t underline the access key in a
Button control. That’s because buttons are rendered by an input element that has
“submit” as its type attribute, and that type of element doesn’t provide a way to
format the text that’s displayed by the button.

Chapter 6 How to use the standard server controls

The form attributes for setting the focus and default button

Attribute Description

DefaultFocus Sets the focus to the control that’s identified.
DefaultButton Sets the default button to the button that’s identified.

The control attributes for setting the tab order and access keys

Attribute HTML Description
AssociatedControlID for Associates a label with a control.
TabIndex tabindex Sets the tab order for a control with a value

of 0 or more. To take a control out of the
tab order, use a negative value, like -1.

AccessKey accesskey Sets a keyboard key that can be pressed in
combination with a control key to move
the focus to the control.

The aspx code for a form

<form id="forml" runat="server" DefaultFocus="txtName"
DefaultButton="btnSubmit">
<p>Please enter your contact information:</p>
<label for="txtName"><u>N</u>ame:</label>
<asp:TextBox ID="txtName" runat="server" AccessKey="N"></asp:TextBox>
<label><u>E</u>mail:</label>
<asp:TextBox ID="txtEmail" runat="server" AccessKey="E"></asp:TextBox>
<asp:Button ID="btnSubmit" runat="server" AccessKey="S" Text="Submit" />
</form>

Description

To set the control that receives the focus when a form is first displayed, you can use
the DefaultFocus attribute of the form. You can also use the focus method of Visual
Basic or JavaScript to set the focus on a control.

To set the default button that causes a form to be submitted when the user presses
the Enter key, you can use the DefaultButton attribute of the form.

The tab order for a form is the sequence in which the controls receive the focus
when the Tab key is pressed. By default, the tab order is the order of the controls in
the HTML, not including labels, and most browsers include links in the default tab
order.

Access keys are shortcut keys that the user can press to move the focus to specific
controls on a form. If you assign an access key to a label, the focus is moved to the
control that’s associated with the label since labels can’t receive the focus.

To show the user what the access key for a text box is, you can underline the letter
for the key in the label that identifies the text box.

To use an access key, you press a control key plus the access key. For IE, Chrome,
and Safari, use the Alt key. For Firefox, use Alt+Shift. And for Opera, use Alt+Esc
to get a list of available access keys.

Figure 6-3 How to set the focus, default button, tab order, and access keys for a form

197

198 Section2 ASP.NET essentials

How to use the common server controls

The topics that follow show you how to use some of the common server
controls. For the most part, it’s just a matter of dragging a control onto a form
and using the Properties window to set the Appearance and Behavior properties
(or attributes) that make the control work the way you want it to.

How to use labels and text boxes

Figure 6-4 presents the attributes that you need for working with labels and
text boxes. For both of these controls, the Text attribute specifies the text that’s
stored in the control.

For a label, the AssociatedControlID attribute specifies the control that the
label identifies. Although you don’t need to set this attribute for all controls, you
do need to set it when you provide an access key for a label, as shown in the last
figure. Note that this attribute is converted to a for attribute in the HTML for the
label.

For a text box, the TextMode attribute determines whether the box can accept
and display one or more lines of text (SingleLine or MultiLine). Then, for a
multiline text box, you can use the Rows attribute to specify the number of lines
that are shown in the text box and the Wrap attribute to specify whether the lines
are automatically wrapped when they exceed the width of the box.

For both single and multiline text boxes, you can use the MaxLength attri-
bute to specify the maximum number of characters that the user can enter into
the box. You can also use the Columns attribute to specify the width of the box
in characters. Although you can also use CSS to set the appearance of a text
box, including its width, please note that ASP.NET generates an HTML textarea
element for a multiline text box, not an input element.

For a SingleLine control (the default), the TextMode attribute can be used
to specify the HTML type attribute for the input element that’s generated for the
control. If, for example, you set the TextMode attribute to Password, the charac-
ters that the user enters are masked so they can’t be read.

Beyond that, the TextMode attribute can be used to specify the HTMLS type
attributes that are listed in this figure. For instance, the TextMode attribute can be
set to “email” if the text box is supposed to get an email address, and it can be set
to tel if the text box is supposed to get a telephone number. For semantic reasons,
it’s good to set these HTMLS attributes because they indicate what type of data
each control is for.

At present, though, the browser support for the HTMLS type attributes varies
from one browser to another. At this writing, for example, Firefox, Chrome, and
Opera support the email type by providing automatic data validation for the entry
in the text box, but Internet Explorer and Safari treat an email text box just like
any other text box. Similarly, Opera fully supports the datetime type by offering
a calendar widget when the text box receives the focus, but the other browsers
treat a datetime text box just like any other text box.

In contrast, the browsers for mobile devices do a better job of supporting the
HTMLS type attributes. For instance, the iPhone and iPad support the email and

Chapter 6 How to use the standard server controls

Common label attributes
Attribute Description

AssociatedControlID for Associates a label with a control. Sometimes,
this attribute is required, like when working
with check boxes and radio buttons.

The text content of the label.

Common text box attributes

Attribute Description

TextMode The type of text box. SingleLine (the default) creates a standard text box,
MultiLine creates a text box that has more than one line of text, and Pass-
word causes the characters that are entered to be masked. This attribute
can also be used to generate the HTMLS type attribute for the input
element that is rendered for a text box.

Text The text content of the text box.
MaxLength The maximum number of characters that can be entered into the text box.

Wrap Determines whether or not text wraps automatically when it reaches the
end of a line in a multiline text box. The default is True.

ReadOnly Determines whether the user can change the text in the text box. The
default value is False, which means that the text can be changed.

Columns The width of the text box in characters. The actual width is based on the
font that’s used for the entry.

Rows The height of a multiline text box in lines. The default value is 0, which
sets the height to a single line.

TextMode values for the HTML5 type attributes for input elements

email url tel number range

datetime time search color

The aspx for a label and a multiline text box

<label for="txtMessage">Please enter any special instructions</label>
<asp:TextBox ID="txtMessage" runat="server" Rows="5" TextMode="MultiLine">
</asp:TextBox>

The aspx for a text box that gets an email address

<asp:TextBox ID="txtEmail" runat="server" TextMode="Email"></asp:TextBox>

Description

o The HTMLS TextMode values get rendered as type attributes for input elements.
For semantic reasons, it’s good to use these attributes because they indicate what
type of data each control is for.

o At present, the HTMLS type values are supported at varied levels by desktop and
laptop browsers, but mobile devices provide better support. For instance, most
mobile devices adjust the keyboard for the email, url, and tel types to make data
entry easier.

Figure 6-4 How to use labels and text boxes

199

200

Section 2 ASP.NET essentials

tel types by displaying a keyboard that is optimized for email or phone entries.
For that reason, we recommend that you use the TextMode attribute to set the
HTMLS type attributes for TextBox controls. This can only help because the
HTMLS type attributes are ignored if they aren’t supported.

How to use check boxes and radio buttons

Figure 6-5 shows how to use the controls for check boxes or radio buttons.
The main difference between these two types of controls is that only one radio
button in a group can be selected, but check boxes are independent so more than
one can be checked.

To create a group of radio buttons, you specify the same name for the
GroupName attribute of each button in the group. If you want to create two or
more groups of radio buttons on a single form, you use a different group name
for each group. Note, however, that if you don’t specify a group name for a radio
button, that button won’t be a part of any group. Instead, it will be processed
independently of any other radio buttons on the form.

To specify whether a radio button or check box should be checked when
a form is rendered in a browser, you use the Checked attribute. But since only
one radio button in a group can be selected, you should only set the Checked
attribute to True for one button. If you set this property to True for more than one
button in a group, the last one will be selected.

If you want to use Visual Basic to get the value of a check box (whether it’s
checked or unchecked) whenever the user changes it, you can use the code in the
check box example in this figure. This event handler is executed whenever the
value of the check box changes. Then, the one statement in this handler assigns
the value of the checked property of the check box to the NewProductInfo
property of a customer object. That value will either be true or false, depending
on whether or not the box is checked.

If you want to use Visual Basic to get the value of a radio button whenever
the user selects it, you can use the code in the first radio button example in this
figure. Here, the event handler for the CheckedChanged event of the rdoTwitter
button is executed. Since this event only occurs when the user selects the button,
the one statement in this handler assigns a value of “Twitter” to the ContactBy
property of a customer object.

The second radio button example shows how you can use If statements
to find out which radio button in a group has been selected. Here, the first If
statement tests whether the button with an id of “rdoTwitter” is selected. In this
statement, the condition is just the checked property of the control, which tests
whether that property is true. If it is. the code sets the ContactBy property of
a customer object to “Twitter”. Then, the second statement tests whether the
second button is checked, and it sets the ContactBy property to Facebook if it
is. Since only one of these buttons can be checked, only one of the conditions in
these If statements can be true.

If you use CSS to format check boxes and radio buttons, remember that each
one is rendered as an input element followed by a label element that contains

Chapter 6 How to use the standard server controls

Common check box and radio button attributes

Attribute Description

Text The text that’s displayed next to the check box or radio button.
Checked Indicates whether the check box or radio button is selected.
The default is False.

GroupName The name of the group that the radio button belongs to (not
used for check boxes).

Three check boxes and two radio buttons in a browser

Please let me know about:
[[] New products [7] New Revisions [Special offers

Please contact me via:
@ Twitter @ Facebook

The aspx code for the three check boxes

<asp:CheckBox ID="chkNewProducts" runat="server" Text="New products" />
<asp:CheckBox ID="chkRevisions" runat="server" Text="New Revisions" />
<asp:CheckBox ID="chkSpecial" runat="server" Text="Special offers" />

Visual Basic code that gets the value

of the first check box whenever it changes
Protected Sub chkNewProducts_CheckedChanged(sender As Object,
e As EventArgs) Handles chkNewProducts.Checkedchanged
customer.NewProductInfo = chkNewProducts.checked
End Sub

The aspx code for the two radio buttons

<asp:RadioButton ID="rdoTwitter" runat="server"
Checked="True" GroupName="ContactBy" Text="Twitter" />

<asp:RadioButton ID="rdoFacebook" runat="server"
GroupName="ContactBy" Text="Facebook" />

Visual Basic code that gets the value of a radio button when it is turned on
Protected Sub rdoTwitter_ CheckedChanged(sender As Object,
e As EventArgs) Handles rdoTwitter.CheckedChanged
customer.ContactBy = "Twitter"
End Sub

Two If statements that set a value for the checked radio button

If rdoTwitter.checked Then customer.ContactBy = "Twitter"
If rdoFacebook.checked Then customer.ContactBy = "Facebook"
Description

A check box displays a single option that the user can either check or uncheck.
Radio buttons present a group of options from which the user can select just one.

For a check box, the CheckedChanged event is raised whenever its checked
property is changed. For a radio button, this event is raised only when its checked
property is changed to checked.

To determine whether a check box or radio button is selected, test its checked property.

Figure 6-5 How to use check boxes and radio buttons

201

202 Section2 ASP.NET essentials

the text. Since this is the reverse of how labels and input elements are normally
sequenced, this can make your CSS selectors more complicated. As you will see,
however, check box lists and radio button lists can simplify the CSS.

How to use image and hyperlink controls

Figure 6-6 shows how to use an image control. You’ve seen this control used
to display a product image in the Shopping Cart application of chapter 4. To do
that, you just set the ImageURL control to the URL of the image that you want
displayed.

For user accessibility, though, it’s also good to set the AlternateText attribute
of an image control. That way, an assistive device for a visually-impaired user
can read a description of the control.

If you need to set the width or height of an image, you can set the Width or
Height attribute. Otherwise, the image will be displayed at its full size, unless
the width or height is specified by CSS. In general, though, the images that you
use should be the size that you want so you shouldn’t have to set their widths or
heights. To convert the images to the right size, you can use an image editor.

This figure also shows how to use a hyperlink control. This control navigates
to the web page specified in the NavigateUrl attribute when the user clicks the
control. To display text for a hyperlink control, you set the Text attribute or code
the text as content between the start and end tags. Either way, the text is under-
lined by default, although you can use CSS to change that.

The other alternative is to display an image for a hyperlink. To do that, you
set the ImageUrl attribute to the URL of the image you want to display. Then,
the control navigates to the web page that’s specified when the user clicks on the
image.

Remember, though, that you shouldn’t use these controls unless the images
or links are going to be changed by Visual Basic code based on the actions of the
user. Otherwise, you should use an HTML img element to display an image and
an <a> element for a link.

Chapter 6 How to use the standard server controls

Common image attributes

Attribute Description

ImageUrl The absolute or relative URL of the image.

AlternateText The text that’s used in place of the image if
the browser can’t display the image.

width The width of the image.

Height The height of the image.

The aspx for an image control

<asp:Image ID="imgProduct" runat="server" />

Visual Basic code that sets the URL and alternate text of an image control

imgProduct.ImageUrl = "Images/Products/" & selectedProduct.ImageFile
imgProduct.AlternateText = selectedProduct.AlternateText

The Common hyperlink attributes

Attribute Description

NavigateUrl The absolute or relative URL of the page
that’s displayed when the control is clicked.

Text The text that’s displayed for the control.

ImageUrl The absolute or relative URL of the image
that’s displayed for the control.

A hyperlink in a browser

Go to our web site “

The aspx for the hyperlink control

<asp:HyperLink ID="linkl" runat="server"
NavigateUrl="http://www.murach.com">Go to our web site
</asp:HyperLink>

Description

e An image control displays a graphic image, typically in GIF (Graphic Interchange
Format), JPEG (Joint Photographic Experts Group), or PNG (Portable Network
Graphics) format.

e If you don’t specify the Height or Width attributes of an image control, the image
will be displayed at full size unless the size is specified by CSS.

e When a hyperlink control is clicked, it navigates to another web page or another
location on the same page control. The attributes let you display either text or an
image for the link.

Figure 6-6 How to use image and hyperlink controls

203

204 Section2 ASP.NET essentials

How to use the file upload control

Figure 6-7 shows how to use a file upload control. This control lets a user
upload one or more files to a web site. As this figure shows, this control is
rendered as a text box that lets the user enter the path of each file to be uploaded,
plus a Browse button that displays a dialog box that lets the user locate and
select a file so the path is automatically put into the text box.

To upload the selected file or files, you must also provide a separate control
that does a postback, like the Upload button in this figure. When the user clicks
this button, the page is posted and the paths for the files that have been selected
are sent to the server along with the HTTP request.

The first example in this figure shows the aspx code that declares a file
upload control and an Upload button. Note here that the file upload control
doesn’t include an attribute that specifies where the file should be saved on the
server. That’s because the file upload control doesn’t automatically save the
uploaded file. Instead, you must write code that calls the SaveAs method of this
control. The second example in this figure shows how to write this code.

Before you call the SaveAs method, you should test the HasFile property to
make sure the user has selected a file. If the user has selected a valid file and it
was successfully uploaded to the server, the HasFile property will be True. Then,
you can use the FileName property to get the name of the selected file, and you
can combine the file name with the path where you want the file saved. In this
figure, the file is stored in the C:\Uploads directory.

To illustrate the use of the PostedFile.ContentLength property, the event
handler in this figure uses this property to get the size of the uploaded file. Then,
it displays this size in the message for the successful upload.

If you use the AllowMultiple attribute with the file upload control, the
user can select more than one file for uploading. This ASPNET attribute gets
rendered as the HTMLS5 multiple attribute, so some browsers don’t support it.
For instance, IE 9 doesn’t support it, but IE 10 does. For this reason, you may
want to put off using the AllowMultiple attribute until it has broader support. For
more information about using it and for examples that use it, you can search the
Internet.

Chapter 6 How to use the standard server controls 205

An attribute of the file upload control
Attribute Description

AllowMultiple If True, the user can upload more than one file.

Properties and methods of the FileUpload class

Property Description

HasFile If True, the user has selected a file to upload.
FileName The name of the file to be uploaded.
PostedFile The HttpPostedFile object that represents the file that

was posted. You can use this object’s ContentLength
property to determine the size of the posted file.

Method Description

SaveAs(string) Saves the posted file to the specified path.

A file upload control in a browser

File upload:

The aspx code for the file upload control

File upload:

<asp:FileUpload ID="FileUploadl" runat="server" />

<asp:Button ID="btnUpload" runat="server" Text="Upload" />

The Click event handler for the Upload button

Protected Sub btnUpload_Click(sender As Object,
e As EventArgs) Handles btnUpload.Click
If FileUploadl.HasFile Then
Dim path As String = "C:\Uploads\" & FileUpLoadl.FileName
FileUploadl.SaveAs(path)
lblMessage.Text = "File uploaded to " & path & "\n" &
"File size is " & FileUploadl.PostedFile.ContentLength
End If
End Sub

Description

e The file upload control displays a text box and a Browse button that lets the user
browse the client computer’s file system to locate a file to be uploaded.

e Because the file upload control doesn’t provide a button to upload the file, you must
provide a button or other control to post the page. Then, in the button’s Click event
handler, you must call the SaveAs method of the file upload control to save the file.

Figure 6-7 How to use the file upload control

206

Section 2 ASP.NET essentials

How to use the button controls

Most web forms have at least one button control that the user can click to
submit the form to the server for processing. That button is commonly called a
submit button. In the topics that follow, you’ll learn how to use all three of the
ASP.NET button controls: buttons, link buttons, and image buttons.

How to use buttons, link buttons,
and image buttons

Figure 6-8 presents the three types of button controls. These controls differ
only in how they appear to the user. This is illustrated by the three buttons shown
in this figure. As you can see, a button displays text within a rectangular area.
A link button displays text that looks like a hyperlink. And an image button
displays an image.

This figure also presents the aspx for the three buttons that are illustrated.
For the button and link button, the Text attribute provides the text that’s
displayed for the control. For the image button, the ImageUrl attribute provides
the URL address of the image that’s displayed on the button. To make an image
button accessible to the visually impaired, you should also code its AlternateText
attribute.

When a user clicks one of the button controls, ASPNET raises two events:
Click and Command. Then, you can provide event handlers for one or both of
these events. In this figure, for example, you can see an event handler for the
Click event of the Add to Cart button.

Note that the event handler for the Click event receives two arguments. The
sender argument represents the control that was clicked. Because this argument
has a type of object, you need to convert it to a button control if you want to
access the properties and methods of the control. You might want to do that, for
example, if you code a procedure that handles the processing for more than one
button. Then, you can use the ID property of the control to determine which
button was clicked.

The second argument that’s passed to the event handler of a Click event is
the e argument, which contains information about the event. You’re most likely
to use that argument with an image button control to determine where the user
clicked on the image. To do that, you can use the X and Y properties of the e
argument, which return the X and Y coordinates for where on the image the user
clicked.

Of course, the Click and Command event handlers are executed only if the
page posts back to itself. In contrast, it a value is specified for the PostBackUrl
attribute, the page at the specified URL is executed and displayed. This is the
cross-page posting feature you learned about in chapter 4.

Chapter 6 How to use the standard server controls

Common attributes for Button, LinkButton, and ImageButton controls

Attribute Description

Text (Button and LinkButton only) The text displayed by the
button. For a LinkButton control, the text can be coded as content
between the start and end tags or as the value of the Text attribute.

ImageUrl (ImageButton only) The image displayed for the button.
AlternateText (ImageButton only) The text displayed if the browser can’t display the
image.

CausesValidation If True (the default), page validation occurs when the button is clicked.

CommandName An object that’s passed to the Command event when a user clicks the
button.

CommandArgument A string value that’s passed to the Command event when a user clicks
the button.

PostBackUrl The URL of the page that is requested when the user clicks the button.

Button, LinkButton, and ImageButton controls

The aspx for the three buttons
<asp:Button ID="btnAdd" runat="server" Text="Add to Cart" />
<asp:LinkButton ID="lbtnCheckOut" runat="server"
PostBackUrl="~/CheckOutl.aspx">Check Out</asp:LinkButton>
<asp:ImageButton ID="ibtnCart" runat="server" AlternateText="Cart"
ImageUrl="~/Images/cart.gif" PostBackUrl="~/Cart.aspx" />

An event handler for the Click event of a button control
Protected Sub btnAdd_Click(sender As Object,

e As EventArgs) Handles btnAdd.Click
Me.AddInvoice()
Response.Redirect("~/Confirmation.aspx")

End Sub

Description
e The button, link button, and image button controls are submit buttons.

o If the PostBackUrl attribute isn’t coded for one of these buttons, the page is posted
back to the server when the button is clicked, and the Click and Command events
are raised. You can code event handlers for either or both of these events.

o If the PostBackUrl attribute is coded for one of these buttons, the page specified in
the PostBackUrl attribute is loaded and executed.

e Two arguments are passed to the Click event handler: sender and e. Sender is the
control that the user clicked, and e contains information about the events. For
instance, the X and Y properties return the X and Y coordinates for where on the
image the user clicked.

Figure 6-8 How to use buttons, link buttons, and image buttons

207

208 Section2 ASP.NET essentials

How to use the Command event

Figure 6-9 shows how you can use the Command event to process a group
of button controls with a single event handler. Like the Click event, this event
receives both a sender argument and an e argument. In this case, though, the e
argument represents a CommandEventArgs object.

The two properties of the CommandEventArgs class are shown in this figure.
You can use these properties to get the CommandName and CommandArgument
properties of a control. When you create a button control, you can set the
CommandName and CommandArgument properties to any string value. Then,
you can test them in the Command event handler to determine how the applica-
tion should respond when the user clicks the button.

The example in this figure illustrates how this works. The first part of the
example shows the aspx code for four button controls. Note here that a different
CommandName value is assigned to each button. Although you can also assign
CommandArgument values to each control, that isn’t needed for this example.

The second part of this example shows an event handler that processes the
Command event of all four controls. To do that, its Handles clause lists the
Command event for all four buttons. Then, it uses a Select Case statement that
tests the value of the CommandName property of the e argument, and calls a
different procedure for each value. Since this value indicates which button was
clicked, the effect is to call the right procedure for the button that was clicked.

Chapter 6 How to use the standard server controls 209

Properties of the CommandEventArgs class

Property Description

CommandName The value in the CommandName property for the
control that generated the Command event.

CommandArgument The value in the CommandArgument property for
the control that generated the Command event.

Four buttons in a browser

ﬁﬁl {l - |}}I

The aspx for the four buttons with CommandName attributes

<asp:Button ID="btnFirst" runat="server" Text="<<" CommandName="First" />
<asp:Button ID="btnPrevious" runat="server" Text="<" CommandName="Previous" />
<asp:Button ID="btnNext" runat="server" Text=">" CommandName="Next" />
<asp:Button ID="btnLast" runat="server" Text=">>" CommandName="Last" />

An event handler for the Command events of the buttons

Protected Sub NavigationButtons_Command(sender As Object,
e As CommandEventArgs) _
Handles btnFirst.Command, btnPrevious.Command,
btnNext.Command, btnLast.Command
Select Case e.CommandName
Case "First"
Me.GoToFirstRow()
Case "Previous"
Me.GoToPreviousRow()
Case "Next"
Me.GoToNextRow()
Case "Last"
Me.GoToLastRow()
End Select
End Sub

Description

e The Command event is raised whenever a user clicks a button control. It can be
used instead of the Click event when you want to use one event handler for a group
of buttons.

e The e argument that’s passed to a Command event handler is a CommandEventArgs
object. It has properties for the CommandName and CommandArgument properties
of the control that was clicked.

e When a button is clicked, the Click event is raised before the Command event.

Figure 6-9 How to use the Command event

210 Section2 ASP.NET essentials

How to use the list controls

If you look back to figure 6-1, you can see that ASPNET provides five
different list controls. The topics that follow will show you how to use them.

How to create drop-down lists and list boxes

Figure 6-10 presents the attributes for creating drop-down lists and list boxes
as well as the items that they contain. To illustrate, the aspx code in this figure
creates a list box with four list items that lets the user select more than one item.
Also, the first item in the list is selected when the list is rendered in a browser.

Note here that the Value attribute for a form only has to be coded when
the value is different from the content for the list item. That’s true for the third
item in the list because it’s content is “Text Message” and its value is “Text”. In
contrast, the values for the other three controls are the same as their content so
the Value attributes aren’t required.

After you add any list control to a form, you can use the Collection Editor to
add the items for the control. In fact, the items in the aspx code were generated
from the items in the Collection Editor in this figure. The easiest way to start the
Collection Editor for a list control is to click on the control’s smart tag and select
Edit Items.

When you first display the ListItem Collection Editor, the list is empty.
Then, you can click the Add button below the Members list to add an item to
the list. When you do, the item appears in the Members list and its properties
appear in the Properties list. The first property lets you disable a list item so it
doesn’t appear in the list. The other three properties correspond to those in the
second table in this figure. When you set the Text property for an item, the Value
property defaults to the same value, but you can change that if that isn’t what
you want.

Chapter 6 How to use the standard server controls

Common attributes of list box controls

Property Description

Rows Specifies the number of items that are displayed in a list box at one time.
If all of the items can’t be displayed, a scroll bar is added to the list box.

SelectionMode Indicates whether a list box allows one (Single) or more (Multiple)
selections.

Common attributes of list items

Property Description

Text The text that’s displayed for the list item.
Value A string value associated with the list item.
selected Indicates whether the item is selected.

The aspx for a list box

<asp:ListBox ID="lstContactVia" runat="server" SelectionMode="Multiple">
<asp:ListItem Selected="True">Twitter</asp:ListItem>
<asp:ListItem>Facebook</asp:ListItem>
<asp:ListItem Value="Text">Text Message</asp:ListItem>
<asp:ListItem>Email</asp:ListItem>

</asp:ListBox>

The Collection Editor for creating and editing lists

ra ™
Listitem Collection Editor (-2 e
Members: Twitter properties:
| #
1| Facebook
2 Text_Message Enabled True
3| Email
Selected True
Text Twitter
Value Twitter
Add] ’ Remove
[ok |[cancel
L)
Description

o A drop-down list lets the user select one item in the last. A list box lets the user
select one or more items in the list. .

e To use the Collection Editor to add or edit the items in any list control, select Edit
Items from the smart tag menu for the control. Or, select the control and then click
the ellipsis button that appears when you select the Items property in the Properties
window.

Figure 6-10 How to create drop-down lists and list boxes

211

212

Section 2 ASP.NET essentials

How to use the properties
for working with list controls

Figure 6-11 presents some common properties for working with list controls.
As you just saw, these controls contain Listltem objects that define the items
in the list. Then, you can use the properties in the first table in this figure to get
the selected Listltem object, the index of the selected object, or the value of the
selected object.

This is illustrated by the examples in this figure. All three are for drop-down
lists, but they work the same for any type of list control. Here, the first example
gets the value of the selected item in the list. And the second example gets the
text for the selected item in the list.

The third example gets the value of the selected item right after it is changed
because it is coded in the event handler for a list control’s SelectedIndexChanged
event. This event occurs any time the item that’s selected changes between posts
to the server. If you want the page to post immediately when the user selects an
item, you should set the AutoPostBack property of the control to True.

By default, the SelectedIndex property of a drop-down list is set to zero,
which means that the first item is selected. In contrast, the SelectedIndex prop-
erty of a list box is set to -1 by default, which means that none of the items in the
list are selected. Then, you can check if the user has selected an item in a list box
by using code like this:

If lstContactVia.SelectedIndex > -1 Then ...

You can also select an item by setting the SelectedIndex property to the appro-
priate index value. You can clear the selection from a list box by setting this
property to -1. And you can select an item by setting the Selected Value property
to the appropriate value.

Chapter 6 How to use the standard server controls

Common properties of list controls
Property Description

SelectedItem The Listltem object for the selected item, or the Listltem object for the
item with the lowest index if more than one item is selected in a list box.

SelectedIndex The index of the selected item, or the index of the first selected item if
more than one item is selected in a list box. If no item is selected in a list
box, the value of this property is -1.

Selectedvalue The value of the selected item, or the value of the first selected item if
more than one item is selected in a list box. If no item is selected in a list
box, the value of this property is an empty string ("").

A common event of all list controls

Description

SelectedIndexChanged This event is raised when the user
selects a different item in a list.

The aspx code for a drop-down list

<asp:DropDownList ID="ddlDay" runat="server">
<asp:ListItem Value="1">Sunday</asp:ListItem>
<asp:ListItem Value="2">Monday</asp:ListItem>
<asp:ListItem Value="3">Tuesday</asp:ListItem>
<asp:ListItem Value="4">Wednesday</asp:ListItem>
<asp:ListItem Value="5">Thursday</asp:ListItem>
<asp:ListItem Value="6">Friday</asp:ListItem>
<asp:ListItem Value="7">Saturday</asp:ListItem>

</asp:DropDownList>

VB code that gets the value of the selected item in the drop-down list
Dim dayNumber As Integer = CInt(ddlDay.SelectedValue)

VB code that gets the text for the selected item in the drop-down list
Dim dayName As String = ddlDay.SelectedItem.Text

VB code that uses the SelectedindexChanged event of the drop-down list

Protected Sub ddlDay SelectedIndexChanged(sender As Object,
e As EventArgs) Handles ddlDay.SelectedIndexChanged
Dim day as Integer = CInt(ddlDay.SelectedValue)
End Sub

Description

e The properties of a list control let you get the selected ListItem object, the index of
the selected object, or the value of the selected object.

Figure 6-11 How to use the properties for working with list controls

213

214 Section2 ASP.NET essentials

How to use the members for list item collections

Figure 6-12 presents some common members for working with a collection
of list item objects. To get the item at a specific index, for example, you can use
the Item property. And to get a count of the number of items in the collection,
you can use the Count property.

The method in this summary that you’re most likely to use is the Add
method. It adds an item to the end of a collection. The examples in this figure
show two different ways you can use this method.

The first example shows the For loop that was used in the Future Value
application of chapter 2 to load the values from 50 to 500 into a drop-down list.
Here, the Add method is used to add an item with the specified string value.
When you code the Add method this way, the value you specify is assigned to
both the Text and Value properties of the item.

However, if you want to assign different values to the Text and Value proper-
ties of an item, you use the technique in the second example. Here, a new list
item object is created with two string values. The first string is stored in the Text
property, and the second string is stored in the Value property. Then, the Add
method is used to add the new item to the list item collection of the drop-down
list.

Notice in both of these examples that the Items property is used to refer
to the collection of list item objects for the control. You can also use the
SelectedIndex property of a control to refer to an item at a specific index. For
example, you could use a statement like this to remove the selected item from a
drop-down list:

ddlDay.Items.RemoveAt (ddlDay.SelectedIndex)

Chapter 6 How to use the standard server controls

Common property of a list control

Property Description

Items The collection of ListItem objects that represents the items in
the control. This property returns a ListItemCollection object.

Common members of a ListitemCollection object

Property Description

Item(index) A Listltem object that represents the item at the specified
index.

Count The number of items in the collection.

Method Description

Add(string) Adds a new item to the end of the collection, and assigns
the string value to both the Text and Value properties of the
item.

Add(ListItem) Adds the specified list item to the end of the collection.

Insert(integer, string) Inserts an item at the specified index location in the

collection, and assigns the specified string value to the Text
property of the item.

Insert(integer, ListItem) Inserts the specified list item at the specified index in the

collection.
Remove(string) Removes the item whose Value property equals the speci-
fied string.
Remove(ListItem) Removes the specified list item from the collection.
RemoveAt (integer) Removes the item at the specified index from the collection.
Clear() Removes all the items from the collection.

VB code that loads items into a drop-down list using strings
For i As Integer = 50 To 500 Step 50
ddlMonthlyInvestment.Items.Add(i.ToString)
Next

VB code that loads items into a drop-down list using Listltem objects
ddlDay.Items.Add(New ListItem("Sunday", "1"))
ddlDay.Items.Add(New ListItem("Monday", "2"))
ddlDay.Items.Add(New ListItem("Tuesday", "3"))

Description
e The ListltemCollection object is a collection of Listltem objects. Each Listltem
object represents one item in the list.

e Items in a ListItemCollection object are numbered from 0.

e When you load items into a list box using strings, both the Text and Value proper-
ties of the list item are set to the string value you specify.

o To set the Text and Value properties of a list item to different values, you must
create a list item object and then add that item to the collection.

Figure 6-12 How to use the members for list item collections

215

216 Section2 ASP.NET essentials

How to use check box lists and radio button lists

Earlier in this chapter, you learned how to use radio buttons and check
boxes. But ASPNET also provides check box lists and radio button lists that you
can use to create lists of check boxes and radio buttons. As figure 6-13 shows,
these controls work like the other list controls.

In the aspx code for the check box list and radio button list in this figure,
you can see the Listltem objects. You can use the Collection Editor to add these
objects after you add a check box list or radio button list to a form. Like check
boxes and radio buttons, more than one item can be checked in a check box
list, but only one item can be selected in a radio button list. You can also use
the Selected Value property to get or set the value of the selected item in a radio
button list. As the second example in this figure shows, this is simpler for a radio
button list than it is when you’re using radio buttons in a group.

Like a list box, you can select more than one item in a check box list.
Because of that, you’ll usually determine whether an item in the list is selected
by using the Selected property of the item. This is illustrated in the first example
in this figure. Here, the Items property of a check box list is used to get the item
at index 0. Then, the Selected property of that item is used to determine if the
item is selected. Notice here that you can’t refer to individual check boxes by
name when you use a check box list.

To set the layout of the items in a radio button or check box list, you use the
attributes shown in this figure. The RepeatLayout attribute determines how
ASP.NET aligns the buttons or check boxes in a list. In most cases, you’ll use
a table, which is the default. Then, ASPNET generates the input and label
elements for the boxes or buttons within the rows and columns of the table,
which should limit the need for CSS formatting.

Similarly, the RepeatDirection attribute determines whether the controls are
listed horizontally or vertically. And the RepeatColumns attribute specifies the
number of columns in the radio button or check box list. If you experiment with
these, you should get the boxes and buttons aligned the way you want them. And
this can be much easier than using CSS to align check boxes and radio buttons
that aren’t in lists.

How to use bulleted lists

The BulletedList control lets you create a bulleted or numbered list. It
works like the other list controls, but it has different attributes. For instance, the
BulletStyle attribute determines whether the list will be bulleted or numbered,
and the BulletImageUrl, FirstBulletNumber, and DisplayMode attributes provide
other formatting details. If you experiment with these attributes, you should be
able to get the results that you want. Unless the items in the lists are going to
change, though, you should use HTML instead of the server control.

Chapter 6 How to use the standard server controls

Attributes for formatting radio button and check box lists

Attribute Description

RepeatLayout Specifies whether ASPNET should use a table (Table), an unor-
dered list (UnorderedList), an ordered list (OrderedList), or normal
HTML flow (Flow) to format the list when it renders the control.
The default is Table.

RepeatDirection Specifies the direction in which the controls should be repeated. The
available values are Horizontal and Vertical. The default is Vertical.

RepeatColumns Specifies the number of columns for the controls. The default is 0.

A check box list and a radio button list in a browser

Please let me know about:
New products [Specialoffers [7] New editions

Please contact me via:
@ Twitter
i Facebook

The aspx code for the check box list

Please let me know about:

<asp:CheckBoxList ID="cblAboutList" runat="server"
RepeatDirection="Horizontal">
<asp:ListItem Value="New" Selected="True">New products</asp:ListItem>
<asp:ListItem Value="Special">Special offers</asp:ListItem>
<asp:ListItem Value="Revisions">New editions</asp:ListItem>

</asp:CheckBoxList>

A statement that checks if the first item in a check box list is selected
If cblAboutList.Items(0).Selected Then ...

The aspx code for the radio button list

Please contact me via:

<asp:RadioButtonList ID="rblContactVia" runat="server" >
<asp:ListItem Selected="True">Twitter</asp:ListItem>
<asp:ListItem>Facebook</asp:ListItem>

</asp:RadioButtonList>

A statement that gets the value of the selected item in a radio button list
customer.ContactVia = rblContactVia.SelectedvValue

Description
o A radio button list presents a list of mutually exclusive options.
e A check box list presents a list of independent options.

o These controls contain a collection of Listltem objects that you refer to through
the Items property of the control. These controls also have Selectedltem,
SelectedIndex, and SelectedValue properties.

Figure 6-13 How to use check box lists and radio button lists

217

218

Section 2 ASP.NET essentials

A CheckOut page
that uses server controls

Now, to show you how the server controls can be used in a web page, this
chapter presents a first CheckOut page of the Shopping Cart application.

The user interface and link elements

Figure 6-14 shows the user interface for the first CheckOut page of the appli-
cation. It starts with text boxes and a drop-down list that are identified by HTML
label elements. Then, after the last text box, this form uses a check box list and
a radio button list. They are followed by two Button controls and a LinkButton
control.

Most of the formatting for this page is done by the CSS in the two files that
are referred to in the link elements of the head section of the HTML. The first
is the Main.css file that does the basic formatting for all of the pages in the web
site. The second provides any other formatting that’s needed by the CheckOut
page.

Some of the layout for the check box and radio button lists is done by the
tables that ASP.NET has generated for these controls. Specifically, the input
and label elements that are generated for the check boxes and radio buttons are
stored in the cells of tables. Although the CSS in the Checkout.css file has made
some minor adjustments to this formatting, the primary layout comes from the
attributes of these controls.

In this figure, you can see a message that’s displayed for the state code text
box because the user didn’t select a value from the list. In fact, all of the text
boxes and the drop-down list have required field validators. They aren’t shown
in the aspx code in the next figure, though, because the focus of this chapter is
server controls.

Chapter 6 How to use the standard server controls

A CheckOut page that uses standard server controls

e©|@ http://localhost49417/CheckOut.aspx O~ B G X |l & Chapter 6: Shopping Cart x n1 * {é}

_Hau-oweeh Su-persfore

For the little goblin in all of us

CheckOut Page 1

Contact information
Email address. [mary@murach.com
Email Re-entry: [mary@murach.com

|
|
First Name: [Mary |
|
|

Last Name: [Delamater

Phone Number: [555-555-5655

Billing address
Address: (123 Wistful Vista Lane |
City: [Portland |
State: | [=] Stateis required
Zip code: [33999 |

Optional data

Please let me know about:
New products New editions

Special offers Local events

Please contact me via:
@ Twitter @ Facebook @ Text message @ Email
Check Out | I Cancel Order Continue Shopping

The head section in the HTML for the page

<head runat="server">
<title>Chapter 6: Shopping Cart</title>
<link href="Styles/Main.css" rel="stylesheet" />
<link href="Styles/CheckOut.css" rel="stylesheet" />
</head>

Description
o This is the first CheckOut page for the Shopping Cart application.

e HTML label elements are used to identify all of the server controls on this page.
The last two controls before the buttons are a check box list and a radio button list.

e Most of the page layout is done by the two CSS files that are identified in the head
section of the HTML. However, most of the formatting for the check box and radio
button lists is done by the way their attributes have been set.

o All of the text boxes and the drop-down list have required field validators, but they
aren’t shown in the aspx code in the next figure.

Figure 6-14 A CheckOut page that uses standard server controls

219

220

Section 2 ASP.NET essentials

The aspx code

Figure 6-15 presents the aspx code for the CheckOut page. Here, you can
see the use of the label elements and the server controls. For brevity, though, the
required field validators for the text boxes and drop-down list aren’t shown.

To start, notice how the attributes for the form element are set. Because the
DefaultFocus attribute is set to the first text box on the form, the user will be able
to use the Tab key to move from the first text box to those that follow. Because
the DefaultButton attribute is set to the Check Out button, the user will be able to
press the Enter key to submit the form to the server.

Then, notice that the TextMode attribute of the first text box is set to Email.
It becomes the HTMLS type attribute of the input element that is rendered for
the text box. Similarly, the TextMode attribute of the phone number text box is
set to Tel, although that control isn’t included in this aspx code. Both of these
attributes indicate what type of data is expected, and the browsers for some
mobile devices will display keyboards that are appropriate for those entries.

Of special note is the way the drop-down list uses a SQL data source to add
list items for each state to the list. The text that’s displayed for each item is the
state name, and the value for each item is the state code. The Listltem object that
is coded within the drop-down list sets the Text and Value fields for the first item
in the list to empty strings. Then, if the user doesn’t select an item from the list,
a required field validator will be activated so the form won’t be submitted to the
server.

This code also shows how some of the attributes for server controls are used.
For instance, the MaxLength attribute of the text box for the zip code limits the
number of characters that can be entered to 5. The RepeatColumns attribute of
the check box list is set to 2, and you can see how that is rendered in the previ-
ous figure. Similarly, the RepeatDirection attribute of the radio button list is set
to Horizontal, and you can see how that is rendered in the previous figure.

Chapter 6 How to use the standard server controls 221

The aspx code for the form on the CheckOut page

<form id="forml" runat="server" DefaultFocus="txtEmaill"
DefaultButton="btnCheckout">
<h2>Contact information</h2>
<label>Email: </label>
<asp:TextBox ID="txtEmaill" runat="server" CssClass="entry"
TextMode="Email" ></asp:TextBox>

<label>Email Re-entry: </label>
<asp:TextBox ID="txtEmail2" runat="server" CssClass="entry" >
</asp:TextBox>

<%-- labels and text boxes for first name, last name, and phone --%>

<h2>Billing address</h2>

<%=-- labels and text boxes for address and city --%>

<label>State: </label>

<asp:DropDownList ID="ddlState" runat="server" CssClass="entry"
AppendDataBoundItems="True" DataSourceID="SglDataSourcel"
DataTextField="StateName" DataValueField="StateCode">
<asp:ListItem Text="" Value="" Selected="True"></asp:ListItem>

</asp:DropDownList>

<asp:SqglDataSource ID="SglDataSourcel" runat="server"
ConnectionString="<%$ ConnectionStrings:HalloweenConnection %>"
SelectCommand="SELECT [StateCode], [StateName] FROM [States]

ORDER BY [StateCode]"></asp:SglDataSource>

<label>Zip code: </label>

<asp:TextBox ID="txtZip" runat="server" CssClass="entry"
MaxLength="5"></asp:TextBox>

<h2>0Optional data</h2>
<div id="optionalData">
Please let me know about:
<asp:CheckBoxList ID="cblAboutList" runat="server"
RepeatColumns="2">
<asp:ListItem Value="New">New products</asp:ListItem>
<asp:ListItem Value="Special">Special offers</asp:ListItem>
<asp:ListItem Value="Revisions">New editions</asp:ListItem>
<asp:ListItem Value="Local">Local events</asp:ListItem>
</asp:CheckBoxList>
Please contact me via:
<asp:RadioButtonList ID="rblContactVia" runat="server"
RepeatDirection="Horizontal">
<asp:ListItem Selected="True">Twitter</asp:ListItem>
<asp:ListItem>Facebook</asp:ListItem>
<asp:ListItem Value="Text">Text Message</asp:ListItem>
<asp:ListItem>Email</asp:ListItem>
</asp:RadioButtonList>
</div>

<asp:Button ID="btnCheckOut" runat="server" Text="Check Out"
CssClass="button" />

<asp:Button ID="btnCancel" runat="server" Text="Cancel Order"
CausesValidation="False" CssClass="button" />

<asp:LinkButton ID="lbtnContinueShopping" runat="server"
PostBackUrl="~/Order.aspx" CausesValidation="False">Continue
Shopping</asp:LinkButton>

</form>

Figure 6-15 The aspx code for the CheckOut page

222 Section2 ASP.NET essentials

The code-behind file for the CheckOut page

Figure 6-16 presents the code-behind file for the CheckOut page. The first
thing to notice about this code is that it contains a private Customer object. This
will store customer information retrieved from Session state or from the page,
and it is used by most of the procedures in the file.

As you’ve seen before, the Page_Load event handler first tests to see
whether the page is a postback. If it isn’t, that means it’s being requested for the
first time. In that case, this procedure gets the Customer object from the Session
object if there is one, and it calls the LoadCustomerData procedure to load the
data from the Customer object into the controls of the CheckOut page. Once the
data is loaded in to the page’s controls, it will be preserved between postbacks in
ViewState. That’s why you only have to retrieve the customer information from
the Session object the first time the page loads.

In the LoadCustomerData procedure, you can see how the data from the
customer object is loaded into the controls. But note that this is only done if the
customer object isn’t Nothing. If the object isn’t Nothing, it means that the user
had entered the data for the first CheckOut page, gone back to the Cart page, and
returned to the CheckOut page.

If the user clicks the Check Out button, the btnCheckOut_Click event
handler is executed. It first checks to see if the data in the controls is valid. If it
is, this procedure calls the GetCustomerData procedure to get the data from the
controls on the form and save the data in the properties of the customer object.
After that, it uses the Response.Redirect method to go to the second CheckOut
page.

In the GetCustomerData procedure, you can see how the statements get the
data from the controls and save them in the properties of the customer object.
When all of the data has been stored in the customer object, the object is added
to the Session object.

On the other hand, if the user clicks the Cancel Order button, the
btnCancel_Click event handler is executed. This procedure removes the Cart and
Customer objects from the Session object, and redirects to the Order page.

Chapter 6 How to use the standard server controls

The code-behind file for capturing the data

Partial Class CheckOut
Inherits System.Web.UI.Page

Private customer As Customer

Protected Sub Page_Load(sender As Object,
e As EventArgs) Handles Me.Load
If Not IsPostBack Then
customer = CType(Session("Customer"), Customer)
Me.LoadCustomerData()
End If
End Sub

Protected Sub btnCheckOut_Click(sender As Object,
e As EventArgs) Handles btnCheckOut.Click
If Page.IsValid Then
Me.GetCustomerData()
Response.Redirect("~/CheckOut2.aspx")
End If
End Sub

Protected Sub btnCancel_Click(sender As Object,
e As EventArgs) Handles btnCancel.Click
Session.Remove("Cart")
Session.Remove ("Customer")
Response.Redirect("~/Order.aspx")
End Sub

Private Sub LoadCustomerData()
If customer IsNot Nothing Then
txtFirstName.Text = customer.FirstName
' load data into other text boxes from customer object
ddlstate.SelectedValue = customer.State
rblContactVia.SelectedValue = customer.ContactVia
cblAboutList.Items(0).Selected = customer.NewProductsInfo

cblAboutList.Items(l).Selected = customer.SpecialPromosInfo

customer.NewRevisionsInfo
customer.LocalEventsInfo

cblAboutList.Items(2).Selected
cblAboutList.Items(3).Selected
End If
End Sub

Private Sub GetCustomerData()
If customer Is Nothing Then
customer = New Customer()
End If
customer.FirstName = txtFirstName.Text

' get data from the other text boxes and load into customer object

customer.State = ddlstate.SelectedValue
customer.ContactVia = rblContactVia.Selectedvalue
customer.NewProductsInfo = cblAboutList.Items(0).Selected
customer.SpecialPromosInfo = cblAboutList.Items(1l).Selected
customer.NewRevisionsInfo = cblAboutList.Items(2).Selected
customer.LocalEventsInfo = cblAboutList.Items(3).Selected
Session("Customer") = customer
End Sub
End Class

Figure 6-16 The code-behind file for the CheckOut page

223

224

Section 2 ASP.NET essentials

An introduction to the other standard
server controls

Now that you’ve learned how to use the common server controls, you may
be wondering what the other controls do and whether you need to learn how to
use them. So here’s a quick introduction to them.

When and how to use
the other standard server controls

The table at the top of figure 6-17 summarizes the other standard server
controls that you may be interested in. In particular, the Wizard and MultiView
controls let you set up several steps or views that get user entries in a single web
form. For instance, you can set up all of the steps of a CheckOut procedure with
one Wizard control, as shown in the next figure. One benefit of doing that is you
can get the data from all of the steps or views in a single code-behind file.

Of course, you can get the same result by using one web form for each step.
You can also get the same result by using one HTML div element for each step
and then using jQuery to move from one step to the next. With that approach, all
of the data is collected by a single web form, just as it is with a Wizard control.

Similarly, the ASP.NET Calendar control is a useful control. But the jQuery
UI DatePicker widget works even better.

The message here is that if you’re a professional ASPNET developer, you
should also know how to use jQuery, how to use the jQuery UI (User Interface)
widgets, and what jQuery plugins are available. Then, you can decide whether
you want to use an ASP.NET control like the Wizard or use a jQuery approach to
get the same result.

If you decide that you want to use one of the other standard server controls,
you can search the Internet to get the information and examples that you need
for using it. In fact, controls like the Wizard and MultiView controls can work
well for quickly prototyping an application. Then, when the prototype is working
the way you want it to, you can decide whether you want to keep the application
that way or convert it to another approach.

Chapter 6 How to use the standard server controls

Other standard server controls that you may want to use

Name Description

Calendar Displays a calendar that lets the user select a date.
AdRotator Provides a convenient way to display advertisements on your web pages.
Wizard Lets you build the steps of a procedure in a single web form.

MultivView Acts as a container for View controls, and lets you provide two or more
views in a single web form.

View Acts as a container for other controls and HTML.

Panel Acts as a container for other controls and HTML that can be displayed
or hidden as a group.

jQuery Ul widgets that you should be aware of

Control Description

DatePicker A calendar that can be toggled from a text box or dislayed inline.

Accordion Collapsible content panels that can be displayed by clicking on a panel’s header.

Tabs A set of tabs that reveals one tab’s contents at a time when its tab is clicked.
Dialog A modal dialog box that is resizable and draggable.

Some common types of jQuery plugins that you should be aware of

Description

Lightbox Can be used to open a larger version of a thumbnail image, and then lets
the user use the next and previous buttons to step through the set of images.

Carousel Displays one or more images and lets the user use the next and previous
buttons to step through the set of images.

Slideshow Automatically presents one image at a time from a set of images.

Description

The ASP.NET Calendar control displays a calendar that lets the user select a date,
but the jQuery UI control works even better.

The Wizard and MultiView controls let you provide several different steps or views
in a single form, but you can get the same result by using HTML div elements that
are manipulated by jQuery.

The Wizard or MultiView control can be used to quickly prototype the steps or
views of an application. Then, if necessary, the steps or views can be redone using
jQuery.

If you’re an ASP.NET developer, you should know how to use jQuery, the jQuery
Ul widgets, and jQuery plugins. Then, you can decide whether you want to use an
ASP.NET control or jQuery to get the results that you want.

To learn more about using the other ASP.NET controls, you can search the Internet
for information and examples, which are plentiful.

Figure 6-17 When and how to use the other standard server controls

225

226 Section2 ASP.NET essentials

How to use the Wizard control

To give you a better idea of how the Wizard control works and how you can
use it, figure 6-18 presents an example of this control in use. Here, you can see
three steps of a CheckOut procedure. Remember that all of the data collected in
these steps is in a single web form, so you can capture all of the data in a single
code-behind file.

After you add a Wizard control to a form, you can use the Wizard Collection
Editor to add the steps that you want to the Wizard. These are added as
WizardStep controls, as shown in the aspx code in this figure. When you’re
through with the Collection Editor, ASP.NET adds the sidebar links and buttons
to the steps that let the user move from one step to another.

At that point, you can add the HTML and controls for each step. You can
also use the templates and styles that ASPNET provides for the controls that are
generated by the Wizard. This shows how useful the Wizard Control can be for
prototyping. Then, you can decide whether the result is the way you want it, or
whether you want to convert it to another approach.

Chapter 6

Three steps of a Wizard control

How to use the standard server controls

Step 2: Shipping Method
Step 3: Credit Card Info

Last name: Delamater

Email: mary@techknowsolve com|

el’ \|@ http://localhost49738/Checkout.aspx O ~ B & X |I & Chapter 6: Checkout Wizard * o i\‘\P c:a
Credit card information
Step 1 l = EI_IQ
Step 2 e, ‘|@ http://localhost49738/Checkout.aspx O v B & X ” (& Chapter6: Checkout Wizard % o e e
Step 3 —
i Shipping method
r ™
Step 1] — E@g
SteE 2 | ',: @ http://localhost49738/Checkout.aspx O v B & X ” @ Chapter 6: Checkout Wizard X Ju"u\ iw\? 5&
Step 3:
Contact information
Step 1: Contact Info First Name: Mary

The starting aspx for a Wizard control

<asp:Wizard ID="Wizardl" runat="server" ActiveStepIndex="0">
<WizardSteps>
<asp:WizardStep runat="server" Title="Step 1">
<h2>Contact information</h2>
</asp:WizardStep>
<asp:WizardStep runat="server" Title="Step 2">
<h2>Shipping method</h2>
</asp:WizardsStep>
<asp:WizardStep runat="server" Title="Step 3">
<h2>Credit card information</h2>
</asp:WizardsStep>
</WizardSteps>
</asp:Wizard>

Description

e To add or remove the steps for a Wizard, you can use the WizardStep Collection
Editor. Then, after you set up the steps, you can add the controls and HTML for

each of the steps.

e The sidebar that provides the links for the steps and the Next, Previous, and Finish

buttons are generated by ASP.NET.

o Because all of the steps are on one web page, you can get the data from the controls

for all of the steps in a single code-behind file.

Figure 6-18 How to use the Wizard control

227

228

Section 2 ASP.NET essentials

Perspective

Now that you’ve finished this chapter, you should be able to use the
common server controls whenever you need them in your applications. If
necessary, you can refer to the figures in this chapter to see what attributes you
need to set for the common controls. But otherwise, you can add a control to
a form, select it in the Designer, and use the Properties windows to figure out
what attributes you need to set.

Remember, though, that you should use HTML elements instead of server
controls whenever the data in the elements isn’t going to change while the
application runs. You may also want to use JavaScript and jQuery, jQuery Ul,
or jQuery plugins instead of server controls like the Wizard and MultiView
controls. That’s why every ASPNET developer should also know how to use
HTML, CSS, JavaScript, and jQuery, and that’s why you should also have
Murach’s HTMLS5 and CSS3 and Murach’s JavaScript and jQuery in your

professional library.

Terms

server control
event handler
focus

default button
tab order
access key
label

text box
check box
radio button
image control
hyperlink

Summary

file upload control
submit button
button

link button
image button
drop-down list
list box

check box list
radio button list
bulleted list
numbered list

e The server controls in the Standards group of the Visual Studio Toolbox
are the ones that you use to get data entries from users and to display data
for users. These controls are rendered into HTML elements when a form is

displayed in a browser.

e You can code event handlers for the Click and Command events of buttons,
the TextChanged event of a text box, the CheckChanged event of check boxes
and radio buttons, and the SelectedIndexChanged event of list controls like

drop-down lists and list boxes.

Chapter 6 How to use the standard server controls

To make it easier for users to work with the controls of a form, you should
set the starting focus and the default button for each form. You should also
make sure the tab order provides for easy movement through the controls
of the form, and you may also want to provide access keys for some of the
controls.

In general, you should use HTML elements instead of server controls when
the data in the controls isn’t going to change. However, you may also want
to use server controls when you don’t know how to code the HTML
elements, even though the data in the controls isn’t going to change.

One of the benefits of using server controls is that they provide properties
that make it easy to change their data with Visual Basic code. The Properties
window in the Designer also makes it easy to set the attributes of the
controls.

With ASP.NET, a list control is treated as a ListltemCollection object that
contains Listltem objects. The Listltem Collection Editor makes it easy
to create the list items for a list control, and the members of the collection
object provide the property, indexer, and methods that let you use Visual
Basic for working with the items.

Although ASP.NET provides advanced server controls like the Calendar,
Wizard, and MultiView controls, you should be aware that you can get

the same or better results by using jQuery, jQuery Ul widgets, and jQuery
plugins. Then, you need to decide which approach to use for your web site.

Exercise 6-1 Modify the Check Out page

In this exercise, you’ll modify the Check Out page of the Shopping Cart applica-
tion that’s presented in this chapter.

Open, review, and run the Shopping Cart application
1. Open the Ex06Cart web site that’s in the aspnet45_vb directory, and review
the Order and Cart pages to see that they’re like the ones in chapter 4.

2. Test the application to see how it works. Without entering any data on the
Check Out page, click the Check Out button to see that all of the text boxes
and the drop-down list have required field validators.

3. Enter valid data for all of the fields and click on the Check Out button to go to
the CheckOut2 page and note that this displays a page that lists the entries that
you made. Then, close the browser and switch to Visual Studio.

4. Review the code in the Customer.vb file in the App_Code folder to see the
properties of the Customer object. Then, review the code-behind file for the
CheckOut page to see how the user entries are stored in the Customer object
and how the Customer object is stored in the Session object. Note that the
ContactVia values are stored in a way that differs from figure 6-16.

5. Review the code-behind file for the CheckOut2 page to see how the Customer
object is retrieved from the Session object and the properties in the Customer
object are displayed on the web page.

229

230 Section 2 ASP.NET essentials

Change the radio button list to a list box

6.

10.

In the aspx code for the CheckOut page, comment out the code for the radio
button list. Then, add a ListBox control above the commented out code that
looks like this:

Please contact me via:

Twitter
Facebook

Text Message
Email

Use the Collection Editor as shown in figure 6-10 to add the items to the list
box. Also, set the SelectionMode attribute of the control to Multiple so the
user can select more than one item. For formatting, you need to add one br
element after the inline text and two after the list box.

Try to run the page, but note the errors that are displayed when you do that. To
fix that, comment out the lines in the code-behind file that the messages refer
to. Then, test the page to see how the list box looks in the browser. To select
one or more items in Internet Explorer, hold down the Ctrl or Shift key as you
click on items.

Modify the GetCustomerData procedure in the code-behind file for the
CheckOut page so it sets the ContactVia values in the customer object to the
values that the user has selected in the list box. Then, test the application to
make sure that the user entries and selections are correctly displayed on the
CheckOut2 page.

Modify the LoadCustomerData procedure in the code-behind file for the
CheckOut page so it sets the values in the list box to the ones in the customer
object when the page request isn’t a postback. Then, test this procedure by
entering valid data in the Check Out form, clicking the Check Out button to
save the values in the Session object, and then clicking in sequence: the Back
button, the Continue Shopping link, the Go to Cart button, and the Check Out
button. If your code works, all of the data should be displayed in the form
except for the second email address entry.

How to use
the validation controls

In chapter 2, you learned the basic skills for using two of the validation
controls: the required field validator and the range validator. Now, you’ll learn
more about using those controls as well as how to use the other validation
controls. As you’ll see, you can use the validation controls to perform most of
the data validation required by web forms.

Introduction to the validation controlsccccuueunuece. 232
How ASP.NET processes the validation controls
How to set the attributes of the validators...........cccoevveenerinvcninncnieinencne
How to provide for unobtrusive validation............cccceeecveencniennecnennenenn

How to use the validators..........cccoccvvinisrininininnsinnsennnan,
How to use the required field validator
How to use the compare validator............ccooeiieieineieeecceeceee
How to use the range validator.........co.ooeeeeerieineneiee e
How to use the regular expression validator
How to create regular eXpreSSions......o.oe veeeeeieerieieerieeeeeeieee e seeneeas
How to use a custom validator...........cccernieveiernuereninieeirenecereneneeenennes

Validation techniquesccccciiimimiceninmsmnennes e,
How to use the validation summary control
How to use validation roupsccceeevererieerieieieieseseeeee et

A CheckOut page that uses validation controls.............. 254
The USer INtErTaCecc.eoveuiriiiriiicieiectc e 254
The @SPX COUE ..ottt ettt 256
The Visual Basic COACeouiiriiriiniiiiiiieccceee et 258

Perspectiveviicieiimiriie s 260

232

Section 2 ASP.NET essentials

Introduction to the
validation controls

ASP.NET provides six validation controls that you can use to validate the
data on a web form. You’ll learn the basic skills for using these controls in the
topics that follow.

How ASP.NET processes the validation controls

Figure 7-1 summarizes the validation controls that are available with
ASPNET. As you learned in chapter 2, the first five controls are called valida-
tors. These are the controls that you use to check that the user has entered valid
data into the input controls on a web form. In contrast, you use the validation
summary control to display a summary of all the errors on a page.

To refresh your memory about how the validation controls work, this figure
summarizes the key points. To start, you should realize that the validation tests
are typically done on the client before the page is posted to the server. That way,
a round trip to the server isn’t required if any invalid data is detected.

In most cases, client-side validation is done when the focus leaves an input
control that has validators associated with it. That can happen when the user
presses the Tab key to move to the next control or clicks another control to move
the focus to that control.

However, the required field validator works a bit differently. When you
use this validator, the validation isn’t done until the user clicks a button whose
CausesValidation property is set to True. The exception is if the user enters a
value into an input control and then tries to clear the value. In that case, an error
will be detected when the focus leaves the control.

To perform client-side validation, a browser must support JavaScript and
JavaScript must be enabled. Because that’s the norm, validation is usually done
on the client. In case JavaScript isn’t enabled in the browser, though, valida-
tion is always done on the server when a page is submitted. ASP.NET does this
validation after it initializes the page.

When ASP.NET performs the validation tests on the server, it sets the IsValid
property of each validator to True or False. In addition, it sets the IsValid prop-
erty of the page to True or False based on whether the IsValid property of all the
input data is True. The IsValid property for the page is usually tested to make
sure it’s True before the data that has been submitted is processed. In the exam-
ple in this figure, you can see how this property is tested in the event handler for
the Click event for an Add button.

If you want to bypass client-side validation and just perform the validation
on the server, you can set the EnableClientScript property of the validation
controls to False. Then, the JavaScript for client-side validation isn’t generated,
and the validation is only done on the server.

Chapter 7 How to use the validation controls

The validation controls provided by ASP.NET

Name Description

RequiredFieldvalidator Checks that an entry has been made.

CompareValidator Checks an entry against a constant value or the value of
another control. Can also be used to check for a specific
data type.

RangeValidator Checks that an entry is within a specified range.

RegularExpressionValidator Checks that an entry matches a pattern that’s defined by
a regular expression.

CustomvValidator Checks an entry on the server using Visual Basic vali-
dation code.

ValidationSummary Displays a summary of error messages from the other
validation controls.

Typical code for processing a page that contains validation controls

Protected Sub btnAdd_Click(sender As Object,
e As EventArgs) Handles btnAdd.Click
If Page.IsValid Then
' code for processing the valid data
End If
End Sub

Description

If a browser has JavaScript enabled, the validation controls do their validation
on the client. That way, the validation is done and error messages are displayed
without the page being posted to the server.

Validation is always done on the server too, right after the page is initialized, so the
validation is done whether or not the browser supports JavaScript.

Validation is always done when you click a button whose CausesValidation prop-
erty is set to True. To create a button that doesn’t cause validation, you can set this
property to False.

Validation is also done on the client when the focus leaves an input control. The
exception is a required field validator, which does its validation only when you
click a button whose CausesValidation property is set to True or when you enter a
value into a control and then clear and leave the control.

If a validation control finds invalid data, the IsValid property of that control is set
to False and the IsValid property of the page is set to False. These properties can be
tested in your Visual Basic code.

If you want to perform validation only on the server, you can set the
EnableClientScript properties of the validation controls to False. Then, the
JavaScript for validation on the client isn’t generated.

Figure 7-1 How ASP.NET processes the validation controls

233

234 Section2 ASP.NET essentials

How to set the attributes of the validators

Figure 7-2 summarizes the common attributes for the validators. These are
the ones you can use with any validator. The most important property is the
ControlToValidate property, which associates the validator with an input control
on the page.

The Display property determines how the error message for a validator is
displayed. In most cases, Dynamic works the best because space is only gener-
ated for the message when it is displayed. In some cases, though, the other
options can be useful.

You use the ErrorMessage and Text properties to specify messages that are
displayed when the validator detects an error. You can set one or both of these
properties depending on whether you use a validation summary control. If you
want the same message in both the validator and the validation summary control,
just set the ErrorMessage property. But if you want different messages, set the
ErrorMessage property to the message you want in the validation summary
control and the Text property to the message you want in the validator.

If the Enabled property of a validator is set to True, the validation test for
the validator is performed. But if you want to skip the validation that’s done by
a validator, you can set this property to False. In contrast, the EnableClientScript
property determines whether the client-side JavaScript for the validation is
generated. If this property is set to False, the validation is only done on the
server.

Besides the attributes in the table in this figure, you will use other attributes
for specific controls. You will find most of these in the Behavior category of the
Properties window when the validator is selected in the Designer. For instance,
you can use the drop-down list for the Operator attribute when you’re setting the
attributes for a compare validator. You’ll learn more about these attributes as you
read about specific validators.

Chapter 7 How to use the validation controls

Common validator attributes and properties

SetFocusOnError Indicates whether the focus will be moved to the control if it’s invalid.
ValidationGroup Indicates which group the validation control is part of.
The Behavior category in the Properties window for a Compare validator
Bl Behavior
ClientIDMode Inherit
ControlTeCompare

Property Description

ControlTovalidate The ID of the control to be validated.

Display Determines how the error message is to be displayed. Static is the
default and allocates space for the message in the page layout.
Dynamic allocates space only when an error occurs. None displays
errors only in a validation summary control.

Text The message that’s displayed in the validator.

ErrorMessage The message that’s displayed in the validation summary control when
the validation fails. This message is also displayed in the validator if
the Text property hasn’t been set.

Enabled Indicates whether the validation control is enabled.
EnableClientScript Indicates whether the validation will be done on the client.

ControlToValidate

CulturelnvariantValues False

EnableClientScript True

Enabled True
EnableTheming True
EnableViewState True

Equa
SetFocusOnError

SkinID NotEqual
TeolTip GreaterThan
Type GreaterThanEqual
ValidateRequestMode |LessThan
ValidationGroup LessThanEqual
ValueToCompare DataTypeCheck
ViewStateMode Inherit

Visible True

Operator
Comparison eperation to apply to values.

Description

The Appearance category in the Properties window provides the Display,
ErrorMessage, and Text properties.

The Behavior category provides the attributes that you need for getting the control
to work right.

Figure 7-2 How to set the attributes of the validators

235

236 Section2 ASP.NET essentials

How to provide for unobtrusive validation

In chapter 2, you were introduced to unobtrusive validation. When it is used,
the validation on the client uses jQuery, which is a JavaScript library. The benefit
of using jQuery is that it reduces the amount of JavaScript that has to be gener-
ated and takes advantage of jQuery features like cross-browser compatibility.

Even though unobtrusive validation is on by default when you start a new
web site, it has been turned off in all of the applications that you’ve studied so
far. But now, figure 7-3 shows the easiest way to implement unobtrusive valida-
tion. That is, by installing the NuGet package for it.

After you use the procedure in this figure to install the NuGet package for
jQuery validation, you’ll see that several folders and files have been added to the
Solution Explorer. First, a dll file has been added to the Bin folder that contains
the AspNet.ScriptManager.jQuery assembly that will automatically register the
jQuery library with the ScriptManager as "jquery". This registration is what tells
ASP.NET where to find the jQuery files.

Second, a Scripts folder has been added that contains three JavaScript files
and a map file for jQuery. Third, a packages.config file has been added. This file
is used by the NuGet infrastructure to track the versions of installed packages.

Now that you know the easiest way to implement unobtrusive validation, we
recommend that you do that for all of your production applications. For most of
the applications in this book, however, unobtrusive validation is turned off so the
number of folders and files in the Solution Explorer are kept to a minimum.

Chapter 7 How to use the validation controls 237

The Manage NuGet Packages dialog box

I3 ™
Ch02FutureValue - Manage NuGet Packages m
P Installed packages Stable Only ~ | Sort by: Most Downloads - aspnetscriptmanagerjquery X |'

4 Online . AspNet.ScriptManager.jQ
a Created by: Damian Edwards
6 This package contains the by . .
All AspNet ScriptManagerjQu... Id: AspNet.ScriptManager.jQuery
MNuGet official package source Version: 20.1
Search Results O AspNet.ScriptManager.jQuery.ULCombin... Last Updated: 6/3/2013
e This package contains the Downloads: 22976
P Updates AspNet.ScriptManager,jQuery.ULCombined... Report Abuse
Description:
b Recent packages . . .
S Micresoft.ScriptManager.jQuery This package contains the
asanrr - This contents of this package has been AspMet.ScriptManager.jQuery assembly that
moved to the AspMet.ScriptManager,jQuer... will automatically register jQuery 2.0.1 with
the ScriptManager as "jquery”.
M MicresoftScriptManager.jQuery.ULCom... Dependencies:

asanrr - This contents of this package has been

moved to the AspMet.ScriptManager,jQuer... [y B Al EE e ey

Each item above may have sub-

Each package is licensed to you by its dependencies subject to additional license
owner. Microsoft is not responsible agreements.
for, nor does it grant any licenses to,
third-party packages. 1
L J

How to install the NuGet package for jQuery validation
e Right-click on the project and select Manage NuGet Packages.

o In the left panel of the dialog box that appears, select Online—>NuGet Official
Package Source. Next, use the box in the upper right to search for
AspNet.ScriptManager.jQuery. Then, click on the Install button.

The Solution Explorer after the NuGet package is installed

R Solution 'ChO6Cart' (1 project)
4 (&) Ch06Cart
b @ App_Code
b @l App_Data
4 @l Bin
b BUR AspMet.ScriptManagerjQuery.dil
b Images
4 @] Scripts
[T jguery-2.01.intellisense js
IT jquery-201js
LT jquery-2.0.1.minjs
& jguery-2.0.1.min.map
W Styles
& Cart.aspx
&1 CheckOut.aspx
#51 CheckOut2.aspx
&) Order.aspx
¥ packages.config
1 web.config

v T v v

Description
e Unobtrusive validation is on by default when you start a new web site from the
Empty Web Site Template.

e The easiest way to provide unobtrusive validation is to install the NuGet package
for it. That adds a Scripts folder that contains the jQuery files to the project as well
as the files that reference the jQuery files and manage the validation.

Figure 7-3 How to provide for unobtrusive validation

238 Section2 ASP.NET essentials

How to use the validators

In the topics that follow, you’ll learn how to use the validators as you
develop applications.

How to use the required field validator

Figure 7-4 shows how to use the required field validator. This validator
checks that the user entered a value into an input control. If the user doesn’t
enter a value, the validator’s error message is displayed.

The three examples in this figure illustrate how you can use the required
field validator. In the first example, this validator is used to check for a required
entry in a text box. To do that, its ControlTo Validate property is set to the ID
property of the text box. Then, if the user doesn’t enter anything into the text
box, the text in the ErrorMessage property is displayed.

The second and third examples show how you can use the Initial Value
property of the required field validator to check that the user changed the initial
value of a control. For this to work right, this property must be set to the initial
value of the field that’s being validated.

In the second example, this technique is used with a text box. Here, the
initial value of the text box indicates the format for a date entry. If the user
doesn’t change this value, the validation test will fail. This doesn’t work as well
as you might want it to, though, because the users have to delete the initial value
in the field before they can enter the new value, which isn’t as easy as entering a
value into an empty text box.

The third example uses the InitialValue property with a list box. Here, the
Initial Value property is set to None, which is the value of the first item in the list.
That way, if the user doesn’t select another item, the validation test will fail. You
can also use this technique with a drop-down list or a radio button list.

Chapter 7 How to use the validation controls

A property of the required field validator
Property Description

Initialvalue The initial value of the control that’s validated. If this value isn’t
changed, the validation fails. The default is an empty string.

A validator that checks for a required entry

<asp:TextBox ID="txtName" runat="server"></asp:TextBox>
<asp:RequiredFieldvValidator ID="RequiredFieldValidatorl" runat="server"
ControlTovValidate="txtName"
ErrorMessage="You must enter a name." >
</asp:RequiredFieldvalidator>

A validator that checks that an initial value is changed

<asp:TextBox ID="txtBirthDate" runat="server>mm/dd/yyyy</asp:TextBox>
<asp:RequiredFieldvValidator ID="RequiredFieldValidator2" runat="server"

ControlTovValidate="txtBirthDate"

Initialvalue="mm/dd/yyyy"

ErrorMessage="You must enter a birthdate.">
</asp:RequiredFieldvalidator>

A required field validator that forces an option to be chosen
from a list box

<asp:ListBox ID="lstCardType" runat="server">

<asp:ListItem Selected="True" Value="None">Select a credit card

</asp:ListItem>

<asp:ListItem Value="Visa">Visa</asp:ListItem>

<asp:ListItem Value="MC">MasterCard</asp:ListItem>

<asp:ListItem Value="AmEx">American Express</asp:ListItem>
</asp:ListBox>

<asp:RequiredFieldvalidator ID="RequiredFieldvalidator3" runat="server"
ControlTovValidate="1lstCardType"
Initialvalue="None"

ErrorMessage="You must select a credit card type.">
</asp:RequiredFieldvalidator>

Description

o The required field validator checks that the user entered data into an input control.
It’s typically used with text box controls, but can also be used with list controls.

e If you set the Initital Value attribute of a required field validator, you should set the
starting value for the field that’s being validated to the same value. This technique
can be used to show the format that should be used for an entry.

Figure 7-4 How to use the required field validator

239

240 Section2 ASP.NET essentials

How to use the compare validator

Figure 7-5 shows how you use the compare validator. This validator lets
you compare the value entered into an input control with a constant value or the
value of another control. You can also use the compare validator to make sure
that the value is a particular data type.

To define a compare validator, you use the four properties shown in this
figure. To compare the input data with a constant value, you specify the value in
the ValueToCompare property. Then, you set the Operator property to indicate
the type of comparison you want to perform, and you set the Type property to
the type of data you’re comparing.

The first example illustrates how this works. Here, the value entered into a
text box is tested to be sure that it’s an integer that’s greater than zero. Then, if
the user enters a value that isn’t an integer, or if the user enters an integer that
isn’t greater than zero, the error message will be displayed.

To test for just a data type, you set the Type property to the type of data
you’re testing for, and you set the Operator property to DataTypeCheck. This
is illustrated by the second example. Here, the value entered into a text box is
tested to be sure that it’s an integer.

The third example shows how to compare the value of an input control with
the value of another control. To do that, you set the Operator and Type proper-
ties just as you do when you compare an input value with a constant. Instead of
setting the ValueToCompare property, however, you set the ControlToCompare
property to the ID of the control whose value you want to compare. This
example tests that a date that’s entered into one text box is after the date entered
into another text box.

When you work with compare validators, you should know that if the user
doesn’t enter a value into a control, the control will pass the test of its compare
validator. Because of that, you must use a required field validator along with
the compare validator if you want to be sure that the user enters a value into a
control.

You should also realize that if you compare the value of a control against the
value of another control, the validation test will pass if the user doesn’t enter a
value into the other control or the value of the other control can’t be converted
to the correct type. To avoid that problem, you’ll want to be sure that the other
control is also validated properly.

Chapter 7 How to use the validation controls

Properties of the compare validator

Property Description

ValueToCompare The value that the control specified in the ControlToValidate property
should be compared to.

Operator The type of comparison to perform (Equal, NotEqual, GreaterThan,
GreaterThanEqual, LessThan, LessThanEqual, or DataTypeCheck).

Type The data type for the comparison (String, Integer, Double, Date, or
Currency).

ControlToCompare The ID of the control that the value of the control specified in the
ControlToValidate property should be compared to.

A compare validator that checks for a value greater than zero

<asp:TextBox ID="txtQuantity" runat="server"></asp:TextBox>
<asp:CompareValidator ID="CompareValidatorl" runat="server"

ControlToValidate="txtQuantity"

Type="Integer"

Operator="GreaterThan"

ValueToCompare="0"

ErrorMessage="Quantity must be greater than zero.">
</asp:ComparevValidator>

A compare validator that checks for an integer value

<asp:TextBox id="txtQuantity" runat="server"></asp:TextBox>
<asp:CompareValidator ID="CompareValidator2" runat="server"

ControlTovValidate="txtQuantity"

Operator="DataTypeCheck"

Type="Integer"

ErrorMessage="Quantity must be an integer.">
</asp:ComparevValidator>

A compare validator that compares the values of two text boxes

<asp:TextBox ID="txtStartDate" runat="server"></asp:TextBox>

<asp:TextBox ID="txtEndDate" runat="server"></asp:TextBox>
<asp:ComparevValidator

ID="CompareValidator3" runat="server"

ControlTovValidate="txtEndDate"

Operator="GreaterThan"

Type="Date"

ControlToCompare="txtStartDate"

ErrorMessage="End Date must be greater than Start Date.">
</asp:CompareValidator>

Description

e The compare validator compares the value entered into a control with a constant
value or with the value entered into another control.

e You can also use the compare validator to check that the user entered a specific data
type.

Figure 7-5 How to use the compare validator

241

242 Section2 ASP.NET essentials

How to use the range validator

The range validator, shown in figure 7-6, validates user input by making
sure that it falls within a given range of values. To specify the valid range, you
set the MinimumValue and MaximumValue properties. You must also set the
Type property to the type of data you’re checking. For instance, the first example
in this figure checks that the user enters an integer between 1 and 14 into a text
box.

The second example in this figure shows how you can set the range for
a range validator at runtime. Here, you can see that the Minimum Value and
MaximumValue properties aren’t set when the range validator is declared.
Instead, they’re set when the page is loaded for the first time. In this case, the
MinimumValue property is set to the current date, and the Maximum Value
property is set to 30 days after the current date.

Like the compare validator, you should realize that the range validator will
pass its validation test if the user doesn’t enter anything into the associated
control. Because of that, you’ll need to use a required field validator along with
the range validator if the user must enter a value.

Chapter 7 How to use the validation controls

Properties of the range validator

Property Description

MinimumvValue The minimum value allowed for the control.
MaximumValue The maximum value allowed for the control.
Type The data type for the comparison (String,

Integer, Double, Date, or Currency).

A range validator that checks for a numeric range

<asp:TextBox ID="txtDays" runat="server"></asp:TextBox>
<asp:RangeValidator ID="RangeValidatorl" runat="server"

ControlTovValidate="txtDays"

Type="Integer"

MinimumValue="1"

MaximumValue="14"

ErrorMessage="Days must be between 1 and 14.">
</asp:RangeValidator>

How to set a range at runtime

A range validator that checks a date range that’s set at runtime
<asp:TextBox ID="txtArrival" runat="server">01/01/1l4</asp:TextBox>
<asp:RangeValidator ID="valArrival" runat="server"

ControlToValidate="txtArrival"

Type="Date"

ErrorMessage="You must arrive within 30 days.">
</asp:RangeValidator>

Code that sets the minimum and maximum values when the page is loaded
Protected Sub Page_Load(sender As Object,
e As EventArgs) Handles Me.Load
If Not IsPostBack Then
valArrival.MinimumValue = Today.ToShortDateString
valArrival.MaximumValue = Today.AddDays(30).ToShortDateString
End If
End Sub

Description

The range validator checks that the user enters a value that falls within the range
specified by the MinimumValue and MaximumValue properties. These properties
can be set when the range validator is created or when the page is loaded.

If the user enters a value that can’t be converted to the correct data type, the valida-
tion fails.

If the user doesn’t enter a value in the input control, the range validator passes its
validation test. As a result, you should also provide a required field validator if a
value is required.

Figure 7-6 How to use the range validator

243

244 Section2 ASP.NET essentials

How to use the regular expression validator

A regular expression is a string made up of special pattern-matching
symbols. You can use regular expressions with the regular expression validator
to make sure that a user’s entry matches a specific pattern, like one for a zip
code, phone number, or email address. Figure 7-7 shows how to use the regular
expression validator.

As you can see, the ValidationExpression property specifies the regular
expression the input data must match. For instance, the code for the first regular
expression validator in this figure specifies that the input data must contain five
decimal digits (\d{5}). And the regular expression for the second validator speci-
fies that the input data must be in the format of a U.S. phone number.

If you access the Regular Expression Editor that’s shown in this figure, you
can select one of the expressions provided by Visual Studio. These expressions
define common patterns for phone numbers and postal codes in the United States
and some other countries, as well as social security numbers, email addresses,
and URLs.

You can also create a custom expression that’s based on a standard expres-
sion by selecting an expression in the Regular Expression Editor so its pattern
appears in the text box at the bottom of the dialog box. Then, you can modify the
expression and click on the OK button to insert it into the aspx code for the vali-
dator. In the next figure, you’ll learn more about creating a regular expression.

Chapter 7 How to use the validation controls 245

A property of the regular expression validator

ValidationExpression A string that specifies a regular expression. The regular expres-
sion defines a pattern that the input data must match to be valid.

The Regular Expression Editor dialog box
rRegular Expression Editor m‘

Standard expressions:

P.R.C. phone number -
P.R.C. postal code

P.R.C. Social Securii number (ID number) |:|

.5, Social Security number

Validation expression:

(OO{3 1) 7033 df4}

[ok][cence |

A regular expression validator that validates five-digit numbers

<asp:TextBox ID="txtZipCode" runat="server"></asp:TextBox>
<asp:RegularExpressionValidator ID="RegularExpressionValidatorl"
runat="server" ControlToValidate="txtZipCode"
ValidationExpression="\d{5}"
ErrorMessage="Must be a five-digit U.S. zip code.">
</asp:RegularExpressionValidator>

A regular expression validator that validates U.S. phone numbers

<asp:TextBox ID="txtPhone" runat="server"></asp:TextBox>

<asp:RegularExpressionvValidator ID="RegularExpressionValidator2"
runat="server" ControlToValidate="txtPhone"
ValidationExpression="((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}"
ErrorMessage="Must be a valid U.S. phone number.">

</asp:RegularExpressionValidator>

Description

o The regular expression validator matches the user’s entry with the pattern specified
by the regular expression that’s identified by the ValidationExpression property. If
the entry doesn’t match the pattern, the validation fails.

o ASPNET provides some common regular expressions that you can access from the
Regular Expression Editor. To display its dialog box, select the validation control,

select the ValidationExpression property in the Properties window, and click its
ellipsis button.

e You can also use the Regular Expression Editor to create a custom expression that’s

based on a standard expression. To do that, select the standard expression and then
edit it in the Validation Expression text box.

Figure 7-7 How to use the regular expression validator

246 Section2 ASP.NET essentials

How to create regular expressions

Figure 7-8 presents the basic elements of regular expressions. Although
the .NET Framework provides many other elements that you can use in regular
expressions, you can create expressions of considerable complexity using just
the ones shown here. In fact, all of the standard expressions provided by
ASPNET use only these elements.

To start, you can specify any ordinary character, such as a letter or a decimal
digit. If a character must be an A, for example, you just include that character in
the expression. To include a character other than an ordinary character, you must
precede it with a backslash. For example, \(specifies that the character must be
a left parenthesis, \] specifies that the character must be a right bracket, and \\
specifies that the character must be a backslash. A backslash that’s used in this
way is called an escape character.

You can also specity a character class, which consists of a set of characters.
For example, \d indicates that the character must be a decimal digit, \w indicates
that the character must be a word character, and \s indicates that the character
must be a whitespace character. The uppercase versions of these elements—\D,
\W, and \S—match any character that is not a decimal digit, word character, or
whitespace character.

To create a list of possible characters, you enclose them in brackets. For
example, [abc] specifies that the character must be the letter a, b, or ¢, and [a-z]
specifies that the character must be a lowercase letter. One common construct
is [a-zA-Z], which specifies that the character must be a lowercase or uppercase
letter.

You can also use quantifiers to indicate how many of the preceding element
the input data must contain. To specify an exact number, you just code it in
brackets. For example, \d{5} specifies that the input data must be a five-digit
number. You can also specify a minimum number and a maximum number of
characters. For example, \w{6,20} specifies that the input data must contain
from six to twenty word characters. You can also omit the maximum number to
require just a minimum number of characters. For example, \w{6,} specifies that
the input data must contain at least 6 word characters. You can also use the *, ?,
and + quantifiers to specify zero or more, zero or one, or one or more characters.

If the input data can match one or more patterns, you can use the vertical
bar to separate elements. For example, \w+I\s{ 1} means that the input data must
contain one or more word characters or a single whitespace character.

To create groups of elements, you use parentheses. Then, you can apply
quantifiers to the entire group or you can separate groups with a vertical bar. For
example, (AB)I(SB) specifies that the input characters must be either AB or SB.
And (\d{3}-)? specifies that the input characters must contain zero or one occur-
rence of a three-digit number followed by a hyphen.

This of course is just an introduction to regular expressions. For more
information, try searching the Internet. The information is plentiful, and you can
probably find an example of an expression that does just what you’re looking for.

Chapter 7 How to use the validation controls

Common regular expression elements

Element Description

Ordinary character
\

\d

\D

\w

\w

\s

\s
[abcdl]
[*abcd]
[a-z]
{n}
{n,}

{n,m}

V)

-~ — +

Matches any character other than ., $, 2, [, {, , I,), *, +, 2, or \.
Matches the character that follows.

Matches any decimal digit (0-9).

Matches any character other than a decimal digit.

Matches any word character (a-z, A-Z, and 0-9).

Matches any character other than a word character.

Matches any white space character (space, tab, new line, etc.).
Matches any character other than a whitespace character.
Matches any character included between the brackets.

Matches any character that is not included between the brackets.
Matches any characters in the indicated range.

Matches exactly n occurrences of the preceding element or group.
Matches at least n occurrences of the preceding element or group.
Matches at least n but no more than m occurrences of the preceding element.
Matches zero or more occurrences of the preceding element.
Matches zero or one occurrence of the preceding element.
Matches one or more occurrences of the preceding element.
Matches any of the elements separated by the vertical bar.
Groups the elements that appear between the parentheses.

Examples of regular expressions

Expression Example Description

\d{3} 289 A three digit number.

\w{8,20} Frankenstein At least eight but no more than twenty word
characters.

\d{2}-\da{4} 10-3944 A two-digit number followed by a hyphen and a
four-digit number.

\w{l,8}.\w{1,3} freddy.jpg Up to eight letters or numbers, followed by a period
and up to three letters or numbers.

(AB) | (sB)-\d{1,5} SB-3276 The letters AB or SB, followed by a hyphen and a
one- to five-digit number.

\d{5}(-\d{4})? 93711-2765 A five-digit number, optionally followed by a hyphen
and a four-digit number.

\w*\d\w* arm01 A text entry that contains at least one numeral.

[xyz]\d{3} x023 The letter x, y, or z, followed by a three-digit number.

Description

e For more information and for specific types of expressions, you can search the

Internet.

Figure 7-8 How to create regular expressions

247

248

Section 2 ASP.NET essentials

How to use a custom validator

If none of the other validators provide the data validation that your program
requires, you can use a custom validator. Then, you can code your own valida-
tion routine that’s executed when the page is submitted to the server. This tech-
nique is frequently used to validate input data that requires a database lookup.

Figure 7-9 shows how you use a custom validator. In this example, a custom
validator is used to check that a value entered by the user is a valid product code
in a table of products. To do that, the code includes an event handler for the
ServerValidate event of the custom validator. This event occurs whenever valida-
tion is performed on the server.

When the ServerValidate event occurs, the event handler receives an argu-
ment named args that you can use to validate the data the user entered. The Value
property of this argument contains the user’s entry. Then, the event handler
can perform the tests that are necessary to determine if this value is valid. If it
is valid, the event handler assigns a True value to the IsValid property of the
args argument so the validator passes its test. If it isn’t valid, the event handler
assigns a False value to the IsValid property of this argument so the validator
doesn’t pass its test. This causes the error message specified by the validator to
be displayed in the browser.

In this figure, for example, the event handler calls the CheckProductCode
method of the HalloweenDB class. Although you haven’t seen this class or
method before, all you need to know is that it checks the product code by look-
ing it up in a database. If the product code exists, this method returns a value of
True. Otherwise, it returns a value of False. In either case, the returned value is
assigned to the IsValid property of the args argument.

Chapter 7 How to use the validation controls

Properties of the ServerValidateEventArgs class

Property Description

Value The text string to be validated.

IsValid A Boolean property that you set to True if the value
passes the validation test or to False if it fails.

The aspx code for a text box and a custom validator

<asp:TextBox ID="txtProductCode" runat="server"></asp:TextBox>
<asp:CustomValidator id="valProductCode" runat="server"
ControlTovalidate="txtProductCode"
ErrorMessage="Product code must be in database.">
</asp:Customvalidator>

Visual Basic code for the custom validator
Protected Sub valProductCode_ServerValidate(source As Object,
args As ServerValidateEventArgs) _
Handles valProductCode.ServerValidate
args.IsValid = HalloweenDB.CheckProductCode(args.Value)
End Sub

Description

You can use a custom validator to validate input data using the validation tests you
specify.

For a customer validator, you code the validation tests within an event handler for
the ServerValidate event of the custom validator. This event is raised whenever
validation is performed on the server. Because of that, the form must be submitted
before the validation can be done.

To start the event handler for the ServerValidate event in the code-behind file for a
form, you can double-click on the custom validator control in the Designer. Then,
you can use the properties of the args argument that’s passed to this event handler
to test the input data (args.value) and indicate whether the data passed the valida-
tion test (args.IsValid).

If you set the IsValid property of the args argument to False, the error message you
specified for the custom validator is displayed in the browser.

If the user doesn’t enter a value into the associated input control, the custom
validator doesn’t perform its validation test. As a result, you should also provide a
required field validator if a value is required.

Figure 7-9 How to use a custom validator

249

250 Section2 ASP.NET essentials

Validation techniques

Now that you’re familiar with the validators, you’re ready to learn how to
use the validation summary control and validation groups.

How to use the validation summary control

The validation summary control lets you summarize all the errors on a page.
The summary can be a simple message like “There were errors on the page,”
or a more elaborate message that includes information about each error. The
summary can be displayed directly on the page or in a separate message box.

Figure 7-10 shows how to use the validation summary control. The
only tricky part of using this control is knowing how to code the Text and
ErrorMessage properties of a validator. To display the same message in both
the validator and the validation summary control, for example, you set the
ErrorMessage property to that message.

To display different messages, you set the ErrorMessage property to the
message you want in the summary control and the Text property to the message
you want in the validator. This is illustrated in the example in this figure. Here,
the message for each field in the validation control specifies the name of the
field, and the message in the validator describes the error. Note that in this case,
the message in the validator is coded as content of the control rather than in the
Text property.

If you don’t want to display individual error messages in the summary
control, just set the HeaderText property of the control to the generic message
you want to display. Then, leave the ErrorMessage property of each validator
blank. Otherwise, you can set the HeaderText property to a value like the one
in this figure, or you can leave it at its default value so no heading is displayed.
Last, if you want to display an error message in the validation summary control
but not in a validator, you can set the Display property of the validator to None.

By default, the error messages displayed by a validation summary control
are formatted as a bulleted list as shown in this figure. However, you can display
the errors in a list or paragraph by setting the DisplayMode property. You can
also display the error messages in a message box rather than on the web page by
setting the ShowMessageBox property to True and the ShowSummary property
to False.

To format a validation summary control, you can use its Appearance
properties as shown in this example. Here, the BorderColor, BorderStyle, and
BorderWidth properties put a border around the summary control. This is easier
than using CSS, because it’s hard to tell what HTML elements are generated for
a summary control. That’s because the elements are generated by JavaScript or
jQuery when errors are detected on the client, which means that you can’t find
out what the elements are by viewing them in the source code for a page.

If you use a bulleted list for a summary control, though, you do know that
the error messages will be in li items within an ul item, so you can apply CSS
to those elements. In this figure, for example, CSS has been used to add spacing
before and after the error messages (li elements).

Chapter 7 How to use the validation controls 251

Properties of the validation summary control

Property Description

DisplayMode Specifies how the error messages from the validators are displayed.
The options are BulletList (the default), List, and SingleParagraph.

HeaderText The text that’s displayed before the list of error messages.

ShowSummary A Boolean value that determines whether the validation summary is
displayed on the web page. The default is True.

ShowMessageBox A Boolean value that determines whether the validation summary is
displayed in a message box. The default is False.

The aspx code for a validation summary control and two validators

<asp:ValidationSummary ID="ValidationSummaryl" runat="server"
HeaderText="Please correct these entries" BorderColor="Black"
BorderStyle="Solid" BorderWidth="1lpx" />
<h2>Contact information</h2>
<label>Email address: </label>
<asp:TextBox ID="txtEmaill" runat="server" CssClass="entry"></asp:TextBox>
<asp:RequiredFieldvalidator ID="rfvEmaill" runat="server"
CssClass="validator" Display="Dynamic" ControlToValidate="txtEmaill"
ErrorMessage="First email address">Email is required
</asp:RequiredFieldvalidator>

<label>Email Re-entry: </label>
<asp:TextBox ID="txtEmail2" runat="server" CssClass="entry"></asp:TextBox>
<asp:CompareValidator ID="cvEmail2" runat="server"
ErrorMessage="Second email address" ControlToCompare="txtEmaill"
ControlTovalidate="txtEmail2" CssClass="validator">
Must match first entry</asp:CompareValidator>

How the error messages appear on the web page

Please correct these entries
= First email address
+ Second email address

Contact information

Email address: | | Email is required
Email Re-entry: |mary@techknowsolve | Must match first entry
Description

e The validation summary control displays a summary of the error messages that are
generated by the page’s validators. These messages can be displayed on the form or
in a message box.

e The error messages in a summary control come from the ErrorMessage properties
of the page’s validators. If you want to display a different message in a validator,
set the Text property of the validator or code the text as the content of the control.

e If you want to display a message in the validation summary control but not in the
validator, you can set the validator’s display property to None.

Figure 7-10 How to use the validation summary control

252 Section2 ASP.NET essentials

How to use validation groups

The validation group feature of ASPNET lets you group validation controls
and specify which group should be validated when a page is posted. Figure 7-11
shows how to use these groups.

To illustrate, the web page in this figure provides for a billing address and a
shipping address, with a check box to indicate whether the shipping address is
the same as the billing address. Then, if the check box is checked, the shipping
address isn’t required. As a result, the validators for the shipping fields shouldn’t
be executed. To implement this type of validation, you can use two validation
groups: one for the billing fields, the other for the shipping fields.

The first example in this figure shows just one of the shipping address text
boxes and a validator that’s assigned to a validation group named ShipTo. For
the purpose of this example, though, you can assume that the other shipping
fields also have validators assigned to the ShipTo group.

The second example shows a button that submits the page. Here, the button
specifies ShipTo as its validation group. Because of that, only the shipping
fields will be validated when the user posts the form. For this to work, the
CausesValidation property of the button must be set to True, but that’s the default
for a button.

The third example shows how you can invoke the ShipTo validators in your
Visual Basic code if the check box is left unchecked. Here, the Validate method
of the Page class is executed with the name of the validation group as its argu-
ment. That causes the Validate method of each validator in the ShipTo group to
be executed. As a result, the shipping fields will be validated on the server, but
only if the check box isn’t checked.

Note that any validation controls that don’t have a ValidationGroup attri-
bute are cons